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Preface

This book has been developed over the past 25 years, undergoing constant modifications,
improvements, and attempts to include emerging developments.

The book integrates, for the first time, three aspects of condensed matter physics: one-
body, many-body, and topological perspectives, and, accordingly, is organized in three
parts. The presentation throughout is quite advanced in comparison with Ashcroft and
Mermin’s book or equivalent texts.

It is designed to accommodate an advanced two-, or possibly three-, semester graduate
course, following an introductory course in solid-state physics as a prerequisite. Since the
book covers a plethora of topics and subtopics, it is left to the instructor’s discretion to pick
and choose chapters and sections.

Part I, titled “One-Electron Physics,” presents many aspects of the one-electron
approach, and comprises seven chapters. It starts with an introductory chapter summarizing
elementary building blocks of solid-state physics, including the Born–Oppenheimer
approximation. It also reviews time-reversal symmetry and its implications. The following
three chapters cover the one-electron band theory. Chapter 2 develops the one-particle
formalism within Hartree–Fock and density functional frameworks and examines validity
bounds. The effects of exchange and correlation are also discussed, bringing out the idea
of an exchange hole for fermions. This is followed by outlines of the different methods of
electronic band calculations in Chapter 3, with detailed presentation of the pseudopotential
and tight-binding methods, including Harrison’s matrix element scaling. Chapter 4 derives
the spin–orbit interaction from the Dirac equation and discusses its manifestations in
electronic structure using the k · p method. The Dresselhaus and Rashba Hamiltonians
are developed within the context of bulk and structural inversion symmetry breaking, and
applications in two-dimensional electron gas are presented.

The fifth chapter covers linear response from the one-electron viewpoint, including
causality and the Kramers–Krönig relation. It develops the Kubo conductivity formula with
special reference to the quantum Hall effect. The longitudinal and transverse dielectric
functions are derived, and the ideas of intraband and interband, both direct and indirect,
optical transitions are discussed.

xiii
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Chapter 6 presents a detailed account of phonons, lattice dynamics, and experimental
techniques for measuring phonon dispersions. It starts with deriving the electron–phonon
coupling in terms of symmetry-adapted (or normal) mode coordinates. The electronic con-
tributions to phonon energies are developed in terms of the density–density response func-
tion, and the implication of translational invariance is explained. The developed expressions
are then pedagogically used to construct phenomenological models for phonons in semi-
conductors and insulators – “pseudocharge models.” The different experimental probes
used in measuring the static and dynamic structure factors of solids are introduced, with
emphasis on neutron and helium atom scattering techniques that map bulk and surface
dispersions, respectively.

The last chapter of Part I explains the effect of dimensionality on electronic suscepti-
bilities, including nesting effects. It describes the onset of instabilities, as manifest in the
Peierls phenomenon, and delineates their emergent order parameters. It also introduces the
idea of a Kohn anomaly, and derives the giant Kohn anomaly as a consequence of the
one-dimensional Peierls instability.

Part II, titled “Topological Phases,” is focused on describing manifestation of topological
aspects and phenomena in condensed matter systems. The concept of topological order
in the electronic phases of condensed matter emerged in the early 1980s and reached
maturity over a decade ago. Understanding these concepts and experimentally observed
consequences has become one of the most important themes of modern condensed-matter
physics. Aptly, Part II starts with a short Chapter 8, reviewing the historical development
of topology in condensed matter physics. The main material of Part II is covered in four
more chapters. Chapter 9 presents relevant aspects of topology, such as homeomorphism,
fiber and vector bundles, connection, curvature, parallel transport, and holonomy, and ends
with establishing the relevance of topology to physics. Chapter 10, titled “Berry-ology,”
describes Berry’s phase, connection, and curvature, and derives the Chern topological num-
ber. It presents two pedagogically important but distinct examples: a two-level system,
with its concomitant “magnetic monopole,” and the molecular Aharonov–Bohm effect,
where the interplay between the quantum electronic and ionic motions leads to fascinating
topological manifestations.

Chapter 11 expounds on the topological aspects of the band structure of insulators
and presents two early discoveries. It starts with developing how the ideas of topological
equivalence and adiabatic continuity lead to the emergence of distinct classes of insulator
Hamiltonians, and how this, in turn, leads to bulk-boundary correspondence – the connec-
tion between bulk topological invariants and edge or surface states. The classification of
topologically nontrivial and trivial phases, based on fundamental discrete symmetries and
dimensionality, the “tenfold way,” is explained – an appendix outlining the procedures for
the classification of insulator Hamiltonians is placed at the end of the chapter. This is fol-
lowed by defining the mapping of d-dimensional Brillouin zones onto a d-dimensional Bril-
louin torus Td and Bloch Hamiltonians, and describing the construction of Bloch bundles
on the torus base manifold. Time-reversal symmetry, Kramers’ band degeneracy, “time-
reversal invariant momenta,” and the implied vanishing of Berry’s curvature are delineated.



Preface xv

Next, early discoveries of manifest topology in condensed matter – the integer quantum
Hall effect and the modern theory of polarization – are discussed in detail. Finally, the Z2

topological invariant is derived using the sewing matrix, time-reversal polarization, and the
non-Abelian Berry connection (the Wilczek–Zee gauge presented in the appendix).

The last chapter of Part II concerns Dirac materials and Dirac fermions. It starts with an
introduction to graphene, its Dirac points and cones, and the Dirac fermion Hamiltonian
in the vicinity of the K-points. This is followed by a presentation of the time-reversal
symmetry-breaking Chern insulators, with special focus on Haldane’s model. Next, the
quantum spin Hall effect, manifest in the graphene-like model of Kane–Mele, with strong
spin–orbit (SO) coupling, is described. The chapter ends with a detailed description of Weyl
semimetals. An appendix describing the Dirac and Weyl equations is placed at the end of
the chapter.

Part III, titled “Many-Body Physics,” covers many related concepts, aspects, and phe-
nomena. Chapter 13 teaches the techniques of many-body theory. It introduces the idea
of second quantized operators in the many-particle domain, Fock spaces, field operators,
and vacuum states, and outlines how canonical transformations can be applied to solve
many-body problems. It also contains a section on coherent states, as eigenstates of the
annihilation operator, including the development of Grassmann’s algebra and calculus for
fermions. Chapter 14 presents a Hartree–Fock perturbative treatment of the interacting
electron gas within the jellium model and highlights its drawbacks. It also introduces the
concept of the random phase approximation (RPA).

Chapter 15 develops the many-body, one-particle Green function, and explains its phys-
ical interpretation in terms of the spectral function, self-energy, and quasi-particle lifetime.
Its application in angle-resolved photoemission spectroscopy is presented in detail. The
time-evolution operator in the interaction picture is derived, time-ordering and adiabatic
switching on are introduced as precursor tools to construct the Feynman–Dyson many-body
perturbation theory. A detailed account of Wick’s theorem, normal ordering, and contrac-
tions is outlined. Feynman diagrams are constructed in (x,t) and (k,ω), and the emergence
of the infinite Dyson series from irreducible diagrams is outlined. This is followed by the
development of the two-particle Green function and the Particle–hole excitation spectra
for noninteracting and interacting systems. The diagrammatic application of RPA in the
latter case is described. Finally, the finite-temperature Matsubara Green function is intro-
duced and developed, together with its Fourier series representation and the evaluation of
Matsubara sums. Chapter 16 presents functional integral methods of quantum many-body
theory. Starting with Feynman’s path integral, it develops functional integrals of partition
functions in imaginary time and extends these techniques to many-body systems. Finally,
it expands the formulation in the coherent-state basis, and describes the application of the
Hubbard–Stratononvich transformation and the saddle-point approximation.

Chapter 17 treats the Bose–Einstein condensation, and explains superfluidity from the
Bogoliubov and Ginzburg–Landau perspectives. It also describes the concept of spon-
taneous symmetry breaking and Goldstone modes. Chapter 18 covers Landau’s Fermi
liquid theory, and Chapter 19 treats non-Fermi liquids and quantum critical points and
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describes Luttinger liquid theories. Chapter 20 develops the formalism of electron–phonon
interaction within the Matsubara framework. Chapter 21 deals with superconductivity. It
introduces the concept of Cooper pairing and develops a diagrammatic approach to the
Cooper instability. The Bardeen–Cooper–Schrieffer (BCS) Hamiltonian is then constructed
and solved with the aid of the Bogoliubov–Valatin transformation. This is followed by a
presentation of the Nambu–Gorkov formalism, and the Gorkov anomalous Green function.
Finally, a detailed account of the Ginzburg–Landau perspective of superconductivity is
given, ending with a derivation of the Meissner effect and an explanation of the Anderson–
Higgs mechanism.

The last three chapters of Part III are dedicated to several aspects of quantum magnetism.
The first provides detailed analysis of mechanisms of exchange coupling: direct or poten-
tial exchange, kinetic exchange, superexchange, polarization exchange, Dzialoshinskii–
Moriya, double exchange, and Ruderman–Kittel–Kasuya–Yosida (RKKY). The effects of
crystal fields and the single-site anisotropy are also discussed. The second chapter on
magnetism covers ferromagnetic and antiferromagnetic insulators, describing the nature
of their respective ground states and deriving their spin-wave excitation spectra with the
aid of the Holstein–Primakoff transformation. The final chapter deals with magnetism in
itinerant systems. It starts with the Stoner mean field theory, as derived from a simple
Hubbard model, and Stoner excitations and spin-waves obtained with the aid of RPA. The
concept of nesting and spin-density waves is then discussed. This is followed by a detailed
presentation of Anderson’s magnetic impurity model, and its relation to the kondo model
through the Schrieffer–Wolff transformation. Finally, a detailed account of the Kondo effect
and the Kondo resonance is given.

Most chapters contain copious sets of problems, and each chapter contains a large
number of helpful figures and illustrations. It is recommended pedagogically that problem
solution should involve close interaction between students and instructor.
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One-Electron Theory
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Preliminaries

1.1 Periodic Lattices, Brillouin Zones, and Bloch’s Theorem

We consider the single-particle Hamiltonian defined on a one-dimensional periodic lattice
of period a:

H = p2

2m
+ V (x)

V (x) = V (x ± na), n integer

This type symmetry requires the introduction of a discrete translation operator τ(a).
We define its action on a position ket as

τ(a)⇒ τ(a)
∣∣x′〉 = ∣∣x′ + a

〉
, τ †(a)

∣∣x′〉 = ∣∣x′ − a
〉

When applied to the potential energy operator V (x), we get

τ(a) V (x) τ †(a) = V (x + a)

and we find that

τ(a)H τ †(a) = H⇒ H τ(a) = τ(a)H

hence,

[H, τ (a)] = 0

τ is unitary, τ †(a)= τ−1(a), but not Hermitian; hence, it may have complex
eigenvalues!

3



4 Preliminaries

1.1.1 Eigenvalues and Eigenkets of τ

The position representation of an eigenket |α〉 of τ ,
〈
x′ |α〉, is just the wavefunction �α(x

′),
and we find 〈

x′ |α〉 = �α(x
′)〈

x′ |τ(a)|α〉 = 〈x′ − a |α〉 = �α(x
′ − a)

τ(a)�α(x
′) = �α(x

′ − a)

An eigenfunction � of τ , satisfies

τ(a)�α(x
′) = �α(x

′ − a) = λ�α(x
′)

Using the mathematical trick of fictitious periodic boundary conditions

�α(x
′ −Na) = �α(x

′)

we get

(τ (a))N �α(x
′) = �α(x

′ −Na) = λN �α(x
′) = �α(x

′)

Hence, we find that

λN = 1 ⇒ λ = exp

[
i
2πm

N

]
= exp

[
i
2πma

Na

]
= eikm a,

km = 2π

a

m

N
, − N

2
≤ m ≤ N

2
(1.1)

Notice that km is proportional to the ratio of two integer numbers, m and N . The kms are
uniformly distributed with intervals, or specific length 2π/Na = 2π/L.

Now, we take the limit N → ∞, so that k becomes a denumerable number, i.e., it assumes
an infinite number of discrete values in the range

−π
a
≤ k ≤ π

a
(1.2)

which defines the one-dimensional Brillouin zone.
Note that the eigenvalue of � with respect to τ , eika , implies periodicity in the reciprocal

space (k-space), because ei(k+G)a = eika for all reciprocal lattice vectors G = 2nπ
a

, where
n is an integer. We may, therefore, restrict k to the first Brillouin zone.
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The notion of a Brillouin zone (BZ) can be extended to any dimension. In two- or three-
dimensions, the specific area/volume is

Two-dimensions (2D): specific area

(
2π

L

)2

⇒ (2π)2

A
, A is the system’s 2D area

Three-dimensions (3D): specific volume

(
2π

L

)3

⇒ (2π)3

V
, V is the system’s volume

Lattice Sums

A useful relation that is frequently encountered in solid-state physics involves lattice sums
of the form

1

N

N∑
j=1

eikja =

⎧⎪⎨⎪⎩
1, k = 2nπ/a = Gn,

eikNa − 1

eika − 1
= 0, Otherwise

The last line on the left-hand side results from substituting k = (m/N)2π/a in the argu-
ment of the exponential in the numerator, which yields kNa = 2mπ .

For two- and three-dimensions ∑
R

eik·R = N δk,G

∑
G

eiG·r = N δr,R

R, G, are lattice and reciprocal lattice vectors, respectively.

Construction of the Eigenkets of τ

We consider a complete set of localized, energy-degenerate states |n〉, where |n〉 is centered
at lattice site n, see Figure 1.1. Thus, n identifies the nth lattice site. Noting that

τ(a) |n〉 = |n+ 1〉
we construct the ket ∣∣kμ〉 =∑

n

eikμ na |n〉
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Figure 1.1 Nearest-neighbor hopping in localized orbitals.

and obtain

τ(a)
∣∣kμ〉 =∑

n

eikμ na τ (a) |n〉 = e−ikμ a
∑
n

eikμ na |n〉

satisfying the eigenvalue equation

τ(a)
∣∣kμ〉 = e−ikμ a

∣∣kμ〉
The corresponding wavefunction is obtained as follows〈

x′ |τ(a) | kμ
〉 = e−ikμ a

〈
x′ | kμ

〉
, operating to the right〈

x′ |τ(a) | kμ
〉 = 〈x′ − a | kμ

〉
, operating to the left

which means that 〈
x′ − a | kμ

〉 = e−ikμ a
〈
x′ | kμ

〉
We now introduce Bloch’s proposition (Bloch’s theorem)

�α(x) =
〈
x′ | kμ

〉 = eikμ x
′
ukμ(x

′)

ukμ(x
′ ± ja) = ukμ(x

′)

}
Bloch’s theorem

where j is any integer. Thus,

τ(a)�α(x) = eikμ (x
′−a) ukμ(x

′ − a) = eikμ x
′
ukμ(x

′) e−ikμ a = e−ikμ a �α(x)

1.1.2 Eigenvalues of H: Energy Bands (Tight-Binding)

We can envision the localized kets |n〉 as energy eigenkets of, say, an infinite parabolic
potential centered at each lattice site, in which case

〈n |H| n〉 = E0

〈n |H| n± 1〉 = 0
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Infinite parabolic potential barriers

Finite periodic potential

Figure 1.2 Periodic potentials.

Now, if we replace the infinite potential barriers by a periodic potential having finite barriers
between lattice sites (see Figure 1.2), a particle can tunnel from one site to its neighboring
sites, and we obtain

〈n |H| n〉 = E0

〈n |H| n± 1〉 = −	; Tight-binding approximation

H |n〉 = E0 |n〉 −	 |n+ 1〉 −	 |n− 1〉

Since H and τ commute, they share the same eigenket. Thus, we examine the action of H
on
∣∣kμ〉

H
∣∣kμ〉 =∑

n

eikμ na H |n〉 = E0

∑
n

eikμ na |n〉 −	
∑
n

eikμ na
(
|n+ 1〉 + |n− 1〉

)
= E0

∑
n

eikμ na |n〉 −	
(
eikμ a + e−ikμ a

) ∑
n

eikμ na |n〉

=
(
E0 − 2	 cos

(
kμ a
)) ∑

n

eikμ na |n〉 =
(
E0 − 2	 cos

(
kμ a
)) ∣∣kμ〉

Hence,

H
∣∣kμ〉 = E(kμ)

∣∣kμ〉 = (E0 − 2	 cos
(
kμ a
)) ∣∣kμ〉

The energy eigenvalue function
(
E0 − 2	 cos

(
kμ a
))

is just the electron band dispersion

curve plotted in Figure 1.3 in the first BZ.
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Figure 1.3 Tight-binding band dispersion, a = 1.

1.2 Energetics and Density Scaling for an Electron Gas

In describing most metals, we usually start from a picture of noninteracting electrons when
calculating electronic structures and other properties. However, the Coulomb interaction
energy among electrons is actually very large, and we might wonder why it is appropriate
to assume that noninteracting electrons (an ideal Fermi gas) make a sensible starting point.

To answer this question, we consider an electron gas, or jellium, model, which is a
simple paradigm model we shall encounter often. This system consists of N electrons
together with a smooth, uniformly smeared background of positive charge density Ne/
,
in order to ensure electrical neutrality; 
 is the volume of the system. A realization of such
a system is found in high-temperature plasmas and in simplified models of metals, where
the discrete ionic charges are smeared out.

We write the Hamiltonian as

H =
∑
i

h̄2 ∇2
i

2me

+ 1

2

∑
i 
=j

e2∣∣ri − rj
∣∣

For an average electron separation of d and a specific volume 4πd3/3 = 
/N , we define
r′i = ri/d and ∇′i = d ∇i and obtain

H = 1

d2

∑
i

h̄2 ∇′2i
2me

+ 1

2

1

d

∑
i 
=j

e2∣∣∣r′i − r′j
∣∣∣

Setting d = rsaB , where aB = h̄2/mee
2 is the Bohr radius, we get

H = e2

2aB

⎡⎣ 1

r2
s

∑
i

∇′2i +
1

rs

∑
i 
=j

1∣∣∣r′i − r′j
∣∣∣
⎤⎦
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We find that the relative energy scales of the physical quantities involved in this system are

Kinetic energy ∼ h̄2

med2
, Coulomb energy ∼ e2

d

so that

Coulomb energy

Kinetic energy
= mee

2

h̄2
d = d

aB
= rs (1.3)

rs is the specific radius, in units of the Bohr radius aB .
We note that Coulomb interactions dominate when rs � 1, while the kinetic energy

dominates rs < 1. It is surprising to see that interactions are, relatively speaking, weak
in the high-density limit. A careful examination of (1.3) reveals that with decreasing rs ,
growth in Coulomb energies is slower than kinetic energy growth. For rs ∼ O(102),
Coulomb interactions prevail, and electrons are known to order into a Wigner crystal.
Consequently, and contrary to conventions, we regard a high-density electron system as
a gas, since interaction can be neglected, while a very low-density system becomes crys-
talline, as depicted in Figure 1.4.

The range of rs for metals is Be : 1.87 ≤ rs ≤ Cs : 5.62, which is not high enough to
cause crystallization, yet the Coulomb interaction is strong. In other words, in a typical elec-
tron fluid inside metals, the Coulomb energy is comparable to the electron kinetic energy,
constituting a major perturbation to the electron motions. In that sense, the electronic
problem appears to be hopeless since the electron–electron interactions cannot be treated as
a small perturbation. Nevertheless, the noninteracting model of the Fermi gas reproduces
many qualitative features of metallic behavior, such as a well-defined Fermi surface, a
linear specific heat capacity, and a temperature-independent paramagnetic susceptibility;
evidence of remarkably strong robustness against perturbation. However, quantitatively,
the model reveals serious discrepancies between predicted and measured values of physical
properties. We shall examine this scenario in Chapter 18 when we discuss Landau’s Fermi
liquid theory.

1 35 r
s

“Gas” “Liquid” “Crystal”

Figure 1.4 Illustration of configurations of the electron system for different densities.
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Figure 1.5 Free-electron band dispersion, a = 1.

1.3 Noninteracting Free Electron Gas (Sommerfeld Gas)

It is instructive at this point to rehash some properties of the free electron gas. The Hamil-
tonian, H0, for a noninteracting free electron gas system, comprised of N electrons, is
given by

H0 =
N∑
i=1

p2
i

2me

The free electron gas is sometimes referred to as the Sommerfeld gas.
Writing the many-electron wavefunction as the product

∏
i |ki,σi〉, where electron i

occupies the plane-wave ket |ki,σi〉, we obtain (see Figure 1.5)

H0 =
∑
k,σ

h̄2k2

2me

σ represents the electron spin state. Applying the Pauli principle, the ground state is
expressed as a product of single particle wavefunctions

|�0〉 =
kF∏
|k|=0

|k ↑〉 |k ↓〉

where the product runs over |k| = 0 → kF . We obtain an expression for the Fermi
wavevector kF

N =
∑
kσ

(kF − k)→ 


(2π)3
∑
σ

∫
dk(kF − k) = 


3π2
k3
F

kF =
(

3π2N




)1/3

=
(

9π

4a3
B

)1/3
1

rs
(1.4)
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Figure 1.6 One-dimensional dispersion relation, E(k) = E0 sin(ka/2). A singularity appears at the
BZ boundary k = π/a, where dE/dk = 0.

where 
 is the system’s volume and (x) = 0 for x < 0. The ground-state energy is

E0 = 〈�0 |H0|�0〉 =
〈
�0

∣∣∣∣∣∣
∑
k,σ

h̄2k2

2m2

∣∣∣∣∣∣�0

〉
= h̄2

2me

∑
k,σ

k2 (kF − k)

= 


(2π)3
h̄2

2me

∑
σ

∫
dk k2 (kF − k) = 


π2

h̄2

2me

∫ kF

0
dk k4

= h̄2

10π2me

(
3π2N

)5/3

−2/3 = e2

2aB
N

3

5

(
9π

4

)2/3 1

r2
s

(1.5)

1.4 Dispersion Relations and the Density of States, D(E)

The idea of density of states (DOS) provides a very useful tool in deriving physical prop-
erties of quantum systems. We start with considering the simple case shown in Figure 1.6.
It represents a one-dimensional (1D) dispersion relation E(k) ∝ sin

(
ka
2

)
, where a is a

lattice periodicity. From the figure, we note the following:

“Number of states in dE = Number of states in dk”

Setting the former to be D(E) dE, where D(E) is the DOS, we write

D(E) dE = L

2π
dk ⇒ D(E) = L/2π

dE/dk

Density of states in k-space

⎧⎪⎪⎨⎪⎪⎩
1D D(k) = 1

2π per unit length

2D D(k) = 1
(2π)2

per unit area

3D D(k) = 1
(2π)3

per unit volume
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Figure 1.7 E and E+ dE are adjacent constant energy surfaces in reciprocal space, and dkn ≡ dk⊥
is the normal to these constant energy difference surfaces.

For 3D, we evaluate the annular volume in k-space enclosed between two equienergy
surfaces E and E + dE. Expressing the annular element of volume, shown in Figure 1.7,
as dVk = dSkdk⊥, we write

D(E) dE =
∫

1

(2π)3
dVk

but

dE = ∇kE(k) · dk = |∇kE| dk⊥ ⇒ dk⊥ = dE

|∇kE|

and we obtain

D(E) = 1

(2π)3

∫
dS
|∇kE| (1.6)

A singularity in the density of states occurs when |∇kE| = 0. Singularities appear when
points or lines in the Brillouin zone have symmetry:

• Periodic symmetry manifests singularities at BZ boundaries.

• Rotation and reflection symmetries manifest singularities at high-symmetry points
and directions (irreducible zone [IBZ] boundaries), shown for a 2D square lattice in
Figure 1.8.

The existence of singularities in D(E) at high-symmetry points and lines in the BZ
means that major contributions to the density of states occur at such points and lines.
In other words, almost all states lie along high-symmetry points, directions, and planes.
Thus, when we present a dispersion relation associated with a particle or a quasiparticle
(electrons, phonons, magnons, etc.), we plot the dispersion curves only along such lines
and at such points.



1.5 Born–Oppenheimer Approximation 13

Figure 1.8 Two-dimensional square lattice BZ and its IBZ, shown in gray. There is reflection
symmetry along the lines labeled � and 	. The Line X −M is a BZ boundary.

1.5 Born–Oppenheimer Approximation

The motion of electrons in a solid is much faster than that of the constituent nuclei, since

me/M ∼ 10−3 − 10−5

The mass of a single nucleon is approximately 1,800 times larger than that of the electron.

This implies that at a temperature T , Ekin
nuc

Ekin
el
� 1. Physically, this means that within the time

scale that characterizes the motion of the nuclei, the much faster electrons will be able to
accommodate instantaneously to the position of the nuclei.

These are the conditions suitable for the adiabatic approximation. A brief description
and proof of the adiabatic theorem are given in the appendix for the interested reader.1

The adiabatic theorem stipulates that for a time-dependent Hamiltonian H(t) that changes
infinitely slowly (adiabatically), and for which at every time instant t the eigenvalues of
H(t) are nondegenerate

Ej(t) 
= Ek(t), ∀t, and all j 
= k,

the system will always stay in the same eigenket j when evolving in time, as shown in
Figure 1.9. We only need consider instantaneous eigenvalues and eigenvectors of H(t)

for all t .
We write the general Hamiltonian as

H = Hi +He +Hei

Hi =
∑
i

P2
i

2Mi

+
∑
i 
=j

e2ZiZj∣∣Ri − Rj

∣∣2

1 The adiabatic theorem will be revisited later in the book, in the context of topological phases and Berry’s phase.
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j

Figure 1.9 Schematic evolution of the eigenvalues in the adiabatic limit.

He =
∑
i

p2
i

2me

+
∑
i 
=j

e2∣∣ri − rj
∣∣2

Hei = −
∑
i,j

e2Zj∣∣ri − Rj

∣∣2 (1.7)

where the ionic positions Ri = Ri (t) change slowly (adiabatically) in comparison to the
fast movement of the electrons. In the context of molecular and condensed matter sys-
tems, the adiabatic approximation is referred to as the Born–Oppenheimer approximation
(BOA) [36].

According to the BOA, we initially drop Hi � He+Hei, and we solve the Schrödinger
equation corresponding to the instantaneous Hamiltonian for the electrons

He +Hei =
∑
i

p2
i

2me

+
∑
i 
=j

e2∣∣ri − rj
∣∣2 −∑

i,j

e2Zj∣∣ri − Rj

∣∣2
(He +Hei)

∣∣ψj (x,R)
〉 = Eel

j

∣∣ψj (r,R)
〉

x = (r1,r2, . . . ,rN)

R = (R1,R2, . . . ,RN)

freezing the positions of the nuclei R at every time t . Elimination of Hi demotes the
variables Ri to parameter status.

Having solved for the electronic eigenkets and eigenvalues, we can now obtain the
eigenfunctions |�(x,R)〉 for the whole Hamiltonian (1.7) using the product ansatz

|�(x,R)〉 = |ψ(x,R)〉 |�(R)〉

where |�(R)〉 is the wavefunction associated with the motion of the nuclei. Remember that
if the electrons are initially in state

∣∣ψj (x,R)
〉
, they will remain in this state as the system

evolves. Since the system was initially in its ground state, then
∣∣ψj (x,R)

〉 ⇒ |ψ0(x,R)〉.
First, we note that

Pi |ψ(x,R)〉 |�(R)〉 = |ψ(x,R)〉 Pi |�(R)〉 + |�(R)〉
(
−ih̄∇ i |ψ(x,R)〉

)
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Thus, we obtain

H |�〉 =
∑
i

P2
i

2Mi

|�〉 +
∑
i 
=j

e2ZiZj∣∣Ri − Rj

∣∣2 |�〉 + (He +Hei) |�〉

= |ψ0(x,R)〉
[
−
∑
i

h̄2

2Mi

∇2
i + U0(R)+ Eel

0 (R)

]
|�(R)〉

−
∑
i

h̄2

2Mi

[
2i

h̄
(∇ i |ψ0〉) · Pi +∇2

i |ψ0〉
]
|�(R)〉

Operating by 〈ψ0(x,R)|

Heff |�(R)〉 =
[∑

i

P2
i

2Mi

− 1

Mi

A0 · Pi − U1(R)+ U0(R)+ Eel
0 (R)

]
|�(R)〉

=
[∑

i

1

2Mi

(Pi − h̄A0)
2 + U(R)

]
|�(R)〉

where we completed the square by adding and subtracting A2
0
∑

i
1

2Mi
, and where

A0 = i
∑
i

〈ψ0(x,R)| ∇i |ψ0(x,R)〉

U1(R) =
∑
i

h̄2

2Mi

〈ψ0(x,R)| ∇2
i |ψ0(x,R)〉

U(R) = U0(R)+ Eel
0 (R)− U1(R)−A2

0

∑
i

1

2Mi

We just mention here that A0 is known as Berry’s vector potential.
We find that for the normalized ground state |ψ0(x,R)〉
∇i 〈ψ0(x,R) |ψ0(x,R)〉 = 0

= 〈∇i ψ0(x,R) |ψ0(x,R)〉 + 〈ψ0(x,R) |∇ i ψ0(x,R)〉
= 2Re 〈ψ0(x,R) |∇i ψ0(x,R)〉

which makes A0 = 0, since the ground state |ψ0(x,R)〉 has to be real.2

For the contribution, U1, we assume the worst case where the electrons are tightly bound
to the nuclei, i.e.,⇒ xi � Rj for some i and j. Then a crude estimate gives

2 The reality of the ground-state wavefunction is dictated by the fact that it must be nondegenerate and the Hamiltonian is
time-reversal invariant, as will be shown in Section 6.6.
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− h̄2

2M

∑
j

〈ψ0(x,R)| ∇2
Rj
|ψ0(x,R)〉 �

− h̄2

2M

∑
i

〈ψ0(x,R)| ∇2
ri |ψ0(x,R)〉 = me

M
Ekin

el �
∣∣∣Eel

0

∣∣∣
Neglecting this term, the lattice dynamics (phonon system) is described by the following
Schrödinger equation [∑

i

P2
i

2Mi

+ U(R)

]
|�(R)〉 = E |�(R)〉

where now U(R) = U0(R)+ Eel
0 (R).

1.6 Time-Reversal Symmetry

The discussion of time-reversal symmetry presented in this section will follow the analysis
given in the book by Sakurai and Napolitano [159].

1.6.1 Time-Reversal in Classical Mechanics

We consider a trajectory of a particle subject to some conservative force field. As shown in
Figure 1.10, we stop the particle at t = t0, as it moves along the trajectory, and reverse its
motion:

p(t0) → −p(t0)

The particle then moves backward along the same trajectory, such that(
x(t − t0),p(t − t0)

)
=
(

x(t0 − t), − p(t0 − t)
)

It is like running a motion picture of the trajectory backward.

Figure 1.10 Time-reversal action at t = t0.
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This is a manifestation of the appearance of second-order time-derivative in the classical
equation of motion

m
d2x
dt2

= −∇V (x), (1.8)

which renders x(−t) a bona fide solution in the same force field derivable from the conser-
vative potential V (x).3

We also find that the Maxwell equations and the Lorentz force

∇·E = 4πρ, ∇× B− 1

c

∂E
∂t
= 4π j

c
, ∇× E = −1

c

∂B
∂t

F = e

[
E+ 1

c
v× B

]
(1.9)

are invariant under t →−t , with the proviso that all quantities that contain momenta should
be reversed; namely, we have

E → E, ρ → ρ, j →−j, v →−v B →−B. (1.10)

1.6.2 Time-Reversal in Quantum Mechanics

Now, we shall explore and examine the consequences of time reversal in wave mechanics,
where the basic equation is the Schrödinger wave equation

ih̄
∂�(x,t)

∂t
=
(
− h̄2

2m
∇2 + V

)
�(x,t) = H�(x,t). (1.11)

Here, we immediately realize that because of the first-order time derivative, �(x, − t) is
not a solution if �(x,t) is a solution. However, if we conjugate the Schrödinger equation
and then do the transformation t → t ′ = −t , we find

ih̄
∂�∗(x, − t ′)

∂t ′
= H�∗(x, − t ′). (1.12)

Dropping the primes we find that �∗(x, − t) is a solution, which can be obtained by the
conjugation of (10.13). We therefore surmise that if � is a time-reversal operator, then

��(x,t) = �∗(x, − t). (1.13)

It is instructive to consider the case of an energy eigenstate, that is, by substituting

�(x,t) = un(x) e−iEnt/h̄, �∗(x, − t) = u∗n(x) e
−iEnt/h̄ (1.14)

into the Schrödinger equation (10.13). Thus, we expect that complex conjugation should
play a role in time reversal in quantum systems.

3 It is, of course, important to note that we do not have a dissipative force here. Such a force breaks time-reversal symmetry.
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1.6.3 Unitary and Antiunitary Symmetry Operations

We recall that the action of quantum operators is just a mapping of Hilbert, or ket, space
onto itself. A famous theorem due to Wigner requires that a mapping of a ket space onto
itself must preserve the absolute values of all scalar products, namely,∣∣∣α〉 O−→ ∣∣∣α̃〉,∣∣∣β〉 O−→ ∣∣∣β̃〉

⎫⎬⎭ ∣∣∣〈β̃∣∣∣α̃〉∣∣∣ = ∣∣∣〈β∣∣∣α〉∣∣∣ (1.15)

Thus, the mapping must be either a linear unitary operator or, as we will show, an antilinear,
antiunitary operator. The reason that only the absolute value of scalar products need be
preserved is that the only physically measurable quantities are absolute squares of scalar
products – namely, probabilities. Thus, symmetry operations in quantum mechanics must
preserve the probabilities of all physical outcomes – they all must be represented either by
unitary or antiunitary operators.

Symmetry operations that we have encountered, such as rotations, translations, and
the discrete symmetry of parity, require that the inner product be preserved; namely, we
require that 〈

β̃
∣∣α̃〉 = 〈β ∣∣∣O†O

∣∣∣α〉 = 〈β| α〉 (1.16)

which implies that such symmetry operators are unitary, O = U .

Antilinear Operators

Antilinear operators have the distributive property

Oa

(
c1 |α〉 + c2 |β〉

) = c∗1O |α〉 + c∗2O |β〉 . (1.17)

when acting on linear combinations of kets. Actually, an antilinear operator does not com-
mute with a constant, when the latter is regarded as a multiplicative operator in its own
right, and we write

Oa c = c∗Oa (1.18)

Thus, we find that the product of two antilinear operators is linear, and the product of a
linear with an antilinear operator is antilinear. To describe antilinear operations, we need to
reconsider the bra-ket picture. From the duality of bra and ket spaces, we can regard the bra
as a linear operator that yields a complex value when acting on a ket, namely, the mapping

bra : ket space → C

However, if we consider the bra 〈β| Oa , we realize that it is now an antilinear operator
acting on a ket. Bras should be linear operators. Thus, we need to introduce a complex
conjugation to make 〈β| Oa a linear operator on kets, and we set

(〈β| Oa) |α〉 = [〈β| (Oa |α〉)]∗ (1.19)
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Antiunitary Operators

We define an antiunitary operator A as an antilinear operator that satisfies

AA† = A† A = I

We note that the products AA† and A† A are linear operators and thus satisfy being linear
identity operators. Moreover, antiunitary operators preserve the absolute values of scalar
products. To see this, consider A |α〉 and A |β〉. Then we have(

〈β|A†
)
(A |α〉) =

[
〈β|
(
A† A |α〉

)]∗ = 〈β |α〉∗
where we reverse the direction of A† in the second equality. Antiunitary operators take
scalar products into their complex conjugates, satisfying (1.15).

1.6.4 Time-Reversal Operator

We will now develop a formal theory of time-reversal symmetry. We denote the time-
reversal operator by �, and define the time-reversed state as

|α〉 → � |α〉 . (1.20)

We derive the fundamental property of the time-reversal operator by examining the time
evolution of the time-reversed state. We start with a state ket |α〉 of a physical system at
t = 0. Then after an incremental time t = δt , the state ket becomes

|α,δt〉 =
(

1− iH
h̄
δt

)
|α〉 . (1.21)

However, if we have applied � at t = 0, and then allowed the system to evolve to δt under
the action of H, we would obtain (

1− iH
h̄
δt

)
� |α〉 . (1.22)

If motion is time-reversal symmetric, then we expect the preceding state ket to coin-
cide with

� |α, − δt〉 , (1.23)

where we apply � to the state ket at earlier time t = −δt 4. This means that(
1− iH

h̄
δt

)
� |α〉 = �

(
1− iH

h̄
(−δt)

)
|α〉 , (1.24)

which leads to

−iH� | 〉 = �iH | 〉 . (1.25)

4 Recall that under �, both the momentum p and angular momentum J are reversed.



20 Preliminaries

If we assume � to be unitary, then we should ignore the is in (1.25) and write the operator
equation as

−H� | 〉 = �H | 〉 . (1.26)

We can show that (1.26) is physically invalid by examining the time-reversed state of an
energy eigenket |n〉 with eigenvalue En. This time-reversed state � |n〉 should then satisfy

H� |n〉 = −�H |n〉 = (−En)� |n〉 . (1.27)

This means that � |n〉 must be an eigenket of the Hamiltonian with energy eigenvalue
−En. We immediately find that this is nonsensical by simply considering the case of a free
particle, namely,

�−1 p2

2m
� = −(−p)2

2m
. (1.28)

All these arguments suggest that if time reversal is to be a bona fide symmetry at all, we
are not allowed to ignore the i’s in (1.25), hence � has to be antiunitary. Recognizing the
conjugation action of � in (1.25) because of its antilinear property (1.18), we write

�iH | 〉 = −iH� | 〉 , (1.29)

which allows us to cancel the is in (1.25) leading, finally, to

�H | 〉 = H� | 〉 . (1.30)

Equation (1.30) expresses the fundamental property of the Hamiltonian under time reversal.
We now need to establish that an antiunitary time-reversal operator can be written as

� = UK, (1.31)

where U is a unitary operator and K is the complex-conjugation operator that acts on any
coefficient to its right, namely,

K c |α〉 = c∗K |α〉 .

The action of K on basis kets {|a〉} can be determined by writing the expansion of a general
ket |α〉

|α〉 =
∑
a

|a〉 〈a | α〉

and noting that the corresponding expansion of |a〉 is

〈a| = [0 0 . . . 1 0 . . . 0
]
, (1.32)

we find that the action of K on the base ket does not change the base ket. Therefore, the
action of K on |α〉 gives

K |α〉 = |α̃〉 =
∑
a

〈a| α〉∗ |a〉 . (1.33)



1.6 Time-Reversal Symmetry 21

As an illustrative example, we examine how the Sy eigenkets for a spin-1/2 system change
under K . We find that if the Sz eigenkets are used as base kets, the Sy eigenkets must
change according to

K

(
1√
2
|+〉 ± i√

2
|−〉
)
→
(

1√
2
|+〉 ∓ i√

2
|−〉
)

. (1.34)

Yet, if the Sy eigenkets themselves are used as base kets, they do not change under the
action of K .

Thus the effect of K changes with the basis. As a result, the form of U in (23.17)
depends on the particular representation used.

We note that � = UK satisfies (1.15),

�
(
c1 |α〉 + c2 |β〉

) = UK
(
c1 |α〉 + c2 |β〉

) = c∗1 UK |α〉 + c∗2 UK |β〉
= c∗1� |α〉 + c∗2 � |β〉 . (1.35)

Here, we will follow Sakurai’s recommendation that it is always safer to act with � on kets
only. We can deduce its action on bras from that on the corresponding kets, and we do not
need to define �†. Accordingly, we interpret

〈β |�|α〉 (1.36)

as (〈β|) · (� |α〉), (1.37)

and we do not attempt to define 〈β|�. We write

|α〉 �

−→ |α̃〉 =
∑
a′

〈
a′
∣∣ α〉∗ UK ∣∣a′〉 =∑

a′

〈
a′
∣∣ α〉∗ U ∣∣a′〉 =∑

a′
〈α| a′〉 U ∣∣a′〉∣∣∣β̃〉 =∑

a′

〈
a′
∣∣ β〉∗ U ∣∣a′〉 → 〈

β̃

∣∣∣ =∑
a′

〈
a′
∣∣ β〉 〈a′∣∣ U† (1.38)

and we obtain 〈
β̃
∣∣α̃〉 =∑

a′,a′′

〈
a′′
∣∣ β〉 〈a′′∣∣ U†U

∣∣a′〉 〈α| a′〉
=
∑
a′

〈
α | a′〉 〈a′∣∣ β〉 = 〈α| β〉 = 〈β| α〉∗ . (1.39)

1.6.5 Transformation of Operators under Time Reversal

We start with an important identity

〈β|O |α〉 =
〈
α̃

∣∣∣�O†�−1
∣∣∣ β̃〉 , (1.40)
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where O is a linear operator. This identity arises from the antiunitary nature of �. To prove
this, we define

|α̃〉 = � |α〉 ,
∣∣∣β̃〉 = � |β〉

|γ 〉 = O† |β〉 ⇒ |γ̃ 〉 = �O† |β〉 (1.41)

and use dual correspondence to obtain

〈β|O = 〈γ | . (1.42)

We can then write

〈β |O|α〉 = 〈γ | α〉 = 〈α̃| γ̃ 〉
= 〈α̃|�O† |β〉 = 〈α̃|�O† �−1� |β〉
=
〈
α̃

∣∣∣�O†�−1
∣∣∣β̃〉 . (1.43)

We are usually interested in Hermitian observables A, for which we get

〈β|A |α〉 =
〈
α̃

∣∣∣�A�−1
∣∣∣β̃〉 . (1.44)

We say that observables are even or odd under time reversal according to

�A�−1 = ±A. (1.45)

Equations (1.45) and (1.44) restrict the phase of the matrix element of A taken with respect
to time-reversed states to

〈β|A |α〉 = ±
〈
α̃

∣∣∣A∣∣∣β̃〉 = ± 〈β̃∣∣∣A∣∣∣α̃〉∗ . (1.46)

Expectation values are obtain for |β〉 identical to |α〉, and we have

〈α|A |α〉 = ± 〈α̃|A |α̃〉 . (1.47)

As an example, let us consider the expectation value of p

〈α| p |α〉 = − 〈α̃| p |α̃〉 , (1.48)

where, according to (1.44), p is an odd operator, namely

�p�−1 = −p, (1.49)

which leads to

p�
∣∣p′〉 = −�p�−1�

∣∣p′〉
= (−p′

)
�
∣∣p′〉 . (1.50)
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Similarly, we obtain

�x�−1 = x

�
∣∣x′〉 = ∣∣x′〉 (1.51)

from the requirement

〈α| x |α〉 = 〈α̃| x |α̃〉 . (1.52)

We can also demonstrate the invariance of the fundamental commutation relation[
xi,pj

] | 〉 = ih̄δij | 〉 (1.53)

by action of � on both sides of (1.53)

�
[
xi,pj

]
�−1� | 〉 = �ih̄δij | 〉[

xi,(−pj )
]
� | 〉 = −ih̄δij� | 〉 . (1.54)

We find that the antiunitary of � preserves the fundamental commutation relation under
the action of time reversal. Similarly, we require that

�J�−1 = −J (1.55)

to preserve [
Ji,Jj

] | 〉 = ih̄εijkJk | 〉 . (1.56)

This is consistent with the case of spinless systems, where J = x× p.

1.6.6 Time-Reversal of the Wavefunction

Spinless Systems

The position representation expansion of state ket |α〉 of a spinless system at t = 0

|α〉 =
∫

d3x′
∣∣x′〉 〈x′ | α〉 . (1.57)

gives the corresponding wavefunction
〈
x′ | α〉 = �(x,0). Applying the time-reversal

operator

� |α〉 =
∫

d3x′ �
∣∣x′〉 〈x′ | α〉∗ = ∫ d3x′

∣∣x′〉 〈x′ | α〉∗ , (1.58)

since �
∣∣x′〉 = ∣∣x′〉. It confirms the rule

��(x′) = �∗(x′) (1.59)

inferred earlier from the Schrödinger equation. Thus, for a wavefunction in the position
representation, � is just the complex conjugation operator K itself. We may note, however,
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that the situation is quite different when the ket |α〉 is expanded in terms of the momentum
eigenkets because � must change

∣∣p′〉 into
∣∣−p′
〉

as follows:

� |α〉 =
∫

d3p′
∣∣−p′
〉 〈

p′ | α〉∗ = ∫ d3p′
∣∣p′〉 〈−p′ | α〉∗ . (1.60)

A particularly interesting case is that of wavefunctions of the type
〈
x′ | n,l,m〉 =

R(r)Ym
l (θ,φ). Examining the spherical harmonic component Ym

l , we find that

Ym
l (θ,φ) =

〈
x̂ |l,m〉 �−→

(
Ym
l

)∗
(θ,φ) = (−1)m Y−ml (θ,φ)

� |l,m〉 = (−1)m |l, −m〉 . (1.61)

Reality of Nondegenerate Energy Eigenfunction under Time-Reversal Symmetry

For a time-reversal symmetric system, [H,�] = 0, hence

H� |n〉 = �H |n〉 = En� |n〉 , (1.62)

so |n〉 and � |n〉 have the same energy. The nondegeneracy assumption prompts us to
conclude that |n〉 and � |n〉 must represent the same state; otherwise, there would be
two different states with the same energy En, an obvious contradiction! We recall that
the wavefunctions for |n〉 and � |n〉 are

〈
x′
∣∣ n〉 and

〈
x′
∣∣ n〉∗, respectively. They must

satisfy 〈
x′ | n〉 = 〈x′ | n〉∗ (1.63)

or, more precisely, they can differ at most by a phase factor independent of x.
Thus if we have, for instance, a nondegenerate bound state, its wavefunction is

always real. On the other hand, in the hydrogen atom with l 
= 0, m 
= 0, the energy
eigenfunction characterized by definite (n,l,m) quantum numbers is complex because
Ym
l is complex; this does not contradict the theorem because |n,l,m〉 and |n,l, −m〉 are

degenerate. Similarly, the wavefunction of a plane wave exp(ip · x) is complex, but it is
degenerate with exp(−ip · x).

1.6.7 Time-Reversal of a Spin-1/2 System

Now we shall explore the action of � in the more interesting case of a spin-1/2 particle.
We recall from quantum mechanics that the eigenket of S · n̂ with eigenvalue h̄/2 can be
written as

|n;+〉 = e−iSzα/h̄ e−iSyβ/h̄ |+〉 , (1.64)

as depicted in Figure 1.11. n is characterized by the polar and azimuthal angles β and α,
respectively.

The action of � on the angular momentum operator defined in (1.55) yields

� |n;+〉 = e−iSzα/h̄ e−iSyβ/h̄� |+〉 = η |n;−〉 . (1.65)
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n

n

Figure 1.11 The spin eigenstates
∣∣S · n̂, ↑〉 and

∣∣S · n̂, ↓〉.
Alternatively, as depicted in Figure 1.11, and as can be easily verified, we have

|n;−〉 = e−iSzα/h̄ e−iSy(π+β)/h̄ |+〉 . (1.66)

Comparing (1.66) with (1.65) and setting � = UK , we obtain

� = η e−iSyπ/h̄ K = −iη
(

2Sy
h̄

)
K, (1.67)

where η is an arbitrary phase. In obtaining the last expression in (1.67), we used the relation

exp

(−iS · n̂φ
h̄

)
= exp

(−iσ · n̂φ
2

)
= l cos

(
φ

2

)
− iσ · n̂ sin

(
φ

2

)
.

It is now easy to show, with the aid of (1.67), that

e−iSyπ/h̄ |+〉 = + |−〉 e−iSyπ/h̄ |−〉 = − |+〉 . (1.68)

Equation (1.68) allows us to establish the effect of � on the most general spin-1/2 ket

� (c+ |+〉 + c− |−〉) = +η c∗+ |−〉 − η c∗− |+〉 . (1.69)

Applying � once more, we get

�2 (c+ |+〉 + c− |−〉) = − |η|2 c+ |+〉 − |η|2 c− |−〉 (1.70)

or

�2 = −I (1.71)

for any spin orientation; I is the identity operator. We note that (1.71) is a fundamental
relation, completely independent of the choice of the phase η. This should be contrasted
with the case of a spinless particle state, which yields

�2 = +I, (1.72)

as is evident from (1.59).
More generally, we now prove

�2 |j half integer〉 = − |j half integer〉 (1.73)

�2 |j integer〉 = + |j integer〉 , (1.74)
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and the eigenvalue of �2 is given by (−1)2j . We first note that (1.67) generalizes for an
arbitrary j to

� = η e−iJyπ/h̄ K . (1.75)

For a ket |α〉 expanded in terms of |j,m〉 base eigenkets, we have

�
(
�
∑

|j,m〉 〈j,m | α〉
)
= �

(
η
∑

e−iJyπ/h̄ |j,m〉 〈j,m | α〉∗
)

= |η|2 e−2iJyπ/h̄
∑

|j,m >< j,m|α > . (1.76)

But

e−2iJyπ/h̄|j,m >= (−1)2j |j,m > , (1.77)

as is evident from the properties of angular momentum eigenstates under 2π rotation.
We make a parenthetical remark on the phase convention η. In our earlier discussion

based on the position representation, we saw that with the usual convention for spherical
harmonics it is natural to choose the arbitrary phase for |l,m > under time reversal so that

� |l,m〉 = (−1)m |l, −m〉 . (1.78)

Some authors find it attractive to generalize this to obtain

� |j,m〉 = (−1)m |j, −m〉 . (j an integer) (1.79)

regardless of whether j refers to l or s (for integer spin system). We may extend this to 1/2
integer systems if we choose η = +i, so that time-reversal operation may be written as

� |j,m〉 = i2m |j, −m〉 (1.80)

for any j .

Kramers’ Degeneracy

We consider here the case of the Hamiltonian of a spin-1/2 particle that is time reversal
invariant (TRI), then

[�,H] = 0,
[
�2,H

]
= 0 (1.81)

so that the energy eigenkets can be chosen as eigenkets of �2. Since � commutes with
H, � |ψ〉 has the same energy as |ψ〉. If |ψ〉 is nondegenerate, we can write

� |ψ〉 = eiα |ψ〉 , (1.82)

where α is an overall phase, then

�2 |ψ〉 = � eiα |ψ〉 = e−iα� |ψ〉 = |ψ〉 = − |ψ〉 . (1.83)

Hence, there must be another state with the same energy as |ψ〉. Moreover, they are orthog-
onal, since

〈ψ |�ψ〉 = 〈�ψ

∣∣∣�2ψ
〉∗ = − 〈�ψ |ψ〉∗ = − 〈ψ |�ψ〉 = 0.



1.7 Appendix: The Adiabatic Approximation 27

When � is a symmetry, eigenstates of systems with half-integer spin always come in
degenerate Kramers’ pairs.

Interactions with External Electric Fields

Since the appearance of electric field interactions in a system’s Hamiltonian takes the form

V (x) = e �(x),

where � is a real function of the position operator x, and since [�, x] = 0, then

[�,H] = 0. (1.84)

This of course leads to the reality of nondegenerate wavefunctions.

An Interesting Application

We revisit the Hamiltonian describing electron motion in a crystalline lattice encoun-
tered in §1.2. The Hamiltonian is time reversal invariant. This can be generalized to
H(k), where h̄k is the electron lattice momentum. Since

�p�−1 = −p,

we find that

�H(k)�−1 = H(−k). (1.85)

This result guarantees that the dispersion relation has the symmetry

E(k) = E(−k) (1.86)

even when the system lacks space-inversion symmetry!

Interactions with External Magnetic Fields

The Hamiltonian may contain terms like

S · B, p · A+ A · p.

Since p and S are odd under time reversal, the Hamiltonian is not invariant under time
reversal, and Kramers’ degeneracy is lifted.

1.7 Appendix: The Adiabatic Approximation

The concept of adiabatic motion arises when some external conditions governing the
dynamics of a system change on a time scale that is much longer than the time scale
characterizing the system’s dynamics. A typical example is found in molecular physics:
Molecules consist of electrons and nuclei (or ions). The time scale associated with the
electron motion is much faster than that associated with the motion of the nucleus. Since
the two systems are coupled, we find that the fast electron motion allows them to adjust
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to the sluggish motion of the nuclei almost “instantaneously” when viewed through the
latter’s time scale. This allows us to consider the time dependence of the nuclear degrees
of freedom as slowly varying external parameters when dealing with the motion of the
electron system of a molecule.

1.7.1 The Adiabatic Theorem

When a Hamiltonian changes gradually and slowly with time from Hi to Hf , and if the

system is initially in the mth eigenket of Hi , then it will be carried over into the mth
eigenket of Hf

If the Hamiltonian of a system is independent of time, then a quantum system that starts
out in eigenstate ψn

H |ψn〉 = En |ψn〉

remains in the nth eigenstate, simply picking up a phase factor:

|�n(t)〉 = |ψn〉 e−iEnt/h̄.

If the Hamiltonian changes with time, then the eigenkets and eigenvalues are themselves
time dependent:

H(t) |ψn(t)〉 = En(t) |ψn(t)〉 . (1.87)

The instantaneous eigenkets constitute an orthonormal and complete set:

〈ψn(t)| ψm(t)〉 = δnm.

A general solutions satisfies

ih̄
∂

∂t
|�(t)〉 = H(t) |�(t)〉 (1.88)

with

|�(t)〉 =
∑
n

cn(t) |ψn(t)〉 eiθn(t) (1.89)

θn(t) = −1

h̄

∫ t

0
dt ′ En(t

′) Dynamic phase. (1.90)

The definition of θn generalizes the “standard” phase factor to the case where En varies
with time.

Substituting (1.89) in (1.88),

ih̄
∑
n

[
ċnψn + cnψ̇n + icnψnθ̇n

]
eiθn =

∑
n

cn (Hψn) e
iθn . (1.91)



1.7 Appendix: The Adiabatic Approximation 29

But from (1.90), θ̇n = −En

h̄
, and the last sum on the left cancels that on the right. We get∑
n

ċn ψn e
iθn = −

∑
n

cn ψ̇n e
iθn .

Taking the inner product with ψm, and invoking the orthonormality of the instantaneous
eigenkets,

ċn δnm eiθn = −
∑
n

cn
〈
ψm | ψ̇n

〉
eiθn

or

ċm = −
∑
n

cn
〈
ψm | ψ̇n

〉
ei(θn−θm). (1.92)

In order to obtain a useful expression for
〈
ψm | ψ̇n

〉
, we differentiate (1.87) with respect to

time, take the inner product with ψm, and get〈
ψm

∣∣Ḣ∣∣ψn

〉+ 〈ψm |H| ψ̇n

〉 = Ėn δmn + En

〈
ψm | ψ̇n

〉
(1.93)

but 〈
ψm |H| ψ̇n

〉 == Em

〈
ψm | ψ̇n

〉
.

It follows that for n 
= m, 〈
ψm

∣∣Ḣ∣∣ψn

〉 = (En − Em)
〈
ψm | ψ̇n

〉
and (1.92) becomes

ċm = −cm
〈
ψm | ψ̇m

〉−∑
n 
=m

cn

〈
ψm

∣∣Ḣ∣∣ψn

〉
En − Em

exp

(
− i

h̄

∫ t

0
dt ′
[
En(t

′)− Em(t
′)
])

.

This is an exact result.
Now comes the adiabatic approximation: Assume that〈

ψm

∣∣Ḣ∣∣ψn

〉 � (En − Em)

is extremely small, and drop the last term. This assumption is well justified since the
dynamical time scale of the system is determined by (En − Em)/h̄.

Thus, in the adiabatic approximation, we obtain

ċm = −cm
〈
ψm | ψ̇m

〉
(1.94)

cm(t) = cm(0) e
iγm(t) (1.95)

γm(t) = i

∫ t

0
dt ′
〈
ψm(t

′) | ∂

∂t ′
ψm(t

′)
〉

Geometric phase. (1.96)

The solution (1.95) is obtained because
〈
ψm | ψ̇m

〉
is purely imaginary, since

d

dt
〈ψm(t) | ψm(t)〉 =

〈
ψm | ψ̇m

〉+ 〈ψ̇m | ψm

〉 = 2Re
〈
ψm | ψ̇n

〉 = 0
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If the particle starts in eigenket m such that cm(0) = 1, cn(0) = 0 ∀n 
= m, then

�m = eiθm(t) eiγm(t) ψm(t). (1.97)

The particle remains in the mth eigenket of the evolving Hamiltonian, picking up only a
couple of phase factors.

Exercises

1.1 Derive an expression for the electronic pressure Pe exerted on the wall of the vessel
containing an electron gas, given that

Pe = −∂E0

∂

.

Hence, obtain an expression for the bulk modulus

B = 1

κ
= −
 ∂Pe

∂

,

where κ is the compressibility. Provide some values for Cu, where the electron den-
sity is about 8.5× 1028 electrons/m3.

1.2 Consider cohesive energy of free electron Fermi gas.

(a) Show that the average kinetic energy per electron in a free electron Fermi gas at 0
K is 2.21/r2

s , where the energy is expressed in Rydbergs, with 1 Ry = me4/2h2.
(b) Show that the coulomb energy of a positive point charge e interacting with the

uniform electron distribution of one electron in the volume of radius r0 = rsa0

is −3e2/r0, or −3/rs in Rydbergs.
(c) Show that the coulomb self-energy of the electron distribution in the sphere is

3e2/5r0, or 6/5rs in Rydberg.
(d) The sum of (b) and (c) gives −1.80/rs for the total coulomb energy per electron.

Show that the equilibrium value of rs is 2.45. Will such a material be stable with
respect to separated H atoms?

1.3 Consider a Sommerfeld gas in two dimensions.

(a) Express kF and EF in terms of the electron density n.
(b) Derive an expression for the density of states.

1.4 Given the dispersion relations

E(k) = c k; E(k) = c k2,

calculate the corresponding D(E) in one, two, and three dimensions.
1.5 Identify critical points and singularities in the density of states.

The density of states for a single band with dispersion E(k) is given by (1.6). A sin-
gularity in the density of states (a critical point) arises when ∇E(k) = 0. We may
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expand the band dispersion in the vicinity of a critical point E(kc) = Ec as

E(	k) ∼ Ec ±
[
h̄2	k2

x

2mx

+ h̄2	k2
y

2my

+ h̄2	k2
z

2mz

]
, 	k = k− kc,

mα = h̄2
(
∂2E(	k)
∂	k2

α

)−1

(a) Identify the plus/minus signs with the nature of the critical point – a minimum, a
maximum, or a saddle point – of E(k) in 1D, 2D, and 3D.

(b) Derive the density of states D(E) in the vicinity of band minima and maxima (not
saddle points!) in 1D and 2D. Use polar coordinates in the 2D case to simplify
the derivation.
Hint: Writing D(E) as

D(E) = 2
∑

k

δ(E(k)− E),

use the relation for the delta function

δ[f (x)] =
∑
�

δ(x − x�)

|f ′(x�)|

where x� are the zeros of the function f (x).

1.6 Consider classical phonons in one dimension.

The simplest model that captures the physics of phonons is a one-dimensional peri-
odic chain of particles of mass m separated with lattice spacing a, and connected
by springs with a spring constant κ . The particle at site � can displace from its
equilibrium position, �a, by u�¡ giving rise to a corresponding potential energy of
κ
2 (u�+1 − u�)

2. The Hamiltonian of the system of displacing particles then reads

H =
∑
�

(
p2
�

2m
+ κ

2
(u�+1 − u�)

2

)
.

1. Treating this system classically, derive the infinite set of coupled equations
of motion either using Hamilton’s canonical equations, or writing down the
Lagrangian and using the Euler–Lagrange equations.

2. Decouple these equations of motion by using an eigenket of the lattice translation
operator and assuming a time dependence of the form eiωt .

3. Show that the decoupling process provides the dispersion curve for the phonons,
namely ω ≡ ω(k).
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1.7 Perform a Born–Oppenheimer approximation: a toy model.
This problem is meant to convince you of the validity of the Born–Oppenheimer
approximation through a toy model of coupled one-dimensional harmonic oscillators.
The Hamiltonian is given by

H = P 2
1

2M
+ P 2

2

2M
+ p2

3

2m
+ κ

2

(
x3 −X1 − d

)2 + κ

2

(
X2 − x3 − d

)2

where m� M . Since we know how to solve the system exactly, we can compare the
exact solution to the BOA.

(a) Apply the BOA by neglecting the first two kinetic energy terms:

1. Combine the potential energy into one harmonic oscillator involving x3 plus
a residual harmonic term independent of x3.

2. Solve the quantum harmonic oscillator problem of the light particle 3.
3. Substitute the effective potential you obtain for the motion of particle 3 into

the Hamiltonian, and solve the residual quantum eigenvalue problem for the
two heavy particles. (Hint: use a center of mass transformation.)

(b) Obtain an exact solution for the problem. In light of this solution, how good is
the BOA?

1.8 Consider unitary and antiunitary operators.
A unitary operator is an operator that is linear and norm-preserving. An antiunitary
operator is an operator that is antilinear and norm-preserving.

(a) Show that unitary operators leave scalar products unchanged

〈Uψ |Uφ〉 = 〈ψ |φ〉
for arbitrary kets |ψ〉 and |φ〉.

(b) Show that antiunitary operators map a scalar product to its complex conjugate

〈Uψ |Uφ〉 = 〈ψ |φ〉∗

for arbitrary kets |ψ〉 and |φ〉.
1.9 Consider time-reversal symmetry.

In the momentum representation, the state of a spinless particle is described using a
wavefunction ψ(p).

(a) Give the explicit form of the time-reversal operator � for a spinless particle in
the momentum representation.

(b) Give the explicit form of the � for a spin-1/2 particle in the momentum
representation.
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Electrons and Band Theory: Formalism in the
One-Electron Approximation

2.1 The Many-Body Problem and One-Electron Approximation

Our objective here is to determine the properties of an interacting many-electron system
subjected to an external potential (usually the ion potential v(r)) satisfying the Schrödinger
equation

{
− h̄2

2me

∑
i

∇2
i +
∑
i

v(xi )+ 1

2

∑ e2

|xi − xj | − E

}
�(x1, . . . ,xN) = 0. (2.1)

We have omitted terms involving electron spin, spin–orbit coupling, and other relativistic
effects, as well as external magnetic fields, etc.

We should note that when dealing with the electron system in a solid, the interaction
potential with the ions is treated as an external potential to which the electrons respond.

Dirac is reported to have said that the Schrödinger equation (2.1) has, with one blow,
taken care of all chemistry (and, by implication, of the electronic structure of solids). In
a formal sense, this is, of course, true. Yet, due to the Coulomb repulsion between the
electrons, this Hamiltonian is obviously not the sum of single particle Hamiltonians Hi .
In principle, this means that the total wavefunction depends on the positions of all the
electrons, the coordinates of which are all correlated, so that a literal solution of (2.1) for
a solid with � 1023 variables is, practically speaking, meaningless since there is no way
of recording the wavefunction. Fortunately, our real interest lies in experimentally related
quantities that are related to highly contracted variables, such as the one- and two-particle
density matrices from which we can obtain, for example, the energy E, the particle density
n(r), particle–particle correlation functions, etc.

For most cases, therefore, the one-electron approximation is commonly used. In effect, it
replaces the electron–electron interaction for some particular electron at xi by an averaged
interaction with all other electrons at xj , giving rise to an effective screened potential
Ve(xi ).

33
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Figure 2.1 Excluded volume presented by the billiard balls to the test particle.

2.1.1 Validity of the One-Particle Approximation

Three factors mainly determine the applicability of the one-particle approximation to a
given many-body system:

1. The range of the interparticle interaction potential:
The importance of this factor may be demonstrated by considering the extreme case of a
hard-wall-type interparticle interaction potential, such as that between billiard balls. It is
impossible to use an averaged account of the interaction of a particle with the remaining
ones in such a case, because of the particularity of the excluded volume, as is obviously
seen in Figure 2.1.

This severe restriction may be relaxed when the range of the potential becomes rela-
tively long. An operational definition of a long-range potential is usually given in terms
of the divergence of a particle’s potential energy when the system’s size tends to infinity.
We consider an infinite homogeneous system, with discrete density n, surrounding a test
particle that is placed at the origin. The total potential energy of our test particle is then

EV =
∫

dx v(x)n(x) = 4πn
∫

v(x)r2dr, (2.2)

where r = |x|. We used the homogeneity of the system to set n(x) = n; this integral
diverges if v(x) ∝ (1/rm) with m ≤ 2. Consequently, interaction potentials satisfying
this condition are considered long range.

2. The particle density:
The effect of the second factor is rather obvious, since for a system consisting of, say,
three particles, the interaction energy of our test particle will, no doubt, depend on the
specific configuration of the three particle, and an averaged potential will introduce
serious errors in the corresponding energies, trajectories, and wavefunctions.

3. The degree of localization of the constituent particles:
The effect of localization can be illustrated by considering a system containing a large
number of particles with long-range interactions. If the system is divided into a large
number of spatial cells, each accommodating a small number of particles, we find that
we have to consider the dwell time of a given particle (our test particle in the present
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case) in each cell. Now, if the particle is completely delocalized, i.e., it is a free particle
with almost zero dwell time, our test particle will only feel a potential averaged over a
large number of cells and, consequently, a one-particle effective potential can be, quite
justifiably, constructed. However, if our test particle has an appreciable dwell time in
each cell, then its motion will be strongly correlated with the motions of the small
number of particles in the cell where it is temporarily located. In this case, a simple
one-particle averaged potential is inadequate.

2.1.2 Self-Consistent Formulations of the One-electron Approximation

Self-consistency means that an initial guess might be made for the one-electron potential,
the eigenvalue problem is then solved, the density calculated, and a new potential found,
with the aid of Poisson’s equation. These steps are repeated until there is, in principle, no
change in the output from one cycle to the next – self-consistency has been reached. Such
a set of equations are often called self-consistent field (SCF) equations.

Two physically different self-consistent field approaches to the one-electron approx-
imation are used to arrive at solutions to (2.1). One approach considers the electronic
wavefunction and the other the electron density as the primary quantity to be determined.

2.2 The Hartree–Fock Model

D. R. Hartree pioneered the self-consistent field approach to calculating the electronic
structure of many-electron systems [86]. His work was focused on the structure of atoms.
However, he did not consider the exchange symmetry of the wavefunction in his work. The
first use of antisymmetrized wavefunctions was reported by Fock in 1930 [64].

2.2.1 The Hartree Model

The Hartree model considers single-particle orbitals in a space-varying effective potential.
If it were possible to write the Hamiltonian of a system of interacting electrons as a sum of
single-particle Hamiltonians, it would be possible to write the many-electron wavefunction
as a product of single-particle orbitals

�(x1,x2, . . . ,xN) =
N∏
i=1

ψi(xi ), (2.3)

where {ψi} is an orthonormal set of single-particle wavefunctions. But, since the Hamilto-
nian (2.1) is not a sum of single-particle Hamiltonians, the true wavefunctions cannot be
written in the product form of (2.3), which, furthermore, does not have the antisymmetry
property required for fermions.

Correlation Effects

As we have described earlier, in the case of short-range potentials the effective correlations
in the motion of a many-particle system are quite complicated, and lead to the breakdown
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of the one-particle approximation. Such interactions depend to a large degree on the details
of the instantaneous configurations of the particles, which restrict their subsequent motion.

However, long-range potentials, such as Coulomb interactions, do not exhibit similar
abrupt changes. Consequently, at high particle density these correlation effects are less
serious, and a test particle can feel the effective average over all particles it interacts with.
In such cases, the omission of correlations may lead to tolerable errors. It is then possible
to construct our wavefunctions as products of single-particle wavefunctions.

Self-Consistent Hartree Equations In the case of a system of N electrons, we have

|�〉 = N∏
i=1

ψi(xi )

E =
∑
i

〈
ψi

∣∣∣∣∣ p2
i

2me

+ Vei(xi )

∣∣∣∣∣ψi

〉
+ e2

2

∑
ij
i 
=j

〈
ψi ψj

∣∣∣∣∣ 1∣∣xi − xj
∣∣
∣∣∣∣∣ψi ψj

〉
(2.4)

Varying E with respect to ψi , and using a Lagrange multiplier εi to impose the normaliza-
tion constraint 〈ψi |ψi〉 = 1, we obtain[

T + vH
i (x)
]
ψi(x) = εHi ψi(x), (2.5)

where the effective, or Hartree, potential vH
i (x) is the mean-field expression

vH
i (x) = Vei(x)+ e2

2

∑
j 
=i

〈
ψj

∣∣∣∣ 1

|x− x′|
∣∣∣∣ψj

〉
(2.6)

Equations (2.5) and (2.6) constitute the self-consistent Hartree equations. This is obviously
also a mean-field theory in view of (2.6): each electron is regarded as moving in the external
potential plus the mean potential of all the electrons. The Hartree equations are solved
iteratively: An initial guess of the potential is used to solve the one-electron equations;
the solutions are used to generate a new effective potential, and so on until convergence is
achieved.

As we show next, an appreciable contribution of correlation effects to the interacting
scenarios of electronic (fermionic) systems is accounted for through antisymmetrization of
the many-electron wavefunction. It is referred to as exchange effects.

The Physical Origin of the Exchange Energy

To understand this effect, let us first establish the symmetry of quantum mechanical wave-
functions of systems of identical particles.

The term identical particles implies that the total energy of the system, and hence its
associated Hamiltonian, remains invariant when two particles are exchanged.
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The process of the two-particle exchange is effected within the framework of quantum
mechanics through a permutation operator P̂ . The invariance of the system’s Hamiltonian
with respect to the operation of particle exchange means that P̂ commutes with the Hamil-
tonian H, and we have

P̂H� = P̂HP̂−1 P̂�
= HP̂� = E P̂� (2.7)

H� = E�.

P̂ and H share the same eigenfunctions.
For the sake of simplicity, we consider a two-particle system. The eigenfunctions of

P̂ satisfy the equation

P̂ �(x1,x2) = � ′(x2,x1) = p�(x1,x2), (2.8)

where p is the corresponding eigenvalue. Repeating the permutation operation will take us
back to the original wavefunction

P̂2 �(x1,x2) = P̂ � ′(x2,x1)

= p2 �(x1,x2) = �(x1,x2), (2.9)

which leads to two possible values for p, namely, p = ±1. Consequently, we have two
distinct classes of many-body wavefunctions under the operation of two-particle exchange,
symmetric bosons with p = 1, and antisymmetric fermions with p = −1.

Now, let us explore the implication of antisymmetry of fermionic wavefunctions by
considering the simple case of two spinless noninteracting particles. The condition of
antisymmetry requires that

�(x2,x1) = −�(x1,x2).

To reveal the physical implications of this relation, we shall describe this wavefunction
in terms of the relative coordinate 	r = |x2 − x1| in the vicinity of 	r = 0, where the
two particles occupy the same point in space, such that x1 = x2 = x. The antisymmetry
requirement leads to �(x,x) = −�(x,x) and thus to

�(x,x) = 0.

The requirement that a quantum mechanical wavefunction must have a continuous mag-
nitude and a continuous derivative will force a gradual, rather than an abrupt, change in
the magnitude of the wavefunction in the vicinity of 	r = 0, where it must vanish due
to antisymmetry. This suppression in the wavefunction magnitude around 	r = 0 can
be viewed as an effective hole, which is referred to as an exchange hole; see Figure 2.2.
It depicts a mutual avoidance between the two particles even when they are noninteracting.
This condition is obviously absent in the classical analog.
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Figure 2.2 A schematic of |�|2(	r) for a pair of fermions and of bosons.

When a repulsive Coulomb interaction between the two particles (electrons for example)
is turned on, the mutual avoidance due to the exchange hole in the two-particle wavefunc-
tion will lead to a reduction of the Coulomb energy in the fermionic case relative to the
classical case. In contrast, the boson symmetrization will result in a repulsive energy that
is higher than the classical case. The reduction due to the antisymmetrization of the total
fermionic wavefunction is referred to as the exchange energy.

Notice that in the case of a mutually attractive interaction potential – pairing interaction
in superconductivity – a symmetrized bosonic wavefunction will have a lower energy than
both the classical case and the fermionic wavefunction.

Next, we consider the case of two electrons with spin. The total wavefunction is then
expressed as

�(1,2) = �(x1,x2) χ(σ1,σ2), (2.10)

where σi is the spin degree of freedom of electron i and χ is the total spin wavefunction.
Now, the overall antisymmetry of the wavefunction � is satisfied by two combinations:
�sχa , singlet spin state, or, �aχs , triplet spin state. The subscripts s, a refer to symmetric
and antisymmetric, respectively. Thus, we find that in the absence of any other external
interactions, the triplet state, with antisymmetrized spatial wavefunction, will have lower
energy than the singlet state. The lowering in the energy of the former is still identified as
due to exchange effects.

2.2.2 The Hartree–Fock Model

In the Hartree model, the trial many-electron wavefunction did not satisfy the required
fermionic antisymmetry. Therefore, it seems more appropriate to consider a Slater determi-
nant of single-particle wavefunctions instead, namely,

�(x1, . . . ,xm, . . . ,xN) = 1√
N !

∣∣∣∣∣∣
ψ1(x1) . . . ψi(x1) . . . ψN(x1)

. . . . . . . . . . . . . . .

ψ1(xN) . . . ψi(xN) . . . ψN(xN)

∣∣∣∣∣∣ (2.11)
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where the ψis are products of spin and space wave functions. For an arbitrary number of
electrons, the wavefunction form in (2.11) can be shown to satisfy the desired antisymmetry
condition. The determinant has N ! terms each multiplied by −1 or 1 depending on the
parity of the permutation. Each term may be written as

(−1)P(i1,i2,...,iN ) ψi1(x1) ψi2(x2) . . . ψiN (xN),

where the indices i1, i2, . . . take values between 1 and N and the exponent of (−1) refers
to the order of appearance of the orbital indices in the term. Terms with odd permutations
assume a − sign, while those with even ones have a + sign. We shorten the notation and
replace P(i1,i2, . . . ,iN ) by P(i), where i now refers to a particular sequence of the N

indices. The Slater determinant may then be written as

� = 1

(N! )1/2

N !∑
i=1

(−1)P(i)
[
φi1(x1) . . . φiN (xN)χ1(σ1) . . . χN(σN)

]
. (2.12)

Each spatial wavefunction φ appears twice because of spin.
Nothing has been said so far about the form of the orbitals φi(xj ) and they are left

to be determined via a variational procedure. This is known as the Hartree–Fock (HF)
approximation [64, 87].

The best single-particle orbitals ψi are obtained by varying the total energy with respect
to the many-body wavefunction:

δE = δ

∫
dxN �∗H� =

∫
dxN �∗H δ� +

∫
dxN δ �∗H�. (2.13)

The orthogonality and normalization conditions

∫
dx φ∗i (x) φj (x) = δij ⇒

∫
dx δφ∗i (x) φj (x) = 0 (2.14)

are satisfied through the Lagrange multipliers ηij .
The variation of � is expressed in terms of variations of single-particle wavefunctions

ψi , so that

δ� = 1

(N! )1/2

∑
Pn

(−1)n Pn

[ N∑
i=1

ψ1(x1) . . . ψi−1(xi−1)ψi+1(xi+1) . . . ψN(xN)

× δψi(xi )χ(σ1)χ(σ2) . . . χ(σN−1)χ(σN)

]
. (2.15)
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Substituting (2.15) into (2.13), summing over spin, and using (2.14), we then find

∫
dxN δ�∗H� =

∑
i

∫
dx1 δψ

∗
i (x1)

⎛⎝⎡⎣ T1 + v(x1)+ e2
′∑
j

∣∣ψj (x2)
∣∣2

r12
dx2

+
′∑
j

∫
dx2 ψ

∗
j (x2)H2 ψj (x2)+ 1

2

′′∑
j,k

e2
∫

dx2dx3

∣∣ψj(x2)|2
∣∣ψk(x3)

∣∣2
r23

− 1

2

′′∑
j,k;↑↑

e2
∫

dx2dx3
ψ∗j (x2) ψ

∗
k (x3) ψj (x3) ψk(x2)

r23
− ηii

]
ψi(x1)

−
⎡⎣ ′∑
j ;↑↑

e2
∫

dx2
ψ∗j (x2)ψi(x2)

r12
+

′∑
j

∫
dx2 ψ

∗
j (x2)H2 ψi(x2)− ηij

⎫⎬⎭
⎤⎦ψj (x1)

⎞⎠.

For convenience, the Lagrange multipliers ηij are redefined as

λii = ηii −
′∑
j

∫
dx2 ψj (x2)H2 ψj (x2)− 1

2

′∑
j,k

e2
∫

dx2dx3

∣∣ψj (x2)
∣∣2 ∣∣ψk(x3)

∣∣2
r23

+ 1

2

′′∑
j,k;↑↑

e2
∫

dx2dx3
ψ∗j (x2) ψ

∗
k (x3) ψj (x3) ψk(x2)

r23
,

λij = ηij −
′∑
j

∫
dx2 ψ

∗
j (x2)H2 ψi(x2) (2.16)

Equating the coefficient of δψi(x1) to zero, we obtain

⎡⎣ T + v(x)+
∑
j

e2
∫

dx′
∣∣ψj (x′)

∣∣2
|x− x′| − λii

⎤⎦ψi(x)

−
′∑

j ;↑↑

[
e2
∫

dx′
ψ∗j (x

′) ψi(x′)
|x− x′| − λij

]
ψj (x) = 0. (2.17)

Notice that the term on the second line is an integral operator.
There are several different solutions to (2.17), each corresponding to a different set

of λij . We choose the set of λij , which satisfies

λij = δij εi,
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and we write⎡⎣T + v(x)+
∑
j

∫
dx′

e2
∣∣ψj (x′)

∣∣2
|x− x′|

⎤⎦ψi(x)

−
′∑

j ;↑↑

[∫
dx′

e2ψ∗j (x
′) ψi(x′)

|x− x′|

]
ψj (x) = εi ψi(x). (2.18)

where now εi become the set of Hartree–Fock eigenvalues, and the coupled equations (2.18)
constitute the Hartree–Fock equations. This set is usually written in the compact form[

T + v(x)+
∑
l

(
Jl −Kl

)]
ψi(x) = εi ψi(x). (2.19)

The exchange operator Kl is given by

Kl(1) ψi(1) =
∫

dx2
ψ∗l (2) ψi(2)

r12
ψl(1). (2.20)

Since it involves an orbital exchange, it is written in the context of an orbital being operated
on.

The total Hartree–Fock energy, EHF , of the system of N electrons is written as

EHF =
∑
i

〈ψi | T + v(x) |ψi〉 + 1

2

∑
ij

e2

[
|ψi |2 |ψj |2

r12
−
ψ∗i (1) ψ

∗
j (2) ψi(2)ψj (1)

r12

]
,

which when compared with the sum over the lowest N HF eigenenergies∑
i

εi =
∑
i

〈ψi | T + v(x) |ψi〉 +
∑
ij

e2

[
|ψi |2 |ψj |2

r12
−
ψ∗i (1) ψ

∗
j (2) ψi(2)ψj (1)

r12

]
demonstrates that

EHF =
∑
i

εi − 1

2

∑
ij

e2

[
|ψi |2 |ψj |2

r12
−
ψ∗i (1) ψ

∗
j (2) ψi(2)ψj (1)

r12

]
.

Thus, the total energy is not just the sum of one-particle energies. Such sum counts each
interaction twice. Finally, we stress that the resulting Hartree–Fock energyEHF differs from
the Hartree energy by an additional negative exchange energy

EHF = EH + Eexc, (2.21)

Eexc = −1

2

∑
i 
=j
↑↑,↓↓

∫
dx1

∫
dx2 ψi(x1)

∗ ψ∗j (xj )
e2∣∣x1 − x2
∣∣ ψj(x1) ψi(x2), (2.22)

where only electrons of the same spin are to be included in the sum.
Having defined the HF energy, we may now redefine the correlation energy as the

difference between the expectation values of the HF and the exact wavefunctions. As we
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have shown, the HF wavefunction is a single determinant of one-electron orbitals, and the
ground state is determined by varying the orbitals to minimize the energy. The determi-
nant enforces the exchange component of the original correlation energy. Thus, our now
standing definition of correlation refers only to effects beyond what is already contained in
Hartree–Fock.

2.2.3 Koopman’s Theorem: Meaning of Single-Particle εi

The justification of the label one-particle energy emerges from Koopman’s theorem [111].
It provides a physical interpretation of the one-electron eigenvalues without actually solv-
ing the Hartree–Fock equations. The theorem shows that they are intimately related to the
low-lying excitations of the many-body system. We consider the difference between the
energies of two systems containing N and N−1 electrons, respectively. We assume that the
one-electron orbitals ψi are the same in each case, but the orbital ψj is empty in the N − 1
case. This approximation is quite reasonable given a large number of electrons. We obtain

	E = 〈ψj

∣∣ T + v(x)
∣∣ψj

〉+∑
�

e2

[
|ψ�|2 |ψj |2

r12
−
ψ∗� (1) ψ

∗
j (2) ψ�(2)ψj (1)

r12

]
= εj .

The factors of 1/2 disappear because the removed orbital ψj occurs in both summations.
Thus, the HF energy eigenvalue specifies the energy required to remove an electron from
orbital j , leaving the remaining electrons unperturbed. Koopman’s theorem states that
“The eigenvalues of the HF equations εj correspond to total energy differences, namely,
to the energies to add or subtract electrons that would result from increasing the size of
the matrix by adding an empty orbital or decreasing the size by removing an orbital, if all
other orbitals are frozen.”

We can extend this scenario to the case of low-lying electronic excitations by the fol-
lowing procedure: first, remove the electron from orbital ψj , raising the energy by εj ; then
place it in ψi , resulting in an energy decrease of −εi .

2.2.4 Hartree–Fock Theory of the Jellium Model

The jellium model consists of an interacting free-electron gas system together with a
smeared-out positive ion background of equal density to establish charge neutrality – it
is translationally invariant. In spite of its simplicity, this model captures a lot of the basic
physics of metals and will be considered frequently in this book. Simple systems like
this play an important paradigmatic role in science. For example, the hydrogen atom is a
paradigm for all of atomic physics. In the same way, the uniform electron gas is a paradigm
for solid-state physics. Because of translation invariance, the single-electron wavefunctions
have the familiar form,

ψk(x) =
(
eik·x


1/2

)
χ(σ), (2.23)
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where 
 is the volume of the system. Each wavevector of magnitude less than kF occurs
twice (once for each spin orientation) in the Slater determinant, and gives a solution to the
HF equation for the free electron gas. We thus obtain a uniform electron charge distribution
with the same density n as the smeared positive ion background. Hence the electron–ion
Coulomb energy is precisely canceled by the electron–electron one, and the only surviving
term is the exchange energy term

Eexc = −1

2

∑
i 
=j

∫
dx1

∫
dx2 ψ

∗
i (x1) ψ

∗
j (x2)

e2∣∣x1 − x2
∣∣ ψj (x1) ψi(x2), (2.24)

which in the case of the jellium model becomes

Eexc = −
∫
k,k′<kF

dk dk′
∫

dx
∫

dx′ ψ∗k (x) ψ
∗
k′(x

′)
e2∣∣x− x′
∣∣ ψk′(x) ψk(x′)

=
∫
k<kF

dk Eexc(k), (2.25)

where the fact that each wavevector k occurs twice was taken into account, and

Eexc(k) = −
∫
k′<kF

dk′
∫

dx
∫

dx′ ψ∗k (x) ψ
∗
k′(x

′)
e2

|x− x′| ψk′(x) ψk(x′)

= − 1


2

∫
k′<kF

dk′ e−i(k−k′)·x e2∣∣x− x′
∣∣ ei(k−k′)·x′ dx dx′ (2.26)

To evaluate the preceding integral, we use the Fourier transform of the Coulomb interaction,

e2∣∣x− x′
∣∣ = 4πe2

∫
dq

(2π)3
1

q2
eiq·(x−x′). (2.27)

and obtain

Eexc(k) = − 1


2

∫
dq

(2π)3

∫
k′<kF

dk′ e−i(k−k′−q)·x 4πe2∣∣q∣∣2 ei(k−k′−q)·x′ dx dx′

= −
∫
k′<kF

dk′

(2π)3
4πe2∣∣k− k′

∣∣2
= −e

2

π

∫ kF

0
dk′ k′2

∫ π

0
sin θ dθ

(
k2 + k′2 − 2kk′ cos θ

)−1

= −e
2kF

π

{
1+
[
k2 − k2

F

2kkF

]
ln

∣∣∣∣k − kF

k + kF

∣∣∣∣
}
= −2e2kF

π
F

(
k

kF

)
, (2.28)

F(x) = 1

2
+ 1− x2

4x
ln

∣∣∣∣1+ x

1− x

∣∣∣∣ (2.29)

F(x) is plotted in Figure 2.3.
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Figure 2.3 The function F(x).

The following are some typical values:

k = 0 ⇒ Eexc(0) = − 2

π
e2 kF = − 2

π
e2 (3π2n)1/3,

k = kF ⇒ Eexc(kF ) = − 1

π
e2 kF = − 1

π
e2(3π2n)1/3.

To compute the contribution of these interactions to the total energy, we must sum over all
k < kF , and we get1

EHF
exc = −

e2kF

π

∫
k<kF

dk

[
1+ k2

F − k2

2kkF
ln

∣∣∣∣k + kF

k − kF

∣∣∣∣
]
= −3

4

e2kF

π
= −3e2

4π
(3π2n)1/3.

(2.30)

2.3 The Density Functional Formalism

We find that in the previously described models the density n(x) plays a prominent role.

Question: Could it be possible that a formally exact theory based on the density n(x)
may exist for the ground state of electronic systems? If such is the case, the preceding
models and their variants are approximations.

This question led Pierre Hohenberg and Walter Kohn to propose and formulate
the density functional theory (DFT) [93]. It was subsequently practically realized by
Walter Kohn, and Lu Sham as a general theory of inhomogeneous electron gases in their
ground state.

The central quantity in this theory is of course the electron density. The basic role of
the density is established by a theorem that the properties of the system, in particular the
ground-state energy, are functionals of this density. A variational principle can then be
established for the energy, with the density as the varied function. The Euler equations that

1 This result led John C. Slater to suggest that in nonuniform systems, and in particular in the presence of the lattice periodic
potential, we can approximate and simplify the HF equations by replacing the exchange term in (2.22) with a local energy
given by twice (2.30) with kF evaluated at the local density. We effectively make the approximation n→ n(x). Although this
procedure seems to be gross and ad hoc, it is actually followed in many band structure calculations to date.
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follow are formulated in two ways that are particularly convenient for the study of strongly
inhomogeneous systems. One formulation predates the Hohenberg–Kohn theory and is
known as the Thomas–Fermi method, the other was proposed by Kohn and Sham. In their
various approximate versions, these formalisms represent classical, rather than quantum
mechanical, methods – the quantum phase is absent in the density. DFT was proposed in
the mid-1960s, but was largely ignored until the mid-1980s, when computers became good
enough to solve the DFT equations accurately. It is now used by thousands of physicists,
chemists, geophysicists, materials scientists, and even biochemists. In recognition of its
importance, Walter Kohn (a physicist) and John Pople (a chemist who developed some of
the mathematical and computational techniques used in DFT calculations) were awarded
the 1998 Nobel Prize in Chemistry.

2.3.1 The Thomas–Fermi Model

This is the simplest model that adopts a density approach. It starts from the idea that a
many-electron system can be broken up into cells of suitable size, such that in each cell,
the electrons can be approximately regarded as a uniform electron gas having the local
density n(x), where x is the center of the cell.

In a uniform electron gas, we have the following connections between the Fermi momen-
tum, kF ; Fermi energy, EF ; and the density, n (in atomic units):

EF = 1

2
k2
F, n = 1

3π2
k3
F . (2.31)

In the case of a nonuniform electron system under the action of an external potential v(x),
we divide the space into cells, 
α , in such a way that we consider the electrons in a given
cell as having a uniform density nα , in a constant potential, veff(xα), with a Fermi energy
EF,α (see Figure 2.4).

Obviously, EF,α must be equal in all cells, since otherwise the energy could be
lowered by transferring electrons from a cell of higher EF to one of lower EF .

n n n n n

Figure 2.4 Partition of an electron system into cells.



46 Formalism in the One-Electron Approximation

We call this common value of EF the chemical potential, μ. Then, by (2.31),

n(x) = 1

3π2
[kF (x)]2 = 1

3π2
{2[μ− veff(x)]}3/2, (2.32)

where we have dropped the subscript α on x. The effective potential is given by

veff = v(x)+
∫

n(x′)∣∣x− x′
∣∣ dx′, (2.33)

where the second term is the mean electrostatic potential at the point x due to the elec-
tron charge distribution. Equations (2.32) and (2.33) represent the Thomas–Fermi model.
A posteriori, we observe that a basic assumption underlies this model:

• The system is broken up into cells in each of which veff(x) is substantially constant (this
requires sufficiently small cells).

• At the same time, each of which contain many electrons (Nα � 1) so that the electron
gas equations (2.31) make sense (this requires systems of many electrons and sufficiently
large cells).

Notice also that, if one substitutes the expression (2.33) for veff(x) into (2.32), one
obtains a nonlinear integral equation for the density n(x).

Thus, under the aforementioned conditions, the Schrödinger equation (1) for �, a
function of 3N variables, can be replaced by an equation for n(x), a function of 3
variables.

This is, of course, an enormous simplification and, even more important, the physical
system is characterized by a quantity, n(x), that has a simple meaning and can be easily
visualized.

The same Thomas–Fermi model can be expressed in the form of a variational principle
for the total energy:

ETF [n(x)] =
∫

dx

[
v(x) n(x)+ 3(3π2)2/3

10
n(x)5/3 + 1

2

∫
n(x) n(x′)∣∣x− x′

∣∣ dx′
]

. (2.34)

The first term describes (exactly) the interactions of the electrons with the external potential
v(x). The second term describes, approximately, their kinetic energy, since, for a free-
electron gas of uniform density n occupying a volume 
, the kinetic energy T is given by

T = 

3

10
(3π2)2/3 n5/3. (2.35)

Finally, the last term in (2.34) describes the Coulomb-interaction energy in a mean-field
approximation in which the correlation between the densities at two points x and x′ is
neglected.
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Figure 2.5 Thomas–Fermi approximation.

This energy expression must now be minimized subject to the constraint that the total
number of electrons be N . This leads to

δ

[
ETF [n(x)] − μ

∫
n(x) dx

]
= 0, (2.36)

where the Lagrange multiplier defines the chemical potential. This variation is precisely
equivalent to the coupled equations (2.32) and (2.33).

Thomas–Fermi Screening in the Jellium Model

We consider here a uniform electron charge density ρ0 and an equally, uniformly dis-
tributed, positive rigid background (see Figure 2.5). We introduce a point charge Q at the
origin, and we are interested in determining the emergent potential V (x) (see Figure 2.5).
We write Poisson’s equation as

∇2 V (x)+ 4π ρ(x) = 0, (2.37)

where

ρ(x) = Qδ(x)+ ρe(x)− ρ0 = Qδ(x)+ e [n(x)− n0].

The relevant electrons that will contribute to ρ(x) are those at the Fermi energy with
k ∼ kF ⇒ k−1

F ∼ few angstroms. The Thomas–Fermi (TF) approximation is good if
V varies on such length scale.

This allows us to write the change in electron density at point x as

	n(x) = n(x)− n0 = eV (x)N (EF ),

where N (EF ) is the density of states at EF . Then, (22.44) becomes

∇2 V + 4π Qδ(x)− 4π e2 N (EF ) V (x) = 0.

Fourier transformation gives[
k2 + 4π e2N (EF )

]
V (k) =

[
k2 + λ−2

]
V (k) = 4π Q
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V (x) = 1

(2π)3

∫
dk

4π Q

k2 + λ−2
eik·x = 1

(2π)2

∫ ∞
0

dk k2 4π Q

k2 + λ−2

∫ 1

−1
dx eikrx

= 1

(2π)2

∫ ∞
−∞

dk k
4π Q

k2 + λ−2

eikr

ir
= Q

r
e−r/λ

Using

N (EF ) = 3

2

n

EF

, EF = h̄vF kF, k3
F = 3π2n,

we obtain

λ−2 = 4π e2 N (EF ) = 4π αh̄c
3

2

n

EF

= α
1

π

c

vF
k2
F,

where α is the fine-structure constant. With c/vF ∼ 100, α = 1/137, we find

λ kF ∼ 1.

λ is comparable to lattice spacings in normal metals

2.3.2 The Lemma of Hohenberg and Kohn

The importance of the density, n(x), which was prominent in the approximate theories
just described, is greatly highlighted by a strong lemma that demonstrates that an external
potential v(x), acting on the electron system is a unique functional of n(x) (see Figure 2.6).
A significant consequence of this proposition is that the ground-state � is then such a
functional, since v(x) fixes H, and H, via the Schrödinger equation determines �. The
demonstration proceeds by reductio ad abserdum, where we assume that v(x) is not unique:
We assume that there is another potential v′(x), differing from v by more than a constant
that gives rise to the same density n(x). The ground state associated with v′ is denoted
by � ′. It must be different from � since it satisfies a different Schrödinger equation. The
energy of this state is denoted by E′N . Then we write

EN =
〈
�
∣∣H∣∣�〉 < 〈� ′∣∣H∣∣� ′〉 = 〈� ′∣∣H′ + v − v′

∣∣� ′〉. (2.38)

V

i x xN x xN

N

Figure 2.6 Density functional scheme.
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Recalling the assumption that n = n′, we can also write

EN < E′N +
∫

dx
[
v(x)− v′(x)

]
n(x). (2.39)

Interchanging primed and unprimed quantities yields

E′N < EN +
∫

dx
[
v′(x)− v(x)

]
n(x). (2.40)

Addition of (2.39) and (2.40) then leads to the inconsistency

EN + E′N < EN + E′N .

Hence it is seen that v(x) must be a unique functional of n(x).

Before we formulate a density functional for the energy, we should examine the terms
that appear in a Hamiltonian of a many-particle system:

• It contains a sum of the kinetic energies of individual particles of the form
Ti = −(h̄2/2m)∇2

i , which depends only on the particle type through the mass m.

• It contains a sum of interparticle interaction terms U , which is also deter-
mined by the type of particles comprising the system, for example, for electrons,
U = (1/2)

∑
(e2/rij ).

• It contains the energy of interaction with an external potential V that distinguishes
different systems that belong to the same particle type and the same particle numberN .

We this in mind, we now cast the problem in a variational approach.

Variational Principle
We define an energy functional

E[n(x)] =
∫

d(x) v(x)n(x)+ F [n(x)],

F [n(x)] ≡ 〈�∣∣T + U
∣∣�〉 (2.41)

F [n(x)] is a universal functional of n(x) (since� is). Clearly for the correct n(x) associated
with the potential v(x) and satisfying the integral constraint∫

dx n(x) = N, (2.42)

E[n] is equal to the ground-state energy EN . Alternatively, EN may be regarded as the
minimum value of E[n] with respect to other density distributions corresponding to the
same N . We can then consider a trial density distribution n′(x) 
= n(x) having a ground-
state � ′ 
= �. Then

EN <
〈
� ′
∣∣H∣∣� ′〉 = ∫ d(x) v(x) n′(x)+ 〈� ′ ∣∣T + U

∣∣� ′〉 = E[n′]. (2.43)
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The vanishing of the first variation of E[n′] about the correct density may be expressed by
writing

δE[n] = 0, (2.44)

subject to the condition that all densities considered satisfy∫
d(x) n(x) = N . (2.45)

Notice here that the energy of the ground state, regarded as a functional of the density,
attains its minimum value with respect to variation of the particle density subject to the
normalization condition when the density has the correct value.

This statement is in contrast with the quantum mechanical variational approach for the
ground-state energy, where the energy attains its minimum value with respect to variation
of the ground-state wavefunction when the wavefunction is correct. The density n(x) is a
real, positive function of a single vector variable, whereas the wavefunction is a complex
function of N vector variables, which must have nodes if these are three or more electrons.
It is remarkable that it is, in principle, sufficient to vary the density.

We also note that up to this point the Hohenberg–Kohn (HK) formulation is restricted to
spinless fermions, which do not exist. However, we can introduce particle spin by replacing
the density with a generalized four-current density within a relativistic formalism. The
ground-state energy becomes a unique functional of the four-current density, and this
quantity attains its minimum value with respect to variations that preserve the continuity
equation when the density is correct. As a result of these considerations, the ground-state
energy becomes a functional of the spin densities, a statement generally abbreviated as

EG ≡ EG[n↑(x), n↓(x)]. (2.46)

Separation of Direct Coulomb Terms–Hartree Terms
Because of the long range of the Coulomb interaction, compared to exchange and correla-
tion terms, it is expedient to separate from F [n] the classical Coulomb self-energy of the
electrons by writing

F [n] = 1

2

∫
dx dx′

n(x) n(x′)∣∣x− x′
∣∣ +G[n], (2.47)

where G[n] is a universal functional like F [n] that contains the contributions of the kinetic,
exchange, and correlation energies. The total energy functional becomes

E[n] =
∫

dx v(x) n(x)+ 1

2

∫
dx dx′

n(x) n(x′)∣∣x− x′
∣∣ +G[n]. (2.48)

The electrostatic potential in the system will be denoted by φ(x):

φ(x) = v(x)+
∫

dx′
n(x′)∣∣x− x′

∣∣ . (2.49)
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Introducing a Lagrange multiplier μ in conjunction with the total particle number, we write
the variational equation for n(x) as

δ
{
E[n]− μ

∫
dx n(x)

} = 0, (2.50)

with μ being the chemical potential. Equation (2.50) implies that for the correct density,

δE[n]

δn(x)
= μ. (2.51)

Using (2.49), this may be put in the form

δφ(x)+ δG[n]

δn(x)
= μ, (2.52)

For large N , it is easily seen that μ is equal to the chemical potential ∂EN/∂N . We denote
the correct densities corresponding to N and N − 1 particles in the potential v(x) by nN(x)
and nN−1(x). Then

∂EN

∂N

∣∣∣∣
v(x); T=0K

= E[nN ]− E[nN−1]

=
∫

d(x)
δE[n]

δn(x)

∣∣∣∣
n=nN

[
nN(x)− nN−1(x)

] = μ, (2.53)

where (2.51) is used in the last step.
As was mentioned earlier, the functional term G[n] implicitly accounts for the kinetic,

exchange, and correlation contributions to the energy functional. The usefulness of this
form of the density functional formalism requires explicit expressions for these contribu-
tion. Although we know how to express the kinetic energy in terms of the wavefunction in
the Schrd̈inger equation, it is not at all clear how to express it in terms of the density. In
the TF method, the kinetic term was approximated by it functional form in the free particle
case, namely,

EKE[n] = 3h̄2

10me

(3π2)2/3
∫

dx n5/3(x). (2.54)

Since this is only valid for slowly varying potentials, it cannot be used for problems involv-
ing atomic or ionic potentials.

2.3.3 The Kohn–Sham Formulation

An approach proposed by Kohn and Sham [108] is more successful, and has become the
gold standard for DFT calculations. They introduced a set of N orthonormal single-particle
functions to define the particle density n(x) as

n(x) =
N∑
i=1

u∗i (x) ui(x). (2.55)
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This procedure is always possible. The variation of the density is effected by varying the
functions u∗i (x) and ui(x),

δn(x) =
N∑
i=1

{
δu∗i (x)ui(x) + ,u∗i (x) δui(x)

}
. (2.56)

The variation need only be done with respect to u∗i (x). This approach is straightforward
except for the kinetic energy – here we will borrow the form

EKE(n) = h̄2

2me

N∑
i=1

∫
dx ∇u∗i (x) · ∇ui(x)

= h̄2

2me

N∑
i=1

∫
dx u∗i (x)(−∇2)ui(x), (2.57)

where the N functions are the same as in (2.55). This form is an approximation; no proof
has been given that (2.57) represents the exact EKE . However, we can ignore any discrep-
ancy, because it can be absorbed in G[n]. Thus, the variation may now be performed on the
functional

E[n] = EKE + e2

2

∫
dx dx′

n(x) n(x′)∣∣x− x′
∣∣ +

∫
dx v(x) n(x)+G[n]

=
N∑
i=1

∫
dx u∗i (x)

⎡⎣−h̄2

2me

∇2 + v(x)+ e2

2

N∑
j=1

∫ ∣∣uj (x′)∣∣2∣∣x− x′
∣∣ dx′

⎤⎦ ui(x)+G[n].

(2.58)

The variation will then lead to⎡⎣ −h̄2

2me

∇2 + v(x)+ e2

2

N∑
j=1

∣∣uj (x′)∣∣2∣∣x− x′
∣∣ dx′ + δG[n]

δu∗i (x)

⎤⎦ ui(x) = εi ui(x), (2.59)

where we can define the exchange-correlation potential energy as

Vxc = δG[n]

δu∗i (x)
. (2.60)

Local-Density Approximation of Exchange Correlations

Another major difficulty with the density functional approach lies in our imperfect knowl-
edge of the exchange-correlation potential. The only system for which there is reasonably
complete understanding of Vxc is the free electron gas, which we previously derived. In a
free electron gas, however, the density is independent of position. In order to adapt these
results to the case of an inhomogeneous electron gas, the local density approximation is
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introduced. In this approximation, it is assumed that Vxc has the same value at a point x
that it would have in a free electron gas, namely,

Vexc → Vxc[n(x)],

as the density in an inhomogeneous system is a function of position, n ≡ n(x). In the
simplest approximation in which only the exchange is considered, we have seen that the
exchange energy of a free electron gas per unit volume, and not per electron, is

Exc[n] = −3

2
e2
(

3n4

8π

)1/3

. (2.61)

Hence, the exchange potential is

Vxc = dEexc[n]

dn
= −2e2

(
3n(x)

8π

)1/3

, (2.62)

where now n(x) is given by (2.55).
These results can be simply generalized to systems in which the densities of spin-up and

spin-down electrons are not equal, namely, the case of spin-polarized systems. In this case,
in accordance with (2.46), we set the energy as a functional of n↑ and n↓, and we write the
exchange correlation potential as

V σ
xc =

δE[n↑,n↓]

δnσ
, (2.63)

which leads to spin-dependent exchange-correlation potentials.
In the local spin density approximation (LSDA), the free electron gas result for Eexc is

used. In the exchange-only case, this is

Exc = −3

2
e2
∑
σ

nσ

(
3nσ (x)

8π

)1/3

. (2.64)

The spin densities are those obtained locally, namely,

nσ → nσ (x) =
∑
i

∣∣uiσ (x)∣∣2. (2.65)

Thus the exchange potential is

V σ
xc =

dEx[n]

dnσ
= −2e2

(
3nσ (x)

8π

)1/3

. (2.66)

The DFT procedure is summarized in Table 2.1.
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Table 2.1 Schematic of DFT functionals and procedure.

F [n] = T [n]+ VH[n]+G[n]

• Kinetic energy functional

Free electron gas T [n] = 


∫
dk

(2π)3
h̄2k2

2me
= 


h̄2k5
F

10π2me

Thomas–fermi approximation kF =
(

3π2 n(x)
)1/3

(good for slow density variation) T TF[n] = 

3h̄2
(

3π2
)1/3

10π2me
n5/3(x)

Kohn–Sham T KS[n] = h̄2

2me

N∑
i=1

∫
dxu∗i (x)(−∇2)ui(x)

• Hartree energy functional VH[n] = e2

2

∫
dx dx′ n(x) n(x

′)∣∣r− r′
∣∣

• Exchange-correlation functional

Local density approximation ELDA
xc �

∫
dx n(x) Vexc (n(x))

Vexc (n(x)) = −3

4

e2kF

π

= −3

4

e2

π

(
3π2n(x)

)1/3

Generalized gradient
approximation

VGGA
exc �

∫
dx n(x) εexc [n(x),∇n(x)]

Kohn–Sham (KS) versus Hartree–Fock (HF)

Pedagogically, it is useful to illustrate the difference between KS and HF calculations using
a simple system. Actually, the simplest system is the hydrogen molecule H2, where we need
to solve the interacting Schrödinger equation[

−1

2

2∑
i=1

(
∇2
i + vext(xi )

)
+ 1

|x1 − x2|

]
�(x1,x2) = E�(x1,x2), (2.67)

where i identifies the two electrons, and vext(r) is the external ionic potential.
We consider the spin-singlet ground–state, with an exchange symmetric spatial wave-

function �(x2,x1) = �(x1,x2). The presence of electron–electron repulsion complicates
the solution of (2.67), as it couples the two coordinates. Obtaining an exact solution
of (2.67), with six coordinates, can be quite demanding.
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Figure 2.7 Total energy of the H2 molecule as a function of internuclear separation.

Figure 2.7 shows results of total energy calculations of the molecule using different
methods and approximations. The position of the minimum identifies the equilibrium bond
length, while the depth of the minimum, minus the zero point vibrational energy, is the
bond energy. The global energy minimum determines the geometry of the molecule and its
vibration and rotation spectra.

(i) Hartree–Fock Approach
According to the HF method, we seek a system of two noninteracting electrons in
some potential, vs(x), chosen somehow to reproduce the true interacting electronic
system. Because the electrons are noninteracting, their coordinates decouple, and their
wavefunction is a simple product of one-electron wavefunctions, or orbitals, satisfying[

−1

2
∇2 + vs(x)

]
φi(x) = εi φi(x), (2.68)

where �(x1,x2) = φ0(x1) φ0(x2). A much simpler set of equations to solve, since it has
only three coordinates.2 If we can get our noninteracting system to accurately mimic the
true system, then we will have a computationally much more tractable problem to solve.

How do we get this mimicking? We solve the HF equations and obtain an effective
potential

vHF
s (x) = vext(x)+ 1

2

∫
dx′

n(x′)
|x− x′| .

The correction to the external potential represents the effect of the second electron, in
particular, screening the nuclei. Insertion of vHF

s (x) into (2.68) initiates a self-consistency
process, since it depends on the electronic density, which in turn is calculated from the

2 Even with many electrons, say N , one would still need to solve only a 3D equation, and then fill the lowest N/2 levels, as
opposed to solving a 3N-coordinate Schrödinger equation.
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solution to the equation. An initial guess of vs is usually made, the eigenvalue problem is
then solved, the density calculated, and a new potential found. These steps are repeated
until there is no change in the output from one cycle to the next – self-consistency has been
reached. As we mentioned earlier, such a set of equations are often called self-consistent
field (SCF) equations. As shown in Figure 2.7, we find that the HF calculations yield a
quite accurate minimum energy position; however, it underbinds the molecule significantly.
This has been a well-known deficiency of this method. The missing piece of energy is the
correlation energy.

(ii) Kohn–Sham Approach
In a Kohn–Sham calculation, the basic scenario is very much the same, but the logic is
entirely different. Here, we will try to find a system where the Kohn–Sham potential vKS

s (x)
acting on the a pair of noninteracting electrons precisely reproduces the density n(x) of the
physical system. This is done with the aid of density functional methods, which require
knowledge of how the total energy depends on the density. Thus, in order to determine
vKS
s (x), we need to introduce simple approximations that allow us to obtain workable

expressions for the energy dependence on the density. With this in hand, we can apply it to
predict both the energy and the self-consistent potential, vKS

s (x), for fictitious noninteract-
ing electrons that mimic all real electronic systems. However, we should underscore that the
Kohn–Sham wavefunction of orbitals in this perspective is not considered an approximation
to the exact wavefunction. Rather, it is a precisely defined property of any electronic system,
which is determined uniquely by the density. To emphasize this point, consider the fused
limit of our H2, the He atom.

In Figure 2.8, a highly accurate many-body wavefunction for the He atom was calcu-
lated, and the density extracted. In the bottom of the figure, we plot both the bare external
potential, −2/r , and the exact Kohn–Sham potential. Two noninteracting electrons sitting

r

Density

Figure 2.8 The external and Kohn–Sham potentials for the He atom.
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in this potential have precisely the same density as the interacting electrons. If we can
figure out some way to obtain a pretty good approximation to this potential, we have a
much less demanding set of equations to solve than those of the true system. Thus we are
always trying to improve a noninteracting calculation of a noninteracting wavefunction,
rather than that of the full physical system. In that spirit, Figure 2.7 shows a local density
approximation (LDA) and generalized gradient approximation (GGA) curves. LDA is the
simplest possible density functional approximation, and it already greatly improves on HF,
although it typically overbinds by about 1/20 of a Hartree (or 1 eV or 30 kcal/mol), which
is too inaccurate for most quantum chemical purposes, but sufficiently reliable for many
solid-state calculations. More sophisticated GGAs (and hybrids) reduce the typical error in
LDA by about a factor of 5 (or more), making DFT a very useful tool in both condensed
matter and quantum chemistry.

2.3.4 Reflections

The Hartree–Fock approach makes sense in the high-density limit but is obviously an
approximation (see Figure 2.9). DFT provides an exact mapping from a system of interact-
ing electrons to a system of noninteracting electrons moving through an effective potential
that depends on the electron density. Solving this self-consistent noninteracting problem is
easier than solving the Hartree–Fock equations and gives, in principle, the exact interacting
ground-state energyE0 and electron density for any given arrangement of the frozen (Born–
Oppenheimer) nuclei. Since DFT allows us to calculate the ground-state energy quickly and
reliably, we can use it to study how the total energy depends on the positions of the nuclei.
This allows the application of the Hellman–Feynman theorem to determine the forces on
the nuclei and hence how they move around. (Newton’s laws are useless for electrons, but
better for the much more massive nuclei.) We can use these forces to find the equilibrium
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Figure 2.9 Left: Chronology of Hartree–Fock and density functional usage. Right: Histogram of the
number of published papers per year using DFT as a function of time. Compiled by P. Mavropoulos
(see [96]).
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positions of the nuclei, watch the progress of a chemical reaction, or even follow the motion
of a defect such as a dislocation.

The success of DFT, which appears to be a theory of noninteracting electrons but in
fact describes a system of interacting electrons, in part explains the success of the standard
model of a solid as an assembly of noninteracting electrons moving in a fixed external
potential.

Exercises

2.1 Thomas–Fermi theory in two–dimensions: screening in a 2D electron gas:
Consider a system of electrons constrained to move on a plane. Use a system of
coordinates where the three-dimensional vectors can be written as r = (R,z); R is
the vector in the plane.

(a) If an external electric potential φext is applied to the system, there will be an
induced charge density, δρ(R) δ(z). Here δρ(R) is the induced surface charge
density in the plane, and δ(z) indicates that the charge density is confined to the
film at the plane z = 0.

Such an induced charge density produces its own induced electric potential
δφ, which is related to the induced charge density by

∇2δφ = −4π δρ(R) δ(z).

By taking appropriate Fourier transforms, namely with respect to the two-
dimensional wavevector k‖ = (kx,ky) in the xy plane, solve the previous
Poisson’s equations and show that the induced potential in the film is given by

δφ(k‖,z = 0) = 2π
δρ(k‖)
|k‖| .

(Hint: You have to solve Poisson’s equation in full three dimensions, even though
the charge density is confined to the two-dimensional plane.)

(b) The total electric potential in the film will then be φtot = φext+ δφ. If the electric
susceptibility is defined by

χ(k‖) = − δρ(k‖)
φtot(k‖)

,

show that

φtot(k‖,z = 0) = φext(k‖)
ε(k‖)

,

where

ε(k‖) = 1+ 2π
χ(k‖)
|k‖| .
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(c) For a point charge Q in the plane of the film, what is the screened electric
potential in the plane of the film, φtot(k‖,z = 0)? (Follow the steps given in
the section on the Thomas–Fermi screening and relate the induced charge to the
density of states.)

What is the screening length λTF?
(d) Fourier transform to get the real space potential φ(R,z = 0). How does it behave

in the limits R � λTF and R � λTF?
You may need the following integrals and relations∫ ∞

0
dx

xν Jν(ax)

x + b
= π bν

2 cos(νπ)

[
H−ν(ab)−N−ν(ab)

]
,

where H−ν is Struve’s function and N−ν Neumann’s function

lim
x→0

xH0(x), xN0(x) = 0.

For large x,

H0(x)−N0(x) � 2

πx
− 1

4π

8

x3
.

2.2 Kinetic energy contribution in density functional theory:

The kinetic energy contribution to the density functional formalism is difficult to
obtain accurately. Here we shall attempt to derive approximate expressions in terms
of the density for a noninteracting system.

(a) Express kF in terms of the density n of a uniform electron gas. Determine the
total kinetic energy of a noninteracting uniform electron gas in terms of kF and
the density n in one, two, and three-dimensions. Write the expressions in atomic
units.

(b) Using the forms of total kinetic energy obtained in part (a) as local functions of
position, write an expression for the kinetic energy functional.

(c) Since kF ≡ kF (n), we can write

Ts[n] = As

∫
ddx nα(x),

where As does not depend on x. Use dimensional analysis to determine α for
one, two, and three-dimensions. As can be determined from parts (a) and (b).

2.3 Particle in a one-dimensional box:

Consider the elementary example of a particle in a box, with V (x) = ∞ everywhere,
except 0 < x < L, where V = 0.

(a) Since all the particle’s energy is kinetic, use the approximate density functional
in one dimension for the kinetic energy that you derived in problem 2.2, namely,
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T loc[n] = 1.645
∫ ∞
−∞

dx n3(x)

to estimate the energy for single, double, and triple occupation of the box, where
each energy level is singly occupied. Use the box eigenfunctions to determine the
density. Compare the energies you obtain with the exact energies.

(b) For a large occupation number N � 1, obtain an expression for the exact total
kinetic energy of the N particles in the box.

2.4 Exchange energy contribution in density functional theory:

Now we need to derive the density functional for the exchange energy. For the
exchange energy of the uniform gas, we simply note that the Coulomb interaction
has dimensions of inverse length. Use dimensional analysis to obtain an expression
for the exchange energy functional, in the local approximation, in one, two, and three
dimensions.

2.5 Cartoon model for the helium atom:

Consider the following one-dimensional cartoon model of a heliumlike atom, repre-
sented by the Hamiltonian

H = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

− Zδ(x1)− Zδ(x2)+ δ(x1 − x2),

where x1, x2 are the coordinates of the two electrons along the x-axis. −Zδ(x)
replaces the nucleus potential and δ(x1 − x2) the electron–electron Coulomb
interaction.

(a) Employ the variational method with a trial wavefunction analogous to that used
for the ground state of helium, namely for the single particle

u(x) = √α exp[−α|x|],

where α is a variational parameter. Find the best value of 〈H〉 and compare it
with helium.

(b) Now take a trial wavefunction of the form

�(x1,x2) = u(x1) u(x2),

where u(x) is the variational function, à la Hartree or Hartree–Fock. Assume
u(x) is real; there is no loss of generality in this. Derive a Hartree-like equation
for u(x); it will contain a pseudoenergy eigenvalue, call it ε. Define ε so that the
equation looks like a Schrödinger equation

1

2

d2u(x)

dx2
+ · · · = ε u(x)

where the dots represent the remaining terms.
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(c) The desired solution must be normalizable, which requires that

lim
x→±∞ u(x) = 0.

Use this boundary condition to solve the Schrödinger-like equation you have
derived. (Hint: it’s actually known as the nonlinear time-independent Schrödinger
equation. Try a solution of the form u(x) = α csch(α|x| + β).)

(d) Find the normalized solution, and use it to compute an estimate for the energy E.

2.6 Derivation of the Hartree equations from the variational principle:
Consider the many-body Hamiltonian

H =
N∑
i=1

(
− h̄2

2me

∇2
i + Vext(x)

)
+ 1

2

∑
i 
=j

e2

|xi − xj |

acting on the N-particle wave function � (x1, x2, . . . ,xN). Within the Hartree
approximation, the eigenstates of H are not antisymmetrized and determined by
setting

� (x1, x2, . . . ,xN) =
N∏
i=1

φi(xiσi)

and then minimizing the expectation value 〈�| |calH |�〉.
(a) Show that

〈�|H |�〉 =
∑
i

∫
dx φ∗i (x)

(
− h̄2

2me

∇2
i + Vext(x)

)
φi(x)

+ 1

2

∑
i 
=j

e2
∫∫

dx1 dx2
|φj (x2)|2 |φi(x1)|2

|xi − xj | .

(a) Expressing the constraint of normalization for each φi with a Lagrange multiplier
εi , and taking δφ∗i and δφi as independent variations, show that the stationarity
condition

δ 〈H〉
δφ∗

leads directly to the Hartree equations⎡⎣− h̄2

2me

∇2
i + Vext(x)+

∑
i 
=j

e2
∫

dx′
|φj (x2)|2
|x− x′|

⎤⎦ φi(x) = εi φi(x).

Compare the Hartree equations with the Hartree–Fock equations derived in class.

2.7 Sketch the shapes of the electronic and nuclear cusps as well as the Coulomb hole in
the ground state of the helium atom.
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2.8 Calculate the Hartree–Fock correction for the electron energy E(k) for jellium using
the screened Coulomb potential

Vs(x) = e2

r
e−λr, r = |x|.

Does the unphysical behavior of the density of states and the electron velocity at the
Fermi level still persist?

2.9 Using the Hartree–Fock exchange energy correction for the jellium, equation (2.28),
we write the one electron energy as

E(k) = h̄2k2

2me

− 2e2kF

π
F

(
k

kF

)
.

Show that near the band minimum (k=0), E(k) can be expressed as

E(k) � h̄2k2

2m∗
,

where m∗ is given by

m∗

me

= 1

1+ 0.22(rs/a0)
.
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Electrons and Band Theory: Methods
of Energy-Band Calculations

3.1 The Crystal Potential

The energy levels in the free atom may be divided into core and valence levels (see
Figure 3.1). The core levels comprise all states lying within the highest filled rare-gas shell,
while valence levels include all occupied states outside.

(a) Core Electrons Contribution
The core levels will remain essentially unchanged in going from the free atom to the solid.
We note that when atomic wavefunctions are calculated for a free ion and a free atom,
no distinction is made in the tabulated core wavefunctions. Presumably in the solid, the
wavefunctions of these low-lying states should be intermediate between the two extremes,
and again no distinction is made.

Equipped with a knowledge of the core wavefunctions, we proceed to calculate the
combined potential arising from the nucleus and these core electrons, with the proviso
that the Coulomb and exchange terms coupling the valence and core states are included.
The resultant potential is known as the bare ionic potential Vi(r).

(b) Valence Electrons Contribution
The Coulomb and exchange contributions of the valence electrons to the one-electron
potential, Veff(r), can be calculated with the aid of the free electron exchange functional
discussed in the previous chapter. However, we should note the unphysical result of infinite
velocity at k = kF in the HF exchange interaction for the homogeneous free electron gas,
equation (2.28) and Figure 2.3:

EHF
exc(k) = −

e2kF

π

{
1+
[
k2 − k2

F

2kkF

]
ln

∣∣∣∣k − kF

k + kF

∣∣∣∣
}

This is really the result of the inclusion of self-interaction in the summation over k < kF .
Thus, in constructing the contributions of the valence electrons to the potential, Veff(x), we
should avoid the inclusion of the self term.

The resulting overall potential appearing in the one-electron self-consistent equations,
namely, Vi(x) + Veff(x), will be called the crystal potential V (x). Since all the elec-
tronic wavefunctions will assume the periodicity of the underlying lattice, the electronic

63
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s s p s s p

Figure 3.1 The carbon atom: Left – with 1s2 core level (black circles) and 2s2, 2p2 valence levels
(gray circles). Right – defining the ionic core.

densities contributing to the Coulomb and exchange will also display the same periodicity.
Consequently, we expect that V (x) will also have the same periodic symmetry and can be
simply written as

V (x) =
∑
R,ρ

v(x− R− ρ), (3.1)

where R are the primitive lattice vectors and ρ the atomic position vectors in the primi-
tive cell.

3.1.1 Screened Electron–Ion Potential

A simple method for including the contribution of intravalence Coulomb interaction in
the crystal potential is to treat it as an effective screening of the bare ionic potential. The
physical idea associated with screening by the valence electrons is tantamount to the naive
statement that if ε is the dielectric constant relevant to the valence electrons, then we expect
the bare potential

Vi(x) =
∑

R

vi (|x− R|) ,

vi(r) = −ze2/
∣∣x∣∣ (3.2)

where ze is an effective ionic charge, to assume the modified form

V (x) =
∑

x

v (|x− R|) , (3.3)

where now v(r) = −ze2/ε
∣∣x∣∣, as in classical electrostatics. In practice, however, one

cannot treat electron screening quite so simply on a microscopic scale. A number of inter-
mediate steps is required to see what is happening. Primarily, we have to consider that ε
should be replaced by ε(x), a dielectric function.

Let us, therefore, consider the screening of the bare electron–ion potential Vi by the
dielectric function of the valence electron gas in a simple metal. We suppose that we may
write the screened potential in the form

V (x) = Vi(x)+ Vsc(x), (3.4)
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where, from electrostatics, the screening potential Vsc is related to the density ρ(x) of the
valence electrons via Poisson’s equation

∇2Vsc(x) = −4πe2δρ(x), (3.5)

where δρ(x) is the change in electron density above or below its mean value in the electron
gas. Such fluctuations in the local electron density are due to electron–electron interactions
among the mobile valence electrons. Quantum mechanically, we know that ρ is

ρ(x) = 2
∑
|k|<kF

�∗k(x)�k(x), (3.6)

where �k(x) is determined by the solution of the Schrödinger equation{
− h̄2

2m
∇2 + V (x)

}
�k(x) = Ek �k(x), (3.7)

Equations (3.3) to (3.7) suggest that in order to calculate V in (3.3), we have to solve (3.7),
which itself involves V . We need a self-consistent solution.

The Perturbation Route!

At this point, we declare a priori that V is a weak potential, which implies that we can
apply perturbation theory to the free electron gas, and obtain, to first-order,

�k(x) = ψ
(0)
k (x)+ δψk(x) = 1√



eik·x + 1√




∑
q
=0

V (q) ei(k+q)·x

Tk − Tk+q
, (3.8)

V (q) is the Fourier transform of V (x), Tk = h̄2k2/2m and 
 is the volume occupied by
the electron gas,

Ek = Tk + V (0)+
∑
q
=0

∣∣V (q)∣∣2
Tk − Tk+q

. (3.9)

We are now in a position to calculate the induced charge ρind(x), but it is easier to calculate
ρind(q)

ρind(q) = 1




∫
dx ρind(x) eiq·x

= 2




∑
|k|≤kF

∫
dx
(
ψ
(0)∗
k (x) δψk(x)+ ψ

(0)
k (x) δψ∗k (x)

)
eiq·x

= 2




∑
|k|≤kF

[
V (q)

Tk − Tk+q
+ V ∗(−q)

Tk − Tk−q

]
, (3.10)
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since the reality of V implies V (q) = V ∗(−q), this reduces to

ρind(q) = 4



V (q)

∑
|k|≤kF

1

Tk − Tk+q
= 4







(2π)3
V (q)

2m

h̄2

∫
dk

k2 − (k+ q)2

= 2m

π2h̄2
V (q)

∫ kF

0
dk k2

∫ 1

−1

−d cos θ

q2 + 2kq cos θ
= mkF

2π2h̄2
V (q) χ

(
q

2kF

)
,

χ(y) = 1

2
+ 1− y2

4y
ln

∣∣∣∣1+ y

1− y

∣∣∣∣
where χ(y) is the Lindhard susceptibility for a free electron gas. We substitute for ρind(q)
in (3.5) and use the relation k3

F = 3π2 n to obtain

Vsc(q) = 4πe2

q2
ρind(q) = −λ2

q2
V (q) χ

(
q

2kF

)
,

λ2 = 4πe2mkF

2π2h̄2
= 2kF

πa0
= 4πe2N

(2/3)EF 

(3.11)

λ is actually the Thomas–Fermi screening length λT F .
Eliminating Vsc(q) in (20.26), we get

V (q) = Vi(q)
ε(q)

, (3.12)

where

ε(q) = 1+ λ2

q2
χ

(
q

2kF

)
= 1+ 4πze2


0q2

(
2

3
EF

)−1

χ

(
q

2kF

)
, (3.13)

z/
0 = n, and 
0 is the primitive cell volume.
Recalling that V (q) = S(q)v(q) and Vi(q) = S(q)vi(q), where S(q) and v(q) are the

structure and form factors, respectively, we get

v(q) = −4πze2/
0q
2

1+
(
λ2

q2

)
χ
(

q
2kF

) . (3.14)

In the long wavelength limit, i.e., lim q → 0,

v(q) = −4πze2/
0

q2 + λ2
. (3.15)
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Figure 3.2 Friedel oscillations.

3.1.2 Screening Charge

Writing ρind(q) = S(q) × ρa(q), we can derive the spatial dependence of the atomic
screening charge as follows:

ρa(x) = 
0

(2π)3

∫
ρa(q) eiq·x dq

= 
0

(2π)3

∫
ρa(q)

sin(qr)

qr
× 4πq2dq

� 9πz2


0EF

× v(2kF )

ε(2kF )
× cos(2kF r)

(2kF r)3
. (3.16)

The result has an oscillatory form, known as Friedel oscillations (see Figure 3.2).

Despite the complicated and abstract derivation of the preceding Friedel oscillation,
a simple and more physical explanation can be readily presented. By analogy to the
one-dimensional slit diffraction phenomenon, where the constraint arising from the
confining slit width, say a, leads to oscillatory manifestations of its reciprocal space
image to

sin(ka)

ka
,

we can envision that the confinement of the electronic states to −kF ≤ k ≤ kF in
reciprocal space will lead to similar oscillations in real space of the form

sin(2kF x)

2kF x
,

which define similar Friedel oscillations in one dimension.

3.2 Methods of Electron Band Calculations

As we have shown in Chapter 1, the periodicity of the crystal potential leads to Bloch’s
theorem. It provides a general form for the electronic wavefunctions in crystal lattices,
namely,
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�k = e−ik·x uk(x), (3.17)

where k is a wavevector and uk(x) has the periodicity of the lattice,

uk(x+ R) = uk(x), (3.18)

where R is a lattice vector.

3.2.1 Basis Sets

Two general categories of wavefunctions satisfy the periodic character of uk(x):

1. Plane waves or momentum eigenfunctions:
uk can be expanded as a Fourier series of the periodic lattice,

uk(x) =
∑

G

ak(G) eiG·x, (3.19)

where the Gs are reciprocal lattice vectors. Consequently, we find

�k(x) =
∑

G

ak(G) e−i(k−G)·x. (3.20)

The physical interpretation of this equation is that a Bloch electron with wavevector k
can have momentum k+G; and the probability of finding momentum k−G is simply∣∣ak(G)

∣∣2, apart from a normalization constant.
Using the orthonormality of the functions exp

[−i(k − G) · x
]
, we can express

ak(G) as,

ak(G) = 1




∫
dx�k(x) ei(k−G)·x, (3.21)

The periodicity of Bloch states in k-space, �k(x) = �k+G(x), yields

ak(G) = 1




∫
dx�k+G(x) ei(k−G)·x = a(k+G). (3.22)

2. Localized Wannier functions:
Another implication of the periodicity of the Bloch function in reciprocal space is

that it can be expanded as a Fourier series in real space

�k(x) =
∑

R

wR(x) eik·R,

wR(x) = 1


B

∫
dk�k(x) e−ik·R (3.23)

where 
B is the BZ volume. From Bloch’s theorem, we can write the integrand as

�k(x) e−ik·R = �k(x− R),
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showing that

wR(x) = w(x− R) = 1


B

∫

B

dk�k(x− R)

and that w(x) is lattice periodic. w(x) is known as the Wannier function. Consequently,

�k(x) =
∑

R

w(r− R) eik·R. (3.24)

The orthonormality of the Bloch functions can be used to derive the orthonormality and
completeness relations of the Wannier functions,∫

dx w∗(x− R)w(r− S) =
∫
BZ

dk
∫
BZ

dk′ ei[S·k′−R·k]
∫

dx �∗k′(x)�
∗
k(x)︸ ︷︷ ︸

δk,k′

=
∫

dk eik·(S−R) = δR,S. (3.25)

The completeness ∑
R

w∗(x′ − R)w(x− R) = δ(x′ − x) (3.26)

can be similarly proven.
We should note that Wannier functions are not uniquely defined since they are

expressed as the Fourier sum of the Bloch functions, which are only defined up to a
phase factor. The freedom to choose different phase factor for every k gives us the
ability to optimize the Wannier functions with respect to certain criteria, for example,
that they can be maximally localized.

3.2.2 The Orthoganalized Plane Wave (OPW) method

In the plane wave set of Bloch wavefunctions e−i(k−G)·x, we were able to express

�k(x) =
∑

G

a(k−G) e−i(k−G)·x. (3.27)

Expanding the crystal potential

V (x) =
∑

G

VG eiG·x, (3.28)

and substituting (3.27) and (3.28) in the Schrödinger equation[− ∇2 + V (x)
]
�k(x) = E(k)�k(x),

we obtain the set of simultaneous equations[∣∣k−G
∣∣2

2
− E(k)

]
a(k−G)+

∑
G′

VG′−G a(k−G′) = 0. (3.29)
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Figure 3.3 Atomic fluctuation on sub-Angstrom scales.

In principle, we choose k and determine all the coefficients a(k−G) by solving the coupled
equations (3.29). In general, this is not convenient for practical calculations since it requires
an unreasonably large number of plane waves in the expansion of the wavefunction �k(x),
which is necessary to account for the atomic-like sub-Angstrom fluctuations in the vicinity
of the nuclei (see Figure 3.3).

We now show that we can drastically reduce the number of plane waves employed by
incorporating atomic core orbitals in the construction of our Bloch functions – which is the
essence of the OPW method.

Construction of OPWs

We can construct Bloch functions for the tightly bound core states in a manner similar to
the Wannier functions

�c
k(x) =

∑
x

eik·R φc(r− R), (3.30)

where the φcs are atomic core orbitals. We can now write the OPWs as [40]

χk,G(x) = e−i(k−G)·x −
∑
c

μc
G(k) �

c
k(x). (3.31)

For χ to be orthogonal to all core Bloch functions, we require that

μc∗
G (k) =

∫



ei(k−G)·x �c
k(x) dr, (3.32)

for all k. We now expand the valence wavefunction �k(x) in terms of the OPWs, and write

�k(x) =
∑

G

bk,G χk,G(x). (3.33)

We expect this expansion to converge more rapidly than a regular plane wave
expansion. Thus, we can retain a finite number in the sum, with the coefficients bk,G
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as variational parameters to be determined by minimizing the expectation value of the
one-electron Hamiltonian. We then obtain the set of linear equations∑

G

bk,G

∫
χ∗k,G′

[
H− E

]
χk,G dx = 0, (3.34)

and the corresponding secular determinant∣∣∣∣ ∫ χ∗k,G′
[
H− E

]
χk,G dx

∣∣∣∣ = 0. (3.35)

The size of this secular equation is obviously determined by the number of OPWs we
choose to retain in the expansion. For simple metals, even a single term gives a reasonable
first approximation to the valence band. For more complex solids, convergence would
require an appreciable number of OPWs to be included.

3.2.3 Korringa-Kohn-Rostoker (KKR) Green Function Method

This method [107, 112] solves the wave equation using the crystal Green function. It is
quite general, in the sense that the form of the Green function mainly depends on the crystal
structure. For simplicity, we shall consider a monatomic crystal.

However, to allow the theory to be carried through explicitly in practice, it is necessary
to assume that the potential within a unit cell vanishes before the boundary of the unit cell
is reached. A very important simplification then occurs. The problem can to be separated
into two parts:

(i) Determination of the scattering properties of a single potential of the muffin-tin form
(see Figure 3.4).

(ii) Determination of the structural aspects.

This method of calculating the band structure for particular metals has been found to be
highly efficient even for low symmetry points in the Brillouin zone (BZ).

1. Integral Equation
For a periodic potential V (x), we can solve the wave equation[

∇2 + E

]
� = V (x) � (3.36)

by a Green function procedure. Defining the Green function G(x,x′) through the equation[
∇2 + E

]
G(x,x′) = δ(x− x′), (3.37)

we can construct a solution for the wave function � of the form

�(x) =
∫



dx′ G(x,x′) V (x′)�(x′). (3.38)



72 Methods of Energy-Band Calculations

Figure 3.4 Muffin-tin configuration for a 2D hexagonal lattice. Muffin-tin configuration. Dashed
vertical gray lines define the muffin-tin region, while dashed vertical black lines delineate the
primitive cell boundary. Solid black horizontal lines in the interstitial region indicate the muffin-tin
zero (MTZ).

2. Boundary Conditions
In order for � to be a Bloch function, we must choose the Green function to satisfy the
relation

G(x+ R,x′) = eik·x G(x,x′), (3.39)

where R is any lattice vector. It can be easily shown that the correct choice of G is

G(x,x′) = − 1




∑
G

exp[i(k+G) · (x− x′)]
(k+G)2 − E

. (3.40)

The muffin tin assumption amounts to taking the potential to be spherical about each ion
within the sphere inscribed in the unit cell and constant outside. Then we can write

V (x) =
∑

R

v (|x− R|) , (3.41)

where the vs are spherical and nonoverlapping, i.e., we can choose

v (r) = 0, r > rmt, (3.42)

where rmt is the radius of a muffin tin sphere lying wholly within the unit cell. The wave-
function within the inscribed muffin-tin sphere may now be written as

�(x) =
∑
L

cLRl (r) YL(θ,φ), r < rmt , (3.43)
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where YL ≡ Ylm are normalized spherical harmonics. The radial wavefunctions Rl (r)

satisfy the equation[ −1

r2

d

dr

(
r2 d

dr

)
+ l(l + 1)

r2
+ v(r)− E

]
Rl (r) = 0. (3.44)

3. Secular Equation
We now explain how the coefficients cL can be obtained from the integral equation. It will
be useful to define the single-center potential by

v(r) = v(r), r ≤ rmt − ε

v(r) = 0, r > rmt − ε, (3.45)

where ε is a small positive quantity, which we shall eventually allow to go to zero. The
integral equation can then be written

�(x) =
∫
r ′<rmt−ε

dx′G(x,x′) v
(
x′
)
�(x′). (3.46)

We shall consider next a choice of the vector x such that
∣∣x∣∣ = rmt− 2ε. Using the fact that

�(x′) and G(x,x′) satisfy [∇2
x′ + E

]
�
(
x′
) = v

(
x′
)
�
(
x′
)

[∇2
x′ + E

]
G(x,x′) = δ(x′ − x),

we obtain for (3.46)

0 = �(x)−
∫
r ′<rmt−ε

dx′ G(x,x′)
[∇2

x′ + E
]
�(x′)

=
∫

dx′ δ
(
x′ − x

)
�(x′)−

∫
dx′G(x,x′)

[∇2
x′ + E

]
�(x′)

=
∫

dx′
[∇2

x′ + E
]
G(x,x′)�(x′)−

∫
dx′G(x,x′)

[∇2
x′ + E

]
�(x′)

Using the Green identity∫
V

dx
(
ψ ∇2φ − φ ∇2ψ

)
=
∮
S

dS

(
ψ
∂φ

∂n
− φ

∂ψ

∂n

)
,

where n is the coordinate normal to the surface S, we find∫
r ′<rmt−ε

dx′ ∇2
x′ G(x,x

′) �(x′)−
∫
r ′<rmt−ε

dx′ G(x,x′) ∇2
x′ �(x

′)

=
∫
r ′<rmt−ε

dS′ �
∂G(x,x′)

∂r ′
−
∫
r ′<rmt−ε

dS′
∂�

∂r ′
G(x,x′), (3.47)
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where the integrations on the second line are over the surface of the sphere of radius rmt−ε.
We obtain

0 =
∫
r ′<rmt−ε

dS′ �
∂G(x,x′)

∂r ′
−
∫
r ′<rmt−ε

dS′
∂�

∂r ′
G(x,x′). (3.48)

It is now clear that in order to obtain equations for the coefficients cL, we need to express G
in terms of spherical harmonics. To do this, we use the free particle Green function G0,
which satisfies the same inhomogeneous equation as G inside the atomic polyhedron, and
write the difference

D(x,x′) = G(x,x′)−G0(x,x′), (3.49)

where D must satisfy the homogeneous wave equation. For a plane wave, which trivially
satisfies such an equation, we have

eik·x = 4π
∑
l

(2l + 1) il jl(kr) Pl(cos θ), (3.50)

where θ is the angle between k and x, and jl is the spherical Bessel function of order l. By
analogy, D can be expressed in the form

D(x,x′) =
∑
L,L′

AL,L′ jl(κr) jl′(κr
′) YL(θ,φ) YL′(θ ′,φ′), (3.51)

where the inverse length scale κ =
√

2mE/h̄2. The As are constants to be discussed later.
Moreover,

G0(x,x′) = − 1

4π

cos κ
∣∣x− x′

∣∣∣∣x− x′
∣∣

= κ
∑
L

jl(κr) nl(κr
′) YL(θ,φ) YL(θ ′,φ′), r < r ′ (3.52)

nl is the spherical Neumann function. Hence we can write the full Green function in the
form

G(x,x′) =
∑
L,L′

[
AL,L′ jl(κr) jl′(κr

′)+ κ δll′,δmm′ jl(κr) nl(κr
′)
]

× YL(θ,φ) YL′(θ
′,φ′), (r < r ′ < rmt). (3.53)

We substitute (3.53) for G and (3.43) for � in (3.48), multiply through by Y ∗L(θ,φ) and
integrate over the sphere of radius r = rmt − 2ε. After letting ε → 0, we obtain∑

L′
jl

[
AL,L′

(
jl′ Ll′ − j ′l′

) +κ δll′ δmm′ ( nl′Ll′ − n′l′
) ]

cL′ = 0. (3.54)

Here

j ′l =
djl(x)

dx
, n′l =

dnl(x)

dx
, (3.55)
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and L is the logarithmic derivative

L = dRl(x)/dr

Rl(x)
, (3.56)

and all functions are evaluated at r = rmt. In order that nontrivial solutions for the cs exist,
the determinant of the coefficients must be zero. Since (3.54) may be written as∑

L′

[
AL,L′ + κ δll′ δmm′

nl Ll − n′l
jl Ll − j ′l

]
c̃L′ = 0, (3.57)

where c̃L′ = (jlLl − j ′l ) cL′ , an equivalent condition is

det

∣∣∣∣AL,L′ + κ δll′ δmm′
nl Ll − n′l
jlLl − j ′l

∣∣∣∣ = 0. (3.58)

It is evident that the As (called structure constants) depend on the particular crystal lattice
considered. It can be seen from (3.58) that a clear separation has been achieved between
the effects of the geometry of the lattice and the effects of the potential that are manifest
only in logarithmic derivatives L and through the value rmt at which the functions j and n
are evaluated.

4. Structure Constants Alm,l′m′

The coefficients Alm,l′m′ can be determined in a straightforward way. First, expand the
plane waves in (3.40) in terms of spherical waves, as in (3.50); second, equate the resulting
coefficients of the spherical harmonics with those of (3.53):

G(x,x′) = − 1




∑
G

exp[i(k+G) · (x− x′)]
(k+G)2 − E

= (4π)2




∑
G

lm,l′m′

il−l
′ jl(
∣∣k+G

∣∣r) jl′(∣∣k+G
∣∣r ′) YL(k+G) Y ∗

L′(k+G)

(k+G)2 − E

=
∑
L

∑
L′

[
Alm,l′m′ jl(κr) jl′(κr

′)+ κ δll′,δmm′ jl(κr) nl(κr
′)
]

× YL(θ,φ) YL′(θ
′,φ′).

Specifically, we find

Alm,l′m′ = − (4π)2



i(l−l

′)
[
jl(κr) jl′(κr

′)
]−1

×
([∑

G

jl(
∣∣k+G

∣∣r) jl′(∣∣k+G
∣∣r ′) YL(k+G) Y ∗

L′(k+G)[
(k+G)2/2

]− E

]

− κ δll′ δmm′
nl(κr)

jl(κr)

)
(3.59)

where E = h̄2κ2/2m.
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Figure 3.5 Scattering states from a spherically symmetric potential.

We can then write

Alm,l′m′ =
∑

G

FL(G) FL′(G)[
(k+G)2/2

]− E
− κ δll′ δmm′

nl(κrmt)

jl(κrmt)
(3.60)

FL(G) = 4π√



jl(
∣∣k+G

∣∣rmt)

jl(κrmt)
YL(k̂+G). (3.61)

5. Secular Determinant of the KKR Method in Terms of Phase Shifts:
Method of Phase Shifts in Quantum Scattering: Revisited
We consider a single spherically symmetric muffin tin potential, where the scattered wave-
function has the asymptotic form shown in Figure 3.5, and given by∣∣�+〉 = 1

(2π)3/2

[
exp[ik in · r]+ f (k,θ)

exp[ikr]

r

]
= 1

(2π)3/2

∑
l

(2l + 1)Pl(cos θ)

[
il sin(kr − lπ

2 )

kr
+ fl(k)

exp[ikr]

r

]
= 1

(2π)3/2

∑
l

(2l + 1)
Pl(cos θ)

2ik

×
[[

1+ 2ikfl(k)
] exp[ikr]

r
− exp[−i(kr − lπ)]

r

]
.

In the absence of the scattering potential, the plane wave is the sum of the following:

1. A spherically outgoing wave, eikr/r
2. A spherically incoming wave, e−i(kr−lπ)/r , for each l

The presence of the scatterer changes the coefficient of the outgoing wave:

1 → 1+ 2ik fl(k).

The incoming wave is left completely unaffected!
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Recalling the relation between the S and T operators, we obtain

Sl (E) = 1+ 2ik fl(k).

The time independence of the scattering problem, ∇ · j = 0, or

∫
spherical
surface

j · ds = 0,

stipulates that the incoming flux must equal the outgoing flux. Furthermore, because of
angular-momentum conservation, this relation must hold for each partial wave separately;
consequently, we obtain a unitary relation

|Sl (k)| = 1

for the lth partial wave, and we set

Sl (E) = 1+ 2ik fl(k)Sl (k) = exp[2iδl(k)]

fl(k) = exp[2iδl(k)]− 1

2ik
= exp[iδl] sin δl

k
= 1

k cot δl − ik
.

We obtain for the full scattering amplitude

f (k,θ) = 1

k

∑
l=0

(2l + 1) exp[iδl] sin δl Pl(cos θ),

which is the result of both rotational invariance and probability conservation.
To see how this can be done, we note that for r ≥ rmt the radial wavefunction Rl(r) (see

Figure 3.6) must be a linear combination of the free particle solutions jl and nl , namely,

Rl(r) ∼
[
jl(kr)− tan ηl nl(kr)

]
, (3.62)

as shown in Figure 3.6. This allows us to write down the logarithmic derivative by matching
it at rmt as

R′l(rmt)

Rl(rmt)
= Ll =

j ′l (κrmt)− tan ηl n′l (κrmt)

jl(κrmt)− tan ηl nl(κrmt)
, (3.63)

Figure 3.6 Radial wavefunction: gray (dashed black), in the presence (absence) of the potential well.
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from which we immediately obtain

tan ηl =
Ll jl(κrmt)− j ′l (κrmt)

Ll nl(κrmt)− n′l (κrmt)
. (3.64)

Thus, (3.58) may be written

det
∣∣ Alm, l′m′ + κ δll′δmm′ cot ηl

∣∣ = 0 . (3.65)

Substituting from (3.60), we obtain

det

∣∣∣∣∑
G

FL(G) FL′(G)[
(k+G)2/2

]− E
+ κ δll′δmm′ cot η′l

∣∣∣∣ = 0 . (3.66)

with

cot η′l = cot ηl − nl(κrmt)

jl(κrmt)

where the last term comes from (3.60)

3.2.4 Augmented Plane Wave (APW) Method

As we have seen, the atomic-like behavior of the crystalline wavefunctions in the core
region has prompted the formulation of the OPW method. It has also led to the proposition
of the augmented plane wave formalism by Slater in 1937 [168]. This formalism makes
use of the concept of muffin-tin (MT) potentials. In this scheme, one divides space up into
the atomic regions near the nuclei, and the free electron regions in the interstitial space.
In the atomic region, which is taken as spherical for convenience, quantities of interest are
expanded in spherical harmonics. In the remaining interstitial region, which must exhibit
the periodic boundary conditions, a plane wave expansion is generally chosen.

The surface of the MT sphere becomes a natural boundary enclosing an atomic or core
region, where the wavefunction must be a combination of solutions of the Schrödinger
equation in the spherically symmetrical vMT (r) and in the interstitial region. The potential
in the interstitial region is practically flat, or undulates gently, and we construct the wave-
functions out of combination of plane waves. Unlike the OPW, these two constituents of the
APW are never allowed to overlap, but must be matched to one another at the MT surface
(see Figure 3.7).

A general APW is a function of the form

φ(k+G,x) =
⎧⎨⎩

1√



exp(i(k+G) · x) r > R∑
L il aLRl (r,E) YL(r̂) r ≤ R.

(3.67)

The radial functions are chosen to satisfy the radial Schrödinger equation in the MT poten-
tial region. How should we choose the coefficients aL? In the standard Slater scheme, the
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Figure 3.7 Wavefunction matching.

function is made continuous over the surface of the MT sphere. Expanding the plane wave
(PW) in spherical waves

1√



exp(i(k+Gi ) · x) = 4π√



∑
L

il jl (|k+G| r) Y ∗L(k̂+G) YL(x̂)

leads to

aL = 4π√



[
jl (|k+G| r)

Rl (r,E)

]
Y ∗L(k̂+G). (3.68)

A single function of this form is not, in general, a Bloch function, because it cannot be
made to satisfy the Schrödinger equation in the interstitial region without a discontinuity
of slope on the MT sphere. But a linear combination of such waves, of the form

�k(x) =
∑

G

ck+G φ(k+G,x), (3.69)

is acceptable as a putative solution of the Schrödinger equation. The obvious procedure
is to substitute (3.69) in an expression for the expectation value of the energy, and then
to vary the coefficients ck+G. This yields the usual matrix, whose secular determinant
must vanish.

But the discontinuity of slope at the MT surface in each APW demands a little care.
In the variational approach, Slater used the standard form∫

cell

{∇ �∗ · ∇� + (VMT − E) �∗ �
}
d3r

=
∫

cell
�∗
{ − ∇2 + VMT − E

}
� d3r +

∫
sphere

{
�∗i ∇ �o −�o ∇ �∗i

} · dS,

(3.70)

where the surface integral vanishes only if the inner and outer wavefunctions, �i and �o,
join with continuous amplitude and gradient. The algebraic steps that follow on substitut-
ing (3.69) in (3.70) are given at length in Slater’s Symmetry and Energy Bands in Crystals,
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appendix 6 [169]. To see what happens, consider the diagonal matrix element in φk.
The integration over the volume of the cell is trivial. There is no contribution from within
the atomic sphere, where each APW satisfies the Schrödinger equation exactly. From the
interstitial region, where VMT = 0, we get


−1
∫

interstitial
region

e−ik·x
{ −∇2 + VMT (r)− E

}
eik·x d3r = 
s



(k2 − E), (3.71)

where 
s is the interstitial volume, and we set h̄2/2m = 1 so that the energy is measured
in Rydberg. The nature of the atomic potential appears only in the surface term, which
contains a factor like

aL

[
jl(kr)

∂R
∂r
−R ∂jl(kr)

∂r

]
r=R

= {jl(kR)}2
[ R′l (R)
Rl (R)

− kj ′l (kR)
jl(kR)

]
, (3.72)

where the logarithmic derivative of the radial function appears explicitly.
Bringing together the various terms, and using standard identities for spherical har-

monics, etc., we find that the secular determinant for the coefficients ck−G has the matrix
elements

�GG′ =
4πR2




{
−
[ ∣∣k−G

∣∣2 − E
] [

j1(
∣∣G−G′

∣∣R)∣∣G−G′
∣∣
]}

+
∞∑
l=0

(2l + 1) Pl(cos θGG′) jl
(∣∣k−G

∣∣R) jl(∣∣k−G′
∣∣R)

×
[

R′(R)
R(R)

−
∣∣k−G

∣∣ j ′l (∣∣k−G
∣∣R)

jl(
∣∣k−G

∣∣R)
]
, (3.73)

where θGG′ is the angle between (k−G) and (k−G′). For practical computation, it is
convenient to sum the series in l for the term involving j ′l

(∣∣k−G
∣∣R) by an identity that

combines it with the term in j1
(∣∣G−G′

∣∣R). The result is a manifestly Hermitian matrix:

�GG′ =
4πR2




{
−[ (k−G) · (k−G′)− E

] j1
(∣∣G−G′

∣∣R)∣∣G−G′
∣∣

+
∞∑
l=0

(2l + 1) Pl(cos θGG′) jl
(∣∣k−G

∣∣R) jl(∣∣k−G′
∣∣R) R′(R,E)R(R,E) . (3.74)

This is referred to as the APW formula.
The prescription for a band structure calculation by the APW method is fairly straight-

forward. The crystal structure defines a reciprocal lattice, from which we choose a finite
set of Gs. The radial Schrödinger equation is solved at an energy E , and the corresponding
logarithmic derivatives evaluated on the surface of the MT sphere. For a chosen value of k,
we evaluate the various matrix elements �GG′ , and then calculate the secular determinant of
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the matrix. The value of E is then adjusted until the determinant vanishes. This procedure
demands considerable computing power, but is found to converge to physically acceptable
values under almost all circumstances.

3.2.5 The Tight-Binding Method

Our physical intuition that a crystal is merely an assembly of atoms, brought close together
and allowed to interact, is expressed mathematically by trying to represent the Bloch
functions as linear combination of atomic orbitals (LCAO). Occupied valence atomic
orbitals have the property that the radial function Rnl(r)→ 0 as r →∞. We thus assume
that our basis functions, φnL(x), L ≡ (�,m), are restricted to bound states of the free atom
potential va(r).

The most general Bloch function that can be constructed out of these functions is of
the form

�LCAO
k =

∑
nL

αnL
∑

R

exp(ik · R) φnL(x− R), (3.75)

Substituting (3.75) as a trial function in the expectation value of the Hamiltonian of the
crystal

〈�|H− E |�〉 = 0

H = −∇2 +
∑

R

va(|x− R|)

and minimizing with respect to the coefficients αnL, we find∑
nL′

{
(EnL − E) SnL,n′L′(k)+ VnLn′L′(k)

}
αn′L′ = 0 , (3.76)

for all values of n and L included in the sum (3.75). We used the relation[− ∇2 + va(r)
]
φnL(x) = EnL φnL(x).

Because of periodic translational symmetry, the coefficients in (3.76) are expressed as
lattice Fourier transforms, namely,

SnL,n′L′(k) =
∑

R

exp(ik · R) SnL,n′L′ (R),

SnL,n′L′(R) =
∫

dx φnL(x) φn′L′(x+ R),

VnL,n′L′(k) =
∑

R

exp(ik · R) VnL,n′L′ (R),

VnL,n′L′(R) =
∑
R′ 
=0

∫
φnL(x) va(x+ R′) φn′L′(x+ R) dx
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va

Figure 3.8 Schematic representation of S(R) and one of the components of V (R).

Figure 3.9 Broadening of atomic energy levels (s, p, and d orbitals) into bands with a decrease in
atomic separation r.

These integrals involving the overlap of functions centered on two or three neighboring
sites, as shown in Figure 3.8, are obviously rather nasty, and can only be evaluated with
great labor. Nevertheless, the preceding formulation seems quite explicit, and was regarded
in the early days as capable of giving a solution to the band structure problem to an
acceptable degree of accuracy.

This is the algebraic justification of one of the standard elementary principles of solid-
state physics – that as the atoms come together, each of their bound states become broad-
ened into a band of Bloch functions of appropriate symmetry, as shown in Figure 3.9.
The broadening occurs, quite sharply, because bound-state functions decay exponentially
outside the atomic sphere, so the overlap integrals are very small until the atoms come
close together. Then, as the bands arising from distinct levels begin to overlap one another
in energy, they hybridize into the linear combination that would be obtained by solving the
prevoius equations for αnL. We thus refer to the s-p band, the 3d band, etc., identifying the
bands by the atomic levels from which they are ultimately derived.

This confidence in the LCAO method has been, to a certain degree, misplaced.
The overlap of wavefunctions eventually leads to an overlap of potentials, destroying
the bound states (except for resonances) and liberating the electrons into nearly free bands
in which the quantum numbers of the atomic levels are almost irrelevant, as illustrated in
Figure 3.10.
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3d
4s

4p

d band

s-p band

Free electron band

Bound band

(a) (b)

(c)

Figure 3.10 Emergence of free electron band and resonances in solids.

We should also remember that the representation (3.75) is functionally incomplete: the
set of bound states of the atomic potential va(r) does not contain the continuum of scattered
free electron eigenfunctions of the Schrödinger equation at positive energies. It is impos-
sible, therefore, to describe states in a metal or semiconductor in and above the valence
and conduction bands, since they resemble free electron waves in the interstitial space.
We, therefore, need to abandon the notion of calculating band structures by the LCAO
method, yet we can still learn something from the general form of (3.76). First, we note that
the nonorthogonality of the basis functions (3.75), as a consequence of nonorthogonality
of atomic orbitals centered on different sites, complicates the solution of (3.76). But this is
not an essential complication, since we can justifiably replace the atomic orbital basis with
a Wannier-like one and set

SnL,n′L′(k) = δnL,n′L′ . (3.77)

Moreover, we can apply symmetry constraints to define a powerful selection rule that can
limit the number of the VnL,n′L′(k) coefficients for a particular lattice type. Thus, there
need only be a few distinct coefficients of importance. This viewpoint leads us to one of
the standard interpolation schemes or parametric representations of band structure theory,
the tight-binding method. In this scheme, the energy E(k) becomes a root of the secular
equation

det
∣∣{EnL − E(k))

}
δnL,n′L′ + VnLn′L′(k)

∣∣ = 0 , (3.78)

where VnLn′L′(k) are then treated as parameters to be adjusted empirically to bring E(k)
into agreement with the experiment. It must be emphasized, however, that the actual values
of the parameters arrived at in this way cannot be interpreted physically as overlap integrals
of atomic orbitals. To a large extent, this type of representation is imposed upon the band
structure by the symmetry of the crystal.
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Figure 3.11 Tight-binding bands along the 	-direction (001) and �-direction (111). The points
X = (0,0,2π) and L = (π,π,π) with a = 1.

Example: Case of many monovalent metals
There is only a single nearly free electron conduction band to be fitted in this case.

E(k) must necessarily be periodic in the reciprocal lattice, and thus it must have Fourier
representation in the direct lattice, namely,

E(k) = E0 +
∑
R
=0

exp(ik · R) E(R).

But the Brillouin zone has the point group symmetries of the crystal, so that many of the
coefficients E(R) must be equal to one another, or zero.

In the case of an fcc lattice, E(R) must have the same value for all nearest neighbors.
Thus, the leading terms would take the form

E(k) = E0 + 4E(nn)

{
cos

(
kya

2

)
cos

(
kza

2

)
+ cos

(
kza

2

)
cos

(
kxa

2

)
+ cos

(
kxa

2

)
cos

(
kya

2

)}
.

The corresponding energy bands along the 	 (00k), and � (k,k,k) are shown in
Figure 3.11, it behaves like a simple free electron energy momentum relation over a
wide range of energy. Indeed, by the addition of further terms in E(x), the distorted and
multiply connected Fermi surfaces of noble metals can fitted exactly in this way.

Bond Orbitals, Chemical Bonds, and Their Local Site Symmetry

This approach is quite useful in defining and determining the matrix elements between
atomic-like Wannier orbitals. It also provides a pictorial approach to the construction of
chemical bonds, such as the tetrahedral ones in C, Si, and Ge.

To determine the interaction matrix element between two orbitals |φL〉 and |φL′ 〉, we
define orbital quantization with respect to the axis joining the centers of the two interacting
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 - bond ( ml = 1)

 - bond ( ml = 0)

s-s s-p p-p

Quantization
axis

Quantization
axis

p-p s-p

Figure 3.12 Quantization of m� along the interatomic axis uses the designation σ ⇒ m� = 0, and
π ⇒ m� = 1.

Figure 3.13 (a) pp-interactions are decomposed into a ppσ (m� = 0) and ppπ (m� = 1) types;
(b) spσ correspond to m� = 0, while spπ vanishes since it involves interaction between orbits of
different ms.

orbitals. As we show in Figure 3.12, when the two orbitals share the same value of m� with
respect to the common axis, we refer to the geometry as σ , when m� = 0, and π , when
m� = 1. In the case when m� 
= m�′ , such as the case of spπ , the interaction vanishes.

In the general case, shown in Figure 3.13, the orbitals and the location of their centers
are defined with respect to a fixed Cartesian coordinate system. We choose the direction of
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the vector, d, joining their atomic centers as the axis of quantization. Taking the functional
form of the spherical harmonics in Cartesian coordinates, namely

px = x/r, py = y/r, pz = z/r, (3.79)

we obtain the geometric decompositions shown in Figure 3.13 in terms of the matrix
elements Vss, Vspσ, Vppσ , and Vppπ .

Harrison’s Scaling of Matrix Elements

By comparing electronic band structures calculated using tight-binding matrix elements
Vss, Vspσ, Vppσ , and Vppπ with those based on plane-wave methods, Harrison [85] was
able to establish the following scaling formula

V��′ = η��′
h̄2

med2

with h̄2/me = 7.62 eV-Å2. The numerical factor η depends on the angular type of the
Wannier orbitals φ�, φ�′ and the directional cosines lx, ly, lz of the vector d joining the
nearest-neighbor sites. The values of η for s and px, py, pz orbitals are given according to
Harrison by the following expressions:

ηs,s = −1.32

ηs,i = 1.42 li = −ηi,s, i = px, py, pz

ηi,i = 2.22 l2i − 0.63 (1− l2i ), i = px, py, pz

ηi,j = 2.85 li lj, i 
= j, i = px, py, pz

Note that reversing the order of orbitals multiplies �i by −1.
A similar argument can be given for interactions involving d-orbitals, and since these

orbitals have m� = 2, we introduce a new interaction δ that involve d-orbitals with m� = 2
along the quantization axis, and using the d-orbital forms

d1 = 3
z2

r2
− 1, d2 = x2

r2
− y2

r2
, d3 = xy

r2
, d4 = xz

r2
, d5 = yz

r2
. (3.80)

The results are shown in Figure 3.14.
Harrison has also provided matrix element scaling for sd-, pd-, and dd interactions:

Vddm = ηddm
h̄2 r3

d

med5
,

⎧⎪⎪⎨⎪⎪⎩
ηddσ = −45/π

ηddπ = 30/π

ηddδ = −15/2π

Vldm = ηldm
h̄2r

3/2
d

med7/2
,

⎧⎪⎪⎨⎪⎪⎩
ηsdσ = −3.16

ηpdσ = −2.95

ηpdπ = 1.36

rd are atom specific effective d orbital radii, tabulated in Harrison’s book.
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Vsd Vpd Vpd

Vdd Vdd Vdd

–1/2Vsd

Figure 3.14 sd-, pd-, and dd interactions.

sp2 and sp3 Hybridization

Tight-binding calculations involving crystals with local D3 (graphite and BN) or tetrahedral
site symmetry (diamond, zincblende, and wurtzite) can be simplified by the construction of
symmetry-adapted orbitals, called hybrids, out of s and p orbitals.

Under planar symmetry in the xy-plane, we construct out of s, px, py , using D3

projection operators, three orthonormal hybrid orbitals, called sp2 (see Figure 3.15), of
the form

|h1〉 = 1√
3

(|s〉 + |px〉 + ∣∣py 〉) , ∣∣h2,3
〉 = 1√

3

(|s〉 ± |px〉 ∓ ∣∣py 〉) .
Similarly, for tetrahedral site symmetry we obtain the sp3 orthonormal orbitals

|h1〉 = 1

2

(|s〉 + |px〉 + ∣∣py 〉+ |pz〉) , |h2〉 = 1

2

(|s〉 + |px〉 − ∣∣py 〉− |pz〉) ,
|h3〉 = 1

2

(|s〉 − |px〉 + ∣∣py 〉− |pz〉) , |h4〉 = 1

2

(|s〉 − |px〉 − ∣∣py 〉+ |pz〉) .
3.2.6 Transition Metals: d-Bands and Resonances

We have been looking so far at an oversimplified picture of the electronic structure –
narrow tight-bound bands below the muffin-tin zero, and nearly free electron bands above.
In transition metals, these categories become blurred: a narrow band arising from the
d-levels of the atoms lies within a broad band of s-electrons, as shown in Figure 3.16.
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Figure 3.15 Top: sp2 hybridization. Bottom: sp3 hybridization.

Figure 3.16 Crossing of atomic and free like bands.

Even without the additional complications of magnetic polarization in some 3d transition
metals, this situation requires careful analysis.

In view of our previous arguments, this whole interpretation seems to be forbidden.
It was maintained that all atomic bound states would disappear above the muffin-tin zero,
leaving only nearly free Bloch states. What did we overlook?

The answer is that the atomic levels of high angular momentum are not completely
destroyed by the overlap of potentials, but become virtual or resonance levels.
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Figure 3.17 Effective potential in the presence of a centrifugal barrier (dashed gray). The light gray
line represents a resonance level. For simplicity, the atomic potential is depicted as a square well. The
electron is confined to the atomic annulus of the effective potential, but it can tunnel out.

Resonance Scattering from Atoms

This phenomenon, which is quite familiar in atomic and nuclear physics, arises as follows:
The radial Schrödinger equation contains the term �(� + 1)/r2, which behaves like the
potential of a centrifugal force repelling the electron from the region of the nucleus. In
a bound state of high angular momentum (� ≥ 2), the electron becomes confined to the
annular space between this barrier and the ordinary external Coulomb potential of the atom.

Resonances for � > 0 occur according to the following scenario:
The effective radial potential becomes

Veff(r) = V (r)+ l(l + 1)h̄2

2mr2
. (3.81)

As shown in Figure 3.17, a particle with energy E0 > 0 but less than the barrier height can
tunnel through the barrier. It forms a metastable state, since the particle trapped inside can
tunnel out.

Resonance Line Shape and Phase Shift (see Figure 3.18)
At the resonance energy E0, the phase shift δ� goes through π/2

δ�(E0) = π

2
.

The Taylor series expansion of cot δ�(E) in the vicinity of E0 is

cot δ�(E) = cot δ�(E0)−
(

1

sin2 δ�

dδ�

dE

)
E=E0

	E = − 2

�
	E

and

f�(k) = 1

k
eiδ� sin δ� = 1

k

sin δ�
cos δ� − i sin δ�

= 1

k

1

cot δ� − i

= 1

k

1
−2
�
	E − i

= −1

k

�/2

	E + i �2

.
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k k

l

Figure 3.18 Left: cross-section resonance profile. Right: the corresponding phase shift.

The partial cross-section is given by the resonance line shape:

σ� � 4π(2l + 1)

k2

�2/4

(	E)2 + (�2/4)
.

When atoms are brought together, this outer barrier may not be completely lost, but may
still interpose a hill through which the electron in the original atomic level must tunnel
if it is to escape. Thus, although we may now be above the muffin-tin zero, we find a
strong tendency for the wavefunction to concentrate within the atom as we pass through
the energy Ed . This effect cannot be perfectly sharp (as it would be for a true bound state)
but must spread over a width W , which would depend in detail on the characteristics of the
centrifugal barrier and of the self-consistent potential of the atom (see Figure 3.19).

The simplest description is to treat the d-electrons and the s-electrons as distinct entities
that occasionally interact or interchange (s-d scattering). The s-electrons are then assumed
to be quite free, with energy ∝ k2, while the five degenerate d states, φm(r̄), of each atom
are combined into a typical tight-bound band of the type previously discussed. The d-states
of the atom have the same energy, Ed , and in the crystal environment can be represented by
a 5× 5 matrix

Hmm′ = Ed δmm′ + Vmm′(k), (3.82)

while for the s-states we employ the nearly free electron representation, namely, the matrix

HGG′ =
∣∣k−G

∣∣2δGG′ + �GG′ . (3.83)

The matrix elements �GG′ are often treated as empirically adjustable parameters.
To combine the two systems, we construct our Bloch functions as linear combinations

of d atomic orbitals and plane waves, namely,

�k(x) =
∑

x

eik·x
∑
m

αm φm(x− x)+
∑

G

αk−G ψk−G, (3.84)
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Figure 3.19 The addition of the centrifugal energy �(� + 1)/r2 to an atomic potential va gives rise
to an effective potential with a bound state at Ed . Overlapping to produce muffin-tin potentials vMT

turns this into a resonance.

Figure 3.20 Crossing of atomic and free like bands, γmG′ = 0 (left). Hybridized bands, γmG′ 
= 0
(right).

and we construct the Hamiltonian matrix(
HGG′ γmG′

γG′m Hmm′

)
This Hamiltonian is called the model Hamiltonian [134].

The γmG′s, representing the tunneling, are called hybridization coefficients. If they are
zero, we are back to the simple model of noninteracting s and d bands; otherwise, these
have the effect of distorting the simple bands a little, and splitting them apart at points in
k space where they cross, as shown in Figure 3.20. A wavefunction of the form (21.25) –
something like a bound state with a free electron part outside – is therefore a reasonable
trial function for the Bloch function.

Figure 3.21 shows the electronic band structure of Cu along high-symmetry directions
[39]. If you follow the two bands labeled 	1, �1 and σ1 you will notice that they result
from avoided crossing.
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Figure 3.21 Electronic band structure of Cu, from Burdick [39].

3.3 Pseudopotentials

3.3.1 OPW Revisited

We recall that the OPW wavefunction χk−G(x) was constructed as a linear combination of
a single plane wave and the set of core wavefunctions φcL(x):

χk−G(x) = ei(k−G)·x −
∑
cL

μG
cL �

cL
k (x), (3.85)

�cL
k (x) = 1√

N

∑
l

eik·Rl φcL(x− Rl ).

�cL
k is a Bloch sum of core states that satisfy the crystal Schrödinger equation

H �cL
k (x) = Ec,L �cL

k (x), (3.86)

The orthogonalization condition rendered

μG
cL =

〈
�cL

k (x)
∣∣∣ei(k−G)·x

〉
. (3.87)

The valence wavefunction was then constructed as a linear combination of the OPWs

�(k,r) =
∑

G

αk−G χk−G(x). (3.88)
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Unfortunately, a variational calculation for the coefficients αk−G runs into the complication
that this basis set is overcomplete and its functions are not orthogonal to one another:〈

χk−G | χk−G′
〉 = δGG′ −

∑
cL

〈k−G |cL 〉 〈cL | k−G′
〉
, (3.89)

where |cL〉 ≡ �cL
k (x). The matrix for the coefficients αk−G, whose secular determinant

must vanish at the energy eigenvalue E , is of the form〈
χk−G

∣∣H− E
∣∣χk−G′

〉 = {∣∣k−G
∣∣2 − E

}
δGG′ + VG−G′

+
∑
cL

(
E − EcL

) 〈
k−G

∣∣cL〉 〈cL∣∣k−G′
〉
. (3.90)

The difficulty with nonorthogonality can be taken care of by standard algebraic procedures.

3.3.2 Concept of Pseudopotentials

The concept of a pseudopotential [89] can be developed from the idea of orthogonality
between valence and core states, which has been cast above in terms of OPWs. Thus, its
precise, but least instructive form, emerges from the structure of the secular determinant
in (3.90), when we lump the last term with the crystal potential VG−G′ to form a crystal
pseudopotential〈

χk−G
∣∣H− E

∣∣χ
k̄−G′
〉 = {∣∣k−G

∣∣2 − E
}
δGG′

+
〈

k−G

∣∣∣∣∣
[
V (x)+

∑
cL

∣∣cL〉 (E − EcL)
〈
cL
∣∣]∣∣∣∣∣k−G′

〉

= 〈k−G
∣∣ −∇2 + � − E

∣∣k−G′
〉
, (3.91)

from which a new crystal potential emerges whose Fourier components are

�GG′ =
〈

k−G

∣∣∣∣∣V (x)+∑
cL

∣∣cL〉 (E − EcL
) 〈
cL
∣∣ ∣∣∣∣∣k−G′

〉
. (3.92)

We note that the core-orthogonality term is always positive and, therefore, can go a long
way toward canceling the negative Fourier coefficients of the attractive potential V , ren-
dering �GG′ weak enough to be treated as a perturbation on the free electron states.

The real mental revolution that becomes apparent is to regard (3.92) as merely a plane-
wave representation of

� = V + VR, (3.93)

whose repulsive part is the operator

VR =
∑
cL

∣∣cL〉 (E − EcL
) 〈
cL
∣∣. (3.94)
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Figure 3.22 Radial (solid) and pseudo wavefunctions (dashed), showing an example of a smooth
function that equals the full function outside the core region.

Consequently, the Schrödinger equation

(−∇2 + V ) � = E �, (3.95)

for the true Bloch function � is thereby transformed symbolically into the equation

(−∇2 + �)� = E �, (3.96)

for the pseudowavefunction �. Equations (3.95) and (3.96) are isospectral – they have
identical sets of eigenvalues. A rendering of � and � is shown in Figure 3.22.

Thus, having determined, in principle, the coefficients αk−G in the conventional OPW
procedure, we find � to be just the plane-wave part of �, namely,

�(k,x) =
∑

G

αk−G ei(k−G)·x. (3.97)

Muffin-Tin Representation of �

The crystal potential V can be expressed as a superposition of muffin-tin potentials centered
on lattice sites (j). It is then obvious that � can be written as

� =
∑
j

[
va(x− Rj )+

∑
cL

φ∗cL(x− Rj )
(
E − EcL

)
φcL(x′ − Rj )

]
=
∑
j

γ aj , (3.98)

where γ aj is the atomic pseudopotential centered on site Rj , and takes the form

γ aj = va(x− Rj )+
∑
cL

∣∣cL(j)〉 (E − EcL
) 〈
cL(j)

∣∣, (3.99)

with
∣∣cL(j)〉 ≡ φcL(x− Rj ). The worst feature of this form is that the atomic pseudopo-

tential is not local. This can be seen if we go back to the basic conventions of the Dirac
notation:

γ a �(x) = va(x)�(x)+
∑
cL

(
E − EcL

) ∫
dx′ ψ∗cL(x

′) �(x′) ψcL(x)

= va(x)�(x)+
∫

v(x,x′)�(x′) dx′. (3.100)
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Thus, the repulsive part of the atomic pseudopotential can be expressed only as an operator
when acting on any spatially varying function that it encounters in the algebra. As an
elementary algebraic consequence of this nonlocality, a matrix element of the pseudopoten-
tial between two plane waves is not just a function of the difference of the two wavevectors.
In general,

γ aGG′ ≡
〈
k−G

∣∣γ a∣∣k−G′
〉 
= γ a(G−G′), (3.101)

for all different values of G and G′, so that an atomic form factor cannot be defined
uniquely. On the other hand, it is worth noting that the pseudopotential (3.99) is diagonal
in the angular momentum quantum numbers of the core states

∣∣φcL〉. One may, therefore,
separate γ aj into a sum of terms

γ aj = γs + γp + γd + · · · , (3.102)

where γs acts only on the part of the wavefunction transforming with s-like symmetry, etc.
This is of course a consequence of the assumption of spherical symmetry of the muffin-
tin. From these considerations and from the obvious dependence of � on the energy E of
the state under study, it was viewed, up to 1980, that the real value of the pseudopotential
lies in the semiquantitative justification it provides for nearly free electron interpolation
schemes with adjustable parameters.1 A serious problem with this pseudoatom represen-
tation, however, is that the pseudopotential is not unique. This follows essentially from the
overcompleteness of the OPWs.

3.3.3 The Scattering Approach

A correct pseudopotential was defined as one that gave the same energy levels as the real
potential, at least for a range of states of interest, with the emphasis on transforming the
Schrödinger equation from (3.95) to (3.96). In this section, the final end will be the same,
but the approach will lie in scattering theory.

Consider a single muffin-tin scattering center, where the potential vmt(x) is taken as zero
beyond the muffin-tin radius Rc. The radial wavefunction R(r,E), which is a solution of
the radial equation

− 1

2r2

d

dr

[
r2 dRl

dr

]
+
[
l(l + 1)

2r2
+ vmt(x)

]
Rin
l = E Rin

l , (3.103)

inside the muffin-tin radius Rc, is matched at Rc onto the solution for r > Rc,

Rout
l ∝

[
jl(κr)− tan ηl nl(κr)

]
, (3.104)

where E = 1
2κ

2. Dropping the superscripts, we write the condition that both function and
first derivative are continuous, as

1 The amount of computation required for an accurate first-principle calculation of the band structure of a perfect metal or
semiconductor is not reduced below that of the corresponding OPW equations to which it is exactly equivalent.
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Ll ≡
R′l (Rc,E)
Rl (Rc,E)

= κ j ′l (κRc)− κ tan ηl n′(κRc)

jl(κRc)− tan ηl n(κRc)
, (3.105)

which yields

tan ηl(E) =
jl(κRc)Ll − κj ′l (κRc)

nl(κRc)Ll(E)− κn′l(κRc)
. (3.106)

The phase shifts ηl(E) suffice to determine the scattering amplitude

f (θ) = (2iκ)−1
∑
l

(2l + 1)
[
exp(2iηl)− 1

]
Pl(cos θ), (3.107)

for an incident plane wave of energy E being scattered through an angle θ . The crucial point
here is that ηls may be written in the form

ηl = nlπ + δl, (3.108)

where nl is an integer chosen so that the reduced phase shift δl lies in the range
∣∣δl∣∣ ≤ π/2,

or 0 ≤ δ < π . We note that the integer nl counts the number of radial nodes in the core
wiggles of Rl (r).

The simplified example shown in Figure 3.23 shows that as we increase the magnitude
of the square potential from zero to −V0, the attractive potential pulls in more and more of
the wavefunction so that the inner core oscillations may be considered in this sense to have
been pulled in by phase shifting the free wave outside. It follows that nl is also equal to the
number of core states of angular momentum l.

We now define a pseudopotential as one whose complete phase shifts are equal to δl(E)
without the nlπ , so that it has no core states. Equation (3.107) shows that it gives the same
amplitude f (θ) as the original potential since a factor exp(2inlπ) = 1 has no effect.

The pseudowavefunction has no radial nodes, i.e., no rapid oscillations, so that we
expect a rapidly convergent series of plane waves to give a good representation of it.
Figure 3.24 shows the case of the 3s valance state of Al. It is also important to note that

V

Figure 3.23 Attractive potential well. Radial wavefunction: gray (dashed black), in the presence
(absence) of the potential well. The pseudo wavefunction is shown in dashed gray.
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Figure 3.24 Radial wavefunctions for the real potential (dashed) and the pseudowavefunction (solid),
from Paulatto, Pseudopotential Methods for DFT Calculations.

the pseudo radial wavefunction derived from the pseudopotential has the same logarithmic
derivative Ll(E) as the real wavefunction, the integer multiples of π again having no effect.

3.3.4 Construction of Pseudopotentials

We surmise that the pseudopotential Vps can be constructed to satisfy our needs, for exam-
ple we can require that it reproduces some measured quantities (empirical approaches), or
to be the smoothest and weakest possible, while maintaining the same scattering properties
of the core potential on the valence electrons (ab initio approaches). We shall start with
describing empirical approaches [45].

The Direct Empirical Method

1. On-the-Fermi-Sphere Approximation and the Local Pseudopotential
As we have found previously, pseudopotentials are nonlocal operators so that they should
be strictly written

V (x,x′;E) =
∑

R

v(x− R,x′ − R;E), (3.109)

which is a function of seven variables x,x′, and E , namely, two vectors and E . In the secular
determinant, we require the matrix element of (3.109) between plane waves,〈

k−G
∣∣V (x,x′;E)∣∣k−G′

〉
. (3.110)

It is useful to use the abbreviation

K = k−G, K′ = k−G′; and K−K′ = q ≡ G′′.

We shall use q as the general scattering vector and G when it is necessarily equal to a
reciprocal lattice vector. We shall also often take the dependence on E as implicit.
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We now introduce the simplifying assumption of nonoverlapping spherical muffin-tin
potentials, so that the matrix element becomes〈

K
∣∣V ∣∣K′〉 = S(q) v(K,K′,E), (3.111)

where

S(q) = 1

N

∑
R

exp(−iq · R) , (3.112)

is just the structure factor encountered in diffraction theory; while v(K,K′,E) is the atomic
pseudopotential form factor,

v(K,K′,E) = 〈K∣∣v(x,x′,E) ∣∣K′〉
= 
−1

c

∫

c

dx dx′ exp(−iK · x) v(x,x′,E) exp(iK′ · x′), (3.113)

where 
c is the atomic volume. The assumption of nonoverlapping spherical muffin-tin
potentials vmt(r,r

′,E), reduces the number of variables in v in (3.111) from seven to four
(r, r ′, θx,x′, and E). With

eik·x = 4π
∑
l

∑
m

il jl(kr) Y
∗
lm(k̂) Ylm(x̂)

Pl(cos γ ) = 4π

2l + 1

∑
m

Y ∗lm(x̂) Ylm(x̂
′),

we obtain

v(K,K′,E) = (4π)2


c

∑
lm
l′m′

∫∫

c

dx dx′ il+l
′
jl(Kr) Y ∗lm(K̂) Ylm(x̂)

v(r,r ′,E) jl′(Kr ′) Y ∗l′m′(K̂
′) Yl′m′(x̂′)

∝
∑
I

Pl(θK,K′)

∫∫
dr dr ′ jl(Kr) v(r,r ′,E) jl(Kr ′) Pl(θx,x′) dθx,x′ .

We come now to the most common approximation made in the fitting and use of pseudopo-
tentials. The assumption of on-the-Fermi-sphere approximation reduces this further to one
variable q by setting ∣∣K∣∣ = ∣∣K′∣∣ = kF ; E = EF . (3.114)

Equation (3.114) says that the electron is being scattered on the Fermi sphere.2

Figure 3.25 shows, as an example, a Fermi surface with gaps due to a pair of Brillouin zone
planes. It is clear that the shape of the surface near the zone planes is determined by the
mixing of waves

∣∣K〉 and
∣∣K′〉 where K and K′ vary closely around the particular geometry

2 This is obviously exactly true for the scattering of electrons by phonons or impurities in the electrical resistivity, but is also
approximately so for band structures.
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Figure 3.25 Free electron Fermi sphere (light black circle) and actual Fermi surface (thick black) due
to a single pair of Brillouin zone planes separated by a reciprocal lattice vector G.

specified by (3.114). Similarly, when fitting a whole E(K) and not just the Fermi surface,
the amplitude of the plane wave

∣∣ K
〉

mixed into the wave
∣∣ K′
〉

is given by〈
K
∣∣V ∣∣K′〉

1
2 (K

′)2 − 1
2 (K)2

, (3.115)

which is maximum at K = K ′. Since the dependence of the pseudopotential on K,K′,
and E is, of course, an expression of the fact that pseudopotentials are nonlocal operators,
neglecting such dependence has sometimes been referred to as a local approximation.

2. Local Pseudopotentials for Zincblende Systems
We can generalize the form of the matrix element, in the local approximation, for a crystal
with sublattices α as 〈

K
∣∣V ∣∣K′〉 =∑

α

Sα(q) vα(q),

Sα(q) = N−1
∑

R

exp(−iq · (R+ τα),

vα(q) = 
−1
c

∫
vα(x) exp(iq · x) dx. (3.116)

where τα is the basis vector in the unit cell for sublattice α. The lattice periodicity
limits the Fourier components to reciprocal lattices. We consider the example of GaAs
and other III–V as well as II–VI compounds with zincblende structure and basis vectors
±(1/8, 1/8, 1/8). We obtain

V (x) =
∑

G

e−iG·x
[
cos (G·τ ) [VGa(G)+ VAs(G)]︸ ︷︷ ︸+i sin (G·τ ) [VGa(G)− VAs(G)]︸ ︷︷ ︸]

VS(G) VA(G)

where the form factors have been separated into symmetric and antisymmetric terms. The
form factors Vα are treated as adjustable parameters. Only those corresponding to few G
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Table 3.1 V (G) components to be included for zincblende crystals.

G group # Total number |G|2
(2π/a) permutations of elements (2π/a)2

(0,0,0) 1 1 0
(1,1,1) 8 9 3
(2,0,0) 6 15 4
(2,2,0) 12 27 8
(3,1,1) 24 51 11

(2,2,2) 8 59 12
(4,0,0) 6 65 16
(3,3,1) 24 89 19

Table 3.2 Pseudopotential form factors, in Rydbergs, derived from
the experimental energy band splittings.a

V S
3 V S

8 V S
11 VA

3 VA
8 VA

11

Si −0.21 +0.04 +0.08 0 0 0
Ge −0.23 +0.01 +0.06 0 0 0
Sn −0.20 0.00 +0.04 0 0 0

GaP −0.22 +0.03 +0.07 +0.12 +0.07 +0.02
GaAs −0.23 +0.01 +0.06 +0.07 +0.05 +0.01
AlSb −0.21 +0.02 +0.06 +0.06 +0.04 +0.02
InP −0.23 +0.01 +0.06 +0.07 +0.05 +0.01
GaSh −0.22 0.00 +0.05 +0.06 +0.05 +0.01
InAs −0.22 0.00 +0.05 +0.08 +0.05 +0.03
InSb −0.20 0.00 +0.04 +0.06 +0.05 +0.01
ZnS −0.22 +0.03 +0.07 +0.24 +0.14 +0.04
ZnSe −0.23 +0.01 +0.06 +0.18 +0.12 +0.03
ZnTe −0.22 0.00 +0.05 +0.13 +0.10 +0.01
CdTe −0.20 0.00 +0.04 +0.15 +0.09 +0.04

a† [44]

vectors are needed. Table 3.1 shows that only V (G) components up to G = (3,1,1) need
be considered.

We solve the secular equations[
|k−G|2 − E(k)

]
αk−G +

∑
G′

V
(
G−G′

)
αk−G′ = 0

Table 3.2 lists V S
G and V A

G for several crystalline systems with diamond and zincblende
structures.
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Model Pseudopotentials

The scattering properties of the potential depend purely on the logarithmic derivative at the
radius Rc and not on any specific details of the potential or the wavefunction inside. Con-
sequently, the pseudopotential may be chosen to have any convenient shape, for example a
square well, provided it has some parameters adjusted to give the correct scattering. Since
the adjustment has to be made separately for each l, a convenient form often is

vps =
∑
l

fl(r) Pl, (3.117)

where fl(r) is a spherically symmetric potential and Pl a projection operator which picks
out the lth angular momentum component of the wavefunction so that fl(r) acts only
on that component. This approach gained traction in the mid-1960s and the 1970s and
was coined model pseudopotentials. A few representative model pseudopotentials are dis-
cussed here.

1. The KKRZ Pseudopotential of Ziman [207]
Our first application of these ideas is to derive the so-called KKRZ pseudopotential of
Ziman, in which vps for each atom is taken as zero everywhere except for a delta function
of strength Bl at radius Rc:

vKKRZ
ps =

∑
l

Bl δ(r − Rc)Pl . (3.118)

This leads to a set of radial equation of the form

− 1

2r2

d

dr

[
r2 dRl

dr

]
+
[
h̄2�(�+ 1)

2mr2
+ vKKRZ

ps

]
Rl = E Rl . (3.119)

Inside the sphere the radial pseudowavefunction satisfies the radial equation

− 1

2r2

d

dr

[
r2 dRin

dr
+ h̄2�(�+ 1)

2mr2
Rin

]
= E Rin, (3.120)

so that Rin is just jl(κr), and the effect of the delta function is to give it a kink of the
right amount to make the derivative outside equal to Lljl(κr) as required, where Ll is
specified by the original potential. To determine Bl , we integrate (3.119) from r = Rc − ε

to r = Rc + ε and obtain

R′out −R′in = 2Bl R, (3.121)

giving

Ll(E)− κ
j ′l (κRc)

jl(κRc)
= 2Bl . (3.122)

2. Heine–Abarenkov Pseudopotential [1]
Our second application will be the pseudopotential of Heine and Abarenkov, vHA

ps (see
Figure 3.26). The aim is to calculate a pseudopotential for a single bare closed-shell ion
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RM RM

Figure 3.26 The model pseudopotential of Heine and Abarenkov for a bare ion.

such as Al+3, which has the configuration 1s22s22p6. The model radius RM is chosen
at some convenient value greater than that of the core radius Rc, and outside RM the
pseudopotential is

vHA
ps = −z/r, r > RM, (3.123)

the bare Coulomb potential of the ion of charge z. Inside RM , it is taken as a constant

vHA
ps = −

∑
l

Al(E)Pl, r < RM (3.124)

adjusted to give the observed energy levels E3s, E3p, E4s , etc., of an extra electron in the
field of the ion. The latter are taken from spectroscopic measurements on free ions, and the
procedure ensures that the pseudopotential gives the right logarithmic derivative, at least at
these energies. In practice, for a given l, the value ofAl(E) obtained from different energies,
for example, E3s, E4s, E5s , differ slightly so that Al(E) has to be considered a weak function
of energy. In accordance with the principle of pseudizing, the smallest possible value is
always chosen of course.

3. Ashcroft’s Empty-Core Pseudopotential [20]
Several other model-potential schemes are to be found in the literature. For example,
Ashcroft has suggested that the atomic form factor of a bare ion may be adequately
represented by the Fourier transform of an effective empty-core potential

vion(x) = 0; r < Rc

= −z

r
; r > Rc. (3.125)

Rc is an adjustable parameter that has approximately the radius of the physical atomic core.

First Principles Pseudopotential

The first-principles approach to the pseudopotential construction was initially proposed by
Hamann and coworkers at Bell Labs in 1979 [84]. As shown in Figure 3.27, the procedure
starts with calculating the orbital eigenfunctions and eigenenergies of all occupied states of
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Figure 3.27 Ab initio calculations.

a given atom with the aid of DFT atomic computer codes; namely, solving the Kohn–Sham
equations after invoking spherical symmetry. The solutions will have the form Rl Ylm,
where Rl is the solution to[

1

r

d2

dr2
− l(l + 1)

r2

]
Rl +

[
vH(r)− Ze2

r
+ δG

δn
− Enl

]
Rl = 0.

This process is sometimes referred to as all-electron calculations. Next, the appropriate
atomic valence configuration is identified, for example 3s23p2 for Si, and a core radius
Rc is set. The construction of an atomic pseudopotential is then carried out for the valence
electrons only, such that

• The real (or all electron) and pseudo states have the same eigenvalues.

• The real and pseudowavefunctions agree beyond Rc.

• The following Normconserving condition exists:∫ Rc

0
dr r2 |Rreal(r)|2 =

∫ Rc

0
dr r2 |RPS(r)|2 .

• The logarithmic derivatives and their first energy derivative of real and pseudowavefunc-
tions match at the cutoff radius.

1. Matching logarithmic derivatives guarantee that the real and pseudowavefunctions are
the same outside the cutoff radius.

2. Matching the energy derivative of the logarithmic derivative guarantees the above
property holds for a larger range of energies. The energy range in which the logarith-
mic derivatives coincide give an estimate of the pseudopotential quality.
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Figure 3.28 Schematic representation, (a) in real space, and (b) in reciprocal space, of transformation
of bare atomic potential vb into bare pseudopotential wb, followed by screening to make pseudoatom
potential wa .

Screening

Once the pseudopotential of the bare ion is obtained, the bare ions can be planted into an
electron gas that then screens them to give the total pseudopotential of the whole solid
(see Figure 3.28). The point is that the screening by the electron gas can be treated by
perturbation theory, the plane waves of the free electron gas being the unperturbed pseu-
dowavefunctions. While pseudizing is the formal justification for attempting perturbation
theory at all, how good is it in practice?

We start by considering the pseudopotential of the bare ion, e.g., Al+3, with only tightly
bound closed-shell core electrons. We plant the ions at sites xj in a uniform electron
gas of density appropriate to the number of the outer electrons, assuming the electron
density to remain constrained as uniform for the moment. The potential in the system
is then

(const)+
(∑

α

[vion
α (q)Sα(q)]

)
exp(iq · x). (3.126)

In reality, the electron gas relaxes to screen the ionic pseudopotential. As we have seen in
Section 2.2., in lowest-order perturbation theory the screening is linearly proportional to
the bare potential, so that the final potential is

V (x) =
(∑

α

vion
α (q)Sα(q)

ε(q)

)
exp(iq · x), (3.127)
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where

ε(q) = 1−
(

8πe2


q2

) [
1− q2

2(q2 + k2
F + k2

s )

]
χ(q),

χ(q) = − z

2

3

2EF0

(
1

2
+ 4k2

F − q2

8qkF

)
ln

∣∣∣∣2kF + q

2kF − q

∣∣∣∣ (3.128)

is the Lindhard function, with z the number of valance electrons per atom, and EF0 =
k2
F /2me. The factor in square brackets in (3.128) comes from screened exchange, and ks is

the screening parameter (2kF /π)1/2 in atomic units.
In the limit as q → 0, the Fourier transform of an ionic potential is always dominated

by the Coulombic part outside the pseudizing radius Rc. We therefore obtain

vion(q → 0) = − 4πz


q2
,

v(q → 0) = −2

3
EF0 + O(q2). (3.129)

Using the empty core model for the bare pseudopotential, we get

v(q) = − 4πz

q2ε(q)

cos(qRc), (3.130)

and ε(q) has the form derived in Section 2.1. Notice that the limit of q → 0

v(q → 0) = −2

3
EF0 +O(q2). (3.131)

Summary Points

(i) What have we gained by transferring to a pseudopotential is a secular equation that is
user-friendly. In an exact sense, this is nearly all we have gained, but then that is what
is basically used in fitting band structures.

(ii) By removing the nlπ from the phase shifts, all rows of the periodic table are treated
on equal footing. This makes a discussion possible of systematic trends as one goes
down one group of the table. It also allows one to estimate the perturbation involved
in substituting one atom for another.

(iii) In practice, one has gained far more. There are a number of situations where the
pseudopotential is sufficiently weak for perturbation theory to be rapidly convergent,
although there are also others where it may not be so useful: for example, one may
fit the magnitude of a pseudopotential entirely empirically, but it may be adequate to
estimate from a perturbation formulation how it changes with pressure!

In any case, perturbation theory allows one to calculate the self-consistent screen-
ing of the ions by the outer electrons, including exchange and correlation effects, for
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an arbitrary disposition of atomic sites and for mixtures of atomic species, which is
quite out of the question in any other way.

(iv) The price that one has to pay for these gains is that pseudopotentials are nonlocal
operators(!), but there are no major difficulties in handling them.

Exercises

3.1 Show that for the simple case of a monatomic crystal, the Fourier transform of the
crystal potential

V (x) =
∑

R

v(x− R)

is of the form F(q) = S(q) f (q), where

S(q) = 1

N

∑
R

eiq·R, Structure factor,

v(q) = 1


c

∫
dx v(x) eiq·x, Form factor,

N being the number of primitive calls in the crystal, and 
c being the primitive cell
volume.

3.2 Consider a one-dimensional electronic system subject to an external potential with
periodicity a, and represented by the Hamiltonian

H = − h̄2

2me

∇2 + V (x)

V (x) = V (x + na).

Using Bloch’s theorem, an eigenfunction of H can be written as

�nk(x) =
∑
G

cn(k −G) ei(k−G)x,

where n is the band index, G = 2mπ

a
, and

unk(x) =
∑
G

cn(k −G) e−iGx

has periodicity a.

(a) Determine the set of coupled equations you obtain when you vary

〈�k|H |�k〉 − E 〈�k |�k〉 .

(b) If V (x) = 0, we have the case of the empty lattice:

1. What are the eigenvalues and the corresponding normalized eigenfunctions?
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2. Draw the lowest three free electron energy bands (empty lattice) folded in the
first BZ. (Set a = 1 and h̄2/2me = 1 for convenience.)

(c) If

V (x) = V1 cos

(
2π x

a

)
+ V2 cos

(
4π x

a

)
,

where V1 and V2 are given in units of h̄2/2me, construct the secular equation
using the three plane waves with the lowest energy:

eikx, ei(k−G1)x, ei(k+G1)x .

(d) Determine and draw the corresponding dispersions of the lowest three free elec-
tron bands, given V1 = 2, V2 = 3.

3.3 If the one-dimensional crystalline potential is given as

V (x) = aV0

∑
n

δ(x − na),

determine the energy gaps between the bands, assuming that the nearly free electron
approximation applies.

3.4 Draw the lowest two empty-lattice free electron bands for the two-dimensional square
lattice along the symmetry directions �-X, �-M , and X-M shown in the BZ of
Figure 3.29.

3.5 Estimate the form of the 2s electronic band of Li using a single OPW orthogonalized
to the 1s core state:

φc1s(r) =
√
α3/π exp(−αr).

Given that

E1s = −1.883 au, V0 = −0.5 au,

Figure 3.29 Two-dimensional square lattice Brillouin zone and its irreducible zone.
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the volume of the unit cell 
c = 153 au, the bottom of the band energy E(0) =
−0.343 au, and α = 2.7 au.

(Assume
〈
φc1s(r− R)

∣∣∣φc1s(r− R′)
〉
= δR,R′ .)

(For numerical evaluation, it is convenient to use atomic units by setting h̄ = m =
e = 1:

• Distances are measured in Bohr radii (aB = 0.529 Å).

• Masses in units of the electron mass.

• Energies are in atomic units [1 atomic unit = 2 Rydbergs = 27.2 eV].)

3.6 One-dimensional model of ionic solids:

Figure 3.30 A composite one-dimensional crystal of period a = 2d consisting of two types of atoms.

Consider the periodic arrangement of two types of atoms shown in Figure 3.30, where
each atom has one orbital and one electron, with atom A being the cation and B the
anion (εA > εB ). Setting

〈ψA|H |ψA〉 = εA, 〈ψB |H |ψB〉 = εB〈
ψA,n

∣∣H ∣∣ψB,n

〉 = 〈ψB,n

∣∣H ∣∣ψA,n+1
〉 = V2,

derive an expression for the energy dispersion of its electronic bands. Plot the corre-
sponding band dispersions.

3.7 One-dimensional solid with two electrons per primitive cell:
Consider a one-dimensional solid, of period a, consisting of a single atom type, but
now each atom has a single s and a single p orbital, with two electrons per atom (see
Figure 3.31).

Setting 〈
ψnp

∣∣H ∣∣ψnp

〉 = εp, 〈ψns |H |ψns〉 = εs〈
ψnp

∣∣H ∣∣ψn±1,p
〉 = Vppσ > 0, 〈ψns |H

∣∣ψn±1,s
〉 = Vssσ < 0

〈ψns |H
∣∣ψn+1,p

〉 = −〈ψns |H
∣∣ψn−1,p

〉 = Vspσ > 0.

Figure 3.31 one-dimensional solid with sp hybrids.
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(a) Construct the Bloch functions associated with the s and p orbitals.
(b) Determine the set of coupled equations obtained by minimizing the energy expec-

tation value, assuming that orbitals on different sites are orthogonal.
(c) Derive an expression for the dispersion of the electronic bands, and plot the

dispersion curves for the two sets of parameters:

1. Parameter set I:

εs = −10.725 eV, εp = −3.525 eV, Vssσ = −2.08 eV,

Vppσ = 3.49 eV, Vspσ = 2.24 eV

Identify the maximum energy of occupied states.
2. Parameter set II:

εs = −9.725 eV, εp = −4.525 eV, Vssσ = −4.294 eV,

Vppσ = 5.2 eV, Vspσ = 2.24 eV

Identify the valence band maximum and conduction band minimum in set II.

3.8 δ-function potential:

Each atom in a one-dimensional chain of lattice spacing a is represented by a
potential

V (x) = aV0 δ(x), V0 > 0.

(a) Determine the ground-state wavefunction and energy of the single-atom problem,
taking, in this case, V0 < 0.

(b) If the atoms are located at positions na, n integer, write down the wavefunction

for 0 < x < a in terms of K =
√

2mE/h̄2.
(c) Write down the Bloch function for this system, using the fact that the wavefunc-

tion of part (b) is periodic.
(d) Write and apply the boundary conditions at x = na to the Bloch function.
(e) Show that the electron energy E and the wavevector k satisfy the relation

cos(ka) = 2maV0

h̄2

1

2K
sin(Ka)+ cos(Ka).

3.9 Wannier functions:

Consider the 1D Bloch state ψk(x) = 1√
L
eikx , where the system length L contains

N lattice sites with periodicity a. Determine the corresponding Wannier functions
φ(x − R) and check their orthonormality.
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3.10 Ashcroft’s empty-core model pseudopotential:
Consider Ashcroft’s screened empty-core pseudopotential

v(r) =

⎧⎪⎨⎪⎩
0 r < rc

ze2

r
e−λTFr r > rc

(a) Derive its reciprocal space representation.
(b) Obtain its form in the limit q → 0.

3.11 KKRZ model pseudopotential:

(a) Show that the matrix element of vKKRZ
ps between plane waves is

V KKRZ
ps,GG′ =

4πR2
c




∑
l

(2l + 1)

[
Ll − κ

j ′l (κRc)

jl(κRc)

]
× jl
(∣∣k−G

∣∣Rc

)
jl
(∣∣k−G′

∣∣Rc

)
Pl(cos θGG′), (3.132)

(b) Show that the term in square brackets in (3.132) can be written as

−(1/κ)[Rc jl(κRc)]
−2 tan η′l,

where the modified phase shift η′l is defined by

cot η′l = cot ηl − nl(κRc)/jl(κRc),

which readily follows from the relation

tan ηl(E) =
jl(κRc)Ll − κj ′l (κRc)

nl(κRc)Ll(E)− κn′l (κRc)

and using the Wronskian identity

x2 (jn′ − j ′n) = 1.

(c) Finally show that

V KKRZ
ps,GG′ = −

4π

κ


∑
l

(2l + 1)
jl
(∣∣k−G

∣∣Rc

)
jl
(∣∣k−G′

∣∣Rc

)
j2
l (κRc)

Pl(cos θGG′) cot η′l .

3.12 Graphene electronic band structure:
Graphene has a honeycomb lattice structure, as shown in Figure 3.32.

There are two carbon atoms per primitive cell, and each atom has four valence
orbitals: 2s, 2px, 2py , and 2pz. In graphene, the 2s, 2px , and 2py orbitals combine
or hybridize to form a new three-planar orbital with angle 120◦ between each other.
This is called sp2 hybridization in which three valence electrons from each atom
contribute to covalence bonds with three nearest neighbors. The remaining electron
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Figure 3.32 Honeycomb lattice and its Brillouin zone.

occupies the pz orbital, and is responsible for the interesting electronic properties of
graphene.

(a) Use Harrison’s scaling formulas to determine numerical values for Vssσ, Vppσ ,
Vspσ , and Vppπ , given that the nearest-neighbor distance is d = 1.54 Å.

(b) Each atom has three nearest neighbors at

δ1 = 1.54 (±1/2,
√

3/2), δ2 = 1.54 (±1/2, −
√

3/2), δ2 = 1.54 (±1,0).

Write down an expression in terms of the wavevector k for〈
φAs

∣∣∣H ∣∣∣φBs 〉 , 〈φAs ∣∣∣H ∣∣∣φBpi 〉 , 〈φApi ∣∣∣H ∣∣∣φBpj 〉 , i,j = x,y

and 〈
φApz

∣∣∣H ∣∣∣φBpz 〉 .
(c) Construct the 8 × 8 energy eigenvalue matrix and determine the dispersions of

the corresponding electron bands, given

εs = −17.52, εp = −8.97.

3.13 Electron and hole pockets:
Consider a two-dimensional hexagonal lattice of lattice spacing a = 3Å, and one
electron per unit cell. If the electrons are considered free within the two-dimensional
plane,

1. What is the Fermi energy EF ? (Provide a numerical answer in eV.)
2. If there were two electrons per unit cell:

1. Draw the free electron Fermi surface in the reduced zone scheme.
2. What is the area of the electron and hole pockets, i.e., the density of electrons

and holes?
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3.14 Electron in a two-dimensional weak sinusoidal potential:

Consider electrons moving in the two-dimensional weak periodic potential:

V (x,y) = U

[
cos

(
2πx

a

)
+ cos

(
2πy

a

)]
. U > 0

1. Use the variational wavefunction

�k = ck e
ik·r + ck−bx e

i(k−bx)·r + ck−by e
i(k−by)·r + ck−bx−by e

i(k−bx−by)·r

to calculate the electronic band structure along the high-symmetry points and lines
of the irreducible Brillouin zone shown in Figure 3.29, for U = 1 and U = 4
(where h̄2/2m = 1). bx and by are the basis vectors of the reciprocal lattice. Set
a = 1.

2. Determine the four lowest-energy single-electron eigenstates at the M-point and
give the corresponding wave functions.

3. Assuming that there are two electrons per unit cell, what type of material do you
obtain for each value of U given in step 1?

4. In the case the system is a metal with two electrons per unit cell, make a quali-
tatively correct sketch of the locations of the Fermi surfaces in the first Brillouin
zone.

3.15 Reading of electronic band structures (see Figure 3.33):

Consider the band structure diagram given in Figure 3.34 for tellurium, which crystal-
lizes in a hexagonal structure with three Te atoms/unit cell. The atomic configuration
for tellurium is 5s25p4.

(a) Sketch the approximate position of the Fermi level EF on the band diagram in
Figure 3.34 and give your reasons for this placement of EF .

Figure 3.33 Hexagonal Brillouin zone, from [165]. Point A appears as Z in Figure 3.34.
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Figure 3.34 Electronic band structure of tellurium. From [46].

(b) Indicate which energy bands on the diagram correspond to the s, p, and d bands,
given that

�1 → x2 + y2 + z2, z2

�2 → z, Lz

�3 →
{
(x,y)

(Lx,Ly)
,

{
(xz,yz)

(x2 − y2,xy),
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where Lx, Ly, Lz are angular momentum components.
If the energy bands with these atomic origins are not shown, are they at higher

or lower energy than those shown in the diagram?
(c) Given that z and the angular momentum Lz have the same transformation proper-

ties (they transform according to �2), can you predict which symmetry is absent
in the Te structure?

(d) Is tellurium transparent to visible light (= 5,000Å)? Explain!
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Electrons and Band Theory: Effects
of Spin–Orbit Interactions

4.1 Introduction

The first time we encounter spin–orbit coupling (SOC) is usually in an introductory quan-
tum mechanics course, and in atomic physics. In solving the Schödinger equation for
a hydrogen atom, we learn that in order to reproduce experimental spectra, we need to
introduce additional terms in the Hamiltonian that emerge from relativistic effects. Among
these effects, we discover that SOC splits the � 
= 0 orbital states; for example, the p-levels
split into p1/2 and p3/2. This is just the fine structure of the hydrogen atom, a key evidence
for the existence of electron spin. Further on, we learn that electron spin is an intrinsic
property of the relativistic single particle theory of the Dirac equation, and that SOC is
manifest in this context.

We find that spin and spin–orbit coupling play a critical role in many areas of current
fundamental research and technological applications. One area is information technol-
ogy, where it finds applications where the technique of encoding electron spin is used
in data storage and manipulation. Another promising area is spintronics, which primarily
relies on control of individual spins. Moreover, we note that spin is a vector quantity and,
therefore, not only the magnitude but also the direction of a spin can be manipulated.
In that sense, spintronics presents novel avenues for development in electronics technolo-
gies. These endeavors require understanding the underlying physical principles in the solid
state, especially how SOC impacts electronic band structures – a topic that we address in
this chapter.

We should also note that spin–orbit coupling has recently played an important role in
emergent topological insulators, where SOC acts as an effective intrinsic magnetic field
that leads to topological electronic states analogous to those produced by external magnetic
fields in the quantum Hall effect, but in contrast it preserves time-reversal invariance. As
we will demonstrate in Part II of this book, SOC leads to band inversions that create a state
of matter characterized by new topological numbers and conjures the new phenomenon of
quantum spin-Hall effect.

115
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4.1.1 The Dirac Equation

To arrive at the correct spin-related terms in the nonrelativistic Hamiltonian, we appropri-
ately take the Dirac equation as a starting point. The Dirac equation for an electron in an
external vector potential A, and a scalar potential V is given by

HD � = +ih̄ ∂

∂t
� = E ′�

HD = α· (cp+ eA((x)
)− e V (x)+ β m0c

2, (4.1)

wherem0 is the electron rest mass. α and β are vector and scalar 4×4 matrices, respectively.
The former is constructed in terms of Pauli spin matrices, while the latter is expressed in
terms of the 2× 2 unit matrix I2:

α =
(

0 σ

σ 0

)
, β =

(
I2 0
0 I2

)
(4.2)

The Hamiltonian acts on a four-component (bispinor) wavefunction � that describes par-
ticles with the total energy E ′, including the rest mass energy m0c

2. To obtain a spin–orbit
coupling expression, we need to connect with the Schrödinger equation. To this end, we
write the four-component wavefunction as two spinors dubbed large and small, and labeled
ψA and ψB , respectively. We rewrite the Dirac equation as(

E ′ −m0c
2 + eV (x)

)
ψA = σ ·

(
cp+ eA((x)

)
ψB(

E ′ +m0c
2 + eV (x)

)
ψB = σ ·

(
cp+ eA((x)

)
ψA.

Setting E = E ′ −m0c
2, these equations can be recast as(

E + eV (x)
)
ψA = σ ·

(
cp+ eA((x)

)
ψB (4.3)(

E + 2m0c
2 + eV (x)

)
ψB = σ ·

(
cp+ eA((x)

)
ψA. (4.4)

In the nonrelativistic limit, we can assume that E + eV (x)� 2m0c
2, and obtain from (4.4)

the approximate form for ψB :

ψB ≈ 1

2m0c2
σ ·
(
cp+ eA((x)

)
ψA.

Inserting it into (4.3), we obtain the equation for ψA:[
E + eV (x)− 1

2m0

(
p+ e

c
A(x)
)2
]
ψA = 0. (4.5)

We find that the large component becomes the wavefunction of the Schrödinger equation,
the Pauli spin matrices are absent, and the only reminiscence of spin appears in the spinor
character of ψA.
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Figure 4.1 A rendering of an electron (red ball) moving in an electric field E = ∇V near an ion core.
E is Lorentz-transformed into a B field, in the electron’s frame, by its orbital motion. The electron’s
spin, σ , couples to the emerging B field.

The explicit appearance of the σ matrices requires applying a better approximation to the
Dirac equation. We start with substituting the exact expression for ψB obtained from (4.4)
in (4.3):(

E + eV (x)
)
ψA = σ ·

(
cp+ eA((x)

) 1

E + 2m0c2 + eV (x)
σ ·
(

p+ e

c
A(x)
)
ψA.

We retain terms up to order (v/c)2 on the right-hand side, and obtain an equation for the
large component only:1[

E + eV (x)− 1

2m

(
p+ e

c
A(x)
)2 + 1

2m0c2

(
E + eV (x)

)2

+i eh̄

(2m0c)2
E(x) · p− eh̄

2m0c
σ · B(x)− eh̄

(2m0c)2
σ ·
(

E(x)× p
)]

ψ = 0, (4.6)

where E(x) = ∇V and B(x) = ∇×A.

• The first three terms are just the ordinary Schrödinger equation in the nonrelativistic
limit.

• The fourth and fifth terms do not contain spin matrices, and are called scalar-relativistic
terms. These terms are important for heavy elements:2

• The sixth term is just the Zeeman energy μB σ · B, where
eh̄

2m0c
= μB , the Bohr

magneton.

SOC in Atomic Physics

The last term is the spin–orbit coupling. It is a relativistic term that describes the interaction
of the electron’s spin with the magnetic field that appears in its local frame due to its own
orbital motion through the effective atomic Coulomb field (see Figure 4.1). It emerges from
a nonrelativistic approximation to the Dirac Hamiltonian. Atomic spectra are accurately
described only if SOC is taken into account.

1 Sometimes this equation is referred to as the Pauli equation.
2 For example, the difference in color between silver and gold is caused by a shift of the d-band due to scalar-relativistic effects.
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The spin–orbit coupling terms, sometimes referred to as the Pauli term, reads

HSO = h̄

(2m0c)2
∇V × p · σ (4.7)

For spherically symmetric potentials,⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∇V × p) ·σ = 1

r

∂V

∂r
(x× p) ·σ = 1

r

∂V

∂r
L·σ〈

1

r

∂V

∂r
L·σ
〉
=
〈

1

r

∂V

∂r

〉
h̄	 · σ = ξ 	 · σ

(4.8)

For p-states, with J = L+ S, the eigenvalues are j = 3/2,1/2, and we write

	 · σ = 1

2

[
j (j + 1)− �(�+ 1)− s(s + 1)

] =
⎧⎨⎩1/2 for j = 3/2

−1 for j = 1/2
(4.9)

and obtain the splittings

	j=3/2 = 1

2

h̄2

4m2
0c

2

〈
1

r

∂V

∂r

〉
= 1

2
ξ (4.10)

	j=1/2 = − h̄2

4m2
0c

2

〈
1

r

∂V

∂r

〉
= ξ (4.11)

so that the SO gap becomes

	SO = 3

2

h̄2

4m2
0c

2

〈
1

r

∂V

∂r

〉
== 3

2
ξ . (4.12)

For a spherically symmetric atomic potential with an effective Z∗ ∝ Z the atomic number,
we have

1

r

∂V

∂r
∝ Z∗

r3
∼ Z

r3
|ψ(r)|2 r3,

where |ψ(r)|2 r3 is the probability of finding the electron at r . We arrive at〈
1

r

∂V

∂r

〉
∝ Z

〈
|ψ(r)|2

〉
∼ Z2

and we find that ξ ∝ Z2. Thus, ξ will be large for heavy atoms, and small for lighter ones.

4.2 SOC in Solid-State Physics

Now we will explore some of the consequences of spin–orbit interactions (SOI) in crys-
talline systems. We know that the motion of electrons in a crystal is described by energy-
band dispersions En(k), where n is the band index. As it turns out, SOC affects the energy
band structure, especially for systems containing heavy atoms.
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Figure 4.2 Schematic of the evolution of the atomic s and p orbitals into valence and conduction
bands in a semiconductor. Note that this schematic is not general. For example, in Si the lowest
conduction band is an antibonding p-like state.

4.2.1 SOC in Semiconductor Band Structures

In the absence of spin–orbit interaction, the bands in diamond, zincblende, and wurtzite
semiconductors are derived from the outermost atomic shells of the constituent atoms,
which mainly involve s and p orbitals. A schematic of the band ordering is shown in
Figure 4.2. For most atomic species that are important in semiconducting materials, SOI
plays a significant role. For instance, if we consider the band structure of semiconductors
with zincblende structure at the �-point (k = 0), Figures 4.3 and 4.4 show that the states at
the bottom of the conduction band are s-like (�1) Kramers doublet, while those at the top
of the valence band are p-like (�15), sixfold degenerate (orbital angular momentum � = 1).
SOC cannot remove the degeneracy of the �1 doublet, but the �15 states split into a doublet
and a quadruplet.

Without spin With spin

�15 ⇔
{
�8 (j = 3/2) p -states

�7 (j = 1/2) p -states

�1 ⇔ �6 (j = 1/2) s -states

with splitting energy E(�8)− E(�7) = 	0.
It is found that the magnitude of spin–orbit splitting 	0 that occurs in p-like states of the

valence band of a semiconductor follows closely that of the constituent atoms. In fact, as
shown in Figure 4.5, the spin–orbit splitting energy 	0 of semiconductors increases as the
square of the atomic number of the constituent elements. Typically, the magnitude of 	0 in
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g
off

Figure 4.3 Valence and conduction band edges in zincblende semiconductors. No SOI included in (a).
At the �-point, a sixfold degenerate p-like states (�15) at the top of the valence band, and s-like (�1)
Kramers’ doublet at the bottom of the conduction band. SOI is included in (b), and SOC leads to
the splitting of the �15 states into a Kramers’ doublet �7 and a quadruplet �8. The �1 doublet is
unaffected. It is relabeled as �6.

P

P

S

Figure 4.4 Zincblende Td symmetry with SOC off (left) and SOC on (right).

a semiconductor is comparable to 	SO of its constituent atoms. This supports the viewpoint
that these valence electrons strongly sample their respective atomic Coulomb field.

We also find that when the anion and cation in semiconductor compounds have differ-
ent 	0, the anion contribution tends to be weighted more since the electrons are located
preferentially there. Thus, the spin–orbit interaction increases with increasing atomic order
number Z of the anion. Typical values of 	0 for semiconductor elements and compounds
are given in Table 4.1.



4.2 SOC in Solid-State Physics 121

Table 4.1 Spin–orbit splitting of the valence
band 	0 in eV.

	0 	0

C 0.013 InP 0.11

Si 0.044 InAs 0.38

Ge 0.295 InSb 0.81

SiC 0.014 ZnS 0.07

GaN 0.017 ZnSe 0.43

GaP 0.08 ZnTe 0.93

GaAs 0.341 CdTe 0.92

GaSb 0.75

Figure 4.5 Spin–orbit splitting 	0 for elemental (diamonds) and various III–V and II–VI (circles)
semiconductors. The data are plotted as empty (filled) circles as a function of the cation (anion) order
number. Obviously, 	0 correlates with the anion Z. The dashed line is proportional to Z2, from [80].

Effect of Time-Reversal and Inversion Symmetries

Under time-reversal (TR) symmetry operation, �, both σ and p change sign; consequently,
HSO remains invariant. Moreover, time-reversal symmetry implies that

En(k, ↑) = En(−k, ↓) ⇒ Kramers’ degeneracy (4.13)

�ψn(k, ↑) = � eik·x un,k↑(x) |+〉 = e−ik·x u∗n,k↑(x) |−〉
= e−ik·x un,−k↓(x) |−〉 = ψn(−k, ↓).
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Likewise,

�ψn(k, ↓) = � eik·x un,k↓(x) |−〉 = e−ik·x
(
−u∗n,k↓(x)

)
|+〉

= e−ik·x un,−k↑(x) |+〉 = ψn(−k, ↑),
which may lead to spin-dependent band dispersions similar to those of Figure 4.6(c).

When space inversion symmetry (parity) is present, it requires

En(k, ↑) = En(−k, ↑); En(k, ↓) = En(−k, ↓) (4.14)

π ψn(k, ↑) = π eik·x un,k↑(x) |+〉 = e−ik·x un,k↑(−x) |+〉
= ψn(−k, ↑). (4.15)

When both symmetries coexist,we find that

En(k, ↑) = En(k, ↓).
In other words, the presence of both TR and parity symmetries removes the spin-
dependence band dispersion, even in the presence of SO interactions, as shown in
Figure 4.6(b). Note that the dispersion of Figure 4.6(b) resembles that of Figure 4.6(a)
which depicts band dispersion in the absence of SOC. The only difference between the
figures is symmetry labeling.

Since in nonmagnetic semiconductors, TR is a bona fide symmetry; the electron spec-
trum has to satisfy the relation E(k ↑) = E(k ↓) in the presence of parity symmetry.
Thus, in semiconductors with diamond structure, such as Si and Ge, we have a global
twofold degeneracy of Bloch states. Notice that at the �-point �8 is fourfold degenerate
(±3/2, ± 1/2), and �7 is twofold degenerate (±1/2).

Figure 4.6 Kramers’ degeneracy in the following cases: (a) No SOI is present, where each level is
doubly degenerate (↑ , ↓). (b) Both SOI and inversion symmetry are present and the levels are
doubly degenerate at every k-point. (The superscript + indicates even parity.) (c) SOI is present, but
inversion symmetry is absent. �6 s-symmetry includes spin.
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Figure 4.7 (a) Zincblende structure; (b) diamond structure. Permission from D. Wertz and North
Carolina State College of Sciences.

The principal difference between zincblende and wurtzite structures, on the one hand,
and diamond structures, on the other, is the lack of inversion symmetry in the former
structures (see Figure 4.7). Without inversion symmetry, Kramers’ theorem that E(k) =
E(−k) still applies, but now the periodic part of the Bloch functions no longer satisfies
the condition u−k(x) = uk(−x), and hence a twofold degeneracy throughout the Brillouin
zone is not required.

4.2.2 Bulk Inversion Symmetry-Breaking and the Dresselhaus Hamiltonian

In the absence of space inversion symmetry, E(k ↑) 
= E(k ↓). In this case, there should
be some term that breaks the spin degeneracy of states at the same k. The term should
be an odd function of both k and σ since it breaks space inversion symmetry, but keeps
time-reversal symmetry. It is referred to as the bulk inversion asymmetry (BIA) spin–orbit
coupling term. For a spin-1/2 electron, we have

σi σj = δij + iεijk σk,

and only the linear form of σi can appear in any spin–orbit coupling term. Thus, any
electron spin–orbit coupling that can be written in the form

HSO =
∑
nm
ij

C
ij
nm σ

n
i k

m
j

is reduced to a form linear in σi .
We write the BIA term as

HSO = 1

2
�(k) ·σ , (4.16)

where �(k) is an odd function of k. It acts as an effective magnetic field, where, for a
given k, 
(k)/h̄ is the spin precession frequency in this field.
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Figure 4.8 Ge band structure in the vicinity of the Fermi level. Left: without spin–orbit coupling; and
right: with spin–orbit coupling. From [29].

We note that the breaking of space inversion symmetry is a prerequisite for the appear-
ance of an electron spin–orbit coupling term in semiconductors. From another perspective,
we note that the spin splitting of Bloch states in zincblende structure semiconductors must
come from SOI; otherwise, the spin degree of freedom would not know whether it was in
an inversion-symmetric or a non-inversion-symmetric structure.

It was G. Dresselhaus who first proposed, in 1955, that SOC may have important con-
sequences for semiconductors lacking inversion symmetry in their bulk structure. In such
semiconductors, we can have SO splitting for electron and hole states for k 
= 0 even
in the absence of magnetic fields. This behavior is called the Dresselhaus effect, and the
previously defined SOC term is referred to as the Dresselhaus BIA spin-orbit coupling.

To illustrate the effect of SOI in the presence and absence of inversion symmetry, we
compare the band structures of Ge (diamond) and GaSb (zincblende).

• Ge with diamond structure: In absence of SOC, as in Figure 4.8 (left), we have
a sixfold degenerate state at the top of the valence band. Three bands emerge for
|k| 
= 0, and two of them become degenerate along some high-symmetry directions.
When SOC is included, as in Figure 4.8 (right), the k = 0 state splits into quadruply
degenerate and a doubly degenerate ones. The former evolves into two bands with
different dispersions, a highly dispersive one called the light-hole band, and the other
one is termed heavy-hole band. The doubly degenerate state at � forms the spin–orbit
split-off band.

• GaSb, with zincblende structure: It has the same splitting of the k = 0 state.
However, the dispersion of the bands that emerge from the quadruply degenerate state
resemble that displayed in Figure 4.9, signaling the presence of BIA!
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Figure 4.9 Spin–orbit splitting of the top valance bands in GaSb. From [43].

4.3 The k · p Method and the Effective Mass Tensor

Because semiconductors have characteristically small energy gaps � 1 eV, the free carrier
concentrations produced either by thermal excitation, where there will be an equal number
of electrons and holes, or by doping, never exceed 1020/ cm3, and are usually much less. By
contrast, the number of states in a band is on the order of 1023/cm3. This implies that the
mostly populated electron and hole states lie within a small fraction of an eV from the band
edges. Thus, most physical phenomena (electronic, optical, magnetic) in semiconductors
can be understood by looking at a small portion of the band structure around the band edges.

Thus, we should focus on the structure of the energy bands E(k) in the vicinity of
the conduction band minimum and the valence band maximum. The highest point of the
valence bands occurs at the �-point; however, the conduction band minimum may occur at
other points in the BZ.3 In most compound semiconductors, the minimum of the conduction
band also occurs at the �-point, as shown in Figure 4.10. Such semiconductors are called
direct-gap semiconductors and form the core of most optical devices.4

If the wavefunctions and energies are known at the band extrema, then perturbation
methods may be applied to determine the wavefunctions and energies at other k points
in the vicinity of the extrema. Here we will present one very useful and very frequently
applied perturbative approach, known as the Kohn–Luttinger k · p method.

3 If both extrema occur at the �-point, as it is the case for GaAs and many other materials, then for small k, E(k) should be
parabolic E(k) = h̄2k2/2mc or −h̄2k2/2mv , where mc and mv are effective masses of electrons and holes, respectively. The
concepts of holes and effective masses will be discussed later. We note, however, that the effective masses may differ
considerably from the free electron mass me , for example in GaAs mc = 0.067me .

4 If the minimum of the conduction band appears at some other point in k-space, the semiconductor is indirect gap. The
elemental semiconductors Si and Ge are of this type.
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Eg

Figure 4.10 The case where both extrema occur at the �-point. The wavefunctions and energies
should be determined within a small region in its vicinity.

The development of the k · p formalism starts by recasting the Schrödinger equation for
Bloch electrons (

p2

2m
+ V (x)

)
�νk(x) = Eν(k)�νk(x)

into a form that involves their lattice-periodic part uνk(x), where

�νk(x) = eik·x uνk(x) = eik·x 〈x | νk〉 ,
and we will use ν to denote the orbital motion type, instead of the band index n.

Since

p eik·x uνk(x) = eik·x (p+ h̄ k) uνk(x),

we obtain[
h̄2

2me

(p+ h̄ k)2 +V (x)
]
|νk〉 =

[
p2

2me

+V (x)+ h̄2k2

2me

+ h̄

me

k · p
]
|νk〉 = Eν(k) |νk〉

or ⎡⎣ p2

2me

+ V (x)︸ ︷︷ ︸+
h̄

me

k · p︸ ︷︷ ︸
⎤⎦ |νk〉 =

(
Eν(k)− h̄2k2

2me

)
︸ ︷︷ ︸ |νk〉 (4.17)

H0 H′ Eν(k)

so that [
H0 +H′

] |νk〉 = Eν(k) |νk〉
uνk(x) = 〈x | νk〉 .
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The advantage here is that the eigenfunctions unk0(x) of H0 have the periodicity of the
lattice. Hence, the eigenvalue problem needs to be solved at the extremum k0 for a single
primitive cell only, instead of for the whole crystal. The resulting band-edge functions
unk0(x) form a complete and orthonormal set of functions, which can be used as a basis for
perturbation theory. As we have noted earlier, for small deviations k = k0 + 	k, 	k · p
perturbation theory allows us to find the Eν(k) for states near ko.

For the sake of simplicity, we set the extremum k0 = 0. Since k0 is an extremum,

∇kEνk

∣∣∣
k=k0

= 0, and the linear term vanishes. We assume that the band is nondegenerate,

then to second order we get

Eν(k) = Eν(0)+
〈
uν,0
∣∣H′∣∣ uν,0〉+∑

ν′ 
=ν

〈
uν,0
∣∣H′∣∣ uν′,0〉 〈uν′,0 ∣∣H′∣∣ uν,0〉
Eν(0)− Eν′(0)

.

We also note that 〈
uν,0
∣∣H′∣∣ uν,0〉 = h̄k

me

· 〈uν,0 |p| uν,0〉 ,
vanishes for systems possessing inversion symmetry, because H′ is odd, and the uνs have
definite parity. The matrix elements in the second-order term

h̄k
me

· 〈uν,0 |p| uν′,0〉 
= 0

only for uν,0 and uν′,0 of opposite parities. Hence, we find

Eν(k) = Eν(0)+ h̄2k2

2me

+ h̄2

m2
e

∑
ν′ 
=ν
αβ

kα kβ

〈
uν,0 |pα| uν′,0

〉 〈
uν′,0
∣∣pβ ∣∣ uν,0〉

Eν(0)− Eν′(0)
. (4.18)

We define the effective mass tensor m∗αβ as

1

m∗αβ
= 1

h̄2

∂2E(k)
∂kα∂kβ

= 1

me

δαβ + 1

m2
e

∑
ν′ 
=ν

〈
uν,0 |pα| uν′,0

〉 〈
uν′,0
∣∣pβ ∣∣ uν,0〉

Eν(0)− Eν′(0)
. (4.19)

Transformation to principal axes yields

me

m∗i
= 1+ 2

me

∑
ν′ 
=ν

∣∣〈uν,0 |pi | uν′,0〉∣∣2
Eν(0)− Eν′(0)

. (4.20)

Equation (4.20) is usually applied to the calculation of the effective mass of the highest
valence bands and lowest conduction bands in direct-gap semiconductors. Typical effective
mass values are given in Figure 4.11. We find that the main contribution to the sum comes
from the triply degenerate valence band px, py, and pz eigenstates, and the s-like bottom
of the conduction band. This yields〈

uVBx |px | uCB,s
〉 = 〈uVBy

∣∣py∣∣ uCB,s
〉 = 〈uVBz |pz| uCB,s

〉 = p.
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Figure 4.11 Variation of effective mass with band gap energy of different semiconductors.

Hence,

me

m∗
∣∣∣
c,v
= 1+ 2

me

p2

±Eg

and we can write

Ec
v
(k) = Ec

v
(0)± h̄2k2

2|m∗| .

4.3.1 Hole Concept and Valence Band Effective Masses

We find that applying the preceding definition of the effective mass tensor to states in the
vicinity of semiconductor valence band maxima yields negative values! To avoid such an
inconvenient conceptual outcome, we introduce the idea of a hole to describe a few empty
states close to the top of an almost full band.

Consider a band containing electrons with quantum numbers kj , velocities vj , and
energies E(kj ), where E = 0 is at the top of the band. For a full band, the values of k
should all sum to zero, namely ∑

j

kj = 0.

Now we remove one electron to create an excitation, which we label a hole. If we remove
the lth electron, the band acquires a net k, which we attribute to the presence of the hole.
The hole will have k = kh, such that

kh =
∑
j 
=l

kj = −kl, (4.21)

giving the hole dispersion shown in Figure 4.12. We should note that the lower down the
band the empty state, the more excitation energy the system needs. The hole’s energy Eh

must therefore take the form

Eh = −E(kl ). (4.22)
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ke
kh

Figure 4.12 Hole dispersion (black, dashed) in relation to the electron dispersion in the valence band
(solid gray).

The group velocity vh associated with the hole is

vh = 1

h̄
∇kh Eh = 1

h̄
∇−kl (−Ekl ) = vl, (4.23)

where the minus signs in (4.21) and (4.22) have canceled each other. The full electron band
will carry no current, namely ∑

j

(−e) vj = 0.

The removal of the lth electron produces a current∑
j 
=l

(−e) vj = −(−e) vl = (+e) vh,

i.e., the hole appears to have an associated positive charge.
Finally, substitution of (4.21) and (4.22) into the effective mass formula yields

1

m∗hαβ
= 1

h̄2

∂2Eh(k)

∂khα ∂k
h
β

= − 1

m∗eαβ
, (4.24)

which shows that the effective mass m∗h = −m∗e , and we restore the concept of a positive
mass.

The importance of holes stems from the fact that bands are often easily well charac-
terized only close to the band extrema. Our knowledge of the dispersion relations away
from a particular extremum is not easily derived both experimentally and theoretically. It
is therefore more convenient to deal with a small number of empty states close to the well-
characterized maximum of an almost full band rather than attempt to treat the huge number
of states lower down in the band.

Luttinger’s Model of the Valence Band Structure: Light and Heavy Holes

We need to find an effective mass description of the valence band structure, taking into
account its p-like character and the threefold degeneracy at the �-point. The simplest
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model, which will bring out the physics while avoiding complications accrued by the cubic
environment, is one with isotropic symmetry. A model Hamiltonian that satisfies isotropy
will involve the polar vector κ = h̄k and the axial angular momentum vector L. The latter
is represented by the 3×3 matrices Lx, Ly, and Lz corresponding to l = 1. Lz is a diagonal
matrix with eigenvalues (1,0, − 1). The scalar Hamiltonian to be constructed must contain
a term quadratic in κ . Rotational invariance of the Hamiltonian, imposed by isotropy, leads
to the Luttinger Hamiltonian

H = Aκ2I+ B (κ · L)2,
where A and B are arbitrary constants, and I is the 3× 3 identity matrix. It is obvious that
H is also a 3× 3 matrix in this representation.

The energy spectrum in the valence band is obtained by diagonalizing the H matrix.
The arbitrariness in the choice of axes allows us to drastically simplify the procedure by
choosing the direction of the z-axis to be along κ . We note that the result does not depend
on the choice of axes. We find that

(κ · L)2 = κ2L2
z,

leaving a diagonal H with eigenvalues

Eh(κ) = (A+ B) κ2 = κ2

2mh

, Lz = ±1,

El(κ) = Aκ2 = κ2

2ml

, Lz = 0.

Thus the valence band energy spectrum has two parabolic branches, Eh(κ) and El(κ), the
first one being twofold degenerate. The choice of the subscripts h and l stems from having
two effective masses, mh and ml ,

mh = 1

2(A+ B)
, and ml = 1

2A
, usually B < 0, but A+ B > 0,

that define two types of holes in the valence band, the heavy and light holes. Another
distinguishing feature between these particles is that the heavy hole has an orbital angular
momentum L projection along the direction of κ (helicity) equal to±1, while the light hole
has a projection of 0.

4.3.2 k · p method in the presence of SO interactions

In the presence of SO coupling, the lattice-periodic parts of the Bloch functions become
spinors |nk〉 with two components

|nk〉 =
(|νk, ↑〉
|νk ↓〉

)
,

where, now, n is a common index for the orbital and spin degrees of freedom. The Pauli–
Schrödinger equation
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p2

2me

+ V (x)+ h̄

(2m0c2)2
σ ×∇V · p

]
ψnk = En(k) ψnk

becomes[
p2

2me

+ V (x)+ h̄2k2

2me

+ h̄

me

k ·π + h̄

(2m0c2)2
σ ×∇V · p

]
|nk〉 = En(k) |nk〉 ,

where

π = p+ h̄

(2m0c2)2
σ ×∇V

since (
σ ×∇V · p

)
eik·x uνk(x) = eik·x

(
σ ×∇V · p+ σ ×∇V · (h̄k)

)
uνk(x).

Note that in the presence of SO coupling, the spin quantum number is not a good quantum
number.

Construction of the Eigenvalue Equations

For simplicity, we set the band extremum at k = 0 and expand the kets |nk〉 in terms
of band-edge lattice-periodic functions |ν0〉, that provide a complete orthonormal single-
particle basis in the absence of SOI. Then we have the expansion

|nk〉 =
∑

ν,σ=↑↓
Cnνσ (k) |νσ 〉

|νσ 〉 = |ν0〉 ⊗ |σ 〉 .

The Schrödinger equation involving |nk〉 can be recast as∑
ν′,σ ′

[(
Eν′(0)+ h̄2k2

2me

)
δν,ν′ δσ,σ ′ + h̄

me

k ·ν,ν′
σ,σ ′ +	

ν,ν′
σ,σ ′

]
Cnν′,σ ′(k)

= En(k) Cnνσ (k) (4.25)


ν,ν′
σ,σ ′ = 〈νσ |π

∣∣ν′σ ′〉
	
ν,ν′
σ,σ ′ =

h̄2

(2m0c2)2
〈νσ | ∇V × p ·σ ∣∣ν′σ ′〉 .

By solving the eigenvalue problem defined in (4.25), we obtain the dispersion En(k) of the
relevant bands. While the secular equations in (4.25) are, in principle, of infinite dimension,
we are usually interested in a few bands, and in their dispersion in the vicinity of k = 0.

Actually, it is sufficient that the k · p perturbation calculation be carried out with a
basis set consisting of the triply degenerate valence band maximum �v

15 (p-like), the singly
degenerate conduction band minimum �c

1 (s-like), and the triply degenerate conduction
band �c

15 (p-like), shown in Figure 4.13 for GaAs.
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Figure 4.13 k · p calculations of GaAs band structure including spin–orbit coupling, from [156].

Notice that the mixing effected by the second term in (4.25) increases with k. The third
term is independent of k; it arises from atomic SOI and results in �-point splittings similar
to those defined in (4.8) through (4.12) and shown in Figure 4.3.

For k 
= 0, the total perturbation is

δH = h̄2k2

2me

+ h̄

me

k ·π .

Extension of Luttinger’s Model

We note that the valence band states at k = 0 maintain the same symmetry properties of the
atomic states they are derived from. Thus, for k = 0 we should have a fourfold degenerate
state (j = 3/2), separated from a doubly degenerate state (j = 1/2) by spin–orbit splitting
energy, 	0. The s-like bottom of the conduction band also remains doubly degenerate.

We explore changes to the j = 3/2 manifold at k 
= 0 and energies E(k) � 	0 by
constructing a Luttinger Hamiltonian in a way quite similar to the procedure outlined pre-
viously in the absence of SOI. However, we need to replace the 3× 3 matrices Lx, Ly, Lz,
corresponding to l = 1, with 4× 4 matrices Jx, Jy, Jz, corresponding to j = 3/2

H = Aκ2 I+ B (κ · J)2, (4.26)

where I is now a unit 4 × 4 matrix. Again, the matrix Jz is diagonal, but with eigenvalues
3/2,1/2, − 1/2, and −3/2.

The resulting spectrum of the heavy and light holes, which is valid for energies much
less than 	0 becomes

Eh(κ) =
(
A+ 9B

4

)
κ2 = κ2

2mh

, (Jz = ±3/2) Heavy-hole band

El(κ) =
(
A+ B

4

)
κ2 = κ2

2ml

, (Jz = ±1/2) Light-hole band
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Figure 4.14 E vs. (kx,ky) of the top three valence bands. Left: Isotropic case. Right: Corresponding
valence bands of Ge, showing warping, from [80].

depicting two doubly degenerate bands. Heavy holes have helicity of ±3/2, and the light
holes’ helicity is ±1/2. While B < 0, normally A + 9B/4 > 0, so that both masses are
positive.5

Warping of Isoenergetic Surfaces

We should remember that the Luttinger Hamiltonian (4.26) presents an isotropic approx-
imation – being rotationally invariant – as seen in Figure 4.14. In a cubic crystal, the
symmetry is lower, and a more realistic Luttinger Hamiltonian takes the general form

H = Aκ2 I+ B (κ · J)2 + C
(
J 2
x κ

2
x + J 2

y κ
2
y + J 2

z κ
2
z

)
where now the axes are not arbitrary, and coincide with the crystallographic axes. The last
term introduces anisotropy in the isoenergetic dispersive surfaces of light and heavy holes,
warping the simple parabolic form of the energy branches Eh(κ) and El(κ) as shown in
Figure 4.14(b).

Dyakonov and Perel proposed the following Hamiltonian to describe the Dresselhaus
spin–orbit interaction in the bulk of zincblende crystals

H3D
D = γD

[
κx

(
κ2
y − κ2

z

)
σx + κy

(
κ2
z − κ2

x

)
σy + κz

(
κ2
x − κ2

y

)
σz

]
, (4.27)

↑ ↑ ↑
[100] [010] [001]

where x,y,z point along the main crystallographic directions, [100], [010], and [001]. It
lacks space inversion but satisfies TRI and the point group symmetry.

5 In some materials, the light-hole mass becomes negative, so that this band becomes a conduction band. This is known as band
inversion and will be discussed in the context of topological systems in Part II.
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EF

D

EC

EF

Figure 4.15 Two-dimensional electron gas confining potential at a metallic surface (left), in a
heterojunction quantum well (right).

4.4 Rashba Spin–Orbit Interactions in Two-Dimensional Electron Systems

As we have shown, the global k spin degeneracy in semiconductor electronic bands is
removed by BIA of the underlying crystal structure, as for example in zincblende and
wurtzite crystals. Another structural feature that manifests inversion asymmetry and leads
to the lifting of spin degeneracy is the inherent anisotropy at surfaces, interfaces, and
semiconductor heterostructures: quantum wells (QWs). It is referred to as structural inver-
sion asymmetry (SIA) of the confining potential V (x) of a two-dimensional electron gas,
either at high-Z metal surfaces or in QWs, shown in Figure 4.15. An sp-derived metallic
surface state can be considered as a particular realization of a two dimensional electron gas.
Since the surface always breaks spatial inversion symmetry, the effective potential that acts
on the surface state will generally have a finite gradient along the surface normal, associated
with an electric field in this direction. The physical manifestation of this field is the work
function. At the surface, the potential changes from the vacuum level to the bottom of the
band, a value that is approximately the work function, �. A rough estimate of the length
scale over which the potential changes is roughly the Fermi wavelength, λF . We then find
that (∇V )z ∼ �/λF .6

We can elucidate the physics behind this effect with the aid of Figure 4.16. Figure 4.16(a)
shows a quantum well potential possessing inversion symmetry, which guarantees spin
degeneracy on a nanoscale. In contrast, the heterojunction quantum well potential of Fig-
ure 4.16(b) displays an inversion asymmetric potential, V (z), in the z-direction perpendic-
ular to the heterojunction, which is attributed to its structure, and which gives rise to the

new type of SOI associated with the ensuing electric field ESIA = −1

e

∂V

∂z
ẑ.

A Taylor expansion of the potential V (z) yields

V (x) = V0 − eEz+ · · · , (4.28)

so that, to lowest order, the inversion asymmetry of V (z) is characterized by an
electric field E . Electrons, with an effective mass m∗, will propagate with velocity

6 Electrons subjected to spin–orbit interaction in magnets with SIA, generate an antisymmetric exchange between spins, known
as the Dzyaloshinskii–Moriya (DM) interaction, to be discussed in Chapter 20.
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Figure 4.16 Structural inversion asymmetry.

v = ∇k E(k) = k/m∗ in the electric field E , defined in the lattice frame of reference, and
will experience a magnetic field

B = 1

c
(v× E) = 1

m∗c
(k× E)

in their local moving frame. The interaction of the spin with this B field leads to the Rashba
or Bychkov–Rashba Hamiltonian.

For simplicity, we neglect the 2D periodic potential. Thus, the quasi-2D electrons, mov-
ing freely in the xy-plane with momentum p‖ = h̄k‖ in an electric field E = E ẑ, will
experience an SOC given by

Hso = αR

h̄

(
ẑ× p‖

) ·σ = αR
(
kxσy − kyσx

)
where the Rashba parameter αR depends on the gradient of the confining potential.

4.4.1 Spectrum of the Rashba Hamiltonian in 2D

The 2DEG Hamiltonian with Rashba SO coupling is

HR =
p2
‖

2m∗
+ αR

h̄

(
py σx − px σy

) = h̄2k2
‖

2m∗
+ αR k‖

(
sinϕ σx − cosϕ σy

)
(4.29)

where k‖ = k‖ (cosϕ, sinϕ). HR commutes with the 2D momentum operator, hence,
they have common 2D spatial eigenfunctions eik‖·x‖ . This allows us to write the spinor
eigenvectors as

ψ = eik‖·x‖
[
a |↑〉
b |↓〉
]
, a2 + b2 = 1

and the eigenvalue problem becomes

HR ψ =

⎛⎜⎜⎝
h̄2k2

‖
2m∗

αR k‖ (i cosϕ + sinϕ)

αR k‖ (−i cosϕ + sinϕ)
h̄2k2

‖
2m∗

⎞⎟⎟⎠ ψ = E ψ
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with eigenvalues

E± =
h̄2k2

‖
2m∗

± αR k‖ (4.30)

and corresponding eigenvectors

ψ+ = eik‖·x‖
1√
2

(−i e−iϕ
1

)
= eik‖·x‖

1√
2

(
e−i(ϕ+π/2)

1

)
,

ψ− = eik‖·x‖
1√
2

(
i e−iϕ

1

)
= eik‖·x‖

1√
2

(
e−i(ϕ−π/2)

1

)
(4.31)

which shows that the spins lie in the xy-plane, with orientations ↑-spin = π/2 and ↓-spin
= −π/2 with respect to the wavevector k‖.

The dispersion is shown in Figure 4.17. We find the following:

• The spin splitting E↑(k‖)− E↓(k‖) = 2αRk‖ is linear in k‖.

• The ±π
2

-spin parabolas are shifted in opposite directions by k0 = m∗αR/h̄2.

• The energy minimum of each parabola is at 	SO = −m∗αR/2h̄2.

• The spin orientation axis is independent of the magnitude k‖ and depends only on the
direction of the k‖ vector.

• We note that for k‖ → −k‖, the angle ϕ changes to ϕ + π , reversing the spin orientation
axis.

• The spectrum (4.30) shows that the Kramers degeneracy E↑(k‖) = E↓(−k‖) holds.

In all, the magnetic moment is zero when averaged over all states k‖. This is consistent
with the absence of a B field.

Figure 4.17 Rashba splitting.
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Finally, writing the wave vector as k‖ = k (cosϕ, sinϕ), we can express the two Fermi
surfaces by

kF
± = ∓

αRm
∗

h̄2
+
√(

αRm∗

h̄2

)2

+ 2m∗

h̄2
εF .

The Rashba Parameter αR

We used a Lorentz transform to express the Rashba Hamiltonian in terms of the confining
electric field. However, in general, the Rashba parameter αR is not just proportional to it.
For example, in the case of the Au(111) surface, we find that the work function � = 4.3 eV
and λF ∼ 5 Å yield a value of	E = αRk ∼ 10−6 eV – several orders of magnitude smaller
than the experimentally observed splitting of 110 meV [117]. We note that the potential
gradient in the Au atom is much larger, and leads to an atomic spin–orbit splitting of the
6p level of 0.47 eV. Since the surface state is derived partially from these levels, we would
suspect that the atomic SOC may contribute to the observed splitting. For pedagogical
reasons, and to demonstrate how such a contribution emerges, we shall outline a tight-
binding approach to determine the surface states and derive an expression for αR that
includes atomic contributions [153], leaving the actual calculations as an exercise.

Tight-Binding Model
The surface states of Au(111) are derived from s and p orbitals, but we note that the s

orbital does not undergo any spin–orbit splitting, so we shall exclude it from our Wannier
basis. We will consider a sheet of hexagonally arranged atoms that represents the Au(111)
surface, and limit the basis per atom to the three atomiclike states px , py , and pz. This
choice is sufficient to represent the essential physics of the problem, while simplifying the
calculations and making it as tractable as possible. We set the z-axis to be perpendicular
to the atomic layer. The Hamiltonian, limited to nearest neighbor hopping, can then be
written as

H =
∑
αβ
〈ij〉

tαβ(dij )
∣∣∣piα〉〈pjβ ∣∣∣, α,β = x,y,z,

where dij is the vector joining nearest neighbors i,j . The hopping parameters tαβ(dij ) are
expressed in terms of Vppσ ≡ ησ and Vppπ ≡ ηπ with the aid of directional cosines

tαβ(dij ) =

⎧⎪⎪⎨⎪⎪⎩
ησ cos2 θij + ηπ sin2 θij, α,β → x,x

(ησ + ηπ) cos θij sin θij, α,β → x,y

ησ sin2 θij − ηπ cos2 θij, α,β → y,y

;

tαβ(dij ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ηπ, α,β → z,z

ξ cos θij, α,β → x,z

ξ sin θij, α,β → y,z
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For an isolated sheet, the transformation of px and py orbitals is even under reflection
(inversion) though the sheet, while that of pz orbitals is odd. Consequently, pz does not
mix with the other two. However, this symmetry is broken for a surface, where the surface
potential V (z) will induce mixing of pz with the planar orbitals. Actually, the matrix
element 〈pz|V

∣∣px,y 〉 = ξ is essentially a measure of the gradient of the surface potential,
playing the role of ∂V/∂z in the free 2D free electron model.

Next, we need to consider the intratomic SOC experienced by the p states, namely

Hsoc = α L · S = α

2

[
L+σ− + L−σ+ + Lzσ z

]
.

In the basis |px ↑〉 , |px ↓〉 ,
∣∣py ↑〉 , ∣∣py ↓〉 , |pz ↑〉 , |pz ↓〉 , we obtain

Hsoc = α

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 1
i 0 0 0 0 1
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
which shows that SOC of ↑ and ↓ spins occurs in the px and py states only – the 2 × 2
block of zeros in the lower-right corner of the matrix represents SOC in the pz orbitals.
Thus, if the px and py states were not included, there would be no effect of SOI on the
surface states of interest, namely, pz-derived ones.

The lowest band around the �-point is mainly of pz character. We shall therefore limit
our analysis to the Hilbert subspace spanned by the pz-like bands. To focus on these
bands and to incorporate effective SOI contributions, we need to include virtual transitions
involving px and py bands, to second order in the coupling. We shall use the method of
projected resolvent, described in the following, to determine the effective SOI in the pz

derived surface states.

Method of Projected Resolvent and Effective Hamiltonians
In many cases, we are interested in the physics of a low-energy Hilbert subspace that
is well separated in energy from its complementary space. A useful method to integrate
out the irrelevant complementary subspace states and obtain an effective Hamiltonian
for the states of interest starts with the system’s resolvent. The resolvent (E − H)−1

is just the Laplace transform of the time-evolution operator and hence contains all
relevant information. We focus on the projected resolvent P(E − H)−1P , where P

is the projector of the low-energy sector. To determine this projection, we start with the
following partitioning of the matrix E −H

E −H =
(
E − PHP PHQ

QHP E −QHQ

)
=
(
A B

C D

)
,
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where Q = I− P . After some algebraic manipulations, we find(
A B

C D

)−1

=
( (

A− BD−1C
)−1 −A−1B

(
D − CA−1B

)−1

−D−1C
(
A− BD−1C

)−1 (
D − CA−1B

)−1

)
.

Thus, we write

P
1

E −HP = P

(
E − PHP PHQ

QHP E −QHQ

)−1

P

= 1

E − PHP − PHQ
1

E −QHQ
QHP

, (4.32)

which yields the effective Hamiltonian

Heff = PHP + PHQ
1

E −QHQ
QHP (4.33)

This method is very useful in constructing effective Hamiltonians for low-energy Hilbert
subspaces.

In the present case, we are interested in the low-lying pz bands in the vicinity of the �-
point. Thus, we focus on the projected resolvent P(E−H)−1P , with P = |pz ↑〉 〈pz ↑|+
|pz ↓〉 〈pz ↓|. The matrices of interest are

PHP =
(
ε
(0)
z − hπ(k) 0

0 ε
(0)
z − hπ(k)

)

hπ(k) = 2ηπ

(
cos(kx)+ cos

(√
3

2
ky + 0.5kx

)
+ cos

(√
3

2
ky − 0.5kx

))

PHQ =
(
a(k) a(k) b(k) b(k)
b(k) b(k) a(k) a(k)

)
a(k) = 2iξ

(
sin(kx)+ sin

(√
3

2
ky + 0.5kx

)
+ sin

(√
3

2
ky − 0.5kx

))

b(k) = iα/2+ 2iξ

(
sin(kx)+ sin

(√
3

2
ky + 0.5kx

)
+ sin

(√
3

2
ky − 0.5kx

))
.

For the region of small wavevectors around the �-point, we use the approximations
cos(x) ≈ 1−x2/2, sin(x) ≈ x. We also setE ≈ ε

(0)
z (k = 0) andQHQ ≈ Qε

(0)
x,y (k = 0).

We carry out this procedure to second order in α, ξ and k, and arrive at

Heff =

⎛⎜⎜⎝−6ηπ +
(

3

2
ηπ + 9ξ2

ησ

)
k2 −6iαξ

ησ
(kx − iky)

6iαξ

ησ
(kx − iky) −6ηπ +

(
3

2
ηπ + 9ξ2

ησ

)
k2

⎞⎟⎟⎠ .
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We are now able to make contact with the free electron model discussed previously. The
diagonal term is the free electron model, with an effective mass determined by ηπ . The
off-diagonal contribution is nothing but the Rashba term, and the parameter αR can now
be identified as αR = 6αξ/ησ . We see explicitly that the spin–orbit splitting of the lowest
energy band depends on the atomic spin–orbit parameter α as well as the surface potential
gradient, represented by the parameter ξ .

4.4.2 Two-Dimensional Electron Gas in Heterojunctions

The ability to confine electrons in 2D is important not only for studying fundamental
physics, but also for electronic applications. For example, a two-dimensional electron gas
has extremely long electron mean-free paths, almost achieving ballistic electronic motion.

What is nowadays used for this purpose are interfaces of lattice-matched materials
such as between GaAs and GaxAl1−xAs; see Figure 4.18. The Fermi energy in wide-gap
GaxAl1−xAs is higher than in GaAs, so that electrons will migrate toward the GaAs layer
and leave behind positively charged ions (donors). This leads to a formation of an interfacial
charge distribution where the ensuing electrostatic potential brings about band bending, as
shown in Figure 4.19, and an electron confining potential emerges perpendicular to the
interface, a 1D quantum well. The carrier concentrations in the 2D gas vary between
2× 1011 cm−2 to 2× 1012 cm−2.

EF

Figure 4.18 Heterojunction of Gax Al1−xAs-GaAs.

EF

EC

EV

EF

EF
EC

EV

Figure 4.19 Fermi energies before, (a), and after, (b), junction formation. EF s lineup after charge
transfer has taken place.
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SOC Mechanisms in 2DEG

We can now surmise that there are two microscopic spin–orbit interaction mechanisms for
a 2DEG in a heterojunction QW:

1. BIA, arising from lack of inversion symmetry in the bulk of the semiconductor crystal,
and described by a Dresselhaus term

2. SIA, due to structural inversion asymmetry of the quantum well confining potential, put
forward by Rashba and Bychkov

Both types of SOI result in spin splitting of conduction subbands in III-V semiconductor
QW without a magnetic field.

Dresselhaus BIA Spin–Orbit Coupling

In order to gain insight in the effect of the Dresselhaus spin–orbit interaction in heterojunc-
tions with zincblende structure, we start from the Dyakonov–Perel spin-orbit Hamiltonian
for zincblende crystals in (4.27):

H3D
D = γD

[
px

(
p2
y − p2

z

)
σx + py

(
p2
z − p2

x

)
σy + pz

(
p2
x − p2

y

)
σz

]
.

To obtain the spin–orbit Hamiltonian in two-dimensional systems, we integrate over the
growth direction. For a heterojunction grown along the (001)-direction, 〈pz〉 = 0, while〈
p2
z

〉
is heterostructure dependent but a fixed number. The Dresselhaus Hamiltonian then

reduces to

H2D,(001)
D = γD

[
−px

〈
p2
z

〉
σx + py

〈
p2
z

〉
σy + px p

2
y σx − py p

2
x σy

]
.

The first two terms constitute the linear Dresselhaus Hamiltonian, and the last two form
the cubic Dresselhaus Hamiltonian. Usually, the latter has much smaller strength, since〈
p2
z

〉 � p2
x, p

2
y due to the strong confinement along z. We then retain

H2D,(001)
D = β

[
−px σx + py σy

]
, (4.34)

where β depends on material properties and on
〈
p2
z

〉
. It follows from (4.34) that the effective

magnetic field that couples to the spin is aligned with the momentum for motion along
(010), but is opposite to the momentum for motion along (100), as shown in Figure 4.20(a).

Rashba SIA Spin–Orbit Coupling

The gradient of the inversion asymmetric confining potential dominates, giving rise to an
electric field along ẑ = (0,0,1). Thus, for electrons propagating in the 2DEG extended in
the xy-plane, the Rashba Hamiltonian takes the form

HR = h̄

(2m0c2)2
∇V · p×σ

= h̄κR

m

(
py σx − px σy

)
.
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px

py

px

py

Figure 4.20 The red arrows indicate the orientation of the effective magnetic field acting on the
electron spin as a result of (a) the Dresselhaus and (b) the Rashba spin–orbit interaction when the
electron travels through a AlGaAs/GaAs heterojunction with momentum p.

Here the effective magnetic field is always orthogonal to the momentum, as shown in
Figure 4.20(b). The parameter κR typically depends on the electric field E = ∇V in the
z-direction! Therefore the Rashba SO coupling can be modulated by an external field.

What the Rashba- and Dresselhaus-type SO couplings have in common is that they can
cause splitting of otherwise degenerate energy levels at each k. From Figure 4.20, we see
that the Rashba and Dresselhaus contributions add up for motion along the (110) direction
and oppose each other along (1̄10), giving rise to an anisotropic spin–orbit interaction.

Exercises

4.1 Consider the k·p expansion of the Hamiltonian, in the absence of spin–orbit coupling:

H = p2

2me

+ V (x)+ h̄2k2

2me

+ h̄

me

k · p.

We need to construct an effective Hamiltonian for the valence band in GaAs, treating
the last term perturbatively and limiting the lattice-periodic basis set to the s-like
function of conduction band minimum and the triply degenerate p-like valence band
maximum functions.

(a) Based on the transformation of the momentum operator p, the s-like and the
p-like functions under inversion, which matrix elements 〈i| p |j〉 are nonzero?
(i,j = s and px,py,pz states)

(b) Use the perturbation expression

Hij =
(
Ep + h̄2k2

2me

)
δij + h̄2

m2
e

∑
αβ

〈i|pα |s〉 〈s|pβ |j〉
Ep − Es

to construct the effective the 3×3 Hamiltonian matrix for the valence band along
a general direction k. Take Ep = 0 and Es = Eg at k = 0.

(c) Obtain the dispersion of the valence bands along the 	,�, and � directions.
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4.2 Repeat problem (1) in the presence of SOC, where the k · p Hamiltonian now reads

H = p2

2me

+ V (x)+ h̄2k2

2me

+ h̄

me

k ·π +α (σ ×∇V ) · p
π = p+ α (σ ×∇V ) .

In the presence of SOC, spin has to be included in the basis set, and the lattice-
periodic basis set is expanded to eight functions. However, the s-like states remain
unaffected.

(a) Starting with the � = 1 spherical harmonics, construct the spinors for L + S,
j = 3/2, 1/2. Express your results in terms of px, py , and pz.

(b) Based on the transformation of π transform under inversion, which matrix ele-
ments 〈i|π |j〉 are nonzero?

(c) Ignoring SOC, construct the 6 × 6 Hamiltonian matrix and find the
eigenenergies.

(d) Now add the spin–orbit coupling. Show that the matrix H is diagonalized at
k = 0, and calculate the energy gap opened by the spin–orbit coupling, using

〈i| [(∇V )× p]j |k〉 = 	0εijk; ijk = xyz.

(e) The spin–orbit coupling opens a gap between j = 3/2 and j = 1/2 terms in
H′ij . Assuming |k| is small enough, the matrix elements that couple j = 3/2 and
j = 1/2 are negligible, and the 6×6 matrix reduces to a 4×4 and a 2×2 matrix.
Calculate the elements in the 4×4 matrix (remember it is hermitian), diagonalize
it, and find the dispersion and the masses of the heavy hole and light hole.

4.3 Consider chiral behavior of light and heavy holes:

In the valence band, the “spin” of light and heavy holes is tightly bound to their
momentum. This has many interesting consequences, particularly where external
forces can mix the light- and heavy-hole states. Here, we consider reflections from
an ideal flat potential wall.

(a) What happens to a heavy hole with helicity +3/2 (J ||p)?
(b) Now consider the case of an arbitrary angle of incidence θ . What will be the

composition of the reflected state?

4.4 Consider two-dimensional electron gas:

The dimensionality of a system can be reduced by confining the electrons in certain
directions. Consider an electron gas in an external potential

V =
⎧⎨⎩0 for |z| < d/2

V0 for |z| > d/2

1. What is the density of states as a function of energy for V0 = ∞? (Discuss what
happens at low and high energies.) Assume d = 100Å.
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2. Show that the chemical potential of the two-dimensional electron gas is given by

μ(T ) = kBT ln

(
exp

[
π nh̄2

mkBT

]
− 1

)

for n electrons per unit area.
3. If V0 is finite, up to what temperatures can we consider the electrons to be two-

dimensional?
4. If we can produce a potential of 100 meV and reach a temperature of 20 mK, what

is the range of thicknesses feasible for the study of such two-dimensional electron
gas?

4.5 Derive an expression for the density of states in the presence of the Rashba
interaction.

4.6 Consider the coexistence of the Rashba and Dresselhaus mechanisms in a heterojunc-
tion quantum well. Derive the dispersion relation for the 2DEG and the corresponding
eigenfunctions.

4.7 Consider the case where the Dresselhaus and Rashba SOI are of equal strength, and
a persistent spin helix is predicted.

(a) Express the sum of the SOI part of the Hamiltonian in terms of kx + ky and
σx − σy .

(b) Express the Hamiltonian in terms of k± = (kx ± ky)/
√

2.
(c) Now obtain an expression for the total Hamiltonian under the global spin rotation

via the unitary transformation

U = 1√
2

[
1+ i√

2

(
σx + σy

)]
and determine its dispersion.

4.8 Consider the intratomic spin–orbit coupling experienced by the p states

Hsoc = α L · S = α

2

[
L+σ− + L−σ+ + 2Lzσ z

]
.

Show that

Hsoc = α

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −i 0 0 1
0 0 0 i −1 0
i 0 0 0 0 −i
0 −i 0 0 −i 0
0 −1 0 i 0 0
1 0 i 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
in the basis |px ↑〉 , |px ↓〉 ,

∣∣py ↑〉 , ∣∣py ↓〉 , |pz ↑〉 , |pz ↓〉.
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4.9 Consider a tight-binding model with Rashba-type spin–orbit interaction.
Suppose there is a tight-binding Hamiltonian for electrons on a two-dimensional
square lattice (lattice constant a a = 1) with the Rashba spin–orbit interaction
(h̄ = 1):

H = −t
∑
〈n,n′〉σ

(
|nσ 〉 〈n′σ ∣∣+ hc

)
+ αR

∑
nαβ

(
i |nα〉 σαβx 〈(n+ y)β| − i |nα〉 σαβy 〈(n+ x)β| + hc

)
,

where t is the electronic hopping parameter and αR the strength of the Rashba interac-
tion. σx,y are the Pauli matrices. n indexes the lattice sites,

〈
nn′
〉
indicates summation

over nearest neighbors, while n + x, n + y denotes the nearest neighbor of site n in
the x, y directions.

(a) Show that the two electronic bands (the upper and lower Rashba bands) have
dispersions given by

εpm = −2t
[
cos(kx)+ cos(ky)

]± 2αR

√
sin2(kx)+ sin2(ky)

with corresponding eigenvectors

ψ±k =
1√
2

⎡⎣φk↑ ± sin(ky)− i sin(kx)√
sin2(kx)+ sin2(ky)

⎤⎦ .

(b) What is the ground-state energy ε0 (the dispersion minima of ε−(k) and what is
its degeneracy? What are the locations of these minimum points in the Brillouin
zone? By expanding ε−(k) around the band minima, show that the ratio of the
effective mass (in the presence of spin–orbit interaction) and the bare band mass
m0 = 1/4t is given by

mSO

m0
= 1√

1+ α2
R

2t2

.
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Linear Response and the Dielectric Function

5.1 Introduction

In order to access the physical properties of a system, one has to act on it with some
external probe and observe how the system would respond. External probes include beams
of photons, electrons, neutrons, atoms, and sound. In this chapter, we will present a general
formalism that describes the interaction of an external probe with a material system and
derive general forms for the system response function. The formalism assumes that the
probe interaction is weak so that a linear approximation can be invoked. The resulting
response can then be defined in terms of a linear susceptibility. The requirement that the
response satisfies causality, that is, the response cannot precede the action producing it,
is shown to lead to a relation between the real and imaginary parts of the susceptibility
known as the Kramers–Krönig relation. As important applications to this formalism, we
will present a treatment of electrical transport as expressed in the Kubo formula for electric
conductivity, and use it to derive the Hall conductivity. We conclude this chapter by focus-
ing on the dielectric function and the quantum mechanical treatment of the interaction
of a material system with photons, which is generally known as the optical properties of
the system.

5.2 Linear Response

Mathematically, the probe action is implemented by adding a time-dependent perturba-
tion term, δH(t), to the originally unperturbed Hamiltonian H0 representing the isolated
system, namely

H = H0 + δH(t). (5.1)

The presence of the time-dependent perturbing term will induce a corresponding term in
the density operator

ρ(t) = ρ0 + δρ(t). (5.2)

146
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We now introduce the important assumption that the action of the perturbing field on the
system is nondissipative, which means that the production of entropy, or Joule heat, is
negligible.1 The equation of motion of the density operator gives

ih̄
dρ(t)

dt
= ih̄

dδρ(t)

dt
= [H, ρ(t)]

= [H0, δρ(t)]+ [δH(t), ρ0]+ [δH(t), δρ(t)] , (5.3)

where we used the fact that [H0, ρ0] = 0. The approximation of linear response theory
now is to neglect the last term, which is quadratic in the perturbation. Writing (5.3) in the
interaction picture, δρI = exp

[
iH0t/h̄

]
δρ(t) exp

[−iH0t/h̄
]
, we get

ih̄
dδρI (t)

dt
= − [H0, δρI (t)]+ [H0, δρI (t)]+ [δHI (t), ρ0] = [δHI (t), ρ0] . (5.4)

Next, we adopt the scenario that the perturbation is switched on adiabatically at t = −∞,
and write

δHad = δH eηt,

where η is an arbitrary infinitesimal positive constant, to be set to zero after the calculation
is completed. A thermal bath is introduced prior to switching the perturbation on, and the
levels are populated accordingly, such that

ρ0 = 1

Z0
e−βH0 = 1

Z0

∑
n

e−βEn |φn〉 〈φn|

H0 |φn〉 = En |φn〉 , Z0 =
∑
n

e−βEn Partition function. (5.5)

The thermal bath is then removed and the perturbation switched on adiabatically
slowly, so that the wavefunctions evolve without making transitions. We should note that
δρ(−∞) = 0, so that the integration of (5.4) yields

δρ(t) = −i
h̄

e−iH0t/h̄

∫ t

−∞
dt ′
[
eiH0t

′/h̄ δH(t ′) e−iH0t
′/h̄, ρ0

]
eiH0t/h̄. (5.6)

The time-dependent part of the average value for an observable A can be expressed as

〈A(t)〉 = Tr [δρ(t) A]

= −i
h̄

Tr

[
e−iH0t/h̄

∫ t

−∞
dt ′
[
eiH0t

′/h̄ δH(t ′) e−iH0t
′/h̄, ρ0

]
eiH0t/h̄ A

]
. (5.7)

Using the cyclic invariance of the trace, Tr[AB . . . C] = Tr[B . . . CA], we obtain

〈A(t)〉 = −i
h̄

Tr

[∫ t

−∞
dt ′
[
eiH0t

′/h̄ δH(t ′) e−iH0t
′/h̄, ρ0

]
eiH0t/h̄ A e−iH0t/h̄

]
(5.8)

1 The physical interpretation of this assumption is that the external probing field is turned on so slowly that the system responds
adiabatically, that is, without making transitions to other states. More explicitly, adiabatic response means that, in the
statistical ensemble, the internal dynamics of the system follow the imposed external variation.
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Actually, a perturbation to the system is effected through the coupling of an external per-
turbing field to one or more of the system’s operators.2

For simplicity, we shall assume that the coupling is through a single operator O, which
is taken to be Hermitian, and we write

δH(t) =
∫

dxh(x,t)O(x). (5.9)

Substituting in (5.8), we obtain

〈A(t)〉 = −i
h̄

Tr

[ ∫ t

−∞
dt ′
∫

dx′ h(x′,t)

×
[
eiH0t

′/h̄O(x′) e−iH0t
′/h̄, ρ0

]
eiH0t/h̄ A e−iH0t/h̄

]
= −i

h̄

∫ t

−∞
dt ′
∫

dx′ h(x′,t)Tr
{[
O(x′,t ′), ρ0

]
A(x,t)

}
. (5.10)

Using the identity

Tr ([A,B] C) = Tr (ABC − BAC) = Tr (B [C,A]) ,

we get

〈A(x,t)〉 = −i
h̄

∫ t

−∞
dt ′
∫

dx′ h(x′,t)Tr
{
ρ0

[
A(x,t),O(x′,t ′)

] }
= −i

h̄

∫ t

−∞
dt ′
∫

dx′ h(x′,t)
〈[
A(x,t),O(x′,t ′)

]〉
0
, (5.11)

where 〈〉0 denotes thermal and quantum averages taken with respect to the unperturbed
Hamiltonian.

In this case, the interaction-picture operators become Heisenberg operators.

Moreover, because H0 is time independent, or time-translationally invariant, we find
from (5.8) that〈

A(x,t)O(x′,t ′)
〉
0 =

1

Z0
Tr
(
e−βH0 eiH0t/h̄ A e−iH0t/h̄ eiH0t

′/h̄O e−iH0t
′/h̄
)

= 1

Z0
Tr
(
e−βH0 eiH0(t−t ′)/h̄ A e−iH0(t−t ′)/h̄O

)
= 〈A(t − t ′)O(0)

〉
0

= 1

Z0
Tr
(
e−βH0 AeiH0(t

′−t)/h̄O e−iH0(t
′−t)/h̄

)
= 〈A(0)O(t ′ − t))

〉
0 . (5.12)

2 As an example, the electric field couples to the position operator, while the vector potential couples to the momentum operator.
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Any average of pairs of Heisenberg operators only depends on the time difference.

We now define the susceptibility χ as

χ(x,x′;t − t ′) = −i
h̄


(
t − t ′

) 〈[
A(x,t − t ′),O(x′,0)

]〉
0
. (5.13)

The  function accounts for causality: Response at time t cannot precede action at time t ′.
If the system has spatial translation invariance, then

χ(x,x′;t − t ′) → χ(x− x′;t − t ′) = χ(r;τ).
We write

〈A(x,t)〉 =
∫

dt ′ χ(x− x′;t − t ′) h
(
x′,t ′
)

. (5.14)

• Time variation of any measurable quantity is obtained through the linear response
function (5.14), which is only related to averages on the unperturbed system.

• Correlations that are nonzero only for t > t ′ are known as retarded correlation
functions. They directly correspond to physically observable quantities.

Taking the spatial/temporal Fourier transform of (5.14), we get

〈A(q,ω)〉 = χ(q,ω) h(q,ω) (5.15)

χ(q,ω) =
∫

dr
∫ +∞

0
dτ ei(q·r−ωτ) 〈A(r,τ )O(0,0)〉0 .

5.2.1 Causality and the Kramers–Krönig Relation

We will now explore the analytical properties of the response function in the frequency
domain. In the following, we drop the spatial dependence of the response function, which
is not relevant for what we are going to demonstrate. The response of an operator A in the
presence of an external probe that couples to O is defined by (5.14) and (5.15).

As we stated previously, because of causality the response function, or susceptibility,
vanishes for τ < 0. With

χ(τ) =
∫ ∞
−∞

dω e−iωτ χ(ω), (5.16)

we analytically continue in the complex frequency plane to χ(z). If we assume, as it is
always the case, that χ(z) does not diverge exponentially for |z| → ∞, we can regard (5.16)
as the result of a contour integral

χ(τ) =
∮

dz e−izτ χ(z), (5.17)
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Figure 5.1 Integration contour.

where the contour is in the upper half plane for τ < 0 and in the lower for τ > 0. The
integral captures all poles lying inside the contour.

Since χ(τ) = 0 for τ < 0, it follows that as consequence of causality, χ(z) is
analytic in the upper half plane.

We consider the contour depicted in Figure 5.1. Since there are no poles enclosed by the
contour, the integral is zero: ∮

C

dz
χ(z)

ω − z
= 0. (5.18)

Yet, because the integrand vanishes when |z| → ∞, this integral is also equal to the line
integral along the lower edge, hence

0 =
{∫ ω−ε

−∞
+
∫
ω+ε

}
dω′

χ(ω′)
ω − ω′

+
∮
z=ω+ε exp[iθ], θ∈[π,0]

dz
χ(z)

ω − z

= P
∫ ∞
−∞

dω′
χ(ω′)
ω − ω′

− i

∫ 0

π

dθ χ
(
ω + ε eiθ

)
,

where P denotes the principal value of the integral. In the limit ε → 0, the preceding
expression simplifies into

P
∫ ∞
−∞

dω′
χ(ω′)
ω − ω′

− i π χ(ω) = 0. (5.19)

Setting

χ(ω) = χ1(ω)+ iχ2(ω),

Equation 5.19 implies that

χ2(ω) = P
∫ ∞
−∞

dω′
χ1(ω

′)
ω − ω′

χ1(ω) = −P
∫ ∞
−∞

dω′
χ2(ω

′)
ω − ω′

, (5.20)

which constitute the Kramers–Krönig relations.
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Consequently, we find that because of causality, the real and imaginary parts of the
response function are not independent.

5.2.2 Spectral Representation

In the spectral representation, the response function is expressed in terms of a complete set
of eigenkets of the Hamiltonian. As we will see later, this picture actually brings to light
the physical aspects of the susceptibility.

We begin with (5.5):

ρ0 = 1

Z0

∑
n

e−βEn |φn〉 〈φn| , H0 |φn〉 = En |φn〉 .

It is simply sufficient to know that such a complete basis set exists without having to know
it explicitly. Using (5.13),

χ(τ) = −i
h̄

 (τ)
〈[
O(x,τ ), A(x′,0)

]〉
0
,

we get

χ(τ) = −i
h̄

 (τ)
1

Z0
Tr
[
e−βH0

(
A(τ)O(0)−O(0)A(τ)

)]
= −i

h̄
 (τ)

1

Z0

∑
n

〈
φn

∣∣∣e−βH0 (A(τ)O(0)−O(0)A(τ))
∣∣∣φn〉

= −i
h̄

 (τ)
1

Z0

∑
n,m

[
〈φn| e−βH0 A(τ) |φm〉 〈φm|O(0) |φn〉

− 〈φn| e−βH0 O(0) |φm〉 〈φm|A(τ) |φn〉
]
, (5.21)

We obtain in the Schrödinger picture

χ(τ) = −i
h̄

 (τ)
1

Z0

∑
n,m

[
e−βEn ei(En−Em)τ/h̄ 〈φn|A |φm〉 〈φm|O |φn〉

−e−βEn ei(Em−En)τ/h̄ 〈φn|O |φm〉 〈φm|A |φn〉
]
, (5.22)

Taking the Fourier transform with respect to τ ,

χ(ω) =
∫ ∞

0
dτ ei(ω+iη)τ χ(τ )

= −1

h̄Z0

∑
n

e−βEn
∑
m

[ 〈φn|A |φm〉 〈φm|O |φn〉
ω − ωmn + iη

− 〈φn|O |φm〉 〈φm|A |φn〉
ω + ωmn + iη

]
=
〈〈
O
∣∣∣A〉〉

ω
, (5.23)

where ωmn = (Em − En)/h̄.
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Alternatively, interchanging the indices in the second term of (5.22), we get

χ(τ) = −i (τ)

h̄ Z0

∑
n,m

ei(En−Em)τ/h̄ 〈φn|A |φm〉 〈φm|O |φn〉
[
e−βEn − e−βEm

]
(5.24)

Taking the Fourier transform

χ(ω) =
∫

dτ ei(ω+iη)τ χ(τ )

= −i
h̄

∫ +∞
0

dτ ei(ω+iδ)τ

× 1

Z0

∑
n,m

ei(En−Em)τ/h̄ 〈φn|A |φm〉 〈φm|O |φn〉
[
e−βEn − e−βEm

]
= 1

Z0

∑
n,m

〈φn|A |φm〉 〈φm|O |φn〉 e−βEn − e−βEm

h̄ω + En − Em + iη
. (5.25)

Using the identity

1

x + iη
= P 1

x
− iπ δ(x),

we obtain an expression for χ2:

χ2(ω) = − π

Z0

∑
n,m

〈φn|A |φm〉 〈φm|O |φn〉
[
e−βEn − e−βEm

]
δ (h̄ω + En − Em)

= − π

Z0

(
1− e−βh̄ω

) ∑
n,m

〈φn|A |φm〉 〈φm|O |φn〉 e−βEn δ (h̄ω + En − Em) .

This last form becomes transparent if we consider energy absorption due to the perturbation
coupling to O, in which case A = O and we write

χ2(ω) = − π

Z0

(
1− e−βh̄ω

) ∑
n,m

|〈φm|O |φn〉|2 e−βEn δ (h̄ω + En − Em) . (5.26)

We may separate this expression into

Fn =
∑
m

|〈φm|O |φn〉|2 δ (h̄ω + En − Em),

which is just Fermi’s golden rule for the perturbation induced transition rate from initial
state |φn〉 to all final states |φm〉 and ∑

n

e−βEn Fn,

which involves the occupation probability of the initial state.



5.2 Linear Response 153

5.2.3 Kubo Formula for Electrical Conductivity

The conductivity tensor σαβ(ω) measures the current linearly induced by an electric field:

jα = σαβ Eβ .

The identification of the operator O that couples to the external electric field E depends on
the source of the field:

1. For a scalar potential, E = ∇φ, and the position operator x can be identified with O,
giving rise to the perturbation

δH = eE · x.

The operator A with the current operator −e v/
, where 
 is the system’s volume.
An important detail must be stressed at this point. The macroscopic field inside the
sample includes, by definition, screening effects due to the electronic system, while
the perturbation entering via the O operator is the bare, or unscreened, one – for the
time being, and for pedagogical reasons, we will simply ignore the screening issue.
Substituting in (5.23) for O and A, we identify the electrical conductivity tensor as

σαβ(ω) = −ie
2




〈〈
vα

∣∣∣xβ〉〉
ω

.

Denoting the ground state as |φ0〉, and using the identity

ih̄ 〈φ0 |v|φn〉 = ih̄ 〈φ0 |ẋ|φn〉 = 〈φ0 |[x,H]|φn〉 = (En − E0) 〈φ0 |x|φn〉 , (5.27)

we obtain the Kubo formula for the conductivity at T = 0, namely,

σαβ(ω) = ie2

h̄


∑
n 
=0

1

ω0n

[ 〈φ0| vα |φn〉 〈φn| vβ |φ0〉
ω − ω0n + iη

− 〈φ0| vβ |φn〉 〈φn| vα |φ0〉
ω − ωn0 + iη

]
,

(5.28)

so that the conductivity can be identified with the velocity–velocity correlation function.
2. In the case of a vector potential A(x,t), we have

E = −1

c

∂A
∂t
= iω

c
A

giving rise to the perturbation

δH = e

mec
A · p = − ie

meω
E · p.

Recalling that j = Imψ∗∇ψ/me, we write j = p/me, and the perturbation becomes

δH = − ie
ω

E · j ⇒ σαβ(ω) = −ie
2

ω


〈〈
jα

∣∣∣jβ〉〉
ω

.
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VH

Figure 5.2 Schematic picture of the quantum Hall effect system: a magnetic field is applied to a planar
electron system normal to the plane (along the z-direction), while an electric field is applied along
the x-direction. This configuration leads to the development of a Hall current along the y-direction.

The Hall Conductivity

From the configuration of the Hall effect schematic shown in Figure 5.2, we write the Hall
conductance as

lim
ω→0

σxy(ω) = lim
ω→0

−ie2


ω

∑
nm

f (En)

[ 〈n| vx |m〉 〈m| vy |n〉
h̄ω + iη + En − Em

+ 〈n| vy |m〉 〈m| vx |n〉
−h̄ω − iη + En − Em

]
.

In the limit ω→ 0,

1

±h̄ω + En − Em

= 1

En − Em

(
1∓ h̄ω

En − Em

)

σxy(ω→ 0) = −ie
2


ω

∑
nm

f (En)

[ 〈n| vx |m〉 〈m| vy |n〉 + 〈n| vy |m〉 〈m| vx |n〉
En − Em

+ h̄ω
−〈n| vx |m〉 〈m| vy |n〉 + 〈n| vy |m〉 〈m| vx |n〉

(En − Em)2

]
. (5.29)

From the identity (5.27), we have

〈n| vx |m〉 = (En − Em)

ih̄
〈n| x |m〉

and thus

〈n| vx |m〉 〈m| vy |n〉 + 〈n| vy |m〉 〈m| vx |n〉

= (En − Em)

ih̄

(
〈n| x |m〉 〈m| vy |n〉 − 〈n| vy |m〉 〈m| x |n〉

)
substituting in the first term of (5.29), we find that∑

m

〈n| x |m〉 〈m| vy |n〉 − 〈n| vy |m〉 〈m| x |n〉
En − Em

= 1

ih̄
〈n| x vy − vy x |n〉 = 0

and we obtain

σxy(ω→ 0) = ie2h̄




∑
nm

f (En)

[ 〈n| vx |m〉 〈m| vy |n〉 − 〈n| vy |m〉 〈m| vx |n〉
(En − Em)2

]
(5.30)
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Using the relations

H(k) = e−ik·x H eik·x

⇒ H(k)
∣∣un,k〉 = [ 1

2m

(
p+ h̄ k− e

c
A
)2 + V

] ∣∣un,k〉 = En(k)
∣∣un,k〉

v = ẋ = i

h̄

[
H, x
]

⇒ v(k) = e−ik·x
i

h̄

[
H, x
]
eik·x = i

h̄

[
H(k), x

]
= ∇kH(k)

and setting k = (k1,k2), we write

(vx)mn =
〈
um,k

∣∣∣∣∂H(k)
∂k1

∣∣∣∣ un,k〉
but

∇k H(k)
∣∣un,k〉+H(k)∇k

∣∣un,k〉 = ∇k En(k)
∣∣un,k〉+ En(k)∇k

∣∣un,k〉
⇒ 〈um,k∣∣∇k H(k)

∣∣un,k〉 = (En − Em)
〈
um,k
∣∣ ∇k un,k

〉
so that

(vx)mn =
(
En(k)− Em(k)

) 〈
um,k

∣∣∣∣∂un,k∂k1

〉
= −
(
En(k)− Em(k)

) 〈∂un,k
∂k1

∣∣∣um,k〉 .

Substitution in (5.30) leads to

σxy(ω→ 0) = e2

ih̄


∑
Em<EF<En

(〈
∂un,k

∂k1

∣∣∣um,k〉 〈um,k∣∣∣∂un,k
∂k2

〉

−
〈
∂un,k

∂k2

∣∣∣um,k〉 〈um,k∣∣∣∂un,k
∂k1

〉)
(5.31)

We will show in Chapter 12 that by converting the summation into an integral, David
Thouless and coworkers were able to demonstrate the Hall current quantization in the
phenomenon of quantum Hall effect (QHE).

5.3 The Dielectric Function: Linear Response to Electromagnetic Perturbations

In this section, we shall explore the various microscopic aspects of the linear response to
scalar and vector electromagnetic fields, other than transport properties. Our discussion of
slowly time-varying scalar potentials is mainly intended to deal with ionic perturbations
in molecular and solid systems. Our analysis of fields associated with the vector potential
considers mainly the interaction of electromagnetic waves (photons) with crystalline
material systems.
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5.3.1 Macroscopic Properties

In a regular course on electromagnetism, the electronic structure is treated in a very crude
and approximate way. The assumption is that a macroscopic external electric field induces
a polarization P counteracting the external field. The external field is given by the displace-
ment D, which arises from external charges. The external field and the polarization together
produce the resultant electric field inside the solid. The relations between the different
electromagnetic quantities are defined by Maxwell’s equations:

∇×H = 4π j
c
+ 1

c

∂D
∂t

,

∇ · D = 4πρfree,

∇×E = −1

c

∂B
∂t

, (5.32)

where

D =←→ε E, B = μH. (5.33)

←→ε is a general dielectric tensor, with constant entries, and μ the magnetic permeability.
We shall deal with nonmagnetic systems and set μ = 1. We note that

E =←→ε −1 D = D− 4π P

∇·E = ∇·D− 4π ∇· P
= ρfree + ρind. (5.34)

ρfree gives rise to the electric displacement, while the polarization P results from ρind.
Linear response defines the relation

P = χ E ⇒ ε = 1+ 4π χ, (5.35)

where χ is known as the electric susceptibility. This quantity is supposed to represent all
the electronic structure of the solid.

In contrast, when considering microscopic details, we zoom in at the length scale of
lattice spacing where the fields and susceptibilities become functions of position rather
than constants.

5.3.2 The Microscopic Longitudinal Dielectric Function

For simplicity, we consider an isotropic system consisting of a large number of electrons
and subject to a external scalar potential Vext (x,t), slowly varying in time. The electric
field is given by E = −∇Vext, ∇· E 
= 0. It is a longitudinal field, in the sense that for a
traveling-wave perturbation, E lies along the wavevector q.

The applied external potential will then induce a change in the electronic density distri-
bution. For small Vext(x,t), the change in electronic density δn can be expressed in linear
response theory as
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δn(x′,t) = −e
∫

dx′′ χ(x′,x′′;t − t ′) Vext (x′′,t ′),

which in turn will give rise to an induced potential

Vind(x,t) = −
∫

dx′
e2

|x− x′| δn(x
′,t)

so that the total potential that can be measured by a probe at a point x is

Vtot(x,t) = Vext(x,t)+ Vind(x,t)

= Vext(x,t)−
∫

e2

|x− x′| χ(x
′,x′′;t − t ′) Vext (x′′,t ′) dx′ dx′′

=
∫

ε−1(x,x′′) Vext(x′′) dx′′, (5.36)

where both χ and ε−1 are nonlocal functions. ε−1 is the inverse longitudinal dielectric
function. We have defined a response function ε−1 in terms of the applied and resultant
potentials, and we can also define the function ε such that∫

ε−1(x,x′) ε(x′,x′′) dx′ =
∫

ε(x,x′) ε−1(x′,x′′) dx′ = δ(x− x′′), (5.37)

which gives the applied potential in terms of the resultant one. According to (5.13),

δn(x,t) = −i
∫ t

−∞
dt ′
∫

dx′ Tr
{
ρ0

[
n̂(x,t − t ′), n̂(x′)

]}
Vext(x′,t ′), (5.38)

where n̂ is the density operator. Taking temporal Fourier transform

δn(x,ω) = −i
∫ ∞

0
dτ eiωτ

∫
dx′
〈[
n̂(x,τ ), n̂(x′)

]〉
0
Vext(x′,ω). (5.39)

For the sake of simplicity, we shall consider a spatially translation invariant system and
assume

Vext(x′,ω) = δV (q,ω) eiq·x
′
.

We get

δn(q,ω) =
∫

dx eiq·x δn(x,ω) = −i
∫ ∞

0
dτ eiωτ

〈[
n̂(q,τ ), n̂(−q)

]〉
0
δV (q,ω)

= χ(q,ω) δV (q,ω). (5.40)

Using the spectral representation of χ given in (5.23), setting T = 0, where state occupa-
tion becomes δ0,n, and noting that n̂(−q) = n̂†(q), we get

χ(q,ω) = −1

h̄

∑
m

|〈φ0| n(q) |φm〉|2
ω − ω0m + iη

, (5.41)
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where |φ0〉 is the ground state. |φ0〉 and |φm〉 are many-electron wavefunctions. We may
write the electron density operator as

n̂(x) =
∑
i

δ(x− xi ) ⇒ n̂(q) =
∫

dx eiq·x n(x) =
∑
i

eiq·xi ,

a sum of single particle operators, where xi is the position of electron i, and the sum
includes all electrons. We can then write

χ(q,ω) = −1

h̄

∑
m,i

∣∣〈φ0| eiq·xi |φm〉
∣∣2

ω − ω0m + iη
. (5.42)

Taking the spatial/temporal Fourier transform of (5.36), we get

δVtot(q,ω) = δV (q,ω)+ δVind(q,ω) = ε−1(q,ω) δV (q,ω), (5.43)

where ε−1 is the inverse longitudinal dielectric function. δVind is due to δn, satisfying the
Poisson equation

∇2 δVind = −4π e2 δn

and

δVind(q,ω) = 4π e2

q2
δn(q,ω) = −4π e2

q2
χ(q,ω) δV (q,ω). (5.44)

Hence, we have

ε−1(q,ω) = 1− 4π e2

q2
χ(q,ω). (5.45)

5.3.3 Transverse Dielectric Function and Optical Transitions

We now turn to transverse electromagnetic waves and the domain of optical spectroscopy.
Here we shall interpret optical spectroscopy within the quantum mechanical theory of
electronic band structures, and give a detailed description of the concepts of interband and
intraband transitions. However, we should note that the wavelength of light used in optical
spectroscopy3 is λ > 1,000Å, while the BZ dimensions are of the order of an inverse
Angstrom. Consequently, |q| = 2π/λ is very small and in some cases it will be set to zero.

We write the crystalline Bloch eigenstates in the absence of light as

H0 |kn〉 = Ekn |kn〉
and the external transverse vector potential A (∇·A = 0) and electric field E as

A(x,t) = A0 e
i(q·x−ωt), E = −1

c

∂A
∂t

.

3 In infrared spectroscopy, λ can be several microns.
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The perturbation arising from the interaction of light with the material system is then
given by

δH = − ieh̄

mec
A · p = −eh̄

ωme

E · p = −eh̄E0

ωme

ε· p e−ik·x, (5.46)

where ε is the polarization vector.
At T = 0, the expression (5.26) for χ2 becomes

χ2(ω) = πh̄2e2

m2
eω

2

∑
k,m
k′,n

∣∣∣〈k′n∣∣ ε· p e−ik·x |km〉∣∣∣2
×
(
f (km)− f (k′n)

)
δ (h̄ω + Ekm − Ek′n)

= πe2h̄2

m2
eω

2

∑
k,m
k′,n

∣∣∣ε· 〈k′n∣∣ eiq·x ∇ |km〉∣∣∣2
×
(
f (km)− f (k′n)

)
δ (h̄ω + Ekm − Ek′n) , (5.47)

where f is the Fermi occupation number.
Now we evaluate the matrix element

〈
k′n
∣∣ eiq·x ∇ |km〉. With

|kl〉 = e−ik·x ukl (x) ⇒ ukl (x+ R)) = ukl (x)

∇ |kl〉 = e−ik·x (−ik+∇) ukl (x),

we obtain〈
k′n
∣∣ eiq·x ∇ |km〉 = −ik 〈k′n∣∣ km〉 +

∫
dx e−i(k−k′−q)·x u∗k′n ∇ ukm.

The first term on the right vanishes since |km〉 and
∣∣k′n〉 are orthogonal. In the second term,

we substitute x = Rj + x′, where Rj is a lattice vector∫
dx e−i(k−k′−q)·x u∗k′n ∇ ukm = e−i(k−k′−q)·Rj

∫
dx′ e−i(k−k′−q)·x′ u∗k′n ∇ ukm

This allows to write〈
k′n
∣∣ eiq·x ∇ |km〉 = 1

N

∑
j

e−i(k−k′−q)·Rj

∫
dx′ e−i(k−k′−q)·x′ u∗k′n ∇ ukm

= δk′,k+q+G

∫

c

dx u∗k′n ∇ ukm, (5.48)

where N is the number of primitive cells and 
c is the cell volume. Notice that ∇ trans-
forms like a polar vector, hence it has odd parity; this stipulates that uk′n and ukm must have
opposite parities. Transitions involving a reciprocal lattice vector G are called Umklapp and
are usually neglected.
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We then obtain

χ2(ω) =
πe2h̄2E2

0

m2
eω

2

∑
k,m,n

f (km)
(

1− f ((k+ q)n)
)
δ
(
h̄ω + Ekm − E(k+q)n

)
× ∣∣ε· 〈(u(k+q)n

∣∣ ∇ukm〉
∣∣2 . (5.49)

Intraband Transitions

In the case of metals at T = 0, a band (or several bands) is partially occupied. Hence,
empty and occupied states are infinitesimally close in momentum and energy. Because of
the smallness of q, we are then justified to use the expansions

E(k)− E(k+ q) = −q ·∇k E(k)

f (k)− f (k+ q) = − ∂f

∂E
q ·∇k E(k).

These expressions are to be used for all bands in which states straddle the Fermi energy.
At T = 0, (5.25) for χ reduces to

χ(ω) = πe2h̄2E2
0

m2
eω

2

∑
k

|ε· 〈(k+ q| ∇ |k〉|2 f (k)− f ((k+ q))
h̄ω + E(k)− E(k+ q)+ iη

(5.50)

and

∂f

∂E
= −δ(E − EF ).

For small q,

f (k)− f ((k+ q))
h̄ω + E(k)− E(k+ q)+ iη

= δ(E − EF )
q ·∇k E(k)

h̄ω − q ·∇k E(k)+ i(h̄�)

= q ·∇k E(k)|kF /h̄
ω − q ·∇k E(k)|kF /h̄+ i�

= q · vF
ω − q · vF + i�

� q · vF
ω + i�

,

where we used ∇k E(k)/h̄ = v, the group velocity, and the fact that for the light wave,
ω/q = c � vF , which translates to the following:

ω � q · vF .

We also make use of the following approximation:

1

me

〈(k+ q| eiq·r h̄∇ |k〉 � 1

me

〈(k| h̄∇ |k〉 = v.
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With these approximations, we obtain

χ(ω) = πe2h̄2E2
0

ω2(ω + i�)

∑
k,q

∣∣∣∣ε· 〈kF + q

∣∣∣∣ h̄∇me

∣∣∣∣kF 〉∣∣∣∣2 q · vF

= πe2h̄2E2
0

ω2(ω + i�)

∑
|k|=kF

|ε·vF |2 q · vF =
πe2h̄2E2

0

m2
e

CF

ω(ω + i�)
, (5.51)

which the same form as the Drude model susceptibility.

Direct Interband Transitions

We now consider excitations with finite energies, where q can be neglected, and we write

χ2(ω) =
πe2h̄2E2

0

m2
eω

2

∑
k,m,n

f (km) (1− f (kn)) δ (h̄ω − Enm(k)) |ε· 〈kn| ∇ |km〉|2 , (5.52)

where Enm(k) = En(k) − Em(k). Converting the summation over k into an integral and
setting the m and n bands to be occupied and empty, respectively, we get

χ2(ω) = πe2h̄2

m2
e

∑
m,n




(2π)3

∫

B

dk δ (h̄ω − Enm(k))
|ε· 〈kn| ∇ |km〉|2

ω2

= πe2h̄2

m2
e

∑
m,n




(2π)3

∫
dEnm

∫
S

dS
δ (h̄ω − Enm(k))
∇kEnm(k)

|ε· 〈kn| ∇ |km〉|2
ω2

= πe2h̄2

m2
e

∑
m,n




(2π)3

∫
h̄ω=Enm(k)

dS
|∇kEnm(k)|

|ε· 〈kn| ∇ |km〉|2
ω2

, (5.53)

where S is a surface of constant energy h̄ω = Enm(k), as shown in Figure 5.3. We used∫
dx g(x) δ(f (x)) =

∑
x0,f (x0)=0

∣∣∣∣df (x)dx

∣∣∣∣−1

x0

g(x0)

to define the integration in terms of energy. 1/ |∇kEnm(k)| represents the joint density
of states. Of special interest are points in the Brillouin zone where Enm(k) is stationary
and ∇kEnm(k) vanishes. At such points, called joint critical points, the denominator of the
integrand in (5.53) vanishes and especially large contributions can be made to χ2.

nE

E

Figure 5.3 Adjacent constant energy difference surfaces in reciprocal space, Emn and Emn + dE.
dkn is the normal to these constant energy difference surfaces.
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Figure 5.4 Band structures, BZs, and interband transition strengths in 0D and 1D.

This can be understood on the basis of physical considerations. Around critical points,
the photon energy h̄ω = Enm(k) is effective in inducing electronic transitions over a
relatively larger region of the Brillouin zone than would be the case for transitions about
noncritical points. The relatively large contributions to the transition probability for critical
points gives rise to structure observed in the frequency dependence of the optical properties
of solids. Critical points generally occur at high symmetry points in the Brillouin zone,
though there are exceptions. Typical cases for systems of different dimensions are shown
in Figures 5.4 and 5.5.

Indirect Interband Transitions

Indirect interband transitions are clearly observed in materials having indirect energy gaps,
as shown in the left panel of Figure 5.6. These transitions are represented by second-order
time-dependent perturbation theory, and involve two transitions |i〉 → |α〉 , |α〉 → |f 〉,
shown in the right panel of Figure 5.6.

A transition from k1m to k2n will be represented by

∑
α

∣∣∣∣ 〈k2n|Hphonon |k1α〉 〈k1α| δH |k1m〉
Eα − Em − h̄ω

∣∣∣∣2 δ (En(k2)− Em(k1)− h̄ω ∓ h̄
(q)) ,

(5.54)
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Figure 5.5 Band structures, BZs, and interband transition strengths in 2D and 3D.

Eg

kk

q

q k k–

Figure 5.6 Left: indirect gap in insulators and semiconductors. Right: phonon-assisted indirect
optical transition through an intermediate state |α〉.

where 
(q) is the phonon frequency, and q = k2 − k1; ∓h̄
 correspond to phonon
absorption/emission. The perturbation Hamiltonians are given by

Hphonon = −
∑
n

un ·∇r V (r− Rn),

where Rn are lattice vectors, and δH is given in (5.46).
As a specific example of indirect absorption edge, we will consider Si. The band-

structure of Si in the vicinity of the indirect gap 	1-�25′ is shown schematically in
Figure 5.7. Two absorption processes are shown. In process A, the electron is first
excited via a virtual transition from �25′ to an intermediate state at �15 by absorbing the
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25'

15|

|

1

5

A A

B
B

X1

X4

Figure 5.7 Schematic band structure of Si as an indirect-bandgap semiconductor, showing phonon-
assisted transitions, labeled A and B, that contribute to the indirect absorption edge. |�15〉 and |	5〉
represent intermediate states. Photon and phonon processes are shown as dashed and solid lines,
respectively.

incident photon. A second virtual transition takes the electron to the 	1 conduction band
valley state via emission of a phonon. In the final state, there is an electron in the 	1

conduction band, and a hole in the �25′ valence band state, and a phonon has been created.
A second possible phonon-assisted indirect optical transition is also shown as process B in
Figure 5.7.

Exercises

5.1 Kramers–Kronig relation

Suppose that we model the interband transitions in Ge as a step function

ε2(ω) =
⎧⎨⎩ ε� for Emin ≤ ω ≤ Emax

0 otherwise

1. Use the Kramers–Kronig relation to obtain an expression for ε1(ω) for all ω. Take
ε1 = 1 for ω = ∞ and express your answer in terms of Emin, Emax, and ε�.

2. For what photon energies does ε1(ω) exhibit structure? Is your answer physically
reasonable and why?

3. Obtain an explicit expression for ε1(0), and use this result to explain why narrow
gap semiconductors tend to have large dielectric constants at ω = 0.

5.2 The χ2(ω) expression (5.53) for direct-band transitions is proportional to the joint
DOS and |ε· 〈kn| p |km〉|2. Here, we consider a simple two-band semiconductor
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model, where the top valence and bottom conduction bands are far from other bands.
The effective mass (4.19) takes the form(

1

m∗

)
αβ

= δαβ

me

+ 2

m2
e

∣∣〈uv|pα |uc〉 〈uc|pβ |uv〉∣∣
Eg

.

Explain how the magnitude of m∗ reflect on the strength of the optical transition.
5.3 Assume that in (5.53), |ε· 〈kn| p |km〉|2 does not vary strongly with angle on a surface

of constant energy, and it can be taken outside the integral. Then the integral is just
the joint DOS.

Now consider the two-band semiconductor model of problem (2), with
dispersions

Ec(k) = Eg + h̄2k2

2m∗c
, Ev(k) = − h̄

2k2

2m∗v
.

Show that

Ec(k)− Ev(k)− h̄ω = Eg + h̄2k2

2μ
− h̄ω, μ = m∗cm∗v

m∗c +m∗v
.

and that χ2(ω) becomes

χ2(ω) = C |ε· 〈kn| p |km〉|2
(

2μ

h̄ω

)3/2 [
1− Eg

h̄ω

]1/2

.
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Phonons and Lattice Dynamics

6.1 Introduction

In the preceding chapters, we introduced the one-electron approach to obtain the electronic
structure of solids and described methods for its calculation. We also presented the theory
of linear response in the one-electron approximation. We will now apply some of these
methods to develop the phenomenological theory of lattice vibrations, known as lattice
dynamics, and describe how it can be used to calculate phonon dispersions for metals, insu-
lators, and semiconductors. We shall also present and describe the experimental methods
used to measure bulk and surface phonon dispersion curves.

In the development of the lattice dynamics method, we shall consider the lattice motion
within the Born–Oppenheimer approximation, which was outlined in the introductory
chapter. Furthermore, we shall treat the lattice displacements in the harmonic approxi-
mation.1 In lattice dynamics, the coupled equations of motion of the ions are cast as a
matrix eigenvalue problem, and the defining matrix is termed the dynamical matrix. The
contributions to the dynamical matrix are separated into direct ion–ion interaction terms,
plus valence electron–mediated effective ion–ion interaction terms. The latter terms arise
from the scattering of valence electrons from moving ions, and are usually treated up to
second-degree changes of the total electron energy in the ionic displacements.

Ionic Cores and Quantum-Mechanical Rigidity

We know that atoms contain tightly bound electrons in closed shells, together with
valence electrons, which are much less bound than their closed-shell counterparts.
Under the small perturbation arising from ionic displacements, an atomic electron
wavefunction will distort or deform as∣∣∣�(0)

n

〉
→
∣∣∣�(0)

n

〉
+
∣∣∣�(1)

〉
+ · · · =

∣∣∣�(0)
n

〉
+
∑
m
=n

∣∣∣�(0)
m

〉 Vnm

E
(0)
n − E

(0)
m

+ higher-order

terms

1 We shall expand the interatomic interaction potential up to second degree in the atomic displacements from equilibrium
positions.

166
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For the closed-shell, tightly bound electronic states,

Vnm

E
(0)
n − E

(0)
m

� 1

and their corresponding wavefunctions hardly deform! Thus, the closed-shell electrons
will move with the nucleus like a rigid body under the small perturbations produced by
their respective nuclear displacements in the solid. The combined body of the nucleus
and the closed-shell electrons are termed an ionic core. Henceforth, for the sake of
brevity, we shall refer to ion cores as ions.

In general, the presence of energy gaps endow quantum-mechanical wavefunctions
with some degree of rigidity.

6.2 Coupling of Phonons to Electrons

The one-electron Hamiltonian for a crystalline solid or a molecule in its equilibrium con-
figuration is given by

He = p2

2me

+ V (r; {R0}),

where {R0} represents the set of ionic equilibrium position vectors, and r is the electron
position vector. Here, we shall consider how the vibronic (phonon) and electronic states
couple to each other.

We start with displacing the ions by infinitesimal amounts from their equilibrium posi-
tions, and obtain the configuration {R0} + −→dR, where

−→
dR = [dR1, dR2, . . . ,dRN ] for a

system with N ions. The corresponding electron Hamiltonian becomes

He = p2

2me

+ V
(

r; {R0} + −→dR
)
� p2

2me

+ V (r; {R0})+
∑
j

∇Rj
V

∣∣∣∣
R0j

·dRj,

where j indexes the ions, and only terms linear in dRj are retained. Next, we express the
displacements in terms of normal, or symmetry-adapted, modes

Qi =
∑

αij dRj ⇒ −→
Q = α

−→
dR

as linear combinations of dRj defined by the unitary transformation matrix α. Focusing on

the last term of the Hamiltonian and dropping the arrow, we write ∇RV

∣∣∣
R0
·dR in matrix

form (
∇RV

∣∣∣
R0

)T
dR =

(
∇RV

∣∣∣
R0

)T
αT α dR =

[
α∇RV

∣∣∣
R0

]T
Q

but

α∇R = ∇Q ⇒
[
α∇RV

∣∣∣
R0

]T = [∇Q V
]T .
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The Hamiltonian takes the form

He = p2

2me

+ V (r; {R0})+
∑
i

∂V

∂Qi

Qi .

Since the quantities
∂V

∂Qi

have the same symmetry as Qi , the last term is an invariant scalar.

Electron–Phonon Coupling

For a crystalline solid, we write {R0} ⇒ {x(0)lκ } , where l denotes the primitive cell and κ

is the basis, or sublattice, index. The equilibrium position of ion lκ is defined as

x(0)lκ = Rl + ρκ,

where Rl is a primitive lattice vector and ρκ the basis vector of sublattice κ , while its
instantaneous position is

xlκ = Rl + ρκ + ulκ,

where ulκ is an infinitesimal displacement of ion lκ . The underlying symmetry of interest
here is translational lattice periodicity, which engenders the unitary transformation

uκ(q) = 1

N

∑
l

e−iq·Rl ulκ ⇒ phonons.

Applying this unitary transformation to ∇xV
∣∣
x(0)lκ

we obtain g(q;κ), the electron–phonon

coupling matrix element:

g(q;κ) =
∑
l

eiq·Rl ∇xlκ V

∣∣∣
x(0)lκ

.

Writing V in muffin-tin form

V
(

r;
{

x(0)lκ

})
=
∑
lκ

vκ

(
r− x(0)lκ

)
,

we obtain the expression

g(q;κ) = −
∑
l

eiq·Rl ∇rvκ

(
r− x(0)lκ

) ∣∣∣
x(0)lκ

.

where now we take the derivatives with respect to the electron position.

6.3 Ionic and Electronic Contributions to Phonon Energies

We shall regard the solid as made up of ions with equilibrium positions {x(0)lκ }, mediated
by valence electrons (these will be referred to simply as electrons). The choice of ion-core
electrons will depend on the solid considered, and we shall leave the notion general enough
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for any choice. Anyhow, an ion is assumed to move rigidly. The contributions to phonon
energies include the following components:

(1) Kinetic energy of the ions
(2) Direct bare ion–ion interaction in the absence of the valence electrons

The ion–ion interaction consists of Coulombic, vci , and quantum-overlap, vei ,
components

VI = 1

2

′∑
lκ,l′κ ′

(
vci
(|xlκ − xl′κ ′ | ;κ,κ ′

)+ vei
(|xlκ − xl′κ ′ | ;κ,κ ′

))
, (6.1)

xlκ being the instantaneous position of ion lκ . The Coulomb interaction has the form

vci
(|xlκ − xl′κ ′ | ;κ,κ ′

) = Zκ Zκ ′e
2

|xlκ − xl′κ ′ |
with eZκ the effective ionic charge of ion κ .

The quantum interaction vei arises from the overlap
of the tails of the electronic wave functions of the
ion cores, as shown in this illustration:

(3) Electronic contributions arise from electron–ion interactions represented by

Vei =
∑
lκ

∫
dr n(r) v (r− xlκ,κ) , (6.2)

where v (r− xlκ,κ) is the atomic electron–ion potential, of type κ , centered at the
instantaneous position xlκ , and n(r) is the corresponding electron density.

In the Born–Oppenheimer approximation, the electron–ion potential in (6.2) is taken when
the ions are at rest at xlκ . The electronic contribution is then given by an effective potential
energy equal to the lowest electron energy Eel

0 (x). However, in this chapter we will treat
these contributions perturbatively.

In the harmonic approximation for the lattice vibration, we expand the effective ion
potential energy, which includes both the direct term VI and the electronic contribution, to
second order in the displacement ulκ = xlκ − x(0)lκ .

Direct Ion–Ion Interaction Potential in the Harmonic Approximation

Taylor expansion of VI about equilibrium ion positions up to quadratic terms, yields the
expression

V
(0)
I + V

(2)
I ,

V
(2)
I = 1

2

∑
lκα
l′κ′β

ulκα �
I
αβ

(
l l′

κ κ ′

)
ul′κ ′β . (6.3)
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α and β denote Cartesian directions. Notice that the sum over terms linear in the displace-
ments vanishes because of equilibrium.

�αβ

(
l l′
κ κ ′

)
is the conventional notation for the matrix element of the force

constant matrix, �

(
l l′

κ κ ′

)
; its elements are second partial derivatives of the inter

particle interaction potentials. �αβ

(
l l′

κ κ ′

)
represents the force on the particle lκ in

the α-direction due to the unit displacement of the l′κ ′ particle in the β-direction.

�I
αβ

(
l l′

κ κ ′

)
is the direct ion–ion force constant matrix element, defined as

�I
αβ

(
l l′

κ κ ′

)
= δll′δκκ ′

∑
l′′κ ′′ 
=lκ

∂2

∂xlκα∂xl′′κ ′′β

[
vci
(|xlκ − xl′′κ ′′ | ;κ,κ ′′

)
+ vei

(|xlκ − xl′′κ ′′ | ;κ,κ ′′
)]∣∣∣

x(0)lκ −x(0)
l′′κ′′

− ∂2

∂xlκα∂xl′κ ′β

[
vci
(|xlκ− xl′κ ′ | ;κ,κ ′

)+vei (|xlκ− xl′κ ′ | ;κ,κ ′
)]∣∣∣

x(0)lκ −x(0)
lκ′

.

The first term is known as the self-term; it arises from translation invariance, as explained
in the following discussion.

For radial type potentials, we have

∂2

∂xα∂xβ
v
(
|x|
)
= xα xβ

x2

d2v

dx2
−
(
xα xβ

x3
− δαβ

x

)
dv

dx
, (6.4)

which, for the case of Coulomb interaction, becomes

∂2

∂xα∂xβ

Zκ Zκ ′

x
= Zκ Zκ ′

[
3xα xβ
x5

− δαβ

x3

]
. (6.5)

Translation Invariance Symmetry and the Self-Term

The self-term �αβ

(
l l

κ κ

)
is the force on particle lκ in the α-direction due to its own

displacement in the β-direction!
We determine this term with the aid of translation invariance symmetry:
We use the fact that the force FI

lκ acting on ion (lκ) in the α-direction due to an arbitrary
uniform displacement of the whole crystal in the β-direction

ulκβ = wβ, ∀ lκ
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F

(a)

F

(b)

Figure 6.1 (a) The force acting on particle �κ due to its own displacement by u, while keeping
all other particles fixed. (b) The force acting on particle �κ due to displacing all other particles
by−u while keeping particle �κ fixed. The two forces are identical. (Displaced particles are depicted
in light gray.)

must vanish:

FI
lκα = −

∂V
(2)
I

∂xlκα

∣∣∣∣∣
xlκ=x(0)lκ

= wβ

∑
l′κ ′

�αβ

(
l l′

κ κ ′

)
= 0.

Since the sum over l′κ ′ includes lκ , then

�αβ

(
l l

κ κ

)
= −

∑
l′κ ′ 
=lκ

�αβ

(
l l′

κ κ ′

)

As illustrated in Figure 6.1, the force acting on particle lκ due to its own displacement by
u, while keeping all other particles fixed, is identical to the force acting on particle lκ due
to displacing all other particles by −u while keeping particle lκ fixed!

6.4 Electronic Contribution to Phonon Energies

At zero temperature and in accordance with the harmonic approximation, the electronic
contribution to the lattice dynamics is given by the change of the electron energy V

(2)
el

quadratic in the ionic displacement. In the adiabatic approximation, the change in the
energy of the electron system is due to the perturbative change in electron–ion interac-
tion potential from its value at the equilibrium lattice configuration. Vei in (6.2) can be
expanded as

Vei = V
(0)
ei +

∑
lκ

∇ lκ Vei

∣∣∣
x(0)lκ

·ulκ +
∑
lκ

ulκ ·
[
∇ lκ ∇ lκ Vei

]
x(0)lκ

· ulκ

=
∑
lκ

∫
dr n(0)(r) vκ

(
r− x(0)lκ

)
+
∑
lκ

∫
dr n(1)(r) ∇ lκ vκ (r− xlκ )

∣∣∣
x(0)lκ

·ulκ
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+
∑
lκ

ulκ ·
∫

dr n(0)(r)
[
∇ lκ ∇ lκ vκ (r− xlκ )

]
x(0)lκ

· ulκ

=
∫

dr n(0)(r) v[0](r)+
∫

dr n(1)(r) v[1](r)+
∫

dr n(0)(r) v[2](r). (6.6)

V
(0)
ei is just the electron–ion potential energy of the perfect crystal, n(0)(r) the correspond-

ing electron density in the ground state, and n(1)(r) the first-order correction to the density
due to ionic displacements.

Thus, the last two terms of (6.6) contribute to energy change quadratic in the ionic
displacements:

(i) The first-order perturbation energy change due to the interaction term v[2](r), which is
quadratic in the ion displacements,

v[2](r) = −1

2

∑
lκαβ

∂2vκ

(
r− x(0)lκ

)
∂rα∂rβ

ulκα ulκβ . (6.7)

Notice that we are now taking the derivatives with respect to the electron position r.
The contribution to V

(2)
el is simply the expectation value of v[2] with respect to the

ground state of the electron system at the equilibrium crystal configuration:

E(22) =
∫

dr n(0)(r) v[2](r) = −1

2

∑
lκα
l′κ′β

π
(2)
αβ

(
l l′

κ κ ′

)
ulκα ul′κ ′β, (6.8)

where

π
(2)
αβ

(
l l′

κ κ ′

)
= δll′ δκκ ′

∫
dr n(0)(r)

∂2vκ

(
r− x(0)lκ

)
∂rα∂rβ

(6.9)

(ii) The change in energy due to the interaction v[1] linear in the ionic displacements,

E(21) =
∫

dr n(1)(r) v[1](r) = −
∑
lκα

∫
dr n(1)(r)

∂vκ

(
r− x(0)lκ

)
∂rα

ulκα . (6.10)

Linear response theory gives the first-order change in the electron density as

n(1)(r) =
∫

dr′ χ(r,r′) v[1](r′), (6.11)

where χ(r,r′) is longitudinal susceptibility, or the static density–density response function.
The Fourier transform of χ(r,r′) is given by

χ(Q,Q′) = 1




∫
dr dr′ χ(r,r′) e−iQ·r eiQ

′·r′ . (6.12)
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Periodic translation-invariance symmetry of the crystal dictates that

χ(r+ Rl,r′ + Rl ) = χ(r,r′), (6.13)

where Rl is a primitive lattice vector. This condition requires that⎧⎨⎩Q = q+G

Q′ = q+G′

and the Fourier transform becomes

χ(Q,Q′) → χ(q+G,q+G′).

The change in the electronic energy quadratic in v[1] can then be cast in the form

E(21) = 1

2

∫
dr n(1)(r) v[1](r) = 1

2

∫∫
dr dr′ v[1](r) χ(r,r′) v[1](r′)

= 1

2

∑
lκα
l′κ′β

π
(1)
αβ

(
l l′

κ κ ′

)
ulκα ul′κ ′β, (6.14)

π
(1)
αβ

(
l l′

κ κ ′

)
=
∫∫

dr dr′
∂vκ

(
r− x(0)lκ

)
∂rα

χ(r,r′)
∂vκ ′
(

r′ − x(0)
l′κ ′
)

∂r ′β
. (6.15)

Equations (6.8) and (6.14) define the electronic contribution to the force constants

�el
(
l l′

κ κ ′

)
.

Electronic Self-Term

Although the ionic part has been clearly cast in a translationally invariant form, the elec-
tronic contribution has not. It is convenient to amend this.

To establish such a form, we again make use of bodily translating the whole crystal.
When the crystal undergoes a uniform and arbitrary infinitesimal displacement u, the total
change in the electronic energy should be zero. Consequently, using (6.8) and (6.14) we
write

V
(2)
el = E(21) + E(22)

= 1

2

∫
dr n(1)(r) v[1](r)+

∫
dr n(0)(r) v[2](r) = 0 (6.16)

under an arbitrary uniform displacement. First, we have∫
dr n(0)(r) v[2](r) =

∫
dr n(0)(r)

(∑
lκ

u : ∇r∇r vκ

(
r− x(0)lκ

)
: u

)
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Second, we find that v[1] becomes

v[1](r) = −u ·
∑
lκ

∇r vκ

(
r− x(0)lκ

)
, (6.17)

and the first-order change in the electron density distribution is then given by (6.11),

n(1)(r) = u ·
∫

dr′ χ(r,r′) v[1](r′). (6.18)

Substituting back in (6.16), we obtain

∑
lκ

u :
∫

dr n(0)(r)
(
∇r∇rvκ

(
r− x(0)lκ

))
: u

= −1

2

∑
lκ

l′′κ′′

u :
∫∫

dr dr′ ∇rvκ

(
r− x(0)lκ

)
χ(r,r′) ∇r′ vκ ′′

(
r′ − x(0)

l′′κ ′′
)

: u

and we can write the electronic part of the force constants as

�el
αβ

(
l l′

κ κ ′

)
=
∫∫

dr dr′
⎡⎣∂vκ

(
r− x(0)lκ

)
∂rα

χ(r,r′)
∂vκ ′
(

r′ − x(0)
l′κ ′
)

∂r ′β

−δll′δκκ ′
∑
l′′κ ′′

∂vκ

(
r− x(0)lκ

)
∂rα

χ(r,r′)
∂vκ ′′
(

r′ − x(0)
l′′κ ′′
)

∂r ′β

⎤⎦ . (6.19)

This obviously satisfies the infinitesimal translational invariance relation

∑
l′κ ′

�el
αβ

(
l l′

κ κ ′

)
= 0. (6.20)

Also, from the crystal periodic translation symmetry of the density response function, we
have

�el
αβ

(
l l′

κ κ ′

)
= �el

αβ

(
0 l′ − l

κ κ ′

)
= �el

αβ

(
l − l′ 0
κ κ ′

)
. (6.21)

6.5 The Dynamical Matrix

Finally, we arrive at the total change in energy quadratic in the lattice displacements:

V (2) = V
(2)
I + V

(2)
el = 1

2

∑
lκ,l′κ ′

ulκ ·
[
�I

(
l l′
κ κ ′

)
+�el

(
l l′
κ κ ′

)]
· ul′κ ′ . (6.22)
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With the equilibrium position of ion lκ x(0)lκ = Rl + ρκ, we define the Fourier transform of
the ionic displacements as

Uκ(q) =
√
Mκ

N

∑
l

e−iq·Rl u(lκ)

u(lκ) = 1√
NMκ

∑
q

eiq·Rl Uκ(q),

where N is the number of primitive cells and Mκ is the mass of the κ-type ion. Substituting
for u(lκ) in (6.22), we get

V (2) = 1

2N

∑
q;κκ ′

Uκ(q)√
Mκ

·
{∑

ll′
e−iq ·Rl

[
�I

(
l l′

κ κ ′

)

+�el
(
l l′

κ κ ′

)]
eiq ·Rl′

}
· Uκ ′(q)√

M ′
κ

= 1

2

∑
q;κκ ′

Uκ(q) ·
[

DI

(
q
κκ ′

)
+ Del

(
q
κκ ′

)]
·Uκ ′(q). (6.23)

We now define the dynamical matrix D = DI + Del, with components

DI

(
q
κκ ′

)
= 1

N
√
MκMκ ′

∑
l

∑
l′

e−iq · (Rl−Rl′ ) �I

(
l l′

κ κ ′

)

= 1√
MκMκ ′

∑
l

e−iq ·Rl �I

(
0 l

κ κ ′

)
, κ 
= κ ′

DI

(
q
κκ

)
= 1

Mκ

⎡⎣∑
l 
=0

e−iq ·Rl �I

(
0 l

κ κ

)
− δκκ ′

∑
lκ ′′ 
=0κ

�I

(
0 l

κ κ ′′

)⎤⎦ . (6.24)

Similarly, we get

Del
(

q
κκ ′

)
= 1√

MκMκ ′

∑
l

e−iq ·Rl �el
(

0 l

κ κ ′

)
= 1√

MκMκ ′

∑
l

e−iq ·Rl

(∫∫
drdr′

[∇r v(r− ρκ) χ(r,r
′) ∇r′ v(r

′ − xlκ ′)
]

− δκκ ′
∑

lκ ′′ 
=0κ

∇r v(r− ρκ) χ(r,r
′) ∇r′ v(r

′ − xlκ ′′)
)

. (6.25)
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6.5.1 Simplifying the Electronic Contribution to the Dynamical Matrix

Recalling that

χ(r,r′) = 1




∑
GG′;q

e−i(q+G)·r χ
(
q+G,q+G′

)
ei(q+G′) · r′,

where 
 is the volume of the system, and defining

vκ(q) =
∫

dr e−iq · r vκ(r), (6.26)

we obtain

Del
αβ

(
q
κκ ′

)
= 1



√
MκMκ ′

×
∑
GG′

{ [
χ
(
q+G,q+G′

)∑
l

e−iq ·Rl

×
(∫

dr
∂v(r− ρκ)

∂rα
e−i(q+G) · r

)(∫
dr′

∂v(r′ − xlκ ′)
∂rβ

ei(q+G′) · r′
)]

− δκ,κ ′
′∑
lκ ′′

(∫
dr

∂v(r− ρκ)

∂rα
e−iG · r

)
χ
(
G,G′

)

×
(∫

dr′
∂v(r′ − xlκ ′′)

∂rβ
eiG

′ · r′
)}

= 1



√
Mκ Mκ ′

∑
GG′

[
e−i(q+G) · ρκ (q+G)α vκ(−q−G)

× χ
(
q+G,q+G′

) (
q+G′

)
β
vκ ′
(
q+G′

)
ei(q+G′) · ρκ′

− δκκ ′
∑
κ ′′ 
=κ

eiG · ρκ Gα vκ(−G) χ
(
G,G′

)
vκ ′′
(
G′
)
G′β e−iG

′ · ρκ′′
]

.

We define

Xαβ

(
Q Q′
κ κ ′

)
= 1



√
Mκ Mκ ′

[
eiQ ·ρκ Qαvκ (−Q) χ

(
Q,Q′

)
vκ ′
(
Q′
)

Q′βe
−iQ′·ρκ′

]
and write the electronic contribution to the dynamical matrix as

Del
αβ

(
q
κκ ′

)
=
∑
GG′

⎡⎣Xαβ

(
q+G q+G′

κ κ ′

)
− δκκ ′

∑
κ ′′ 
=κ

Xαβ

(
G G′

κ κ ′′

)⎤⎦ . (6.27)
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EF

Figure 6.2 Schematic of a pseudopotential form factor in reciprocal space where G is a reciprocal
lattice vector.

Throughout our discussion of the electronic contribution to phonon energy, we have not

specified the electron–ion potential vκ
(

r− x(0)lκ

)
.

In the case of metals and semiconductors, it is convenient to deal with pseudopotentials
(see Figure 6.2), and thus with pseudowavefunctions, namely, of the form ei(κ+G) · r or
linear combinations of such plane waves. We choose to use a pseudopotential W(q + G),
and write

Xαβ

(
q+G q+G′

κ κ ′

)
= 1



√
Mκ Mκ ′

(q+G)αWκ(q+G)χ
(
q+G,q+G′

)
×Wκ ′(q+G′) (q+G′)β e−i(q+G)· ρκ ei(q+G′) · ρκ′ . (6.28)

To bring out the physical content of the electronic contribution to the dynamical matrix, we
will separate diagonal from nondiagonal terms in D̂el and write

Del
αβ(q) = Eαβ(q) +←→F αβ(q), (6.29)

where Eαβ(q) is given by 2

Eαβ(q) =
∑

G

(q+G)α (q+G)β
∣∣W(q+G)

∣∣2 χ(q+G)

=
∑

G

(q+G)α (q+G)β

vc(q+G)

∣∣W(q+G)
∣∣2 [ 1

ε0(q+G)
− 1

]
. (6.30)

For simplicity, we have taken one atom per primitive cell. In the last line, we made the
substitution

1

ε0(q+G)
= 1+ vc(q+G) χ(q+G),

where vc(q) = 4π/q2 is the Coulomb potential. Eαβ(q) represents the free electron con-
tribution to the lattice dynamics. It is actually the sole electronic contribution in the lattice

2 The self-term contribution is implicit.



178 Phonons and Lattice Dynamics

dynamics of simple metals. We also note that putting ε0(q + G) = 1 for ideal insulators
leads to the vanishing of Eαβ(q).

The matrix
←→
F in the second term of (6.29) has components

Fαβ

(
q
κκ ′

)
=
∑

G
=G′

⎡⎣Xαβ

(
q+G q+G′

κ κ ′

)
− δκκ ′

∑
κ ′′ 
=κ

Xαβ

(
G G′

κ κ ′′

)⎤⎦ . (6.31)

Actually
←→
F represents a kind of electronic screened multipole contribution to the lattice

dynamics.
As we can see from the preceding analysis, the problem of finding out how the

interacting electrons modify the forces between ions is reduced to the determination
of the electron density response function characteristic of the perfect lattice. The scenario
can be summed up as follows: When the crystal is perturbed by a lattice wave, the
electrons redistribute themselves quickly to suit the new lattice potential. Their new density
distribution determines the effective interaction between ions and hence the vibration
frequencies.

6.5.2 The Complete Dynamical Matrix

We can now write the complete dynamical matrix as the combination of the direct ion–ion
and the electronic contributions. The former is separated into Coulomb C and short-range
R components. We write

Dtot
αβ(q) = Cαβ(q)+ Rαβ(q)+ Eαβ(q) +←→F (q). (6.32)

The Coulomb component involves long-range interactions among the ion cores. They are
absent in metals, where there is complete screening of the ion cores. The determination
of Coulomb contributions in semiconductors and insulators requires special summation
techniques known as Ewald summations.3 The short-range interaction matrix R is treated
phenomenologically and usually involves couplings to few neighbors.

In this way, the dynamical matrix of (6.32) enables us to examine the validity of various
methods and models used to describe lattice vibrations in all types of solids. At this stage,
we have treated the direct ion–ion contribution phenomenologically, but no approximations
were invoked in the electronic contribution.

6.6 Electronic Effects on Phonons in Normal Metals

It was first reported by Woods and coworkers that a reasonable fit to measured sodium
phonon dispersion curves, using a phenomenological force constant model, requires
extending interactions to fairly distant neighbors [202]. By contrast, Toya found that

3 The sum is broken down into two parts: long-range contributions are summed in reciprocal space, and short-rage ones are
summed in real space.
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treating the conduction electrons as a charged fluid, which tends to screen any charge
imbalance, easily yielded a much better account [183]. Such observations support our
claim that the electronic structure of simple metal systems is best treated within the
pseudopotential framework, where the valence electron’s pseudowavefunctions are plane
waves. Consequently, we find that the basic simplification here comes from two sources:

(i) First, we note that the plane-wave form of the pseudowavefunctions reduces the matrix
element for the susceptibility function χ

(
q+G,q+G′

)
to a diagonal form in G and

G′ as in (6.30).
(ii) The pseudopotentials are considered weak enough to perturb only very slightly the

electronic wavefunctions of a free electron gas. Hence, it is legitimate to set the quantity
in square brackets in (6.30), the susceptibility function χ

(
q+G,q+G′

)
, to be that of

a free electron gas,

χ(q) = 3n0

4EF

[
1+ 1− x2

2x
ln

∣∣∣∣1+ x

1− x

∣∣∣∣ ] , (6.33)

where x = (|q + G)|/2kF , and kF and EF are the Fermi wavevector and energy,
respectively. n0 is the free electron density.

6.7 Electronic Effects on Phonons in Insulators and Semiconductors

In ionic crystals, the electronic charge is approximately concentrated at the ionic sites.
A simple model to be considered in this case is the rigid-ion model [103], where the ions
are treated as point charges and the short-range interactions between overlapping localized
ion-core wavefunctions are introduced. The overlap arises from the rigid displacement of
the wavefunctions from their equilibrium positions. Significant differences have appeared
between measured phonon spectra and results obtained from this model. Moreover, such
a model should dismally fail in the case of semiconductors, where covalent bonds may
be manifest. However, for pedagogical reasons, we shall start with describing the simple
rigid-ion model.

6.7.1 The Rigid-Ion Model

We consider the Born model of an ionic crystal, where the potential energy between two
ions κ and κ ′ is taken to be

V
(
κκ ′
∣∣ r) = Zκ Zκ ′ e

2

r
+ bκκ ′ exp

[ −r
�κκ ′

]
, (6.34)

where Zκe, Zκ ′e are effective ionic charges, and �κκ ′ is an effective range. The second
term is known as the Born–Mayer potential; it accounts for the quantum-overlap interaction
between exponentially decaying electronic wavefunctions of the respective ions.
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The two potential components of (6.34) represent the rigid-ion model, and according
to (6.3) give the force constants

�

(
l l′

κ κ ′

)
= C
(
l l′

κ κ ′

)
+ R
(
l l′

κ κ ′

)
,

where C
(
l l′
κ κ ′
)

accounts for the ion–ion Coulomb interaction, and R
(
l l′
κ κ ′
)

are short-

range forces arising from the overlap of ionic wavefunctions. The functional forms of

R
(
l l′
κ κ ′
)

and C
(
l l′
κ κ ′
)

are given in (6.4) and (6.5), respectively.

The aforementioned disagreements can only be explained as arising from sizable defor-
mations of the electronic charges from their equilibrium distributions in response to the
motion of the ions. This led to the proposition and formulation of several microscopic
phenomenological models aimed at explaining the origin of these deviations. However,
such effects should be intrinsically incorporated in the electron density response function
formalism, and a close examination of equation (6.32) should provide justification for the
validity of such models.

6.7.2 Phenomenological Models of the Electronic Contributions

In order to provide a physical picture of the underlying changes in the electron density
distributions, we will examine the last two terms in (6.6), V (2)

el :

V
(2)
el = E(21) + E(22)

= 1

2

∫
dr n(1)(r) v[1](r)+

∫
dr n(0)(r) v[2](r).

E(22), given in (6.8), was shown to be the q-independent electronic self-term. It will be
ignored in our following discussion.

It is possible to invert the relation

n(1)(r) =
∫

dr χ(r,r′) v[1](r′)

and obtain

v[1](r) =
∫

dr K(r,r′) n(1)(r′), (6.35)

which allows us to express E(21) as

E(21) =− 1

2

∑
lκα

∫
dr n(1)(r)

∂vκ

(
r− x(0lκ

)
∂rα

ulκα

+ 1

2

∫∫
dr dr′ n(1)(r) [vc(r− r′)+K(r,r′)] n(1)(r′), (6.36)

where we included the Coulomb interaction between the distorted charges.
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Pseudocharge Expansion

Since the electrons are fairly well localized on the ionic (or covalent) sites, we can express
the first-order change in the electron density as contributions from various high-symmetry
sites, known as Wyckoff positions, within a primitive cell l; they are indexed by their
locations μ therein,

n(1)(r) =
∑
lμ

ρ(1)(r,lμ), (6.37)

where ρ(1)(r,lμ) vanishes for r more than one or two primitive cells from the site (lμ).
Next, we expand the first-order change of the electron density centered at (lμ) in terms of
a complete orthonormal set of symmetry-adapted pseudocharge functions φn(r) as

ρ(1)(r,lμ) =
∑
n

φn(r− xlμ) Pnlμ ⇔
∫

drφn(r) φn′(r) = δnn′, (6.38)

where Pnlμ are pseudocharge expansion coefficients. We are leaving the pseudocharge
basis functions unspecified for the time being, requiring only their orthonormality. We now
treat the Pnlμs as bona fide dynamical variables alongside the ionic displacements u. The
Pn(lμ)s are some kind of moments of the change of local electronic charge density,

Pnlμ =
∫

dr φn(r− xlμ) ρ(1)(r,lμ). (6.39)

Substituting (6.38) into (6.36), we get

E(21) = −
∑

lκα,l′μ′n
ulκα

∫
dr φn(r− xl′μ′)

∂vκ

(
r− x(0)lκ

)
∂rα

Pnl′μ′

+ 1

2

∫∫
drdr′

∑
lμn

l′μ′n′

[
φn(r− xlμ)

[
vc(r− r′ + xlμ − xl′μ′)

+ K(r+ xlμ,r′ + xl′μ′)
]
φn′(r

′ − xl′μ′) Pnlμ Pn′l′μ′
]

= u· T̄ ·P+ 1

2
P· S̄ ·P. (6.40)

This is the most general form of the electronic contribution to the phonon potential energy;
it is labeled the pseudocharge model.

The electronic contribution to the phonon energy can then be written as

V
(2)
el =

∑
lκα
l′μn

Tα,n

(
l l′

κ μ

)
ulκα Pnl′μ +

∑
lμn

l′μ′n′

Snn′

(
l l′

μ μ′

)
Pnlμ Pn′l′μ′
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and the total potential energy is given by

V (2) = V
(2)
I + V

(2)
el

=
∑
lκα
l′κ′β

�I
αβ

(
l l′

κ κ ′

)
ulκα ul′κ ′β +

∑
lκα
l′μn

Tα,n

(
l l′

κ μ

)
ulκα Pnl′μ

+
∑
lκn
l′κ′n′

Snn′

(
l l′

κ κ ′

)
Pnlκ Pn′l′κ ′,

from which we obtain the equations of motion

Mκ

∂2ulκα

∂t2
= −∂V

(2)

∂ulκα
= −

∑
l′κ ′β

�I
αβ

(
l l′

κ κ ′

)
ul′κ ′β −

∑
l′μn

Tα,n

(
l l′

κ μ

)
Pnl′μ

mn

∂2Pnlμ

∂t2
= − ∂V (2)

∂Pnlμ
= −
∑
l′κα

Tα,n

(
l′ l

κ μ

)
ul′κα −

∑
l′μ′n′

Snn′

(
l l′

μ μ′

)
Pn′l′μ′ .

Fourier transforming these equations yields

Mκ ω
2 Ūα(q,κ) =

∑
κ ′β

�I
αβ

(
q

κ,κ ′

)
Ūβ(q,κ ′)+

∑
μn

Tα,n

(
q
κ,μ

)
Pn(q,μ)

mn ω
2 Pn(q,κ) =

∑
κα

Tα,n

(
q
κ,μ

)
Uα(q,κ)+

∑
μ′n′

Snn′

(
q

μ,μ′

)
Pn′(q,μ

′).

We can write these coupled equations in matrix form as

ω2 Md Ū(q) = �(q) Ū(q)+ T(q) P(q)

mn Iω
2 P(q) = T†(q) U(q)+ S(q) P(q), (6.41)

where Md is a diagonal matrix with the masses Mκ along the diagonal. We now invoke the
Born–Oppenheimer approximation by setting mn ∝ me = 0, and we obtain for P

P = −S−1(q)T†(q) U(q).

When substituted back in the first equation of (6.41), we get

ω2 Md U(q) =
[
�(q)− T(q) S−1(q)T†(q)

]
U(q).

The second term represents the effective electronic contribution to the force constant matri-
ces. The negative sign indicates a reduction in the effective ion–ion force constant, which is
expected since the electronic response tends to screen the ion displacements perturbation.

Some Typical Models

If we choose only three functions φn with p-like symmetry, we get the dipolar shell
model. If we include an additional s-like function in the basis, we incorporate an effective
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Figure 6.3 Schematic of the bond-charge model.

breathing shell model, where the shell is allowed to isotropically expand and contract. In a
similar fashion, if we choose the functions to be Gaussians centered on the covalent bond-
charge sites of semiconductors, we have the bond-charge model! shown in Figure 6.3.

The Shell Model

The shell model is very popular in treating the lattice dynamics of insulators. It allows for
the inclusion of the electronic contributions as follows: Each ion is visualized as consisting
of a positive core, with charge X, and a negative outer shell of valence electrons, with
charge Y . Charge neutrality constraints require that

X + Y = Z, (6.42)

where Zi is the total static charge of the ion. An electron shell is coupled to its ion core
by a harmonic potential, with force constant K . At equilibrium, the shell is centered on the
ion core, but, otherwise it is allowed to be displaced relative to it without deforming. This
displacement gives rise to a dipolar ionic polarizability. The polarization may be induced
by either displacements of its neighbors or an electric field.

We extend the particle labeling to the ionic shells and define the force constants for a
diatomic crystal in the following table:

κ Charge Displacement

+ve core 1 X1e uc1
−ve core 2 X2e us1
+ve shell 3 Y1e uc2
−ve shell 4 Y2e us2

Force constants

Core–core D

+ve core–shell K1

−ve core–shell K2

Shell–shell S

We further define

Wi = usi − uci

as the relative core–shell displacement.
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Y  e
2X  e

2

X  + Y  = Z  
2 2 2

Z  e
1

S K

w(2)

u(2)u(1)

Positive ion

Unpolarized

Polarized

Negative ion

Figure 6.4 Schematic of a pair of ions where only the negative ion is polarizable.

To bring out the physical features of this model, we consider the simple case of a polar-
izable negative ion and a rigid positive ion, shown in Figure 6.4. Writing the equilibrium
equation for the negative shell in the presence of a local electric field E, we obtain

−KW2 − S
[
uc2 +W2 − uc1

] +Y2e E = 0,

or

W2 =
S
[
uc1 − uc2

] +Y2e E

K + S
.

The dipole moment associated with the ion pair is

Ze
[
uc1 − uc2

] +Y2eW2, Z = |Z1| = |Z2|.
After eliminating W2, the dipole moment becomes(

Ze + Y2eS

K + S

) [
uc1 − uc2

] + (Y2e)
2

K + S
E.

We now define the negative ion polarizability as

α− = (Y2e)
2

K + S
,

and the additional dipole moment Y2eS
K+S

[
uc1 − uc2

]
defines the short-range mechanical

polarizability d as

d = − Y2eS

K + S
.
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6.8 Measurement of the Structure and Dynamics of Crystals:
Particle Scattering by Crystalline Solids

Experiments designed to determine the structure and dynamics of crystalline solids employ
one of the following scattering probes, but in all cases the scattering potential experienced
by the probe particles has the periodicity of the lattice when the crystal is in equilibrium:

• X-rays scatter from the electron charge density in the crystal.

• Electrons scatter from the crystal potential that includes all exchange and correlation
effects.

• Neutrons scatter from the constituent nuclei.

• In helium atom–surface scattering, the He atoms scatter from the surface electron density,
precisely, from equicharge density contours.

All have the underlying crystalline periodicity. Scattering of X-rays, neutrons, and He
atoms can be treated within the Born approximation, while electrons suffer multiple scatter-
ing events, as shown in Figure 6.5, and have to be treated in a more complicated formalism,
something à la the KKR method.

6.8.1 Elastic Scattering: Crystal Diffraction at 0◦ K

We shall confine our analysis to be within the Born approximation, so that the scattering
matrix element can be written as

Mis = 〈ψi |V (r)|ψs〉 ,
where ψi, ψs are the incident and scattered wavefunctions of the applied probe particles,
respectively. Taking the particle wavefunctions to be plane waves, we write

Mk,k′ =
〈
k |V (r)| k′〉 =

⎧⎨⎩VG k′ − k = G

0 otherwise

since the scattering potential has the lattice periodicity. Moreover, diffraction scattering
events are elastic, and we have the condition∣∣k′∣∣ = |k| .

Figure 6.5 Multiple scattering of electronic waves.
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k

Figure 6.6 Ewald construction.

From the Ewald construction of Figure 6.6, we obtain the Bragg condition on the angle
of scattering:

2 |k| sin
θ

2
= |G| .

6.8.2 Inelastic Scattering: Measuring Phonon Dispersions

At finite temperatures, the phonon modes of the crystal are excited. We shall study how the
dispersion of such modes can be measured by inelastic particle scattering. For simplicity,
we consider a monatomic lattice where the scattering potential can be written as

V (x) =
∑
l

va(x− xl ).

xl is the instantaneous position of the atom in primitive cell l.
Invoking the Born approximation, we take the scattering vector as

K = k′ − k,

and write the scattering matrix element as

Mk,k′ = 1




∫
dx eiK·x

∑
l

va(r− xl ) = V (K)× S(K)

V (K) = 1


0

∫
dx va(x) e−iK·x, S(K) = 1

N

∑
l

eiK·xl

with N = 
/
0. V and S are the form factor and structure factor, respectively. Expressing
xl as

xl = x(0)l + ul = x(0)l +
∑
q>0

(
Uq e

iq·x(0)l + U∗q e
−iq·x(0)l

)
,
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we obtain

1

N

∑
l

e−iK·xl = 1

N

∑
l

exp

⎡⎣−iK ·
⎧⎨⎩x(0)

l
+
∑
q>0

(
Uqe

iq·x(0)l + U∗qe−iq·x
(0)
l

)⎫⎬⎭
⎤⎦

= 1

N

∑
l

e−iK·x
(0)
l

∏
q>0

exp

[
−iK ·

(
Uqe

iq·x(0)l + U∗q e−iq·x
(0)
l

)]
. (6.43)

This is exact! The fact that the atomic displacements are very small allows us to expand

exp
[
−iK ·

(
Uq e

iq·x(0)l + U∗q e
−iq·x(0)l

)]
= 1− iK ·

(
Uq e

iq·x(0)l + U∗q e
−iq·x(0)l

)
− ∣∣K · Uq

∣∣2 . . . (6.44)

The unity term on the right of (6.44) will produce the diffraction condition in the absence
of phonons, namely,

1

N

∑
l

e−iK·x
(0)
l = δK,G, Static structure factor.

Single-Phonon Scattering

The second term in (6.44) will yield a sum of the form

1

N

∑
l

e−iK·x
(0)
l

∑
q>0

(−iK · Uq
)
eiq·x

(0)
l =

∑
q>0

(−iK · Uq
) ( 1

N

∑
l

e−i(K−q)·x(0)l

)

=
∑
q>

(−iK · Uq
)
δK−q,G. (6.45)

Two situations arise:

(i) G = 0: K = k′ − k = q lies in the first Brillouin zone, and the scattering matrix
element becomes

Mk,k′ ⇒ Mq = −i
[
q · Uq

]
V (q) .

(ii) G 
= 0: K does not lie in the first Brillouin zone and

q = k′ − k−G.

The scattered particle can gain or lose an extra momentum h̄G besides h̄q. This is
known as an Umklapp process, first identified by Rudolph Peierls.4

4 The name derives from the German word umklappen (to turn over). Rudolf Peierls, in his autobiography [152], states he was
the originator of this phrase and coined it during his 1929 crystal lattice studies under the supervision of Wolfgang Pauli.
Peierls wrote, “. . . I used the German term Umklapp (flip-over) and this rather ugly word has remained in use.”
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Invoking Fermi’s golden rule, we write the scattering cross-section involving a phonon
with energy h̄ω(q) as

σ (ω(q)) ∝
∑

G

∣∣Mq+G
∣∣2 δ
(
Ef − Ei ± h̄ω(q)

)
=
∑

G

|V (q+G)|2
∣∣∣(q+G) · Uq

∣∣∣2 δ(Ef − Ei ± h̄ω(q)
)
, (6.46)

where Ei and Ef are the initial and final energy of the scattered probe particle. This
expression shows that inelastic events associated with a phonon of energy h̄ω(q) will be
manifest as a multipeak spectrum in the extended BZ scheme. Usually the cross-section
is significant in the first and second BZs. Equations (6.45) and (6.46) define the scattering
kinematics

h̄ω(q) = h̄2k′2

2M
− h̄2k2

2M
, k′ − k = q+G. (6.47)

The scattering potential type will depend on the probe particles.

6.8.3 Experimental Measurement of Phonon Dispersions

Figure 6.7 displays all available probes for measuring the phonon and molecular vibrational
excitations; they include photons, electrons, He atoms, and neutrons. The figure shows
the spectral regions (energy and momentum transfer) accessible to each probe. We shall
consider here methods that do not suffer from multiple scattering events and that cover
inelastic scattering events throughout the Brillouin zone, namely inelastic neutron and
helium scattering techniques.

Figure 6.7 Accessible ranges in the energy-momentum space for the different probes of inelastic
scattering.
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Inelastic Neutron Scattering: Bulk Phonon Dispersion

The technique of inelastic neutron scattering (INS) takes advantage of the ability of neu-
trons to exchange energy and momentum with the atomic nuclei in a material, to measure
details of its dynamics: When a neutron scatters from a crystalline solid, it can absorb
or emit an amount of energy equal to a quantum of phonon energy, h̄ω. This gives rise
to inelastic coherent scattering in which the neutron exchanges energy and momentum
according to (6.47). In most solids, ω is within a few terahertz (THz) (1 THz = 4.18 meV).

Thermal neutrons, with energies in the meV range, are used for INS. Thus, scattering by
a phonon causes an appreciable fractional change in the neutron energy, allowing accurate
measurement of phonon frequencies. INS employs monochromatic neutron beams, so that
their initial momentum, ki , is well defined within a very narrow range. To determine the
phonon energy and the momentum transfer vector, q, we need to determine the neutron
wavevector, kf , after a scattering event, as shown in Figure 6.8. Several different INS
spectrometers have been devised to measure phonon dispersions: time-of-flight, neutron-
echo, and crystal spectrometers.

The workhorse instruments actually belong to the last type, and are known as triple-axis
spectrometers (TAS). In a TAS setup, as shown in Figure 6.9, an incident neutron beam
of well-defined wavevector ki is selected from the white spectrum of the neutron source
by the monochromator crystal (first axis). The monochromatic beam is then scattered from

ki

kf

ki

kf

kf ki

Figure 6.8 Scattering triangles for INS in which the neutron either loses energy (kf < ki ) or gains
energy (kf > ki ) during the interaction with the sample. In both elastic and inelastic scattering
events, the neutron is scattered through the angle 2θ , and the scattering vector is given by the vector
relationship q = ki − kf .

kf

Analyzer

Monochromator
Sample

ki

Detector

Figure 6.9 Schematic layout of a neutron triple-axis spectrometer.
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Figure 6.10 (a) Schematic view of how two points of the phonon dispersion curve can be measured
using either (b) constant-energy scan or (c) constant-q scan. By performing multiple scans, it is
possible to map out the complete dispersion.

Preamp
Cathode

Anode

Figure 6.11 A schematic of a typical gas-filled proportional counter.

the crystalline sample (second axis). The intensity of the scattered beam with wavevector
kf is reflected by the analyzer crystal (third axis) onto the neutron detector (3He tube),
thereby defining the energy transfer h̄ω as well. Thus, TAS spectrometers allow for con-
trolled access to both the momentum transfer q = ki − kf , as well as energy transfer
h̄ω = Ei −Ef . The main advantage of a triple-axis spectrometer is that experimental data
can be acquired at any predetermined point (q) in reciprocal space for a selected energy
transfer h̄ω. Practically, data are recorded by scanning one or both of the variables along
a chosen direction. One usually chooses between constant-q scans where h̄ω is scanned
while keeping q fixed, or constant-energy scans where h̄ω is kept at a fixed value and q is
scanned along a selected direction in reciprocal space (see Figure 6.10). By performing one
or both of these types of scans, the dispersion relation h̄ω(q) for a single crystal sample
can be extracted in a very controlled manner.

3He Gas-Filled Proportional Counters
Neutrons can be detected using 3He-filled gas proportional counters (Figure 6.11).
A typical counter consists of a gas-filled tube with a high voltage applied across the
anode and cathode. A neutron passing through the tube will interact with a 3He atom
to produce tritium (3H hydrogen) and a proton. The proton ionizes the surrounding
gas atoms to create charges, which in turn ionize other gas atoms in an avalanchelike
multiplication process. The resulting charges are collected as measurable electrical
pulses with the amplitudes proportional to the neutron energy. The pulses are compiled
to form a pulse-height energy spectrum that serves as a fingerprint for the identification
and quantification of the neutrons and their energies.
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Inelastic Helium Scattering: Surface Phonon Dispersions

Helium atoms at thermal energies (10–80 meV) have several attributes that render them
uniquely suitable for the study of surfaces in general and surface vibrations in particular:
They are strictly surface sensitive, and thus provide structural and dynamical information
exclusively about the outermost layer of a crystal. More precisely, the He atoms scatter from
equicharge contours outside the surface (see Figure 6.12). They are chemically, electrically,
magnetically, and mechanically inert. He atoms at thermal energies are particularly well
matched in momentum and energy to surface phonons.

He beam monochromators, employing adiabatic nozzle expansion techniques, have
especially narrow velocity distribution, giving excellent energy resolution (0.01–1 meV)
and high spectral intensity.

The intense, nearly monoenergetic beam of He atoms is directed onto a target surface
at a particular angle of incidence and the scattered intensity measured at a given angle of
reflection (see Figure 6.13). In general, He atoms can be scattered either elastically, with
no energy transfer to or from the internal degrees of freedom of the crystal surface, or

ki kf

Figure 6.12 Schematic of He atom scattering from equicharge contours outside the solid surface.
ki and kf are the incident and scattered wavevectors, respectively.

Figure 6.13 Schematic of the scattering geometry. The scattering plane is defined by ki and the
surface normal.
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inelastically, by excitation (phonon creation process) or deexcitation (phonon annihilation
process) of surface vibrational modes.

A. Elastic Scattering

For any perfect surface, whether a metal, semiconductor, or insulator, elastic scattering
events for He atoms are governed by conservation of energy and of the momentum compo-
nent parallel to the surface plane.5

Ef = Ei ⇒ |kf | = |ki |
Kf = Ki +G, G = n1 b1 + n2 b2

ai · bj = 2π δij, i,j = 1,2,

where ai and bi are lattice and reciprocal lattice basis vectors, respectively.

B. Inelastic Scattering

Schematically, an inelastic helium scattering experiment takes the form indicated in
Figure 6.14. Experimental conditions are chosen to ensure that single phonon scattering
dominates, in which kinematic analysis of the scattered beam yields directly the energy and
momentum of the surface phonons. We consider the generally used “in-plane”6 scattering
geometry shown in Figure 6.13. Conservation of energy and momentum for a He beam

Figure 6.14 Schematic depiction of a surface phonon measurement using inelastic He scattering with
time-of-flight analysis, from Anton Tamtögl’s Ph.D. thesis.

5 A three-dimensional momentum vector k is expressed as k = (K,kz) where K is parallel to the surface plane.
6 In-plane scattering geometry of the incident and scattered wavevectors lies in the same plane containing the surface normal.
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incident onto the surface at a polar angle θi (with respect to the surface normal) and
wavevector ki = (Ki + kiz), and scatters at θf and wavevector kf =

(
Kf + kf z

)
, yield

h̄2 k2
f

2M
− h̄2 k2

i

2M
= 	E = h̄ω

	E > 0 ⇒ Phonon annihilation and gain of energy by the beam atom

	E < 0 ⇒ Phonon creation and loss of energy by the beam atom

Only the momenta parallel to the surface are conserved:

Kf −Ki = 	K = Q Surface phonon momentum (6.48)

The projections onto the surface plane are Ka = ka sin θa, a = i,f .
The conservation conditions can be combined to give an expression that specifies the

allowed values of energy exchange 	E and parallel momentum exchange 	K , for a given
scattering geometry,

	E = h̄2

2M

(
|Ki +	K|2

sin2 θf
− k2

i

)
⇒ 	E

Ei

= sin2 θi

sin2 θf

[
1+ 	K

ki sin θi

]2

.

This expression is generally referred to as a scan curve.
To monitor the inelastic scattering events, it is necessary to energy-analyze the scattered

beam. The most commonly used technique is the time-of-flight (TOF) analysis, which
entails pulsing a beam with a mechanical (or electronic) chopper at some point in its
transit from source to detector and measuring the chopper–detector flight time. The incident
velocity is vi = xcd

tcd
, where xcd is the flight path from chopper to detector, and tcd is the

corresponding transit time. Inelastic scattering at the target surface transfers energy to or
from He atoms, changing their velocity and thereby their flight time from target to detector.
So TOF spectra display peaks that are shifted relative to the elastic flight time.

6.8.4 Scattering at Finite Temperatures: Debye–Waller Factor

There are important contributions arising from terms such as
∣∣K · Uq

∣∣2 of (6.44) that do
not average to a small value. Examining (6.43) and (6.44), we find that both elastic and
inelastic terms ought to be multiplied by∏

q

(
1− ∣∣K · Uq

∣∣2) = e−2W, (6.49)

known as the Debye–Waller factor.
Using the identity

lim
N→∞

N∏
n=1

(
1− 1

N
an

)
= exp

[
− lim

N→∞

N∑
n=1

1

N
an

]
,



194 Phonons and Lattice Dynamics

we obtain

e−2W = exp

⎡⎣−∑
q

∣∣K · Uq
∣∣2⎤⎦ .

To evaluate Uq, we recall that the average energy in mode q is

Ēq =
(
n̄q + 1

2

)
h̄ωq.

We can use a classical approach to relate this energy to U2
q . Treating the modes as classical

harmonic oscillators, the energy is given by

Ē =
∑
l

M |u̇l |2 =
∑

q

NM
∣∣u̇q
∣∣2

=
∑

q

NM ω2
q

∣∣Uq
∣∣2 =∑

q

Ēq

so that ∣∣Uq
∣∣2 = 1

NMωq

(
n̄q + 1

)
h̄.

If we adopt the phonon Debye model, assuming all three polarizations to be degenerate,
and taking one of the polarization vectors along K, we get

W =
∑

q

h̄K2

6NMωq

(
n̄q + 1

2

)
= h̄K2

6NM

1

(2π)3

∫
dq

n̄q + 1
2

ωq

= h̄2K2

6M

∫ ωD

0
dω

3ω2

h̄ω ω3
D

[
1

exp(h̄ω/kBT )− 1
+ 1

2

]

= h̄2K2T 2

2MkB3

∫ /T

0
dz z

[
1

exp[z]− 1
+ 1

2

]
,

where ωD is the Debye frequency and  the Debye temperature.

At high temperatures /T � 1,
1

exp(z)− 1
∼ 1

z
, yielding

e−2W = exp

[
− h̄2K2T

MkB2

]
,

while at T = 0K ez = ∞ and

e−2W = exp

[
− h̄2K2

4MkB

]
,

which arises from quantum zero-point fluctuations.
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Exercises

6.1 The one-dimensional shell model
Consider the one-dimensional shell model shown in Figure 6.15. Each atom consists
of an outer shell and an inner core. Nearest-neighbor shells interact via a force-
constant S, while each shell couples to its core by a force-constant K . For the sake
of simplicity, we neglect the Coulomb interactions.

1. Write down the interaction potential energy in the harmonic approximation in
term of the displacements un and vn shown in Figure 6.15.

2. Derive the corresponding equations of motion.
3. Express the equations of motion in terms of un and wn = vn − un.
4. Obtain the Fourier transform of the equations of motion in terms of the variables

U(q) and W(q).
5. Eliminate W(q) by invoking the adiabatic approximation. Use the derived dynam-

ical matrix to obtain the phonon dispersion curve.
6. Plot the dispersion curve of the shell model for different values of S/K . Note that

the rigid atom model emerges forK = ∞. Comment on the form of the dispersion
curves as K decreases. What happens when K � S?

7. Numerically expand the ω2(q) as a periodic real space Fourier series for differ-
ent values of S/K , and comment on your findings, especially the range of the
coupling.

6.2 The one-dimensional bond-charge model (see Figure 6.16)
Consider a monatomic linear chain with bond-charges midway between the ions.
The ion-BC force constant is K , and the BC–BC force constant is S. For simplicity,
we neglect the Coulomb forces. Carry out the items listed in Exercise 6.1, except

un

vn

Figure 6.15 One-dimensional shell model. un and vn are the ion-core and shell displacements,
respectively.

vn un

Figure 6.16 One-dimensional shell model. un and vn are the ion-core and shell displacements,
respectively.
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for item 3. Express the Fourier transform of the equations of motion in terms of the
variables U(q) and V (q).

6.3 Electron–phonon interaction by the method of pseudopotentials
We can express an OPW electron wavefunction as

k+G(x) = 1√
N
0

ei(k+G)·x −
∑
c

bc(k+G) �c
k(x),

where �c
k(x)s are Bloch wavefunctions of the core electrons

�c
k(x) =

1√
N

∑
l

eik·Rl φc(x− Rl ).

1. Given that the crystal potential can be written as

V (x) =
∑
l

v(x− Rl )

and that the overlap of the core wavefunctions is negligible, namely∫
dx φ∗c (x− Rl ) φc(x− Rl′) = δll′,

show that

bc(k+G) = 1√

0

∫
dx ei(k+G)·x φc(x).

2. Show that the matrix element of the repulsive potential can be written as

VR(k+G,k+G′) =
∑
c

(E − Ec) b
∗
c (k+G) bc(k+G′).

3. Minimizing 〈
�k
∣∣H− Ek

∣∣�k
〉

with a valence electron wavefunction of the form

�k(x) =
∑

G

a(k+G) k+G(x)

yields the eigenvalues Ek and the eigenvectors {a(k+G)}.
Assuming that such minimization has been carried out, and Ek and {a(k+G)}

have been determined, derive an expression for the electron–phonon interaction
matrix element

Iqλ(k,k′) = −N êqλ ·
∫
N
0

dx �∗k(x)
(
∇v(x)

)
�k′(x).

4. Show that this expression is the same as that obtained in terms of the pseudopo-
tential and the pseudowavefunction �, namely

Ipsqλ(k,k
′) = −N êqλ ·

∫
N
0

dx �∗k(x)
(
∇ [v(x)+ vR(x)]

)
�k′(x),
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if we assume a local pseudopotential that can be written as

VR(x) =
∑
l

vR(x).

Hint: Make use of the relation

∇
(
−∇2 + v(x)

)
φc =

(
−∇2 + v(x)

)
∇φc + ∇v(x) φc = Ec ∇φc,

which is obtained from (
−∇2 + v(x)

)
φc = Ec φc.

6.4 Compare neutrons with X-ray photons
A typical velocity for thermal neutrons is about 2.20 km/sec.

1. Using the de Broglie relation, show that the wavelength of neutrons with this
standard velocity is approximately 1.8Å.

2. What is the kinetic energy of these neutrons?
3. What is the energy of an X-ray photon of wavelength λ = 1.8Å?
4. Calculate the velocity of a neutron that has the same energy as this X-ray photon.

6.5 Monochromatizing neutrons
A beam of white neutrons emerges from a collimator with a divergence of ±0.2◦.
It is then Bragg-reflected by the (111) planes of a monochromator consisting of a
single-crystal of lead.

1. Calculate the angle between the direct beam and the [111] axis of the crystal to
produce a beam of wavelength λ = 1.8Å. (Unit cell edge a0 of cubic lead is
4.94Å.)

2. What is the spread in wavelengths of the reflected beam?

6.6 Neutron scattering from crystalline solids
Since the neutron is chargeless, it only interacts with the atomic nucleus through a
short-ranged nuclear interaction (Ignoring any spin–spin interaction). The range of
this interaction is ∼ 1 Fermi (10−15 m). Since the neutron wavelength has to be
comparable to lattice spacing

λ ∼ Å� range of the interaction 10−15 m,

the neutron cannot “see” the detailed structure of the nucleus, and so we may approx-
imate the neutron–ion interaction potential as a contact interaction

V (x) =
∑
l

Vn δ(x− Rl ) = 2πh̄2a

mn

∑
l

δ(x− rl ),

where rl is the instantaneous position of the ion in primitive cell l, a the scattering
length, and mn the neutron mass.

1. Write V (x) in terms of its Fourier transform.
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2. Consider the case of an incident neutron beam of wavevector k0 and wavefunction

|k0〉 = 1√
V
eik0·x,

where V is the volume. Determine the incident neutron beam flux ji .
3. If part of the beam scatters with wavevector k within a wavevector element dk,

what is the number of scattering states involved? Express the number of states
in terms of the corresponding energy element dEn and the solid angle of the
beam d
.

4. Determine the matrix element

〈�i |V (x)
∣∣�f

〉
.

Remember that the initial and final wavefunctions are products of neutron and
solid (phonon) ones, namely

|�〉 = |k〉 |�〉 ,
where |k〉 and |�〉 are the neutron and phonon wavefunctions, respectively. Use
the fact that rl = Rl + ul .

5. With the aid of Fermi’s Golden Rule, determine the probability of transition
P(k0 → k) per unit time. Show that it can be written in the form

P = C S(q,ω),

where

q = k− k0, h̄ω = h̄2k2

2mn

− h̄2k2
0

2mn

.

6. Use the identity

δ

(
E2

h̄
− E1

h̄
+ ω

)
=
∫ ∞
−∞

dt

2π
ei(E2−E1)t/h̄+ωt

to obtain an expression for S(q,ω) of the form

S(q,ω) = 1

N

∫ ∞
−∞

dt

2π
eiωt
∑
ll′

eiq·(Rl−Rl′ )
〈
�i

∣∣∣eiq·ul′ e−iq·ul (t)∣∣∣�i

〉
.

7. We can define the differential scattering cross-section as

j0
dσ

dE d

dE d
 = N P(k0 → k).

Obtain an expression for
dσ

dE d

.

6.7 According to the “Lindeman” criterion, a crystal melts when the root mean square
(rms) displacement of its atoms exceeds a third of the average separation of the atoms.
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1. Consider a one-dimensional lattice with lattice constant a and an interparticle
potential

V = mω2

2

∑
j

(
φj − φj−1

)2 .

Estimate the amplitude of zero point fluctuations using the uncertainty principle,
to show that if

h̄

mωa2
> ζc,

where ζc is a dimensionless number of order one, the crystal will be unstable, even
at absolute zero, and will melt due to zero-point fluctuations. (Hint: What would
the answer be for a simple harmonic oscillator?)

2. Consider a three-dimensional crystal with separation a, atoms of mass m, and a
nearest neighbor quadratic interaction

V = mω2

2

(
φR − φR+a

)2 .

Calculate ζc for this model. If you like, to start out, imagine that the atoms
only move in one direction, so that φ is a scalar displacement at the site with
equilibrium position R. Calculate the rms zero-point displacement of an atom√〈

0|φ2(x)|0〉. Now generalize your result to take account of the fluctuations in
three orthogonal directions.

3. Suppose h̄ω/kB = 300 K, and the atom is a helium atom. Assuming that ω is
independent of atom separation a, estimate the critical atomic separation ac at
which the solid becomes unstable to quantum fluctuations. Note that in practice ω
is dependent on a, and rises rapidly at short distances, with ω aα , where α > 2. Is
the solid stable for a < ac or for a > ac?
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Dimensionality, Susceptibility, and Instabilities

In Chapter 1, we discussed in detail how the density of states (DOS) and other character-
istic quantities of quasiparticle states, i.e., electrons, phonons, magnons, etc., are strongly
dependent on the dimensionality of a given system. In the present chapter, we shall explore
how dimensionality affects a system linear response – its susceptibilities.

7.1 Dimensionality, Susceptibility, and Nesting

7.1.1 Longitudinal Susceptibility of a Free Electron System

We start with the simple case of a jellium, where the single-electron eigenstates are plane
waves

|k〉 = 1√


e−ik·x, Ek = h̄2k2

2me

, and occupation f (k),

where 
 is the volume of the system. A many-electron wavefunction for the jellium can
be written as |�〉 = ∏i |ki〉, satisfying the Pauli principle, with the ground state given by
|�0〉 =

∏
|k|≤ kF

|ki〉. We are then able to reduce the susceptibility expression (5.42) to the
single-particle form

χ(q,ω) =
∑
|k|≤kF

∣∣∣〈k| eiq·x |k+ q〉
∣∣∣2 f (k)− f (k+ q)

E − Ek + Ek+q + ih̄η

= 1

(2π)d

∫
dkd

(EF − Ek)−(EF − Ek+q)

E − Ek + Ek+q + ih̄η

= 1

(2π)d

∫
dkd (EF − Ek)

×
[

1

E − Ek + Ek+q + ih̄η
− 1

E − Ek−q + Ek + ih̄η

]
= 1

(2π)d

∫
|k|≤kF

dkd
[

1

E1 + 2γk · q+ ih̄η
− 1

E2 + 2γk · q+ ih̄η

]
. (7.1)

E 1
2
= h̄ω ∓ γ q2, and γ = h̄2/2me.

200



7.1 Dimensionality, Susceptibility, and Nesting 201

We will consider here low-frequency perturbations, such that we can set ω ∼ 0, so
that (7.1) reduces to

χ(q) = −1

(2π)d
2m

h̄2

∫
|k|≤kF

dkd
(

1

q2 + 2k · q+ i(m/h̄)η
+ 1

q2 − 2k · q− i(m/h̄)η

)
.

(7.2)

1. Susceptibility in one dimension

χ(q) = m

πh̄2q

∫ kF

−kF
dk

(
1

q + 2k + i(m/h̄)η
+ 1

q − 2k − i(m/h̄)η

)
(7.3)

We note that for |q| < 2kF there is a singular point in the integral that is removed by the
presence of η, since in the limit η→ 0 we have

lim
η→0

1

z− iη
= P

(
1

z

)
+ iπ δ(z).

We find that the integral ∫ kF

−kF
dk

1

q + 2k
, |q| < 2kF,

has a singularity at k = −q/2. However, the principle part

P
∫ kF

−kF
dk

1

q + 2k
= lim

η→0

[∫ q/2−η

−kF
dk

1

q + 2k
+
∫ kF

−q/2+η
dk

1

q + 2k

]

= lim
η→0

[
1

2
ln |q + 2k|

∣∣∣−q/2−η
−kF

+1

2
ln |q + 2k|

∣∣∣kF−q/2+η

]
= lim

η→0

[
1

2
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣+ 1

2
ln

∣∣∣∣−ηη
∣∣∣∣] = 1

2
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ .
Thus,

# χ(q) = − m

πh̄2q
P
∫ kF

−kF
dk

(
1

q + 2k
+ 1

q − 2k

)
= − m

πh̄2q

1

2
ln

∣∣∣∣q + 2k

q − 2k

∣∣∣∣ ∣∣∣∣kF
−kF

= − m

πh̄2q
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ . (7.4)

2. Susceptibility in two dimensions

χ(q) = 2m

(2π)2h̄2

∫ kF

0
k dk

∫ 2π

0
dϕ

[
1

q2 − 2qk cosϕ
+ 1

q2 + 2qk cosϕ

]
= − k2

F

(2π)2EF

∫ 1

0
dk k

∫ 2π

0

dφ

q2 − 4k2 cos2 φ
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In the last line, we set k,q → k,q/kF . With∫ 2π

0

dϕ

a2 − 4b2 cos2 ϕ
= 2π

a
√
a2 − 4b2

.

we obtain

χ(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− k2

F

2πEF

∫ 1

0

x dx√
1− x2

= D(EF )

⎛⎝1−
√

1−
(

2kF
q

)2
⎞⎠ , q ≥ 2kF

− k2
F

2πEF

∫ q/2

0

x dx√
1− x2

= D(EF ), q ≤ 2kF

3. Susceptibility in three dimensions
Set q = q êz,k = (kz,r,φ) (cylindrical coordinates)

χ(q) = −2m

(2π)3h̄2q

∫
|k|≤kF

d3k

(
1

q + 2kz + i(m/h̄)η
+ 1

q − 2kz − i(m/h̄)η

)

= −2m

(2π)3h̄2q

∫ kF

−kF
dkz

∫ √k2
F−k2

z

0
dr r

×
∫ 2π

0
dφ

(
1

q + 2kz + i(m/h̄)η
+ 1

q − 2kz − i(m/h̄)η

)
= −2m

(2π)2h̄2q

∫ kF

−kF
dkz

k2
F − k2

z

2

(
1

q + 2kz + i(m/h̄)η
+ 1

q − 2kz − i(m/h̄)η

)
.

(7.5)

We use the integral∫ b

−b
dx x2

(
1

a + 2x
+ 1

a − 2x

)
= a

2

[
−2b + a tanh−1

(
2b

a

)]
together with

tanhα = e2α − 1

e2α + 1
= 2b

a
⇒ tanh−1

(
2b

a

)
= 1

2
ln

∣∣∣∣a + 2b

a − 2b

∣∣∣∣ ,
and obtain∫ kF

−kF
dkz k

2
z

(
1

q + 2kz
+ 1

q − 2kz

)
= q

2

[
−2kF + q

2
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣]

k2
F

∫ kF

−kF
dkz

(
1

q + 2kz
+ 1

q − 2kz

)
= k2

F ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣
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Figure 7.1 Lindhard susceptibility in one, two, and three dimensions.

# χ(q) = − m

4π2h̄2q
P
∫ kF

−kF
dkz

(
k2
F − k2

z

) ( 1

q + 2kz
+ 1

q − 2kz

)

= − m

4π2h̄2q

[
qkF −

(
q2

4
− k2

F

)
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣]

= − mkF

4π2h̄2

[
1− q

4kF

(
1− 4k2

F

q2

)
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣
]

= − mkF

4π2h̄2

[
1+ 2kF

2q

(
1− q2

4k2
F

)
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣
]

. (7.6)

We see that at q = 2kF , χ(2kF ) diverges in 1D, while in 2D and 3D it only has a
discontinuity and a divergence, respectively, in its derivative (see Figure 7.1). We note that
in the case of isotropic electron systems, a wavevector |q| = 2kF connects only two states.

Consequently, as can be seen from Figure 7.2, the number of participating states in the
2kF transition is of the order of 1/Fermi sea length ∝ 1/kF in 1D, and 1/Fermi sea area ∝
1/k2

F in 2D. It is easy to extrapolate 1/Fermi sea volume ∝ 1/k3
F in 3D. Thus we can

qualitatively understand why the singularity at q = 2kF weakens with increasing dimen-
sionality for isotropic systems.

For q > 2kF , χ(q) exhibits a monotonic decrease with q in all dimensions. This can be
understood in terms of energy conservation: perturbations with h̄ω � EF and q ≤ 2kF
can induce transitions on and in the vicinity of the Fermi surface that require negligible
infinitesimal energies (real transitions); however, perturbations with q > 2kF induce tran-
sitions that require finite energies	E � h̄ω (virtual transitions).1 In other words, electrons
cannot provide adequate screening to perturbations with q > 2kF .

1 Recall from quantum mechanics that a virtual transition is one that violates energy conservation, hence it can only last for a
time 	t ≤ h̄/	E, where 	E is the energy cost of the transition. The system has to return to initial state within 	t .
This process is clear in the expression for second-order perturbation energy ∝ 〈φ0|V |φn

〉 〈
φn|V |φ0

〉
/	E0n.
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free

Figure 7.2 For a transition vector 2kF : In 1D, the number of participating states ∝ 1/Fermi sea
length, in 2D it is ∝ 1/Fermi sea area, and in 3D it is ∝ 1/Fermi sea volume.

This scenario implies that for a 1D free electron system, an external perturbation with a
h̄ω � EF and |q| ∼ 2kF will induce a divergent charge redistribution

ρind(2kF ) = χ(2kF ) V ((2kF )).

Phonon perturbations present a possible mechanism that can induce such an effect.

7.1.2 Fermi Surface Nesting in Quasi-1D Systems

It is easy to build on Figure 7.3 and envision that anisotropy can change the geometry of
the Fermi surface in two and three dimensions. In such situations, a vector |q| = 2kF may
connect many states on the Fermi surface. The process of spanning portions of a Fermi
surface by a single wavevector is called nesting. If the portions of the Fermi surface that
can be spanned by the single wavevector is large, a perturbation with such a wavevector
will induce a large number of electron–hole excitations, all of them taking place from −kF
to +kF . We stress again that only in 1D the characteristic topology of the Fermi surface
enforces a perfect nesting. Figure 7.3 shows a possible nesting configuration for the case of
a 2D square lattice.
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EF

Figure 7.3 Possible Fermi surface nesting in a 2D square lattice.

Charge Density Waves

The combination of electron–phonon coupling and Fermi surface nesting induces periodic
charge redistribution in some low-dimensional crystalline systems, with a wavevector 2kF .
Such periodic charge density modulation is called a charge density wave (CDW). The CDW
effectively screens the 2kF phonon mode producing it, and thus reduces its frequency,
a process known as mode softening. If the screening is complete, the mode frequency
vanishes and the mode is said to be frozen in, that is, it becomes a static displacement pattern
of the ions from their equilibrium positions in the normal metal state; it is usually referred
to as a periodic lattice distortion (PLD), or lattice modulation. In general, the period of
the modulation λ = 2π/kF is not a multiple of the lattice period, but is incommensurate
with respect to it. The PLD phase transition introduces additional diffraction peaks due
to the superposition of the modulation superstructure on the original lattice. Although the
ideal case of an incommensurate CDW would suggest that it moves collectively without
any resistivity, like a superconductor, pinning to impurities and defects prevents such free
motion. Collective transport of the entire CDW is possible with the application of a depin-
ning threshold field.

7.1.3 Finite Temperature Susceptibility

We now consider the temperature dependence of χ(q), which describes the system’s
response to perturbation energies negligible in comparison with EF . Thus we shall confine
the following derivation to an energy range of the order of the Debye energy ED typical of
phonon excitations that satisfy ED � EF .

At finite temperatures, the expression for χ(q) is dominated by the Fermi distribu-
tion functions in the numerator of (7.1), namely f (Ek) = (exp(βEk)+ 1)−1, where
β = 1/kBT . Examination of Figure 7.4a justifies linearizing the electronic dispersion
relation about EF , as shown in Figure 7.4b.
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(a) (b)

Figure 7.4 (a) Band dispersion for free electrons in one dimension. (b) Approximating the dispersion
relation near the Fermi level.

If we introduce the variable ε such that Ek = EF + ε, (ε < ED), then Ek+2kF is given
as Ek+2kF = EF − ε, as shown in Figure 7.4b. Substituting in the expression for χ(2kF )

χ(q) = 1

N

∑
k∈BZ

f (Ek)− f (Ek+q)

Ek − Ek+q
⇒

∫
dk

2π

with Ek − Ek+q = 2ε and dq = D(EF )dε, we get

χ(2kF ) = D(EF )

2N

∫ ED

0

[
1

exp(−βε)+ 1
− 1

exp(βε)+ 1

]
dε

ε

= D(EF )

2N

∫ ED

0

tanh(βε/2)

ε
dε = D(EF )

2N

∫ βED/2

0

tanh x

x
dx. (7.7)

Using the low-temperature approximation βED � 1,

b→∞,

∫ b

0
dx

tanh(x)

x
� ln

[
4eγ b

π

]
, γ = 0.5771 is Euler’s constant,

we obtain

χ(2kF ) = D(EF )

2N
ln

[
1.14ED

kBT

]
, (7.8)

which indicates that χ(2kF ) diverges logarithmically with decreasing temperature.

7.2 Peierls Instability and Peierls Transition

The instability in one-dimensional electronic systems for q → 2kF and T → 0, which
gives rise to a CDW ρ2kF , is called a Peierls instability. The manifestation of a Peierls
instability [151] is closely related to the dimensionality and extent of nesting of a system.
In a free electron system without interactions, there is of course no perturbing potential
present to drive the Peierls instability. However, in the presence of an underlying lattice and
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Figure 7.5 (a) Band dispersion for free electrons in 1D, in the presence of (b) a static periodic lattice
with periodicity a.

its thermal phonon excitations, the Peierls instability can occur since the phonons provide
the perturbing potential required to drive the electron instability.

We introduce such a lattice in the 1D electron system as shown in Figure 7.5. Fig-
ure 7.5(a) depicts a 1D band picture, and Figure 7.5(b) a classical electron picture at T = 0.
Moreover, for the sake of simplicity, we consider the case of one free electron per lattice
point. For a lattice spacing of a, we find that the electron density is

n = 1

a
= 2

2kF
2π

⇒ kF = 1

4
× 2π

a
= π

2a
.

The following scenario applies to any electron density n < 2/a.
First we consider the case of static lattice distortions. A periodic lattice distortion with

a wavevector q is described as

u = uq cos(qx), (7.9)

where u is the ions displacement from their equilibrium positions. This lattice distortion
produces a perturbing potential that acts on the electron system

V = Vq cos(qx) = guq cos(qx), (7.10)

where g is the electron–lattice coupling constant. The electron system then forms a
density wave

ρq = −Vq χ(q),
and it is expected to lower its energy in the presence of this density wave.

In contrast, the periodic lattice distortion (7.9) leads to a strain energy increase of

δU = 1

2
Cu2

q, (7.11)

due to ion–ion overlap or coulomb interactions. C is the elastic stiffness. If the decrease
of the electron energy outweighs the increase of the elastic energy, the total system will
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stabilize itself by spontaneously forming the lattice distortion u and maintaining the
electron-density wave ρq . As we have shown, this phenomenon occurs for q = 2kF in one
dimension.

We shall now consider the problem of energy balance. A perturbation Vq creates a gap
in the band dispersion of Eg = 2	 = 2|Vq | at k = q/2, and modifies the dispersion in the
vicinity of this gap to

E±k =
E0
k + E0

k+q
2

±

√√√√(E0
k − E0

k+q
2

)2

+ ∣∣Vq ∣∣2, (7.12)

where E0
k denotes the unperturbed energies, and the ± signs denote upper and lower bands

around the gap, respectively. The change in the electron energy due to the perturbation at
finite T is then

δK =
∑
k

E±k f (E±k )−
∑
k

E0
k f (E

0
k ). (7.13)

Using the approximation that actually Vq � EF , we obtain

δK ≈ −∣∣Vq ∣∣2 ∑
k

f (E0
k+q)− f (E0

k)

E0
k − E0

k+q

= −∣∣Vq ∣∣2 N χ(q).

The change in the total energy of the combined electron–lattice system is then

(C/2) u2
q −
∣∣Vq ∣∣2 N χ(q) = −g2u2

q

{
N χ(q)− C

2g2

}
= −	2

{
N χ(q)− C

2g2

}
. (7.14)

The susceptibility diverges logarithmically with decrease in T for q = 2kF , while the
elastic stiffness remains finite. Therefore, the total energy becomes negative below a certain
temperature TP , and the Peierls instability takes place whenever g is nonzero, giving rise to
an electronic band gap at the Fermi level, and the system turns from a metal to an insulator.
The periodic lattice distortion with wavevector 2kF is called the Peierls distortion, while the
metal–insulator transition arising from the Peierls instability is called the Peierls transition.
Figure 7.6 shows schematically both the changes in the electron-band dispersion (Figure
7.6a) and the lattice distortion (Figure 7.6b) for the case of one electron per lattice point.
Notice that the lattice becomes dimerized with a periodicity of 2a.

We can derive an expression for the transition temperature TP , by setting (7.14) to zero,

C

2g2
−Nχ(q) = 0, (7.15)

and substituting for χ(q) from (7.8), we get

C

2g2
−N

D(EF )

2N
ln

1.14ED

kBT
= 0, (7.16)
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Figure 7.6 (a) Band dispersion for the insulating state caused by the Peierls transition.
(b) The corresponding lattice distortion and electron localization. For the case of one electron per
lattice point.

yielding

T MF
P = 1.14TD exp(−1/λ),

λ = g2D(EF )

C
,

(7.17)

where λ is the dimensionless parameter of the electron–lattice interactions. The superscript
MF of TP indicated that the result is derived on the basis of a mean-field approximation.

Either the neighboring atoms alternately get slightly closer and further apart, or they
can get buckled (symmetrically or asymmetrically), both distortions resulting in a chain of
dimers.

7.3 Electron–Phonon Coupling and the Kohn Anomaly

In the last section, we have seen that the static lattice distortion and the charge density
wave with wavevector q = 2kF appear below the Peierls transition temperature TP . As
TP is approached from above, the frequency of the q = 2kF phonon decreases, while its
amplitude increases. This is the phenomenon of phonon softening. The softening of the 2kF
phonons due to interactions with an electron system is called a Kohn anomaly. As shown
in Figure 7.7, for a 1D system, the soft phonon frequency vanishes at TP , giving rise to the
static lattice distortion, or frozen phonon. The Kohn anomaly can be regarded as a precursor
to the Peierls transition in this case.

7.3.1 Electron–Phonon Interactions in the Jellium Model

In the jellium model, the lattice is regarded as a continuum of positive charges. The lattice
vibrations then correspond to periodic distortions in the positive charge density that create
electric polarizations and hence electric fields acting on the electron system. Thus, the
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(a) (b) (c)

– ––

Figure 7.7 (a) Monatomic linear chain, showing the charge density, ρ(x). (b) Electron dispersion
curves for half band filling. (c) Acoustic phonons dispersion curve. Top and bottom in each part show
before and after the Peierls transition.

electrons and the lattice waves interact with each other through these polarization fields.
A lattice modulation of the elastic body of positive charges is then described by

u(x,t) = 1√
V
∑
q

ηq(t) exp(iqx), (7.18)

where V is the volume of the system. u(x,t) produces an electric polarization P = Zeniu,
where ni is the “ion” density. The density of positive charge associated with the distortion
is given by δρi = −div P . Poisson’s equation

−∇2φ = δρi/ε0

then determines the potential φ(x) due to this charge density modulation. We have invoked
the approximation of neglecting the Coulomb interaction among the electrons and thus used
the dielectric constant of vacuum. The potential φ(x) is then given by

φ(x) = − i

ε0
√
V
∑
q

Zeniηq

q
exp(iqx). (7.19)

Writing the electron wavefunction as

ψ(x) = 1√
V
∑
k

ck exp(ikx), (7.20)

we obtain the interaction potential energy between the electron and phonons as

H′ =
∫

eφ(x)ψ∗(x)ψ(x) dx = iZe2ni√
V
∑
q

∑
k

c
†
kck−q ηq

q
, (7.21)
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where we have introduced second quantization operators c†
k and ck for the electron system.

We can also introduce similar operators for the phonon system through the relation

ηq =
√

h̄

2Mniωq

(
bq + b

†
−q
)
, (7.22)

where Mni is the mass density of the uniform positive charge. The electron–phonon inter-
action Hamiltonian is then given by

H′ = 1√
V
∑
q

∑
k

g(q) c
†
k+qck

(
bq + b

†
−q
)
,

g(q) = i

√
h̄

2Mniωq

iZe2ni

ε0q
, (7.23)

where g(q) is the electron–phonon interaction parameter.
The total Hamiltonian for the electron plus the lattice is then given by

H =
∑
k

Ek c
†
kck +

∑
q

h̄ωq b
†
qbq +

1√
V
∑
k,q

g(q) c
†
k+qck

(
bq + b

†
−q
)
. (7.24)

This is known as the Frölich Hamiltonian for noninteracting electrons incorporating the
jellium model for the lattice. The Kohn anomaly can be derived from this Hamiltonian.

7.3.2 The Kohn Anomaly

The phonon frequency ω(q) is determined from the magnitude of the restoring force for
the corresponding lattice distortion. The origin of the restoring force in the jellium model
is the Coulomb interaction among the ions. The lattice distortion associated with a phonon
of wavevector q subjects the electron system to a potential Vq , which gives rise to a
density wave ρq = −χ(q)Vq . The electron-density wave must reduce interionic forces by
screening the electric force. Thus the restoring force decreases and the phonon frequency
becomes smaller than it would be in the absence of electron–phonon interactions, i.e., for
the bare ions.

Using the Frölich Hamiltonian, we can write the equation of motion for the phonon
operator ηq as

−h̄2 η̈q =
[[
ηq,H

]
,H
]

. (7.25)

After some algebraic manipulations, we arrive at

η̈q = −ω2
qηq − g-q

√
2ωq

MniVh̄
∑
k

c
†
k−qck . (7.26)
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If we have N electrons in the volume V , the electron density can be written as

∣∣ψ(x)∣∣2 = N

V
∑
q

ρq exp(iqx).

In the language of second quantization, ρq becomes

ρq = (1/N)
∑
k

a
†
k−qak .

Thus we can rewrite (7.26) as

η̈q = −ω2
qηq − g-q

√
2ωq

MniVh̄
N ρq . (7.27)

We can rewrite H′ in the form

H′ =
∑
q

iZe2ni ηq

q
√
V

∑
k

c
†
k−qck = N

∑
q

ρq Vq = N
∑
q

χ(q)
∣∣V (q)∣∣2, (7.28)

where we defined

Vq = gqηq

√
2Mniωq

h̄V , (7.29)

which allows us to express (7.27) in the form

η̈q = −
2
qηq = −ω2

q ηq +
2
∣∣gq ∣∣2Nωq

h̄V χ(q) ηq . (7.30)

The new phonon frequency 
q renormalized by the electron–phonon interaction is


2
q = ω2

q −
2
∣∣gq ∣∣2Nωq

h̄V χ(q,T ) ≤ ω2
q, (7.31)

where ωq is the bare phonon frequency.
For the case of one-dimensional electron systems, χ(q) diverges logarithmically as

q → 2kF and T → 0; thus the frequency 
2kF is always small compared with frequencies
at other wavevectors, approaching zero as T → TP . In 2D and 3D, χ(q) does not diverge
but decreases rapidly for q > 2kF . This fact is reflected in a weak anomaly in the phonon
frequency at q = 2kF . Figure 7.8 depicts the form of the Kohn anomaly in each dimen-
sion. The Kohn anomaly in one dimension is sometimes called the Giant Kohn anomaly.
The temperature at which 
2kF becomes zero in one dimension is the Peierls transition
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Figure 7.8 Manifestation of the Kohn anomaly in the phonon dispersion in each dimension.

temperature T MF
P , or simply TP . Setting 
2kF = 0 in (7.31) and using (7.8) for χ(2kF ),

we get


2
2kF = ω2

2kF −
2
∣∣g2kF

∣∣2Nω2kF

h̄V χ(2kF,TP )

= ω2
2kF −

2
∣∣g2kF

∣∣2ω2kF N

h̄V
D(EF )

2N
ln
[
1.14ED/kBTP

]
= 0. (7.32)

We identify

λ =
∣∣g2kF

∣∣2D(EF )

h̄ω2kF V
, (7.33)

and write

1

λ
= ln
[
1.14TD/TP

] ⇒ TP = 1.14TD exp (−1/λ), (7.34)

where TD = ED/kB . Using (7.33) and (7.34), we arrive at the following expression for the
temperature dependence of 
2(2kf )


2
2kF (T ) = ω2

2kF

(
1+ λ ln

[
T

1.14TD

])
= λω2

2kF

(
1

λ
+ ln

[
T

1.14TD

])
= λω2

2kF ln
T

TP
.

The parameter λ must be the same as in (7.17). Comparing these equations, we see that the
elastic stiffness C, therefore, corresponds to h̄ω2kF . This should be expected since C/2 is
the elastic energy per unit volume and h̄ω2kF is the phonon energy.
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Figure 7.9 Onset of static lattice distortion of q = 2kF = π/a for T ≥ TP .

7.3.3 The Order Parameter of the Peierls Transition

Two quantities that describe the change of state that occurs in the Peierls transition are the
frequency of the soft phonon, 
2kF , and the width of the band gap, Eg = 2	. We can
employ 	 as an order parameter of the Peierls transition because 	 = 0, for T ≥ TP , and
	 > 0, for T < TP .

For T < TP , the restoring force for the lattice distortion with q = 2kF becomes zero,

2kF = 0, because of the screening due to the electron-density waves. A static lattice
distortion, with periodicity 2kF = π/a, appears (see Figure 7.9).

The balance of forces is represented on the right of (7.30). Using (7.30) and noting the
nonvanishing expectation value

〈
η2kF

〉 
= 0 for T < TP , we obtain an equation for the force
balance as follows:

ω2
2kF

〈
η2kF (T )

〉 = 2
∣∣g2kF

∣∣2Nω2kF

h̄V χ
(
2kF ;

〈
η2kF (T )

〉 ) 〈
η2kF (T )

〉
, (7.35)

where we used the fact the
〈
η2kF

〉
is a static distortion, and χ

(
2kF ;

〈
η2kF

〉 )
is the suscepti-

bility in the presence of the gap 	 due to
〈
η2kF

〉 
= 0. This should be calculated using (7.12),
which describes the electronic energy dispersion in the presence of the band gap. The
energy is measured from E = EF , and the calculation is done within an energy range
EF − ED < E < EF + ED , i.e., k � kF , as was done in deriving (7.7). The dispersion
relation near EF is then approximated by the linear relation between E0

k and k,

E0
k = EF + ε0

k, E0
k+q = EF − ε0

k . (7.36)

Equation (7.12) is then written as

E±k = ±
√
(ε0
k )

2 + ∣∣Vq ∣∣2 = ±√(ε0
k )

2 +	2. (7.37)

Following the same procedure as in (7.7), we obtain

χ
(
2kF ;

〈
η2kF (T )

〉 ) = D(EF )

2N

∫ ED

0
tanh

βE+k
2

dε0
k

E+k
. (7.38)
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TP

Figure 7.10 Temperature dependence of gap 	, and the frequency 
2kF of the soft phonon.

Substituting (7.38) and (7.33) into (7.35), we obtain

1

λ
=
∫ ED

0
tanh

βE+k
2

dε0
k

E+k
. (7.39)

This equation gives a relation between T and 	 contained in E+k . The form of this equation
is reminiscent of the superconductivity gap. At T = 0, tanh(βE+/2) = 1, and we get

1

λ
= 1

2

∫ ED

−ED

dε0
k√

(ε0
k )

2 +	2
= ln

⎡⎣
√
E2
D +	2 + ED√

E2
D +	2 − ED

⎤⎦ .

When 	(0)� ED , a condition usually satisfied in real systems, we find that

	(0) = 2ED exp (−1/λ) = 1.76kBTP . (7.40)

When the temperature is raised above zero, the numerator of the integrand of (7.39) is
reduced, and in order to satisfy the left-hand side, the denominator must decrease. This
implies that 	 is a monotonically decreasing function of T . The initial decrease is expo-
nentially slow until kBT becomes of the order of 	(0) when 	(T ) begins to drop more
rapidly until it vanishes at TP .

Figure 7.10 shows the temperature dependence of both 	 and 
2kF . The gap 	 is zero
above TP and increases continuously with decreasing T below TP . This suggests that the
Peierls transition, like the superconducting transition, is a second-order phase transition
whose order parameter is the gap 	. Of course, we could also use η2kF , the amplitude of
the lattice distortion, or ρ2kF as an order parameter.

Exercises

7.1 Consider a weak periodic potential of the form V (x) = V0 cos(2kF x) created in a
one-dimensional electronic system, with q = kF the Fermi wavevector. We need to
calculate the total energy of the system with and without this weak potential.
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Figure 7.11 TaS2 Fermi surface cross-section in the basal plane, from [137].

(a) The new perturbed bands are given by (7.12):

E±k =
E0
k + E0

k+q
2

±

√√√√(E0
k − E0

k+q
2

)2

+ ∣∣Vq ∣∣2.

Use this to express the change in energy in the lower band 	E(k′), where
κ = q/2− k, from the unperturbed case as

	E(k′) = h̄2

2m

⎡⎣qκ −
√
(κ)2 +

(
2mV0

h̄

)2
⎤⎦ .

(b) Integrate the preceding equation over k-space and show that the total change in
energy, for a weak potential, is proportional to V 2

0 lnV0.

(c) For a weak potential strength V0 � h̄2

2m

(q
2

)2
, does the total energy increase or

decrease for this gapped system compared to free electrons?

7.2 1T-TaS2 is a layered compound with octahedrally coordinated S-Ta-S layers held
together by van der Waals forces. Figure 7.11 shows a Fermi surface cross-sections of
1T-TaS2 in the basal plane also containing an extension of one segment into the next
zone. Explain qualitatively why the topology of this Fermi surface leads to strong
nesting.
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8

Topological Aspects of Condensed Matter Physics:
A Historical Perspective

A brief history of insulators
and topological phases.

Prior to the 1980s, electronic phases have been classified as insulating, metallic (conduct-
ing), superconducting, or magnetic. Magnetic and superconducting phases were shown to
be described in terms of symmetries that are spontaneously broken, which will be discussed
in Part Three.

According to electronic band theory proposed by Bloch and Wilson [31, 198, 199] sys-
tems with an odd number of electron per unit cell were predicted to be metallic. However,

219
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in 1937 Jan Hendrik de Boer and Evert Johannes Willem Verwey pointed out that a variety
of transition metal oxides, predicted to be conductors according to band theory, are actually
insulators. Nevill Mott and Rudolf Peierls predicted that this anomaly can be explained by
including interactions between electrons [133]. In 1949, Mott proposed a model where the
energy gap in the metal-oxide NiO arises from a competition between Coulomb energy U

and hopping of 3d electrons [132].
In 1955, Peierls proposed the idea that in a one-dimensional metal system, electron–

phonon interaction leads to a Fermi surface instability that triggers a metal insulator accom-
panied by a lattice distortion [151], the Peierls transition that was presented in Chapter 7.

Shortly after, in 1958 P. W. Anderson proposed another type of insulators that results
from a variety of lattice disorders [10], or randomness. This was followed in 1979 by the
introduction of a scaling theory for localization [3]. In 1963, John Hubbard introduced a
simple model to describe interacting electrons to describe the transition between conduct-
ing and insulating systems [94] that today bears his name. The Hubbard model can be
considered an improvement on the tight-binding model, which for strong interactions can
give qualitatively different behavior, correctly predicting the existence of a Mott insulator.

In 1980, the integer quantum Hall (IQH) phase was discovered by von Klitzing and
coworkers [105]. At low temperature, the energy spectra of a two-dimensional electron
gas subjected to a strong magnetic field, shown schematically in Figure 8.1 (left), display
discrete, or flat, energy bands known as Landau levels. von Klitzing et al. observed that
when the Fermi energy is in a gap between Landau levels, the system becomes insulating,
yet the measured Hall conductance assumes quantized values in units of e2/h, as manifest
in the staircase plateau structure of the Hall resistivity in Figure 8.1 (right). The value of this
unit of quantization brings to mind the fine-structure constant of quantum electrodynamics,
α = e2/ch̄ ∼ 1/137. The Hall conductance was found to be independent of the details
of the system, such as geometry and impurities, provided the gap between the Landau

VH

re
s
is

ta
n
c
e

field

Figure 8.1 Schematic picture of the QHE system (left). Hall resistivity (right) showing the manifest
plateau quantization, RH = h/e2 = 25812.807557(18)
.
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levels is sufficiently large compared to kBT . Thus, the IQH state breaks no symmetry,
and its quantized features are found to be robust against smooth changes in the system’s
constituent parameters, most obviously disorder associated with sample preparation (recall
our discussion in Chapter 4 of how a 2DEG is achieved in a fabricated heterojunction).

It was then argued that novel states, confined to the edge of the system (coined edge
states), must carry the Hall current. When an impurity is located on the edge, the robust
edge current goes around it, propagating ballistically without backscatterings. Because of
this chiral 1 character of edge states, the edge current flows in one way. Subsequent studies
demonstrated that these boundary states are enforced by a topological bulk ordering, which
makes the edge current robust against edge deformation, or weak perturbations: In 1982,
Thouless, Kohmto, Nightingale, and den Nijs (TKNN) showed that the conductance quan-
tization is associated with a topological invariant [176]. Calculating the Hall conductance
with the aid of the Kubo formula, TKNN showed that it yields a topological invariant
known as the first Chern number. In 1984, with the emergence of Berry’s geometric phase
framework [27], it became clear that the integrand that appeared in the TKNN formula was
just Berry’s field (or curvature), and that the integral was actually performed over the closed
surface of the two-dimensional Brillouin zone.

We recall that quantum-mechanical wavefunctions are described by linear combinations
of an orthonormal set of basis vectors that define a Hilbert space. We also know that in
crystalline solids, the wavevector k becomes a good quantum number. This allows us to
view the Bloch wavefunction as a mapping of a point in k-space, the Brillouin zone, to
a subspace of Hilbert space. In the following chapter, we will identify this structure in
Hilbert space as a manifold. As we will see, such identification reveals the connection
of such topological structure in Hilbert space to electronic states in solids. Within this
perspective, the aforementioned findings revealed that the mapping of QHE electronic
states onto Hilbert space appeared as an intertwining with a nontrivial topology. These
revelations led to the argument that the quantum Hall state presented a system topologically
distinct from previously known electronic phases, and that a new classifying paradigm
based on the notion of topology was needed.

Further progress regarding the topological characterization of material systems remained
dormant until the dawn of the twenty-first century. The first half of the 2000 decade
witnessed the evolution of the idea of a quantum spin Hall (QSH) system [136] and a Z2

topological number ν. The simplest depiction of the QSH phase involves a superposition
of two quantum Hall (QH) replicas, shown in Figure 8.2, one for ↑-spins and the other
for ↓-spins, thus having opposite effective magnetic fields. We discern that for the ↑-spin
(↓-spin) subsystem, the QH conductance is σ↑xy = e2/h (σ↓xy = −e2/h), and, hence, a
zero net edge current and a zero Chern number. We note, however, that the spins of the
counterpropagating edge states have opposite directions, and, hence, there exists a net spin
current. The combined system obeys time-reversal symmetry (TRS), since the net magnetic

1 Chirality is the property that an object and its mirror image do not coincide. In the present case, it identifies the
unidirectionality of electronic motion in the edge states.
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Quantum Hall system

(B>0 for up–spin)

Quantum Hall system

(B<0 for down–spin)

Quantum spin Hall system

Spin

Figure 8.2 Schematic picture of the QSH system as a superposition of two QH systems; from [135].

field is zero. Actually, such a system can be realized with the aid of spin–orbit coupling,
since it acts like an effective magnetic field with opposite directions for opposite spins.

In 2005, Kane and Mele (KM) proposed, in a seminal paper, a QSH mechanism for a
graphene-like system [99]. Recall, that graphene is a semimetal with a gapless electronic
structure. At low energies, it is represented by Dirac cones around the K-points of the
2D Brillouin zone, with Dirac points at the Fermi energy. What KM considered was a
TRS model (KM model) that closely resembles graphene, but with an energy gap gen-
erated by SOI at the K-points – in other words, a graphene-like insulator because of a
strong intrinsic SOC. They showed that this model exhibits spin Hall conductivity that is
precisely quantized to 2e2/h. Furthermore, KM suggested that there must be an additional
topological invariant, which characterizes the QSH effect. They subsequently demonstrated
that such a topological invariant, Z2, in fact exists [98], and assumes only the two values
ν = 0, 1 mod 2. This is to be contrasted with integer quantum Hall effect (IQHE), which is
characterized by a Z invariant.

In the context of the Z2 invariant, KM argued that it characterizes whether an insulator
is of a trivial (or ordinary) or nontrivial band type. In a trivial insulator, such as diamond,
electrons fully occupy energy bands that derive their ordering and character from atomic
orbitals. In the nontrivial case, the energy gap between the occupied and empty states is
fundamentally modified by SOI. In the KM graphene-like model, the energy gap follows the
expected conventional orbital ordering around the gap away from the K-points; however,
because of the strong SOC, the insulating energy gap is inverted at the K-points: the
atomically derived states that should appear above and below the gap become reversed.
This twist in the order of electronic states appears in Hilbert space like the twist in the
Mobius band; it cannot be unwound, hence its topological nature. Such strong SOIs are
manifest in materials containing heavy elements such as Bi or Sb. Further analytic and
numerical studies revealed the existence of manifest edge states, and that such nontrivial
states are robust to both weak TRS interactions and SOC terms that mix electronic states
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with ↑ and ↓ spins. The nontrivial insulator was later coined topological insulator (TI) by
Moore and Balents [130].

Zhang and coworkers argued that the QSH effect was very difficult to observe in
graphene [202], because of the very weak intrinsic spin–orbit coupling. Bernevig, Hughes,
and Zhang (BNZ) [26] proposed, instead, that it would appear in Hg-Te quantum wells
where spin–orbit coupling was unusually strong. In 2007, the QSH effect was observed
experimentally by König et al. in such quantum wells [109]. In the same year, three-
dimensional (3D) bulk solids of binary compounds involving bismuth were predicted
to belong to the TI family. The first experimentally realized 3D TI state was observed
in bismuth antimonide, and shortly afterward in pure antimony, bismuth selenide, bis-
muth telluride, and antimony telluride using angle-resolved photoemission spectroscopy
(ARPES) [88]. The band structure and the absence of backscattering have also been
reported with scanning tunneling microscopy and spectroscopy.

Three-dimensional TIs have several attributes in common with graphene, such as their
low-energy electronic properties of edge (surface) states being dominated by massless
Dirac fermion excitations, where the energy dispersion relations are described by a Dirac
cone. As a result, we have highly conducting metallic states on the surface – a feature
not seen in ordinary insulators. Moreover, the combination of strong SOI and TRS in TIs
result in a spin-momentum locking property, helicity, whereas clean graphene exhibits a
pseudospin-momentum locking not related to TRS but with the internal symmetry of the
honeycomb lattice. Differences from graphene also lie in the parity of the number of Dirac
cones emerging at surfaces.

Two more varieties of topological materials emerged in 2011, topological crystalline
insulators [70] and Weyl semimetals (WSM) [192]. The former involves topological insula-
tors protected by crystal point symmetries, and do not require TRS. The latter is associated
with accidental twofold degeneracies of bands in a three-dimensional solid. The require-
ment for a WSM is that either TRS or inversion symmetry must be absent so that global
band spin degeneracy can be removed and accidental double degeneracy can be realized.
The dispersion in the vicinity of these band touching points is generically linear and can be
described by the Weyl equation, despite the lack of Lorentz invariance.

As we will see in Chapter 12, the phenomenology of topological condensed matter
phases can be understood in the framework of what has become known as topological
band theory of solids. It is remarkable that after more than 80 years, there are still gems to
be uncovered within band theory.

For further reading, the books in references [25, 66, 148, 166] are recommended.
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Topological Preliminaries

We are used to the standard formulation of nonrelativistic quantum mechanics where pure
states are described in terms of vectors and operators in a Hilbert space. However, modern
approaches in mathematical physics adopt a more versatile framework [23]: the formalism
of fiber bundles, in particular vector bundles, where, as we shall see, Hilbert space is
repackaged [172]. To develop the fundamental aspects of topological phases, we need to
introduce the basic concepts of such an approach and define the main underlying constituent
components.

9.1 Defining Important Building Blocks

We first need to be familiar with some basic elements and jargon of the formalism, and we
start with providing the following important but nonrigorous definitions [49, 67, 138]:

• Manifolds are generalizations of our familiar ideas about curves (1D) and surfaces (2D)
to similar objects of arbitrary dimensions. We note an important feature of a manifold
M in Rm space: it is an object that locally looks like Rm but not necessarily globally.
The phrase “looks like” means that we may use, locally, a set of m coordinates just as
we would in an ordinary Euclidean space, namely, a part of Rm, but we must allow for
the choice of the m coordinates to vary as we move over the manifold. For example, we
may describe a small part 	S of a surface S in a three-dimensional space R3 around a
point x ∈ 	S, as a flat Euclidean space R2. Such a particular local description cannot be
extended globally to other parts of the surface.

All manifolds of dimension m can be embedded into some Euclidean space Rn,n > m

(M ↪→ Rn). In this case, we may describe a manifoldM by introducing n−m constraints.
For example, we may embed the two-sphere S2 into R3 by representing its elements by
3-vectors x such that x2

1 + x2
2 + x2

3 = 1.

• Topology in general deals with continuity in a given space or manifold. For example, we
find that the continuity of a sphere is clearly different from that of a torus. The former
has no holes while the latter has a clear hole.

224
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Sphere ∼ Wineglass Torus ∼ Cup

This raises the idea of continuous deformability, or homeomorphism. Assuming our
sphere is made of putty, it is then possible to continuously deform it into the form of a
wineglass without punching any holes, thus we declare that the wineglass is topologically
equivalent, homeomorphic, to the sphere! The same is true if we deform the torus into
a cup with a handle. Hence, we introduce an equivalence relation (∼) to classify the
different types of topological continuity.

Topologically, we may say that although a sphere and a wineglass are homeomorphic
manifolds, they have different embeddings in R3, but they belong to the same homotopy
class.

• Charts and atlases: The idea that a manifold M may look, locally, like an Rm space,
allows us to endow a local open neighborhood,1 or patch, U ⊂ M with an Rm coordinate
system via a homeomorphic map, as shown in Figure 9.1.⎧⎨⎩ ϕ : U → U ′ ∈ Rm

ϕ : p → x ≡ {x1, x2, . . . ,xm}, p ∈ U, x ∈ U ′

where the mapping ϕ is referred to as a coordinate function or simply coordinate in
Rm. We design and collect a large number of such local, open, and overlapping Ui

neighborhoods, each endowed with a homeomorphic map to Rm, with the proviso that
the collection covers the whole manifold⋃

i

Ui = M

Each individual pair (Ui,ϕi) is called a chart, and the total collection covering the com-
plete manifold is appropriately coined an atlas.

• Smoothness and differentiability: We will be considering topological manifolds, which
means we have to impose some measure of continuity on our manifolds. Since manifolds
are described by overlapping charts

Ui

⋂
Uj 
= ∅ −→

⎧⎨⎩ ϕi : Ui → U ′i ⊂ Rm

ϕj : Uj → U ′j ⊂ Rm,

1 An open neighborhood does not include its boundary, but a closed one does. For example, the disk D=
{
(x,y)

∣∣∣x2 + y2 ≤ a2
}

is a closed space with its boundary ∂D =
{
(x,y)

∣∣∣x2 + y2 = a2
}

, but D̃ =
{
(x,y)

∣∣∣x2 + y2 < a2
}

is an open space. We will

refer to it as a patch.
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U

m

Figure 9.1 A homeomorphism ϕ maps U onto an open subset U ′ ⊂ Rm, providing coordinates to a
point p ∈ U .

U i

U i U j

i j

t

Figure 9.2 If Ui
⋂
Uj 
= ∅, the smoothness of the transition from one coordinate system to another

is guaranteed via a diffeomorphic transition map tij .

we require that they are related to each other in a sufficiently smooth way.
We demand that the transition map tij , shown in Figure 9.2,

tij = ϕi ◦ ϕ−1
j from ϕj

(
Ui

⋂
Uj

)
to ϕi

(
Ui

⋂
Uj

)
,

be infinitely differentiable (C∞), so that a differentiable function in one coordinate sys-
tem must be differentiable in the other system. We then have a differentiable manifold.
tij then defines a diffeomorphism2 between Ui and Uj . Homeomorphisms classify spaces
according to whether it is possible to deform one space into another continuously. Dif-
feomorphisms classify spaces into equivalence classes according to whether it is possible
to deform one space to another smoothly.

The significance of differentiable manifolds resides in the fact that we may use the
usual calculus developed in Rm.

• Metrics and geometry: In general, there is no naturally defined notion of length or angle
on smooth manifolds; they are not coordinate invariant. Such quantities become clearer
when we have an embedding of M into some Rn, M ↪→ Rn (m < n), because it then
inherits these notions from the Euclidean structure of Rn. However, there is a standard

2 In general, a diffeomorphism is defined as an infinitely differentiable map between a manifold M in R
m and a manifold N

in R
n.
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type of structure we can add to any manifold so that these notions are well defined: a
metric structure, or metric, that ushers the starting point of geometry. We are familiar with
the Riemannian metric, which defines the distance between two infinitesimally separated
points as

ds2 = gij dxi dxj,

where gij is the Riemannian metric tensor (Einstein summation is invoked).

9.2 Tangent and Cotangent Spaces

Tangent Space

We recall that a manifold M is a sort of a curvy surface in some Rm space as shown in
Figure 9.3, that may not accommodate some straight arrow: a vector that joins two of its
points! We may incorporate a vector in a manifold M as a tangent vector at some point
p ∈ M .

We may incorporate a vector in a manifold M as a tangent vector at some point p ∈ M

(see Figure 9.4). Roughly speaking, in such a picture, a tangent vector is viewed as an
infinitesimal displacement at a specific point on a manifold. However, we should caution
that, in general, we have no metric to describe infinitesimal distances.

Figure 9.3 We recall that a manifold M is a sort of a curvy surface in some Rm space, that may not
accommodate some straight arrow: a vector, that joins two of its points!

c

c

c

c

Figure 9.4 Tangent vectors at p = c1(0) = c2(0). The prime superscripts indicate derivatives with
respect to t .
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We refine our definition of the tangent vector by introducing the following:

• A curve c(t) ⊂ M that passes through p, shown in below left, with a ≤ t ≤ b ∈ R

• A function f over an open interval U , such that p ∈ c ⊂ U ⊂ M , as shown in below
right.

m

An open curve in an m-dimensional manifold
M is a map c : (a,b) → M where (a,b) ⊂
R is an open interval with a < 0 < b. We
assume that the curve does not intersect with
itself. c is locally a map from an open interval
to M . On a chart (U,ϕ), a curve c(t) has the
coordinate presentation x = ϕ◦c : R→ Rm.
x(t) = {xα(t)}, α = 1, . . . ,m.

m

A function f on M is a smooth
map fromM to R. On a chart (U,ϕ),
the coordinate presentation of f is
given by f ◦ ϕ−1 : Rm → R,
which is a real-valued function of
m variables. We denote the set of
smooth functions on M by F(M).

We define the tangent vector at c(0) as a directional derivative3 of the function f (c(t))
along the curve c(t) at t = 0 as shown in Figure 9.4.

The rate of change of f (c(t)) at t = 0 along the curve is

df (c(t))

dt

∣∣∣
t=0
=

m∑
α=1

∂f

∂xα

dxα(c(t))

dt

∣∣∣
t=0

(9.1)

c(t) ϕ−−−→ x(t) ≡ {xα(t)} ∈ Rm Chart coordinates,

where
∂f

∂xα
is short for

∂(f ◦ ϕ−1(x))

∂xα
.

It is more appropriate to rewrite (9.1) in the form
m∑
α=1

(
dxα(c(t))

dt

∣∣∣
t=0

∂

∂xα

)
f =
(

m∑
α=1

Xα ∂α

)
f = X̂[f ], (9.2)

3 As we know from vector calculus, given the gradient ∇f of a function f , the directional derivative is defined with respect to a
vector u = (u1,u2, . . . ,un) as

Duf = ∇f · u =
∑
i

ui
∂f

∂xi
.
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m

Figure 9.5 A curve c and a function f define a tangent vector along the curve in terms of the
directional derivative.

where, now, X̂ is a linear differential vector operator, which we define as the tangent vector
to M at p = c(0) along the direction given by the curve c(t) (see Figure 9.5).

We note that

Xα = X̂ xα = dxα

dt

∣∣∣
t=0

are just numbers (X1,X2, . . . ,Xm), the components of X̂ with respect to the coordinates
{xα}.

Since X̂ is a vector and the Xα are just numbers, then the operators ∂α = (∂/∂xα)

∣∣∣
p

must be vectors that form a basis, in some chart, for the space of all tangent vectors to
M at p. Such a basis vector set defines a local frame over p.

For example, we consider a curve, c(t), in R2 described in polar coordinates by
r = r(t), θ = θ(t). To calculate the rate of change, we use the chain rule and obtain

ċ = ṙ
∂c
∂r
+ θ̇

∂c
∂θ

∂c
∂r
= êr,

∂c
∂θ
= êθ,

where partial derivatives with respect to r and θ are vectors, and ṙ, θ̇ are scalar
coefficients.

When the differential basis operates on a given function f , it yields real numbers, which
together with the Xαs produce the magnitude of the desired directional derivative, so that
X̂[f ] ≡ X̂f is another scalar function. Thus we have

f : M → R ⇒ X̂f : TpM → R.

TpM denotes the new vector space, called the tangent space to M at p. Here, it is a real
vector space. This constitutes the proper intrinsic definition of the tangent space we seek.
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9.2.1 Equivalence Classes of Curves

It is possible that several curves defined over the same open interval may have the same
slope d/dt at p. We consider that any two curves giving the same value for the d/dt

operation at t = 0 to be equivalent.4 That is, c1 ∼ c2 if

d(f ◦ c1)

dt

∣∣∣
t=0
= d(f ◦ c2)

dt

∣∣∣
t=0

, ∀ f ∈ F(M).

Consequently, a vector X represents an equivalence class of curves X ↔ [c], all passing
through p at t = 0 and satisfying the preceding equivalence relation. This equivalence class
is also interpreted as a map

X : F(M)→ R : f '→ d(f ◦ c)
dt

(0)

for any c in the equivalence class X. The tangent space at p consists of the set of all such
equivalence classes.

We find from (9.2) that the dimension of the tangent space is the same as that of the
manifold,

dim TpM = dimM .

If we are given a chart ϕ : U → Rn, the tangent space at a point p ϕ−→x is the linear

space spanned by the coordinate basis vectors êα = ∂αx. This is helpful, in particular, if
our manifold is defined as a parameterized surface in Rn. For example, for S2 ∈ R3 we
consider the parameterization of x on S2 by angles θ, φ:

x1 = cosφ sin θ, x2 = sinφ sin θ, x3 = cos θ .

We obtain the basis vectors

⎧⎨⎩ êθ = (cosφ cos θ, sinφ cos θ, − sin θ)

êφ = (− sinφ sin θ, cosφ sin θ, 0)
∈ R3.

Hence the tangent space TxS2 at x ∈ S2 can be described as the subspace of R3 spanned
by êθ, êφ .

As we shall see, the collection of tangent spaces on a manifold forms a vector bundle
called the tangent bundle.

9.2.2 Cotangent Space and One-Forms

TpM is a vector space defined by the basis set ∂α ≡ (∂/∂xα)

∣∣∣
p

. We know it should have a

dual vector space whose elements are linear maps:

TpM '→ R.

4 The curve passing through p at t = 0 and p1 at t = 	t is free to do anything it wants when we move out of the neighborhood
of p. In effect, we only need an infinitesimal segment of the curve to define the action of the d/dt operator. But we cannot talk
precisely about an infinitesimal segment of a curve, so we talk about finite curve segments, that is, mappings c : (a,b) ∈ M,

a < 0 < b, which satisfy c(0) = p.
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The dual space is called the cotangent space at p, denoted by T ∗pM . The elements of T ∗pM
are called covectors, cotangent vectors, or, in the context of differential forms, one-forms.

We denote the basis vectors dual to the ∂α as dxα( ), such that

dxα(∂β) = δαβ .

Thus, when operating on the tangent vector X = Xα∂α , the basis covectors dxα return its
components

dxα(X̂) = dxα(Xβ∂β) = Xβ dxα(∂β) = Xβδαβ = Xα ∈ R.

In order to complete the construction of T ∗pM , we examine X̂[f ] ≡ X̂f from an alternative
perspective.

Cotangent vectors naturally appear when we compute directional derivatives of func-
tions. We recall that

X[f ] = Xf =
∑
α

Xα ∂αf,

where Xf is another scalar function. This new function gives a number ∈ R at each point
p ∈ M . But this is exactly the definition of the covector as a linear map TpM '→ R: it takes
in a vector at a point and returns a number. Since this operation behaves linearly also in
the tangent vector, we can interpret this operation as a linear function on the tangent vector
X ∈ TpM . A common notation is to define dfp(X) = X[f ], so that dfp ∈ T ∗pM . The
definition can be extended to a linear function on any of the tangent spaces, then we simply
remove the subscript and write df .

We introduce the quantity df as a covector field, and define the following operation:

df (X̂) = X̂f =
∑
α

Xα ∂f

∂xα
. (9.3)

Considering the case f = xβ , we find

dxβ(X̂) =
∑
α

Xα ∂x
β

∂xα
= Xβ,

which agrees with the result obtained previously. We can then write (9.3) as

df (X̂) =
∑
α

∂f

∂xα
Xα =

∑
α

∂f

∂xα
dxα(X̂)

and express the covector as

df =
∑
α

∂f

∂xα
dxα .

It is called the differential of the scalar f at p. It is an operator instead of the infinitesimal
value we are used to in calculus! It has the structure of a one-form.
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In Lagrangian mechanics, we work with the Lagrangian L(q;q̇), and we need to com-
pute directional derivatives with respect to q and q̇ respectively. In this case, dL is not a
common notation, so we write

∂L

∂q
,
∂L

∂q̇

and they will both be cotangent vectors.

9.3 Fiber Bundles

Having constructed a tangent (cotangent) space at each point in the manifold, the next step
is to glue together all these tangent (cotangent) spaces TpM (T ∗pM) on the manifold. In

mathematical terms, we take the disjoint union5 of all TpMs (T ∗pM)

TM =
⋃
p∈M

TpM, T ∗M =
⋃
p∈M

T ∗pM .

The result of such a gluing procedure is not a vector space, rather, it is a tangent vector
bundle, a specific type of a vector bundle. TM has the natural structure of a manifold of
dimension 6 2 dimM , induced by the manifold structure of M .

Conversely, by “deconstruction,” we define a natural map

π : TM → M

that sends each vector v ∈ TpM to the point p to which it is attached.

It is called the projection onto TM .

Vector bundles are specific instances of the more general notion of fiber bundles, where
the vector space at each point in the manifold is replaced by a fiber over that point.7

General Definition of a Fiber Bundle

A fiber bundle is a differentiable manifold consisting of the following:

• The total manifold E, (dimE = m+ n). It contains two differentiable sub-manifolds,
the base B (dimB = m) and the fiber F (dimF = n).

5 We should emphasize that tangent spaces at different points are, by definition, different vector spaces, which cannot have
common elements. Hence, the disjoint union.

6 A mechanical system with m degrees of freedom is described by generalized coordinates qi,i = 1, . . . ,m that parametrize its
configuration space manifold M . The tangent bundle of M , TM , is the 2m-dimensional space with TMq , q = (q1, . . . ,qm); if
we think of the tangent vector as a velocity, the natural coordinates on TM become (q1,q2, . . . ,qm;q̇1,q̇2, . . . ,q̇m), and these
are the variables that appear in the Lagrangian of the system.

7 The fiber can be any mathematical object, such as a set, tensor space, or another manifold. Mathematicians picture the bundle
as an assembly of fibers sprouting out of the manifold, similar to stalks of wheat emerging out of the soil.
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• The gluing of the two manifolds is defined by the projection map from the total
manifold E to the base manifold B:

π : E → B.

π cannot be invertible because of the difference in dimensions.

• To every point p ∈ B, the projection associates an inverse image submanifold Fp ⊂ E

Fp = π−1(p) � F

of dimension dim n containing all points x ∈ E with projection onto the particular
point p

π(x) = p ∈ B, ∀ x ∈ Fp

called the fiber over p.

• Locally, E looks like the Cartesian product

ϕj : Uj ⊗ F

of an open patch Uj ⊂ B, (dimU = m), with another manifold F (the standard fiber)
(dimF = n). ϕj is a diffeomorphism.

Thus, a fiber bundle is defined according to (E,π,B,F ).

Roughly speaking, a fiber bundle (E) is a manifold that is constructed from two sub-
manifolds: a base manifold (B) and a fiber manifold (F ), by attaching a copy of the fiber
space to each point of the base space. In its simplest, or trivial, form, the bundle (E) is the
outer, or Cartesian, product of the base and the fiber

E = B ⊗ F .

In Figure 9.6, we show a simple example of a fiber bundle, where the base and fiber are
closed intervals of the real line R.

Figure 9.6 A trivial fiber bundle. Attaching a copy of the fiber (a) to each point of the base (b) gives
the bundle (c). Picking a point in each fiber space defines a section (d). Another section of the same
bundle (e).
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If we pick a particular point on each fiber of the bundle, we define a (cross-section)
section8 of the bundle, also shown in Figure 9.6.

Bundle Section

A smooth section on a smooth fiber bundle (E;π;B;F) is a smooth map σ : B → E

such that

σ(p) ∈ Fp ≡ π−1(p)

holds for all p ∈ B. The relation can also be expressed in the form

σ(p) ◦ π = IdB,

where IdB is the identity map.
That is, σ maps each point in the base manifold into a point, or vector, in the fiber

connected to that base point.

Vector Field
A smooth section on the tangent bundle TM of a base manifold M , is a mapping of each
point in p ∈ M to a vector in its tangent space TpM . It is called a smooth vector field
on M . A section of the cotangent bundle is called a differential one-form. The set of all
smooth vector fields on E is denoted by X(E), and the set of differential one-forms by

1(E).

A vector field may not be defined in all of M (for instance, its domain may be the
image of a curve); but when a vector field is defined in all of M , we say that it is defined
globally. Otherwise, we say that it is defined only locally.

As an illustration, we consider the example of the circle (one-sphere) S1 ↪→ R2- a
one-dimensional manifold, defined in R2 as ϕ : p→ x = (cos θ, sin θ) [59].

The tangent vectors at points p ∈ S1 are defined as σ(p) = (− sin θ, cos θ) ∈ R2,
forming a one-dimensional vector space Tp(S

1) specified by the angle θ . All those tan-
gent spaces, together with the base manifold S1, again, form a manifold, as shown in
Figure 9.7.

Turning all tangent spaces around by 90◦, as shown in Figure 9.8, we obtain a vector
bundle T(S1). The fiber in this case is a 1D vector space. We glue a replica of the fiber at
each point on the base S1. A bundle whose fiber is a one-dimensional vector space is called
a line bundle. An open interval 	S on S1 in the neighborhood of a tangent vector space is
indicated by a gray arc in the left figure. The 	S neighborhood can be smoothly mapped
into a line-segment 	L ⊂ R1, such that every point in 	S can be represented in 	L. It is
then possible to introduce a topology in the entire space that is locally equivalent to the
product topology of

8 When one slices through a patch of wheat with a scythe, the blade exposes a cross-section of the stalks. By analogy, a choice
of an element of the fiber over each point in the manifold is called a cross-section, or, more commonly, a section of the bundle.
In this language, a tangent-vector field becomes a section of the tangent bundle, and a field of covectors becomes a section of
the cotangent bundle.
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Figure 9.7 Tangents on the one-sphere S1 and its tangent space.

open

Figure 9.8 Left: vector, or line, bundle T(S1) showing an open interval 	S in gray. Right: a section
on the bundle.

	E = 	S ⊗ R1.

We now set the corresponding fiber as the closed interval F = D = [−1,1]. The fiber
bundle E ≡ C then becomes the cylinder shown in Figure 9.9. It should be intuitively
clear that the cylinder is not only locally a Cartesian product, but also globally, namely
C = S1⊗D. As shown in Figure 9.9, it can be flattened into a planar strip without changing
lengths and angles.

A fiber bundle will be called trivial if it can be described as a global Cartesian product.

The cylinder is trivial in this sense, because it is not very difficult to find a global
diffeomorphism from S1 ⊗D to C.

A more interesting example is obtained when we join the edges of the open cylinder
shown in Figure 9.10. But, before gluing the edges together, we perform a twist on one
of the edges so that the end −1 ∈ [−1;1] is attached to +1, and vice versa. We arrive at
the Möbius strip, shown on the right in Figure 9.10. The Möbius strip is not a Cartesian
product, and is said to be a twisted bundle.

The Möbius strip is, however, locally trivial in that for each p ∈ S1 there is an open
retractable neighborhood 	S ⊂ S1 of p, in which E looks like a product 	S⊗D.
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Figure 9.9 (a) Fiber bundle C. (b), (c) A section of a cylinder can be flattened to a plane without
changing any lengths or angles on the surface.

Figure 9.10 Connecting opposite corners of an open cylinder produces a Möbius strip.

Figure 9.11 The Möbius strip is shown with two open base patches U+ and U−. The corresponding
Cartesian products are shown as overlapping red and blue areas. The fiber mappings ϕ+ and ϕ− are
also shown.

We declare that local triviality is a feature that encompasses all bundles, and use the
notion of local maps, the charts, as U ⊗ F , 	S ≡ U ⊂ B. Again, the collection of
all retractable neighborhoods U that span B,

⋃
Ui , is the cover of B (B = ⋃ Ui), or

its atlas. A bundle can then be assembled out of the collection of E = ⋃(Ui ⊗ F)

product bundles.

The case of the Möbius strip is shown in Figure 9.11. Locally, along each open subset
U± of S1, the Möbius strip still looks like a product, U ⊗ D. Globally, however, there is
no unambiguous and continuous way to write a point p ∈ S1 as a Cartesian pair (p,x) ∈
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S1⊗D. The Möbius strip is therefore an example of a manifold that is not a global product,
that is, of a nontrivial fiber bundle.

We can identify the family of pairs (Ui,ϕi), where B = ⋃i Ui , in the context of the
base/fiber scenario. In that scenario, ϕi maps Ui onto the fiber, as

ϕi : π−1(Ui) ⊂ E → Ui ⊗ F,

where the maps are required to be one-to-one, continuous, together with their inverse,
and to satisfy the property that

π ϕ−1
i (p,f ) = p,

where f ∈ F is a fiber point. In other words, the projection of the image in E of a
base manifold point p times some fiber point f is p itself. Each pair (Ui,ϕi) is a local
trivialization.

9.3.1 Transition Functions and Structure Groups

A very important thing to keep in mind is that even though each fiber is homeomorphic
to F by some homeomorphism, there is no natural homeomorphism, and so we cannot
naturally identify fibers with each other. This is somewhat unfortunate, but it is also where
the interesting features of fiber bundles come from.

Since adjacent open local neighborhoods, Ui and Uj , may have different mapping struc-
tures onto their fibers – two different local trivializations – we need to define transition
rules between them in the overlapping segment Ui

⋂
Uj 
= ∅. Ui

⋂
Uj 
= ∅ implies

π−1(Ui)
⋂

π−1(Uj ) 
= ∅, and each point x ∈ π−1(Ui

⋂
Uj) is mapped by ϕi and ϕj in

two different pairs, (p,fi) ∈ Ui ⊗ F and (p,fj ) ∈ Uj ⊗ F , for the same p ∈ Ui

⋂
Uj .

The transition rule requires the existence of a transition function,

tij ≡ ϕ−1
j ◦ ϕi :

(
Ui

⋂
Uj

)
⊗ F →

(
Ui

⋂
Uj

)
⊗ F,

which acts exclusively on the fiber points in the sense that

tij (p,f ) = (p, tij (p) · f ) ∀p ∈
(
Ui

⋂
Uj

)
, ∀ f ∈ F

so that for each selected point p ∈ Ui

⋂
Uj ,

tij (p) F '→ F

is a continuous and invertible map of the standard fiber F into itself.

Structure Group, G

The set of all possible continuous invertible maps of the standard fiber F into itself

t : F '→ F
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constitutes an algebraic group, the structure group G. It makes sense to include G in the
definition of fiber bundle, namely, (E,π,B,F,G).

Actually, G satisfies the properties of the continuous Lie groups. We shall confine
our consideration of G to Lie groups of finite dimensions or, occasionally, a discrete
group having a well-defined action on the standard fiber F .

Example 1: Consider two intersecting local charts (Ui,ϕi) and (Uj,ϕj ) of a manifold. A
tangent vector at a point p ∈ M is written as

tp = Xα(p)
∂

∂xα

∣∣∣
p

.

Now we can consider choosing smoothly a tangent vector for each point p ∈ M , namely
introducing a map

p ∈ M '→ tp ∈ TpM .

Mathematically what we have obtained is a section of the tangent bundle, namely a smooth
choice of a point in the fiber for each point of the base. Explicitly this just means that the
components Xα(p) of the tangent vector are smooth functions of the base point coordinates
xα . Since we use coordinates, we need an extra label denoting in which local patch the
vector components are given⎧⎪⎨⎪⎩

t = Xα
i

∂
∂xα

∣∣∣
p

⇒ in chart i

t = Y
β
j

∂
∂yβ

∣∣∣
p

⇒ in chart j

Since the tangent vector is the same, irrespective of the coordinates used to describe it,
we have

Y
β
j (y)

∂

∂yβ
= Xα

i

∂yβ

∂xα

∂

∂yβ
⇒ Y

β
j (y) = Xα

i

∂yβ

∂xα
,

which shows that the explicit form of the transition function between two local trivializa-
tions of the tangent bundle is just the inverse Jacobian matrix associated with the transition
functions between two local charts of the base manifold M . On the intersection Ui

⋂
Uj ,

we have

∀p ∈ Ui

⋂
Uj : p → tj i(p) = ∂y

∂x
(p) ∈ GL(m,R),

where GL(m,R) is the general linear group of real m×m matrices.
Example 2: We consider the Möbius strip with four types of intersections, shown in
Figure 9.12. We find that the transition functions for the intersections V 12+ and V 12− is a
multiplication of L by t12+ = t12− = +1, while for V 1±, V 2±, t1± = t2± = −1. Thus, the
structure group for the Möbius bundle is just Z2!
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Figure 9.12 Schematic view of four open segments (U1+, U2+, U1−, U2−) of S1, with the intersections

V 1±, V 2±, V 12+ and V 12− of the open sets.

Principal Bundle

An important type of fiber bundles emerges when the fiber elements are just the
elements of the structure group. A fiber bundle whose fibers are isomorphic to G is
called a principal bundle. It is the most important kind of bundle for understanding the
topology of gauge theories.

We note that in the preceding examples that the base and fiber are both segments of the
real number line R, a one-dimensional space with a familiar topology. However, in general,
the fiber and base can both be arbitrary, multidimensional, and even complex spaces.

9.4 Covariant Derivatives and Commutators of Vector Fields

We now ask what it means to differentiate a smooth vector field with respect to another
tangent vector field on the manifold, namely, how to take the corresponding directional
derivative. We will show that this is effected with the aid of the covariant derivative.

A covariant derivative, or derivation, on a smooth vector bundle (E,π,B,F ) is an
operator

∇ : X(TM)⊗ X(E) → X(E)

that takes in a smooth tangent vector field X and a smooth vector bundle section σ and
yields another smooth vector bundle section ∇Xσ . The covariant derivative is required to
satisfy the following properties:

1. ∇ must obey the Leibniz (or product) rule with respect to multiplication of the section
by smooth functions. If f ∈ C∞(M), then we require

∇X(f σ) = X(f )σ + f∇Xσ .
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2. ∇ must beC∞(M)-linear in the tangent vector field input. That is, forX1, X2 ∈ X(TM)

and f, g ∈ C∞(M), we have

∇fX1+gX2σ = f∇X1σ + g∇X2σ .

3. ∇ must be additive in the smooth section input. That is, for σ1, σ2 ∈ X(E), we have

∇X
(
σ1 + σ2

)
= ∇Xσ1 +∇Xσ2.

We now examine the sequential action of two vector fields X, Y ∈ X(M), considered as
linear operators, on a function f ∈ F(M). For an arbitrary function f , we have⎧⎨⎩ X(Yf ) = Xi ∂i

(
Y j ∂jf

) = Xi ∂iY
j ∂jf +XiY j ∂2

ij f

Y (Xf ) = Y i ∂i
(
Xj ∂jf

) = Y i ∂iX
j ∂jf + Y iXj ∂2

ij f

We note that the product operation (composition) XY of two vector fields X, Y as operators
on functions is no longer a vector field, but is a second-order differential operator.

Our past experience with vector spaces of linear operators would suggest that the defin-
ing operation would be their commutator, namely,[

X, Y
]
=
(
XY − YX

)
f .

The commutator of the two vectors fields becomes[
X, Y
]
=
(
Xi ∂iY

j − Y i ∂iX
j
)
∂j ∈ X,

which is just another binary operation on vector fields that satisfies the properties of the
Lie bracket.9 Hence, the significance of the fact that the commutator [X, Y ] is a vector
field.

9.5 Connections and Parallel Transport

For an arbitrary manifold, tangent vectors at different points cannot be naturally compared.
There is no natural connection between different tangent spaces. In this section, we intro-
duce a generic geometric object that allows us to compare different fibers of the bundle
and to transport elements from one fiber to another. This object, called a connection,
plays crucial roles in many branches of physics, including general relativity [67], gauge
theories [65, 200], and the theory of geometric phases [33].

9 A lie bracket has the following properties:

(i) It is bilinear

⎧⎨⎩
[
X,aY + bZ

]
= a
[
X,Y
]
+ b
[
X,Z
]
,[

aX + bY,Z
]
= a
[
X,Z
]
+ b
[
Y,Z
] X, Y, Z ∈ X; a, b ∈ R.

(ii) It is skew-symmetric
[
X, Y
]
= −
[
Y, X
]
.

(iii) It satisfies the Jacobi identity
[
X,
[
Y,Z
]]
+
[
Y,
[
Z,X
]]
+
[
Z,
[
X,Y
]]
= 0.
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9.5.1 Ehresmann’s Definition of a Connection on a Fiber Bundle

We may represent a fiber bundle (E,B,π,F ) as a family of fibers Fp whose union is just
the total manifold

E =
⋃
p∈B

Fp.

From this perspective, the question arises as to how to connect the disjoint fibers constitut-
ing the bundle. The immediate answer is that we need to explore and classify the structure
of the tangent space TxE =

⋃
p TxFp at a point x in the total manifold E.

1. We identify a vector v ∈ TxE as a vertical tangent vector if

v ∈ TxFp ⇐⇒ p = π(x),

that is, v is vertical at x if it is tangent to the fiber over p.10 We denote the space of
vertical vectors at x by Vx , and call it a vertical subspace. VxE corresponds to motion
along fibers, and is essentially fixed, its projection onto T B, the base tangent space, is
the zero vector

Vx :=
{

v ∈ TxE

∣∣∣ Txπ(v) = ∅}.
We denote the space of vertical vector fields11 on E by Xver(E), and write

v ∈ Xver(E) ⇐⇒ v(x) ∈ Vx

for any point x ∈ E.
2. It then follows that we identify the horizontal subspace as the disjoint, transverse, and

complementary subspace to Vx , and denote it by Hx . We then write

TxE = Vx ⊕Hx . (9.4)

A vector v ∈ Hx is called a horizontal vector. Due to the decomposition (9.4), any vector
v ∈ TxE may be uniquely decomposed as

v = hor v+ ver v.

With this structure of TxE in mind, we can associate a connection of a general (Ehresmann)
type with the horizontal tangent space, namely, we identify it with the smooth assignment

x ∈ E −→ Hx ⊂ TxE.

Thus, a choice of HxE is the crucial ingredient in the definition of parallel transport. We
require that vectors tangent to E, effecting parallel transport, must lie in HxE.

10 The label “vertical” arises from the viewpoint that neighboring fibers may be perceived as being horizontally stacked. In this
picture, a tangent to a given fiber lives on that fiber and cannot link or connect to a neighboring fiber: It is vertical.

11 Any vector field that lies in VxE is a vertical vector.
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Cp

Cp

Figure 9.13 A curve c ∈ B and its horizontal lifts on the fiber bundle.

To demonstrate how this assignment works, we introduce a curve c ∈ B

[0,1] t → c(t) ⊂ B

and stipulate that a connection should provide us with a rule, or recipe, for parallel-
transporting the fiber F along the path c from one end to the other.

Mathematically, we express this action as a map Tc12

Tc : Fp0 → Fp1, p0 = c(0), p1 = c(1). (9.5)

To implement this process, we need to introduce a curve C in E as

[0,1] t −→ C(t) ⊂ E.

In particular, we can associate such a curve with c through the projection

π(C)(t) = c(t).

Such a particular curve C is then called a lift of c into E. Of course, in general, there are
many lifts, as shown in Figure 9.13. But what we are interested in is a lift associated with
parallel transport. To this end, we require that C be a horizontal lift of c. This means that
its directional derivatives dC/dt have to be horizontal, or that the tangent spaces on C are
horizontal.

We can now operationally define the notion of parallel transport, (9.5) as follows:

12 Tc satisfies the conditions:

1. Tc depends continuously on the path c,
2. Tc1∗c2 = Tc1 ◦ Tc2 , namely, if c1 and c2 are two paths such that c1(1) = c2(0), so that the end of c1 is the beginning of

c2, then c1 ∗ c2 is the emerging curve

(c1 ∗ c2)(t) =
⎧⎨⎩ c1(2t), 0 ≤ c ≤ 1/2,

c2(2t − 1), 1/2 ≤ t ≤ 1

3 T
c−1 = (Tc)

−1, where

c−1(t) = c(1− t).
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We start with c(t) as a curve in B such that c(0) = p0 and c(1) = p1. We then
implement the map Tc by starting a horizontal lift C(t) of c at x0 ∈ Fp0 , so that C(0) = x0.
Then

Tc(x0) = C(1) ∈ Fp1 .

It is evident that Tc fulfills all the natural requirements of parallel transport. Tc is usually
called a map (or an operator) of parallel transport determined by the connection.

Alternatively, we can consider that a choice of connection defines a choice of horizontal
subspace: A connection on E is a smooth and unique separation of the tangent space TxE
at each x into a vertical subspace VxE and a horizontal subspace HxE, with the proviso
that the choice of the horizontal subspace at x determines all the horizontal subspaces
at points x′ in the same fiber. This roughly means that all points above the same point
p = π(x) = π(x′) in the base manifold will be parallel-transported in the same way.

The connection provides a unique recipe to lift a base space curve to a bundle curve.
More generally, it endows a bundle with a notion of parallelism. Such a map allows
points on different fibers to be compared, by using the concept of parallelism provided
by the connection.

9.5.2 Connection from the Derivation Perspective

In Rn space, translation invariance provides a convenient way to identify tangent vectors
at different points. We just draw a line connecting the two points and slide a vector along
the line while maintaining the relative angle between the vector and the line. However,
Rn presents an unusually simple case of topological spaces. In general, the scenario of
transporting a tangent vector from one point to another on a smooth topological manifold,
a vector bundle in particular, is more complicated, since comparing vectors at different
points x and y on the fibers of a manifold may not be a well-defined process. We need
an extra piece of structure to connect these fibers in some way, at least if x and y are
sufficiently close [95].

We can say that a vector is parallel-transported along an arc of a curve if the angle
between the transported vector and the tangent vector to the curve remains constant
throughout the entire transport process, as shown in Figure 9.14. We note, however, that in
order to compare angles we need to endow the manifold with a metric.

We introduce the derivation connection ∇ as an operation that delineates the rule for
how to legitimately move a vector along a curve on the manifold without changing its
direction – keeping the vector parallel.
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Figure 9.14 (a) Parallel transport in Rn. (b) Parallel transport of a vector along a curve is defined
through the preservation of its angle with the tangent vector. This definition is possible if we have a
metric and hence the notion of scalar product of local vectors.

9.5.3 Connection on a Manifold

We recall that a tangent vector X = Xi∂ i defines the tangent direction along a curve c(t) on
the manifold, and its action on a scalar function gives the magnitude of the corresponding
directional derivative of the function. What about the scenario where we replace the scalar
function with a vector field Y (c(t)) having the diffeomorphic map Y (c(t)) ϕ−→Y (x(t)) ∈
Rm? We have to somehow carry the vector Y (p) from the tangent space TpM to the tangent
space Tp+εXM , where we can subtract it from Y (p + εX).

We define the connection [49],∇X, onM , as a rule to calculate the directional derivatives
resulting from the action of X on Y :
∇XY denotes the vector field whose value at each point p ∈ M is equal to the

directional derivative of Y along Xp.

If {xi} is a coordinate system in some neighborhood U ⊂ M , then the vector field Y can
be expressed in the form Y = Y j∂j , and we define the connection as

∇XY = ∇Xi∂ i

(
Y j∂j

)
= Xi ∇∂ i

(
Y j∂j

)
= Xi

[
∂Y j

∂xi
∂j + Y j ∇∂ i ∂j

]
.

The covariant derivatives ∇∂ i ∂j must be differentiable vector fields. They are
expressed in terms of differentiable real-valued functions �k

ji on U , called connec-
tion coefficients,a such that

∇∂ i ∂j = �k
ji

∂

∂xk
= �k

ji ∂k .

The connection coefficients specify how the basis ∂ i changes from point to point
under infinitesimal displacements of the tangent space.

They can be arbitrarily chosen in any local coordinate chart, noting that different
choices define different covariant derivatives. However, there are usually global
compatibility constraints that appear when we assemble the charts into an atlas.

a They are referred to as Christoffel symbols in the context of Riemannian manifolds.
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Once the �k
jis are defined, we write

∇XY = Xi

[
∂Y j

∂xi
∂j + Y j �k

ji ∂k

]
= Xi

[
∂Y k

∂xi
+ Y j �k

ji

]
∂k .

where we replaced the dummy index j with k in the first term of the last line. It is clear that
∇XY is the directional derivative of Y along Xp. It depends on the following:

• The components Xi
(
x(p)
)

of X
(
x(p)
)
.

• The rate of change ∂iY k of the components of Y . This requires knowledge of the values
of the vector field Y in a neighborhood of x at the points of some curve to which Xx is
tangent.

• The term Y j �k
ji can be regarded as Jacobian-like.

When the vector field X represents the tangent vectors to a curve c(t) ⊂ M , namely

c(t) : t → xi(t)

X ⇒ Xi = ∂xi

∂t
,

the condition that the vector field Y (x(t)) is parallel-transported along the curve c(t)

becomes

∇X Y = 0, ⇒ ∂Y k

∂xi
+ Y j �k

ji = 0

at each point x(t). This means that the directional derivative of the vector Y along the
tangent vector fields to the curve c(t) is constant.

Metric Connection on a Riemannian Manifold

So far we have left � arbitrary; however, when our manifold is endowed with a metric, it
establishes appropriate restrictions on the structure of connections.

Riemann introduced a metric system on an m-dimensional manifold, such that it is
treated as an analytic manifold in which each tangent space is equipped with an inner
product defined in terms of a smooth function g = 〈.., ..〉 on the manifold. The inner
product of two tangent vectors X and Y , 〈X, Y 〉, gives a real number. The dot, or scalar,
product is a typical example of an inner product.13 The line element is then defined by a
symmetric quadratic form in the differentials of the m coordinates

ds2 = gij (x) dx
i dxj, i,j = 1, . . . , m,

13 The most familiar example is that of basic high school geometry: the 2D Euclidean metric tensor, in the usual x-y coordinates,

reads g =
[

1 0
0 1

]
. The associated length of a curve is given by the familiar calculus formula: L = ∫ ba √(dx)2 + (dy)2.

The result of parallel transport in general depends on the curve, which leads to the notion of (intrinsic) curvature (and
torsion). In many applications, it is also important to be able to measure distances and angles with the parallel transport being
compatible in the sense that it conserves scalar products.
The unit sphere in R

3 comes equipped with a natural metric induced from the ambient Euclidean metric. In standard

spherical coordinates (θ,φ), the metric takes the form g =
[

1 0
0 sin2 θ

]
, which is usually written as g = dθ2 + sin2 θdφ2.
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where the gij (x) became known as the Riemannian metric tensor.
As we have previously pointed out, this allows us to define various notions such as

length, specifically the length of all curves, angles, areas (volumes), curvature, gradients of
functions, and divergence of vector fields.

When two vectors X and Y are parallel-transported along any curve, then their inner
product remains constant under parallel transport. We therefore demand that the metric gμν
be covariantly constant. To describe this process, we take V to be a tangent vector to an
arbitrary curve along which the vectors are parallel-transported. Then we have

∇V

[
g(X,Y)

]
= V k

[
(∇k g) (X,Y)+ g(∇kX,Y)+ g(X,∇kY)

]
= V k Xi Y j (∇k g)ij = 0, (9.6)

where we used the fact that parallel transport requires ∇kX = ∇kY = 0. Since condi-
tion (9.6) is independent of the vector fields and curves, we require that

(∇k g)ij = 0.

We consider the simple example of a 2D Euclidean space (R2,g). We define parallel trans-
portation according to the usual sense in elementary geometry. In the Cartesian coordinate
system (x,y), all the components of � vanish since

(V i
trans(x + δx,y + δy) = V i(x,y)

for any δx and δy. However, when we use polar coordinates (r,φ), with the embedding
(r,φ) '→ (r cosφ,r sinφ), we obtain the induced metric [138],

g = dr⊗ dr+ r2 dφ ⊗ dφ.

Now, as shown in Figure 9.15, we parallel-transport the vector field

V = V r ∂

∂r
+ V φ ∂

∂φ
,

⎧⎨⎩ V r = V cos θ

V φ = V (sin θ/r)

V

Δ

V
Δф

Δф

Figure 9.15 Vtrans is a vector V parallel-transported to (a) (r +	r,φ) and (b) (r,φ +	φ).
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(r,φ) → (r +	r,φ) :

⎧⎪⎨⎪⎩
V r

trans = V r

V
φ
trans = V

r +	r
sinφ � V φ − 	r

r
V φ

(r,φ) → (r,φ +	φ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

V r
trans = V cos(θ −	φ

= V cos θ + V sin θ 	φ = V r + V φ r 	φ

V
φ
trans = V sin(θ −	φ)

r

� V sin θ

r
− V cos θ

r
	φ = V φ − 	φ

r
V r

,

which yields the following connection coefficients⎧⎪⎨⎪⎩
�r
rr = 0; �r

rφ = 0; �φ
rr = 0; �φ

rφ =
1

r
;

�r
φφ = −r; �r

φr = 0; �φ
φφ = 0; �φ

φr =
1

r
.

Note that � satisfies the symmetry �k
ij = �k

ji . It is also implicitly assumed that the norm of
a vector is invariant under parallel transport. A rule of parallel transport that satisfies these
two conditions is called a Levi–Civita connection.

9.5.4 Curvature and Torsion

The parallel transport map associated with a given connection is an important tool to
“detect” the effects of curvature intrinsic in the manifold. Curvature can, in fact, be under-
stood as a measure of the extent to which parallel transport around closed loops fails to
preserve the geometrical data being transported. Anytime we have a connection, whether it
be in terms of horizontal spaces or something else, we have some notion of curvature.

All fiber bundles are locally trivial, in that they are locally isomorphic to the trivial
bundle over the same base space with the same fiber. But not all connections are locally
trivial. A connection on the given bundle may or may not correspond under the local
isomorphism to the trivial connection on the trivial bundle. Curvature is always some sort
of mathematical entity that measures how far the given connection is from being trivial.
When the curvature is zero, it means the connection, and not just the fiber bundle, is locally
trivial. Such a locally trivial connection is called flat.

If E → M is a vector bundle and ∇ is a linear connection, it is natural to ask whether
covariant derivative operators ∇X and ∇Y in different directions commute. We found that,
in general, the commutative action of two vector fields on a function f ∈ C∞(M) gives
rise to another a third vector field that acts on the function.

Here, we consider the commutative sequential action of connection operations on a
vector field V . The geometrical meaning of this relation is depicted in Figure 9.16. It shows
an infinitesimally small rectangle whose two sides are given by the two vectors X and Y of
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Figure 9.16 Images of the same vector parallel-transported along two different paths that converge
at the same point of a manifold generically differ by a rotation angle. That angle is a measure of
the intrinsic curvature of the manifold, and it is the information codified in the Riemann–Christoffel
tensor.

infinitesimally short length, emanating from a point p. We consider the parallel transport
of a third vector V to the diagonally opposite vertex of the rectangle. This parallel transport
can be performed along two routes, both arriving at the same destination. In the first route,
we displace first along δX and then δY . We follow the reverse sequence in the second route.
The image vectors of these two transports are located at the terminal vertex, so they can be
compared; in particular, they can be subtracted. Mathematically, we find

∇X ∇Y V k −∇Y ∇X V k = Xi Y j
[
∇i, ∇j

]
V k +

(
∇X Y l −∇Y Xl

)
∇l V k

= Xi Y j
(
V l Rk

ij l + T l
ji ∇l V k

)
+
[
X, Y
]l ∇l V k .

T is the torsion tensor; it is a skew tensor (a vector) defined as

T (X,Y ) = ∇XY −∇YX −
[
X, Y
]
,

which in a coordinate frame takes the form

T l
ij = �l

ij − �l
ji .

The simplest, but very crude, way to visualize the action of the torsion is in the cross-
vectorial product: The action of a cross-product of two vectors, a skew tensor, is a displace-
ment normal to the plane defined by the two vectors; it prevents “the completion of the
parallelogram.” The torsion of a curve measures how sharply it is twisting out of its plane
of curvature. R is the Riemann–Christoffel tensor that describes the intrinsic curvature
of a manifold. Its components are defined in terms of commutative sequential action of
connection operations on a vector field V , as[

∇i, ∇j
]
V k = V l Rk

ij l . (9.7)

We note that a connection leads to invariants of curvature and the torsion. Fortunately, we
will be dealing with scenarios where the torsion vanishes.
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9.5.5 Parallel Transport and Holonomy

Roughly speaking, a holonomy is a manifestation of a scenario where a system that under-
goes a cyclic evolution ends up in a state, or a configuration, that is different from the
initial one.

A crisp example is provided in the parallel transport on the unit sphere S2 ⊂ R3, with
Riemannian metric, inherited from the Euclidean metric of R3, and a corresponding Levi–
Civita connection on T S2 → S2. To demonstrate this process, we set p0 ∈ S2 to be a
point on the equator, with v0 ∈ Tp0S

2 pointing along the equator. We follow the triangular
path depicted in Figure 9.17, moving 90◦ along the equator, up along a longitude to the
north pole, and down along another longitude to the original point p0. As we move v0 as
a parallel vector field along this path, we see that it remains parallel to the equator on the
first leg, then becoming perpendicular to the longitude as it moves toward the north pole,
and parallel to the second longitude, moving back down. Parallel transport of any vector
along this path has the effect of rotating the initial vector by 90◦, or acquiring a holonomy
of π/2. Most importantly, we find that the vector at the end of the path is different from
the initial vector v0. Actually, a nonzero holonomy emerges from parallel transport along
any closed path on the round sphere. Detailed analysis of the sphere holonomy will show
that it has a constant positive curvature. Quantifying the holonomy for very small paths on
curved manifolds gives a precise measure of the local curvature.

In contrast, we consider the case of a Möbius strip. But here we select a vector perpen-
dicular to the surface. Transporting it along the Möbius strip, we find that after one circuit
its direction will be reversed. However, we note that it will return to its initial position after
a second circuit. We have again produced a holonomy. But the two cases are different. In the
case of the sphere, the holonomy will depend on the route traversed. The holonomy in the
case of curved manifolds can be traced back to the curvature properties of the underlying
space, as shown in Figure 9.18. We may say that it detects the geometric properties of that

Figure 9.17 Parallel transport of a vector along a closed path in S2 ⊂ R3 leads to a different vector
upon return.
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Figure 9.18 Sketch of a fiber bundle, showing a connection and holonomy. The base manifold M is
generally some “curved surface.” The fibers are denoted by G; the typical fiber is a Lie group, and
a copy of the typical fiber is attached to each point of M . The closed curve (circuit) C is defined on
M . This circuit is lifted to the bundle space by a connection; the image curve of the lifting process
is generally open, as shown, but begins and ends on the same fiber. The difference between the
beginning and ending points is the holonomy γ (C).

space and can properly be called a geometric holonomy. By contrast, we need multiples of a
full circuit for the Möbius strip, in which case we obtain two discrete holonomy outcomes:
reversed (−1) or nonreversed (+1). The holonomy of the Möbius strip detects a topological
feature of the underlying space and is therefore a topological holonomy. In general, parallel
transport is nonintegrable, meaning that it depends on the particular path and does not only
depend on initial and final points.

The difference between the sphere and the Möbius strip can be clearly expressed in the
language of fiber bundles. In the first scenario, we have a tangent bundle over the sphere,
while in the Möbius strip case we have a line bundle over the circle. Both bundles are
nontrivial. An important question is whether the bundle has a vanishing or nonvanishing
curvature tensor. In the latter case, the connection, the derivative of which gives the cur-
vature, is flat, while in the former case the bundle has a nonflat connection. The tangent
bundle over the sphere is a bundle with a nonflat connection. The Möbius strip, however,
has a flat connection. Its holonomies are due to the nontrivial topology of the base space.

9.6 Relevance to the Physics of Topological Phases

An appropriate question may arise at this point: why do we need to know all these
mathematical concepts? The answer lies in the structure of a quantum mechanical Hilbert
space H, which contains all possible state vectors ψ defined in terms of an eigenket basis
{ψn

∣∣Hψn = εnψn}. H is a complex vector space CN+1 − {∅} (null vector excluded). As a
vector space, it has algebraic properties, such as vector addition and subtraction. It is also
endowed with the scalar product or Hermitian metric. Moreover, we find that the subset of
all normalized state vectors HN ⊂ H forms the sphere

S2N+1 ⊂ CN+1 − {∅}, S2N+1 =
{
ψ ∈ CN+1

∣∣∣〈ψ∣∣ψ 〉 = 1
}

.

As we will show in this section, it is the starting point of constructing a fiber bundle.
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Figure 9.19 Projective space manifold P(H) = S2N+1/U(1) forming a base manifold for the line
bundle E = S2N−1 with line fiber U(1).

9.6.1 Geometric Description and Projected Spaces

In quantum mechanics, two normalized state vectors |ψ〉 , ∣∣ψ ′〉 = eiφ |ψ〉,
eiφ ∈ U(1)14 that differ by a phase represent the same physical state. Mathematically,
this statement translates into an equivalence relation

∣∣ψ ′〉 ∼ |ψ〉. Thus, a physical state
is not represented by a single normalized state vector |ψ〉 ∈ H but by a ray, which is an
object that contains the vector |ψ〉 and all its equivalent vectors. More precisely, a ray is
the one-dimensional subspace to which the vector |ψ〉 belongs; it can be understood as the
space of the 1D projection operator |ψ〉 〈ψ |.

Thus, the equivalence relation induces equivalence classes on S2N+1, and, as shown
in Figure 9.19, the set of all equivalence classes, rays, forms a subspace of S2N+1, the
projective space of physical states that we denote by

P(H) = S2N+1

U(1)
= S2N+1

S1
.

P(H) is simultaneously a linear space and a complex analytic manifold. It is recognized as
physically more basic than H, although the information about the phase is lost. However,
we can satisfy both aspects by considering P(H) as a base manifold, thus maintaining its
fundamental nature, and attaching a fiber F = U(1) at each point on the manifold. Such
a construction is just a fiber bundle, S2N+1 ≡ E the total space (normalized vectors), the
base space P(H) (physical states), and the projection π ≡ |ψ〉 〈ψ |. E presents a convenient
tool for bookkeeping of phases.

The adoption of the bundle picture has several consequences [37]:

• We find that the physics is described within a geometric perspective, where the projective
space P(H) presents a geometrical structure. No algebraic manipulations are allowed, and
states cannot be added, as they are no longer elements of a vector space. The physical

14 We can also identify U(1) with the unit circle

S1 =
{
z ∈ C

∣∣∣|z| = 1
}

in the complex plane C.
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states are represented by points in P(H); they are related to each other by unitary trans-
formations (symmetry).

• Consequently, there is no superposition principle: we cannot add rays or points. However,
we still can think of the converse process: a state vector has a well-defined projection in
any other state via the scalar product of any two normalized vector representatives and its
modulus squared. More interestingly, any state has projections onto a complete orthonor-
mal set of rays. In this sense, one speaks more properly of principle of decomposition of
states.

• We note that wavefunctions should not be identified as complex-valued functions, but
rather as sections in the line bundle. The ray structure allows for multivaluedness (phase
multiplication). The multivaluedness allows for holonomies, which, as we will see, give
rise to phenomena such as the Aharonov–Bohm effect, the Berry phase, etc.

• Despite the projective nature of physical-state space, we can apply linear or antilinear
operations on vectors in the bundle, since such operations preserve the fiber integrity.
This is the fundamental connection between the geometric character of the states and the
algebraic nature of the operations in quantum physics.

Variations on this theme will be presented in the following chapters.

Exercises

9.1 Charts on a manifold:
Consider the unit circle S1 ⊂ R2 specified by the equation x2 + y2 = 1 in the plane,
as shown in Figure 9.20.

(a) Let P ′ = (u,0) denote the image of a point P = (x,y) ∈ S1 under the stereo-

graphic projection from the north pole N = (0,1). Show that u = x

1− y
for the

projection and determine the inverse map.
(b) Express the stereographic coordinate u on S1 introduced previously in terms of

the standard polar angle θ (where x = r cos θ, y = r sin θ for points of R2).

P

P

P uP u

Figure 9.20 Projections from North pole of points on S1 onto x-axis.
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(Remark: an even nicer relation with θ can be obtained if W = (−1,0) is taken
as the center of projection instead of N = (0,1). You may wish to check that.)

(c) Consider the stereographic projection with center S = (0, − 1). Obtain the
analogs of the formulas in part (a) denoting the new stereographic coordinate
as uS . (Hint: there is no need to repeat the calculations; you can just change the
sign of the y-coordinate.) Rename the coordinate u introduced in (a) as uN and
find the expression of uN via uS and conversely.

9.2 Construction of configuration manifolds:

(a) The configuration space of a mechanical system is the set of all possible states
of the system. A planar pendulum is a rod of constant length in R2 with one end
(called the center) fixed. Show that the configuration space of a planar pendulum
is a manifold and identify it with a familiar example.

(b) The double pendulum is a mechanical system consisting of two pendula linked in
such a way that the center of the second pendulum is attached to the moving end
of the first pendulum. Show that the configuration space of the double pendulum
has a natural structure of a manifold of dimension 2. Identify it with one of the
familiar examples.

9.3 Bases for tangent spaces:
Consider the bases {eθ } and {eu} for the tangent spaces to the circle S1 corresponding
to the polar angle θ and the stereographic coordinate u respectively.

(a) Express the vectors eθ and eu in terms of the ambient space R2. Find the trans-
formation between these bases. (You may express the answer using either a local
coordinate or the coordinates in R2.)

(b) Find the transformation between the bases {eθ } and {eu} directly from the change

of coordinate formula u = cos θ

1− sin θ
.

(c) What are the maximal domains of definitions for the bases {eθ } and {eu}?
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Berry-ology

10.1 Introduction

In this chapter, we need to develop the formalism of Berry’s geometric quantum phase.
It is a manifestation of cyclic, adiabatic time evolution of Hamiltonians H

[
η(t)
]

controlled
by a time-dependent, multidimensional parameter η(t). For example, the parameter may
determine variations in external magnetic and electric fields, or ionic coordinates in the
Born–Oppenheimer approximation. It could also be, as we will need later, the crystal
momentum k in a Brillouin zone. In general, η is defined on an n-dimensional param-
eter space η(t) ≡ {η1(t),η2(t), . . . ,ηn(t)}. H(η) and its energy spectrum εμ(η) depend
smoothly on the parameter η.

For simplicity, we consider a quantum-mechanical system with a discrete and nonde-
generate energy spectrum, with the proviso that no energy level crossing occurs during
time evolution. As we have learned, for such systems the adiabatic theorem in quantum
mechanics surmises that for a slowly changing Hamiltonian, the system remains in its
evolving, time-dependent ground- or eigen-state. But, as revealed by Michael Berry in
1983, this is actually very incomplete [27, 159]. To understand the rationale behind this
assertion, we consider the slow time variation of a Hamiltonian through its dependence on
a parameter η(t).

We seek solutions for the Schrödinger equation

i
∂ψ(t)

∂t
= H
[
η(t)
]
ψ(t), ψ(t) ∈ H. (10.1)

For adiabatic time evolution, we write the general solution of the Schrödinger equation as

ψ(t) =
∑
μ

cμ(t) |μ,η(t)〉 . (10.2)

Substituting in (10.1), we get the following equation for the coefficients

ċμ(t) = −iεμ(t) cμ(t)−
∑
ν

cν(t) 〈μ,η(t)| ∂t |ν,η(t)〉 . (10.3)

Thus, if we start with a certain cμ(0) = 1, cν(0) = 0, ∀ν 
= μ, the adiabatic assumption
is approximately fulfilled when 〈μ,η(t)| ∂t |ν,η(t)〉 are small for ν 
= μ. We can show, by
substituting in the eigenvalue equation

254
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H(t) |ν,η(t)〉 = εν(t) |ν,η(t)〉 ,
that this matrix element can be expressed as

〈μ,η(t)| ∂t |ν,η(t)〉 = 〈μ,η(t)| ∂tH(t) |ν,η(t)〉
εν(t)− εμ(t)

� 1 adiabatic assumption.

Under the adiabatic assumption, we can directly solve (10.3) for cμ(t) by integration, and
obtain

cμ(t) = e−i
∫ t

0 dτ εμ(τ) ei
∫ t

0 dτ i〈μ,η(τ )|∂τ |μ,η(τ )〉 = eiαdyn(t) eiγ (t) (10.4)

ψ(t) = eiαdyn(t) eiγ (t) |μ,η(t)〉

γ =
∫ t

0
dτ i 〈μ,η(τ )| ∂τ |μ,η(τ )〉 =

∫ t

0
dτ i 〈μ,η(τ )| ∇η |μ,η(τ )〉 · dη

dτ

=
∫ η(t)

η(0)
i 〈μ,η| ∇η |μ,η〉 · dη. (10.5)

where the phase α arises from the usual dynamics, but γ is a manifestation of geometric
aspects of the system evolution.

What Michael Berry demonstrated was that when the Hamiltonian evolves adiabatically
around a closed loop C in η-space, with n > 1, an irreducible geometric phase γ relative
to the initial state may emerge, namely,⎧⎨⎩ γ = ∮

C
A · dη mod 2π,

A = i
〈
ψ(η)

∣∣∣∇η

∣∣∣ψ(η)〉 (10.6)

γ was coined Berry’s phase by Barry Simon in 1983 [167], where he revealed the intimate
connection between Berry’s phase and holonomy on a line bundle.

10.1.1 Berry’s Vector Potential, Field, and Flux

We find that the formulation becomes very easy to visualize when η is a three-dimensional
parameter where ordinary vector calculus can be invoked. Here, we say that for a nonde-
generate state, the only freedom in the choice of reference functions is a local phase

ψ(η) → eiθ(η) ψ(η). (10.7)

Under this modification, A in (10.6) changes by a gradient

A → A+ ∇ηθ,

a gauge transformation reminiscent of the vector potential in electrodynamics, and A is
sometimes referred to as Berry’s vector potential.

So the integrals of A around closed loops C∮
C

A· d	η
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will be gauge invariant. We can use Stokes, theorem and write

γ =
∮
C

A·dη mod 2π =
∫∫

S(C)

F ·dSη mod 2π, (10.8)

where dSη denotes the area element in η space, and the integral is performed over any
surface bounded by the closed contour C. Again, by analogy with electrodynamics, F is
sometimes called the Berry field, and is defined as

F = ∇η×A
Fαβ = ∂α Aβ − ∂β Aα = −2*

〈
∂α ψ(η)

∣∣∣∂β ψ(η)〉. (10.9)

Thus, this mathematical structure has evoked analogies with classical electromagnetism.
We can envision A as an abstract vector potential in parameter space, and F as a magnetic
field. Following this analogy, we surmise from (10.8) that Berry’s phase γ is akin to
a flux through the surface S. We recall that a vector potential has considerable gauge
arbitrariness, and has no physical meaning, while its loop integral is indeed gauge invariant
and observable.

The set of phase factors eiθ(η) form the group U(1) of unitary 1 × 1 matrices. We
therefore have a gauge theory with gauge (symmetry) group U(1) and gauge potential
A(η).

The loop integral of the Berry potential, the Berry phase γ , is nontrivial in two cases:

• CurlA is nonzero.

• The curl is zero but the curve C is not in a simply connected domain.

We can invoke a generalized Stokes’ theorem in any dimension of η parameter space,
when C is the boundary of a surface S(C) in a simply connected domain, and the curl of
A is regular on S(C).

10.2 A as a Berry Connection

Now, we shall recast A as a topological geometric structure. We first note that the unitarity
of time evolution preserves the scalar product, allowing the family of Hamiltonians H(η) to
share the Hilbert space H, and normalized state vectors to remain normalized and confined
to the sphere S2N+1. Consequently, the projected physical-state manifold P(H) continues
to be the base manifold of the principal line bundle E, with the fiber F being the unitary
group U(1). P(H) is homeomorphic with η.

We still focus on the spectrum of discrete, isolated, and nondegenerate eigenvalues
εμ(η) with corresponding normalized eigenkets ψμ(η).1 We recall that the set of equiva-
lent normalized eigenkets eiφ ψ(η) = ψ(φ,η) form a ray, and share the projection π =
|ψ(η)〉 〈ψ(η)| ∈ P(H). The adiabatic time dependence of H amounts to traversing a

1 To simplify the notation, we will drop the subscript μ.
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curve t → η(t) in η at adiabatically slow velocity. We also note that a cyclic evolution,
η(0) = η(T ), is uniquely associated with a loop C(η) in η, or in P(H).

From another perspective, we can envision that time evolution produces a path in the
total space E. The corresponding path in the space of physical states P(H) � η is obtained
by a π projection of the path in E onto the base manifold. In the cyclic evolutions we are
interested in, we find that the system terminates in the initial physical state, and the paths
are represented by closed curves in η. Closed paths in η may correspond to closed or open
paths in E. In a cyclic evolution, an open path in E means that a state vector terminates on
the same initial fiber, but it lands on another state vector that differs from the initial state
vector by an overall phase.

U(1) A Transition Functions and Gauge Transformations

We note that, in general, each wavefunction ψ(η) can be chosen to be smooth only over
patches of η, but not necessarily over the whole of η. In other words, the set of state
vectors ψ(φ,η) form a smooth section over each patch U ⊂ η. For two overlapping
patches U1 ∩ U2 
= ∅, with sets of smooth functions ψ(1)(η) and ψ(2)(η), respectively,
we know that for any η ∈ U1∩U2 the corresponding functions share the same ray above
η, and can differ only by a complex phase, θ(η), eiθ(η) ∈ U(1), namely,

ψ(2)(η) = eiθ(η) ψ(1)(η),

which is just a gauge transformation. Both ψ(1)(η) and ψ(2)(η) constitute a possible set
of instantaneous solutions, and the freedom in choice of either one or another manifests
the gauge freedom. The corresponding group that is used to formulate the condition of
the gauge freedom is called the gauge group. In our case, the gauge group is U(1).

10.2.1 Construction of the Berry Connection

Before constructing the connection [34], which is associated with the horizontal subspace,
we shall identify the vertical subspace, or the vertical direction. We recall that the fibers are
generated by the action of the group U(1) on the physical states of the base manifold P(η)

ψ(φ,η) = eiφ ψ(η), ψ(η) ∈ P(η).

This means that the normalized states of a fiber differ by a phase from each other, and, thus,
point in the same direction – the vertical direction generated by the U(1) action.

Since the line bundle is embedded in a complex vector space, a natural way to con-
struct the connection (a horizontal subspace) is to use the corresponding metric, the scalar
product. We can decompose the tangent vectors

dψ
(
φ(t),η(t)

)
dt

= ∂tψ
(
φ(t),η(t)

) ∈ T E
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to the curve ψ
(
φ(t),η(t)

) ∈ E, with the aid of the scalar product, into vertical and horizon-
tal components, as

dψ
(
φ(t),η(t)

)
dt

= 〈ψ(φ(t),η(t)) ∣∣∂tψ(φ(t),η(t))〉 ∣∣ψ(φ(t),η(t))〉
+ ∣∣hψ(t)〉 ( horizontal component) (10.10)〈

ψ
(
φ(t),η(t)

)∣∣hψ(t)〉 = 0, parallel transport (10.11)

To evaluate the connection explicitly, we need to consider a local patch U ⊂ η and the
region of E over U. Since tangent vectors in T E are produced by the operator d/dt , we
split it into vertical and horizontal operators as

d

dt
= av

∂

∂φ
+
∑
α

bαh Dα = av
∂

∂φ
+
∑
α

bαh

[
∂

∂ηα
+Aα

∂

∂φ

]
,

where the first term corresponds to the vertical subspace, since it clearly depends only on
variations in the phase φ. We therefore write〈

ψ
(
φ(t),η(t)

) ∣∣∂tψ(φ(t),η(t))〉 ∣∣ψ(φ(t),η(t))〉 = av
∂

∂φ

∣∣ψ(φ(t),η(t))〉∣∣hψ 〉 =∑
α

bαh Dα

∣∣ψ(φ(t),η(t))〉
and, according to (10.11), we obtain〈

ψ
(
φ(t),η(t)

)∣∣∣bαh Dα

∣∣∣ψ(φ(t),η(t))〉 = 0.

Since bαh is arbitrary, we find that〈
ψ
(
φ(t),η(t)

) ∣∣∣∣ ∂

∂ηα
+Aα

∂

∂φ

∣∣∣∣ψ(φ(t),η(t))〉 = 0.

Using the fact that
∣∣ψ(φ(t),η(t))〉 is normalized, and that

∂

∂φ

∣∣ψ(φ(t),η(t))〉 = ∂

∂φ
eiφ ψ(η) = i

∣∣ψ(φ(t),η(t))〉 ,
we obtain

Aα

〈
ψ
(
φ(t),η(t)

) ∣∣∣∣ ∂∂φ
∣∣∣∣ψ(φ(t),η(t))〉 = iAα

〈
ψ
(
φ(t),η(t)

) |ψ(φ(t),η(t))〉
= −
〈
ψ
(
φ(t),η(t)

) ∣∣∣∣ ∂

∂ηα

∣∣∣∣ψ(φ(t),η(t))〉
or

Aα = i

〈
ψ
(
φ(t),η(t)

) ∣∣∣∣ ∂

∂ηα

∣∣∣∣ψ(φ(t),η(t))〉 . (10.12)
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The connection A is then given by the one-form

A =
∑

Aα dη
α = i

〈
ψ
(
φ(t),η(t)

)∣∣ d ∣∣ψ(φ(t),η(t))〉
defined on the line bundle in terms of the covariant derivative ∇η. Thus, A is also referred
to as the Berry connection.2

With the construction of the connection in hand, we proceed to define the horizontal
lift. The horizontal lift involves lifting the tangent vectors to the curve in η up along the
fibers and orienting them such that they are horizontal. Consequently, for

∣∣ψ(φ,η)〉 to be a
horizontal lift, the vertical part of

∣∣∂tψ(φ,η)〉 must vanish〈
ψ
(
φ,η
) ∣∣∂tψ(φ,η)〉 = 0. (10.13)

This condition is called the horizontal lift equation or the equation for parallel transport.
We have invoked the notion of parallel transport in the line bundle E in a manner completely
analogous to the way an ordinary covariant derivative on a smooth manifold defines parallel
transport in the tangent bundle of the smooth base. As we will show, the twisting of this
line bundle affects the phase of quantum mechanical wave functions.

In bundle language,
∣∣ψ(φ,η)〉 can be considered as a local section of the fiber bundle,

namely, a continuous mapping of a patch U ⊂ η into the fibers above U. A change to a
different patch U′ ⊂ η corresponds to a change in the section∣∣ψ(φ(η),η)〉→ ∣∣ψ(φ′(η),η)〉∣∣ψ(φ′(η),η)〉 = eiθ(η)

∣∣ψ(φ,η)〉
This means that the connection transforms as

A′α = Aα − ∂θ(η)

∂ηα
, (10.14)

a gauge transformation.

We note that a local section, being a section over a single patch, maps a closed path
in η, with η(T ) = η(0), 0 ≤ t ≤ T , into a closed path in E. We will denote the closed
path in E as

∣∣ψ(η(t))〉, with
∣∣ψ(η(T ))〉 = ∣∣ψ(η(0))〉. A gauge transformation gives a

different closed path in E, ∣∣ψθ

(
η(t)
)〉 = eiθ(t)

∣∣ψ(η(t))〉 .
In order for

∣∣ψθ

(
η(t)
)〉

to be closed, the function θ must satisfy

θ(T ) = θ(0)+ 2nπ (10.15)

with n integer.

2 We should note that ∇η is not a quantum operator in Hilbert space, and thus A is not a physical observable.
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h

Figure 10.1 Horizontal lift of path π(t).

10.2.2 Holonomy and Berry’s Phase

We will now evaluate the holonomy produced by the horizontal lift of a closed curve in
η with respect to the connection we previously derived (see Figure 10.1). We denote the
horizontal lift by

∣∣ψh

(
η(t)
)〉

. By definition, the tangent vectors to the curve
∣∣ψh

(
η(t)
)〉

must
be horizontal. According to (10.10), this means〈

ψh

(
φ,η
) ∣∣∂tψh

(
η(t)
)〉 = 0. (10.16)

We can express the open path
∣∣ψh

(
η(t)
)〉

in E in terms of a closed path
∣∣ψ(φ(t),η(t))〉

in E as ∣∣ψh

(
η(t)
)〉 = eiξ(t)

∣∣ψ(φ(t),η(t))〉 (10.17)∣∣ψ(φ(T ),η(T ))〉 = ∣∣ψ(φ(0),η(0))〉 , φ(T ) = φ(0)+ 2nπ∣∣ψh

(
η(T )
)〉 = e

i
[
ξ(T )−ξ(0)

] ∣∣ψh

(
η(0)
)〉

.

Setting γ = ξ(T )− ξ(0), substituting (10.17) into (10.16) and integrating, we obtain〈
ψh
(
φ,η
) ∣∣∂tψh(η(t))〉= iξ(t)

〈
ψ
(
φ(t),η(t)

) ∣∣ψ(φ(t),η(t))〉
+
〈
ψ
(
φ(t),η(t)

) ∣∣ψ̇(φ(t),η(t))〉
ξ(t) = i

〈
ψ
(
φ(t),η(t)

) ∣∣ψ̇(φ(t),η(t))〉
γ = i

∫ T

0
dt
〈
ψ
(
φ,η(t)

)∣∣ ∂t ψ(φ,η(t))〉 .
The tangent vector

∣∣ψ̇(φ(t),η(t))〉 is given by

d

dt

∣∣ψ(φ(t),η(t))〉 = φ̇
∂
∣∣ψ(φ(t),η(t))〉

∂φ
+
∑
α

η̇α
∂
∣∣ψ(φ,η(t))〉

∂ηα
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and we write

γ = i

∫ T

0
dt φ̇

〈
ψ
(
φ,η(t)

) ∣∣∣∣ ∂∂φ
∣∣∣∣ψ(φ,η(t))〉

+ i

∫ T

0
dt η̇μ

〈
ψ
(
φ,η(t)

) ∣∣∣∣ ∂

∂ημ

∣∣∣∣ψ(φ,η(t))〉
= −

∫ φ(T )

φ(0)
dφ + i

∫ ημ(T )

ημ(0)
dημ

〈
ψ
(
η
) ∣∣∣∣ ∂

∂ημ

∣∣∣∣ψ(η)〉
= −2nπ +

∮
C

〈
ψ
(
η
) |d|ψ(η)〉 = −2nπ +

∮
C
A = γ (C), (10.18)

where C is the closed path in η.
〈
ψ
(
η
) |d|ψ(η)〉 is purely imaginary, since for normalized

states |ψ(η)〉
∂

∂ημ

〈
ψ(η)
∣∣ψ(η)〉 = 0 =

〈
ψ(η)

∣∣∣∣ ∂

∂ημ
ψ(η)

〉
+
〈
∂

∂ημ
ψ(η)

∣∣∣∣ψ(η)〉
= 2Re

〈
ψ(η)

∣∣∣∣ ∂

∂ημ
ψ(η)

〉
.

10.2.3 The Berry Curvature

If the base η is simply connected, then expression (10.18) for the Berry phase can be
rewritten as a surface integral of the local curvature form. Using Stokes’ theorem, we write

γ (C) =
∫
S(C)

F ·dS, (10.19)

where S(C) is an arbitrary submanifold, of dimension n−1, bounded by C, namely, δS = C,
and

F = dA = −* 〈dψ(η) ∣∣dψ(η) 〉 two-form (10.20)

is the Berry curvature. In local coordinates on η it is given by the two-form

F = 1

2
F ij dηi ∧ dηj

F ij = −*
(〈
∂iψ
∣∣∂jψ 〉− 〈∂jψ∣∣∂iψ 〉). (10.21)

If the base η is not simply connected, then the expression for the Berry phase as surface
integral (10.19) is valid only for those curves that are contractible to a point.

Berry’s Curvature in Terms of Hamiltonian Derivatives: Hidden Physics

With

Fn(η) = −* 〈dψn(η) | d ψn(η)〉



262 Berry-ology

we insert the identity operator, I =∑m |ψm〉 〈ψm|, and we obtain

Fn(η) = −*
∑
m

〈dψn(η) |ψm(η) 〉 ∧ 〈ψm(η) |d ψn(η)〉

= −*
∑
m
=n

〈dψn(η) |ψm(η) 〉 ∧ 〈ψm(η) |d ψn(η)〉 , (10.22)

where the sum excludes m = n since 〈ψn(η) |d ψn(η)〉 is purely imaginary. An important
consequence of (10.22) is that the sum of Berry curvatures of all the eigenstates of the
Hamiltonian is zero. If we consider Hamiltonians with discrete spectra along a closed path
C, and sum over Berry’s phases of all eigenstates, we obtain∑

n

Fn(η) = 0, (10.23)

which follows from (10.22), since

F ij
n (η) = −*

∑
m
=n

(
〈∂iψn(η)| ψm(η)〉 〈ψm(η)| ∂jψn(η)

〉− (i � j)
)

= −1

2
*
∑
m
=n

(
〈∂iψn(η)| ψm(η)〉 〈ψm(η)| ∂jψn(η)

〉
+ 〈∂jψm(η)

∣∣ ψn(η)〉 〈ψn(η)| ∂iψm(η)〉 − (i � j)
)

since 〈∂iψn(η)| ψm(η)〉 = − 〈ψn(η)| ∂iψm(η)〉. It is clear then that∑
n

F ij
n (η) = 0

since the sum is both symmetric and antisymmetric in i and j .
Applying the exterior derivative d to the eigenvalue equation

H(η) |ψn(η)〉 = En(η) |ψn(η)〉
yields

dH(η) |ψn(η)〉 +H(η) d |ψn(η)〉 = d En(η) |ψn(η)〉 + En(η) d |ψn(η)〉
and projecting onto 〈ψm(η)|, we get

〈ψm(η)| dH(η) |ψn(η)〉 = (En(η)− Em(η)) 〈ψm(η)| d ψn(η)〉
or

〈ψm(η)| d ψn(η)〉 = 〈ψm(η)| dH(η) |ψn(η)〉
En(η)− Em(η)

, m 
= n

and

Fn(η) = −*
∑
m
=n

〈ψn(η)| dH(η) |ψm(η)〉 ∧ 〈ψm(η)| dH(η) |ψn(η)〉(
En(η)− Em(η)

)2
. (10.24)
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We note that Fn becomes infinite at some η = η∗, if En(η
∗) = Em(η

∗), a δ-function
like singularity that heralds the presence of a fictitious field source. We discern that the
source is static; for example, it may manifest the nature of a magnetic monopole rather
than currents.

We can surmise that wherever the ground state is degenerate, the curvature becomes ill
defined and singular. In such a situation, the vicinity of the singularity must be excluded,
which leads to a domain that is not simply connected.

Finally, (10.24) has the advantage that it is free of wavefunction differentiation, there-
fore it can be evaluated under any gauge choice. This property is particularly useful for
numerical calculations, in which the condition of a smooth phase choice of the eigenstates
is not guaranteed in standard diagonalization procedures.

Isolated Degeneracies and Diabolical Points

We consider a quantum system parameterized by η = {η1, . . . ,ηn), and assume that for
some point η∗ two energy eigenvectors ψ1(η

∗) and ψ2(η
∗) are degenerate, with energy

E∗ = E(η∗). Near the degeneracy point η∗, we may approximate the system as a two-level
one, and write its Hamiltonian as

H =
(
H11(η) H12(η)

H∗12(η) H22(η)

)
with eigenvalues

E± = H11 +H22

2
±
√(H11 −H22

2

)2

+ |H12|2.

At η∗,

(H11 −H22)
2 + 4|H12|2 = 0, H11 = H22, #H12 = *H12 = 0.

These three constraints define an (n− 3)-dimensional submanifold in η. If n = 3, then the
degeneracy defines an isolated point in η.

For a system with time-reversal symmetry, the Hamiltonian H is real and *H12 = 0.
Hence, the subspace of degenerate points defines an (n−2)-dimensional submanifold of η.
This behavior was recognized by von Neumann and Wigner [189]. Note that if we introduce
the three parameters

u = 1

2
(H11 −H22) , v = #H12, w = *H12,

then the eigenenergies in the vicinity of the degeneracy take a double-cone profile, as shown
in Figure 10.2, with its apex at the degeneracy point, namely

E = E∗ ±
√
u2 + v2 + w2.
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Figure 10.2 Left: Conical intersection near a degeneracy point, showing the diabolical point. Right:
A diabolo toy

The double cone is called a diabolo (after a spinning toy of the same shape). The apex of
this cone is called a diabolical point.3

10.2.4 Berry’s Quantized Flux and Topological Invariant

The flux of Berry’s curvature through a surface S remains a bona fide physical quantity on
closed surfaces, such as a sphere or a torus, in which case the closed contour C becomes the
empty set. The remarkable feature in this case is that the flux is quantized. For pedagogical
reasons, we will consider the simple case of a sphere in three dimensions, S ≡ S2. For
regular and divergence-free curvature on the closed surface S2,∫

S2
F(η) · dS

represents the flux of F across S2. The flux quantization is then expressed as

C1 = 1

2π

∫
S2

F(η) · dS, (10.25)

where C1 is an integer ∈ Z, called the Chern number of the first class.
To demonstrate that C1 ∈ Z, we shall assume that F(η) is singular at η = 0, and that S2

is the spherical surface centered at the origin (see Figure 10.3).
We cut this surface at the equator, ηz = 0, and consider the flux across the two open

surfaces ∫
S2

F(η) · dS =
∫
S+

F(η) · dS+
∫
S−

F(η) · dS

We notice that C+ = C− = C, but the surface normals n̂ have opposite orientations. From
Stokes’ theorem, we get∫

S±
F(η) · dS = ±

∫
C

A±(η) · dη∫
S2

F(η) · dS =
∫
C

A+(η) · dη −
∫
C

A−(η) · dη. (10.26)

3 A discussion of the importance of diabolical points in molecular physics is given in [28].
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Figure 10.3 Sphere cut at the equator in two hemispheres.

The upper and lower Berry connections A±(η) may only differ by a gauge transformation.
Since the right-hand side (rhs) of (10.26) is the difference of two Berry phases on the same
path, it is necessarily an integer multiple of 2π .

The Chern number turns out to be a robust topological invariant, and is associated with
observable phenomena, such as the integer quantum Hall effect. More recently, other topo-
logical invariants have emerged, such as the Z2, which classifies time-reversal symmetric
insulators into disjoint trivial and topological types.

As we have outlined, the integrand F is the curl of the Berry connection A, and, in
general, A may not be a single-valued function globally on S2, but only on local patches,
as will be described in example 1.

10.3 Pedagogical Example 1: A Two-Level System

Pedagogically, studying this system accomplishes two goals. First, it is a simple model
that demonstrates the basic concepts outlined earlier in this chapter, and reveals several
important properties of the Berry phase. Second, it will emerge, in different physical guises,
in the following chapters.

The generic Hamiltonian of a two-level system takes the form

H = −d · σ ,
where σ represents the Pauli matrices and d ∈ R3 vector space.4

We parametrize d by its polar and azimuthal angles θ and ϕ as

d = d n̂, n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) .

4 The simplest example is the motion of a neutral spin-1/2 particle in a magnetic field B, where we have the familiar Hamiltonian

H = −μB ·σ ,
where μ is the particle magnetic moment.



266 Berry-ology

Figure 10.4 Two patches introduced by the gauge choice for the ground state |ψ−(d)〉. No single
patch can describe the full domain S2. However, the two patches can be glued together via the
transition function t (ϕ).

The two eigenstates, with energies ±d, are

|ψ+(d)〉 =
(

cos(θ/2)
eiϕ sin(θ/2)

)
|ψ−(d)〉 =

( − sin(θ/2)
eiϕ cos(θ/2)

)
.

We notice that the norm d does not affect the eigenvectors. Therefore, the parameter space
is a two-sphere S2.

10.3.1 Patches and Transition Functions

We now choose two different gauges to write the ground state |ψ−(d)〉:∣∣∣ψU
−
〉
=
( − sin(θ/2)
eiϕ cos(θ/2)

)
or
∣∣∣ψL
−
〉
=
(−e−iϕ sin(θ/2)

cos(θ/2)

)
.

Both states
∣∣ψU−
〉

and
∣∣ψL−
〉

describe the ground state. However,
∣∣ψU−
〉

is ill defined (sin-
gular) at θ = π (it displays a vortex at the south-pole ⇒ value of ϕ ill defined), while∣∣ψL−
〉

is singular at the north-pole. Thus, we have to introduce two patches on the sphere,
shown in Figure 10.4, to obtain a smooth parameterization of the instantaneous eigenstates.
Other gauges yield the singularity at a different point on the sphere, but a singularity is
unavoidable. It is impossible to find a gauge that yields a smooth, nonsingular connection
over the whole closed surface. Such singularity, often called obstruction, can be moved but
not removed.5

However, we can glue these two patches together via a gluing phase∣∣∣ψU
−
〉
= eit (ϕ)

∣∣∣ψL
−
〉

t (ϕ) = ϕ

along the equator.

5 The algebra is the same as for Dirac’s theory of the magnetic monopole: the degeneracy at the origin is the monopole, and the
singularity is the Dirac string [52].
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10.3.2 Berry Connection, Curvature, and Phase

We now calculate the Berry connection and curvature for ψU− and ψL− 6

∇
∣∣∣ψU
−
〉
= − 1

d

⎛⎜⎝ 1
2 cos

θ

2
1
2 e

iφ sin
θ

2

⎞⎟⎠ ϑ̂ + 1

d sin θ

⎛⎝ 0

ieiφ cos
θ

2

⎞⎠ ϕ̂

Hence 〈
ψU
− | ∇ψU

−
〉
= 1

2d

[
sin

θ

2
cos

θ

2
θ̂ − sin

θ

2
cos

θ

2
θ̂ + 2i

cos2(θ/2)

sin θ
ϕ̂

]
= i

2 cos2(θ/2)

d sin θ
ϕ̂ = i

1

d
cot

θ

2
ϕ̂

and

∇×
〈
ψU
− | ∇ψU

−
〉
= 1

d sin θ

∂

∂θ

[
sin θ

i cos2(θ/2)

d sin θ

]
n̂ = −i 1

2d2
n̂.

We obtain

A = 1

d
ϕ̂ ×

⎧⎨⎩cot(ϑ/2)
∣∣ψU−
〉

singular at θ = 0,

tan(θ/2)
∣∣ψL−
〉

singular at θ = π,

F = 1

2d2
n̂. (10.27)

The curvature is gauge invariant, while the connection is gauge dependent.
The curvature for the upper state |ψ+(d)〉 is F = − 1

2d2 n̂. Thus, parallel transport of
the eigenstates |ψ−(d)〉 and |ψ+(d)〉 over the same loop in parameter space rotates them
in opposite directions (Berry phases have opposite signs). They exhibit a twist akin to the
Möbius strip.

One- and Two-Form Approach

Alternatively, we can use the one-form expression for the connection

A = i 〈ψ |dψ〉
= i 〈ψ |∂θ ψ〉 dθ + i 〈ψ ∣∣∂ϕ ψ 〉 dϕ

and
∂ψ−
∂θ

= −
[

(cos θ)/2
eiϕ (sin θ)/2

]
,

∂ψ−
∂ϕ

=
[

0
ieiϕ (cos θ)/2

]
∂ψ+
∂θ

=
[ −(sin θ)/2
eiϕ (cos θ)/2

]
,

∂ψ+
∂ϕ

=
[

0
ieiϕ (sin θ)/2

]

6 Recall, in spherical coordinates we have ∇ = ∂
∂r

r̂+ 1
r

∂
∂θ

ϑ̂ + 1
r sinϑ

∂
∂ϕ

ϕ̂ (here r ≡ |d| = d)

∇×A = 1
r sinϑ

{
∂
∂ϑ

(
Aϕ sinϑ

)
− ∂Aϑ

∂ϕ

}
r̂+ 1

r

[
1

sinϑ
∂Ar
∂ϕ

− ∂
∂r

(
r Aϕ
)]

ϑ̂

+ 1
r

[
∂
∂r

(r Aϑ )− ∂Ar
∂ϑ

]
ϕ̂.
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to obtain A+ = 〈ψ+ |dψ+〉 = −1

2
(1− cos θ) dϕ

A− = 〈ψ− |dψ−〉 = −1

2
(1+ cos θ) dϕ.

The corresponding Berry curvature is

Fθϕ =
(
∂θ Aϕ − ∂ϕ Aθ

)
dθ ∧ dϕ

F+θϕ = −
1

2
sin θ dθ ∧ dϕ

F−θϕ =
1

2
sin θ dθ ∧ dϕ

F+θϕ + F−θϕ = 0

and the Chern numbers are

C± = ∓ 1

2π

∫
S2

dθ sin θ dφ
1

2
= ∓1.

In the integration of the Berry curvature over the parameters (θ,ϕ), we did not include
an additional sin θ factor that is required for a sphere. This is because we were not
integrating over the surface of a sphere, but over a parameter domain shown in the figure.
Here, the parameter space has the topology of a sphere S2, but not its metric.

However, we should also note that

F±θϕ = ∓
1

2
sin θ dθ ∧ dϕ = ∓ 1

2d2
(d dθ)(d sin θdϕ) d̂.

10.3.3 The Monopole: Degeneracy, Singularity, and Obstruction

If we write the curvature as F = g

2d2
n̂, we find that it has the form of a magnetic monopole

field of strength g at the origin, namely,

1

2π

∫
S2

F ·dS = g.
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Figure 10.5 Monopole singularity.

The corresponding Berry potential A also shows monopole behavior at d ≡ B = 0. As
expected, the vanishing of the Hamiltonian at d = 0 ushers a doubly degenerate state – a
singularity (see Figure 10.5).

We note that integrating over the solid angle 	
 subtended by 	S yields a Berry phase
γ = g 	�/2 proportional to half the subtended solid angle.

In fact, g cannot take arbitrary values: we calculate the Berry phase along a path C that
does not contain the south pole

γ (C) =
∮
C

A·d	 =
∫
�(C)

F·dS = g

2

(�) mod 2π,

where 
(�) is the solid angle subtended by the surface � that contains the north pole. If
we now choose the surface �̃ = S2 −�

γ (C) = −
∫
�̃(C)

F·dS = −g
2

(
4π −
(�)

)
mod 2π = g

2

(�) mod 2π,

we find that g ∈ Z. This integer measures the strength of the singularity (magnetic
monopole), which resides in a site inaccessible to the quantum system. With this simple
yet pedagogical procedure, we can ascertain that a nonvanishing Chern number C is intrin-
sically linked to the inability to choose a smooth gauge. In other words, only if we have to
choose several patches that we glue together with a gauge transformation can C be nonzero.

10.4 Pedagogical Example 2: Molecular Aharonov–Bohm Effect

In this example, we consider the quantum motion of the combined electronic and ionic
components of a molecule. Here, the slow motion of the ions presents an adiabatic time
evolution of the electronic motion and allows the application of the Born–Oppenheimer
approximation (BOA).

10.4.1 The Effective Ionic Hamiltonian

We start from the complete Hamiltonian H of an isolated N -atom molecular system, and
explicitly separate the ionic kinetic energy
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H
(
X,[x]

) = 1

2

N∑
j=1

P2
j

2Mj

+He

(
X,[x]

)+ Eelastic(X), (10.28)

where [x] denotes the electronic degrees of freedom, and X = [X1, . . . ,Xj, . . . ,XN
]

represents the ionic positions, with Xj the position vector of ion j . Pj = −ih̄∇Xj
is

the canonical momentum conjugate to Xj , and Mj the mass of ion j . Eelastic is the ionic
elastic energy for the configuration X.

We invoke the BOA by initially ignoring the ionic kinetic energy, and applying the
adiabatic approximation, where the coupling between different electronic states can be
neglected. Thus, the slowly varying 3N -dimensional ionic position vector X in H(X,[x])
is demoted to a classical parameter and identified with the slow parameter η. Moreover,

we use the BOA ansatz and write the eigenfunctions of (10.28),
∣∣∣�(X,[x]

)〉
, as the product〈

[x]
∣∣∣ξ(X)〉χ(X), where ξ and χ denote the electronic and ionic wavefunction, respectively.

We start with solving the electronic eigenvalue problem

He

(
X,[x]

) ∣∣∣ξn(X,[x]
)〉 = En(X)

∣∣∣ξn(X,[x]
)〉

and determine the ground-state energy E0(X) and wavefunction
∣∣ξ0
(
X,[x]

)〉
.

Our goal is then to construct an effective Schrödinger equation for the ionic wavefunc-
tion χ(X) by integrating out the electronic degrees of freedom. We first consider the action
of the canonical ionic momentum P on the product ansatz

P
∣∣∣ξ(X,[x])

〉
χ(X) = −ih̄

∣∣∣ξ(X,[x])
〉
∇X χ(X)− ih̄

∣∣∣∇X ξ(X,[x])
〉
χ(X).

We integrate over the electronic degrees of freedom by acting on both sides with
〈
ξ(X,[x])

∣∣∣.
We obtain the effective ionic kinematic momentum $ acting on χ(X)

$χ(X) =
[
P− ih̄

〈
ξ(X,[x])

∣∣∣∇X ξ(X,[x])
〉]
χ(X), (10.29)

where Berry’s connection is clearly recognizable.
The electronic eigenvalue E0(X) of the ground state plays the role of a scalar potential

for ionic motion. The effective Hamiltonian acting on χ(X) is given by

Heff = 1

2

∑
j

1

Mj

2
j + E0(X)+ Eelastic(X). (10.30)

10.4.2 A Simple Example: The Trimer Molecule

The smallest molecular system that exhibits molecular Aharonov–Bohm effect is a trimer,

with ionic coordinates X =
(

X1, X2, X3

)
. The simplest trimers, which we consider here,

are of course the homonuclear ones, where symmetry plays a major role.
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Figure 10.6 A homonuclear trimer in its equilateral configuration.

A g

Eg Eg

Figure 10.7 The electronic ground state of the trimer with D3h consists of an A1g totally symmetric
state and a degenerate Eg doublet transforming like (x,y).

Structure of the Ground State

We focus on a trimer of monovalent atoms, such as H3 or Na3, where the occupied valence
orbitals, |A〉 , |B〉, and |C〉, are s-like.

We start with the molecule in the equilateral configuration of Figure 10.6, with D3h

symmetry.7 Two of the valence electrons occupy a totally symmetric orbital (A1g symmetry)∣∣φA1g

〉 = 1√
3

[
|A〉 + |B〉 + |C〉

]
.

The remaining unpaired electron occupies the next available orbital, which has Eg sym-
metry and is doubly degenerate.8 In a simple tight-binding scheme, a possible basis is the
two-dimensional manifold∣∣∣φ1

Eg

〉
= 1√

2

[
|B〉 − |C〉

]
,

∣∣∣φ2
Eg

〉
= 1√

6

[
2 |A〉 − |B〉 − |C〉

]
.

These orbitals are shown in Figure 10.7. The fact that the Hamiltonian is time reversal
invariant and the wavefunctions vanish at infinity guarantees that the orbitals may always
be chosen as real.

When we distort the molecule from its equilateral configuration, the doublet is linearly
split, and one of the two Eg components becomes energetically favored. The molecule is

7 The symmetry group, D3h, is the dihedral group of an equilateral triangle. It has a mirror symmetry through the plane of the
triangle.

8 The symbol A denotes a nondegenerate symmetry-adapted function, while E denotes a doubly degenerate one; g and u denote
even and odd behavior, respectively, with respect to mirror reflections through the plane containing the trimer.
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QA g
QEg

QEg

Figure 10.8 A schematic representation of the three possible normal vibration modes of a trimer,
compatible with D3h symmetry. Note that they are all planar.

said to undergo a Jahn–Teller distortion, where the electronic ground state in the BOA
becomes nondegenerate.

The E ⊗ ε Jahn–Teller Problem

We shall start our study of this effect with describing the motion of the ions under D3h

symmetry. We find three symmetry-adapted (normal) modes for small oscillations of the
trimer molecule, shown in Figure 10.8:

(i) A breathing mode of A1g symmetry. It is totally symmetric and cannot remove the
electronic doublet degeneracy

(ii) An Eg doubly degenerate mode. It can lift the electronic degeneracy, and is compatible
with coupling to the electronic doublet and engendering invariant terms in the Hamil-
tonian, linear in the symmetry-adapted displacements.

The vibrational doublet, in fact, drives the dynamical Jahn–Teller effect 9.

The ionic motion lifts the electronic degeneracy. This fulfills the assertion of the Jahn–
Teller theorem that in the presence of electronic degeneracy, there should be distorted ionic
configurations of lower energy than the symmetric one.

Solving the One-Electron Problem

Within the Born–Oppenheimer procedure, we write

�([x],X) = χ(X) ξ([x],X))

and we initially neglect the ionic kinetic and elastic energies in H. The remaining compo-
nent is the electronic Hamiltonian having the form

He(X,x) = Te + V (X,x)

9 The conventional notation E ⊗ ε given for this process means that an E vibrational mode is coupled to an E electronic state.
Conventionally, the upper-case letters are used as symmetry labels for the vibrational states, and Greek lower-case ones for the
electronic states.
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for the one-electron case. Te is the electronic kinetic energy. The electron–ion potential V
is expressed in terms of the “parametric” ionic positions X and the one-electron degrees of
freedom x.

For infinitesimal vibrational displacements, X = X0 + 	X, where X0 represents the
equilibrium configuration with D3h symmetry. We expand the potential V to linear terms
in 	X:

He(X,x) � Te + V (X0,x)+∇XV

∣∣∣
X=X0

·	X.

As we have shown in Chapter 6, we carry out a unitary transformation to normal (or
symmetry-adapted) coordinates X → Q, and obtain

He(Q,x) = Te + V (X0,[x])+
∑
α

∇Qα
V · Qα

= Te + V (X0,x)+
∑
α

dα∑
�=1

Kα� Q
�
α = H(0)

e +H′, (10.31)

where Qα is a normal mode coordinate belonging to the irreducible representation (irrep)
α and dα is the irrep dimension, or its degeneracy. In the trimer case, the relevant irrep is
Eg with dEg = 2, yielding

He = p2

2me

+ V (x;X0)+ V1(x)Q1 + V2(x)Q2

= H(0)
e + V1(x)Q1 + V2(x)Q2,

where we dropped the subscript Eg.

Diagonalization of H(0)
e yields the solutions

∣∣ξj (X0,x)
〉

of the adiabatic electronic prob-

lem for the equilateral ionic configuration. However, since H(0)
e has the D3h symmetry, the

ground-state wavefunction is still expressed in terms of an A1g singlet and an Eg doublet:∣∣φA1g

〉
,

∣∣∣φ1
Eg

〉
,

∣∣∣φ2
Eg

〉
.

Treating the interaction as a degenerate perturbation problem, we evaluate the matrix
elements as10〈

φ1 |V(x)|φ1
〉
= −K,

〈
φ2 |V(x)|φ2

〉
= K,

〈
φ1 |V(x)|φ2

〉
=
〈
φ2 |V(x)|φ1

〉
= K,

where we again dropped the subscript Eg. Expressing the electron eigenket in the form

ξ ′(x,Q) = A1(Q) φ1(x,Q)+ A2(Q) φ2(x,Q),

we obtain (−KQ1 KQ2

KQ2 KQ1

)
⇒ E± = ±K

√
Q2

1 +Q2
2.

10 Any real symmetric 2× 2 matrix may be written as

a

2
I+ b

(
x y

y −x
)

.

In the present case, the component involving the identity matrix is unimportant.
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Q Q

Degeneracy

Figure 10.9 Vibrational parameter space in polar coordinates. The gray circle represents a closed
loop in Q-space that encircles the origin.

Next, we transform the coordinates in Q1-Q2 parameter space to polar form (Q,ϕ):

Q1 = Q cosϕ, and Q2 = Q sinϕ

as shown in Figure 10.9, and obtain

KQ

(− cosϕ sinϕ
sinϕ cosϕ

)
= KQ (sinϕ σx − cosϕ σz) , (10.32)

where σx and σz are the Pauli matrices. The eigenenergies become

E± = ±KQ.

The rhs of (10.32) shows that the coupling to the vibronic modes in the electronic problem
can be mapped onto a spin-1/2 problem. We can then write the eigenkets as⎧⎪⎪⎪⎨⎪⎪⎪⎩

|ξ−〉 = 1√
2

[
cos(ϕ/2)

∣∣∣φ1
〉
− sin(ϕ/2)

∣∣∣φ2
〉]

|ξ+〉 = 1√
2

[
sin(ϕ/2)

∣∣∣φ1
〉
+ cos(ϕ/2)

∣∣∣φ2
〉] (10.33)

The eigenkets |ξ±〉 are real and double-valued in the angle ϕ. We find that although the
Hamiltonian is periodic in ϕ, the electronic wavefunctions are antiperiodic:

|ξ±(2π)〉 = − |ξ±(0)〉 .

We can also view the sign change in the electronic eigenstates, as a result of varying the
angle ϕ along a closed loop encircling the origin in the ionic configuration parameter space,
shown in Figure 10.9, a possible holonomy. This behavior is demonstrated in Figure 10.10.
As we will see, this is characteristic of a cyclic pseudorotation.

The sign change in the state of a two-level (fermionic) system under a 2π rotation,
referred to as spinor behavior,11 was known since the early days of quantum mechanics,
but we shall show that Berry’s formulation brings a new insight, namely, a special case of
the geometric phase. However, to start with, the reality of the wavefunctions leads to the
vanishing of Berry’s geometric vector potential,

〈
ξ±
∣∣∇Q
∣∣ ξ±〉 = 0.

11 We recall that under the rotation operator eJ·ϕ/h̄, a spin-1/2 vector flips under spatial rotation of ϕ = 2π .
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Vibronic distortions

Corresponding changes in the electronic wavefunctions ξ+ (top) and ξ− (bottom)

Figure 10.10 The top figure illustrates the distortions that the triangular molecule undergoes as the
phase angle associated with the degenerate vibrational distortion increases from 0 to π . The bottom
figure shows schematically how during this process the electronic state ξ− (initially φ1-symmetry)
changes continuously into −φ2, and ξ+ (initially φ2-symmetry) into φ1.

The double-valued eigenstates of (10.33) may appear disturbing and unphysical. How-
ever, this problem can be remedied in two ways. We can apply a gauge transformation
that renders the wavefunctions complex, but single-valued. Or, we require that the ionic
wavefunction be quantized using antiperiodic boundary conditions. Note that the eigenstate
of the total molecular system, �(x,Q), must be single-valued, of which the electronic term
is only one factor.

10.4.3 Molecular Aharonov–Bohm effect (MABE)

Before describing the molecular Aharonov–Bohm effect, we will briefly describe the orig-
inal Aharonov–Bohm effect (ABE) [6], for the sake of clarity and completeness.

The Aharonov–Bohm Effect

In the simplest description of the Aharonov–Bohm effect, an electron is placed outside a
solenoid with infinite extension in the z-direction (see Figure 10.11). The region inside
the solenoid is inaccessible to the electron. For simplicity, we consider the case where the
electron is confined to a circular rail of radius a, in the x-y plane, as shown in figure. If the
magnetic flux through the solenoid is �, then the vector potential at the rail will be

Aϕ = �

2πa
.
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Figure 10.11 A simple model of ABE.

The corresponding Hamiltonian is

H = h̄2

2me

(
i

a

d

dϕ
+ e

h̄c
Aϕ

)2

= − h̄2

2me

(
d

dϕ
− i

�

�0

)2

,

where �0 = 2πh̄c/e = hc/e is the flux quantum. The single-valued eigenfunctions
satisfying periodic boundary conditions are ψ(ϕ) ∝ exp[i�ϕ], � integer, with eigenenergies

E� = h2

2mea2

(
�+ �

�0

)2

,

which clearly demonstrates that the energy quantization may have a noninteger quantum
number whose value depends on the solenoid flux! Moreover, we note that for � not equal
to integer multiples of �0, energies for � values that have the same magnitude but differ
in sign are not degenerate. The canonical and kinematic angular momenta differ, so that
clockwise and counterclockwise directions have different speeds for a given value of |�|.
The reason is that the vector field A causes the phase of the electron wavefunction to change
as the wave circulates on the ring. To satisfy the boundary condition, this phase change, in
turn, results in higher or lower kinematic momentum.

The key to the Aharonov–Bohm effect is the vector potential A(x). Outside the solenoid
B = ∇∧A = 0, but A 
= 0 because for any closed loop surrounding the solenoid we have
a nonzero integral ∮

C

A · d	 =
∫

S(C)
including
solenoid

B · ds = �.

Thus, locally, ∇∧A = 0 means that the vector potential is a gradient of some function, and
we may gauge it away

A(x) → Ã(x) = A(x)−∇ξ(x) = 0,
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Path2

Path1

Figure 10.12 Vibrational parameter space in polar coordinates. The gray circle represents a closed
loop in Q-space that encircles the origin.

but, globally, no single-valued ξ(x) can gauge away the vector potential.12

To bring out the physics behind the ABE, we consider an electron beam being split
at x, and the two components travel along paths 1 and 2, of equal lengths, as shown in
Figure 10.12. When they recombine at x′, they have acquired different phases. We have
two separate and different gauge transforms - ξ1(x) that gauges away A(x) along path 1,
and ξ2(x) that gauges away A(x) along path 2:

	ξ

∣∣∣
path1

−	ξ
∣∣∣
path2

=
∮

closed
loop

A · d	 = �.

Gauge Transformation of Electronic States

For pedagogical reasons, we shall use a gauge transformation to remove the double-
valuedness, and we write

|ξ±(Q,x)〉 → exp(iϕ/2) |ξ±(Q,x)〉 . (10.34)

Such a transformation requires the addition of a gauge potential to the Hamiltonian. As we
will show, the present case requires the introduction of a vector potential

∇ → ∇ − i(ϕ̂/2Q).

This vector potential gives rise to a fictitious magnetic field (a flux tube) confined to the
origin. Consequently, the E ⊗ ε system may be regarded as an analog of the Aharonov–
Bohm effect. Indeed, Mead has dubbed this the molecular Aharonov–Bohm effect [128]. As
in BOA, the eigenstates acquire a phase γ from the vector potential.

• Berry’s connection and phase

We start with calculating Berry’s connection for the single-valued ξ(Q,x) of (10.34).

With ∇Q =
( ∂
∂Q

,
1

Q

∂

∂ϕ

)
, we find

∇Q |ξ−〉 = ϕ̂

Q

∂

∂ϕ

[
eiϕ/2

(
− sin

ϕ

2

∣∣∣φ1
〉
+ cos

ϕ

2

∣∣∣φ2
〉)]

= ϕ̂

2Q
eiϕ/2

[
i |ξ−〉 − |ξ+〉

]
, (10.35)

12 The obstruction presented by the impenetrable solenoid results in a domain that is not simply connected.
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which yields

〈ξ−| ∇ξ−〉 =
[

0,
i

2Q

]
⇒ AQ = i 〈ξ−| ∇ξ−〉 = − 1

2Q
ϕ̂

and Berry’s phase γA(C) is given by

γA(C) =
∮
C

AQ · dlQ =
∫ 2π

0

(
− 1

2Q

)
Qdϕ = −π .

Quantization of Ionic Motion: Pseudorotations

• Effective scalar potential

Having determined the electronic energy contribution to be E± = ±KQ, we now turn
to the vibrational (slow motion) problem. The elastic energy of the vibration modes Q1

and Q2 is

Eelastic(Q) = κ

2

(
Q2

1 +Q2
2

)
= κ

2
Q2,

where the two modes have the same effective spring constant κ since they are degenerate.
The potential energy experienced by the molecular ion system becomes

κ

2
Q2 −KQ,

with Q ≥ 0 in polar coordinates. This is just the Born–Oppenheimer surface of the Jahn–
Teller split doublet shown in Figure 10.13:

– It is a double-valued function.
– It has a degeneracy at Q = 0 (the point of zero distortion), together with a conical

intersection.
– The double cone is just a diabolo, and the degeneracy point a diabolical.
– Near the origin, the adiabatic approximation breaks down, and the origin becomes a

singularity of the Born–Oppenheimer procedure.
– The domain of Q is not simply connected, because of the singularity at the origin (an

obstacle).
– The lowest sheet has a continuum of minima, a circular valley of radius
Q0 = K/κ, E− = −K2/2κ , where a classical particle travels freely.

Figure 10.13 The Born–Oppenheimer surface of the Jahn–Teller split doublet: a double-valued
function with a conical intersection-diabolical point. The potential minimum is a circle of radius
Q0 centered at the degeneracy point.
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Nothing exotic happens if the ionic motion can be considered as classic; but when we
quantize the ionic degrees of freedom, Berry’s connection arising from the gauge trans-
formation in the electronic wavefunction gives rise to half-order quantum numbers. The
ionic system becomes fermionic!

• The eigenvalue problem

Substituting the total eigenket

|�(r,Q)〉 = χ(Q) |ξ−〉

in the eigenvalue equation and setting κ = μω2
Q, where μ is the mode effective mass, we

obtain [
P2

2μ
+
(
μω2

Q

2
Q2 −KQ

)]
χ |ξ−〉 = E χ |ξ−〉

or

|ξ−〉 P2

2μ
χ+ ih̄∇Q |ξ−〉 ·

(
P
μ
χ

)
− h̄2

2μ
χ∇2

Q |ξ−〉 +
(
μω2

Q

2
Q2 − KQ

)
χ |ξ−〉 =Eχ |ξ−〉 .

Eliminating the electronic degrees of freedom, we get

P2

2μ
χ + ih̄ 〈ξ−| ∇Q |ξ−〉 ·

(
P
μ
χ

)
− h̄2

2μ
〈ξ−| ∇2

Q |ξ−〉χ+
(
μω2

Q

2
Q2 − KQ

)
χ = Eχ .

(10.36)
If we determine 〈ξ−|∇2

Q |ξ−〉 by operating on (10.35) with ∇Q, we get

〈ξ−|∇2
Q |ξ−〉 = 〈ξ−|∇Q ·∇Q |ξ−〉 = 1

2Q2

∂

∂ϕ
eiϕ/2

[
i |ξ−〉 − |ξ+〉

]
= − 1

2Q2
.

Using the relations

AQ = i 〈ξ−| ∇ξ−〉 = − 1

2Q
ϕ̂, ∇Q =

( ∂
∂Q

,
1

Q

∂

∂ϕ

)
, ∇2

Q = ∇2
Q +

1

Q2

∂2

∂ϕ2

in (10.36), we obtain[
− h̄2

2μ
∇2

Q +
h̄2

2μ

1

Q2

(
i
∂

∂ϕ

)
+ h̄2

4μQ2
+
(
μω2

Q

2
Q2 −KQ

)]
χ(Q) =

[
− h̄2

2μ
∇2
Q +

h̄2

2μQ2

(
− ∂2

∂ϕ2
+ i

∂

∂ϕ

)
+ h̄2

4μQ2
+
(
μω2

Q

2
Q2 −KQ

)]
χ(Q) =

[
− h̄2

2μ
∇2
Q +

h̄2

2μQ2

(
i
∂

∂ϕ
+ 1

2

)2

+ h̄2

8μQ2
+
(
μω2

Q

2
Q2 −KQ

)]
χ(Q) = Eχ(Q).

(10.37)
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• Quantized angular motion in Q-space: pseudorotations

Since χ has to be single-valued and periodic in ϕ, we set

χ(Q) = η(Q) eimϕ

so that the second term in (10.37) becomes

h̄2

2μQ2

(
m− 1

2

)2

= �2h̄2

2μQ2
, |�| = 1/2, 3/2, 5/2, . . . (10.38)

The pseudorotation term is obviously an ionic rotor in Q-space. But the angular energy is
characterized by a half-integer quantum number �, instead of the integer quantum number
m. The lowest state with � = ±1/2 is an orbital doublet. This feature can be considered
a manifestation of Berry’s phase, which arises because we insisted that the electronic
wavefunction be single-valued in Q-space!

The spectrum of (10.38) has the same structure as in ABE, if we identify the inac-
cessible flux � with half a flux quantum �0, sometimes referred to as a π flux. There is
no magnetic field in this problem; the flux is purely topological and can be regarded as
an obstruction, since the ionic path cannot be contracted without crossing a degeneracy
point.13

• Radial motion in Q-space

To complete the analysis of the molecular Aharonov–Bohm phenomenon, we consider
here the radial motion. With

∇2
Q =

1

Q

∂

∂Q

(
Q

∂

∂Q

)
,

we write (10.37) in the form⎡⎣ 1

Q

∂

∂Q

(
Q

∂

∂Q

)
− A

Q2
−
(
μωQ

h̄

)2
(
Q− K

μω2
Q

)2

+ K2

h̄2ω2
Q

+ 2μE

h̄2

⎤⎦ η(Q) = 0,

(10.39)

where A = h̄2

2μQ2

[(
m− 1

2

)2

+ 1

4

]
.

If we replace
(
Q− K

μω2

)2
by Q2, we have the radial equation of the isotropic two-

dimensional harmonic oscillator! Hence, (10.39) is the radial equation of a displaced
isotropic oscillator, where the low-lying wavefunctions are centered on the potential

13 In modern jargon, we would say that the cases � = 0 and � = �0/2 are topologically distinct, because of the presence of
time-reversal invariance, and that other flux values are ruled out. Owing to time-reversal invariance, the electronic Berry
phase in a molecule – on any closed path in configuration space – can only be either 0 or π mod 2π , hence the Z2 nature of
this invariant is obvious. The group Z2 is the additive group of the integers modulo 2: it has only two elements, which can be
labeled as 0 and 1, or as even and odd. This viewpoint brings out the concept of Z2 to be encountered later in the case of
topological insulators.
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minimum Q0 = K

μω2
Q

, and concentrated in its trough. For these low-lying states, we

can write

Q− K

μω2
= 	Q ⇒ ∂

∂	Q
= ∂

∂Q

with 	Q � Q0. This allows us to set Q � Q0 in the first two terms of (10.39), so
that (10.39) reduces to

[
∂2

∂	Q2
−
(
μωQ

h̄

)2

	Q2 + 2μE′

h̄2

]
η(	Q) = 0,

which is just the equation of the one-dimensional harmonic oscillator.

To visualize the behavior of this system, we first establish the analogy between the
isotropic oscillator and circularly polarized light: in the latter, we have two oscillating
linear electric fields that are spatially orthogonal; in the former, we have x and y oscilla-
tors. In the present system, we have two normal modes Q1 and Q2 that perform circular
motion in Q1-Q2 space. In real space, we have instantaneous linear superpositions of the
two modes according to Q1 = Q cosϕ(t) and Q2 = Q sinϕ(t).

The vibrorotations, or pseudorotations, are depicted in Figure 10.14, with the degen-
eracy point represented by the equilateral triangle, and its morphing into pseudorotational
distortions appears around the closed circular path.

Figure 10.14 Pseudorotation in a trimer. The electronic degeneracy occurs at the symmetric
configuration, shown as the equilateral triangle in the center. The distorted triangles represent low-
lying vibronic states being transported along a closed loop in parameter space around the degeneracy.
The transportation results in the display of pseudorotation in real space.
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Exercises

10.1 Consider Dirac fermions in two dimensions described by the Hamiltonian

H(k) =
∑
α

dα(k) σα, d1(k) = kx, d2(k) = ky, d3(k) = m.

(a) Show that the Berry connection of the lower band can be written as

Aμ = i 〈ψ−(k)
∣∣∂kμψ−(k)〉

= − 1

2d(k) [d(k)− d3(k)]

[
d2(k)∂kμd1(k)− d1(k)∂kμd2(k)

]
,

where d(k) = |d(k)|.
(b) Show that the corresponding Berry curvature is given by

Fμν(k) = 1

2
εαβγ d̂α ∂kμ d̂β ∂kν d̂γ , d̂(k) = d(k)

|d(k)| .

10.2 Parallel transport gauge:

Consider a system subject to a weak adiabatic perturbation that is periodic in time.
With the total Hamiltonian H(t + T ) = H(t), a general state |ψ(t)〉 obeys the
Schrödinger equation

i∂t |ψ(t)〉 = H(t) |ψ(t)〉

and can be expressed as

|ψ(t)〉 =
∑
�′

exp

[
− i

h̄

∫ t

0
dt ′ ε�′(t ′)

]
c�′(t)

∣∣�′(t)〉 , (10.40)

where
∣∣�′(t)〉 is an eigenket of H(t), which are single-valued in t :

∣∣�′(t + T )
〉 =∣∣�′(t)〉.

(a) Use the Schrödinger equation to derive an expression for ċ�(t).
(b) Parallel transport, or horizontal lift, requires that〈

�̃(t)

∣∣∣∂t �̃(t)〉 ≡ 〈�̃(η)∣∣∣ d ∣∣∣�̃(tη)〉 dη
dt
= 0.

Show that the horizontal lift condition is satisfied by the gauge transformation

|�(t)〉 →
∣∣∣�̃(t)〉 = exp

[
i

∫ t

0
dt ′
〈
�(t ′)

∣∣∂t ′�(t ′)〉] |�(t)〉 .

(c) If the system starts in the eigenstate
∣∣∣�̃(0)〉, so that c� = 1, c�′ = 0, �′ 
= �.
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(i) Determine ċ� and ċ�′ . Is the adiabatic theorem satisfied?
(ii) Check if the ansatz solution

c�′(t) = −ih̄
〈
�̃′(t)

∣∣∣∂t �̃(t)〉
ε�(t)− ε�′(t)

exp

[
− i

h̄

∫ t

0
dt ′
(
ε�(t

′)− ε�′(t
′)
)]

obeys the differential equation you obtained for ċ�′ . (Neglect terms of second
order).

(iii) Write down an expression for the state function that includes the first-order
approximation.

10.3 Divergence of Berry curvature:

Use expression (10.24) to show that for Em 
= En,

∇ ·F = 0.

Hint: Use the Hermitian operator

O = −i
∑
n

|∇n〉 〈n|

to express (10.24) as

F = Im 〈n |O×O| n〉 .

10.4 In Section 10.3, we derived Berry’s curvature for the two-level system using two
methods: the direct geometric method, and the one- and two-form method. Alter-
natively, use the Hamiltonian derivative method outlined in Section 2.2.3 to derive
Berry’s curvature for that system.

10.5 Consider a spin-J particle in a slowly rotating magnetic field. The Hamiltonian is
given by

H = − μ· J,

where J is the spin angular momentum operator, and μ = μBB
(
n̂(t)
)
. Use the

Hamiltonian derivative method of Section 2.2.3 to determine the state Berry curvature
and the corresponding Berry phase.

10.6 We shall consider the ABE ring of Section 10.3 from a different perspective. We shall
look at the system as consisting of a one-dimensional metallic ring with circumfer-
ence L, threaded by a magnetic flux �. The Hamiltonian is again

H = 1

2me

(
p− e

c
A
)2
, ∇ ×A = 0.

We may recast the ring into a one-dimensional periodic structure of period L, by
defining x = Lϕ/2π .
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(a) If we write A = ∇χ(x), what will χ(x) be?
(b) Perform a gauge transformation on the one-dimensional Hamiltonian to elim-

inate A. What boundary conditions have to be applied to the solutions of the
corresponding Schrödinger equation?

(c) Determine the eigenfunctions and energy spectrum, by writing the solution in the
Bloch form Aeikx and applying the boundary conditions you obtained in part (b).

(d) Calculate the current carried by an electron in a state n, In(φ) = evn/L =
e
h̄L

∂En

∂kn
.

(e) Let us fill the ring with and odd number Nodd of electrons, at zero temperature.
What is the total current flowing through the system, I (φ)? What happens when
φ = φ0/2?

(f) How does the current change when the number of electrons in the ring is even?

10.7 Spin–orbit coupling in an ABE-like configuration:
An electron is constrained to move on a 1D ring of radius a. The electron experiences
a spin–orbit interaction with the electric field created by a charge Q placed at the
center of the ring.

1. Write the Hamiltonian H(x,p,s).
2. Determine the electron eigenenergies and corresponding velocities.
3. Determine that the magnetic flux � through the ring would cancel the interaction

of Q with a spin up electron.

10.8 We consider the case of a time-reversal symmetric system with half-integer spin,
represented by a Hamiltonian H(η), with η = [η1, . . . ,ηn]. We label degenerate
orthonormal Kramers’ pair eigenkets as |μ,η〉 , μ = ±1, that are smooth functions
of the parameters η within a given patch. We need to define a new Berry connection
A�, which is a 2× 2 matrix, as

A
μν
� (η) = i 〈μ,η| ∂� |ν,η〉 ,

where ∂� is the partial derivative with respect to η�.
A gauge transformation to a basis set |μ,η〉′, is obtained via a unitary transforma-

tion

|μ,η〉′ =
∑
ν

|ν,η〉 Uνμ(η),

where U(η) is a 2× 2 unitary matrix that varies smoothly with η.14

The non-Abelian Berry curvatures corresponding to the Berry connections A� are
defined as

F��′ = ∂�A�′ − ∂�′ A� − i [A�,A�′ ] .

14 We note that in this case, the fiber is engendered by the unitary group U(2), so that the gauge is no longer Abelian. Such
non-Abelian gauges will be discussed in Chapter 11.
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(a) Show that

If � |+,η〉 = |−,η〉 eiφ ⇒ � |−,η〉 = − |+,η〉 eiφ .

(b) Derive an expression for the Berry connection Ã�, corresponding to the new
states |μ,η〉′, in terms of A� and U(η).

(c) Derive an expression for the Berry curvature F̃��′

F̃��′ = ∂� Ã�′ − ∂�′ Ã� − i
[
Ã�, Ã�′

]
in terms of F��′ and U(η).

10.9 In our consideration of the trimer problem, we only included coupling between the
electronic orbitals and the Eg vibronic states linear in Q. Here, we will include a
higher-order quadratic coupling term; it takes the form

gQ2
(
− cos(2ϕ) σz − sin(2ϕ) σx

)
, g � 1.

This term becomes important when Q is large, since it depends on Q2.

(a) Add the quadratic terms to the Hamiltonian matrix in (10.32), and determine the
electronic energy eigenvalues.

(b) The modified Hamiltonian can still be mapped onto the spin-1/2 system Hamil-
tonian. Write down the eigenkets in terms of a new phase angle θ and define θ in
terms of the Hamiltonian matrix components.

(c) Express the effective ion potential in terms of the new electronic eigenenergies
and determine its degeneracy points.
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Topological Aspects of Insulator Band Structure
and Early Discoveries

11.1 Introduction

We start this chapter with an analogy between the way topology enters band structures of
gapped one-electron Hamiltonians and the earliest topological manifestation in physics –
Gauss’s law in electrostatics. Gauss’s law asserts that the total electric flux emanating from
or flowing into a closed surface depends only on the charge enclosed inside it. The net flux
does not depend on the shape of the surface or the details of the enclosed charge distribu-
tion. As we will show, the analog of the Gaussian surface is a mapping of a Brillouin zone
in d-dimensions onto a closed torus surface Td . In this new scenario, different Gaussian
surfaces correspond to different bands in the reduced zone scheme, and the electric charge is
analogous to an appropriate topological invariant. The actual nature of the invariant depends
on the symmetries of the system under consideration and its dimension, and it is determined
by an integral over the Brillouin torus of an appropriate field, Berry’s curvature, derived
from the Bloch functions of the occupied bands. We can immediately see the analogy with
the electric charge enclosed by a Gaussian surface being equal to an integral of the electric
field over it.

11.1.1 Topological Equivalence of Insulators

We have defined topologically equivalent classes in terms of homeomorphims. The ques-
tion then arises as to how we can apply this notion to topologically classify electronic
phases of matter? Here, we are concerned with the electronic structure of insulators. As we
have learned, the action of the Hamiltonian of an insulator on its Hilbert space produces
electronic energy bands with a gap for excitations that separates the ground state from all
excited states. Thus, we can envision a homeomorphism in such a case to involve continu-
ous deformations of the electronic band structure, or, alternatively, continuous deformations
of the corresponding Hamiltonian, see Figure 11.1. Moreover, to establish the principle of
topological equivalence to insulators, the Hamiltonian deformations should be based on
the principle of adiabatic continuity: insulators are changed into one another by slowly
(adiabatically) and continuously changing the Hamiltonian. Adiabaticity ensures that the
system remains in the ground state during the evolution process. The scale for how slow
the adiabatic process must be is set by the magnitude of the energy gap.

286
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Covalent semiconductor Atomic insulator Vacuum

Silicon Argon

Figure 11.1 Equivalence of trivial insulators.

Figure 11.2 Gap closing in trivial (right) to nontrivial (left) topological quantum phase transition in
Pb1−xSnxTe. Figure from [175].

Based on this scenario, we can declare the following:

• Insulators are topologically equivalent if there exists an adiabatic path connecting them, along
which the energy gap remains finite.

• By contrast, it follows that connecting topologically inequivalent insulators would necessarily
involve a phase transition, through which the energy gap vanishes, as shown in Figure 11.2.
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(m = 1) (m = 0)

(m = –1)

(m = –3)

(m = –4)
(m = –5)

Figure 11.3 Depending on the value of the parameter m, the system transforms from trivial ⇒
topological⇒ trivial. Gap closings occurs at m = 0, − 4.

As an illustration, we consider the following simple 2D model with Hamiltonian

H =
(

d3 d1 − id2

d1 + id2 −d3

)
⇒

⎧⎪⎪⎨⎪⎪⎩
d1 = a sin(kx)

d2 = a sin(ky)

d3 = m+ 2− cos(kx)− cos(ky)

with eigenvalues

εk =
√(

m+ 2− cos(kx)− cos(ky)
)2 + a2

(
sin2(kx)+ sin2(ky)

)
.

As shown in Figure 11.3, for m spanning values from m = 1 to m = −5, the trivial phase
at m = 1 experiences gap closure at m = 0, and transforms to a topological phase at
−4 < m < 0, where a topological twist emerges due to band inversion. At m = −4, the
gap closes again, ushering a second trivial phase for m < −4.

Bulk-Boundary Correspondence

The operational identification of topologically distinct Hamiltonians H(k) of insulators
through gap closure allows us to contemplate the consequence of having an interface
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between two topologically distinct phases. We would expect that the energy gap has to
vanish at such an interface, and that gapless low-energy electronic states confined to the
region straddling the interface would appear. These gapless states can also be topologically
classified. This picture is referred to as bulk-boundary correspondence.

Topological Invariants and Observables

Whenever an observable effect is endowed with a natural integer topological invariant, as
we have learned, two remarkable features are known to occur:

(1) The observable can be measured, in principle, with infinite precision (10−9 is actually
attained for the quantum Hall effect).

(2) The observable is very robust under even strong variations of the system conditions,
barring an extremely disruptive perturbation that would cause a switch from one integer
to another. Since we are concerned here with the topological character of insulators,
such a disruptive perturbation amounts to crossing a metallic state.

11.1.2 Symmetries and Classification of Topological Phases

The preceding ideas raise the question whether a system’s topological properties may be
connected to its symmetries, given the interesting proposition:

Different systems that are characterized by the same fundamental symmetries may share a number of
similar properties.

We noted earlier that the topological character of an insulator must be robust against
deformations of its gapped Hamiltonian. This means that the topological features should
survive continuous deformations of the Hamiltonian that do not close the energy gap.1 Such
deformations are implemented by adding perturbative terms that may break manifest spatial
symmetries. We then realize that, ultimately, these topological features must be properties
of a Hamiltonian that does not have spatial symmetries – such symmetries are represented
by unitary operators Ô that commute with the Hamiltonian[

Ô,H
]
= 0.

The perturbed Hamiltonian thus becomes a gapped random Hamiltonian.2 If the original,
unperturbed phase was characterized by some spatial symmetries, and associated with some
topological invariant, then the random Hamiltonian should be in the same topological
phase. Alternatively, we say that a given gapped topological phase is associated with a
certain class of gapped random Hamiltonians. Therefore, we find that the classification of
topological phases requires that we consider the cataloging of random gapped Hamilto-
nians. This procedure will reveal how many different such phases a system can possess

1 Actually, we observe that in this way, we map out an entire gapped phase, topological or trivial.
2 Random in the sense of hopping parameters and site potential energies.
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where in going from one phase to another a quantum phase transition (gap closing) has to
be crossed.

For such a gapped random Hamiltonian, we are only left with discrete antiunitary sym-
metries, which, in contrast to the unitary ones, can be still preserved even in disordered
systems. There exist only two such antiunitary symmetries:

(1) Time-reversal symmetry (TRS) with operator �:

�† H(p,x)� = H(p,x) ⇒
[
�,H(p,x)

]
= 0. (11.1)

(2) Particle–hole conjugation symmetry (PHS) with operator� = UPH K , which if present
satisfies

�† H(p,x)� = U
†
PH H∗(−p,x) UPH = −H(p,x) ⇒

{
�,H(p,x)

}
= 0 (11.2)

As was demonstrated in Section 4.3.1, the operation of particle–hole conjugation
reverses momentum and spin but leaves position invariant. Moreover, particle–hole
symmetry requires that for every eigenstate |ψ〉 of the Hamiltonian H with energy
ε, there is an eigenstate of the same Hamiltonian given by � |ψ〉 with energy −ε.3

Because of the anticommutation of � with H, H consists of off-diagonal blocks

H =
(

0 h

h† 0

)
.

where h is a square matrix.

Quantum states of matter are characterized not only by the structure of the energy spec-
trum but also by the nature of their wavefunctions. Thus, the action of the aforemen-
tioned symmetries on wavefunctions should be examined. We find that for the antiunitary
symmetries

�2 |ψ〉 =
⎧⎨⎩ + |ψ〉 , integer spin

− |ψ〉 , 1/2-integer spin
�2 |ψ〉 =

⎧⎨⎩ + |ψ〉 , triplet pairing

− |ψ〉 , singlet pairing

(11.3)

The pairing states correspond to superconductor Hamiltonians.4 We should point out that
although the form of an antiunitary symmetry operation can be changed by a unitary
transformation, the signs in (11.3) remain unchanged.

The presence of TRS for half-integer spin implies Kramers’ degeneracy, whereas the
presence of PHS implies that the energy spectrum is symmetric about zero energy.

3 We find that eigenstates of the Hamiltonian with energy ε = 0 are special in that they may transform into themselves under
this symmetry transformation.

4 Bogoliubov–de Genne (BdG)–type Hamiltonians will be discussed in Chapter 21.
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We note that an additional symmetry arises when a system possesses both TRS and
PHS symmetries. It is associated with their combined action and represented by a unitary
operator  = ��, which satisfies

† H(p,x) = −H(p,x) ⇒
{
H(p,x),

}
= 0. (11.4)

It is referred to as chiral or sublattice or energy-reflection symmetry.5 However, we
should caution that a Hamiltonian can have a chiral symmetry without the concurrent
presence of TRS and PHS. We also note that since chiral symmetry anticommutes with the
Hamiltonian, it is not a unitary symmetry in the usual sense. According to these discrete
symmetries, it is easy to see that there are only 10 possible ways to describe the total
symmetry of single-particle Hamiltonians H, the tenfold way: TRS (PHS) can be absent
(0), or �2, �2 = ±1, yielding 3 × 3 = 9 possible combinations. The presence of only
chiral symmetry gives the 10th way. The list of 10 possible types of behavior of the
Hamiltonian is presented in Table 11.1. The labeling of these 10 Hamiltonian symmetries
was given by Élie Cartan.

Investigation of the properties of a general Hamiltonian under such symmetries was
reported in the seminal work of Altland and Zirnbauer [9], and produced the now famous
10 symmetry classes (the tenfold way). It extended and completed the “threefold way”
classification scheme of Wigner and Dyson, going back to the origins of random matrix
theory and the study of complex nuclei [56, 129, 195, 196].

The classification of topological phases in one, two, and three dimensions is given in
Table 11.1. The analysis of classification procedures is beyond the scope of this book.
However, for the sake of completeness, we shall briefly outline the approach followed
by Schnyder et al. [158, 160, 161] in Appendix 1 of this chapter. It is recommended that
Section 11.1.3 be read prior to Appendix 1.

11.1.3 Insulator Systems with Periodic Translational Invariance (PTI)

We introduced in the previous chapter the basic concepts of Berry-ology for generic sys-
tems described by parameter-dependent Hamiltonians, and gave two illustrative examples.
We now consider how we can apply these ideas to crystalline solids. As we shall see, the
band structure of crystals provides a natural platform to investigate the occurrence of the
Berry phase effect.

We consider crystalline structures, with periodic translational symmetry where the crys-
tal momentum is a good quantum number that labels the electronic states:

|ψnk〉 = eik·x |unk〉 ⇒
⎧⎨⎩ unk(x+ R) = unk(x)

ψnk(x+ R) = eik·R ψnk(x)

5 In condensed-matter systems, it is often realized as a sublattice symmetry on a bipartite lattice, namely, the symmetry
operation that changes the sign of wavefunctions on all sites of one of the two sublattices of the bipartite lattice. However, in
many instances,  is not realized as a sublattice symmetry, but is simply the product of � and �. Therefore, the term “chiral
symmetry,” used in quantum field theory, to describe the symmetry operation  is sometimes more appropriate.
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Table 11.1 The 10 symmetry classes categorized using �2 = ±1, �2 = ±1 for the cases
in which the respective symmetries � and � are present. If chiral symmetry is present
(not-present) we just have 1( 0). The spatial-dimensionality is given by d. − denotes the
absence of any topologically nontrivial ground states, Z2 denotes two kinds of
topologically distinct ground states, while Z indicates that the topologically distinct
ground states can be labeled by the set of integers.

Symmetry d

System Cartan label � �  1 2 3

Wigner–Dyson
A 0 0 0 − Z −
AI 1 0 0 − − −
AII −1 0 0 − Z2 Z2

Chiral
AIII 0 0 1 Z − Z

BDI +1 +1 1 Z − −
CII −1 −1 1 Z − Z2

BdG

D 0 1 0 Z2 Z −
C 0 −1 0 − Z −
DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 − − Z

where n is the band index, and R is a primitive lattice vector. As we have shown in
Chapter 3, |ψnk+G〉 and |ψnk〉 are degenerate, and obey the same boundary conditions,
since

ψnk+G(x+ R) = eik·R ψnk+G(x),

suggesting that |ψnk〉 and
∣∣ψn,k+G

〉
are duplicate labels for the same state; they can differ

by a phase factor, and we fix this arbitrary phase factor to be unity, so that∣∣ψn,k+G
〉 = |ψnk〉 . (11.5)

It follows that
∣∣un,k〉 satisfies the condition∣∣un,k+G

〉 = e−iG·x |unk〉 . (11.6)

Thus, the u-functions have the lattice periodicity in real space, but not in reciprocal space,
while for ψ-functions the reverse is true.
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Periodicity of Bloch Hamiltonians

We note that the derivative ∇k |ψk〉 is not well behaved in the sense that

∇k ψk(x) = eik·x ∇k uk(x)+ ix eik·x uk(x),

which shows that the second term blows up at large |x|, since for ψk(x) the real-space
argument spans the whole space. Thus, in the ensuing analysis we will prefer to deal with
|uk〉 rather than |ψk〉, where the derivatives ∇k |uk〉 are well behaved and belong to the
same Hilbert space as |uk〉.

We find that |uk〉 is actually an eigenfunction of the Bloch Hamiltonian

H(k) = e−ik·x H eik·x ⇒ H(k) |unk〉 = εn(k) |unk〉 .

H(k) has the periodic property

H(k+G) = H(k)

in reciprocal space, since

H(k+G) |unk+G〉 = H(k+G) e−iG·x |unk〉
= εn(k+G) e−iG·x |unk〉 = εn(k) e−iG·x |unk〉

and its Schrödinger equation takes the form[
1

m

(
p+ h̄k

)2 + V (x)
]
|unk〉 = εn(k) |unk〉 (11.7)

In this way, we effectively reduce the H operator, which has an infinite-dimension matrix
representation, to a one-parameter aggregate of N block matrices H(k), where N is the
number of point in the Brillouin zone (BZ). Diagonalization of H(k) yields the eigenvalue
spectrum εn(k) and the Hilbert subspace Hk, with basis unk ∈ Hk. Usually, we are inter-
ested in a small number of bands, which defines the dimension of Hk.

The periodicity of H(k) in reciprocal space defines a periodic BZ. In one dimension,

this periodicity can be represented by S1, and in dimension d by
S1 ⊗ . . . ⊗ S1︸ ︷︷ ︸

d
.

Thus, all BZs in d-dimensions map onto a d-dimensional torus Td , irrespective of their
microscopic geometric differences. Such a structure presents a closed manifold, which
we will refer to as a Brillouin torus (BT). This is illustrated in Figures 11.4 and 11.5.
Figure 11.4 shows how the one-dimensional dispersion wraps into the base torus S1 and a
cylindrical bundle where the dispersion appears as an ellipse. Figure 11.5 indicates how the
two-dimensional rectangular BZ folds into a torus.

The fact that unk is endowed with the lattice periodicity

unk(x+ R) = unk(x)

allows us to regard the eigenvalue problem as that of the following:
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Figure 11.4 Left: conventional view of a 1D band structure in the first BZ. Right: a more
topologically natural view in which the BZ is wrapped onto a circle and the band structure is plotted
on a cylinder.

Figure 11.5 Illustrative example of mapping a two-dimensional rectangular BZ into a torus.

A k-dependent Hamiltonian, with k-independent boundary conditions.

The Hamiltonian depends on a parameter, while the eigenstates satisfy parameter-
independent boundary conditions, and thus coexist in the same Hilbert space, a standard
fiber. We identify the adiabatic parameter η with the wavevector k. Moreover, the domain
where the k parameter varies, a BZ, is a closed surface having the geometry of a torus in
1D, 2D, and 3D. We also note that k appears in the Hamiltonian (11.7) as a kind of vector
potential, although no magnetic field is present. Within this setting, we can proceed to
investigate the possible occurrence of a geometric phase.

Bloch Bundles [69]

The action of a Bloch Hamiltonian H(k) on its N-dimensional Hilbert subspace, Hk ∼= CN,
engenders its Bloch eigenstates unk and eigenenergies εn(k), n = 1, . . . ,N. Hk represents
the N electronic degrees of freedom in the primitive lattice cell, comprising sites, orbitals,
and spin, and forms the fiber over the BT at k. We can envision the action of H(k) as a form
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of reordering the fiber constituents. The union of all Hk subspaces forms a vector bundle
H on the base space Td . For periodic lattices in d ≤ 3 dimension space, the total Berry
curvature was shown to vanish [149, 167], hence the corresponding vector bundle is always
trivial and isomorphic to Td × CN.

The evolution of each eigenvalue εn(k) as k changes on the BT defines a band n. For an
insulator, the filled bands are separated from the empty ones by an energy gap. This allows
us to delineate two subbundles of the complete trivial bundle: the valence bands bundle
and the conduction bands bundle. The ground state consists of the aggregate of eigenstates
corresponding to the filled valence bands. Such eigenstates are defined for each valence
band and at each k-point on the BT, up to a phase. The fiber bundle over the BT defined
from the eigenstates of the valence bands is the object of our interest.

It is desirable to highlight the topological features of the valence bands bundle that
produce the ground-state properties of topological insulators. This valence subbundle pos-
sesses a twisted topology whereas the complete bundle is trivial. To visualize the twist, the
example of the normal strip and the Möbius strip provides a good starting point for a mental
caricature. There, the base space manifold is a line that is joined into a circle, and the two
different strips arise from different ways of identifying the fibers at the endpoint when the
circle is formed. In the case of a two-dimensional insulator, for example, the base space is
a two-torus, which is a square with opposite sides identified. On top of this manifold, an n-
dimensional complex vector space is attached to each point as fiber. When we now perform
the identification of the sides of the square to form the torus, the complex vector spaces
along the edges also have to be identified. The process therefore involves gluing together
the edges of a fiber bundle, with two manifold dimensions and n-complex fiber dimensions
(2+ 2n-real dimensions). This is understandably hard to visualize, but mathematically the
identification is determined by the connection, which is derived from the Hamiltonian H.

We recall that the connection makes the covariant derivative zero through the relation

Dkα |unk〉 =
(
∂kα + iAα

nk
) |unk〉 = 0.

Multiplying this from the left by 〈unk|, we arrive at

Aα
nk = i 〈unk

∣∣∂kαunk
〉
.

We illustrate this approach with a simple example: a two-dimensional insulator with
just one occupied and one empty band, such that the Hilbert space is defined on C2. The
eigenvalue equation

H(k) |nk〉 = εn(k) |nk〉
delineates a valence band ground state |vk〉, and an empty conduction band state |ck〉
with corresponding eigenvalues εv(k) < εc(k). These components can be defined
over the two-torus k ∈ T2. For simplicity, we focus on normalized ground states
〈vk |vk〉 = 1.
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Figure 11.6 A fiber on the two-torus base.

|vk〉 states are defined up to a global phase, such that eiφ(k) |vk〉 ∼ |vk〉 , φ(k) ∈
[0;2π ], and these states form a ray, namely,

{g |vk〉 ∣∣g ∈ U(1)},
which constitutes the fiber to be attached to the torus base manifold at k, shown in
Figure 11.6. A one-form Berry connection and a two-form Berry curvature

A(k) = i 〈vk | d(vk)〉
F = i 〈d(vk) | ∧ d(vk)〉 = Fμν dk

μ ∧ dkν

Fμν = “
〈
∂μ(vk) | ∧ ∂ν(vk)

〉
(11.8)

are defined over the bundle.

Thus we surmise that in a crystalline solid, the natural parameter space is the torus of
electron crystal momentum k. Varying k leads to a change in the electron Bloch eigenket
|unk〉 of an isolated band n within the unit cell that is described in terms of the Abelian
Berry connection and Berry curvature as

An(k) = i
〈
unk

∣∣∣dunk

〉
Fn(k) = i

〈
dunk

∣∣∣dunk

〉
= Fμν dk

μ ∧ dkν ⇒ Fμν = ∂kα Aβ − ∂kβ Aα . (11.9)

We take note here that we use |uk〉and not |ψk〉 in order for the k-derivative to be well
defined. We also point out that the interesting closed paths C on the torus are lines traversing
the BZ from one face to the opposite one, as shown in Figure 11.7.

For an insulator with N occupied but mutually isolated bands, the Berry phase is

γ = i

N∑
n=1

∮
C
Anμ(k)dkμ = i

N∑
n=1

∮
C

〈
unk

∣∣∣∂μunk

〉
.
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Figure 11.7 Closed paths on torus correspond to lines traversing two-dimensional rectangular BZ.

This Berry phase depends on the choice of the origin in the crystal unit cell. The only
allowed values for centrosymmetric crystals with the origin at a center of inversion sym-
metry are γ = 0 and γ = π modulo 2π , as demonstrated in the following simple example.

Berry’s Phase for a One-Dimensional Insulator

We consider a single band in a 1D crystalline solid of periodicity a. We express the state
ψk(x) as

ψk(x) = eikx uk(x) =
√

a

2πN

∑
n

eikna w(x − na),

where w(x) are Wannier functions and N the number of primitive cells. We write the
corresponding Berry’s phase as

γ = 2π

a

∫ π/a

−π/a
dk
〈
uk

∣∣∣ d
dk

uk

〉
= 2π

a

∫ π/a

−π/a
dk

∫ ∞
−∞

dx u∗k(x)
duk(x)

dk

= 1

N

∫ ∞
−∞

dx

∫ π/a

−π/a
dk
∑
nm

e−ik(x−ma) w∗(x −ma)
d

dk
eik(x−na) w(x − na)

= δnm
2π

a

∫ ∞
−∞

dx x |w(x)|2 .

We identify the integral

x̄ =
∫ ∞
−∞

dx x |w(x)|2

with the probability center of w(x) in the primitive cell. When there is no symmetry in
the one-dimensional chain, x̄ can assume any value. However, when inversion symmetry
is present, it follows from the symmetry of the Wannier functions that x̄ can assume two
values only, x̄ = 0,a/2. It follows that γ can assume any value mod 2π in the absence
of inversion, but can only assume the values 0 and π when inversion is present.
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Degeneracy and Non-Abelian Berry Connection and Phase

In insulators, the group of occupied (valence) bands are separated from the unoccupied
(conduction) bands by an energy gap. It is then useful to define the Berry connection,
Berry curvature, and Berry phase in terms of the entire set of occupied bands, because in
general degeneracy is unavoidable within such a group of bands. The generalization of the
formalism to the degenerate case leads to a non-Abelian Berry connection.

We recall that when a nondegenerate state |ψn〉 of a Hamiltonian is carried around a
closed loop in parameter space, it acquires Berry’s phase∣∣ψ ′m〉 = ei

∮
C Am |ψm〉 = U(C) |ψ〉 ,

where
∣∣ψ ′m〉 is the final state vector. The geometric phase factor is just U(C) ∈ U(1),

an Abelian transformation. We show in Appendix 2 that when the eigenstate associated
with an eigenvalue ε is part of an n-fold degenerate set, all n states must be considered
simultaneously; and we have the matrix equation

∣∣ψ ′i 〉 = n∑
j=1

Uij (C)
∣∣ψj

〉
, U ∈ U(n) unitary group of order n

Uij (C) = P ei
∮
C Aij

Aij = i 〈ψi | d
∣∣ψj

〉 ⇒ Aα
ij = i 〈ψi | ∂α

∣∣ψj

〉
,

where α = 1, . . . ,d for a d-dimensional parameter space. The path-ordering operator P is
necessary because A is non-Abelian and does not commute with itself at different points
on the circuit. A is referred to as a U(n) gauge potential.

In the case of N bands (N > 1) separated by energy gaps from the rest of the spectrum,
but not mutually isolated, the Abelian connection is replaced by its non-Abelian multiband
generalization. We define the U(N ) Berry connection matrix

amn(k) =
〈
umk

∣∣∣− i∇k

∣∣∣unk

〉
, (11.10)

which shows that for a d-dimensional k-space, a comprises d N ×N component matrices.
The non-Abelian curvature is defined as

Fαβ
mn = ∂α a

β
mn − ∂β a

α
mn − i

[
aα, aβ

]
mn

,

where the k-dependence is implicit.

11.1.4 Time-Reversal and Bloch Hamiltonian

Kramers’ Degeneracy and Time-Reversal Invariant Momenta

When H is time-reversal invariant (TRI), namely, [H,�] = 0, H(k) satisfies

H(−k) = �H(k)�−1 = H(k), (11.11)
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Figure 11.8 Kramers’ pairs of bands. Note that each pair of bands are degenerate at the TRIM where
+k becomes equivalent to−k due to the periodicity of the Brillouin zone. In this figure, there are two
TRIMs, k = 0 and k = π (which is equivalent to k = −π ). The lifting of degeneracy at k values
other than 0 and π comes from spin–orbit coupling.

Figure 11.9 TRIMs. Left: there are four TRIMs for a 2D BZ; this figure shows the case of a square
BZ. Right: there are eight TRIMs for a 3D BZ; this figure represents the case of a cubic BZ.

requiring the degeneracy of the Bloch states k and −k, a Kramers’ pair, as shown in
Figure 11.8.

We note that there are time-reversal invariant momenta (TRIMs) in the BZ that satisfy
the condition

k = −k+G = � ⇒ � = G
2

.

At these points, the states |uk ↑〉 and |uk ↓〉 are degenerate, and the degeneracy is protected
by TRI. TRIMs will be denoted by �. For a d-dimensional bulk material, there are 2d

inequivalent TRIM points, while for the boundary, or surface, the surface Brillouin zone
(SBZ) is defined as a (d − 1)-dimensional projection, in which there are 2d−1 number of
surface TRIM. Figure 11.9 shows the 2D and 3D cases.
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Another consequence of the Kramers’ degeneracy is that the occupied Hilbert space of
an insulator consists of an even number of bands, since the occupied states come in pairs.

Action of � on the Bloch Bundle

We envision that � will act as an anti-unitary map that relates the electronic Bloch states
on the fiber at k to those on the fiber at −k of the vector bundle, over the BT base.

In a TRI system, the Bloch Hamiltonians at k and −k satisfy:

H(−k) = �H(k)�−1

We start with defining the TR action on the BT as the map ϑ : T2 → T2, such that
ϑ k = −k on the torus. The � action is then viewed as a lift to this map ϑ on the total
Bloch bundle T2×CN describing the electronic states of all N bands. It can be represented
by a unitary matrix U that does not depend on the momentum k on the Brillouin torus.
Hence, it is a map

T2 × CN → T2 × CN

(k,n)→ (�k,�n) = (−k,UKn),

which sends the fiber of all bands Hk � CN at k to the fiber H�k at k = −k, or succinctly,

� : Hk → H�k.

We note that �2 = −1 maps a fiber onto itself.
Alternatively, we can say that TRI implies the existence of Kramers’ pairs of eigenstates

that live in different fibers, and are called Kramers’ partners. �2 = −1 implies that
these two Kramers’ partners are orthogonal. Note that the orthogonality of these Kramers’
partners in different fibers has only a meaning if we embed these fibers in the complete
trivial bundle T2 × CN corresponding to the whole state space of the Bloch Hamiltonian.
Moreover, at TRIM points, the two partners of a Kramers’ pair live in the same fiber.
As they are orthogonal and possess the same energy, the spectrum is necessarily always
degenerate at these TRIM points. We will see later in this chapter that the constraints
imposed by the presence of these Kramers’ partners around the valence Bloch bundle are
at the origin of the Z2 topological order.

Berry Curvature and Time-Reversal Symmetry

We consider the wavefunctions |u1(k)〉 and |u2(k)〉 belonging to bands 1 and 2, respec-
tively, which form a Kramers’ pair and transform into each other under the action of the
time-reversal operator �, namely

|u2(k)〉 = eiχ(k)� |u1(−k)〉 ,
where χ(k) is an arbitrary phase. The Berry connection is given by the following:

A1(−k) = −i 〈u1(−k)| ∇k u1(−k)〉 = −i 〈∇k � u1(−k)| � u1(−k)〉
= i 〈� u1(−k)| ∇k � u1(−k)〉 = A2(k)+ i∇ χ(k).
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Thus, the Berry curvatures F2 satisfy the relation

F2(k) = ∇k ×A2(k) = −F1(−k).

Therefore, the total Berry curvature

F(k) = F1(k)+F2(k) = −F(−k)

because of time-reversal symmetry.

Symmetry Constraints on Berry Curvature

While Berry’s phase depends on the path traced in the BZ, and the Berry connection
depends on gauge choice, Berry’s curvature Fn(k), for band n, is a uniquely defined
function of k in the BZ. It has the following properties:

(a) Crystals with inversion (I) symmetry require F(k) = F(−k).
(b) Time-reversal symmetric crystals require F(k) = −F(−k). Thus, integrals over the BT

involving F(k) will vanish.
(c) F(k) will vanish identically for crystal with both I and TR symmetry.
(d) The presence of other point group symmetries may impose further constraints on F(k).

We note from (b) and (c) that the Chern number has to vanish for time-reversal invariant
systems. Conversely, a nonzero Chern number requires breaking of time-reversal symmetry.
In the quantum Hall effect, magnetic fields are used to break time-reversal symmetry. In
time-reversal-invariant systems, we need another scheme for topological characterization
in terms of a new topological invariant, namely, the Z2 topological number, which we will
discuss in Section 11.4.

11.2 Integer Quantum Hall Effect

We consider a two-dimensional electron gas (2DEG) in the xy-plane, subject to a strong
magnetic field B along the z-axis. For simplicity, we ignore the underlying lattice periodic
potential. The corresponding Hamiltonian is

H = 1

2me

(
p+ eA

)2
,

where, for simplicity, we set h̄ = c = 1.
We use the Landau gauge

Ax = −B y, Ay = 0

and we impose periodic boundary conditions (PBCs) along the x-axis and open boundary
conditions along the y-axis, while the size of the system is set to Lx × Ly . The Bloch
Hamiltonian for the 2DEG is then expressed as
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Figure 11.10 Schematic of the 2DEG system’s geometry in the Hall configuration.

H(k) = e−ikmx H eikmx

= 1

2me

p2
y + e−ikmx

[
1

2me

p2
x −

e

me

px By + e2 B2 y2
]
eikmx

= 1

2me

p2
y +

1

2
meω

2
c

(
y − km�

2
B

)2
, (11.12)

where ωc = eB
me

and �B =
√

h̄
eB

is the magnetic length. The wavevector km = 2πm
Lx

, where
m is an integer. We find that the eigenstates of this Hamiltonian are just those of a harmonic
oscillator, centered at ym = km �2

B . Thus, we have a state that is localized in the y-direction
and extended in the x-direction. The eigenvalues are the wavevector-independent Landau
levels, given by

εn = h̄ωc

(1

2
+ n
)
, n = 0, 1, 2 . . . (11.13)

ψn,km = e−ikmx Hn(y − ym), (11.14)

where Hn is a Hermite polynomial. Since ym ≤ Ly , we have a maximum wavevector
kmax = Ly/�

2
B , and mmax = LxLy/2π�2

B , which is just the number of states per Landau
level. Thus, the density of states per unit area in each Landau level is

DLL = 1

2π�2
B

= B

φ0
,

where φ0 = h/e is the unit of quantum magnetic flux.

11.2.1 Laughlin’s Gedanken Experiment

Laughlin put forward an argument, based on gauge invariance under flux insertion [118],
to explain the quantization of the Hall conductivity. He made use of the PBCs to recast
the experimental configuration into the cylinder of Figure 11.11, with its axis along the
y-direction. Changing the wavevector km → km+1 leaves the energy invariant, but shifts
the eigenstates center by 	y = 2πh̄

eBLx
. We can express this change in terms of a gauge

transformation

A → A+ δA ⇒ δA = (δAx,δAy

) = (δ�
Lx

,0

)
,
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Figure 11.11 Schematic of the 2DEG system’s geometry. A magnetic field B is applied perpendicular
to the cylinder. The system is periodic along the x-axis, and the flux � penetrates the cylinder. An
electric field is applied along the y-axis, where open boundary conditions are imposed. The Hall
current is generated by the flux.

where we defined a fictitious Aharonov–Bohm type flux δ� = 2πh̄
e
= h

e
that threads the

cylinder along the y-axis. Within this setting, we consider the case where the Fermi energy
lies in the gap between the Landau levels εn and εn+1. The change in energy due to the
fictitious flux is given by

δ 〈H〉 = 〈H(A+ δA)〉 − 〈H(A)〉 = eδAx

〈
∂H
∂Ax

〉
= eδ�

Lx

〈
px + eAx

m

〉
= δ�

Lx

∫ Lx

0

∫ Ly

0
dx jx = δ� Ix = Ix δ�, (11.15)

where we used the invariance of the states under the flux change δ� = h
e

. Therefore, the
Hall current is given as the change of energy by the fictitious flux as

Ix = δ 〈H〉
δ�

.

The change of the energy is effected by the movement (y-shift) of the electron gas. Since
the voltage V (y) is applied along the y-axis, the electrons experience the electric field
V (Ly)−V (0)

Ly
, so that all electrons move along the y-axis by δy = 2π�2

Lx
by the flux. Therefore,

δ 〈H〉 becomes

δ 〈H〉 = −eδy V (Ly)− V (0)

Ly

ν mmax = −eν
(
V (Ly)− V (0)

)
= h

e
Ix, (11.16)

where ν is the number of occupied Landau levels, and mmax = Lx Ly

2π�2 is the degeneracy per
Landau level. Therefore, the Hall current becomes

Ix = ν
e2

h

(
V (Ly)− V (0)

)
,

showing a quantized conductivity ν e2

h
.

Laughlin considered this process as a pump cycle, where the change in the flux drives
the pump: increasing the flux creates an electromotive force (emf) around the ring, which,
by the classical Hall effect, results in the transfer of charge, along the y-direction, from one
edge to the other. The Aharonov–Bohm scenario stipulates that the Hamiltonian describing
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the system is gauge invariant under flux changes that are integer multiples of φ0 [21]. Gauge
invariance requires that after each cycle the pump returns to its original state. However, in
general, that does not guarantee that the transported charge be the same in each cycle. How
then can we explain the conductance quantization? In other words, the averaged charge
transfer over many cycles are being quantized. That is where topological quantum numbers
come into play.

11.2.2 Topological Invariant: The First Chern Number

The famous 1982 TKNN [176] paper, on the Hall conductance, marks the very first iden-
tification of a topological invariant integer coined the TKNN number. It was calculated
from an integral representation of the Kubo formula. Later this integral was identified as
the first Chern class of a U(1) principal fiber bundle on a torus [22]: The fibers are the
magnetic Bloch waves, and the torus corresponds to the magnetic Brillouin zone. The
topological invariant was interpreted as the first Chern number, given by an integral of
the Berry curvature.

To obtain the Chern number from the Kubo formula, we follow TKNN and consider
a 2DEG in a periodic lattice potential, subjected to a perpendicular B field. We note that
the Hamiltonian is not translationally invariant because of the extra magnetic length scale
�B , which introduces an additional periodicity. We accommodate both periodicities by
introducing a superlattice where both the lattice potential and the magnetic flux are com-
mensurate with its periodicity. This means that an integer number of flux quanta φ0 thread
a supercell. In this case, a continuous k vector can be defined in the new Brillouin zone.

The Bloch Hamiltonian then takes the form

H(k) = 1

2m

[
p+ h̄k+ e

c
A
]2 + V (x).

In Section 5.2.3 we obtained the following expression for the Hall conductivity

σxy = e2

ih̄


∑
En<EF<Em

(〈
∂un,k

∂k1

∣∣∣um,k〉 〈um,k∣∣∣∂un,k
∂k2

〉
−
〈
∂un,k

∂k2

∣∣∣um,k〉 〈um,k∣∣∣∂un,k
∂k1

〉)
.

Using the completeness of the set uk and the Pauli principle, and considering the case
where the Fermi level lies in a gap above n filled bands (Landau levels in a flat potential),
we arrive at

σxy = e2

ih̄





(2π)2
∑
n

∫
BZ

dk
(〈

∂un,k

∂k1

∣∣∣∣∂un,k∂k2

〉
−
〈
∂un,k

∂k2

∣∣∣∣∂un,k∂k1

〉)

= e2

h

1

2πi

∑
n

∫
T2

dk
(〈

∂un,k

∂k1

∣∣∣∣∂un,k∂k2

〉
−
〈
∂un,k

∂k2

∣∣∣∣∂un,k∂k1

〉)
. (11.17)
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The last line indicates that the integral is carried out over the two-torus, and that the
integrand is just the Berry curvature in k-space, yielding the first Chern number C.6

The milestone TKNN discovery is that the Hall conductivity contains the topological
invariant C, which can be identified with the integer filling factor ν that appears in the
expression given by von Klitzing:

σH = e2

h
ν.

Each Landau level carries a Chern number C = 1, and the Chern number of the system
corresponds to the number of occupied Landau levels.

11.2.3 Edge States

We note that in the preceding scenario we were dealing with an insulator, where the chem-
ical potential lies in an energy gap. This implies the absence of a net bulk current, a
situation reinforced by the wavevector-independent eigenenergies. However, this picture
must change near the edges of the sample, as shown in Figure 11.12, where a confining
potential, −eW(y), is introduced at the sample boundaries along the y-direction. Keeping
the lowest-order correction to the electron dispersion, we write

εn,k = h̄ωc

(
n+ 1

2

)
+ 〈n,k| − eW(y) |n.k〉 .

We assume that W varies slowly over �B , and get

εn,k ≈ h̄ωc

(
n+ 1

2

)
− eW(yk), yk = k�2

B .

We are interested in the states that cross the chemical potential near either boundary, an
edge state.

Since the density of states per unit area in each Landau level is 1/2π�2
B , the Hall current

density jn,x for the nth Landau level is given as

jn,x = −evx 1

2π�2
B

= −e
h̄

1

2π�2
B


[
μ− εn,k

] ∂εn,k
∂k

= e2

h̄

1

2π�2
B


[
μ− εn,k

] ∂W(yk)

∂yk

∂yk

∂k

= e2

2πh̄


[
μ+ eW(x)− h̄ωc

(
n+ 1

2

)]
∂W

∂y
, (11.18)

where (x) is the Heaviside step function, and μ is the chemical potential.

6 It is worth noticing here that the Kubo formula is a manifestation of the fluctuation-dissipation theorems, and as such it is
expressed in terms of excitations of the system, whereas the Chern number is a ground-state property and the Hall conductivity
is dissipationless. Moreover, we note that the topological nature of the Hall conductivity observable underscores its extreme
robustness under variations of magnetic field, carrier density, substrate disorder, and more.
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edge states

levels

Figure 11.12 (a) Schematic of the confinement potential (black curve). The bulk Landau levels are
shown as flat bands labeled by the quantum number n. The degenerate Landau harmonic oscillator
states are represented by the Lorentzian on the lowest Landau level (LLL). The displaced edge states
are shown as Lorentzian on the left edge of the LLL. (b) Classical chiral skipping orbits. (c) Gapless
edge states dispersion (black line)

We note that the derivative ∂W/∂y has opposite signs on the opposite sample edges,
and the electrons on these edges move in opposite directions! This uni-directional motion
is called chirality of the edge state. Since the electrons of each edge are chiral, the only
backscattering mechanism is via electron tunneling across the whole sample to the opposite
edge. This is exponentially suppressed, therefore the Hall conductance is almost perfect.

We then write the Hall current In,x at each edge as

In(x) = e2

h

∫ Ly

0
dy 

[
μ+ eW(yk)− h̄ωc

(
n+ 1

2

)]
∂W

∂y
.

The electric potential V applied across the sample in the y-direction becomes the difference
of the confinement potential, so that the net Hall current can be expressed as

I net
n,x =

e2

h

[
W(Ly)−W(0)

]
= e2

h
V .

When the nth Landau level with 0 ≤ n ≤ ν − 1 is filled, the Hall current Ix is given by

In(x) = ν
e2

h
V .

In this case, each Landau level is shown to have the Chern number unity.
We note that the edge mode can also be visualized from a picture depicting a collection

of cyclotron orbital motions. In this picture, the cyclotron orbital motions, arising from
the magnetic field, cancel each other in the bulk, but not on the edges, where they form
skipping orbits running parallel to the edges, as shown in Figure 11.12(b), which are just
the chiral edge states that give rise to edge currents. From this intuitive picture, we see that
the direction of the chiral edge mode results from that of cyclotron motion.

To sum up, we have learned that the electronic states move in momentum space by
flux insertion, which together with the Hall current imply the existence of electronic states
that cross the Fermi energy. Such states cannot be bulk states, since the chemical potential
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lies in a bulk gap. The fact that they are localized edge states is consistent with the quan-
tized conductivity being independent of the system size. We also learned that a nonzero
Chern number enforces the existence of boundary states carrying quantized conductivity.
This illustrates the basic notion of bulk-boundary correspondence, which applies to broad
classes of topological insulators.

11.3 Modern Theory of Crystalline Polarization

The microscopic modeling of bulk macroscopic polarization has been conventionally based
on employing discrete and well-separated dipoles, à la Clausius–Mossotti. However, real
dielectrics are quite different from such a simplistic model; for example, in some cova-
lently bonded dielectrics, the valence electron charge density is continuous and may be
delocalized.

If we consider a finite system, such as a molecule, we can clearly, and correctly, define
its electronic contribution to the dipole moment as

d = −e
∫

dx x n(x), (11.19)

where n(x) = ∑i |ψi(x)|2 is the charge density of occupied states ψi . For a macroscopic
solid, the quantity of interest is the macroscopic polarization, which we may naively define
as the dipole of a macroscopic sample divided by its volume. However, when using integrals
such as (11.19), we should be concerned about surface contributions. We recall that the
standard approach to avoid difficulties arising from surface effects is to invoke periodic
Born–von Kármán (BvK) boundary conditions. The BvK boundary conditions usually
work in the thermodynamic limit of a large but finite sample. However, such an approach is
inadequate for polarization, since surface contributions to the dipole moment do not vanish
in the thermodynamic limit. Actually, the main contribution to the integral depends on what
happens at the sample surface. Alternatively, we know that the macroscopic polarization
must be an intensive quantity, which means that in the thermodynamic limit it must be
insensitive to surface effects. Moreover, because of the unbounded nature of the position
operator x̂, the integral (11.19) becomes ill defined when the wavefunctions involved satisfy
the BvK boundary condition.

Because of these paradoxes, the formulation of a viable theory of macroscopic polar-
ization, in the context of electronic structure theory, presented a major challenge for many
years. The breakthrough came in 1992, when Resta proposed that for periodic systems, we
should actually consider differences in polarization between an initial state and a final state
of a crystal that can be connected by an adiabatic switching process [154]. Thus, within this
new framework, the macroscopic polarization of an extended system is more appropriately
treated as a dynamical property of currents in the adiabatic limit. Resta was able, with the
aid of this approach, to define the polarization in terms of wavefunctions, rather than of
charge densities, since the current essentially depends on the phase of the wavefunction,
while the density depends on the square of its modulus. This definition presents a clear
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Figure 11.13 Implementations of piezoelectric effect measurement: (a) The insulator is in a shorted
capacitor configuration, where the current is measured. (b) The sample is isolated, and piezoelectric
strain creates a depolarizing field E− 4πP.

thermodynamic limit where BvK and Bloch states can be correctly introduced. Shortly
afterwards King-Smith and Vanderbilt introduced a modern theory of macroscopic polar-
ization in crystalline dielectrics, whereby the polarization was expressed in terms of a Berry
phase [104].

The rationalization behind this modern viewpoint emerged from reflections on some
experimental conventions: the absolute polarization of a crystal in a given state has never
been measured as a bulk property, since it depends on sample termination. Instead, changes
of the polarization with respect to physically relevant perturbations have been measured,
producing familiar bulk properties such as permittivity, pyroelectricity, and piezoelectricity.
In all cases, such derivatives or differences in the polarization are typically extracted from
measurement of a macroscopic current.

We use the example of the piezoelectric effect to illustrate the main viewpoint of this
modern theory. Schematics of two possible manifestations of the piezoelectric effect are
shown in Figure 11.13. In both cases shown, the crystal is uniaxially strained along a
piezoelectric axis. In (a), the strain is applied while the crystal is kept in a shorted capacitor
configuration. In (b), the sample is kept isolated while being strained. In measuring pro-
cess (a), the piezoelectricity appears as a flow of bulk current across the sample; nothing
peculiar happens at the surfaces. Experiments measure such current flow. As we previously
mentioned, in the modern theory of polarization, a gauge-invariant phase, Berry’s phase,
appears in the description of electronic polarization. This is actually consistent with the fact
that quantum mechanically, currents are derived from the phase of the wavefunctions.

Accordingly, in the following analysis, we profile the polarization difference 	P
between two different states of the same crystal as an integrated macroscopic current. The
two states are adiabatically connected, and the time-dependent Hamiltonian is assumed to
remain insulating. The Born–Oppenheimer approximation allows us to separate the ionic
and electronic contributions as

	P = 	Pion +	Pel,

where the ionic contribution comprises trivial electrostatic point charges. We shall, there-
fore, focus on the electronic contributions. We should caution that each of the two terms
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actually depends on the choice of origin in the primitive cell, whereas their sum is a
macroscopic, origin-independent, bulk observable.

We consider the adiabatic change in the electronic polarization per unit volume of a
crystal due to an adiabatic change in the crystal potential. The change in the potential is
effected via a parameter λ, which varies in the range 0 → 1. For pedagogical simplicity,
we shall consider the case where potential changes preserve the translational symmetry of
the crystal. This means absence of macroscopic electric fields.

We compute the total change in polarization per unit volume, 	P, using

	P =
∫ 1

0
dλ

∂P
∂λ
=
∫ 	t

0
dt

∂P
∂λ

dλ

dt
=
∫ 	t

0
dt j(t). (11.20)

For adiabatic switching on, we require that dλ
dt
� 1/	tEg , where Eg is the insulating gap

energy. We note that (11.20) shows that 	P arises from the flow of polarization currents in
the crystal.7

11.3.1 Berry Phase Theory of Polarization [155]

We now derive an expression for the current induced by an adiabatic change of the crystal
Hamiltonian that connects the initial and final states. The adiabatic instantaneous eigen-
states and ground state at time t are denoted by �nk(t) and �0(t), respectively. To eliminate
the dynamical phase, we shall work with the density operator that represents the adiabatic
evolution, namely,

ρ(t) = |�0(t)〉 〈�0(t)| + δρ(t),

where δρ(t) contains first-order correction to the instantaneous adiabatic �0(t). We express
the instantaneous velocity in this adiabatic process as

v(t) = Tr [v ρ(t)] = 〈�0(t)| v |�0(t)〉 +
∑
n

〈�0(t)| δρ(t) |�n(t)〉 〈�n(t)| v |�0(t)〉 .

Next, we make the approximation

dρ(t)

dt
� d

dt
|�0(t)〉 〈�0(t)| =

∣∣�̇0(t)
〉 〈
�0(t)

∣∣∣+ ∣∣∣�0(t)
〉 〈
�̇0(t)

∣∣ ,
where we neglect the higher-order term in the adiabatic parameter. The Heisenberg equation
of motion for ρ becomes

ih̄

[∣∣�̇0(t)
〉 〈
�0(t)

∣∣∣+ ∣∣∣�0(t)
〉 〈
�̇0(t)

∣∣] = [H(t), ρ(t)] = [H(t), δρ(t)] (11.21)

since |�0(t)〉 〈�0(t)| commutes with H(t). Taking the matrix elements of (11.21) between
|�0〉 and |�n〉,

7 We recognize here that in the adiabatic limit, 	t →∞, jel(t)→ 0. Thus, the mean value of the adiabatic current in the
instantaneous crystalline ground state vanishes at any λ. Yet, we also note that the integral in (11.20) remains finite. This
reveals the fundamental reason why the ground-state electron density does not provide the macroscopic polarization, while it
provides other familiar adiabatic one-body observables.
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〈�0| [H(t), δρ(t)] |�n〉 = (ε0 − εn) 〈�n| δρ(t) |�n〉
= ih̄

[〈
�n(t)

∣∣∣�̇0(t)
〉
+
〈
�̇0(t)

∣∣∣�n(t)
〉]

〈�0| δρ(t) |�n〉 = ih̄

ε0 − εn

[〈
�n(t)

∣∣∣�̇0(t)
〉
+
〈
�̇0(t)

∣∣∣�n(t)
〉]

.

We should note that the term with m = n vanishes because of norm conservation.
Using the preceding relations, we write

v(t) = 〈�0(t)| v |�0(t)〉 + ih̄
∑
n 
=0

⎡⎣
〈
�̇0(t)

∣∣∣�n(t)
〉〈
�n(t)

∣∣∣v∣∣∣�0(t)
〉

ε0 − εn
− c.c.

⎤⎦ . (11.22)

Current Carried by a Filled Band

We consider the simple case of a crystalline insulator with a single filled band 0. First, we
obtain the current carried by state �0k as

j0k = −e
〈
�0k(t)

∣∣∣v∣∣∣�0k(t)
〉
− ieh̄

∑
n 
=0

⎡⎣
〈
�̇0k(t)

∣∣∣�nk(t)
〉〈
�nk(t)

∣∣∣v∣∣∣�0k(t)
〉

ε0k(t)− εnk(t)
− c.c.

⎤⎦
= −e

〈
u0k(t)

∣∣∣v∣∣∣u0k(t)
〉
− ieh̄

∑
n 
=0

⎡⎣
〈
u̇0k(t)

∣∣∣unk(t)
〉〈
unk(t)

∣∣∣v∣∣∣u0k(t)
〉

ε0k(t)− εnk(t)
− c.c.

⎤⎦ .

Next, we use the relations

v = 1

h̄
∇k H(k)

∣∣∇k u0,k
〉 = 1

h̄

∑
n 
=0

∣∣un,k〉 〈un,k∣∣∇k H(k)
∣∣u0,k
〉

ε0,k − εn,k
=
∑
n 
=0

∣∣un,k〉 〈un,k∣∣ v ∣∣u0,k
〉

ε0,k − εn,k

to write

j0k(t) = −e
〈
u0k(t)

∣∣∣v∣∣∣u0k(t)
〉
− ie

[〈
u̇0k(t)

∣∣∣∇ku0k(t)
〉
− c.c.

]
.

The current arising from the entire occupied band 0 is then

j0(t) = − e

(2π)3

[∫
BZ

dk
〈
u0k(t)

∣∣∣v∣∣∣u0k(t)
〉
− i

∫
BZ

dk
[〈
u̇0k(t)

∣∣∣∇ku0k(t)
〉
− c.c.

]]
.

(11.23)
The first integral over the Brillouin zone vanishes. The integrand in the second term
of (11.23) is just a Berry curvature component in the four-dimensional (k, t)-space. Taking
into account band double occupancy, the total band current is

j0(t) = −i 2e

(2π)3

∫
BZ

dk
[〈
u̇nk(t)

∣∣∣∇kunk(t)
〉
−
〈
∇kunk(t)

∣∣∣u̇nk(t)
〉]

. (11.24)
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Band Contribution to Polarization

Using (11.24), we arrive at the single-band contribution to the polarization

	Pn = −i2e
(2π)3

∫ 	t

0
dt

∫
BZ

dk
[〈
u̇nk(t)

∣∣∣∇kunk(t)
〉
−
〈
∇kunk(t)

∣∣∣u̇nk(t)
〉]

= −i2e
(2π)3

∫ 1

0
dλ

∫
BZ

dk
[〈
∂λunk(λ)

∣∣∣∇kunk(λ)
〉
−
〈
∇kunk(λ)

∣∣∣∂λunk(λ)
〉]
, (11.25)

where we used the chain rule
∂u

∂t
= ∂u

∂λ

dλ

dt
in the last line. Curiously, we find that the sum

over empty states disappears from this expression, underscoring the physics that the rate of
change of polarization with λ should be a property of an occupied band.

We now carry out the integral over λ. To reveal the physical content of (11.25), we first
adopt the gauge defined in (11.5) and (11.6):

ψ
(λ)
kv (x) = ψ

(λ)
k+G,v(x), u

(λ)
kv (x) = e−iG·x u(λ)k+G,v(x).

Then we integrate (11.25) by parts, and obtain∫ 1

0
dλ

[〈
∂λunk(λ)

∣∣∣∇kunk(λ)
〉
−
〈
∇kunk(λ)

∣∣∣∂λunk(λ)
〉]

= [〈unk(λ)| ∇k |unk(λ)〉]1
0 −
∫ 1

0
dλ ∇k 〈unk(λ)| ∂/∂λ |unk(λ)〉 . (11.26)

This choice of gauge renders 〈unk(λ)| ∂/∂λ |unk(λ)〉 periodic in k. Consequently, the inte-
gral of its gradient over BZ vanishes, and the second term makes no contribution. We
arrive at

	Pn = −i2e
(2π)3

∫
BZ

dk
[
〈unk(λ)| ∇k |unk(λ)〉

]1
0
= Pn(1)− Pn(0) (11.27)

Pn(λ) = −i2e
(2π)3

∫
BZ

dk 〈unk(λ)| ∇k |unk(λ)〉 . (11.28)

The integrand is just Berry’s connection of band n. Equation (11.27) is the central result of
the modern theory of polarization.

If the crystal remains in its insulating state for 0 ≤ λ ≤ 1, we sum over M occupied
bands and obtain

	P = −i2e
(2π)3

M∑
n=1

∫
BZ

dk
[
〈unk(λ)| ∇k |unk(λ)〉

]1
0
= P(1)− P(0). (11.29)

To reveal the Berry phase content of the integral, we consider the special case of a simple
cubic crystal with lattice constant a, and write the component of P(λ) in the z-direction as

Pnz(λ) = − 2e

(2π)3

∫ π/a

−π/a
dkx

∫ π/a

−π/a
dky

[
i

∫ π/a

−π/a
dkz 〈unk| ∂kz unk

〉]
,

where the square parenthesis highlights the Berry phase.
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The One-Dimensional Case

We shall carry out, in detail, the analysis for the a 1D crystal of periodicity a, and with
only one doubly occupied band. In this simplified case, (11.27) takes the form

	Pel = 2e

π
*
∫ 1

0
dλ

∫ π/a

−π/a
dk

〈
∂

∂k
u
(λ)
kv

∣∣∣∣ ∂∂λu(λ)kv

〉
. (11.30)

Equation (11.30) is a two-dimensional integral in the (k,λ) plane, over the domain
shown in Figure 11.14. The integrand can also be expressed as the curl of a vector
field:

*
〈
∂

∂k
u
(λ)
kv

∣∣∣∣ ∂∂λu(λ)kv

〉
= − i

2

[
∂

∂k

〈
u
(λ)
kv

∣∣∣∣ ∂∂λ u(λ)kv

〉
− ∂

∂λ

〈
u
(λ)
kv

∣∣∣∣ ∂∂k u(λ)kv

〉]
.

We can convert this area integral into a line integral with the aid of Stokes’ theorem, and
define the two-dimensional Berry connection as

dγ = A · d	 = i

[〈
u
(λ)
kv

∣∣∣∣ ∂∂k u(λ)kv

〉
dk +

〈
u
(λ)
kv

∣∣∣∣ ∂∂λ u(λ)kv

〉
dλ

]
,

which defines the phase change of u(λ)kv for an infinitesimal variation of k and λ. Thus, we
can express (11.30) as a Berry phase by integrating this connection over the boundary
of the two-dimensional domain shown in Figure 11.14, namely,

	Pel = e

π

∮
dγ .

It is easy to show that the contributions of the two vertical sides in figure cancel. Thus,
the polarization difference becomes

	Pel = ie

π

∫ π/a

−π/a
dk

[〈
u
(1)
kv

∣∣∣∣ ∂∂k u(1)kv

〉
−
〈
u
(0)
kv

∣∣∣∣ ∂∂k u(0)kv

〉]
. (11.31)

Each of the two terms is separately gauge invariant, but we have to take into account
both terms, as well as the ionic contribution, in order to obtain a translationally invariant
form for the total polarization difference.

Figure 11.14 Integration domain in the (k,λ) plane. Using Stokes’ theorem, the integral is trans-
formed into a circuit integral over the boundary.
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11.3.2 Reformulation in Terms of Wannier Functions

To provide a more intuitive picture of the modern theory, we reformulate the foregoing
results using localized Wannier functions instead of delocalized Bloch states. In this setting,
the electronic contribution to the macroscopic polarization P is expressed in terms of the
dipole of the Wannier charge distribution associated with a single unit cell. P is then
reformulated as a property of a localized charge distribution, apparently free of phase
information. We find that the form of (11.28) is particularly simple when written in terms
of the Wannier functions W(λ)

n (x) of the occupied bands. We recall the relation between
Bloch states and Wannier function as

u
(λ)
nk (x) =

1√
N

∑
R

e−ik·(x−R) W(λ)
n (x− R),

where N is the number of primitive cells, and the sum over R runs over all real-space lattice
vectors. Substituting in (11.28), we find the simple result that

P(λ) = −i2e
(2π)3

M∑
n=1

∫
BZ

dk〈unk(λ)| ∇k |unk(λ)〉 = 2e




M∑
n=1

∫
dx x
∣∣∣W(λ)

n (x)
∣∣∣2. (11.32)

Physically, (11.27) and (11.32) state that the change in polarization of the solid is propor-
tional to the displacement of the center of charge of the Wannier functions induced by the
adiabatic change in the Hamiltonian.

Wannier functions are strongly gauge dependent, since they depend on the particular
choice of phases of |uk〉 used in the periodic gauge, which can be arbitrary. However, their
centers are gauge-invariant modulo a lattice vector. To demonstrate this uncertainty, we
consider the case where the Hamiltonians at λ = 0 and 1 are identical, and u

(0)
kn (x) and

u
(1)
kn (x) can at most differ by a phase factor so that

u
(1)
kn (x) = eiθkn u

(0)
kn (x).

In this limit, (11.29) reduces to

	P = 2e

4π3

M∑
n=1

∫
BZ

dk ∇kθkn.

With the periodic choice of gauge, eiθkn must be periodic in k. The most general form for
the phase angle under these circumstances is θkn = βkn + k · Rn, where βkn is periodic in
k. We thus conclude that

	P = 2e

4π3

M∑
n=1

Rn.

The change in polarization per unit volume for paths where the Hamiltonian returns to itself
is therefore quantized in units of (2e/
)R.
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The One-Dimensional Case

We return to one band in 1D: the Wannier function center in the unit cell at the origin
is just

x0 = 〈w0| x |w0〉 .

Writing the Wannier function as

|w0〉 = a

2π

∫
dk eikx |uk〉 ,

we find that

x |w0〉 = a

2π

∫
dk
(
−i∂k eikx

)
|uk〉 = a

2π

∫
dk eikx i |∂k uk〉 ,

where an integration by parts has been used. Then

x0 = − a

2π
*
∫ 2π/a

0
dk 〈uk| ∂k uk〉 = a

2π
γ .

Consequently, the Berry phase γ is nothing other than a measure of the location of the
Wannier center in the unit cell. The fact that γ was previously shown to be invariant
with respect to choice of gauge implies that the same is true of the Wannier center x0.

11.4 Time-Reversal Symmetry, Time-Reversal Polarization, and Z2

We have demonstrated in Section 11.1.4 that the Chern number has to vanish for systems
obeying time-reversal symmetry. However, in their 2005 seminal work [98], C. Kane and
G. Mele demonstrated that topological order and TRI can actually coexist in insulators.
They showed that the presence of strong, TR symmetric spin–orbit interaction, which acts
like an opposite magnetic field on ↑ and ↓ spins, may result in an electronic band structure
with a topological order characterized by a new topological invariant coined Z2.8 This
invariant assumes only two integer values 0 and 1, indicating a trivial and a topological
phase, respectively.

In this section, we present a method, developed by Fu and Kane [71], to derive an
expression for the Z2 topological invariant. It employs a contrived implement, defined
as a time-reversal polarization, to differentiate between the two classes of TRI insulator
systems. We start with developing a matrix representation of � within Bloch state bases.

11.4.1 Matrix Representation of �: The Sewing Matrix

We recall that spin-1/2 systems obey the condition �2 = −1. Writing � = U K , where U
and K are the unitary and conjugation operators, respectively, yields

8 Remember, in mathematics the group of integers is called Z and its quotient group classifying odd and even integers is called
Z2. Hence, a Z2 index gives a topological classification based on parity.
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U K U K = U U = −1 ⇒ U = −UT

so that U is antisymmetric and unitary.
Now we discuss a very useful matrix representation of the TR operator in the Bloch

states basis. We start with defining the matrix as

wmn(k) =
〈
um,−k

∣∣∣�∣∣∣unk

〉
, (11.33)

with m,n band indices. It relates states at k with ones at −k. It has been coined, appropri-
ately, the sewing matrix. We then find that

wmn(k) =
〈
um,−k

∣∣∣�∣∣∣unk

〉
→ u∗m,−k U K un,k = u∗m,−k U u∗n,k

= −u∗n,kUT K um,−k → −
〈
un,k

∣∣∣�∣∣∣um,−k

〉
= −wnm(−k) = −w∗mn(k).

(11.34)

Using (11.33) and (11.34) we can obtain an expression relating the Bloch states
∣∣um,−k

〉
and |unk〉, in the form∣∣um,−k

〉 = �
∣∣um,k〉 =∑

n

∣∣un,−k
〉 〈
un,−k

∣∣� ∣∣um,k〉 =∑
n

w∗mn(k)� |unk〉 . (11.35)

Unitarity of wmn(k)∑
m

w
†
lm(k) wmn(k) =

∑
m

〈
ul,k
∣∣� ∣∣um,−k

〉 〈
um,−k

∣∣� ∣∣un,k〉
= 〈ul,k∣∣ un,k〉 = δln

where the sum over m is taken over the complete set of occupied and empty states at−k.

Equation (11.34) implies that at a TRIM �, the matrix w becomes antisymmetric

wmn(�) = −wnm(�).

In case of only two occupied bands, w is a 2× 2 matrix, and at � it takes the form

w(�) =
(

0 w12(�)

−w12(�) 0

)
= w12(�)

(
0 1
−1 0

)
.

Non-Abelian Berry Connection

For systems satisfying TRI, we can further explore the properties of the Berry connection
matrix by applying (11.35) together with the TR property

〈�ψ | �φ〉 = 〈φ| ψ〉
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to find

amn(−k) = 〈um,−k
∣∣− i∇−k

∣∣un,−k
〉 = 〈um,−k

∣∣ i∇k
∣∣un,−k

〉
= i
∑
j l

wmj (k)
〈
�ujk

∣∣∇k w
∗
nl(k) |� ulk〉

=
∑
j l

wmj (k)
〈
�ujk

∣∣ i∇k |� ulk〉w∗nl(k)+ i
∑
j l

wmj (k)
〈
�ujk |� ulk〉∇k w

∗
nl(k)

=
∑
j l

wmj (k)
〈
ujk
∣∣−i∇k |ulk〉∗ w∗nl(k)+ i

∑
l

wml(k)∇k w
∗
nl(k)

and obtain

a(−k) = w(k) a∗(k)w†(k)+ iw(k)∇k w†(k) (11.36)

Taking the trace, we get

Tr [a(−k)] = Tr
[
a∗(k)

]+ iTr
[
w(k)∇k w†(k)

]
,

where we used the cyclic property of the trace in the first term on the right. Using the
following properties

Tr [a(k)] = Tr
[
a∗(k)

]
w(k)∇k w†(k) = −

(
∇k w†(k)

)
w(k) ⇔ w(k)w†(k) = I,

we interchange k and −k and write

Tr [a(k)] = Tr [a(−k)]+ iTr
[
w†(k)∇k w(k)

]
. (11.37)

This relation will be used in the calculation of the Z2 topological invariant.

Time-Reversal Polarization

In order to pedagogically derive the topological invariant associated with 2D electron
systems preserving TRS, we follow Fu and Kane and consider a 1D system with length
L and lattice constant a = 1. We only consider two bands that form a Kramers’ pair, and
denote their Bloch kets as |u1(k)〉 and |u2(k)〉. We write the polarization as

P = 1

2π

∫ π

−π
dk A(k)

A(k) = −i 〈u1(k)| ∂k |u1(k)〉 − i 〈u2(k)| ∂k |u2(k)〉
= a11(k)+ a22(k) = Tr[a].

We note that for such a band pair, the TR operation allows us to obtain a physical quantity
of one band, if we know the same quantity of its partner. We thus define the contribution
from each band as a partial polarization, namely,
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Pi = 1

2π

∫ π

−π
dk aii(k), i = 1,2

P = P1 + P2.

We note here that the 1D BZ can be mapped onto the torus T1. Consequently, the integral
for P is just that of the corresponding Chern number, which vanishes for TRI systems. Fu
and Kane defined a time-reversed polarization as

Pθ = P1 − P2 = 2P1 − P .

Intuitively, Pθ gives the difference in charge polarization between spin-up and spin-
down bands, since |u1(k)〉 and |u2(k)〉 form a Kramers’ pair.

We need to highlight the physical significance of Pθ , and the role it plays in TRI
insulators classification. Fu and Kane considered a family of 1D bulk-gapped Hamiltonians
H(t), parameterized by a cyclic parameter t subject to the constraints

H(t + T ) = H(t) (11.38)

dH
dt
� H	E

h̄
Adiabaticity condition

�H(t)�−1 = H(−t) (11.39)

where 	E is the gap energy. This can be understood as an adiabatic pumping cycle, with t
playing the role of time or pumping parameter.

From (11.38) and (11.39), one can see that the system is TR symmetric at t = 0 and
T/2. At these times, the Kramers’ degeneracy must be fulfilled at every k. Consequently,
we require that the time-reversed version of |u2(k)〉 → � |u2(k)〉 be equal to |u1(−k)〉
except for a phase factor. Hence, at t = 0 and T/2,

� |u2(k)〉 = e−iχ(k) |u1(−k)〉 . (11.40)

� |u1(k)〉 = −e−iχ(−k) |u2(−k)〉. (11.41)

Equation (11.41) follows from (11.40), because of the property �2 = −1. Using these
relations, the w matrix can be shown to become

w(k) =
(

0 e−iχ(k)

−e−iχ(−k) 0

)
. (11.42)

Now we calculate P1 at the TR symmetric times. First, using (11.41) one may obtain

a11(−k) = 〈u1(−k)| i∂k |u1(−k)〉 =
〈
� u2(k)

∣∣∣e−iχ(k) (i∂k) eiχ(k)∣∣∣� u2(k)
〉

= 〈� u2(k) |(i∂k)|� u2(k)〉 − ∂

∂k
χ(k) = 〈u2(k) |(−i∂k)| u2(k)〉 − ∂

∂k
χ(k)

= a22(k)− ∂

∂k
χ(k), (11.43)
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which leads to

P1 = 1

2π

(∫ π

0
dk a11(k)+

∫ 0

−π
dk a11(k)

)

= 1

2π

∫ π

0
dk
(
a11(k)+ a22(k)− ∂

∂k
χ(k)
)

= 1

2π

∫ π

0
dk A(k)− 1

2π
[χ(π)− χ(0)] . (11.44)

Since w12(k) = e−iχ(k) from (11.42), χ(k) can be written as

χ(k) = i lnw12(k) (11.45)

and (11.44) reduces to

P1 = 1

2π

∫ π

0
dk A(k)− i

2π
ln
w12(π)

w12(0)
. (11.46)

This expression leads to

Pθ = 2P1 − P = 1

2π

∫ π

0
dk
[
A(k)−A(−k)

]
− i

π
ln
w12(π)

w12(0)
.

With A(k) = Tr[a(k)] and Tr[a(k)] given by (11.37), one obtains

Pθ = i

2π

∫ π

0
dk Tr

[
w†(k)

∂

∂k
w(k)
]
− i

π
ln
w12(π)

w12(0)
.

But we find from (11.42) that

Tr
[
w†(k)

∂

∂k
w(k)
]
= Tr

[(
0 −eiχ(−k)

eiχ(k) 0

) (
0 ∂k e

−iχ(k)

−∂k e−iχ(−k) 0

)]
= −i

(
∂k χ(k)+ ∂k χ(−k)

)
= ∂k det[w(k)]

det[w(k)]
.

This allows us to write

Pθ = i

2π

∫ π

0
dk

∂

∂k
ln (det[w(k)])− i

π
ln
w12(π)

w12(0)

= i

π

1

2
ln

det[w(π)]
det[w(0)]

− i

π
ln
w12(π)

w12(0)
. (11.47)

Since det[w(k)] = w2
12(k), we obtain

Pθ = 1

iπ
ln

⎛⎝
√
w2

12(0)

w12(0)
· w12(π)√

w2
12(π)

⎞⎠ . (11.48)

The argument of the logarithm takes the values +1 or −1 only. With ln(1) = 0 and
ln(−1) = iπ , we find that Pθ is 0 or 1 mod 2.
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The two values of Pθ physically correspond to two different polarization states that the
1D system can accommodate in going from t = 0 to T/2. The wavefunction |ui(k,t)〉 can
be viewed as a map from T2, of 2D phase space (k;t), to Hilbert space. Accordingly, this
Hilbert space can be classified into two possible realizations, depending on the difference
in Pθ from t = 0 to T/2:

	 = Pθ [T/2]− Pθ [0] mod 2. (11.49)

This 	 is specified only in mod 2, so it gives a Z2 topological invariant to characterize the
Hilbert space. When Pθ changes between t = 0 to T/2, we can think of a twisted Hilbert
space for 	 = 1, and a trivial Hilbert space for (	 = 0), when there is no change in Pθ .

Using (11.48), Pθ can be given in terms of

(−1)	 =
4∏

i=1

w12(�i)√
w2

12(�i)

, (11.50)

where �1 = (0,0), �2 = (π,0), �3 = (0,T /2), and �4 = (π,T /2), as shown in
Figure 11.15. The physical consequence of a cycle with 	 = 1 is spin pumping from
one end of the 1D system to the other.

General Formula for the Z2 Invariant

Extension of the preceding argument to a multiband system is not very difficult. The
Hamiltonian still satisfies (11.38) and (11.39), and in the following we take T = 2π for
simplicity. Consider that 2N bands are occupied, and form N Kramers’ pairs. For each
Kramers’ pair n, at the TR symmetric times t = 0 and π the wavefunctions are related by

�
∣∣un2(k)〉 = e−iχn(k)

∣∣un1(−k)〉 (11.51)

�
∣∣un1(k)〉 = −e−iχn(−k) ∣∣un2(−k)〉 , (11.52)

T/

0

1 2

43

T

t

Figure 11.15 The TRIMs for a TR-symmetric 1D system. One can see that identifying t → ky maps
the periodic (k,t) space to the ordinary 2D BZ.
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and the w matrix is given by

w(k) =

⎛⎜⎜⎜⎜⎜⎝
0 e−iχ1(k) 0 0 . . .

−e−iχ1(−k) 0 0 0 . . .

0 0 0 e−iχ2(k) . . .

0 0 −e−iχ2(−k) 0 . . .
...

...
...

...

⎞⎟⎟⎟⎟⎟⎠ . (11.53)

Hence, at t = 0 and π , w(0) and w(π) become antisymmetric, and we have

w12(�i)w12(�i) . . . w2N−1,2N(�i) = exp

[
−i

N∑
n=1

χn(�i)

]
(11.54)

= Pf[w(�i)]. (11.55)

Note that in the preceding equation, w is viewed as a function of k and t , and we used the
formula for the Pfaffian of a 2N × 2N skew-symmetric matrix with 2 × 2 blocks on the
diagonal. In general, Pfaffian is defined for an antisymmetric matrix and is related to the
determinant by (

Pf[A]
)2 = det[A].

It is straightforward to extend the previous calculations for the TR symmetric times t = 0
and π to obtain

P1 = 1

2π

∫ π

0
dk A(k)− 1

2π

N∑
n=1

[χn(π)− χn(0)] (11.56)

= 1

2π

∫ π

0
dk A(k)− 1

2π
ln

(
Pf[w(π)]

Pf[w(0)]

)
, (11.57)

which in turn gives the TR polarization

Pθ = 1

iπ
ln

(√
det[w(0)]

Pf[w(0)]
· Pf[w(π)]√

det[w(π)]

)
. (11.58)

Therefore, the Z2 topological invariant ν is given by

(−1)ν =
4∏

i=1

Pf[w(�i)]√
det[w(�i)]

, (11.59)

which classifies the Hilbert space into twisted (ν = 1) and trivial (ν = 0) ones.
By reinterpreting the periodic 2D phase space (k,t), which forms a torus, as the 2D

Brillouin zone (kx,ky), the preceding theory provides a Z2 topological classification of 2D
TR-invariant insulators with 2N occupied bands.
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11.5 Appendices

11.5.1 Classification of Topological Phases

We start with a translationally invariant topological insulator. It is a band insulator of
noninteracting fermions, where there is a gap between valence and conduction bands, and
the Fermi level EF lies in this gap. Because of translational invariance, the insulator is
represented in momentum space by a matrix equation for every value of momentum k in
the Brillouin zone

H(k) |uα(k)〉 = εα |uα(k)〉 ,
where α labels the different bands, with m filled and n empty bands. We define the k-
dependent projection operator onto the filled Bloch states,

P̂ (k) =
m∑
α

|uα(k)〉 〈uα(k)| ,

which, in turn, allows us to define the more convenient operator

Q̂(k) = 2P̂ (k)− Im+n.

Q̂ has the following properties:

Q̂†(k) = Q̂(k), Q̂2(k) = 4P̂ 2(k)− 4P̂ (k)+ Im+n = Im+n, Tr
[
Q̂(k)

]
= m− n.

Depending on the symmetry class, additional conditions may be imposed on Q̂(k).
In the general case, any Q̂-matrix can be viewed as a set of m+n complex eigenvectors,

and these can be represented as an element of the (m + n)-dimensional complex unitary
matrices: U(m+n). However, the Q̂ matrix does not change if the filled or empty states are
rearranged among themselves, thus we have a gauge symmetry U(m), U(n) ⊂ U(m + n)

for each of these state types. Each allowed projector is then described by an element of the
coset

Q̂ ∈ U(n+m)

U(m)× U(n)
, (11.60)

Q̂ = U† �U, � =
(
Im 0
0 −In

)
, U ∈ U(m+ n).

The Hermitian operator Q̂(k) plays the role of the Hamiltonian, carrying only the essential
information about the insulator in question. It has eigenvalues ±1. We can think of it as a
“simplified Hamiltonian” that can be obtained from H(k) by assigning the energy +1 to
all occupied bands, and the energy −1 to all empty bands, while keeping all wavefunctions
unchanged. Since we are only interested in the properties of the phase described by the
insulator, we may deform the actual Hamiltonian of the band insulator until it acquires the
simple form Q̂(k), while remaining in the same phase – a topological homeomorphic map.
Now the question as to how many inequivalent phases there are amounts to asking how
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many different maps there are that cannot be continuously deformed into each other. The
answer to this question is given by the so-called homotopy group πd of the topological
map. It depends on the symmetry constraints and the system’s dimension d.

Example

As an example, we consider a band insulator in the simplest symmetry class A, in which
there are no conditions whatsoever imposed on the Hamiltonian. The Hamiltonian H is just
a general Hermitian matrix. In this case, (11.60) applies. It turns out that for d = 2, the
homotopy group is

π2

[
U(n+m)/U(m)× U(n)

]
= Z.

This means that for every integer there exists a band insulator for symmetry class A and
d = 2. We find that band insulators corresponding to different integers cannot be con-
tinuously deformed into each other without crossing a quantum phase transition. This
is precisely the case of integer quantum Hall insulators. The integer characterizing the
insulator denotes precisely the number of chiral edge states. When the number of edge
states changes, a quantum phase transition necessarily has to be crossed.

In d = 3, the relevant homotopy group is (for sufficiently large values of n and m)

π3

[
U(n+m)/U(m)× U(n)

]
= {Identity element},

which is the trivial group of only one element. This means that for symmetry class A in
d = 3 spatial dimensions, there can only be one insulator phase, which precludes nontrivial
topological insulators.

11.5.2 Non-Abelian Berry Connection: Wilczek–Zee Gauge

In 1984, Wilczek and Zee [197] extended Berry’s formulation to Hamiltonians with degen-
erate spectra, and showed that in such cases it leads to non-Abelian gauge fields (connec-
tions). Thus, a non-Abelian phase factor emerges as a natural generalization of the Berry
phase to cover such systems.

In this appendix, we consider the case where the spectrum of a Hamiltonian H(η)

contains degenerate but nonintersecting subspaces on the entire parameter base manifold
η. This means that the condition

ε�(η) 
= εj (η) ⇒ H�(η) ∩ Hj (η) = ∅

applies for the entire manifold. Furthermore, this condition guarantees that in a cyclic
evolution the system returns to the same eigensubspace H� that contains the initial state
vector.
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Adiabatic Evolution Approach

We consider an nfold degenerate �th eigenvalue of a Hamiltonian, such that

H(η) ψ�α(η) = ε�(η) ψ�α(η), α = 1, . . . n

H(η) P�(η) = P�(η)H(η) = ε�(η) P�(η), P� =
n∑

α=1

|ψ�α(η)〉 〈ψ�α(η)|

with a corresponding n-dimensional eigenspace

H�(η) =
{

n∑
α=1

cα ψ�α(ηi )

∣∣∣cα ∈ C

}
,

where the orthonormal set of eigenvectors ψ�α(ηi ) locally span H�, ηi ∈ U ⊂ η, with〈
ψ�α(η)

∣∣ψ�β(η)
〉 = δαβ .

The Hilbert space is a direct sum of all eigenspaces H�

H =
⊕
�

H�(η).

We can transform the set {ψ�α(η)} to another orthonormal set with the aid of a unitary
transformation as

|ψ�α(η)〉 ←→
∣∣ψ ′�α(η)〉 = n∑

β=1

∣∣ψ�β(η)
〉
Uβα(η),

∣∣ψ ′�α(η)〉 ∈ H�(η), (11.61)

where U is an n× n matrix that is an element of the unitary group U(n).
Now we consider an adiabatic cyclic evolution of the state vector ψ�(t), effected by an

adiabatic change of the external parameters

[0,T ] t → ηt ∈ η, η0 = ηT

ψ�α(η0) = ψ�α(ηT ) single-valuedness of basis set.

This means that the state returns to the same degeneracy subspace H�(η0). Thus, in general,
the final state vector

∣∣ψ�(ηT )
〉
is related to the initial state vector

∣∣ψ�(η0)
〉
through the action

of an unitary matrix ∣∣ψ�(ηT )
〉 = ∣∣ψ�(η0)

〉
Uψ .

Adiabatic evolution means that ψ(ηt ) ∈ H�(η), and satisfies the Schrödinger equation

ih̄
∂ψ�(ηt )

∂t
= H(ηt ) ψ�(ηt ).

We choose the initial state vector as

ψ�(η0) =
∑
α

c�α(0)ψ�α(η0),
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and we use the ansatz

ψ�(ηt ) =
∑
α

c�α(t)ψ�α(ηt )

to solve the Schrödinger equation. We obtain a set of coupled differential equations of the
form

dc�β(t)

dt
+
∑
α

[
iε�(ηt ) δαβ +

〈
ψ�β(ηt )

∣∣∣∣ ddt
∣∣∣∣ψ�α(ηt )

〉]
c�α(t) = 0,

and using the initial conditions we get the solution

c�β(t) =
n∑

α=1

[
T exp

∫ t

0
dτ
(
−iε�(ητ ) I+ iA�(ητ )

)]
βα

c�α(0), (11.62)

where we introduced the one-form Wilczek–Zee gauge potential, or the non-Abelian Berry
connection

A�
βα(ητ ) = i

〈
ψ�β(ητ )

∣∣∣∣ ddτ
∣∣∣∣ψ�α(ητ )

〉
dτ

A�
βα(η) = i

〈
ψ�β(η) |d|ψ�α(η)

〉
, (11.63)

which is an n × n Hermitian matrix, A(�)∗
βα = A(�)

αβ . We also introduced the time-ordering
operator T to maintain the chronological sequencing of events, since the non-Abelian
character of A(�)

αβ indicates that the commutator[
A(�)

αβ (ηt ),A
(�)
αβ (ηt ′)

]

= 0.

We can write the state vector∣∣ψ�(ηt )
〉 = n∑

α,β=1

∣∣ψ�β(η0)
〉
e−i
∫ t

0 dt ′ ε�(ηt ′ )
[
P exp

(
i

∫ ηt

η0

A�(η)

)]
βα

c�α(0),

where we replaced the time-ordering with a path-ordering operator P.
Under the unitary transformation,

ψ�α(η) → ψ ′�α(η) =
n∑

β=1

ψ�β(η) U
(�)
βα (η). (11.64)

The gauge potential A� transforms according to

A�(η) → A′ �(η) = U−1(η)A�(η) U(η)+ iU−1(η) · dU(η). (11.65)

Alternatively, we can use a solution to the Schrödinger equation of the form

ψ�(t) = exp

(
− i

h̄

∫ t

0
dt ′ ε�

(
t ′
)) n∑

β=1

U
(�)
αβ (ηt )

∣∣ψ�β(ηt )
〉

(11.66)
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and obtain the following equation for the time dependence of U((
U(�)
)−1

U̇ (�)
)
αβ
= − 〈ψ�α

∣∣ψ̇�β

〉
(11.67)

when substituting (11.66) in the Schrödinger equation. Integrating (11.67) yields

Uαβ(t) = T exp

[
−
∫ t

0
dτ

〈
ψ�α(τ)

∣∣∣∣dψ�β(τ )

dτ

〉]

= P exp

[
−
∑
μ

∫ ημ(t)

ημ(0)

〈
ψ�α(η)

∣∣∣dψ�β(η)

dημ

〉
dημ

]

= P exp

[
i

∫ ημ(t)

ημ(0)
A(�)

αβ (η(t))

]
,

where T, P are the time-ordering and path-ordering operators, respectively, since the inte-
grand, namely, A(�)

αβ being non-Abelian, does not commute with itself at different points on
the manifold.

For cyclic evolution, [0,T ], η0 = ηT , and we obtain

Uαβ(C) = P exp

(
i

∮
C
A(�)

)
. (11.68)

Such a potential is called a U(n) gauge potential. The phase factors Uαβ(C) represent the
extension of the Berry phase to the unitary groupU(n). It is again a pure geometrical object,
in the sense that it depends only on the geometry of the degenerate space. While having
most of the geometric particulars of the Abelian Berry phase, the non-Abelian phase is a
matrix with elements that are not separately gauge invariant. Its most relevant quantities
are the trace (also known as the Wilson loop in gauge theory) and its eigenvalues, which
are indeed gauge-invariant quantities.

Fiber Bundle Approach

The Wilczek–Zee gauge can be cast as a holonomy element in a proper fiber bundle. Each
point of a base space, ηi ∈ η, is associated with an n-dimensional Hilbert subspace H�(η),
a typical fiber. We define the corresponding bundle as

E(�) =
⋃
ηi∈η

H�(ηi )

F� = Cn standard fiber.

Alternatively, we can use the eigensubspace basis {ψ�α}, and define the typical fiber as

F (�)(η) =
⎧⎨⎩ψ�α(η) =

∑
β

Uαβ φβ

∣∣∣U ∈ U(n)

⎫⎬⎭ � U(n) (11.69)
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with a corresponding U(n) principal bundle

P (�) =
⋃
ηi∈η

F (�)
η (ηi )

having E(�) as its associated bundle.
We define a curve t → C(t) on η, and set a corresponding lift to E(�) as (ψ�1(t), . . . ,

ψ�n(t)). We identify ψα(t) as a horizontal lift with respect to the WZ connection, when〈
ψ�β

∣∣ψ̇α

〉 → 〈
ψ�β

∣∣dφα 〉 = 0, α,β = 1, . . . ,n.

The Gauge Field, or Berry Curvature F (�)

We define the corresponding gauge field

F (�) = dA(�) − iA(�) ∧A(�)(
F (�)

jk

)
αβ
= ∂j

(
A(�)

k

)
αβ
− ∂k

(
A(�)

j

)
αβ
− i
[
A(�)

j ,A(�)
k

]
αβ(

A(�)
k

)
αβ
= i 〈ψ�α| ∂k

∣∣ψ�β

〉
, ∂k = ∂/∂ηk, (11.70)

where (η1, . . . ,ηd) are local coordinates on a d-dimensional base η.
An important physical consequence of non-Abelian holonomies is that not only may

each degenerate state acquire a phase change, but population transfers among the different
degenerate levels are possible as well.

11.5.3 Topology and Phase Singularity in QHE

The nontrivial topology of the Berry connection A arises when the phase of the wavefunc-
tion cannot be determined uniquely and smoothly in the entire magnetic BZ. To show this
phenomenon, we rewrite the last integral in (5.31) for a single band as [106, 173]

σxy =
∫
T2
dA =

∮
C
A.

We could naively argue that since the wavefunction is expected to be periodic over the
torus, the integral should vanish because the path of the integral contains the same states
with opposite directions, as depicted in Figure 11.16.

However, ν can assume nonzero values when the phase of the wavefunction cannot be
determined uniquely and smoothly in the whole BZ, due to the presence of a nonremovable
phase singularity in the BZ – in other words, a singularity that cannot be removed by any
gauge transformation.

In order to clarify this behavior, we shall use the following hypothetical scenario: we
consider an arbitrary eigenstate |uk〉 in a 2D system, and try to determine its phase over the
whole BZ. A simple way to accomplish this is to first fix a certain position x = (x1,x2) and
set uk(x) = 〈x |uk〉 to be real by performing a gauge transformation,
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Figure 11.16 Schematic of the 2D magnetic BZ. The arrows show the direction of the path integral
for the Hall conductivity. Parallel paths traversing the BZ correspond to paths of opposite directions
on the torus. Such paths cancel each other when the phase of the wavefunction is defined smoothly
in the whole BZ.

0

Figure 11.17 Schematic diagram of the wavefunction phase. To determine the phase on the entire
BZ, it is divided into two regions. At k0, there is a singularity of the phase for uk(x).

∣∣u′k〉 = e−igk |uk〉 , gk = uk(x)
|uk(x)| .

We should note that we cannot apply such transformation at k points where the wavefunc-
tion vanishes. For pedagogy, we assume that uk(x) vanishes only at k = k0, and the phase
of uk(x) cannot be determined at k = k0 because of the singularity. However, the uk(x)
phase can be determined at k 
= k0. As shown in Figure 11.17, we divide the BZ into two
patches, HI and HII , where HI contains a vicinity of k0, while HII is the complement of
HI in the BZ. We fix the phase of uk(x) to be real for k ∈ HII using gk.

InHI , we choose another position x′ such that uk(x′) does not vanish in the whole region
HI including k = k0.

Since uk(x′) does not have a singularity in HI , we can force it to be real by using a real
function hk as ∣∣u′′k(x′)〉 = e−ihk

∣∣uk(x′)
〉
, hk = uk(x′)

|uk(x′)| .
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Note that the overall phase of the state vector is well defined at k0 even though the
phase of uk(x) at position x = (x1,x2) cannot be defined. Thus, we have a state vector
whose phase is defined in the whole BZ in

|uk〉 =
⎧⎨⎩
∣∣uk∈HI

〉 = e−ihk |uk〉∣∣uk∈HII

〉 = e−igk |uk〉
However, at the boundary ∂H between HI and HII , we have a phase mismatch∣∣uk∈HI

〉 = e−itk
∣∣uk∈HII

〉
,

where tk = gk − hk. We define the Berry connections as AI and AII on HI and HII ,
respectively, because connection depend on the gauge. The contributions to the Hall con-
ductivity from the two regions is expressed as

σxy = e2

h

1

2π

∫
dA = e2

h

1

2π

[∫
HI

dAI +
∫
HII

dAII

]
= 1

2π

∮
∂H

dk · [AI −AII ] = 1

2π

∮
∂H

dk · ∇k tk

= e2

h
C.

The sign change occurs because the line integral along ∂H has opposite orientations for HI

and HII . Again, C must be an integer because tk arises from gauge transformations, and its
change around ∂H is an integer multiple of 2π in order for each of the state vectors to fit
together exactly when a full revolution around is completed. C is a topological invariant; it
does not change by any smooth deformation of the path ∂H . In addition, since the nontrivial
winding of the phase difference tk is supported by the existence of the singularity, it never
changes from the integer by small external perturbation that does not close the band gap.

Exercises

11.1 Anomalous velocity:
Consider the effect of a weak uniform electric field E perturbation on a crystal. In the
absence of the perturbation, the Bloch Hamiltonian is given by

H(k) = 1

2m
(p+ h̄k)2 + V (x).

Notice that k behaves like a vector potential. What are the eigenfunctions of H(k)?

(a) What are the drawbacks of using an electrostatic potential �(x) that produces the
uniform E?

(b) We can avoid these obstacles by introducing a time-varying uniform vector
potential A0(t). Describe how such a potential is manifest in the crystal’s Bloch
Hamiltonian.
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(c) You may define a modified time-dependent crystal momentum, q = k − eEt ,
with its corresponding Bloch Hamiltonian H(q(t)). What is the condition for
adiabatic change?

(d) Write down an expression for the velocity operator v(q) in terms of H(q).
(e) Use the expression you obtained for the first-order corrected adiabatic eigenket

in Exercise 10.2 to show that the velocity vn = 〈un(q,t)| v(q) |un(q,t)〉 is given
by

vn(k) = ∂εn(k)
h̄∂k

− e

h̄
E×Fn (k).

The second term involving the Berry curvature is the so-called anomalous veloc-
ity – note that its direction is transverse to the electric field and thus will give rise
to a Hall current.

(f) Comment on the effect of time-reversal symmetry on the anomalous velocity and
its consequences.

11.2 Writing a general wavefunction as a superposition of the Bloch waves

�(x) =
∑
�

∫
dk��(k) ψ�k(x) =

∑
�

∫
dk��(k) u�k(x) eik·x,

show that

x�(x) =
∑
�

∫
dk
∑
m

(i∇δm� − am�) �m(k) ψmk(x).

11.3 Non-Abelian gauges and parallel transport: Wilson loops:
Consider an ABE-type two-component wavefunction �T = [ψ1 ψ2

]
. A change of

phase is obtained via the transformation

� ′(x) = S(x)�(x), (11.71)

where S is a 2 × 2 SU(2) matrix. Local gauge invariance is now the requirement
that physics is unchanged under arbitrary SU(2) transformation.

Parallel transport of the phase at a point x to the phase at a neighboring point
x + dx is effected by a phase change of q Aα(x) dxα , for a particle with charge q,
where A is a generalized non-Abelian gauge potential 2× 2 matrix.

(a) Express �(x+ dx) in terms of �(x) and A.
(b) Transform �(x+ dx) according to (11.71), namely, to the primed frame.
(c) Use the result in (a) to express � ′(x+ dx) in terms of �(x).
(d) In the primed frame, express parallel transport in terms of � ′(x+ dx) and � ′(x).
(e) Using the preceding results and expanding to first order in dxα , show that

A′α(x) = S(x)Aα(x) S−1(x)− i

q
[∂α S(x)] S−1(x). (11.72)
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(f) Setting S(x) = 1+ iq�(x), show that, to first order in �,

A′α(x) = Aα(x)+ ∂α �(x)+ iq
[
�(x),Aα(x)

]
.

This yields the path-ordered phase for a closed-loop C for the non-Abelian
case as

γ (C) = P exp

[
iq

∮
C

A·dx
]

known as the Wilson loop. Since in general cases of the Wilson loops the matrices
at different points do not commute, path-ordering P is used.

11.4 Charge conjugation symmetry:
Consider the Hamiltonian

H =
∑
kαβ

hαβ(k) |k,α〉 〈k,β| ,

where α, β are basis indices. Charge conjugation, or particle–hole transformation, is
defined as

|k,α〉 =
∑
β

Uαβ 〈−k,β| .

For the Hamiltonian to satisfy particle–hole symmetry, it should be invariant under
Uαβ(k): H is the same when expressed in terms of electron bases and hole bases.

(a) Find the conditions that h(k) must satisfy for H to be particle–hole symmetric
(there should be an extra condition on the trace of h(k); what is it?).

(b) Show that, for a system with particle–hole symmetry, the energy eigenvalues at
each k come in pairs (εk, − εk), provided that either time-reversal or inversion
symmetry is present. Hint: First show that if |ψk〉 is an eigenstate of h∗(k)
with energy εk, then U(−k) |ψk〉 is an eigenstate of h(−k), with energy −εk.
Next, note that the spectrum of h∗(k) and h(k) must be identical (because h(k)
is Hermitian). Finally, recall the consequence of time-reversal symmetry and/or
inversion symmetry on the energy spectrum.
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Dirac Materials and Dirac Fermions

12.1 Introduction

Historically, the Dirac and Weyl fields1 were first used in high-energy physics to describe
elementary particles (electrons, quarks, neutrinos, etc.). They constitute the simplest build-
ing blocks for constructing Lorentz-invariant Lagrangians that describe interacting particles
within the standard model. Recently, however, a wide variety of materials, ranging from
graphene to topological insulators and d-wave superconductors, were found to have a
common low-energy fermionic dispersion that resembles massless Dirac particles, rather
than the usual free particle parabolic dispersion of the Schrödinger type, conventionally
referred to as Schrödinger fermions. Materials having this unifying emergent Dirac fermion
spectral character are now referred to as Dirac materials. Particular symmetries, such as
TRS in topological insulators, point group symmetries in topological crystalline insulators,
and sublattice symmetry in graphene, control the appearance of Dirac cones and points in
their excitation spectra.

Such systems comprise lattices where electrons are described by Bloch states indexed by
the crystal momentum k and defined on the Brillouin torus. As we will see, the Bloch bun-
dle topology implies, under certain conditions, that the Weyl or Dirac equations, and their
corresponding dispersion relations, are not be satisfied globally over the whole manifold,
but only locally.

The most studied Dirac material is the semimetal graphene [2, 41], where low-energy
massless Weyl excitations emerge in the vicinity of the K and K ′ points of the 2D BZ.
The relativistic-like behavior originates from the two-sublattice structure of the honeycomb
lattice of graphene. This structure introduces a momentum-pseudospin coupling term in
the Hamiltonian, namely, p·σ , where σ is the Pauli spin matrix. The pseudospin is actu-
ally the sublattice index, and not the real electronic spin, which remains decoupled from
orbital motion and is neglected in this picture because spin–orbit coupling is very weak
in graphene. Theoretical predictions that graphene should host such massless Dirac–Weyl
fermions that obey the 2D Weyl equations have preceded the experimental realization of
the single monolayer [191].

1 A detailed review of the Dirac and Weyl equations and fields is given in Appendix 2 at the end of this chapter.
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Figure 12.1 The graphene lattice (left). The δs and ais are nearest neighbor vectors and lattice basis
vectors, respectively. A, B denote the two honeycomb sublattices. The honeycomb BZ (middle),
showing the high-symmetry points and the reciprocal lattice basis vectors bis. The π -bands along
high-symmetry directions (right).

12.2 Graphene: The Gate to Dirac Fermions

As shown in Figure 12.1, the honeycomb structure of graphene has two interpenetrating
triangular sublattices A and B, and primitive lattice basis

a1 = a

2

(√
3,3
)
, a2 = a

2

(√
3, − 3

)
.

Its reciprocal lattice basis is given by

b1 = 2π

3a

(√
3,1
)
, b2 = 2π

3a

(√
3, − 1

)
.

In Exercise 3.12, we studied the complete electronic structure of graphene. We learned that
the graphene bands are separated into a set of σ -bands emerging from interacting 2s, 2px ,
and 2py orbitals, and a pair of π -bands in the vicinity of the Fermi energy derived from
dangling pz-orbitals. Here, we shall focus on the π -bands.

The hexagonal Brillouin zone of graphene, shown in Figure 12.1, has three high-
symmetry points:

• � and M demarcate the positions of the Van Hove singularities of the π − π∗ bands,
where the density of states (DOS) is logarithmically divergent

• The K points, where the π − π∗ bands touch and the DOS vanishes linearly

We write the corresponding Hamiltonian as

Hπ = −t
∑
A,�

(
|pz,A〉 〈pz,B,δ�| + hermitian conjugate

)
,

where t is the hopping energy, and δ� are the nearest B neighbor vectors, shown in
Figure 12.1 and given by

δ1 = a

2

(√
3,1
)
, δ2 = a

2

(
−
√

3,1
)

δ3 = a (0, − 1) .
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Expressing the eigenkets |k,A〉 and |k,B〉 as

|k,A/B〉 = 1√
N

∑
R

eik·R |pz,A/B〉 ,

we obtain

Hπ =
∑

k

〈ψk| H(k) |ψk〉 ,

where

|ψk〉 =
[
|k,A〉
|k,B〉

]

H(k) =
(

0 h(k)
h∗(k) 0

)
= h1(k) σ1 + h2(k) σ2 = h(k)·σ (12.1)

h(k) = −t
∑
�

eik·δ� = h1(k)+ ih2(k),

where σ1,σ2 are the Pauli matrices. We note that

h(−k) = −t
∑
�

e−ik·δ� = h1(−k)− ih2(−k) = h(k) (12.2)

since the functions h1(k) and h2(k) are even and odd in momentum, respectively, which
will be important for symmetry analysis. Furthermore, using the anticommutation proper-
ties of the Pauli matrices, we obtain

σ3 H(k) σ3 = −H(k),

which establishes the chiral symmetry (or particle–hole symmetry)2 of the bipartite honey-
comb lattice with nearest-neighbor hopping: if |ψ〉 is an eigenstate with an eigenvalue E,
then σ3 |ψ〉 is an eigenstate with energy −E.

Diagonalization of the Bloch Hamiltonian yields the spectrum of the two π bands of
graphene in tight-binding approximation:

ελ(k) = λt

∣∣∣∣∣∑
�

e−ik·δ�
∣∣∣∣∣ , λ = ±. (12.3)

The + (−) sign in the spectrum corresponds to the conduction (valence) band, and estab-
lishes their particle–hole symmetry: because each carbon atom contributes one p electron
and each electron may occupy either a spin-up or a spin-down state, the lower band λ = −
(the π or valence band) is completely filled, and that with λ = + (the π∗ or conduction
band) completely empty.

2 This symmetry operation, usually denoted by S, is sometimes called sublattice symmetry, hence the notation S. However, in
many instances, it is not realized as a sublattice symmetry, but is simply the product of � and C. Therefore, the term chiral
symmetry to describe the symmetry operation S is sometimes more appropriate.
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At the BZ points K ,

h(K) = 1+ ω + ω2 = 0, ω = eiπ/3.

Thus, the π − π∗ bands are degenerate at these points with energy ε±(K) = εF = 0. The
topology of the Fermi surface (FS) in graphene is defined by the six K Weyl points, where
the conduction and valence bands touch. These special points form two inequivalent sets
K and K ′, with K′ = −K, |K| = 4π/3

√
3a; they cannot be connected by the bis.

K = 2π

3a

(
2√
3
,0

)
, K ′ = 2π

3a

(
− 2√

3
,0

)
.

These points are referred to as Dirac points, motivated by the development described later.
However, we note that the Hamiltonian (12.1) is not periodic in k-space. To obtain a
periodic form, we need apply the following gauge transformation

|k,B〉 → ie−ik·δ3 |k,B〉 → h(k) → ieik·δ3 h(k) = i
[
1+ e−ik·(δ1−δ3) + e−ik·(δ3−δ2)

]
,

where δ1 − δ3 = a1 and δ3 − δ2 = a2, rendering h(k+G) = h(k),G = n1b1 + n2b2.
We may write the eigenstates of the effective Hamiltonian Hπ as the spinors

ψλ
k =
[
aλk

bλk

]
,

the components of which are the probability amplitudes of the Bloch wavefunction on the
two different sublattices A and B. They can be determined by considering the eigenvalue
equation

Hπ ψ
λ
k = λ |h(k)| ψλ

k

ψλ
k =

1√
2

[
e−iφk

λ

]
, φk = Arctan

[ *h(k)
Reh(k)

]
.

ψλ
k is defined up to a gauge. As expected, the spinor represents an equal probability to find

an electron on the A as on the B sublattice because both sublattices are built from carbon
atoms with the same onsite energy.

We note that for 2D systems with honeycomb structure and nondegenerate onsite
sublattice energies, εA 
= εB , we need to add the term

h3 = 	

(
1 0
0 −1

)
= 	σ3,

where εA − εB = 2	. This term opens a gap of magnitude 2	 in the energy dispersion
at the points K and K ′. A typical example is boron nitride, BN, where one sublattice
consists of boron atoms, energy εA, and the other sublattice consists of nitrogen atoms,
energy εB .
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12.2.1 Dirac Fermion Hamiltonian for Graphene

In order to describe the low-energy excitations, namely, electronic excitations with energies
much smaller than the band width 3t , we focus on energies close to the Fermi level. This
effectively means restricting the excitations between states to the vicinity of the K and K ′

points. We expand the energy dispersion around ±K, and consider the states at ±K + q,
with q � |K|, namely

h±(q) = h(k = ±K+ q) = −t
[
1+ e±iK·a1 eiq·a1 + e±iK·a2 eiq·a2

]
� −t

[
1+ e±i2π/3 (1+ iq · a1)+ e∓i2π/3 (1+ iq · a2)

]
= −i

√
3at

2

[(
qx +

√
3 qy
)
e±i2π/3 +

(
−qx +

√
3 qy
)
e∓i2π/3

]
(12.4)

yielding

h+ = 3at

2

(
qx − i qy

)
, h− = −3at

2

(
qx + i qy

)
. (12.5)

Replacing the qs by ks, the linearized Hamiltonian takes the form

Hπ (k) = h̄ vF

⎧⎨⎩kx σ1 + ky σ2, K

−kx σ1 + ky σ2, K ′
(12.6)

which is just the 2D massless Dirac, or Weyl Hamiltonian, having conical dispersion about
the K, K ′ points, as shown in Figure 12.2. Consequently, these points are referred to as
Dirac points, and the neighborhoods of these points are called valleys. The σ matrices
reflect the pseudospin character of the two sublattices. Moreover, we note that the twofold
valley degeneracy survives when considering the low-energy excitations in the vicinity of
the Dirac points. Introducing ξ = ±1 to denote the valleys K and K ′, respectively, we
write the effective low-energy Hamiltonian as

Heff
ξ (k) = ξ h̄ vF

(
kx σ1 + ξ ky σ2

)
= ξ h̄ vF |k|

(
cosφk σ1 + ξ sinφk σ2

)
, (12.7)

Figure 12.2 Graphene band structure in the vicinity of EF , showing the K-points.
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where now tanφk = ky/kx . The energy dispersion still reads

ελξ (k) = λ h̄ vF |k|
independent of the valley pseudospin ξ . The pseudospin direction is associated with the
momentum of the particles. This means that the wavefunctions in the vicinity of Dirac
points represent chiral fermions. One consequence of this is that any backscattering,
namely, scattering of particles from the wavevector k to −k, is suppressed [17]. Particles
have opposite chirality in the K and K ′ valleys.

A more convenient form of the Hamiltonian is obtained by inverting the spinor compo-
nents at the K ′ point

ψ
(K)
k =

[
ψA

k

ψB
k

]
, ψ

(K ′)
k =

[
ψB

k

ψA
k

]
,

which amounts to interchanging the role of the two sublattices. The Hamiltonian now takes
the form

Heff
ξ (k) = ξ h̄ vF

(
kx σ1 + ky σ2

)
. (12.8)

Equation (12.8) suggests that Heff(k) can be written in the more compact form if we define
the double spinor

〈�k| =
[
ψA

k+ ψB
k+ ψB

k− ψA
k−
]

.

In this double-spinor representation, the first two components denote the sublattice compo-
nents at the K point and the last two components those at the K ′ point. This allows us to
write

Heff(k) = h̄ vF τ3 ⊗ σ ·k

τ3 ⊗ σ =
(
σ 0
0 −σ

)
, (12.9)

where σ = (σ1,σ2), and the new pseudospin degree of freedom, represented by the Pauli
matrix τ3, describes the two valleys.

The eigenstates of the Hamiltonian (12.9) are the double-spinors

�λ
k+ =

1√
2

⎡⎢⎢⎢⎢⎣
e−iφk/2

λ eiφk/2

0

0

⎤⎥⎥⎥⎥⎦ , �λ
k− =

1√
2

⎡⎢⎢⎢⎢⎣
0

0

e−iφk/2

−λ eiφk/2

⎤⎥⎥⎥⎥⎦ . (12.10)

In summary, the effective low-energy Hamiltonian of graphene is just the Dirac Hamilto-
nian; it depicts the low-energy continuum limit of the graphene lattice Hamiltonian. The
absence of a mass term qualifies the corresponding Dirac fermions as Weyl fermions; it is
responsible for the high-mobility properties of graphene. We also discern that the presence
of the Dirac, or Fermi, points renders graphene a semimetal: it behaves as a metal because
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of the vanishing gap between the valence and conducting bands, yet it has a small number
of charge carriers due to the vanishing density of states at the Fermi level.

We should clearly distinguish the two types of pseudospin introduced in this section:

(a) The sublattice pseudospin, given by the Pauli matrices σi , has spin-up representing one
sublattice component and spin-down representing the component on the second sub-
lattice. The diagonalization of the graphene Hamiltonian can be regarded as a SU(2)
rotation in the sublattice pseudospin space that yields the band indices λ = ±.

(b) The valley pseudospin Pauli matrix τ3 defines the twofold valley degeneracy and is
only indirectly related to the presence of two sublattices.

12.2.2 Symmetries of the Graphene Bloch Hamiltonian

We consider a honeycomb system with two pseudospin and one spin-1/2 degrees of free-
dom:

(1) Space inversion π̂ :

π̂ : (x,p,s) → (−x, − p,s) .

For a Hamiltonian on a lattice, we write

H =
∑
kn

|k,n〉 H(k) 〈k,n| .

The action of π̂ yields

π̂ H π̂ = π̂
∑
kn

|k,n〉 H(k) 〈k,n| π̂

=
∑
kn

|−k,n〉 H(k) 〈−k,n| =
∑
kn

|k,n〉 H(−k) 〈k,n| .

Effectively, we can consider the action on the Hamiltonian as

π̂ : H(k) → H(−k).

In two dimensions, the inversion operation is3

π̂ : (x,y) →
⎧⎨⎩ (x,−y)
(−x,y)

The action of π̂ on the honeycomb lattice is to interchange the sublattices. This is
achieved by setting

π̂ = σ̂1.

3 Inversion only flips one coordinate so that the determinant of the transformation will be −1. If we flipped both coordinates, the
determinant would be +1 and therefore a rotation. This is a common subtlety seen in even spatial dimensions.



338 Dirac Materials and Dirac Fermions

It would be instructive here to consider the π̂ action when the sublattice symmetry is
broken, as in BN, namely

π̂ H π̂ = kx σ1 σ1 σ1 − ky σ1 σ2 σ1 +m σ1 σz σ1

= kx σ1 + ky σ2 −mσz,

which implies that the mass term (onsite energy anisotropy) clearly breaks parity. The
absence of this term in graphene guarantees the invariance of its Hamiltonian under
inversion, where H(k) = h(k)·σ , and

π̂ :

⎧⎨⎩h(kx,ky) → h(kx, − ky) =
(
h1(kx, − ky), h2(kx, − ky)

)
, h1(even), h2(odd)

(σ1,σ2,σz) → (σ1, − σ2, − σ3), Sublattices A and B interchanged.

Moreover, as seen in Figure 12.1, the transformation (kx,ky) → (kx, − ky) leads to
valley switching π̂ : K → K′

(2) Time-reversal �:

� : (x,p,s) → (x, − p, − s)

Its action on the preceding degrees of freedom is given by

� =
⎧⎨⎩ iσ0 ŝy K, spin-1/2

σ0 K, pseudospin

where σ0 is the identity matrix. The TR operation leaves the sublattice invariant, but
conjugates the wavefunctions amplitudes, and thus for pseudospin it obeys �2 = 1.
The spinless graphene Hamiltonian H(k) is also TR invariant

�H(k)�−1 = H∗(−k) = h1(−k) σ1 + h2(−k) σ ∗2 = h1(k) σ1 + h2(k) σ2 = H(k)

but � switches valleys. We note that at TRIMs, such as the BZ center, the action of �
on the wavefunction yields〈

ψ(0)
∣∣�ψ(0)

〉 = ∫ ψ∗(0) ψ∗(0) 
= 0,

indicating that ψ(0) and �ψ(0) can be the same state, or that ψ(k) and �ψ(k) can
belong to the same band. In contrast, for spin-1/2, �2 = −1, we have Kramers’
degeneracy as a fundamental consequence.

(3) The combination of both symmetries requires that

H(k) = σ1 H∗(−k) σ1,

which forces mass terms proportional to σ3 to vanish.

Finally, in the low-energy effective theory, the representation combines the valley and
sublattice pseudospins. Then the valley switching is implemented by writing

π̂ = σ1 ⊗ τ1, � = σ0 ⊗ τ1 K .
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Generic Two- and Four-Band Hamiltonians

Two-Band Hamiltonians

In the preceding section, we expressed a two-band Hamiltonian in terms of the Pauli
spin matrices. In general, we can express any two-band Bloch Hamiltonian as

H(k) = h0(k) σ0 + h(k) ·σ . (12.11)

The Pauli matrices represent some internal degree of freedom. This degree of freedom
can be a real spin, the sublattice index (A and B sublattices of graphene), or an
orbital index (s and p orbitals defined on the same site). The details of the coupling
are described by the vector h(k) = (h1(k),h2(k),h3(k)) of periodic functions of k.
The structure of the Bloch Hamiltonian H(k) is constrained by the symmetries of the
problem.

All the information about the topology of wavefunctions is encoded in four real
and periodic functions of the momentum, (h0(k),h1(k),h2(k),h3(k)), all defined on
the whole Brillouin torus T2. The function h0(k) simply shifts the eigenvalues without
affecting the eigenstates, and therefore it has no effect on the topological properties of
the material. Nevertheless, this function is very important because it enters the spectrum
dispersion and thus determines the position of the Fermi level.

Four-Band Hamiltonians

Anticipating that we will consider spin–orbit (SO) interactions, we expand our two-band
model to a four-band one. Generally, any 4 × 4 Hamiltonian can be expanded in terms
of the complete basis of the Dirac � matrices as

H(k) = h0(k) I+
∑
i

hi(k)�i +
∑
ij

hij (k)�ij,

where I is the 4 × 4 identity matrix, �i(i = 1 . . . 5) denote the five Dirac � matrices
satisfying

{
�i, �j

} = 2δij , and the 10 commutators of � matrices are given by
�ij =

[
�i, �j

]
/2i. The quantities h0, hi, hij can be constructed according to the

transformation properties of the basis set used under the symmetry operations of the
group of the Hamiltonian.

In Sections 12.3 and 12.4, we will be dealing with two-dimensional systems that repre-
sent different guises of graphene.

12.3 Chern Topological Insulators

Chern insulators identify two-dimensional insulators that break time-reversal symmetry
and exhibit topological properties in their electronic band structure, even in the absence of a
net magnetic field. Consequently, when time-reversal symmetry is broken, we would expect
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that they exhibit phases having Bloch bands with nonzero Chern numbers. Here, we shall
explore how to construct lattice systems with Hamiltonians that engender nonzero Chern
numbers. Such insulators would be termed Chern insulators. We will describe Haldane’s
Chern insulator in detail, and leave other models as exercises.

Our initial goal will be to transform the graphene sheet into a quantum Hall–like phase,
with chiral edge states. The necessary first step is to gap the bulk of the system. We know
that the Dirac points are protected by both sublattice-inversion and time-reversal symmetry.
So we can break one or both of these symmetries, and open energy gaps at K and K ′.

12.3.1 The Trivial Semenoff Insulator

The simplest way to break sublattice symmetry is to assign opposite onsite energies [164]
	 (−	) to the A (B) sites, à la boron nitride, while leaving time-reversal symmetry intact.
The Hamiltonian is then given by

h1(k)σ1 + h2(k)σ2 +	σ3.

This leads to a gapped spectrum,

ε(k) = ±
√
|h(k)|2 +	2.

However, we immediately realize that this leads to a rather boring situation: it preserves
time-reversal symmetry. And with the time-reversal symmetry present, it is impossible to
obtain a nonzero Chern insulator accompanied by chiral edge states. Moreover, taking the
limit |	| � t , we obtain electronic states that are localized on one of the two sublattices A
or B, irrespective of the sign of 	.

12.3.2 Haldane’s Chern Insulator

In his seminal paper [82], Haldane considered a model of a honeycomb lattice subjected to a
periodic magnetic field normal to its 2D plane. Most importantly, the field he proposed has
zero total flux in the unit cell and respects the full symmetry of the lattice. Figure 12.3(a)
depicts a rendering of a staggered flux pattern that can give rise to such a scenario. It is clear
that the presence of this magnetic field does not generate Landau levels, but breaks TRS
in the system, and introduces complex phases e±iφ in the next-nearest-neighbor (NNN)
hoppings.

Origin of the Complex Phase

The complex phase acquired during electron hopping can be seen as a type of an AB effect,
where a vector potential A(x), due to the tailored magnetic field, augments the hopping
amplitude with a multiplicative phase term of the form e−iφ = e−i(e/h̄)

∫
dx·A(x). The

integral is taken along the shortest closed path that connects NNN sites, delineated by the
black and gray triangular loops in Figure 12.3(b). An electron effectively hops along such
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Figure 12.3 Haldane’s model. (a) A possible pattern of the magnetic flux. (b) Next-nearest-neighbor
hopping t2. The direction of the arrows indicate the direction in which the hopping has a phase eiφ

or e−iφ . (c) Closed path of nearest-neighbor (NN) hoppings (blue arrows), indicates a zero net flux
flowing through the loop.

a loop on one sublattice and accumulates a phase proportional to the flux of the magnetic
field through the corresponding triangle. Since this phase is opposite for electron hopping
on the two sublattices, the total field acting on electrons averages to zero within the unit
cell. By contrast, Figure 12.3(c) shows that a closed loop of NN hoppings (black arrows)
encircles the full hexagon, and hence experiences a zero net flux, indicating that an NN
hopping does not acquire a phase. By Fourier transforming the lattice Hamiltonian to a k-
space representation, Haldane showed that the Chern number of this model equals +1 for
−π < φ < 0, and −1 for 0 < φ < π . The point φ = 0 can be seen to give rise to Weyl
points in (k;φ)-space.

Another important ingredient of Haldane’s model is the breaking of inversion symmetry
via a Semenoff-like staggered sublattice potential. It is by breaking both TR and inversion
symmetries of the honeycomb lattice, and opening gaps in the band structure at the K
and K′ momentum points, that Haldane could demonstrate the possibility of observing
a Hall conductivity of σxy = ±e2/h, under certain conditions. Conceptually, this model,
proposed by Haldane in 1988, marked the beginning of tremendous advances in topological
condensed matter physics.

The Model Hamiltonian of Haldane

The Hamiltonian of the Haldane model can be written as

H = t1
∑
〈ij 〉

(
|A,i〉 〈B,j | +HC

)
+ t2

∑
〈〈ij 〉〉

(
eiφ |A,i〉 〈A,j | + e−iφ |B,i〉 〈B,j |

)
+	

∑
i

(
|A,i〉 〈A,i| − |B,i〉 〈B,i|

)
. (12.12)
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Figure 12.4 The sign convention for the acquired phases for NNN hoppings. The sign structure
assumes that hopping in the counterclockwise direction has a +φ, while the clockwise direction
leads to a −φ.

The summations 〈ij〉 and 〈〈ij〉〉 are over NN and NNN, respectively. The sign structure
of the phases φ is shown in Figure 12.4. Transforming to k-space, we obtain the Bloch
Hamiltonian

H(k) =
3∑

i=0

hi(k) σi = h0(k) σ0 + h(k)·σ

h0(k) = 2t2 cos(φ)
3∑

i=1

cos
[
k · vi

]
, h1(k) = t1

[
cos(k · a1)+ cos(k · a2)+ 1

]

h2(k) = t1

[
sin(k · a1)+ sin(k · a2)

]
, h3(k) = 	+ 2t2 sin(φ)

3∑
i=1

sin
[
k · vi

]
.

a1 and a2 were defined for graphene, and

v1 = δ2 − δ3, v2 = δ3 − δ1, v3 = δ1 − δ2.

The eigenvalues and eigenfunctions are

ε(k) = h0(k)± |h(k)| = h0(k)± h(k)

|h,±〉 = 1√
2h(h∓ h3)

[
h3 ± h

h1 − ih2

]
. (12.13)

We ignore the term h0(k), since it just shifts the energies and removes the electron–hole
symmetry of the original NN model. Exploring the symmetries of this Hamiltonian, we find
the following:

• If both 	 and t2 sinφ vanish, the bands touch at the BZ corners, K or K ′, where the
symmetry group of the wavevector is the subgroup C3v. It contains a reflection that
interchanges the A and B sublattices. This group has a two-dimensional irreducible
representation, and the degenerate states at these points belong to this representation.
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K = 2π

3a

(
2√
3
,0

)
,

K ′ = 2π

3a

(−2√
3
,0

)

Figure 12.5 Gap closings for the Haldane Chern insulator occur at both K and K ′ points when both
	 and t2 sinφ vanish. Gap closing occurs at either K or K ′ when |	| = 3

√
3 t2 sinφ.

• The degeneracy of the bands at these points is lifted either by nonzero 	 or nonzero
t2 sinφ, either of which reduce the unitary subgroup to C3, which has only one-
dimensional irreducible representations.

• The terms h1 σ1 and h2 σ2 remain invariant under . However, we note that h3(k) =
h3(−k) holds only for φ = 0,π .

At the K and K ′ points (se Figure 12.5),

3∑
i=1

cos
[
K · vi

]
= −3

2
;

3∑
i=1

sin
[
±K · vi

]
= ∓3

√
3

2

and the Hamiltonian reduces to⎧⎨⎩H(K) =
[
	+ 3

√
3 t2 sinφ

]
σ3

H (K′) =
[
	− 3

√
3 t2 sinφ

]
σ3

⇒ 	
(
σ3 ⊗ τ0

)
+ 3
√

3t2 sinφ
(
σ3 ⊗ τ3

)
(12.14)

We note that the corresponding eigenkets at each K or K ′ point in the {A,B} basis will
always be

|1〉 =
[

1
0

]
, |2〉 =

[
0
1

]
The eigenvalues will depend on the quantities 	, t2 and φ, and we have

1. |	| > 3
√

3 t2 sinφ: the system is gapped, with the gaps 	ε(K) and 	ε(K′) having the
same sign.

2. |	| = 3
√

3 t2 sinφ: the system has a single vanishing gap either at K (	 < 0) or
K ′ (	 > 0).

3. |	| < 3
√

3 t2 sinφ: the system is again gapped. Taking 	 > 0, we obtain⎧⎨⎩ 	ε(K) = 2
[
3
√

3 t2 sinφ +	
]
> 0

	ε(K′) = −2
[
3
√

3 t2 sinφ −	
]
< 0
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The opposite signs of the gaps at K and K ′ reflect an interchange of the two eigenstates,
locations with respect to the gap! This is referred to as a band inversion. Such a band
inversion presents an intertwining, or entanglement, of the states as we move from,
say, K to K ′. We cannot go continuously from this case 3 to case 1 without closing
the gap. The transition from a topological insulator to a trivial insulator is marked by a
semimetal state, where the gap closes at one Dirac-point type when 	 = ±3

√
3 t2 sinφ.

In the trivial insulating phase, Dirac points have identical associated mass sign, and the
Chern number goes to zero.

Mapping to the Two-Level System

The Haldane Hamiltonian has the form h·σ , which resembles that of the two-level system of
Chapter 11. By establishing this analogy, we realize that the physics of the Haldane problem
is actually governed by the Dirac monopole. To perform the mapping, we introduce polar
and azimuthal angles, (θk, ϕk), that define the direction of h(k), namely,

cos θk = h3(k)
|h(k)|, tanϕk = h2(k)

h1(k)
.

This allows us to express the eingenvectors as

|h,−〉 =
(
u
(1)
−
u
(2)
−

)
=
(

sin θk
2 e−iϕk

− cos θk
2

)
; |h,+〉 =

(
u
(1)
+
u
(2)
+

)
=
(

cos θk
2 eiϕk

sin θk
2

)

and to write the occupied state projection 4 in terms of the unit vector

ĥk = h(k)
h(k)

=
⎛⎝cosϕk sin θk

sinϕk sin θk

cos θk

⎞⎠ .

ĥk resides on the unit sphere S2, while k spans the two-dimensional BT T2.

4 We note that

ĥk·σ =
h1(k)
h(k)

σ1 +
h2(k)
h(k)

σ2 +
h3(k)
h(k)

σ3 =
h1(k)√

h2
1(k)+ h2

2(k)

√
h2

1(k)+ h2
2(k)

h(k)
σ1

+ h2(k)√
h2

1(k)+ h2
2(k)

√
h2

1(k)+ h2
2(k)

h(k)
σ2 +

h3(k)
h(k)

σ3

= cosϕk sin θk σ1 + sinϕk sin θk σ2 + cos θk σ3 =
(

cos θk sin θk e
iϕk

sin θk e
−iϕk − cos θk

)

|ψ−〉 〈ψ−| =
⎛⎝sin

θk
2 e−iϕk

− cos
θk
2

⎞⎠(sin
θk
2 eiϕk − cos

θk
2

)

=
⎛⎝ sin2 θk

2 − cos
θk
2 sin

θk
2 eiϕk

− cos
θk
2 sin

θk
2 e−iϕk cos2 θk

2

⎞⎠ = 1

2

[
σ0 − ĥk·σ

]
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Figure 12.6 The map k → ĥk: for |	| > 3
√

3 t2 sinφ, both K, K ′ lie at the north pole (	 >

3
√

3 t2 sinφ), according to (12.14), and the ĥks essentially fluctuate around the north pole, as shown
in (a), so the map can be continuously deformed to a point – the north pole. The same scenario plays
around the south pole for 	 < −3

√
3 t2 sinφ. Essentially, the ĥk-vectors can be combed straight

up or down. (b) For |	| < 3
√

3 t2 sinφ, the ĥk-vectors around K map to the north pole, and those
around K ′ map to the south pole. The entire sphere is covered, and that gives a Chern number of 1.

The mapping k → ĥk for the gapped system is well defined over the entire BZ, since
h(k) 
= 0 everywhere, and it captures the topological properties of the Hamiltonian. We
find that for 	 > 3

√
3 t2 sinφ, the image of T2 on S2 only covers a portion of the upper

hemisphere, as depicted in Figure 12.6(a), hence the Chern number CH = 0. In contrast, for
|	| < 3

√
3 t2 sinφ it covers the whole S2, and hence yields CH = 1; see Figure 12.6(b).

In that sense, the Chern number becomes a winding number that counts how many times
the surface traced by ĥk wraps around the origin (0,0,0) of S2, when k spans T2.

Actually, the Berry phase that is accumulated when going along a closed-loop C in k-
space can be easily related to that picked up when going along the image loop of C on a
unit sphere S2.

Berry Curvature Associated with h(k)

We use

∂

∂k�
|h,±〉 =

∑
i

∂

∂hi
|h,±〉 ∂hi

∂k�
, � = 1,2,3

to write the Berry connection as

A
(±)
� = 〈h,±| ∂k� |h,±〉 =

∑
i

∂hi

∂k�
a
(±)
i (h)

a
(±)
i (h) = i 〈h,±| ∂hi |h,±〉 The two-level Berry connection.
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The Berry curvature is then written as

F(±)
xy = ∂kx A

(±)
y − ∂ky A

(±)
x

= ∂

∂kx

(∑
i

∂hj

∂ky
a
(±)
j (h)

)
− ∂

∂ky

(∑
i

∂hi

∂kx
a
(±)
i (h)

)

=
∑
ij

∂hi

∂kx

∂hj

∂ky

[
∂a

(±)
j

∂hi
− ∂a

(±)
i

∂hj

]
=
∑
ij

∂hi

∂kx

∂hj

∂ky
f
(±)
k εijk

= ∓ 1

h3
h · ∂kxh ∧ ∂kyh,

where f (±) is just the Berry curvature of the two-level Hamiltonian.
We then obtain the following expression for the Chern number:

C = 1

2π

∫
T2

dk F(±)
xy (k) = ∓ 1

2π

∫
T2

dk
1

h3
h · ∂kxh ∧ ∂kyh.

Considering ĥ(k) : T2 → S2 as a mapping from the Brillouin zone to the unit sphere, the
integrand 1

h3 h · ∂kxh ∧ ∂kyh is simply the Jacobian of this mapping. Thus the integration

over it gives the total area of the image of the Brillouin zone on S2, which is a topological
winding number with quantized value, the Chern number.

We can now construct the phase diagram in Figure 12.7.
The Hall conductance was expressed in terms of an integral of Berry’s curvature over the

Brillouin torus in Chapter 11, and thus can be expressed in terms of the Chern number as

σxy = e2

h
C.

Interface between Topologically Distinct Insulators: Chiral Ddge States

We now describe how fermionic edge modes emerge in the gapless interfacial region
between two topologically distinct insulators, and are confined between the two fully
gapped bulk insulating regions. To clearly illustrate this scenario, we consider the edge
states located at the interface between a parity-breaking Semenoff, phase and a Haldane

Figure 12.7 Phase diagram of the Haldane model.
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phase, with additional TRS breaking, and show how they are protected. In this 2D system,
the edge modes run along the 1D interface [42].

In the model, the Semenoff insulator fills the half-plane x < 0, while the Haldane
insulator occupies the half-plane x > 0. The interface lies along the y-direction. We will
use the low-energy effective Hamiltonian that is valid in the vicinity of K and K ′, since
we are interested in the ensuing zero modes residing near the interface x = 0. Because of
translational invariance along the y-direction, the wave equation becomes(−ih̄vF σ1τ3∂x + h̄vF kyσ2 +m(x)

)
� = ε � (12.15)

m(x) = 	(−x) σ3 +mφ (x) σ3τ3,

where is the Heaviside step function. This simple model with a sharp step at the boundary
is correct as long as the decay length scale of the edge state in the interfacial region,
h̄vF /max(	,mφ), is much larger than the lattice length scale (lattice constant). We note
that a solution at E = 0 and ky = 0 always exists. To show that, we multiply both sides
of (12.15) with iσ1τ3, and obtain

h̄vF ∂x� = −iσ1τ3 m(x)� =
⎧⎨⎩ h̄vF ∂x� = −σ2 mφ �, x > 0

h̄vF ∂x� = −σ2τ3	�, x < 0
(12.16)

With σ2 having eigenvalues ±1 and τ3 representing the valley sign ξ , we obtain bounded
solutions sign(mφ), x > 0 and −sign(ξ	), x < 0. There will be a zero mode at the
boundary, only if the two preceding solutions correspond to the same eigenvalue of σ2,
namely if

sign(mφ) = −sign(ξ	).

This equality is always valid in one valley determined by the relative signs of mφ and 	.
Thus, a zero mode always exists in the valley ξ = −sign(mφ	), irrespective of the choice
of masses.

We obtain the wavefunction and dispersion E(ky) of the edge mode (shown in
Figure 12.8), by allowing E 
= 0 and ky 
= 0 in (12.15). We note that the zero mode

At edge

charge

current

Chiral edge states

Figure 12.8 Left: edge mode wavefunction � at interface between a Sememoff and Haldane
insulators. Right: Chiral right-propagating dispersion along the interface.
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at ky = 0 is also an eigenstate of h̄vF kyσ2, which extends its validity to finite energies and
kys. This allows us to write the edge mode dispersion as

ε(ky) = −sign(ξ	) h̄vF ky = sign(mφ) h̄vF ky .

It is obvious that the edge mode is chiral, and that it appears in the valley that undergoes a
mass inversion at the interface.

We note that for large 	, the Semenoff insulator can represent the vacuum. We then find
that a 2D square of Haldane insulator, of edge length L, surrounded by a large 	 Semenoff
insulator, will have a 1D edge chiral edge mode that circulates clockwise if sign(mφ	)

is positive, and anticlockwise for negative mφ	. We also note that if we assume that the
vacuum is represented by a large positive 	, then the sign of mφ	 is simply the sign of
mφ = 3

√
3t2 sin(φ) which is set by the chirality of the flux pattern in the microscopic

Haldane model.

12.4 Quantum Spin Hall Insulator: The Kane–Mele Model

In 2004–2005, it was realized that TR-invariant 2D electronic insulator systems may exhibit
new topological invariants, since the Chern number must vanish for TR symmetric sys-
tems. This topological invariant turned out to be the two-valued Z2 invariant derived in
Chapter 11. Insulators were then classified into two categories: ordinary or trivial insula-
tors that do not have protected edge state, and quantum spin Hall systems or topological
insulators with a bulk topological invariant that protects edge states.

The idea that sparked this development was the quantum spin Hall effect introduced in
Chapter 8 with the aid of a simple model. It satisfied TRS, having zero net Chern number
and vanishing edge charge current. However, the counter-propagating edge electrons have
opposite spins, and produce a nonzero spin current, hence the quantum spin Hall effect.
We note that in such a model, spin-rotation invariance, as defined by SU(2), is clearly
broken, yet, Sz is a conserved quantum number. Such a setting can be realized by spin–orbit
coupling (SOC) arising from intraatomic terms like L·S, specifically, Lz Sz. For an electron
of fixed spin, the coupling to the orbital motion Lz mimics the coupling to a constant
magnetic field, recalling that the orbital motion Lz effectively generates a magnetic dipole
moment. Because SOC is invariant under both TR and inversion, it opens a gap but respects
Kramers’ spin degeneracy of the energy bands.

In 2005, C. L. Kane and E. G. Mele proposed a variant of the Haldane model that
respects TRS and includes the spin via spin–orbit interactions. Actually, their proposal
launched the field of topological insulators and triggered its rapid expansion.

To convert the graphene semimetal into an insulator, we need to open a gap at the
K and K ′ points. We have noted earlier that this can be achieved if we add a term ∝
σ3 to the sublattice pseudospin matrices. Moreover, to realize this scenario, we need a
spin-dependent term that couples to the two copies of the QHE model. We consider the
combination for the K point, which produces gaps of opposite signs for the two spins,
namely,
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σ3 ⊗ s3 =
(
σ3 0
0 −σ3

)
.

Next, we explore the action of � on the combined sub-lattice and spin spaces:

� = σ0 ⊗ is2 K =
(

0 −σ0

σ0 0

)
.

We find that the term ∝ σ3 ⊗ s3 transforms as

�
(
σ3 ⊗ s3

)
�−1 =

(
0 −σ0

σ0 0

) (
σ3 0
0 −σ3

) (
0 σ0

−σ0 0

)
=
(

0 −σ0

σ0 0

) (
0 σ3

σ3 0

)
=
(−σ3 0

0 σ3

)
= −σ3 ⊗ s3.

Since under� : K → K ′, to preserve TR invariance, namely,�H(k)�−1 = H(−k), we
need the gap opening term at K ′ to be � σ3 ⊗ s3 �

−1 = −σ3 ⊗ s3. This can be achieved
if we incorporate the valley degree of freedom, τ3, as proposed by Kane and Mele, namely,

Hso = λso σ3 ⊗ τ3 ⊗ s3, (12.17)

where λso is the SO coupling magnitude. Adding a term of this form gives a system of two
decoupled Hamiltonians – one for spin-up and one for spin-down. According to (12.14),
each of these subsystems corresponds to Haldane’s model with 	 = 0, λso = 3

√
3t2 sinφ

and gives a nontrivial topology as in case 3 of the Haldane model. The spin degree of
freedom made it possible to have an effective magnetic field for each spin without break-
ing TRS.

Before we complete the construction of the Kane–Mele Hamiltonian, we shall dis-
cuss how to properly construct terms that represent both intrinsic and Rashba-type SOI
in graphene.

12.4.1 Spin–Orbit Couplings in Graphenelike Systems

Intrinsic Spin–Orbit Coupling

The intrinsic SOC (ISOC) Hamiltonian is HSOC ∝ L·σ . It induces a change in the orbital
magnetic quantum number, m, together with an electron spin flip. Hence, the relevant ISOC
exists either among the 2p orbitals or among the unoccupied 3d orbitals of carbon. Its
magnitude ξp (ξd) is of the of order 4 (1) meV, as determined from the SOC overlap integral
between 2pz (3dxz) and 2px (3dyz) orbitals.

ISOC satisfies all D3h symmetries of the graphene lattice. Reflection symmetry with
respect to the lattice plane restricts the intersite SOC to the normal direction, thus only
Lzσz, a spin-conserving term, can acquire a nonzero value. However, another reflection
symmetry forces this term to vanish for NN π orbitals: a mirror reflection in a vertical plane
bisecting the NN bond leaves the 2pz wavefunctions unchanged, but changes the sign of
the angular momentum Lz. This symmetry precludes direct spin-dependent or spin-flipping
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Figure 12.9 NNN hopping paths through s, p orbitals (left), and through d orbitals (right).
Interorbital hoppings are shown as black arrows, and orbital spin shown by the gray arrows on
the orbitals. The opposite sign for the clockwise (a) and the anticlockwise (b) effective hopping
is determined by the signs of the two SOCs of the p or d orbitals. Figure and caption from [110].

NN hopping terms, yet such an effective spin-conserving SOC term may survive in NNN
hopping. Moreover, we note that ISOC acts only in the vicinity of the atom core. Thus,
to obtain an effective nonvanishing SOC contribution to the π -band, we need to consider
hopping to NN dxz, dyz orbitals, or onsite SOC involving spin-flip |pz ↑〉 →

∣∣px,y ↓〉 from
the π -band to the σ -band; the latter extends our calculations to second order in the SO
interaction. These processes lead to an effective NNN contribution to the π -Hamiltonian,
represented by the virtual transition mechanisms shown in Figure 12.9 and given by [110]∣∣∣pAz ↑〉 SOC−−−→

∣∣∣pAy ↓〉 Vspσ−−−→
∣∣∣sB ↓〉 Vspσ−−−→

∣∣∣pA′x ↓
〉
SOC−−−→

∣∣∣pA′z ↑
〉

∣∣∣pAz ↑〉 Vpdπ−−−→
∣∣∣dBxz ↑〉 SOC−−−→

∣∣∣dByz ↑〉 Vpdπ−−−→
∣∣∣pA′z ↑

〉
.

The ISOC contribution of the p-orbitals channel involves two spin-flip processes, and
thus leads to NNN electron hopping with no net spin-flip. Since it is ∝ ξ2

p, it is negligibly
small – it produces a gap of about ∼ 1μeV. The contribution via the d orbitals is linear
in ξd , since it involves a spin-conserving onsite SOC transition between dxz, dyz orbitals,
and gives a gap of about 23 μeV. These NNN spin-conserving hoppings introduce complex
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Table 12.1 Matrix elements of the SOC operator L · s in the basis of s-,
p-, and d-directed orbitals.

Orbital s px py pz

s 0 0 0 0

px 0 0 −is3 is2

py 0 is3 0 −is1
pz 0 −is2 is1 0

Orbital dxy dx2−y2 dxz dyz dz2

dxy 0 2is3 −is3 is2 0

dx2−y2 −2is3 0 is2 is1 0

dxz is1 −is2 0 −is3 i
√

3s2

dyz −is2 −is1 is3 0 −i√3s2

dz2 0 0 −i√3s2 i
√

3s2 0

is1 =
(

0 i

i 0

)
, is2 =

(
0 1
−1 0

)
, is3 =

(
i 0
0 −i

)
.

phases in the hopping process. We note from Figure 12.9 and Table 12.1 that the SOC
induced transitions give rise to〈

pz

∣∣∣HSOC

∣∣∣px〉〈py∣∣∣HSOC

∣∣∣pz〉 ∝ (−is2) (is1) = is3,〈
pz

∣∣∣HSOC

∣∣∣py〉〈px∣∣∣HSOC

∣∣∣pz〉 ∝ (is1) (is2) = −is3

〈dxz|HSOC

∣∣dyz〉 ∝ −is3,
〈
dyz
∣∣HSOC |dxz〉 ∝ is3,

which are analogous to the key ingredient of the Haldane model.
Seen from an alternative perspective [29], we discern two types of hoppings in

Figure 12.10: for an electron that hops on the A-sublattice with momentum K, the nearest
B-site is on the left of its path. Similarly, for hopping on the B-sublattice with momentum
K′, (B, K′), the nearest A-site is on the left. For the other state hoppings (A, K′) and
(B, K), the nearest-neighbor sites are on the right. If we think of the influence of the
potential gradient of the nearest-neighbor atom (electric field E) on an electron moving
with momentum K as a Rashba field E × k, it is clear that SOC will lower the energy for
one type of states, (A, K) or (B, K′), for one spin direction (↑). For the other cases, (A, K′)
or (B, K), the other spin direction (↓) will be preferred. We can formalize this effect by
introducing a factor νij , as

νij = 2√
3

dik × dkj = ±1,
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Figure 12.10 The Brillouin zone (left) indicating the position of the K (black) and K′ (gray) points.
Hopping processes for electrons with momentum K and K′ are indicated by arrows (right).

where i, j are NNN, while dik, dkj are unit vectors along the two bonds that connect i to j
through their NN k. This would modify (12.17) to read

Hintrinsic = iλSO

∑
〈〈ij 〉〉

νij σ3 ⊗ τ3 ⊗ s3.

In the spirit of the Haldane model, we can view the role of ISOC as effectively producing
some sort of intrinsic rotation of the electron via the hopping process: all electrons of one
spin direction pick up one sense of rotation, while all electrons of opposite spin direction
rotate in the opposite way. The factor νij describes the chirality of the circulating electron,
whereby the orbital momentum L in L · S coupling is associated with the chirality. Such
rotations produce opposing currents in the two spin channels. In the system bulk, such
currents are hard to follow, but can be cast into topological numbers (a spin Chern number).
However, at the boundary it leads to a quantized spin conductivity, the quantum spin Hall
effect (QSHE).

Rashba Spin–Orbit Coupling

It is quite unlikely that the spin–orbit coupling is only manifest through the spin-conserving
intrinsic terms, which produce two decoupled copies of the Haldane insulator. Other spin–
orbit coupling terms, which mix spin components, should also be present. What we need
to explore is whether the edge states with spin helicity will survive the ensuing mixing
between the two copies of the Haldane model. As we will see, in the Kane and Mele model
the counterpropagating edge states remain quite robust as long as the bulk is gapped and
TRS is obeyed. Mixing the two spin directions, together with the concomitant violation of
the conservation of Sz, can actually be achieved by a Rashba term,5 which emerges in the
presence of a substrate or a perpendicular electric field. It turns out that when the Rashba
spin-orbit coupling (RSOC) is increased, the bulk gap at the K, K ′ points decreases.
However, as long as the bulk gap is finite, the helical edge states remain gapless (metallic).
The bulk spectrum becomes gapped when RSOC exceeds ISOC.

5 see Section 4.4.
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A Rashba term∝ (p× s)· ẑ is allowed, if the mirror symmetry about the graphene plane
is broken, either by a perpendicular electric field or by interaction with a substrate. For low
energies, the coupling at the K-point reduces to

(σ×s) · ẑ = σ1s2 − σ2s1.

At K ′, we find

� (σ1s2 − σ2s1)� = Iσ ⊗ is2 K (σ1s2 − σ2s1) Iσ ⊗ is2 K = −σ1s2 − σ2s1.

Combining the Rashba Hamiltonians at K and K ′, we obtain

HR ∝ σ1τ3s2 − σ2τ0s1.

The inclusion of the Rashba term leads to suppression of s3 spin conservation, since it cou-
ples up- and down-spins. Moreover, unlike in semiconductor heterostructures (discussed in
Chapter 4), the coupling at low energies in graphene does not depend on the magnitude of
the electron momentum, as the electrons at K (K ′) have a constant velocity.

To simulate the Rashba interaction, we introduce an external potential eEz, which gives
rise to an onsite single-particle atomic Stark effect. This field couples the pz orbital to either
the s or the dz2 orbitals, on the same atom, via the matrix elements eE 〈s| z |pz〉 = eEzps

and eE
〈
dz2

∣∣ z |pz〉 = eEzpd .
The onsite interorbital Stark coupling allows for a spin-flip RSOC process to be manifest

in an effective hopping connecting two NN pz orbitals of opposite spins. The effective NN
spin-flip hopping is achieved via the virtual processes shown in Figure 12.11 and given
by [110]:

Figure 12.11 Rashba SOC mechanism hopping paths are shown as black arrows, orbital spins as gray
arrows. The effective hopping is between nearest neighbors. (a) The dominant p-orbital contribution.
(b) The negligible d-orbital contribution. For clarity, the orbitals of the same atoms are separated
vertically, according to their contribution either to the bands (bottom) or to the bands (top). Figure
and caption from [110].
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∣∣∣sA ↑〉 Vspσ−−−→

∣∣∣pBy ↑〉 SOC−−−→
∣∣∣pBz ↓〉 (12.18)∣∣∣pAz ↑〉 Stark−−−→

∣∣∣dA
z2 ↑
〉
SOC−−−→

∣∣∣dAyz ↓〉 Vpdπ−−−→
∣∣∣pBz ↓〉 .

In contrast to the ISOC case, the contribution of the d orbitals channel is negligible, for the
following reasons:

1. The Stark coupling of the pz and dz2 orbitals is much smaller than that of pz to s orbitals.
2. The d orbitals SOC appears to be an order of magnitude smaller than that of the p

orbitals.
3. Hopping between p and d orbitals, Vpdπ , is also smaller than the one between p and s

orbitals, Vspσ .

Thus, the contribution of the sequence of the hoppipaths that include d orbitals is quite
small. Figure 12.11 shows that in the p-channel, the character of the intermediate p-orbital
on the B-site involved in the NN Vspσ -hopping will actually depend on the direction of the
vector along which the hopping occurs. This, in turn, will determine the components of the
s operator involved. With this in mind, we can write the expression for the Rashba term in
the compact form

Hlattice
R = λR

∑
〈ij 〉

c
†
i

(
s× d̂ij

)
cj,

where d̂ij is the unit vector along the bond direction, and ci = [ci↑,ci↓].6

12.4.2 Kane–Mele Hamiltonian

The preceding presentation allows us to write the complete Kane–Mele lattice Hamilto-
nian as

HKM

= t
∑

<ij>,s

(|A,i,s〉 〈B,j,s| +HC)+	
∑
i,s

(|A,i,s〉 〈A,i,s| − |B,i,s〉 〈B,i,s|)

+ iλso
∑
�ij�

νij

(
[|A,i, ↑〉 |A,i, ↓〉] s3

[
〈A,j, ↑|
〈A,j, ↓|

]
+ [|B,i, ↑〉 |B,i, ↓〉] s3

[
〈B,j, ↑|
〈B,j, ↓|

])

+ iλR
∑
<ij>

[|A,i, ↑〉 |A,i, ↓〉] (s× d̂ij
) [〈B,j, ↑|
〈B,j, ↓|

]
. (12.19)

The second term represents the Semenoff staggered potential.

6 With a complete set of vectors |μ〉 in Hilbert space, we can expand a potential operator as

V (x) =
∑
μν

|μ〉 〈μ| V (x) |ν〉 〈ν| =
∑
μν

〈μ| V (x) |ν〉 |μ〉 〈ν| =
∑
μν

〈μ| V (x) |ν〉 c†
μ cν,

where c†
μ, cν are creation and annihilation operators for states μ and ν, respectively.
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We have two sites per unit cell and two spin orientations. The tensor product of a
sublattice basis (A, B) and a spin basis (↑ , ↓) provides the basis

(A, B) ⊗ (↑ , ↓) =
(
ψA↑,ψB↑,ψA↓,ψB↓

)
,

a four-spinor representation. We use the Dirac gamma matrices �i, i = 1 . . . 5, which
are constructed as tensor products of Pauli matrices that represent the two-level systems
associated with the sublattice degree of freedom and the spin of electrons. They are given by

�1 = σ1 ⊗ s0, �2 = σ3 ⊗ s0 �3 = σ2 ⊗ s1,

�4 = σ2 ⊗ s2, �5 = σ2 ⊗ s3, s0 = σ0 = I2

and the commutators �ij = 1
2i

[
�i, �j

]
.

The Bloch Hamiltonian HKM(k) will consist of the following:

• −t
∑
〈ij 〉

c
†
i cj →

⎧⎨⎩ −t
[
1+ cos(x − y)+ cos(x + y)

]
�1 + 2t cos(x) sin(y) �12

= h1(k) �1 + h12(k) �12

�12 = 1

2i
[�1, �2] = −σ2 ⊗ s0

• 	
∑

i,s

(
|A,i,s〉 〈A,i,s| − |B,i,s〉 〈B,i,s|

)
→ 	�2 = h2(k) �2

• iλso
∑
�ij�

. . . . . . →
⎧⎨⎩ 2λso −

[
2 sin(2x)− 4 sin(x) cos(y)

]
�15

= h15(k) �15

�15 = 1

2i
[�1, �5] = σ3 ⊗ s3,

where x = kxa
2 and y =

√
3kya
2 . All the preceding terms are invariant under mirror

symmetry through the graphene plane, but the Semenoff term breaks spatial inversion
within the plane. The last and most involved term to consider is the Rashba contribution,
which is allowed in the absence of the mirror symmetry through the graphene plane:

HR = iλR
∑
<ij>

[|A,i, ↑〉 |A,i, ↓〉] (s× d̂ij
) [〈B,j, ↑|
〈B,j, ↓|

]

= iλR
∑

<ij>,k�

[|A,i, ↑〉 |A,i, ↓〉] εzk� sk d�ij [〈B,j, ↑|〈B,j, ↓|
]

= λR

{[
1− cos(x) cos(y)

]
�3 −

√
3 sin(x) sin(y) �4 + cos(x) sin(y) �23

+
√

3 sin(x) cos(y) �24

}
= h3(k) �3 + h4(k) �4 + h23(k) �23 + h24(k) �24

�23 = 1

2i
[�2, �3] = −σ1 ⊗ s1

�24 = 1

2i
[�2, �4] = −σ1 ⊗ s2.
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The five Dirac matrices �i are even under �, while the 10 commutators are odd,

��i �
−1 = �i

��ij �
−1 = −�ij,

whereas the coefficients in the Kane–Mele Hamiltonian transform as

hi(−k) = hi(k)

hij (−k) = −hij (k),
which preserves TRS.

The diagonalization of HKM(k) will yield four bands.

Two copies of the Haldane Hamiltonian: We note that in the absence of the Rashba term,
λR = 0,

[HKM, s3] = 0,

and the model can be decoupled into two subsystems for spin-up (s3 = 1) and spin-down
(s3 = −1), respectively, with low-energy valley dispersion

ε(k) = ±
√
(h̄vF k)2 + (	so −	)2

	so = 3
√

3λso

and an energy gap of 2 |	so −	|. The Hamiltonian for spin-up (spin-down) electrons is
just the Haldane Hamiltonian, with λso = 3

√
3t2 and φ = +π/2 (−π/2):

H =
(
H↑

H↓

)
=
(
HHaldane

H∗Haldane

)
.

Hence many properties can be deduced from our knowledge of the Haldane model for
spinless fermions. Most importantly, the gaps at K and K ′ have opposite signs, as shown
in Figure 12.12, which establishes the topological nontriviality of the system. Moreover,
taken separately, the copies for the s3 = ±1 spins violate time-reversal symmetry, and will
have Chern numbers ±1, with corresponding Hall conductance of σxy = ±e2/h. Since the

E
(k

)

–

E
(k

)

–

Figure 12.12 Low-energy dispersion for the Kane–Mele insulator λR = 0, λso 
= 0. It depicts two
time-reversed copies of a Haldane insulator, one for ↑-spin (left) and ↓-spin (right).
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signs of the gaps are opposite for opposite spins, an electric field will induce opposite edge
currents for the opposite spins, leading to a spin current Js = (h̄/2e) (J↑−J↓) characterized
by a quantized spin Hall conductivity

σ sH =
h̄

2e

[
e2

h
−
(−e2

h

)]
= e

2π
.

Although the total Chern number cannot be nonzero, the spin projections |↑〉 , |↓〉 are good
eigenstates. We can use the Chern number Cs in each spin sector to characterize the phases
and define

ν = C↑ − C↓
2

mod 2 ∈ Z2

as a good topological index.
We find that the global Kane–Mele system has a nonchiral, helical edge state consisting

of two spin-filtered counterpropagating gapless edge modes. Within this spin-conserving
model, the emerging edge states inherit the topological character of the Haldane model edge
states. We note that what creates the edge states is the presence of a topologically nontrivial
band structure in the bulk, characterized by band inversion between K and K ′, which
is induced by the ISOC. Moreover, this ISOC also introduces the helicity and maintains
the transverse spin conductance, since it distinguishes between ↑ and ↓ in real space (see
Figure 12.13.).

Spin nonconserving Rashba term: The inclusion of the Rashba term removes the spin
conserving feature of the previous model, and lifts the quantization of the spin Hall con-
ductance. However, as long as 	so > λR , we still get a QSH phase with topological edge
states. The electronic bands near K (K ′) are now modified to

εμν(k) = μλR + ν

√
(h̄vF k)2 + (	R − μ	so)2

	R = 3λR,

where μ,ν = ±1 are band indices. For simplicity, we set 	 = 0. The electron bands have
ν = +1, and the hole bands ν = −1. At K (K ′), the energy is μλR + ν |	so − μλR|.

At edge

charge

current

Chiral edge states

Figure 12.13 Left: edge-state dispersion for single Haldane copy, showing chiral character. Right:
Kane–Mele insulator λR = 0, λso 
= 0, with two time-reversed copies of a Haldane insulator,
showing helical spin-filtered edge-state dispersion.
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Figure 12.14 Dispersion along the �-K direction for the Kane–Mele model: : (a) λR = λv =
0, λso = t/3
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Figure 12.15 Phase diagram of the Kane–Mele model for 	/λSO > 0.

Figure 12.14 shows the modification to the band dispersion for λR = 0, λso = t in
(a), and λR = 0.2t, λso = 0 in (b). It clearly shows that the intrinsic SOC opens a gap
at K(K ′), while the Rashba term does not. For λR = λso, the band structure of graphene
depends strongly on the interplay of the two spin–orbit coupling effects. For λR < 	so, the
spectral gap gets smaller, but the electron branch is still degenerate at K (K ′); in contrast,
the hole branch is split by 2	R .

The phase diagram for Z2 in terms of λR/λso versus 	/λso ≥ 0 is shown in
Figure 12.15.

12.5 Weyl and Dirac Semimetals

The presence of an energy gap in topological insulator phases facilitated the description
of a topological band twist in the nontrivial phases – the band inversion about the gap.
Here we will attempt to describe topological band features in systems with no global bulk
gap. We will close the band gap, and explore whether topological properties can survive in
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semimetals or metals. We will find that topological band attributes can exist, provided we
maintain translation symmetry. We will encounter new and amusing nontrivial topological
features in gapless Weyl7 semimetals [192].

12.5.1 Accidental Degeneracies and Dimensionality

In electronic band theory of crystals, degeneracy at each wavevector k is understood in
terms of symmetry. The dimension of an irreducible representation (irrep) at a given k
point is equal to the degeneracy at that point. However, topological semimetals have band
degeneracies that arises from topology. In a topological semimetal, a band gap closes at
generic k points, and this closing of the gap originates from and is protected by topological
factors, and not symmetry.

The conditions under which degeneracies occur in electronic band structures was inves-
tigated by Herring [92] in 1937.8 As a starting point, we reconsider the basic idea of
accidental or isolated degeneracies [189] that we briefly considered in Section 10.2. We
follow the analysis of [184] and focus on a pair of energy bands and ask if one can bring
these bands into degeneracy by tuning Hamiltonian parameters. This system is represented
by the most general 2× 2 Hamiltonian [184]

H(k) = h0(k) σ0 + h1(k) σ1 + h2(k) σ2 + h3(k) σ3

with an energy splitting between the levels

ε±(k) = h0(k)±
√
h2

1(k)+ h2
2(k)+ h2

3(k).

For a general k point and in the absence of spatial and TR symmetries, hj (k) 
= 0 for each
j . However, the expression for ε±(k) shows that the two bands touch only if hj (k) = 0 for
each j > 0 at some k0.

In three dimensions, we can vary each of the three components of k and look for simulta-
neous zeros of each of the three components hj (k), j > 0. To show the possibility of such
occurrence without fine-tuning, we note that each one of the three equations hj (k) = 0
describes a two-dimensional surface in k-space. Two such surfaces may generally intersect
along lines, and such lines may then intersect the third surface at points without the need
for fine-tuning. In general, such points appear in pairs, and the dispersion near each may be
linearized. The effective Hamiltonian near one such point k0 + δk takes the form

7 The Dirac equation in d spatial dimension and effective speed of light c = 1 is(
γμ ∂μ −m

)
� = 0, μ = 0,1, . . . ,d.

In 1929, Hermann Weyl noticed that this equation can be further simplified in certain cases. In odd spatial dimensions and
m = 0, the equation decouples the two-spinor wavefunction into two independent spinors with opposite chirality. Hence, the
existence of a massless fermion in the Dirac equation, which was later called the Weyl fermion [193]. For further details, see
the appendix.

8 Conyers Herring’s thesis was titled “Energy Coincidences in the Theory of Brillouin Zones,” and his thesis advisor was of
course Eugene Wigner.
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H(δk) = εk0 + h̄v0 · δk σ0 +
3∑

j=1

h̄vj · δk σj, (12.20)

where vμ = ∇k hμ(k)
∣∣∣
δk=0

, μ = 0, . . . ,3. If |v0| = 0 and the three velocity vectors vj
are mutually orthogonal, H(k) has the form of an anisotropic Weyl Hamiltonian. It is clear
that far away from k0, both bands may disperse in any direction, in which case even if the
Fermi level could be set to εk0 , there would be additional FSs.

In two dimensions, there are only two k components that can be varied. Consequently,
it is impossible to find simultaneous zeros of three functions hj (k) without additional fine-
tuning. This means that in the absence of additional symmetries that may constrain the
number of independent hj (k) = 0, the two bands will avoid each other.

It was, therefore, noted that even in the absence of any symmetry, it is possible to obtain
accidental twofold degeneracies of bands in a three-dimensional solid. The dispersion in
the vicinity of these band touching points is generically linear and resembles the Weyl
equation [193], notably in the absence of Lorentz invariance. Although such gapless band-
touching has long been known, its corresponding topological nature has been appreciated
only recently.

We note that for |v0| = 0, (12.2) resembles the two-level topological system of Chapter
10. We therefore surmise that the node at k0 is associated with a Berry curvature of

F = ± 	̂k
2|	k|2 ,

where 	k = k − k0. We also recall that the Berry curvature field resembled that of a
magnetic monopole with positive or negative magnetic charge. Weyl points are monopoles
of Berry flux, chirality, and charge.

We now consider one of the node with + or − Berry charge,

H = ± v σ · (k− k0) .

Under TRS (if the pseudospin behaves like a spin),

k → −k, σ → −σ, and H → H′ = ± v σ · (k+ k0) .

This means that TRS implies that there must be another nodal point at −k0 with the same
charge. Under space inversion transformation,

k → −k, σ → σ, and H → H′ = ∓ v σ · (k+ k0) .

Inversion symmetry (IS) dictates that there must be another nodal point at −k0 with oppo-
site charge.

When both TRS and IS exist, each node would have two monopoles with opposite
charges. The net topological charge of a nodal point (with four levels) is zero. Alternatively,
we can argue that the presence of both symmetries implies global band spin degeneracy and
any extra band-touching degeneracy has to involve four bands. Therefore, we need to break
at least one of these two symmetries to obtain spin-nondegenerate bands.
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Table 12.2 Classification of Weyl point types.

Minimum
TRS I Implications number

No No Weyl nodes can be at any k and may have different energies 2

Yes No Weyl node at k0 ⇔Weyl node of same chirality at −k0 4

No Yes Weyl node at k0 ⇔Weyl node of same chirality at −k0 2

Yes Yes No stable, individually separated Weyl nodes possible None

Note that when there is IS but no TRS, the minimum number of Weyl points in a solid is
two degenerate points at±k0 with opposite charge. If there is TRS but no IS, the minimum
number is four, since the TRS doublet would have a partner doublet with opposite helicity.
In the absence of TRS or space inversion, massless lattice fermions are required to come
in pairs with opposite helicities, or Berry charges. This is known as the Nielsen–Ninomiya
theorem [144, 145, 146], or fermion-doubling theorem. These classifications are given in
Table 12.2. The constraint that Weyl nodes should come in opposite chirality pairs can be
simply demonstrated if we examine the topology of the Brillouin zone. We first note that
the net Berry flux emanating from a surface enclosing a Weyl point is given by 2πC, where
C is a nonvanishing Chern number C = ±1. However, if we expand this surface so that it
covers the entire Brillouin zone, then by periodicity it is actually equivalent to a point and
must have net Chern number zero. Therefore, the net Chern number of all Weyl points in
the Brillouin zone must vanish.

Now the stability of Weyl points can be connected to Gauss’s law: a Gaussian surface
surrounding the Weyl point detects its charge, preventing it from disappearing surrep-
titiously. It can only disappear after an oppositely charged monopole goes through the
surface, and later annihilates with it. Also, the net charge of all the Weyl points in the
Brillouin zone has to be zero (which is seen by taking a Gauss-law surface that goes around
the whole Brillouin zone). Thus, the minimum number of Weyl points (if there are some)
is two, and they have to have the opposite chirality, as in the preceding model. This is the
proof of the fermion doubling theorem. This also shows that Weyl nodes can be eliminated
in a pairwise fashion: annihilation of a Weyl node pair of opposite chirality.

We surmise from this reasoning that all we need to do to realize a WSM is to explore
3D crystals with nondegenerate bands by breaking appropriate symmetries and looking for
band crossings. In order to observe clear effects of Weyl nodes, we need to introduce an
additional requirement: they should be close to the Fermi energy. This means that we find
candidates where h0(k) is nearly zero. We recall that in the special limit of |v0| = 0 and
vj being mutually orthogonal, we obtain the Weyl equation. That is why we refer to these
band crossings as Weyl nodes, and we makes a connection with Weyl fermions with a fixed
chirality [C = sign(vx · vy × vz)].
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12.5.2 Weyl Semimetals with Broken TRS

We consider a WSM system having IS, but with broken TRS. Breaking TRS requires the
presence of an intrinsic or external magnetic field. The minimal number of Weyl nodes is
then two, with opposite chirality, and IS guarantees they have the same energy. We can also
show that the simple criterion based on the parity eigenvalues at the TRIM, presented in
Chapter 11, can be used to determine the existence of Weyl points.

We follow the example given in [19] of a magnetically ordered system where bands have
no spin degeneracy. We introduce a pair of orbitals with opposite parity, say s, p orbitals,
on each site of a simple cubic lattice. The orbitals are represented by τz, and then inversion
symmetry is given by H(k)→ τzH(−k) τz. The Hamiltonian is

H = tz

(
2− cos(kxa)− cos(kya)+ γ − cos(kza)

)
τz + tx sin(kxa) τx + ty sin(kya) τy

The example is structured such that it allows for the existence of a pair of Weyl nodes at
location ±k0 = (0;0; ± k0) for −1 < γ < 1, where cos k0a = γ . Starting at γ = −1,
Weyl nodes form at the BZ boundaries and move toward each other before annihilating at
the zone center at γ = 1. The low-energy excitations for k = ±k0 + q, |q| � k0, are
given by

H± ≈ H(±k0 + q) =
∑
i

v±i qi τi

v±i =
(
tx,ty, ± tz sin(k0a)

)
.

To employ the parity criterion, we focus on the eight TRIM momenta (see Figure 11.9),
where we find that only the first term in the Hamiltonian survives. For γ > 1 the parity
eigenvalues of all the TRIM are the same and the bands are not inverted. However, we find
that for γ = 0, the parity eigenvalue at the �-point changes sign signaling band inversion
and the emergence of Weyl nodes, where odd number of inverted parity eigenvalues is a
diagnostic of Weyl physics.

We now compare the Chern numbers C(kz) of two planes in momentum space kz = 0
and kz = π/a: the Chern number vanishes at C(π/a) = 0, but C(0) = 1. As γ → 1,
the entire Brillouin zone is filled with a unit Chern number along the kz direction, and a
3D version of the integer quantum Hall state is realized. Therefore, the WSM appears as a
transitional state between a trivial insulator and a TI.

When the chemical potential is at EF = 0, the FS consists solely of two points ±k0.
On increasing EF , two nearly spherical FSs appear around the Weyl points and a metal
exists. The FSs are closed 2D manifolds within the BZ. One can therefore define the total
Berry flux penetrating each, which by general arguments is required to be an integer, and
in the present case is quantized to ±1 – a particular feature characteristic of a Weyl metal.
When EF > E∗ = tz (1 − γ ), the FSs merge through a Lifshitz transition and the net
Chern number on an FS vanishes. At this point, one would cease to call this phase a Weyl
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metal. This discussion highlights the importance of the Weyl nodes being sufficiently close
to the chemical potential as compared to E∗. Ideally, we want the chemical potential to
be tuned to the location of the Weyl nodes just from stoichiometry, as occurs for ideal
graphene.

12.5.3 Weyl Semimetals with Broken P Symmetry

If TRS is preserved, then inversion symmetry must be broken to realize a WSM. As we
have shown, a key difference from broken TRS WSM is that the total number of Weyl
points must now be a multiple of four. Moreover, TRS guarantees that a Weyl node at k0

is converted into a degenerate Weyl node at −k0 with the same chirality. Since the net
chirality in the BZ must vanish, another pair with the opposite chirality must exist, but not
necessarily degenerate with the ±k0 ones.

12.5.4 Fermi Arc Surface States

In the case of topological insulators, we were able to clearly identify Dirac fermion surface
states as well-defined metallic states that exist within the bulk band gap and that are expo-
nentially localized near the surface. Here, the question arises as to how to define such states
in the surface BZ (SBZ) for WSMs where the bulk does not have an absolute gap.

We consider a macroscopic 3D slab of Weyl semimetal bounded by surfaces at z =
±Z0. Translation invariance along the x and y directions defines an SBZ. For pedagogical
clarity, we consider the idealized limit of a pair of Weyl nodes that lie at EF . Hence, at
EF the projection of bulk states onto the SBZ only contains the Weyl points at momenta
±k0. Surface states can exist wherever there is a projected gap in the SBZ, because they
should not resonate with bulk states. Consequently, we can define surface states at EF at
all momenta except at±k0. As the Weyl points are approached, the surface states penetrate
deeper into the bulk and are not well defined. This results in arc-shaped FSs, as depicted
in Figure 12.16(a) and 12.16(b), instead of the 2D closed loops we are used to. They are
defined by ε(kx,ky) = EF .

These states are topologically defined as follows: the Berry curvature field emanates
from one WP and terminates on the other. The net Berry phase accumulated in any 2D
k-plane between the WP pair induces a nonzero Chern number C = 1 with a quantized
Hall effect that supports edge states, whereas the Berry phase is zero in other planes with
C = 0, as shown in Figure 12.16(c). This is a pure topological effect from the band
structure, because the bulk FS vanishes at the WPs. On the boundary, topological edge
states exist at edges of two-dimensional planes with C = 1 and vanish at edges of other
planes where C = 0.

If we consider FSs at energies that do not coincide with the WPs, we find that the
momentum region occupied by bulk states grows, as shown in Figure 12.17. The presence
of these bulk states allows for surface states that are impossible to realize in both strictly
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Figure 12.16 (a) Surface states of a Weyl semimetal appear as arcs in the SBZ that connect two Weyl
points projections to one another. (b) A point on a Fermi arc can be regarded as an edge state of a
two-dimensional insulator, where a nonzero net Berry flux leads to an integer Chern number of Hall
states, which have edge modes. (c) A depiction of surface modes dispersion and how it joins to the
bulk states.

Figure 12.17 Manifestation of Fermi arcs at the FS of the surface band structure. A pair of bulk Weyl
cones exists as a pair of Fermi pockets at EF 
= 0. A Fermi arc (thick gray line) appears on the top
or bottom surface to tangentially connect such a pair of Fermi pockets.

2D and on the surface of any 3D insulator, where there is a finite energy gap throughout
the entire Brillouin zone. Haldane [83] argued that the Fermi arc surface states must be
tangent to the bulk Fermi surfaces projected onto the SBZ. This follows from the fact
that the surface states must convert seamlessly into the bulk states as they approach their
termination points. Putting this differently, the evanescent depth of the surface state wave-
function grows, until at the point of projection onto the bulk states, the surface states merge
with the bulk states. They should inherit the velocity of the bulk states, which implies
they must be attached tangentially to the bulk Fermi surface projections, as shown in
Figure 12.17.
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12.5.5 Type II Weyl Semimental

The energy spectrum of (12.2) is given by

ε±(δk) = εk0 +
∑
i

v0iδki ±

√√√√√ 3∑
j=1

(
3∑

i=1

ki vij

)2

. (12.21)

The term involving the velocity parameter v0 introduces an overall tilt of the Weyl
cone [170]. Such a term is forbidden by Lorentz symmetry for the Weyl Hamiltonian in
vacuum. However, because Lorentz invariance does not need to be respected in condensed
matter, its inclusion is important and leads to a finer classification of distinct Fermi
surfaces. It can generically appear in a linearized long-wavelength theory near an isolated
twofold band crossing in a crystal. Small v0 simply induces a crystal field anisotropy
into the band dispersion near a Weyl point. However, sufficiently large v0 produces a
qualitatively new momentum space geometry wherein the constant energy surfaces are
open rather than closed and the resulting electron and hole pocket contact at a point as
shown in Figure 12.18. This new semimetallic phase has been termed a “type II” WSM, in
contrast to a “type I” WSM with closed constant energy surfaces. Type I respects Lorentz
symmetry, while type II does not. Although type I and type II WSMs cannot be smoothly
deformed into each other, they share electronic behavior that derives from the presence of
an isolated band contact point in their bulk spectra. Interestingly the topological character
of the Weyl point is still fully controlled by the last term in (12.2) and persists even for type
II WSM. Thus type II Weyl semimetals support surface Fermi arcs that terminate on the
surface projections of their band contact points, which are the signature of the topological
nature of the semimetallic state.

Type I WSM Type II WSM

Figure 12.18 Type-II WSM. Due to the strong tilting of the Weyl cone, the Weyl point acts as the
touching point between electron and hole pockets in the FS.
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12.6 Appendix: Dirac and Weyl Equations

Historical Perspective

Dirac first introduced his famous relativistic equation for a fermion field [50] to primar-
ily describe free electrons. It was constructed to encompass both single-particle quantum
mechanics and special relativity. However, in addition to a massive electron with negative
charge and positive energies, his solutions contained negative energy particles which Dirac
predicted as an antiparticle, the positron, which has the same mass as the electron but with
an opposite charge.

In the following year, Weyl showed that a simpler equation [193] involving two-
component fields rather than the four-component Dirac field was enough to describe
massless fermions. In 1930, Pauli [38] suggested the possible existence of neutrinos to
account for the continuous electronic energy spectrum manifest in beta decay. Because of
charge conservation, neutrinos had to be neutral, and beta-decay data indicated that they
should be massless. Consequently, it was assumed that the neutrino properties should be
described by Weyl’s theory. Another issue with neutrinos concerned whether they were
their own antiparticles since they are uncharged. A description of such dual fermion fields
was then proposed by Majorana in 1937 [124]. However, at that time, the community
was convinced that neutrinos are Weyl fermions. It was only in the 1960s, when evidence
supporting small but nonzero neutrino masses emerged, that the idea of Weyl-like neutrinos
was abandoned, and the possibility of being Dirac fermions or Majorana fermions emerged.

Today, in a broad frontier of condensed matter research, ranging from graphene to high
Tc superconductors to topological insulators and beyond, systems are found to exhibit
electronic properties that can be fittingly described by the Dirac and Weyl equations.
Consequently, understanding Dirac fermions has become a must in modern condensed
matter physics. It is no longer an exclusive domain of quantum field and high-energy
theories; instead, we find Dirac particles describing the physics of real condensed matter
systems in two and three dimensions. While the physics that gives rise to massless Dirac
fermions in different systems may be different, the low-energy properties are governed by
the same Dirac physics.

The Massive Dirac Equation

The Klein–Gordon equation suffered from negative energy solutions accompanied with
negative probability densities. Dirac realized that his equation should be linear in energy in
order to interpret the wavefunction as a probability amplitude. This meant that the equation
must be first order in the time derivative ∂t . Furthermore, he noted that in order to satisfy
Lorentz invariance, space derivatives should appear at the same order as the time derivative.
The only possible formulation for such an equation, in d spatial dimensions, is

H = β mc2 + c α· p
ih̄ ∂t �(x,t) =

[
β mc2 + c α· p

]
�(x,t), (12.22)
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where now � is a four spinor. Besides the particle mass m and the speed of light c, β and
α = (α1, . . . ,αd) are dimensionless matrices. In order for (12.22) to satisfy the relativistic
dispersion relation, we need

E2 = m2c4 + c2p2 = β2m2c4 + c2 (α·p)2 +mc3 (β α· p+ α·pβ) .

This implies that the quantities β and α must anticommute:

β2 = I, {αi,β} = 0,
{
αi, αj

} = 2δij . (12.23)

Equation (12.23) is a manifestation of a Clifford algebra, where β and α are square matri-
ces, with dimension N > 1.9 They must also satisfy the following properties:

(a) They must be Hermitian,

α
†
i = αi, β† = β,

in order to conform with the hermiticity of the Hamiltonian (12.22).
(b) They must be unitary,

α
†
i = αi = α−1

i , β† = β = β−1,

since α2
i = β2 = I. Their eigenvalues are, therefore, ±1.

(c) The anticommutation, αi αj = −αj αi , leads to the determinantal relation

det[αi αj ] = det[−αj αi] = (−1)N det[αj αi] = (−1)N det[αi αj ]

which requires that N be even, N = 2m, m = 1,2, . . . As we will see, the value of
m depends on the spatial dimension d .

The 2D Massive Dirac Equation

For d = 2, we need three mutually anticommuting matrices, β, α1 and α2; they can be
identified with the Pauli matrices

σz = β, σ1 = α1, σ2 = α2

since σ1, σ2, and σz are 2 × 2 matrices that satisfy the Clifford algebra. This implies that
the wavefunction must be a two-dimensional vector: a spinor. The 2D Dirac Hamiltonian
then has the form

H2D
D = c α· p+mc2 σz. (12.24)

To simplify the ensuing analysis, we set c = h̄ = 1, and write the 2D Dirac Hamiltonian as

H2D
D = α·p+mσz = ε

(
cos θ e−iφk sin θ

eiφk sin θ − cos θ

)
, (12.25)

9 Not to be confused with the spatial dimension d.
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where ε =
√

m2 + |p|2, cos θ = m/ε, sin θ = |p|/ε, and φk = arctan(py/px). The
eigenvalues of the unitary and Hermitian matrix on the rhs of (12.25) are λ = ±1 and
correspond to the positive and negative energy states, respectively, with

Eλ = λ

√
m2 + p2 (12.26)

We consider plane-wave spinor eigenstates of the form

�pλ(x) = 1√
2

[
uλ

vλ

]
eip·x.

Substituting in (12.25), we obtain

(cos θ − λ) uλ + sin θ e−iφk vλ = 0.

We write the solution as

uλ = √
1 + λ cos θ, vλ = λ

√
1 − λ cos θ eiφk,

which yields the spinor eigenstates

�pλ(x) = 1√
2

⎡⎢⎣
√

1 + λm
ε

λ

√
1 − λm

ε
eiφk

⎤⎥⎦ . (12.27)

We consider two limits:

• The ultrarelativistic limit (m → 0) yields

�pλ(x) = 1√
2

[
1

λ eiφk

]
,

which can be identified with those of low-energy massless electrons in graphene, equation
(12.10), at the Dirac points K,k′.

• The case (mc � |p|)

�pλ=+1(x) = 1√
2

[
1

0

]
eip·x, �pλ=−1(x) = 1√

2

[
0

1

]
eip·x.

The 3D Massive Dirac Equation

There are only three Pauli matrices, whereas four anticommuting matrices are needed for
the massive Dirac Hamiltonian in 3 + 1 space-time: one for each space dimension and one
for the mass. It is then necessary to use an N = 4 representation with 4 × 4 matrices.
The Clifford algebra can be satisfied by taking tensor products of Pauli matrices σi and τi ,
namely,

αi = σi ⊗ τ1 =
(

0 σi

σi 0

)
; β = σ0 ⊗ τ3 =

(
σ0 0
0 −σ0

)
,
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which is called the standard representation. In this representation, we obtain a Dirac Hamil-
tonian of the form

H3D
D =

(
mc2I c σ · p
c σ · p −mc2I

)
and the wavefunction becomes a two-spinor.

The Dirac equation can also be written in the covariant form(
iγ μ ∂μ −m

)
� = 0, h̄ = c = 1

with Dirac matrices γ = (β,β α) The gamma matrices form the Dirac algebra, which is a
special case of the Clifford algebra {

γ μ, γ ν
} = 2gμν,

where gμν is the Minkowski metric tensor (g00 = −gii = 1). Therefore, the gamma
matrices can be identified as

γ i = iσi ⊗ τ2 =
(

0 σi

−σi 0

)
︸ ︷︷ ︸ ; γ 0 =

(
σ0 0
0 −σ0

)
︸ ︷︷ ︸

Anti-Hermitian Hermitian

Discrete Symmetries of the Dirac Equation

(i) Charge conjugation: In order to derive an expression for a charge conjugation operator,
we write the Dirac equation for a free particle with charge q in an external electromagnetic
field as

i
∂�(x,t)

∂t
=
[
αi (−i∂i − q Ai)+ β m

]
�(x,t), h̄ = c = 1 (12.28)

and we apply the complex conjugation operator K , to obtain

i
∂�∗(x,t)

∂t
=
[
α∗i (−i∂i + q Ai)− β∗m

]
�∗(x,t). (12.29)

We find that the charge q → −q. However, the new equation also contains the conju-
gations: �(x,t) → �∗(x,t), αi → α∗i and β → −β∗. To restore (12.29) to the form
of (12.28) but with a change in the charge sign, we apply a unitary transformation UC such
that UC � ∗ (x,t) exactly satisfies (12.28), but with the simple replacement q → −q. The
requirements on UC are

U−1
C α∗i UC = αi, U−1

C β∗ UC = −β,
which means that UC commutes with α1 and α3, but anticommutes with α2 and β. The
choice UC = iτ2 σ2 = γ 2 satisfies these conditions, and we obtain the antiunitary charge
conjugation operator

Ĉ = γ 2 K .
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It relates the wavefunction of the particle (charge q) to the wavefunction of its antiparticle
(charge −q).
(ii) Inversion symmetry and spinors: We recall the action of the inversion operator on the
position and momentum operators as

π† xπ = −x, π† pπ = −p.

However, in the present case we need to construct a parity transformation that acts on two
spinors. To this end, we consider a 4× 4 matrix parity operator, P, of the form

P = π UP,

where the unitary matrix UP must satisfy

Up αU
†
P = −α, UP β U

†
P = β, U2

P = I.

It is obvious that UP = β would satisfy these three conditions.
(iii) Time-reversal: Again, we are familiar of the action of the time-reversal operator on
the position and momentum operators in the nonrelativistic case, namely

� x�−1 = x, �p�−1 = −p

Here, we will use the Dirac equation in the covariant form

i∂t �(x,t) =
(
−iγ · ∇ + γ 0 m

)
�(x,t)

and we define the time-reversal operator in the form

T = UT K .

We consider the action of T on the Dirac equation

T(i ∂t )T
−1T�(x,t) = UT K(i∂t )KU

†
T UT �

∗(x,t)
= −i∂t UT �

∗(x,t) = i∂−t
[
UT �

∗(x,t)
]

.

For
[
UT �

∗(x,t)
]

to satisfy the time-reversed Dirac equation, we need to satisfy the condi-
tions

T (−iγ ) T−1 = iγ ⇒ UT γ U
†
T = −γ ∗

T γ 0 T−1 = γ 0.

We find the choice UT = γ 1 γ 3 satisfies these conditions, and we obtain

T = γ 1 γ 3 K .

Finally, the product π C� = γ 5 is also a symmetry operation representing chirality:

γ 5 = iγ 0 γ 1 γ 2 γ 3 = iσ0 ⊗ τ1 =
(

0 σ0

σ0 0

)
.
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Weyl Equation for Massless Particles: Helicity and Chirality

We now introduce the Weyl or chiral representation, which is very useful for ultra-
relativistic particles, and particularly for massless particles, as we will see in this section.
The Weyl representation is defined by the matrices

αi = σi τ3 =
(
σi 0
0 −σi

)
, β = σ0 τ1 =

(
0 σ0

σ0 0

)
with corresponding γ matrices

γ μ = βαμ = σ0 τ1σμ τ3 = σμ (iτ2) =
(

0 −σi
σi 0

)
, γ0 = β = σ0 τ1 =

(
0 σ0

σ0 0

)
.

In the Weyl or chiral representation, the Dirac equation for the Weyl spinors � =
(ψR, ψL)

10 becomes ⎧⎪⎪⎨⎪⎪⎩
(iσ0 ∂t + icσi ∂i) ψR = mc2

h̄
ψL

(iσ0 ∂t − icσi ∂i) ψL = mc2

h̄
ψR

(12.30)

We note that the mass determines the coupling between the two-component spinors ψR

and ψL, in other words, it mixes ψR and ψL. We also note that an effective length h̄/mc,
the Compton length, naturally emerges in the equations. Alternative effective lengths are
manifest in condensed matter systems. For example, a length scale, roughly h̄ vF /Eg ,
determines the spatial extent of edge states confined between two insulator classes, with
a characteristic energy gap Eg and Fermi velocity vF .

For a massless particle (m = 0), the two-component spinors, R and L, become decou-
pled and the equations become scale invariant. The β matrix drops out and only the three
αi matrices associated with the three spatial directions are left in the Hamiltonian HD , and
we obtain

(iσ0 ∂t + icσ · ∂x) ψR =
(
E − σ ·p

)
ψR = 0 (12.31)

(iσ0 ∂t − icσ · ∂x) ψL =
(
E + σ ·p

)
ψL = 0. (12.32)

The operator σ ·p projects the spin onto the momentum direction. We call the sign of
the projection of the spin vector onto the direction of motion, the momentum vector, the
helicity. Alternatively, chirality defines the handedness of the spin. We find that the left-
and right-hand states are eigenstates of σ ·p with opposite helicity eigenvalue.

For a plane-wave solution, ψ ∼ ei(p·x−Et)/h̄, we find the following:

• ψL has energy EL = −c σ · p. For a particle solution, EL > 0, the spin projection has to
point opposite to the momentum p (σ ·p < 0), hence, the label left-handed fermion and
the subscript L.

10 The subscripts of the Weyl spinors indicate left- and right-handedness, as will be apparent shortly.
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• Similarly, ψR for the right-handed particle, has energy E = c σ · p and a spin pointing in
the direction of motion (σ ·p > 0).

Hence, a massless particle can be described by a two-component spinor with definite
helicity, or chirality. Since the mass mixes left- and right-handed states, massive fermions
are not eigenstates of helicity. This becomes obvious in the electrons rest frame: there is
no direction of motion, so helicity is not well defined. In the massless limit, there is no
rest frame, and a left-handed electron can never turn into a right-handed electron, and a
right-handed electron can never turn into a left-handed electron, even in the presence of
electromagnetic fields. In contrast to the Dirac equation, the Weyl equation breaks space
inversion symmetry because it can be written separately for left-handed and right-handed
Weyl fermions.
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Many-Body Physics and Second Quantization

13.1 Introduction

Quantum condensed matter physics deals with the interplay of quantum mechanics with
the presence of a very large number of coupled degrees of freedom ∼ 1024. This interplay
leads to a rich plethora of emerging properties that find their way into our daily life: metals,
insulators, superconductors, optical and carbon fibers, etc. It also gives rise to amazing
phenomena, such as giant magnetoresistance, responsible for large capacity hard drives
and, most recently, topological materials.

When considering such systems, one primary problem emerges: the interaction among
its constituent particles. In the first part of this book, we have dealt with systems where
details of such interactions were not important, and we were able to average over these
interactions, such that the large number of degrees of freedom are decoupled. We solved the
one-electron problem, including ground states and excitations. This does not mean that such
systems are boring. We found out that particle indistinguishability still requires obeying the
Pauli principle, and that this constraint led to many interesting properties.

In this part of the book, we will tackle systems where interparticle interactions cannot
be neglected or averaged. This poses a formidable problem, since all the∼ 1024 degrees of
freedom in the system are coupled. Solving a Schrödinger equation with ∼ 1024 variables
is intractable. We need to develop tools that are capable of tackling this type of problem.
Here, we shall introduce the formalism of second quantization, and use it, in subsequent
chapters, to study phenomena such as superconductivity, superfluidity, magnetism, and the
Kondo effect.

The outstanding attributes of the second quantization formulation are manifest in its
constructive structure. It eliminates the unwieldy and limiting process of explicit symme-
try adaptation (symmetrize/antisymmetrize) of many particle states inherent in standard,
first-quantized, quantum mechanics. The second-quantized structure supports ladder oper-
ators, endowed with appropriate commutators, that implicitly and automatically provide
the necessary implementation of many-particle symmetry. Thus, the second-quantization
formalism offers a compact package for representing many-body particle space of excita-
tions in condensed matter systems. It is amenable to be generalized to a comprehensive
and highly efficient formulation of many-body quantum mechanics in general. As a matter

375
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of fact, second quantization can be considered the first major cornerstone on which the
theoretical framework of quantum field theory was built.

The development we follow here avoids full mathematical rigor for the sake of peda-
gogy. We will start with outlining the first quantization approach to many-body physics
and highlighting its limits. Next, we motivate the second quantization procedure with the
aid of an analogy to wave fields, to be followed with a presentation of the second-quantized
version of standard quantum mechanical operations, such as basis change, operator rep-
resentations, matrix element manipulation, etc. Finally, we will explore the power of the
formalism through several applications.

13.2 Symmetry Adaptation of Many-Particle Wavefunctions

We begin our discussion by recapitulating some fundamental notions of many body quan-
tum mechanics, as formulated in the traditional language of symmetrized/antisymmetrized
wavefunctions of indistinguishable particles.

To construct a many-particle wavefunction for systems with more than one electron, we
start with products of orthonormalized single-particle eigenfunctions, à la Hartree,

|ψ(r1, . . . , rk, . . .)〉 =
∣∣φν1(r1)

〉
. . .
∣∣φνk (rk)〉 . . . ,

where we use numeral subscripts to designate particles, and Greek subscripts for the eigen-
states. Next we apply all possible permutation operators Pij, Pij,kl,Pij,kl,mn, . . . to the
product and sum all ensuing terms, with the proviso that in the case of fermions, a minus
sign will appear when the number of transpositions in the permutation is odd. For N
particles, we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣ψboson
A (r1, . . . ,rN)

〉 = 1√
N !

∑
P(ν1,...,νN )

φν1(1)φν2(2)..φνN (N)

∣∣ψ fermion
A (r1, . . . ,rN)

〉 = 1√
N !

∑
P(ν1,...,νN )

(−1)|P |φν1(1)φν2(2)..φνN (N),

(13.1)

where φν1(k) ≡ φν1(rk,σk). The summation is over all possible permutations, and |P |
stands for the number of two-particle transpositions performed in a given permutation.
Again, as we recall, a way of constructing a fermionic wavefunction with the correct
antisymmetrization properties, proposed by John C. Slater, is to write the N -particle wave-
function in the form of a determinant, namely

ψA = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φν1(1) φν2(1) . . . φνk (1) . . . φνN (1)
φν1(2) φν2(2) . . . φνk (2) . . . φνN (2)
. . . . . . . . . . . . . . . . . .

φν1(k) φν2(k) . . . φνk (k) . . . φνN (k)

. . . . . . . . . . . . . . . . . .

φν1(N) φν2(N) . . . φνk (N) . . . φνN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(13.2)
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Each row has the particle label, while each column has the same eigenfunction. Exchanging
the eigenfunction label on two particles is equivalent to exchanging two columns. But
exchanging two columns of a determinant changes the sign, in agreement with fermion
statistics.

Often there exists a natural basis of single-particles states, for instance the states associ-
ated with the energy levels of a single atomic particle or the Bloch states for a particle in a
periodic potential.

In general, we set {φα} as an orthonormal basis of the single-particle Hilbert space H(1),〈
φα
∣∣φβ 〉 = δα,β . A basis for fully symmetric and antisymmetric N -particle states is then

given by (13.1). Thus the relevant many-particle Hilbert space of an N -particle system will
comprise all such symmetry-adapted wavefunctions, or states

H⊗Nboson = H⊗N+ =
N⊗

symm

H(1)

H⊗Nfermion = H⊗N− =
N⊗

antisymm

H(1). (13.3)

13.3 Many-Particle Systems and Second Quantization

The preceding prescriptions for constructing symmetric and antisymmetric many-particle
wavefunctions are useful for systems consisting of some “manageable” number of particles
such as atoms and small enough molecules. The reason is that the standard quantum-
mechanical procedure outlined in the previous section would require wavefunction expres-
sions consisting of N ! terms for an N -particle system. An additional complication arises
from operator representations, which are expressed as sums over single-particle operators,
namely,

ON =
N⊕
1

Oi

Oi = I⊗ I⊗ . . .O ⊗ I⊗ . . . I,

where I is the identity and O is inserted at the ith position. We find that the operator form
depends explicitly on the number of particles. Such representations hamper the process of
taking the thermodynamic limit. Consequently, standard quantum-mechanics prescriptions
become intractable for systems with very large particle numbers, such as solids.

A desirable formalism would mitigate the aforementioned impediments by providing
the following:

• Proper symmetry adaptation without dealing explicitly with the N ! terms

• An operator representation independent of particle number
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This would not only facilitate taking the thermodynamic limit, but also handling situations
where the particle number can change, such as in photoemission experiments.

Physicists have devised the formalism of second quantization to meet these requirement,
and thus to handle large particle number systems. It is described in the following subsection.

13.3.1 Fock Space

Here we shall adopt an approach that will turn the idea of particle indistinguishability into
an asset. We start by claiming that we do not need to specify the quantum state of each
individual particle; all we simply need to do is to identify the number of particles occupy-
ing a given quantum state. Thus we replace the definition (13.1) by the more convenient
procedure of indicating nα , the number of times each single-particle state |φα〉 appears in
the product. This number nα is the occupation number of the state |φα〉. Then the state
(13.1) can be specified as

ψ = ∣∣nα,nβ, . . .〉 , (13.4)

where there are nα particles in |φα〉, nβ particles in
∣∣φβ 〉, and so forth. For bosons

nν = 0,1,2,3, . . . , and for fermions nν = 0,1, according to the Pauli principle and
as implicit in the determinant structure of (13.2). For an N -particle state, we have the
restriction

∑
ν nν = N .

Two states
∣∣nα,nβ, . . . 〉,∣∣n′α,n′β, . . . 〉 are orthogonal if they differ in at least one occupa-

tion number, namely, nα 
= n′α for some index α. If all the occupation numbers coincide,
we find 〈

ψ
∣∣ψ 〉 = N2 N ! nα! nβ ! . . .

Thus the normalization factor is N = 1/
√
N ! nα! nβ ! . . ., and we get〈

n′α,n
′
β, . . .

∣∣nα,nβ, . . .〉 = δnα,n′α δnβ,n′β . . .

It is important to realize that the occupation number representation (13.4) depends on
the single-particle basis. In general, one tries to make a judicious choice dictated by the
physical problem to be studied.

One has to remember that the states in the occupation number
representation are symmetric for bosons and antisymmetric for fermions.

The states
∣∣nα,nβ, . . .〉 form an orthonormal basis of the N -particle Hilbert space H⊗N± ,

where plus and minus signs refer to bosonic and fermionic systems, respectively.
Thus any state of H⊗N± can be written as a linear combination

|ψ〉 =
∑

nα,nβ,...∑
i ni=N

c(nα,nβ, . . .)
∣∣nα,nβ, . . .〉 . (13.5)
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We will now consider the more general case where, a priori, the number of particles is
unrestricted. Consequently, we have a significantly enlarged space of states in which the
number of particles is allowed to fluctuate. In statistical physics jargon, we are switching
from Canonical to Grand Canonical Ensemble.

When we remove the restriction
∑

i ni = N , our linear combination includes states
with different number of particles, namely, the summation does not specify N :

|ψ〉 =
∑

nα,nβ,...

c(nα,nβ, . . .)
∣∣nα,nβ, . . .〉 . (13.6)

We should note that two Hilbert spaces with different particle numbers have no state
vector in common. Thus states of the form (13.6) belong to the Hilbert space formed by the
direct sum

∞⊕
N=0

H⊗N± = F±.

In this expression, H0 consists of the vacuum state |∅〉 = |0,0,0, . . .〉, and its properties will
be discussed later. The space F± is called Fock space. It consists of symmetric (bosons)
and antisymmetric (fermions) state vectors, the number of particles being unspecified.
F± is the appropriate Hilbert space for the formalism of second quantization.

13.3.2 Fields and Second Quantization

We have learned in quantum mechanics that upon quantizing the classical radiation field, it
becomes endowed with particle properties: photon quanta with energy h̄ω and momentum
h̄k emerge!

Generalizing this scenario, we might infer that this is an attribute of all wave fields,
whereby manifest particle qualities will emerge upon their quantization. Conversely, we
may argue that all particles occurring in nature could be construed as quanta of some field.
This would invite the question as to what wave field we may associate with particles such
as electrons. We might conjecture that the field is manifest in the wavefunction ψ(x,t),
with the Schrödinger equation

ih̄
∂ψ(x,t)

∂t
= − h̄2

2m
∇2 ψ(x,t)+ V (x) ψ(x,t) = Hψ(x,t) (13.7)

representing a particle of mass m, in analogy to Maxwell’s equations being the field
equations of the electromagnetic fields.

Thus, we are encouraged to adopt the Schrödinger equation as the field equation for the
wave field ψ(x,t). We proceed to quantize Schrödinger’s wave field following the same
scenario for the quantization of the vector potential in the electromagnetic case. We define
the complete orthonormal set {φν(x)} as

H φν(x) = Eν φν(x) (13.8)
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and write the general normalized solution of (13.7) as

ψ(x,t) =
∑
ν

bν(t) φν(x) (13.9)

with
∑

n |bν |2 = 1 and |bν |2 ≤ 1. The bνs can be interpreted as normal coordinates of the
system, in which case, φν(x) would be identified as normal states, or modes. Substituting
(13.9) in (13.7), we obtain

dbν

dt
= − i

h̄
Eν bν, (13.10)

which are just the equations of motion of the normal coordinates. This step is called first,
or standard, quantization.

Next we shall proceed to introduce creation and annihilation operators for field quanta
(which may be particles, photons, etc.) The quantum-mechanical procedure of introducing
such operators is called second quantization.

In analogy with the radiation field quantization, we now need to construct a Hamiltonian
that only depends on the normal coordinates bν , and that yields the equation of motion
(13.10). We can choose

H =
∫

dxψ∗(x,t)

[
− h̄2

2m
∇2 + V (x)

]
ψ(x,t) =

∫
dxψ∗(x,t)Hψ(x,t), (13.11)

which is just the energy expectation value, with

ψ∗(x,t)

[
− h̄2

2m
∇2 + V (x)

]
ψ(x,t)

being the energy density.
Using (13.8) and (13.9) and the orthonormality of {φν}, we obtain

H =
∑
ν

Eν b
∗
ν bν . (13.12)

Bosons

Examination of (13.12) reveals that if we promote the normal coordinates b∗ν, bν to creation
and annihilation operators, namely,

b∗ν → b̂†
ν, bν → b̂ν, (13.13)

obeying the commutation relations[
bν, bν′

]
=
[
b†
ν, b

†
ν′
]
= 0,

[
bν, b

†
ν′
]
= δν,ν′, (13.14)

we obtain a second-quantized Hamiltonian representing an infinite number of harmonic
oscillators with energies Eν :

Ĥ =
∑
ν

Eν b
†
ν bν . (13.15)
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The equation of motion for bν is

ih̄
dbν

dt
= [bν,H] =

∑
ν′

[
bν, Eν′ b

†
ν′bν′
]
=
∑
ν′

Eν′
[
bν b

†
n′bν′ − b

†
ν′bν′bν

]
=
∑
ν′

Eν′
[(
b

†
ν′bν + δν,ν′

)
bν′ − b

†
ν′bν′bν

]
=
∑
ν′

Eν′ bν′ δν,ν′

= Eν bν, (13.16)

consistent with the “classical” equations of motion.
We should stress at this point that the commutator[

b†
ν, b

†
μ

]
= 0 ⇒ b†

ν b
†
μ = b†

μ b
†
ν (13.17)

ensures the wavefunction symmetrization for bosonic particles. To establish this action, we
interpret the commutation as an exchange operation: We first associate particle i with the
left operator entry and particle j with the right one. Thus, we interpret b†

ν b
†
μ as creating

particle i in state ν and particle j in state μ, while b†
μ b

†
ν as creating particle i in state μ

and particle j in state ν. Consequently, keeping in mind this operator ordering convention,
(13.17) would represent an exchange of particles i and j . The fact that it has a positive sign
indicates that the particles are bosons!

Because of the commutation relations satisfied by the operators, the theory
developed here describes quanta that obey Bose–Einstein statistics.

These commutation relations also allow us to construct states of the form∣∣nμ〉 = 1√
nμ!

(
b†
μ

)nμ |0〉 , (13.18)

in which nμ particles appear with the same wavefunction φμ(x), and to define a number
operator N̂μ for particles occupying a state of type μ as

N̂μ = b†
μ bμ. (13.19)

Thus, by second quantizing the quantum field we have ensured
that the number of particles in the field is a positive integer !

The general second-quantized state vector is now written as a direct product of eigenkets,
à la Hartree

|ψ〉 = ∣∣. . . , nμ, . . . , nμ′, . . .〉 = . . . ,
∣∣nμ〉 , . . . , ∣∣nμ′ 〉 , . . .

N̂μ

∣∣. . . , nμ, . . . , nμ′, . . .〉 = nμ
∣∣. . . , nμ, . . . , nμ′, . . .〉 . (13.20)
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The last line is just the eigenvalue equation for the number operator N̂μ. Notice that
here, unlike our earlier discussion of particle exchange, the locations

∣∣ . . . ,nκ, . . . ,nμ, . . . 〉
identify eigenstates κ, μ, etc., and not particles.

We note that with the aid of the creation and annihilation operators, we are to modify
the number of particles in a given quantum state, and thus span the whole Fock space.
However, the formalism we have just developed applies only for bosons, since it allows
multiple occupation of eigensates.

Fermions

Now we shall expand the formalism to cover fermionic particles. We maintain the form of
the Hamiltonian

Ĥ =
∑
ν

Eν c
†
ν cν (13.21)

but replace bosonic operators b with fermionic operators c that satisfy anticommutation
relations {

cν, cν′
}
=
{
c†
ν, c

†
ν′
}
= 0,

{
cν, c

†
ν′
}
= δν,ν′ (13.22)

in order to achieve the antisymmetrization constraints imposed on the exchange of two
fermions. Defining operator ordering as in the bosons case, we find that the anticommuta-
tion operation

c†
ν c

†
μ = −c†

μ c
†
ν

provides the required antisymmetrization for fermions.
We require that equations of motion for the c operators to conform with equations like

(13.10), namely,

ih̄
dcν

dt
= [cν,H] =

∑
ν′

[
cν, Eν′ c

†
ν′cν′
]
=
∑
ν′

Eν′
{
cν c

†
ν′cν′ − c

†
ν′cν′cν

}
=
∑
ν′

Eν′
{(
δν ν′ − c

†
ν′cν
)
cν′ − c

†
ν′cν′cν

}
=
∑
ν′

Eν′ cν′ δν,ν′

= Eν cν, (13.23)

where we used anticommutation relations.
Now we determine the eigenvalues of N̂μ = c†

μcμ. We shall use the relation

N2
μ =
(
c†
μcμ

) (
c†
μcμ

)
= c†

μ

(
1− c†

μcμ

)
cμ

= c†
μcμ − c†

μc
†
μcμcμ = c†

μcμ = Nμ (13.24)

since c†
μc

†
μcμcμ vanishes because⎧⎨⎩

{
c†
μ, c

†
μ

} = 0 ⇒ c†
μc

†
μ = 0{

cμ, cμ
} = 0 ⇒ cμcμ = 0.
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Thus, we arrive at

N2
μ

∣∣nμ〉 = n2
μ

∣∣nμ〉 = nμ
∣∣nμ〉 , n2

μ = nμ, ⇒ nμ = 1, 0, (13.25)

which satisfies the requirement of the Pauli principle, and the Fermi–Dirac statistics.
Next, we determine the matrix elements of c†

μ and cμ. We start with c†
μ

∣∣nμ〉
N̂μ c

†
μ

∣∣nμ〉 = c†
μcμc

†
μ

∣∣nμ〉 = c†
μ

(
1− c†

μcμ

) ∣∣nμ〉
= c†

μ

(
1− N̂μ

) ∣∣nμ〉 = (1− nμ
)
c†
μ

∣∣nμ〉 , (13.26)

which reveals that c†
μ

∣∣nμ〉 represents an eigenvector of N̂μ with eigenvalue 1−nμ, namely

c†
μ

∣∣nμ〉 = Aμ

∣∣1− nμ
〉
.

To evaluate Aμ, we use(
c†
μ

∣∣nμ〉)†
c†
μ

∣∣nμ〉 = 〈nμ ∣∣∣cμc†
μ

∣∣∣ nμ〉 = 〈nμ ∣∣∣1− c†
μcμ

∣∣∣ nμ〉
= 1− nμ = |A|2 ⇒ A = eiαμ

√
1− nμ. (13.27)

Similarly,

N̂μ cμ
∣∣nμ〉 = c†

μcμcμ
∣∣nμ〉 = (1− cμc

†
μ

)
cμ
∣∣nμ〉

=
(

1− cμN̂μ

) ∣∣nμ〉 = (1− nμ
)
cμ
∣∣nμ〉 , (13.28)

and with cμ
∣∣nμ〉 = Dμ

∣∣1− nμ
〉
, we find∣∣Dμ

∣∣2 = (cμ ∣∣nμ〉)† cμ
∣∣nμ〉 = 〈nμ ∣∣∣c†

μcμ

∣∣∣ nμ〉 = nμ, ⇒ D = eiα
′
μ
√
nμ.

Phase Factor Choices for Fermions and Bosons

We can now write for fermions

cμ
∣∣. . . ,nμ, . . .〉 = eiα

′
μ
√
nμ
∣∣. . . ,1− nμ, . . .

〉
c†
μ |. . . ,nν, . . .〉 = eiαμ

√
1− nμ

∣∣. . . ,1− nμ, . . .
〉
. (13.29)

Following a similar procedure for bosons, we find

bν |. . . ,nν, . . .〉 = √nν |. . . ,nν − 1, . . .〉
b†
ν |. . . ,nν, . . .〉 =

√
nν + 1 |. . . ,nν + 1, . . .〉 . (13.30)

The phase factors for bosons are set equal to unity, since this choice allows the derivation
of the corresponding commutation relations from (13.30).

The choice of the fermion phase factors is more complicated. Recalling that the occupa-
tion number for the μth state is nμ = 1,0, we can construct the general ket as

|nα, . . . , nκ, . . .〉 =
(
c†
α

)nα (
c

†
β

)nβ
. . .
(
c†
κ

)nκ
. . . |0〉 .
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Then the operation

cκ |nα, . . . , nκ, . . .〉 = cκ

(
c†
α

)nα (
c

†
β

)nβ
. . .
(
c†
κ

)nκ
. . . |0〉

makes the commutation of cκ with cλ, λ < κ necessary, when nλ 
= 0. Since

cκc
†
λ = −c†

λcκ, for λ 
= κ,

a factor −1 comes up whenever nλ 
= 0; and we accumulate an exponent of
∑κ−1

ν=1 nν . This
leads to

cκ

(
c†
α

)nα (
c

†
β

)nβ
. . .
(
c†
κ

)nκ
. . . |0〉 =

(
c†
α

)nα (
c

†
β

)nβ
. . . (−1)

∑κ−1
ν=1 nν cκ

(
c†
κ

)nκ
. . . |0〉 .

Thus the phase eiακ depends on the occupation numbers of the states preceding |nκ 〉, and
we obtain

cμ
∣∣. . . ,nμ, . . .〉 = (−1)

∑μ−1
ν=1 nν

√
nμ
∣∣. . . ,1− nμ, . . .

〉
c†
μ

∣∣. . . ,nμ, . . .〉 = (−1)
∑μ−1

ν=1 nν
√

1− nμ
∣∣. . . ,1− nμ, . . .

〉
. (13.31)

With this choice of phase, the fermion commutatators can be derived from (13.31).

13.3.3 Field Operators

If we replace the coefficients bν in (13.9) by b̂ν or ĉν , the field ψ(x,t) becomes a field
operator ψ̂(x,t). We write for the field operator

ψ̂b(x,t) =
∑
ν

b̂νφν(x) =
∑
ν

b̂ν 〈x| ν〉 , ψ̂
†
b (x,t) =

∑
ν

b̂†
νφ
∗
ν (x) =

∑
ν

b̂†
ν 〈ν| x〉

ψ̂f (x,t) =
∑
ν

ĉνφν(x) =
∑
ν

ĉν 〈x| ν〉 , ψ̂
†
f (x,t) =

∑
ν

ĉ†
νφ
∗
ν (x) =

∑
ν

ĉ†
ν 〈ν| x〉 .

The operator ψ̂(x,t) is a linear combination of annihilation operators, which are position
dependent; it annihilates a particle at position x and time t . ψ̂†(x,t) is construed as an
operator that creates a particle at position x and time t . They obey the commutation relations[

ψ̂b(x,t), ψ̂
†
b (x

′,t)
]
=
∑
ν,ν′

[
b̂ν, b̂

†
ν′
]
φν(x) φ∗ν′(x

′) =
∑
ν,ν′

δν,ν′ φν(x) φ
∗
ν′(x

′)

=
∑
ν

φν(x) φ∗ν (x
′) = δ(x− x′) (13.32){

ψ̂f (x,t), ψ̂
†
f (x

′,t)
}
=
∑
ν,ν′

{
ĉν, ĉ

†
ν′
}
φν(x) φ∗ν′(x

′) =
∑
ν,ν′

δν,ν′ φν(x) φ
∗
ν′(x

′)

=
∑
ν

φν(x) φ∗ν (x
′) = δ(x− x′). (13.33)

We can easily demonstrate that the bosonic and fermionic field operators satisfy the remain-
ing commutation and anticommutation relations. These relations are known as equal-time
commutation relations for field operators.
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The Hamiltonian H can be obtained from the expectation value of the one-particle
Hamiltonian with respect to the field operators:

H =
∫

dx ψ̂†
b (x,t)

[
− h̄2

2m
∇2 + V

]
ψ̂b(x,t)

=
∑
ν,ν′

b†
νbν′

∫
dxφ∗ν (x)

[
− h̄2

2m
∇2 + V

]
φν′(x)

=
∑
ν,ν′

Eν b
†
νbν′

∫
dxφ∗ν (x) φν′(x) =

∑
ν

Eν b
†
νbν . (13.34)

A similar expression can be obtained for the fermionic Hamiltonian.
It is noteworthy that the time-dependent Schrödinger equation can be derived from

Heisenberg’s equations of motion for the field operators for both bosons and fermions

ih̄
∂

∂t
ψ̂(x,t) =

[
ψ̂(x,t),H

]
(13.35)

with

H = − h̄2

2m
∇2 + V (x),

which demonstrates the consistency of the theory. We dropped the subscripts on field
operators, since this applies to both bosons and fermions. We find that[

ψ̂(x,t),H
]
=
[
ψ̂(x,t),

∫
dx′ ψ̂†(x′,t)

[
− h̄2

2m
∇′2 + V (x′)

]
ψ̂(x′,t)

]

=
∫

dx′
(
ψ̂(x,t) ψ̂†(x′,t)

[
− h̄2

2m
∇′2 + V (x′)

]
ψ̂(x′,t)

−ψ̂†(x′,t)

[
− h̄2

2m
∇′2 + V (x′)

]
ψ̂(x′,t) ψ̂(x,t)

)
, (13.36)

But

ψ̂(x,t) ψ̂†(x′,t) = δ
(
x− x′

)± ψ̂†(x′,t) ψ̂(x,t),

where the plus sign applies to bosons, and the minus sign to fermions, and it leads to∫
dx′ψ̂(x,t) ψ̂†(x′,t)

[
− h̄2

2m
∇′2 + V (x′)

]
ψ̂(x′,t)

=
∫

dx′ δ
(
x− x′

) [− h̄2

2m
∇′2 + V (x′)

]
ψ̂(x′,t)

±
∫

dx′ ψ̂†(x′,t) ψ̂(x,t)

[
− h̄2

2m
∇′2 + V (x′)

]
ψ̂(x′,t)
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=
[
− h̄2

2m
∇2 + V (x)

]
ψ̂(x,t)

+
∫

dx′ ψ̂†(x′,t)

[
− h̄2

2m
∇′2 + V (x′)

]
ψ̂(x′,t) ψ̂(x,t).

The last term cancels the last term in(13.36), and we get

ih̄
∂

∂t
ψ̂(x,t) =

[
− h̄2

2m
∇2 + V (x)

]
ψ̂(x,t), (13.37)

which demonstrates that the Schrödinger equation also holds for the field operators.
We can also use the field operators to define the spatiotemporal particle number-density

operator as

n̂(x,t) = ψ̂†(x,t) ψ̂(x,t) (13.38)

as well as the total particle number operator

N̂(t) =
∫

dx n̂(x,t) =
∫

dx ψ̂†(x,t) ψ̂(x,t)

=
∫

dx

(∑
n

b†
n φ

∗
ν (x)

) (∑
n′

bn′ φn′(x)

)

=
∑
n,n′

b†
nbn′

∫
dxφ∗ν (x) φn′(x) =

∑
n

b†
nbν =

∑
n

N̂n. (13.39)

A similar derivation for fermions yields

N̂(t) =
∑
n

c†
ncn =

∑
n

N̂n.

Moreover, it can be shown that

dN̂

dt
= − i

h̄

[
N̂,H

]
= 0. (13.40)

13.3.4 The Vacuum State

The ket vector |∅〉 represents the vacuum state – the state without particles – so that

|∅〉 = |0,0,0 . . . ,0,0, . . .〉 =
∞⊗
μ=1

∣∣nμ = 0
〉
,

{
bμ |∅〉 = 0,

cμ |∅〉 = 0,
∀μ.

The vacuum state cannot be described by a wavefunction, in the sense that we do not expect
to be able to ask the same questions about probabilities that we may ask about a state |n〉.
However, we declare that |∅〉 is normalized, so that

〈∅ |∅〉 = 1 (13.41)
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and that it is orthogonal to all the single-particle kets |ν〉, namely

〈ν |∅〉 = 0. (13.42)

Now we recall the concept of transfer operators

|ν〉 〈μ| , (13.43)

which removes a particle from eigenstate |μ〉 and places it in eigenstate |ν〉. We find that
the vacuum state serves as a useful device when we insert (13.41) into (13.43), and write

|ν〉 〈μ| = |ν〉 〈∅ |∅〉 〈μ| = (|ν〉 〈∅|) (|∅〉 〈μ|) . (13.44)

We immediately recognize |∅〉 〈μ| as the annihilation operator cμ, or bμ, that annihilates
a particle from state |μ〉, and |ν〉 〈∅| as a creation operator c†

ν , or b†
ν , that creates a particle

in |ν〉.

Single-Particle Interaction Potential

With the identification established in (13.44), we derive an expression for the potential
acting on a single fermionic (or bosonic) particle in terms of creation and annihilation
operators. We make use of the identity operator

∑
n |n〉 〈n| to write the single-particle

potential as

V (x) =
∑
μ,ν

|ν〉 〈ν|V (x) |μ〉 〈μ|

=
∑
μ,ν

〈ν|V (x) |μ〉 |ν〉 〈μ| =
∑
μ,ν

Vμν c
†
νcμ. (13.45)

If Vμν 
= 0, then the potential V (x) serves to annihilate a particle from eigenstate |μ〉 and
create it in eigenstate |ν〉, thus conserving the number of particles.

That is why the creation and annihilation operators must occur in pairs!

A potential cannot remove a particle from a state without putting it back in some other
state. This argument applies as well for bosons with nonzero chemical potential.

If we have a set of N noninteracting electrons, the potential is written as

∑
i

V (xi ) →
∑
m,n

Vμν

N∑
i=1

c(i)†ν c(i)μ .

We obtain a similar expression for the kinetic energy T = − h̄2

2m ∇2:

T =
N∑
i=1

T (i) =
N∑
i=1

∑
μ,ν

T (i)
μν c

(i)†
ν c(i)μ . (13.46)
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Two-Particle Interaction Potential

We consider the case when we add the interaction potential of two fermionic (or bosonic)
particles, namely

V =
∑
i 
=j

1

2
v
(
xi − xj

)
. (13.47)

We obtain a second-quantized expression for v
(
xi − xj

)
by performing the following

insertions:

v
(
xi − xj

) = (|κ〉i 〈κ|) (|λ〉j 〈λ|) v (xi − xj
) (|μ〉j 〈μ|) (|ν〉i 〈ν|)

= Vκλ,μν c
(i)†
κ c

(j)†
λ c(j)μ c(i)ν . (13.48)

In order to verify that we chose the right ordering of the creation and annihilation operators,
we consider the case v = 1. Then for a total of N particles, (13.47) becomes

V = 1

2

∑
i 
=j

1 = 1

2
N(N − 1). (13.49)

Alternatively, we evaluate (13.48), using the matrix element

vκλ,μν = δκν δλμ.

which leads to

V = 1

2

∑
i 
=j

∑
κλ

c(i)†κ c
(j)†
λ c

(j)
λ c(i)κ = 1

2

∑
i 
=j

∑
κλ

c(i)†κ

(
c(i)κ c

(j)†
λ − δκλ

)
c
(j)
λ

= 1

2

∑
ij

∑
κλ

(
c(i)†κ c(i)κ c

(j)†
λ c

(j)
λ − c(i)†κ c(i)κ

)
= 1

2

(
N2 −N

)
(13.50)

in agreement with (13.49).

Field Operators and the Vacuum State

As for the field operators, we immediately realize that

ψ̂(x,t) |∅〉 = 0. (13.51)

This result confirms that the vacuum does not contain particles. Thus, it becomes clear that
the vacuum expectation value of the field operator vanishes:〈

∅

∣∣∣ψ̂(x,t) ∣∣∣∅〉 = 0. (13.52)

Hence, we expect that

ψ̂†(x,t) |∅〉 (13.53)
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describes a state where a particle stays at position x. To convince ourselves, we first calcu-
late the action of the particle density operator n̂(x,t) on this state:

n̂(x,t) ψ̂†(x,t) |∅〉 = ψ̂†(x,t) ψ̂(x,t) ψ̂†(x,t) |∅〉
= ψ̂†(x,t)

[
δ(x− x′)+ ψ̂†(x,t) ψ̂(x,t)

]
|∅〉

= δ(x− x′) ψ̂†(x,t) |∅〉 . (13.54)

We realize that ψ̂†(x,t) |∅〉 represents an eigenvector of the particle-number density oper-
ator with eigenvalue δ(x − x′). At the point x, the particle density becomes so large that
an integration over the vicinity of this position yields 1. Then the validity of the following
relation becomes clear:

N̂ ψ̂†(x,t) |∅〉 = ψ̂†(x,t) |∅〉 .

It can be proven as follows:∫
dx′ n̂(x′,t) ψ̂†(x,t) |∅〉 =

∫
dx′ δ(x− x′) ψ̂†(x,t) |∅〉 = ψ̂†(x,t) |∅〉 , (13.55)

which shows that ψ̂†(x,t) |∅〉 is an eigenvector of N̂ with eigenvalue 1; and the interpre-
tation of ψ̂†(x,t) |∅〉 as a one-particle state is justified!

Similarly,

ψ̂†(x1,t) ψ̂
†(x2,t) |∅〉 (13.56)

represents a two-particle state with a particle at x1 and one at x2. Many-particle states can
be constructed in an analogous fashion.

13.4 Canonical Transformations

We now know how to construct operators in second-quantized form, and how to incorporate
them in Hamiltonians or other physical observables. Now the question arises as to how to
carry out solutions to problems within that framework, where coping with wavefunctions
is to be avoided.

13.4.1 Diagonal Quadratic Hamiltonians

The simplest second-quantized Hamiltonian has the general diagonal quadratic form

H =
∑
μ

Eμ c†
μ cμ, (13.57)

where μ represents a complete orthonormal basis, and the Eμ are arbitrary energies.
Obviously, the Hamiltonian (13.57) yields an eigenvalue

E =
n∑
i=1

Ei (13.58)
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for a state vector c†
μ1
c†
μ2
c†
μ3

. . . c†
μn
|∅〉. It is instructive to consider the simple case of a

fermionic two-particle state |ψ〉 = c
†
λ c

†
κ |∅〉:1

H |ψ〉 =
(∑

μ

Eμ c†
μ cμ

)
c

†
λ c

†
κ |∅〉 =

∑
μ

Eμ c†
μ

(
δμ,λ − c

†
λ cμ

)
c†
κ |∅〉

= Eλ |ψ〉 −
∑
μ

Eμ c†
μ c

†
λ cμ c

†
κ |∅〉 = Eλ |ψ〉 − Eκ c†

κ c
†
λ |∅〉 =

(
Eλ + Eκ

)
|ψ〉 .

Hence, we realize that we can effortlessly get eigenvalues for any ket in Fock space for
Hamiltonians in diagonal form.

Particle–Hole Transformation

A simple example of a canonical transformation, namely, one that preserves commutation
relations is the particle–hole transformation,

hμ = c†
μ, h†

μ = cμ (13.59){
hμ,h

†
ν

}
=
{
c†
μ, cν

}
= δμ,ν .

While cμ and c†
μ annihilate and create a particle in state μ, respectively, hα and h†

α remove
or introduce a hole, and still obey fermionic statistics and preserve Fock space. One caveat,
however, is that the two representations have different vaccum states. But it is easy to
see that

|∅h〉 =
∏
μ

c†
μ |∅c〉 ⇒ hν |∅h〉 = c†

ν

∏
μ

c†
μ |∅c〉 = 0. (13.60)

13.4.2 Quadratic Nondiagonal Hamiltonians

In general, Hamiltonians that we encounter are neither quadratic nor diagonal. Quar-
tic Hamiltonian terms, encountered in two-body interactions, cannot be solved within
the second-quantization framework. A physical mean-field approximation that reduces
such terms to general quadratic form has to be employed. Thus, we need to devise
methods to diagonalize general quadratic Hamiltonians. Such methods involve introducing
transformations of creation and annihilation operators that lead to quadratic diagonal
forms. However, we need to seek transformations that preserve Fock space, or, in other
words, preserve the canonical commutation relations. It follows that these transformations
are coined as canonical ones. In general, obtaining such transformations is a daunting
undertaking. Sometimes the physics of the problem under consideration mitigates the
diagonalization procedure.

1 A similar procedure can be used for bosons.
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Diagonalizing Quadratic Hamiltonians

A class of nondiagonal quadratic Hamiltonians of the form

H =
∑
μ,ν

Eμν c†
μ cν (13.61)

covers a very large number of system, including those reduced to quadratic form in mean
field. Here, the matrix Eμν is diagonalized by unitary transformation involving linear com-
binations of the cμ, c†

μ operators.

Example: The Tight-Binding Hamiltonian

We shall consider here a simplified 1D version of the tight-binding Hamiltonian we encoun-
tered in graphene. It has the form

H = E0

∑
i

c
†
i ci − t

∑
〈ij〉
i 
=j

c
†
i cj . (13.62)

The t is the hopping energy, and 〈ij 〉 indicates nearest neighbor. The mitigating physics of
this problem is translational invariance and conservation of momentum (momentum must
be a good quantum number). This then suggests the transformation

f
†
k =

1√
N

N−1∑
j=0

eik·xj c†
j (13.63)

with k ∈ first BZ. The fk operators satisfy the anticommutation rules{
fk1, f

†
k2

}
= 1

N

∑
j,l

e−ik1xj eik2xl
{
cj, c

†
l

}
= 1

N

∑
j,l

e−ik1xj eik2xl δj,l

= 1

N

∑
j

ei(k2−k1)xj = δk1,k2, (13.64)

and the Hilbert space dimension is preserved since there are exactly N pairs of operators –
the transformation is canonical! Moreover,

∣∣∅f

〉 = |∅c〉. Substituting for cj s by fks in the
Hamiltonian, we arrive at

H = E0

∑
k

f
†
k fk −

∑
k

2t cos(ka) f †
k fk =

∑
k

ε(k) f
†
k fk . (13.65)

We can use the f †
k s that diagonalized the Hamiltonian to construct the ground state and to

determine other related physical quantities.
A more interesting and instructive example is obtained by adding to (13.62) a staggered

periodic potential of the form

H′ = 	
∑
j

(−1)j |j〉 〈j | = 	
∑
j

(−1)j c†
j cj, (13.66)
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2a

V
0

a

Figure 13.1 The staggered potential doubles the periodicity and halves the BZ.

RBZ

BZ

/a– – /2a /2a /a

Figure 13.2 Going to the reduced zone scheme yields two species of fermions corresponding to the
lower and upper bands.

shown in Figure 13.1, which effectively doubles the periodicity of the system. Using
(13.63) and setting (−1)j = eiπ rj /a , we write

H′ = 	
∑
j

eiπ rj /a
1

N

∑
k1,k2

e−ik1rj eik2rj f
†
k1
fk2 k1, k2 ∈ first BZ [−π/a,π/a]

= 	
∑
k

f
†
k+π/a fk, (13.67)

which is nondiagonal in the f operators. To diagonalize the total Hamiltonian, we
notice that the state k is only coupled to the state k + π/a, since the latter is coupled
to k+ 2π/a = k. Thus, the diagonalization implies a linear combination of fk and fk+π/a .

A more illuminating perspective is to work in the reduced BZ, [−π/2a,π/2a], associ-
ated with the 2a periodicity. We recover translation invariance and render k a good quantum
number. We see from Figure 13.2 that an umklapp process yields two bands, corresponding
to the two degrees of freedom now in the primitive cell.

Accordingly, we define the operators⎧⎪⎨⎪⎩
αk = fk |k| ≤ π

2a

βk = fk |k| ≥ π

2a

(13.68)

so that αk, βk are defined in the reduced BZ, and they obey fermionic commutators. We
now recast the tight-binding Hamiltonian (13.65) in terms of the new operators as∑

k∈RBZ

ε(k)
(
α

†
k αk − β

†
k βk

)
, (13.69)
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E

/a /a–

Figure 13.3 The dispersion relation E±(k). Because of the staggered potential, there is now a gap
2	 at the zone edge.

where we used ε(k ± π/a) = −ε(k). The mapping of (13.69) is displayed in Figure 13.2.
We also express H′ as∑

k∈BZ

f
†
k+ π

a
(mod 2π

a
)
fk →

∑
k∈RBZ

(
α

†
k βk + β

†
k αk

)
, (13.70)

giving

H =
∑

k∈RBZ

[
E(k)

(
β

†
k βk − α

†
k αk

)
+	

(
α

†
k βk + β

†
k αk

)]
=
∑

k∈RBZ

[
α

†
k β

†
k

] (−E(k) 	

	 E(k)

) [
αk

βk

]
, (13.71)

where we set E(k) = −ε(k).

Bogoliubov Transformation

The structure of (13.71) indicates that the two degrees of freedom αk, βk are coupled by 	,
making the Hamiltonian nondiagonal quadratic. To diagonalize (13.71), we introduce the
unitary Bogoliubov canonical transformation: we define the new operators[

γk− γk+
] = (a b

c d

) [
αk

βk

]
. (13.72)

To satisfy orthogonality, we set[
γk− γk+

] = (uk −vk
vk uk

) [
αk

βk

]
. (13.73)

Moreover, to satify anticommutation relations, we require{
γk−, γ †

k−
}
=
{
uk αk − vk βk, uk α

†
k − vk β

†
k

}
= u2

k

{
αk, α

†
k

}
+ v2

k

{
βk, β

†
k

}
+ ukvk

({
βk, α

†
k

}
+
{
αk, β

†
k

})
= u2

k + v2
k = 1. (13.74)
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This last relation suggests that we set uk = cos θk, vk = sin θk . Inverting (13.73),[
αk

βk

]
=
(
uk vk

−vk uk

) [
γk− γk+

]
(13.75)

and substituting in (13.71), we obtain

H =
∑

k∈RBZ

[
γ

†
k− γ

†
k+
]

×
(− [E(k)(u2

k − v2
k )+ 2	ukvk

] [
	(u2

k − v2
k )− 2E(k)ukvk

][
	(u2

k − v2
k )− 2E(k)ukvk

] [
E(k)(u2

k − v2
k )+ 2	ukvk

]) [γk−
γk+

]
.

This leads to the condition

	(u2
k − v2

k )− 2E(k)ukvk = 0 ⇒ tan(2θk) = 	

E(k) (13.76)

giving the dispersion

E±(k) = ±
[
E(k)(u2

k − v2
k )+ 2	ukvk

]
= ±

[
E2(k)+	2

]1/2
, (13.77)

shown in Figure 13.3, and

uk =
[

1

2

(
1+ E(k)√

E(k)2 +	2

)]1/2

, vk =
[

1

2

(
1− E(k)√

E(k)2 +	2

)]1/2

.

13.5 Coherent States

In field theory, we have a field. It can be described as an operator ψ(x) at each point in
space. As we will discuss later when we deal with path integral formalism, we anticipate
that the path integral will be related to an integration over the field configurations ψ(x,t).
To make sense of this, it is clear that we first need to work in a basis that diagonalizes the
field operators. The states that do this are called coherent states. Moreover, coherent states
comprise states with varying particle numbers, thus they provide an extremely useful basis
of Fock space. Although it is not an orthonormal set, it does span the whole Fock space.

There are some crucial differences between the coherent states corresponding to boson
fields and those corresponding to fermion fields, which, as we will see, arise from their
characteristic commutators.

13.5.1 Bosonic Coherent States

For a bosonic state with an annihilation operator b, the coherent states are defined as
eigenstates of b, namely,

b |z〉 = z |z〉 , (13.78)
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where z = |z| eiϕ is a complex c-number. Every state in Hilbert space can be written as

|z〉 = B(b†) |∅〉 ,
where the function B(b†) has to satisfy[

b,B(b†)
]
= z B(b†). (13.79)

We use the identity [
b, B(b†)

]
= ∂

∂b† B(b
†)

to obtain

∂

∂b† B(b
†) = z B(b†) ⇒ B(b†) = C ez b

†
. (13.80)

We can then write the eigenstate of b as

|z〉 = C ez b
† |∅〉 (13.81)

subject to the normalization

1 = 〈z| z〉 = |C|2
〈
∅
∣∣∣ez∗b ezb†

∣∣∣∅〉 .
Using the Baker–Housdorff identity

eA eB = eA+B+[A,B]/2 = e[A,B] eB eA,

we obtain

|C|2 = e−z
∗z

yielding

|z〉 = e−|z|
2/2 ez b

† |∅〉 = e−|z|
2/2

∞∑
n=0

zn

n!
|n〉 . (13.82)

We can generalize and write the coherent state for a system with N bosonic states as

|z〉 =
N∏
i=1

e−|zi |
2/2 ezi b

†
i |∅〉 = e−

∑N
i=1 |zi |2/2 e

∑N
i=1 zi b

†
i |∅〉 . (13.83)

Properties of Bosonic Coherent States

• The coherent states are not orthogonal to each other:

〈z1| z2〉 = e−(|z1|2+|z2|2)/2
〈
∅
∣∣∣ez∗1b ez2b

†
∣∣∣∅〉

= e−(|z1|2+|z2|2)/2 ez
∗
1z2 . (13.84)
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• The coherent states form an overcomplete basis∫
dz∗ dz |z〉 〈z| =

∑
n,m

∫
dz∗ dz e−|z|

2 z∗n zm

n!m!
b†n |∅〉 〈∅| bm

=
∑
n,m

∫ ∞
0

r dr e−r
2 rm+n

n!m!

∫ 2π

0
dϕ ei(m−n)ϕ b†n |∅〉 〈∅| bm

= π
∑
n

|n〉 〈n| 1

n!

∫ ∞
0

dy e−y yn = π
∑
n

|n〉 〈n| = πI

and the resolvent identity is

I =
∫

dz∗ dz
π

|z〉 〈z| . (13.85)

• Next, we consider the action of b† on the coherent state |z〉:

b† |z〉 = b†
∞∑
n=0

zn

n!
b†n |∅〉 =

∞∑
n=0

zn

n!
b†(n+1) |∅〉

=
∞∑
n=0

(n+ 1)
zn

(n+ 1)!
b†(n+1) |∅〉 =

∞∑
n=1

zn−1

(n− 1)!
b†n |∅〉 .

We find that

b† |z〉 = ∂

∂z
|z〉 . (13.86)

• Now consider matrix elements of normal-ordered operators.
We note that

〈z1| b†n bm |z2〉 = z∗n1 zm2 〈z1| z2〉 = z∗n1 zm2 ez
∗
1 z2,

which allows us to write the matrix element of the operator

A =
∑
m,n

amn b
†n bm

as 〈
z1

∣∣∣∣∣∑
m,n

amn b
†n bm

∣∣∣∣∣ z2

〉
=
(∑
m,n

amn z
∗m
1 zn2

)
ez
∗
1z2 . (13.87)

• We can express the trace of operator A in terms of coherent states, namely,

TrA =
∑
n

〈n |A| n〉 =
∫

dz∗ dz
π

e−|z|
2 ∑

n

〈n | z〉 〈z |A| n〉

=
∫

dz∗ dz
π

e−|z|
2 〈z|A

∑
n

|n〉 〈n | z〉

=
∫

dz∗ dz
π

e−|z|
2 〈z |A| z〉 . (13.88)
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• We can expand a Fock ket in terms of coherent states, as

|ψ〉 =
∫

dz∗ dz
π

|z〉 〈z| ψ〉 =
∫

dz∗ dz
π

φ(z∗) |z〉 . (13.89)

• Action of b† and b in coherent state representation is as follows:〈
z

∣∣∣b†
∣∣∣ψ〉 = z∗ ψ

(
z∗
) ⇒ b† → z∗

〈z |b|ψ〉 = ∂

∂z∗
ψ
(
z∗
) ⇒ b → ∂

∂z∗
. (13.90)

The coherent state variables satisfy the bosonic commutators

[
z∗i ,z

∗
j

]
=
[

∂

∂z∗i
,
∂

∂z∗j

]
= 0[

∂

∂z∗i
,z∗j

]
= δij .

• Consider coherent state representation of the Schrödinger equation:

The Schrödinger equation for a Hamiltonian H
(
b†, b
)

is given by

H
(
b†, b
)
|ψ〉 = E |ψ〉 .

Acting from the left by 〈z|, we get

H
(
z∗,

∂

∂Z∗

)
ψ
(
z∗
) = E ψ

(
z∗
)
, (13.91)

which, for a typical many-body Hamiltonian, reads∑
ij

εij z
∗
i

∂

∂z∗j
+ 1

2

∑
ijkl

〈ij |V |kl〉 z∗i z∗j
∂

∂z∗l

∂

∂z∗k
. (13.92)

13.5.2 Fermionic Coherent States

Coherent states for fermions can be defined in a similar way to bosonic ones. However,
when we consider fermionic systems, things get more complicated. The eigenstates of a
fermionic annihilation operator should satisfy the equation

c |ξ 〉 = ξ |ξ 〉 .

Since for fermions we can have only two possible state occupations, |ξ 〉 = α |0〉 + β |1〉,
we find that

c |ξ 〉 = β |0〉 = ξ (α |0〉 + β |1〉) ,
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which implies that the eigenket of c is |0〉 with eigenvalue 0. To obtain nontrivial fermionic
coherent states, we should start with considering the anticommutators of annihilation oper-
ators. For two operators ci and cj with coherent eigenstates

ci |ξ〉 = ξi |ξ〉 , cj |ξ〉 = ξj |ξ 〉 ,
we find that {

ci, cj
} = 0 ⇒ {

ξi, ξj
} = 0, (13.93)

which also implies that ξ2
i = 0 !. Clearly, the quantities ξ are no ordinary numbers. As a

matter of fact, they turn out to satisfy what is mathematically known as Grassmann algebra,
and such objects are identified as Grassmann numbers.

Grassmann Algebra

Grassmann algebra and calculus can be viewed as a clever construct that can manipulate
sign changes arising from the inherent anticommutations of its variables. A Grassmann
algebra is defined by the set of its generating elements

{
1, ξ1, ξ̄1, ξ2, ξ̄2, . . . , ξn, ξ̄n

}
that satisfy {

ξi, ξj
} = {ξ̄i, ξ̄j} = {ξi, ξ̄j} = ξ2

i = ξ̄2
i = 0{

ξi, cj
} = {ξ̄i, cj} = {ξi, c†

j

}
=
{
ξ̄i, c

†
j

}
= 0. (13.94)

The basis set of Grassmann algebra consists of all distinct products of its generators,
namely, {1,ξ1, . . . ,ξ1ξ2, . . . ,ξ1ξ2 . . . ξn}.

For a Grassmann algebra with two generators
{
ξ, ξ̄
}
, we find that all analytic

functions of a Grassmann variable reduce to a first-degree polynomial,

ψ(ξ) = ψ0 + ψ1 ξ,

where ψ0, �1 are complex numbers. We can define a complex conjugation as

ψ(ξ) = ψ̄0 + ψ̄1 ξ̄ .

We can also define functions of two Grassmann variables as

F(ξ,ξ̄ ) = f0 + f1 ξ + f̄1 ξ̄ + f12ξ̄ ξ,

where, again, a0, a1, a12 are complex numbers, but a1 and ā1 need not be mutual
conjugates.

Grassmann Calculus

1. Differentiation of Grassmann variables:

Since analytic functions of Grassmann variables have such a simple structure,
differentiation is just as simple. Indeed, we define the derivative as the coefficient of
the linear term
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∂ξψ(ξ) = ψ1, ∂ξ̄ ψ(ξ) = ψ̄1

∂ξ
(
ξ̄ ξ
) = −ξ̄, (13.95)

where in the last line we moved ξ to the left of ξ̄ . We also obtain

∂ξ F (ξ,ξ̄ ) = f1 − f12 ξ̄

∂ξ̄ F (ξ,ξ̄ ) = f1 + f120 ξ

∂ξ̄ ∂ξ F (ξ,ξ̄ ) = −f12 = −∂ξ ∂ξ̄F (ξ,ξ̄ ), (13.96)

and we find that {
∂ξ̄, ∂ξ

}
= 0. (13.97)

The chain rule for differentiation then reads

∂ξ F (ψ) = ∂ξ ψ ∂ψF . (13.98)

Contrary to ordinary variables, the order of the terms in the rhs matters.
2. Integration over Grassmann variables:

Integration and differentiation are identical for Grassmann variables

∂ξi F (ξ1, . . . ,ξn) =
∫

dξi F (ξ1, . . . ,ξn). (13.99)

This property ensures that two fundamental properties of ordinary integrals over
functions vanishing at infinity are satisfied:

• The integral of an exact differential form is zero:∫
dξi ∂ξi F (ξ1, . . . ,ξn) = 0. (13.100)

• The integral over ξi of F(ξ1, . . . ,ξn) does not depend on ξi so that its derivative
vanishes:

∂ξi

∫
dξi F (ξ1, . . . ,ξn) = 0. (13.101)

Both properties (13.100) and (13.101) follow from the definition (13.99) and the
nilpotence of the differential operator ∂ξ . Another consequence of (13.99) is∫

dξ 1 = 0.

For a Grassmann algebra with a single generator, we have

F(ξ) = c0 + c1 ξ ⇒
∫

dξ F (ξ) = c1 = ∂ξ F (ξ). (13.102)
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Properties of Fermionic Coherent States

Grassmann variables can now be used to define coherent states analogs of the ones we have
delineated for bosons. We define a fermionic coherent state as

|ξ 〉 = N e−ξ c
† |∅〉 , 〈ξ | = 〈∅| eξ̄ cN (13.103)

since

c |ξ 〉 = c e−ξ c
† |∅〉 = c

(
1− ξ c†

)
|∅〉 = ξ |∅〉 = ξ

(
1− ξ c†

)
|∅〉 . (13.104)

N is a normalization constant. We also find

c† |ξ 〉 = c† e−ξ c
† |∅〉 = c†

(
1− ξ c†

)
|∅〉 = c† |∅〉 = −∂ξ

(
1− ξ c†

)
|∅〉 = −∂ξ |ξ 〉 .

(13.105)

For a Grassmann variable η, we obtain the inner product

〈ξ | η〉 = 〈∅| eξ̄ c e−η c† |∅〉 = 1+ ξ̄η = eξ̄η. (13.106)

When η = ξ , we obtain a normalization factor of N = e−ξ̄ ξ/2. For n fermions, we have

|ξ〉 = |ξ1 . . . ξn〉 =
n∏
i=1

e−ξ̄i ξi /2 e−ξic
†
i |∅〉 = e−

∑
i ξ̄i ξi/2 e−

∑
i ξi c

†
i |∅〉 (13.107)

where we used the commutator [
ξi c

†
i , ξj c

†
j

]
= 0.

The resolvent identity is given by∫
dξ̄ dξ |ξ 〉 〈ξ | =

∫
dξ̄ dξ e−ξ̄ ξ/2

(
1− ξ c†

)
|∅〉 〈∅| (1+ ξ̄ c

)
e−ξ̄ ξ/2

=
∫

dξ̄ dξ

(
1− 1

2
ξ̄ ξ

)(
1− ξ c†

)
|∅〉 〈∅| (1+ ξ̄ c

) (
1− 1

2
ξ̄ ξ

)
=
∫

dξ̄ dξ

[(
1− 1

2
ξ̄ ξ

)
|∅〉 − ξ |1〉

] [
〈∅|
(

1− 1

2
ξ̄ ξ

)
+ 〈1| ξ̄

]
= I.

(13.108)

This can be generalized to

I =
∫ n∏

i=1

dξ̄i dξi |ξ〉 〈ξ |

|ξ〉 = |ξ1 . . . ξn〉 . (13.109)

Its proof requires the use of Grassmann variables permutations.
We can use (13.109) to expand a ket |ψ〉 in Fock space as

|ψ〉 =
∫ n∏

i=1

dξ̄i dξi ψ(ξ) |ξ〉 . (13.110)
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We can then determine the following matrix elements

〈ξ | ci |ψ〉 = ∂ξ̄i ψ(ξ), 〈ξ | c†
i |ψ〉 = ξ̄i ψ(ξ) (13.111)

and the matrix element of a normal-ordered operator A({c†
i },{ci}) becomes

〈ξ |A ∣∣ξ ′〉 = e−
(|ξ |2+|ξ ′|2)/2 e

∑
i ξ̄i ξ

′
i A({ξ̄i},{ξ ′i }). (13.112)

In the case of the fermion number operator N =∑i , c
†
i ci gives the expectation value

〈ξ |N |ξ〉
〈ξ | ξ〉 =

∑
i

ξ̄i ξi .

13.5.3 Gaussian Integrals

When we develop the many-body path integral formalism, we will frequently encounter
integrals involving exponentials of complex or Grassmann variables. For actions having
quadratic forms, the integrals are just generalizations of the simple Gaussian integrals. We
will derive several useful such integrals here.

1. Real variables:

The integral has the general form

Z(J ) =
∫

dx1 . . . dxn e
− 1

2

∑n
i,j+1 xi Aij xj+

∑
i Ji xi =

∫
dx e−

1
2 xT A x+JT x.

The n-dimensional real matrix A is assumed to be symmetric and positive definite. It can
be diagonalized by an orthogonal transformation: A = OT D O, with O an orthogonal
matrix (OT O = OOT = 1) and D a diagonal matrix with nonnegative elements
(Dii > 0). With the change of variables y = O(x − A−1J) (Jacobian | det O| = 1),
we obtain

−1

2
xT A x+ JT x = −1

2
yT D y+ 1

2
JT A−1 J

and Z(J ) reduces to a product of Gaussian integrals, 2

Z(J ) = e
1
2 JT A−1 J

n∏
i=1

∫ ∞
−∞

dy e−y
2 Dii/2

= e
1
2 JT A−1 J

n∏
i=1

√
2π

Dii

= e
1
2 JT A−1 J (2π)n/2 (det A)1/2 . (13.113)

2 Recall that
∫∞
−∞ dy e−ay2/2 = √2π/a.
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2. Complex variables:

Z(J∗,J) =
∫ ∞
−∞

∏
i

dz∗i dzi
2πi

e
−∑ij z∗i Aij zj+

∑
i (J

∗
i zi+cc)

=
∫ ∞
−∞

∏
i

dz∗i dzi
2πi

e−z† A z+(J† z+cc),

where A is positive definite and Hermitian, with D = U† AU . Again, we change
variables

z′ = U
(
z− A−1J

)
, z′† =

(
z† − J† A−1

)
,

which yields 3

Z(J∗,J) = eJ† A−1 J
∫ ∞
−∞

∏
i

dz∗i dzi
2πi

e−z′† D z′ = eJ† A−1 J (det A)−1 . (13.114)

3. Grassmannian integrals:

A Gaussian integral involving a conjugate pair of Grassmann variables takes the form∫
dξ̄ dξ e−ξ̄ aξ =

∫
dξ̄ dξ

(
1− ξ̄ aξ

) = a. (13.115)

By analogy with the previous Gaussian integrals, we may write the Grassmann Gaussian
integral as

Z(ζ̄,ζ ) =
∫ ∏

i

dξ̄i dξi e
−∑ij ξ̄i Aij ξj+

∑
i (ζ

∗ ξi+cc). (13.116)

Thus, if we can bring this Grassmann integral into a diagonal form, we may be able to
reduce the integral to det A in the numerator.

Transformation of Grassmann Variables
We consider the integral

I =
∫

dξ F (ξ)

subject to the transformation ξ → αξ ′ + β, where α and β are complex numbers.
Using (13.99) and the chain rule, we get

I = ∂ξ F (ξ) = ∂ξ (ξ
′) ∂ξ ′ F = 1

α
∂ξ ′ F = 1

a

∫
dξ ′ F

(
αξ ′ + β

)

3 We have
∫∞
−∞

∏
i

dz∗ dz
2πi e−a|z|2/2 = a−1.
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so that the Jacobian of the transformation is α−1 instead of α for ordinary transfor-
mations. This result can be generalized to a multidimensional integral,

I =
∫ ∏

i

dξ1 . . . dξn F (ξ1, . . . ,ξn) =
∏
i

∂ξi F (ξ1, . . . ,ξn)

=
∏
i

⎛⎝∑
j

(
∂ξi ξ

′
j

)
∂ξ ′j

⎞⎠ F(ξ1, . . . ,ξn). (13.117)

For a linear transformation ξ ′i =
∑

j Mij ξj , we get

I =
∏
i

⎛⎝∑
j

Mji ∂ξ ′j

⎞⎠ F(ξ1, . . . ,ξn).

Since the differential operators ∂ξ ′j anticommute, the differential operator acting on

F(ξ1, . . . ,ξn) is proportional to ∂ξ ′1 . . . ∂ξ
′
n
, and the prefactor is easily seen to be the

determinant of the matrix M,

I = det
(
∂ξj ξ

′
i

) ∏
i

∂ξ ′i F (ξ1, . . . ,ξn)

so that ∏
i

dξi = det
(
∂ξj ξ

′
i

) ∏
i

∂ξ ′i . (13.118)

The Jacobian is the inverse of the determinant det
(
∂ξ ′j ξi
)
.

Equation (13.118) can now be used to determine the Grassmannian integral

Z =
∫ ∏

i

dξ̄i dξi e
−∑ij ξ̄∗i Aij ξj ,

using the linear transformation ξ ′i =
∑

j Aij ξj , and obtain

Z = det A
∫ ∏

i

dξ̄i dξ
′
i e
−∑i ξ̄i ξ

′
i = det A

∏
i

∫
dξ̄i dξ

′
i

(
1− x̄ii ξ

′
i

) = det A.

(13.119)

Or, for the more general integral in (13.116), we get

Z(ζ̄,ζ ) = det A e ζ̄ A−1 ζ . (13.120)
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Exercises

13.1 In this question, c†
i and ci are fermion creation and annihilation operators and the

states are fermion states. Use the convention |11111000 . . .〉 = c
†
5 c

†
4 c

†
3 c

†
2 c

†
1 |∅〉.

(i) Evaluate c†
3 c

†
6 c6 c4 c

†
6 c3 |11111 . . .〉.

(ii) Write |1101100100 . . .〉 in terms of excitations about the filled Fermi
sea |1111100000 . . .〉. Interpret your answer in terms of electron and hole
excitations.

(iii) Find 〈ψ | N̂ |ψ〉, where |ψ〉 = A |100〉 + B |111000〉, where N̂ =∑i c
†
i ci .

13.2 Derive expressions for the spin, density, and current density operators of a spin-1/2
system in the plane-wave representation.

13.3 At finite T , the occupancy of state μi is given by〈
a†
μ aμ

〉
= Tr

[
e−βH a†

μ aμ
]

Tr
[
e−βH

] ,

where aμ can either be fermionic cμ or bosonic bμ operators. Use the simple Hamil-
tonian (13.57) to show that for fermions〈

c†
μ cμ

〉
== 1

1+ eβ Eμ , Fermi factor.

and for bosons 〈
b†
μ bμ

〉
== 1

eβ Eμ − 1
, Bose factor

Hint: Since
[
a†
μ aμ, aν

] = 0, use the Baker–Hausdorff identity

e−βH =
N∏
μ=1

e−β Eμ a†
μ aμ .

13.4 Consider a problem where bosons may accumulate on a site. The Hamiltonian is
given by

H = ε b† b + t
(
b†2 + b2

)
.

The energy of a boson on the site is ε, while the nature of the problem is such that the
bosons appear or disappear in pairs, with probability t . Notice that the total number
of bosons in this problem is not conserved.

Employ the unitary (Bogoliubov) transformation

a = u b + v b†

a† = u b† + v b

to diagonalize the Hamiltonian.
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(a) Ensure that the boson commutation relation is satisfied for the new operators
a†, a. What condition on u and v do you obtain, and what form can they
assume?

(b) Show that a Hamiltonian of the form

H = ω a† a +


can be obtained. Express ω and 
 in terms of ε and t .
(c) The ground state of the system corresponds to the absence of particles of type

a. But that does not mean there are no b-particles there. Indeed, in the ground
state
〈
a a†
〉 = 1 (while of course

〈
a† a
〉 = 0 and 〈a a〉 = 0), and〈

b† b
〉
= sinh2(φ),

where φ is the hyperbolic angle. Use the expression for φ in terms of t and ε to
find the number of particles in the ground state.

(c) What happens when t = ε/2? Give a physical explanation of this result (try to
express the Hamiltonian in terms of x and p).

13.5 The effective Hamiltonian

H = εc c
† c + εd d

† d −	c d −	∗ c† d†

contains fermions in two kinds of states c and d. We would like to diagonalize this
Hamiltonian in the form

H = Eα α† α + Eβ β† β + E0

by introducing quasiparticle operators α, β through the Bogoliubov transformation{
c† = u∗ α† + v β

β† = u∗ β† − v α
u, v ∈ C.

(a) Show that the coefficients have to fulfill |u|2 + |v|2 = 1.
(b) Express H in terms of α and β, and determine u and v that diagonalize H.

Hint: Introduce new variables φ and θ by setting u = cos θ, v = eiφ sin θ ,
and determine their form.

(c) Determine the energy spectrum of the new quasiparticles in the special case
εc = εd = ε, and u, v real.

(d) Discuss the meaning of Eα, Eβ , and E0.

13.6 The classical Lagrangian for a one-dimensional diatomic chain is given by

L =
∑
j

{
1

2
mφ φ̇

2 + 1

2
mψ ψ̇2 − κ

2

[(
φj − ψj

)2 + (φj − ψj−1
)2]} .

(i) Determine and draw the dispersion curves.
(ii) What is the gap in the excitation spectrum?
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(iii) Write the diagonalized Hamiltonian in second-quantized form and give a
detailed account of how you arrived at your final answer. You will now
need two types of creation operator. Hint: Diagonalize the first-quantized
Hamiltonian before you second quantize.

13.7 Perturbational canonical transformation:
Consider a Hamiltonian H and the canonical transformation H̃ = e−S H eS , with
S† = −S.

(a) By expanding in a power series and collecting terms, show that

H̃ = H+ [H,S]+ 1

2
[[H,S] ,S]+ · · ·

(b) Now take H = H0 + λH′, with H0 diagonal. Show that if we choose S such
that

λH′ + [H0,S] = 0,

then S ∝ λ, and

H̃ = H0 + 1

2

[
λH′,S

]+O(λ3)+ · · ·
(c) Show that the matrix elements of S are given by

〈n |S|m〉 = λ

〈
n
∣∣H′∣∣m〉

Em − En

.

13.8 Phonons interacting with localized particle:
A system of phonons interacting with a localized level that can contain a single
(spinless) fermionic particle is described by

H = ε0 c
† c +

∑
q

Mq

(
bq + b†

q

)
c† c +

∑
q

ωq b
†
q bq.

where Mq is the fermion–phonon coupling matrix element, with Mq =M−q to be
real; bq and b†

q destroy and create phonons in state q, and c and c† destroy and create
fermions in the localized state with energy ε0. Use the following steps to determine
the energy spectrum of this Hamiltonian.

(a) Consider the canonical transformation

H→ H̃ = eS H e−S

S = c† c
∑

q

Mq

ωq

(
b†

q − b−q

)
.

(b) Use the following properties of canonical transformations:

i. Eigenvalues of Hermitian operators are invariant.
ii. The transform of product is the product of transforms.
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(c) Try to put transformed H in the form

H = (ε0 +�) c† c +
∑

q

ωq b
†
q bq

and determine the self-energy �.
(d) The Hamiltonian is now a sum of independent diagonal quadratic forms. Read

off the eigenvalues

13.9 Consider a charged oscillator in an external electric field (charge e = 1):

H = p2

2m
+ mω2

0

2
x2 + Ex.

(a) Express the Hamiltonian in second-quantized form using x;p → a†a for the
simple harmonic oscillator.

(b) Consider the canonical transformation H = eS H e−S with S = λ
(
a − a†

)
.

Show that S† = −S since H must be Hermitian.
(c) Use the expansion H̃ = H+ [H,S]+ . . . to find H̃.
(d) Find the choice of λ that makes H̃ diagonal. Write down the resulting H̃, includ-

ing the constant energy term.
(e) Express “old” creation-annihilation operators in terms of the “new” ones. Can

you use that as an alternative canonical transformation?

13.10 You have shown in Exercise (6.6) that the dynamic structure factor can be expressed
as

S(Q,ω) = 1

N

∫ ∞
−∞

dt

2π
eiωt
∑
ll′

eiQ·(Rl−Rl′ )
〈
�i

∣∣∣eiQ·ul′ e−iQ·ul (t)∣∣∣�i

〉
.

where Q is the momentum transfer. At finite temperatures, one has to thermal-
average over all initial states so that

S(Q,ω) = 1

N

∫ ∞
−∞

dt

2π
eiωt
∑
ll′

eiQ·(Rl−Rl′ )
〈
eiQ·ul′ (0) e−iQ·ul (t)

〉
T
,

where 〈
eiQ·ul′ (0) e−iQ·ul (t)

〉
T
= Tr

[
e−βH eiQ·ul′ e−iQ·ul (t)

]
Tre−βH

.

(a) Use the identity 〈
eÂ eB̂

〉
T
= e

〈
Â2+2ÂB̂+B̂2

〉
T
/2
,

where operators Â and B̂ are linear combinations of â and â†, together with
spatial and temporal translation invariance, to show that the dynamic structure
factor S(Q,ω) can be written as
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S(Q,ω) = e−2W

N

∑
l

eiQ·Rl

∫ ∞
−∞

dt

2π
eiωt e〈(Q·u0(0)) (Q·ul (t))〉T ,

where W = 1
2

〈
(Q · u0)

2〉
T

is the Debye–Waller factor.
(b) To obtain the long-range modulations, take the term in the exponent, namely,

the correlator

〈(Q · u0(0)) (Q · ul (t))〉T ,
to be unity. Determine S(Q,ω) under this high-correlation condition. This result
implies that diffraction peaks are weighted by e−2W .

(c) Calculate the Debye–Waller factor in d-dimensional space. (Hint: Expand
u0 in terms of creation and annihilation operators of the phonon modes, and
assume that the phonons have a linear dispersion, which is cut off by the Debye
frequency.)

(d) Show that in one dimensionW diverges for all temperatures. Is zero temperature
different? In what way?

(e) Show that in two dimensions W diverges at finite temperatures.
(f) Do you identify any similarity between the one-dimensional case at zero tem-

perature and the two-dimensional case at finite temperatures?

13.11 The Hamiltonian of the system of bosons (a, a†, b, and b† are Bose operators) is

H = ε1 a
† a + ε2 b

† b + 	

2

(
a† b† + b a

)
,

where ε1, ε2, and 	 are real and positive, 	 < (ε1 + ε2).
Find canonical transformation diagonalizing this Hamiltonian. Write down

explicit expressions for the eigenenergies and parameters of the transformation.



14

The Interacting Electron Gas

As we have previously pointed out, the jellium model, shown in Figure 14.1, is broadly
considered a paradigm of condensed matter electronic systems. It is the simplest possible
interacting model, and as such we will used it in this chapter to illustrate the breadth
and limitations of applying conventional perturbation theory to the general treatment of
interacting electronic systems.

14.1 The Jellium Model

We write the total Hamiltonian as

H = H+ +H+e +He

H+ = 1

2

∫
dx dx′ ρ+(x)ρ+(x′)

e−μ|x−x′|
|x− x′| (Positive background Hamiltonian)

= 1

2
e2
(
N




)2 ∫
dx′
∫

dx
e−μr

r
= 1

2
e2 N

2




4π

μ2

H+e = −e
∑
i

∫
dx ρ+(x)

e−μ|x−xi |

|x− xi | = −
e2N




∑
i

∫
dx

e−μ|x−xi |

|x− xi |

= −e
2N2




4π

μ2
(Electron–positive background Hamiltonian). (14.1)

Next, we consider the electron Hamiltonian

He =
∑
i

p2
i

2me

+ 1

2
e2
∑
i 
=j

e−μ|xi−xj |
|xi − xj | (14.2)

and recall that the single-electron wavefunctions are just plane waves. The single-particle
kinetic energy is given by

T =
∑
i

h̄2k2
i

2me

c
†
i ci . (14.3)

409
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Figure 14.1 The jellium model consists of electrons, represented by dots, and a smeared positive
background, depicted in gray.

and the matrix element for the two-electron repulsion is〈
k4σi,k3σj,

∣∣∣∣∣e−μ|xi−xj |
|xi − xj |

∣∣∣∣∣k2σj,k1σi

〉

= 1


2

∫
dxi xj ei(k1−k4)·xi ei(k2−k3)·xj e

−μ|xi−xj xi−xj |
|xi − xj |

= 1



δk1+k2−k3−k4

∫
dx e−iq·x

e−μr

r
= 1



δk1+k2−k3−k4

4π

μ2 + q2
, (14.4)

where x = xi − xj, r = |x. Substituting from (14.3) and (14.4) into (14.2), we get

He =
∑
k,σ

h̄2k2

2m2
c

†
k,σ ck,σ + 2πe2




∑
kk′,q
σσ ′

1

μ2 + q2
c

†
k+q,σ c

†
k′−q,σ ′ ck′,σ ′ck,σ . (14.5)

The term with q = 0 in (14.5) will be treated separately here:

2πe2

μ2


∑
kk′
σσ ′

c
†
k,σ c

†
k′,σ ′ ck′,σ ′ ck,σ = 2πe2

μ2


∑
kk′
σσ ′

c
†
k,σ ck,σ

(
c

†
k′,σ ′ ck′,σ ′ − δkk′δσσ ′

)

= 2πe2

μ2


(
N2 −N

)
. (14.6)

From (14.1) and (14.6), we find that all the constant terms that contain N2e2/μ add up

to zero. The remaining term − 2πNe2

μ2

vanishes when 
 → ∞. The Hamiltonian is finally

reduced to

H =
∑
k,σ

h̄2k2

2m2
c

†
k,σ ck,σ + 2πe2




′∑
kk′,q
σσ ′

1

q2
c

†
k+q,σ c

†
k′−q,σ ′ck′,σ ′ck,σ = H0 +H′, (14.7)

where we set μ = 0 since the singularity at q = 0 is now removed. H0 is the Hamil-
tonian for the Sommerfeld gas, discussed in detail in Section 1.3. We shall treat H′ as a
perturbation on H0. The prime over summation in H′ indicates the exclusion of the q = 0
term. Notice that in the second-quantization formalism, the ground state is expressed as a
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product of single particle wavefunctions and not as an antisymmetrized linear combination
of such terms, since the antisymmetrization is now manifest in the creation and annihilation
operator commutators. Thus, we write the jellium ground-state wavefunction as

|�0〉 =
k=kF∏
k=0

|k ↑〉 |k ↓〉 .

14.1.1 The Wigner Crystal

In the small-density limit, the Coulomb energy becomes dominant, and therefore it is
more appropriate to start from the ground state of the interaction term than from that of
the kinetic energy. Wigner argued that the free electron–like Fermi sphere ground state
could become unstable to an insulating lattice of localized electrons when the electron
density becomes sufficiently small. We are then faced with a purely classical problem,
namely to calculate the lowest-energy configuration of charged particles immersed into
a homogeneous background of opposite charge. This problem was addressed by Wigner
already in 1934 as that of an inverted alkali metal, and he argued that at low enough
densities the electrons would form a crystal. A consistent theory has of course to take into
account the kinetic energy, which leads to zero-point fluctuations of the electrons around
their equilibrium positions. As the lattice constant decreases, these fluctuations become
more and more important until the Wigner crystal melts. Numerical simulations indicate
that this happens for rs ∼ 100.

A two-dimensional Wigner crystal with a triangular structure has actually been observed
for a very low-density electron system (rs ∼ 104) dispersed over the surface of liquid
helium.

14.1.2 First-Order Perturbation

The first-order correction to the energy is given by

E(1) = 〈�0
∣∣H′∣∣�0

〉 = 〈�0

∣∣∣∣∣∣∣
2πe2




′∑
kk′,q
σσ ′

1

q2
c

†
k+q,σ c

†
k′−q,σ ′ ck′,σ ′ck,σ

∣∣∣∣∣∣∣�0

〉
. (14.8)

Notice that the states k + q, k′ − q, k′, k must be contained in the ground-state
wavefunction product; otherwise, the matrix element is zero. This means that the only
terms that do not vanish will be those that do not change the occupation numbers of |�0〉,
as shown in Figures 14.2 and 14.3, so we arrive at{

k = k+ q, k′ = k′ − q, q = 0

k′ = k+ q, k = k′ − q
(14.9)



412 The Interacting Electron Gas

Figure 14.2 Diagrams for (14.9). The dashed line represents the interaction.

q=0

q= –

q=0 –q= –

>
>>

>

Figure 14.3 The two possible processes in first-order perturbation theory for two states |kσ 〉 and∣∣k′σ ′〉 in the Fermi sea. The direct process having q = 0 is already taken into account in the
homogeneous part, hence only the exchange process contributes to the energy correction.

The first set implies that q = 0, which is the case we considered in (14.6), and it does not
involve any scattering. The remaining term, known as exchange scattering, and represented
by the right diagrams in Figures 14.2 and 14.3, depicts the case where the particle that was
in state k is scattered into the state k′, and vice versa. The correction this gives to the energy
E0 is known as the exchange energy. We obtain

E(1) =
〈
�0

∣∣∣∣∣∣∣
2πe2




′∑
kk′
σ

1

q2
c

†
k′,σ c

†
k,σ ck′,σ ck,σ

∣∣∣∣∣∣∣�0

〉

=
〈
�0

∣∣∣∣∣∣∣
2πe2




′∑
k,q
σ

1

q2
c

†
k+q,σ c

†
k,σ ck+q,σ ck,σ

∣∣∣∣∣∣∣�0

〉

=
〈
�0

∣∣∣∣∣∣∣
2πe2




′∑
k,q
σ

1

q2

(−Nk+q,σ Nk,σ
)∣∣∣∣∣∣∣�0

〉
. (14.10)

Notice that the correction to the energy of state k is

ε(1)(k) = −2πe2




∑
q

Nk+q

q2
.
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qq/0

Figure 14.4 The geometry for the k-integration is shown for an arbitrary but fixed value of q.
Integration domain is just the intersection of two spheres.

Figure 14.5 The ground-state energy per electron, including first-order correction, for the jellium
model.

Next, we carry out the integration as follows:

E(1) = −4πe2





2

(2π)6

∫
dk
∫

dq
1

q2
(kF − |k+ q|)  (kF − k)

= −4πe2


(2π)6

∫
dq

1

q2

∫
dp

(
kF −

∣∣∣∣p+ 1

2
q

∣∣∣∣) 

(
kF − 1

2
q
)

. (14.11)

The integral over p is just the volume of intersection between two sphere each of radius kF
but separated by q, as shown in Figure 14.4. The result is

E(1) = − e2

2a0
N

3

2π

(
9π

4

)1/3 1

rs
. (14.12)

The ground-state energy per electron is then given by

E

N
= e2

2a0

(
9π

4

)1/3 (3

5

1

r2
s

− 3

2π

1

rs

)
. (14.13)

E/N , in units of Rydberg, is plotted in Figure 14.5.
This result shows that the electron gas is stable when the repulsive Coulomb interaction

is turned on. No external confinement potential is needed to hold the electron gas in the
ion jellium together. There exists an optimal density n∗, or interparticle distance r∗s , which
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minimizes the energy and furthermore yields an energy E∗ < 0. The negative exchange
energy overcomes the positive kinetic energy. This method of treating the electron gas is
a special case of the Hartree–Fock (HF) approximation, and is the simplest way we can
take the interactions into account. The interesting point to note is that in this approximation
the energy is reduced below that of the Sommerfeld gas. This is just a manifestation of the
exchange hole!

14.1.3 Hartree–Fock Approximation as Mean-Field Theory

We start with the electronic Hamiltonian

H =
∑
k,σ

h̄2k2

2m2
c

†
k,σ ck,σ + 2πe2




′∑
kk′,q
σσ ′

1

q2
c

†
k+q,σ c

†
k′−q,σ ′ ck′,σ ′ck,σ .

The goal is to write down an effective two-body Hamiltonian, which takes into account the
average effects of the interactions. We therefore replace the four-Fermi interaction with a
sum of all possible two-body terms:〈

c
†
1 c

†
2 c3 c4

〉
= −
〈
c

†
1 c3

〉
c

†
2 c4 −

〈
c

†
2 c4

〉
c

†
1 c3 +

〈
c

†
1 c4

〉
c

†
2 c3 +

〈
c

†
2 c3

〉
c

†
1 c4.

This can be thought of as mean-field terms, where〈
c

†
kσ ck′σ ′

〉
= nkσ δkk′ δσσ ′

is the average number of particles nkσ in the state kσ , which will be weighted with the
two-body interaction V (q) to give the average interaction due to all other particles.

Substituting this mean-field approximation in the interaction term, we obtain

VHF = 1

2

∑
kk′q
σσ ′

V (q)
[
−
〈
c

†
k,σ ck′,σ ′

〉
c

†
k′−q,σ ′ ck−q,σ −

〈
c

†
k′−q,σ ′ ck−q,σ

〉
c

†
k,σ ck′,σ ′

+
〈
c

†
k,σ ck−q,σ

〉
c

†
k′−q,σ ′ ck′,σ ′ +

〈
c

†
k′−q,σ ′ ck′,σ ′

〉
c

†
k,σ ck−q,σ

]
= −
∑
kqσ

V (q)
〈
c

†
k,σ ck,σ

〉
c

†
k−q,σ ck−q,σ + V (0)

∑
kk′
σσ ′

〈
c

†
k,σ ck,σ

〉
c

†
k′,σ ′ ck′,σ ′

=
∑
kσ

(
−
∑

q

nk+q,σ V (q)+ nV (0)
)
c

†
k,σ ck,σ ,

where the total density n is defined to be n =∑kσ nkσ . Since this is now a one-body term
of the form

∑
kσ EHF(k) c

†
k,σ ck,σ , it is clear the full Hartree–Fock Hamiltonian may be

written in terms of a k-dependent energy shift
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HHF =
∑
kσ

(
h̄2k2

2m
+ EHF(k)

)
c

†
k,σ ck,σ

EHF(k) = −
∑

q

nk+q,σ V (q)︸ ︷︷ ︸+ nV (0)︸ ︷︷ ︸
Fock Hartree

Note the Hartree or direct Coulomb term, which represents the average interaction energy
of the electron kσ with all the other electrons in the system, is a constant; when summed
over all electrons, it cancels exactly with the constant arising from the sum of the self-
energy of the positive background and the interaction energy of the electron gas with that
background. The Fock, or exchange term, is a momentum-dependent shift.

14.1.4 Problem with Hartree–Fock Theory

Although we argued that the Hartree–Fock approximation becomes a better approxima-
tion in the limit of high density for electrons interacting via the Coulomb interaction, it
never becomes exact. We recall from Section 2.2.4 that the HF energy correction to the
energy ε(k) is

ε(1)(k) = e2kF

4π2

[
k2
F − k2

kkF
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣+ 2

]
.

The first term in parentheses has a logarithmic divergence in slope at k = kF . This means
that while the energy shift might be small compared to the Fermi energy, the Fermi velocity,
vF = ∇kε(k), contains a term that is infinite. This problem can be traced back to the long-
range nature of the Coulomb force. Two electrons at large distances x−x′ do not really feel
the full 1/|x− x′|, but a “screened” version due to the presence of the intervening medium,
namely the electron gas, rearranges itself to cancel out the long-range part of V .

Electron Interactions in Second-Order Perturbation Theory

One may try to improve on the first-order result by going to second-order perturbation
theory. However, the result is disastrous. The matrix elements diverge without giving hope
for a simple cure.

Here we can only reveal what goes wrong, and then later learn how to deal correctly with
the infinities occurring in the calculations. According to second-order perturbation theory,
E(2) is given by

E(2)

N
= 1

N

∑
ν 
=|ψ0〉

〈ψ0|Vc |ν〉 〈ν|Vc |ψ0〉
E(0) − Eν

, (14.14)

where all the intermediate states |ν〉 must be different from |ψ0〉. As sketched in
Figure 14.6, this combined with the momentum conserving Coulomb interaction yields
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Direct

interaction

Exchange

interaction

–q,

>>

>+q, > –q, >+q, >

> >

Figure 14.6 The two possible processes in second-order perturbation theory for two states |k1σ1〉 and
|k2σ2〉 in the Fermi sea. The direct process gives a divergent contribution to E/N while the exchange
process gives a finite contribution.

intermediate states where two particles are injected out of the Fermi sphere. From such an
intermediate state, |ψ0〉 is restored by putting the excited electrons back into the holes they
left behind. Only two types of processes are possible: the direct and the exchange process.

We now proceed to show that the direct interaction process gives a divergent contribution
E
(2)
dir to E(2) due to the singular behavior of the Coulomb interaction at small momentum

transfers q. For the direct process, the constraint |ν〉 
= |ψ0〉 leads to

|ν〉 = (|k1 + q| − kF )  (|k2 − q| − kF )  (kF − |k2|)  (kF − |k1|)
× c

†
k1+q c

†
k2−q ck2 ck1 |ψ0〉 . (14.15)

To restore |ψ0〉 the same momentum transfer, q must be involved in both 〈ν|Vc |ψ0〉 and
〈ψ0|Vc |ν〉, and writing V (q) = 4πe2

q2 , we find

E
(2)
dir =

1


2

∑
q

∑
k1σ1,k2σ2

(V (q)/2)2

E(0) − Eν

 (|k1 + q| − kF )  (|k2 − q| − kF )

× (kF − |k2|)  (kF − |k1|) . (14.16)

The contribution from small values of q to E(2)
dir is found by noting that

V 2(q) ∝ 1

q4

q → 0 E(0) − Eν ∝ k2
1 + k2

2 − (k1 + q)2 − (k2 − q)2 ∝ q

q → 0
∑

k1σ1,k2σ2

· · ·(kF − |k2|)  (kF − |k1|) ∝ q,

from which we obtain

E
(2)
dir ∝

∫
0
dq q2 1

q4

1

q
q q =

∫
0
dq

1

q
= ln(q)

∣∣∣
0
∝ ∞. (14.17)
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The exchange process does not lead to a divergence since in this case the momentum
transfer in the excitation part is q, but in the relaxation part it is k2 − k1 − q. Thus V 2(q)
is replaced by V (q)V ((k2 − k1 − q) ∝ q−2 for q → 0, which is less singular than
V 2(q) ∝ q−4.

This divergent behavior of second-order perturbation theory is a nasty surprise. We know
that physically the energy of the electron gas must be finite. The only hope for rescue lies
in regularization of the divergent behavior by taking higher-order perturbation terms into
account. In fact, it turns out that one has to consider perturbation theory to infinite order,
which is possible using the full machinery of quantum field theory to be developed in the
coming chapters.

One of the important early problems was to find the ground-state energy of the jellium
model of a three-dimensional electron gas. It was anticipated that in the regime where
rs < 1, as defined in Section 1.2, this energy can be expressed in terms of a power series
in rs , as

E0 = K

r2
s

[
[1+ b rs + c r2

s + · · ·
]

where K,a,b,c, etc. are constants. However, this turned out to be not quite right. Indeed,
1st order perturbation theory gives a term of the form b rs in this series.

But if one goes one step further and considers second-order perturbation theory, one
finds a contribution that diverges like

∫
0 dq/q, where q is the momentum transfer in the

Fourier transform vq of the Coulomb interaction (vq ∝ 1/q2). That is, there is a logarithmic
divergence from the lower limit 0 of the momentum transfers. This divergence is associated
with the long range of the Coulomb interaction. Furthermore, if one examines higher-
order terms in the perturbation series, one finds that they diverge even more strongly. Thus
standard perturbation theory appears to be worthless.

On physical grounds, however, one does of course expect the energy of the interacting
electron gas to be a finite and well-defined number, and no phase transitions occur as one
“turns on” the repulsive interactions, so this failure of standard perturbation theory appears
just to be a signal that the energy does not have a standard power series expansion in rs .
In 1957, Gell-Mann and Bruckner resolved this issue by using the recently developed
many-body perturbation theory [75]. Essentially what they did was to sum all the most
divergent terms in the series (an infinite number of them) before doing the momentum
integrals, and showed that one could then arrive at a result which was well defined and
finite (this is called a resummation of the perturbation series). They found that there was
a term in the series for E0 that is ∝ ln rs , and thus indeed is not analytic at rs = 0. This
assumes at the very least that the interaction doesn’t cause any drastic changes to the
system, such as a phase transition.

The solution of this problem thus requires one to include an infinite number of terms in
the perturbation theory. Clearly one needs to develop a new method to be able to do this
in an efficient way, and this is one of the main strengths of many-body perturbation theory.
We will also see other examples where one needs to include an infinite number of terms in
the perturbation theory.
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14.2 The Random Phase Approximation

Previously, in the discussion of second quantization, we derived expressions for the kinetic
energy operator, the single-particle, and pair interaction operators. Here, we start by deriv-
ing expressions for the remaining electron, or fermion, operators.

14.2.1 The Density Operator

We can write the fermionic field operators in a plane-wave basis as

�(x,t) = 1√



∑
k

eik·x ck, �†(x,t) = 1√



∑
k

e−ik·x c†
k.

We then express the density of particles ρ(x), at point x

ρ(x) =
∑
i

δ(x− xi ), (14.18)

where the sum is taken over particle coordinates xi , in terms of the field operators as

ρ(x) =
∫

dx�†(x)

(∑
i

δ(x− xi )

)
�(x) =

∑
i

�†(xi ) �(xi ). (14.19)

This is equivalent to the operator �†(x)�(x), since if there is no particle at x, this operator
gives zero, and if there is a particle it gives the right answer, (14.19). The Fourier transform
of the density operator is

ρq = 1




∫
dx eiq·x ρ(x) = 1


2

∫
dx eiq·x

∑
k,k′

e−i(k−k′)·x c†
k ck′

= 1




∑
k,k′

c
†
k ck′ δk′−k,q =

∑
k

c
†
k+q ck. (14.20)

The physical meaning of the density operator is quite straightforward: it gives rise to charge
fluctuations that are particle–hole pairs described by (14.25) around the Fermi surface.
Since ρ is hermitian, ρ† = ρ, it follows that ρ†

q = ρ−q. We also note the density operators
ρ(q) commute, namely,[
ρq, ρq′

]
=
[∑

k

c
†
k+q ck,

∑
k′

c
†
k′+q′ ck′

]

=
(∑

k

c
†
k+q ck

) (∑
k′

c
†
k′+q′ ck′

)
−
(∑

k′
c

†
k′+q′ ck′

) (∑
k

c
†
k+q ck

)
= 0,

(14.21)

which shows that they are bosonic operators!
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L

Figure 14.7 For a system of length L and q = 2π/L, ρq measures a quantity approximately equal to
the difference in the number of particles in the two halves of the container.

As an example of the usefulness of the density operator, we show how the Hamiltonian
(14.7) can be expressed in terms of the number nk and density operators. We recast the sum
over k, k′ in second term in the form∑

k,k′
c

†
k−qc

†
k′+qck′ck = −

∑
k,k′

c
†
k−qc

†
k′+qckck′ = −

∑
k,k′,q

c
†
k−q

(
δk′+q,k − ckc

†
k′+q

)
ck′

= −
∑

k′
c

†
k′ ck′ +

(∑
k

c
†
k−q ck

) (∑
k′

c
†
k′+q ck′

)

= −
(∑

k′
nk′

)
+ ρq ρ−q.

But since
∑

k′ nk′ = N , the total number of particles, we have

H =
∑

k

Ek nk +
∑

q

2πe2

q2

(
ρq ρ−q −N

)
. (14.22)

14.2.2 The Random Phase Approximation

We now consider under what conditions for an interacting system, with

H =
∑

k

Ek c
†
kck + 1

2

∑
k,k′,q

Vq
(
ρq ρ−q −N

)
, (14.23)

and ground-state |�0〉
H |�0〉 = E0 |�0〉 ,

can support density excitations associated with ρq, namely,

H ρ†
q |�0〉 =

(
E0 + h̄ωq

)
ρ†

q |�0〉 , (14.24)

We can recast (14.24) in the commutator form[
H, ρ†

q

]
= h̄ωq ρ

†
q. (14.25)
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Using the commutation of the density operators (14.21), we obtain[
H,ρ†

q
] =∑

k

(
Ek+q − Ek

)
c

†
k+q ck. (14.26)

This does not look very much like (14.25), and we take the commutator with H once again.
If ρ†

q actually creates an excitation of energy h̄ω, we should have[
H,
[
H,ρ†

q
]] = (h̄ω)2 ρ†

q.

After tedious algebra manipulation, we find that[
H,c†

k+qck
] = (Ek+q − Ek

)
c

†
k+q ck

+
∑

q′

Vq′

2

[(
c

†
k+q−q′ ck − c

†
k+q ck+q′

)
ρ

†
q′ + ρq′

(
c

†
k+q+q′ ck − c

†
k+q ck−q′

)]
.

and we obtain(
h̄ω
)2
ρ†

q =
∑

k

(
Ek+q − Ek

) [
H, c†

k+q ck
]

=
∑

k

(
Ek+q − Ek

)2
c

†
k+q ck +

∑
k,q′

(
Ek+q − Ek

) Vq′

2

×
[(
c

†
k+q−q′ ck − c

†
k+q ck+q′

)
ρ

†
q′ + ρq′

(
c

†
k+q+q′ ck − c

†
k+q ck−q′

)]
.

(14.27)

With Ek+q − Ek = h̄2
(
2k · q+ q2

)
/2m, we write∑

k

(
Ek+q − Ek

) (
c

†
k+q−q′ ck − c

†
k+q ck+q′

)
= h̄2

2m

(
2k · q+ q2) c†

k+q−q′ ck − h̄2

2m

∑
k′

[
2
(
k′ − q′

) · q+ q2] c†
k′+q−q′ ck′

= h̄2q′ · q
m

ρ
†
q−q′, (14.28)

where we set k′ = k+ q′, and we arrive at

(
h̄ω
)2
ρ†

q =
∑

k

[
h̄2

2m

(
2k · q+ q2)]2

c
†
k+q ck

+
∑

q′

Vq′

2

h̄2 q · q′
m

(
ρq′−q ρ

†
q′ + ρ

†
−q′ ρ−q−q′

)
. (14.29)
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We note that ρ0 is actually much larger than all the other components. It is just the average
density of particles in the system. Consider a box of length L containing a large number of
electrons of average density ρ0, as shown in Figure 14.7. The first Fourier component of ρ∫

dr ρ(r) exp

(
2iπx

L

)
,

will be approximately equal to the difference between the number of particles in the left-
and right-hand sides of the box, the gray area. The number difference will be very small
compared to the total number, and so ρ0 will prevail in the summation over q′ in (14.29).
Because the term with q′ = 0 is omitted, ρ0 will only appear when q′ = ±q. The neglect
of all terms for which q′ 
= ±q is known as the random phase approximation (RPA).

Alternative Interpretation of RPA

Consider now the first quantized version of the density operator ρq that is given by

ρq = 1




∑
n

eiq·xn,

where xn is the position of the nth particle. We see that ρq±q′ can be written in first
quantized form as

ρq±q′ = 1




∑
n

ei(q±q′)·xn .

We note that if the electrons are (statistically) randomly distributed in the system, the
preceding sum only gives a finite result if q = ∓q′, because the sum involves random
phases that add destructively. In RPA, we approximate (14.29) by keeping only terms
with q = ∓q′.

Plasma Oscillations

We consider the case where q is small enough that, for the moment, we neglect the first
term of (14.29) and we apply RPA to the second term. We obtain(

h̄ω
)2
ρ†

q =
4πe2

|q|2
h̄2 |q|2
m

(
ρ0ρ

†
q + ρ†

qρ0
)
, (14.30)

and since all the ρq commute, we have

ω2 = 4πe2ρ0

m
, (14.31)

which gives just the classical plasma frequency, ωp. We now approximate the contribution
of the first term by setting |k| ∼ kF , and 〈2kF · q〉 � q2

)
. Averaging over the angles, we

obtain the approximation〈
(kF · q)2

〉
� 1

4π
4π2 k2

F q
2
∫ 1

−1
x2 dx = 2πk2

F q
2,
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which yields the plasmon dispersion relation

ω2(q) = ω2
p +

2πh̄2k2
F

3m2
q2 � ωp +

πv2
F

3ωp
q2. (14.32)

Thus, the relevant long-wavelength excitations are collective motions of the electron gas.
Bohm and Pines [35] suggested that electrons act as interacting particles through a bare
Coulomb potential 4πe2/ |q|2 only for length scales less than an effective screening length,
which we can take as the Thomas–Fermi ∼ q−1

TF . Below qTF, the interactions contribute
only to the plasma oscillations.

Exercises

14.1 Second-order contribution to the ground-state energy of an electron gas from
Rayleigh–Schrödinger perturbation theory:

(a) Show that the second-order contribution to the ground-state energy (per particle)
of an electron gas can be expressed as

E(2)

N
= e2

2a0

(
εd2 + εexc2

)
where

εd2 =
3

8π5

∫
dq
q4

∫
|k+q|>1

dk
∫
|p+q|>1

dp
(1− |k|)  (1− |p|)

q2 + q · (k+ p)

εexc2 = 3

16π5

∫
dq
q4

∫
|k+q|>1

dk
∫
|p+q|>1

dp
(1− |k|)  (1− |p|)

(q+ k+ p)2
[
q2 + q · (k+ p)

]
are the contributions stemming from the direct and exchange processes, respec-
tively. All the momenta on the right-hand sides are expressed in units of the Fermi
momentum kF .

Hint: Recall that the second-order change of the energy in ordinary (Rayleigh–
Schrödinger) perturbation theory for the Hamiltonian H = H0 + V (V is the
perturbation) is

E(2) =
∑
n>0

| 〈0|V |n〉 |2
E0 − En

.

Here |0〉 is the ground state of H0, E0 is the corresponding ground-state energy,
while |n〉 are the excited states with energies En.

(b) We now want to show that the term εd2 is actually divergent. Consider the function

F(|q|) =
∫
|k+q|>1

dk
∫
|p+q|>1

dp
(1− |k|)  (1− |p|)

q2 + q · (k+ p)
.
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Show that

F(|q|) ∼
(

4π

3

)2

|q|−2 |q| → ∞

and that

F(|q|) ∼ 2

3
(2π)2 (1− ln 2) |q| |q| → 0

Using these results, show that εd2 diverges logarithmically because of the contri-
butions at small momentum transfer q.

14.2 Delta-function pair interactions:
If we replace the Coulomb electron–electron interaction with a delta-function

v
(
x,x′
) = g δ

(
x− x′

)
.

Show that

H′ = g

2


∑
k,k′,q
σσ ′

c
†
k+q,σ c

†
k′−q,σ ′ ck′,σ ′ ck,σ

and that the total exchange energy is−3gN/16πr3
s . Does 	E(2) diverge in this case?

14.3 Magnetic interactions in the homogeneous electron gas:

(a) In order to derive the ground-state energy of N free electrons in volume 
, we
assumed that every one-electron level with a wavevector less than kF is occu-
pied by two electrons of opposite spin. Consequently, we obtained the following
ground-state energy Eunpol of the unpolarized electrons system

Eunpol

N
= e2

2a0

(
9π

4

)1/3 (3

5

1

r2
s

− 3

2π

1

rs

)
,

where a0 is the Bohr radius, and E/N is given in units of Rydberg = e2/2a0.
Show that it can be expressed in terms of kF and a0 as

Eunpol

N
= e2

2aB

[
3

5
(kF aB)

2 − 3

2π
(kF aB)

]
.

However, a more general possibility would be to fill each one-electron level with
k < kF↑ with spin-up electrons and each level with k < kF↓ with spin-down
electrons.

(b) Show that the ground-state energy of a fully magnetized gas of N electrons (i.e.,
all the electrons have the same value of the spin) is given by

Epol

N
= e2

2aB

[
3

5
22/3 (kF aB)

2 − 3

2π
21/3 (kF aB)

]
.

kF and kF↑ are obtained from the condition that the number of electrons is
preserved upon the magnetization.)
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(c) Derive under which condition the fully magnetized (ferromagnetic) ground state
has lower energy than the unmagnetized one (Epol < Eunpol). Which physical
regime corresponds to a magnetized ground state?

14.4 Commutator of the density operators:
Show that [

ρq, ρq′
] = 0 ∀q, q′.

14.5 Hamiltonian of an electron in a Wigner crystal:
Comparison of the kinetic to Coulomb energy contributions to the jellium Hamil-
tonian showed that at low electron densities the Coulomb contribution will pre-
vail. Electrons will localize at positions far from each other to lower their Coulomb
interactions. This leads to electron crystallization into what is known as a Wigner
crystal.

Consider an electron in such a configuration of volume 
 that contains N par-
ticles. Assume that it is located in a unit cell, which we approximate as a sphere
of radius r0 ∝ (
/N)1/3.

(a) Determine the electron potential energy due to the underlying uniform positive
charge, when the electron is at a position x, |x| < r0 from the center of the sphere.

(b) Write down the Hamiltonian for the electron at x and p, and show that it resem-
bles an isotropic simple harmonic oscillator. Express its frequency in terms of an
effective plasma frequency.

(c) What is its ground-state energy? Express it in terms of rs . (Remember that the
harmonic oscillator has three degenerate modes in the ground state.)
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Green Functions for Many-Body Systems
and Feynman Diagrams

15.1 Introduction

To explore the properties of a macroscopic system, we probe it. Experimental condensed
matter physics provides a plethora of probes to investigate different aspects of such systems:
Neutron scattering, electron scattering, atom scattering, photon scattering (Raman, etc.),
nuclear magnetic resonance, resistivity, thermal conductivity, muon resonance; it is actually
a long list. All probes interact weakly with systems, and scattering experiments employ-
ing a weak probe actually measure one of a system’s equilibrium correlation functions.
Consequently, we find that correlation functions are at the heart of modern condensed-
matter theory. In Chapter 5, we developed the one-body correlation functions within linear
response theory, which we delineated as susceptibilities. In this chapter, we will develop the
mathematical tools to construct appropriate correlation functions for many-body systems,
whose basic building blocks we identify as many-body Green functions.

As we shall demonstrate, Green functions techniques play a fundamental role in the
treatment of many-body systems. We will find that various fundamental physical properties
of a many-body system – ground-state energy and excitation spectra, response functions,
such as electric and magnetic susceptibilities, as well as thermodynamic quantities – can be
derived from many-body Green functions (GFs). The applications of nonrelativistic Green
function techniques to many-body interactions and linear response of condensed matter
systems will be surveyed here.

To explore the structure of quantum correlation functions, we start with the ground
state |�0〉 of a system. At some time t ′, we act on the system with a local perturbation,
represented by a local operator O†(x,t), creating an initial state O†(x′,t ′) |�0〉. Thus,
we prepared the system in some initial state that deviates from the ground state by some
local excitations, a disturbance, and we examine how this disturbance evolves in space
and time. Such a scenario describes typical local measurements done on a quantum many-
particle system. Since we will be dealing with time dependence, it is expedient to use the
Heisenberg representation of the quantum evolution. We will be interested in determining
the quantum-mechanical amplitude to find the system in state O†(x,t) |�0〉 at time t > t ′,
namely,

Amplitude = 〈�0|O(x,t)O†(x′,t ′) |�0〉 .

425
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We are aware by now that quantum-mechanical operators can be expressed in bilinear
forms of the field operators �̂(x,t). However, it turns out that correlation functions of
the field �̂(x,t) itself are related to experiments such as photoemission and tunneling
spectroscopies. These experimental techniques involve extraction or injection of a single
electron. We can clearly identify the field correlation functions as just quantum mechanical
propagators, and we know from quantum mechanics that such propagators satisfy the Green
function equation! Hence, the name Green functions. We will demonstrate in this chapter
that Green functions form the building blocks for correlation functions that appear in linear
response.

15.2 The One-Particle Green Function of Many-Body Systems

15.2.1 Noninteracting Particle Propagator

We consider a particle in free space described by a single-particle time-independent Hamil-
tonian H1. Its eigenstates and eigenenergies are

H1 |φn〉 = εn |φn〉 .

In general, if we put the particle in one of its |φn〉 eigenstates, it will remain in the same
state forever. Instead, we imagine preparing the system in a generic state |ψtrial〉 and then
follow its time evolution. If the trial state is created at time t ′, the wavefunction at a later
time t is given by

|ψ(t)〉 = e−iH1(t−t ′)/h̄ ∣∣ψtrial(t
′)
〉 =∑

n

|φn〉 e−iεn(t−t ′)/h̄ 〈φn
∣∣ψtrial(t

′)
〉
.

Eventually, at time t , we want to know the probability amplitude that a measurement would
find the particle at position x,

〈x |ψ(t)〉 (t − t ′) =
∫

dx′ 〈x| e−iH1(t−t ′)/h̄ ∣∣x′〉 〈x′ ∣∣ψtrial(t
′)
〉
(t − t ′) (15.1)

=
∫

dx′
∑
n

〈x |φn〉 e−iεn(t−t ′)/h̄ 〈φn
∣∣x′〉 〈x′ ∣∣ψtrial(t

′)
〉
(t − t ′),

(15.2)

where (t − t ′) establishes causality. Equation (15.1) may be rewritten as

ψ(x,t)(t − t ′) = i

∫
dx′ GR(xt,x′t ′) ψtrial(x′,t ′)(t − t ′), (15.3)

where we introduce the retarded Green function, or propagator, in the position representa-
tion as

GR(xt,x′t ′) = −i (t − t ′) 〈x| e−iH1(t−t ′)/h̄ ∣∣x′〉 . (15.4)

We note that the τ = t − t ′ time dependence is due to time-translation invariance of the
Hamiltonian.
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It is clear that once G(x,x′;τ) is known it can be used to calculate the evolution of any
initial state. However, there is more information included in the propagator:

• We find that the bracket 〈φn |x〉 = 〈φn| ψ̂†(x) |0〉 in (15.1) is just the probability ampli-
tude that inserting a particle at position x and measuring its energy right away would
force the system to collapse into the eigenstate |φn〉.

• We find the resolvant. We note from (15.2) that the time evolution is a superposition of
waves propagating with different energies. In principle, it could be inverted to determine
the eigenspectrum. This can be achieved by transforming G(x,x′;τ) in (15.4) to the
frequency domain

G(x,x′;ω) =
∫

dt ei(ω+iη)τ 〈x| e−iH1τ/h̄
∣∣x′〉 = 〈x ∣∣∣∣ 1

ω −H1 + iη

∣∣∣∣ x′〉 .

This is just the resolvent whose poles constitute the quantum system’s spectrum.
Operationally, we can devise a gedanken experiment in which the particle is initially

inserted at position x′ and picked up at x after some time t . When performing this
recipe with adequate resolution and for a sufficiently large number of different positions
and elapsed times, the Fourier transform of the recorded data would provide the full
eigenvalue spectrum. Such an experiment would give us complete information on our
particle.

This scenario reveals that we can express all observables in terms of the Green function
and thus avoid the explicit use of wavefunctions.

Differential Equation for the Green Function

Operating on the left-hand side of (15.3) with i∂/∂t , we obtain

i
∂

∂t

[
ψ(x,t)(t − t ′)

]
= i δ(t − t ′) ψ(x,t)+ i (t − t ′)

∂

∂t
ψ(x,t)

= i δ(t − t ′) ψ(x,t)+(t − t ′)H1(x) ψ(x,t).

Replacing ψ(x,t)(t − t ′) by the right-hand side of (15.3), and setting ψ(x,t) δ(t − t ′) =
ψ(x,t ′), we get

i
∂

∂t

(
i

∫
dx′ GR(xt,x′t ′) ψ(x′,t ′)

)
= i δ(t − t ′)

∫
dx′ δ

(
x− x′

)
ψ(x′,t ′)

+H1(x)
[
i

∫
dx′ GR(xt,x′t ′) ψ(x′,t ′)

]
.

Rearranging and choosing our initial wavefunction ψ(x′,t ′) = δ(x′ − x1), we obtain[
i
∂

∂t
−H1(x)

]
GR (xt,x1t

′) = δ(t − t ′) δ(x′ − x1), (15.5)

which is just the definition of the Green function for the Schrödinger equation in a
differential equation form.
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Figure 15.1 One way to understand the structure of the excitation in an interacting system is to inject
a particle at

(
x′,t ′
)
, allow the resulting system to evolve, and then remove the particle at (x,t). The

amplitude of such a process indicates how much the propagation of the excitation between the two
points is similar to the case of noninteracting particle systems.

15.2.2 Construction of the One-Particle Green Function of Many-Body Systems

Now, we want to explore how the notion of a Green function such as that just described
can be adapted to the situation where we inject a particle into a system containing many
similar interacting particles and subsequently remove it from the system. Conversely, we
can remove a particle from the system and then inject it back. These processes can induce
unexpected events, such as collective excitations of the system. Physically, we would like
to have a correlation function that tells us how much excitations in interacting systems look
like noninteracting particle excitations. The scenario described so for such a function is
depicted in Figure 15.1.

We will consider in the present section only the zero temperature case, since it is peda-
gogically simpler than the general case of finite temperatures. It will serve as a conduit to
develop the necessary theoretical techniques for a many-body system.

The one-particle Green function is defined in the position representation as1

iGαβ

(
x,t;x′,t ′) =

〈
�0

∣∣∣T [ψ̂Hα(x,t) ψ̂
†
Hβ

(
x′,t ′
)]∣∣∣�0

〉
〈�0 |�0〉 , (15.6)

where |�0〉 is the ground state of the interacting system in the Heisenberg picture,2 and
ψ̂Hα(x,t) is a Heisenberg field operator; it can be expressed in terms of the corresponding
Schrödinger field operator as

ψ̂Hα(x,t) = eiHt/h̄ ψ̂Sα e
−iHt/h̄,

1 The factor i is introduced for convenience to simplify further formulas.
2 We note that the role played by the physical vacuum in the case of a noninteracting particle is now assumed by a many-body

state, its ground state.
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where α represents a set of quantum numbers associated with the particle, such as spin in
the case of electrons.3

T is a time-ordering operator, where the time-ordered product is defined as

T
[
ψ̂Hα(x,t) ψ̂

†
Hβ

(
x′,t ′

)] =

⎧⎪⎨⎪⎩
ψ̂Hα(x,t) ψ̂

†
Hβ

(
x′,t ′

)
t > t ′

−ψ̂
†
Hβ

(
x′,t ′

)
ψ̂Hα(x,t) t ′ > t

. (15.7)

The minus sign arises from the anticommutation of the fermionic field operators. Equation
(15.7) can also be written as

T
[
ψ̂Hα(x,t) ψ̂

†
Hβ

(
x′,t ′

)] = �(t − t ′) ψ̂Hα(x,t) ψ̂
†
Hβ

(
x′,t ′

)
− �(t ′ − t) ψ̂

†
Hβ

(
x′,t ′

)
ψ̂Hα(x,t). (15.8)

The one-particle label stems from the fact that (15.6) represents a propagator for a parti-
cle created at x′,t ′ with quantum numbers β, and annihilated at x,t with quantum numbers
α, as shown in Figure 15.1. We should caution that these single-particle Green functions are
truly many-body objects because they describe the propagation of a single particle obeying
the full many-body Hamiltonian, and therefore contain all effects of interactions with the
other particles in the system.

There are a number of other important variant morphs in which Green functions can be
expressed. These variants have important relations between them. Quite often, it is more
expedient to use a certain version for a particular application.

First, we have the so-called greater and lesser Green functions, defined as

G>
(
x,t;x′,t ′

) = −i
〈
�0

∣∣∣ψ̂Hα(x,t), ψ̂
†
Hβ

(
x′,t ′

)∣∣∣�0

〉
G<

(
x,t;x′,t ′

) = ± i
〈
�0

∣∣∣ψ̂†
Hβ

(
x′,t ′

)
ψ̂Hα(x,t)

∣∣∣�0

〉
, (15.9)

where the + and − signs are for fermions and for bosons, respectively. Next, we have the
retarded and advanced Green functions

GR (x,t;x′,t ′
) =

⎧⎪⎪⎨⎪⎪⎩
−i�(t − t ′)

〈
�0

∣∣∣∣[ψ̂Hα(x,t), ψ̂
†
Hβ

(
x′,t ′

)]
±

∣∣∣∣�0

〉
�(t − t ′)

[
G>

(
x,t;x′,t ′

) − G<
(
x,t;x′,t ′

)] (15.10)

GA (
x,t;x′,t ′

) =

⎧⎪⎪⎨⎪⎪⎩
i�(t ′ − t)

〈
�0

∣∣∣∣[ψ̂†
Hβ

(
x′,t ′

)
, ψ̂Hα(x,t)

]
±

∣∣∣∣�0

〉
�(t ′ − t)

[
G<

(
x,t;x′,t ′

) − G>
(
x,t;x′,t ′

)]
,

(15.11)

3 For the most part, we shall consider our particles to be electrons, so that the quantum numbers can only take the values ±1/2,
and the field operators obey anticommutators.
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where the brackets with the + and − subscripts denote fermion anticommutators and
bosons commutators, respectively. For compactness, we set 〈�0 |�0〉 = 1. We note that, by
definition, GR = 0 for t−t ′ < 0, andGA = 0 for t−t ′ > 0. The Green functions defined so
far are called space-time Green functions, because they involve creation and annihilation
of particles at definite locations in space and time. We can also define analogous Green
functions in bases other than space-time. For example, for translationally invariant sys-
tems in space-time, it is usually convenient to work in the momentum-frequency domain.
Depending on the problem at hand, Green functions with particle creation/annihilation
represented in other types of single-particle states may also be expedient.

As a many-body correlation function, a Green function conveys only part of the full
information available in the many-body wavefunctions of the systems, but it provides the
relevant information for the problem at hand.

Although no direct calculations will be performed before discussing perturbation theory
in the following sections, we will describe here how to extract a large variety of physical
information from the Green function.

15.2.3 Equation of Motion for the One-Particle Green Function

Hierarchy of Infinite Equations and Green Functions

We consider a system with Hamiltonian

H = H0 +H′,

where H0 is bilinear in the field operators, and diagonal in the basis α, such that

H0 =
∑
α

εα c
†
α cα,

while H′ is at least quartic in the field operators. In the α basis, GR is given by

GR(α,t;β,t ′) = −i (t − t ′)
〈[
cα(t), c

†
β(t

′)
]
±

〉
. (15.12)

Differentiating (15.12) with respect to t , we get

i
∂

∂t
GR(α,t;β,t ′) = i(−i)

[
δ(t − t ′)

〈[
cα(t), c

†
β(t

′)
]
±

〉
+(t − t ′)

〈[
∂cα(t)

∂t
, c

†
β(t

′)
]
±

〉]
= δ(t − t ′) δαβ − i (t − t ′)

〈[
[cα(t),H] , c†

β(t
′)
]
±

〉
, (15.13)

where we used the equation of motion for cα(t)

i
∂cα(t)

∂t
=
[
cα,H

]
.
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We also have [
cα,H0

]
= −εα cα

and we obtain[
i
∂

∂t
− εα

]
GR(α,t;β,t ′) = δ(t − t ′) δαβ − i (t − t ′)

〈[[
cα(t),H′

]
, c

†
β(t

′)
]
±

〉
.

(15.14)

Now, if H′ contains only terms quartic in the field operators, then
[
cα(t),H′

]
will be cubic

in the c operators. Writing

GR
2 (α,t;β,t ′) = −i (t − t ′)

〈[
[cα(t),H] , c†

β(t
′)
]
±

〉
, (15.15)

we have a two-particle Green function. Our one-particle Green function becomes coupled
to a two-particle Green function! This two-particle propagator is in turn related to the three-
particle propagator, etc. Due to the Heisenberg equation of motion for the field operator,
every equation of motion for the Green function involves a Green function of higher order.
Unless we have a particular case where the couplings terminate at a reasonable order, we
will have an infinite hierarchy of equations and corresponding Green functions.

Equation of Motion and Microscopic Self-Energy Phenomenology

We consider the many-electron Hamiltonian

H =
∫

dx
∑
σ

ψ̂†
σ (x)

[
−h̄2

2m
∇2 + U(x)

]
ψ̂σ (x)

+ 1

2

∫∫
dx dx′

∑
σσ ′

ψ̂†
σ (x) ψ̂

†
σ ′(x

′) V
(∣∣x− x′

∣∣) ψ̂σ ′(x
′) ψ̂σ (x), (15.16)

where V represents pair interaction. The Hamiltonian includes a one-electron potential U ,
which appears in the case of electrons in solids.

Using field operators equations of motion, like

ih̄
∂

∂t
ψ̂Hσ (x,t) =

[
ψ̂Hσ (x,t),H

]
, (15.17)

we obtain the equation of motion for the Green function. First, operating with ih̄∂/∂t on
(15.6), we get

ih̄
∂

∂t
Gσσ ′

(
x,t;x′,t ′) = (−i) ih̄ ∂

∂t

[
(t − t ′)

〈
ψ̂Hσ (x,t) ψ̂

†
Hσ ′
(
x′,t ′
)〉

−(t ′ − t)
〈
ψ̂

†
Hσ ′
(
x′,t ′
)
ψ̂Hσ (x,t)

〉]
, (15.18)

where we use the notation

〈O〉 = 〈�0|O |�0〉
〈�0 |�0〉 .
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Performing the time derivative on the right-hand side, we have

ih̄
∂

∂t
Gσσ ′

(
x,t;x′,t ′) = h̄

[
δ(t − t ′)

〈
ψ̂Hσ (x,t)ψ̂

†
Hσ ′
(
x′,t ′
)+ ψ̂

†
Hσ ′
(
x′,t ′
)
ψ̂Hσ (x,t)

〉
+(t − t ′)

〈
∂

∂t
ψ̂Hσ (x,t) ψ̂

†
Hσ ′
(
x′,t ′
)〉

−(t ′ − t)

〈
ψ̂

†
Hσ ′
(
x′,t ′
) ∂

∂t
ψ̂Hσ (x,t)

〉]
. (15.19)

But,

δ(t − t ′)
〈
ψ̂Hσ (x,t) ψ̂

†
Hσ ′
(
x′,t ′
)+ ψ̂

†
Hσ ′
(
x′,t ′
)
ψ̂Hσ (x,t)

〉
= ψ̂Hσ (x,t) ψ̂

†
Hσ ′
(
x′,t
)+ ψ̂

†
Hσ ′
(
x′,t
)
ψ̂Hσ (x,t)

=
〈
eiHt/h̄

[
ψ̂Sσ (x), ψ̂

†
Sσ ′
(
x′
)]
+
e−iHt/h̄

〉
= δ
(
x− x′

)
δσσ ′,

which yields

i
∂

∂t
Gσσ ′

(
x,t;x′,t ′) = δ

(
x− x′

)
δ(t − t ′) δσσ ′

+
〈
T

{
− i

h̄

[
ψ̂Hσ (x,t),H

]
ψ̂

†
Hσ ′
(
x′,t ′
)}〉

. (15.20)

By transforming the commutator in (15.20) to the Schrödinger picture[
ψ̂Hσ (x,t),H

]
= eiHt/h̄

[
ψ̂σ (x),H

]
e−iHt/h̄,

we obtain[
ψ̂σ (x),H

]
=
[
−h̄2

2m
∇2 + U(x)

]
ψ̂σ (x)

+
∫

dx′′
∑
σ ′′

ψ̂
†
σ ′′(x

′′) V
(∣∣x− x′′

∣∣) ψ̂σ ′′(x
′′)ψ̂σ (x), (15.21)

which in the Heisenberg picture takes the form[
ψ̂Hσ (x,t),H

]
=
[
−h̄2

2m
∇2 + U(x)

]
ψ̂Hσ (x,t)

+
∫

dx′′
∑
σ ′′

ψ̂
†
Hσ ′′(x

′′,t)V
(∣∣x− x′′

∣∣) ψ̂Hσ ′′(x
′′,t)ψ̂Hσ (x,t). (15.22)

To generalize to time-dependent interactions, which will be useful later, we write

V
(
x,t;x′′,t ′′) = V

(∣∣x− x′′
∣∣) δ(t − t ′′).
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Substituting back in (15.20), we write the Green function equation of motion as

I =
{
i
∂

∂t
− 1

h̄

[
−h̄2

2m
∇2 + U(x)

]}
Gσσ ′

(
x,t;x′,t ′)+ i

h̄

∫
dx′′ dt ′′ V

(
x,t;x′′,t ′′)

×
〈
T

[
ψ̂

†
Hσ ′′(x

′′,t ′′) ψ̂Hσ ′′
(
x′′,t ′′

)
ψ̂Hσ (x,t) ψ̂

†
Hσ ′
(
x′,t ′
)]〉

, (15.23)

where we use the notation

I = δ
(
x− x′

)
δ(t − t ′) δσσ ′ .

In the absence of interactions, (15.23) becomes{
i
∂

∂t
− 1

h̄

[
−h̄2

2m
∇2 + U(x)

]}
G
(0)
σσ ′
(
x,t;x′,t ′) = I, (15.24)

i.e., G(0)
σσ ′
(
x,t;x′,t ′), which is just (15.5). Formally, the solution is

G(0)
σσ

(
x,t;x′,t ′) = {i ∂

∂t
− 1

h̄

[
−h̄2

2m
∇2 + U(x)

]}−1

. (15.25)

For a given potential U(x), it is possible in many cases, for example in the case of a periodic
potential, to obtain an explicit solution for the propagator.

Equation (15.23) is an integro-differential equation for the Green function, which in
general has no explicit solution. We can view the linear differential equation (15.23) from a
matrix perspective as having an infinite number of continuous and discrete indices. In that
spirit, we can express (15.23) in such a way that a formal solution can be obtained as in the
noninteracting case. We define the new matrix form

i

h̄

∫
dx′′dt ′′V

(
x,t;x′′,t ′′) 〈T [ψ̂†

Hσ ′′(x
′′,t ′′)ψ̂Hσ ′′

(
x′′,t ′′

)
ψ̂Hσ (x,t)ψ̂

†
Hσ ′
(
x′,t ′
)]〉

≡ −
∫

dx′′ dt ′′�∗σσ ′′
(
x,t;x′′,t ′′) Gσ ′′σ ′

(
x′′,t ′′;x′,t ′) (15.26)

and express (15.23) in matrix notation as[(
G(0)
)−1 −�∗

]
G = I, (15.27)

which yields the formal solution

G =
[(
G(0)
)−1 −�∗

]−1

= G(0) +G(0) �∗G, (15.28)

which is the matrix form of the Dyson equation for the one-particle Green function, or
the Dyson series. As we will show in Section 15.2.6, �∗ is the one-particle irreducible
self-energy ; its physical meaning will be explained in the next section. We will discuss the
Dyson equation in the context of a perturbation theory and Feynman diagrams.
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15.2.4 Physical Interpretation of the One-Particle
Green Function and the Self-Energy

Before we develop the full formal structure of the Green function framework, we shall
present several of its general features that illustrate its physical content. To further bring
to light the physical content of these features, we will present tangible connections to
experimental applications.

Lehmann Representation

We consider the Green function of (15.6), with
〈
�0
∣∣�0
〉 = 1, namely

iGσσ ′
(
x,t;x′,t ′) = 〈�0

∣∣∣T [ψ̂Hσ (x,t) ψ̂
†
Hσ ′
(
x′,t ′
)]∣∣∣�0

〉
, (15.29)

where, again, |�o〉 is the exact Heisenberg ground state. We introduce the complete set
of eigenstates {|�n〉} of the Hamiltonian, defined on the Fock space, and thus contain any
number of particles, namely∑

n

|�n〉 〈�n| = I Sum over Fock space

e−iHt/h̄ |�n(N)〉 = e−iEn(N)t/h̄ |�n(N)〉 , (15.30)

where |�n(N)〉 and En(N) are the nth eigenstate in the sub-Hilbert space for N particles
and the corresponding eigenvalue, respectively.

We insert this identity operator between the creation and annihilation field operators:

iGσσ ′
(
x,t;x′,t ′) =∑

n

[
(t − t ′) 〈�0| ψ̂Hσ (x,t) |�n〉 〈�n| ψ̂†

Hσ ′(x
′,t ′) |�0〉

−(t ′ − t) 〈�0| ψ̂†
Hσ ′(x

′,t ′) |�n〉 〈�n| ψ̂Hσ (x,t) |�0〉
]

. (15.31)

Transforming the Heisenberg creation and annihilation operators to the Schrödinger picture
and using (15.30), we obtain

iGσσ ′
(
x,t;x′,t ′) =∑

n

[
(t − t ′)e−i(En−E0)(t−t ′)/h̄ 〈�0| ψ̂σ (x) |�n〉 〈�n| ψ̂†

σ ′(x
′) |�0〉

−(t ′ − t) ei(En−E0)(t−t ′)/h̄ 〈�0| ψ̂†
σ ′(x

′) |�n〉 〈�n| ψ̂σ (x) |�0〉
]
,

(15.32)

where E0 is the ground-state energy. Because the Hamiltonian is time independent, namely,
time-translational invariant, G depends only on the difference τ = t − t ′.
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Figure 15.2 (a) Contour integral for t > t ′. (b) Contour integral for t < t ′.

To simplify our analysis, we use the following integral transformation for the time-
ordering  functions

(τ) = lim
η→0

−
∫ ∞
−∞

dω

2πi

e−iωτ

ω + iη
.

Furthermore, we Fourier-transform the Green function into the frequency domain, and
obtain the desired form of the Green function via analytic continuation in the complex
ω-plane, as shown in Figure 15.2. To delineate this approach, we consider the first term in
(15.32), and write∫

dτ eiωτ Gσσ ′
(
x,x′;τ)→ (−i)

∫
dτ eiωτ (τ) e−i(En−E0)τ/h̄

= −(−i)
∫ ∞
−∞

dω′

2πi

1

ω′ + iη

∫
dτ eiωτ e−iω

′τ e−i(En−E0)τ/h̄

= 1

ω − 1
h̄
(En − E0)+ iη

, (15.33)

where we have used the residue theorem.
Examination of the matrix element in first term in (15.32)

〈�0| ψ̂σ (x) |�n〉 〈�n| ψ̂†
σ ′(x

′) |�0〉
shows that the state |�n〉 must correspond to an excited state with N + 1 particles, since
|�0〉 is the ground state for N particles. Consequently, its eigenvalue En is the energy of an
excited state of the system with N+1 particles. We denote it explicitly asEn → En(N+1).
Thus, we should explicitly identify the energy denominator in (15.33) as

En − E0 → En(N + 1)− E0(N). (15.34)

A similar calculation shows that for the second term in (15.32), the energies in the
denominator should be modified to read E0 − En → E0(N) − En(N − 1). Thus,
the final result is
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Figure 15.3 Representation of the poles of G(ω) in the complex ω plane. Black and gray discs
correspond to hole excitations below the chemical potential μ, and to particle excitations above μ,
respectively.

Gσβ

(
x,x′;ω) = h̄

∑
n

[
〈�0| ψ̂σ (x) |�n〉 〈�n| ψ̂†

σ ′(x
′) |�0〉

h̄ω − [En(N + 1)− E0(N)]+ ih̄η

+ 〈�0| ψ̂†
σ ′(x

′) |�n〉 〈�n| ψ̂σ (x) |�0〉
h̄ω − [E0(N)− En(N − 1)]− ih̄η

]
. (15.35)

Equation (15.35) reveals that the poles of the one-particle Green function are precisely
the one-particle excitations of the interacting system. The first term describes excitations
associated with a particle added to the system. Thus, it defines particle excitations with
energies above the chemical potential, namely,

En(N + 1)− E0 = En(N + 1)− E0(N + 1)+ E0(N + 1)− E0(N) = εn(N + 1)+ μ,

where E0(N+1) is the ground state of the N+1 system. The quantity E0(N+1)−E0(N)

is identified with the chemical potential μ, since the volume of the system is kept constant.
Consequently, the energy difference En(N + 1) − E0(N + 1) = εn(N + 1) must be just
the excitation energy of the N + 1 system, with the proviso that εn(N + 1) ≥ 0. The
second term describes the transition to a system with one particle less, with manifest hole
excitations having energies below the chemical potential. This merger of hole and electron
excitations in a single function is one of the notable advantages of the time-ordered Green
function. Figure 15.3 demarcates the locations of the singularities of the Green function in
the Lehmann representation.

An Alternative Identification

Let us consider the energy terms appearing in the denominators. They can be rewritten as

En(N + 1)− E0(N) =
(
En(N + 1)− E0(N + 1)

)
+
(
E0(N + 1)− E0(N)

)
E0(N)− En(N − 1) =

(
E0(N)− E0(N − 1)

)
+
(
E0(N − 1)− En(N − 1)

)
.
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• The difference E0(N+1)−E0(N) represents the minimum energy needed to add one
electron to a system of N electrons.

It is the electron affinity (EA):

EA = E0(N + 1)− E0(N).

• The difference E0(N)−E0(N−1) represents the minimum energy needed to remove
one electron to a system of N electrons.

It is the ionization energy (IE):

IE = E0(N)− E0(N − 1).

Green Function for the Fermi Gas

As a simple example, we derive the Green function for the Sommerfeld gas, for which all
the excited states are known. The corresponding field operators are given by

ψ̂σ (x) = 1√



∑
k,σ

eik·x ckσ, ψ̂†
σ (x) =

1√



∑
k,σ

e−ik·x c†
kσ,

where 
 is the volume of the system. We write the matrix elements in (15.35) as

M = 〈�0| ψ̂σ (x) |�n〉 〈�n| ψ̂†
σ ′(x

′) |�0〉
= 1




∑
k,k′

eik·x e−ik
′·x′ 〈�0| ckσ |�n〉 〈�n| c†

k′σ ′ |�0〉 (15.36)

and with eigenstates |�n〉 = |kσ 〉 = c
†
kσ |�0〉,

M = 1




∑
k

eik·(x−x′) 〈�0| ckσ |kσ 〉 〈kσ | c†
kσ |�0〉 . (15.37)

The translational invariance of the electron gas leads to the x−x′ dependence. Inserting this
expression into (15.35), and applying spatiotemporal Fourier transformation, we arrive at

Gσσ ′(k,ω) = δσσ ′ h̄

⎡⎢⎣ |〈�0| ckσ |kσ 〉|2
h̄ω − εk + ih̄η

+

∣∣∣〈�0| c†
kσ

∣∣kσ 〉∣∣∣2
h̄ω − εk − ih̄η

⎤⎥⎦ , (15.38)

where
∣∣kσ 〉 = ckσ |�0〉 represents the ground state with one particle at energy εk removed.

We notice that the poles of the one-particle Green function are just the one-particle excita-
tion energies for particles and holes, with the energies of particle states above the chemical
potential, and the states for holes energies below the chemical potential, satisfying εk > 0,
as we stressed in the preceding discussions.
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Since the ground state of the Sommerfeld gas is just the Fermi sea, |�0〉 =
∏
|k|<kF,σ

c
†
kσ |0〉, we can simply write

|〈�0| ckσ |kσ 〉|2 = (|k| − kF ),

∣∣∣〈�0| c†
kσ

∣∣kσ 〉∣∣∣2 = (kF − |k|). (15.39)

15.2.5 Spectral Functions

The spectral function, or spectral weight, A(ν,ω) can be thought of as either the quantum
state resolution of a particle with given energy ω or as the energy resolution for a particle in
a given quantum number ν. It gives an indication of how suitable the excitation created by
adding or removing a particle in state ν can be described by a free noninteracting particle
or hole, respectively.

To be more specific, we define two spectral functions A+(k,ω) and A−(k,ω) that give
the probability of a particle (+) or a hole (−) with momentum k and energy ω to be in
an exact eigenstate of the system with N + 1 or N − 1 particles, respectively. They are
defined as

A+(k,ω) = 1




∑
n

|〈�0| ckσ |�n〉|2 δ (h̄ω − [En(N + 1)− E0(N)])

A−(k,ω) = 1




∑
n

∣∣∣〈�0| c†
kσ |�n〉

∣∣∣2 δ (h̄ω − [E0(N)− En(N − 1)]) . (15.40)

It is clear from this definition and (15.35) that

A+(k,ω)+ A−(k,ω) = Im
[
G(k,ω)

]
. (15.41)

The spectral functions are manifestly real and positive definite, which allows their interpre-
tation as a probability to find a single particle excitation with energy ω and momentum k,
in the present case. We find that∫ ∞

−∞
dωA(k,ω) = 1




∑
n

∣∣∣〈�0| c†
kσ |�n〉

∣∣∣2 ∫ ∞
−∞

dωδ (h̄ω − [E0(N)− En(N − 1)])

= 1




∑
n

〈�0| ckσ |�n〉 〈�n| c†
kσ |�0〉 = 〈�0| ckσ c

†
kσ |�0〉

= 〈�0| �0〉 = 1.

Thus, the spectral function satisfies the sum rule∫ ∞
−∞

dω A(k,ω) = 1 (15.42)

being a probability, irrespective of the Hamiltonian. The matrix elements in (15.40) include
only the states involving one particle more or less in the system. Consequently, they specify
the one-particle density of states resolved in momentum.
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D

I

Figure 15.4 Green function contains spectral information on single-particle excitations changing the
number of particles by one! The poles of the GF give the corresponding excitation energies.

We note that the spectral functions are accessible experimentally with the techniques
of angle-resolved photoemission spectroscopy (ARPES) and inverse photoemission spec-
troscopy, as shown in Figure 15.4. However, inverse photoemission has not achieved the
accuracy necessary to measure spectral functions.

Spectral Function in ARPES
In order to see how the spectral function of an electron system can be studied
experimentally by ARPES, we need to introduce a few simplifying assumptions. We
note from the outset that in photoemission spectroscopy a photon absorbed by an
electron provides enough energy to the electron to be ejected out of the system. The
collected body of data is compiled by recording the energy and momentum of the
outgoing electrons. Here, we will describe how the measured spectrum of the photo-
ejected electrons is a direct manifestation of the spectral function A(k,ω).

A schematic of the experimental setup is shown in upper part of Figure 15.5. The
upper-left of the figure depicts the different stages of photon beam collimation, as well as
the beam monochromator, prior to sample photoexcitation. The ejected photoelectrons
are collected, angle-resolved, and energy-resolved in the electron energy analyzer shown
in the bottom-right of the figure.

The bottom of Figure 15.5 shows the geometric setup of the ARPES experiment. The
direction of the incident photons together with the surface normal define the scattering
plane.

The energy-resolving capability of the detector allows the determination of the photo-
ejected electron energy ε, while its orientation and angle-resolving capability allows the
determination of its momentum k.

We choose the Coulomb gauge for the electromagnetic field, ∇·A(x,t) = 0, and set
the electrostatic potential to zero, �(x,t) = 0. The linear coupling of the electrons to
the electromagnetic field is given by
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Electron

analyzer

h

Figure 15.5 Top: a schematic of a typical ARPES end station in a synchrotron light source facility.
From [119]. Bottom: geometric setup of the ARPES experiment, defining the orientation of the
incident photon and the angle-resolving detector.

V (x,t) = e

m

∑
i

A(xi,t) · pi,

where xi and pi are the position and momentum of electron i, respectively. We consider
a periodic solid of volume 
, where the application of Born–von Karman boundary
conditions yield Bloch function eigenstates

�νk(x) = eik·x uνk(x)

of the single-particle Hamiltonian

H0 =
∑
i

[
p2
i

2m
+ U(xi )

]

with band index ν and k ∈ BZ.
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In second-quantized representation with respect to the Bloch function basis, we have

H0 =
∑
νkσ

ενk c
†
νkσ cνkσ

V (x,t) =
∑
νμ

k,k′σ

〈
νk
∣∣∣ e
m

A(x,t) · p
∣∣∣μk′
〉
c

†
νkσ cμk′σ . (15.43)

We consider a monochromatic electromagnetic wave

A(x,t) = A0 cos (q · x− ωt)

so that the matrix elements become〈
νk |A(x) · p|μk′

〉 = [δ (k′ − k+ q
)+ δ

(
k′ − k− q

)]
vνμ
(
k,k′
)

vνμ
(
k,k′
) = eh̄

2m

∫
dx uνk(x)A0 ·

(
k′ − i∇) uμk′(x). (15.44)

We obtain

V (x,t) = V (q) e−iωt + V (−q) eiωt

V (q) =
∑
νμ
kσ

vνμ (k,k− q) c†
νkσ cμ(k−q)σ . (15.45)

The total Hamiltonian of the system is

H = H0 +Hee + V (x,t),

where Hee represents the electron–electron interactions.
The experiment starts with the system in its N -particle ground state |�0(N)〉. In the

first step of a two-step process shown in Figure 15.6, photon absorption induces an
electron to transition from the single-particle state μk′, with energy εμk′ , to the single-
particle state νk, with energy ενk = εμk′ + h̄ω, above the vacuum level.

The transition rate due to absorption of energy h̄ω and momentum h̄q from the
electromagnetic field is given by Fermi’s Golden Rule,

P0→n = 2π

h̄

∑
n

|〈�n(N)|V (q) |�0(N)〉|2 δ (h̄ω − En(N)+ E0(N)) . (15.46)

In the second step of the photoemission process, the high-energy outgoing electron, νk
remains unscattered by other electrons, and is ejected and recorded by the detector.

Effectively, we can think that the photon removes one particle with momentum k,
directly measured, from the system. The determination of μk′ and εμk′ allows for the
mapping out of the band structure of the occupied levels.

Thus, we may write

|�n(N)〉 = c
†
νkσ |�n(N − 1)〉

En(N) � ενk + En(N − 1), (15.47)
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Figure 15.6 The two-step photoemission process.

where |�n(N − 1)〉 are the eigenstates of H0 +Hee for N − 1 electrons. The transition
matrix elements are then given by〈
�n(N− 1)cμ,k+q,σ

∣∣∣V (q)∣∣∣�0(N)
〉
=
∑
μσ

vνμ(k,k+ q)
〈
�n(N− 1)

∣∣∣cμ,k+q,σ

∣∣∣�0(N)
〉
.

For pedagogical reasons, we assume that in the ground state all bands are occupied
except one. In this case, there are no contributions to (15.46) originating from two
different bands, and we get

P0→n = 2π

h̄

∑
nμσ

∣∣vνμ(k,k+ q)
∣∣2 ∣∣〈�n(N − 1)| cμ,k+q,σ |�0(N)〉∣∣2

× δ (h̄ω − ενk − En(N − 1)+ E0(N)) . (15.48)

The contribution from a single band λ is proportional to

Aλ =
∑
n

∣∣〈�n(N − 1)| cμ,k+q,σ |�0(N)〉∣∣2 δ

(
ω′ − En(N − 1)+ En(N)+ μ

h̄

)
,

where ω′ = ω − ενk − μ

h̄
. Comparison with (15.40) confirms that this is the spectral

density of the single-particle Green function.

Density of States

The density of states for one-particle excitations is obtained by summing over momenta

D(ω) =
∑

k

[
A+(k,ω)+ A−(k,ω)

]
(15.49)
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and covers states with energies above and below the Fermi energy. We can discern that the
spectral function is related to the Green function as

G(k,ω) =
∫ ∞
−∞

dω′
[

A+(k,ω′)
ω − ω′ + iη

+ A−(k,ω′)
ω − ω′ − iη

]
. (15.50)

Using the principal value

1

ω ± iη
= P 1

ω
∓ iπδ(ω),

we write

G(k,ω) = P
∫ ∞
−∞

dω′
A+(k,ω′)
ω − ω′ + iη

− iπ A+(k,ω) (15.51)

for h̄ω > μ = EF . The reality of the integral allows to write

A+(k,ω) = − 1

π
Im G(k,ω) for ω >

μ

h̄

A−(k,ω) = 1

π
Im G(k,ω) for ω <

μ

h̄
. (15.52)

Thus, demonstrating that the one particle Green function contains the spectral function for
particles and holes measured from the chemical potential. Since the density of states is
given by the sum over momentum of the spectral functions, it can be expressed in terms of
the local Green function

D(ω) = − 1

π
Im G(x,x;ω) for ω >

μ

h̄

D(ω) = 1

π
Im G(x,x;ω) for ω >

μ

h̄
. (15.53)

We again note that the one-particle Green function is directly related to experimentally
accessible quantities such as the spectral function (angular-resolved photoemission and
inverse photoemission) and the density of states (angle-integrated photoemission).

15.2.6 Spectral Signatures in the One-Particle Green Function

Having demonstrated that the Green function contains useful information about the one-
particle states, we will now survey the identifiable signatures of those states.

Noninteracting Fermion System

We start with the simple case of noninteracting fermions with a dispersion relation ε0(k),
shown in Figure 15.7 for the one-dimension case.

The Green function for the noninteracting case can be written, using (15.38) and
(15.39), as

G0(k,ω) = h̄




[
(|k| − kF )

h̄ω − ε0(k)+ ih̄η
+ (kF − |k|)
h̄ω − ε0(k)− ih̄η

]
. (15.54)
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E

Figure 15.7 Dispersion relation for a one-dimensional free electron tight-binding model with nearest
neighbor hopping t : ε0(k) = −2t cos ka.

A

k

Figure 15.8 Free fermion spectral weight.

The corresponding spectral function, obtained from (15.52), is

A+0 (k,ω) =
h̄



δ(h̄ω − ε0(k)) for |k| > kF

A−0 (k,ω) =
h̄



δ(h̄ω − ε0(k)) for |k| < kF . (15.55)

The spectral function shows that for a noninteracting system, every single-particle state
has a unity weight, aside from a normalization factor, as shown in Figure 15.8. It con-
firms that all the weight is on the one-particle, or hole, state. We note that an excitation
with energy ω can only happen by adding an electron, or a hole, to the state k such that
ε0(k) = ω.

Interacting Fermion System: Quasiparticles’ Effective Mass and Spectral Weight

Next, we turn on the interactions, so that the Green function is now given by (15.28),
namely,

G(k,k′;ω) = 1[
G(0)(k,ω)

]−1 −�∗(k,k′;ω)
,

where
(
G(0)
)−1 = h̄ω − ε0(k).
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G and the self-energy �∗ are, in general, nonlocal functions that depend on two spatial
or momentum points. However, in the presence of translational or periodic invariance, they
becomes diagonal in momentum. We can then write

G(k,ω) = 1

h̄ω − ε0(k)−�∗(k,ω)
= 1

h̄ω − ε0(k)− Re�∗(k,ω)− Im�∗(k,ω)
.

(15.56)

�∗(k,ω) could be a messy complex function, but it is clear that its real part modifies,
or renormalizes, the noninteracting dispersion ε0(k), while its imaginary part replaces the
delta function of the pole with a finite width profile, a Lorentzian line shape.

The imaginary part accounts for a finite lifetime in the state (k,ω), and arises from
electron–electron, electron–phonon, or other scattering events. As will be demonstrated
in the subsections to follow, only states close to the Fermi surface are relevant to our
analysis, and for such states, scattering events due to the electron–electron interaction lead
to a quadratic contribution to the line broadening, namely, −Im �∗(k,ω) ∝ (h̄ω − EF )

2.
For simplicity, we set EF = 0 in the following, which can be achieved by shifting ε0(k)

correspondingly. Since we are only interested in low-energy excitations close to the Fermi
level, we perform a Taylor expansion of ε(k) = ε0(k) + Re �∗(k,ω) around k = kF and
ω = EF = 0. We thus only retain terms linear in 	k = k − kF and ω, and obtain

ε(k) = ε0(k)+ Re�∗(k,ω) =
[
kF

m
+ ∂ Re�∗

∂k

∣∣∣∣
k=kF

]
	k+ ∂Re �∗

∂ω

∣∣∣∣
ω=0

ω. (15.57)

We caution that in (15.57), 	k and the derivatives are taken along a direction perpendicular
to the Fermi surface.

After substituting (15.57) in (15.56), we can cast the interacting Green function for small
ω and 	k in the form

G(k,ω) = Z

ω − ε(k)
, (15.58)

which resembles the expression for G(0), with the following modifications:

1. Spectral weight factor

Z =
(

1− ∂ Re �∗(k,ω)
∂ω

∣∣∣∣
ω=0

)−1

. (15.59)

2. Mass renormalization

ε0(k) = (k − kF )
kF

m
⇒ ε(k) = (k − kF )

kF

m∗
(15.60)

m∗

m
= Z−1

(
1+ ∇kRe �∗

∣∣∣∣
k=kF

)−1

, (15.61)
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which indicates that the dispersion relation has been changed by the interactions. We
thus see that in keeping single-particle excitations, they will have to be modified due
to interactions: a different mass from the one of independent particle emerges. This
renormalization of the mass by interaction conforms with the experimental findings
for fermionic systems, as for example in the measurements of electronic specific heat
discussed in Chapter 18 on Fermi liquids.

A particle whose lifetime becomes finite and/or its energy gets renormalized is referred to
as a quasiparticle, in order to differentiate it from its kin in a noninteracting environment.
The quasiparticle consists of the original real, individual particle, plus a cloud of disturbed
neighbors interacting with it. It behaves very much like an individual particle, except that
it has an effective mass and a lifetime.4 The idea of quasiparticles was first proposed
by Lev Landau in his phenomenological theory of Fermi liquids, which was originally
formulated for studying liquid 3He. More will be said about quasiparticles in Chapter 18
on Fermi liquids.

Particle Lifetime in the Vicinity of the Fermi Surface

In the previous section, we introduced the concept of dispersion renormalization and
particle lifetime through the new quantity of self-energy arising from interparticle interac-
tions. Here, we examine the idea of particle lifetime and its relation to the Fermi surface
in more detail. An important revelation from the following analysis is that the concept of a
quasiparticle is crucially dependent on the existence of a Fermi surface.

We consider the consequences of injecting a quasiparticle into a state above but close to
the Fermi surface:

(ε = EF + δε, k) , k > kF,
δε

EF

� 1.

We expect that the quasiparticle will be scattered by particles in the Fermi sea, with(
ε′ < EF, k

′ < kF
)
, as shown in Figure 15.9. We denote the final scattering states with a

subscript “1.” Since all the states in the Fermi sea are occupied, both particles should be
scattered to states outside the Fermi sea. Applying momentum and energy conservation to
the scattering process, we write

ε + ε′ = ε1 + ε′1
k+ k′ = k1 + k′1.

We expect that the scattering rate γk to be proportional to the accessible phase space,
namely,

γk ∝
∫

dk′
∫

dk1

∫
dk′1 δ

(
k+ k′ − [k1 + k′1]

)
. (15.62)

4 There also exist other kinds of fictitious particles in many-body systems, namely, manifestations of collective excitations.
These do not center around individual particles, but instead involve collective, wavelike motion of all the particles in the
system simultaneously. They are typified by phonons, magnons, rotons, etc.
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sea sea

Figure 15.9 Left: initial state with a single quasiparticle excitation above a filled Fermi sea. Right:
final state with two quasiparticles and a quasihole.

We use the densities of states to change the integrations over momenta in (15.62) into
integrations over energies:

γk ∝
∫ EF

−∞
dε′D(ε′)

∫ ∞
EF

dε1 D(ε1)

∫ ∞
EF

dε′1 D(ε′1) δ
(
ε + ε′ − [ε1 + ε′1]

)
≤
∫ EF+δε

EF

dε1 D(ε1)

∫ EF+δε

EF

dε′1 D(ε′1) D
(
ε1 + ε′1 − ε

)
∼ D3(EF ) (δε)

2. (15.63)

The fact that γ ∝ (ε − EF )
2 in the vicinity of the Fermi energy leads us to conclude that

the existence of a Fermi surface allows quasiparticles to become more clearly defined as the
Fermi surface is approached. As a matter of fact, the lifetime becomes infinite on the Fermi
surface, since γ has to change sign on crossing the Fermi surface. The same phase space
argument reveals that the particle lifetime quickly approaches zero as we move away from
the vicinity of the Fermi surface! The implication of this finding is that a particle injected
into a state with ε � EF will immediately scatter into other states, leaving no trace of
coherent information about its propagation; in other words, it will propagate incoherently.
There are no poles in the Green function for such scattering events.

This reasoning reveals that a quasiparticle lifetime is determined via the constraint
imposed by the Pauli principle on accessible states, and that it is independent of the
interaction type, and therefore is quite general. In the absence of such constraint, it
is not clear how manifest sharp quasiparticles would be discernible in the presence of
interactions. Actually, we would have naively expected exactly the opposite scenario
to the one derived: the strength and type of the interaction should determine the
lifetime, τ = 1/�, of single-particle states, while the particle’s energy ε(k) defines
the periodicity of its wavefunction oscillations in time e−iε(k)t/h̄. Thus, in order to be
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Figure 15.10 ε controls the temporal oscillations of the wavefunction. In order to properly identify
a corresponding quasiparticle, it is necessary that the wavefunction oscillates several times before
being damped by the lifetime τ ; otherwise, it is impossible to precisely define the frequency of the
oscillations.

able to properly identify a particle it is necessary that many oscillations be sampled
during the lifetime, as shown in Figure 15.10. This imposes the condition

ε(k)� 1

τ
.

Since 1/τ is controlled by energy scales of the interaction strength, we would have
expected the lifetime to be constant in the vicinity of the Fermi energy. Setting EF = 0,
we find that ε(k)→ 0 as k→ kF , which clearly violates this condition: the quasiparticle
will disappear as ε → EF . It will also mean that for weak interactions, quasiparticles
with ε � EF will be more defined than those with energies close to EF . This is in
complete contradiction with the outcome that emerges from the constrained phase space,
and with experimental observations.

Finally, we should note that because fermions close to the Fermi surface scatter very
little, treating them as essentially noninteracting is still qualitatively correct for many
purposes. This is a very significant conclusion, since many experimentally measurable
properties are recorded at low temperatures, and thus essentially involve fermions at
or near the Fermi surface. These properties are therefore not qualitatively changed by
electron–electron interactions, an issue that will be discussed as a prologue in Chapter 18
on Fermi liquids.

Spectral Manifestations of Particle Lifetime

So far, we recognize that interparticle interactions are responsible for replacing the ideal
delta function in the spectral function with a broadened profile. Here, we shall describe
the main modifications to the spectral function features arising from interparticle interac-
tions. Such interactions are expected to redistribute the spectral weight because of energy
exchange between the injected particle and the quasiparticles in the system. Traditionally,
the interactions of interest for electronic states are electron–phonon and electron–electron
interactions.
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For pedagogical simplicity, we start with the assumption that only a single electronic
state with energy ε(k) is present close to EF , with an inverse lifetime, or line-broadening

�k = ZCk (ε(k)− EF )
2 ,

where Ck is a proportionality constant. We write

G(k,ω) = Z

ω − ε(k)+ i�k︸ ︷︷ ︸+Gincoh (15.64)

Gcoh(k,ω).

Gincoh contains the rest of the spectrum, describing incoherent scattering events that have
no corresponding poles. In contrast, we designate the first term Gcoh as the coherent part,
since it corresponds to a coherently propagating particle at least for times t < 1/�k. To
confirm this scenario, we take the time Fourier transform of Gcoh(k,ω) in order to examine
its evolution in time,

Gcoh(k,t) =
∫ ∞
−∞

dωe−iωt
Z

ω − ε(k)+ i�k
∼ Z exp

(
−i [ε(k)− i�k]

t

h̄

)
, (15.65)

where we considered the case for t > 0 and �k > 0, so that the contour integral can be
performed in the lower half-plane, as shown in Figure 15.11. We note that the Gcoh(k,t)
is just a decaying plane wave with lifetime 1/�, with a particle weight given by the pole
residue,Z. It is called the quasiparticle weight. WhenZ vanishes, the electron quasiparticle
disappears.

In order to determine the contribution of Gcoh to the spectral function, we write it in the
form

Gcoh = Z (h̄ω − ε(k)− i�k)

(h̄ω − ε(k))2 + �2
k

(15.66)

so that the spectral function becomes

A+coherent(k,ω) = −
1

π
ImGcoh(k,ω) → Z�k/π

(h̄ω − ε(k))2 + �2
k

. (15.67)

Figure 15.11 Contour used to evaluate Gcoh(t) for t > 0.
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Figure 15.12 Spectral function for a particle in a noninteracting system (black delta function) and
of the corresponding quasiparticle after turning on interactions (gray filled curve). Notice the shift in
energy and the linewidth broadening.

Figure 15.13 Typical spectral function for a quasiparticle displaying its coherent component and the
incoherent background.

The modifications to the spectral function arising from the presence of interactions are
shown in Figures 15.12 and 15.13.

We can also write the full spectral function as

A+(k,ω) = A+coherent(k,ω)+ A+incoherent(k,ω),

which is represented schematically in Figure 15.13: the contributions from the coherent
part of the spectral function appears as a Lorentzian line shape, while the background arises
from the incoherent part. If the quasiparticle weight vanishes, then the background is the
only manifestation in the spectral function.

The coherent part of the spectral function has the following features:

• It has a Lorentzian profile peaked at ε(k).

• The single-particle energies are renormalized, ε0(k) → ε(k).

• Its width is given by the inverse of the lifetime.

• Its magnitude is proportional to the quasiparticle weight Z, a positive number between
0 and 1.

• The area under the peak has decreased (from 1 to Z).
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The incoherent part Aincoherent(k,ω) presents a continuum, not a peak. It must be there if
Z 
= 1, in order to satisfy sum rule (15.42). A similar result is obtained for the hole spectral
function, but we should note that � < 0 in this case.

Fermi Liquids and Non-Fermi Liquids

Fermionic systems in which this picture holds are called Fermi liquids, and the theory
describing them is known as Fermi liquid theory. It was first developed phenomenologically
by Landau around 1957, and, in the subsequent years, was given a microscopic foundation
with the aid of many-body perturbation theory. The phenomenological version will be
described in Chapter 18.

We also note that the identification and investigation of interacting fermionic systems
that do not obey Fermi liquid theory is an important research area in current many-body
physics. Such non-Fermi liquids by definition have spectral functions that cannot be
approximated by the form (15.67), and therefore they cannot be qualitatively understood
in terms of a picture of noninteracting fermions. One prominent example of a non-Fermi
liquid is the so-called Luttinger liquid, which occurs in one spatial dimension. It will also
be covered in Chapter 18.

15.3 Time-Evolution Operator in the Interaction Picture

We have seen in Section 2.3 that for a general many-body problem, attempts to construct
an equation of motion for the Green function led to the generation of an infinite hierarchy
of coupled differential equations involving higher- and higher-order Green functions. How-
ever, it is often possible to extract meaningful answers using decoupling approximations,
where a link in the chain of equations is broken at some order, and the higher-order Green
functions, beyond the link, expressed in terms of lower ones.

In the following section, we shall develop an alternative approach, based on a pow-
erful perturbation theory method for the Green function. It presents an iterative integral
representation in time. This Feynman–Dyson method [54, 55, 61, 62], forms the basis of
relativistic quantum field theory, and has been adapted quite successfully for nonrelativistic
many-body physics [4, 5]. It will also be presented in the concise and systematic language
of Feynman rules and diagrams.5

We recall that the definition of the Green function (15.6) involved operators in the
Heisenberg picture, or Heisenberg operators. However, the development and practical real-
ization of the perturbation theory hinges on transforming state vectors and operators to the
interaction picture. We remember from quantum mechanics that the interaction framework
can be considered as intermediate between the Schrödinger and Heisenberg pictures, where
now both operators and state vectors are time dependent. Most importantly, operators in
this picture acquire a simple time dependence, where time evolution is determined only by
the unperturbed Hamiltonian, while the nontrivial part corresponding to the interactions is

5 See [93]. This article gives an interesting historical perspective to the development of Feynman diagrams.
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incorporated into the wavefunctions. Thus, we find that the time-evolution operator plays
an important role in the development of quantum field theory and quantum many-body
physics. We will delineate this interaction picture formulation here.

We start with the Hamiltonian

H = H0 +H′. (15.68)

In the absence of the interaction term H′, the problem can be solved exactly. We define the
state vector in the interaction picture, |ψI (t)〉, in terms of its counterpart in the Schrödinger
one, |ψS(t)〉, as

|ψI ((t)〉 = exp

[
i
H0t

h̄

]
|ψS(t)〉 = exp

[
i
H0t

h̄

]
exp

[
−iHt

h̄

]
|ψS(0)〉 . (15.69)

Notice that

exp

[
i
H0t

h̄

]
exp

[
−iHt

h̄

]

= exp

[
−iH

′t
h̄

]
when H0 and H do not commute. Now, consider the time evolution of |ψI ((t)〉

ih̄
∂ψI

∂t
= −H0 exp

[
i
H0t

h̄

]
|ψS(t)〉 + exp

[
i
H0t

h̄

] (
ih̄

∂

∂t

)
|ψS(t)〉

=
{
−H0 + exp

[
i
H0t

h̄

]
H exp

[
−iH0t

h̄

]}
|ψI (t)〉 = HI (t) |ψI (t)〉

HI (t) = exp

[
i
H0t

h̄

]
H′ exp

[
−iH0t

h̄

]
. (15.70)

Since in general H0 and H′ do not commute, we have to respect the order in which they
appear. We note that the definition of HI (t) in (15.70) can be extended to other operators.
To see this, we consider an arbitrary matrix element of some operator

〈ψS(t)|OS |ψS(t)〉 = 〈ψI (t)| eiH0t/h̄OS e
−iH0t/h̄ |ψI (t)〉 = 〈ψI (t)|OI (t) |ψI (t)〉

(15.71)

and we find that

OI = eiH0t/h̄OS e
−iH0t/h̄

Thus, in the interaction picture both states and operators depend on time. It is straightfor-
ward then to write the equation of motion for an interaction picture operator as

ih̄
∂OI (t)

∂t
= exp

[
i
H0t

h̄

] (
OS H0 −H0 OS

)
exp

[
−iH0t

h̄

]
=
[
OI (t),H0

]
, (15.72)

that is, it is simply determined by the noninteracting part.
Next we consider the time-evolution operator for a state vector in the interaction picture.

It should be unitary and engenders the state at time t , namely,

|ψI (t)〉 = U(t) |ψI (0)〉 . (15.73)
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U should also fulfill the initial condition

U(0) = 1. (15.74)

From (15.70) and (15.73), we have

ih̄
∂U(t)

∂t
= HI U(t). (15.75)

Integrating this equation from time t = 0 to time t , we have

U(t)− U(0) = − i

h̄

∫ t

0
dt1 HI (t1) U(t1), (15.76)

or, given the initial condition,

U(t) = 1− i

h̄

∫ t

0
dt1 HI (t1) U(t1). (15.77)

This is an integral equation, and an iterative solution can be obtained as

U(t) = 1− i

h̄

∫ t

0
dt1 HI (t1)+

(
i

h̄

)2 ∫ t

0
dt1

∫ t1

0
dt2 HI (t1)HI (t2)+ · · · (15.78)

As we remarked earlier, in general H0 and HI do not commute. To overcome this difficulty,
Schwinger invented a device called the time-ordering operator.

Time-Ordering Operator

Suppose {O1(t1), O2(t2) . . . ON(tN)} is a set of operators at different times
{t1, t2 . . . tN }. If P is the permutation that orders the times, so that tP1 > tP2 . . . > tPN ,
then if the operators are entirely bosonic, containing an even number of fermionic
operators, the time-ordering operator is defined as

T [O1(t1)O2(t2) . . . ON(tN)] = OP1(tP1), OP2(tP2) . . . OPN(tPN). (15.79)

We note that if the operator set contains fermionic operators, composed of an odd
number of fermionic operators, then

T [F1(t1) F2(t2) . . . FN(tN)] = (−1)P FP1(tP1), FP2(tP2) . . . FPN(tPN), (15.80)

where P is the number of pairwise permutations of fermions involved in the time-
ordering process.

We cast (15.78) in a more symmetric form, by rewriting the term with two integrals as∫ t

0
dt1

∫ t1

0
dt2 HI (t1)HI (t2) =

∫ t

0
dt2

∫ t

t2

dt1 HI (t1)HI (t2)

=
∫ t

0
dt1

∫ t

t1

dt2 HI (t2)HI (t1), (15.81)
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Figure 15.14 Regions of integration for the first two integrals in (15.80).

where the first equality was obtained because the integration regions are equal as shown
in Figure 15.14. The second line results from a convenient change of variables. The
contribution to the time-evolution operator in second order can be written, with the aid of
(15.80), as∫ t

0
dt1

∫ t1

0
dt2 HI (t1)HI (t2) = 1

2

∫ t

0
dt1

∫ t

0
dt2 [HI (t1)HI (t2)(t1 − t2)

+HI (t2)HI (t1))(t2 − t1)]

= 1

2

∫ t

0
dt1

∫ t

0
dt2 T [HI (t1)HI (t2)] . (15.82)

where we introduced a time-ordering operator T that operates on the square bracket to its
right. The bracket contains a product of operators affected by it, with the operator at later
time to the left of that at earlier time. It is clear that this can be generalized to any order n,
by properly taking into account the number of possible time orderings, which is just the
permutations of n time variables, and, of course, we have to divide by n!.

U(t) =
∞∑
n=0

1

n!

(−i
h̄

)n ∫ t

0
dt1 . . .

∫ t

0
dtn T [HI (t1) . . . HI (tn)]

= T exp

[
− i

h̄

∫ t

0
dt1 HI (t1)

]
. (15.83)

15.3.1 The S-Matrix (S-Operator)

We now come to one of the most important constructions in diagrammatic perturbation
theory, which is known as the S-matrix, although in our context it is more convenient to
think of it as an operator than a matrix. We have discussed at length the time-evolution
operator U(t), which evolves the wavefunction in the interaction representation |ψI (t)〉 =
U(t) |ψI (0)〉.

Now we would like to define a similar, but slightly more general object S(t,t0), which
evolves the system from time t0 to time t
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|ψI (t)〉 = S(t,t0) |ψI (t0)〉 (15.84)

S(t0,t0) = 1.

Writing

|ψI (t)〉 = U(t) |ψI (0)〉
|ψI (t0)〉 = U(t0) |ψI (0)〉 ⇒ U†(t0) |ψI (t0)〉 = |ψI (0)〉 ,

we find

S(t,t0) = U(t) U†(t0) = U(t) U−1(t0)

since U is unitary. It follows that

• S(t0,t) = S†(t,t0).

• S has the composition property

S(t,t1) = S(t,t0) S(t0,t1), t > t0 > t1.

• S satisfies the equation

ih̄
∂S(t,t0)

∂t
= HI S(t,t0)

and, hence,

S(t,t0) =
∞∑
n=0

1

n!

(−i
h̄

)n ∫ t

t0

dt1 . . .

∫ t

t0

dtn T [HI (t1) . . . HI (tn)]

= T exp

[
− i

h̄

∫ t

t0

dt1 HI (t1)

]
. (15.85)

15.4 Perturbation Theory and Feynman Diagrams

In this section, we present the basic ingredients for constructing a perturbation expansion
for the Green function, and develop a pedagogical outline of the method of Feynman
diagrams, focusing on fermionic systems. The goal is not to present a complete account
of the diagrams, but to lay down the groundwork to understanding them.

(15.84) plays an important role in the development of the Feynman–Dyson perturbation
theory. In the definition (15.6) of the Green function, the average value was taken with
respect to the Heisenberg ground-state vector, |ψH 〉, which is time independent, but usually
very complicated for interacting systems, and no exact solution is achievable. The strategy
adopted in the theory is to set

|ψH 〉 = |ψI (0)〉 = S†(t,0) |ψI (t)〉
and use the time t → −∞ to interpolate to the noninteracting ground state with the aid of
the principle of adiabatic switching on, as will be described in the following subsection.
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15.4.1 The Concept of Adiabaticity in Quantum Physics

We have earlier explored the attributes and consequences of adiabaticity in the context of
Berry’s phase. The construct of adiabaticity can also play an important role in quantum
many-body theory. It can possibly pave a path that allows us to understand a many-body
problem, even when we can only arrive at an approximate solution.

In order to examine the usefulness of adiabaticity in our current endeavor, we consider
the scenario where we have a many-body system with Hamiltonian

H = H0 +H′

for which no exact solution of its ground state
∣∣�g
〉

can be obtained. But, we do know the
exact solution for H0, with ground state

∣∣�g
〉
. To connect the two systems, we start with

the Hamiltonian H0, having a ground state
∣∣�g
〉
, and adiabatically slowly turn on H′ until

we reach H. Mathematically, this can be achieved by setting

H(t) = H0 + λ(t)H′, ⇒ λ(t) = e−η|t | η > 0 is arbitrarily small. (15.86)

and varying −∞ ≤ t → 0. The efficacy of this approach hinges on whether
∣∣�g
〉

has the
same basic symmetries as

∣∣�g
〉
, namely, they share the same quantum number labels.

There are two possible paths for the process of adiabatic switching on in a many-body
system:

(i) The ground-state symmetry remains invariant throughout the adiabatic evolution, as
λ increases smoothly from 0 to 1. In such cases, the corresponding evolution of the
energy spectrum, within the symmetry subspace of the ground state, should behave
as the one drawn schematically in Figure 15.15(a). It shows, for simplicity, a discrete
spectrum with a series of avoided crossings that allow us to follow adiabatically the
nth excited level at λ = 0 into the nth excited level at λ = 1. Note that the crossings
are avoided because the states have the same symmetry. The avoided crossing arises
because an intersection of two levels having the same symmetry is removed because,
in general, the off-diagonal matrix elements between the two states will not vanish, and
thus will give rise to mutual repulsion.

(ii) The ground-state symmetry changes during the evolution due to a crossing of an energy
level with different symmetry. As shown in Figure 15.15(b), it is possible for the energy
levels of states with different symmetries to cross, because selection rules give vanish-
ing matrix elements between the states, and thus prevent them from mixing. This sce-
nario may lead to an adiabatic evolution where level crossing occurs at some λ = λc.
Within such a scenario, an excited state� of H0, with a symmetry different from that of
the ground state

∣∣�g
〉
, may cross at λc to a lower energy than the ground state, resulting

in a symmetry change of the ground state. A simple example is when a ferromagnetic
ground state becomes stabilized by interactions; however, in this case a continuous
rotational symmetry of the spin is broken (spontaneous symmetry breaking).
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g

g

Figure 15.15 (a) Adiabatic evolution of a discrete spectrum within the symmetry subspace of the
ground state. The ground state can be adiabatically evolved all the way to λ = 1, from �g to �g .
(b) Adiabatic evolution of Hilbert space with λ. A phase transition occurs at λ = λc, where an excited
state of H0, with a symmetry different from that of the ground state, crosses below the ground state.

Thus the switching-on procedure becomes troublesome if it leads to instabilities at some
critical value of λ = λc. The presence of a λc ushers a phase transition whereby the ground
state changes its symmetry. If the transition is continuous, it signals a quantum critical
transition initiated at a quantum critical point.

In many cases of interest, there is no symmetry-changing phase transition as the inter-
action H′ is turned on, and the procedure of adiabatic evolution can be used to turn on
“interactions” and to evolve the ground state from

∣∣�g
〉

to
∣∣�g
〉
. The adiabatic concept,

together with the Gell-Mann–Low theorem, are key elements in the development of pertur-
bation theory and Feynman diagrams.

15.4.2 Adiabatic “Switching on” and the Gell-Mann−Low Theorem

In a 1951 seminal paper, Murray Gell-Mann and Francis Low [73] used the adiabatic
construct to establish the connection between the interacting and noninteracting Green
functions, in their now famous Gell-Mann–Low theorem.

We note that the ground state |�0〉, that appeared in the definition of the Green function
of the interacting system, (15.6), must be a time-independent state in the Heisenberg pic-
ture. Since, so far, we only know how to calculate expectation values in the noninteracting
ground state |�0〉, we need to connect the states of the exactly soluble Hamiltonian H0,
where in principle everything is known, to the ones of the full Hamiltonian H = H0 +H′.
For this purpose, we use the time-dependent Hamiltonian of (15.86), which allows for the
adiabatic switching on:

• For |t | → ∞, the Hamiltonian reduces to H0.

• At t = 0, it becomes the interacting problem we are interested in.

• In the limit η→ 0, the interaction is switched on adiabatically.
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Replacing H′ → e−η|t | H′ in the scattering operator expression (15.85), we obtain

Sη(t,t0) =
∞∑
n=0

1

n!

(−i
h̄

)n ∫ t

t0

dt1 . . .

∫ t

t0

dtn e
−η(|t1|...+|tn|) T [HI (t1) . . . HI (tn)] .

(15.87)

As t0 →−∞, the effect of the interaction vanishes and one approaches H0:

t0 →−∞
⎧⎨⎩H0 |�0〉 = E(0) |�0〉
|�I (t0)〉 → |�0〉 .

(15.88)

Recalling the relation among state vectors in the different pictures, we write

|�H 〉 = |�S(t = 0)〉 = |�I (t = 0)〉 ,
where t = 0 corresponds to the fully interacting Hamiltonian. In particular, we obtain the
following relation between the Heisenberg and interaction state vectors,

|�H 〉 = |�I (0)〉 = Sη(0,−∞) |�0〉 ≡ Sη(0,−∞) |−∞〉 , (15.89)

where introducing |−∞〉 ≡ |�0〉 simplifies the chronology of the evolving ground state.
While we realize that (15.89) is determined through an adiabatic switching process, we
recognize that it gives us the link between the eigenstates of the noninteracting system and
the eigenstates of the fully interacting one, with |�I (0)〉 = |�H 〉 being the ground state of
the interacting problem.

Gell-Mann–Low Theorem
“In the absence of any symmetry breaking transition, and in the limit η→ 0, Sη → SI

exists and provides the right solution.”

|�H 〉 = |�I (0)〉 = SI (0,−∞) |�0〉 ≡ SI (0,−∞) |−∞〉 (15.90)

With this theorem in hand, we shall reexpress the Green function in a form in which
the expectation values to be determined are those of the unperturbed ground state
|−∞〉 ≡ |�0〉. The state vector defined in (15.90) can be written as

|�H 〉 = |�0〉 = SI (0,−∞) |−∞〉 = SI (0,∞) SI (∞,−∞) |−∞〉 .

Because of time-reversal symmetry of e−η|t |H′, namely, the interaction is again zero at
t = +∞, it is clear that

|+∞〉 = SI (∞,−∞) |−∞〉
is just the ground state |�0〉 of H0 up to a phase factor, provided that the state that develops
from |−∞〉 remains nondegenerate throughout the evolution process. We can then write

|+∞〉 = SI (∞,−∞) |−∞〉 = ei2σ |−∞〉 ⇒ ei2σ = 〈−∞ |+∞〉
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and we obtain

〈+∞| = e−i2α 〈−∞| = 〈−∞|
〈−∞ |+∞〉 =

〈−∞|
〈−∞| SI (∞,−∞) |−∞〉 . (15.91)

Therefore, by using the expansion (15.85) of the S-matrix, we get a perturbation expansion
in H′I , where our calculations now involve expectation values and time evolution expressed
in terms of the unperturbed system.

15.4.3 One-Particle Green Function as Power Series in the Interaction

We have established the connection between the eigenstates of the noninteracting system
with those of the fully interacting one, with the aid of the interaction picture. What remains
is to relate the Heisenberg operators that appear in the definition of the Green function to
the corresponding interaction picture operators.

To accomplish this, we use the relations between operators in the Heisenberg,
Schrödinger, and interaction pictures to write

OH (t) = eiHt/h̄OS e
−iHt/h̄ = eiHt/h̄e−iH0t/h̄OI e

iH0t/h̄e−iHt/h̄. (15.92)

We recall from (15.69) that

|ψI ((t)〉 = exp

[
i
H0t

h̄

]
exp

[
−iHt

h̄

]
|ψI (0)〉 = SI (t,0) |ψI (0)〉

and we obtain

OH (t) = SI (0,t)OI (t) SI (t,0). (15.93)

For the product of two Heisenberg operators, we get

OH (t)O′H (t1) = SI (0,t)OI (t) SI (t,0) SI (0,t1)O′I (t1) SI (t1,0)

= SI (0,t)OI (t) SI (t,t1)O′I (t1) SI (t1,0). (15.94)

We now have all the tools to construct a perturbative form for the Green function

iG
(
x;x′) = 〈�H | T

[
ψ̂H (x) ψ̂

†
H

(
x′
)] |�H 〉

=
〈−∞| SI (∞,0)T

[
SI (0,t) ψ̂I (x) SI (t,0) SI (0,t ′)ψ̂†

I

(
x′
)
SI (t

′,0)
]
SI (0,−∞) |−∞〉

〈−∞ |SI (∞,0)SI (0,−∞)| −∞〉 ,

(15.95)

where x ≡ (x,t,σ ) for compactness. We replaced the Heisenberg operator ψ̂H (ψ̂†
H ) by its

interaction representation counterpart, which simply evolves only under the action of H0.
We also replaced the ground state of the interaction problem |�0〉 by the noninteracting
one |�0〉. We can combine terms such as SI (t ′,0) SI (0,−∞) to SI (t

′,−∞). Moreover,
since the time-ordering operator is taking care of the proper time ordering anyhow, we
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can even combine all time propagations to a single one, SI (∞,−∞). Then the Green
function becomes

iGσσ ′
(
x,t;x′,t ′) = 〈−∞| T

[
SI (∞,−∞)ψ̂Iσ (x,t) ψ̂

†
Iσ ′
(
x′,t ′
)] |−∞〉

〈−∞ |SI (∞,−∞)| −∞〉 . (15.96)

Finally, we can replace SI (∞,−∞) by its Taylor expansion

iGσσ ′
(
x,t;x′,t ′) = ∞∑

n=0

1

n!

(−i
h̄

)n ∫ ∞
−∞

dt1 . . .

∫ ∞
−∞

dtn

×
〈
�0

∣∣∣T [HI (t1) . . . HI (tn) ψ̂Iσ (x,t) ψ̂
†
Iσ ′
(
x′,t ′
)]∣∣∣�0

〉
〈�0 |SI (∞,−∞)|�0〉 . (15.97)

Now the one-particle Green function is explicitly written as an expansion in powers of the
perturbation HI . There is just one more hurdle to overcome before actually implementing
this scheme: we need to devise a method that would mitigate taking expectation values of
large numbers of operators of a noninteracting system. This procedure is systematized with
the application of Wick’s theorem and simplified with the aid of Feynman diagrams.

15.4.4 Wick’s Theorem, Normal Ordering, and Contractions

The arraying of the operators HI is fixed by time ordering. However, as the interaction
Hamiltonian consists of creation and annihilation operators, it would be convenient to move
all annihilation operators to the right, where they can eliminate particles. This ordering
process is called normal ordering. We note that the action of annihilation and creation
operators ψ̂ and ψ̂† on the vacuum is to annihilate it, namely,

ψ̂ |∅〉 = 0, 〈∅| ψ̂† = 0,

which is true for both bosons and fermions. Moreover, since observables have null expec-
tation values in the vacuum state, it is convenient to construct them in normal order, with
creation operators on the left of destruction operators. Wick’s theorem6 tells us how to go
from time-ordered to normal-ordered products – it is valid when the expectation values are
with respect to a Hamiltonian that is quadratic in fermion operators.

Identification of Vacuum States

We recall from the case of superfluidity that the Bogoliubov canonical transformation
generated new noninteracting quasiparticles from the original interacting bosons, and that
the emerging ground state acted as a vacuum state for the new quasiparticles. We shall
often encounter in coming chapters that a ground state

∣∣�g

〉
of some incipient effective

Hamiltonian will be taken as a reference vacuum state. Such a state is filled with particles or

6 The general problem of bringing products of field operators into a normal form was solved in 1950 by Gian-Carlo Wick
(1909–1992). He completed the work on his theorem while in Berkeley. It was aimed at providing a clear derivation of
Feynman’s diagrammatic rules for perturbation theory.
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quasiparticles, and the effective Hamiltonian is expressed in a basis of canonical operators
αa and α†

a, a = 1, 2, . . ., where

αa
∣∣�g

〉 = 0,
〈
�g

∣∣ α†
a = 0.

This action only holds for such operators, but not for other creation and destruction
operators associated with the system.

To illustrate this process, we shall consider the noninteracting ground state |�0〉 describ-
ing the Fermi sea. We examine the action of the field operators ψ̂(x) and ψ̂†(x), and apply
the canonical particle–hole transformation, we write

ψ̂(x) =
∑
kσ

φkσ (x)ckσ =
⎧⎨⎩
∑

kσ φkσ (x) dkσ = ψ̂(−)(x), k > kF annihilate particles∑
kσ φkσ (x) h

†
−kσ = ψ̂(+)(x), k < kF create holes

We find that7

ψ̂(−)(x) |�0〉 = 0, ψ̂(+)†(x) |�0〉 = 0.

Thus, ψ̂(−) and ψ̂(+)† are annihilation parts, while ψ̂(+) and ψ̂(−)† are creation parts.
In order to state Wick’s theorem, we have to introduce and elaborate on the concepts of

normal ordering and contractions.

Normal Ordering and Its Physical Significance

We will focus here on fermionic operators of a noninteracting system, which are relevant
to our current discussion of perturbation theory with N interacting fermions.

We shall generalize the decomposition to other possible bases for the creation and anni-
hilation operators, besides the position representation previously described. To simplify the
notation, we will set A as a generic operator, and write

A = A− + A+.

A. Normal Ordering and Contractions

A product of operators A±i is normally ordered if all factors A−i are on the right of the
factors A+j :

A+1 · · ·A+k A−k+1 . . . A
−
n .

In particular, a product of operators of the same type, A+1 · · ·A+k or A−1 . . . A
−
� , and their

permutations, is normally ordered.
The very usefulness of the definition is the obvious property that the expectation value

on
∣∣�g

〉
of a normally ordered operator product is always zero:〈

�g

∣∣A+1 · · ·A−n ∣∣�g

〉 = 0.

7 The notation ± carries over from the original application of Wick’s theorem in relativistic quantum field theory, where (+) and
(−) refer to a Lorentz-invariant decomposition into positive and negative frequency parts.
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It is clear that any product of operators A1 A2 . . . An can be written as a sum of normally
ordered terms. One first writes every factor as A+i + A−i and gets 2n terms. In each term,
the components A−i are brought to the right by successive anticommutations. After much
boring work, the desired expression will be obtained. Wick’s theorem is an efficient answer
to this particular problem: to write a product A1 . . . An as a sum of normally ordered terms.
The theorem is an extremely useful operator identity, with important corollaries. To state
and prove it, we need some technical tools.

The normal-ordering operator brings a generic product into a normal form. If the
product contains k factors A+i mixed with n− k factors A−i , it is

N
[
A±1 . . . A

±
n

] = (±1)P A+i1 · · ·A
+
ik
· · ·A−in, (15.98)

where P is the permutation that brings the sequence 1 . . . n to be normal ordered into the
ordered sequence i1 . . . in. It may appear that normal ordering is not unambiguous, since
(+) operators and (−) operators can be given separately different orders. However, the
different expressions are actually the same operator, because A+ operators anticommute
exactly among themselves, and the same is true for A− operators. For example, N

[
A+1 A

+
2

]
can be written as A+1 A

+
2 , or with the factors exchanged, −A+2 A+1 , the two operators

coincide.
By linearity, we extend the action of N -ordering from products of components A±i to

products of operators Ai . For example:

N [A1 A2] = N
[(
A+1 + A−1

) (
A+2 + A−2

)]
= N

[
A+1 A

+
2

]+N
[
A+1 A

−
2

]+N
[
A−1 A

−
2

]+N
[
A−1 A

+
2

]
= A+1 A

+
2 + A+1 A

−
2 + A−1 A

−
2 − A+2 A

−
1 . (15.99)

The following property follows from (15.98):

N [A1 . . . An] = (−1)P N
[
Ai1 . . . Ain

]
.

A product A1 . . . An can be written as a sum of normally ordered terms. For two operators,
the process is straightforward:

A1 A2 =
(
A+1 + A−1

) (
A+2 + A−2

)
= A+1 A

+
2 + A+1 A

−
2 + A−1 A

−
2 + A−1 A

+
2 = N [A1 A2]+ {A−1 , A+2 } .

The vanishing of the expectation of a normally ordered product implies{
A−1 , A

+
2

} = 〈�g |A1 A2|�g

〉
.

This c-number is called a contraction of the two operators, and will be denoted with
superscripts that label the pair:

Ac
1 A

c
2 =
{
A−1 , A

+
2

} = 〈�g |A1 A2|�g

〉
.

We then write the useful formula

A1 A2 = N [A1 A2]+ Ac
1 A

c
2.



15.4 Perturbation Theory and Feynman Diagrams 463

The contraction of two operators can be extended to the case where a product of n′ operators
is inserted between them:

Ac
1 (A1′ . . . An′) A

c
2 = (−1)n

′
Ac

1 A
c
2 (A1′ . . . An′) .

B. Wick’s Theorem

We begin by stating two lemmas; the proof of the second can be done by induction. We
wish to set into normal order a single (−) operator that multiplies on the left some (+)
operators. We need to bring it to the right by iterated transpositions.

Lemma I:

A−0
(
A+1 · · ·A+n

)
= {A−0 , A+1 } (A+2 · · ·A+n )− A+1 A

−
0

(
A+2 · · ·A+n

)
= Ac

0 A
c
1

(
A+2 · · ·A+n

)− A+1
{
A−0 , A

+
2

} (
A+3 · · ·A+n

)+ A+1 A
+
2 A

−
0

(
A+3 · · ·A+n

)
= Ac

0 A
c
1

(
A+2 · · ·A+n

)+ Ac
0 A

+
1 A

c
2

(
A+3 · · ·A+n

)+ A+1 A
+
2 A

−
0

(
A+3 · · ·A+n

) = . . .

= (−1)n
(
A+1 · · ·A+n

)
A−0 +

∑
i

Ac
0 (. . .) Ac

i

(
. . . A+n

)
= N

[
A−0 A

+
1 · · ·A+n

]+ n∑
i=1

N
[
Ac

0 . . . A
c
i . . . A

+
n

]
Lemma II:

A−0 N [A1 . . . An] = N
[
A−0 A1 . . . An

]+∑
i

Ac
0 N
[
. . . Ac

i . . . An

]
This can be proved by induction.

Wick’s theorem:

A1 A2 . . . An = N [12 . . . n]+
∑
c

N
[
. . . ic . . . j c . . . n

]
+
∑
c,d

N
[
. . . ic . . . rd . . . j c . . . sd . . . n

]
+ · · · (15.100)

The first sum runs over single contractions of pairs, the second sum runs over double
contractions, and so on. If n is even, one ends with terms that consist only of products
of contractions (c-numbers).

An important consequence of Wick’s operator identity is a rule for the expectation value
of a product of destruction and creation operators. Particle number conservation requires
that the number of destructors equals that of creators.

As a corollary to Wick’s theorem, we can write〈
�g |A1 . . . A2n|�g

〉 =∑
P2

(−1)P
〈
Ai1 Aj1

〉
. . .
〈
Ain Ajn

〉
. (15.101)
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The sum is over the set P2 of partitions of 1, . . . ,2n into sets of pairs {(i1,j1)...(in,jn)}
((i,j) and (j,i) are the same pair). P is the permutation that takes 1 . . . 2n into the
sequence i1,j1, . . . ,in,jn.

As examples of the corollary,〈
�g |1234|�g

〉 = 〈12〉 〈34〉 − 〈13〉 〈24〉 + 〈14〉 〈23〉 .

Wick’s Theorem with Time Order

If the time evolution of operators αa and α
†
a is simply a multiplication by some time-

dependent phase factor (c-number), the discussion of normal ordering and contractions
of operators Ai(ti) remains unaltered. An important variant of Wick’s theorem deals with
the normal ordering of a time-ordered product. Let us begin with two operators, and apply
Wick’s theorem:

T A1(t1) A2(t2) = (t1 − t2)
{
N [A1(t1) A2(t2)]+ Ac

1(t1) A
c
2(t2)
}

−(t2 − t1)
{
N [A2(t2) A1(t1)]+ Ac

2(t2) A
c
1(t1)
}

= (t1 − t2)N [A1(t1) A2(t2)]+(t2 − t1)N [A1(t1) A2(t2)]

+(t1 − t2) A
c
1(t1) A

c
2(t2)−(t2 − t1) A

c
2(t2) A

c
1(t1)

= N [A1(t2) A2(t1)]+
︷ ︸︸ ︷
A2(t2) A1(t1) . (15.102)

We introduce the time-ordered contraction (T-contraction)︷ ︸︸ ︷
A1(t1) A2(t2) =

〈
�g |T [A1(t1) A2(t2)]|�g

〉
.

The T -contraction of two operators with a product of k operators in between inherits the
property of ordinary contractions︷ ︸︸ ︷

A1(t1) (. . .) A2(t2) = (−1)k
︷ ︸︸ ︷
A1(t1) A2(t2) (. . .).

T -contractions have a new property, not shared by an ordinary contraction︷ ︸︸ ︷
A1(t1) A2(t2) = −

︷ ︸︸ ︷
A2(t2) A1(t1) .

For field operators, we have the explicit expressions︷ ︸︸ ︷
ψ̂(t1)ψ̂

†(t2) =
〈
T
[
ψ̂(t1)ψ̂

†(t2)
]〉
= iG(0)(1,2)

︷ ︸︸ ︷
ψ̂(t1)ψ̂(t2) =

〈
T
[
ψ̂(t1)ψ̂(t2)

]〉
= iF (0)(1,2)

︷ ︸︸ ︷
ψ̂†(t1)ψ̂

†(t2) =
〈
T
[
ψ̂†(t1)ψ̂

†(t2)
]〉
= iF †(0)(1,2).

In systems where
∣∣�g

〉
has a definite number of particles, the anomalous correlators F (0)

and F †(0) are equal to zero. They are nonzero in the Bardeen–Cooper–Schrieffer theory.
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For the time ordering of several operators, Wick’s theorem retains the same formulation
as in (15.102), with T-contractions replacing ordinary ones. Indeed T [A1(t1) . . . An(tn)]
corresponds to a time ordered sequence (−1)P

[
Ai1(ti1) . . . Ain(tin)

]
, to which the previ-

ous formulation of Wick’s theorem applies. Thus contractions act on time-ordered pairs.
Normal ordering of permuted operators can be restored into normal ordering of operators
in the primitive sequence 1 . . . n. The permutation sign factors cancel out exactly.

15.4.5 Feynman Diagrams

To prepare for the development of the diagrammatic depiction of the different terms in the
perturbation expansion (15.97), we shall consider up to linear terms in HI , and write

iGσσ ′ → iG
(0)
σσ ′ + iG

(1)
σσ ′

with

iG
(1)
σσ ′ = −

i

h̄

∫ ∞
−∞

dt1

〈
�0

∣∣∣T [HI (t1) ψ̂Iσ (x,t) ψ̂
†
Iσ ′
(
x′,t ′
)]∣∣∣�0

〉
HI = 1

2

∫∫
dx1 dx2 ψ̂

†
σ1
(x1) ψ̂

†
σ2
(x2) V (|x1 − x2|) ψ̂σ ′2(x2) ψ̂σ ′1(x1). (15.103)

G indicates that we are considering only the numerator in (15.97). Writing

Vσ1σ2σ
′
2σ
′
1
(x1,t1;x2,t2) = V (|x1 − x2|) δ(t1 − t2) δσ1σ

′
1
δσ2σ

′
2
, (15.104)

where σ is the spin quantum number, and using the compact form x ≡ (x,t), we have

iG
(1)
σσ ′ = −

i

h̄

1

2

∑
σ1σ

′
1

σ2σ
′
2

∫ ∞
−∞

d4x1 d4x2 Vσ1σ2σ
′
2σ
′
1
(x1,x2)

×
〈
�0

∣∣∣T [ψ̂†
σ1
(x1) ψ̂

†
σ2
(x2) ψ̂σ ′2(x2) ψ̂σ ′1(x1) ψ̂σ (x) ψ̂

†
σ ′
(
x′
)]∣∣∣�0

〉
. (15.105)

The problem of interacting electrons has been reduced to determining expectation values
of its noninteracting counterpart. We need to apply Wick’s theorem by considering all
possible pair contractions. We find that each particle emerging from a creation operator in
(15.105) has to be destroyed by an annihilation operator. Thus, we can pair every creation
operator with every annihilation operator. However, we should keep in mind the following
simplifying points to obtain the final expression for (15.105) in terms of the free Green
functions:

• The ground state is that of H0.

• The operators now have the form

ψ̂†
σ (x,t) = exp[iH0t/h̄] ψ̂†

Sσ (x) exp[−iH0t/h̄].

For eigenstates of H0 representing a crystalline solid, the operators can be written as

exp[iH0t/h̄] c†
nkσ exp[−iH0t/h̄] → eiεnkt/h̄ c

†
nkσ .
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• We note that an injected electron into a state nkσ of a noninteracting system must
be removed from the same state, since it evolves in time unperturbed. This allows the
insertion of |�0〉 〈�0| between pairs of creation and annihilation operators to obtain

〈�0| cnkσ (t) c
†
nkσ (t1) |�0〉 ,

which is just the noninteracting single-particle Green function. Inspection of (15.105)
shows that we can generalize this procedure to all creation and annihilation operators it
contains, since they represent a noninteracting system. We should point out that this is
just the outcome of applying Wick’s theorem.

This produces six terms in all, which can be written in space-time, after applying fermionic
commutations, as

iG
(1)
σσ ′ = −

i

h̄

1

2

∑
σ1σ

′
1, σ2σ

′
2

∫ ∞
−∞

d4x1 d
4x2 Vσ1σ2σ

′
2σ
′
1
(x1,x2)

×
{
iG

(0)
σσ ′(x,x

′)
[
iG

(0)
σ ′1σ1

(x1,x1) iG
(0)
σ ′2σ2

(x2,x2)− iG
(0)
σ ′1σ2

(x1,x2) iG
(0)
σ ′2σ1

(x2,x1)
]

+ iG(0)
σσ1

(x,x1)
[
iG

(0)
σ ′1σ2

(x1,x2) iG
(0)
σ ′2σ ′

(x2,x
′)− iG

(0)
σ ′1σ ′

(x1,x
′) iG(0)

σ ′2σ2
(x2,x2)

]
+ iG(0)

σσ2
(x,x2)

[
iG

(0)
σ ′2σ1

(x2,x1) iG
(0)
σ ′1σ ′

(x1,x
′)− iG

(0)
σ ′2σ ′

(x2,x
′) iG(0)

σ ′1σ2
(x1,x1)

]]
.

(15.106)

Thus, using Wick’s theorem, we can express each term in the perturbation expansion as
product of noninteracting Green functions. This is the general methodology behind pertur-
bation theory in quantum field theory.

Equal-Time Operators

In (15.106), we find Green functions of the form G(0)(x,x). This quantity is ambiguous
since it represents a contraction of ψ and ψ† at equal times, but the time-ordered product is
undefined at equal times. Moreover, we surmise from (15.24) that G(0) has a discontinuity
at equal times t− t ′ = 0. Consequently, taking the limit from either side will yield different
results. However, the definitions (15.103) and (15.104) show that the operators of HI come
in sets of four having identical times, and a term such as G(0)(x,x) arises from a contraction
of two fields within HI where they appear in the form ψ†(x)ψ(x) with the adjoint field
always occurring to the left of the field

HI ∝ ψ̂†
σ1
(x1) ψ̂

†
σ2
(x2) ψ̂σ ′2(x2) ψ̂σ ′1(x1) → ψ̂†

σ1
(x1) ψ̂σ ′1(x1) ψ̂

†
σ2
(x2) ψ̂σ ′2(x2), x1 
= x2.

When we replace this term by propagators, the backward time propagation introduces a
factor of−1 for fermions. We therefore should interpret the Green function at equal times as
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G
(0)
σσ ′(x,x) = lim

t ′→t

〈
�0

∣∣∣ψ̂σ (x,t)ψ̂
†
σ ′(x,t

′)
∣∣∣�0

〉
= −
〈
�0

∣∣∣ψ̂†
σ ′(x) ψ̂σ (x)

∣∣∣�0

〉
= −δσσ ′ n

(0)(x)
2s + 1

for a fermionic system with spin s. n(0)(x) is the electron density in the noninteracting
system, which can be different from n(x) of the interacting system. For a uniform system,
such as the jellium, n(0)(x) = n(x).

In other operator bases, the time-ordering operator still does not know how to place the
operators. Realizing that this ambiguity always comes from operators in HI , which should
be normal ordered, we set the following general rule:

If two operators occur at equal time, they should be normal ordered

Operationally, this means that if we encounter a Green function of the form
G(0)(x,x;t = 0), we should interpret it as

G(0)(x,x;t = 0−) ≡ lim
ε→0

G
(0)
σ ′1σ1

(x,t;x,t + ε),

where 0− means the limit as zero is approached from the negative side.

Perturbation Expansion and Feynman Diagrams in Different Representations

At this point, we should note that terms in perturbation theory could become quite long,
and that a succinct description of the different contributions would be desirable. This is
achieved with the aid of Feynman diagrams,8 which represent, in a compact form, the
different contributions obtained from the Wick’s decomposition. From a diagrammatic
perspective, a Green function G, of an interacting system, can be represented by an infinite
sum of Feynman diagrams, each term of the sum corresponding to a decomposition of G
into contracted products. For example, the perturbation expansion (15.106) generates six
diagrams, but not all are different!

We start with establishing a connection between perturbation expansion terms and the
methodology of constructing equivalent diagrams. Once we become familiar with this
connection, we shall reverse our strategy; start with diagram construction and then write
the corresponding expression, guided by the diagram structure.

A. Diagrammatic Representations in (x,t)-Space

1. The full Green function is represented by a double line, and an arrow that indicates the
direction of time propagation

Vertex Vertex︷ ︸︸ ︷
�(x2)�

†(x2)︸ ︷︷ ︸ V (x2 − x1)

︷ ︸︸ ︷
�(x1)�

†(x1)︸ ︷︷ ︸
8 The article [97] gives an interesting historical perspective to the development of Feynman diagrams.
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Figure 15.16 Graph representing the interaction vertices.

Figure 15.17 Integration or summation over internal variables.

2. In Figure 15.16, we introduce the diagram representing the interaction HI (x1,x2) in
(15.105),

a. The wavy line represents the instantaneous Coulomb interaction between two
vertices, with two field operators at one vertex and two at the other.

b. Destruction operators are represented by the lines ending at the interaction vertex:

Vertex Vertex︷ ︸︸ ︷
�(x2)�

†(x2)︸ ︷︷ ︸ V (x2 − x1)

︷ ︸︸ ︷
�(x1)�

†(x1)︸ ︷︷ ︸

c. Creation operators are depicted by lines emanating from the vertex.

3. The internal variables are present in every Feynman diagram, whenever interactions
appear. They could be space-time (x,t) or wavevector energy (k,ω), or a combination
of them. Because these variables describe events taking place between the initial and
final spatiotemporal points of the Green function, which are free of any constraints
on the exact time or place, they must be integrated, or summed, over their domains.
Figure 15.17 shows the internal event as a black dot, represented by the position and
time variables x1 and t1.

4. Finally, we have the noninteracting field operators representing the injection and extrac-
tion of our test particle, depicted as the extra lines in Figure 15.18.

With these graph elements defined, we can now construct the graphs representing the six
different terms of (15.106) by implementing all possible connections of lines starting at x′ in
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Figure 15.18 Lines to be joined in first order.

Figure 15.18 and joining them with the lines ending at x1, x2, or x. The resulting diagrams
are shown together in Figure 15.19 with the appropriate Green functions of (15.106).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iG

(0)
σσ1(x,x1) iG

(0)
σ ′1σ ′

(x1,x
′) iG(0)

σ ′2σ2
(x2,x2)

iG
(0)
σσ2(x,x2) iG

(0)
σ ′2σ ′

(x2,x
′) iG(0)

σ ′1σ1
(x1,x1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iG

(0)
σσ1(x,x1) iG

(0)
σ ′1σ2

(x1,x2) iG
(0)
σ ′2σ ′

(x2,x
′)

iG
(0)
σσ2(x,x2) iG

(0)
σ ′2σ1

(x2,x1) iG
(0)
σ ′1σ ′

(x1,x
′)

iG
(0)
σσ ′(x,x

′) iG(0)
σ ′1σ1

(x1,x1) iG
(0)
σ ′2σ2

(x2,x2)

iG
(0)
σσ ′(x,x

′) iG(0)
σ ′1σ2

(x1,x2) iG
(0)
σ ′2σ1

(x2,x1)

• The sense of time propagation is represented by an arrow along each line. The convention
adopted here is that time increases to the right, so that particles propagate from left to
right, while holes move from right to left.

• We note that each of the top two diagrams depicts a pair of Green functions. Each pair
has identical graphs, but with x1 and x2 interchanged. Moreover, we find that in these
diagrams all parts are connected.
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• In the second diagram, an exchange occurs in the contraction with x, whereas the point
x′ has the same contraction. First, the injected electron travels to point x1,t1, where it
interacts with another electron at point x2. This electron at x2 then travels to the finish
point, where it is taken out, with another electron at x1 traveling to x2 in order to leave
the system in the same state it started. Consequently, such diagrams are referred to as
exchange diagrams.

• The remaining two diagrams have disconnected parts.

• In the first and third diagrams, we find lines starting and ending at the same vertex,
forming a fermion loop. They describe a single scattering event at (xi,ti ) represented by
G
(0)
σ ′1σ1

(xi,xi). It can be thought of as spontaneous creation and reannihilation of a particle.

Recall that they arise from HI , and should be interpreted as

lim
ε→0

G
(0)
σ ′1σ1

(x1,t1;x1,t1 + ε)

and they represent electronic densities.

In this representation, the diagrams have a very nice physical interpretation: the Green
function G(x,t;x′,t ′) is the probability amplitude for a particle to get from point x′, at time
t ′ to point x at time t . The Feynman expansion then basically is saying that the electron can
get between these two points in all possible ways, weighted by the appropriate amplitude.
The zeroth-order Feynman graph is then the direct path.

B. Diagrammatic Representations in (k,t)-Space HI can be expressed as

HI = 1




∑
k1,k

′
1

q

V (q)
2

c
†
k1−q c

†
k2+q ck2 ck1 . (15.107)

We note that the only difference between momentum space and real space is that we
integrate over internal momenta, rather than internal positions.

• Every G(0)
σσ ′(k,t − t ′) is depicted as a line with an arrow

pointing from t ′ to t .

• Every V (q)is depicted as a wiggly line without an
arrow.

• Momentum is conserved at each vertex, where an
interaction links two points at equal time.
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Now, with the aid of this basic diagrammatic representation, we shall attempt to con-
struct a depiction of the terms in the perturbation expansion for the interacting Green
function. This function is represented diagrammatically by a double line with an arrow,
namely,

G(k,t − t ′) = = G(0) +G(1) +G(2) + · · ·

We must remember that we are still ignoring the denominator, S(∞,−∞). We consider
perturbation terms up to O(H2

I ):

1. Zeroth-order:

G(k,t − t ′)
=

G(0)(k,t − t ′)

The interpretation of this is that the particle with momentum k injected at time t1 travels
unperturbed until it is extracted at time t . It does not suffer any scattering off any other
particles.

Thus we can interpret the first-order terms as suffering a single scattering event, the
second order involves scattering twice, and so on. Quantum mechanically, we sum up
the appropriate weight of all of these events of getting from time t1 to time t , to obtain
the total probability amplitude, G.

2. First-order terms:
We know from (15.106) that there are six possible pairings of this expectation value –
hence there are six first-order terms contributing to G(1), which can be represented by
six diagrams. We consider the first pairing,〈

T

[︷ ︸︸ ︷
ck(t) c

†
k1−q(t1)

︷ ︸︸ ︷
c

†
k2+q(t1) ck2(t1)

︷ ︸︸ ︷
ck1(t1) c

†
k(t
′)

]〉
.

This gives

G(1)
a

(
k,t − t ′

) = (−1)
1




∫ ∞
−∞

dt1

×
∑
k,k′

q

V (q)
2

〈
T

⎡⎢⎣
︷ ︸︸ ︷
ck(t) c

†
k1−q(t1)

k1 − q = k

︷ ︸︸ ︷
ck2(t1) c

†
k2+q(t1)

k2 = k2 + q

︷ ︸︸ ︷
ck1(t1) c

†
k(t
′)

k1 = k

⎤⎥⎦〉

= i
1




∫ ∞
−∞

dt1
∑
k2

G(0)(k,t − t1)G
(0)(k2,0

−)G(0)(k,t1 − t ′).

(15.108)
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The corresponding diagram is

G
(1)
a

(
k,t − t ′

) =

The six first-order diagrams are shown in Figure 15.19. An examination of the diagrams
reveals that there are two pairs of identical diagrams, (a,b) and (c,d), and the last two
diagrams, (e) and (f), are disconnected. We will return to these features later.

3. Second-order terms:
The second-order term involves〈

T
[
ck(t)HI (t1)HI (t2) c

†
k(t1)
]〉

. (15.109)

When we substitute for HI in this expression, we find that each second-order diagram
will contain five fermionic lines and two interaction lines, which yield 5!= 120 Wick
contractions, each represented by a diagram. However, as we encountered in the first-
order case, some of the diagrams will be identical to other ones. A small sample of
second-order diagrams are shown in Figure 15.20.

Figure 15.19 The six first-order diagrams, from the six Wick contractions.

Figure 15.20 A small selection of second-order diagrams.
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C. Diagrammatic Representations in (k,ω)-Space Finally, we write the Feynman–
Dyson perturbation series in the frequency domain by performing a Fourier transformation
of the Green function. We note that the time integrals over the products of the Green
function have the form of a convolution, as we find in (15.108), where

G(1) (k,t − t ′
) = i

1




∫ ∞
−∞

dt1
∑
k2

G(0)(k,t − t1)G
(0)(k2,0

−)G(0)(k,t1 − t ′).

The individual Green functions in the integrand depend on time via differences ti − ti+1.
Transformation to the frequency domain will yield simple products of Green functions,
which is a further simplification in the perturbation series for the Green function.

How this Fourier transformation is performed, and what implications it has, will be
explained using the following first-order exchange diagram, but with a time-dependent
perturbation V (q,t)→ V (q,εq):

G(1)
(
k,t − t ′

) =
First, we have the single Green function transform

G(1) (k,t − t ′
) = ∫ dω

2π
e−iω(t−t

′) G(1)(k,ω), (15.110)

then

G(1) (k,t − t ′
) = i

1




∫ ∞
−∞

∫ ∞
−∞

dt1 dt2
∑

q

[
V (q,t2 − t1) G

(0)(k,t − t2)

× G(0)(k− q,t2 − t1)G
(0)(k,t1 − t ′)

]
,

which gives rise to the factors

exp[iεq(t2 − t1)], exp[−iω(t − t2)], exp[iω2(t2 − t1)], exp[iω1(t1 − t ′)]

for the interaction, and first, second, and third free electron Green functions, respectively.
Collecting all these terms together, the time-dependent part becomes∫

dt2

∫
dt1 e

−iωt e−i(ω2+εq−ω)t2 e−i(ω1−εq−ω2)t1 eiω1t
′
,

which yields 2π δ(ω2 + εq − ω) × 2π δ(ω1 − εq − ω2), guaranteeing the conservation
of energy at the vertices and removing the integrals over the internal frequencies ω1, ω2

introduced by the Fourier transformation. Then, only the factor e−iω(t−t ′) is left, which
resembles the one in the Fourier transformation in (15.110). The corresponding diagram is
as follows
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G(1) (k,ω) =

whereas the corresponding contribution to the frequency-dependent Green function
becomes

G(1) (k,ω) = i
1



G(0)(k,ω)

⎛⎝∑
q

V (q,εq)G
(0)(k− q,ω − εq)

⎞⎠ G(0)(k,ω).

D. Redundancies and Simplifications in the Diagrammatic Expansion So far, we have
been writing down Wick contraction terms in the perturbation expansion, an d then figuring
out how to construct the corresponding diagram with the aid of the basic graph components
we established. It would be very desirable to reverse the procedure: draw the diagram and
then write down the corresponding expression accordingly. One compelling reason to adopt
such recipe is the observation that in each order of perturbation, many contractions appear
to correspond to the same graph! To achieve such a goal, we shall consider several features
of the perturbation expansion that present redundancies we can eliminate.

1. Redundancies Associated with Interaction Lines We shall use the example of a third-
order diagram to illustrate this type of redundancy (see Figure 15.21). The third-order terms
arise from contractions of〈

T
[
ck(t)HI (t1)HI (t2)HI (t3) c

†
k(t
′)
]〉

. (15.111)

It contains three interaction lines and seven fermionic lines, and therefore leads to
7! = 5,040 possible Wick contractions. How can we generalize the identification of
diagrammatic redundancies among these contractions?

Figure 15.21 A third-order diagram.
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(i) Permutations of interaction lines: First, we examine the three interaction lines,
which occur at t1, t2, and t3. It is obvious that we have Wick’s contractions arising from
permutations of the three lines, 3!= 6. Such contractions will create exactly the same
product of Green functions, except with the interaction lines in a different order.
Consequently, the corresponding diagrams will look identical, except for the labeling.
However, since we integrate over all internal variables anyway, this interchange of
interaction lines is irrelevant, and their contribution to G(3) will be identical. Therefore, we
only need to draw and evaluate such diagram once, then we multiply it by the factor 3!, or,
in general, n!, where n is the number of interaction lines or the order of the perturbation
expansion.

We recall that in the S matrix expansion, a factor 1/n! is associated with terms of
order n, namely,

S(∞,−∞) =
∞∑
n=0

in

n!
T

∫ ∞
−∞

dt1 . . .

∫ ∞
−∞

dtn HI (t1) . . .HI (tn).

This 1/n! factor then is canceled by the n! symmetry factor for each diagram.

(ii) Reversal symmetry of an interaction line: If we inspect each individual interaction
line further, we find that in the momentum-time representation it has a direction, and we
have two possible ways of orienting it. In the position-time representation, we effectively
interchange the internal variables, xi and xj , at its vertices. In either case, such operation
will yield diagrams having the same topology. Again, integrating over these internal vari-
ables will yield the same value for the contribution of each diagram. It will also mean that
we need only topologically distinct diagrams, and for each interaction line, we have a factor
V (q), instead of the V (q)/2 that appears in the Hamiltonian.

(iii) Multiplicative factors: The fact that any contraction term of order n has n interaction
lines, and 2n + 1 Green functions, means that the corresponding nth-order diagram must
be associated with a factor

(−i)
G→−i 〈. . .〉 ×

(i)2n+1

iG(0)s
× (−i)n

S-matrix expansion
= in.

(iv) Transposition of fermionic operators:

(a) Two transpositions are required (see Figure 15.22). The first disentangles the contrac-
tions, and a second one gets the middle contraction into the form of a Green function, giving
an overall factor of (+1).

Figure 15.22 Transpositions.
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Figure 15.23 Loops.

Figure 15.24 Diagrams for the denominator of the Green function in first order.

(b) Correct Green function operator ordering for the middle contraction (equal time)
requires operator switching and gives rise to a factor of (−1). Diagrammatically, we
associate the (−1) factor with the appearance of a loop ( see Figure 15.23). We infer that a
factor of (−1)L will be associated with a diagram containing L closed fermionic loops.

2. Vacuum Graph Cancellation So far, we have ignored the denominator of (15.97). Up to
first order in HI , it gives

〈�0| S(∞,−∞) |�0〉 ∼ 〈�0| �0〉 − i

h̄

∫ ∞
−∞

dt1 〈�0| T HI (t1) |�0〉

= 1− i

h̄

∫ ∞
−∞

d4x1 d
4x2 Vσ1σ2σ

′
2σ
′
1

(
x,x′
)

× 〈�0| T ψ̂†
σ1
(x1) ψ̂

†
σ2
(x2) ψ̂σ ′2(x2) ψ̂σ ′1(x1) |�0〉

= F0 + F1. (15.112)

Figure 15.24 shows the diagrams obtained from the corresponding Wick contractions. We
note that there are no external fermionic lines; consequently, all its diagrams should be
closed ones.

We can express 〈�0| S(∞,−∞) |�0〉 as

〈�0| S(∞,−∞) |�0〉 =
∑
i

Fi .
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Figure 15.25 A common factor can be extracted from the first-order diagrams.

Terms in the series 〈�0| S(∞,−∞) |�0〉, called vacuum polarization terms, have corre-
sponding vacuum polarization diagrams of the closed type. Examination of the numerator
of (15.97) shows that some contractions of HI in

〈
T
[
c(t)HI (tn) . . . HI (t1) c

†(t ′)
]〉

do
not link to the external femionic points c(t) and c†(t ′). Such contractions correspond to
diagrams having disconnected closed components. It can be shown, as depicted schemat-
ically in Figure 15.25, that there exists a factorization that separates the disconnected
closed-type components from connected ones. The cancellation theorem, which we will
not prove,9 demonstrates that in such factorization the closed diagrams in the denominator
exactly cancel the disconnected counterpart diagrams of the perturbation expansion in the
numerator. This means that diagrams can factorize as shown in Figure 15.25, and that by
considering only connected diagrams, we effectively cancel the denominator. The Green
function is then given by the sum of all connected diagrams as

iGσσ ′
(
x,x′
) = ∞∑

n=0

1

n!

(−i
h̄

)n ∫ t

t0

dt1 . . .

∫ t

t0

dtn

×
〈
�0

∣∣∣T [HI (t1) . . . HI (tn) ψ̂Hσ (x,t) ψ̂
†
Iσ ′
(
x′,t1
)]∣∣∣�0

〉
connected

.

(15.113)

E. The Feynman Rules We now summarize the Feynman rules for calculating the general
nth-order term in the perturbation expansion of G. We give them first in direct space and
then in momentum space.

(a) Draw all topologically distinct connected diagrams with n interaction (wavy) lines V
and 2n+ 1 Green functions G(0) solid lines.

(b) Each wavy line corresponds to the interaction (15.104) (its Fourier transform in k− ω

basis).

9 For a proof, see [61], sec. 3.8.
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(c) Vertex and line labeling:

(i) x− t basis: Label each vertex point by space-time xi ; each solid line represents a
Green function G(0)(x,x′) running from x′ to x.

(ii) k− ω basis: Assign a direction to each interaction line; associate directed momen-
tum and frequency to each line (solid and wavy) and conserve energy and momen-
tum at each vertex.

(d) Integrate all internal variables over space-time (or k − ω). Sum over all internal spin
indices.

(e) Each diagram carries a factor (−1)L, where L is the number of closed fermion loops
in the diagram.

(f) Each diagram contributes to G a factor −i(−i/h̄)n(i)2n+1 = (i/h̄)n.

15.4.6 Infinite Sums: Dyson Series and Self-Energy

Examination of the perturbation series and the corresponding diagrams show that some
diagrams can be constructed by linking diagrams that appear in lower-order in the expan-
sion with a fermionic line (G(0)). Figure 15.26 shows second-order diagrams comprised
of first-order ones connected by a fermionic line. This suggests that we can identify basic
diagrammatic building blocks, known as irreducible or proper diagrams, which can be used
to generate all diagrams and, hence, the entire perturbation expansion. This is a powerful
revelation that can lead to potentially significant simplifications.

We define an irreducible diagram as one that cannot be disconnected in two parts
by cutting a single internal electron line. If a diagram is not irreducible, as the ones in
figure 15.26, it is referred to as a reducible diagram.

Next, we define an irreducible self-energy diagram (ISED) as one obtained by removing
the external lines from an irreducible diagram. Equivalently, the mathematical expression
for the ISED is obtained by deleting the two factors of G(0) due to the external lines. The
total ISED sum can now be represented by Figure 15.27.

Figure 15.26 Second-order diagrams consisting of linked first-order direct and exchange ones. Each
can be cut into two diagrams along the dashed line.

Figure 15.27 The irreducible self-energy is shown as the sum of irreducible diagrams. Shown are
first-order ISEDs and a few second-order ISEDs.
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The complete one-particle interacting Green function can be recovered by reconstructing
the clipped diagrams as

G = G(0) + G(0) �∗ G

(15.114)

which is the Dyson equation. The appearance of the double line on the right-hand side
indicates the self-consistent nature of the equation.

The advantage of this diagrammatic representation is that it can be conveniently termi-
nated at any order, or, depending on the application, we may include only certain classes of
diagrams. In many cases, the application of perturbation theory requires summation over
whole classes of diagrams in order to obtain meaningful and reliable results. For example,
the divergences of perturbation terms in the interacting electron gas that we encountered
in Chapter 14 can be removed by performing an infinite sum of the terms arising from the
first two diagrams in Figure 15.27.

To illustrate this procedure further, we shall consider the interacting electron gas case
in more detail. We recall that after eliminating duplicates and disconnected diagrams, we
were left with two first-order diagrams, namely those shown in Figure 15.28.

However, the Hartree term has q = 0 due to momentum conservation and is canceled
by the background interaction. We consider the Fock term, which gives a contribution

iG(0)(k,ω)
∫

dε

2π

1




∑
q

V (q) G(0)(k− q,ω − ε)︸ ︷︷ ︸ G
(0)(k,ω)

call this �∗F (k,ω) ≡
in first-order. The second-order contribution has the form illustrated in Figure 15.29.

This contribution can be cast in the form

G(0)(k,ω)�∗F (k,ω)G
(0)(k,ω)�∗F (k,ω)G

(0)(k,ω)

Figure 15.28 First-order terms.
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Figure 15.29 Second-order contribution to the Fock term.

having the diagrammatic representation. When we include all higher-order terms,

we generate an infinite series, known as a Dyson series:

= G(0)(k,ω)
∞∑
n=0

(
�∗(k,ω)G(0)(k,ω)

)n

= G(0)(k,ω)
1−�∗F (k,ω)G(0)(k,ω)

= 1

G(0)−1(k,ω)−�∗F (k,ω)

Inserting the explicit form of G(0) = (ω − ε(k))−1, we get

G(k,ω) = 1

ω − ε(k)−�∗F (k,ω)± iη
. (15.115)

�∗F (k,ω) is the self-energy of the interacting electron gas. The process of carrying out the
summation is often referred to as renormalization

In general, as shown in Figure 15.27, we identify the self-energy �∗(k,ω) with the sum
of all proper diagrams coming from all orders of perturbation, namely, the ones that cannot
be split into parts by breaking fermion lines.

We note that to obtain the complete interacting Green function, we must augment the
self-energy diagrams with external fermion lines at its end vertices; one line will carry
momentum k and energy ω to the first vertex, and the other will carry them away from the
last vertex.

The Dyson series allows us to cast the interacting Green function in a form that can
be identified with that of the noninteraction counterpart, but with a renormalized energy
spectrum

ε(0)(k) → ε(k) = ε(0)(k)+ Re�∗(k,ω).

It also allows us to manage the number of independent diagrams we need to include.
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15.4.7 Recasting the Hartree–Fock Approach

We are interested here in examining the Hartree–Fock theory from the perspective of the
Green function formalism and the Feynman–Dyson perturbative approach. Our approach
may be viewed as nonperturbative in the sense that the Green function will contain all
powers in the interaction, but will only contain a selected class of diagrams.

Self-Energy in the Hartree–Fock Approximation

Diagrammatically, the one-particle Green function up to first-order is

Mathematically, it is given by

G = G(0) +G(0) � G(0) + · · ·

with the corresponding self-energy shown in Figure 15.30.
Terminating the perturbation expansion at this first-order is just the Hartree–Fock (HF)

approximation we discussed in Chapter 14. We can go beyond this approximation using
Dyson’s equation, and we obtain

G = G(0) +G(0) �HF G,

which is shown diagrammatically in Figure 15.31. By iteration, we can construct a Green
function with the interaction still restricted to the HF terms, or the HF self-energy, but
extended to all orders. It is instructive to carry out the calculation of the HF self-energy.

Figure 15.30 Self-energy in first order of the interaction.

Figure 15.31 Diagrammatic representation of Dyson’s equation.



482 Green Functions for Many-Body Systems and Feynman Diagrams

From (15.106), we only consider contributions related to the diagrams in Figure 15.30,
namely,

iG
(1)
σσ ′ =

i

h̄

∑
σ1σ

′
1

σ2σ
′
2

∫ ∞
−∞

d4x1 d
4x2 Vσ1σ2σ

′
2σ
′
1
(x1,x2) iG

(0)
σσ1

(x,x1)

×
[
iG

(0)
σ ′1σ2

(x1,x2) iG
(0)
σ ′2σ ′

(x2,x
′)− iG

(0)
σ ′1σ ′

(x1,x
′) iG(0)

σ ′2σ2
(x2,x2)

]
. (15.116)

We make use of the following properties:

• The noninteracting Green function is diagonal in spin,

G
(0)
σσ ′ = δσσ ′ G

(0).

• We assume the interaction to be spin independent and instantaneous,

Vσ1σ2σ
′
2σ
′
1
∼ δσ1σ

′
1
δσ2σ

′
2
δ(t1 − t2).

• The free fermion Green function in position representation is as follows:〈
T
[
�̂(x,t) �̂†(x1,t1)

]〉
=
∑
kk1

φk(x) φ∗k1
(x1)
〈
T
[
ck(t) c

†
k1
(t1)
]〉

=
∑
kk1

φk(x) φ∗k1
(x1)
〈
T
[
ck c

†
k1

]〉
e−i(εkt−εk1 t1)

=
∑

k

φk(x) φ∗k(x1) δkk1 e
−iεk(t−t1) = δ(x− x1) δ(t − t1)

• Equal space-time Green function

iḠ(0) (x2,x
+
2

) = −n(0)(x2)

is the density per spin of the noninteracting system.

We obtain

�
∗(1)
σσ ′ (x,x

′) = −1

h̄
δσσ ′δ(t − t1)

[
δ
(
x− x′

)
(2S + 1)

∫
dx2 iḠ

(0) (x2,x
+
2

)
× V (|x− x2|)− V

(∣∣x− x′
∣∣) iḠ(0) (x,t;x′,t+)], (15.117)

where (2S + 1) accounts for the sum over spin. Consequently, the integral in the first
self-energy term is just the Coulomb interaction of the fermionic test particle with all the
particles of the system. The unphysical self-interaction is canceled by its counterpart in
the Fock term.
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Figure 15.32 Hartree–Fock irreducible part of the self-energy.

The self-consistency built in the Hartree–Fock theory allows the replacement noninter-
acting Green functions G(0)with similar diagrams for the interacting Green function G, i.e.,

�∗HF(x,x
′) = −1

h̄
δ(t − t ′)

[
−δ (x− x′

)
(2S + 1)

∫
dx2 n (x2) V (|x− x2|)

− V
(∣∣x− x′

∣∣) iG (x,t;x′,t+)], (15.118)

as depicted in Figure 15.32.
We note that �∗HF is frequency independent, since it depends on δ(t − t1). It is purely

real, which manifests the Hartree–Fock approximation as a k-dependent shift in the non-
interacting energy poles.

15.5 The Two-Particle Green Function and RPA

As we have shown in Chapter 14, the Hartree–Fock approach, as a first-order approxi-
mation, does not give an adequate account of the density–density response function of
the interacting electron gas. We can attribute these shortfalls to the long interaction range
character of the Coulomb potential, which also gives rise to an infrared divergence because
of the 1/q2 behavior. To make progress, we shall explore the next level of approximations
where we consider higher-order diagrams, and attempt to carry out a resummation à la
Dyson. Moreover, we shall explore introducing screening effects that would reduce the
range of the Coulomb interactions.

We start by inspecting second-order diagrams
for self-energy, especially

We note the appearance of a new element: a fermionic bubble, also called a polarization
loop. Actually, these bubbles are very important in quantum field theory.

15.5.1 A Digression: Diagram Scaling

We consider the self-energy diagrams of order n in the (k,ω) representation. They contain
n interaction lines, 2n vertices and 2n− 1 fermionic lines. Integration is carried out over n
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Table 15.1 Scaling of different quantities appearing in
self-energy diagrams.

Quantity Per component Total

Fermionic lines k−2
F

(
k−2
F

)2n−1

Internal variables k5
F

(
k5
F

)n
Coulomb interaction k−2

F

(
k−2
F

)n

Figure 15.33 Second-order self-energy diagrams.

internal momenta, each with three components, and n internal energies. However, because
of conservation of momenta at each vertex, we have 2n Kirchhoff-like constraints, reducing
the number of independent variables to n. We now scale all energies and momenta in terms
of kF as shown in Table 15.1. Thus, a diagram of order n scales as(

k5
F

)n × (k−2
F

)2n−1 ×
(
k−2
F

)n = k
−(n−2)
F ∝ r(n−2)

s

Implies that for rs < 1 ⇒ �∗(n+1) ≤ �∗(n).

As we found out earlier, quasiparticles are only well-defined close to the Fermi sur-
face, and that is precisely where Green functions assume large amplitudes, namely, for
k � kF . Thus, we can discern that only configurations where all momenta appearing in the
self-energy fermionic lines are close to kF contribute significantly. First, we consider the
second-order diagram (a) in Figure 15.33. For small q, we find that V 2(q) ∝ 1/q4, and
that the summation over k1, with k1 � kF , is unconstrained over a shell of width 2q. We
have learned in the previous chapter that such a second-order term diverges. In contrast,
we find in diagram (b) that for small q and |k− q− k1| in the interaction lines, the phase
space for k1 � kF becomes severely restricted. We can thus infer that because of the
relatively large difference of phase space volume over which k1 � kF the contribution
of diagram (a) to the self-energy in second order dwarfs that of (b), �∗(a)/�∗(b) � 1.
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We can extend this argument to higher-order diagrams and ascertain that the dominant
diagram in any order will be the one with maximum phase space volume for all internal
momenta to have ki � kF , and that will be when the internal momenta are least constrained
to be in the vicinity of the Fermi surface. We also note that these dominant diagrams have
the highest degree of divergence, namely, the highest power of 1/q2 → 1/q2n. These
dominant diagrams are called bubble or ring diagrams. Although the contribution of each
individual diagram diverges, their Dyson, infinite sum in the high-density regime, rs < 1,
gives a finite result! This inference describes the screening of Coulomb potential by free
electrons, and is the basis for the random phase approximation, as we shall show later in
this chapter.

15.5.2 Density–Density Correlation Function

We now consider the density–density Green function, or the two-particle Green function,
defined as

$(q,t) = i
〈
GS
∣∣T [ρ̂σ (q,t) ρ̂σ ′(−q,0)

]∣∣GS〉 , (15.119)

where |GS〉 is the ground state, and

ρ̂(q,t) =
∑
kσ

c
†
k,σ (t) ck+q,σ (t).

We obtain

$(q,t) = i
∑
kk′
σσ ′

〈
GS

∣∣∣T [c†
k,σ (t) ck+q,σ (t) c

†
k′,σ ′(0) ck′−q,σ ′(0)

]∣∣∣GS〉 . (15.120)

This quantity describes the propagation of a particle–hole pair created at time 0: the particle
is created in state k′,σ ′, and the hole is created by annihilating a particle in state k′ − q,σ ′.
The pair is ultimately annihilated in states k,σ and k + q,σ at time t . By analogy to
the case of the single-particle Green function, this propagator will therefore have poles
at energies corresponding to stable particle–hole excitations of the system. The summation
over k and k′ describes the propagation of a superposition of many particle–hole excita-
tions: such superpositions are in fact collective excitations. Actually, we are just setting
here a density fluctuation, and its propagator is sometimes called the density-fluctuation
propagator.

For an interacting system, we have the perturbative expansion

$(q,t) = i

〈
�0
∣∣T [ρ̂σ (q,t) ρ̂σ ′(−q,0)S(∞,−∞)

]∣∣�0
〉

〈�0 |S(∞,−∞)|�0〉 (15.121)

with all quantities appearing in the interaction representation, and all expectation values
with respect to the noninteracting ground state. We can, therefore, follow the same diagram-
matic rules developed previously for any order in the perturbation expansion, including
vacuum elimination.
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15.5.3 Excitation Spectrum of the Noninteracting System

We start by examining the zeroth-order in the perturbation series, $0(q,t), which is just
the two-particle correlation function of the noninteracting system. $0(q,t) provides infor-
mation about the excitation spectrum of the Sommerfeld Fermi gas, with a fixed number
of particles, N . We evaluate this with the aid of Wick’s theorem. There are two possible
contractions:

The first contraction requires q = 0 in order to be nonzero, giving⎛⎝∑
k,σ

〈
c

†
k,σ ck,σ

〉⎞⎠ ⎛⎝∑
k′,σ ′

〈
c

†
k′,σ ′ ck′,σ ′

〉⎞⎠ ∝ N2.

It describes the self-correlation of the uniform electron density, and we ignore this
contribution. Thus, there is only one possible contraction, which, using the definition
G(0) = −i 〈T c c†

〉
and performing three fermionic swaps, is written as

$0(q,t) = i
∑
kσ

G(0)
σ (k+ q,t)G(0)

σ (k, − t) (15.122)

Diagrammatic notation.

We note that the momentum q is an external one, whereas k is the internal momentum,
which together with an internal spin are summed over. We also note that a hole can be
considered as an electron propagating backward in time; which is the reason such diagram
is known as a particle–hole loop, or a polarization loop.

Next, we perform a Fourier transform with respect to time in order to work in the
momentum-energy representation. Since we have a product of two Green functions in time,
we obtain a convolution in the energy domain, namely,

$0(q,ω) =
∫ ∞
−∞

dteiωt$0(q,t) = i
∑
k,σ

∫
dε

2π
G(0)
σ (k,ε)G(0)

σ (k+ q,ε + ω). (15.123)
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It is diagrammatically depicted as

Given that

G(0)(k,ε) = 1

ε − ε(k)+ iη sign[ε(k)]
,

where sign[ε(k)] identifies whether it represents a particle or a hole, we obtain

$0(q,ω) =
∑
k,σ

∫
dε

2iπ
G(0)
σ (k,ε)G(0)

σ (k+ q,ε + ω)

= −2
∑

k

∫
dε

2iπ

[
1

ε − εk + iη sign(εk)

] [
1

ε + ω − εk+q + iη sign(εk+q)

]
.

We carry out the integral over ε in the complex plane and make use of the residue theorem.
We note that when εk+q and εk have the same sign, so that both are ≶ 0, the poles in the
complex ε-plane are either in the lower or upper half-plane. Taking the contour in the pole-
free half, and noting that the asymptotic value of the integral is of order 1/ε2, yields zero.
The integral is nonzero only if εk+q and εk have opposite signs, in which case evaluating
the residue yields

$0(q,ω) = −2
∑

k

[
(−εk+q)(εk)

ω − εk+q + εk + iη
− (εk+q)(−εk)

ω − εk+q + εk − iη

]
. (15.124)

The physical interpretation to the theta functions is as follows:

(−εk) ⇒ np = n0
k a particle in the Fermi sea

(εk) ⇒ nh = 1− n0
k a hole outside the Fermi sea.

Consequently, we can regard the first term in (15.124) as the retarded propagator of a
particle–hole pair, with |k + q| > kF and |k| < kF , corresponding to excitation energy
ωq = εk+q − εk > 0. The second term is just the time-reversed partner, namely the
advanced propagator.

The Dynamical Form Factor

The imaginary part of $0 is known as the dynamical form factor

S0(q,ω) = 1

π
Im$0(q,ω). (15.125)
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Figure 15.34 Electron–hole excitation range shown as the gray region.

Recalling that Im 1
x−iη = π δ(x), we obtain

S0(q,ω) = 2
∫

dk
(2π)3

n0(k)
(

1− n0(k+ q)
)

︸ ︷︷ ︸ δ(ω − εk+q + εk)︸ ︷︷ ︸ . (15.126)

A nonzero n0(k) implies that the state k is occupied, and that an excitation of the particle
in it will leave behind a hole, while a zero n0(k + q) indicates an empty state that can be
filled with a particle of momentum k+ q. Conservation of energy implies that the dynam-
ical form factor provides information about real or absorbtive processes. This is just the
manifestation of all possible particle–hole pairs that carry momentum q and satisfy energy
conservation. It defines the spectrum of real excitations of the Fermi gas.

To determine the spectrum, we inspect the energy conserving delta function

0 ≤ ω = q2

2m
+ vk · q ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωmax = q2

2m
+ vF q q ≤ 2kF

ωmin = q2

2m
− vF q q ≥ 2kF .

The electron–hole excitation spectrum is shown in Figure 15.35. We find that at a fixed q,
S0(q,ω) gives a wide range of allowed energies. It is then clear that we have what is known
as incoherent excitations for all particle–hole events: an excitation in an initial state (q,ω)
can immediately decay into excitations with energies < ω but with the same q for the
Sommerfeld gas. This is in clear contrast with the coherent single-particle excitation events
manifest in the corresponding spectral function

A(k,ω) = δ[ω − ε(k)].
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Figure 15.35 First-order diagrams for $.

Virtual Excitations and the Lindhard Function

If the energy conservation condition is not realized, the corresponding contribution is reac-
tive, not dissipative, and it only appears in the real part of the density–density correlation
function. The intermediate state then is only virtual. To see this, we now consider the real
part of $0 in (15.124), which, after some elementary algebra, can be written as

Re$0(q,ω) = 2
∫

dk
(2π)3

n0(k)− n0(k+ q)
ω − εk+q + εk

. (15.127)

Performing the integral yields

Re$0(q,ω) = D(εF ) F (q/2kF,ω/4εF )

F (q̃,ω̃) = 1

8q̃

{[
1−
(
q̃ + ω̃

q̃

)2
]

ln

∣∣∣∣ q̃ + (ω̃/q̃)+ 1

q̃ + (ω̃/q̃)− 1

∣∣∣∣
+
[

1−
(
q̃ − ω̃

q̃

)2
]

ln

∣∣∣∣ q̃ − (ω̃/q̃)+ 1

q̃ − (ω̃/q̃)− 1

∣∣∣∣
}
+ 1

2
, (15.128)

where D(εF ) is the density of states at εF . This is just the Lindhard formula we derived
in Chapter 7. It carries information about the probability and phase of all possible virtual
processes.

We note that in the limit limω, q→ 0 Im$0 = 0, while (15.128) reveals that

Re
[
$0(q → 0,ω→ 0)

] = D(εF ) = mkF

π2h̄2
= 3

2

n

εF
. (15.129)

15.5.4 Interacting Systems and the Random Phase Approximation (RPA)

In the preceding sections, we have attempted to explain the significance of $(q,ω) and we
have examined in detail $0, the zeroth-order contribution to $. Now we shall explore the
case when interactions are incorporated, and investigate their ramifications.
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Irreducible Polarization Bubble

The first-order diagrams for$(q,ω) are shown in Figure 15.35. By analogy to the treatment
of the self-energy, we will define the exact irreducible polarization bubble, $(q,ω), as the
sum over all diagrams that cannot be cut into two by splitting a single interaction line (an
external line), namely,

In fact, we can obtain the exact charge susceptibility, which is the response to external
Coulomb perturbations, by constructing a Dyson series of the irreducible polarization
bubble as

or

χ(q,ω) = $(q,ω)
1− Vc(q)$(q,ω)

.

Screened Interaction

We can also obtain an exact effective screened Coulomb interaction, which we represent
diagrammatically by a double wiggle line, by attaching external interaction lines, namely,

or

V exact
eff (q,ω) = Vc(q)

1− Vc(q)$(q,ω)
.

The Random Phase Approximation

A phase space analysis of the diagrams in Figure 15.35 shows that diagram (a) has the
dominant contribution to the correlation function, where each of the two $0 bubbles has
an unconstrained sum. Again, by extension, we argue that the dominant contribution at any
order consists of interacting $0 bubbles. A justifiable approximation can now be made in
terms of a Dyson-like sum involving $0 bubbles, which is known as the random phase
approximation (RPA):

= $0(q,ω)+$0(q,ω)
[
Vc(q)$0(q,ω)

]+$0(q,ω)
[
Vc(q)$0(q,ω)

]2 + · · ·
= $0(q,ω)

1− Vc(q)$0(q,ω)
. (15.130)
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Imaginary part of χRPA

We expand χRPA(q,ω) as

χRPA(q,ω) = Re [$0]+ iIm [$0]

(1− Vc(q)Re [$0])− iVc(q)Im [$0]
,

which yields

Im
[
χRPA(q,ω)

]
= Im [$0]

(1− Vc(q)Re [$0])2 + V 2
c (q) (Im [$0])2

.

The numerator indicates that the electron–hole excitations spectrum carries over to the
interacting case. Moreover, outside the electron–hole continuum, where Im [$0] = 0,
new excitations appear when 1 − Vc(q)Re [$0] = 0. These excitations are just the
plasmons that are manifest in Coulomb interacting systems, which we will describe later
in this chapter. Such excitations are also manifest as zero-sound excitations in systems
with delta-function, or short-range, interactions, which is the subject of Problem 14.

We can extend our approximation to the effective screened interaction, and write

Physically, we could say that two particles could interact directly, or that one particle
interacts with a density fluctuation in the electron sea induced by the other particle, or the
interaction of the two particles is mediated by two intermediate density fluctuations, and so
on. Mathematically, we see that

V RPA(q,ω) = Vc(q)+ Vc(q)
[
Vc(q)$0(q,ω)

]+ Vc(q)
[
Vc(q)$0(q,ω)

]2 + · · ·
= Vc(q)

1− Vc(q)$0(q,ω)
= Vc(q)

ε(q,ω)
(15.131)

ε−1(q,ω) = 1+ Vc(q) χRPA(q,ω), dielectric function.

Notice that the effective interaction is ω-dependent, which means that it acquires a time
dependence, in contrast to the instantaneous character of the original nonrelativistic
Coulomb interaction. This is to be expected, since interactions via density fluctuations
certainly involve time delay.

We now consider static screening by examining the effective interaction in the limit
ω = 0. Using the expression for Re$0(q,ω) given in (15.129), we obtain

1+ Vc(q)$0(q → 0,ω = 0) = 1+ 6πne2

q2εF
, (15.132)

which yields

V RPA(q → 0,ω→ 0) = 4πe2

q2 + κ2
, (15.133)
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where

κ = 1

ξTF
=
(

6πne2

εF

)1/2

(15.134)

is the inverse Thomas–Fermi screening length we derived in Chapter 2. The effective
interaction potential becomes a short-range Yukawa type, namely,

Veff(q → 0,0) ∝ e−κr

r
.

Consequently, we see that in the presence of the polarizable medium (the electron sea),
the long-range Coulomb interaction actually becomes short range. To physically interpret
this screening mechanism, we consider the scenario where we introduce a negative point
charge. Then the electrons in its vicinity will be repelled from this region, creating a region
around this point of lower than average density, namely, a screening region of positive
charge. At a long distance, another electron sees not only the initial negative charge, but
also the screening region around it, which almost cancel each other, hence making the
Coulomb interaction effectively short ranged.

15.5.5 Plasma Oscillations

Next we consider the case of nonzero frequency ω 
= 0. We shall confine the discussion to
the domain of high frequencies, long wave lengths, and low temperatures, and in particular
outside the electron–hole continuum, where Im [$0] = 0. Writing the dielectric function
explicitly as

εRPA(q,ω) = 1− 4πe2

q2

∫
2dk
(2π)3

n0(k)− n0(k+ q)
ω − εk+q + εk

,

subject to the conditions ω � vF q, q � kF, kBT � εF . We note that for long wavelength,
q → 0,

n0(k)− n0(k+ q) = q ·∇k εk
dn(ε)

dε
= vkq cos θ

dn(ε)

dε

∣∣∣∣
εF

εk+q − εk = q ·∇k εk

m
= q · vk = vkq cos θ

and we write

2
∫

dk
(2π)3

n0(k)− n0(k+ q)
ω − εk+q + εk

= 1

2π2

∫
dk k2 δ(εk − εF )

∫ 1

−1
dx

vkqx

ω − vkqx

= 1

2π2

∫
dk k2 δ(k − kF )

vF

∫ 1

−1
dx

vkqx

ω − vkqx

= 1

2π2
k2
F

1

vF

ω

vF q

∫ qvF /ω

−qvF /ω
du

u

1− u
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Figure 15.36 Plasmon branch with its propagating and damped parts. Note that Imχ(q,ω) 
= 0 only
in the shaded area.

Since qvF /ω � 1, we expand

u

1− u
� u+ u2 + u3 + u4

and we obtain

Re$0(q,ω) = 1

2π2

k2
Fω

v2
F q

[
1

2
u2 + 1

3
u3 + 1

4
u4 + 1

5
u5
]qvF /ω
−qvF /ω

= n

m

q2

ω2

[
1+ 3

5

(qvF
ω

)2
]
,

where we used vF = kF /m and 3π2n = k3
F . The RPA dielectric function becomes

εRPA(q,ω) = 1− 4πe2

q2
$0(q,ω) = 1− ω2

p

ω2

[
1+ 3

5

(qvF
ω

)2
]

.

The plasmon dispersion, shown in Figure 15.36, is obtained from the zeros of the dielectric
function

εRPA(q,ω) = 0 ⇒ ω2 � ω2
P +

3

5
(qvF )

2 ⇒ ω(q) � ωP + 3

10

v2
F

ωp
q2.

Once the dispersion curve of plasmons enters in the particle–hole continuum, where
Im [$0] 
= 0, plasmons become unstable to decay into an electron–hole pair.

15.6 Finite Temperature Green Functions

In a large number of applications in many-body theory, we need to include the effects of
temperature. In such cases, the Green functions take the form

GAB(t) = 〈A(t) B(0)〉 = −iTr [ρ A(t) B(0)] ,
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where ρ is the density operator

ρ = 1

Z
e−βH, Z = Tr

[
e−βH

]
.

H→ H−μN and the operators A(t) and B(t1) are in the Heisenberg picture. If we adopt
our earlier approach, we would use perturbation theory, and assume that the Hamiltonian
can be split into a solvable part H0, and a perturbative quantity H′ that contains the remain-
ing terms. We then seek an expansion in powers of H′. We note that at zero temperature,
we replace the traces over ρ̂ with ground-state averages, which allows us to transform the
problem to the interaction picture, thanks to the Gell-Mann–Low theorem and the scattering
matrix, and to solve it perturbatively within the noninteraction framework.

15.6.1 Perturbative Expansion of ρ

In the present case, the difficulty lies in the expansion of ρ. We note that the density
operator ρ satisfies the Bloch equation of motion [30, 63]

− ∂ρ

∂β
= H ρ,

which is similar to the Schrödinger equation of motion of S(t,t1), but with the time variable
it replaced by β:

S ↔ ρ it ↔ β H ↔ H− μN .

Consequently, it is possible to perform a simple expansion of ρ in powers of H′. However,
such expansion will imply that the “evolution” of the Hamiltonian will not be along the
real-time axis, but along the inverse temperature axis. Merging this expansion with that of
S(t,t1) leads to a dilemma, since we have no clue how to “time-order” product of operators
that evolve along two orthogonal axes.

15.6.2 Analytic Continuation

From a more mathematical perspective, it would be desirable to include ρ = e−βH in the
group of time-evolution operators. This would require that we analytically continue the
time-evolution group to complex times, t → t + iτ = z, and introduce new operators eizH

that evolve in imaginary rather than real time. Examining the corresponding Green function

t > 0, GAB(t) = −i
Z

Tr
[
e−βH eiHt/h̄ A e−iHt/h̄ B

]
→ GAB(z) = −i

Z
Tr
[
e−(h̄β+τ)H/h̄ eiHt/h̄ A e−iHt/h̄ B

]
t < 0, GAB(t) = ±i

Z
Tr
[
e−βH e−iHt/h̄ A eiHt/h̄ B

]
→ GAB(z) = ±i

Z
Tr
[
e−(h̄β−τ)H/h̄ eiHt/h̄ A e−iHt/h̄ B

]
,
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Figure 15.37 Analytic domains in the complex time plane of the Green function: dark gray t > 0,
light gray t < 0.

where, in the second line, we used the cyclic property of the trace, and + corresponds to
fermions and − to bosons. We find that eizH is mathematically well defined on the strips,
shown in Figure 15.37⎧⎨⎩ −h̄β ≤ τ ≤ 0, −∞ ≤ t ≤ ∞, t > 0

0 ≤ τ ≤ h̄β, −∞ ≤ t ≤ ∞, t < 0

since H is bounded from below. This defines the domains of complex time for which the
preceding Green function is analytic, and shows that the Green function of complex time
is discontinuous on the whole real axis of time [114, 125].

In an informal way, we can associate the boundaries ±h̄β along the imaginary axis with
decoherence induced by thermal fluctuations, namely, thermal fluctuations introduce an
uncertainty kBT in energies, in which case,

τT = h̄

kBT

represents a characteristic time of a thermal fluctuation. Processes of duration longer than
τT lose their phase coherence, so coherent quantum processes are limited within a world of
finite temporal extent, h̄β.

15.6.3 Imaginary Time

The solution to this problem, first proposed by Takeo Matsubara [126], relies on taking
advantage of the similarity between the operators e−βH and e−iHt/h̄ = U(t), but limit our
domain to the imaginary axis, where

ρ̂ = e−βH

Tr e−βH
= U(−ih̄β)

Tr [U(−ih̄β)] .

The Matsubara approach is to treat time as an imaginary temperature. For time t = −ih̄τ ,
the Green function is well defined in the interval −β ≤ τ ≤ β. We then replace the real-
time evolution, carried along t by U (or S), with an imaginary-time evolution

−iτ, τ ∈ R : e−iHt/h̄ → e−iH(−iτ ) = e−Hτ,
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which evolve in imaginary rather than real time. This will allow us to write a tractable
expansion for the Green function of these new imaginary-time operators. The properties
of e−Hτ allow the imaginary-time functions to be analytically continued to recover the
real-time ones.

This choice renders finite temperature many-body physics to be just as manageable as its
zero temperature counterpart. Amazingly, in many cases, the imaginary-time, or Matsubara,
formulation is easier to handle. We can carry over almost everything we have developed at
zero temperature:

• The Schrödinger, Heisenberg, and interaction representations

• Wick’s theorem

• Feynman diagram expansions

We shall now recast these concepts and procedures in imaginary time.

15.6.4 Representations

To develop the imaginary-time formulation of the Heisenberg and interaction representa-
tions in terms of t →−iτ h̄, we start with writing the real-time Schrödinger equation

ih̄
∂

∂t
|ψS〉 = H |ψS〉 ,

which then becomes

− ∂

∂τ
|ψS〉 = H |ψS〉 (15.135)

so the time-evolved wavefunction is given by

|ψS(τ)〉 = e−Hτ |ψS(0)〉 . (15.136)

The imaginary-time evolution of an operator O in the Heisenberg representation can then
be written as

OH (τ) = eHτ OS e
−Hτ . (15.137)

Its Heisenberg equation of motion becomes

∂ OH

∂τ
= [H,OH ] . (15.138)

Example: Case of a Free Fermionic Particle

For the free particle Hamiltonian, we obtain

H =
∑

k

εk c
†
k ck ⇒

⎧⎪⎪⎨⎪⎪⎩
∂ck

∂τ
= [H, ck]

∂c
†
k

∂τ
=
[
H, c†

k

]
,
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which yields

ck(τ ) = e−εkτ ck

c
†
k(τ ) = eεkτ c

†
k.

We should caution here about an important difference between real-time and imaginary-
time formalism: in the latter, the Heisenberg creation and annihilation operator are not
Hermitian conjugates:

c
†
k(τ ) = (ck(−τ))† 
= (ck(τ ))

† .

Next we consider the modifications to be made to the interaction representation, where
the fast time evolution of the state ket, arising from the Hamiltonian H0, is eliminated.
Starting with the state ket

|ψI (τ)〉 = eH0τ |ψS(τ)〉 = eH0τ e−Hτ |ψH 〉 = UI (τ) |ψH 〉 , (15.139)

where UI (τ) = eH0τ e−Hτ is the time-evolution operator. The relationship between the
Heisenberg and the interaction representation of operators is given by

AH(τ) = eHτ AS e
−Hτ = U−1

I (τ )AI (τ ) UI (τ ). (15.140)

The equation of motion for UI (τ) is given by

− ∂

∂τ
UI (τ ) = − ∂

∂τ

[
eH0τ e−Hτ

]
= eH0τ H′ e−Hτ

= eH0τ H′ e−H0τ UI (τ ) = HI UI (τ ). (15.141)

These equations parallel those in real time, and by following exactly analogous procedures,
we find that the imaginary-time-evolution operator in the interaction representation is given
by a time-ordered exponential of the form

UI (τ) = Tτ exp

[
−
∫ τ

0
dτ ′HI (τ

′)
]

. (15.142)

15.6.5 Matsubara Functions: Imaginary-Time Green Functions

Green functions for operators with imaginary-time arguments are referred to as Matsubara
or temperature Green functions. The Matsubara function is defined as

G
ÂB̂

(τ1,τ2) = −
〈
Tτ Â(τ1) B̂(τ2)

〉
= − 1

Z
Tr
[
e−βH Â(τ1) B̂(τ2)

]
, (15.143)

where Â(τ1) is again in the Heisenberg representation. The brackets denote a thermal
average, and the symbol Tτ denotes time ordering. It means that operators are ordered
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chronologically, and just like the real-time counterpart, the later “times” are placed to
the left

Tτ Â(τ1) B̂(τ2) = (τ1 − τ2) Â(τ1) B̂(τ2)−(τ2 − τ1) B̂(τ2) Â(τ1) (15.144)

for fermions. Matsubara functions are used only for thermal equilibrium calculations at
temperature T .

We note that GAB(τ1,τ2) is a function of the time difference:

GAB(τ1,τ2) = GAB(τ1 − τ2,0).

This follows from the cyclic properties of the trace. We have for τ1 > τ2

GAB(τ1,τ2) = −(τ1 − τ2)
1

Z
Tr
[
e−βH eHτ1 Âe−Hτ1 eHτ2 B̂ e−Hτ2

]
+(τ2 − τ1)

1

Z
Tr
[
e−βH eHτ2 B̂ e−Hτ2 eHτ1 Â e−Hτ1

]
= −(τ1 − τ2)

1

Z
Tr
[
e−βH eH(τ1−τ2) Âe−H(τ1−τ2) B̂

]
+(τ2 − τ1)

1

Z
Tr
[
e−βH B̂ eH(τ1−τ2) Â e−H(τ1−τ2)

]
= GAB(τ1 − τ2,0). (15.145)

Similar results follow for τ2 > τ1. Hence, we can write GAB(τ1−τ2,0) = GAB(τ) instead of
GAB(τ1,τ2). As we noted earlier, for GAB(τ1,τ2) to converge, the condition−β < τ1−τ2 <

β must be satisfied.

Periodicities in Imaginary Time

An important property of the Matsubara function is that it is periodic for bosons and
antiperiodic for fermions over an interval β (see Figure 15.38):

G
ÂB̂

(τ ) =
⎧⎨⎩ −GÂB̂ (τ ± β), fermions

G
ÂB̂

(τ ± β), bosons
for τ ≶ 0. (15.146)

This, again, follows from the cyclic properties of the trace, since (15.146) for τ < 0 is

G
ÂB̂

(τ + β) = − 1

Z
Tr
[
e−βH eH(τ+β) Â e−H(τ+β) B̂

]
= − 1

Z
Tr
[
eHτ Â e−Hτ e−βH B̂

]
= − 1

Z
Tr
[
e−βH B̂ eHτ Â e−Hτ

]
= − 1

Z
Tr
[
e−βH B̂ Â(τ )

]
= 1

Z
Tr
[
e−βH Tτ

(
Â(τ ) B̂

)]
= ∓G

ÂB̂
(τ ) (15.147)
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Figure 15.38 Antiperiodicity of a fermionic Green function.

and similarly for τ > 0. The negative sign reveals that the Matsubara Green function is
antiperiodic for fermions! This symmetry property of periodicity or anti-periodicity will
be used to extend the definition of the Matsubara function GAB(τ) to the entire imaginary
time axis [4].

Example: A noninteracting fermionic system with Hamiltonian

H =
∑
μ

ελ ĉ
†
λ ĉλ,

where ελ = Eλ − μ is the one-particle energy, shifted by the chemical potential.
The corresponding Matsubara function is

Gλλ′(τ − τ ′) = − 1

Z0

[
(τ − τ ′) ĉλ(τ ) ĉ†

λ′(τ
′)−(τ ′ − τ) ĉ

†
λ′(τ

′) ĉλ(τ )
]

. (15.148)

Using the operators’ time evolution we derived,

ĉλ(τ ) = e−ελτ ĉλ(0)

ĉ
†
λ(τ ) = eελτ ĉ

†
λ(0). (15.149)

Substituting in the Matsubara function, and using the equal-time expectation value of
the fields 〈

ĉ
†
λ′ ĉλ
〉
= δλλ′ nF (ελ) = 1

eβελ + 1〈
ĉλ ĉ

†
λ′
〉
= δλλ′ (1− nF (ελ)),

we obtain

Gλλ′(τ − τ ′) = δλλ′ Gλ(τ − τ ′)

Gλ(τ ) = − 1

Z0
e−ελτ

[
(1− nF (ελ))(τ)− nF (ελ)(−τ)

]
.

Gλ(τ ) is shown in Figure 15.39.
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Figure 15.39 Matsubara function G(0)(k,τ ) for a noninteracting fermion system.

An important type of Matsubara functions are the single-particle fermionic correlation
functions G, which are defined as

Gσσ ′(x,τ ;x′,τ ′) = −
〈
Tτ

[
ψ̂σ (x,τ ) ψ̂

†
σ ′(x

′,τ ′)
]〉
, real space

Gσσ ′(λ,τ ;λ′,τ ′) = −
〈
Tτ

[
ψ̂σ (λ,τ ) ψ̂

†
σ ′(λ

′,τ ′)
]〉
, [λ]− space. (15.150)

15.6.6 Fourier Transform of the Matsubara Functions: Fourier Series
in Imaginary Time

Now we will derive the Fourier transform of G
ÂB̂

(τ ) to the frequency domain. We use the
symmetry property twice

G
ÂB̂

(−β) = ∓G
ÂB̂

(0) = (∓)2 G
ÂB̂

(β) = G
ÂB̂

(β)

to demonstrate that the Matsubara function is periodic with period 2β on the interval
−β < τ < β, as shown in Figure 15.40. This means that we have a discrete Fourier
series on that interval given by10

G
ÂB̂

(n) = 1

2

∫ β

−β
dτ einπτ/β G

ÂB̂
(τ )

G
ÂB̂

(τ ) = 1

β

∞∑
n=−∞

e−inπτ/β G
ÂB̂

(n). (15.151)

Employing the symmetry property (15.147) one more time, we can recast the transform in
a simpler form, namely,

10 This transform was first suggested by Abrikosov, Gor’kov, and Dzyaloshinskii [4].
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Re (t)

Im (t)

Figure 15.40 Contour for time ordering in imaginary time. Only the time difference is important.
The contour is translated slightly along the real-time axis for clarity.

G
ÂB̂

(n) = 1

2

∫ β

0
dτ einπτ/β G

ÂB̂
(τ )+ 1

2

∫ 0

−β
dτ einπτ/β G

ÂB̂
(τ )

= 1

2

∫ β

0
dτ einπτ/β G

ÂB̂
(τ )+ e−inπ

1

2

∫ β

0
dτ einπτ/β G

ÂB̂
(τ + β)

= 1

2

(
1∓ e−inπ

) ∫ β

0
dτ einπτ/β G

ÂB̂
(τ ). (15.152)

The factor
(
1∓ e−inπ

)
leads to

G
ÂB̂

(n) =
∫ β

0
dτ einπτ/β G

ÂB̂
(τ ),

{
n odd fermions

n even bosons.
(15.153)

We use the following notation to distinguish the Fourier transforms of the Matsubara
functions for bosons and fermions:

G
ÂB̂

(i
n) =
∫ β

0
dτ ei
nτ G

ÂB̂
(τ ), 
n = (2n+ 1)π

β
fermions

G
ÂB̂

(iωn) =
∫ β

0
dτ eiωnτ G

ÂB̂
(τ ), ωn = 2nπ

β
bosons. (15.154)

Both variables iωn and i
n are called Matsubara frequency. We note, at this point, that the
temperature appears in the Matsubara frequencies via β.

15.6.7 Analytic Continuation for the Matsubara and Green Functions

We shall now demonstrate the advantages of using the Matsubara functions. First, we will
establish that the Matsubara and the Green functions are manifestations of the same analytic
function F

ÂB̂
(z) in the complex frequency plane: in the upper half-plane, it is equal to
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Figure 15.41 Analytical structure of F
ÂB̂

(z) in the complex frequency plane. It reduces to either

GR

ÂB̂
(ω), GA

ÂB̂
(ω) or G

ÂB̂
(iωn), depending on the value of the complex frequency z. There is a

branch cut along the real axis.

G
ÂB̂

(iωn) on the imaginary axis and GR

ÂB̂
(ω) on the real axis, while in the lower complex

plane the advanced Green function emerges on the real axis (see Figure 15.41).
Consequently, determination of one of the two guarantees that the other follows by

analytic continuation. As a matter of fact, we will demonstrate that the analytic continuation
actually amounts to

GR

ÂB̂
(ω) = G

ÂB̂
(iωn → ω + iη),

where η is positive and infinitesimal constant. However, it is more advantageous to start
with obtaining the Matsubara function for the following reasons:

1. G
ÂB̂

(τ ) is periodic along the imaginary-time axis.
2. G

ÂB̂
(z) does not have statistical factors nF (ω) or nB(ω) on the imaginary-frequency

axis. The information about the statistical probabilities implicitly enters through the
Matsubara frequency sums. In contrast, we note that these statistical factors would
complicate integrals over G

ÂB̂
(ω).

3. The Matsubara function is based on a thermal equilibrium theory. We note that in some
cases the limit T → 0 of a thermal equilibrium function can be different from results
obtained from a T = 0 analysis. We maintain that the T → 0 formalism is designed
to get the true ground state, including the prediction of equal thermal occupation for
degenerate states, whereas a T = 0 calculation may identify only one of the available
degenerate states, or because adiabatic turning on of the interaction may miss state
crossings or a phase transition and land in an excited state.

We can, therefore, discern that the Matsubara approach provides an expedient recipe for
obtaining its Green function counterparts.

We use the Lehmann representation to establish the relation between the two functions
GAB and GR

AB . Our earlier results for the zero temperature, retarded, single-particle Green
function can now be extended to finite temperatures as
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G
ÂB̂

(ω) = − i

Z

∫ ∞
−∞

dt eiωt G
ÂB̂

(t)

= − i

Z

∫ ∞
−∞

dt eiωt
〈
e−βH T

[
Â(t) B̂(0)

]〉
= − i

Z

∫ ∞
−∞

dt eiωt
〈
e−βH

[
(t) Â(t) B̂(0)−(−t) B̂(0) Â(t)

]〉
.

We calculate the first term as

− i

Z

∫ ∞
−∞

dt eiωt
〈
e−βH(t) Â(t) B̂(0)

〉
= − i

Z

∫ ∞
−∞

dt eiωt
〈
e−βH(t)

[
eiHt/h̄ Â e−iHt/h̄ B̂(0)

]〉
= − i

Z

∫ ∞
0

dt eiωt Tr
[
e−βH eiHt/h̄ Â e−iHt/h̄ B̂(0)

]
= − i

Z

∫ ∞
0

dt eiωt
∑
λλ′

〈
λ

∣∣∣e−βH eiHt/h̄ Â

∣∣∣ λ′〉 〈λ′ ∣∣∣e−iHt/h̄ B̂(0)
∣∣∣ λ〉

= − i

Z

∫ ∞
0

dt eiωt
∑
λλ′

e−βελ eiελt/h̄
〈
λ

∣∣∣Â∣∣∣ λ′〉 e−iελ′ t/h̄ 〈λ′ ∣∣∣B̂∣∣∣ λ〉

= 1

Z

∑
λλ′

〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉
ω + ελ − ελ′ + iη

e−βελ .

Carrying a similar calculation for the second term, we get

G
ÂB̂

(ω) = 1

Z

∑
λλ′

〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉
ω + ελ − ελ′ + iη

(
e−βελ + e−βελ′

)
. (15.155)

As for the Matsubara function, we write for τ > 0,

G
ÂB̂

(τ ) = − 1

Z
Tr
[
e−βH eHτ Â e−Hτ B̂

]
= − 1

Z

∑
λλ′

e−βελ
〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉 eτ(ελ−ελ′ ), (15.156)

and transforming to the frequency domain, we get

G
ÂB̂

(iωm) =
∫ β

0
dτ eiωmτ

(
− 1

Z

∑
λλ′

e−βελ
〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉 eτ(ελ−ελ′ ))

= − 1

Z

∑
λλ′

e−βελ

〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉
iωm + ελ − ελ′

(
eiωmβ eβ(ελ−Eλ′ ) − 1

)
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= − 1

Z

∑
λλ′

e−βελ

〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉
iωm + ελ − ελ′

(
−eβ(ελ−ελ′ ) − 1

)

= 1

Z

∑
λλ′

〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉
iωm + ελ − ελ′

(
e−βελ + e−βελ′

)
. (15.157)

Equations (15.155) and (15.157) show that G
ÂB̂

(iωm) and GR

ÂB̂
(ω) have identical expres-

sions. We can actually obtain both functions from

F
ÂB̂

(z) = 1

Z

∑
λλ′

〈
λ

∣∣∣Â∣∣∣ λ′〉 〈λ′ ∣∣∣B̂∣∣∣ λ〉
z+ ελ − ελ′ + iη

(
e−βελ + e−βελ′

)
, (15.158)

which is analytic in the upper and lower half-plane, but has a series of poles at ελ′ − ελ

along the real axis.
Knowledge of GAB(iωn) means that we know the value of the function FAB(z) of the

complex variable z on an infinite set of points on the imaginary axis zn = i
n. This is
sufficient to determine the full FAB(z) in the complex plane, with the proviso that, since
FAB(z) = GAB(z), it has to be analytic in the upper half-plane:

GR

ÂB̂
(ω) = G

ÂB̂
(iωn → ω + iη). (15.159)

This is illustrated in Figure 15.42.

Figure 15.42 The analytic continuation procedure in the complex z-plane where the Matsubara
function defined for z = ωn goes to the retarded or advanced Green functions defined infinitesimally
close to real axis.
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Noninteracting Matsubara Function in the Frequency Representation

For the fermionic Hamiltonian

H0 =
∑
λ

ελ c
†
λ cλ,

we found in the previous example that

G(0)λ (τ ) = − 1

Z0

〈
T
[
cλ(τ ) c

†
λ(0)
]〉

= −(τ)
〈
cλ(τ ) c

†
λ(0)
〉
+(−τ)

〈
c

†
λ(0) cλ(−τ)

〉
= − 1

Z0

[
(τ)

〈
cλ c

†
λ

〉
−(−τ)

〈
c

†
λ cλ

〉]
e−ελτ (15.160)

= − 1

Z0
e−ελτ

[
(1− nF (ελ))(τ)− nF (ελ)(−τ)

]
(15.161)

The fermionic Matsubara function in the frequency domain is

G(0)λ (i
n) =
∫ β

0
dτ ei
nτ G(0)λ (τ ), 
n = (2n+ 1)π

β
, τ > 0

= −
(

1− n(ελ)
) ∫ β

0
dτ ei
nτ e−ελτ

= −
(

1− n(ελ)
) 1

i
n − ελ

(
ei
nβ e−ελβ − 1

)
= 1

i
n − ελ
(15.162)

because ei
nτ = −1 and
(

1− n(ελ)
)
= (e−ελβ + 1

)−1
.

According to our recipe (15.159), the retarded free particles Green functions are

G
(0)
λ (ω) = 1

ω − ελ + iη
.

15.6.8 Evaluation of Matsubara Sums

In carrying out calculations with Matsubara functions, we often encounter cases where
products of Matsubara functions appear, for example

1

β

∑
i
n

G(λ,i
n) G(λ′,i
n + iωm) e
i
nτ, τ > 0. (15.163)
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In such situations, it is preferable to use partial fractions in such a way that we will basically
always have to evaluate sums such as

S(ξ,τ ) = 1

β

∑
n

eiνnτ

iνn − ξ
=
∑
n

f (iνn), νn ≡ 
n, ωn.

Consequently, we have to learn how to handle sums over Matsubara frequencies.
To perform the sum over Matsubara frequencies, the standard trick is to go to the

complex plane and to use the theory of residues. The key observation, which allows us
to evaluate the Matsubara sums, is that the Fermi and Bose distribution functions nξ (ε),
ξ = F, B, once analytically continued to complex variables z, have poles on the imaginary
axis precisely at the Matsubara frequencies

nF (z) = 1

eβz + 1
= 1

2

[
1− tanh

(
βε

2

)]
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
poles z = i(2n+ 1)π

β
= i
n

Residue = − 1

β

nB(z) = 1

eβz − 1
= 1

2

[
coth

(
βε

2

)
− 1

]
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
poles z = i2nπ

β
= iωn

Residue = 1

β
.

The idea, then, is to consider the function g(z) = nξ (z) f (z), where g(|z| → ∞) = 0.
g(z) has two types of poles:

1. The poles at the Matsubara frequencies ν = 
n, ωn, originating from nξ (z), with
residues ± 1

β

2. The poles originating from f (z)

Since nξ (z) is regular at infinity, we require that f (|z| → ∞) = 0. Assuming that f (z)
has no poles on the imaginary axis, we integrate along the following contour

1

2πi

∮
C

dz nξ (z) f (z) =
∑
n

Res[nξ (iνn)] f (iνn)

= ± 1

β

∑
n

f (iνn) = S(ξ,τ )

νn ≡ 
n, ωn

+ and − signs indicate bosons and fermions,
respectively.
This is precisely the sum we want to calculate.
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This contour can be deformed. It still yields

1

2πi

∮
C

dz f (z) nξ (z) = ± 1

β

∑
n

f (iνn)

= S(x,τ ).

Alternative but equivalent contours include the following:

• We choose the clockwise contour enveloping the region,
which catches all poles of the integrand in the region of
the imaginary axis. It gives

1

2πi

∮
C

dz f (z) nξ (z) = ∓ 1

β

∑
n

f (iνn).

• We can equally use the contours C1, C2, which contain
all poles of the integrand in the area that excludes
the imaginary axis, namely, the white region, which is
enclosed counterclockwise, and we obtain

1

2πi

∮
C1,C2

dz f (z) nξ (z) =
∑
j

nξ (zj )Res[f (zj )].

Therefore,

S(ξ,τ ) = 1

β

∑
n

f (iνn) = ±
∑
j

nξ (zj )Res[f (zj )].

In some cases, f (z) may have branch cuts. This will slightly complicate the calculation.
We need to deform the contour in order to avoid the branch cuts.

As an example, we consider the case where f (z) has a branch cut at z = x + iω, with
x ∈ [−∞;∞], as shown in Figure 15.43. Let us consider the white area enclosed inside
the contour depicted in Figure 15.43. In this area, there are no poles, hence the contour
integral is zero. On the other hand, this contour integral is also equal to the contribution of
the poles inside the yellow area, which includes the imaginary axis, plus the integral along
the contour that encloses the branch cut. Therefore,

1

β

∑
n

f (iνn) = ±
∫

dx

2πi
nξ (x + iω)

[
f (x + iω + i0+)− f (x + iω − i0+)

]
.
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i
Re[z]

Im[z]

Figure 15.43 Integration contour around a branch cut.

15.6.9 Matsubara Approach to the Two-Particle Green Function

As an application of the Matsubara function and imaginary-time formalism, we shall red-
erive the two-particle correlation function χ at finite temperatures. With the aid of Wick’s
theorem, we obtain

χ(q,τ ) = −
∑
k,k′
σ,σ ′

〈
Tτ

[
c

†
k,σ (τ + ξ) ck+q,σ (τ ) c

†
k′,σ ′(ξ) ck′−q,σ ′(0)

]〉

=
∑
k,k′
σ,σ ′

{〈
Tτ

[
ck+q,σ (τ ) c

†
k′,σ ′(0)

]〉 〈
Tτ

[
ck′−q,σ ′(0) c

†
k,σ (τ )

]〉

−
〈
Tτ

[
c

†
k,σ (τ + ξ) ck+q,σ (τ )

]〉 〈
Tτ

[
c

†
k′,σ ′(ξ) ck′−q,σ ′(0)

]〉}
χ(q,τ ) =

∑
k,k′
σ,σ ′

[
G(0)k+q,σ (τ )G

(0)
k,σ (−τ)− ρ(0)q,σ ρ

(0)
−q,σ

]
, (15.164)

where ξ is an infinitesimal positive constant that places the creation operators to the left of
annihilation ones for equal-time ordering. The second term does not depend on τ , so that
its Fourier transform with respect to τ ∼ δωn,0. Thus, it will disappear in the process of
analytical continuation iωn → ω+ iη. The first term comprises products of two Matsubara
functions. Before taking its Fourier transform, we should recall an important property of
the density–density correlation function. The density operators ρ̂q are physical observables;
they are hermitian and they commute [

ρ̂q, ρ̂q′
] = 0.

Hence, they are bosonic operators, and we expect that their correlation function should
reflect bosonic character – it should be a function of a bosonic Matsubara frequency.
The Fourier transform of a product in the time domain is a convolution in the frequency
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i
Re[z]

Im[z]

Figure 15.44 Integration contour around a branch cut.

domain. Because one function has argument τ while the other has argument−τ , the internal
frequencies in the two have the same sign. Fourier transform of the first term and substitu-
tion of the exact results for the electron Matsubara functions gives

χ(q,iωn) = 1

β

∑
i
m

∑
kσ

G(0)k+qσ (i
m + iωn) G(0)kσ (i
m)

= 2

β

∑
k,i
m

1[
i(
m + ωn)− (εk+q − μ)

]
[i
m − (εk − μ)]

. (15.165)

ωn and 
m are bosonic and fermionic Matsubara frequencies, respectively.
In order to perform the summation over 
m, we write it as an integral over the contour

in the complex plane shown in Figure 15.44

χ(q,iωn) = 2

β

∑
k

1

2πi

∫
C1+C2

dz
nF (z)

[z− (εk − μ)]
[
z+ iωn − (εk+q − μ)

] .
(15.166)

The integrand has poles at the fermionic Matsubara frequencies z = i
m, at z = εk − μ,
and at z = (εk+q − μ)− iωn, with residues

nF (εk − μ)

εk − εk+q + iωn
and

nF (εk+q − μ− iωn)

εk+q − εk − iωn
= − nF (εk+q − μ)

εk − εk+q + iωn
,

where we used the periodicity of nF

(
eβ(x−i2nπ/β) + 1

)−1 = (eβ x + 1
)−1

.
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We obtain

χ(q,iωn) = 2

β

∑
k

1

2πi

∫
C1+C2

dz
nF (z)

[z− (εk − μ)]
[
z+ iωn − (εk+q − μ)

] . (15.167)

Now the analytical continuation iωn → ω+ iη is easily done and one recovers the result
(15.124) and (15.127), but at finite temperature, namely,

χ(q,ω) = −2
∑

k

nF (εk+q − μ)− nF (εk − μ)

ω − εk+q + εk + iη
. (15.168)

We consider the case of T ∼ 0 and q � kF . We use the approximation

nF (εk+q)− nF (εk) � ∂nF (εk)

∂εk
∇kεk · q = δ(εk − εF )

k · q
m

= 1

vF
δ(k − kF )

k · q
m

and obtain

χ(q,iωn) = −2
∫

dk
(2π)3

1

vF
δ(k − kF )

kq cos θ

m

1

iωn − kq cos θ/m

= −2
mkF

4π2h̄

∫ 1

−1
dx

vF qx

iωn − vF qx
= −D(εF )

[
1+ iωn

2vF q
ln

[
iωn + vF q

iωn − vF q

]]
∫ 1

−1

xdx

ia − x
= −2+ ia ln

[
ia + 1

ia − 1

]
.

Analytic continuation to the real-frequency axis yields

χ(q,ω + iη) = D(εF )

[
1+ ω

2vF q
ln

[
ω + vF q + iη

ω − vF q + iη

]]
.

Taking the real and imaginary parts, we obtain the density–density correlation
function as

Re
[
χ(q,ω)

] = D(εF )

[
1+ ω

2vF q
ln

[
ω − vF q

ω + vF q

]]
Im
[
χ(q,ω)

] = πD(εF )
ω

vF q

(
vF q − |ω|

)
.

Table 15.2 lists the Matsubara frequency summations for some simple rational
functions g(z)

Sξ = ξ
1

β

∑
n

g(iωn),
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Table 15.2 Table of Matsubara frequency summations.

g(iω) Sξ

(iω − ε)−1 −ξ nξ (ε)− 1/2

(iω − ε)−2 −ξ n′ξ (ε) = β nξ (ε)(ξ + nξ (ε))

(iω − ε)−m − ξ

(m− 1)!
∂m−1
ε nξ (ε)

1

(iω − ε1)(iω − ε2)
−ξ nξ (ε1)− nξ (ε2)

ε1 − ε2

1

(iω − ε1)
2(iω − ε2)

2

ξ

(ε1 − ε2)
2

(
2[nξ (ε1)− nξ (ε2)]

ε1 − ε2
−
[
n′ξ (ε1)+ n′ξ (ε2)

])
1

(iω − ε1)
2 − ε2

2

η cη(ε1,ε2)

(iω)2

(iω)2 − ε2
− ε

2

[
1+ 2ξ nξ (ε)

]
1

(iω)2 − ε2
− 1

2ε

[
1+ 2ξ nξ (ε)

] = η cη(0,ε)

1[
(iω)2 − ε2

]2 − η

2ε2

(
cη(0,ε)+ n′η(ε)

)
(iω)2[

(iω)2 − ε2
]2 η

2

(
cη(0,ε)− n′η(ε)

)

where ξ = ±1 denotes the type of statistics. The quantities cξ and nξ are defined as

cξ (a,b) = nξ (a + b)− nξ (a − b)

2b
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4b

[
tanh

(
β(a + b)

2

)
− tanh

(
β(a − b)

2

)]
= sinh(βb)

2b [cosh(βa)+ cosh(βb)]
, fermions

1

4b

[
coth

(
β(a − b)

2

)
− coth

(
β(a + b)

2

)]
= sinh(βb)

2b [cosh(βa)− cosh(βb)]
, bosons

n′ξ (ε) = −β nξ (ε)
(
1+ ξ nξ (ε)

) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
β

4
csch2

(
βε

2

)
fermions

β

4
sech2

(
βε

2

)
bosons.
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Exercises

15.1 The Hamiltonian of a bosonic system is

H = ε1 a
† a + ε2 b

† b + 	

2

(
a† b† + b a

)
.

ε1, ε2, and 	 are real and positive, and 	 < (ε1 + ε2).
Derive a canonical transformation that diagonalizes this Hamiltonian. Write

down explicit expressions for the transformation parameters, the eigenenergies, and
eigenvectors.

15.2 Discontinuity in the Green function:
Show that

G
(
x,t + ε;x′,t))−G

(
x,t;x′,t + ε

) = −iδ (x− x′
)

.

15.3 Physical quantities from the time-ordered Green function:
The time-ordered Green function is defined as

Gσσ ′(x;x′) = −i
〈
T
[
�̂σ (x) �̂

†
σ ′(x

′)
]〉
, x = (x,t) . (15.169)

(a) Use the expressions for the particle density and particle current of a single-
particle wavefunction ψ(x) to write down the second-quantized expressions for
particle density and current density operators in position representation.

(b) Show that the expectation values of the particle density and current density of a
many-body system can be obtained from the Green function by taking the limits

〈nσ (x)〉 = ±i lim
x′→x
t ′→t+0

Gσσ (x,x
′)

〈jσ 〉 = ± h̄

2m
lim
x′→x
t ′→t+0

(∇x −∇x′) Gσσ (x,x
′).

In both cases the plus and minus signs refer to bosons and fermions,
respectively.

15.4 Density in momentum space:

(a) Express the density of fermionic particles in momentum space np =
〈
c

†
p cp

〉
in

terms of the Green function Gσσ ′(ε,p).
(b) Calculate np for a noninteracting Fermi gas using the explicit form

Gσσ ′(ε,p) = 1

ε − ε(p)+ μ+ i0sgn(ε)
,

where ε(p) = p2/2m.

15.5 Friedel oscillations in two dimensions (see Figure 15.45):
Consider a two-dimensional noninteracting Fermi gas in the presence of an impu-

rity, represented by a delta-functional potential Uδ(2)(x). The Hamiltonian of the
perturbation can be written as
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Figure 15.45 Friedel oscillations in two dimensions. STM images from Kanisawa et al. [100] are
shown on left.

H1(t) =
∫

dx�†(x,t)�(x,t) U δ(x) = U �†(0,t)�(0,t).

(a) Assume that U is small and calculate the first-order correction to the Green
function in momentum space, G(1)(k,ω).

(b) Express the change in the fermion density in terms of G(1)(k,ω).
(c) Determine the fermion density change as a function of r = |x|, the distance

from the impurity, for r � k−1
F in the first order in U .

(d) Show that the density of fermions oscillates as a function of r . What is the period
of these oscillations?

15.6 Friedel oscillations in three dimensions:

Repeat the preceding problem for the case of a three dimensional noninteracting
Fermi gas in the presence of an impurity – a delta-functional potential Uδ(3)(x).

15.7 Scattering of free electrons from an external potential (impurity):

Consider a free noninteracting electron system with Hamiltonian

H0 =
∑

k

εk c
†
k ck.

Scattering from an external, or impurity, potential is given by the Hamiltonian

H′ =
∫

dx�†(x) V (x)�(x) →
∑
k k1

V (k− k1) c
†
k ck1 .

(a) Draw the Feynman diagram series representing the interaction.
(b) The sum of diagrams involving single- and multiple-scattering processes is

known as the T -matrix, tk,k1(ω). Derive a Dyson series expression for tk,k1 .
(c) Redraw the expansion diagrams in terms of tk,k1(ω). Write the corresponding

Green function.
(d) Consider the case of a delta-function potential V (x) = δ(x):

1. What can you conclude about the momentum dependence of t?
2. Obtain a closed expression for the Dyson series for t .
3. Write t in two dimensions by changing the sum over momenta to an integral

over energy. Hint: use the density of states.
4. Evaluate t by extending the integral to the complex energy plane ω→ z.
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5. Consider the case of an attractive potential, V < 0, and take the lower bound
of the free electron spectrum to be −W . Show that it gives rise to a bound
state. Hint: assume some high upper bound on the spectrum� |z|.

15.8 Frequency-momentum representation of Feynman diagrams:
Consider the following Feynman diagrams:

(a) Label the components of the diagrams, showing momentum conservation in
labeling.

(b) Show that the scattering processes at each interaction are virtual in (a) and (b).

15.9 Single-particle phonon Green function:
In the process of phonon second quantization, we defined the Fourier component of
the ionic displacement uq,λ, of mode (q,λ), in terms of the creation and annihilation
operators b†

q,λ and bq,λ, as

uq,λ =
√

h̄

2Mωqλ
(b

†
−q,λ + bq,λ) êλ,

where M is the ionic mass, êλ the polarization vector, and ωqλ the mode frequency.

(a) Write down the noninteracting Hamiltonian H0 and give the relation between
ωq,λ and ω−q,λ.

(b) We define

Aq,λ =
(
b

†
−q,λ + bq,λ

)
êλ, A†

q,λ =
(
b−q,λ + b

†
q,λ

)
êλ = A−q,λ.

Write Aq,λ in the Heisenberg representation, namely Aq,λ(t). Hint: use the
Heisenberg equations of motion to determine b†

q,λ(t) and bq,λ(t).
(c) We now define the phonon Green function with respect to the displacement

operators uqλα as

Dα,β(q,λ;t) = −
〈
T
[
uqλα(t)u

†
qλβ(0)

]〉
∝ −

〈
T
[
Aqλα(t)A

†
qλβ(0)

]〉
,

where α and β are Cartesian components of êλ. Derive an expression for the
noninteracting Green function D0

α,β(q,λ;t) at zero temperature.
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(d) Derive an expression for D0
α,β(q,λ;ω).

(e) What is the corresponding spectral function A0
α,β(q,λ;ω)?

15.10 Phonon–phonon interaction:

The Hamiltonian of interacting phonons is given by the following:

H =
∑

q

h̄ωq b†
q bq + g

∑
q1q

(
b

†
q1−q b

†
q bq1 + HC

)
.

We define the corresponding Green function as

D(q,t) = −i
〈
T
[
bq(t) b

†
q(0)
]〉

.

(a) Treating the last term in the Hamiltonian as a perturbation, what is the lowest-
order nonvanishing term in the Feynman–Dyson expansion? Write down the
corresponding Green function. Hint: remember to write the operators in the
interaction picture and apply Wick’s theorem.

(b) Try to invent Feynman rules for this case. (In (q;ω)-space).
(c) Draw three topologically different diagrams for the phonon Green function

D(q;ω).

15.11 Noninteracting Green function for topological insulators:

Consider the surface of a topological insulator as a noninteracting two-dimensional
electron system (in the x-y plane) described by the Hamiltonian

HTI = h̄ vF
∑

k,α,β

c
†
kα k ·σαβ ckβ,

where α, β index the electron spin (↑ or ↓), σ = (σx; σy) is the Pauli matrix vector,
k = (kx;ky) is the electron wave vector, and vF the Fermi velocity. In this problem,
we are interested in calculating the Green function in the ground state at T = 0.

(a) Use the Heisenberg equations of motion to determine the time dependence of
c

†
kσ (t) and ckσ (t

′) (σ ∈ {↑ , ↓}).
(b) Use the results you obtained in part (a) to show that the noninteracting retarded

Green function

GR
αβ

(
k,t − t ′

) = −i (t − t ′
) 〈[

c
†
kα(t), ckβ(t

′)
]〉

at T = 0 is given by

GR
(
k,t − t ′

) = −i (t − t ′
)

exp
[−ivF k ·σ (t − t ′)

]
.

Note that in this case GR is a 2× 2 matrix in spin space.
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(c) Show that in the frequency domain

GR (k,ω) =
∫

dτ eiωτ GR (k,τ )

= vFk ·σ −ω − iη

v2
F k

2 − ω2
.

15.12 Consider electrons interacting via the Coulomb interaction.

(a) Draw all possible topologically distinguishable diagrams for the one-particle
Green function in second order in the interaction.

(b) Pick one of the diagrams and write down the corresponding mathematical
expression.

15.13 Wick’s theorem: Write the following expectation value in terms of noninteracting
Green functions: 〈

T
[
c

†
k1
(t1) c

†
k2
(t2) ck3(t3) ck4(t4)

]〉
.

15.14 Plasma oscillations in two dimensions:
Consider the case of a two-dimensional electron gas in a heterostructure quantum
well.

(a) Calculate its dielectric response function ε(q,ω) in the RPA approximation.
(b) From the zeros of ε(q,ω), derive the dispersion relation of plasma oscillations in

the two-dimensional electron gas. For what wavevectors are plasma oscillations
Landau damped, i.e., by particle–hole pair excitations?

(c) Calculate the screened Coulomb interaction in a two-dimensional electron gas
in the RPA approximation.

(d) Show that, at small wavevectors q � kF and low frequencies ω � εF , the
screened interaction is given by

V RPA(q) = e2

2(q + kTF)
,

where kTF is the two-dimensional Thomas–Fermi screening wavevector. Calcu-
late kTF for the case of a GaAs/GaAlAs heterostructure, for which the effective
electron mass is m∗ = 0.067m, relative permitivity εr = 13, and electron
density n = 1015 m2. How does it compare to the Fermi wavelength for this
system?

15.15 Density–density correlations in a Sommerfeld gas:

(a) Use the definition of the Green function

−i
〈
T�(x,0)�†(x′,0)

〉
to obtain an expression for G(0)(x,x′) for a Sommerfeld fermionic gas.
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(b) Use Wick’s theorem to obtain an expression for the density–density correlation
function 〈

�†(x)�(x)�†(y)�(y)
〉

in terms of the free particle Green functions.

15.16 Harmonic oscillator in contact with a reservoir:
Consider a harmonic oscillator of frequency 
, interacting with a reservoir of oscil-
lators with frequencies ωi , represented by the Hamiltonian

H = 
a† a +
∑
i

ωi b
†
i bi +

∑
i

gi

(
a† bi + a b

†
i

)
.

Two Matsubara functions are defined as

D(τ ) = −
〈
Tτ

(
a(τ) a†(0)

)〉
Fi (τ ) = −

〈
Tτ

(
bi(τ ) a

†(0)
)〉

.

(a) Use the Heisenberg equations of motion to determine the time dependence of
a†(τ ), a(τ ) and b†

i (τ ), bi(τ ).
(b) Use the results to derive expressions for the equations of motion of D(τ ) and

Fi (τ ).
(c) Fourier-transform the propagators’ expressions to obtain D(iωn) and Fi (iωn).
(d) Use analytic continuation to derive an expression for the retarded Green

function DR(ω).



16

Path Integrals

In this chapter, we present an alternative formulation to the operator framework of quantum
mechanics and quantum statistics. This equivalent approach is known as the path integral
formalism. The formalism is based on the functional integral, which extends Feynman’s
path integral formulation to systems with an infinite number of degrees of freedom. As
such, it enables us to derive standard results, such as perturbation expansions, in an eco-
nomical way, and to set up nonperturbative approaches. The path integral approach also
presents a unified view of many concepts and theoretical methods that can be found in
various fields of physics: condensed-matter many-body physics, quantum optics, nuclear
physics, and quantum field theory, which made it very popular.

Path integral methods involve infinite products of integrals, classical action, and
Lagrangians, where the action represents the central quantity that enters into the description
of transition amplitudes – the propagators. Historically, the introduction of Lagrangians
within a quantum-mechanical setting was suggested by Dirac, but the mathematical
foundation and beauty were put forward by Feynman. The path integral description
actually enhances our fundamental understanding of quantum mechanics by revealing the
underlying similarity and connection between quantum mechanics and classical statistical
mechanics.

For the sake of completeness, we start with a brief presentation of Feynman’s path inte-
gral approach to single-particle quantum mechanics in terms of the classical action. Next,
we consider the partition function of statistical physics as an imaginary-time propagator and
derive its representation in terms of the Euclidean action. Finally, we derive the functional
integral representation of the partition function of a system of interacting quantum particles
(bosons or fermions). This representation is based on second-quantized fields and coherent
states. We discuss the perturbative calculation of the partition function and the correlation
functions (Green functions), and its possible representation in terms of Feynman diagrams.

In comparison with the operator formalism that was widely applied in the many-body
theory [60, 143], the coherent state path-integral formalism has a prominent advantage that
in the calculations within this formalism, the use of the operator commutators and the Wick
theorem is completely avoided.

518
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16.1 Functionals and Variational Principles

The mathematical basis for the discussion of extremum principles is provided by varia-
tional calculus. In order to prepare the ground for the following sections, but without going
into much detail, we discuss here a typical, fundamental problem of variational calculus. It
involves finding a real function y(x) of a real variable x such that a given functional I

[
y
]

of this function assumes an extreme value

I
[
y
] def
=
∫ x2

x1

dx f
(
y(x),y′(x),x

)
, y′(x) ≡ d

dx
y(x) (16.1)

is a functional of y, with f a given function of y,y′ and the variable x. x1 and x2 are
arbitrary, but fixed, endpoints. The problem is to determine those functions y(x) that take
given values y1 = y(x1) and y2 = y(x2) at the endpoints and that make the functional I

[
y
]

an extremum. In other words, one supposes that all possible functions y(x) that assume the
given boundary values are inserted into the integral (16.1) and that its numerical value is
calculated. What we are looking for are those functions for which this value assumes an
extremal value – a maximum or a minimum, or, possibly, a saddle point. As a first step, we
investigate the equality

I (α)

def
=
∫ x2

x1

dx f
(
y(x,α),y′(x,α),x

)
. (16.2)

where y(x,α) = y(x) + αξ(x) with ξ(x1) = ξ(x2) = 0. This means that we embed y(x)

in a set of comparative curves that fulfill the same boundary conditions as y(x). The next
step is to calculate the so-called variation of I , that is, the quantity

δI

def
= dI

dα
dα =

∫ x2

x1

dx

{
∂f

∂y

dy

dα
+ ∂f

∂y′
dy′

dα

}
dα. (16.3)

Clearly, dy′/dα = (d/dx)(dy/dα). If the second term is integrated by parts,∫ x2

x1

dx
∂f

∂y′
d

dx

(
dy

dα

)
= −

∫ x2

x1

dx
dy

dα

d

dx

(
∂f

∂y′

)
+ ∂f

∂y′
dy

dα

∣∣∣∣x2

x1

,

the boundary terms do not contribute, because dy/dα = ξ(x) vanishes at x1 and at x2. Thus

δI =
∫ x2

x1

dx

{
∂f

∂y
− d

dx

∂f

∂y′

}
dy

dα
dα. (16.4)

The expression in curly parentheses

∂f

∂y
− d

dx

∂f

∂y′

def
= δf

δy
(16.5)

is called the variational derivative of f by y. It is useful to introduce the notation
(dy/dα) dα = δy and to interpret δy as an infinitesimal variation of the curve y(x). I (α)
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assumes an extreme value when δI = 0. As this must hold true for arbitrary variations δy,
the integrand in (16.4) must vanish:

∂f

∂y
− d

dx

∂f

∂y′
= 0. (16.6)

This is Euler’s differential equation of variational calculus. With a substitution of the
Lagrangian L(q,q̇,t) for f (y,y′,x), we arrive at Lagrange’s equation.

16.2 Quantum Propagators and Path Integrals

The dynamical information in quantum mechanics is contained in the matrix elements of
the time-evolution operator U(tf ;ti ). For a time-independent Hamiltonian H, it is given by

U(tf ,ti) = e−i(tf−ti )H/h̄.

We evaluate the probability amplitude for a particle to start at position xi at time ti , and end
at position xf at time tf as1

U(xf ,tf ;xi,ti) =
〈
xf
∣∣U(tf ,ti)∣∣ xi 〉 ,

where
∣∣xf 〉 , |xi〉 are eigenkets of the Schrödinger position operator x̂. It is instructive to

work in the Heisenberg representation where operators are time dependent, while states
are time independent. However, we recall that the basis kets, or eigenkets, become time
dependent, namely,

|x,t〉 = eiHt/h̄ |x〉 , and x̂(t) |x,t〉 = x |x,t〉 .

We then find that

U(xf ,tf ;xi,ti ) =
〈
xf
∣∣U(tf ,ti )∣∣ xi 〉 = 〈xf ∣∣∣e−iHtf /h̄eiHti /h̄

∣∣∣ xi 〉 = 〈xf ,tf ∣∣ xi,ti〉 . (16.7)

Since the Heisenberg eigenkets form a complete orthonormal set at any time t∫
dx |x,t〉 〈x,t | = I,

we can write〈
xf ,tf

∣∣ xi,ti〉 = ∫ dx
〈
xf ,tf

∣∣ x,t〉 〈x,t | xi,ti〉 , tf > t > ti, (16.8)

which shows that the probability amplitude to go from xi at ti to xf at tf is equal to
the superposition of products of probability amplitudes to go first at t to all possible x,
〈x,t | xi,ti〉, then to xf at tf ,

〈
xf ,tf

∣∣ x,t〉, for all possible xs. This is just the composition
property of the transition amplitude.

We now capitalize on the composition property and divide the interval tf − ti = t into

N + 1 subintervals δt = tf−ti
N+1 and write

1 For simplicity and without loss of generality, we shall consider the one-dimensional case.
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d d d d d

Figure 16.1 Amplitude as a sum over all N -legged paths.

〈
xf ,tf

∣∣ xi,ti〉 = ∫ ( N∏
m=1

dxm

) 〈
xf ,tf

∣∣ xN,δt〉 〈xn,δt | xN−1,δt〉 . . . 〈x1,δt | xi,ti〉

=
∫ ( N∏

m=1

dxm

) 〈
xf

∣∣∣e−iH δt
∣∣∣ xN 〉 〈xN ∣∣∣e−iH δt

∣∣∣ xN−1

〉
. . .
〈
x1

∣∣∣e−iH δt
∣∣∣ xi〉

Giving the amplitude as a sum over all N-legged paths, as shown in Figure 16.1.
We first consider the infinitesimal case tf − ti = ε → 0 and a general Hamiltonian of

the form

H = p̂2

2m
+ V (x̂).

We have 2

	U(x2,x1;ε) =
〈
x2

∣∣∣e−iεH∣∣∣ x1

〉
≈
〈
x2

∣∣∣e−iε p̂2/2m e−iε V (x̂)
∣∣∣ x1

〉
(we set h̄ = 1 for the moment). The propagator is then calculated by inserting the resolution
of the identity in the momentum basis, and finally taking the limit ε → 0

	U(x2,x1;ε) =
∫

dp

2π

〈
x2

∣∣∣e−iε p̂2/2m
∣∣∣p〉 〈p ∣∣∣ e−iε V (x̂)∣∣∣ x1

〉
=
∫

dp

2π
exp

[
−iε
(
p2

2m
+ V (x1)

)]
〈x2| p〉 〈p| x1〉

=
∫

dp

2π
exp

[
−iε
{(

p2

2m
+ V (x1)

)
+ ip

(
x2 − x1

ε

)}]
. (16.9)

2 To first order in ε, eε A+ε B = eε A eε B e−[A,B]ε2/2, by the Baker–Hausdorff identity.
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In the third line, we used 〈x| p〉 = eipx/h̄. Anticipating that ε → 0, we set x2−x1
ε

= ẋ1 and
write

	U(x2,x1;ε) =
∫

dp1

2π
exp
[
iε (p1ẋ1 −H(p1,x1))

]
. (16.10)

Or, we can carry out the p integral, and obtain

	U(x2,x1;ε) =
√

m

2πiε
exp

[
i
ε

2m

{(
x2 − x1

ε

)2

− V (x1)

}]

=
√

m

2πiε
exp [iS(x2,x1;ε)] , (16.11)

where we made the substitution p′ = p − m
ε
(x2 − x1) and gave ε a very small imaginary

part to ensure the p integral convergence. Equation (16.11) shows that the argument of the
exponential is just the infinitesimal action S(x2,x1;ε). We can now write

U(xf ,tf ;xi,ti) =
∫ N∏

m=1

dxm 	U(xm,xm−1;δt). (16.12)

Using (16.10), we get

U(xf ,tf ;xi,ti) =
∫ ( N∏

m=1

dxm

)(
N∏

m=1

dpm

2π

)
exp

[
iδt

N+1∑
m=0

(
pm ẋm −H(pm,xm)

)]
and with the aid of (16.11), we write

U(xf ,tf ;xi,ti ) =
( m

2πiε

)N/2
∫ ⎛⎝ N∏

m=1

dxm

⎞⎠ exp

⎡⎣i N∑
m=1

S(xm,xm−1;δt)
⎤⎦

=
( m

2πiδt

)N/2
∫ ⎛⎝ N∏

m=1

dxm

⎞⎠ exp

⎡⎣i N∑
m=1

δt

2m

{(
xm − xm−1

δt

)2
− V (xm−1)

}⎤⎦.

(16.13)

The integral over x1 . . . xN−1 becomes a functional integral, also known as a path integral,
over all paths x(t) that start at xi at time t = ti and end at xN at time t = tf . The prefactor
in (16.11) gives rise to an overall (infinite) normalization.

Taking the limit N →∞, we write

lim
N→∞

N∑
m=1

δt

2m

(
xm − xm−1

δt

)2

=
∫ tf

ti

dt
m

2
ẋ2

lim
N→∞

δt

N∑
m=1

V (xm−1) =
∫ tf

ti

dt V (x)

lim
N→∞

(
mN

2πit

)N/2 N−1∏
m=1

dxm =
∫

D[x], lim
N→∞

N−1∏
m=1

dpm

2π
=
∫

D[p],
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where D[x/p] is an integral measure. Since the measure is ill defined when N → ∞,
it may be necessary to obtain its normalization through identifying analytically solvable
limits. We can then write (16.9) as

U(xN,tf ;x0,ti) =

⎧⎪⎨⎪⎩
∫ xf
xi

D[x]D[p] exp
[
i
h̄

∫ tf
ti
dt
(
pẋ −H(p,x)

)]
Phase space∫ xf

xi
D[x] exp

[
i
h̄

∫ tf
ti

dt
(
m
2 ẋ

2 − V (x)
)]

Configuration space

=
∫ xf

xi

D[x] exp

[
i

h̄

∫ tf

ti

dtL[ẋ,x]

]
=
∫ xf

xi

D[x] exp

[
i

h̄
S[x(t)]

]
,

(16.14)

where L is the Lagrangian and S the classical action associated with the trajectory x(t).
The integration is to be understood as over all paths that start at x(ti) = xi and end at
x(tf ) = xf . The path integral representation suggests a beautiful interpretation of the
quantum-mechanical transition amplitude: the particle takes all possible trajectories with
each trajectory x(t) contributing exp[−iS[x(t)]/h̄] to the amplitude. Note that we have
momentarily restored h̄ since it plays an essential role in the discussion of the classical
limit given later in this chapter.

Alternatively, we can consider the action (16.14) as a functional that takes as argument
a function x(t) and returns a number, the action S[x]. We can then regard the integral
as a functional integral where one has to integrate over all functions satisfying the
boundary conditions x(ti) = xi and x(tf ) = xf . Since these functions represent
paths, as shown in Figure 16.2, one refers to this kind of functional integral also as path
integral.

The Feynman path integral is an exact representation of the evolution operator U(t) =
e−iHt/h̄, yet it does not incorporate any-quantum mechanical operators. It provides a
fresh starting point for the formulation of quantum mechanics. However, such path
integrals do not produce any new results in the quantum mechanics of a single particle.

Figure 16.2 Quantum-mechanical propagation of a particle from xi to xf .
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Moreover, most if not all quantum-mechanical calculations based on path integrals
can be done with considerably greater ease using standard formulations of quantum
mechanics.

In contrast, we find that path integrals, or more appropriately functional integrals, play
a much more important role in quantum field theory, both relativistic and nonrelativistic.
For example, they provide a relatively easy way to quantization and to expressions for
correlation functions. Also, there are a whole host of nonperturbative phenomena such as
solitons and instantons that are most easily viewed via path integrals. Furthermore, the
close relation between statistical mechanics and quantum mechanics, or statistical field
theory and quantum field theory, is plainly visible via path integrals.

16.2.1 Classical Limit and the Stationary Phase Approximation

As we can see from (16.14), all paths have the same absolute magnitude but with different
phase: the phase of every path x(t) is its classical action S[x(t)] divided by the microscopic
action h̄. Thus, each path taken in isolation is equally important. The classical path is no
more important than any arbitrarily complicated path! However, since the path integral is
a coherent summation of paths, different paths interfere with one another. The important
trajectories that contribute significantly to the path integral must be those for which the
action varies very slowly when the path x(t) is slightly deformed, which means that they
leave the action S stationary,

δS[x]

δx
= 0.

By contrast, the contributions of the rapidly oscillating exponential would add up to zero.
Thus, in the classical limit there is only one trajectory xc(t) that contributes, and it is the
solution of the classical equation of motion.

The classical limit means that h̄→ 0. To examine the propagator around that limit, we
set x(t) = xc(t)+ η(t), and expand the action to second order in η(t),

U(xf ,xi;tf − ti ) � eiScl[xc]/h̄
∫ η(tf )=0

η(ti )=0
D[η] exp

[
i

2h̄

∫ tf

ti

dt
δ(2)S[x]

δx(t)δx(t ′)
η(t) η(t ′)

]

� eiScl[xc]/h̄ det

[
1

2πh̄

δ(2)S[x]

δx(t)δx(t ′)

]−1/2

, (16.15)

where we used Gaussian integration methods.3 The quantum correction to the classical
action measures the strength of the quantum fluctuations. In general, the action for the
quantum fluctuations η is not the same as the action for the classical trajectory.

3 The determinant of a matrix is equal to the product of its eigenvalues.
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Path Integral of the Harmonic Oscillator

U(xf ,xi;tf − ti ) =
∫ x(tf )=xf

x(ti )=xi
D[x(t)] exp

[
i
m

2h̄

∫
dt
(
ẋ2 + ω2x2

)]
The classical trajectory is given by

xcl(t) = xi
sin(tf − t)

sin(tf − ti )
+ xf

sin(t − ti )

sin(tf − ti )
.

The action along the classical path is

Scl =
∫ tf

ti

dt
(m

2
ẋ2
cl +

m

2
ω2 x2

cl

)
= mω

2

(
x2
i + x2

f

)
cosω(tf − ti )− 2xixf

sinω(tf − ti )
.

Writing x(t) = xcl(t) + η(t), and evaluating the functional derivative δ2S/δx1δx2 in
(16.15), we obtain

S[x] = S [xcl]+ 1

2

∫ tf

ti

dt
(
m η̇2 −mω2 η2

)
.

Since η(ti) = η(tf ) = 0, we use the expansion

η(t) =
∞∑
n=1

an sin

(
nπ(t − ti )

T

)
, T = tf − ti .

The orthogonality of the different modes in the time integral leads to the action

S = Scl +
∞∑
n=1

m

2

(
(nπ)2

T
− ω2 T

)
a2
n

2
.

Therefore, the path integral is an infinite number of Fresnel integrals over an:〈
xf ,tf

∣∣ xi,ti〉
= e−iScl/h̄

√
m

2iπh̄T

∞∏
n=1

√
m

2iπh̄T

nπ√
2

∫
dan exp

[
i

h̄

m

2

(
(nπ)2

T
− ω2 T

)
a2
n

2

]

= e−iScl/h̄
√

m

2iπh̄T

∞∏
n=1

[
1−
(
ωT

nπ

)2
]−1/2

.

We use the sine identity

∞∏
n=1

(
1− x2

n2

)
= sinπx

πx

to obtain 〈
xf ,tf

∣∣ xi,ti〉 = e−iScl/h̄
√

mω

2πih̄ sin(ωT )
.
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16.3 Path Integrals in Statistical Mechanics

Path integral methods offer an elegant and powerful way of doing statistical mechanics.
The reason for this is that the central object in statistical mechanics, the partition function,
can be written as a path integral. This, in turn, means that the properties of a quantum-
mechanical system, at finite temperatures, can also be given a path integral description.
Consequently, we can establish a unified view of quantum and statistical mechanics that
allows us to apply many powerful methods known in statistical mechanics to calculate
correlation functions in quantum mechanics. A statistical ensemble in equilibrium at a finite
temperature 1/β is described in terms of a partition function

Z = Tr e−βH.

The partition function can be written in a basis of eigenstates

Z =
∫

dx
〈
x

∣∣∣e−βH∣∣∣ x〉 = ∫ dx

∫
dx1
〈
x
∣∣x1
〉 〈
x1

∣∣∣e−βH∣∣∣ x〉 ,
where

〈
x1
∣∣e−βH∣∣ x〉 can now be viewed as analytic continuation of the propagator to imag-

inary time τ = it , where we consider propagation from τ = 0 to τ = βh̄, a transformation
known as a Wick rotation [194] that actually takes us from a Minkowski to a Euclidean
space.4 Using this transformation, we precisely track the same steps followed previously,
so that (16.13) becomes〈

xf

∣∣∣e−βH∣∣∣ xi〉 = lim
N→∞

(
m

2πh̄δτ

)N/2 ∫ N−1∏
n=1

dxn

× exp

[
δτ

h̄

N−1∑
n=0

{
m

2

(
xn+1 − xn

(−iδτ )
)2

− V (xn)

}]
,

where δτ = βh̄/N . Going over to a continuum description, we arrive at an imaginary-time
functional integral 〈

xf

∣∣∣e−βH∣∣∣ xi〉 = N

∫
D[x(τ)] e−SE [x]/h̄, (16.16)

where now SE is the Euclidean action

SE[x(τ)] =
∫ h̄β

0
dτ

[
m

2

(
dx

dτ

)2

+ V (x)

]
=
∫ h̄β

0
dτ H(x), (16.17)

4 Under the transformation t →−iτ , the Minkowski metric ds2 = −(dt2)+
d∑
i=1

dx2
i becomes Euclidean

ds2 = dτ2 +
d∑
i=1

dx2
i , where time is restricted to the imaginary axis in complex time space. A Wick rotation is a rotation

from the real-time axis to the imaginary-time axis or from a Minkowski space to a Euclidean one. Taking a problem expressed
in Minkowski space with coordinates (t,x) and substituting t = −iτ sometimes yields a problem in real Euclidean coordinates
(τ,x) that is easier to solve. This solution may then be analytically continued to yield a solution to the original problem.



16.3 Path Integrals in Statistical Mechanics 527

where the Hamiltonian replaces the Lagrangian in the action, since t = −iτ . The positive
form of SE eliminates convergence problems in the integral – an advantage of imaginary
time.

Since the partition function is a trace over states, we must use boundary conditions such
that the initial and final states are the same state x(0) = x(h̄β) and sum over all such states.
In other words, we must have periodic boundary conditions in imaginary time:

x(τ) = x(τ + h̄β). (16.18)

Thus, we find that the partition function can be expressed as

Z = N

∫
dx

∫ x(βh̄)=x

x(0)=x
D[x(τ)] e−SE [x]/h̄ (16.19)

and the endpoint x is integrated over.
Real-time dynamics and quantum statistical mechanics are thus related by the transfor-

mation t →−it , a Wick rotation of π/2 in the complex time plane.

Partition Function of the Harmonic Oscillator
The periodicity (16.18) allows us to expand x(τ) in a Matsubara Fourier series

x(τ) = 1√
β

∞∑
n=−∞

an e
−iωnτ, ωn = 2nπ

h̄β

with a∗n = a−n since x is real, and we find

1

h̄

∫ h̄β

0
dτ x(τ)y(τ ) =

∑
m,n

aman

∫ h̄β

0

dτ

h̄β
ei(ωm+ωn)τ =

∑
m,n

am an δn,−m =
∑
n

a−n an.

The Euclidean action becomes

SE[x(τ)] =
∫ h̄β

0
dτ

m

2

[
dx

dτ

dx

dτ
+ ω2 x(τ)x(τ )

]
= m

2

∞∑
−∞

|an|2
(
iωn iω−n + ω2

)
= m

2

∞∑
−∞

(
ω2
n + ω2

)
|an|2

and the partition function becomes

Z = N

∫ ∞
−∞

da0

⎛⎝∏
n≥1

dan dbn

⎞⎠ exp

⎡⎣−m
2

⎛⎝ω2a2
0 − 2

∑
n≥1

(
ω2
n + ω2

) (
a2
n + b2

n

)⎞⎠⎤⎦
= N

√
2π

mω2

∞∏
n=1

π

m
(
ω2
n + ω2

)
= N

√
2π

mω2

( ∞∏
n=1

h̄2β2

πmn2

)( ∞∏
n=1

[
1+
(
h̄βω

2πn

)2
])
= N′

sinh(βh̄ω/2)
, (16.20)
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where we used the identity

∞∏
n=1

(
1+ x2

n2

)
= sinh(πx)

πx
.

Recall that N ∝ limN→∞ (mN/2πh̄β)N/2, so that the term ∝ 1/n2 is compensated
for by an infinite normalization constant in the integral measure. We can find the
normalization constant N′ by taking the limit β →∞, namely,

lim
β→∞

Z � 2N′ e−βh̄ω/2 = e−βε0,

where ε0 = h̄ω/2 is the ground-state energy. We finally obtain

Z = 1

2 sinh(βh̄ω/2)
= e−βh̄ω/2

eβh̄ω − 1
.

16.3.1 Correlation Functions

We are usually interested in measuring thermal averages of local observables or products of
local observables. Theoretically, this is obtained from thermal averages of corresponding
operators, namely, 〈

Ô1 Ô2 . . . Ôn

〉
= 1

Z
Tr
(
Ô1 Ô2 . . . Ôn e

−βH
)

.

Such averages can readily be obtained from a modified partition function

Z(h1,h2, . . . ,hn) = Tr e−β(H+Hext )

Hext =
∑
i

hi Ôi, (16.21)

where Hext represents the Hamiltonian of external sources hi that couple to the relevant
operators Ôi .

This allows us to write〈
Ôi . . . Ôl

〉
= 1

Z[{hi = 0}]
∂nZ[h1,h2, . . . ,hn]

∂hi . . . ∂hl

∣∣∣∣{hi=0}
. (16.22)

Now the question arises as to the possibility of extending this thermal averaging process to
correlation functions of the form〈

Ô(τ1) Ô(τ2) . . . Ô(τn)
〉
=
∫
x(0)=x(β) D[x(τ)] O(τ1)O(τ2) . . .O(τn) e−SE/h̄∫

x(0)=x(β) D[x(τ)] e−SE/h̄
, (16.23)

where O(τi) = O(x(τi)). To interpret such a correlation function in imaginary time, we
start with considering the action of operators on a given state function |ψ(t)〉 at different
times. Operator Ô1 acts at t1, such that
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Ô1 |ψ(t1)〉 = Ô1 U(t1,0) |ψ(0)〉
followed by the action of Ô2 at t2 > t1:

Ô2 U(t2,t1) Ô1 U(t1,0) |ψ(0)〉 .

We now consider the projection of this state onto the unperturbed state |ψ(t2)〉, namely,

〈ψ(0)|U(0,t2) Ô2 U(t2,t1) Ô1 U(t1,0) |ψ(0)〉 = 〈ψ(0)| Ô2H (t2) Ô1H (t1) |ψ(0)〉 ,
where ÔiH (ti) is in the Heisenberg picture. Now we analytically continue to imaginary
time and write

Tr
[
e−βH Ô2H (τ2) Ô1H (τ1)

]
Tr e−βH

,

where now Ô†
H (τ) 
=

[
ÔH (τ)

]†
. Since the operators may not commute, we introduce time

ordering and write

Tr
[
e−βH Tτ

(
Ô2H (τ2) Ô1H (τ1)

)]
Tr e−βH

.

Using a complete set of basis functions, we have

Tr
[
e−βHÔ2H (τ2)Ô1H (τ1)

]
=
∫∫∫

dx dx1 dx2

〈
x

∣∣∣e−(β−τ2)H
∣∣∣ x2

〉
×
〈
x2

∣∣∣Ô2 e
−(τ2−τ1)H

∣∣∣ x1

〉 〈
x1

∣∣∣Ô1 e
−τ1H

∣∣∣ x〉
=
∫∫∫

dx dx1 dx2 O2(x2)O1(x1)
〈
x

∣∣∣e−(β−τ2)H
∣∣∣ x2

〉 〈
x2

∣∣∣e−(τ2−τ1)H
∣∣∣ x1

〉 〈
x1

∣∣∣e−τ1H
∣∣∣ x〉

=
∫∫∫

dx dx1 dx2 O2(x2)O1(x1)

∫ x(β)=x

x(τ2)=x2

D[x(τ)]
∫ x(τ2)=x2

x(τ1)=x1

D[x′(τ )]

×
∫ x(τ1)=x1

x(0)=x
D[x′′(τ )] e

−
∫ βh̄

τ2

dτ LE(x(τ))
e

−
∫ τ2

τ1

dτ LE(x(τ))
e
−
∫ τ1

0
dτ LE(x(τ))

=
∫
x(0)=x(β)

D[x(τ)] O2(x2)O1(x1) e
−
∫ βh̄

0
dτ LE(x(τ))

,

which is just the numerator in (16.23). Thus, we find that the time-ordered correlation
functions are naturally manifest as moments of the path integral. Furthermore, the beauty
of the path integrals lies in the fact that all the operators in the correlation function disappear
and are replaced by classical c-numbers.

The fact that all paths satisfy the condition x(0) = x(β) means that all correlation
functions can be expanded in terms of a Matsubara Fourier series. The real-time correlation
function is obtained through analytic continuation of Matsubara sums. Thus, path integrals
present very convenient tools to obtain time-ordered correlation functions.
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Correlation Function in Terms of State Kets

We often deal with transition amplitudes between two state kets, say |ψi〉 and
∣∣ψf

〉
. We can

then write the transition amplitude as

〈
ψf

∣∣ ψi〉 =
∫

dxf dxi
〈
ψf

∣∣ xf ,tf 〉 〈xf ,tf ∣∣ xi,ti〉 〈xi,ti | ψi〉

= N

∫
dxf dxi ψ

∗
f

(
xf ,tf

)
ψi (xi,ti)

∫
D[x] e

i
h̄
S[x]

where we used the fact that 〈x,t | ψ〉 is just the wavefunction ψ(x,t). This immediately
shows that we can extend this definition to time-ordered correlation functions and write〈
ψf

∣∣ ψi〉 =
〈
ψf

∣∣ T [O(τ1)O(τ2) . . .O(τn)] |ψi〉
= N

∫
dxf dxi ψ

∗
f

(
xf ,tf

)
ψi (xi,ti)

∫
D[x] O(τ1)O(τ2) . . .O(τn) e

i
h̄
S[x].

We can generate the correlation functions if we follow (16.21) and write a modified action
in the form

S[x,h] = S[x]+
∫ tf

ti

dt O(x(t)) · h, (16.24)

where O(x(t)) = [O1(x1(t1) . . .On(xn(tn)] and hT = [h1 . . . hn]. We can then define the
correlation functions as

〈ψi | T [O(τ1)O(τ2) . . .O(τn)] |ψi〉 = N (−ih̄)n
∫

dxf dxi ψ
∗
f

(
xf ,tf

)
ψi (xi,ti)

×
∫

D[x]
δ(n)S[x,h]

δh1(t1) . . . δhn(tn)

∣∣∣
h=0

e
i
h̄
S[x].

(16.25)

16.4 Functional Integral in Many-Particle Systems

In developing the preceding path integrals, we employed single-particle eigenstates, mainly
position and momentum eigenkets. However, here we will deal with many-body systems
where the most convenient formalism that accounts for many-body symmetries involves
canonically second-quantized operators. As we have shown in Chapter 13, the eigenfunc-
tions of such operators are coherent states parameterize by complex scalar variables (Grass-
mann variables in case of fermions). We thus anticipate that in developing a functional
integral approach for many-particle systems, one that parallels the path integral, we will be
replacing operators with their corresponding scalar variables.

To develop such a functional integral framework, we will start with deriving a functional
integral representation of the partition function of a many-particle system following the
general procedure that we have outlined.
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16.4.1 Coherent-State Functional Integral

We write the grand canonical partition function as

Z = Tr
[
e−β(H−μN)

]
=
∑
n

〈
n

∣∣∣e−β(H−μN)
∣∣∣ n〉 , (16.26)

where μ is the chemical potential, N the number operator, and {|n〉} a basis of Fock space.
We start with inserting the coherent states resolution of the identity

Z =
∑
n

∫
d
(
ψ̄,ψ
)
e−
∑

α ψ̄α ψα

〈
n

∣∣∣ψ〉 〈ψ ∣∣∣e−β(H−μN)
∣∣∣ n〉 , (16.27)

where |ψ〉 is a many-body coherent state with ψα a c-number for bosons and a Grassmann
variable for fermions. The integrating element d

(
ψ̄,ψ
)

is given by

d
(
ψ̄,ψ
) =
⎧⎨⎩
∏

α
dψ̄α dψα

2πi (bosons)∏
α dψ̄α dψα (fermions)

In order to remove the sum over n, we need to bring the matrix elements into the reso-
lution of identity form I = ∑n |n〉 〈n|. This means that we first commute 〈n| ψ〉 with〈
ψ
∣∣e−β(H−μN)

∣∣ n〉. We note, however, that in case of fermions, Grassmann variables anti-
commute, and this leads to 5

〈n| ψ〉 〈ψ | n〉 = 〈−ψ | n〉 〈n| ψ〉 ,
where 〈−ψ | = 〈∅| exp

[−∑α ψ̄αc
†
α

]
. Making use of the fact that both H and N contain

even numbers of creation and annihilation operators, and thus are not susceptible to sign
changes, we write Z as

Z =
∑
n

∫
d
(
ψ̄,ψ
)
e−
∑

α ψ̄α ψα

〈
ζψ

∣∣∣e−β(H−μN)
∣∣∣ n〉 〈n∣∣∣ψ〉

=
∫

d
(
ψ̄,ψ
)
e−
∑

α ψ̄α ψα

〈
ζψ

∣∣∣e−β(H−μN)
∣∣∣ψ〉 , (16.28)

where ζ = −1 for fermions and +1 for bosons.
We start with dividing the interval β into N segments δβ = β/N , such that〈

ζψ

∣∣∣e−β(H−μN)
∣∣∣ψ〉 = 〈ζψ ∣∣∣e−δβ(H−μN) ∧ e−δβ(H−μN) ∧ . . .

∣∣∣ψ〉 . (16.29)

Next we insert the resolution of identity

I =
∫

d[ψ̄,ψ] e−ψ̄ ·ψ |ψ〉 〈ψ |

5 With |n〉 = a
†
1a

†
2 . . . a

†
n |∅〉, we write

〈n | ψ〉 = 〈∅| an . . . a2a1 |ψ〉 = ψn . . . ψ2ψ1 〈∅| ψ〉 = ψn . . . ψ2ψ1

〈ψ | n〉 = ψ̄1ψ̄2 . . . ψ̄n

〈n | ψ〉 〈ψ | n〉 = ψn . . . ψ2ψ1ψ̄1ψ̄2 . . . ψ̄n = ψ1ψ̄1ψ2ψ̄2 . . . ψnψ̄n

= (−ψ̄1ψ1
) (−ψ̄2ψ2

)
. . .
(−ψ̄nψn) = 〈−ψ | n〉 〈n | ψ〉 .
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at each wedge location. We expand the incremental exponent〈
ψ ′
∣∣∣e−δβ(H(a

†
α,aα)−μN)

∣∣∣ψ〉 = 〈ψ ′ ∣∣∣I− δβ(H(a†
α,aα)− μN)

∣∣∣ψ〉+O(δβ)2

= 〈ψ ′ | ψ 〉− δβ
〈
ψ ′
∣∣∣(H(a†

α,aα)− μN)

∣∣∣ψ〉+O(δβ)2

= 〈ψ ′ | ψ 〉 [I− δβ
{
H
(
ψ ′,ψ

)− μN
(
ψ ′,ψ

)}]+O(δβ)2

≈ eψ̄
′·ψ e−δβ[H(ψ ′,ψ)−μN(ψ ′,ψ)],

with A
(
ψ ′,ψ

) = 〈ψ ′|H|ψ〉
〈ψ ′|ψ〉 , A = H, N . Note that

〈
ψ ′ | ψ 〉 commutes with everything

because it is bilinear in ψ . The operators a†,a can be bosonic (b†,b) or fermionic (c†,c).
Substituting back in (16.29), we get

Z = lim
N→∞

∫
d[ψ̄,ψ]

∫
ψ̄N=ζ ψ̄0=ζ ψ̄
ψN=ζψ0=ζψ

⎛⎝N−1∏
n=1

∏
α

dψ̄α,ndψα,n

⎞⎠ exp

⎡⎣−δβ N−1∑
n=1

∑
α

ψ̄α,nψα,n

δβ

⎤⎦
× exp

⎡⎣N−1∑
n=1

δβ

(∑
α

ψ̄α,nψα,n−1

δβ
−
(
H(ψ̄n,ψn−1)− μN(ψ̄n,ψn−1)

))⎤⎦. (16.30)

Taking the continuum limit N →∞,

δβ

N∑
n=0

→
∫ β

0
dτ ; ψn − ψn−1

δβ
→ ∂τ ψ

∣∣
τ=nδβ;

N∏
n=0

d[ψ̄n,ψn] → D(ψ̄,ψ).

We finally arrive at

Z =
∫
ψ̄N=ζ ψ̄0
ψN=ζψ0

D(ψ̄,ψ) e−S[ψ̄,ψ]

S[ψ̄,ψ] =
∫ β

0
dτ
(
ψ̄ ∂τψ +H (ψ,ψ)− μN (ψ,ψ)

)
. (16.31)

For a general normal-ordered Hamiltonian with two-particle interactions of the form

H− μN =
∑
αβ

(
hαβ − μδαβ

)
a†
α aβ +

∑
αβγ δ

Vαβγ δ a
†
αa

†
βaγ aδ,

we get

S[ψ̄,ψ] =
∫ β

0
dτ

⎡⎣∑
ij

ψ̄i (τ )
[
(∂τ − μ) δij + hij

]
ψj (τ)+

∑
ijkl

Vijklψ̄i (τ )ψ̄j (τ )ψk(τ )ψl(τ )

⎤⎦ .

(16.32)
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Since ψ(τ ) = ζψ(τ + β), it is convenient to express S in terms of Matsubara Fourier
series, ψi(τ ) = (1/

√
β)
∑

n ψin e
−iνnτ :

S[ψ̄,ψ] =
∑
ij,n

ψ̄in

[
(−iνn − μ) δij + hij

]
ψjn

+ 1

β

∑
ijkl

∑
n1,n2,n3,n4

Vijkl ψ̄in1 ψ̄jn2 ψkn3 ψln4 δνn1+νn2+νn3+νn4
. (16.33)

Partition Function of Ideal Quantum Gases
We start with diagonalizing hij in (16.32) with a unitary transformation, so that in the
absence of two-body interactions in (16.33), the action reads

S0 =
∑
α,n

η̄α,n
[−iνn + Eα

]
ηα,n,

where Eα = εα − μ. The partition function becomes

Z0 =
∏
α

Z(0)
α ⇒ Z(0)

α =
∫

D[η̄α,ηα] e
−β∑n η̄α,n

(
−iνn+Eα

)
ηα,n

=
∞∏

n=−∞

[
−iνn + Eα

]−ζ
yielding a grand potential


0 = − 1

β
ln ψ0 = ζ

β

∑
α,n

ln
(
−iνn + Eα

)
.

This Matsubara sum is divergent; the continuum time limit of the partition function is
therefore ill defined. To circumvent this difficulty, we consider the mean particle number
it yields

〈N〉 = −∂
0

∂μ
= − ζ

β

∑
α,n

1

−iνn + Eα
=
∑
α

1

eβ(εα−μ) − ζ

or


0 = ζ

β

∑
α

ln
(

1− ζ e−β(εα−μ)
)

.

If we start with the discretized expression of the partition function (16.30), we obtain
the action

S =
∑
α

N∑
m=1

[
η̄α,m

(
ηα,m − ηα,m−1

)
− δβ Eα η̄α,m ηα,m−1

]
.
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Substituting the Matsubara Fourier series

ηα,m = 1√
N

∞∑
n=0

aα,n e
−iωnτm

for the ηs, where aα,n are complex numbers for bosons and Grassmann variables for
fermions. We obtain

Z0 = lim
N→∞

∫ N−1∏
n=0

d(a∗n,an) exp

[
−
∑
α

N−1∑
n=0

a∗α,n aα,n
[
1+ (δβEα − 1) eiνnδβ

]]

= lim
N→∞

∏
α

N−1∏
n=0

[
1+ (δβEα − 1) eiνnδβ

]−ζ
.

Writing 1− δβ Eα � e−φα and using the identity

N−1∏
n=0

(
1− eiνnδβ−φ

)
= 1− ζ e−Nφ,

we arrive at

Z0 = lim
N→∞

∏
α

(
1− ζ e−Nφα

)−ζ =∏
α

(
1− ζ e−βE

)−ζ
. (16.34)

16.4.2 The Hubbard–Stratonovich transformation

The preceding formulation of functional integral furnishes a way of discussing the physics
of interacting fermions (bosons), which in many cases turns out to be remarkably trans-
parent and appealing. Particularly when considering cases with a broken symmetry, where
the use of the Hubbard–Stratonovich transformation often allows the identification of the
emerging order parameter and treating its fluctuations in a way that is both physically
transparent and systematic.

The Hubbard–Stratonovich transformation (HST) is a general method for replacing a
two-body interaction with the interaction of a one-body with external bosonic exchange
fields. This transformation is an operator generalization of the Gaussian integral

∫ ∞
−∞

dx exp
[
−πx2 − 2π1/2 xO

]
= exp

[
O2
]
, (16.35)

where O is an operator. Thus, if a quadratic term like the right side of (16.35) appears in the
partition function, representing a two-body interaction, it can be replaced by the left-hand
side of (16.35), which contains only one-body interactions. However, these single particles
now interact with an external bosonic field that must be integrated.
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In order to apply the HST to the case of a bilinear interaction of the form

HI (τi) = V12 O1(τi)O2(τi),

we rewrite the interaction in the form

HI = V12

[(O1 +O2

2

)2

−
(O1 −O2

2

)2
]
,

which is valid for commuting O1 and O2. We then obtain for the ith slice of a functional
integral

lim
N→∞

exp

[
− β

N
HI (τi )

]
= exp

[
− β

N
V12

(O1 +O2

2

)2
]
× exp

[
+ β

N
V12

(O1 −O2

2

)2
]

.

Performing HST, we get

exp

[
+ β

N
V12

(O1 −O2

2

)2
]
=
∫ ∞
−∞

dxi exp
[
−πV−1

12 x2
i

]
exp

[
−
(
πβ

N

)1/2
xi
[
O1 −O2

]]

exp

[
− β

N
V12

(O1 +O2

2

)2
]
=
∫ ∞
−∞

dyi exp
[
−πV−1

12 y2
i

]
exp

[
−i
(
πβ

N

)1/2
yi
[
O1 +O2

]]
.

Setting xi → xi/
√
N, yi → yi/

√
N , and introducing the notation∫

D[x(y)] → lim
N→∞

∫ ∞
−∞

N∏
i=1

dxi(yi)√
N

,

leads to the functional integral form∫
D[x]D[y] exp

[
−π
∫ β

0
dτ
[
x2(τ )+ y2(τ )

]]
Tτ

[
exp

(
−
∫ β

0
dτ
√
π
[
O1(τ )−O2(τ )

]
x(τ)

)

× exp

(
−i
∫ β

0
dτ
√
π
[
O1(τ )+O2(τ )

]
y(τ)

)]
.

Introducing the complex field φ(τ) = x(τ)+ iy(τ ), we obtain the simpler form∫
D[φ] exp

[
−π
∫ β

0
dτ φ(τ) V −1

12 φ∗(τ )
]

× Tτ

[
exp

(
−
∫ β

0
dτ
√
π
[
O1(τ ) φ(τ)−O2(τ ) φ

∗(τ )
])]

. (16.36)

In most cases, we will have O2 = O†
1. Choosing the appropriate HS transformation is

always an educated guess. To explore the physical ramifications of the HST, we consider
some typical two-body fermionic interactions. Actually, we can pair the c-operators in three
different but physically meaningful ways:
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(i) For Hartree or direct Coulomb interactions, we have

1

2

∑
kk′,q
σ,σ ′

4πe2

q2
c

†
k+q,σ c

†
k′−q,σ ′ ck′,σ ′ ck,σ = 1

2

∑
q

σ,σ ′

4π
(
eρσ (q)

) (
eρσ ′(−q)

)
q2

+ const.

With O1 = e
∑

σ=↑↓ ρσ (q), O2 = e
∑

σ=↑↓ ρσ (−q), the HST yields

− 1

8π

∑
q

q2φ−q φq +
∑

q

[
ieρ(q)φ−q − ieρ(−q)φq

]
.

The inverse Fourier transform of the first term gives 1
8π (∇φ(x))2 = E2/8π , which is

the bosonic electric field. For a Coulomb electron gas, we have

S =
∫

dx dτ
[
ψ̄(x)

(
∂τ − p2

2m
+ eφ(x)− μ

)
ψ(x)− 1

2

(∇ φ
)2]

(ii) We consider the contact interaction model

g
∑
s,s′

�†
s (x) �

†
s′(x)�s′(x)�s(x) = −s(x) · s(x),

where s(x) = �
†
s (x)σss′�s′(x). Introducing an exchange field m, HST takes the form∫

D[m] exp

[
−
∫ β

0
dτ dx

(
m2 − 2m · s

)]
= N exp

[∫ β

0
dτ dx s2(x)

]
and yields

S =
∫ β

0
dτ dx

⎡⎣∑
s=↑↓

ψ̄s (∂τ −H0 − μ) ψs − 2gm · s+ gm2

⎤⎦ .

Note that m here is a field that is allowed to fluctuate, and we integrate over all possible
paths of this field.

(iii) We consider the pairing Hamiltonian associated with superconductivity

−g
∑
kk′

c
†
k↑ c

†
−k↓ c−k′↓ ck′↑ = −g

(∑
k

c
†
k↑ c

†
−k↓

) (∑
k

c−k↓ ck↑

)
.

Applying HST with a complex pairing field 	, we get

	̄
∑

k

c
†
k↑ c

†
−k↓ +

∑
k

c−k↓ ck↑	+ 	̄	

g
.

Mean Field and the Saddle-Point Approximation

So far, the treatment of two-body interaction and its variants that we have presented is exact;
no approximations have been introduced. The Hubbard–Stratonovich transform gives the
exact expression
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Z =
∫

D[φ∗,φ]D[ψ̄,ψ] exp

[
−π
∫ β

0
dτφ(τ )V−1φ∗(τ )

]
exp

[
−
∫ β

0
dτ
(
ψ̄∂τψ +Heff

)]

=
∫

D[φ∗,φ]D[ψ̄,ψ] e−S[φ∗,φ,ψ̄,ψ] =
∫

D[φ∗,φ] e−Seff[φ∗,φ]

Heff = ψ̄H0 ψ +
∑
i

(
Ōi φi +Oi φ

∗
i

)
, (16.37)

where the Ois are bilinear in the ψs. We can integrate over the coherent state variables
in (16.37), but we do not know how to handle the functional integral over φ(x,t). Note
that the two-body interactions become encoded in the dynamics of the bosonic field φ, and
there are various approximations to treat it. The simplest one is to subject the action to a
stationary phase treatment, which amounts to performing a saddle-point approximation for
the functional integral over φ, whereby we extremize the action

δSeff[φ∗,φ]

δφ∗i
= δ lnZ

δφ∗i
= 1

Z

∫
D[ψ̄,ψ]

(
V −1
i φi +Oi

)
e−S[φ∗,φ,ψ̄,ψ] = 0,

which is actually equivalent to a classical approximation. It is clear that such a procedure
will lead to a fixed configuration of the field φ, namely

φ0
i = −Vi 〈Oi〉 ,

whereby the stationary auxiliary field is the average of the two-body interaction over the
associated operator. This is just the mean-field approximation, where for example a quartic

term like c
†
i cj c

†
kcl becomes

〈
c

†
i cj

〉
c

†
kcl + c

†
i cj

〈
c

†
kcl

〉
.6 Spontaneous symmetry breaking

occurs when the order parameter φ0
i or 〈Oi〉 assumes a nonzero value. In both methods,

order parameters can then be solved self-consistently to yield the decoupled Hamiltonian.
In the example of the Coulombic electron gas presented earlier, we get

δSeff[φ∗,φ]

δφ∗i
= 1

Z

∫
D[ψ̄,ψ]

(
eρ(x)+∇2φ(x)

)
e−S = 0,

and the saddle-point solution satisfies Gauss’s law:

−∇2φ = ∇·E = eρ(x).

Spatial and temporal homogeneity translates to a uniform potential φ0, and charge neutral-
ity sets it to zero.

Effective Action and Fluctuations

It is clear that we can calculate systematic corrections to the lowest-order stationary-phase
approximation φ0. After integrating out the ψ’s, we can explore the properties of functional

6 Actually, both methods are equivalent. But we find that the Hubbard–Stratanovich transformation is more systematic, as it
might be easier to figure out how to go beyond the mean field. It might also be easier to combine different kinds of channels;

for instance, in the case of superconductivity, we would select c†
i
cj c

†
k
cl →

〈
c

†
i
c

†
k

〉
cj cl + c

†
i
c

†
k

〈
cj cl

〉
. But we should keep in

mind that HSTs are arbitrary, we can combine an arbitrary number of them, and the different emerging mean-field theories
give different results.
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fluctuations of the bosonic auxiliary field, δφ = φ − φ0. We use the Gaussian form of the
ψ’s to obtain∫

D[ψ̄,ψ] exp

[
−
∫ β

0
dτ
(
ψ̄ (∂τ +H0 − μ)ψ +Heff

I

)]
= detζ

(
∂τ + H̃0 − μ+ H̃eff

I [φ∗,φ]
)
,

where H̃ is a matrix representation, and for simplicity of notation we set δφ → φ. We
then get7

Z =
∫

D[φ∗,φ] e−Seff[φ∗,φ]

Seff[φ
∗,φ] =

∫ β

0
dτ φ(τ ) V −1 φ∗(τ )− ζ Tr ln

(
∂τ + H̃0 − μ︸ ︷︷ ︸+H̃eff

I [φ∗,φ]

)
(16.38)

−G(0)−1,

where we used the identity ln det = Tr ln. We note that

ζ Tr ln
(
−G(0)−1 + H̃eff

I

)
= ζ Tr ln

(
−G(0)−1

) (
1−G(0) H̃eff

I

)
= ζ Tr ln

(
−G(0)−1

)
+ ζ Tr ln

(
1−G(0) H̃eff

I

)
= ζ Tr ln

(
−G(0)−1

)
− ζ

∞∑
n=1

1

n!
Tr
(
G(0) H̃eff

I

)n
.

The first term involves just the noninteracting Green function, and we note that
exp
[
Tr ln

(−G(0)−1
)] = exp

[−Tr ln
(−G(0)

)] = detG(0)−1 = Z0, the noninteracting
partition function. The last term is a perturbative series that can be treated using Feynman
diagram techniques. Putting everything together, we get

Z = Z0

∫
D[φ∗,φ] exp

[
−
∫ β

0
dτ φ(τ ) V −1 φ∗(τ )− ζ

∞∑
n=1

1

n!
Tr
(
G(0) H̃eff

I

)n]
.

(16.39)

To illustrate this treatment, we shall continue with our Coulombic electron gas example.
Recall that φ here represents a scalar photon field that mediates Coulomb interaction – it is
real and periodic φ(τ + β) = φ(τ). Using a plane-wave basis and the Matsubara Fourier
series,8 we find that

Z = Z0

∫
D[φ∗,φ] exp

[
−
∫ β

0
dτ φ(τ ) V −1 φ∗(τ )− ζ

∞∑
n=1

1

n!
Tr
(
G(0) H̃eff

I

)n]
,

7 detA =∏i ai , where ai are the eigenvalues of matrix A. Thus, ln det(A) =∑i ln(ai ). Note that the eigenvalues of ln[A] are
ln(ai ).

8 
n and ωm are fermionic and bosonic Matsubara frequencies, respectively.
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where we used (15.165) for iωn = 0. Substitution in (16.38) yields

Seff[φ] = 1

2

∑
q

(
q2

4π
− e2$0(q)

)
|φ(q)|2 +O(e4)

� 1

2

∑
q

q2

4π

(
1− 4πe2

q2
$0(q)

)
|φ(q)|2 =

∑
q

ε(q)
q2

4π
,

which describes the screening of Coulomb field fluctuations by the electron gas.

Exercises

16.1 Given the action

S =
∫ tb

ta

dt
(m

2
ẋ2 − V (x)

)
.

(a) Determine
δS

δx(u)
and

δ2S

δx(u)δx(u′)
.

Hint: use the identity
δx(t)

δx(u)
= δ(x − u) and the chain rule.

(b) Substitute in expansion of the action

S =
∫ tf

ti

dt
δ(2)S[x]

δx(t)δx(t ′)
η(t) η(t ′).

16.2 The Hamiltonians of both fermionic and bosonic harmonic oscillator can be expressed

as H = h̄ω
(
N + 1

2

)
, where N is the corresponding number operator.

(a) Using their respective commutators, show that the Hamiltonians can be
expressed as

HB = h̄ω

2

{
b†, b
}

HF = h̄ω

2

[
c†, c
]

.

(b) Defining the fermionic ground state as c |0〉 = 0, show that

HF |0〉 = − h̄ω
2
|0〉 .

Now use the raising operator to show that Hilbert space for the fermionic oscil-
lator is of dimension 2, and determine the energy of the upper level.

(c) Derive the coherent state partition function of the fermionic oscillator.
Hint: use the Matsubara Fourier series and the Euler formula

cosh
(x

2

)
=

∞∏
n=1

[
1+
(

x

π(2n+ 1)

)2
]

and fix the normalization by taking the limit β →∞.
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16.3 Consider the infinite-range Ising model, where the coupling constant Jij = J0, ∀ i,j
– no restriction to nearest-neighbor interactions. The Hamiltonian is then given by

H = J0

2

∑
ij

si sj − μB
∑
i

si .

(a) Explain why this model only makes sense if J0 = J/N , where N is the number
of spins in the system.

(b) Use the Hubbard–Stratonovich transformation

exp
[ u

2N
x2
]
=
√
Nu

2π

∫ ∞
−∞

dm exp

[
−Nu

2
m2 + uxm

]
to show that the partition function is given by

ZN =
√
NJβ

2π

∫
dm e−NβS

S = J

2
m2 − 1

β
ln [2 cosh (β(μB + Jm)] .

(c) In the thermodynamic limit, N → ∞, use the saddle-point approximation to
determine the mean-field value m0. Determine the average spin 〈s〉 as

〈s〉 = 1

Nβ

∂ lnZN

∂B

and show that it satisfies the self-consistency condition

〈s〉 = tanh
[
β (J 〈s〉 + μB)

]
.

(d) Derive an expression for the free energy F = −kBT lnZN .

16.4 Consider the imaginary-time action of a bosonic system

S[ψ] =
∫

dx
∫ β

0
dτ

[
ψ̄ ∂τ ψ + 1

2m

∣∣∇xψ
∣∣2 − μ ψ̄ψ + g

2
ψ̄ψ̄ψψ

]
,

where ψ is a complex boson field, and g is a repulsive contact interaction (h̄ = 1).

(a) Show that the homogeneous saddle point of the action is ψ0 = √ρ0 e
iθ , where

ρ0 = μ/g and θ is a fixed arbitrary phase.
(b) Determine the excitation spectrum by expanding the field around the saddle point

ψ(x,τ ) = ψ0 + φ(x,τ ), and terminating at terms quadratic in φ. Show that the
Gaussian action can be written in the spinor form

S[φ] = 1

2

∫ β

0
dτ

∫
dx
[
φ̄ φ

]⎛⎝∂τ − ∇2

2m + g|ψ0|2 gψ2
0

gψ̄2
0 −∂τ − ∇2

2m + g|ψ0|2

⎞⎠[φ̄
φ

]
.
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(c) Show that the quasiparticle spectrum has the form

ω2
q = v2

pq
2 +
(
q2

2m

)2

,

where v2
p = ρ0g/m.



17

Boson Systems: Bose–Einstein Condensation
and Superfluidity

17.1 Ideal Bose Fluid and Bose–Einstein Condensation

We have obtained in the preceding chapter (16.34), the grand partition function of an ideal

Bose gas as ZG =
∏

α

(
1− e−β(εα−μ)

)−1
, where α labels the quantum states of the gas.

Here, we consider free plane-wave states, and write

ZG =
∏

k

(
1− e−β(εk−μ)

)−1
,

with the grand potential and particle number given by

� = kBT
∑

k

ln
(

1− e−β(εk−μ)
)
; N =

∑
k

(
1

e−β(εk−μ) − 1

)
. (17.1)

We notice immediately that at finite temperatures we require that μ < εk ∀k; otherwise,
the occupation number of some state k′, with εk′ = μ, will equal infinity!. Since the lowest
state here is ε0 = 0, μ has to be≤ 0. However, at T = 0 this condition is relaxed. We recall
that the quantity eβμ = α is the fugacity, and thus 0 ≤ α ≤ 1.

Because bosonic states have no restriction on their occupation numbers, one has to
be very careful when making the transition from a summation to an integral over k. To
underscore this point, we shall contrast two cases.

17.1.1 Fixed Chemical Potential

First, we consider a 3D system in contact with a particle reservoir that fixes the value
of μ. We introduce the integral form of � and N with the aid of the density of states

D(ε) = 


(2π)2

(
2m
h̄2

)3/2
ε1/2, and write

� = kBT



(2π)2

(
2m

h̄2

)3/2 ∫ ∞
0

ln
(

1− e−β(ε−μ)
)
ε1/2 dε

= −2

3




(2π)2

(
2m

h̄2

)3/2 ∫ ∞
0

ε3/2

eβ(ε−μ) − 1
dε, (integration by parts) (17.2)

542
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N = 


(2π)2

(
2m

h̄2

)3/2 ∫ ∞
0

ε1/2 e−β(ε−μ)

1− e−β(ε−μ)
dε (17.3)

U = −∂ lnZG

∂β

∣∣∣∣
βμ

= 


(2π)2

(
2m

h̄2

)3/2 ∫ ∞
0

ε3/2

eβ(ε−μ) − 1
dε = 3

2
�. (17.4)

Since � = U − T S − μN = −PV , we obtain the equation of state

PV = 2

3
U .

17.1.2 Fixed Particle Number: Bose–Einstein Condensation

Now we consider a system of bosonic particles enclosed in an impermeable box and in
contact with a temperature reservoir T , with particle number N fixed. Then according to
(17.2), and with the fugacity α = eβμ, we have

N = 


(2π)2

(
2m

h̄2

)3/2 ∫ ∞
0

ε1/2 e−β(ε−μ)

1− e−β(ε−μ)
dε

= 


(2π)2

(
2m

h̄2

)3/2

(kBT )
3/2
∫ ∞

0

α x1/2 e−x

1− α e−x
dx

= 
√
πλ3

T

∞∑
�=0

α�+1
∫ ∞

0
x1/2 e−(�+1)x dx

= 


λ3
T

∞∑
�=1

α�

�3/2
= 


λ3
T

F3/2(α), (17.5)

where λT =
√

2πh̄2

mkBT
is the thermal de Broglie wavelength, and F3/2 is known as the

polylogarithmic function (see Figure 17.1). What happens when we lower the temperature
to T ′? Will μ remain constant? At T ′ < T , λT ′ > λT , α′ = eβ

′μ < α, since μ < 0.
Assuming μ remains constant, then N ′ < N ! We have a problem unless μ increases
⇒ μ → 0, α → 1.

We rewrite (17.5) in the form

Nλ3
T

g

= n λ3

T

g
= F3/2(α).

But how far can μ increase to compensate for all the other terms? That would depend on
the maximum value of F3/2- 2.612 for μ = 0, α = 1!
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Figure 17.1 The polylogarithmic function F3/2 as a function of the fugacity α.

A moment’s reflection reveals the source of the problem:
We consider the occupation of the lowest energy state for 1 liter (=10−3m3) of 4He

with atomic mass � 6.6× 10−27 kg enclosed in a cubic box of side L:

ε0 = ε111 �
h̄2k2

111

2m
= 3h2

8mL2
, ⇒ k111 =

(π
L
,
π

L
,
π

L

)
= 2.0× 10−37J ⇒ T = 2× 10−14 K .

The first excited state is triply degenerate with energy

ε211 = 4.0× 10−37 J ⇒ T = 4× 10−14K,

ε211 − ε111 = 2.0× 10−37 J ⇒ T = 2× 10−14K.

Thus, the discrete states are very closely spaced in energy – far closer than kBT at any
reasonable temperature. We might well have felt confident in replacing the sum by an
integral!

First we note that at T = 0, all N particles occupy the ground state, in which case
μ = ε0 ! We examine closely the population of the ground state and first-excited state
as the chemical potential approaches ε0 from below. In particular, we inquire as to the
value of μ for which the population of the ground state alone is comparable to the entire
number of particles in the gas. Let the population of the ground state at a very low
temperature be n0 � 1022, then

n0 ∼ 1022 = 1

eβ(ε111−μ) − 1
� kBT

ε0 − μ
, ⇒ 10−22 � β (ε111 − μ).

Notice that because the total number of particles is very large but finite, μ < ε0 at finite
temperatures.
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We find that for T = 10K

(ε111 − μ) = 10−22kBT = 10−21kB = 13.8× 10−44J,

and we obtain for the population of the first excited state

n1

n0
= ε0 − μ

(2ε0 − μ)
= 13.8× 10−44

2.0× 10−37
� 10−7

n1 = 10−7 × 1021 = 1014.

The population of the higher states continues to fall extremely rapidly. As the tem-
perature decreases further, μ cannot approach closer to the ground state-energy than
β(μ−ε111) ∼ 1/N ∼ 10−23 (at which value the ground state would host all N particles
in the gas!). Hence, the ground state shields all other states from too close an approach of
μ, and each other state individually can host only a relatively small number of particles.
Together, of course, the remaining states host all the particles not in the ground state.
All states other than the ground state are adequately represented by the integral over the
density of orbital states function. Only the ground state needs special consideration.

The ground-state energy must be separately and explicitly listed in the sum over states.
We identify a demarcation temperature TBE below which the integral analysis fails, and
the ground state begins to be macroscopically populated, namely,

TBE = 2πh̄2

mkB

(
N

2.612g


)2/3

= 1.687× 10−18

m

(
n

g

)2/3

(17.6)

with m in atomic units. Alternatively, we may write

N

g

λ3
TBE

= 2.612 . (17.7)

Below TBE , the number of particles in the excited states Ne is given by

Ne

g

λ3
T = 2.612 , (17.8)

and thus we obtain the following expression for the number of particles in the excited states
at T < TBE :

Ne(T ) =
(
λTBE

λT

)3

N =
(

T

TBE

)3/2

N . (17.9)

The number of condensed particles is then

Nc = N

[
1−
(

T

TBE

)3/2
]

. (17.10)
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Figure 17.2 Spectroscopic (reciprocal space) images of a gas of atoms at 400 nK (left), 200 nK
(middle), and 50 nK (right). The peak in the momentum distribution signals the onset of condensation.

An interesting observation becomes clear if we rewrite (17.7) in terms of the specific
volume per particle, v = 
/N = �3, namely

λ3
TBE

v
=
(
λTBE

�

)3

= 2.612 g,

This relation reveals that condensation is initiated when the thermal de Broglie wavelength
becomes comparable to the mean free path of the bosonic particles, shown in Figure 17.3!

The appearance of a macroscopic population is referred to as a condensate phase in
analogy to the gas/liquid transformation.

However, in contrast to the latter, where a clear phase separation with a well-demarcated
boundary (interface) between the liquid and gas phases in physical space, no such separa-
tion takes place between the condensate and the remaining population of the excited Bose
gas states. This is because the ground-state wavefunction permeates the whole volume 

occupied by the system.

Yet we should also make the observation that there appears a phase separation in
k-space, as shown in Figure 17.2.

17.2 Interacting Bosons and Superfluidity

Before the observation of Bose–Einstein condensation (BEC) in optically trapped super-
cooled atoms, it was thought to occur in superfluid 4He, which liquifies around 4.2 K
and goes over to the superfluid state at T = 2.18 K. The latter transition is marked by
a second-order transition lambda point. This is similar to a BEC, but we should note that,
strictly speaking, BEC deals with bosons in an ideal gas phase. Here, helium is in the liquid
phase, and there are significant interactions between He atoms not present in the theory of
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Figure 17.3 Thermal de Broglie wavelength.

a noninteracting gaseous BEC. Therefore, we cannot treat the 4He system using the same
approach as for an BEC in an ideal gas. However, the fact that 4He atoms are bosons still
remains significant.

17.2.1 An Early Historic perspective

The discovery of superfluidity in liquid 4He was announced to the scientific world on
January 8, 1938 [7, 8, 101]. This prompted Fritz London to suggest that the transition at
T = 2.18 K in liquid 4He was due to the formation of a BEC of 4He atoms of ideal Bose
gas distorted by intermolecular forces [120, 121].1 This observation is famous because it
signals the historical jump of quantum mechanics from the microscopic physics of atoms
to macroscopic systems such as a liter of liquid helium. Tisza then followed by suggesting
that the spectacular superfluidity effects observed were related to the coherent motion of the
Bose condensate. He launched the famous “two fluid theory” [178, 180, 179], where helium
can be considered as a mixture of two fluids, “superfluid” and “normal”: at T = 0, liquid
helium is a purely superfluid condensate, whereas with increasing temperature excited
atoms are formed constituting the normal component. The most important success of Tisza
theory was the prediction of what was later coined as second sound 2 by Landau. In 1941,
Landau reformulated Tisza’s two-fluid model on a more rigorous basis. The principles and
consequences were similar, except for the nature of the normal component of the quantum
liquid. Landau’s intuition was that it consisted of collective excitations, and not of single-
atom excitations, as Tisza had assumed. In order to fit the measured specific heat, he had
to assume the existence of two different kinds of excitations: a linearly dispersive phonon
branch, with a slope corresponding to the velocity of sound, and a quadratic curve with an
energy gap for a new class of excitations he called “rotons” (see Figure 17.4).3 Based on

1 London realized that for a noninteracting gas with the mass and density of 4He, the BEC phenomenon would occur at 3.3 K,
which suggested to him that this was exactly what was going on at the observed lambda transition (2.17 K).

2 First sound is ordinary sound, which consists of fluctuations in total density. Its velocity is only weakly dependent on
temperature. Second sound has a velocity that is a strong function of temperature, becoming zero at the λ-point. Second sound
consists of fluctuations (propagating waves) in entropy or temperature in helium. See [53] for more detail.

3 I. E. Tamm suggested to Landau to call these excitations “rotons.”
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Figure 17.4 Landau’s phonon/roton model.

these assumptions, Landau proposed that, for a superfluid flowing at a velocity v at zero
temperature, dissipation can only result from the emission of either phonons or rotons, so
that, from the conservation of energy and momentum in this process, dissipation is only
possible if

v ∼ 60 m/s >

√
	

2μ
(rotons),

where 	 is the roton energy gap and μ a mass about six to eight times the mass of
a 4He atom. He also predicted that there should exist two different types of waves in
superfluid helium: ordinary sound and heat waves that he called “second sound.” However,
Landau’s theory is not a microscopic theory. Moreover, the fact that 4He atoms are bosons
is never used.

17.2.2 Bogoliubov Theory of Superfluid 4He: Weakly Interacting Bosons

Our current understanding that BEC forms the microscopic basis of Landau’s theory of
superfluidity was developed from the initial work of Bogoliubov in 1947. Bogoliubov’s
theory is based on a physical assumption that a weakly nonideal Bose gas can condense à
la BEC. The existence of the Bose condensate leads to a unique macroscopic wavefunction
of the whole system – a collective effect. This means that the presence of even a weak
interaction transforms single-particle excitations into the spectrum of collective excitations.

Following Bogoliubov’s recipe, we write the Hamiltonian in the field operators repre-
sentation as

H =
∫

dx
h̄2

2m
∇ψ†(x∇ψ(x+ 1

2

∫
dx V (x′ − x) ψ†(x) ψ†(x′) ψ(x′) ψ(x), (17.11)

where V (x) is a short-range, two-particle interaction potential. For a uniform gas in volume

, we express the field operators as
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ψ =
∑

k

eik·x√



bk,

where bk are annihilation operators. Substituting in (15.23.32), we get

H =
∑

k

εk b
†
k bk + 1

2


∑
k,k′,q

Vq b
†
k−q b

†
k′+q bk′ bk (17.12)

εk = h̄2k2

2M
,

where εk is the energy of a helium atom of mass M , and Vq is the Fourier transform of
V (x).

17.2.3 A Simplified Picture of the Small k Excitation Spectrum

To simplify the derivation while preserving the physics, we shall replace the short-range
potential with a contact one, and write

H =
∑

k

εk b
†
k bk + V0

2


∑
k,k′

b
†
k′ b

†
k bk′ bk. (17.13)

Again, following Bogoliubov’s prescription, we argue that the idea of macroscopic con-
densation of particles into the k = 0 state can carry over from noninteracting systems to
interacting ones. This macroscopic number of order of Avogadro’s number, we call N0,
becomes the expectation value of b†

0 b0. In fact, b†
0 b

†
0 operating on a wavefunction with N0

particles in the k = 0 state would give
√
(N0 + 1)(N0 + 2) times the state with N0 + 2

particles, but since 2 � N0, we ignore this difference. We take b†
0 b

†
0 = b0b0 to be equal to

N0, or b†
0 = b0 =

√
N0.

In a noninteracting gas at T = 0, all the atoms are in the condensate and N0 = N .
In a weakly interacting gas, the occupation numbers for states with |k| 
= 0 are finite but
small. This means that, to first approximation, we can neglect all terms in the Hamiltonian
containing operators bk and B

†
k, k 
= 0. Such an approximation implies that N0 ∼ N , and

we replace b0 with
√
N . The ground-state energy becomes

εH = Nε0 + V0

2


〈
�

∣∣∣b†
0 b

†
0 b0 b0

∣∣∣�〉 = Nε0 + V0

2

N(N − 1) = Nε0 + V0N

2

2

,

where � is the Hartree wavefunction.
The dependence of the energy on the volume implies that this system will support long

wavelength longitudinal sound waves. The sound wave velocity for a classical fluid is
given by
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v =
√
R

ρ

R = −

(
∂P

∂


)
N

, P = −
(
∂εH

∂


)
N

,

where ρ is the density, R is the bulk modulus, and P the pressure. We find that

v =
√

(∂2εH/∂
2)

ρ
=
√
NV0

M

. (17.14)

V0 has to be positive – a repulsive potential – for the sound velocity to be real.
Thus, for a system of unit volume, we anticipate boson excitations at small k with

dispersion ωk given by

ω2
k =

NV0k2

M
. (17.15)

Bogoliubov’s method shows how these excitations arise as a modification of the single-
particle excitation spectrum.

17.2.4 Interacting Boson System and Bose–Einstein Condensation

We now rewrite the Hamiltonian (17.12) dropping all terms of order less than N0. Provided
that Vq = V−q, we obtain

H �
′∑
k

εk b
†
kbk +

1

2
N2

0V0 +N0V0

′∑
k

b
†
kbk +N0

′∑
k′
Vk′ b

†
k′bk′ +

1

2
N0

′∑
q
Vq

(
bq b−q + b

†
−q b

†
q

)
where the prime over sums excludes the zero term. We set

N = N0 +
∑

k

b
†
k bk; ξk = N0Vk; h̄
k = εk + ξk

and assume that N −N0 � N0
4. We write

H = 1

2
N2 V0 +

∑
k

h̄
k b
†
k bk + 1

2

∑
k

ξk

(
bk b−k + b

†
k b

†
−k

)
. (17.16)

We note that this Hamiltonian is nondiagonal in the operators bk and b
†
k. This is pre-

cisely where Bogoliubov introduced his canonical transformation that we presented in
Chapter 13. He wrote

αk = (cosh θk) bk − (sinh θk) b
†
−k, (17.17)

where θk is not defined for now. αk satisfies the bosonic commutator
[
αk, α

†
k′
]
= δk,k′ .

Now we require that the Hamiltonian becomes diagonal in the α representation, taking
the form

4 This assumption may not hold for real liquid helium.
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H = E0 +
∑

k

h̄ωk α
†
k αk. (17.18)

We express α†
k αk in terms of the bs and setωk and θk such as to match Hamiltonian (17.16):

α
†
k αk =

[
(cosh θk) b

†
k − (sinh θk) b−k

] [
(cosh θk) bk − (sinh θk) b

†
−k

]
=
(

cosh2 θk

)
b

†
k bk +

(
sinh2 θk

) (
1+ b

†
−k b−k

)
− (cosh θk sinh θk)

(
bk b−k + b

†
−k bk

)
. (17.19)

We note that ωk = ω−k because of time-reversal invariance, and we set θk = θ−k, to obtain∑
k

h̄ωk α
†
k αk =

∑
k

h̄ωk cosh(2θk) b
†
k bk +

∑
k

h̄ωk sinh2 θk

− 1

2

∑
k

h̄ωk sinh(2θk)
(
bk b−k + b

†
−k b

†
k

)
. (17.20)

To reproduce (17.16), apart from a constant, we set

ωk cosh(2θk) = 
k; h̄ωk sinh(2θk) = −ξk

and obtain

h̄2ω2
k = h̄2
2

k − ξ2
k

E(k) = h̄ωk =
√
(εk +N0Vk)

2 − (N0Vk)
2 =
√
ε2

k + 2εk N0Vk. (17.21)

Thus, the Bogoliubov approach produced a ground state of energy

E0 = 1

2
N2 V0 + 1

2

∑
k
=0

[
E(k)−N0Vk − εk + (N0Vk)

2

2εk

]
above which new noninteracting elementary collective excitations, or quasiparticles,
emerge, with dispersion relation (17.21). These noninteracting quasiparticles are anni-
hilated and created by the operators αk and α

†
k, respectively. The ground state now acts as

a vacuum for the new quasiparticle excitations

αk |∅〉 = 0, ∀k 
= 0. (17.22)

We find that the original system of interacting particles can now be described in terms of a
Hamiltonian of independent quasiparticles having energy h̄ωk.

The interesting thing about these excitations is the way their energy varies with k. When
we consider the region where εk = h̄2k2/2m � N0Vk, we find that

ωk �
√
NVk

M
k. (17.23)

This excitation looks more like phonons (Bogoliubov sound) than like free particles. How-
ever, when k becomes large, so that ε � N0Vk, then the excitations will once again be



552 Boson Systems: Bose–Einstein Condensation and Superfluidity

Figure 17.5 Dispersion relation for weak interactions.

Phonons

Rotons

Maxons

Figure 17.6 Left: a possible form of the effective interaction between helium atoms. It leads to a
dispersion curve with a minimum, as shown on the right.

particlelike. The boson dispersion relation will look like the one depicted in Figure 17.5
for contact interaction, where Vk = V . The detailed shape of the dispersion curve ω(k)
will depend strongly on the form of Vk. In real liquid helium, atoms interact strongly, and
we need to introduce modifications to the previous analysis: Vk takes a form similar to that
shown in the left graph in Figure 17.6, which leads to the dispersion relation for liquid 4He
measured by inelastic neutron scattering, shown on the right. It confirms Landau’s model
of phonon/roton collective excitations. It is also in accord with the superfluid properties of
this system at low temperatures.

A Note about Rotons
The elementary excitations in superfluid liquid 4He named rotons have an unusual
dispersion curve. The energy is an approximately quadratic function of (k− kr ),

ε(k) = 	+ h̄2(k− kr )2

2μ
.

At low temperature and pressure, approximate values for the parameters are kr =
1.92Å−1, 	/kB = 8.62 K, and μ = mHe/6. For k > kc, a roton group velocity is
parallel to its momentum, while for k < kc the velocity and momentum are antiparallel.
When k = kc, the roton has nonzero momentum but zero velocity. Consequently, a
roton at the minimum has the curious property of remaining stationary in the liquid
despite its large momentum. Rotons just to the left of the minimum, which, even more
astonishingly, move backward in the opposite direction to their momenta, are known as
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Figure 17.7 Rotons, according to Landau, may be described as microscopic smoke rings.

R− rotons; those on the high-momentum side are known as R+ rotons. These kinematic
properties lead to unusual trajectories when rotons scatter or experience external forces,
as rendered in Figure 17.7.

17.2.5 Superfluidity

The linear behavior ω(k) ∝ k at low energies is a characteristic feature of the quasiparti-
cles, which is to be compared with the energy dependence of free particles ω(k) ∝ k2. This
result is the core of the remarkable phenomenon of superfluidity in which certain liquids,
like 4He, suffer no friction in going through capillaries, i.e., they exhibit no viscosity. To
explain the origin of this phenomenon, we start with defining

vc = min
ω(k)

k
, (17.24)

where vc is called the critical velocity. Note that from (17.23) vc > 0, and that for a
noninteracting system, with

ε = h̄2k2

2m
,

vc = 0 and hence no excitation occurs.
To understand superfluidity, we follow an argument due to Landau.

Landau’s theory of superfluids is based on the Galilean transformation of energy and
momentum. We consider a fluid of energy E and momentum P in a reference frame K .
Expressing its energy and momentum in a frame K ′, moving with a relative velocity V
with respect to the reference frame K , we obtain the relations

P′ = P−MV

E′ = P ′2

2M
= |P−MV|2

2M

= E − P · V+ 1

2
MV 2,

where M is the total mass of the fluid.
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Now consider a fluid at zero temperature, in which all particles are in the ground state
and flowing through a capillary at constant velocity vs . In the rest frame K of the fluid,
the capillary moves with a velocity −vs . The friction between the fluid and the capillary
can cause quasiparticle excitations in the fluid by transforming kinetic energy to internal
energy, or excitation energies. If a generated quasiparticle has momentum k and energy
ε(k), then the total energy in the rest frame is E0 + ε(k), where E0 is the ground-state
energy. Transforming back to the laboratory frame K ′ where the tube is now at rest, we
have V = −vs . This fluid will have the energy

E′ = E + [ε(k)+ k · vs] , (17.25)

where E = E0 +Mv2/2. If no excitation is present, the energy of the fluid is E. The pres-
ence of the excitation causes the energy of the fluid to change by the amount [ε(k)+ k · vs].
Since the energy of flowing fluid decreases due to friction, we have

ε(k)+ k · vs < 0, (17.26)

and the condition, ε(k)+ k · vs ≥ ε(k)− kvs , must be satisfied. It follows, therefore, that
if quasiparticles satisfy the property

vs ≥ ε(k)

k
, (17.27)

then friction will occur. However, the right-hand side of (17.27) is just the vc of (17.24).
Therefore, friction will occur when vs ≥ vc.

If, however, 0 < v < vc then the velocity will be in the gap where it is positive yet below
the threshold for creating quasiparticles. The fluid will then move through the capillary tube
without dissipation – the fluid will exhibit superfluidity.

For helium, Figure 17.8 shows two values of k where ε(k)/k is a minimum, k = 0, and
k = kc. The minimum at k = 0 corresponds to low temperatures. At such temperatures,
superfluidity occurs when

ph

sup

Figure 17.8 4He dispersion curve with two characteristic velocities: the phonon, or Bogoliubov
sound velocity vph, and the critical velocity vc. Also shown a typical superfluid velocity vsup.
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vs ≤ vsound = dε(k)

dk

∣∣∣∣
k=0

, (17.28)

where vs is the Bogoliubov sound velocity. For slightly higher temperatures, there is a
minimum at Kc, and superfluidity occurs for

v ≤ vc = dε(k)

dk

∣∣∣∣
k=kc

, (17.29)

where the quasiparticles are rotons.

17.3 Ginzburg–Landau Theory of Superfluidity

17.3.1 A Macroscopic Wavefunction!

The motivation behind this approach is the idea of a macroscopically occupied ground
state. From the thermodynamic perspective, we can envision the condensate as a reservoir
of particles whose number needs not to be specified because it does not contribute to
the thermodynamic functions of the system. Thus, it may inject an unlimited number of
particles into the system. Such a reservoir presents a macroscopic system that may be
described by a macroscopic, classical wavefunction. To develop this approach, we start
with defining the field operator �̂(x) as

�̂(x) =
∑
i

ψi(x) âi,

where the c-number eigenfunctions ψi(x) satisfy the orthonormal condition∫
dx ψ∗i (x) ψj (x) = δij .

When a lowest-energy single-particle state (ground state) has a macroscopic occupation,
we can separate the field operator into the condensate term (i = 0, lowest-energy ground
state) and the noncondensate components (i 
= 0 excited states):

�̂(x) = ψ0 a0 +
∑
i 
=0

ψi(x) âi .

This expression of the field operator implicitly introduces the Bogoliubov approximation,

where â0 is now replaced by the c-number a0 =
√
N0;
〈
â

†
0 â0

〉
= N0. By defining the

classical field �0 =
√
N0 ψ0 and the quantum field δ�̂ = ∑i 
=0 ψi(x) âi , we can obtain

the Bogoliubov ansatz:

�̂(x) = �0(x)+ δ�̂(x).

The classical field is interpreted as a kind of macroscopic wavefunction, while the quantum
field is treated as a small perturbation to the classical field. In this case, the microscopic
field operators of the quantum fluid acquire an expectation value
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�̂(x)
〉
0
= �0(x) = |�0(x)| eiφ(x) Macroscopic wavefunction (17.30)

complete with phase. In the language of symmetry, breaking it can be considered as cre-
ating a two-component order parameter, the magnitude of which determines the density of
particles in the superfluid

|�0(x)|2 = ns(x), (17.31)

while, as we shall see, the phase φ(x) characterizes the coherence and superfluid phenom-
ena, where the twist, or gradient, of the phase determines the superfluid velocity:

vs(x) = h̄

m
∇ φ(x). (17.32)

The idea that the wavefunction can acquire a kind of Newtonian reality in a superfluid or, as
we shall see later, in a superconductor goes deeply against our training in quantum physics:
at first sight, it appears to defy the Copenhagen interpretation of quantum mechanics, in
which �̂(x) is an unobservable variable. The bold idea suggested by Ginzburg and Landau
is that �0(x) is a macroscopic manifestation of quintillions of particles – bosons – all
condensed into precisely the same quantum state.

17.3.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking (SSB) implies that under certain conditions the symmetry
of the ground state is reduced with respect to that of the Hamiltonian. The concept of
spontaneous symmetry breaking is subtle. As we will show, it is closely linked to manifest
degeneracies of the ground state.

From a conceptual point of view, it is more appealing to associate Bose–Einstein con-
densation with the phenomenon of spontaneous symmetry breaking of a continuous sym-
metry than with macroscopic occupation of a single-particle level. The continuous sym-
metry is the global U(1) gauge symmetry, the freedom in the choice of the global phase
of many-particle wavefunctions. This symmetry is responsible for conservation of total
particle number.

We shall interpret Bose–Einstein condensation at zero temperature in terms of sponta-
neous symmetry breaking of a continuous symmetry by explicitly constructing a ground
state that breaks the global U(1) gauge symmetry. First, we need to explore how the
global U(1) gauge symmetry organizes the Hilbert space spanned by eigenstates of the
Hamiltonian. We also need to show how the thermodynamic limit plays an essential role in
the construction, especially in the presence of interactions.

Degeneracy and the Breaking of Ground-State Symmetry

We consider any symmetry operator Ô ∈ G, where G is the symmetry group of H. By
definition, Ô must satisfy [

Ô,H
]
= 0
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which implies that for a ground-state |�0〉 of H,

H |�0〉 = E0 |�0〉
Ô H |�0〉 = E0 Ô |�0〉 = ÔHÔ−1 Ô |�0〉 = HÔ |�0〉

• If |�0〉 is nondegenerate, i.e., it is the only state with energy E0, then

O |�0〉 = eiθ |�0〉 ,
which means that a nondegenerate ground state must have the full symmetry of the
Hamiltonian. In the language of symmetry, |�0〉 must transform according to the trivial,
or identity, representation of G. The jargon is that |�0〉 transforms as a singlet.

• If |�0〉 belongs to an � fold degenerate subspace, then we may have

O |�0〉 =
∣∣�′0〉 ,

where
∣∣�′0〉 must belong to the degenerate �-dimensional subspace that contains |�0〉,

and it is said that |�0〉 transforms as an �-multiplet.

Thus, a nondegenerate ground state |�0〉 must transform as a singlet under the oper-
ations of the symmetry group of the Hamiltonian. In such a case, the phenomenon of
spontaneous symmetry breaking is precluded, since it requires a change of ground-state
symmetry.

We thus conclude that the many-particle ground-state wavefunction must transform
nontrivially under the symmetry group of the Hamiltonian that is to be broken!

Noninteracting Bosons Systems

We start by recalling that the field operators �̂(x,t), �̂†(x′,t) obey the commutator[
�̂(x,t), �̂†(x′,t)

]
= δ
(
x− x′

)
with the boson Fock space

F =
∞⊕
N=0

H⊗N+ ⇒ H⊗N+ =
N⊗

symm

H(1),

where H⊗N+ is the N -particle subspace spanned by the symmetrized many-particle states

|n0, . . . ,ni−1,ni,ni+1, . . .〉 =
symm∏
i

(
a

†
i

)ni
√
ni!

|0〉 ⇒
∑
i

ni = N . (17.33)

The second-quantized total number operator is

N̂ =
∫

dx �̂†(x,t) I �̂(x′,t) =
∑
n

â†
n ân.

It is explicitly time independent.
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1. Global Gauge Symmetry

U(1) Gauge Symmetry

U(1) gauge action transforms each single-particle state as

U(ϕ) : |ψi〉 '→ eiϕ |ψi〉
For a system of N indistinguishable particles, each single-particle state in the product
state |�〉N transforms under U with the same phase factor. This means that U(1) action
on H⊗N+ yields

U(ϕ) : |�〉N '→ eiNϕ |�〉N ,

which leaves the Hamiltonian invariant. For arbitrary particle number

U(ϕ) : |�(0)〉 '→ eiϕN̂ |�〉 = |�(ϕ)〉 , (17.34)

N̂ is the generator of U(1).
We consider the action of the infinitesimal operation U(δϕ):

U(δϕ) |�(0)〉 = |�(δϕ)〉 =
∞∑
�=0

1

�!

d� |�〉
dϕ�

∣∣∣
ϕ=0

δϕ�

= exp

[
δϕ

d

dϕ

]
|�(0)〉

= exp

[
iδϕ

(
−i d

dϕ

)]
|�(0)〉 . (17.35)

Comparing with (17.34), we identify the action of the number operator as

N̂ = −i d

dϕ
, ϕ = phase. (17.36)

Thus, we find that phase and particle number are conjugate operators:[
ϕ̂, N̂

]
= −i

(
ϕ

d

dϕ
− d

dϕ
ϕ

)
= −i

(
ϕ

d

dϕ
− dϕ

dϕ
− ϕ

d

dϕ

)
= i. (17.37)

The number operator N̂ is the infinitesimal generator of global gauge transformations by
which all states in

⊗N
symm H(1) are multiplied by the same phase factor. A global U(1)

gauge transformation on Fock space is implemented by

|n0, . . . ,ni−1,ni,ni+1, . . .〉 ⇒ eiϕN̂ |n0, . . . ,ni−1,ni,ni+1, . . .〉 ∀ϕ ∈ R

or the transformation

⎧⎨⎩ân → eiϕN̂ ân e
−iϕN̂ = e−iϕ ân

â
†
n → eiϕN̂ â

†
n e
−iϕN̂ = e+iϕ â†

n.
(17.38)
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Equation (17.38) tells us that annihilation operators carry particle number −1, while the
creation operators carry particle number +1. As a consequence, we find that

eiϕN̂ �̂(x,t) e−iϕN̂ = e−iϕ �̂(x,t)

eiϕN̂ �̂†(x,t) e−iϕN̂ = e+iϕ �̂†(x,t). (17.39)

Particle Number Conservation
For a Hamiltonian invariant under U(1),

H = eiN̂ δϕ H e−iN̂ δϕ

=
(

1+ iδϕN̂
)
H
(

1− iδϕN̂
)
= H+ iϕ

[
N̂ ,H

]
[
N̂ ,H

]
= 0. (17.40)

Consequently, Heisenberg equation of motion reads

ih̄
dN̂
dt

=
[
N̂ ,H

]
= 0, N conserved.

Phase and Particle Number Uncertainty

Since ϕ̂ and N̂ do not commute, they cannot be measured simultaneously. We have the
uncertainty relation

δϕ̂ δN̂ ≤ 1

2
. (17.41)

Thus, the commutator between the total number operator N̂ and the single-particle
Hamiltonian H vanishes [

H, N̂
] = 0

for a system invariant under global gauge transformation, which confirms the stipulation
made earlier, that this symmetry is responsible for total particle number conservation. This
means that the system becomes restricted to the Fock subspace

⊗N
symm H(1). As a result,

the normalized ground-state |�0〉 of the many-particle Hamiltonian becomes confined to
the
⊗N

symm H(1) space, which guarantees that it is nondegenerate, since it is derived from
the corresponding single-particle ground state. Consequently, we infer that spontaneous
symmetry breaking can never take place under such constraint. By extension, it is believed
that spontaneous symmetry breaking is always ruled out for an interacting Hamiltonian
defined on the Hilbert space

⊗N
symm H(1).

Next we shall demonstrate how the expectation value of �̂(x,t) in the ground-state |�0〉
of the many-body system can be used as a signature of spontaneous symmetry breaking of
the U(1) symmetry. This allows us to interpret the quantum statistical average of �̂(x,t) as
a temperature-dependent order parameter.

As shown previously, the quantum field �̂(x,t) transforms according to

eiϕN̂ �̂(x,t) e−iϕN̂ = e−iϕ �̂(x,t) ∀ x, t
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under any global gauge transformation. Since the ground-state |�0〉 of H confined to⊗N
symm H(1) is unique, it transforms like a singlet under U(1):

eiϕN̂ |�0〉 = e+iϕN0 |�0〉 , 〈�0| e−iϕN̂ = 〈�0| e−iϕN0 .

Using these two transformations, we find〈
�0

∣∣∣[eiϕN̂ �̂(x,t) e−iϕN̂
]∣∣∣�0

〉
= e−iϕ 〈�0| �̂(x,t) |�0〉(〈

�0

∣∣∣eiϕN̂ ) �̂(x,t) ( e−iϕN̂ ∣∣∣�0

〉)
= 〈�0| �̂(x,t) |�0〉 ,

which implies that 〈�0| �̂(x,t) |�0〉 = 0. Intuitively, the action of �̂(x,t) on an eigenstate
of N̂ such as |�0〉 is to lower the total number of particle by one, thereby producing a state
orthogonal to |�0〉.

We conclude that spontaneous symmetry breaking requires quantum degeneracy of the
ground state with orthogonal ground states that are related by the action of the U(1)
symmetry group.

We shall explore how SSB can be implemented through the construction of a ground-
state |ψ〉 ∈ F that is an eigenstate of �̂(x,t) and thus cannot be an eigenstate of N̂ .

2. The Thermodynamic Limit and Coherent States

In order to support operations on the Fock space F with an unrestricted boson number,
instead of

⊗N
symm H(1) with a fixed boson number, we have to invoke the thermodynamic

limit, namely,


, N → ∞,
N



= n.

The thermodynamic limit implies the application of the grand canonical ensemble.
To construct the sought after ground state in Fock space, we consider a noninteracting

system, with single-particle Hamiltonian

Hμ = H− μ N̂ ⇒ Hμ |ψn〉 = (εn − μ) |ψn〉 , |ψn〉 = 1√


eikn·x.

Recalling that in the thermodynamic derivation of the BEC the chemical potential acquired
the value of the single-particle ground-state energy at the onset of the transition, we set the
chemical potential μ = ε0, in order to ensure that the single-particle ground-state energy
of Hμ vanishes, and that the corresponding normalized eigenfunction becomes ψ0(x) =
1/
√

. This choice also guarantees that the states

|n0,0, . . .〉 =
(
b

†
0

)n0

√
n0!

|∅〉 , n0 = 0,1,2, . . . , →∞ (17.42)

are orthogonal and degenerate eigenstates of Hμ in F. Furthermore, this choice of μ guar-
antees that Hμ has countably many orthogonal ground states provided the volume 
 is
finite. The degeneracy implies that any linear combination of states of the form (17.42) is
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a ground state of Hμ with μ = ε0. We shall focus on the continuous family of normalized
bosonic coherent ground states defined in terms of a complex parameter α,

|α〉gs = e−
|α|
2/2

∞∑
n0=0

(√

α
)n0

√
n0!

|n0,0, . . .〉 = e−
|α|
2/2 e

√

α b̂

†
0 |∅〉

= e−
|α|
2/2 e

√

α b̂

†
0 e−

√

α∗ b̂0 |∅〉 = e−
|α|

2/2 e

√


(
α b̂

†
0−α∗ b̂0

)
|∅〉

= D̂(
√

α,0, . . .) |∅〉 , (17.43)

where we used eÂ eB̂ = e[Â,B̂]/2 eÂ+B̂ . The unitary 99 operator D̂(
√

α,0, . . .) rotates the

vacuum into the boson coherent state∣∣∣√
α,0, . . .〉
cs
= e−
|α|

2/2 e
√

α b̂

†
0 |∅〉 . (17.44)

As we showed in Chapter 13, the bosonic coherent states form an overcomplete set of the
Fock space, with the overlaps

cs 〈α |∅〉 = e−
|α|
2/2, cs 〈α

∣∣α′〉cs = e−
|α−α′|2/2.

However, the
√

 scaling guarantees that all the rotated vacua in (17.44) become orthog-

onal in the thermodynamic limit. Moreover, we note that the degeneracy in the thermody-
namic limit becomes uncountably infinite.

With this construction being established, we need to confirm that each ground-state
|ψ〉gs in (17.43) is an eigenstate of the quantum fields �̂(x,t), but not an eigenstate of N̂

�̂(x) |α〉gs = e−
|α|
2/2 b0√



e
√

α b̂

†
0 |∅〉 = e−
|α|2/2

√



[
b0, e

√

α b̂

†
0

]
|∅〉

= e−
|α|2/2

√



∞∑
n=0

(√

α
)n

n!

[
b0,
(
b̂

†
0

)n] |∅〉
= e−
|α|2/2

√



∞∑
n=1

n
(√


α
)n

n!

(
b̂

†
0

)n−1 |∅〉 = α |α〉gs

and

e−iϕN̂ |α〉gs = e−iϕ b
†
0b0 e−
|α|

2/2
∞∑

n0=0

(√

α
)n0

√
n0!

|n0,0, . . .〉

= e−
|α|
2/2

∞∑
n0=0

(√

α e−iϕ

)n0

√
n0!

|n0,0, . . .〉

= e
√

 exp(−iϕ) α b̂†

0 |0〉 =
∣∣∣e−iϕ α〉

gs
,



562 Boson Systems: Bose–Einstein Condensation and Superfluidity

where we used

a
(
a†
)n = aa†

(
a†
)n−1 =

(
1+ a†a

) (
a†
)n−1

=
(
a†
)n−1 + a†a

(
a†
)n−1 = n

(
a†
)n−1 +

(
b†
)n

a.

Thus, we find that

�̂(x,t) |α〉gs = α |α〉gs , e−iϕN̂ |α〉gs =
∣∣∣e−iϕ α〉

gs
.

Normalization of the single-particle eigenfunction ψ0(x) = 1/
√

 and the property that

coherent states are eigenstates of annihilation operators guarantee that the quantum field
�̂(x,t) acquires the expectation value α with the particle density |α|2 in the ground-state
manifold

gs 〈ψ | �̂(x,t) |ψ〉gs = α, gs 〈ψ | �̂†(x,t) �̂(x,t) |ψ〉gs = |α|2 . (17.45)

Systems of Interacting Bosons

We note that in the presence of boson pair interaction, the ground-state energy will depend
on N . Thus, the ploy of setting the chemical potential μ = ε0 in order to obtain unrestricted
many-body ground state breaks down. We then demand instead that the chemical potential
be constrained to fix the particle density at

〈�0| �̂†(x,t) �̂(x,t) |�0〉 = N




in the thermodynamic limit at zero temperature. At finite temperatures, the right-hand side
is unchanged whereas the left-hand side becomes a statistical average in the grand canonical
ensemble. Since the modulus |α|2 = N/
 is now predetermined, a degenerate manifold of
ground states satisfying (17.45) is not anymore parameterized by α but by ϕ = arg(α) ∈
[0,2π ].

The mechanics of SSB can be still defined in terms of nonsinglet ground states, which
defines a nonzero 〈�0| �̂(x,t) |�0〉 as an order parameter.

1. Population Fluctuations and Phase Locking

The population and phase of the coherent state have finite fluctuations〈
	N̂ 2

〉
= 〈N̂ 〉 = |α|2〈

	ϕ̂2
〉
= 1

4
〈
N̂
〉 = 1

4 |α|2 (17.46)

according to the uncertainty (17.41). Thus, the phase is stabilized,
〈
	ϕ̂2
〉 � 1, only at a

cost of the increased population fluctuation
〈
	N̂ 2

〉� 1.
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Figure 17.9 Coherent states space defined by the complex parameter α = φr + iφi . (a) A particle
number eigenstate |N〉0 constructed by the coherent superposition of coherent states. (b) A coherent
state |ϕ〉0 constructed by the coherent superposition of particle number eigenstates.

We compare such a coherent state with the particle number eigenstate

|N〉 =
∫ 2π

0
dϕ eiNϕ |α(ϕ)〉 . (17.47)

Equation (17.47) shows that the particle number state |N〉 is constructed as a coherent
superposition of coherent states with different eigenvalues as shown in Figure 17.9(a).
The constructive and destructive interferences result in the fixed particle number, but the
phase is completely spread out. Similarly, the coherent state is expanded by the coherent
superposition of the particle number eigenstates

|ϕ〉 =
∑
N

e−|α|
2/2 αN√

N !
|N〉 . (17.48)

As shown in Figure 17.9(b), the constructive and destructive interferences among different
particle number eigenstates result in the stabilized phase but the finite particle number
noise. The interaction energy among the condensate is the same for the two states, (17.47)
and (17.48), since both states have identical average particle number

〈
N̂
〉 = N .

2. Bogoliubov Quantum Depletion and Phase Stabilization

We now consider the Bogoliubov quantum depletion term of the Hamiltonian

HB = 1

2


∑
q

Vq b
†
0 b

†
0 bq b−q + H.C.,

which allows virtual excitations of two particles out of the condensate. In order to take such
quantum depletion into account, we will consider a variational state

|ψ0〉 = e
αb

†
0+
∑

q λq b
†
q b

†
−q |∅〉 = |α〉 ⊗

∑
q

[
|0〉q |0〉−q + λq |1〉q |1〉−q + · · ·

]
,
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where the variational parameter λq is determined through minimization of the interaction
energy.

The Bogoliubov interaction energy is given by

EB = 〈ψ0 |HB |ψ0〉 =
∑

q

Vq

2


(
α∗2

0 λq + c.c.
)
, (17.49)

where we used 〈α| b†
0 = 〈α| α∗0 and aq a−q |1〉q |1〉−q = |0〉q |0〉−q. The higher-order

terms such as |2〉q |2〉−q , |3〉q |3〉−q , . . . are neglected. If we express the complex excita-
tion amplitudes as α = |α| eiϕ0 and λq = |λq| eiϕq , (17.49) becomes

EB =
∑

q

Vq



|α|2 |λq| cos

(
2ϕ0 − ϕq

)
. (17.50)

The Bogoliubov interaction energy is minimal when 2ϕ0 − ϕq = π . It is energetically
favorable that the condensate has a well-defined phase and the excitations are phase-locked
to the condensate with a 180◦ phase difference. The reduced energy is macroscopic,
Vq


|α|2 |λq| ∼ gn0

√
Nq, where n0 = |α|2/
 and Nq is the average population

of the excitation modes. In fact, the quantum depletion is bound to occur due to the
Bogoliubov Hamiltonian. Then the phase stabilization of the condensate is preferred
and the phase locking 2ϕ0 − ϕq = π is implemented simultaneously. However, this
argument is incomplete, in the sense that it appears not to put a lower bound on the
extent of depletion: (17.50) is negative and proportional to the |λq|s, pointing to the
possibility of continuous growth of the excitations, and a substantial quantum depletion of
the condensate. Actually, it turns out that the π -phase difference between the condensate
and the excitations guarantees this does not happen and the quantum depletion is kept at a
minimum level that quantum mechanics allows.

Population fluctuations and phase stabilization of the condensate, which are caused by
phase locking between the condensate and excitations, are genuine signatures of sponta-
neous symmetry breaking, which is distinct from the standard picture of Bose–Einstein
condensation of a noninteracting ideal gas. The stabilized phase is responsible for super-
fluidity, whereby a superfluid current is generated by the gradient of the phase, as will be
presented later in this chapter.

17.3.3 The Gross–Pitaevskii Equation

In second quantization, the interacting boson gas Hamiltonian takes the form

H =
∫

dx �†(x,t)

[
− h̄2

2m
∇2 + Vext(x)

]
�(x,t)

+ 1

2

∫∫
dx dx′ V (x′ − x) �†(x,t)�†(x′,t)�(x′,t)�(x,t),
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where, for example, Vext may represent the trapping potential. The quantum-mechanical
field operator �̂(x,t) satisfies the Heisenberg equation of motion

ih̄
∂

∂t
�̂(x,t) =

[
�̂(x,t),H

]
=
[
− h̄2

2m
∇2 + Vext(x,t)+

∫
dx �̂†(x′,t) V (x′ − x) �̂(x′,t)

]
�̂(x,t).

(17.51)

We are interested in the T < TBE regime where the thermal wavelength is much larger
than the interaction range; this allows us to set V (x′ − x) = g δ(x′ − x), and obtain

H =
∫

dx

[
�†(x,t)

(
− h̄2

2m
∇2 + Vext(x)

)
�(x,t)+ g

2

(
�†(x,t)

)2
(�(x,t))2

]
.

Mean-Field Approximation

Next we apply the mean-field approximation by neglecting quantum fluctuations and cor-
relations. More specifically, we replace �̂(x,t) by �0(x,t), and introduce the factorization
ansatz 〈

�† � �
〉
=
〈
�†
〉
〈�〉 〈�〉 = �

†
0 �0 �0.

We will drop the subscript 0 for compactness, and write

ih̄
∂

∂t
�(x,t) =

[
− h̄2

2m
∇2 + Vext(x,t)+ g |�(x,t)|2

]
�(x,t), (17.52)

which is referred to as the time-dependent Gross–Pitaevskii equation. It satisfies the conti-
nuity equation

∂n(x,t)
∂t

+ ∇·j(x,t) = 0,

where

�(x,t) = |�(x,t)| eiϕ(x,t), n(x,t) = |�(x,t)|2 (17.53)

j(x,t) = h̄

m
* (�∗ ∇�) = h̄

m
n(x,t)∇ϕ(x,t). (17.54)

This result means that the superfluid velocity vs of the condensate is related to the gradient
of the phase ϕ as vs = (h̄/m)∇ϕ(x,t).

The stationary solution of (17.52) has the form of

�(x,t) = �(x) e−iμt/h̄.

For simplicity, setting Vext(x,t) = 0 we get[
− h̄2

2m
∇2 − μ+ g |�(x)|2

]
�(x) = 0. (17.55)
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The corresponding Hamiltonian is given by

H =
∫

dx

[
h̄2

2m
∇�∗(x)∇�(x)− μ |�|2 + g

2
|�(x)|4

]
. (17.56)

For a uniform gas, in the absence of the external potential, ∇� = 0, and we get E =
(g/2)n2
. The chemical potential is given by

μ = ∂E

∂N
= ∂E

∂n

∂n

∂N
= gn.

Bogoliubov Treatment of Fluctuations

To account for the quantum fluctuations about the mean field, we decompose the field
operator into a mean field and fluctuations components:

� = 〈�〉 + ψ̂,

where the operator ψ̂ represents the fluctuations, and both � and ψ̂ obey the boson com-
mutation relations. We substitute this expansion in (17.56) and keep terms up to second
order in ψ̂ and ψ̂†. The zeroth-order term is nothing but the energy function 〈H〉, and
the first-order terms vanish identically since � satisfies the Gross–Pitaevskii equation. The
second-order terms are∫

dx ψ̂†(x)

[
− h̄2

2m
+ Vext(x)+ g |�(x)|2 − μ

]
ψ̂(x)

+ g

2

∫
dx
[
�2(x) ψ̂†(x)ψ̂†(x)+ (�∗(x))2 ψ̂(x) ψ̂(x)

]
from which we can derive the equation of motion for ψ̂ .

17.3.4 The Ginzburg-Landau Free Energy

Identifying (17.56) as H− μN with

N =
∫

dx �†(x)�(x)

means that we are working in the grand canonical ensemble, where we define 〈H− μN〉
as the Ginzburg–Landau (GL) free energy density FGL,

FGL [�,∇ �] = − h̄2

2m
|∇ �|2 + (Vext(x)− μ) |�(x)|2 + g

2
|�(x)|4 (17.57)

and �(x) becomes a macroscopic GL order-parameter field. A few remarks about the GL
free energy are appropriate:

• The GL free energy is to be interpreted as the energy density of a condensate of bosons in
which the “classicized” field operator �(x) behaves as a complex order parameter, with
|�(x)|2 = ns .
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• We may interpret the term containing |∇ �|2 ∝
〈
∇ ψ̂†(x)∇ ψ̂(x)

〉
as a kinetic energy,

with the associated constant appropriately set to h̄2/2m.

• The last term is just the particle–particle interaction.

• The ratio
h̄2

2mμ
= α

μ
has the dimension (length)2.

• Linear static response and healing length for a 1D order parameter:
The linearized GL free energy is

−α |∇ �|2 − μ |�(x)|2

and we write the equation of motion with a delta-function perturbation as

α∇2� + μ� = δ(x).

Taking the Fourier transform, we obtain

�(q) = 1

α

1

q2 + (1/ξ)2
⇒ �(x) = exp[−r/ξ ]

α
, (17.58)

where ξ = √α/μ is the healing length, or the decay length scale of the system’s response.
The healing length, in general, parameterizes the range over which superfluid order is
affected by a local perturbation.

• Effective potential is as follows:

VGL(x) = −μ�∗� + g

2

(
�∗�

)2 . (17.59)

Variation with respect to �∗ gives

�
(−μ+ g �∗�

) = 0.

– For μ < 0, Figure 17.10 (top-left), the potential has a single minimum at � = 0, which
means that no stable condensate amplitude exists.

– For μ > 0, Figure 17.10 (top-right and bottom) shows that the potential has the

Mexican hat configuration. It has a circle of minima at |�| =
√

μ
g
= η, and a superfluid

density n
(0)
s = η2. The solution to the stationary phase is continuously degenerate, so

that each configuration �(x) = η eiϕ(x), ϕ = [0,2π) is a solution. This raises the
question of which of these configurations is the right one.

• Freezing out amplitude fluctuations, so that �(x) =
√
n
(0)
s eiϕ(x), yields

∇ � = i (∇ϕ) �
|∇ �|2 = ns |∇ ϕ|2 ,

which leads to a kinetic energy term associated with the phase twist:

h̄2

2m
ns |∇ ϕ|2 = mns

2

(
h̄

m
∇ ϕ

)2

= mns

2
v2
s . (17.60)
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Figure 17.10 Effective Ginzburg–Landau potential for μ < 0 (left) and μ > 0 (right).

Since mns is the mass density, we see that a twist of the phase results in an increase in
the kinetic energy that we may associate with a superfluid velocity:

vs = h̄

m
∇ ϕ. (17.61)

The equilibrium state of uniform phase is the state when no currents are present.

17.3.5 Superflow: Phase Symmetry, Gradient, and Rigidity

The GL free energy has global phase symmetry

�(x,t) → �(x,t) ei	ϕ, (17.62)

which is spontaneously broken with the choice of an arbitrary phase angle ϕ.
For � = |�(x)| eiϕ(x), the gradient ∇ = (∇ |�| + i∇ϕ |�|) eiϕ leads to

FGL = h̄2

2m
|�|2 (∇ϕ)2 +

[
h̄2

2m
(∇ |�|)2 + μ |�|2 + g

2
|�|4
]

. (17.63)

The term in square brackets describes the energy cost of variations in the magnitude of the
order parameter. As we have shown, order-parameter amplitude fluctuations are confined
to scales shorter than the healing length ξ . The first term actually describes phase rigidity.
On longer length scales, the physics is entirely controlled by the phase degrees of freedom,
so that

FGL ∼ ρϕ

2
(∇ϕ)2 + constant. (17.64)
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The quantity ρϕ = ρs = h̄2

m
ns is often called the superfluid phase stiffness. From a

microscopic point of view, the phase rigidity term is simply the kinetic energy of particles
in the condensate, but from a macroscopic view, it is an elastic energy associated with the
twisted phase. The only way to reconcile these two viewpoints is if a twist of the condensate
wavefunction results in a coherent flow of particles.

Superfluid Vortices

Conventional particle flow is achieved by the addition of excitations above the ground state,
but superflow occurs through a deformation of the ground-state phase and every single
particle moves in perfect synchrony. The phase of the order parameter plays the role of a
velocity potential and vs is referred to as a velocity field. Because the superfluid velocity is
the gradient of a scalar function, its rotation vanishes identically:

vs = h̄

m
∇ϕ ⇒ Curl v = 0. (17.65)

Thus, a superfluid is irrotational. This means that there can be no local rotational motion
of the superfluid component. This is really a consequence of the quantization of angular
momentum, as we will see more clearly in a moment. Yet, it is possible to have a finite
hydrodynamic circulation around any loop that cannot shrink to nothing while remaining
in the fluid, namely,

κ =
∮
C

vs · d	.

For example, a circuit around a solid cylinder passing through the fluid, as shown in
Figure 17.11. However, the circulation cannot take any value. If we substitute (17.65) into
this integral, we obtain

κ = h̄

m

∮
C

∇ϕ · d	 = n
2πh̄

m
, (17.66)

where n must be an integer in order to satisfy the condition that the condensate wave-
function be single valued. This means that the superfluid circulation must be quantized
in units of 2πh̄/m. This circulation is macroscopically large, in the sense that it can be
measured in a macroscopic mechanical experiment, and this fact provides the clearest
evidence that superfluidity is indeed a “quantum mechanism on a macroscopic scale.” It
arises from the quantization of angular momentum, combined with the fact that all the
particles in the condensate must have the same angular momentum. In the absence of
any quantized circulation, there can be no local angular momentum, as we have seen in
connection with (17.65).

Figure 17.11 A loop around which there can be a finite superfluid circulation.
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Figure 17.12 Vortex lines. A rotating superfluid becomes normal within narrow regions where vortex
lines penetrate.

When a container of a superfluid is rotated, the surface of the superfluid shows a
parabolic meniscus on the periphery, as in the case of a normal fluid. This shows that the
value of the surface integral of vorticity,

∫
Curl vs · dS, is nonzero in apparent contradiction

with (17.65). Onsager resolved this paradox by assuming that Curl vs is nonzero only within
microscopic regions where the liquid is not a superfluid. These singular regions are where
vortex lines penetrate, as shown in Figure 17.12. The size of each vortex line is on the
order of the healing length. Integration of vs along a closed vortex contour gives∮

vs · d	 = h̄

m

∮
∇ϕ(x,t) · d	, (17.67)

reproducing the quantization of circulation.
As examples of superfluid quantized circulation units, we have

κ0 = h̄

m
�
⎧⎨⎩9.97× 10−4 cm2/s for 4He,

4.59× 10−5 cm2/s for 87Rb.

For a container radius R and angular frequency of rotation ω, we get∮
vs · d	 = ωR × 2πR = 2πR2ω = nκ0.

The observed meniscus on the periphery can be explained if the vortex lines are distributed
with density n/(πR2) = 2ω/κ0. For the case of ω/2π = 100 Hz, we have 2ω/κ0 �
0.013/μm2 for 4He and 0.3/μm2 for 87Rb.

17.3.6 Time-Dependent Ginzburg–Landau Equation and the Goldstone Mode

In order to describe the dynamics of the order-parameter fields, we obtain a time-dependent
GL free energy for the superfluid from the Gross–Pitaevskii equation

ih̄
d

dt
� = − h̄2

2m
∇2� +

(
−μ+ g |�|2

)
� (17.68)
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ignoring the external potential. This allows us to write

FGL
[
�(x,t),�∗(x,t)

] = h̄2

2m
∇�∗(x,t) · ∇�(x,t)− μ�∗(x,t)�(x,t)

+ g

2
�∗(x,t)�∗(x,t)�(x,t)�(x,t)

and thus reproduce (17.68) as

ih̄
d

dt
� = δ

δ�∗
FGL
[
�(x,t),�∗(x,t)

] = − h̄2

2m
∇2� − μ� + g |�|2 � (17.69)

and

−ih̄ d

dt
�∗ = δ

δ�
FGL
[
�(x,t),�∗(x,t)

]
. (17.70)

These are just Hamilton’s equations from classical mechanics, where FGL plays the role of
the classical Hamiltonian, and �(x,t) and �∗(x,t) are canonically conjugate. Expressing
the order parameter as

�(x,t) =
√
ns(x,t) eiϕ(x,t)

and substituting in (17.69) and (17.70), using the chain rule, we obtain

h̄
d

dt
ϕ(x,t) = − δFGL

δns(x,t)
(17.71)

h̄
d

dt
ns(x,t) = + δFGL

δϕ(x,t)
. (17.72)

Equations (17.71) and (17.72) are also Hamilton’s equations of motion, and furthermore
the phase ϕ and the density ns are canonically conjugate, as expected.

Bogoliubov Meets GL

An important solution to (17.68) is given by

�(x,t) = �0 e
i(k·x−ωt) =

√
μ

g
ei(k·x−ωt) (17.73)

and yields the dispersion relation

h̄ω = h̄2k2

2m∗
.

This solution represents the superflow of the Bose–Einstein condensate. In order to see that
it describes the superfluid, namely there is no viscosity, we study microscopic excitations
above the condensate. Recall that the viscosity arises when the overall fluid flow induces
energy/momentum transferred to microscopic excitations, namely heat. To conform with
Landau’s superfluid criterion, we would like to see that the bulk flow of Bose–Einstein
cannot create such microscopic excitations below a critical velocity.
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We consider fluctuation about the static expectation value �0 =
√
μ/g, in both density

and phase, namely,

� = (�0 + χ) eiϕ,

where both χ and ϕ are real-valued fields. Substituting in (17.68),

ih̄ χ̇ − h̄ �0 ϕ̇ + h̄2

2m

(
∇2χ + i2 (∇χ) ·∇ ϕ + (�0 + χ)

(
− (∇ϕ)2 + i∇2ϕ

))
+ μ (�0 + χ)− g (�0 + χ)3 = 0. (17.74)

Since we are interested in small fluctuations, we linearize the equation and obtain

ih̄ χ̇ − h̄ �0 ϕ̇ + h̄2

2m

(
∇2χ + i�0 ∇2ϕ

)
− 2μχ = 0. (17.75)

Both the real and imaginary parts of this equation must both be satisfied, which leads to the
two coupled equations

h̄ χ̇ +�0
h̄2

2m
∇2ϕ = 0 (17.76)(

2μ− h̄2

2m
∇2

)
χ + h̄ �0 ϕ̇ = 0. (17.77)

Operating on (17.76) by
(

2μ− h̄2

2m ∇2
)

, and on (17.77) by h̄ ∂
∂t

, we obtain

−h̄2 ϕ̈ +
(

2μ− h̄2

2m
∇2

)
h̄2

2m
∇2ϕ = 0. (17.78)

A plane-wave solution ϕ ∼ exp
[
εt−p·x

h̄

]
yields the dispersion relation

ε2(k) =
(

2μ+ p2

2m

)
p2

2m
, (17.79)

which is just that of the Bogoliubov model.
Figure 17.13 shows a measurement of the excitation spectrum in a trapped BEC. The

dispersion shows good agreement with (17.79), indicating that a delta-function approxi-
mation to the interaction potential is a good one. In contrast, the excitation spectrum of
liquid 4He, shown in Figure 17.14, does not support a delta-function approximation to the
interaction.

The Goldstone Mode and Zero Sound in a Neutral Superfluid

A continuous symmetry like (17.62) normally implies the existence of a gapless Goldstone
mode: if we make phase gradients at arbitrarily large wavelengths, they will have arbitrarily
small restoring forces leading to arbitrarily slow motions, hence the dispersion should sat-
isfy ω(q) → 0 as q → 0. Such a mode exists in a neutral superfluid. The time-dependent
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–1

Figure 17.13 Excitation spectrum ω(k) of a trapped Bose–Einstein condensate. The solid line is the
Bogoliubov spectrum in the local density approximation (LDA). The dashed line is the parabolic
free-particle spectrum. For most points, the error bars are not visible on the scale of the figure. The
inset shows the linear phonon regime. Taken from [171].

Figure 17.14 Dispersion curve for 4He at 1.12◦K [91].
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GL equations are all the machinery needed to find the small oscillation modes, analogous
to lattice waves, or spin waves. They consist of oscillations of phase and superfluid density
(90◦ out of phase). We obtain from (17.70) and (17.71)

h̄
d

dt
δφ(x,t) = −g δns(x,t) (17.80)

h̄
d

dt
δns(x,t) = + h̄

2n0

m∗
∇2δφ(x,t) (17.81)

with n0 = |�0|2. (Actually, in (17.80), a ∇2δns term also appears on the right-hand side,
but it is negligible in the long-wavelength limit.) It is because of the continuous phase
symmetry that only gradient terms can appear on the right-hand side of (17.81). When we
combine (17.80) and (17.81), we obtain

d2

dt2
δns = v2

0 ∇2δns (17.82)

v2
0 =

n0g

m∗
.

Actually, we can identify (17.82) with the equation of ordinary sound waves in a fluid,
by setting the bulk modulus B = n2

0g = n2
0 ∂

2FGL/∂n
2
s and the density ρ = m∗ns . So

our gapless Goldstone mode can simply be identified with the zero-frequency mode of the
superfluid phonon excitations.

Alternatively, we can consider amplitude and phase fluctuations in the order parameter,
and we write

� = (�0 + δψ) eiϕ(x)

The GL functional becomes

F [�] �
∫

dx
[

1

2m∗

(
h̄

i
(∇δψ) eiϕ(x) + h̄ (�0 + δψ) (∇ϕ) eiϕ(x)

)∗
×
(
h̄

i
(∇δψ) eiϕ(x)+h̄(�0 + δψ)(∇ϕ) eiϕ(x)

)
− μ (�0 + δψ)2+ g

2
(�0 + δψ)4

]
.

Keeping terms up to second order in the fluctuations,

F [�] �
∫

dx
[

1

2m∗

{(
h̄

i
(∇δψ)

)∗
·
(
h̄

i
(∇δψ)

)
+
(
h̄

i
(∇δψ)

)∗
·
(
h̄�0 ∇ϕ

)
+
(
h̄

i
(∇δψ)

)
·
(
h̄�0 ∇ϕ

)∗}+ 1

2m∗
(
h̄�0 ∇ϕ

)
·
(
h̄�0 ∇ϕ

)∗
− 2μ�0δψ + 2g �3

0δψ − μδψ2 + 3g �2
0δψ

2
]
.

Note that the first-order terms cancel since we are expanding about a minimum of the
potential. Furthermore, up to second order there are no terms mixing amplitude fluctuations
δψ and phase fluctuations ϕ. We can simplify the expression
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F [�] �
∫

dx
[(

h̄

i
(∇δψ)

)∗
·
(
h̄

i
(∇δψ)

)
+ 1

2m∗
(
h̄�0∇ϕ

)
·
(
h̄�0∇ϕ

)∗ + 2μδψ2
]

.

Taking a Fourier transform, we obtain

F [ψ] �
∑

k

[(
2μ+ h̄2k2

2m∗

)
δψ∗k δψk + μ

g

h̄2k2

2m∗
ϕ∗k ϕk

]
.

We see that amplitude fluctuations are gapped (massive) with an energy gap 2μ. They
are not degenerate. In contrast, phase fluctuations are ungapped (massless) with quadratic
dispersion:

ε
ϕ
k = −

μ

g

h̄2k2

2m∗
= ns

h̄2k2

2m∗
.

This ungapped mode is the Goldstone mode, characteristic of systems with spontaneously
broken continuous symmetries.

Exercises

17.1 (a) Given the grand canonical partition function

Z = Tr

[
e
−β
(
H−μ N̂

)]
,

show that for a general system of conserved particles at chemical potential μ,
the total particle number in thermal equilibrium can be written as

N = −∂F
∂μ

⇒ F = −kBT lnZ.

(b) Apply this to a single energy level, where

H− μ N̂ = (ε − μ) a† a

and a† creates either a Fermion, or a boson, to show that

F = ± kBT ln
[
1∓ e−β(ε−μ)

]
〈n〉 = 1

eβ(ε−μ) ∓ 1
,

where the upper sign refers to bosons, the lower to fermions. Sketch the occu-
pancy as a function of ε for the case of fermions and bosons. Why does μ have
to be negative for bosons?

17.2 Bose–Einstein condensates created inside optical atom traps contain alkali atoms at
densities of about 1014 − 1015 cm3.

(a) What is the Bose–Einstein transition temperature of a gas of sodium atoms at a
density 1015 cm3? (Give your answer in microkelvin.) How are such tempera-
tures attained in practice?



576 Boson Systems: Bose–Einstein Condensation and Superfluidity

(b) Liquid helium has a density of 122 g/liter at its boiling point. Compare its the-
oretical Bose–Einstein condensation temperature with its superfluid transition
temperature (2.21 K). Why are the two numbers not the same?

17.3 A three-dimensional gas of noninteracting bosonic particles obeys the dispersion
relation

ε(k) = A |k|1/2 .

(a) Obtain an expression for the density n(T ,α), where α = eμ/kBT is the fugacity.
Simplify your expression as best you can, adimensionalizing any integral or
infinite sum that may appear. You may find it convenient to define

Liν(α) = 1

�(ν)

∫ ∞
0

dt
tν−1

α−1 et − 1
=
∑
�

α�

�ν
.

Note that Liν(1) = ζ(ν), the Riemann zeta function.
(b) Find the critical temperature for Bose condensation, TBE(n), where n is the

gas density. Your expression should only include the density n, the constant A,
physical constants, and numerical factors (which may be expressed in terms of
integrals or infinite sums).

(c) What is the condensate density n0 when T = TBE/2?

17.4 Consider a free Bose gas in which the particle spectrum is given by

ε(k) = a |k|s .

Determine for which values of s the system undergoes a Bose–Einstein condensa-
tion in three, two, and four dimensions.

17.5 Consider a system of bosons created by the field�†(x), and having a pair interaction
potential of the form

V (r) =
{
U r < R

0 r > R.

(a) Write the interaction terms in second quantized form, as a function of field
operators.

(b) Switch to the momentum basis, where

�(x) =
∫

dk
(2π)3

ck eik·x.

Verify that [
ck, c

†
k′
]
= (2π)3 δ(3)

(
k− k′

)
and write the interaction in this basis. Sketch the form of the interaction in
momentum space.
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17.6 Start from the definition of the one-body density matrix for the case of an ideal gas
in a 3D box,

n(1)(x,x′) =
∑

k

fk ϕ
∗(x) ϕ(x′),

where the eigenfunctions of H = p2

2m are plane waves

ϕ(x) = 1√


eik·x

and

fk =
(
eβ(εp−μ) − 1

)−1
.

(a) Show that ϕ∗i (x) are also the eigenfunctions of the one-body density matrix with
the eigenvalues given by the average occupation number fi , i.e.,∫

dx′ n(1)(x;x′) ϕ∗i (x′) = fi ϕ(x).

(b) Derive an analytic form for n(1)(x,x′), and show that it depends on
∣∣x− x′

∣∣ = s.
(c) Show that the behavior of n(1)(s) at large distances (s = ∣∣x− x′

∣∣ � λT ) for
T < TBE follows

n(1)(s) � n0 + 1

λ2
T s

,

where n0 is the condensate density.
(d) Repeat the same calculation for T > TBE and show that now the decay to zero

is of the type of Yukawa law

n(1)(s) � eβμ

λ2
T s

exp

[
−
√

4π
(
1− eβμ

) s

λT

]
.

(e) Consider the case of a classical gas, where the distribution function is the
Maxwell–Boltzmann one, fk = e−βεp , and evaluate the one-body density
matrix n(1)(s). Show that if you consider the short-distance behavior s � λT

of the general quantum case, you get exactly the same result.

17.7 If a free bosonic particle Hamiltonian is given by

H = h̄ω a† a,

what is the time dependence of the unitary evolution operator

U = exp

[
− i

h̄
Ht

]
for a particle number eigenstate |n〉 and coherent state |α〉?

Explain why the preceding two states have distinct time dependence.
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17.8 (a) Show that for an arbitrary analytic operator function f (Â) it holds that

eS f (Â) e−S = f
(
eS Â e−S

)
,

a result that is easily generalized to the case where instead of Â we have several
operators.

Hint: as a first step, consider the case where f (Â) = Ân with integer number
n.

(b) As an application of the general result in part (a), show that for the Glauber
displacement operator

D(α) ≡ exp
(
α a† − α∗ a

)
,α ∈ C

generating coherent states when acting on the vacuum |∅〉 of the bosonic mode
a satisfies the action

D† (α) f
(
a, a†
)
D(α) = f

(
a + α,a† + α∗

)
,

where f
(
a, a†
)

is an arbitrary analytic function.
17.9 Show that the action of the creation operator on the coherent state |α〉 is

a† |α〉 = d

dα
|α〉 .

17.10 Weisskopf’s rendition of a roton is shown in Figure 17.15.
Inelastic neutron scattering is used to measure the 4He dispersion. Consider

the case where a neutron scatters off a He atom in the liquid, where the He atom
acquires a velocity v. Surrounded by other atoms, the atom is forced to rotate about
an adjacent atom.

(a) Calculate the kinetic energy in the center of mass (COM) frame of the two He
atoms and compare it to that in the lab frame.

(b) Quantize the rotational energy and determine the moment of inertia in the COM
frame. Assume an interatomic distance of d.

Figure 17.15 Development of a roton.
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L L L

Figure 17.16 Circulation of a superfluid.

(c) Assume that the kinetic energy in the COM frame corresponds to the lowest
angular momentum excitation. Relate this energy to the energy imparted by the
neutron to the He atom. Denote the latter by 	, and note that this is the energy
loss recorded in the experiment.

(d) Determine the momentum transfer p0 to the He atom in terms of 	.
(e) Obtain numerical values for 	 and p0 and compare them to those determined

experimentally: 	/kB = 10K and p0/h̄ = 20 nm−1.

Although Weisskopf’s model is very simple, it is able to give order of magnitude
agreement. The real situation is likely to be more complex.

17.11 Circulation, vortices, and Landau’s two-fluid model:

Consider the case of a circulating flow of a superfluid in a torus that continues
indefinitely, without dissipation (see Figure 17.16). We want to understand this, and
the connection with Bose–Einstein condensation.

(a) Consider first flow states in the ideal Bose gas at zero temperature when all the
particles are condensed into a single state. We model the torus as a length L with
periodic boundary conditions. A flowing state is given by Bose condensing into
the lowest single-particle state with nonvanishing momentum. Start with this
case of an ideal “noninteracting” Bose gas, with all N particles in that state.

(i) What is the single-particle ground state as set by the boundary conditions?
(ii) Write the many-body wavefunction and its total momentum P.

(iii) Use the result for P to derive an expression for the total momentum density
in terms of the superfluid mass density and superflow velocity.

(iv) What is the superflow velocity? If we express the single particle wave-
function in the form |ψ | eiϕ , it allows the results to be generalized to more
complicated flow fields that correspond to a ψ(x) that is not simply a plane
wave. Write down the expression for the superflow in this latter case.

(v) Given the quantization of k you obtained in part (i), determine the
circulation, namely, the line integral of the velocity around a closed loop:∮

vs · d	.
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Realizing that this arises because of the single-valuedness of the wavefunc-
tion, write down the general expression of this integral in terms of ∇ϕ. You
have just obtained the quantization condition for superflow vortices!

Onsager suggested the following Gedanken experiment in 1949 [147]:

Now we observe that a torus can be converted into a simply-connected space by
shrinking the hole. If a circulating superfluid is subjected to such a deformation of
its container, it must retain a quantized vortex in its interior.

(b) With this result in hand, consider the adiabatic continuity of turning on the
interparticle pair interactions at zero temperature.

(i) Write down the interacting boson Hamiltonian in second-quantized form.
(ii) Interactions may reduce the condensate density. Describe the scattering

mechanism that may reduce the condensate density.
(iii) By examining the Hamiltonian, what kind of momentum conservation do

you infer?
(iv) If the adiabatic turnon starts with the circulating superflow state described

earlier for the noninteracting system, what does this imply for the super-
flow in the interacting system?

(c) Next, consider interactions with the containing walls. Assume a superflow
momentum density

g = ρs vs .

There are two ways for g to decay:

(i) vs may decrease. Discuss the conditions constraining this decay.
(ii) ρs may decrease. Analyze this process in terms of Landau’s superfluid

argument involving Galilean transformation. (Consider the simple case of
delta-function interactions.)

(d) At nonzero temperatures, thermal excitations may redistribute and change the
total momentum. Consider the situation where the condensed state flows at the
superfluid velocity vs , and the walls of the container are moving with veloc-
ity vn.

(i) The walls provide a momentum bath. Equilibrium in contact with a
momentum bath moving at velocity v is given by the Boltzmann factor
e−β (E−p·v), where β = 1/kBT .

Determine the number of excitations, nB(ε(k)) =
(
eβε − 1

)−1
, with

momentum h̄k and excitation energy ε(k)+ h̄k · vs at temperature T .
(ii) What is the total momentum P(T ) of the flowing ground state plus the

momentum of the excitations?
(iii) For small vs − vn, write a Taylor expansion of the nB term. What are the

zeroth-order and first-order terms?
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(iv) Show that the momentum density can now be written as

g(T ) = P(T )
V

= ρ vs + ρn (vn − vs)

= ρs vs + ρn vn,

where

ρn = 1

3V

∑
k

h̄2k2
(
− ∂nB

∂ε(k)

)
and ρs = ρ−ρn. This definition corresponds to Landau’s two fluid model.

17.12 Nature of ground state:
The Hamiltonian of the interacting Bose system is given by

H =
∑

k

εk a
†
k ak + 1

2

∑
k,k′,q

Vq a
†
k−q a

†
k′+q ak′ ak

= H0 +Hint. (17.83)

(a) Show that the unitary transformation

Tϕ = exp

[
−iϕ

∑
k

a
†
k ak

]
= exp

[
−iϕ N̂

]
,

where N̂ is the total number operator, leads to

ak → T †
ϕ ak Tϕ = e−iϕ ak

a
†
k → T †

ϕ a
†
k Tϕ = eiϕ a

†
k

for all ϕ. Note that the continuous variable ϕ defines the continuous group U(1).
(Make use of one of the Baker–Housdorff formulas.)

(b) How does this transformation affect the Hamiltonian?
(c) What implications does it have on the total number of particles?
(d) Using your conclusions from the previous parts, describe the possible outcomes

when Tϕ acts on the normalized eigenfunctions of the system, |ψn〉. Compare
the symmetries of the possible outcomes with that of the Hamiltonian.

(e) If the ground-state wavefunction |ψ0〉 is nondegenerate, what is the expectation
value 〈ψ0 |a0|ψ0〉? Base your argument on the action of Tϕ on |ψ0〉 and on a0.

(f) How about if there is a continuum of degenerate ground states?
(g) Based on your knowledge of the quantum harmonic oscillator, what type of

wavefunction would you expect to yield a nonzero value of 〈ψ0 |a0|ψ0〉?
17.13 Condensation in multiple single-particle states:

Consider the possibility that, for an interacting boson system, condensation may
occur in more than one low-lying single-particle state. The interaction Hamiltonian
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takes the usual form

HI = 1

2V

∑
k,k′,q

V (q) a†
k−q â

†
k′+q âk′ âk.

(a) If all N particles are condensed in the lowest energy state |�0〉, calculate the
interaction energy.

(b) Now suppose the condensate is fragmented into two single-particle states |�0〉
and |�1〉 with population N0 and N1, N0+N1 = N , where the kinetic energies
of both states are infinitesimally close. Construct the many-particle wavefunc-
tion and determine the interaction energy. Remember that the interaction energy
involves all possible contractions of operators.

Based on your findings, do you think that fragmentation is favored? Explain
why.

17.14 Phase and density as conjugate operators:
Consider bosonic particles in a periodic box of volume 
. The field operator can be
expanded as

�̂(x) = 1√



∑
k

eik·x âk.

To study condensation, we separate out the lowest energy state and write

�̂(x) = Â+ 1√



′∑
k

eik·x âk,

where

Â = 1√


â0, and

[
Â, Â†

]
= 1



.

(In the limit of large N , the operators Â and Â† almost commute and can with a
very good approximation be considered as classical, i.e., as c-numbers.)

Suppose that we express Â and Â† in terms of the density and phase operators as

Â = eiϕ̂
√
n̂

Â† =
√
n̂ e−iϕ̂ .

(a) Use the commutator of Â and Â† together with one of the Baker–Housdorff
identities to determine the commutator[

ϕ̂, n̂
]

.

(b) Show that

eiϕ̂ n̂ =
(
n̂+ 1




)
eiϕ̂ .
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(c) Determine the commutator [
eiap̂/h̄, x

]
,

where x̂ and p̂ are conjugate position and momentum, respectively. What does
this commutator imply? Based on your answer, how would you describe the
relation in part (b)?

17.15 Coherent states:

(a) Show that the coherent state

|α〉 = e
√

α a† |∅〉

is an eigenstate of the annihilation operator a.
(b) Derive an expression for the action of the creation operator a† on the coherent

state.
(c) Determine the overlap of two coherent states |α〉 and

∣∣α′〉 and thus normalize
the preceding coherent state.

(d) Determine the overlap after normalization.
(e) Show that the probability of being in a state with n particles is a Poisson distri-

bution:

p(n) = λn

n!
e−|λ|, λ = |α|2.

17.16 Quantum and thermal depletion:
We discussed quantum depletion in the context of phase stabilization and phase
locking. In this problem, we are going to explore obtaining some quantitative esti-
mates for both quantum and thermal depletions in a weakly interacting boson gas.

(a) Calculate the average number of quasiparticles Nqp
k =

〈
α

†
k αk

〉
with momentum

k. Recall that it must obey the Bose–Einstein distribution with the chemical
potential μ = 0.

(b) Express the average number of real particles N rp
k =

〈
a

†
k ak

〉
in terms of Nqp

k , uk

and vk. In the process, determine the number of particles in the condensate as a
function of temperature.

(c) Can you separate the resultant depletion into quantum and thermal components?
What is the depletion mechanism at T = 0?
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Landau Fermi Liquid Theory

18.1 Introduction

In describing most metals and insulators, as for example in calculating band structures
and other properties, one starts from a picture of noninteracting electrons. However, as
we showed in Chapter 1, the Coulomb interaction energy among electrons is actually
very large, and one might wonder why it is appropriate to assume that noninteracting
electrons make a sensible starting point. Yet, we find that the noninteracting model of the
Fermi gas reproduces many qualitative features of metallic behavior, such as a well-defined
Fermi surface, a linear specific heat capacity, and a temperature-independent paramagnetic
susceptibility – evidence of remarkably strong robustness against perturbation.

The underlying idea, first phrased in these terms by the great physicist Lev Landau, is
that electrons in a real metal form a Fermi liquid, which bears the same relation to the
Fermi gas of free electrons that a normal liquid bears to a normal gas: the interactions in
the liquid are much stronger than in the gas, but there is no change in symmetry or in
the fundamental nature of the state. In particular, the elementary excitations of the ground
state bear the same quantum numbers as ordinary electrons. Landau’s theory, which we
will justify in this chapter, explains how these excitations can wind up as electrons dressed
by particle–hole pairs, which renormalize the mass (enhancing it by a factor up to 103
in so-called heavy-fermion compounds) and some other properties but not the charge e

and fermionic statistics. Such Landau Fermi liquid behavior appears in many contexts –
in metals at low temperatures, in the core of neutron stars, and in liquid 3He, and most
recently, it has become possible to create Fermi liquids with tunable interactions in atom
traps. We should note that our understanding of Landau Fermi liquids is intimately linked
with the idea of adiabaticity, which was introduced earlier.

18.1.1 Preliminaries: Noninteracting Free-Particle Fermion Gas

As we have shown in Chapter 1, the noninteracting free-particle gas at T = 0 is
characterized by

Dispersion: εfree
k = h̄2k2

2m
, kF =

(
3π2n

)1/3

εF =
(
3π2)2/3 h̄2

2m
n2/3, Total energy: = 3

5
N εF .

584
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We can express these quantities in terms of rs as

vF = h̄ kF

m
= 4.2

rs
× 108 cm/sec, εF = 50.1

r2
s

eV, TF = 58.2

r2
s

× 104 K.

Finite Temperature Properties

At finite temperatures, the Fermi–Dirac distribution is

f (ε) =
(
eβ(ε−μ) + 1

)−1
,

and the total energy per unit volume can be expressed as

E =
∫ ∞

0
dε εD(ε) f (ε) =

√
2m3

π2h̄3

∫ ∞
0

dε
ε3/2

eβ(ε−μ) + 1
,

where D(ε) is the density of states. The specific heat is given by

Cv = ∂E
∂T

=
∫ ∞

0
dε εD(ε) ∂f (ε)

∂T

subject to the constraint

n =
∫ ∞

0
dεD(ε) f (ε),

which determines μ and its temperature dependence. Using the relation

dn

dT
= 0 ⇒ εF

dn

dT
= 0 = εF

∫ ∞
0

dεD(ε) ∂f (ε)
∂T

,

we write

Cv =
∫ ∞

0
dε (ε − εF ) D(ε)

∂f (ε)

∂T

=
∫ ∞

0
dε (ε − εF ) D(ε)

β eβ(ε−μ)(
eβ(ε−μ) + 1

)2 [ε − μ

T
− ∂μ

∂T

]
.

At finite but low temperatures, the Fermi function only changes in a regime ±kBT around
the Fermi energy. In metals, EF ∼ 10 eV, and EF/kB ∼ 105 K, which is huge compared
to room temperature. Thus, the change in internal energy, at a small but finite temperature,
will involve electrons close to the Fermi level. Their excitation energy is∼ kBT , so that the
relative number of excited states is only D(EF ) kBT . In that range, we neglect ∂μ/∂T � 1
and set μ ∼ εF ; we have

Cv � 1

kBT 2

∫ ∞
0

dε (ε − εF )
2 D(ε) eβ(ε−εF )(

eβ(ε−εF ) + 1
)2

= k2
BT

∫ ∞
−βεF

dxD
(
x

β
+ εF

)
x2 ex

(ex + 1)2
.
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Figure 18.1 x2 ex

(ex+1)2
versus x.

But, as shown in Figure 18.1, x2 ex

(ex+1)2
is negligible outside the range −10 < x > 10, and

for T � TF we can set D((x/β)+ εF ) ∼ D(εF ). Thus,

Cv ∼ k2
BT D(εF )

∫ ∞
−βεF

dx
x2 ex

(ex + 1)2
∼ π2

3
D(εF ) k2

BT =
π2kB

2
n
T

TF
. (18.1)

Similarly, we can derive an expression for the magnetic susceptibility as follows. The
magnetization is given by

M = gμB

(
n↑ − n↓

) = gμB

n

2

∫ εF

0
dε
[
D(ε + gμBB)−D(ε − gμBB)

]
.

For small fields, D(ε ± gμBB) ∼ D(ε)± ∂D
∂ε

gμBB, and we get

M = 2g2μ2
B

n

2
B

∫
dε

∂D
∂ε
= 2g2μ2

B nD(εF ) B,

and the susceptibility is

χ = ∂M

∂B
= g2μ2

B nD(εF ).

Since both the specific heat and the magnetic susceptibility are proportional to the density
of states, the ratio of these two quantities W = χ/Cv , often called the Wilson ratio, or
Stoner enhancement factor in the context of ferromagnetism. It is set purely by the size of
the magnetic moment:

W = 3

(
g2μ2

B

πkB

)2

.

The measured Wilson ratio in 3He is about 10 times larger than predicted by the nonin-
teracting free-fermion model.

Quantitative discrepancies between measured physical properties of liquid 3He and cor-
responding ideal Fermi gas predictions, motivated Landau to develop his theory. He used
the adiabatic idea, in a brilliantly qualitative fashion, to formulate his theory of interacting
Fermi liquids that produced agreement with experiment [115, 116]. Landau’s revolutionary
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hypothesis that the adiabatic evolution of low-energy excited states occurs in a bulk system,
and that by justifying this simple assumption we can predict a lot of physical properties is
one of the major achievements of contemporary condensed matter theory.

18.2 Landau’s Concept of Quasiparticles

The key concept underlying Fermi liquid theory is adiabacity: as the interactions are slowly
turned on, it is assumed that the noninteracting states smoothly and continuously evolve
into interacting states, and that this evolution takes place without encountering any singular
behavior. Such a singularity would signal an instability of the ground state and should be
viewed as a phase transition. Thus, if there are no phase transitions, there should be a
smooth connection between noninteracting and interacting states. In particular, the quantum
numbers used to label the noninteracting states should also be good quantum numbers in
the presence of interactions – the low-energy excitations of an interacting Fermi system
are in one-to-one correspondence to the excitations of a noninteracting Fermi gas. As was
mentioned previously, the theory was originally developed for 3He. One simplifying aspect
of 3He is the absence of an underlying crystalline lattice.

18.2.1 Particles and Holes

Because of the Pauli principle, the ground state of a Sommerfeld gas is the Fermi sphere.
The quantum numbers of its excited states are the occupations nkσ of single-particle states,
which are characterized by momentum and spin: |kσ 〉.

We excite the system by promoting a certain number of fermionic particles across the
Fermi surface yielding particles above and an equal number of holes below the Fermi
surface. These “elementary excitations” are quantified by δnk = nk − n

(0)
k ”

δnk =
⎧⎨⎩ δk,k′, for particles

∣∣k′∣∣ > kF

−δk,k′, for holes
∣∣k′∣∣ < kF .

(18.2)

For excitations induced by thermal fluctuations, |δn| ∼ 1 only for excitation energies within
kBT of εF , as shown in Figure 18.2. The energy of the noninteracting system can be defined
as a functional of the occupation

0

T

1

f(
  
)

Figure 18.2 Fermi–Dirac distribution at temperature T.
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E − E0 =
∑

k

h̄2k2

2m

(
nk − n

(0)
k

)
=
∑

k

h̄2k2

2m
δnk. (18.3)

When the system is placed in contact with a particle reservoir, the appropriate potential is
the free energy, which for T = 0 is F = E − μN , and

F − F0 =
∑

k

(
h̄2k2

2m
− μ

)
δnk. (18.4)

The free energy of a particle, with momentum h̄k and δnk′ = δk,k′ , is

h̄2k2

2m
− μ

and it corresponds to an excitation outside the Fermi sphere. The free energy of a hole
δnk′ = −δk,k′ , an excitation within the Fermi sphere, is

μ− h̄2k2

2m
.

Now, since μ ∼ h̄2k2
F /2m at low temperatures, the free energy of a particle or hole at

|k| = kF is zero, and we can write the free energy of an excitation as∣∣∣∣∣ h̄2k2

2m
− μ

∣∣∣∣∣ . (18.5)

Always a positive number that indicates the system is stable to excitations!

18.2.2 Quasiparticles and Quasiholes at T = 0

We consider a system of interacting electrons, and assume that this interaction grows
adiabatically slowly, so that the system remains in the ground state as it evolves from a
Sommerfeld gas and emerges into a fully interacting system. While the Fermi gas eigenstate
is indexed by n(0)k , the interacting system eigenstate will evolve quasistatistically from n

(0)
k

to nk. However, we note that for an isotropic system, n(0)k = nk.
Now we consider the scenario where we add an electron of momentum p = h̄k to

the initial Sommerfeld gas, and then slowly turn on the interaction (see Figure 18.3).
As the interaction is switched on, the electrons in the vicinity of our injected one are
slowly perturbed, and the injected particle becomes dressed by these interactions. Yet,
since momentum is conserved, we have created an excitation (the electron plus its cloud) of
momentum h̄k. We call this particle plus cloud a quasiparticle. This scenario carries over
to the case of injecting a hole of momentum p = h̄k below the Fermi surface.

18.2.3 Quasiparticle Lifetime

Momentum and spin of excitations can only serve as quantum numbers if an excitation
with |kσ 〉 does not immediately decay into other states. Since the eigenstate basis vectors
of the noninteracting system, in general, become unstable and damp out after a certain time
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Figure 18.3 We inject an electron of momentum h̄k into a Sommerfeld gas, and slowly increase
the interaction to its full value. As the combined system evolves, the electron becomes dressed by
interactions with electrons in its vicinity (shown as a gray ellipse) which changes the effective mass
but not the momentum of this single-particle excitation, designated a quasiparticle.

period τ in the real system, the adiabatic switching on of interaction should require a time
much shorter than τ . However, if the interaction is turned on too fast, the final state is no
longer an eigenstate of the system. It is therefore necessary that the time period τ should
be large, which implies that the excited states have a long lifetime.

As we have demonstrated in Chapter 16, phase space constraints limit the excited states
lifetime to τ ∝ (ε − εF )

−2 at T = 0. In other words, the Landau quasiparticles become
better and better defined as one gets closer to the Fermi surface. This is a remarkable result
since it confirms that we can view the system as having single-particle excitations that
resemble those of the original fermions, but with renormalized parameters. Note that this
does not mean that close to the Fermi surface the interactions are disappearing from the
system. They are present and can be extremely strong and can affect the dynamics and
other properties of the system. Moreover, the quasiparticle excitations are not eigenstates
of the interacting system, since they have a finite lifetime!

At finite temperatures, T plays the role of energy, setting the characteristic spread of the
thermal distribution about the Fermi surface. The Fermi liquid decay rate is then

1

τ
= a (ε − εF )

2 + b (kBT )
2 ,

where a and b are constants. The larger of temperature or energy terms dominates. The
kinematic constraints on the decay rate lead to a characteristic form for the electrical
resistivity

ρ(T ) ∝ 1

τ
∝ T 2.

This is often taken as an identifying signature of Fermi liquid behavior.
A quasiparticle is then a manifestation of the adiabatic evolution of the noninteracting

fermion into an interacting environment. The conserved quantum numbers of this exci-
tation, its spin and its “charge” and momentum, are unchanged, but Landau reasoned
that its dynamical properties, for example the effective magnetic moment and mass of
the quasiparticle, would be renormalized to new values μ∗ and m∗ respectively. These
renormalizations of the quasiparticle mass and magnetic moment are elegantly accounted
for in Landau Fermi liquid theory in terms of a small set of Landau parameters that
characterize the interaction.
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18.2.4 Quasiparticle Energy

As in the noninteracting system, excitations will be described by deviations of occupation
numbers from their ground-state values n(0)k

δnk = nk − n
(0)
k

At low temperatures, δnk ∼ 1 only for k ∼ kF , where the particles are sufficiently
long lived. We should underscore here that only δnk will be physically relevant, and not
n
(0)
k or nk.

For the Sommerfeld gas,

E [δnk]− E0 =
∑

k

h̄2k2

2m
δnk. (18.6)

For the interacting system, E [δnk] becomes a much more complicated functional. If,
however, δnk is small (so that the system is close to its ground state), then we may expand:

E [δnk] = E0 +
∑

k

εk δnk +O
(
δn2

k

)
, (18.7)

where εk = δE/δnk. Note that εk is intensive (independent of the system volume).
If δnk = δk,k′ , then E ∼ E0 + εk′ - and the energy of the quasiparticle of momentum
h̄k′ is εk′ .

Actually, we only need define εk near the Fermi surface, where δnk is finite. So we may
approximate

εk � μ+ h̄ (k− kF ) · ∇k

h̄
εk

∣∣∣
k=kF

,

where (∇k εk) /h̄ = vk is the group velocity of the quasiparticle.
We may learn more about εk by employing the symmetries of our system. In the absence

of a magnetic field, we have⎧⎨⎩ εk,σ = ε−k,−σ under time reversal

εk,σ = ε−k,σ under inversion

and we find that εk,σ = ε−k,σ = εk,−σ , does not depend on σ . Furthermore, for an isotropic
system εk depends only upon the magnitude of k, with k and vk parallel. We define m∗ as
the constant of proportionality at the Fermi surface:

vF = h̄kF

m∗
.

Thus, for an interacting Fermi liquid at the Fermi surface, the density of states is

Dinteracting(εF ) = m∗kF
π2h̄2

.
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m∗ is usually > m, accounting for the fact that the quasiparticle may be viewed as a dressed
particle, and must drag this dressing along with it. In this sense, the effective mass to some
extent accounts for the interaction between the particles.

18.3 Landau Fermi Liquid

The power of the Landau Fermi liquid theory lies in its ability to parameterize the interac-
tions in terms of a small number of multipole parameters called Landau parameters. These
parameters describe how the original noninteracting Fermi liquid theory is renormalized by
the feedback effect of interactions on quasiparticle energies.

18.3.1 Free Energy and Interparticle Interactions

The thermodynamics of the system depends upon the free energy F , which at zero temper-
ature is

F − F0 = E − E0 − μ (N −N0).

Since our quasiparticles are formed by adiabatically switching on the interaction in the
N + 1 particle ideal system, adding one quasiparticle to the system adds one real particle.
Thus,

N −N0 =
∑

k

δnk

and since

E − E0 =
∑

k

εk δnk,

we obtain

F − F0 �
∑

k

(εk − μ) δnk

As shown in Figure 18.4, we will be interested in excitations of the system that distort
the Fermi surface by an amount proportional to δ. The validity of theory/expansion
requires that

1

N

∑
k

|δnk| � 1,

where δnk 
= 0, εk − μ will also be of order δ. Therefore,∑
k

(εk − μ) δnk ∼ O(δ2).

Thus, for consistency we must add the next term in the Taylor series expansion of the
energy to the expression for the free energy, and we write

F − F0 =
∑

k

(εk − μ) δnk + 1

2

∑
k,k′

fk,k′ δnk δnk′ +O(δ3). (18.8)
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Figure 18.4 We consider small distortions of the Fermi surface, proportional to δ, so that
1
N

∑
k |δnk| � 1.

The second-order coefficients

fk,k′ = δE

δnk δnk′

describe the interactions between quasiparticles at the Fermi surface. These partial deriva-
tives are evaluated in the presence of an otherwise frozen Fermi sea, where all other quasi-
particle occupancies are fixed. Landau was able to show that in an isotropic Fermi liquid,
the quasiparticle mass m∗ is related to the dipolar component of these interactions, as
we shall shortly demonstrate. The Landau interaction can be regarded as an interaction
operator that acts on a thin shell of quasiparticle states near the Fermi surface. Writing the
quasiparticle occupancy as nkσ = c

†
kσ ckσ , where c†

kσ is the quasiparticle creation operator,
then we can compare

HI ∼ 1

2

∑
kσ,k′σ ′

fkσ,k′σ ′ δnkσ δnk′σ ′

with

HI ∼ 1

2

∑
kσ,k′σ ′

q

V (q) c†
k+qσ c

†
k′−qσ ′ ck′σ ′ ckσ,

which shows that the Landau interaction term is a forward scattering amplitude between
quasiparticles whose initial and final momenta are unchanged.

Volume dependence of fk,k′ : Each sum over k is proportional to the volume∑
k

→ V

(2π)3
,
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and since F ∝ V , it must be that fk,k′ ∼ 1/V . However, it is also clear that fk,k′ is an
interaction between quasiparticles, each of which is spread out over the whole volume V ,
so the probability that they will interact is ∼ λ3

T F /V , thus

fk,k′ ∼
λ3
T F

V 2
. (18.9)

Spin dependence of fk,k′ : We can also reduce the spin dependence of fk,k′ to a symmetric
and antisymmetric part. In the absence of an external field, the system should be invariant
under time reversal, and hence the interaction is invariant under spin rotations. In addition,
it has the following symmetries

fkσ,k′σ ′ = f−k−σ,−k′−σ ′ time reversal

fkσ,k′σ ′ = f−kσ,−k′σ ′ inversion,

Therefore,

fkσ,k′σ ′ = fk−σ,k′−σ ′ . (18.10)

Thus f depends only on the relative orientations of the spins σ and σ ′, and there are only
two independent components fk↑,k′↑ and fk↑,k′↓, which allows us to split f into symmetric
and antisymmetric parts:

f s
k,k′ =

1

2

(
fk↑,k′↑ + fk↑,k′↓

)
, f a

k,k′ =
1

2

(
fk↑,k′↑ − fk↑,k′↓

)
. (18.11)

f a
k,k′ may be interpreted as an exchange interaction, or

fkσ,k′σ ′ = f s
k,k′ + σ · σ ′ f a

k,k′, (18.12)

where σ and σ ′ are the Pauli matrices.
Since δnk is only of order one near the Fermi surface, we will only care about fk,k′

on the Fermi surface, where it should be continuous and changes slowly as it crosses the
Fermi surface. In an isotropic Landau Fermi liquid, the physics is invariant under spatial
rotations. In this case, k = kF êk and k′ = kF êk′ , and fk,k′ only depends on the angle
between k and k′, namely cos θ = êk · êk′ , where the ês are unit vectors. In turn, f s

k,k′
and f a

k,k′ will also depend only on θ . We can express either f a
k,k′ or f s

k,k′ in a multipole
expansions in terms of Legendre polynomials as

f α
k,k′ =

∑
�

f α
� P�(cos θ). (18.13)

We can then speak of interactions as monopolar, dipolar, quadrupolar, etc.
The f parameters have the dimension of energy; conventionally they are defined as

dimensionless quantities via

V D(εF ) f α
� = V

m∗k
π2h̄2

f α
� = Fα

� . (18.14)

The coefficients Fα
� are the Landau parameters.
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18.3.2 Local Energy of a Quasiparticle

We consider an interacting system with a certain distribution of excited quasiparticles δnk′ .
To this, we add another quasiparticle of momentum h̄k, so that δnk′ → δnk′ + δk,k′ .

From (18.8), the free energy of the additional quasiparticle is

ε̃k − μ = εk − μ+
∑

k′
fk,k′ δnk′ . (18.15)

Both terms here are O(δ). The second term describes the free energy of a quasiparticle
due its interaction with other quasiparticles in the system (a Hartree-like term): an energy
change induced by the polarization of the Fermi sea. ε̃k plays the part of the local energy
of a quasiparticle, in the sense that ∇xε̃k is the force the system exerts on the additional
quasiparticle. When the quasiparticle is added to the system, the system develops inhomo-
geneity so that δnk′ = δnk′(x). The system will react to this inhomogeneity by minimizing
its free energy so that

∇x F = 0.

However, only the additional free energy due to the added particle (18.15) is inhomo-
geneous, as shown in Figure 18.5, and has a nonzero gradient. Thus, the system will
exert a force

−∇x ε̃k = −∇x

∑
k′

fk,k′ δnk′

on the added quasiparticle resulting from interactions with other quasiparticles.

Equilibrium Distribution of Quasiparticles at Finite T

ε̃k also plays an important role in the finite temperature properties of the system. For∑
δnk � N , we can write

δnk = 〈δnk〉 + (δnk − 〈δnk〉) ,

Figure 18.5 The addition of an extra particle to a homogeneous system will induce forces on the
quasiparticle that tend to restore equilibrium.
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where the first term is O(δ), and the second O(δ2). Thus,

δnk δnk′ � − 〈δnk〉 〈δnk′ 〉 + 〈δnk〉 δnk′ + 〈δnk′ 〉 δnk.

We may use this to rewrite the energy of our interacting system:

E − E0 �
∑

k

εk δnk − 1

2

∑
k,k′

fk,k′ 〈δnk〉 〈δnk′ 〉 +
∑
k,k′

fk,k′ 〈δnk′ 〉 δnk

=
∑

k

(
εk +

∑
k′

fk,k′ 〈δnk′ 〉
)
δnk − 1

2

∑
k,k′

fk,k′ 〈δnk〉 〈δnk′ 〉

=
∑

k

〈ε̃k〉 δnk − 1

2

∑
k,k′

fk,k′ 〈δnk〉 〈δnk′ 〉 . (18.16)

We now use (18.16) to determine the fermion occupation probability. Noting that the second
term on the right-hand side is a constant and has no effect, we obtain

nk(T ,μ) = 1

exp
[
β (〈ε̃k〉 − μ)

]+ 1

or

δnk(T ,μ) = 1

exp
[
β (〈ε̃k〉 − μ)

]+ 1
−(kF − k).

However, for an isotropic system,

〈ε̃k − εk〉 =
∑

k′
fk,k′ 〈δnk′ 〉

must be independent of the location of k on the Fermi surface (and, of course, spin), and
is thus constant. To see this, we reconsider the Legendre polynomial expansion discussed
earlier:

〈ε̃k − εk〉 =
∑

k′
fk,k′ 〈δnk′ 〉

∝
∑
�

∫
dk f� P�(cos θ) 〈δnk′ 〉

∝ f0

∫
dk 〈δnk′ 〉 = 0.

• In going from the second to the third line, we made use of the isotropy of the system, so
that 〈δnk′ 〉 is independent of the angle θ .

• The evaluation in the third line follows from particle number conservation.

Thus, to lowest order in δ,

nk(T ,μ) = 1

exp [β (εk − μ)]+ 1
+O(δ4).
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Local Equilibrium Distribution

Now suppose we introduce a local weak perturbation, such as δ discussed in the preceding
subsection, to an isotropic system at zero temperature. For example, such a perturbation
could be caused by a sound wave or a weak magnetic field. This perturbation will cause a
small deviation of the equilibrium distribution function, leading to a new local equilibrium
distribution

n̄k = n(ε̃k − μ),

where the argument of the rhs indicates that this is the distribution corresponding to the
local energy discussed in the preceding subsection. The gradient of the local energy yields
a force that tries to restore the equilibrium distribution n(εk − μ) derived. The deviation
from true equilibrium is

δnk = nk − n̄k = δn̄k + ∂n(εk − μ)

∂εk
(ε̃k − εk)

= δn̄k + ∂n(εk − μ)

∂εk

∑
k′

fk,k′ δnk′ . (18.17)

At zero temperature, the factor

∂n(εk − μ)

∂εk
= −δ(εk − μ), (18.18)

so both δnk and δn̄k are restricted to the Fermi surface. Since the perturbation of interest is
small, we may expand both δnk and δn̄k in a series of Legendre polynomials, and we will
also split them into symmetric and antisymmetric parts (as we did with fk,k′ previously).
For example,

δnsk =
∑
�

δ(εk − μ) δns� P�. (18.19)

If we make a similar expansion for the antisymmetric and symmetric parts of δn̄k, and
substitute this back into (18.17), then

δn̄a� =
(

1+ Fa
�

2�+ 1

)
δna�

δn̄s� =
(

1+ Fa
�

2�+ 1

)
δns�. (18.20)

18.3.3 Effective Mass m∗ of Quasiparticles

Using this formulation of the interacting Fermi gas, Landau was able to link the renor-
malization of quasiparticle mass to the dipole component of the interactions F s

1 . As the
fermion moves through the medium, the backflow of the surrounding fluid enhances its
effective mass according to the relation
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m∗ =
(

1+ F s
1

3

)
m.

The relation between effective mass m∗ and the interaction term f will now be derived.
The sum of momenta in a unit volume is equal to a flow of mass. The momentum of a unit
volume of the Fermi liquid is the same as the momentum of the quasiparticle in this volume.
The current of the particles in the Fermi liquid is equal to the current of quasiparticles:∫

dk
(2π)3

k nk = m

∫
dk

(2π)3
v nk = m

∫
dk

(2π)3
∇k ε̃k nk. (18.21)

We apply variation with respect to nk and remember that

δ

∫
dk

(2π)3
∇k ε̃k nk =

∫
dk

(2π)3
∇k ε̃k δ nk +

∫
dk

(2π)3
∇k δ ε̃k nk

and that (18.15) gives

δ ε̃k =
∫

dk′

(2π)3
(
fk,k′ δnk′

)
∫

dk
(2π)3

k
m
δnk =

∫
dk

(2π)3
∇k ε̃k δnk +

∫
dkdk′

(2π)6
(∇k fk,k′ δnk′

)
nk

=
∫

dk
(2π)3

∇k ε̃k δnk −
∫

dkdk′

(2π)6
fk,k′ (∇k′ nk′) δnk, (18.22)

where in the last line we interchanged the dummy variables k and k′ and integrated by
parts. The average over spin indices is taken since n and ε do not depend upon spin here.
Note that only f s survives. Since δnk is arbitrary, it follows that

k
m
= ∇k ε̃k −

∫
dk′

(2π)3
f s

k,k′ (∇k′ nk′) . (18.23)

With nk = (kF − k) at T = 0, we obtain

∇k′ nk′ = −k′

k′
δ(k′ − kF ).

However, since both k and k′ are restricted to the Fermi surface, we can orient k along the
z-axis and write

k′

k′
= cos θ .

Moreover, since f depends only upon the angle θ between k and k′, we obtain the following
relation between the effective mass m∗ of the quasiparticles and the mass m of the fermion

1

m
= 1

m∗
+ kF

(2π)2

∫
d cos θ f s(θ) cos θ . (18.24)

The translation invariance property of an isotropic liquid was also used here.
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Recalling that

f s(θ) =
∑
�

f s
� P�(θ)

and that

F s
� = D(ε̃F ) f s

� =
m∗kF
π2

f s
�

we find that

1

m
= 1

m∗
+ F s

1

3m∗
⇒ m∗ =

(
1+ F s

1

3

)
m. (18.25)

Another way to understand quasiparticle mass renormalization is to consider the current
carried by a quasiparticle. The total number of particles is conserved and we can ascribe a
particle current vF = pF /m∗ to each quasiparticle. We can rewrite this current in the form

backflow

vF = pF
m∗

= pF
m︸︷︷︸ −

︷ ︸︸ ︷
pF
m

F s
1

1+ F s
1

bare current

18.3.4 Equilibrium Properties

Specific Heat

We apply the definition of the fermionic specific heat derived in (18.1), but with the modi-
fied density of state, namely

Cv = π2

3
D(ε̃F ) k2

BT =
m∗kF

3
k2
BT . (18.26)

Thus, measuring the electronic contribution to the specific heat Cv yields information about
the effective mass m∗, and hence F s

1 .

Compressibility

We now turn to the compressibility. The pressure of the system is defined as

P = −∂E

∂V
= −∂E

∂n

∂n

∂V
.

With n = N
V

,

P = n

V

∂E

∂n
= n

∂ε

∂n
.



18.3 Landau Fermi Liquid 599

But

κ−1 = −V ∂P

∂V
= n

∂P

∂n
= n2 ∂

2ε

∂n2
.

But the chemical potential is the derivative of energy with respect to the number of particles

μ = ∂E

∂N
= ∂ε

∂n

so that

κ−1 = n2 ∂μ

∂n
.

We will now calculate dμ
dn

. If the particle density of the system is changed by δn, then

δn =
∑

k

δnk

δnk = ∂nk

∂ε̃k
(δε̃k − δμ)

δε̃k = 2

(2π)3

∫
dk′ fk,k′ δnk′ . (18.27)

The quasiparticle energy δε̃k depends on μ only through its dependence on δnk

As we vary the chemical potential, the resulting variations are isotropic and spin inde-
pendent. We therefore can conclude that from the Landau parameters, only F s

0 can play a
role, and we write

δε̃k =
F s

0

D(ε̃F )
∑

k′
δnk′ =

F s
0

D(ε̃F )
δn

and we get

δn =
∑

k

δnk =
∑

k

∂nk

∂ε̃k

(
F s

0

D(ε̃F )
δn− δμ

)
. (18.28)

As T → 0 ∑
k

∂nk

∂ε̃k
=
∫

dε D(ε) ∂n
∂ε
= −D(ε̃F ),

which yields

δn = D(ε̃F )δμ− F s
0 δn

and we get

δn

δμ
= D(ε̃F )

1+ F s
0
, (18.29)



600 Landau Fermi Liquid Theory

which leads to an expression for the compressibility κ

κ = 1

n2

D(ε̃F )
1+ F s

0
= m∗/m

1+ F s
0
κ(0) , (18.30)

where κ(0) is the compressibility of the noninteracting system.
The important things are that we again find a renormalization m∗/m with respect to the

noninteracting compressibility, as for the specific heat. The novel aspect, however, is that a
further renormalization occurs due to the quasiparticle interactions. In fact, depending on
the sign of F s

0 , this can lead to a sizable change in κ . Moreover, if F s
0 ≤ −1, the (18.30)

leads to a divergence of κ or a negative sign. This immediately tells us that the Fermi liquid
is unstable and the whole concept of quasiparticles breaks down.

Magnetic Susceptibility

We will now determine the (spin) magnetic susceptibility of a Fermi liquid. Thus we need
to consider its response to an external magnetic field. Here we will be interested in the effect
of the Zeeman coupling, which causes the quasiparticle energy to change by an amount that
depends on the spin polarization

−1

2
h̄ g σz B,

where g is the gyromagnetic ratio, σz is the diagonal Pauli matrix, and B is the external
(uniform) magnetic field. By taking into account also the change caused to the distribution
functions, we find

δε̃k = −1

2
h̄ g σz B + 2

(2π)3

∫
dk′ fkσ,k′σ ′ δnk′σ ′

with δnk′ given (18.28).
The chemical potential is a scalar (and time-reversal invariant) quantity, and as such it

cannot have a linear variation with the magnetic field. Hence the only possible dependence
of μ with B must be an even power and (at least) of order B2. Thus, it does not contribute to
the magnetic susceptibility (within linear response), and we will neglect this contribution.
Hence, δnk ∝ δε̃k, are independent of the direction of the momentum k, and have opposite
sign for ↑ and ↓ quasiparticles. Since δnk 
= 0 only for k on the Fermi surface (which we
will assume to be isotropic), we find

2

(2π)3

∫
dk′ fkσ,k′σ ′ δnk′σ ′ = 2f a

0 δnσ = σz f
a
0

(
δn↑ − δn↓

)
,

where δnσ is the change in the total number of particles (per unit volume) with spin σ .
Hence,

δnσ = D(ε̃F )
2

(
1

2
h̄ g σz B − 2f a

0 δnσ

)
.
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The net spin polarization is

δn↑ − δn↓ = h̄

2
g
D(ε̃F )
1+ Fa

0
B (18.31)

and the total magnetization M is

M = h̄2

4
g2 D(ε̃F )

1+ Fa
0
B.

We can thus identify the spin susceptibility χ with

χ = h̄2

4
g2 D(ε̃F )

1+ Fa
0
= m∗/m

1+ Fa
0
χ(0), (18.32)

which is the (Pauli) spin susceptibility of a free Fermi gas with mass m∗, with the Fermi
liquid correction.

We again have two distinct contributions to the renormalization with respect to the
noninteracting electron gas: one from the effective mass and a second from the quasiparticle
interactions. If we calculate now the Wilson ratio, we find

W = 1

1+ Fa
0
W(0).

It is thus important to note that the Fermi gas value W(0) can be easily changed to
values of the order 1 . . . 10 by the quasiparticle interactions. For Fermi liquids with strong
ferromagnetic exchange interactions between fermions, a negative Fa

0 enhances the Pauli
susceptibility. This accounts for the enhanced Pauli susceptibility in liquid 3He, with
W ∼ 4, and for the much enhanced W = 10 in Pd metal. Compelling evidence for Landau
Fermi liquid theory comes from heavy-fermion materials, for example in UPt3, m∗

m
∼ 17

as measured by de Haas–van Alphen and confirmed by specific heat. Typical data about
Landau parameters in 3He, effective masses, and susceptibilities are given in Table 18.1.

We again have to require that Fa
0 > −1, in order for the Fermi liquid concept to be valid.

Otherwise, we will in general observe a ferromagnetic instability, called a Stoner instability:
it is an example of a ferromagnetic quantum critical point – a point where quantum zero-
point fluctuations of the magnetization develop an infinite range of correlations in space
and time. At such a point, the Wilson ratio will diverge.

Table 18.1 Landau parameters for 3He and selected m∗ and χ∗.

Parameter 0 bar 26 bar

m∗/m 2.8 5.26

Fs
0 9.28 67.17

Fs
1 5.39 12.79

Fa
0 −0.696 −0.76

System m∗/m χ/χ(0)

Nb 2 1
3He 6 20

Heavy 100 100

fermions
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18.4 Microscopic Verification of Landau’s Phenomenological Fermi Liquid Theory

The microscopic verification of Landau’s Fermi liquid theory (FLT) is actually derived
from the one-particle Green function and its spectral function developed in Chapter 15.
We recall that the Green function characterizes the response of an interacting system to
injection of an additional particle or hole. We start with the analytically continued Green
function

Gkσ (z) = 1

z+ μ− εk −�kσ (z)

with the self-energy function �kσ (z) being unknown. As we have made clear, this function
contains all information about interactions, but, in general, is hard to calculate. However,
in the vicinity of the Fermi energy, z = 0 and |k| = kF , �kσ (z) can in many cases be
expanded in a Taylor series:

�kσ (z) = �kσ (0)+ ∂�kσ (z)

∂z

∣∣∣∣
z=0

z+ ∂2�kσ (z)

∂z2

∣∣∣∣
z=0

z2 + · · ·

For a Fermi liquid, the derivatives have the following properties: assuming
z = ω + i0+, and ω ∈ R,

�kσ (0) ∈ R

∂�kσ (z)

∂z

∣∣∣∣
z=0

≤ 0

∂2�kσ (z)

∂z2

∣∣∣∣
z=0

= −iη, η > 0. (18.33)

Inserting the self-energy expansion into the Green function, and introducing the abbrevia-
tions

Z−1
kF
= 1− ∂�kσ (z)

∂z

∣∣∣∣
z=0

≥ 1

ε̃k = ZkF εk

μ̃ = ZkF (μ−�kσ (0)) , (18.34)

we obtain

Gkσ (z) = ZkF

ω + μ̃− ε̃k + iηω2
. (18.35)

Note that the Fermi wave vector kF is implicitly defined via

0 = μ− εkF −�kσ (0).
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(a)

Figure 18.6 (a) In a noninteracting Fermi liquid, a temperature T � EF /kB slightly blurs the Fermi
surface. (b) In a Landau Fermi liquid, the exclusion principle stabilizes the jump in occupancy at the
Fermi surface, even though the bare interaction energy is far greater than the Fermi energy.

Close to the Fermi energy ω = 0, the imaginary part becomes small and hence the Green
function has a simple pole with a weightZkF . For the noninteracting electron gas, the Green
function has the form

G
(0)
kσ (z) =

1

ω + μ− εk + i0+

and the interacting Green function is of similar structure. The weight of the pole is, how-
ever, ZkF < 1, because the interacting Green function does not describe a real particle, but
a quasiparticle with the factor ZkF as its weight. Finally, close to the Fermi wavevector, we
may expand εk in a Taylor series as

εk = μ+ h̄kF

m
|k− kF |

and hence

ε̃k = μ̃+ h̄kF ZkF

m∗
|k− kF | .

However, Landau’s phenomenological FLT asserts that m∗ = m/ZkF must hold, hence
sometimes ZkF is referred to as the mass renormalization. Yet, we should note that we
introduced a generalization of Landau’s concept: the renormalizations can be k-dependent.

The approximate form (18.35) for the Green function shows that the momentum distri-
bution function ñkσ at T = 0 has a jump at kF , namely

ñk→k+F ,σ
− ñk→k−F ,σ

= ZkF ,

as shown in Figure 18.6(b).
Another cornerstone of FLT is the phase space argument1 that close to the Fermi energy

at zero temperature, the width 1/τk of the coherent quasiparticle peak is proportional to
(εk − μ)2 so that near the Fermi energy the lifetime is long and quasiparticles are well
defined.

1 See Section 15.2.6
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sea sea

Figure 18.7 Left: initial state with an injected single quasiparticle above a filled Fermi sea. Right:
final state with two quasiparticles and a quasihole. Annular light gray areas represent quasiparticles.

Furthermore, we note that the repulsive interaction between the added particle and
those already in the Fermi sea catapults particles from below to above the Fermi surface,
creating electron–hole pairs as shown in Figure 18.7. The possible terms in a perturbative
description of this process are constrained by the conservation laws of charge, particle
number, energy, momentum, and spin, and lead to an expression of

∣∣�N+1
kσ

〉
of the type∣∣∣�N+1

kσ

〉
= Z

1/2
k c

†
kσ

∣∣∣�N
〉
+ 1


3/2

∑
k1,k2,k3
σ1,σ2,σ3

α(k1σ1,k2σ2,k3σ3)

× δk,k1−k2+k3 δσ ;σ1,σ2,σ3 c
†
k3
ck2c

†
k1

∣∣∣�N
〉
+ · · · (18.36)

The dots indicate higher-order terms, for which two or more particle–hole pairs are created,
and δσ ;σ1,σ2,σ3 expresses conservation of spin under vector addition. The multiple particle–
hole pairs for a fixed total momentum can be created with a continuum of momenta of
the individual bare particles and holes. Therefore, an added particle with fixed momentum
has a wide distribution of energies.2 However, if Zk defined by (18.36) is finite, there
is a well-defined feature in this distribution at ε̃k, which is in general different from the
noninteracting value εk = h̄2k2/2m.

From (18.36), we have a more physical definition of Zk: Zk is the projection ampli-
tude of

∣∣�N+1
k

〉
onto the state with one bare particle added to the ground state, since the

projection of all other terms in the expansion vanish in the thermodynamic limit in the
perturbative expression manifest in (18.36):

Zk =
〈
�N+1

k

∣∣∣ c†
k

∣∣∣�N
〉

.

In other words,Zk is the overlap of the ground-state wavefunction of a system of interacting
N + 1 fermions of total momentum k with the wavefunction of N interacting particles and
a bare particle of momentum k. Accordingly, Zk is called the quasiparticle amplitude. The
Landau theory implicitly assumes that Zk is finite. Furthermore, it asserts that for small ω

2 See section 15.5.3
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and |k| close to kF , the physical properties can be calculated from quasiparticles that carry
the same quantum numbers as the particles, namely, charge, spin, and momentum. These
quasiparticles may be simply defined by a creation operator γ †

kσ :∣∣∣�N+1
kσ

〉
= γ

†
kσ

∣∣∣�N
〉

.

In other words, in FLT the single-particle character still lives.

Equation (18.36) allows us to consider a possible scenario where FLT breaks down:
the quasiparticle amplitude Zk becomes zero when the states

∣∣�N+1
k

〉
and c

†
k

∣∣�N
〉

are
orthogonal. This can happen if terms involving the number of particle–hole pairs become
divergent. In other words, the addition of a particle or a hole to the system creates a
divergent number of particle–hole pairs, so that the leading term does not have a finite
weight in the thermodynamic limit. From (18.34), which links the Zs to �s, we find that
the single-particle self-energy must be singular as a function of ω at k � kF . This in
turn means that, unlike Landau Fermi liquids, the Green functions contain branch cuts
rather than the poles. Moreover, if a divergent number of low-energy particle–hole pairs
is created upon the addition of a bare particle, it means that the low-energy response
functions (which all involve creating particle–hole pairs) are also divergent.

18.4.1 The Meaning of the Fermi Surface and the Fermi Sphere

Some final remarks are in order. The picture of the Fermi liquid ground state as a filled
Fermi sphere of quasiparticles is misleading in the sense that the states deep inside the
sphere cannot be thought of as quasiparticles in momentum eigenstates; to highlight this
point, Figure 18.7 depicts the nonquasiparticle states as dark gray areas. Close to kF , and
for T small compared to the Fermi energy, the distribution of the quasiparticles in terms of
the renormalized quasiparticle energies, ε̃k is taken to be the Fermi–Dirac distribution.

Another possible misconception relates to the momentum distribution ñ(k), which for
free fermions at zero T is just a step function at the Fermi momentum kF . In the interacting
case, the quasiparticle distribution function nk has the same behavior and, as discussed
previously, kF is related to the density just as in the free case. The meaning of nk is,
however, not that of the distribution of physical momentum in the ground state. Obviously,
this distribution does not vanish for k > kF since scattering processes will populate the
ground state with electron–hole pairs. This is not in contradiction with the notion that such
a state does not have any quasielectron or quasiholes in it. As is illustrated in Figure 18.6,
it is depleted below kF and augmented above kF , with a discontinuity at T = 0, whose
value is shown in microscopic theory to be ZkF . The qualitative feature of the distribution
is shown in Figure 18.6. ñ(k) is no longer just a step function; it does have a discontinuity
at the Fermi momentum. It is this discontinuity that is characteristic for a Fermi liquid and
that guarantees that there are low-lying quasiparticle-quasihole excitations just as in the
free Fermi gas.
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Exercises

18.1 Uniaxial compressibility:

We consider a system of electrons upon which an uniaxial pressure in z-direction
acts. Assume that this pressure causes a deformation of the Fermi surface k = k0

F of
the form

kF (φ;θ) = k0
F + γ

1

k0
F

[
3k2

z −
(
k0
F

)2
]
= k0

F + γ k0
F

[
3 cos2 θ − 1

]
, (18.37)

where γ = (Pz − P0)/P0 is the anisotropy of the applied pressure.

(a) Can you explain why this deformation of the Fermi surface is adequate? How
will this assumption be modified if we had a uniaxial tensile stress?

(b) Show that for γ � 1, the deformed Fermi surface kF (φ;θ) encloses the same
volume as the nondeformed one, k0

F , where terms of order O
(
γ 2
)

can be
neglected.

(c) The deformation of the Fermi surface effects a change in the distribution func-
tion of the electrons. Using Landau’s Fermi liquid theory, calculate the uniaxial
compressibility

κu = 1




∂2E

∂P 2
z

,

which is caused by the deformation given in (18.37) (E denotes the Landau
energy functional).

(d) What is the stability condition of the Fermi liquid against the deformation given
in (18.37)?

18.2 Zero sound in Fermi liquid:

The transport equation for the distribution function δnk(x,t) in a Fermi liquid like
3He looks quite similar to the Boltzmann equation

∂δnk

∂t
+ vk ·∇x

(
δnk −

∂δn
(0)
k

∂εk
δεk

)
= dn

dt

∣∣∣
collision

,

where δεk is the shift of the quasiparticle energy due to both external fields and the
Landau interaction, and n(0) is the Fermi function.

(a) Assume that the system is in the collisionless regime for frequencies of interest,
i.e., neglect the right-hand side of the equation. Fourier-transform this equation
with respect to time and space to obtain

(ω − q · vk) δnk − δ(εk − εF )q · vk

(∑
k′

fkk′ δnk′

)
= 0.
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(b) Assume that fkk′ = F s
0 /N0, i.e., the Landau interaction is isotropic and nonmag-

netic. Show that the restriction of δnk to the Fermi sphere δnk̂ obeys

δnk̂ =
q · vk

ω − q · vk
F s

0

∫
d
′

4π
δnk̂′ .

(c) Expand δnk̂ in Legendre polynomials on the Fermi sphere, and show there is a
solution δnk̂ with isotropic symmetry only if

1+ F s
0

(
1+ 1

2

ω

qvF
ln

(
ω − qvF

ω + qvF

))
= 0. (18.38)

(d) Plot graphically the solution of (18.38). This is the dispersion for collisionless
zero sound, a sound mode in a degenerate Fermi liquid that has no analog in the
noninteracting system.

18.3 First-sound velocity:
Derive an expression for the first-sound velocity in terms of Landau parameters.
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Non-Fermi Liquids, the Luttinger Liquid, and
Bosonization

19.1 Introduction

The Fermi liquid description of metals outlined in the previous chapter is one of the most
successful theories in condensed matter physics. It can be applied to describe vastly dif-
ferent systems, ranging from liquid 3He to metals such as copper or gold to complicated
compounds such as the heavy fermion intermetallic compound CeCu6, where the Coulomb
interaction in strongly localized f-electron shells leads to gigantic interaction effects and
a hundredfold increase of the effective masses. The specific heat behavior of the heavy
fermion compound CeAl3 is shown in Figure 19.1. As in the Sommerfeld gas, the specific
heat is linear in temperature at low T , Cv � γ T , but the value of the Sommerfeld constant
γ is about a thousand times as large as one would estimate from the density of states of a
typical metal. Such observations dramatically illustrate the power and range of validity of
the Fermi liquid ideas.

19.1.1 Routes to Breakdown of Landau Theory

However, since the early 1980s a variety of metallic compounds have been discovered that,
at low temperatures, display fundamentally different thermodynamic and transport proper-
ties from those of the usual Fermi liquid metallic systems. They have often been referred
to as non-Fermi liquids. The most prominently discussed materials that exhibit proper-
ties qualitatively different from FLT predictions are the normal phase of high-temperature
superconductors for a range of compositions near their highest Tc

1. At very low levels of
doping, they are insulating antiferromagnets. A T versus doping phase diagram is shown
in Figure 19.2. At increased doping levels, they become conducting, and the exact tem-
perature and doping level determine which phase they will be in. The dome shape of the
superconducting region peaks at optimal doping. In the underdoped pseudo-gap region, the
single-particle density of states is suppressed without the onset of global phase coherence
indicative of superconductivity. In the strange metal, the resistivity ρ ∝ T . The pseudogap

1 More than 100,000 papers have been written on the subject of high-temperature cuprate superconductors.
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Figure 19.1 Specific heat of CeAl3 at low temperatures: zero field (•, 	) and in 10 kOe (�),
from [18].

Figure 19.2 Schematic T-vs.-doping (x) phase diagram for cuprate superconductors showing location
of possible quantum critical points (QCPs). One of these QCPs may be responsible for the anomalous
normal state that develops above the pseudogap scale.

and strange metal regimes are separated by a line of crossover2 temperatures T∗. The
boundary of the pseudogap region at low doping levels is unknown. The transition between
the Fermi liquid phase and the strange-metal phase occurs gradually (by crossover). The
white half-disc indicates possible quantum critical point at which the temperature T∗ goes
to absolute zero. A fundamental characteristic of such systems is that the low-energy prop-
erties in a wide range of their phase diagram are dominated by singularities as a function of
energy and temperature. Deviations from Fermi liquid behavior have become a central topic
in the experimental and theoretical studies of correlated electronic systems, triggered by the
discovery of high-temperature superconductivity, the success in synthesizing effectively

2 The term crossover is typically used when a system changes from one type of critical behavior to another. It is driven by
changes in some relevant variables such as anisotropy, magnetic field, or finite size. The crossover is typically smooth, taking
place in a region rather than a precise point. It can be characterized by a crossover exponent.
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low-dimensional materials, and the study of compounds that can be tuned through zero-
temperature phase transitions, such as heavy fermions. Consequently, our perspective on
Fermi liquids has changed significantly due both to such experimental developments, and
to accompanying changes in our theoretical outlook.

19.1.2 Thermally Induced Classical Phase Transitions

It has of course been known for a long time that FLT breaks down in the fluctuation regime
of classical, finite temperature, continuous phase transitions. The order parameter (magne-
tization, staggered magnetization, etc.) fluctuates coherently over increasing distances and
time scales as the transition is approached. The spatial correlations of the order parameter
fluctuations become long ranged. Close to the critical point Tc, their typical length scale,
the correlation length, ξ , diverges as

ξ ∝
∣∣∣∣T − Tc

Tc

∣∣∣∣−ν ,
where ν is the correlation length critical exponent. In addition to the long-range correlations
in space, there are analogous long-range correlations of the order-parameter fluctuations in
time. The characteristic time scale of the fluctuations is the correlation time, τc. As the
critical point is approached, the correlation time diverges as

τc ∝ ξz,

where z is the dynamic critical exponent.
At a finite temperature critical point, the critical long-wavelength fluctuations of the

order parameter do not involve quantum mechanics. This is because thermal fluctuations
destroy the coherence of quantum fluctuations on time scales longer than

τ = h̄

kBT
.

Any continuous finite-temperature phase transition is classical in the following sense:

There exists a characteristic frequency ωc for order-parameter fluctuations, which tends to zero at the
transition. The system will behave classically if the transition temperature Tc satisfies kBTc � h̄ωc,
even when quantum effects are important at short length scales.

It is not that quantum mechanics is unimportant in these cases, for in its absence there
would not be an ordered state, such as a superfluid or a superconductor. However, suffi-
ciently close to the critical point, quantum fluctuations are important at the microscopic
scale but not at the longer length scales that control the critical behavior. In the jargon of
statistical mechanics: quantum mechanics is needed for the existence of an order parameter,
but it is classical thermal fluctuations that govern it at long wavelengths. We recall that
near the superfluid transition in 4He, the order parameter is a complex-valued field that is
related to the underlying condensate wavefunction. However, its critical fluctuations can
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be captured exactly by doing classical statistical mechanics with an effective Hamiltonian
for the order-parameter field – as we have encountered in the phenomenological Ginsburg–
Landau free energy functional.

Thus, when a system approaches a second-order classical phase transition where fluc-
tuations of the order parameter slow down and occur over increasingly long wavelengths,
we can envision that a moving quasiparticle can easily generate a large disturbance in the
system. This disturbance can, in turn, affect other quasiparticles in the vicinity, dramatically
enhancing the scattering cross section in such a way that the quasiparticle lifetime vanishes.
Eventually, this process is terminated at the ordering temperature, where the fluctuations
become locked into a long-range ordered state. Below this temperature, our initial assump-
tions again remain valid and the Landau quasiparticle is saved.

19.2 Quantum Criticality and Quantum Critical Points

The breakdown of FLT occurs in a more substantial region of the phase diagram around the
quantum critical point (QCP) where the transition temperature tends to zero as a function
of some external nonthermal control parameter r; see Figure 19.3.

A. Quantum critical point A quantum critical point arises when a system undergoes a
continuous transition from one phase to another at zero temperature. Actually the transition
is between two ground states, since it is at T = 0. The distinct ground states themselves
occur due to competing interactions of a many-body system that can be tuned by an external
nonthermal parameter, such as pressure or doping. At the critical point, the system is in
a quantum coherent superposition of the degenerate “ordered” and “disordered” states.
Away from the QCP, the nonthermal control parameter r tunes the amount of zero-point
motion of the constituent “particles.” We can say that such a parameter controls quantum-
mechanical tunneling dictated by Heisenberg’s uncertainty principle, changing the degree
of quantum fluctuations. This is the analog of varying the thermal fluctuations in the case
of temperature-driven classical phase transitions. Phase transitions at T = 0 are referred to

"Disordered"

"Ordered"

Figure 19.3 Schematic phase diagram near a quantum critical point. The parameter r along the
x-axis may represent pressure, doping, a ratio of coupling constants, etc. Whenever the critical
temperature vanishes, a QCP, indicated by a dot, is encountered. In the vicinity of such a point,
quantum-mechanical zero-point fluctuations dominate.
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as quantum phase transitions, because they are dominated by quantum effects – quantum
mechanics determines the fluctuation of the order parameter. Consequently, quantum phase
transitions require quantum statistical description of their critical fluctuations.

B. Quantum critical regime The excitation spectrum immediately above this quantum
critical state, T 
= 0, may be distinctly different from the excitations of either phase,
the disordered and the ordered one. The physics of this quantum critical regime, which
corresponds to a wide parameter range at nonzero temperature, is controlled by collective
fluctuations of the QCP. However, in addition to quantum fluctuations, the physical prop-
erties in this regime show also unusual temperature dependence essentially due to thermal
excitation of the anomalous spectrum, so that the quantum critical behavior extends up
to elevated temperatures. Quantum criticality plays a special role in strongly correlated
electron systems; it provides a mechanism for both the non-Fermi liquid behavior and
emergent phases such as unconventional superconductivity.

The interplay of classical and quantum fluctuations leads to an interesting phase diagram
in the vicinity of the QCP. Two cases need to be distinguished, depending on whether long-
range order can exist at finite temperatures:

(i) Figure 19.4(a) describes the situation where order only exists at T = 0.3 In this case,
there will be no true phase transition in any real experiment carried out at finite temper-
ature. However, the finite-T behavior is characterized by three very different regimes,
separated by crossovers, depending on whether the behavior is dominated by thermal
or quantum fluctuations of the order parameter. In the thermally disordered region, the
long-range order is destroyed mainly by thermal-order parameter fluctuations, while
in the quantum-disordered region the physics is dominated by quantum fluctuations.
In the latter, the system essentially resembles that in its quantum-disordered ground
state at r > rc. In between is the so-called quantum critical region, where both types
of fluctuations are important. It is located near the critical parameter value r = rc

at comparatively high temperatures. Its boundaries are determined by the condition
kBT > h̄ωc ∝ |r − rc|νz: the system “looks critical” with respect to the tuning
parameter r , but is driven away from criticality by thermal fluctuations. Thus, the
physics in the quantum critical region is controlled by the thermal excitations of the
quantum critical ground state, whose main characteristic is the absence of conven-
tional quasiparticle-like excitations. This causes unusual finite-temperature properties
in the quantum critical region, such as unconventional power laws, non-Fermi liquid
behavior, etc. Universal behavior is only observable in the vicinity of the QCP, i.e.,
when the correlation length is much larger than microscopic length scales. Quantum
critical behavior is thus cut off at high temperatures when kBT exceeds characteristic
microscopic energy scales of the problem; in magnets this cutoff is set by the typical
exchange energy.

3 A typical example is the case of two-dimensional magnets with continuous SU(2) symmetry, where order at finite T is
forbidden by the Mermin–Wagner theorem.
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Figure 19.4 Schematic phase diagrams in the vicinity of a QCP. The horizontal axis represents the
control parameter r used to tune the system through the quantum phase transition, and the vertical
axis is the temperature, T . (a) Order is only present at zero temperature. The dashed lines indicate
the boundaries of the quantum critical region where the leading critical singularities can be observed;
these crossover lines are given by kBT ∝ |r − rc|νz. (b) Order can also exist at finite temperature.
The solid line marks the finite-temperature boundary between the ordered and disordered phases.
Close to this line, the critical behavior is classical.

(ii) If order also exists at finite temperatures (Figure 19.4(b)), the phase diagram is even
richer. Here, a real phase transition is encountered upon variation of r at low T ; the
QCP can be viewed as the endpoint of a line of finite-temperature transitions. As
discussed earlier, classical fluctuations will dominate in the vicinity of the finite-T
phase boundary, but this region becomes narrower with decreasing temperature, such
that it might even be unobservable in a low-T experiment. The fascinating quantum
critical region is again at finite temperatures above the QCP.

C. Quantum-classical mapping To gain a deeper understanding of the relation between
classical and quantum behavior, and the possible quantum-classical crossover, we have to
recall general features from quantum statistical mechanics.

The starting point for the derivation of thermodynamic properties is the partition
function

Z = Tr e−βH, β = 1

kBT
,

where H = Hkin +Hpot is the Hamiltonian characterizing a d-dimensional system.
In a classical system, the kinetic and potential part of H commute; thus Z factorizes

Z = Zkin × Zpot,

indicating that in a classical system, statics and dynamics decouple. The kinetic contribu-
tion to the free energy usually does not display any singularities since it derives from the
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product of simple Gaussian integrals. Therefore, one can study classical phase transitions
using effective time-independent theories, which naturally live in d dimensions.

In contrast, in a quantum problem the kinetic and potential parts of H in general do not
commute, and the quantum-mechanical partition function does not factorize, which implies
that statics and dynamics are always coupled. An order-parameter field theory needs to be
formulated in terms of space- and time-dependent fields.

As we discussed in Section 15.6, the canonical density operator e−βH looks exactly like
a time-evolution operator in imaginary time if we identify h̄β = −iτ . Therefore, it proves
convenient to introduce an imaginary time direction into the system. At zero temperature,
the imaginary time acts similar to an additional space dimension since the extension of the
system in this direction is infinite.

D. Partition functions and path integrals We now focus on the expression for Z. Upon
writing the trace in terms of a complete set of states,

Z(β) =
∑
n

〈
n

∣∣∣e−βH
∣∣∣ n〉 . (19.1)

Z takes the form of a sum of imaginary-time transition amplitudes for the system to start
in some state |n〉 and return to the same state after an imaginary time interval −ih̄β.
Thus we see that calculating the thermodynamics of a quantum system is the same as
calculating transition amplitudes for its evolution in imaginary time, with the total time
interval fixed by the temperature of interest. The fact that the time interval happens to
be imaginary is not central. The key idea we hope to relay is that (19.1) should evoke an
image of quantum dynamics and temporal propagation. This way of looking at things can be
given a particularly beautiful and practical implementation in the language of Feynman’s
path-integral formulation of quantum mechanics. Feynman’s prescription is that the net
transition amplitude between two states of the system can be calculated by summing ampli-
tudes for all possible paths between them. The path taken by the system is defined by
specifying the state of the system at a sequence of finely spaced intermediate time steps.
Formally, we write

e−βH =
[
e−Hδτ/h̄

]N
,

where δτ is a time interval that is small on the time scales of interest, and N is a large
integer chosen so that Nδτ = h̄β. We then insert a sequence of sums over complete sets of
intermediate states into the expression for Z(β):

Z(β) =
∑
n

∑
m1,m2,...,mN

〈
n

∣∣∣e−Hδτ/h̄
∣∣∣m1

〉
×
〈
m1

∣∣∣e−Hδτ/h̄
∣∣∣m2

〉 〈
m2

∣∣∣ . . . ∣∣∣mN

〉 〈
mN

∣∣∣e−Hδτ/h̄
∣∣∣ n〉 . (19.2)

This rather messy expression actually has a rather simple physical interpretation: Equation
(19.2) has the form of a classical partition function – if we think of imaginary time as
an additional spatial dimension, then we can regard (19.2) as a sum over configurations
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0
(a) (b) (c)

Figure 19.5 Illustration of growing correlation volume as the (T = 0) critical coupling rc is
approached in a system with finite extent in the temporal direction. (a) The correlation time is much
shorter than h̄β. (b) It is comparable. (c) The system is very close to the critical point, and the
correlation time (that the system would have had at zero temperature) greatly exceeds h̄β.

expressed in terms of a transfer matrix. In particular, if our quantum system lives in d

dimensions, the expression for its partition function looks like a classical partition function
for a system with (d + 1) dimensions, except that the extra dimension is finite in extent
−h̄β in units of time. As T → 0, the system size in this extra “time” direction diverges,
and we get a truly (d + 1)-dimensional, effective classical system.

E. Quantum-classical crossover

Once h̄β < ξτ ∼ ξz, the system realizes that it is effectively d-dimensional and not (d+1)-
dimensional. The actual correlation time saturates at h̄β, and the corresponding T = 0
correlation length at which this occurs is the quantum-to-classical crossover length.

Since the physics has to be continuous in temperature, the question arises of how large
the temperature has to be before the system “knows” that its dimension has been reduced.
The answer to this is illustrated in Figure 19.5. When the coupling r is far away from
the zero temperature critical coupling rc, the correlation length ξ is not large, and the
corresponding correlation time ξτ ∝ ξz is small. As long as the correlation time is smaller
than the system “thickness” h̄β, the system does not realize that the temperature is finite.
That is, the characteristic fluctuation frequencies obey h̄ω � kBT , and so are quantum
mechanical in nature. However, as the critical coupling is approached, the correlation time
grows and eventually exceeds h̄β. (More precisely, the correlation time that the system
would have had at zero temperature exceeds h̄β; the actual fluctuation correlation time is
thus limited by temperature.) At this point, the system “knows” that the temperature is
finite and realizes that it is now effectively a d-dimensional classical system rather than
a (d + 1)-dimensional system. The jargon is the system will crossover from a (d + 1)-
dimension critical behavior to a d-dimension one.

19.2.1 Quantum Criticality and Heavy Fermions

Though high Tc cuprates triggered the exploration of non-Fermi liquid system and quantum
criticality, it was heavy-fermion compounds that provided the experimental means to carry
out the research, because of the ability to tune their transition temperature to T = 0 via
pressure, doping, and magnetic fields. Experimental measurements on three-dimensional
heavy-fermion compounds suggest that the quasiparticle mass also diverges in the approach
to an antiferromagnetic QCP. The divergence of the electron mass at an antiferromagnetic
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QCP has important consequences, for it indicates that antiferromagnetism causes a break-
down in the Fermi liquid concept. In these materials, quasiparticle masses of order 100
are recorded, but sometimes in excess of 1,000 bare electron masses have been recorded, a
significant fraction of which is thought to derive from their close vicinity to an antiferro-
magnetic QCP.

19.3 Interacting 1D Electron Gas, Tomonaga–Luttinger Liquid, and Bosonization

It has been known since the 1960s that an interacting one-dimensional electron gas clearly
breaks FLT, and that fermion physics in one dimension is distinctively different from the
physics in higher dimensions. Without any calculations, it is easy to see that interactions
have drastic effects compared to higher dimensions.

As shown in Figure 19.6(a), nearly free quasiparticle excitations exist in high dimension.
By contrast, Figure 19.6(b) shows that an electron in one dimension that tries to propagate
has to push its neighbors because of electron–electron interactions. No individual motion is
possible. Any individual excitation has to become a collective one. This collectivization of
excitations is obviously a major difference between the one-dimensional world and worlds
of higher dimensions. The quasiparticle excitations are replaced in 1D by the Tomonaga–
Luttinger densitylike excitations 4 having a completely different nature. It clearly invali-
dates any possibility to have a Fermi liquid theory work. This demonstrates that the physical
properties of the one-dimensional electron gas are drastically different from the ones of a
corresponding free electron gas.

For fermions with spin, this is even worse. Only collective excitations can exist, which
implies that a single fermionic excitation has to split into a collective excitation carrying
charge (like a sound wave) and a collective excitation carrying spin (like a spin wave).

(a) (b)

Figure 19.6 (a) In high dimensions, nearly free quasiparticle excitations that look nearly like
individual particles are possible. (b) In a one-dimensional interacting system, an individual electron
cannot move without pushing all the electrons. Thus, only collective excitation can exist.

4 The typical properties of a one-dimensional fermionic quantum liquid were first found in the models proposed by
Tomonaga [181], and Luttinger [123]. Tomonaga’s important step was to realize and use the fact that the low-energy spectrum
of noninteracting fermions in one dimension is identical to that of a harmonic chain. This allows us to describe the interacting
fermions as a system of coupled oscillators. Luttinger’s calculation of the momentum distribution in the ground state marks
the appearance of power laws for interacting fermions in one dimension.
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These excitations have in general different velocities, so the electron has to break into two
elementary excitations. These properties, quite different from the ones of a Fermi liquid,
will be the essence of the Luttinger liquid.5

As we have learned earlier, the onset of a Peierls transition and of charge-density waves
in 2D and 3D is strongly dependent on the degree of nesting in a system. By contrast, 2kF
nesting in one dimension is the rule rather than the exception, regardless of the precise
dispersion relation. Since the susceptibility diverges at 2kF , we found that any perturbation
theory in the interaction to be singular at this wavevector. Alternatively, the fact that a
perturbation theory diverges is an indication that the ground state of the interacting system
is quite different from the one before the onset of perturbing interactions. We thus recover
from this argument that the physical properties of interacting electrons in one dimension,
however weak the interaction, are drastically different from the free electron ones.

19.3.1 A Heuristic Primer to Bosonization

To develop an intuitive picture of the meaning of bosonization, we shall examine the
extreme limits of strong and weak interactions in the 1D electron gas.

Peculiarity of One Dimension: Noninteracting Electrons in 1D

As we have seen in Section 15.5, the signature excitations of the electron gas are of the
particle–hole type that form a continuum as a function of their momentum q. In other
words, for d > 1 and q < 2kF we can create particle–hole pairs of arbitrarily low energy
by killing a particle just below the Fermi surface at one point and recreating the particle
just above the Fermi surface at another point, as shown in Figure 19.7. The particle–hole
excitations thus lead to a continuum extending to zero energy for all |q| vectors smaller
than 2kF .

ω

Figure 19.7 Particle–hole spectrum for two- or three-dimensional systems.

5 The name Luttinger liquid was termed for this behavior by Haldane [81].
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Figure 19.8 Particle–hole spectrum for one-dimensional systems. In one dimension, contrary to
higher dimensions, particle–hole excitations have both a well-defined momentum and energy, for
small momentum q, indicated by the gray-shaded region.

In one dimension, the Fermi surface is reduced to two points, and one cannot play with
angles to increase the momentum q without moving away from the Fermi surface in energy.
Since the only way to get a low-energy excitation is to destroy and recreate pairs close to
the Fermi surface, the only places where the particle–hole energy can reach zero are for
q = 0 and for q = 2kF . In order to explore the behavior of the particle–hole spectrum in
one dimension, shown in Figure 19.8, we start by writing the excitation energy Ek(q) as

Ek(q) = ε(k+ q)− ε(k),

where ε(k) should be occupied and ε(k + q) empty. We examine the possible values of
Ek(q) for the standard quadratic dispersion

ε(k) = k2 − k2
F

2m
.

It is easy to check that for k ∈ [kF − q,kF ] the average value E(q) of Ek(q) and the
dispersion δE(q) = max(E(q))−min(E(q)) are

E(q) = kF q

m
= vF q

δE(q) = q2

2m
= E2(q)

mv2
F

. (19.3)

A similar calculation can be made by expanding the energy around kF . If one writes

ε(k) = vF (k − kF )+ λ

2
(k − kF )

2 ,

then it is obvious that

E(q) = vF q

δE(q) = λ q2 = λ

v2
F

E2(q). (19.4)
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The results (19.3) or (19.4) clearly show the following:

(i) The average energy of a particle–hole excitation is only dependent on its momentum
q, endowing the particle–hole excitations with well-defined momentum q and energy
E(q)

(ii) The dispersion in energy δE(q) goes to zero much faster than the average energy,
regardless of the dispersion relation ε(k), provided it has a finite slope at the Fermi
level.

This means that in one dimension the particle–hole excitations are well-defined
“particles” – objects with well-defined momentum and energy – which become longer
and longer lived when the energy approaches zero. It is reminiscent of Fermi liquid
quasiparticles. Because these excitations consist of particle–hole pairs, they are bosonic in
nature. These bosonic quasiparticles will just be the key to solving our one-dimensional
problem – an observation that is at the root of the bosonization method.

From an alternatively perspective, we can surmise that for small q and energy E(q), the
particle–hole spectrum resembles a sound mode with dispersion ω = vF q. This suggests
that the low-energy excitations of the 1D electron gas are similar to that of a 1D elastic
medium, a picture that remains valid even in the presence of interactions. To see this, we
will now consider the opposite extreme of strongly interacting electrons.

Strong Repulsive Interactions: The 1D Wigner Crystal

In the opposite limit, the potential energy will dominate. In this regime, the lowest-energy
electronic configuration is the Wigner crystal, shown in Figure 19.9, with a lattice constant
a = 1/n0 – n0 is the linear electron density – with phononlike low-energy excitations.

We define the phononlike electron displacements as

xi = x0
i +

a

π
θi,

where x0
i is the equilibrium position of the ith electron, and the angular displacement vari-

able θi advances by π when the crystal is displaced by one lattice constant. The phononlike
excitations are represented by the Lagrangian:

L =
∫

dx
ma

2π2
θ̇2(x)− 1

2

∫∫
dx dx′ V (x − x′) δn(x) δn(x′)

=
∫

dx
ma

2π2
θ̇2(x)− V0

2

∫
dx δn2(x). (19.5)

Figure 19.9 A Wigner crystal and the phonon displacement coordinate θi .
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δn(x) is the deviation of the density from its average value n0. We have introduced the
following assumptions in deriving (19.5):

• θi is assumed to vary slowly and is treated as a continuous variable.

• The long wavelength assumption, together with a short-ranged screened Coulomb inter-
action, allows for the effective potential to be represented by a delta function with V0 =∫
dx V (x).6

Noting that for θ(L)− θ(0) = −π , exactly one extra electron resides between 0 and L, we
express δn as

δn(x) = −∂x θ(x)
π

,

and we arrive at the Lagrangian form

L =
∫

dx

[
ma

2π2 (∂t θ)
2 − V0

2π2 (∂xθ)
2
]

.

It can be recast as

L = h̄

2πg

∫
dx

[
1

vρ
(∂t θ)

2 − vρ (∂xθ)
2
]

. (19.6)

where the interaction parameter g is given by

g =
√
πh̄vF

V0
(19.7)

and the phonon velocity defined as

vρ =
√
V0

ma
= vF

g
.

The similarity in behavior of the low-energy Wigner crystal elastic phonon theory, rep-
resenting strong interaction g � 1, with the “sound mode” for noninteracting electrons,
suggests that (19.6) may remain correct for weaker interactions. However, (19.7) may need
to be modified in such a case.

Quantum Fluctuations in 1D

As we already know, the Mermin–Wagner theorem stipulates that in one and two dimen-
sions, long-range order is destroyed by thermal or quantum fluctuations. Here, we shall
explore how quantum fluctuations in 1D destroy the long-range Wigner crystalline order
at zero temperature. We represent the crystalline order by the Fourier series of the elec-
tron density

n(x) =
∑
q∼0

nq e
iqx +

∑
q∼2kF

nq e
iqx + · · · , (19.8)

6 For a Coulomb interaction V (x) = e2/x screened at large distances by a ground plane at distance Rs , we have
V0 = 2e2 ln(Rs/a).
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where the main contributions will come from the long wavelength fluctuations of the
density ∑

q∼0

nq e
iqx = n0 − ∂xθ(x)

π
(19.9)

and from fluctuations at the wavelength of the Wigner crystal a = 1/n0 = 2π/2kF ,
represented by the second term. The latter may be characterized by a slowly varying com-
plex function n2kF (x) delineating the amplitude and the phase of the oscillation at 2kF ,∑

q∼2kF

nq e
iqx = n2kF (x) e

i2kF x + c.c. (19.10)

Since 2kF = 2πn0, and an electron is added when θ changes by −π , we may write

n2kF (x) ∼ e2iθ(x). (19.11)

For a perfect crystal, a 2kF Bragg peak corresponds to〈
n2kF

〉 
= 0. (19.12)

As we have shown in Chapter 6, its amplitude is attenuated by the Debye–Waller factor,
arising from phonon thermal fluctuations. We will now show that quantum fluctuations give
rise to a logarithmically divergent Debye–Waller factor that may destroy the crystalline
order. Recall from Section 6.8 that〈

n2kF

〉 = 〈e2iθ(x,τ )
〉
= exp

[
−1

2

〈
(2θ)2

〉]
and we write 〈

θ2
〉
=
∑
q,ω

〈
|θ(q,ω)|2

〉
=
∫

dq dω

(2π)2
πgvρ

ω2 + v2
ρ q

2
,

where the integrand is obtained from the Euler–Lagrange equation associated with
Lagrangian (19.6). We use the relation ω = vρq to get∫

2πqdq

(2π)2
πg

q2
= g

2
ln

[
L

a

]
.

We find that the Debye–Waller factor arising from 1D quantum fluctuations logarithmically
diverges as L→∞. We arrive at〈

n2kF

〉 = e−2
〈
θ2
〉
∼
( a
L

)g → 0.

A similar calculation for the correlation function

lim
x→∞

〈
n2kF (x) n2kF (0)

〉 
= 0 (19.13)

gives 〈
n2kF (x) n2kF (0)

〉 = exp

[
1

2

〈
(2θ(x)− 2θ(0))2

〉]
=
(a
x

)2g
.
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Figure 19.10 Pair correlation function for noninteracting electrons. The oscillations indicate power
law crystalline order.

Thus, the crystalline correlations decay as a power law at long distances. For strong interac-
tions g � 1, the exponent is very close to zero, and a Wigner crystal precariously persists.
By comparison, long-range correlations for noninteracting electrons can be extracted from
the pair correlation function, shown in Figure 19.10,〈

�†(x)�†(0)�(0)�(x)
〉
= n2

0

[
1− sin2(kF x)

x2

]
,

which shows that 〈
n2kF (x) n2kF (0)

〉 ∼ 1

x2
.

The power law decay of the oscillations suggests that noninteracting electrons are also
described by (19.6) with g = 1.

We surmise that (19.6) is indeed more general than the Wigner crystal limit; however,
the form of g should be system dependent.

19.3.2 Spinless 1D Fermion System: The Tomonaga–Luttinger Model

As we have learned, the low-energy long wavelength particle–hole excitations of the 1D
system exhibit nearly linear dispersion and thus well-defined excitations. The linearity of
low-energy excitations are a manifestation of the near-linear electronic band structure dis-
persion in the vicinity of the Fermi points of the 1D Fermi gas, as shown in Figure 19.11(a).
The Tomonaga–Luttinger (TL) model [74] extends the linearity to the entire electron–hole
excitation spectrum by replacing the original parabolic dispersion with the purely linear
spectrum of Figure 19.11.(a). It should be clear that the low-lying excitations in both mod-
els are the same. In order to completely eliminate the particle–hole pair energy dependence
on the initial state momentum k, for all q, the TL model extends the electronic energy
dispersion down to −∞, k ∈ [−∞,∞], as shown in Figure 19.11(b). This modification
makes the model exactly solvable even in the presence of nontrivial and possibly strong
interactions. It is the simplest model, and perhaps the most studied, which describes the
low-lying excitations around the two Fermi points in a 1D Fermi gas with density–density
interactions.
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(a)

Right
moving

Left
moving

h

Sea
(b)

Dirac

Figure 19.11 (a) Parabolic energy band of noninteracting electrons in 1D, shown in light gray. The
gray area is the Fermi sea. Linearized energy bands in the vicinity of the Fermi level are extended
along the black and gray lines, which introduces two species of fermions (right (R) and left (L) going
fermions). (b) The linear dispersion is extended down to −∞, thus replacing the Fermi sea with the
Dirac sea.

Since the states deep below the Fermi level are inert, the TL model is expected to have
the same low-energy behavior as the real electron gas: replacing the original parabolic
dispersion, which has a finite number of electrons filling the band, with an infinite Dirac
sea in the TL model should not change the physics close to the Fermi points. However, the
TL model requires the introduction of chirality, namely, two species of fermions: right (R)
and left (L) going fermions. We write the Hamiltonian of this system as

H =
∑
η=±1

vF

∫
dx�†

η(x) (iη ∂x − kF )�η(x)− 1

2

∫
dx dx′ρ(x) V (x − x′)ρ(x′).

(19.14)
vF is the Fermi velocity, and η = ± labels the two species: R → +, L → −. The field
operator �(x) and the total density operator ρ are defined as

�η(x) =
(

2π

L

)1/2 ∑
k

eiqx cη(kF+k)

ρ(x) = �
†
+(x)�+(x)+�

†
−(x)�−(x) (19.15)

where we introduced periodic boundary conditions with period L, so that k = 2πn/L and
q = 2πnq/L.7 The vacuum state, shown in Figure 19.12, is defined as

|∅〉 :

⎧⎨⎩ cηk |∅〉 = 0, k, n > 0

c
†
ηk |∅〉 = 0, k, n ≤ 0.

(19.16)

Now, we shall use the method of bosonization [58, 74, 76, 163, 188], specific to 1D, to
obtain an exact solution to the TL model. The bosonization procedure can be formulated

7 Discreteness and unboundedness of k are essential prerequisites for a systematic derivation of the bosonization scheme and its
identities. Discreteness provides systematic bookkeeping of states, and unboundedness allows for the definition of proper
bosonic operators.
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1

Figure 19.12 The vacuum state |∅〉: cηk |∅〉 = 0, k(n) > 0 and c
†
ηk
|∅〉 = 0, k(n) ≤ 0. The states

containing two extra particles, c†
η,1 c

†
η,2 |∅〉, and two fewer particles, cη,0 cη,−1 |∅〉, are also shown.

E

E

E

q

q

q

(a)
(b)

q
0

E(q)

Figure 19.13 (a) In a 1D linearized regime, the excitation energy has a single value δE for a given
δq. (b) Particle–hole excitation spectrum for the linearized model (19.14). For small q, particle–hole
excitations are sharp excitations with well-defined energy and momentum.

precisely for fermions with a linear energy-momentum relation in the form of operator
identities. The underlying physics is that in 1D we cannot perform particle–particle
exchange – there is no real difference between fermions and bosons.

19.3.3 Bosonization of the Noninteracting Tomonaga–Luttinger Model

The noninteracting Hamiltonian is expressed in the momentum representation as

H0 =
∑

k;η=±
vF (η k − kF ) c

†
η,k cη,k, (19.17)

having particle–hole excitations with well-defined momentum q and energy

Eη,k(q) = η
[
vF (k + q)− vF k

] = η vF q (19.18)

totally independent of k, as shown in Figure 19.13(a). The particle–hole excitation spectrum
is shown in Figure 19.13(b).
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The fact that the particle–hole excitations of this model are well defined suggests that we
can try to rewrite (19.17) in a basis representing such excitations. This is also motivated by
our earlier argument that only collective excitations can remain in one dimension. Density
fluctuations, ⎧⎨⎩ ρ†(q) =∑k c

†
k+q ck, |q| > 0

ρ(q) =∑k c
†
k ck+q =

∑
k c

†
k−q ck = ρ†(−q),

(19.19)

which consist of superpositions of electron–hole excitations, are obvious natural candidates
for such representation, and as we recall, the ρ s are bosonic operators.

If we can demonstrate that a density fluctuation of momentum q has a well-defined
energy, we can proceed to second-quantize it: we can identify ρ(q) or ρ†(q) with bosonic
operators bq and b

†
q , or a linear combination thereof. The advantage is that the interaction

Hamiltonian becomes quadratic when expressed in terms of density operators, or their
bosonic equivalent

Hint = 1

2L

∑
q

v(q) ρ(q) ρ(−q) = 1

2L

∑
q

v(q)
(
. . . bq + · · · b†

q

)2
, (19.20)

and is easy to diagonalize.
We start by constructing the noninteracting Hamiltonian in terms of these operators,

using the following steps.

Normal Ordering

In the TL model, the number of electrons in the Dirac sea – the vacuum state |∅〉 with
respect to particle–hole excitations – is infinite, since all the negative energy states are
occupied. Therefore, it only makes sense to talk about deviations in the density from the
density of the vacuum state. It turns out that the process of normal-ordering produces the
desired deviations: We recall that normal ordering of operators is equivalent to subtracting
the average value in the vacuum, namely,

N [AB] = AB − 〈∅|AB |∅〉 .

The normal-ordered density is defined as

N
[
ρη(x)

] = N
[
�†
η(x)�η(x)

]
and the Fourier component ρη(q) of the density is given by

N
[
ρη(x)

] = 1

L

∑
q

N
[
ρη(q)

]
eiqx

N
[
ρη(q)

] =
⎧⎨⎩
∑

k c
†
η,k+q cη,k (q 
= 0)∑

k

[
c

†
η,k cη,k −

〈
∅
∣∣∣c†
η,k cη,k

∣∣∣∅〉] = Nη (q = 0).
(19.21)
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Nη is the operator that counts the number of η-electrons relative to |∅〉, for example, the
states shown in Figure 19.12 give 0, 2, and−2. From now on, we shall identify ρη asN [ρη],
and write

ρη(x) = 2π

L

∑
|q|>0

ρη(q) e
iqx + 2π

L
Nη. (19.22)

Commutators

The commutator of the density operators for two different species is obviously zero[
ρ

†
+(q), ρ

†
−(q

′)
]
= 0,

while for same species, we write[
ρ†
η(q), ρ

†
η(−q ′)

]
=
∑
k1,k2

[
c

†
η,k1+q cη,k1, c

†
η,k2−q ′ cη,k2

]
=
∑
k1,k2

(
c

†
η,k1+q cη,k2 δk1,k2−q ′ − c

†
η,k2−q ′ cη,k1 δk1+q,k2

)
=
∑
k2

(
N
[
c

†
η,k2+q−q ′ cη,k2

]
−N
[
c

†
η,k2−q ′ cη,k2−q

])
+
∑
k2

(〈
∅
∣∣∣c†
η,k2+q−q ′ cη,k2

∣∣∣∅〉− 〈∅ ∣∣∣c†
η,k2−q ′ cη,k2−q

∣∣∣∅〉)
=
∑
k2

(〈
∅
∣∣∣c†
η,k2+q−q ′ cη,k2

∣∣∣ ∅〉− 〈∅ ∣∣∣c†
η,k2−q ′ cη,k2−q

∣∣∣∅〉) ,
(19.23)

where we avoided pending infinities in the sums via normal ordering.
Since

〈∅∣∣c†
η,k2

cη,k1

∣∣∅〉 = δk1,k2 , we arrive at[
ρ†
η(q), ρ

†
η(−q ′)

]
= δq,q ′

∑
k2

[〈
∅
∣∣∣c†
η,k2

cη,k2

∣∣∣∅〉− 〈∅ ∣∣∣c†
η,k2−qcη,k2−q

∣∣∣ ∅〉] (19.24)

and we obtain[
ρ†
η(q), ρ

†
η′(−q ′)

]
= −δηη′ δq,q ′ η L

2π

∫ q

0
dk = −δηη′ δq,q ′ ηL2π

q. (19.25)

An alternative perspective, which reveals the physical meaning of the density operators,
is to consider how the operators act on the ground state. For q > 0, ρ†

+(q) |∅〉 is a superposi-
tion of states with a single particle–hole excitation at k and k+q, as shown in Figure 19.14,
where the hole has momentum −q < k < 0. But for q < 0, ρ†

+(−q) |∅〉 = 0 because in
|∅〉 there are no empty states with momentum less than an occupied state. Moreover, when
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Figure 19.14 A particle–hole excitation created by the chiral density operator.

ρ†
η(−q) acts on ρ†

η(q) |∅〉, the only thing it can do is put the excited particle back into the
hole. Thus we conclude that[

ρ
†
R(q), ρ

†
R(−q)

]
|∅〉 = L

2π

∫ 0

−q
dq |∅〉 = L

2π
q |∅〉 .

Equation (19.25) underscores the bosonic nature of the density operator. Moreover, we note
that for the TL model (19.17) this is an exact result.

Equivalence of Fermion and Boson Hamiltonians

We note that

ρ
†
−(q > 0) |∅〉 = 0

ρ
†
+(q < 0) |∅〉 = 0 (19.26)

so that these density operators can be identified with destruction operators for bosons,
as can be surmised from Figure 19.15. This allows us to define the boson creation and
destruction operators, for q 
= 0, as⎧⎪⎨⎪⎩

b
†
q = i

√
2π
L|q|
∑

η (ηq)ρ
†
η(q),

bq = −i
√

2π
L|q|
∑

η (ηq)ρ
†
η(−q),

⇒
{
ρη,q =

√
L|q|
2π

(
(ηq) bq +(−ηq) b†

−q
)
,

(19.27)
where  is the Heaviside step function, and q = (2πnq)/L, nq ∈ Z. We note from (19.25)
that the commutators of the b operators become[

bη,q, b
†
η′,q ′
]
= δηη′ δqq ′ . (19.28)

Or we can define species bosonic operators as⎧⎨⎩ b
†
η,q = i

√
2π
L|q| ρ

†
η(ηq),

bη,q = −i
√

2π
L|q| ρη(ηq),

q > 0. (19.29)
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Dirac sea

q

q

ρ (–  q)

ρ (+  q)

Figure 19.15 Depiction of ρ†
+(δq < 0) |∅〉 and ρ†

−(δq > 0) |∅〉.

Here we consider the commutators of the Hamiltonian with the boson operators. For
q > 0, b†

q =
√

2π/L|q| ρ+(q); we obtain

[
b†
q,H0

]
= i

(
2π

L|q|
)1/2 ∑

η,k

[
ρ

†
+(q), vF (η k − kF ) c

†
η,k cη,k

]

= i

(
2π

L|q|
)1/2 ∑

k,k1

vF (k − kF )

×
(
c

†
+,k1+q

{
c+,k1 c

†
+,k
}
c+,k − c

†
+,k
{
c+,k c†

+,k1+q
}
c+,k1

)
= i

(
2π

L|q|
)1/2 ∑

k,k1

vF (k − kF )
(
c

†
+,k1+q c+,k δk1,k − c

†
+,k c+,k1 δk1+q,k

)

= i

(
2π

L|q|
)1/2

vF

⎡⎣∑
k

k c
†
+,k−q c+,k −

∑
k1

(k1 + q) c
†
+,k1−q c+,k1

⎤⎦
= −
(

2π

L|q|
)1/2 ∑

k

vF q c
†
+,k−q c+,k = −vF q bq, (19.30)

which shows that states created by b
†
+,q are eigenstates of H0, with energy vF q: b†

+,q
creates particle–hole pairs, each having total momentum q and energy εk+q − εk = vF q,
independent of k because of the linearity of the spectrum. Thus, states created by b†

+,q are
linear combinations of individual electron–hole excitations all with the same energy, and
therefore are also eigenstates of (19.17). So, if we assume for the moment that the basis
generated by the operators b is complete, then the results (19.27) define completely the
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Hamiltonian in the boson basis. It is easy to check, from the boson commutation relations,
that the operator that would satisfy the commutation rules (19.27) is

H = 2πvF
L

∑
η

⎡⎣∑
q 
=0

ρη(q) ρη(−q)+ Nη(Nη + 1)

2

⎤⎦
=
⎡⎣∑
q 
=0

vF |q| b†
q bq +

πvF

L
Nη (Nη + 1)

⎤⎦ , (19.31)

where πvF (N+ (N+ + 1)+N− (N− + 1)) /L is the energy of the particles added/
removed from |∅〉 and counted for by the operators Nη – the so-called zero modes.
Remarkably, (19.31) shows that, contrary to naive expectations, the kinetic energy, which
is normally quadratic in fermions operators, can also be expressed as quadratic terms in
boson operators. Thus, adding the interaction will keep the Hamiltonian quadratic and
allows for solving the problem in a remarkably simple way.

Single Fermion Operators

Up to this point, the construction does not allow for a direct calculation of correlation
functions involving individual creation or destruction operators, like the one-particle Green
function. Such correlation functions become tractable by representing single-particle oper-
ators in terms of the boson operators [188].

(a) Bosonic Restructuring of Fock Space As depicted in Figure 19.12, the highest filled
level of the vacuum state |∅〉 is labeled by n = 0 and the lowest empty level by n = 1, for
all η. We shall use this |∅〉 as reference state relative to which the occupations of all other
states in Fock space F are specified. The set of all states with the same Nη-eigenvalues,
N+, N−, will be referred to as |N〉 ≡ |N+,N−〉-particle and defines the Hilbert space HN .
It contains infinitely many states, corresponding to different configurations of particle–hole
excitations, all of which will generically be denoted by |N〉. Furthermore, for given N , we
set |N〉0 as the N -particle state that has no particle–hole excitations. Since it is the lowest-
energy state in HN , we shall call it the N -particle ground state, bη,q |N〉0 = 0 ∀η, q. Any
other state in HN is obtained as |N〉 = f (b†) |N〉0.

It is then possible to restructure the Fock space F of states spanned by the cηk operators
as a direct sum, F = ⊕N HN over Hilbert spaces HN characterized by fixed particle
numbers N = N+, N−, within each of which all excitations are particle–hole-like and
hence have bosonic character.

(b) Klein Factors F †
η , Fη To connect the various HN ’s, we need to define “ladder opera-

tors” that raise or lower the total η-fermion number by one – an action that bosonic oper-
ators are unable to do. In addition, they also ensure that fermion fields of different species
anticommute. Such operators are known as Klein factors, and denoted by F †

η and Fη. They



630 Non-Fermi Liquids, the Luttinger Liquid, and Bosonization

need to satisfy the following commutators
[
bη,q, F

†
η′
] = [bη,q, F †

η′
] = [b†

η,q, Fη′
] =[

b
†
η,q, Fη′

] = 0, ∀ η, η′, q. Moreover, their action on a generic state |N〉 is defined as

F
†
+ |N〉 = f (b†) C+ |N+ + 1,N−〉0 = f (b†) (−1)N−/2 |N+ + 1,N−〉0 ,

F+ |N〉 = f (b†) C+ |N+ − 1,N−〉0 (19.32)

similarly for F
†
−, F−. Cη is the fermion phase-counting operator defined in Section

13.3.2 Since the spectrum of Nη is unbounded from above or below, Fη is unitary:
F−1
η = F †

η , and can be written as Fη = eiθη, θ† = θ . The Klein factors obey the
commutations {

F †
η , Fη′

}
= 2δηη′ ∀ η,η′,(F †

η Fη = Fη F
†
η = 1) (19.33){

F †
η , F

†
η′
}
= {Fη, Fη′} = 0 η 
= η′, (19.34)[

Nη, F
†
η′
]
= δηη′ F

†
η ,
[
Nη, Fη′

] = −δηη′ Fη. (19.35)

(c) Real Space Representations
1. Bosonic Field Operators We now define the hermitian boson field φη(x) in terms of the
b operators as

φη(x) = −η
(

2π

L

)1/2 ∑
ηq>0

1√
ηq

(
e−iqx bη,q + eiqx b†

η,q

)
e−aq/2 = ϕη(x)+ ϕ†

η(x).

a > 0 is an infinitesimal parameter needed to regularize ultraviolet (q → ∞) divergent
momentum sums – it will be set to zero at the end of the calculations. We will calculate the
commutators

[
ϕη(x), ϕ

†
η(x

′)
]

and
[
φη(x), ∂x′ φ

†
η(x

′)
]
, which we will need later in deriving

relevant correlation functions,[
ϕη(x), ϕ

†
η(x

′)
]
= 2π

L

∑
ηq>0

eq[i(x′−x)−a]

|q|
[
bη,q, b

†
η,q

]
=
∑
nq

e2πnq[i(x′−x)−a]/L

nq

= − ln

[
1− exp

(
2π
[
i(x − x′)− a

]
L

)]

� − ln

[
2π
[
i(x − x′)− a

]
L

]
, L→∞. (19.36)

We used the series ln(1− y) = −∑∞
n=1 yn/n in the second line. The second commutator

gives [
φη(x), ∂x′ φ

†
η(x

′)
]
= ∂x′

([
ϕη(x), ϕ

†
η(x

′)
]
+
[
ϕ†
η(x), ϕη(x

′)
])

= ∂x′

([
ϕη(x), ϕ

†
η(x

′)
]
−
[
ϕη(x), ϕ

†
η(x

′)
]†)
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= −∂x′
(

ln
[
1− exp

([
2πi(x − x′)− a

]
/L
)]
−H .C.

)
= −2πi

L

exp
([

2πi(x − x′)− a
]
/L
)

1− exp
(

[2πi(x − x′)− a] /L
) −H .C.

= −2πi

L

1

exp
(

[2πi(x′ − x)+ a] /L
) −H .C. (19.37)

For L� 1, we expand (exp(y)− 1)−1 = 1/y − 1/2+ O(y), and write[
φη(x), ∂x′ φ

†
η(x

′)
]
=
(

1

x′ − x + ia
−H .C.

)
+ 2πi

L
+ O

(
1

L2

)
= −2πi

(
a/π

(x′ − x)2 + a2
− 1

L

)
+ O

(
1

L2

)
= −2πi

(
δ(x′ − x)2 − 1

L

)
+ O

(
1

L2

)
. (19.38)

where we have taken the limit a→ 0. Moreover, in the limit L→∞, we find that ∂xφ/2π
acts like the conjugate momentum to the field φ, a property that we shall shortly exploit.

We also find that ρη(x) depends linearly on ∂xφ(x), as

ρη(x) = 2π

L

∑
ηq>0

ρη(q) e
iqx + 2π

L
Nη

=
(

2π

L

)1/2 ∑
ηq>0

i
√
ηq
(
e−iqx bη,q − eiqx b†

η,q

)
+ 2π

L
Nη

= ∂xφη(x)+ 2π

L
Nη (a → 0), (19.39)

showing that in the limit L → ∞, ρη(x) and φ(x) become conjugate variables. Since∫
ρ dx is a particle number, we discern that φ must be a phase.

2. Anomalous Commutators The commutation relations of the density operator ρη(x), as
defined in (19.22), are given by[

ρη(x), ρη(x
′)
]
= 1

L2

′∑
qq ′

eiqx−iq
′x′ [ρη(q), ρη(q ′)] = 1

2πL

′∑
q

q eiq(x−x
′)

= 1

2πL

∂

i∂x

′∑
q

eiq(x−x
′) = ± 1

2πi

∂

∂x
δ
(
x − x′

)
, (19.40)

where the + sign is for right movers. These commutators involve space derivatives of delta
functions instead of canonical delta functions. It is an example of a commutator that is
nonzero only for a system of infinite number of particles, but, as we know, vanishes for any
finite system. Such commutators are called anomalous commutators, and such relations
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are known as the Kac–Moody algebra. They are a consequence of the separation of the
electrons into two different species with infinite bands.

3. Elastic String Representation We now introduce two new fields �(x) and (x) as

�(x) = 1

2

∑
η

[
φη(x)− πx

L
Nη

]
(19.41)

(x) = −1

2

∑
η

η
[
φη(x)+ πx

L
Nη

]
. (19.42)

In the limit L→∞, the canonically conjugate momentum to �, $(x), is defined as

$(x) = 1

π
∂x (x) (19.43)[

�(x), $(x′)
]
= − 1

4π

([
φ+(x), ∂x′ φ†

+(x
′)
]
−
[
φ−(x), ∂x′ φ†

−(x
′)
])

= iδ(x − x′)− i

L
. (19.44)

It is then physically appealing to rewrite the Hamiltonian (19.31) as

H0 = vF

4π

∫ L/2

−L/2
dx
[
(∂xφ+(x))2 + (∂xφ+(x))2

]
+ πvF

2L

[
((N+ +N−)2 + (N+ −Nn)

2
]

= vF

2π

∫ L/2

−L/2
dx

[
(π $(x))2(x)+

(
∂x�(x)

)2
]
, (19.45)

which reveals that the Hamiltonian is just that of an elastic string, with � the local
displacement field. The corresponding Hamilton equations of motion are

$̇(x) = − δH0

δ�(x)
= vF ∂2

x �(x), �̇(x) = δH0

δ$(x)
= vF $(x)

∂x �̇(x) = vF ∂x $(x). (19.46)

The last line has the form of the continuity equation

ρ̇ + ∂x J = 0 ⇒ J = vF (ρ+ − ρ−), ρ = ρ+ + ρ−.

Moreover, Hamilton’s equations yield the wave equation

�̈− v2
F ∂

2
x � = 0

with the dispersion relation ω = vF q.

(d) The Bosonization Identity We consider the single-particle operator �η(x) that
destroys a right/left going fermion at point x, namely,

�η(x) = 1√
L

∑
k

eikx ckη.



19.3 Interacting 1D Electron Gas, Tomonaga–Luttinger Liquid, and Bosonization 633

Using (19.27), it is easy to show that[
bη′,q, ψη(x)

] = δηη′ αq(x)ψη(x) (19.47)[
b

†
η′,q, ψη(x)

]
= δηη′ α

∗
q(x)ψη(x), (19.48)

where αq(x) =
√

2π/L|q| eiqx . Equation (19.47) indicates thatψη(x) |N〉0 is an eigenstate
of the bosonic annihilation operator bη,q , with eigenvalue αq(x):

bη′,q ψη(x) |N〉0 = δηη′ αq(x)ψη(x) |N〉0 .

Hence, it must have a coherent-state representation of the form

ψη(x) |N〉0 = exp

[∑
q

αq(x)b
†
η,q

]
Fηλη(x) |N〉0 = e−iϕ

†
η(x)Fηλη(x) |N〉0 , (19.49)

where λη(x) is a phase factor to be determined, and its inclusion is required since no action
has been performed on |N〉0. We can say that the Fock–number states in fermionic Hilbert
space correspond to coherent states in the bosonic Hilbert space.

Multiplying both sides of (19.49) by 0 〈N |F †, we obtain

0 〈N |F †ψη(x) |N〉0 =0 〈N | e−iϕ
†
η(x)λη(x) |N〉0 = λη(x) 0 〈N | e−iϕ

†
η(x) |N〉0 = λη(x)

since 0 〈N | b†
q = 0. But

0 〈N |F †ψη(x) |N〉0 =
√

2π

L
0 〈N |F †

∑
k

e−ikxcη,kF,Nη |N〉0 .

Since 0 〈N |F † does not contain any particle–hole pairs, the only nonzero term in the
summation comes from cη,k |N〉0 = Fη |N〉0, that is, the annihilation of the highest
η-momentum level. Thus we obtain

λη(x) =
√

2π

L
exp
[−ikF,Nηx

]
. (19.50)

Alternatively, the commutator of �†
η(x) with the density operator[

ψ†
η (x), ρ

†
η(x

′)
]
= −δ(x − x′) ψ†

η (x) (19.51)

shows that ψ†
η (x) increases the density by δ(x′ − x) – the density of the additional

particle. Since the density operator is bosonic, we find that if we express the single
electron operator in the form of a displacement operator ψ ∼ eB (see Exercise 19.5),
where B is a linear function of the boson operators, its commutator with the density
operator yields [

eB, ρη(x
′)
]
=
[
B, ρη(x

′)
]
eB, (19.52)
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Figure 19.16 A kink in φ at point x0 corresponds to the creation of a particle at this point. The
amplitude of the kink gives the charge of the particle.

which has the same form as the commutator of ψ†
η (x) with b

†
η,q . Comparing (19.40),

(19.51), and (19.52), we arrive at

B = ∓ 2πi
∫ x

−∞
dx′
[
ρη(x

′)− ρ0η
]
, (19.53)

where the upper sign goes with η = +. Thus the action of ψ†
η (x) is to add an electron

and to displace the boson modes because of the sudden appearance of one electron.
To visualize this operation, we consider the following scenario. First, the field φ is

obviously related to the density of particles. Remember that the long wavelength part
of the density is simply ρ(x) = ∂xφ(x)/π . If we add a single particle via �†

+(x0), we
see immediately the two facts illustrated in Figure 19.16. A particle at point x0 would
manifest itself as ρ(x0) = δ(x − x0) = ∂xφ(x = x0); this would appear as a kink in
φ. One sees that the step in φ is a measure of the total charge added in the system. Of
course, in the case of removal of a particle the converse is true.

For a general state in HN , we have |N〉 = f ({b†
q}) |N〉0, and we write

ψη(x) |N〉 = ψη(x) f
({b†

η′,q}
) |N〉0 = f

({
b

†
η′,q − δηη′ α∗q(x)

})
ψη(x) |N〉0

= Fη λη(x) e
−iϕ†

η(x) f
({
b

†
η′,q − δηη′ α∗q(x)

}) |N〉0 .

Using the operator identity

f (A+ C) = e−B f (A) eB; C = [A, B], [A, C] = [B, C] = 0

with A = b
†
η,q, B = iϕη(x) and C = −δηη′ α∗q(x), we obtain

ψη(x) |N〉 = Fη λη(x) e
−iϕ†

η(x) e−iϕη(x) f
({
b

†
η′,q
})
eiϕη(x) |N〉0

= Fη λη(x) e
−iϕ†

η(x) e−iϕη(x) f
({
b

†
η′,q
}) |N〉0

=
√

2π

L
Fη exp

[−ikF,Nηx
]
e−iϕ

†
η(x) e−iϕη(x) |N〉 , (19.54)

where we used bη,q |N〉0 = 0 and the Baker–Housdorff identity.
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What (19.54) expresses is that creation or annihilation of a localized charge involves
physics on two length scales. The usual de Broglie wavelength of a particle moving with
the Fermi momentum gives the e±ikF x factor, while the exponent with the boson fields
causes a shake-up of a lot of low-energy collective modes of the electron gas. The length
scale for the latter depends on the energy involved, and is given by q−1 ∼ vF /ε, where ε
is the available energy. The decomposition of the single-electron operator into an infi-
nite number of low-energy states is what gives rise to many of the peculiar properties of
1D metals.

This completes our derivation of the bosonization formulas. Since the derivations were
based on elementary operator identities, we can safely proceed to calculate, for example,

the anticommutator
{
ψη,ψ

†
η

}
or the correlator

〈
ψηψ

†
η

〉
.

19.3.4 Interacting Tomonaga–Luttinger Model

Having established the fermion–boson mapping, we first turn to examine interaction effects.
The interaction has the form

Hint =
∫

dx ρ(x) V (x − x′) ρ(x′). (19.55)

We note that the interaction couples to the total density. Thus, to correctly consider interac-
tions involving left and right movers, we need first to refine our definition of the fermionic
field operator:

�(x) = 1

L

∑
k

eikx ck .

Since we are actually interested in low-energy excitations close to the Fermi surface, we
confine the sum to momenta close to +kF and momenta close to −kF :

�(x) � 1

L

⎡⎣ ∑
−�<k−kF<�

eikx ck +
∑

−�<k+kF<�
eikx ck

⎤⎦ ,
where � is a momentum cutoff such that vF� ∼ W , the electronic bandwidth. A physical
electron is neither a right mover nor a left mover; it is actually a right mover for k > 0 and
a left mover for k < 0, so that the destruction operator becomes

ck = (k) c+,k +(−k) c−,k .

The density operator can then be written as

ρ(q) =
∑
k

c
†
k−q ck =

∑
k

[
(k − q)(k) c

†
+,k−q c+,k +(−k + q)(−k) c†

−,k−q c−,k

+(k − q)(−k) c†
+,k−q c−,k +(−k + q)(k) c

†
−,k−q c+,k

]
. (19.56)
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Since both k and k − q are restricted to be in the vicinity of ±kF , the only two possibil-
ities for q then become (i) |q|/kF ∼ 0 (k and k − q have the same sign), or (ii) |q| ∼ 2kF
(k and k − q have opposite signs). The first case is associated with the top line of (19.56),
where the electron density fluctuation is just the sum of right and left movers’ components.
The second case corresponds to the terms on the second line of (19.56), which involves
electron transfer from one side of the Fermi surface to the other. We can also write

�(x) = �+(x)+�−(x)

so that the density is expressed as

�†(x)�(x) = �
†
+(x)�+(x)+�

†
−(x)�−(x)+�

†
+(x)�−(x)+�

†
−(x)�+(x)

= ρ+(x)+ ρ−(x)+ S± + S
†
±. (19.57)

Substituting the density expression (19.57) in the interaction Hamiltonian (19.55), we
obtain different interaction processes, the g-ology, that specify the type of incoming or
outgoing fermions – right or left movers. The g-ology classification of these processes
is shown in Figure 19.17. The g4 process only couples fermions on the same side of the
Fermi surface. The g2 process couples fermions from one side of the Fermi surface with
fermions on the other side, yet each species stays on its side of the Fermi surface after
the interaction – forward scattering. In contrast, the g1 process corresponds to a 2kF
backscattering where fermions exchange sides. Note that for spinless fermions g2 and g1

processes are identical since one can exchange the indistinguishable outgoing particles.
This is not the case of spinful fermions, since the interaction has to conserve spin, and
processes g2 and g1 are different.

Spinless Case

We write the g4 process for right movers in bosonic representation as

g4 �
†
±(x)�±(x)�

†
±(x)�±(x) = g4 ρ±(x) ρ±(x). (19.58)

The sum of the two processes leads for the g4 interaction to

g4

[
ρ+(x) ρ+(x)+ ρ−(x) ρ−(x)

]
= g4

[(
π$(x)

)2 + (∂x �(x))2] .

The contribution of g2 processes can be expressed as

g2 �
†
+(x)�+(x)�

†
−(x)�−(x) = g2 ρ+(x) ρ−(x) = −g2

[(
π$(x)

)2
(x)− (∂x �(x))2] .

The g2 interaction does not commute with the kinetic energy [H2,H0] 
= 0. It can therefore
modify the ground state by exciting particle–hole pairs out of the Fermi sea. On the other
hand, g4 commutes [H4,H0] = 0, and the Fermi sea remains the ground state in the
presence of g4 alone.
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Figure 19.17 The important low-energy interaction processes are classified in three types. A black
line represents a right-moving fermion with k ∼ +kF and a gray line a left-moving fermion with
k ∼ −kF .

The total interaction Hamiltonian is given by8

Hint = 1

2π

∫ L/2

−L/2
dx
[
(g4 − g2)

(
π$(x)

)2 + (g4 + g2)
(
∂x φ(x)

)2] . (19.59)

8 Notice that we considered q-independent interaction processes – a δ-function interaction in real space. Taking q-dependent
interaction is not much more complicated. Actually, as long as the limit g(q → 0) is finite, the physics we describe
asymptotically holds.
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Adding the kinetic energy term, we write the full Hamiltonian in the form

H = 1

2π

∫ L/2

−L/2
dx

[
u g
(
π$(x)

)2 + u

g

(
∂x φ(x)

)2]
, (19.60)

where ⎧⎪⎪⎨⎪⎪⎩
ug = vF

[
1+ g4

vF
− g2

vF

]
u

g
= vF

[
1+ g4

vF
+ g2

vF

] ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = vF

√
(1+ v4)

2 − v2
2,

g =
√

1+ v4 − v2

1+ v4 + v2
,

(19.61)

g is a dimensionless parameter, and u has the dimensions of a velocity. vi = gi/vF is a
dimensionless coupling constant. It is clear that g < 1 for repulsive interactions (v2 > 0)
and g > 1 for attractive ones (v2 < 0). We see that the Hamiltonian remains quadratic,
even in the presence of interactions. As discussed before, this is one of the main attractions
of the bosonization method. To diagonalize the Hamiltonian, we Fourier-transform (19.60)

H = u

2L

∑
q

[
g $−q $q + q2

g
�−q �q

]
(19.62)

together with [
�q, $−q ′

] = iL δqq ′.

Next we define the boson operators that diagonalize (19.62)

aq = 1√
L

(√
|q|
g

�q + i

√
g

|q| $q

)
, a†

q =
1√
L

(√
|q|
g

�−q − i

√
g

|q| $−q
)
,

which leads to the diagonalized form

H =
∑
q

u |q| a†
q aq . (19.63)

Equation (19.63) shows that the low-energy physics of the interacting TL model is
described by free bosonic excitations. It is also quite remarkable to find how simple it
is to solve the interacting 1D Hamiltonian of spinless fermions!

Alternatively, we can express the interacting Hamiltonian in terms of the bq operators
and obtain

H = Hb +HN

Hb = vF (1+ v4)
∑
q>0

q

⎡⎣∑
η=±

b†
η,q bη,q + λ

(
b†
η,q b

†
−η,q + bη,q b−η,q

)⎤⎦ ,
HN = πvF

L
(1+ v4)

[∑
η

N2
η + 2λN+N−

]
(19.64)
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with λ = v2/(1+v4). Hb is easily diagonalized with the aid of a Bogoliubov transformation
of the form{

β1,q = cosh θ b+,q + sinh θ b†
−,q,

β
†
2,q = sinh θ b+,q + cosh θ b†

−,q
⇒

{
b+,q = cosh θ β1,q − sinh θ β†

2,q,

b
†
−,q = − sinh θ β1,q + cosh θ β†

2,q

tanh(2θ) = λ → θ = 1

4
ln

[
1+ λ

1− λ

]
= 1

2
ln(g). (19.65)

The diagonalized Hamiltonian reads

Hb = u
∑

q>0, ν=1,2

q β†
ν,q βν,q (19.66)

and

β1,q = 1

2

[(
1√
g
+√g

)
b+,q +

(
1√
g
−√g

)
b

†
−,q

]
,

β
†
2,q =

1

2

[(
1√
g
−√g

)
b+,q +

(
1√
g
+√g

)
b

†
−,q

]
. (19.67)

From (19.65), we obtain

ϕ1,2(x) =
√

2π

L

∑
q>0

1√
q

(
e∓iqx β(1,2),q + e±iqx β†

(1,2),q

)
e−aq/2

= cosh γ ϕ+,−(x)− sinh γ ϕ−,+(x). (19.68)

The Spinful Case

For fermions with spins, each interaction can take two values (g‖,g⊥) depending on
whether the spins σ and σ ′ of the two interacting fermions are parallel g‖ or opposite g⊥.
Adding the spin degrees of freedom modifies Hb in (19.64) to read

Hb = vF
∑

q>0,η=±
q b†

η,q,σ bη,q,σ

+
∑

q>0η=±
σσ ′

q

[(
g4‖δσ,σ ′ + g4⊥δσ,−σ ′

)
b†
η,q,σ bη,q,σ ′

+ (g2‖δσ,σ ′ + g2⊥δσ,−σ ′
) (

b†
η,q,σ b

†
−η,q,σ ′ + bη,q,σ b−η,q,σ ′

)]
. (19.69)

Naturally, the interaction couples ↑-spin with ↓-spin. To remove such spin couplings, we
define total bosonic charge and spin operators as⎧⎪⎪⎪⎨⎪⎪⎪⎩

bη,q,c = 1√
2

[
bη,q,↑ + bη,q,↓

]
,

bη,q,s = 1√
2

[
bη,q,↑ − bη,q,↓

]
,

[
b†
η,q,c, bη,q,s

]
= 0.
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We find that Hb separates into two mutually commuting Hamiltonians, one for the charge,
and one for the spin degree of freedom:

Hb = Hc +Hs

Hc =
∑
q>0
η=±

q
[
(vF + g4c) b

†
η,q,c bη,q,c + g2c

(
b†
η,q,c b

†
−η,q,c + bη,q,c b−η,q,c

)]
Hs =

∑
q>0
η=±

q
[
(vF + g4s) b

†
η,q,s bη,q,s + g2s

(
b†
η,q,s b

†
−η,q,s + bη,q,s b−η,q,s

)]
, (19.70)

where gi, c
s
= gi‖ ± gi⊥. It is then straightforward to find a Bogoliubov transformation

that diagonalizes each of the two independent Hamiltonians. It is also clear that the spinful
system supports two independent branches of excitations: density waves and spin waves.
There will now be a velocity uκ and a coupling constant gκ for each excitation sector,
κ = c,s, given by

uc = vF

√(
1+ g4κ

vF

)2

−
(
g2κ

vF

)2

,

gκ =
√
vF + g4κ − g2κ

vF + g4κ + g2κ
. (19.71)

The dynamics of the Luttinger model, as written in terms of decoupled charge and spin
excitations, is a manifestation of the phenomenon of spin-charge separation, an important
feature of fermionic systems in one spatial dimension. An electron that is introduced into
an interacting system will rapidly decay into its constituent elementary excitations: charge
and spin density modes that propagate at different velocities and that will spatially separate
with time. The full Hilbert space can be completely represented as a product of charge exci-
tations and spin excitations. This phenomenon is completely absent in higher dimensions,
especially in systems described by Landaus Fermi liquid theory.

19.3.5 Green Functions

In this chapter, we were able to reduce the interacting fermion system to a system of
non-interacting bosons. It should straightforward to compute all correlations of interest
for such a noninteracting system. As a simple example we will calculate the equal time
Green function

G>(x) = −i
〈
ψ(x)ψ†(0)

〉
ψ(x) = ψ+(x)+ ψ−(x)

at zero temperature. To simplify the calculations further, we shall ignore any processes
that convert a fermion on one of the dispersion branches to one on the other dispersion
branch’s nondiagonal contributions such as

〈
ψ−ψ†

+
〉
. We need to compute only the diagonal
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ones
〈
ψ+ψ†

+
〉

and
〈
ψ−ψ†

−
〉
. By reflection symmetry, they are equal except for x → −x,

so we focus on one of them, namely on the right branch, and we compute G>+(x) =
−i〈ψ+(x)ψ†

+(0)
〉
.

From (19.49), we write

ψ†(0) |N〉0 =
1

L
F

†
+ e

iϕ
†
+(0) eiϕ+(0) |N〉0

0 〈N | ψ+(x) =0 〈N | 1

L
e−iϕ

†
+(x) e−iϕ+(x) F+.

Since the Hamiltonian is diagonal in the β operators, we can express ϕ+ as

ϕ+(x) = −
∑
q>0

1

nq
eiqx−aq/2

[
cosh(θ) β1q − sinh(θ) β†

2,q

]
(19.72)

= C ϕ1(x)− S ϕ
†
2(x), (19.73)

where C ≡ cosh(θ) and S ≡ sinh(θ). Using (19.72), we get

eiϕ
†
+(x) eiϕ+(x) = e

i
(
C ϕ

†
1 (x)−S ϕ2(x)

)
e
i
(
C ϕ1(x)−S ϕ†

2 (x)
)

= eiC ϕ
†
1 (x) e−iS ϕ2(x) e−iS ϕ

†
2 (x) eiC ϕ1(x)

= e
i
(
C ϕ

†
1 (x)−S ϕ†

2 (x)
)
ei(C ϕ1(x)−S ϕ2(x)) e

−S2
[
ϕ2,ϕ

†
2

]
.

From (19.36), we have
[
ϕ2,ϕ

†
2

] = − ln(2πa/L), and we obtain

e
−S2
[
ϕ2,ϕ

†
2

]
=
(

2πa

L

)S2

.

The correlation function is then given by

〈
ψ(x)ψ†(0)

〉
= 1

L

(
2πa

L

)2S2

eikF,N+x
〈
e
i
(
C ϕ

†
1 (x)−S ϕ†

2 (x)
)
e
i
(
C ϕ

†
1 (0)−S ϕ†

2 (0)
)〉

= 1

L

(
2πa

L

)2S2

eikF,N+x eC
2[ϕ1(x),ϕ1(0)]+S2[ϕ2(x),ϕ2(0)].

For L� |x|, we use the approximation in (19.36) and we obtain

G>
+(x) =

−i
2π(a − ix)

(
L

2π

)2S2 (
1

(a + ix)(a − ix)

)S2 (
2πa

L

)2S2

eikF,N+x .

Finally, we arrive at

G>
+(x) =

1

2π(x + ia)

(
a2

a2 + x2

)S2

eikF,N+x . (19.74)
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We note that in the absence of interactions, S = 0, we have

G >+ (x) = −ieikF,N+x
2π(a − ix)

x � a−−−−→ eikF,N+x

2πx
,

whereas we find that ∫ ∞
−∞

(k − a) exp(ikx) dk = − ie
iax

x
,

If we identify a with kF , then we obtain the step function

1− nF = (k − kF ),

which is just the distribution of holes in a Fermi gas. If we now turn on the interactions, we
find that for x →∞G >+ (x) ∝ a2S2

/x1+2S2
, where a2S2

is kept for ensuring the correct
dimension. But ∫ ∞

−∞
e−i(k−kF )x

x1+2g
dx ∝ |k − kF |2g

and we obtain the a power law jump for the momentum occupation number

n(k) ∝ 1

2
− sign(k − kF ) a

2S2 |k − kF |S2
. (19.75)

Instead of the discontinuity at kF that signals in a Fermi liquid that fermionic quasiparti-
cles are sharp excitations, one finds in one dimension an essential power law singularity.
Formally, this corresponds to Z = 0. This is the signature that individual fermionic exci-
tations cannot survive in one dimension. As we already discussed, they are converted into
collective ones. As a result, the decay of a single-particle Green function is always faster
than in a free electron gas. Note that the position of the singularity is still at kF .

Exercises

19.1 The RPA susceptibility of an interacting 1D electron system is given by

χ(q,ω) = $0(q,ω)

1− Vc(q)$0(q,ω)
,

where

$0(q,ω) =
∑
k

tanh[β(εk+q − μ)/1]− tanh[β(εk − μ)/2]

ω + εk+q − εk + iη
.

(a) Determine $0(q,ω) for q � kF by expressing as εk+q = εk + qvF sign(k) and
integrating over εk:∫ ∞

0
dx [tanh(x + α)− tanh(x)] = ln [1+ tanh(α)] .
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(b) The Coulomb potential in 1D is given by

Vc(q) ≈ −e2 ln[qa], qa � 1

for a wire of diameter a. Calculate χ(q,ω).
(c) Determine the imaginary part of χ(q,ω). What type and character of the excita-

tions do you discern?

19.2 Derive the commutators (19.47) and (19.48).
19.3 Consider the displacement operator D(z) = exp

[
zb† − z∗b

]
. Show that

D†(z) bD(z) = b + z

D†(z) b† D(z) = b + z∗.

The name displacement operator comes precisely from the fact that it displaces the
operator b by a constant z.



20

Electron–Phonon Interactions

20.1 Introduction

The formulation of Coulomb interactions and electron–phonon interactions can be con-
sidered as the most successful achievements in many-body condensed matter physics. The
effects of electron–phonon interactions proliferate many aspects of materials physical prop-
erties, including transport and thermodynamic ones. The most spectacular and profound
manifestation is found in the effective mutual attraction of electron pairs in conventional
superconductivity. In the present chapter, we will develop the basic formulation, and apply
it in following chapters to superconductivity.

Herbert Fröhlich, a German-born British physicist, derived the key Hamiltonian that
describes the electron–phonon interaction and that bears his name. Fröhlich realized the
similarity of electron–phonon interaction to the electron Coulomb interactions of quantum
electrodynamics (QED). He, together with John Bardeen, was the first to perceive the
possibility that such interactions can produce an effective attraction between electrons.

20.2 The Phonon Hamiltonian in Second Quantization

We will first consider the case of a monatomic one-dimensional solid to describe the process
of second quantization and diagonalization. The classical Hamiltonian may be written as

H =
∑
j

[
p2
j

2m
+ mω2

0

2

(
uj+1 − uj

)2] . (20.1)

We first-quantize the problem by setting[
uj, pk

] = ih̄ δj,k .

Next, because of translational invariance, we transform uj to momentum space by setting

uj = N−1/2
∑
q

uq e
iqja; uq = N−1/2

∑
q

uj e
−iqka . (20.2)

644
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Because of the hermiticity of uj , we require

uj = N−1/2
∑
q

uq e
iqja = u

†
j = N−1/2

∑
q

u†
q e
−iqja . (20.3)

This relation is satisfied if

uq = u
†
−q (20.4)

and we may write

uj = 1

2
N−1/2

∑
q

(
uq e

iqja + u†
q e
−iqja

)
. (20.5)

To determine the form of the momentum P conjugate to uq , we construct the Lagrangian,
noting the following transformations∑

j

(
u̇j
)2 = 1

N

∑
j ;q,q ′

u̇q u̇q ′ e
(q+q ′)ja =

∑
q

u̇q u̇-q

∑
j

(
uj+1 − uj

)2 = 1

N

∑
j ;q,q ′

uq uq ′ e
iqja
(
eiqa − 1

)
eiq

′ja
(
eiq

′a − 1
)

= 2
∑
q

uq u-q (1− cos(qa)) (20.6)

and the Lagrangian is written as

L = m

2

∑
q

u̇q u̇-q −
∑
q

uq u-q

(
1− cos(qa)

)
. (20.7)

The conjugate momentum is then

P-q = ∂L
∂u̇q

= m

2
u̇-q = P †-q

and

H =
∑
q

[
1

2m
Pq P-q +mω2

0

(
1− cos(qa)

)
uq u-q

]

=
∑
q

[
1

2m
Pq P-q +

mω2
q

2
uq u-q

]
(20.8)

with

ω2
q = 2ω2

0

(
1− cos(qa)

)
.



646 Electron–Phonon Interactions

To diagonalize the Hamiltonian, we use the following transformation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
b

†
q =
√

1

2mh̄ωq

(
mωq u-q − iPq

)

bq =
√

1

2mh̄ωq

(
mωq uq + iP-q

) ⇒
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
uq =

√
h̄

2mωq

(
b†
q + b-q

)

Pq =
√

h̄

2mωq

(
b†

-q − bq

) (20.9)

and we obtain

H =
∑
q

h̄ωq

(
b†
q bq +

1

2

)
. (20.10)

20.2.1 Matsubara Green Function for Free Phonons

Extending the definition of uq in terms of the bq operators in (20.9) to three dimensions,
we write

uq,λ =
√

h̄

2Mωqλ
(b

†
−q,λ + bq,λ) êqλ =

√
h̄

2Mωqλ
Bq,λ,

where êqλ is the polarization vector of mode qλ, and we introduced the new operators
Bq,λ as

Bq,λ =
(
b

†
−q,λ + bq,λ

)
êqλ, B†

q,λ =
(
b−q,λ + b

†
q,λ

)
êqλ = B−q,λ.

In the interaction (or Heisenberg) picture, we have

Bq,λ(τ ) = eH0τ Bq,λ e
−H0τ =

(
b

†
−q,λ e

−ωq,λτ + bq,λ e
ωq,λτ
)

êλ,

where H0 is the noninteracting phonon Hamiltonian.
We now define the noninteracting phonon Matsubara function with respect to the corre-

lation function of the displacement operators uqλα as

Cu(q,τ ) = −
〈
Tr
[
uqλα(τ )uqλβ(0)

]〉 = h̄

2Mωqλ
Dλ
α,β(q,τ )

Dλ
α,β(q,τ ) = −

〈
Tτ

[
Bqλα(τ )B

†
qλβ(0)

]〉
. (20.11)

For phonons, D is real since H and u are real, which requires

Dλ
α,β(q,τ ) = Diα,jβ(q, − τ).

Thus, the Matsubara function is given by

Dλ
α,β(q,τ ) =

⎧⎪⎨⎪⎩
−
{[
n(ωq,λ)+ 1

]
e−ωq,λτ + n(ωq,λ) e

ωq,λτ
}
eλqα e

λ
qβ for τ > 0

−
{
n(ωq,λ) e

−ωq,λτ + [n(ωq,λ)+ 1
]
eωq,λτ

}
eλqα e

λ
qβ for τ < 0.

(20.12)
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In the frequency domain, it becomes

Dλ
α,β(q,iωn) =

∫ β

0
dτ eiωnτ Dλ

α,β(τ )

= −
{[
n(ωq,λ)+1

] ∫ β

0
dτ e(iωn−ωq,λ)τ+ n(ωq,λ)

∫ β

0
dτ e(iωn+ωq,λ)τ

}
eλqα e

λ
qβ

= −
{[
n(ωq,λ)+ 1

] e−βωq,λ − 1

iωn − ωq,λ
+ n(ωq,λ)

eβωq,λ − 1

iωn + ωq,λ

}
eλqα e

λ
qβ

=
(

1

iωn − ωqλ
− 1

iωn + ωqλ

)
eλqα e

λ
qβ

= 2ωqλ

(iωn)2 − ω2
qλ

eλqα e
λ
qβ . (20.13)

By analytic continuation, we obtain

DRλ
α,β(q,ω) =

(
1

ω − ωqλ + iη
− 1

ω + ωqλ − iη

)
eλqα e

λ
qβ .

The spectral function can be obtained by taking the imaginary part of DR(ω):

Aα,β(ω) = 2π
∑
qλ

(
δ(ω − ωqλ)+ δ(ω + ωqλ)

)
eλqα e

λ
qβ . (20.14)

20.3 Electron–Phonon Interactions: The Fröhlich Hamiltonian

We shall consider here some of the consequences of the interaction of phonons with elec-
trons, and in particular with the electrons in a simple metal. The subject is a complicated
and difficult one, in that we need to call on most of the knowledge that we have of the behav-
ior of the electron gas and of lattice vibrations. A complete calculation should really start
with the Hamiltonian of a lattice of bare ions, whose mutual interaction would include the
long-range Coulomb potential. One would then add the electron gas, which would shield
the potential due to the ions in the manner discussed earlier in the one-electron picture. It is,
however, possible to explore many of the consequences of the electron–phonon interaction
by use of a simpler model. In this model, we take for granted the concept of screening, and
assume that the ions interact with each other and with the electrons only through a short-
range screened potential, and we treat the electrons themselves as independent fermions.
For a monatomic crystal, our unperturbed Hamiltonian is then simply

H0 =
∑

k

Ek c
†
k ck +

∑
qs

h̄ωqs b
†
qsbqs, (20.15)

the phonon frequencies ωqs being proportional to q as q → 0; in other words, we are
dealing only with acoustic modes. To this we add the interaction, HI , of the electrons with
the screened ions. We assume that at any point the potential due to a particular ion depends
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only on the distance from the center of the ion – an assumption known as the rigid-ion
approximation – so that in the second-quantized notation,

HI =
∑

k,k′,l

〈
k|V (r− l− ul)|k′

〉
c

†
k ck′

=
∑

k,k′,l
ei(k

′−k)·(l+ul) Vk−k′ c
†
k ck′ . (20.16)

Here V (r) is the potential due to a single ion at the origin, and Vk−k′ its Fourier transform.
With the assumption that the displacement ul of the ion whose equilibrium position is l is
sufficiently small that (k′ − k) · ul � 1, we can write

ei(k
′−k)·ul � 1+ i(k′ − k) · ul

= 1+ iN−1/2(k′ − k) ·
∑

q

eiq·l uq, (20.17)

where we expanded ul in terms of its Fourier components. Then HI can be split into
two parts,

HI = HBloch +He-p. (20.18)

The first term, HBloch, is the usual lattice potential encountered in electronic structure
calculations, and is independent of lattice displacements. We have

HBloch =
∑

k,k′,l
ei(k

′−k)·l Vk−k′ c
†
k ck′

= N
∑
k,G

V−G c
†
k−G ck, (20.19)

where the Gs are reciprocal lattice vectors, and

He-p = iN−1/2
∑

k,k′,q;l
ei(k

′−k+q)·l (k′ − k) · uq Vk−k′ c
†
k ck′

= iN1/2
∑
k,k′

(k′ − k) · uk−k′ Vk−k′ c
†
k ck′ . (20.20)

Expressing uq in terms of phonon annihilation and creation operators,

uq,λ =
√

h̄

2Mωqλ
(b

†
−q,λ + bq,λ) êλ, (20.21)

where eλ is the mode polarization vector, and substituting in (23.8), we get

He-p = i
∑

k,k′,λ

√
Nh̄

2Mωk′−k,λ
(k′ − k) · êλ Vk−k′ (b

†
k′−k,λ + bk′−k,λ) c

†
k ck′, (20.22)

where the summation now also includes the three polarization vectors, eλ, of the phonons.
For simplicity, we shall assume the phonon spectrum to be isotropic, so that the phonons
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(a) (b)

Figure 20.1 The Fröhlich Hamiltonian includes an interaction term in which an electron is scattered
from k′ to k with either emission (a) or absorption (b) of a phonon. In each case, the total wavevector
is conserved.

will either be longitudinally or transversely polarized. Only the longitudinal modes, for
which s is parallel to k′ − k, then enter He-p. We shall also neglect the effects of HBloch,
the periodic potential of the stationary lattice. With these simplifications, we arrive at the
Fröhlich Hamiltonian (see Figure 20.1)

H =
∑

k

Ek c
†
k ck +

∑
qλ

h̄ωqλ b
†
qλ bqλ +

∑
k,k′

gkk′ (b
†
k′−k,λ + bk−k′,λ) c

†
k ck′, (20.23)

where the electron–phonon matrix element is defined by

gkk′ = i

√
Nh̄

2Mωk′−k
|k′ − k| Vk−k′, (20.24)

with the phonon wavevector q = k− k′, reduced to the first Brillouin zone (BZ) if
necessary.

The interaction He-p can be considered as being composed of two parts: terms involving

b
†
−qc

†
kck′ and terms involving bqc

†
kck′ . These may be represented by the diagrams shown

in Figures 20.1(a) and 20.1(b), respectively. In the first diagram, an electron is scattered
from k′ to k with the emission of a phonon of wavevector k′ − k. The total wavevector is
conserved, as is always the case in a periodic system, unless the vector k′ − k lies outside
the first BZ, in which case q = k′ − k+G for some nonzero G. Such electron–phonon
Umklapp processes do not conserve wavevector, and are important in contributing to the
electrical and thermal resistivity of metals.

20.4 Matsubara Approach to Electron–Phonon Interactions

20.4.1 Electron Self-Energy: Leading Correction

The leading correction to the electron spectrum, representing virtual phonon exchange, is
given by the diagram in Figure 20.2. The corresponding self-energy is given by

�ep(k,i
n) = − 1

Vβ

∑
q,m

∣∣gq
∣∣2 G(0)(k+ q,i
n + ωm)D(0)(q,iωm). (20.25)
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Figure 20.2 The lowest-order diagram describing the renormalization of the electron spectrum due
to phonons.

Performing Matsubara sums by contour integration (problem), as well as analytic
continuation, we arrive at

�ep(k,ε) = 1

V

∑
q

∣∣gq
∣∣2 [nB(ωq)+ nF (ξk+q)

ε − ξk+q + ωq + iη
− nB(ωq)+ 1− nF (ξk+q)

ε − ξk+q − ωq − iη

]
(20.26)

Since ωq ≤ ωD , and ωD � EF , the major contribution will come from ε ∼ EF .
The electron quasiparticle acquires a finite lifetime leading to a linewidth

�k = −2Im�ep(k,ε). (20.27)

Substituting k′ = k+ q, we write

Im�ep(k,ε) = −π
V

∑
k′

∣∣gk′−k
∣∣2 [ δ (ε − ξk′ + ωk′−k

) (
nB(ωk′−k)+ nF (ξk′)

)
+ δ
(
ε − ξk′ − ωk′−k

) (
nB(ωk′−k)+ 1− nF (ξk′)

)]
. (20.28)

Setting ε = EF = 0, we get

Im�ep(k) = −π
V

∫
dω
∑

k′

∣∣gk′−k
∣∣2 δ(ω − ωq)

[
δ (ω − ξk′) (nB(ω)+ nF (ξk′))

+ δ (ω + ξk′) (nB(ω)+ 1− nF (ξk′))
]

� −π
V

∫
dω

∫
dk′

(2π)3
∣∣gk′−k

∣∣2 δ(ω − ωk′−k)δ(ξk′)

×
[

2nB(ω)+ nF (ω + ε)+ nF (ω − ε)
]
. (20.29)

But dk′ = 2πk′2dk′d cos θ , and
∫
d cos θδ(ξk′) = (k′vF )−1, which leaves d2k′ =

2πk′dk′. We now write Im�ep(k) in terms of the spectral function α2F(ω)1 introduced
by McMillan [127], as

Im�ep(k) = −π
V

∫
dω α2

kF(ω)
[

2nB(ω)+ nF (ω + ε)+ nF (ω − ε)
]
. (20.30)

α2F(ω) is defined as

α2
kF(ω) =

1

(2π)3

∫
d2k′

vF

∣∣gk′−k
∣∣2 δ
[
ω − ωk′−k

]
.

1 α2F(ω) is actually a single function, and not a product of two functions.
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α2
kF(ω) is the frequency spectrum one obtains by starting at a point on the Fermi surface k

and integrating over all other points on the Fermi surface k′. It will vary from point to point
on the Fermi surface of a metal. The spectral function contains the essential information
related to the electron–phonon coupling of the specific electronic state k. A convenient
measure for the strength of the electron–phonon coupling is the dimensionless coupling
parameter

λ(k̂) = 2
∫ ωD

0

dω

ω
α2

kF(ω). (20.31)

20.4.2 Interacting Electronic Matsubara Function

The full interacting electronic Matsubara function is given by

Gσ (k,τ ) = −
∞∑
m=0

1

m!

(−1

h̄

)m∫ β

0
dτ1 . . .

∫ β

0
dτm

〈
Tτ

[
HI (τ1) . . .HI (τm)ckσ (τ )c

†
kσ (0)

]〉
0

〈SI (β,0)〉0
,

where 〈. . .〉0 indicates averaging with respect to the noninteracting Hamiltonian, and

HI (τj ) =
∑

kσ
qλ

gqλ c
†
k+q,σ (τj ) ck,σ (τj )Bq,λ(τj ), (20.32)

where, for now, the Coulomb interaction has been omitted. Because the averaging is done
with respect to the noninteracting Hamiltonian, the electron and phonon degrees of freedom
decouple, and the thermal averages becomes〈
Tτ

[
Bq1,λ1(τ1) . . . Bqn,λn(τn)c

†
k+q1,σ

(τ1)ck,σ (τ1) . . . c
†
k+qn,σ

(τn)ck,σ (τn)ckσ (τ )c
†
kσ

]〉
0

=
〈
Tτ
[
Bq1,λ1(τ1) . . . Bqn,λn(τn)

〉
0

〈
c

†
k+q1,σ

(τ1)ck,σ (τ1) . . . c
†
k+qn,σ

(τn)ck,σ (τn)ckσ (τ )c
†
kσ

]〉
0
.

It is clear that only an even number of phonon operators will give nonvanishing thermal
averages, thus m→ 2n.

Upon performing bosonic Wick’s contractions, the electronic Matsubara function expan-
sion will contain products of single-particle Green functions of the form

gqiλi gqj λj

〈
Tτ
[
Bqi,λi (τi)Bqj ,λj (τj )

]〉
0

= ∣∣gqiλi

∣∣2 〈Tτ [Bqi,λi (τi)B−qi,λi (τj )
]〉

0 δqj ,−qi δλi,λj

= − ∣∣gqiλi

∣∣2 D(0)
λ (qi,τi − τj ) δqj ,−qi δλi,λj . (20.33)

We should be aware that the process of changing m → 2n involves some combinatoric
steps: (i) the prefactor (−1)m/m! becomes 1/(2n)!; (ii) each of the n factors of the form
(20.33) contributes a minus sign, leading to (−1)n; (iii) a factor (2n)! /(n! n! ) arises from
the choice of n independent momenta qj among the 2n; and (iv) another factor n! /2n
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comes from the fact that all choices of possible ways to combine the remaining n momenta
to the chosen ones and to symmetrize the pairs, leading to the same result.

Hence the net prefactor is (−1))n/2nn!. We can then write the one-electron Matsubara
function as

Gσ (k,τ ) =
∞∑
n=0

1

n!

(−1

h̄

)n ∫ β

0
dτ1 . . .

∫ β

0
dτn

〈
Tτ

[
H̃I (τ1) . . . H̃I (τn)ckσ (τ )c

†
kσ (0)

]〉
0

〈UI (β,0)〉0
,

where the phonon-mediated electron–electron interaction becomes

H̃I (τ1) = 1

2

∑
k1σ1
k2σ2

∑
qλ

∣∣gqλ

∣∣2 D(0)
λ (qi,τi − τj )c

†
k1+q,σ1

(τj )c
†
k2−q,σ2

(τi)ck2,σ2(τi)ck1,σ1(τj ).

This interaction is reminiscent of the nonrelativistic Coulomb interaction, but it is retarded,
namely nonlocal in time:

∣∣gqλ

∣∣2 D(0)
λ (qi,τi − τj ). The Feynman rules remain the same as

for Coulomb interactions.

20.5 Electron–Phonon Interactions in the Jellium Model

20.5.1 Jellium Model for Phonons and Einstein Oscillations

As we have seen earlier, in the jellium model we replaced the lattice with a rigid (static),
smooth, positively charged ion density, while we treated the electrons as particles. Here,
we shall treat both ions and electrons as fluids, so that the only difference between the ions
and the electrons is the different ratios of mass density to charge density: both fluids have
the same average charge density, whereas the mass density ρmion/ρ

m
electron ∼ 105.

For pedagogical reasons, we shall start with treating the electron jellium as a negatively
charged rigid background, while allowing the ion fluid to be a deformable fluid, described
as a continuous charge density function ρion(x). We then try to explore what the ionic
normal modes are like in such a jellium model. Of course, we understand that this is not an
appropriate description of the electrons, which are actually much more mobile.

In such a system, any deviation from equilibrium δρion(x) = ρion− ρ0
ion will give rise to

an electric field E, such that

∇·E = Ze

ε0
δnion(x),

where ε0 is the electric permittivity of vacuum, and Ze is the ionic charge. The electric
field, in turn, exerts a force field on the ions,

∇·f = Z2e2n0
ion

ε0
δρion(x).

We write the continuity equation as

∂tρion +∇·(ρionv) = ∂t δρion + ρ0
ion ∇· v = 0, (20.34)
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where we assumed that δρion � ρ0
ion. Differentiating (20.34) with respect to time, and using

f = M ∂tv, where M is the ionic mass, we get

∂2
t δρion + 1

M
∇· f = 0 ⇒ 
2

p δρion −
Z2e2n0

ion

Mε0
δρion = 0

⇒ 
p =
√
Z2e2n0

ion

Mε0
=
√
Ze2n0

el

Mε0
, (20.35)

where we used the time-dependence δρion(x,t)= δρion(x) ei
pt . Equation (20.35) describes
an Einstein-mode-like (wavevector-independent) optical phonon. This is actually the result
of long-range Coulomb interaction, which gives rise to ionic plasmon excitations, an
artifact of the rigidity of the electronic background.

Actually, recalling the Born–Oppenheimer approximation, the electrons should follow
the ion density deformations instantaneously, maintaining charge neutrality throughout the
material at all times, thus effectively screening the long-range Coulomb interaction between
the ions.2 Our bare-phonon Hamiltonian gives the wrong answer because it did not let the
electrons follow the ion motion. Permitting the electrons to follow the ion motion is another
set of words to describe the screening by the electrons of the motion of the ions. This means
that a deformation δρion of the ion charge density will induce an instantaneous deformation
−δρion in the electron charge density, leading to a local increase in the electronic kinetic
energy-à la Thomas–Fermi.

To estimate the resulting restoring force, we simply look for changes in electron pressure
associated with changes in electronic densities. Given that the ground-state energy for N
electrons confined to a volume V is

Eel = h̄2

10π2me

(
3π2N

)5/3

V 2/3
,

the corresponding electronic pressure equals

Pe = h̄2

15π2m2

(
3π2nel

)5/3
.

The ionic motion is driven by the gradient of the electronic pressure Pe:

f = ∇ Pe = ∂Pe

∂nel
∇ nel = −

h̄2k2
F

3me

∇ δρion.

Substituting for f in (20.35), we obtain

∂2
t δρion − 2Z

3M
εF ∇2 δρion = 0. (20.36)

2 When the electrons oscillate at their natural frequency coP, the ions are too heavy to follow, so the electron motion is not
screened. The electrons can freely oscillate at their plasma frequency, while the ions cannot.
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Solutions of (20.36) have a linear dispersion relation

ωq =
√
Zme

3M
vF q, (20.37)

which is known as the Bohm–Staver formula. It is a longitudinal mode associated with
changes in the charge density; no transverse modes emerge.

20.5.2 Microscopic Theory of Electron–Phonon Interaction in the
Jellium Model: Effective Interaction

We now present a more microscopic picture of how the conduction electrons determine the
phonon dispersion relation. We still work within the framework of the jellium model, and
determine the modification to the bare ion Einstein dispersion relation by electron-phonon
interactions, which will be treated within perturbation theory.

Bare Phonon Matsubara Function for Jellium

As we have shown, in the absence of electron–phonon interaction, the phonons are the
quantized plasma oscillations of the ion jellium, having an Einstein dispersion at a
frequency 
p. Thus, we define the bare electron–phonon coupling gq with the aid of
(20.24) as

1

V

∣∣gq

∣∣2 = 1

V

∣∣∣∣∣
√

Nh̄

2M
p

|q| Vq

∣∣∣∣∣
2

= 1

V

(
Ze2

ε0q2

)2
Nh̄

2M
p

(20.38)

= e2

ε0q2

Z2e2N

ε0MV

1

2
p

= 1

2
Vc(q)
p, (20.39)

where Vc is the Coulomb potential. Thus the resulting, bare, phonon-mediated electron–
electron interaction is

1

V

∣∣gq

∣∣2 D(0)(q,iωn) = Vc(q)

2
p

(iωn)2 −
2
p

. (20.40)

Effective Electron–Electron Interaction in the Jellium Model

The total interaction between electrons is the sum of the pure electronic Coulomb
interaction and the bare interaction due to phonon exchange. In the Feynman diagramatic
representation, the total bare, effective electron–electron interaction line is given by
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Figure 20.3 Frequency dependence of the real part of the bare, effective electron–electron

interaction Veff(q,ω) at fixed q. The interaction is attractive for ω < 
p , and V
(0)
eff (q,ω) → Vc(q)

for ω→∞.

= +

Veff(q,iωn) = Vc(q) + 1

V

∣∣gq

∣∣2 D(0)(q,iωn)

= Vc(q)+ Vc(q)

2
p

(iωn)2 −
2
p

= Vc(q)
(iωn)

2

(iωn)2 −
2
p

.

(20.41)

The real frequency effective interaction (iωn → ω + iη) is

Veff(q,ω) = Vc(q)
ω2

ω2 −
2
p + iη

. (20.42)

The real part of Veff(q,ω) is shown in Figure 20.3. It is seen that the bare, effective
electron–electron interaction becomes negative for ω < 
p, i.e., at low frequencies the
electron–phonon interaction combined with the originally fully repulsive Coulomb interac-
tion results in an attractive effective electron–electron interaction. At high frequencies, the
normal Coulomb interaction is recovered.

20.5.3 RPA Screening of Effective Electron–Electron Interaction

The effective electronic Coulomb interaction between two electrons in a metal is strongly
screened at all except very short distances. As we have shown in Chapter 15, this screening
is well described within RPA. We shall now treat the effective interaction derived previously
within the RPA framework. Expressing V RPA

eff (q) as a Dyson equation involving the simple
bubble −$0, we write

−V RPA
eff (q,iωn) = , (20.43)
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which can be rewritten in the form

−V RPA
eff (q,iωn) = =

1−
= −Veff(q)

1− Veff(q)$0(q,iωn)
.

(20.44)

Expanding (20.44), we obtain

−V RPA
eff (q,iωn) =

Vc(q)
(iωn)

2

(iωn)2−
2
p

1− Vc(q)
(iωn)2

(iωn)2−
2
p
$0(q,iωn)

= Vc(q)
(iωn)

2

(iωn)2 −
2
p − Vc(q) (iωn)2 $0(q,iωn)

= Vc(q)
1− Vc(q)$0(q,iωn)

(iωn)
2 (1− Vc(q)$0(q,iωn))

(iωn)2 (1− Vc(q)$0(q,iωn))−
2
p

= V RPA
c (q)

(iωn)
2

(iωn)2 − 
2
P

1−Vc(q)$0(q,iωn)

= V RPA
c (q)

(iωn)
2

(iωn)2 − ω2
q
, (20.45)

where ωq is the renormalized phonon frequency

ωq = 
p√
1− Vc(q)$0(q,iωn)

.

20.5.4 Phonon Matsubara Function in RPA: Bohm–Staver
Formula and the Kohn Anomaly

Although we arrived at an expression for the RPA-screened phonon frequencies, it is
instructive to derive the phonon Matsubara function in RPA. We write the corresponding
Dyson equation as

DRPA(q,iωn) = = + .

The solution for the renormalized phonon line is

DRPA(q,iωn) =
1 − RPA

= −D(0)(q,iωn)

1− χRPA(q,iωn)
∣∣gq

∣∣2 D(0)(q,iωn)
.
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Using (20.13) and (20.40), we obtain

DRPA(q,iωn) = 2
[
(iωn)2 −
2

]−
2 Vc(q) χRPA(q,iωn)
= 2


(iωn)2 − ω2
q
, (20.46)

where

ωq = 


√
1+ Vc(q) χRPA(q,iωn) = 
√

εRPA(q,iωn)
=
√

Ze2n(0)

εRPAε0M
(20.47)

is the renormalized phonon frequency due to electronic RPA screening. If we substitute
the Thomas–Fermi approximation of the dielectric response function, ε(q,0) =
1+ κ2

TF
q2 → κ2

TF
q2 as q → 0, we find

ωq = vF q

√
Zme

3M
,

which is the Bohm–Staver expression for the phonon dispersion. We thus arrive at the
satisfactory conclusion that, once the electron–phonon interaction is taken into account, the
phonon frequencies are renormalized from 
 to ωq, where ωq is proportional to q for long
wavelengths. Of course, we already reached the same conclusion based on macroscopic
arguments.

More Useful Form for V RPA
eff

While (20.44) is correct, a physically more transparent form of V RPA
eff is obtained by expand-

ing the infinite series (20.43), and then collecting all the diagrams containing only Coulomb
interaction lines into one sum (this simply yields the RPA-screened Coulomb interaction
WRPA(q) = Vc(q)/εRPA), while collecting the remaining diagrams containing a mix of
Coulomb and phonon interaction lines into another sum:

ω

= +

The renormalized coupling gRPA
q

gRPA
q = = + =

(
1+ Vc χ

RPA
)
gq = gq

εRPA

(20.48)

is the sum of all diagrams between the outgoing left (incoming right) vertex and the first
(last) phonon line, while the renormalized phonon line is given by (20.46).

The final form of the RPA-screened phonon-mediated electron–electron interaction is
now obtained by combining (20.48) and (20.46)
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1

V

∣∣∣gRPA
q

∣∣∣2 DRPA(q,iωn) = =
∣∣gq
∣∣2(

εRPA
)2 2


(iωn)2 − ω2
q

→ Vc(q)
εRPA

ω2
q

(iωn)2 − ω2
q
,

where the unscreened phonon frequency 
 and the unscreened Coulomb interaction Vc(q)
have been replaced by their RPA-screened counterparts ωq and Vc(q)εRPA, respectively.
The form of the effective electron–electron interaction then becomes

V RPA
eff (q,iωn) = Vc(q)

εRPA +
∣∣∣gRPA

q

∣∣∣2 DRPA(q,iωn) = −Vc(q)
εRPA

(iωn)
2

(iωn)2 − ω2
q

= +
This form for V RPA

eff will be used in the following derivation of the pair-scattering vertex.

20.6 Phonon Frequencies and the Kohn Effect

The effect of the electron–phonon interaction on the phonon spectrum may be seen by using
perturbation theory to calculate the total energy of the system described by the Fröhlich
Hamiltonian to second order in He-p. We have

E = E0 +
〈
�
∣∣He-p

∣∣�〉+ 〈� ∣∣∣He-p (E0 −H0)
−1 He-p

∣∣∣�〉 , (20.49)

with E0 the unperturbed energy of the state� having nq phonons in the longitudinal mode q
and nk electrons in the state k. The first-order term vanishes from this expression, since the
components of He-p act on � either to destroy or to create one phonon, and the resulting
wavefunction must be orthogonal to �. In second order, there is a set of nonvanishing
terms, as the phonon destroyed by the first factor of He-p to act on � can be replaced by
the second factor He-p, and vice versa.

We then find the contribution, E2, of the second-order terms to be

E2 =
〈
�

∣∣∣∣∣∣
∑

k,k′,q
Mk,k′

(
b

†
−q + bq

)
c

†
k ck′ (E0 −H0)

−1

×
∑

k′′,k′′′,q′
Mk′′,k′′′

(
b

†
−q′ + bq′

)
c

†
k′′ ck′′′

∣∣∣∣∣∣�
〉

=
〈
�

∣∣∣∣∣∣
∑

k,k′,q

∣∣Mk,k′
∣∣2 [b†

−q c
†
k ck′ (E0 −H0)

−1 b−q c
†
k′ ck

+ bq c
†
k ck′ (E0 −H0)

−1 b†
q c

†
k′ ck

] ∣∣∣∣∣∣�
〉

. (20.50)
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(a) (b)

Figure 20.4 These two processes contribute to the energy of the electron–phonon system in second-
order perturbation theory.

All other terms have zero matrix element. The first term in brackets in (20.50) can be
represented as in Figure 20.4(a).

An electron is first scattered from k to k′ with the absorption of a phonon of wavevector
−q = k′ − k. The factor (E0 − H0)

−1 then measures the amount of time the electron is
allowed by the Uncertainty Principle to stay in the intermediate state k′. In this case, the
energy difference between the initial and intermediate states is Ek + h̄ω−q − Ek′ , and so
a factor of (Ek + h̄ω−q − Ek′)

−1 is contributed. The electron is then scattered back into
its original state with the reemission of the phonon. We can represent the second term in
(20.50) by Figure 20.4(b), and there find an energy denominator of Ek − h̄ωq − Ek′ .

A rearrangement of the as and the cs into the form of number operators then gives

E2 =
∑
k,k′

∣∣Mk,k′
∣∣2 〈nk (1− nk′)〉

( 〈
n−q
〉

Ek − Ek′ + h̄ω−q
+

〈
nq + 1

〉
Ek − Ek′ − h̄ωq

)
. (20.51)

Here 〈nk〉 and 〈nk′ 〉 are electron occupation numbers while
〈
n−q
〉

and
〈
nq
〉

refer to phonon
states. It may be assumed that ωq = ω−q, and hence that in equilibrium

〈
n−q
〉 = 〈nq

〉
. One

may then rearrange (20.51), to find

E = E0 +
∑
k,k′

∣∣Mk,k′
∣∣2 〈nk〉

[
2(Ek − Ek′)

〈
nq
〉

(Ek − Ek′)
2 − (h̄ωq

)2 + 1− 〈nk′ 〉
Ek − Ek′ − h̄ωq

]
, (20.52)

the terms in
〈
nknk′nq

〉
canceling by symmetry.

The effect of the electron–phonon interaction on the phonon spectrum is contained in
the term proportional to

〈
nq
〉

in (20.52). We identify the perturbed phonon energy, h̄ω(p)q ,
with the energy required to increase

〈
nq
〉

by unity, and so find

h̄ω
(p)
q = ∂E

∂
〈
nq
〉

= h̄ωq +
∑

k

∣∣Mk,k′
∣∣2 2 (Ek − Ek′) 〈nk〉

(Ek − Ek′)
2 − (h̄ωq

)2 . (20.53)
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Figure 20.5 This alternative way of considering the process of Figure 20.4(a) suggests that a phonon
spends part of its time as a virtual electron–hole pair.

Figure 20.6 The Kohn effect causes a kink to appear in the phonon dispersion curve when the phonon
wavevector q is equal to the diameter of the Fermi surface.

If we neglect the phonon energy in the denominator in comparison with the electron
energies, we have

h̄ω
(p)
q = ∂E

∂
〈
nq
〉 = h̄ωq −

∑
k

2
∣∣Mk,k′

∣∣2 (Ek′ − Ek)
−1 〈nk〉 , (20.54)

where, as before k′ = k− q.
One may picture the origin of this change in phonon frequency by redrawing

Figure 20.4(a) in the form of Figure 20.5, in which the first interaction is represented,
not as the scattering of an electron, but as the creation of an electron–hole pair. One
can then say that it is the fact that the phonon spends part of its time in the form of an
electron–hole pair that modifies its energy.

One interesting consequence of (20.54) occurs when q has a value close to the diameter,
2kF , of the Fermi surface. Let us suppose q to be in the x-direction and of magnitude 2kF ,
and evaluate h̄∂ω(p)

q /∂qx . If we neglect the variation of gkk′ with q the electron–phonon
interaction contributes an amount∑

k

2
∣∣Mk,k′

∣∣2 (Ek−q − Ek
)−2 〈nk〉 ∂Ek−q

∂qx
. (20.55)

On substituting for Ek−q one finds the summation to contain the factor 〈nk〉
(kx − kF )

−2. These cause a logarithmic divergence when the summation is performed, and
thus indicate that the phonon spectrum has the form indicated in Figure 20.6. The kink in
the spectrum when q = 2kF reflects the infinite group velocity of the phonons at that point,
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and constitutes the Kohn effect. Its importance lies in the fact that even for very complex
metals there should always be such an image of the Fermi surface in the phonon spectrum.

20.7 Polarons and Mass Enhancement

Just as the energy of the phonons in a crystal is altered by interaction with the electrons, so
also does the converse process occur. We examine (20.52) in the limit of low temperatures,
when

〈
nq
〉

vanishes for all q. The perturbed energy of an electron – once again the energy
needed to fill an initially empty unperturbed state – is given by

∂E
∂ 〈nk〉 = Ek +

∑
k′

∣∣Mk,k′
∣∣2 [ 1− 〈nk′ 〉

Ek − Ek′ − h̄ωq
− 〈nk′ 〉

Ek′ − Ek − h̄ωq

]

= Ek +
∑

k′

∣∣Mk,k′
∣∣2 [ 1

Ek − Ek′ − h̄ωq
− 2h̄ωq 〈nk′ 〉
(Ek − Ek′)

2 − (h̄ωq
)2
]

. (20.56)

The first term in the brackets is independent of nk′ , and is thus a correction to the electron
energy that would be present for a single electron in an insulating crystal. Indeed, in an
ionic crystal the effect of this term may be so great as to change markedly the effective
mass of an electron at the bottom of the conduction band.

It then becomes reasonable to use the term polaron to describe the composite particle
shown in Figure 20.4(b) that is the electron with its attendant cloud of virtual phonons. The
name arises because one considers the positive ions to be attracted toward the electron, and
thus to polarize the lattice. If this polarization is too great, then second-order perturbation
theory is inadequate, and different methods must be used.

The second term in the brackets in (20.56) expresses the dependence of the electron
energy on the occupancy of the other k-states. It has the effect of causing a kink in the
electronic energy dispersion curves, as shown in Figure 20.7. This kink occurs at the Fermi
wavevector kF , and leads to a change in the group velocity vk of the electron.

Figure 20.7 The electron–phonon interaction changes the effective electron energy in such a way
that the velocity is lowered in the vicinity of the Fermi surface. This gives rise to an increase in the
observed electronic specific heat.
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We find an expression for h̄vk by differentiating (20.56) with respect to k. Instead of the
free electron expression, we find

h̄vk = ∂Ek

∂k

[
1− d

dEk

∑
k′
|Mk,k′ |2

2h̄ωq < nk′ >

(Ek − Ek′)2 − (h̄ωq)2

]
. (20.57)

We then argue that the major contribution to the derivative of the summation comes from
the rapid variation of < nk′ > at the Fermi surface. We change the summation over k′ to
an integral over Ek′ and make the approximations of replacing gkk′ and ωq by their average
values M̄ and ω̄, and D(Ek′) by its value at the Fermi energy ζ . With Ek′ − Ek written as η,
we then have

h̄vk � ∂Ek

∂k

[
1− 2h̄ω̄D(ζ )|M̄|2 d

dEk

∫
< n(Ek + η) >

η2 − (h̄ω̄)2
dη

]
. (20.58)

Since

d < n(Ek + η) >

dEk
= −δ(Ek + η − ζ ), (20.59)

we find

h̄vk � ∂Ek

∂k

[
1+ 2h̄ω̄D(ζ )|M̄|2

(Ek − ζ )2 − (h̄ω̄)2

]
. (20.60)

The infinities that this expression predicts when Ek = ζ±h̄ω̄ are a spurious consequence
of our averaging procedure. The value predicted when k lies in the Fermi surface, when
Ek = ζ , is more plausible, and gives us the result

vk � v0
k(1− α) (20.61)

where v0
k is the unperturbed velocity and

α = 2D(ζ )|M̄|2
(h̄ω̄)

. (20.62)

This decrease in the electron velocity is equivalent to an increase in the density of states
by the factor (1 − α)−1. Because v0

k is inversely proportional to the electron mass, m, it
is common to discuss the increase in the density of states in terms of an increase in the
effective mass of the electron. One refers to (1− α)−1 as the mass enhancement factor due
to electron-phonon interactions.

Exercises

20.1 Momentum dependence of electron–phonon coupling:
Following are three different types of short-range coupling of a single electron
with Einstein phonons (or, more generally, dispersionless bosons) of frequency ω,
on a one-dimensional lattice (lattice constant = 1) with N sites. The coupling
constants g,φ, and φb are dimensionless, and ω has units of energy. For each of
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these couplings, find the equivalent momentum-space representation, by Fourier-
transforming the corresponding electron–phonon coupling Hamiltonian in real space
to the form

He-ph = 1√
N

∑
k,q

γ (k,q) c
†
k+q ck

(
b

†
−q + bq

)
.

(a) Holstein-type (purely local) coupling

He-ph = gω
∑
i

c
†
i ci

(
b

†
i + bi

)
.

(b) Su–Schrieffer–Heeger (Peierls-type) coupling

He-ph = g ω
∑
i

(
c

†
i+1 ci + hc

) (
b

†
i+1 + bi+1 − b

†
i − bi

)
.

(c) “Breathing” coupling (relevant in cuprate high-Tc superconductors)

He-ph = gω
∑
i

c
†
i ci

(
b

†
i−1/2 + bi−1/2 − b

†
i+1/2 − bi+1/2

)
.

Here, i±1/2 refers to the fact that the Einstein oscillators are placed in the middle
between two sites.

Then comment on the differences between these three types of electron–phonon
interaction as far as the momentum dependence of the vertex function (k, q) is
concerned.

20.2 Polarons at weak coupling:
Electrons in a conduction band of a semiconductor form a very dilute gas and as a
result, they are not “aware” of the presence of each other. Consequently, their Green
function is of noninteracting type, given by

G(p,E) = 1

E − p2

2m
− i0

.

However, the interaction of electrons with phonons gives rise to the distortion of the
crystalline lattice, which leads to the formation of a new particle, called a polaron
(an electron with a deformed lattice cloud around it).

The interaction between the electrons and the phonons is given by

Hint = g
∫

dx �†(x)�(x) Â(x),

where Â(x) is the phonon field operator. The Green function of the phonons,
defined as

D = −i
〈
T Â(xf ,tf ) Â(xi,ti )

〉
,
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Figure 20.8 The simplest electronic self-energy diagram. The phonons are represented by a wavy
line, while the electrons are represented by straight lines.

is given by

D(q,E) = c2q2

E2 − c2q2 + i0
(qD − q),

where c is the speed of sound, qD is the Debye wavevector.
The simplest electronic self-energy diagram is shown in Figure 20.8.

(a) Write down the expression corresponding to �(p,E).
(b) Show that if p > mc, �(p,E) is not a real function, but rather a complex

function. Calculate Im�(p,E) and figure out the polaron lifetime.
(c) Show that for E ∼ p2/2m and for p � mc, � is real and takes the form

�(p,E) = ε0 − α1

(
E − p2

2m

)
− α2

p2

2m
.

Show that ε0 is the binding energy of this composite particle, while α2 gives the
effective mass of a polaron m∗. Find m∗.

20.3 The partition function of an electron–phonon system can be written as the path
integral

Z =
∫

D(ψ̄,ψ)D(φ̄,φ) exp
[
−Se
[
ψ̄,ψ
]− Sp

[
φ̄,φ
]− Sep

[
ψ̄,ψ;φ̄,φ]]

with fermion Grassmann fields ψ̄,ψ representing the electrons and phonon complex
fields φ̄,φ, with action for the phonons Sp and for the electron–phonon interaction
Sep given by

Sp
[
φ̄,φ
] =∑

q

φ̄q
(−iωn + ωq

)
φq

Sep
[
ψ̄,ψ;φ̄,φ] = 1√




∑
q

gq ρq
(
φq + φ̄−q

)
with the electronic density operator ρq =

∑
k ψ̄k+q ψk , electron–phonon coupling

gq and the kinetic term Se[ψ̄,ψ] for the electrons. The four-vector q = (iωn,q)
denotes frequency and momentum, and the sum

∑
q includes a Matsubara and

momentum sums.
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Perform a Gaussian integration over the phonon fields φ̄,φ in Z and derive an
effective action Seff[ψ̄,ψ] for the electronic system (ignore terms that do not depend
on ψ̄,ψ):

Z =
∫

D(ψ̄,ψ) exp
[
−Seff

[
ψ̄,ψ
]]

exp
[
−Seff

[
ψ̄,ψ
]] = ∫ D(φ̄,φ) exp

[
−Se
[
ψ̄,ψ
]− Sp

[
φ̄,φ
]− Sep

[
ψ̄,ψ;φ̄,φ]].

Analytically continuing ωn → −iω, show that the effective action contains an inter-
action term between the electrons that becomes attractive for ω < ωq.
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Microscopic Theory of Conventional
Superconductivity

21.1 Introduction

In 1911, three years after he liquified helium, Heike Kamerlingh-Onnes, in his quest to
study materials at ever lower temperatures, happened to find that the electrical resistance
of some metallic materials suddenly vanished at temperatures near absolute zero. He called
the phenomenon superconductivity, and scientists soon found additional materials that
exhibited this property. But no one could completely explain how it worked. For the next
few decades, many prominent physicists worked to develop a theory of the mechanism
underlying superconductivity, but no one had much success, and some despaired of fig-
uring it out. One such physicist, Felix Bloch, was quoted as proposing Bloch’s theorem:
Superconductivity is impossible.

In 1957, John Bardeen, Leon Cooper, and Robert Schrieffer presented their complete
theory of superconductivity, finally explaining a phenomenon that had been a mystery to
physicists since its discovery in 1911. Richard Feynman later recalled that he had “spent an
awful lot of time in trying to understand it and doing everything by means of which I could
approach it I developed an emotional block against the problem of superconductivity, so
that when I learned about the BCS paper I could not bring myself to read it for a long time.”

Properties Exhibited by Superconducting Materials

Figure 21.1 shows the properties exihibited by superconducting materials. The properties
include the following:

1. Zero resistance. Below a material Tc, the DC electrical resistivity ρ is zero, not just
very small. This leads to the possibility of a related effect,

2. Persistent currents. If a current is set up in a superconductor with multiply connected
topology, e.g., a torus, it will flow forever without any driving voltage. (In practice,
experiments have been performed in which persistent currents flow for several years
without signs of degrading).

3. Perfect diamagnetism. A superconductor expels a weak magnetic field nearly com-
pletely from its interior (screening currents flow to compensate the field within a surface
layer of a few 100 or 1,000 Å, and the field at the sample surface drops to zero over this
layer). This phenomenon of perfect diamagnetism is known as the Meissner effect.

666
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Figure 21.1 Properties of superconductors.

4. Energy gap. Most thermodynamic properties of a superconductor are found to vary
as e−	/(kBT ), indicating the existence of a gap, or energy interval with no allowed
eigenenergies, in the energy spectrum. Idea: when there is a gap, only an exponentially
small number of particles have enough thermal energy to be promoted to the available
unoccupied states above the gap. In addition, this gap is visible in electromagnetic
absorption: send in a photon at low temperatures (strictly speaking, T = 0), and no
absorption is possible until the photon energy reaches 2	, i.e., until the energy required
to break a pair is available.

Imagine a snapshot of a single electron entering a region of the metal; it will cre-
ate a net positive charge density near itself by attracting the oppositely charged ions
(see Figure 21.2). Crucial here is that a typical electron close to the Fermi surface
moves with velocity vF = h̄kF /me which is much larger than the velocity of the ions,
vI = vFme/M . So by the time (τ ∼ 2π/ωD ∼ 10−13 s), the ions have polarized
themselves, the first electron is long gone (it has moved a distance vF (∼ 108 cm/s)
τ ∼ 1000 Å, and the second electron can happen to be passing by and to lower its energy
through interaction with the concentration of positive charge before the ionic fluctuation
relaxes away. This gives rise to an effective attraction between the two electrons as shown
in Figure 21.2, which may be large enough to overcome the repulsive Coulomb interaction.
As we described here, the attraction of the second electron to the first does not happen
instantaneously, it is delayed through the reaction of the slow ions; it is referred to as a
retarded phonon-mediated interaction. If it were instantaneous, namely, it has a δ(t) form,
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Figure 21.2 Effective attraction of two electrons due to phonon exchange.

it would have been frequency independent; however, its retarded nature endows it with a
frequency dependence.

21.2 Electronic Instability against Electron–Phonon Interaction

21.2.1 Leon Cooper and the Pairing Hypothesis

The existence of such an obvious phase transition as that involved in superconductivity
led to a long search for a mechanism that would lead to an attractive interaction between
electrons. A great deal became known about the phenomenology of superconductivity in the
1950s, and it was already suspected that the electron–phonon interaction was responsible.
The discovery of the isotope effect provided corroborating evidence that the electron–
phonon interaction was indeed the mechanism responsible: it was found that the transition
temperature Tc for some metals depended on their atomic mass MA. Early on, it appeared

that Tc was proportional to M
−1/2
A , and hence to the Debye temperature TD . But more

recent measurements have shown a wider variety of power laws; for instance, an isotope
effect was completely absent in osmium, while a dependence of approximately Tc � M2

A

was found in α-uranium. Yet the microscopic form of the wavefunction was unknown.
A clue was provided by Leon Cooper [47], who showed that the noninteracting Fermi sea
is unstable toward the addition of a single pair of electrons with attractive interactions.
To follow Cooper’s argument, we introduce two assumptions:

(i) We suppose that the mechanism responsible for superconductivity is an attractive
interaction between pairs of particles, each occupying states having energy within an
energy shell of width 2δ at the Fermi surface.

(ii) We should focus on pairs of particles with total momentum zero, as will be justified
later.

We now explore how these assumptions can be cast into a theory of the superconduct-
ing state. What we need to establish is that such pairs with zero total momentum will
bind together to produce the desired energy gap, given an attractive force that mirrors the
Fröhlich interaction previously derived.
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Binding Energy of a Cooper Pair

We consider a pair of particles at the Fermi level that in the absence of the interaction have
a total energy of 2EF . To explore whether a binding can arise, we need to derive the ground
state of the Schrödinger equation[

− h̄2

2m

{
∇2

1 + ∇2
2

}
+ v(x1,x2)

]
ψ = E ψ, (21.1)

where v(x1,x2) represents the attractive interaction. For binding to occur, we need to show
that the ground-state eigenvalue is reduced below 2EF .

The noninteracting states have the form

ψ(k1,k2;x1,x2) = 
−1 ei(k1·x1+k2·x2) χ

= 
−1 ei[K·(x1+x2)+k·(x1−x2)/2] χ = 
−1 ei(K·R+k·r) χ, (21.2)

where R, K and r, k are the center of mass and relative coordinate and conjugate momenta,
respectively; χ is the spin wavefunction. It is more favorable to have a singlet spin wave-
function to take maximum advantage of the attractive potential with a symmetric spatial
wavefunction.

Moreover, the total momentum

k1 + k2 = K

is conserved, as shown in Figure 21.3. We should note, as depicted in Figure 21.4, that
if K 
= 0, the phase space for the attractive scattering is dramatically reduced. So the
system can always lower its energy by creating K = 0 pairs. Henceforth, we will make this
assumption, as Cooper did.

If we choose states with zero total momentum, i.e., K = 0, then

ψ(k;x1,x2) = 
−1 eik·(x1−x2) χsinglet. (21.3)

Figure 21.3 Electrons scattered by phonon exchange are confined to a shell of thickness ωD about
the Fermi surface.
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Figure 21.4 To get (attractive) scattering with finite COM momentum K, we need both electron
energies to be within ωD of the Fermi level with very little phase space.

To solve (21.1), we expand ψ in terms of the set of noninteracting states, with the constraint
that the Fermi sea states are occupied. Thus we write the perturbed wavefunction as

ψ(x1,x2) = 
−1 χsinglet

∑
|k′|>kF

αk′ e
ik′·(x1−x2), (21.4)

where we have implicitly formed two-particle unperturbed states with individual momenta
k′ and −k′.

At this stage, to keep the details at a minimum, we will implicitly deal with a singlet
spin state and drop χsinglet. Then the wavefunction (21.4) may be substituted into (21.1),
and we obtain


−1
∑
|k′|>kF

αk′
[
Ek′ − E + v(x1,x2)

]
eik

′·(x1−x2) = 0, (21.5)

where Ek′ = h̄2k′2/m. If we now multiply both sides by e−ik·(x1−x2) and integrate over x1

and x2, we find

αk
[
Ek − E

] = − ∑
|k′|>kF

αk′ v(k, − k,k′, − k′), (21.6)

where v(k, − k,k′, − k′) represents the matrix elements of the interaction. We choose the
simplest possible Hermitian form

v(k, − k,k′, − k′) =
⎧⎨⎩−V/
; Ek > EF, Ek′ > EF + δ,

0; otherwise,
(21.7)

thus restricting the scattering states to the energy range EF,EF + δ.
The choice of the negative sign is, of course, to get an attractive interaction, the con-

stancy of the matrix element is really reflecting some average over the energy shell, and the
factor 
−1 is to make v of the order of unity.
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Figure 21.5 Graphic display of the solutions of (21.9). Isolated cross shows bound state with volume-
independent energy.

If we substitute these matrix elements in (21.6) for αk, we find

αk = V

Ek − E
1




∑
EF<Ek′<EF+δ

αk′ . (21.8)

Though the solution of such an equation for the αk’s is, in general, difficult, we can simply
determine the eigenvalues in this case by summing each side of (21.8) over k values in
the energy range between EF and EF + δ, and then a common factor

∑
EF<Ek<EF+δ αk

appears. The resulting equation for the eigenvalue E takes the form

1

V
= 1




∑
EF<Ek<EF+δ

1

Ek − E . (21.9)

We apply a standard graphic technique to find the roots of (21.9): we simply plot both sides
as a function of E and find where the resulting curves intersect, as shown in Figure 21.5.
While the left-hand side is simply a positive constant, it will be seen that as E goes from EF
to EF + δ, the right-hand side varies very rapidly between plus and minus infinity. During
each such fluctuation, it takes on the value 1/V once. Thus, in this energy range δ above
the Fermi level, we find a continuum of solutions.

But the basic point is that there is a portion of the curve below EF that separates off from
the continuum and decreases monotonically to zero as E →−∞. This branch of the curve
takes on the value 1/V at some volume-independent energy below the Fermi surface. This
is the bound state we have been searching for.

Now that the presence of this bound-state level, with energy E0, has been established,
we can perform a simple calculation to determine the binding energy of the pair – electrons
in such bound states are called Cooper pairs. We consider (21.9) specifically to the ground
state, and transform the sum to an integral via 1




∑→ ∫ dεD(ε), where D is the density
of states, and we find

1

V
=
∫ EF+δ

EF

D(ε)dε
ε − E0

. (21.10)
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We note that in the range of integration we expect (ε − E0)
−1 to vary much more rapidly

than the density of states. This allows us to set D(ε) ∼ D(εF ), since the energy width δ is
known to be small. The resulting integral is trivial, and we find a binding energy given by

EF − E0 = δ(
exp
[

1
DV

]
− 1
) � δ exp

[ −1

DV

]
, (21.11)

where we have assumed in the second step that e
1

DV � 1, which is justified, a poste-
riori, by the fact that in metals experiment indicates that EF − E0 � 10−4 eV, while
δ � 10−1 eV.

The interesting point about (21.11) is that, although the binding energy is small, we
cannot expand it by perturbation theory in powers of V . The dependence on V is that of
an essential singularity, i.e., a nonanalytic function of the parameter. Thus we may expect
never to arrive at this result at any order in perturbation theory, an unexpected problem that
hindered theoretical progress for a long time. Thus in the subsequent generalization of this
two-particle theory to the many-body problem, we must avoid perturbation theory. In fact,
we shall employ the variational method.

Size of Cooper Pair

The extent of the Cooper pair wavefunction in space (see Figure 21.6) may be estimated as
follows: the orbital wavefunction for a pair may be written as

ψ(x1,x2) = φK(x1 − x2) exp

[
iK ·
(

x1 + x2

2

)]
, (21.12)

where h̄K is the momentum of the center of mass. For the singlet spin case, φK is
symmetric, and considering the center of mass at rest, K = 0, we get

ψ(x1,x2) = φ0(r) =
∑

k

α(k)eik·(x1−x2), r = x1 − x2, (21.13)

which is also an eigenfunction of angular momentum. The k sum is over states near the
Fermi surface.

The mean square radius of a Cooper pair is

〈
r2
〉
=

∫
|φ0(r)|2 r2 dr∫
|φ0(r)|2 dr

=

∑
k

|∇kα(k)|2∑
k

|α(k)|2
. (21.14)

With the potential (21.7), the two-body Schrödinger equation leads to the solution for the
momentum eigenfunctions α(k) as

α(k) = 1

Ek − E
V




∑
EF<Ek′<EF+δ

αk′ = β

Ek +	− 2EF
, (21.15)
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where 	 is the binding energy for the pair relative to the Fermi level, and β is a constant
independent of k. We find that∑

k

|α(k)|2 = β2
∫ EF+εD

EF
dε D(ε) 1

(2Ek +	− 2EF )2
� D(EF )

2	

∇kα(k) = −β
(Ek +	− 2EF )2

∇k Ek

∑
k

|∇kα(k)|2 = β2
∫ EF+εD

EF
dε D(ε)

h̄2v2
F

(2Ek +	− 2EF )4
� 2D(EF )h̄2v2

F

3	3
,

which yields (〈
r2
〉)1/2 = 2√

3

h̄vF

	
� 10−4 cm, (21.16)

where vF is the velocity at the Fermi surface. This quantity is essentially the coherence
length and represents the distance over which the superconducting electrons are correlated,
or equivalently the range of local order. The rough magnitude of a Cooper pair binding
energy obtained above conforms with the order of magnitude provided by experiment,
while the estimated size relates to the corresponding coherence length. Thus, any the-
ory developed to describe superconductivity should consistently comply with such values.
However, before carrying out this task, we find that a closer examination of the Cooper
hypothesis raises several questions:

• Why not turn on the attractive interaction for other electrons in the Fermi sea, so that they
too form pairs and lower the energy of the system still further?

• If we do so, do all the electrons in the Fermi sea participate?

• Will the pairing of many other electrons essentially modify the attractive interaction
responsible for the pairing?

• Does the pair binding energy depend on the number of emerging pairs?

Such questions lead us to the realization that to explain superconductivity, we need to take
into account the fact that such interactions simultaneously occur between many electrons,

Figure 21.6 Illustrative rendition of a Cooper pair wavefunction.
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and that Cooper pairs do interact with one another. Thus, while Cooper’s idea was crucial
to the development of the theory, it is only a starting point toward the construction of a
many-body theory.

21.2.2 Diagramatic Derivation of the Cooper Instability

We note that the participation of many electrons in the pairing process may induce an
instability of the Fermi liquid state of the normal metal, giving rise to a ground state of
completely different character and symmetry than the Fermi liquid state. This instability
should be manifest in some diverging susceptibility we can calculate. Guided by the Cooper
recipe, we focus on the pair interaction correlation function

G(q,τ ) = 1




∑
kk′

〈
a−k′+q↓(τ ) ak′↑(τ ) a†

−k+q↓(0) a
†
k↑(0)

〉
.

Here we introduce two electron quasiparticles occupying time-reversed states of the form
|k ↑〉 and |−k ↓〉 into the system, subject to an effective electron–electron interaction
potential, of the form prescribed in Section 20.5, namely,

= +

Veff(q,iωn) = Vc(q)
εRPA +

∣∣∣gRPA
q

∣∣∣2 DRPA(q,iωn)

= −Vc(q)
εRPA

(iωn)
2

(iωn)2 − ω2
q

and allow them to evolve through multiple scattering before being extracted.

Construction of the Effective Pair-Scattering Vertex

Fourier-transforming G and using the four-momentum notation k̄ = (k;i
n) we represent
the multiple electron–electron scattering process by the infinite diagramatic sum. It is
sufficient to consider the dominant diagrams at each order. These are the diagrams that
do not contain crossing interaction lines, namely,

+ + · · ·
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Such diagrams are called ladder diagrams, because all Fermion lines run forward in time,
indicating exclusively particlelike character.

We now define the pair scattering vertex �(k̃;k̃′) = for the infinite ladder-diagram
sum according to the Dyson diagramatic equation

= +
(21.17)

which can be expressed as the integral equation

�
(
k̄;k̄′) = −Veff(k̄ − k̄′)+ 1

β

∑
k̄1

[
−Veff(k̄ − k̃1)

]
G(0)↑ (k̄1)G(0)↓ (−k̄1) �

(
k̄1;k̄′
)

.

At this point, we need to simplify the form of the scattering potential, to obtain a man-
ageable solution while maintaining the physics we are seeking. We recall that we are
actually interested in attractive interactions, which appear in the low-energy domain of
V RPA

eff , bounded by ωq ≤ ωD , the Debye frequency. Thus, we introduce the approximation

Veff(q;iωn) =
⎧⎨⎩−V0, |iωn| ≤ ωD

0, |iωn| > ωD .
(21.18)

The equation for �(k̄;k̄1) reduces to

�(k̄;k̄′) = V0 + V0

β

∑
iωn|ωn|<ωD

1

V

∑
k1

G(0)↑ (k1,iωn)G(0)↓ (−k1,iωn) �
(
k̄1;k̄′
)

. (21.19)

The external momentum k̄ does not appear in the summation on the right-hand side, which
justifies setting �(k̄;k̄′) = �(k̄′), �(k̄1;k̄′) = �(k̄′). As a matter of fact, it becomes clear
that �(k̄;k̄′) is a constant, �. Rearranging (21.19), we arrive at

� = V0

1− V0
β

∑
iωn|iωn|<ωD

1
V

∑
k1

G(0)↑ (k̄1)G(0)↓ (−k̄1)
. (21.20)

With

G(0)σ (k1,i
n) = 1

i
n − εk1

, i
n = (2n+ 1)π

β
,
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we evaluate explicitly the quantity

V0

β

∑
iωn|iωn|<ωD

1

V

∑
k1

G(0)↑ (k̄1)G(0)↓ (−k̄1) = V0

β

ωD∑
|iωn|

1

V

∑
k1

(
1

iωn − εk1

) (
1

−iωn − εk1

)

= V0

β

ωD∑
|iωn|

∫ ∞
−∞

dε
D(εF )/2

ω2
n + ε2

= V0 D(εF )
2β

×
∑

|iωn|<ωD

π

|ωn|

= V0 D(εF )
βωD/2π∑
n=0

1

2n+ 1
,

where D(εF )/2 is the density of states per spin. Using the relation

n∑
k=0

1

2k + 1
= 1

2
[C + ln(n)]+ ln(2)+ B2

8n2
+ · · ·,

where C � 0.577216 is the Euler constant and Bn are Bernoulli’s numbers, we get

V0

β

∑
iωn|<|iωnωD

1

V

∑
k1

G(0)↑ (k̄1)G(0)↓ (−k̄1) � V0 D(εF )
2

[
C+ ln

(
4
βωD

2π

)]
. βωD � 1.

Altogether, we find

� = V0

1− V0 D(εF )
2

[
C + ln

(
2ωD
πkBT

)] . (21.21)

We note that ln
(

2ωD
πkBT

)
increases with decreasing T , indicating that � will diverge at a

temperature T = Tc, satisfying

V D(εF )
2

[
C + ln

(
2ωD
πkBTc

)]
= 1 ⇒ ln

[
2ωDeC

πkBTc

]
= 2

V D(εF )

yielding kBTc = 2eC

π︸ ︷︷ ︸ kBTD exp

[ −2

V D(εF )

]
1.13387 ∼ 1.

From this equation, Tc is found to be

Tc = TD exp

[ −2

V D(εF )

]
. (21.22)

This is the Cooper instability. Its characteristic temperature scale is smaller than the Debye
temperature by a factor of about 1/100 due to the exponential factor, typically yielding a Tc
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of a few Kelvin. It is important to note that Tc is not analytic in V0 at V0 = 0 (the function
has an essential singularity there). Thus Tc cannot be expanded into a Taylor series around
the noninteracting limit. This means that we cannot obtain Tc in perturbation theory in V0

to any finite order. BCS theory is indeed nonperturbative.

21.3 Superconductivity and the BCS Hamiltonian

We note that Veff is a retarded potential, and thus is frequency dependent. However, as
demonstrated by BCS, the interesting physics can be extracted from a model employing
an attractive instantaneous effective potential. We can then write the effective electronic
Hamiltonian in the form

H =
∑
kσ

εk c
†
kσ ckσ + 1

2

∑
k,k1,q
σ,σ ′

Vq c
†
k+q,σ c

†
k1−q,σ ′ ck1,σ

′ ck,σ . (21.23)

Following Cooper’s prescription, we shall retain only time-reversed states, and consider the
reduced electronic Hamiltonian

HBCS =
∑
kσ

εk c
†
kσ ckσ + 1

2

∑
k,k′

Vkk′
(
c

†
k′↓ c

†
−k′↑ c−k↑ ck↓ + c

†
k′↑ c

†
−k′↓ c−k↓ ck↑

)
=
∑

k

εk
(
c

†
k ck + c

†
−k c−k

)+∑
k,k′

Vkk′ c
†
k′ c

†
−k′ c−k ck, (21.24)

where we used the relation Vkk′ = V−k,−k′ , and the notation c†
k′ ≡ c

†
k′↑; c†

−k′ ≡ c
†
−k′↓, etc.

This is the model Hamiltonian of Bardeen, Cooper, and Schrieffer [24].
As we have noted previously, we do not expect a perturbation expansion in terms of

Veff to be useful in finding the eigenstates of a Hamiltonian such as (21.24). A variational
approach in which a brilliant guess at the form of the trial wavefunction |�〉 was used
by Bardeen, Cooper, and Schrieffer in their original 1957 seminal work. For pedagogical
reasons, we shall take a slightly different route to obtain the same results, and turn for
inspiration to the only problem that we have yet attempted without using perturbation
theory – the Bogoliubov theory of helium.

21.3.1 The Bogoliubov–Valatin Transformation

Mean-Field Approximation

HBCS is still an interacting Hamiltonian with a quartic term, and hence in general difficult
to solve. However, we will resort to a mean-field approach, and introduce the following
quantities:

c−k ck =
〈
c−k ck

〉
+
(
c−k ck −

〈
c−k ck

〉)
c

†
k c

†
−k =

〈
c

†
k c

†
−k

〉
+
(
c

†
k c

†
−k −

〈
c

†
k c

†
−k

〉)
. (21.25)
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In the normal state,
〈
c

†
k c

†
−k

〉 = 〈c−k ck
〉 = 0, since they are expectation numbers of

operators that change the number of particles in the system. Yet, as we will see, the
complex field

φk =
〈
c−k ck

〉
=
〈
c

†
k c

†
−k

〉∗
will furnish a nonzero order parameter in the superconducting phase. We note that〈
c−k ck

〉 
= 0 means that the new state is one without a definite number of particles.
This is directly related to the fact that gauge invariance symmetry, which conserves particle
number, is broken.

The mean-field approximation amounts to neglecting terms quadratic in fluctuations
(second terms in (21.25)). We then write the following:

c
†
k′ c

†
−k′ c−k ck � φ∗k′ φk + φ∗k′

(
c−k ck − φk

)
+
(
c

†
k′ c

†
−k′ − φ∗k′

)
φk

= c
†
k′ c

†
−k′ φk + φ∗k′ c−k ck − φ∗k′φk. (21.26)

To satisfy nonconservation of particles, we need to introduce the chemical potential, so that
the BCS-Hamiltonian becomes

HBCS → HBCS − μN �
∑

k

(εk − μ)
(
c

†
k ck + c

†
−k c−k

)
+
∑
k,k′

Vkk′
(
c

†
k′ c

†
−k′ φk + φ∗k′ c−k ck − φ∗k′φk

)
. (21.27)

Within this mean-field approximation, we replaced the interacting fermionic system with a
noninteracting one subject to a field that has to be determined self-consistently. Since the
Hamiltonian is now bilinear in the fermionic operators, it is possible to diagonalize it by
means of the Bogoliubov transformation:

γk = ukck − vkc
†
−k; γ−k = ukc−k + vkc

†
k,

γ
†
k = ukc

†
k − vkc−k; γ

†
−k = ukc

†
−k + vkck, (21.28)

uk and vk are chosen to be real and positive and to obey the conditions

uk = u−k, vk = −v−k, u2
k + v2

k = 1

that guarantee the fermion anticommutation relations

{γ †
k ,γ

†
−k′ } = {γk,γ−k′ } = {γk,γk′ } = 0

{γ †
k ,γk′ } = {γ †

−k,γ−k′ } = δkk′ .

Inverting the transformations (21.28)

ck = ukγk + vkγ
†
−k; c−k = ukγ−k − vkγ

†
k ,

c
†
k = ukγ

†
k + vkγ−k; c

†
−k = ukγ

†
−k − vkγk, (21.29)
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substituting for the c operators in HBCS, and setting φ to be real, we get

HBCS =
∑

k

[
(εk − μ)

(
u2

k − v2
k

)
+ 2
∑

k′
Vkk′ φk′ uk vk

]
γ

†
k γk

+
∑

k

[
(εk − μ) uk vk + 1

2

∑
k′

Vkk′ φk′
(
u2

k − v2
k

)] (
γ

†
k γ

†
−k + γ−k γk

)
.

(21.30)

We diagonalize HBCS by requiring

2 (εk − μ) uk vk = −
(
u2

k − v2
k

) ∑
k′

Vkk′ φk′ =
(
u2

k − v2
k

)
	k, (21.31)

where we defined

	k = −
∑

k′
Vkk′ φk′, (21.32)

The minus sign was taken into account due to the fact that Vkk′ < 0. Equation (21.31)
together with the condition u2

k + v2
k = 1 constitutes the equations that determine the

coefficients uk and vk of the canonical transformation. Setting

uk = cos(θk), vk = sin(θk),

we express (21.31) as

(εk − μ) sin(2θk) = 	k cos(2θk) ⇒ tan(2θk) = 	k

εk − μ
,

which yields

cos(2θk) = u2
k − v2

k = ±
εk − μ

Ek

sin(2θk) = ± 	k

Ek

Ek =
√
(εk − μ)2 +	2

k =
√
E2

k +	2
k. (21.33)

Substituting the preceding results into (21.30), we arrive at

HD
BCS = ±

∑
k

Ek γ
†
k γk. (21.34)

As shown in Figure 21.7, the quasiparticles spectrum has now a gap of 2	. The quasipar-
ticles represented by (21.34) are referred to as Bogoliubov quasiparticles.



680 Microscopic Theory of Conventional Superconductivity

Holelike

Holelike

Electronlike

Electronlike

Figure 21.7 Left: dispersion curve of the Bogoliubov quasiparticles Ek (solid black line). Right:
density of states.

Physical Picture of BCS Theory: Electron–Hole Mixing and Andreev Reflection

We can consider the annihilation of an electron in state −k ↓ as the creation of a hole k ↑,
and we write

γ
†
k = ukc

†
k − vkc−k = ukc

†
k − vkh

†
k.

Thus we find that such excitation involves coherent superposition of electron and hole
excitations, which is depicted in Figure 21.7 by the gray dispersion curves. When the two
dispersion curves cross at the Fermi surface, mixing between electrons and holes destroys
the Fermi surface and gives rise to the gap in the dispersion (21.34). This picture can be
extended to the interpretation of the pairing terms in the BCS mean-field Hamiltonian

Hint(k) = 	∗ c−k ck +	c
†
−k c

†
k = 	∗ h†

k ck +	hk c
†
k

whereby the 	∗ term now represents the simultaneous creation of a condensate pair and a
hole. This process is represented by the Feynman diagram

It is reminiscent of the Andreev reflection at the interface of a normal metal and a
superconductor, as shown in Figure 21.8.

Andreev reflection : e− � Pair2− + h+.

It conserves spin, momentum, and current, for a hole in the state (−k, ↓) has spin up,
momentum +k, and carries a current I = (−e)× (−∇ εk) = e∇ εk.

Superconducting Ground State

The ground state of the Bogoliubov quasiparticles |�0〉 is just the vacuum state for the new
operators

γk |�0〉 = γ−k |�0〉 = 0, 〈�0| γ †
−k = 〈�0| γ †

k = 0. (21.35)
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Normal metal Superconductor

Andreev reflection

Figure 21.8 Andreev reflection: an incident electron with energy <	 scatters back as a hole, leaving
a condensate pair in the superconductor.

To derive this ground state, we consider the property that fermionic operators, such as the
γ s, obey the identity

γkγk = γ−kγ−k = 0

and explore the construction

γk (γkγ−k |∅〉) = 0,

where |∅〉 is the vacuum state of the free electron system. This construction suggests that
|�0〉 that satisfies (21.35) is simply obtained by operating on |∅〉 with all the γk and γ−k,
and we obtain(∏

k

γkγ−k

)
|∅〉 =

[∏
k

(
ukck − vkc

†
−k

) (
ukc−k + vkc

†
k

)]
|∅〉

=
[∏

k

(
ukvk + v2

k c
†
kc

†
−k

)]
|∅〉 =

[∏
k

vk

(
uk + vk c

†
kc

†
−k

)]
|∅〉 .

Here uk is the amplitude for a pair of orbitals to be empty, and vk is the amplitude for them
to contain a Cooper pair, so we require |uk|2 + |vk|2 = 1, and

∑
k |vk|2 = N in a system

containing 2N electrons on average.
To normalize this we divide by the product of all the ukvks to obtain

|�0〉 =
[∏

k

(1+ zkc
†
kc

†
−k)

]
|∅〉 = exp

[∑
k

zk c
†
kc

†
−k

]
|∅〉 = exp

[
�̂†
]
|∅〉 , (21.36)

which is just a coherent state. This result derives from the fact that

exp
[
zkc

†
kc

†
−k

]
|∅〉 = (1+ zkc

†
kc

†
−k) |∅〉
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because of the identity

c
†
k c

†
k = 0.

This wavefunction is a linear combination of simpler wavefunctions containing different
numbers of particles, which means that it is not an eigenstate of the total number operator
N̂ . Our familiarity with the concept of the chemical potential μ teaches us not to be too
concerned about this fact, however, as long as we make sure that the average value is kept
constant. We can expand |�0〉 as a coherent sum of pair states:

|�0〉 =
∑
n

1

n!

(
�̂†
)n |∅〉 =∑

n

1

n!
|n〉 .

The Gap Parameter 	

In the ground state,

φk =
〈
c−k ck

〉
=
〈
(ukγ−k − vkγ

†
k )(ukγk + vkγ

†
−k)
〉
= uk vk = 	k

2Ek
. (21.37)

Substituting for φk in (21.32), we obtain the homogeneous equation

	k = −1

2

∑
k′

Vkk′
	k′

Ek′
, (21.38)

which supports the trivial solution 	k = 0.
In order to solve this equation for 	k, we resort to the simple contact potential model

Vkk′ =

⎧⎪⎨⎪⎩−
V



E ≤ h̄ωD

0 Otherwise
(21.39)

we used in deriving the binding energy of the Cooper pair. Here 
 is the volume of
the system. Substituting for Vkk′ in (21.32), we find that 	 becomes momentum
independent, namely,

	k = −
∑

k′
Vkk′ φk′ = V




∑
k′

φk′ ⇒ 	 (momentum independent)

so that (21.38) gives

	 = V

2


∑
k′

	

Ek′
. (21.40)
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Then the gap equation reduces to

1 = V

2


∑
k

|εk−μ|<h̄ωD

1√
(Ek − μ)2 +	2

= V

2

∫ h̄ωD

−h̄ωD

dE D(E)√
E2 +	2

= V D(0)
∫ h̄ωD

0

dE√
E2 +	2

= V D(0) ln

[
h̄ωD +

√
(h̄ωD)2 +	2

	

]
∼ V D(0) ln

(
2h̄ωD
	

)
, (21.41)

leading finally to

	 = 2h̄ωD exp

[
− 1

V D(0)

]
, (21.42)

where the gap depends in a nonanalytic fashion on the coupling constant, underscoring that
such a result cannot be obtained in the frame of a perturbation theory.

The constancy of the gap allows us to obtain closed form expressions for the coefficients
uk and vk. Using the condition u2

k + v2
k = 1, and (21.33), we get

u2
k =

1

2

⎡⎣1+ Ek√
E2

k +	2

⎤⎦ , v2
k =

1

2

⎡⎣1− Ek√
E2

k +	2

⎤⎦ . (21.43)

We can also determine the ground-state expectation value〈
c

†
k ck

〉
=
〈
(ukγ

†
k + vkγ−k)(ukγk + vkγ

†
−k)
〉
= v2

k,

which is shown in Figure 21.9. It represents the occupation number of the original fermions
in the new ground state.

Figure 21.9 Left: distribution of v2, u2 and uv. Right: the occupation number distribution of the
original fermions in the new ground state.
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In fact, if 	 = 0, then we have

v2
k =

1

2

[
1− Ek

|Ek|
]
=  [μ− εk] ,

which is the expected distribution in the normal metallic phase.
For the superconducting state with 	 
= 0, a gap opens destroying the Fermi surface,

and the momentum distribution function shows a smooth decrease across the Fermi energy.

Gauge Symmetry Breaking and Complex Order Parameter

The BCS Hamiltonian is invariant under the U(1) transformation ckσ → eiα ckσ . This
gauge symmetry is broken in the BCS coherent ground-state |�0〉

|�0〉 → |α〉 =
[∏

k

(1+ e2iα zkc
†
kc

†
−k)

]
|0〉 =

∑
n

e2inα

n!
|n〉 .

Moreover, under such transformation, the order parameter

	 = −V



∑
k

〈
α
∣∣c−k↓ ck↑

∣∣α〉
acquires a phase 	 → e2iα 	. However, the energy of the BCS state is unchanged by
the gauge transformation, so the states |α〉 actually form a family of degenerate broken
symmetry states.

Again, as in the case of superfluid coherent state, the number and phase operators form

conjugate variables satisfying the commutator
[
α, N̂
]
= i.

Transition Temperature

In the superconducting state, the Bogoliubov quasiparticles behave like ordinary fermions,
and satisfy the fermionic properties〈

γ
†
k′ γ

†
−k′
〉
=
〈
γ−k′ γk′

〉
= 0〈

γ−k′ γ
†
−k′
〉
= 1− nF (Ek′),

〈
γ

†
k′ γk′
〉
= nF (Ek′).

We make use of these properties by substituting for the c-annihilation operators that appear
in the gap equation in terms of the γ -creation and annihilation operators:

	k = −
∑

k′
Vkk′
〈
c−k′ck′

〉
T

= −
∑

k′
Vkk′
〈(
−vk′ γ

†
k′ + uk′ γ−k′

) (
uk′ γk′ + vk′ γ

†
−k′
)〉

=
∑

k′
Vkk′
[
uk′ vk′

〈
γ−k′ γ

†
−k′ − γ

†
k′ γk′
〉
+ v2

k′
〈
γ

†
k′ γ

†
−k′
〉
− u2

k′
〈
γ−k′ γk′

〉]
.
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The last two terms vanish. Thus, for T >0 the gap parameter becomes temperature depen-
dent. Equation (21.38) is replaced by

	k = −1

2

∑
k′

Vkk′
	k′

Ek′
[1− 2nF (Ek′)]

= −1

2

∑
k′

Vkk′
	k′

Ek′
tanh

[
βEk′

2

]
, (21.44)

which goes over into (21.38) for T → 0. Proceeding as before, we obtain the finite
temperature gap equation

1 = V

2

∫ h̄ωD

−h̄ωD

dE D(E)√
E2 +	2

= V D(0)
∫ h̄ωD

0

dE√
E2 +	2

tanh

[
β

2

√
E2 +	2

]
. (21.45)

The integrand is a decreasing function of both T and 	. It follows that the solution of
(21.45), 	(T ), decreases with increasing temperature until it vanishes at a critical tempera-
ture Tc. For weak coupling (kBTc � h̄ωD), the function 	(T ), depicted in Figure 21.10, is
universal. For T = 0, the solution of the gap equation is given by (21.42). The magnitude
of Tc in the BCS model is found from (21.45) by setting 	(Tc) = 0:

V D(ζ )
∫ h̄ωD/kBTc

0
dx x−1 tanh(x/2) = 1. (21.46)

Integrating by parts

ln

(
h̄ωD

kBTc

)
tanh

(
h̄ωD

2kBTc

)
−
∫ h̄ωD/kBTc

0
dx ln(x)

d

dx
tanh(x/2) = 1

V D(ζ ) . (21.47)

Figure 21.10 Reduced values of the energy gaps for lead, tin, tantalum, and niobium as
a function of reduced temperature, compared to the theoretical curve (solid line) of BCS.
From [182]
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For weak-coupling superconductors, h̄ωD/2kBTc � 1, we set tanh(h̄ωD/2kBTc) = 1 and
extend the upper limit of the integral to infinity, and obtain

ln

(
h̄ωD

2kBTc

)
−
∫ ∞

0
dx ln(x)

d

dx
tanh(x/2) = ln

(
h̄ωD

2kBTc

)
− ln(0.44) = 1

V D(ζ ),

(21.48)

which leads to

kBTc = 1.14h̄ωD e−1/V D(ζ ). (21.49)

We also arrive at the relation
2	(0)

kBTc
= 3.5,

a result in adequate agreement with experimentally observes values. This relation, often
used to check whether a superconducting material is BCS-like, is well satisfied in elemental
superconductors:

Al Cd Ga Hg In La Nb Pb Sn Ta Tl V Zn

3.53 3.44 3.5 3.95 3.65 3.72 3.65 3.95 3.6 3.63 3.63 3.50 3.44

We will waive the discussion of thermodynamic properties and the Josephson effect
associated with the phenomenon of superconductivity, and refer the reader to the book by
Tinkham [177], for example.

21.3.2 Gor’kov Equations and the Anomalous Green Function

Gor’kov 1 developed a powerful method for understanding superconductivity through a set
of coupled equations for the time evolution of Green functions [77]. The equations couple
the normal Matsubara functions, G(τ ), and the anomalous Matsubara functions, F(τ ),
relevant to Cooper pairing. The pairing is described by introducing the new correlation
function, F , for particles of opposite spin:

G(k,τ ) = −
〈
Tτ ckσ (τ ) c

†
kσ (0)

〉
F(k,τ ) = 〈Tτ c−k↓(τ ) ck↑(0)

〉
, F†(k,τ ) =

〈
Tτ c

†
k↑(τ ) c

†
−k↓(0)

〉
. (21.50)

The equations of motion follow from the time evolution of the fermion field operators, in
which the interaction terms are again treated in a mean-field manner. From such equations,
essentially all interesting physical quantities can be obtained.

1 Gor’kov first heard of the microscopic BCS theory of superconductivity during a seminar given in late 1957 by Nikolai
Bogoliubov at the Landau Institute. Within a few weeks, and before he had access to the BCS papers, Gor’kov derived what
are now known as the Gor’kov equations, which established the field-theoretical formulation of superconductivity. In 1959,
he used them to derive the Ginzburg–Landau equations and resolved the conceptual meaning of the superconducting order
parameter. His theory opened the way to describe inhomogeneous superconducting states in the presence of magnetic fields
or electrical currents.
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We shall use the equation of motion approach to construct the Matsubara functions for
the Hamiltonian defined in (21.23):

H =
∑
kσ

εk c
†
kσ ckσ + 1

2

∑
k,k′,q
σ,σ ′

Vq c
†
k+q,σ c

†
k′−q,σ ′ ck′,σ ′ ck,σ .

We shall set Vq=0 = 0, since the pair coupling is through the longitudinal acoustic branch.
We start with

dckσ

dτ
=
[
H, ck

]
= −Ek ck −

∑
k′q
σ ′

Vq c
†
k′−qσ ′ ck′σ ′ ck−qσ, (21.51)

together with the equation of motion for G, namely,

∂G(k,τ )
∂τ

= −δ(τ )−
〈
Tτ

[
dckσ (τ )

dτ

]
c

†
kσ (0)

〉
= −δ(τ )+ Ek G(k,τ )+

∑
k′q
σ ′

Vq

〈
Tτ c

†
k′−qσ ′(τ ) ck′σ ′(τ ) ck−qσ (τ ) c

†
kσ (0)

〉
.

(21.52)

At this point, we need to carry out Wick’s contractions. But before we proceed, we need to
recall that the superconducting transition is characterized by spontaneous breaking of gauge
symmetry associated with particle number, or charge conservation. Consequently, we find
that electron pairs may disappear into the condensate, or emerge from the condensate,
without changing the macroscopic state of the system, with number of pairs Npair → ∞ !
This scenario allows us to introduce some modified contractions:〈
Tτ c

†
k′−qσ ′(τ ) ck′σ ′(τ ) ck−qσ (τ ) c

†
kσ (0)

〉
=
〈
Tτ c

†
k′−qσ ′(τ ) ck′σ ′(τ )

〉 〈
Tτ ck−qσ (τ ) c

†
kσ (0)

〉
︸ ︷︷ ︸

q = 0

+
〈
Tτ c

†
k′−qσ ′(τ ) ck−qσ (τ )

〉 〈
Tτ ck′σ ′(τ ) c

†
kσ (0)

〉
+ 〈N | Tτ ck′σ ′(τ ) ck−qσ (τ )︸ ︷︷ ︸ |N + 2〉 〈N + 2| Tτ c†

k′−qσ ′(τ ) c
†
kσ (0)︸ ︷︷ ︸ |N〉

k′ = −k+ q k′ = −k+ q

= nk−q G(k,τ )− F(−k+ q,0)F†(k,τ ). (21.53)

The equation for G becomes⎛⎝ ∂

∂τ
− Ek −

∑
q

Vq nk−q

⎞⎠ G(k,τ )+
∑

q

Vq F(−k+ q,0)F†(k,τ ) = δ(τ ). (21.54)

The self-energy term � = ∑q Vq nk−q is just the exchange energy arising from the
effective electron–phonon interaction. It is usually small for weak coupling and is not
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very interesting to us, since it just leads to some irrelevant renormalization of the energy
spectrum. Thus, in the following we shall drop it. We shall also introduce the quantity

	k = −
∑

q

Vq F(−k+ q,0), (21.55)

which is the equivalent of the gap function of the BCS theory. Equation (21.54) becomes(
∂

∂τ
− Ek

)
G(k,τ )−	k F†(k,τ ) = δ(τ ). (21.56)

We now need to derive the equation of motion for F†

∂F†(k,τ )
∂τ

= −δ(τ )
〈{
c

†
k↑, c

†
−k↓
}〉
+
〈
Tτ

∂c
†
k↑(τ )
∂τ

c
†
−k↓(0)

〉
=
〈
Tτ

∂c
†
k↑(τ )
∂τ

c
†
−k↓(0)

〉
.

(21.57)

With

dc
†
kσ

dτ
=
[
H, c†

kσ

]
= Ek c

†
kσ +

∑
k′q
σ ′

Vq c
†
k+q c

†
k′+qσ ′ ck′σ ′ (21.58)

we obtain

∂F†(k,τ )
∂τ

= Ek F†(k,τ )+
∑
k′q
σ ′

Vq

〈
Tτ c

†
k−q↑(τ ) c

†
k′+qσ ′(τ ) ck′σ ′(τ ) c

†
−k↓(0)

〉
. (21.59)

Again, we write the contractions〈
Tτ c

†
k−q↑(τ ) c

†
k′+qσ ′(τ ) ck′σ ′(τ ) c

†
−k↓(0)

〉
=
〈
Tτ c

†
k−q↑(τ ) c

†
k′+qσ ′(τ )

〉 〈
Tτ ck′σ ′(τ ) c

†
−k↓(0)

〉
+
〈
Tτ c

†
k−q↑(τ ) ck′σ ′(τ )

〉 〈
Tτ c

†
k′+qσ ′(τ ) c

†
−k↓(0)

〉
+
〈
Tτ c

†
k′+qσ ′(τ ) ck′σ ′(τ )

〉 〈
Tτ c

†
k−q↑(τ ) c

†
−k↓(0)

〉
= F†(k− q,0)G(−k,τ )+ nk−q F†(k,τ )+ nk F†(k,τ ).

Again, the q = 0 term vanishes, and we neglect the contribution to the self-energy term.
We arrive at

∂F†(k,τ )
∂τ

= Ek F†(k,τ )+	
†
k G(−k,τ ). (21.60)

Equations (21.56) and (21.60) are known as the Gor’kov equations. Fourier transformation
of the Matsubara functions yields

(i
n − Ek) G(k,i
n)+	k F†(k,i
n) = 1

(i
n + Ek) F†(k,i
n)+	
†
k G(k,i
n) = 0. (21.61)
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We obtain the solutions

G(k,i
n) = − i
n + Ek


2
n + E2

k

F†(k,i
n) = F(k,i
n) = �k


2
n + E2

k

, (21.62)

where E2
k = E2

k +�2
k. Analytic continuation of (21.62) shows that the corresponding Green

functions have poles at ε = ±Ek.
To complete the solution, we need to determine the gap function. First, we note that

F(k,τ ) = 1

β

∑
i
n

e−i
nτ F(k,i
n).

Thus,

F(k,0) = 1

β

∑
i
n

F(k,i
n) = 1

β

∑
i
n

�k


2
n + E2

k

= �k

2Ek
tanh

βEk

2
.

Consequently, the gap equation (21.55) becomes

�k = −
∑

q

Vq
�k−q

2Ek−q
tanh

βEk−q

2
.

Again, using the contact potential approximation (21.39), we obtain the gap equation
(21.45).

Nambu Spinors, Bogoliubov–de Gennes Hamiltonian, and the Gor’kov Green Functions

Now we present Yoichiro Nambu’s pedagogical approach using the spinor formulation
of BCS theory. As we have seen, the BCS quasiparticles consist of a superposition of
electrons and holes. Nambu introduced an isospin construct that describes orientations in
charge (electron–hole) space, defining the quasiparticles composition. The Nambu spinor
is defined as

ψk =
(

ck

c
†
−k

)
electron annihilation

hole annihilation
ψ

†
k =

(
c

†
k

c−k

)
,

electron creation

hole creation
(21.63)

Nambu spinors satisfy conventional fermionic field anticommutator

{ψk, ψk′ } = δkk′ I,

they describe electrons and holes and not up and down electron spins. These spinors allow
us to combine the kinetic and pairing energy terms in the BCS Hamiltonian into a single-
vector field, a magnetic field–like quantity that acts in isospin space. The kinetic energy
can be written as
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∑
k

Ek

(
c

†
k ck + c

†
−k c−k

)
=
∑

k

Ek

(
c

†
k ck − c−k c

†
−k︸ ︷︷ ︸+1

)
hole

=
∑

k

(
c

†
k c−k

) [Ek 0

0 −Ek

] (
ck

c
†
−k

)
+
∑

k

Ek︸ ︷︷ ︸
constant

where Ek = εk − μ. The energy −Ek is the energy to create a hole. We will drop the
constant remainder term

∑
k Ek. Similarly, we obtain

V

2


∑
k,k′

(
c

†
k′ c

†
−k′ φk + φ∗k′ c−k ck − φ∗k′φk

)

= V

2


[(∑
k′

c
†
k′ c

†
−k′

)(∑
k

φk

)
+
(∑

k′
φ∗k′

)(∑
k

c−k ck

)
−
(∑

k′
φ∗k′

)(∑
k

φk

)]

= 1

2

∑
k

[
	∗c−k ck + c

†
k c

†
−k 	−

	∗	
V/


]
=
∑

k

(
c

†
k c−k

) [ 0 	

	∗ 0

] (
ck

c
†
−k

)
− 	∗	

V/


=
∑

k

ψ
†
k

[
0 	1 − i	2

	1 + i	2 0

]
ψk − 	∗	

V/

. (21.64)

We can now combine the kinetic and pairing terms into a single matrix:

HBCS =
∑

k

ψ
†
k

[
Ek 	1 − i	2

	1 + i	2 −Ek

]
ψk =

∑
k

ψ
†
k

[
Ek τ 3 +	1 τ 1 +	2 τ 2

]
ψk,

(21.65)

where we used the Pauli isospin matrices τ , and the definition of 	 given in (21.40). The
generalized complex pairing field 	 can be regarded as a transverse field in isospin space.
Equation (21.65) is also referred to as the Bogoliubov–de Gennes Hamiltonian.

We now recast (21.65) in two forms:

• The first form is

H =
∑

k

[
	1 ψ

†
k τ 1 ψk +	2 ψ

†
k τ 2 ψk + Ek ψ

†
k τ 3 ψk

]
=
∑

k

[
	1 τ̂ 1 +	2 τ̂ 2 + Ek τ̂ 3

]
τ̂1k =

(
c

†
k↑ c

†
−k↓ + c−k↑ ck↓

)
τ̂2k =

(
c

†
k↑ c

†
−k↓ − c−k↑ ck↓

)
τ̂3k =

(
c

†
k↑ ck↑ − c−k↓ c†

−k↓
)
= (nk↑ + n−k↓ − 1

)
.
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In a normal metal, |	| = 0, τ3k =
(
nk↑ + n−k↓ − 1

) = sgn(kF − k), the isospin points
“up” in the doubly occupied states below the Fermi surface, and “down” in the empty
states above the Fermi surface.

• The second form is

HBCS =
∑

k

ψ
†
k

[
hk ·τ
]
ψk −	∗	 (21.66)

hk ≡
(
	1,	2,Ek

)
, |hk| = Ek.

hk plays the role of a field acting in isospin space. We define the unit vector

n̂k =
(
	1

Ek
,
	2

Ek
,
Ek

Ek

)
.

For 	 real, we find that

n̂k =
(
	

Ek
,0,

Ek

Ek

)
=
(
u2

k − v2
k,0,ukvk

)
.

Gor’kov Green Functions in the Nambu Representation

The Gor’kov Green functions can be conveniently expressed in isospin space as the outer
product of the Nambu spinors:

G̃(k,τ ) = −
〈
Tτ ψk(τ ) ⊗ ψ

†
k(0)
〉
=

⎛⎜⎝ −
〈
Tτ ck↑(τ ) c†

k↑(0)
〉

− 〈Tτ c−k↓(τ ) ck↑(0)
〉

−
〈
Tτ c

†
k↑(τ ) c

†
−k↓(0)

〉
−
〈
Tτ c−k↓(τ ) c†

−k↓(0)
〉
⎞⎟⎠

=
⎛⎝G↑↑(k,τ ) F↓↑(k,τ )

F†
↓↑(k,τ ) G↓↓(k,τ )

⎞⎠ (21.67)

This compact representation is known as the Nambu–Gor’kov Green functions.
Using (21.62), we write

G̃(k,i
n) = 1

(i
n)2 − E2
k

[
i
n + Ek 	∗

	 i
n − Ek

]
. (21.68)

To bring out the physical content of (21.68), we shall reproduce it diagrammatically. The
noninteracting electron and hole propagators are the diagonal components of the Nambu–
Gor’kov propagator:

G̃0(k,i
n) = 1

i
n − εkτ 3
=

⎡⎢⎣
1

i
n − εk
1

i
n + εk

⎤⎥⎦ .
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These two components are represented by the diagrams

≡ G0(k) = 1

i
n − εk

≡ −G0(−k) = 1

i
n + εk
.

Anticommutation of creation and annihilation operators produced the minus sign in the
hole propagator.

The off-diagonal scattering terms convert an electron into a hole plus a condensate pair
and vice versa: à la Andreev scattering processes,

	∗ c−k↓ ck↑ ≡

	∗ c†
k↑ c

†
−k↓ ≡

The Feynman diagrams for G(k), electron or hole propagators, must involve an even num-
ber of Andreev scattering events, and are given by

= + + + · · ·
The corresponding self-energy diagram is given by

�(k) = = = |	|2
i
n + εk

.

Then G(k) is represented as

G(k) = + + + · · ·

= 1

i
n − εk −�(i
n)
= 1

i
n − εk − |	|2
i
n + εk

= i
n + εk

(i
n)2 − E2
k

. (21.69)

The anomalous propagator is also given by

= + + · · ·

= (21.70)

so that

F(k,i
n) = 	

i
n + εk

1

i
n − εk − |	|2
i
n + εk

= 	

(i
n)2 − E2
k

. (21.71)
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21.4 Ginzburg–Landau Theory of Superconductivity

From a fundamental point of view, the main triumph of BCS theory was its derivation
of the gapped energy spectrum from whence superconductivity follows. However, the
BCS theory describes homogeneous, or clean, superconductors. Actually, there are
many cases where spatial inhomogeneity is pervasive, for example in the case of a
normal metal/superconductor interface, or in the case of superconducting alloys. In such
situations, the microscopic theory becomes difficult to apply, and the availability of a more
macroscopic theory would be desirable. Moreover, neither the BCS variational approach
nor the Valatin–Bogoliubov formulation allow for the definition of an order parameter
and its symmetry in the superconducting state. The Ginsburg–Landau (GL) theory was
one of the most important phenomenological breakthroughs prior to the development of
the microscopic theory of superconductivity [75]. GL introduced a pseudowavefunction
φ(x) as a macroscopic complex order parameter, where |φ|2 serves as the density of
superconducting electrons. The GL theory was based on a free energy expansion using a
spatially inhomogeneous order parameter.

21.4.1 Pair Wavefunction as the Order Parameter

We may identify the pair wavefunction, shown in Figure 21.11, with the quantity

φk = 〈c−k ck〉 = uk vk = 	

2Ek
= 	

2
√
E2

k +	2

since c−k ck annihilate two electrons from the Fermi sea and create a singlet pair. We write
the corresponding real space wavefunction as

ψ(x) =
∑
|k|

φk e
ik·x.

Since both 	 and Ek do not depend on the direction of k, ψ(x) represents s-wave pairing,
and we get

ψ(x) = 


(2π)3

∫
dk

	

2Ek
eik·x,

Figure 21.11 The pair function φk as a function of Ek.
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where 
 is the volume of the system. Since h̄ωD � EF , we use the approximation
Ek = εk − EF ∼ h̄vF (k − kF ), and we define aF = h̄vF kF /	

ψ(x) = 


(2π)3

∫
dk

eik·x

2

√(
h̄vF
	
k − aF

)2 + 1

= 


(2π)3

∫
dk k2 1

2

√(
h̄vF
	
k − aF

)2 + 1

∫
d
k e

ik·x

= 


4π2

∫
dk k

sin(kr)

r

1√(
h̄vF
	
k − aF

)2 + 1

= 


4π2

(
	

h̄vF

)3 1

(r/ξ)

∫
dy y

sin(yr/ξ)√
(y − aF )

2 + 1

= dimensionless constant × f (r/ξ)

where ξ = h̄vF /	 � 10−4 cm, is the defining length scale of the pair wavefunction. We
find that the pair wavefunction varies on a length scale of a micron in real space, which is
very huge compared to the microscopic length scales. Such a macroscopic character of the
pair wavefunction justifies it to be considered as an order parameter.

21.4.2 The Ginzburg–Landau Free Energy Expansion

In addition to its success in handling systems with spatial inhomogeneities, the GL theory
can determine the nonlinear response to fields strong enough to change the superconducting
density, producing results in good agreement with experimental findings. Yet initial inter-
est was limited because of its phenomenological foundation. It was therefore important
to demonstrate that it can be corroborated on microscopic grounds. Gor’kov showed, in
1959, that the GL theory was, in fact, derivable as a rigorous limiting case of the micro-
scopic theory. Gor’kov’s formulation was based on Green functions, which allowed him
to extend the formulation to systems with spatial inhomogeneity [78, 79].2 Moreover, the
GL order parameter was identified with the pair wavefunction and is proportional to the
energy gap.

Derivation of the Ginzburg–Landau Free Energy Expansion from Microscopics

Gor’kov realized that close to the transition temperature |T − Tc| � 1, where the GL
theory is valid, the gap is small, 	� kBTc, which allows perturbative expansions in terms
of 	. Here we will depart from Gor’kov’s derivation and treat this expansion in the path

2 Gor’kov published two papers in early 1959; the first treated clean superconductors, and the second considered
superconducting alloys.
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integral formalism. We start with the BCS Lagrangian expressed in terms of field operators
ψσ (x) = 1




∑
k eik·x ckσ

H =
∑
σ

∫
dxψ†

σ (x)
(
∂τ − ∇

2

2m
− μ

)
ψσ (x)− g

∫
dxψ†

↑(x) ψ
†
↓(x) ψ↓(x) ψ↑(x)

and with the partition function expressed in terms of coherent state path integral

Z =
∫

D[φ,φ̄] e−S[φ,φ̄]

S
[
φ̄,φ
] = ∫ β

0
dτ

∫
dx
[
φ̄σ

(
∂τ − ∇

2

2m
− μ

)
φσ + g φ̄↑ φ̄↓ φ↓ φ↑

]
, (21.72)

where S
[
φ̄,φ
]

is the action in imaginary time, and φ(x,τ ) are Grassmann field variables.
Applying the Hubbard–Stratonovich transformation, we get

exp

[
g

∫ β

0
dτ

∫
dx φ̄↑ φ̄↓ φ↓ φ↑

]
⇒
∫

D[	,	̄] exp

[
−
∫ β

0
dτ

∫
dx
[
−|	|

2

g
− 	̄ φ↓ φ↑ +	 φ̄↑ φ̄↓

]]
,

where 	(x,τ ) and 	̄(x,τ ) are dynamically fluctuating bosonic auxiliary fields satisfying
	(x,τ + β) = 	(x,τ ), while the fermionic Grassmann variables satisfy φ(x,τ + β) =
−φ(x,τ ).

Treating 	 as a constant field yields an action identical to the mean-field action obtained
from BCS, and renders 	 a superconducting order parameter. However, now it can be
treated as a dynamical field, and in particular, it has a phase that can fluctuate.

Using the Nambu spinor representation,

� = [φ̄↑ φ↓
]
, � =

[
φ↑
φ̄↓

]
,

we write the partition function as

Z =
∫

D[φ̄,φ]
∫

D[	̄,	] exp

[∫ β

0
dτ

∫
dx
[
−|	|

2

g
−�G−1 �

]]
(21.73)

G−1 =
([

G(0)
]−1 +�

)
=

⎛⎜⎝
[
G(0)p

]−1
0

0
[
G(0)h

]−1

⎞⎟⎠+ ( 0 	

	∗ 0

)
.

G−1 is inverse Nambu–Gor’kov Green function, with[
G(0)p

]−1 = −∂τ + ∇
2

2m
+ μ, noninteracting particle[

G(0)h

]−1 = −∂τ − ∇
2

2m
− μ, noninteracting hole.
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Notice that the bosonic field 	(x,τ ) is transverse, since it is proportional to τ1.
Integrating out the fermion fields, we obtain 3

Z =
∫

D[	̄,	] e−S̃[	̄,	]

S̃[	̄,	] =
∫ β

0
dτ

∫
dx
|	|2
g
− ln det

(
G−1
)

=
∫ β

0
dτ

∫
dx
|	|2
g
− Tr ln

(
G−1
)

. (21.74)

We can now derive the GL functional by expanding the logarithm in powers of the
symmetry-breaking self-energy � and keeping terms up to fourth order,

lnG−1 = ln

([
G(0)
]−1 +�

)
= ln

[
G(0)
]−1 + ln (I+ G0 �)

= ln
[
G(0)
]−1 +

∞∑
n=1

(−1)n+1

n
(G0 �)

n .

The odd-n terms have vanishing trace over the Nambu space, and Tr ln G−1
0 /β is just the

free energy of the normal phase, Fn. We thus obtain

F − Fn = 1




{∫ β

0
dτ

∫
dx
|	|2
g
− 1

β
Tr

[
1

2
(G0 �)

2 + 1

4
(G0 �)

4
]}

. (21.75)

We first calculate the fourth-order contribution, where we can assume that the pairing field
	 is uniform. The trace over the Nambu space yields merely a factor of 2 and the space-
time trace may be simply performed in the momentum-frequency representation, using the
free propagator [

G(0)
]−1

(k) =
(
i
n + Ek 0

0 i
n − Ek

)
.

The fourth-degree term becomes

1

4
β
Tr (G0 �)

4 = |	|
4

2β

∑
n

∫
dk

(2π)3

[
G(0)p (i
n,k)G(0)h (iωn,k)

]2
= |	|

4

2β

∑
n

∫
dk

(2π)3
1(

ω2
n + E2

k

)2

3 detA =∏i ai where ai are the eigenvalues of matrix A. Thus, ln det(A) =∑i ln(ai ). Note that the eigenvalues of ln[A]
are ln(ai ).
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= |	|
4D

2β

∑
n

∫
dE(

ω2
n + E2

)2 = |	|4D2β

∑
n

π

4|ωn|3

= |	|
4Dβ2

8π2

∞∑
n=0

1

(2n+ 1)3

= 7ζ(3)D
64π2T 2

c

|	|4,

where we used the identity

∞∑
n=0

1

(2n+ 1)�
= 2� − 1

2�
ζ(�), ζ is the Riemann zeta function.

Next, we consider the quadratic contribution to the free energy (21.75), and allow the
pairing field 	 to vary in space. Expanding the trace, we obtain

1

2
β
Tr
(
G(0) �

)2 = 1

β

∑
k

〈k|G(0)p 	G(0)h 	̄ |k〉

= 1

β

∑
q

	q 	̄−q

∑
k

G(0)p (k)G(0)h (k+ q)︸ ︷︷ ︸
$0(q,0).

The sum over k is just the polarization function $0(q,0) of (17.170). In order to allow slow
variations of 	, we perform a Taylor expansion of $0(q,0) in q up to second order4

$0(q,0) = $0(0,0)+ q2

2
∂2
q$0(0,0)+ · · ·

The term involving $0(0,0) is⎛⎝∑
q

	q 	̄−q

⎞⎠ $0(0,0) = −|	|2 1

β

∑
n

∫
dk

(2π)3
1

ω2
n + E2

k

= |	|2 D
∫ h̄ωD

0
dE 1

β

∑
n

1

ω2
n + E2

= −|	|2 D
∫ h̄ωD

0

dE
E tanh

βE
2
= −|	|2 D ln

h̄ωD

kBT
,

where we followed the integration procedure in (21.46) and (21.47). Combining quadratic
terms in 	 independent of q, we get[

1

g
−D ln

h̄ωD

kBT

]
|	|2 = D ln

T

Tc
|	|2 ∼ D Tc − T

Tc
|	|2. (21.76)

4 ∂q$0(0,0) vanishes because it is linear in k.
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To evaluate the q2∂2
q$0(0,0) term, we note that

∂2
q$0(0,0) → 1

3m2β

∑
n

∫
dk

(2π)3
k2 1

(iωn + Ek)
3 (iωn − Ek)

= 7ζ(3)Dk2
F

48m2π2T 2
c

,

which leads to

7ζ(3)Dk2
F

48m2π2T 2
c

∑
q

q2 	q 	̄−q =
7ζ(3)Dk2

F

48m2π2T 2
c

1




∫
dx |∂x	|2. (21.77)

Collecting all terms in the free energy expansion, we finally arrive at

	FGL = F − Fn =
∫

dx

[
7ζ(3)Dk2

F

48m2π2T 2
c

|∂x	|2+D T − Tc

Tc
|	|2+ 7ζ(3)D

64π2T 2
c

|	|4 + · · ·
]

=
∫

dx
[

7ζ(3)n

32mπ2T 2
c

|∂x	|2 +D T − Tc

Tc
|	|2 + 7ζ(3)D

64π2T 2
c

|	|4 + · · ·
]

. (21.78)

In the last line, we used D = mkF /2π2 and n = k3
F /3π2. Setting ψ =

√
7ζ(3)n
4πTc

	, we
rewrite (20.21.78) as

	FGL =
∫

dx
[

1

2m
|∂xψ |2 + a

T − Tc

Tc
|ψ |2 + b

2
|ψ |4 + · · ·

]
, (21.79)

where ψ has the character of a macroscopic wavefunction. We note that 	FGL has a global
U(1) gauge symmetry.

We consider the special case of a uniform ψ = |ψ | eiα , such that

	FGL =
∫

dx
[
a t ψ∗ ψ + b

2
ψ∗ ψ |ψ |2

]
, (21.80)

where t =
(
T−Tc
Tc

)
. We note that 	F is independent of the phase α. Extremizing the free

energy with respect to |ψ | yields⎧⎪⎨⎪⎩
|ψ | = 0, t > 0, ⇒ 	F = 0

|ψ | =
√
a(Tc − T )/Tc

b
, t < 0 ⇒ 	F = −a

2

b

(
T − Tc

Tc

)2

,
(21.81)

leaving a continuous degeneracy in the phase α = [0,2π ].

21.4.3 Electromagnetic Fields and Gauge Invariance

A superconductor can be viewed as a charged condensate fluid, which naturally couples
to electromagnetic fields and exhibits a charged superflow. A key feature of a supercon-
ductor is the manifestation of the phenomenon called the Meissner effect, its capacity
to expel magnetic fields from its bulk. Although in principle it is possible to derive the
Meissner effect and other electrodynamic properties of a superconductor starting from the
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microscopic formulation, the GL theory provides an elegant and more physically transpar-
ent way to derive such macroscopic properties of superconductors.

In the spirit of treating the order parameter as a macroscopic wavefunction, we note that
in the presence of a vector potential, the kinetic energy term in the Hamiltonian becomes

− 1

2m

∫
dx ψ∗ (∇ + ieA)2 ψ = 1

2m

∫
dx |(∇ + ieA) ψ |2 (21.82)

upon integration by parts. Thus the introduction of electromagnetic fields modifies the GL
free energy to read

	FGL =
∫

dx

⎡⎣ 1

2m∗
∣∣(∂x + ie∗A)ψ

∣∣2 + a t |ψ |2 + b

2
|ψ |4︸ ︷︷ ︸+ 1

2
(∇×A)2︸ ︷︷ ︸

⎤⎦ , (21.83)

	Fψ 	FA

where we set the scalar potential ϕ = 0, and we added the electromagnetic field free energy.
The appearance of the vector potential A, a gauge field, evokes the process of local U(1)

gauge transformation:

A → A+ ∇α(x).
However, as we know from quantum mechanics, such transformations require that we
transform the wavefunction according to

ψ(x) → e−ie
∗α(x) ψ(x),

which clearly leaves the free energy 	F invariant. Thus we find that presence of the gauge
field promotes the global U(1) symmetry to a local one!

We note that we can rewrite the first term in 	F as∫
dx

1

2m∗
∣∣(∂x + ie∗A)ψ

∣∣2 = ∫ dx
1

2m∗
[
|∇ψ |2 + (∇α + e∗A

)2 |ψ |2] .

The energy of the superconducting state below Tc is lower than that of the normal state by
the condensation energy, given in (21.81). Thus we realize that spatial variations of |ψ |
will cost a significant fraction of the condensation energy in the region of space where it
occurs. In contrast, the zero-field free energy is actually invariant with respect to changes
in α, so fluctuations of α alone will essentially cost no energy. Consequently, if we apply a
weak magnetic field described by A to the system, we do not expect it to couple to |ψ | but
rather to the phase α, since it is a small perturbation. The superconducting kinetic energy
density should then reduce to the second term.

21.4.4 Ginzburg–Landau Equations

The GL equations of motion are obtained through varying 	FGL with respect to the order-
parameter ψ and the vector potential A.
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Variation with respect to A yields

δ	FGL = −
∫

x
δA ·
[
− ie∗

2m∗
(
ψ∗ ∇ ψ −∇ ψ∗ ψ

)− e∗2

m∗
|ψ |2 A

]
+
∫

(∇ × δA) · B

= −
∫

x

[
δA · Js(x)− δA ·∇× B

]
, (21.84)

where Js(x) is the supercurrent density – the probability current. We used the vector identity

(∇×δA) · B =∇· (δA× B)︸ ︷︷ ︸+δA · (∇×B) .

0

Extremizing the total variation, we obtain

δF

δA
= −Js(x)+ ∇×B

μ0
= 0, (21.85)

the first GL equation of motion, which is just Ampère’s equation.
To vary with respect to ψ , we will use (21.82) and write

	FGL =
∫

x

[
1

2m∗
ψ∗
(∇ + ie∗ A

)2
ψ + a t ψ∗ ψ + b

2

∣∣ψ∗ ψ∣∣2 + 1

2
(∇×A)2

]
.

Varying with respect to ψ∗, we obtain

δ	FGL =
∫

dx
(
δψ∗
[

1

2m∗
(∇ + ie∗ A

)2
ψ + a t ψ + b |ψ |2 ψ

])
. (21.86)

Extremization then yields GL’s second equation of motion

1

2m∗
(∇ + ie∗ A

)2
ψ + a t ψ + b |ψ |2 ψ = 0, (21.87)

which respects gauge invariance.

Ginzburg–Landau Coherence Length

In the absence of electromagnetic fields, and interpretingψ as a macroscopic wavefunction,
we write

F [ψ] =
∫

dx
[

1

2m∗
|∇ψ |2 + a t |ψ |2 + b

2
|ψ |4
]

.

The corresponding Euler–Lagrange equation as

1

2m∗
∇2ψ + a ψ + b |ψ |2 ψ = 0.

For pedagogical reasons, we consider the case of a superfluid filling the half-space z > 0,
for t < 0. We impose the boundary condition ψ(z = 0) = 0 and assume that the solution
only depends on z. Then

1

2m∗
ψ ′′(z)− a |t |ψ(z)+ b |ψ(z)|2 ψ(z) = 0.
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Figure 21.12 Solution to the nonlinear Schrödinger equation.

For z→∞, |ψ |2 should approach the uniform superconductor density ns , namely

lim
z→∞ ψ(z) =

√
a|t |
b
=
√
a(Tc − T )/Tc

b
= √ns .

Writing

ψ(z) =
√
a(Tc − T )/Tc

b
f (z) = √ns f (z),

we obtain

− 1

2m∗a|t | f
′′(z)+ f (z)− f 3(z) = 0 (21.88)

with

ξ2 = 1

2m∗a|t | =
1

2m∗a(Tc − T )/Tc
> 0,

the Ginzburg–Landau coherence length. As a correlation length in a second-order phase
transition, the Ginzburg–Landau ξ actually diverges at T = Tc.

Equation (21.88) is the nonlinear Schrödinger equation, which has the solution

f (z) = tanh

[
z√
2ξ

]
shown in Figure 21.12. It satisfies the boundary conditions at z = 0 and z→∞.

21.4.5 Meissner Effect

We note that when we use ψ = |ψ | eiα in the expression for the supercurrent Js , we
find that

ψ∗ ∇ ψ =
(
|ψ | e−iα

)
∇
(
|ψ | eiα

)
= i |ψ |2 ∇α + |ψ | ∇ |ψ |(∇ ψ∗

)
ψ = ∇

(
|ψ | e−iα

) (
|ψ | eiα

)
= −i |ψ |2 ∇α + |ψ | ∇ |ψ |
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and we obtain

Js(x) = e∗h̄
m∗

|ψ |2 ∇ α − e∗2

m∗
|ψ |2 A

= e∗ ns
m∗

(
∇ α − e∗

h̄
A
)
= e∗ ns vs, (21.89)

where we have identified

vs = h̄

m∗

(
∇ α − e∗

h̄
A
)

as the superfluid velocity, which is invariant under a local gauge transformation. We find
that the onset of a supercurrent can be effected by either a twist in the phase or by an
external vector potential. Substituting for Js in (21.85), we get

∇×B = −nse
∗2

m∗

(
A− h̄

e∗
∇ α

)
.

For a uniform ns , we obtain

∇× ∇× B = ∇ (∇·B)− ∇2 B = −∇2 B = ∇×J = −nse
∗2

m∗
B,

where we have used the identity ∇×∇ψ = 0 to eliminate ∇ α. This leads to

Meissner effect

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇2 B = 1

λ2
L

B London equation

1

λ2
L

= nse
∗2

m∗
London penetration depth.

This equation5 demonstrates the remarkable phenomenon of complete diamagnetism: the
magnetic fields are completely expelled from superconductors. For the case of a superfluid
filling the half-space z > 0, (21.90) reduces to the 1D equation

λ2
L

d2B

dz2
= B

with solutions of the form B(z) ∼ B0 e
−z/λL . Near the surface of a superconductor, mag-

netic fields only penetrate a distance depth λL into the condensate, because persistent
supercurrents screen the field out of the superconductor. Figure 21.13 shows a magnetically
levitated magnet in the vicinity of a superconductor – a manifestation of the Meissner effect.

Another interesting observation can be seen if we assume that α is uniform, so that
(21.89) becomes

Js(x) = −e
∗2 ns

m∗
A.

5 It was first derived by Fritz and Heinz London in 1935 [122] The London equation can also be derived directly from
BCS theory.
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Figure 21.13 Levitation due to Meissner effect: a magnet levitating above a high-temperature
superconductor, cooled with liquid oxygen.

Taking the time derivative, and working in a gauge where ϕ = 0, so E = −i∂tA, we
find that

∂t Js = e∗2 ns

m∗
E.

This shows that for a constant current, there is no electric field – a system with a finite
current and zero electric field must have zero resistivity!

21.4.6 Fluctuations of the Order Parameter and the Anderson–Higgs Mechanism

It is instructive at this point to explore the nature and characteristics of long wavelength
fluctuations in the order parameter for many reasons. To start with, we find that the London
equation in the form

Js = ρsA

violates local gauge invariance. Three papers published independently by Anderson [11,
12], Bogoliubov [32]), and Nambu [139] showed that the violation of local gauge
symmetry can be resolved by introducing order-parameter fluctuations into the theory.
Anderson, Bogoliubov, and Nambu independently came up with the so-called Nambu–
Goldstone phase mode that corresponds to phase fluctuations of the order parameter of
neutral superfluids.6 The possibility of an additional fluctuation in the order-parameter
amplitude was not given special attention at that time, probably since it was not needed to
get a consistent theory of superconductivity.

Fluctuations in Superconducting Fluids and the Anderson–Higgs Mechanism:
Eating Up the Goldstone Mode

When discussing fluctuations about the mean-field state of a superconductor, we have to
take the coupling to the electromagnetic field into account. We proceed analogously to the
case of a neutral superfluid but with the kinetic term

6 As we discussed in Section 17.3.6, the massless Nambu–Goldstone mode arises from the spontaneous breaking of a
continuous symmetry of the order-parameter phase.
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1

2m∗

∣∣∣∣( h̄i ∇ − e∗

c
A
)
ψ

∣∣∣∣2 .

Setting

ψ = (ψ0 + δψ) eiα(x)

and following the steps of Section 17.3.6, we obtain

F [δψ,α,A] �
∫

dx
[(

h̄

i
(∇δψ)

)∗
·
(
h̄

i
(∇δψ)

)
− 2a δψ2

− h̄2

2m∗
a

b

(
∇α − e∗

h̄c
A
)∗ (

∇α − e∗

h̄c
A
)
+ 1

8π
(∇×A)∗ · (∇×A)

]
.

Note that the phase α of the macroscopic wavefunction and the vector potential appear
in the combination ∇α − e∗

h̄c
A 7. The physics should be invariant under the gauge

transformation

A → A+ ∇χ, φ → φ − 1

c
χ̇, ψ → eie

∗χ/h̄c ψ,

where φ is the scalar electric potential and χ(x,t) is an arbitrary scalar field. We make use
of this gauge invariance by choosing

χ = − h̄c
e∗

α.

Under this transformation, we get

A → A− h̄c

e∗
∇α = A′

ψ = (ψ0 + δψ) eiα → (ψ0 + δψ) ei(α−α) = ψ0 + δψ .

The macroscopic wavefunction becomes purely real and positive. The Landau functional
thus transforms into

F [δψ,A′] →
∫

dx
[(

h̄

i
(∇δψ)

)∗
· h̄
i
(∇δψ)− 2a δψ2

− a

b

e∗2

2m∗c2
A′∗ · A′ + 1

8π
(∇×A′)∗ · (∇×A′)

]
(note that ∇×A′ = ∇×A). Thus the phase no longer appears in F ; it has been absorbed
into the vector potential! The sum of the phase gradient and the vector potential creates a
field with both longitudinal and transverse character.

7 Note that the vector potential, which gives rise to transverse electromagnetic waves, becomes coupled to gradients of the
phase, which are longitudinal in character.
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Furthermore, dropping the prime and taking the Fourier transform, we arrive at

F [δψ,A] �
∑

k

[(
−2a + h̄2k2

2m∗

)
δψ∗k δψk − a

b

e∗2

2m∗c2
A∗k · Ak

+ 1

8π
(k× Ak)

∗ · (k× Ak)

]

=
∑

k

[(
−2a + h̄2k2

2m∗

)
δψ∗k δψk

+ ns
e∗2

2m∗c2

[
A‖∗k · A‖k + A⊥∗k · A⊥k

]
+ 1

8π
k2 A⊥∗k A⊥k

]
.

Obviously, amplitude fluctuations decouple from electromagnetic fluctuations and behave
like those of a neutral superfluid. It is interesting to discuss the electromagnetic fluctuations
further. The term proportional to −a/b = ns is due to superconductivity. Without it, we
would have the free-field functional

F [A] = 1

8π
(k× Ak)

∗ · (k× Ak) = 1

8π
k2 A⊥∗k A⊥k ,

which represents purely gapless transverse modes.
All three components of A appear now; the longitudinal one has been introduced by

absorbing the phase α(x). Even more importantly, all components obtain a term with a
constant coefficient – a mass term. Thus the electromagnetic field inside a superconductor
becomes massive. This is the famous Anderson–Higgs mechanism. The same general idea
is also thought to explain the masses of elementary particles, although in a more compli-
cated way. The Higgs bosons in our case are the amplitude-fluctuation modes described by
δψ 8. Contrary to what is said in popular discussions, they are not responsible for giving
mass to the field A. Rather, they are left over when the phase fluctuations are eaten by the
field A.

Amazingly, by absorbing the phase of the order parameter, we arrive at a purely electro-
magnetic action, but one in which the phase stiffness of the condensate ∇α imparts a new
quadratic term in the action of the electromagnetic field – a “mass term.” Like a python
that has swallowed its prey whole, the new gauge field is transformed into a much more
sluggish object: it is heavy and weak.

8 As it does not carry any spin or charge, in principle, the amplitude mode of the superconducting order parameter, or the Higgs
mode, does not couple directly to any external probe. However, when superconductivity (SC) coexists with a charge density
wave order, the amplitude mode of the CDW order couples to the Higgs mode by modulating the density of states at the Fermi
level, thus shaking the SC condensate by modulating the amplitude of the superconducting order parameter. This allows the
indirect detection of the Higgs mode by spectroscopic probes. Experimentally, the Higgs mode becomes active by removing
spectral weight from the CDW amplitude mode upon entering the SC state. The requisite of a coexisting CDW mode and the
observation of a transfer of spectral weight from the CDW amplitude mode to the Higgs mode in the SC state can thus be
considered key predictions of the Higgs mode scenario.



706 Microscopic Theory of Conventional Superconductivity

The mass term in the superconducting case can be thought of as leading to the Meissner
effect (finite penetration depth λ). Indeed, we can write

F [δψ,A] �
∑

k

[(
−2a + h̄2k2

2m∗

)
δψ∗k δψk + 1

8π

∑
k

[
1

λ2
L

A∗k · Ak + k2 A⊥∗k A⊥k

]]
,

where λL is just the London penetration depth we encountered in the Meissner effect.
Moreover, we find that the last two terms lead to exactly the B equation

1

λ2
L

A⊥∗ · A⊥ + k2 A⊥∗k A⊥k → ∇2A⊥ = 1

λ2
L

A⊥.

The photon mass is proportional to 1/λL.
In concluding, we should note the following observation: in a neutral superfluid,

spontaneous symmetry breaking is associated with a global U(1) gauge symmetry and
leads to the emergence of a massless Goldstone bosonic mode. By contrast, in a charged
superfluid – a superconductor – spontaneous symmetry breaking is associated with a
local gauge symmetry, due to the presence of the gauge field A. In this case, spontaneous
symmetry breaking leads to a massive photon instead of a massless Goldstone boson.

Exercises

21.1 Finite temperature gap equation:
The BCS gap equation is expressed as

	 = −V
∑

k

〈
c−k↑ ck↓

〉
.

(a) Given that the anomalous Green’s function is defined as

F↓↑(k,τ ) = −
〈
Tτ c

†
−k↓(τ ) c

†
k↑(0)

〉
F(k,iωn) = 	

(iωn)2 − E2
k

,

derive an expression for the gap equation in terms of a Matsubara sum.
(b) Show that by performing the sum over Matsubara frequencies you obtain the

temperature dependence of the gap as

1

V
=
∫ ∞

0
dE tanh[βE/2]

E
,

where E2 = E2 +	2(T ).

21.2 Peierls transition in 1D à la superconductivity: electron perspective:
Consider the Frölich Hamiltonian

HF =
∑
k,σ

ε(k) c
†
kσ ck,σ +

∑
k,q,σ

g(q) c
†
k−q,σ ck,σ

(
b

†
−q + bq

)
+
∑
q

ω(q) b†
q bq .
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We expect that at low temperatures < TPeierls the phonon mode q = 2kF will be
macroscopically occupied. Accordingly, we replace operators bq=±2kF and b†

q=±2kF

by c-numbers b̃ = 〈bq=±2kF

〉
.

(a) How will this modify the Frölich Hamiltonian?
(b) Using the modified Hamiltonian, obtain an expression for 〈H〉.
(c) Derive an expression for b̃ in terms of average values of electron operators by

minimizing 〈H〉 with respect to b̃. What is the physical interpretation of the
expression you obtained?

(d) By substituting it back in the modified Hamiltonian, you should obtain a familiar
form reminiscent of superconductivity.

(e) Proceed with the aid of the machinery developed for the superconductivity prob-
lem to obtain an expression for TPeierls and the gap temperature dependence.

21.3 Peierls instability: phonon perspective

Find the renormalized acoustic phonon spectra ω̄q in one dimension. The renor-
malization is due to interaction with the one-dimensional Fermi gas (Fermi surface
consists of two points: kF and −kF ).

(a) Consider only the lowest-order diagram in $(q,ω).
(b) Both integrals, over ! and over k, can be taken without any approximation.
(c) Assume that c � vF = kF /m. Then the spectrum renormalization is propor-

tional to Re$(q,ω) � $(q,0). Find ω̄q for the following cases:

(i) q → 0.
(ii) q = 2kF + δq. In the vicinity of 2kF , the renormalized spectrum becomes

negative: ω̄q < 0 . This signifies an instability (Peierls instability). Any idea
why and what this instability leads to?
Sketch ω̄q as a function of q.

21.4 Electron–phonon coupling:

The lowest-order correction to the fermionic self-energy due to electron–phonon
coupling takes the form

�(i
n,k) = 1

βV
∑
m,q

D(0)(iωm,q)G(0)(i
n + iωm,k+ q),

where the phonon Green’s function is given by

D(0)(iωm;q) = −2ωq

(iωm)2 − ω2
q

.

Perform the Matsubara frequency summation.
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21.5 d-wave superconductivity (high Tc):
Consider the Nambu-type Hamiltonian

H =
∑

k

[
c

†
k↑ c−k↓

] (εk − μ 	k

	k μ− εk

) [
ck↑
c

†
−k↓

]
.

Obtain the spectrum by diagonalizing the Hamiltonian. The spectrum should contain
two bands with energy E+(k) and E−(k), respectively.

Show that E+(k) ≥ 0 and E−(k) ≤ 0. In addition, show that E+(k) = −E−(k).
Compute the superconducting gap 	sc = E+(k)− E−(k).

(a) s-wave superconductor:
Here, we consider an s-wave superconductor with 	k being a constant (indepen-
dent of k) 	k = 	. Find the minimum value of 	sc(k). Show that the minimum
is reached at the Fermi surface εk = μ.
Prove that the minimum value of 	sc(k) only relies on the value of 	. As long
as 	 > 0, the two bands never cross, so the system is always gapped.

(b) d-wave superconductor:

Now, we consider a d-wave superconductor with 	k = 	(k2
x−k2

y), and εk = k2

2m .
Find the minimum value of 	sc(k) = E+(k)− E−(k). Prove that the minimum
value is reached when two conditions are satisfied:

1. At the Fermi surface, εk = μ.
2. Along the diagonal directions, kx = ±ky .

Show that there are four k-points at which 	k reaches its minimum value. These
points are known as nodes or nodal points.
Expand E+(k) and E−(k) near one of nodal points and show that the dispersion
is linear near this point (i.e., this is a Dirac point).

21.6 BCS variational method to superconductivity:
Consider the interacting Hamiltonian

H = H0 +H1

H0 =
∑
kσ

ξk c
†
kσ ckσ

H1 =
∑
kk′

Vkk′ c
†
+k↑ c

†
−k↓ c−k′↓ c+k′↑

ξk = εk − μ.

The interaction matrix elements obey Vkk′ = V ∗k′k. The BCS variational wavefunc-
tion is defined by

|�〉 =
∏

k

(
uk + vk e

iϕ c
†
+k↑ c

†
−k↓
)
|∅〉
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in terms of the electron creation and annihilation operators. This BCS wavefunction
can be thought of as a coherent state for Cooper pairs with vk and uk being the ampli-
tudes to have or not to have, a Cooper pair with relative momentum k, respectively.
The c-numbers vk and uk obey the normalization conditions

v2
k + u2

k = 1.

ϕ ∈ [0,2π ] is a global phase.

(a) Express the expectation value in the variational state |�〉 of the kinetic energy
〈�|H0 |�〉 terms of the parameters uk, vk, and ϕ.

(b) Express the expectation value in the variational state |�〉 of the interacting energy
〈�|H1 |�〉 terms of the parameters uk, vk, and ϕ.

(c) Does 〈�|H |�〉 depend on the global phase ϕ?
From now on, we assume that the matrix elements of the interaction potential
take the reduced form

Vkk′ = −V .

Define the complex-valued parameter

	 := V
∑

k

uk vk.

(d) Express 〈�|H |�〉 in terms of 	 and vk only.
(e) Minimalize 〈�|H |�〉 with respect to vk and show that⎧⎪⎪⎪⎨⎪⎪⎪⎩

u2
k =

1

2

(
1+ ξk

Ek

)
v2

k =
1

2

(
1− ξk

Ek

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ Ek =

√
ξ2

k +	2.

(f) Express 〈�|H |�〉 and 	 in terms of ξk and Ek.
(g) Consider the subspaces for k|, ↑ and −k ↓. Show that the states(

uk + vk c
†
+k↑ c

†
−k↓
)
|∅〉 , c†

k↑ |∅〉 , c†
−k↓ |∅〉 ,

(
uk + vk c

†
+k↑ c

†
−k↓
)
|∅〉

are orthogonal to each other and normalized to one.
(h) Consider the state |2,k〉, which is defined as

|2,k〉 =
(
u∗k + v∗k c

†
+k↑ c

†
−k↓
) ′∏

k′

(
uk′ + vk′ c

†
+k′↑ c

†
−k′↓
)
|∅〉 .

Show that

〈2,k|H |2,k〉 − 〈�|H |�〉 � 2Ek.
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21.7 Anomalous Green function and coherence length:

(a) In superconductors, there is a characteristic length scale ξ called the coherence
length. One of its possible definitions is the extent of the pair correlations. Con-
sider the anomalous correlations in real space:

F(x− y) = 〈ψ↓(x)ψ↑(y)〉 .
It decays at a certain length scale ξ . Calculate this length in the BCS ground state.
Hint 1: in the BCS ground state, different wavevectors k are decoupled, so it is
convenient to do a calculation at a given k vector, and then Fourier-transform.
Hint 2: only a vicinity of the Fermi surface contributes to this anomalous corre-
lator, so you may linearize the electron spectrum near the Fermi surface.
Hint 3: you will find ξ = vF /	.

(b) For aluminum, find in the literature the value of the gap 	 and estimate the
superconducting coherence length ξ .



22

Quantum Theory of Magnetism: Exchange
Coupling Mechanisms

22.1 Introduction

One of the profound and insightful surprises in physics is that magnetism is an inherently
quantum mechanical effect. In that sense, the title of “quantum magnetism” may be as
redundant. In the classical viewpoint, magnetic moments arise from electric currents. As we
know from classical electromagnetism, a current density j(x) produces a magnetic moment

μ = 1

2

∫
dx (x× j)

and the moments interact via the dipole–dipole interaction. However, the Bohr–van
Leeuwen theorem1 showed that this cannot be the origin of the magnetism found in
magnetic materials. In a classical system, charges cannot flow in thermodynamic equi-
librium, and hence there are no magnetic moments at the outset. The Bohr–van Leeuwen
theorem was discovered by Niels Bohr in 1911 in his doctoral dissertation and was later
rediscovered by Hendrika Johanna van Leeuwen in her doctoral thesis in 1919.

In contrast, quantum mechanics allows nonvanishing charge currents in the ground state:
the current density of an electron in state ψ(x) is given by

j(x) = − eh̄

2ime

[
ψ∗(x)∇ψ(x)− (∇ψ∗(x)) ψ(x)] ,

which can be nonvanishing for a complex wavefunction ψ(x). For a state of angular
momentum L, the electron has a magnetic moment

μ = − eh̄

2me

〈L〉 = μB 〈L〉 .

Also the electron carries spin S, which produces a magnetic moment

μS = −ge μB 〈S〉 ,
where ge = 2 is the gyromagnetic ratio for an electron.

1 In 1919, van Leeuwen demonstrated that the classical Boltzmann statistics applied rigorously to any dynamical system must
lead to a zero susceptibility. John van Vleck stated the Bohr–van Leeuwen theorem as “At any finite temperature, and in all
finite applied electric or magnetic fields, the net magnetization of a collection of electrons in thermal equilibrium vanishes
identically.” [184].

711
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Atomic moments are thus of the scale of μB . This leads to dipolar interaction energy
of the order of 0.05 meV for two such moments, a distance of 1Å apart, which corre-
sponds to a temperature < 1 K. However, we know that magnetic ordering persists at
much higher temperatures.2 Consequently, we surmise that such ordering must be derived
from interactions other than the dipolar type. We now know that manifest magnetic prop-
erties arise from the combined interplay of the Pauli principle, the Coulomb repulsion
(Coulomb exchange), and electron hopping (kinetic exchange) – electronic properties that,
naively, seem to be unrelated to magnetism. The interplay gives rise to effective couplings
between magnetic moments in solids. This makes magnetism in solids solely a quantum-
mechanical effect and means that classical physics cannot account for diamagnetism, para-
magnetism, ferromagnetism, or any other magnetic-ism! In this chapter, we shall introduce
and develop the mechanisms of exchange interactions between paramagnetic ions that lead
to spin-dependent coupling of their magnetic moments. Itinerant electron magnetism will
be covered in Chapter 23. First, it is appropriate to mention that the basic concept of the
quantum-mechanical exchange interaction was developed by Heisenberg (1928) [90] and
Dirac (1929) [51]. The introduction of such concepts was the basis of subsequent theoretical
work on ferromagnetism, ferrimagnetism, and antiferromagnetism: Van Vleck (1937) [185]
and Néel (1932), and [140], (1948) [142].

22.2 Heisenberg/Dirac Exchange Hamiltonian

22.2.1 Heitler–London Model: Two-Center, Two-Electron System

We consider a system of two identical paramagnetic ions having one unpaired electron
each, in addition to the closed-shell core whose role is neglected. The ions are assumed
fixed, with interatomic spacing Rab. The Hamiltonian of the system can be expressed as

H = Ha +Hb +Hab (22.1)

Ha =
p2

1

2m
− Ze2

|r1 − ra|, Hb =
p2

2

2m
− Ze2

|r2 − rb| .

The configuration is illustrated in Figure 22.1. Ha, Hb are the Hamiltonians of electrons
1, 2 in the field of ions core a, b, respectively. The atomic orbitals that are solutions of the
corresponding Schrödinger equation are denoted by φa and φb:

Ha φa(x1) = Ea φa(x1), Hb φb(x2) = Eb φb(x2). (22.2)

Hab is the interaction Hamiltonian and has the form

Hab = Z2e2

Rab

− Ze2

|r1 − rb| −
Ze2

|r2 − ra| +
e2

|r1 − r2| . (22.3)

2 For a system like magnetite (Fe3O4), magnetic order persists until about 860◦K.
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Figure 22.1 Two-center, two-electron system.

Here Z2e2/Rab is the mutual repulsion of the two ion cores, each with a charge Ze.
The second and third terms in (22.3) represent the attractive potentials between electron
1 and ion b and electron 2 and ion a, respectively; e2/r12 is the mutual Coulomb repulsion
between the two electrons. Hamiltonian (22.1) has no explicit dependence on the electron
spin variables. In general, spin dependence emerges when we invoke the exclusion principle
via the antisymmetrization of the many-electron state function, here, the two electrons in
question. Defining the one-electron spin orbitals as

ψi(ξ) ≡ ψi(x,σ ) = φi(x) χ(σ ), (22.4)

we write the eigenstates of the S2 and Sz operators for the two electron system as the triplets

3 |1,1〉ab =
[ψaψb]

(1− S2
ab)

1/2
, 3 |1,0〉ab =

[ψaψ̄b]+ [ψ̄aψb]

{2(1− S2
ab)}1/2

3 |1, − 1〉ab =
[ψ̄aψ̄b]

(1− S2
ab)

1/2
. (22.5)

and the singlets

1 |0,0〉ab =
[ψaψ̄b]− [ψ̄aψb]

{2(1+ S2
ab)}1/2

(22.6)

⎧⎨⎩
1 |0,0〉aa = [ψaψ̄a]

1 |0,0〉bb = [ψbψ̄b].
(22.7)

The determinantal states are indicated by square brackets, namely,

[ψaψb] = 1√
2

∣∣∣∣∣φa↑(1) φb↑(1)
φa↑(2) φb↑(2)

∣∣∣∣∣ , [ψaψ̄b] = 1√
2

∣∣∣∣∣φa↑(1) φb↓(1)
φa↑(2) φb↓(2)

∣∣∣∣∣ .
The overlap integral for the orbitals φa(r) and φb(r) is

Sab =
〈
φa(x)

∣∣φb(x)〉 = ∫ dx φ∗a (x) φb(x). (22.8)
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The triplet states in (22.5) and the singlet state in (22.6) correspond to the states consid-
ered by Heitler and London for the hydrogen molecule H -H . The singlet states in (22.7)
represent ionic configurations such as H+H− and H−H+ in which one hydrogen has two
electrons and the other is a bare proton. The singlet configuration (22.6) – the ground state
in the hydrogen molecule – will interact with the excited-state configurations (22.7), giving
rise to a second-order correction to its energy.3

We shall use 3E to denote the energy of the triplet states, and 1E to denote that of
the singlet state including the second-order corrections due to the interaction with excited
states. We express these energies in the compact form

(2S+1)E = K − {S(S + 1)− 1}J, (22.9)

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K ≡

1E + 3E

2
=
〈
φa(x1) φb(x2)

∣∣∣∣ e2

r12

∣∣∣∣φa(x1) φb(x2)

〉
Coulomb energy

J ≡
1E − 3E

2
=
〈
φa(x1) φb(x2)

∣∣∣∣ e2

r12

∣∣∣∣φa(x2) φb(x1)

〉
Exchange energy.

We now use the relation

S · S = s2
1 + s2

2 + 2s1 · s2 = 3

2
+ 2s1 · s2

to write

S(S + 1)− 1 = 1

2
(1+ 4s1 · s2), (22.10)

which has the value 1 for the triplet state and −1 for the singlet. The relation in (22.9) can
then be recast as

(2S+1)E = K − 1

2
(1+ 4s1 · s2) J . (22.11)

Examining the definition of the exchange energy

J = 1

2
(1E − 3E),

we find that, for J positive, the triplet state has lower energy, and parallel spin alignment
(ferromagnetism) is energetically favored. Conversely, for negative J , the singlet state is
more stable, and antiferromagnetic ordering is favored.

We may express J in terms of explicit forms of 1E and 3E as4

3 We note that such corrections do not exist for the triplet states within the two-orbital manifold φa and φb , since excited states
having two electrons with parallel spins either in φa or φb are precluded by the exclusion principle. Moreover, since the
Hamiltonian is spin independent, states with different S quantum number cannot interact.

4 The derivation is left as an exercise.
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J = 1

1− S4
ab

{ (〈
ab

∣∣∣∣ e2

r12

∣∣∣∣ ba〉+ Sab

〈
a

∣∣∣∣−Ze2

r2a

∣∣∣∣ b〉+ Sab

〈
b

∣∣∣∣−Ze2

r1b

∣∣∣∣ a〉)

− S2
ab

(〈
ab

∣∣∣∣ e2

r12

∣∣∣∣ ab〉+ 〈b ∣∣∣∣−Ze2

r1a

∣∣∣∣ b〉+ 〈a ∣∣∣∣−Ze2

r2b

∣∣∣∣ a〉) }

− 1

1+ S2
ab

{ ∣∣〈a∣∣−Ze2/r1a
∣∣b〉∣∣2

	E(b→ a)
+
∣∣〈b∣∣−Ze2/r2b

∣∣a〉∣∣2
	E(a→ b)

}
. (22.12)

The constant inter-ion core term (Z2e2/Rab) is omitted.
We note that the last two terms in (22.12) arise from the interaction of the ground

singlet with the two excited singlets representing the ionic configurations. The energy
corrections appear in second order. 	E(a → b) in the denominator actually represents
the repulsive energy when two electrons are in the same orbital state. The explicit forms
of the quantities occurring in (22.12) are as follows:〈

a
∣∣V (x)∣∣b〉 = ∫ dx φ∗a (x) V (x) φb(x)

is the matrix element of the one-electron operator V (r) connecting the orbitals φa and
φb, and 〈

ab

∣∣∣∣ e2

r12

∣∣∣∣ cd〉 ≡ ∫ dx1dx2 φ
∗
a (x1) φ

∗
b (x2)

(
e2

r12

)
φc(x1) φd(x2).

Expression (22.12) is a more exact representation of the exchange energy than that
considered by Heisenberg (1928). If we neglect quadratic and higher powers of the overlap
integral Sab, we obtain a simpler form of the Heisenberg exchange energy that includes
electron transfer effects

JH =
〈
ab

∣∣∣∣ e2

r12

∣∣∣∣ ba〉− 2
(
Sab + �ab

) 〈
b
∣∣V ∣∣a〉, (22.13)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
�ab =

〈
a
∣∣V ∣∣b〉

	E(a→ b)

V = Ze2

r1b
.

(22.14)

The spin-dependent part of the energy (22.11) can thus be expressed as

H(Heisenberg) = −2JH s1 · s2 (22.15)

with JH given by (22.13).
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The exchange integral
〈
ab|e2/r12|ba

〉
is always positive definite〈

ab

∣∣∣∣ e2

r12

∣∣∣∣ ba〉 = ∫ dx1dx2 φ
∗
a (x1) φ

∗
b (x2)

(
e2

r12

)
φb(x1) φa(x2)

= 1




∑
q

4πe2

q2

∫
dx1dx2 φ

∗
a (x1) φ

∗
b (x2) e

iq·(r1−r2) φb(x1) φa(x2)

= 4πe2




∑
q

1

q2

∫
dx1φ

∗
a (x1)φb(x1)e

iq·r1

∫
dx2φ

∗
b (x2)φa(x2)e

−iq·r2

= 4πe2




∑
q

1

q2

∣∣∣∣∫ dxφ∗a (x) φb(x) e
iq·r
∣∣∣∣2 > 0.

It can be considered as the self-energy of the complex overlap charge eφ∗a (x1)φb(x1). If this
term dominates, then JH would be positive, and the ferromagnetic (triplet) state would be
favored. If, however, the second term, containing the overlap integral Sab and the transfer
amplitude �ab, dominates, JH would be negative and the antiferromagnetic (singlet) state
is favored.

22.2.2 Exchange Hamiltonian for N Localized Spin

We now develop the formulation of the exchange Hamiltonian for a system consisting of N
magnetic ions, each having one localized unpaired electron in addition to its core electrons.
We shall assume that the core electrons are not involved in the interaction process. The
Hamiltonian of the system is given by

H =
∑
i

p2
i

2m
+
∑
n,l

V (xi − Rn)+
∑
i<j

e2

rij
, (22.16)

where the subscript i index the ith electron, and V (ri − Rn) is its potential energy oper-
ator in the field of the nth ion core. e2/rij is the two-body Coulomb interaction between
electrons i and j .

Hamiltonian (22.16) can be expressed in terms fermionic creation and annihilation oper-
ators as

H =
∑
lmσ

Vlm c
†
lσ cmσ +

1

2

∑
j lmn

σσ ′

U
jl
mn c

†
lσ ′c

†
jσ cmσ cnσ ′, (22.17)

where Vlm is the matrix element of the one-body Hamiltonian connecting the orbital states
φl and φm, namely,

Vlm =
〈
φl

∣∣∣∣ p2

2m
+ V (x)

∣∣∣∣φm〉 (22.18)
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and

U
jl
mn =

〈
φj (x1)φl(x2)

∣∣∣∣ e2

r12

∣∣∣∣φm(x1)φn(x2)

〉
. (22.19)

In this formulation, it is assumed that all unoccupied states are energetically far removed
from the singly occupied states. We simplify the analysis further by assuming that orbitals
φl and φm are orthogonal with an overlap parameter Slm = 0.

Connect spin operators to fermionic creation and annihilation operators as follows:

c
†
i↑ci↑ + c

†
i↓ci↓ ≡ 1 ≡ Ni↑ +Ni↓ (singly occupied orbitals)

c
†
i↑ci↑ − c

†
i↓ci↓ = 2szi

c
†
i↑ci↓ = s+i ≡ sxi + is

y
i

c
†
i↓ci↑ = s−i ≡ sxi − is

y
i . (22.20)

Potential and Kinetic Exchange

For the sake of pedagogy, we separate the Hamiltonian (22.17) into diagonal and off-
diagonal terms

H = H0 +Hex +Hcorr +Htr (22.21)

with

H0 =
∑
lσ

εl c
†
lσ clσ +

1

2

∑
σσ ′

Klm c
†
lσ clσ c

†
mσ ′ cmσ ′ (22.22)

Klm =
〈
φl(x1)φm(x2)

∣∣∣∣ e2

r12

∣∣∣∣φl(x1)φm(x2)

〉
,

where εl is the one-electron orbital energy. Hex is the spin-dependent exchange term, called
potential exchange, expressed as

Hex = 1

2

∑
l 
=m
σσ ′

Jlm c
†
lσ ′c

†
mσ clσ cmσ ′ (22.23)

Jlm =
〈
φl(x1)φm(x2)

∣∣∣∣ e2

r12

∣∣∣∣φm(x1)φl(x2)

〉
.

The summation over the spin variables σ∑
σσ ′

c
†
lσ ′ c

†
mσ clσ cmσ ′ = c

†
l↑ c

†
m↑ cl↑ cm↑ + c

†
l↓ c

†
m↓ cl↓ cm↓

+ c
†
l↑ c

†
m↓ cl↓ cm↑ + c

†
l↓ c

†
m↑ cl↑ cm↓ (22.24)
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can be expressed in terms of the spin operators using the relations (22.20) as

−
(

1

2
+ 2sl · sm

)
, (22.25)

which allows us to rewrite the expression for Hex as

Hex = −1

4

∑
l 
=m

Jlm
(
1+ 4 sl · sm

)
. (22.26)

To this point, we have considered terms of (22.21) in which one-electron transfer processes
were not included. We now take into account the other two terms of (22.21), namely

Hcorr =
∑
mσ

Umm c†
mσ cmσ c

†
mσ̄ cmσ̄, (22.27)

where Umm is the Coulomb repulsion between two electrons with antiparallel spins residing
in the same orbital φm. Since the singly occupied orbitals on different ions are considered
equivalent, we write Umm = U . The last term

Htr =
∑
lmσ

Vlm c
†
lσ cmσ (22.28)

involves electron transfer from ion m (in orbital φm) to ion l (in orbital φl).
We write the Hamiltonian as

H = Hd +Htr,

where Hd does not contain off-diagonal electron transfer terms, and is given by

Hd =
∑
lσ

El c
†
lσ clσ + U

∑
mσ

c†
mσ cmσ c

†
mσ̄ cmσ̄ (22.29)

with El the spin-independent Hartree–Fock single-particle energy

El = εl + 1

2

∑
mσ

(
Klm − 1

2
Jlm
) 〈
nmσ
〉
.

We apply the perturbative canonical transformation

HT = e−iS H eiS

= H+ i
[
H,S
]+ i2

2

[ [
H,S
]
,S
]
+ · · ·

≡ Hd +Htr + i
[
Hd,S

]+ i
[
Htr,S

]+ i2

2

[ [
H,S
]
,S
]
+ · · · (22.30)

in order to eliminate the off-diagonal transfer terms in (22.28) in first order. The Hermitian
generator of the canonical transformation, S, is obtained from the condition

Htr + i
[
Hd,S

] = 0. (22.31)
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We express S as

S =
∑
lmσ

Alm c
†
lσ c

†
mσ̄ cmσ clσ̄ + h.c., (22.32)

where h.c. denotes the Hermitian conjugate, and the Alm are coefficients to be determined
with the aid of (22.31). After some algebraic manipulations, making use of the fermion
commutation relations, we obtain

Alm = iVlm

El + U − Em
. (22.33)

Since all magnetic ions are identical, we have El = Em, and we obtain, to second order
in the perturbation from the fourth and fifth terms of (22.30), the spin-dependent interac-
tion term

HKE =
∑
l 
=m,σ

V 2
lm

U
c

†
lσ c

†
mσ̄ clσ̄ cm,σ . (22.34)

Carrying out the summation over the spin variables and making use of (22.20), HKE

becomes

HKE = −
∑
l 
=m

V 2
lm

U

1

2

(
1− 4sl · sm

)
= constant+ 2

∑
l 
=m

V 2
lm

U
sl · sm, (22.35)

which is identified as the kinetic exchange term (see Figure 22.2). It clearly stabilizes the
antiferromagnetic (AFM) state. We note that the hopping Vlm is a one-body process and
is allowed by the Pauli principle only when the spins at neighboring sites are antiparallel.
This is also reflected in the presence of the projection operator 1

2 (1 − 4sl · sm) in (22.35),
which annihilates the triplet state for which sl · sm = 1

4 .

Figure 22.2 Kinetic exchange involves a second-order virtual process, whereby an electron hops to
doubly occupy it neighboring orbital.
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Combining (22.26) and (22.35), we obtain the generalized effective Hamiltonian

HH -D = C −
∑
l 
=m

(
Jlm − 2|Vlm|2

U

)
sl · sm, (22.36)

which we consider as stemming from the work of Heisenberg and Dirac.
While the kinetic exchange term always supports the AFM state, the potential exchange,

coupling the spins of two different ions is positive definite, and hence favors ferromagnetic
coupling, as we have seen earlier. The overall interaction depends on the difference between
these two contributions.

22.3 Indirect Exchange Mechanisms

The exchange processes presented in the preceding section involved localized electrons and
gave rise to ionic magnetic moments. However, a different scenario may arise where the
magnetic nature of a system is associated with itinerant conduction electrons or with elec-
trons of diamagnetic ions. These will lead to indirect exchange processes via polarization
of the electron system.

We shall focus here on indirect exchange mechanism arising from s–d or s–f inter-
actions, shown in Figure 22.3, and ignore possible direct exchange effects that we have
treated in the previous section.

We consider the Hamiltonian

H = Hs +Hd +Hex(s-d), (22.37)

where the conduction electrons are represented by

Hs =
∑
kσ

εk c
†
kσ ckσ . (22.38)

εk is the single-particle unperturbed energy of an electron in the conduction state

|kσ 〉 = φk(x) χ(σ ) =
∣∣k〉 = 1√



exp(ik · x) uk(x) χ(σ ),

Figure 22.3 Scattering of a free electron by a paramagnetic ion. Electrons with spin parallel to the
local spin of the ion scatter differently from those with antiparallel spin.
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where 
 is the volume. The localized d (or f ) Hamiltonian is given by

Hd =
∑
lσ

El c
†
lσ clσ, (22.39)

where El is the one-electron energy of a nondegenerate orbital φl at site Rl ; c
†
lσ , clσ are the

corresponding electron creation and annihilation operators.
The s–d exchange interaction Hamiltonian is modeled as

Hex(s-d) =− 1

N

∑
k,k′,l

J
(∣∣k− k′

∣∣) exp{i(k− k′) · Rl}

×
{(
c

†
k′↑ck↑ + c

†
k′↓ck↓

)
Szl + c

†
k′↑ck↓ S−l + c

†
k′↓ck↑ S+l

}
, (22.40)

where N is the number of lattice sites. The localized d/f electrons are represented by spin
operators, obtained after summation over fermionic operators using (22.20). The effective
exchange coefficient is given by

J
(∣∣k− k′

∣∣) = N

〈
φk′(x1)φl(x2 − Rl )

∣∣∣∣exp{−i(k− k′) · Rl} e
2

r12

∣∣∣∣φl(x1 − Rl )φk(x2)

〉
(22.41)

For simplicity, we assumed that the exchange integral depends only on
∣∣k− k′

∣∣, which is
true for spherically symmetric orbitals.

22.3.1 Mean-Field Spin-Dependent Energy Shift

Next we include the diagonal part of Hex(s-d) (k = k′) in Hs , and write

Hs =
∑
kσ

(εk − S̄J (0)) c†
kσ ckσ, (22.42)

where S̄ = 1/N
∑

l

〈
Szl

〉
, which is proportional to the net magnetization of the localized

spins. By doing so, we effectively extracted the mean-field terms from the s–d exchange
Hamiltonian. We note that it gives rise to an equal and opposite energy shift of the ↑ (+)
and ↓ (−) conduction electron states, and leads to unequal conduction electron occupation
numbers of the two spin orientations – majority and minority orientations.

22.3.2 Spin Polarization of Conduction Electrons

We now consider the effect of off-diagonal terms H′ex(s-d) of Hex(s-d), which we consider
as perturbations on the conduction electrons. To first order, the perturbed wavefunction is
given by

ψkσ = φkσ +
∑
k′σ ′

〈
k′σ ′
∣∣H′ex(s-d) ∣∣kσ 〉
εkσ − εk′σ ′

φk′σ ′ . (22.43)
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Substituting from (22.40), we obtain

ψk(±) = φk(±) − 1

N

′∑
k′,l

J
(∣∣k− k′

∣∣) ei(k−k′)·Rl

×
{

S±l φk′(∓)
εk(±) − εk′(∓)

± Szl φk′(±)
εk(±) − εk′(±)

}
. (22.44)

The prime over the summation sign excludes k = k′.
The polarizing effect of the exchange mechanism on the conduction electron with spin

↑ (+) relative to that with spin ↓ (−) is clear in (22.44). The change in the conduction
electron state in (22.44) comprises two distinct terms appearing in the braces. The first
term involves a spin-flip of the d spin, accompanied by a reversal of the conduction electron
spin. The second term involves interactions that do not change the spins of either the d or
conduction electrons.

The modified densities of up and down spins are

ρ±(x) =
kF(±)∑

k

ψ∗k(±) ψk(±) =
⎛⎝ 1




kF(±)∑
k

⎞⎠ ∓ 1

N


∑
k,k′

J (k− k′)
εk(±) − εk′(±)

×
∑
l

[
exp{i(k− k′) · (x− Rl )} + h.c.

] 〈
Szl

〉
.

As shown in Figure 22.4, kF+ and kF− are the electron wavevector magnitude for up and
down spins at the new Fermi energy EF , respectively, satisfying

1




kF(±)∑
k

= n(±) = nc

2
±
(

3nc
4EF

)
J (0)

N

∑
l

〈
Szl

〉
. (22.45)

nc = n+ + n− is the total density of conduction electrons, and EF is the unperturbed
Fermi energy. We note that (3nc/4EF ) is the density of states of free electrons at the Fermi
energy, and±(J (0)/N)

∑
l

〈
Szl

〉
is just the energy shift of ↑ and ↓ electrons. The expression

for the spin density becomes

(a) Without Hex (s-d) (b) With mean-field Hex (s-d)

Figure 22.4 Effect of the mean field.



22.3 Indirect Exchange Mechanisms 723

ρ±(x) = nc

2

±
(

3nc
4EF

)
J (0)

N


∑
l

〈
Szl

〉
∓ 1

N


∑
k,q
q>0

J (q)
εk−q(±) − εk(±)

∑
l

[
exp{iq · (x− Rl )} + h.c.

]〈
Szl

〉
, (22.46)

where we set k− k′ = q. In carrying out the summation over k in (22.46), we shall ignore
±S̄J (0) when choosing the upper limit of the wavevector, since they lead to second-order
terms in J (q)/EF . We use parabolic dispersion relation

εk(±) = h̄2k2

2m∗
∓ S̄J (0)

for the conduction electrons, with an effective mass m∗, to obtain

kF∑
k

(
1

εk−q − εk

)
=
(

3

16

nc

EF

)
f (x), x = q

2kF

f (x) = 1+
(

1− x2

x

)
ln

∣∣∣∣1+ x

1− x

∣∣∣∣ Lindhard function. (22.47)

To carry out the summation over q, we shall assume that J (q) is a very slowly varying
function of q in the vicinity of the Fermi surface (|k|, |k′| � kF ), where we expect to
have the maximum contribution. Converting the summation into an integral, and using the
integral representation

ln

∣∣∣∣2kF + q

2kF − q

∣∣∣∣ = 2
∫ ∞

0
dy

sin(2kF y) sin(qy)

y
,

we obtain [157]

1

N

∑
q

f (q/2kF ) exp(iq · u) = −24π
nc

N
F(2kF u) (22.48)

Ruderman–Kittel function F(x) = x cos x − sin x

x4
.

Approximating J (q) = J0 and substituting back in (22.46), we find

ρ±(x) = nc

2
± 9π

2

(nc



) J0

EF

nc

N

∑
l

F (2kF |x− Rl |)
〈
Szl

〉
. (22.49)

The physical interpretation of (22.49) is as follows: the first term is just the spin density of
the conduction electrons in the absence of the s–d interaction. The effective spin polariza-
tion induced by Hex(s-d) is accounted for in the second term.

We find that the net spin polarization, shown in Figure 22.5, is

ρ+(x)− ρ−(x) = 9π

EF

n2
cJ0

N


∑
l

〈
Szl

〉 cos
(
2kF
∣∣x− Rl

∣∣)(
kF
∣∣x− Rl

∣∣)3 . (22.50)
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Figure 22.5 Spin polarization.

We note the oscillatory behavior of this inhomogeneous spin density polarization; it has a
maximum value at the magnetic ion and decreases asymptotically as 1/R3.

22.3.3 Indirect Exchange Coupling and RKKY

We now explore the nature of the indirect exchange coupling between localized d(f )

spins engendered by the induced polarization of the conduction electrons. In second-order
perturbation, we obtain

Hex
eff =

∑
l 
=m
σ

∑
k,k′
σ ′

〈
kσ
∣∣Hex(s-d)

∣∣k′σ ′〉〈k′σ ′∣∣Hex(s-d)
∣∣kσ 〉

εkσ − εk′σ ′
. (22.51)

Substituting for Hex(s-d) from (22.40), and determining the matrix element of the fermion
operators with respect to the Bloch states, we obtain

Hex
eff =

1

N2

∑
l 
=m

∑
k,k′

J 2(
∣∣k− k′

∣∣)
εk − ε′k

exp{i(k− k′) · Rlm}

× [{nk(+)
(
1− nk′(+)

)+ nk(−)
(
1− nk′(−)

)}
Szl S

z
m

+ nk(−)
(
1− nk′(+)

)
S+l S

−
m + nk(+)

(
1− nk′(−)

)
S−l S

+
m

]
(22.52)

with Rlm = Rl − Rm, and nk(±) is the fermion occupation number for the states
∣∣k±〉.

Applying these approximations, together with nk(+) = nk(−) = nk, we find that at absolute
zero, Hex

eff reduces to

Hex
eff = −

3

8

ncJ
2
0

N2EF

∑
q

∑
l 
=m

f (q) exp(iq.Rlm) (Sl · Sm). (22.53)

Using (22.48), we obtain the final expression

Hex
eff = −

9π

2

J 2
0

EF

(nc
N

)2 ∑
l 
=m

F(2kFRlm) (Sl · Sm). (22.54)
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Figure 22.6 Effective exchange Hamiltonian for d magnetic ions, showing regions of ferromagnetic
and antiferromagnetic interactions.

Figure 22.7 Scattering of a free electron by a paramagnetic ion with electron spin parallel and
antiparallel to the local spin of the ion.

The coupling magnitude falls off as 1/R3
lm, where Rlm is the distance between magnetic

ions l and m. However, the sign of the effective interaction depends on the oscillating
function F(x).

This type of exchange coupling, depicted in Figures 22.6 and 22.7, is referred to as
the RKKY exchange, after Ruderman–Kittel [157], Kasuya [102], and Yosida [204]. The
importance of s–d exchange for spin coupling in magnetic metals and alloys was first
suggested by Vonsovskii [190] and then by Zener [206]. This inter-ion interaction can be
either ferromagnetic or antiferromagnetic, depending on their separation. We also note that
the indirect coupling (22.54) has a long-range character, compared with the Heisenberg-
type exchange interaction. Such long-range oscillatory exchange is behind the occurrence
of spin-glass phases in dilute metallic alloys such as Cu1−xMnx, x < 1%, where the Mn
ions with localized magnetic moments are randomly dispersed through the nonmagnetic
host Cu matrix.

22.4 Exchange Interactions in Magnetic Insulators

In this section, we study the origin, diversity, and nature of exchange interactions in mag-
netic compounds, which, in contrast to metals and alloys, are actually insulators. These
insulating magnetic compounds contain paramagnetic cations and diamagnetic anions (lig-
ands, in chemical jargon); the latter constitute the main matrix of the crystalline lattice.
Within this matrix, the paramagnetic ions occupy sites with well-defined symmetry – tetra-
hedral, octahedral, cubic, etc. – and, accordingly, well-defined coordination.
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Rock salt Perovskite Rutile

NiO, CoO, FeO La2CuO4 NiF2, FeF2

Metal red Cu dark gray Metal gray

Figure 22.8 Examples of magnetic insulators and their structure.

Figure 22.9 Energy levels and occupancy of the metal–ligand system.

The diamagnetic matrix essentially determines the electronic state of the paramagnetic
ions, in particular the character of the valence shell, which contains unpaired electrons.
Furthermore, the diamagnetic ions have a mediating influence in regard to the character of
the ensuing coupling between the spins of the paramagnetic ions.

It is important to stress here that the paramagnetic ions in these compounds exhibit
strong magnetic coupling despite their large separation due to the intervening diamagnetic
anions (O2−, F−, S2−, etc.). Thus, we infer that the large magnitude of the magnetic
coupling in such systems cannot be attributed to direct exchange–type interactions. We
argue that indirect exchange mechanisms, involving spin-dependent excited configurations
of the intermediate anions, or of the cation–anion–cation unit as a whole, must play a
dominant role. This type of spin coupling was first introduced by Kramers [113], and subse-
quently several distinct mechanisms have been proposed by others. We shall adopt a unified
approach to treat the different mechanisms that appear in these insulating compounds.

In the following analysis, we still consider the magnetic-electron orbitals as fairly local-
ized, but with some covalent mixing with the diamagnetic ligand ion orbitals. Essentially,
the basis orbitals will be assumed to be localized and orthogonal Hartree–Fock orbitals
of the entire crystal. The zeroth-order ground-state configuration of the system, shown in
Figure 22.9, consists of singly occupied (SO) orbitals, φm, of the paramagnetic metallic
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d1
z2 pz d2

z2

+ + − + + +

M1 L M2

Figure 22.10 A collinear unit of metal-ligand-metal (M1 − L−M2).

ions and doubly occupied (DO) s/p valence orbitals of the diamagnetic, ligand ions, φl .
In addition, the basis set includes completely empty orbitals φμ and φλ, respectively. The
system we consider here is modeled by M1 − L −M2, shown in Figure 22.10, where the
Ms represent the paramagnetic metal ions and L the diamagnetic ligand ion. With this
prescription, we set out to formulate the exchange interaction between electrons of the
singly occupied orbitals of the paramagnetic ions.

22.4.1 Derivation of the Effective Exchange Hamiltonian

The aforementioned orbitals furnish the basis set for the fermion creation and annihilation
operators, and we write

H = H0 +Hdir +Htr +Hpol +Hsup (22.55)

H0 = const.+
∑
mσ

εm c†
mσ cmσ +

∑
lσ

εl c
†
lσ clσ

+
∑
μσ

εμ c†
μσ cμσ + U

∑
mσ

c†
mσ cmσ c

†
mσ̄ cmσ̄, (22.56)

where εm, εl , and εμ represent the one-electron energies of the SO, DO, and empty Hartree–
Fock orbitals, respectively. The last term is the onsite Coulomb repulsion. The remaining
terms in (22.55) are

Hdir = 1

2

∑
m1m2
σ1σ2

Jm2m1
m1m2

c†
m1σ1

c†
m2σ2

cm1σ2cm2σ1 = const.−
∑

m1<m2

2Jm2m1
m1m2

sm1 · sm2, (22.57)

the direct Heisenberg-type exchange interaction involving SO orbitals, and

Htr =
∑

m1,m2,σ

tm1m2 c
†
m1σ

cm2σ (22.58)

the spin-independent electron transfer process. The last two terms in H are new:

Hpol =
∑
lm1μ
σσ ′

J
m1μ
lm1

c
†
m1σ

′ c
†
μσ cm1σ clσ ′ + h.c. (22.59)

J
m1μ
lm1

= 〈φm1φμ
∣∣H12(12)

∣∣φlφm1

〉
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represents the exchange polarization interactions, and involves one-orbital transition
(l→μ) along with spin exchange. Finally, we have the two-electron excitation terms
given by

Hsup =
∑

G
m1m2
l1l2

c†
m1σ1

c†
m2σ2

cl2σ2 cl1σ1 + h.c.

+
∑

Gμ1μ2
m1m2

c†
μ1σ1

c†
μ2σ2

cm2σ2 cm1σ1 + h.c. (22.60)

Gμ1μ2
m1m2

= 〈φμ1φμ2

∣∣H12(12)
∣∣φm1φm2

〉
.

The effective exchange coupling contributions of Htr +Hpol +Hsup is determined in
second order with the aid of the perturbative canonical transformation

Heff = e−iS H eiS = H+ i
[
H, S

]+ i2

2

[[
H, S

]
, S
]
+ · · · (22.61)

The generator S is determined from the condition

Htr +Hpol +Hsup + i
[
H0, S

] = 0, (22.62)

and the effective interactions are derived, to second order, from

Hex
eff =

i

2

[
Htr +Hpol +Hsup , S

]
. (22.63)

This procedure yields several terms, including irrelevant scattering processes whose contri-
bution to exchange arise in higher order. We will only consider terms that produce effective
exchange coupling in second order. Such interaction terms for magnetic compounds were
first formulated elegantly by Anderson [13,16].

Direct kinetic exchange: For interactions involving single-electron transfer between SO
orbitals, we obtain the familiar term

Hex
eff(tr) = −

∑
m1m2
σ

∣∣tm1m2

∣∣2
	E(m1 → m2)

c†
m1σ

c
†
m2σ̄

cm1σ̄ cm2σ, (22.64)

where tm1m2 is the hopping parameter between m1 and m2 (see Figure 22.11). 	E(m1 →
m2) is the energy involved in the transfer of an electron from the orbital φm1 , to the orbital
φm2 . In the present case, it is nearly equal to U , the onsite Coulomb repulsion. On carrying
out the spin summation (22.64) becomes

Hex
eff(tr) = −

∑
m1m2

∣∣tm1m2

∣∣2
U

1

2

(
1− 4 sm1 · sm2

)
= constant −

∑
m1m2

2

(
−
∣∣tm1m2

∣∣2
U

)
sm1 · sm2 . (22.65)
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M1 L M2

Figure 22.11 Schematic representation of the kinetic exchange interaction involving one-electron
transfer.

Figure 22.12 Schematic representation of the polarization exchange interaction involving two-
electron virtual transfer.

Polarization exchange: The spin-polarization contribution involves a virtual excitation of
an electron from an SO orbital (say φm1 ) to an empty orbital (φμ) along with the excitation
of an electron from DO orbital (say φl) to φm1 (see Figure 22.12).

The effective interaction turns out to be

Hex
eff(pol) =

∑
lμm1m2
σ1σ2

J
m1μ
lm1

(J
m2μ
lm2

)∗

	E(l→ μ)
c†
m1σ1

c†
m2σ2

cm1σ2 cm2σ1,

which on spin summation becomes

Hex
eff(pol) = −

∑
m1m2
lμ

J
m1μ
lm1

(J
m2μ
lm2

)∗

	E(l→ μ)

1

2

(
1+ 4 sm1 · sm2

)
= constant− 2

∑
m1m2

Jeff(pol) sm1 · sm2 . (22.66)

Here 	E(l → μ) � (εμ − εl)- the energy difference corresponding to the orbitals φμ
and φl ; 	E(l → μ) is positive here. However, the sign of Jeff(pol) is determined by the
product of hybrid integrals Jm1μ

lm1
and (Jm2μ

lm2
)∗. It is not possible to predict the sign without

making a careful analysis of the relative symmetry of the orbitals involved.
It may be noted that the spin-polarization mechanism is analogous to the RKKY mech-

anism of exchange in dilute alloys and rare-earth metals discussed earlier. In magnetic



730 Mechanisms of Exchange Coupling

insulators, the electrons of the intervening diamagnetic ligand ion (e.g., O2−, S2−) play the
same role as the conduction electrons in metals.

Superexchange: Finally, there are contributions that arise from two-electron excitations.
The effective interaction turns out to be

Hex
eff(super) = −

⎡⎢⎣ ∑
lm1m2

σ

Gll
m1m2

G
m1m2
ll

	E(m1m2 ← ll)
+
∑
m1m2μ

σ

G
m1m2
μμ G

μμ
m1m2

	E(μμ← m1m2)

⎤⎥⎦
× c†

m1σ
c

†
m2,−σ cm1,−σ cm2σ,

Upon spin summation, we get

Hex
eff(super) = const.+ 2

∑
m1m2

{∑
l

∣∣Gm1m2
ll

∣∣2
	E(m1m2 ← ll)

+
∑
μ

∣∣Gμμ
m1m2

∣∣2
	E(μμ← m1m2)

}

×
(

sm1 · sm2

)
. (22.67)

This mechanism stabilizes the AF state. The first term of (22.67) represents the process in
which two electrons from the DO orbital (say φl) make a virtual transition to the adjoining
SO orbitals, one each to φm1 and φm2 , as shown in Figure 22.13. The second term denotes
two-electron virtual transitions, one each from φm1 and φm2 , to a nondegenerate empty
orbital φμ.

Taking all the processes previously noted, the effective exchange Hamiltonian can be
written as

Hex
eff(total) = −2

∑
m1<m2

Jm1m2(total) sm1 · sm2, (22.68)

where Jm1m2(total) is the algebraic sum of the coefficients occurring in (22.57), (22.65),
(22.66), and (22.67).

M1 L M2

Figure 22.13 Schematic representation of the superexchange interaction involving two-electron
transfer.
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xy yz zx

Free ion

5 d–states

Figure 22.14 d-Orbitals splitting in octahedral environment. Electron configuration for Ni++ is in
the lower figure (hole orbitals are indicated by white discs and hole spin by black arrows).

22.4.2 Spin–Orbit Coupling: Single-Ion Magnetic Anisotropy

When a paramagnetic ion is placed in a crystalline environment, it experiences a reduction
in symmetry. For example, in NiO with rock salt structure, the Ni++ ion has an octahedral
environment. Accordingly, the 3d-states of the Ni++ ion are split into two manifolds,
t2g and eg , as shown in Figure 22.14. The eg manifold orbitals point directly toward the
negative O−− ions, while the t2g manifold orbitals are directed between the O−− ions;
consequently, the electrons in the eg manifold will suffer higher repulsion energies, and
the eg energy is found to be higher than that of the t2g manifold. The typical scale of
this splitting is ∼1–2 eV. This splitting can be represented by an anisotropic electrostatic
potential, coined crystal field potential, due to the neighboring ions.

Crystal Field and Quenching of Angular Momentum

We discern that the crystal field is a real potential that favors particular orientations of
the orbital wavefunctions. As a consequence of being a real and time reversal invariant
perturbation, we find that a nondegenerate ground state |ψ0〉 has to be real.5 The reality of
|ψ0〉 implies that the expectation value of the angular momentum must vanish

〈ψ0|L |ψ0〉 = 0

since the angular momentum operator is a purely imaginary operator, while the expectation
value has to be a real quantity. The jargon used in such a case is that the angular momentum
is quenched, and only the spin degree of freedom remains. There is however a caveat:
if the crystal field does not entirely remove a degeneracy, then one may construct from
degenerate real wavefunctions combinations for which this equality does not hold. It is,
however, usually the case that such degeneracies do not survive, since, according to the

5 See Section 6.6.
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Jahn–Teller theorem, it becomes energetically favorable to pay the cost of elastic energy
of deforming a lattice to lower symmetry in order to gain a larger reduction in electronic
energy associated with the splitting of the degenerate state.

Single-Site Magnetic Anisotropy

When complete quenching of angular momentum occurs, namely, 〈ψ0|L |ψ0〉 = 0, it is
clear that the spin–orbit perturbation HSO = λL·S has no effect at first order in perturbation
theory, since there is no remaining degeneracy to break. However, this term may still have
an effect in second-order perturbation theory. Irrespective of the spin state, we integrate out
the orbital excitations perturbatively, and write

HAN
S = |λ|2

∑
n

〈
0
∣∣Lμ

∣∣ n〉 〈n |Lν | 0〉
E0 − En

Sμ Sν = Sμ �μν Sν,

where �μν is a symmetric second-order tensor that depends on the local crystalline sym-
metry and on the ordering of the excited orbitals. When �μν is diagonalized through spin-
space rotation that brings the principal axes, it takes the general form

HAN
S = −1

2
D‖ S2

z +
1

2
D⊥
(
S2
x − S2

y

)
.

Since a symmetric second-rank tensor is decomposable into a scalar and a traceless sym-
metric second-rank tensor, we find that one combination of the three independent eigen-
values of �μν corresponds to a trivial constant ∝ S(S + 1). For tetrahedral or cubic
local symmetry, the tensor is proportional to the identity matrix, and there is no nontrivial
quadratic term; the first anisotropic term is

EAn
cubic(S) = C

(
S4
x + S4

y + S4
z

)
.

Finally, a symmetry rule requires that when the local environment has mirror planes (sym-
metry under reflection in those planes), the principal axis directions must lie in them or
perpendicular to them.

22.4.3 Dzialoshinskii–Moriya Anisotropic Exchange Interaction

The Dzialoshinskii–Moriya interaction (DMI) was first proposed by I. Dzialoshinskii [57]
to describe manifest weak ferromagnetism in some antiferromagnets; the analysis was
based on symmetry considerations. DMI is an antisymmetric form of exchange interaction
that is only allowed when inversion symmetry is broken. Subsequently, T. Moriya proposed
the first microscopic model, based on the Anderson model of superexchange [131]. He also
wrote down the symmetry rules that constrain the orientation of the DMI vector, depending
on the atomic arrangement in the crystal. The presence of DMI was confirmed by the
analysis of the magnetization curves of various crystals.

Microscopically, DMI exchange between spins is the result of interplay of onsite spin–
orbit coupling and intersite scalar exchange interaction, usually of the superexchange type.
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To explore this type of interaction, we consider two magnetic ions with no orbital degener-
acy and with quenched angular momentum. We study the simultaneous action of spin–orbit
and scalar exchange couplings as expressed in the Hamiltonian [203]

HS = λ (L1 · S1 + L2 · S2)+ Ĵ S1 · S2.

We consider the third-order perturbation process where, for example,

• Ion 1 is excited to orbital state n1 by L1 · S1.

• Exchange interaction takes place between ion 1 in |n1〉 and ion 2 in its ground state.

• Finally, L1 · S1 returns ion 1 to its ground state |01〉.
We find that J would depend on what orbital state the electron is in; however, normally
this fact is irrelevant because the orbital states are split, and so one may consider J → J

=
〈
0
∣∣∣Ĵ∣∣∣ 0〉 but combined with the spin-orbit coupling. We can then express the third-order

perturbation as

H(3)
S = −

∑
μν

[
S1μ �

(1)
μν (S1 · S2) S1ν + S2μ �

(2)
μν (S1 · S2) S2ν

]
(22.69)

[2pt]�(1)
μν = 2λ2

∑
n1,n

′
1

〈
01
∣∣Lμ

∣∣ n1
〉
J
(
n102,n

′
102
) 〈
n′1 |Lν | 01

〉
(εn1 − ε01)(εn′1 − ε01)

. (22.70)

J (n102,n102) is the exchange integral between |n1〉 and the ground state of ion 2, however,
we also include the possibility of other excited ion present in J

(
n102,n

′
102
)
. Taking into

account all the off-diagonal terms of the exchange interaction with respect to the orbital
states, reduces the perturbation to an effective second order of the form

H(2)
S =− λ

∑
n1

⎡⎣〈0102 |L1 · S1| n102〉 〈n102 |JS1 · S2| 0102〉
E0102 − En102

+
〈
0102

∣∣∣ĴS1 · S2

∣∣∣ n102

〉
〈n102 |L1 · S1| 0102〉

E0102 − En102

⎤⎦+ (1 ↔ 2
)

.

This may be simplified because for real wavefunctions, we have

〈ψ |L|φ〉 = − 〈φ |L|ψ〉 and
〈
ψ

∣∣∣Ĵ∣∣∣φ〉 = 〈φ ∣∣∣Ĵ∣∣∣ψ〉 ,
hence

H(2)
S = −λ

∑
n1,μ

⎡⎣〈0102
∣∣L1μ
∣∣ n102

〉 〈
n102

∣∣∣ĴS1 · S2

∣∣∣ 0102

〉
E0102 − En102

⎤⎦ [S1μ, S1 · S2
]+ (1 ↔ 2

)
.
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Figure 22.15 Canted antiferromagnet, producing ferrimagnetism.

Using the commutation relations[
S1x, S1xS2x + S1yS2y + S1zS2z

] = i
(
0+ S1zS2y − S1yS2z

) = −i (S1 × S2)x

and writing the sum over n1 as ξ1, we obtain

H(2)
S = (ξ1 − ξ2

) · (S1 × S2) , iξ1 = −λ
∑
n1

⎡⎣〈0102 |L1| n102〉
〈
n102

∣∣∣ĴS1 · S2

∣∣∣ 0102

〉
E0102 − En102

⎤⎦.

This interaction will vanish if ξ1 = ξ2. Thus, the existence of this exchange mechanism will
require that the two ions have different chemical environments, in other words, different site
symmetries where the orbital splitting will be different.

We define a vector exchange constant D = ξ1 − ξ2, and express the DMI exchange as6

HDM = −D · S1 × S2.

This interaction tends to align the spins perpendicular to each other and to D which lies
along the symmetry axis. When coexisting with an antiferromagnetic interaction, typically
|D| � |J|, it will induce a canting of the spins away from their antiferromagnetic con-
figuration, as illustrated in Figure 22.15, and gives rise to a nonvanishing expectation of
the net magnetization. This ferromagnetic parasitic effect leads to the formation of weak
ferrimagnetism.

Symmetry Considerations for Dzialoshinskii–Moriya Interaction

We now explore when such a term is allowed by symmetry. We have to consider all
symmetry operations of the crystal that leave the center point C on the bond between the
two spins fixed – its Wyckoff symmetry designation. The configurations are depicted in
Figure 22.16.

6 A general bilinear interaction between two spins can be written as ST1 V S2, where V is a general rank 2 tensor, which can be
decomposed into

J = 1

3
Tr[V], scalar exchange constant

Vs = 1

2

[
V+VT

]
− J I, traceless symmetric exchange tensor (anisotropic exchange)

Va = 1

2

[
V−VT

]
, antisymmetric exchange tensor

We can write

ST1 Va S2 = D · (S1 × S2).
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Figure 22.16 Dzialoshinskii–Moriya interactions for different cantings. C is bond center.

1. C is an inversion center of the crystal. The inversion operator I interchanges the two
spins but does not otherwise change them (spins are pseudovectors), and we obtain

S1 × S2 I−→ S2 × S1 = −S1 × S2.

In order to preserve Hamiltonian invariance, D must vanish. In this case, there cannot
be a Dzialoshinsky–Moriya term.

2. We consider the case of a twofold rotation axis C2 through C perpendicular to the bond.
The mapping is

S1x C2←→ − S2x

S1y C2←→ − S2y

S1z C2←→+ S2z, C2 along z

and we obtain

HDM = Dx

(
S1yS2z − S1zS2y

)+Dy (S1zS2x − S1xS2z)+Dz

(
S1xS2y − S1yS2x

)
.

The underlined term changes sign under C2, whereas the others do not. We find that
HDM is invariant only if Dz = 0, which is along the twofold axis: D must be perpendic-
ular to the C2 symmetry axis.

Moriya has given the following rules for the allowed directions of D:

(i) Mirror plane through C perpendicular to R12: D ⊥ R12

(ii) Mirror plane containing R12: D perpendicular to mirror plane
(iii) Twofold rotation axis perpendicular to R12 through C: D ⊥ twofold rotation axis
(iv) n-fold rotation (n > 2) along R12: D ‖R12

22.4.4 Double Exchange (DE) Interaction: Mixed-Valence Systems

In mixed-valence conductors, which are doped magnetic insulators, a special exchange
interaction takes place. Instead of the s–d interaction that led to the RKKY mechanism,
here, it involves d–d electron interaction: The d orbitals are split by the crystal field. The
high-lying orbitals contain the conducting d electrons and the low-lying orbitals present
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Figure 22.17 Manganite with perovskite structure.

Figure 22.18 The two valence states of the Mn ion found in doped manganites, leading to a
noninteger electron occupation of the eg derived conduction band. Notice that inMn3+, the exchange
coupling between the eg and t2g electrons is dictated by Hund’s first rule and is ferromagnetic.

localized states. The interaction between the two components is intratomic and arises from
Hund’s first rule: maximizing spin. Consequently, it is ferromagnetic.

The most widely known systems that exhibit such behavior are the manganites, which
have the perovskite structure (see Figure 22.17). The undoped insulator has chemical struc-
ture like La3+Mn3+O 2−

3 .
The conducting doped manganites have the general chemical formula T(1−x)DxMnO3,

where T is a trivalent rare-earth ion (T = La, Pr, Nd,. . .) and D is a divalent alkali ion
(D = Ca, Sr, . . .). In the manganites, the crystal field is octahedral, and gives rise to eg-t2g
splitting with Eeg > Et2g . Divalent doping results in depleting some of the eg electrons,
giving rise to Mn4+ ions, and hence mixed valence.

The doping gives rise to two states, shown in Figure 22.18,

⎧⎨⎩ψ1 : Mn3+O2−Mn4+

ψ2 : Mn4+O2−Mn3+ ,

which are degenerate in energy.7 However, they are not eigenstates of the system since the
eg electron can effectively hop from the Mn3+ ion to the adjacent Mn4+ ion through the
intermediate O2− ion, as is visualized in Figure 22.19. As two simultaneous processes are
involved, this mechanism was coined double exchange (DE) by Zener [206].

7 A necessary condition for this degeneracy, and, hence, metallic conductivity, is that the spins of their respective d-shells point
in the same direction because the spin of the eg electron does not change in the hopping process and Hund’s coupling punishes
antialignment of unpaired electrons. This establishes the correlation between ferromagnetism and metallic conductivity in
doped manganites.
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Figure 22.19 Double exchange process with one electron hopping from the intermediate O2− ion to
the right Mn4+ ion and simultaneously one electron from the left Mn3+ ion to the O2− ion.

Figure 22.20 Left: the effective hopping for a fully polarized case. Right: spin-canted state where the
spin s of the transferred eg electron has to be projected onto the onsite spin S2.

An alternative way to describe DE processes [15] is to replace the double hopping mech-
anism with a second-order transfer process, represented by an effective electron hopping
between nearest-neighbor Mn sites. It is proportional to the square of the hopping involving
the p-oxygen and d-manganese orbitals (tpd ).

Within this framework, we consider the total spin of the localized t2g to be classical (not
quite justifiable for S = 3/2), and generalize the DE mechanism to the case of relative
nearest-neighbor canted orientation with an angle θ , shown in Figure 22.20.8 The effective
hopping is obtained by projecting the spin s of the transferred eg electron onto the onsite
spin S2, which is proportional to cos(θ/2). If θ = 0, the hopping is t , the largest, while
if θ = π , corresponding to an antiferromagnetic background, then the hopping cancels. It
follows that there is a direct connection between conductivity and ferromagnetism.

To justify cos(θ/2) dependence, and to deduce the double exchange Hamiltonian, we
consider two Mn4+ ions and a single eg electron. We set JH as Hund’s onsite coupling
energy constant between either of two ion cores, having t2g-spin S = 3/2, and a single eg
mobile electron, with S = 1/2. The Hamiltonian matrix H for the system of two ions and
the electron is written in block form as

8 Anticipating the presence of both AFM, together with the FM arising from the DE mechanism.
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H =
(−JH (S1

t2g
· Seg ) tI

tI −JH (S2
t2g
· Seg )

)
. (22.71)

Setting St2g = S, we have

St2g · Seg =

⎧⎪⎨⎪⎩
−JH S

2
Stotal = S + 1

2

JH (S + 1)

2
Stotal = S − 1

2

so that in the diagonal representation, we write

−JH St2g · Seg =

⎛⎜⎝−JH S

2
0

0
JH (S + 1)

2

⎞⎟⎠ .

However, the two diagonal representations of the diagonal blocks in (22.71) are inclined at
an angle θ , corresponding to the classical angle between the two Mn4+ core spins. Thus,
we need to rotate the spin-1/2 off-diagonal hopping blocks, and write

t I →

⎛⎜⎜⎝t cos

(
θ

2

)
−t sin

(
θ

2

)
t sin

(
θ

2

)
t cos

(
θ

2

)
⎞⎟⎟⎠ .

The total Hamiltonian expressed in terms of the interacting basis states, and after rearrange-
ment is given by

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−JH S

2
t cos

(
θ

2

)
t sin

(
θ

2

)
0

t cos

(
θ

2

) −JH S

2
0 −t sin

(
θ

2

)
t sin

(
θ

2

)
0

JH (S + 1)

2
t cos

(
θ

2

)
0 −t sin

(
θ

2

)
t cos

(
θ

2

)
JH (S + 1)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In many cases, the intratomic Hund exchange JH � t , and we may approximately write

ε � −JH S

2
± t cos

(
θ

2

)
.

We can then represent the actual crystalline system by the Hamiltonian

H = −t cos(θ/2)
∑
〈ij 〉

c
†
iσ cjσ − JH

∑
i

c
†
iσ σ cjσ · Si . (22.72)
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We may also include another intersite exchange coupling, usually antiferromagnetic
superexchange, and write

H = −t cos(θ/2)
∑
〈ij 〉

c
†
iσ cjσ − JH

∑
i

c
†
iσ σ cjσ · Si + J

∑
〈ij 〉

Si · Sj . (22.73)

However, usually JH � J . Since the fraction ofMn4+ is equal to the doping concentration
x, we can write the average energy per site as

E

N
= zJS2 cos θ − zxt cos

θ

2
, (22.74)

where N is total number of sites, and z the number of nearest-neighbor Mn. Minimizing
(22.74), we obtain

cos
θ

2
= xt

4JS2
,

which shows that even at small doping x, the antiferromagnetic lattice is already canted.
Moreover, at x = xc = 4JS2/t the system becomes completely ferromagnetic!

Exercises

22.1 A toy model: kinetic intersite exchange:
As a toy model, we consider the minimal model of an H2 molecule with strong onsite
repulsion. We consider a system with two (orthogonal) orbitals, 1 and 2, separated by
a small distance. There are two electrons in the system, one electron per orbital. The
Hamiltonian in this case is the two-site Hubbard model

H = −t
(
c

†
1↑ c2↑ − c1↑ c†

2↑ + c
†
1↓ c2↓ − c1↓ c†

2↓
)
+ U

(
n1↑n1↓ + n2↑ n2↓

)
.

(a) Use the Pauli principle to specify the allowed states of the system, and, hence, its
Hilbert space basis.

(b) Use the basis states of part (a) to construct the two-site Hubbard Hamiltonian
matrix.

(c) Solve the eigenvalue problem, and obtain the eigenvalues ε and the eigenfunc-
tions in terms of the parameters U and t .

(d) Plot ε/t versus U/t .
(e) Show that for the case U � t , the singlet state’s energy is lowered by 2t2/U ,

which is just the magnitude of the kinetic exchange.
(f) Alternatively, use the resolvent method to show the result of part (d).

22.2 Rudermann–Kittel–Kasuya–Yosida interaction:
In this problem, we will approach the RKKY interaction in a reverse way. We start
with the Hamiltonian

H = Hs +Hsd =
∑
kσ

εkσ c
†
kσ ckσ − J

∑
i

Si · si,
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where Hs is the conduction electrons, Hamiltonian, and si and Si are the spin opera-
tors for the electrons and magnetic ions at lattice site i, respectively.

(a) Using (22.20) and the relation

Si · s = Szsz + 1

2

(
S+s− + S−s+

)
,

and Fourier transforming the creation and annihilation operators into k-space,
show that Hsd can be written as

Hsd =
J

2N

∑
i

∑
kq

eiq·Ri

[
Sz
i

(
c

†
k+q↑ck↑ + c

†
k−q↓ck↓

)
+ S+

i
c

†
k+q↓ck↑ + S−

i
c

†
k+q↑ck↓

]
,

where N is number of lattice sites, and Ri are the lattice vectors.
(b) Now we treat Hsd as a perturbation. In the absence of Hsd , the electron and ion

systems are independent, and the combined unperturbed wavefunction becomes
|{k},d〉 = |{k}〉 |d〉. Defining the ground state as |kF 〉 |d〉, where |kF 〉 stands for
the Fermi sea, show that the first-order perturbation energy vanishes.

(c) Obtain expressions for the matrix elements〈
k′,m′s

∣∣∣c†
k+q↑ ck↑ + c

†
k−q↓ ck↓

∣∣∣k,ms

〉
,
〈
k′,m′s

∣∣∣c†
k+q↓ ck↑

∣∣∣k,ms

〉
〈
k′,m′s

∣∣∣c†
k+q↑ ck↓

∣∣∣ k,ms

〉
.

(d) Show that the energy correction in second order

E(2) =
∑
|{k},d′〉

=|kF ,d〉

∣∣〈kF,d|Hsd

∣∣{k},d ′〉∣∣2
E
(0)
kF ,d

− E
(0)
{k},d ′

becomes

E(2) = J 2

4N2

∑
ij

∑
kq

∑
ms

 eq·(Ri−Rj )

ε(k+ q)− ε(k)

× 〈d| 〈ms |
[
Szi

{
4Szj
(
sz
)2 + 2S+j

(
szs−
)+ 2S−j

(
szs+
)}

+ S+i
{

2Szj
(
szs−
)+ S+j

(
s−
)2 + S−j

(
s−s+

)}
+S−i

{
2Szj
(
szs+
)+ S+j

(
s+s−

)+ S−j
(
s+
)2}] |ms〉 |d〉

after substituting the matrix elements you obtained in part (c) and using the
completeness of |d〉 and |ms〉.  represents

 = (kF − |k|)(|k+ q| − kF ).
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(e) Substituting for the spin operators (s+, s−, sz) in terms of the Pauli matrices,
show that the second-order energy reduces to

E(2) = J 2h̄2

2N2

∑
ij

∑
kq

eq·(Ri−Rj )
〈d| Si · Sj |d〉

ε(k+ q)− ε(k)
= −
∑
ij

JRKKY
ij Si · Sj .

(f) Using a parabolic dispersion for the unperturbed conduction electrons, with an
effective mass m∗, and replacing the summations over k and q with integrals,
show that

JRKKY
ij = J 2m∗
2

4π2N2R2
ij

∫ kF

0
dk′k′

∫ ∞
kF

dkk
sin(kRij ) sin(k′Rij )

k2 − k′2
,

where m∗ is the effective mass and 
 the volume.
(g) Obtain an expression for Jij by setting the lower limit on the second integral to

zero, and using the integral∫ ∞
0

dkk
sin(kRij )

k2 − k′2
= π

2
cos(k′Rij ).

22.3 A more complicated toy model: superexchange
The model is based on the configuration of two metallic ions (with a singly occupied
d orbital each) and the ligand ion (with doubly occupied p orbital), shown in Figure
22.21. The Hamiltonian is given by

H =
∑
σ

[
εd
∑
i

niσ + εp npσ + tpd
∑
i

(
c

†
iσ cpσ + c†

pσ ciσ

)]
+ Ud

∑
i

ni↑ ni↓,

where εd, εp are the orbital energies, Ud is the onsite repulsion for a d orbital, and
tpd is the hopping parameter.

(a) The Hilbert space basis states can be classified according to the relative orienta-
tion of the spins in the two d orbitals, as shown in Figure 22.22.

(i) Specify the states that can be derived from the state with parallel spin orien-
tation in the two d orbitals.

(ii) Specify the states that can be derived from the state with antiparallel spin
orientation in the two d orbitals.

d1
z2 pz d2

z2

+ + − + + +

M1 X M2

Figure 22.21 Superexchange model.
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ф ф ф

ф ф ф

Figure 22.22 Hilbert space basis states.

Hint: A d orbital can be doubly occupied.
(b) Since the Hamiltonian does not contain spin-flip operations, the corresponding

matrix is block-diagonalized. Use the states you have obtained to write down the
blocks. Set the zero of energy at 2(εd + εp), which is the energy of the states
shown in Figure 22.22. Note the tpd sign difference for hoppings to left and right
metal sites.

(c) Use the resolvent method to show that only the kinetic exchange is active in the
parallel spin case.

(d) Apply the resolvent method to the antiparallel case. In this case, however, the
Hamiltonian block matrix may be triply partitioned:⎛⎜⎝H00 H01 0

H10 H11 H12

0 H21 H22

⎞⎟⎠
H00 is a low-energy 2× 2 submatrix, H11 a 4× 4 block, and H22 a 3× 3 block.
The last two blocks contain high-energy states with at least one doubly occupied
d-orbital. Set E = 0 and apply the method of projected resolvent twice.

(e) Extract the effective Hamiltonian of the low-energy sector. Then simplify the
expression using the approximation (A+ B)−1 ≈ A−1(I− BA−1).

(f) Explain the nature of the terms in your final expression of the effective
Hamiltonian.

22.4 Orbitals with cubic symmetry:
Consider the effect of cubic crystal fields on the fivefold degenerate d orbitals. The
single-particle potential on an electron, projected into this quintuplet, can in gen-
eral be expressed as a function of the three orbital angular momentum operators,
Lx, Ly, Lz, which are 5× 5 matrices, since L · L = �(�+ 1) with � = 2.

(a) Find the general form of the Hamiltonian as a function of L, assuming cubic
symmetry – that is, the symmetries are those of a cube with corners at (±1; ±
1; ±1) and the atomic nucleus at its center. Apart from a trivial constant, there
should be only one free parameter not fixed by symmetry.
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(b) Show that the five levels split into a triplet and a doublet. Find a basis for each
that is real, by using, instead of spherical harmonic functions of angle, second-
order polynomials in x, y, z. The triplet and doublet states are called t2g and eg

orbitals, respectively.

22.5 Spin-state transition:

Consider the cubic situation of the previous problem. Let us denote by a = 1;2;3 the
t2g orbitals and a = 4;5 the eg orbitals. Consider the single-ion Hamiltonian

H = 	

2

[
5∑

i=4

ni −
3∑

i=1

ni

]
+ U

∑
i

ni↑ ni↓ − J
∑
i<j

Si · Sj,

where ni is the number of electrons in orbital i, niα is the number with spin α =↑ , ↓,
and the sums, unless otherwise specified, are over all five orbitals. Assuming U, 	, J
are all positive, find the ground-state spin as a function of these parameters, for the
Co3+ ion, which has 6 d electrons.

22.6 Crystal field potential:

Consider a tetragonal lattice with lattice parameters a = b 
= c. The crystal field
potential can be approximated by placing equal point charges at the six nearest
neighbors of a lattice point, representing the ligands occupying these sites.

(a) Use the identity

1

|x− x′| = 4π
∑
�

�∑
m=−�

1

2�+ 1

r�<

r�+1
>

Y ∗�m(θ
′,ϕ′) Y�m(θ,ϕ)

to obtain an expansion of the crystal potential at the lattice point, up to � = 4.
Use your results to obtain a similar expression for the octahedral environment.

(b) In the case of tetragonal crystal field, use degenerate perturbation theory to deter-
mine the energy splittings in the d orbitals. Determine the splitting in the limit
Vtetragonal → Voctahedral.

(c) In the octahedral case, determine the ground-state degeneracy for electron fillings
dn, n = 1 → 9 using Hund’s rules.

(d) In the case of a ground-state degeneracy, how can such degeneracy be lifted?

λNi = −315/8.06 meV

22.7 In Section 22.4 we discussed how the crystal field together with spin–orbit coupling
lead to single-ion anisotropy contribution to the spin Hamiltonian. Here, we consider
the case where in addition we have an applied magnetic field H. Show that, to second
order, the anisotropy contribution to the Hamiltonian can be written as
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H = λ2
[
�zz − 1

2

(
�xx +�yy

)] [
S2
z −

1

3
S(S + 1)

]
− λ2

2

(
�xx −�yy

) (
S2
x − S2

y

)
+ μB

(
gxxSxHx + gyySyHy + gzzSzHz

)
,

where λ is the spin–orbit coupling parameter, � is the second-order single-site
anisotropy tensor along the principal axes, and

gii = (ge − 2λ�ii) = 2 (1− λ�ii) ,

where ge = 2 is the electron gyromagnetic ratio.
22.8 Consider the case of Ni2+ ((3d)8), with orbital singlet and spin triplet ground state.

Given the angular momentum operators for S = 1

Sx =

⎛⎜⎜⎜⎜⎜⎝
0

1√
2

0

1√
2

0
1√
2

0
1√
2

0

⎞⎟⎟⎟⎟⎟⎠ , Sy =

⎛⎜⎜⎜⎜⎜⎝
0

−i√
2

0

i√
2

0
−i√

2

0
i√
2

0

⎞⎟⎟⎟⎟⎟⎠ , Sz =

⎛⎜⎜⎝
1 0 0

0 0 0

0 0 −1

⎞⎟⎟⎠ ,

Use the spin Hamiltonian you obtained in Exercise 22.7 to determine the ensuing
energy splitting in the absence of a magnetic field. What is the corresponding spin
eigenfunction? What is the expectation value of Sz in the ground state?
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Quantum Theory of Magnetism: Magnetic Insulator
Ground States and Spin-Wave Excitations

23.1 Introduction

In the previous chapters, we discussed the various mechanisms of exchange interactions in
magnetic solids. The effective exchange interaction may have a positive or a negative sign
depending on the relative strengths of the various competing processes. This eventually
determines the type of manifest magnetic ordering. Thus, at absolute zero temperature, we
can picture spins of the paramagnetic ions aligned in a definite pattern (ferromagnetic, fer-
rimagnetic, antiferromagnet, or helimagnet) apart from the possible zero-point fluctuations.
This state is considered to be the magnetic ground state of the solid.

We note that the formation of ordinary band insulators, where Coulomb interactions are
neglected, requires completely filled bands with equal number of both spin orientations,
resulting in an electronic configuration that does not allow spontaneous magnetism. Con-
sequently, we surmise that for an insulator to acquire spontaneous magnetism, it cannot be
a band insulator, and we cannot exclude interelectron Coulomb interactions.

We shall now consider the nature of the magnetic ground states of such insulators and
characterize the elementary excitations above these ground states. We note that any local
deviation from perfect alignment of the spin system will not in general remain locally
confined, but, owing to exchange coupling, will propagate like a wave. These low-lying
excitations are called spin waves and were first introduced by Bloch in 1930. The spin
wave can be thought of as one spin reversal spread coherently over the entire crystal.
When spin waves are quantized, we refer to the state of excitation in terms of a certain
number of magnons in a particular mode. Spin waves are manifestations of the Goldstone
mode corresponding to continuous spin rotation symmetry. They acquire a gap in cases
where such symmetry is absent because of single-site magnetic anisotropy. However, if a
continuous symmetry still persists, as in the case of an easy plane anisotropy ferromagnet,
one expects a gapless mode to still be manifest.

23.2 Possible Ground States of the Classical Heisenberg Hamiltonian

Although electrons have spin 1/2, many atoms exhibit quite large spin magnitude S. This
can be attributed to the presence of a large number of electrons in an atomic shell, together
with the action of spin–orbit coupling. The classical limit is achieved when S →∞, so that

745
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1

S2

[
Sα, Sβ

] = iεαβγ
Sγ

S
→ 0

The Heisenberg model then reduces to its classical Hamiltonian form, where the spin S is
described by a three-component vector of magnitude S, as

HH = −J
∑
<ij>

Si · Sj,

where 〈ij〉 indicates nearest neighbors. To determine the ground state, we need to minimize
this Hamiltonian, subject to the constraint

Si · Si = S2, S∗i = Si, Si real.

We expand Si in terms of its lattice Fourier components as

Si = 1√
N

∑
q

eiq·Ri Sq, S−q = S∗q,

where N is the number of lattice sites. Substituting in HH , and setting Rj = Ri + 	Rs,

s = 1,. . . , Z , where Z is the coordination number, we obtain

HH = − J

N

∑
q,q′

Z∑
s=1

eiq
′·	Rs

∑
Ri

ei(q+q′)·Ri Sq · Sq′

= −JZ
∑

q

γq Sq · S−q = −JZ
∑

q

γq Sq · S−q

γq =
Z∑
s=1

1

Z eiq·	Rs , (23.1)

where γq is the structure factor, which determines the energy. The constraint becomes

Si · Si = 1

N

∑
q,−q′

ei(q−q′)·Ri Sq · S−q′ = S2.

We stipulate that HH has a minimum at some γQ, with a degeneracy depending on the
action of the crystallographic point group on Q in the Brillouin zone. However, we are still
left with satisfying the constraint.

23.2.1 Ferromagnetism

For the case Q = 0, we obtain

Si = SQ=0, ∀ i,
which is just uniform spin polarization, namely, a ferromagnetic state.
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23.2.2 Magnetic Phases with Nonzero Q

For a spatial modulation of wavevector Q, we consider a modulation of 2Q in the constraint,
which yields

S2
∑
Ri

ei2Q·Ri = 1

N

∑
q,−q′

Ri

ei(2Q−q−q′)·Ri Sq · S−q′

NS2
∑

G

δ2Q−G =
∑
q,G

Sq · S2Q−q+G.

Setting, appropriately, q = Q in the first Brillouin zone, we obtain

SQ · SQ = 0.

Recalling that SQ can, in general, be a complex quantity

⎧⎨⎩ SQ = SrQ + iSiQ

S−Q = SrQ − iSiQ

⇒

⎧⎪⎨⎪⎩
SQ · S−Q =

(
SrQ

)2 +
(

SiQ

)2

SQ · SQ =
(

SrQ

)2 −
(

SiQ

)2 + 2iSrQ · SiQ

For SQ 
= 0, we obtain the solution ⎧⎨⎩
∣∣∣SrQ∣∣∣ = ∣∣∣SiQ∣∣∣

SrQ ⊥ SiQ

where SrQ and SiQ are mutually perpendicular vectors of equal lengths. To determine the real
space modulation, we take the inverse Fourier transform, and remembering that Si is real

Si = 1√
N

[
eiQ·Ri SQ + e−iQ·Ri S−Q

]
= 1√

N

[
eiQ·Ri

(
SrQ + iSiQ

)
+ e−iQ·Ri

(
SrQ − iSiQ

)]
= 2√

N

[
SrQ cos (Q · Ri )− SiQ sin (Q · Ri )

]
= S
[
cos (Q · Ri ) n̂r − sin (Q · Ri ) n̂i

]
, (23.2)

where n̂s = SsQ/|SrQ| are unit vectors. The directions of the mutually perpendicular
vectors n̂r and n̂i remain arbitrary with respect to Q, leaving a substantial degeneracy.
However, this degeneracy can be eliminated by the presence of anisotropic terms in the
Hamiltonian.
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Q =
[π
a
,0,0
]

Q =
[π
a
,
π

a
,0
]

Q =
[π
a
,
π

a
,
π

a

]
Figure 23.1 A simple cubic system.

We find from (23.2) that for Q 
= 0 we have helical or antiferromagnetic (AFM) configu-
rations, depending on the magnitude of Q and its relative orientation with SQ. For example
if we set Q to be inside the BZ, and set n̂r ≡ x̂ and n̂i ≡ −ŷ, we obtain

Sxi = S cos (Q · Ri )

S
y
i = S sin (Q · Ri )

Szi = 0,

which displays a helical phase with fixed S in any plane normal to Q. Moreover, an incom-
mensurate helical phase is manifest for Q not a high-symmetry point in the BZ, when
mQ 
= G ∀m.

However, when Q is a high-symmetry point on the BZ boundary, we obtain AFM phases,
such as the ones shown in Figure 23.1 for a simple cubic system as shown in Figure 23.1.

23.3 Ferromagnetic Insulators

We consider a ferromagnet with an arbitrary spin S, described by the Hamiltonian

HF = constant−
∑
l<m

2J
(
Rlm

)
Sl · Sm − μBB

∑
l

Szl

+ 1

2

∑
lm

Dlm

[
Sl · Sm − 3(Sl · Rlm)(Sm · Rlm)

R2
lm

]
+Han, (23.3)

where Rlm = Rl − Rm. The first term, after the constant, is the isotropic Heisenberg
exchange Hamiltonian and for a ferromagnetic ordering J (Rlm) > 0. The second term is
the Zeeman energy of the spin system in the external magnetic field B, which is directed
along the z-axis. The third term is the Hamiltonian for the magnetic dipole–dipole interac-
tion. The last term, Han, is the single-ion anisotropic energy.

For the classical magnetic interaction

Dlm =
g2μ2

B

R3
lm

, (23.4)
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where μB is the Bohr magneton and g is the spectroscopic splitting factor. A typical value
of Dlm is of the order of 10μ eV, which is quite small when compared to J ∼ 1 −
100 me V. It should be noted that Dlm will have a complicated form for anisotropic
exchange interaction. The last term, Han, is the single-ion anisotropic energy. The presence
of the dipolar term complicates matters considerably. We find that neither Sz =∑l S

z
l nor

S2 = (
∑

l Sl)
2 commutes with the second part of the dipolar interaction term. Hence these

are no longer constants of motion.
We next express the scalar product Sl · Sm in terms of Ŝ+, Ŝ−, and Ŝz

Sl · Sm = Ŝxl Ŝ
x
m + Ŝ

y
l Ŝ

y
m + Ŝzl Ŝ

z
m =

1

2

(
Ŝ+l Ŝ

−
m + Ŝ−l Ŝ

+
m

)
+ Ŝzl Ŝ

z
m, (23.5)

so that (23.3) becomes

HF =−
∑
l<m

2J ′
(
Rlm

) [ 1

2

(
Ŝ+l Ŝ−m + Ŝ−l Ŝ+m

)
+ Ŝzl Ŝ

z
m

]

− gμBB
∑
l

Ŝzl −
3

2

∑
lm

Dlm

(
Sl · Rlm

)(
Sm · Rlm

)
R2
lm

+Han, (23.6)

where we defined J ′(Rlm) = J (Rlm)−Dlm.
The operator Ŝ−l (Ŝ+l ) creates (destroys) spin deviations on a specific site. Furthermore,

the product of operators such as Ŝ+l Ŝ
−
m exchange spin deviations between two sites.

23.3.1 Ground State of Ferromagnetic Insulators

Henceforth, we shall consider the simple case of a nearest-neighbor ferromagnetically
coupled insulator. This system can be represented by the Heisenberg Hamiltonian

HF = −2J
∑
<lm>

Sl · Sm

= −2J
∑
lm

[(
Ŝzl Ŝ

z
m −

1

4

)
+ 1

2

(
Ŝ+l Ŝ

−
m + Ŝ−l Ŝ

+
m

)]
, (23.7)

with J > 0, and 〈lm〉 indicates nearest neighbor (nn). Both dipolar and other anisotropic
interactions are neglected. We find that both Sz and S2 commute with this Hamiltonian,
and, therefore, Ms and S, S being the maximal spin per site, are good quantum numbers,
with Ms = NS, (N − 1)S,. . ., −NS.

We consider the state of maximal spin alignment at every site, i.e., Ŝ+l
∣∣S,S〉

l
= 0,

|�0〉 ≡
∣∣∅〉 =∏

l

∣∣S,S〉
l
. (23.8)

We note that

Ŝ+l Ŝ
−
m

∣∣�0
〉 = Ŝ−l Ŝ

+
m

∏
l

∣∣S,S〉
l
= 0,
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and the ground-state energy is then〈
�0
∣∣HF

∣∣�0
〉 = −2JS2N .

Now we consider the expectation value 〈ψ |HH |ψ〉 in an arbitrary product state

|ψ〉 =
∏
l

|S,ml〉 ,

which is generally not an eigenstate of HH . The expectation value is

〈ψ |HH |ψ〉 = −1

2
J
∑
lm

[
〈ψ | Ŝ+l Ŝ−m |ψ〉

2︸ ︷︷ ︸+
〈ψ | Ŝ+l Ŝ−m |ψ〉

2︸ ︷︷ ︸+〈ψ | Ŝzl Ŝ−m |ψ〉
]

= 0 = 0

= −1

2
J
∑
lm

ml mm > −1

2
JS2N .

Since the |ψ〉s form a basis, we conclude that all eigenenergies, in particular the
ground-state energy, are larger than or equal to − 1

2 JS
2N . Since |�0〉 is an eigenstate

with eigenenergy − 1
2 JS

2N , |�0〉 must be a ground state. Moreover, |�0〉 is an eigenstate
of the Hamiltonian

HF

∣∣�0
〉 = −2JS2N

∣∣�0
〉
.

We have found an example of spontaneous symmetry breaking, where the ground-state
manifold of the completely ferromagnetic Heisenberg model consists of fully polarized
states (maximum Stot). Typical ground states thus have 〈S〉 
= 0, so that they distinguish a
certain direction in spin space. Yet the Hamiltonian HH does not. Thus the symmetry of a
typical ground state is lower than that of the Hamiltonian. We have a case of spontaneously
broken symmetry!

23.3.2 Spin Waves in Ferromagnetic Insulators

The manifold of lowest excited states consists of configurations in which a single spin
deviation from the alignment of the completely ferromagnetic �0 state takes place (see
Figure 23.2). It is represented by

�1(l) =
[

1

2S

]1/2

Ŝ−l
∣∣∅〉 = ∣∣S,S,. . .,S − 1(l),S,. . .,S

〉
. (23.9)

Figure 23.2 A single local spin-flip excitation of a ferromagnetic system. The resulting state is not
an eigenstate of the Heisenberg Hamiltonian.
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Figure 23.3 If we spread out the spin-flip over a wider region, then we can create a lower-energy
excitation. A spin-wave is the completely delocalized analog of this with one net spin-flip.

These spin-deviation states are orthonormal:〈
�1(m)

∣∣�1(l)
〉 = 1

2S

〈∅∣∣Ŝ+mŜ−l ∣∣∅〉
= 1

2S

〈∅∣∣2δlm Ŝzl + Ŝ−mŜ
+
l

∣∣∅〉
= 1

2S

〈∅∣∣2δlm Ŝzl

∣∣∅〉 = δlm.

The states �1(l) are localized, they are not eigenfunctions of the Hamiltonian, but do
furnish a convenient basis for the solution of the problem of determining the eigenstates. If
we spread out the spin-flip over a wider region then we can create a spin wave, as shown in
Figure 23.3.

Low-Energy Excitation Spectrum: Holstein–Primakoff (HP) Operators

In 1940, Holstein and Primakoff showed how spin operators could be expressed in terms
of true bosonic-fields.1 The HP representation is best understood as a special case of the
Schwinger coupled-Boson representation.

Coupled-Boson Representation; Schwinger Bosons

The general matrix structure of the angular momentum operators〈
j ′m′
∣∣Ĵ±∣∣jm〉 = δjj ′δm±1,m′ h̄

√
(j ∓m)(j ±m+ 1)〈

j ′m′
∣∣Ĵ z∣∣jm〉 = δjj ′δm,m′ h̄m〈

j ′m′
∣∣Ĵ 2
∣∣jm〉 = δjj ′δm,m′ h̄

2j (j + 1) (23.10)

resembles in many respects the matrix structure of harmonic oscillator operators

â† = 1√
2h̄

(
h̄

i

∂

∂x
+ ix

)
; â = 1√

2h̄

(
h̄

i

∂

∂x
− ix

)
(23.11)

with commutation relations[
âl,â

†
m

] = δlm,
[
âl,âm

] = [â†
l ,â

†
m

] = 0

and [
n̂l,â

†
m

] = δlm â†
m;
[
n̂l,âm

] = −δlm âm.

1 While still in graduate school, Primakoff and Holstein developed the theory of spin waves.
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The normalized two-particle states are â
†
1 â

†
2

∣∣∅〉 and (â
†2
1 /
√

2)
∣∣∅〉. The general many-

particle state is (
â

†
1

)n1
(
â

†
2

)n2 . . .√
(n1! n2! . . .

∣∣∅〉
with ni > 0, and the total occupation is given by

∑
i ni .

Schwinger showed that with the aid of only two harmonic oscillators, the entire
matrix structure of a single angular momentum could be exactly reproduced. Labeling
the two oscillators by 1 and 2, we introduce the spinor operators

â† = (â†
1,â

†
2

)
and â =

(
â1

â2

)
, (23.12)

which are merely two-component vectors with operator components. Moreover, if
we contract these operators with the Pauli spin matrices, we obtain the desired
representation. That is, let

J z = h̄

2
â† · σ̂ z · â = h̄

2
â†

[
1 0

0 −1

]
â = h̄

2
(n̂1 − n̂2),

and similarly for the other components, with the following compact result:

Ĵ = h̄

2
â† · σ̂ · â. (23.13)

We next define

ĵ = 1

2
â† · Î · â = 1

2
(n̂1 + n̂2) (23.14)

so that we write the state
∣∣jm〉 as

∣∣jm〉 = (â
†
1)
j+m(â†

2)
j−m

√
(j +m)! (j −m)!

∣∣∅〉.
It may be verified that the eigenvalues of ĵ are indeed j = 0, 1/2, 1, 3/2,. . ., where
J2 has eigenvalue h̄2 j (j + 1). The coupled-Boson operators have more flexibility than
the original angular momentum operators. For example, we can make use of the extra
degrees of freedom to construct the so-called hyperbolic operators, which conserve m,
but raise or lower j .

Holstein and Primakoff proposed an irreducible representation of the Schwinger
coupled-Boson in a subspace of fixed j according to the following argument: since from
(23.14) we have

ĵ = 1

2

(
â

†
1 â1 + â

†
2 â2
)
,
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we find that

â
†
2 â2 = 2ĵ− n̂1 =

√
(2ĵ− n̂1)

√
(2ĵ− n̂1).

In a subspace of fixed j , this equation is solved by treating â2 and its conjugate as two
diagonal operators

â2 = â
†
2 = (2j)1/2

√
1− n̂

2j
, (23.15)

and hence we find

J+ = h̄ â
†
1 â2 = h̄ (2j)1/2 â†

√
1− n̂

2j
,

J− = h̄ â
†
2 â1 = h̄ (2j)1/2

√
1− n̂

2j
â,

Jz = h̄(n̂− j). (23.16)

If n > 2j , the formalism is incorrect; however, within that range the commutation relations

Ĵ × Ĵ = ih̄Ĵ[
Ĵ z,Ĵ±

] = ±h̄Ĵ±,[
Ĵ+,Ĵ−

] = ,2h̄Ĵ z,[
Ĵ 2,Ĵ

] = [Ĵ 2,Ĵ±
] = 0 (23.17)

are satisfied. Remembering that

Jz ∣∣jm〉 = h̄m
∣∣jm〉 = h̄(n− j)

∣∣jm〉,
we find that n = j −m, and hence we obtain〈

m
∣∣Ĵ+∣∣m− 1

〉 = 〈n∣∣Ĵ+∣∣n+ 1
〉 = √(j −m+ 1)(j +m)

=
√
(n+ 1)(2j − n) . (23.18)

n can thus be identified as the angular-momentum-deviation number operator from the
state with maximal m, i.e., m = j . Consequently, Holstein and Primakoff (HP) introduced
the operator n̂l as the spin-deviation number operator from the ground-state value S at site l,
namely,

n̂l = a†
l al = S − Ŝzl , (23.19)

and thus were able to write the equations for Ŝ−l and Ŝ+l as

Ŝ+l
∣∣nl 〉 = (2S)1/2

[
1− nl − 1

2S

]1/2 √
nl
∣∣nl − 1

〉
,

Ŝ−l
∣∣nl 〉 = (2S)1/2

√
nl + 1

[
1− nl

2S

]1/2 ∣∣nl + 1
〉
, (23.20)
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which can be recast in the form of (23.16) as

Ŝ−l = (2S)1/2 â†
l

√
1− â†

l âl
2S

Ŝ+l = (2S)1/2

√
1− â†

l âl
2S

âl

Szl = S − â†
l âl . (23.21)

Moreover, substituting (23.21) into the third equation in (23.17) yields[
âl,â†

m

] = δlm, (23.22)

all other commutators of â†
l and âl being zero. Thus we interpret â†

l and âl as spin-deviation
creation and annihilation operators that obey Bose commutation relations.

A few words about the HP radical √
1− â†

l âl
2S

are in order. For any given value of S (integer or half-integer), it is always possible to con-
struct a polynomial of order 2S that has the same structure as the HP radical in the physical
domain, i.e., 0 ≤ â†

l âl ≤ 2S. Outside this physical domain, of course, the correspondence
is lost. For large values of S, however, it is not easy to construct the preceding polynomial.
On the other hand, for small values of nl/2S the Taylor expansion, namely√

1− â†
l âl
2S

= 1− 1

2

( nl
2S

)
+ 1

8

( nl
2S

)2
+ · · · , (23.23)

becomes asymptotically exact for nl/2S → 0. Accordingly, for small fractional spin
deviation (nl/2S) � 1, we can truncate the preceding expansion at an appropriate stage.
This is evidently valid in the low-temperature regime.

We shall derive the excitation spectrum for the isotropic Heisenberg Hamiltonian, (23.7),
plus the Zeeman interaction

HF = − J
∑
lm

[
1

2

(
S+l S−m + S−l S+m

)
+ Szl S

z
m

]
− gμBB

∑
l

Szl (23.24)

and making use of the relations (23.21), we obtain, in the site representation:

HF = − J
∑
<lm>

⎡⎣ S â†
l

√
1− â†

l âl
2S

√
1− â†

mâm
2S

âm + S

√
1− â†

l âl
2S

âl â†
m

√
1− â†

mâm
2S

+
(
S − â†

l âl
) (

S − â†
m âm
)⎤⎦+ gμBB

∑
l

â†
l âl
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≈ Hbl +Hq +O

(
1

S

)
Hbl = −NZS2J − SJ

∑
<lm>

[
â†
l âm + âl â†

m − â†
l âl − â†

m âm

]
+ gμBB

∑
l

â†
l âl

Hq = −J
∑
<lm>

[
â†
l âl â†

m âm − 1

4

(
â†
l â†

l âl âm + â†
l â†

m âm âm

+ â†
l âl âl â†

m + âl â†
m â†

m âm

)]
. (23.25)

We shall confine our study to very low temperatures, where (〈nl〉 /4S)� 1 and hence keep
terms to order S in (23.25), which means we neglect Hq, which contains quartic terms. In
order to diagonalize Hbl, we perform the following canonical transformation

âl = 1√
N

∑
q

exp
(−iq · Rl

)
âq

â†
l =

1√
N

∑
q

exp
(
iq · Rl

)
â†

q

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇒
âq = 1√

N

∑
q

exp
(
iq · Rl

)
âl

â†
q =

1√
N

∑
q

exp
(−iq · Rl

)
â†
l .

(23.26)

After substituting (23.26) in (23.25), the Hamiltonian in (23.25) becomes

HF = −NZS2J +
∑

q

h̄ω(q)
(

â†
qâq + 1

2

)

= −NZS2J +
∑

q

h̄ω(q)
(

n̂q + 1

2

)
, (23.27)

where

h̄ω(q) = 2JS Z
(

1− γq

)
+ gμBB

γq = 1

Z

Z∑
s=1

exp(iq ·	Rs). (23.28)

This Hamiltonian has the well-known harmonic oscillator form. Here â†
qâq is the number

operator n̂q, â†
q creates a spin-wave quantum and âq annihilates a spin-wave quantum.

These quanta are referred to as magnons. As can be seen from (23.22), magnons obey Bose
statistics. The dispersion relation takes a simple form in the long-wavelength limit

h̄ω(q) = JS

(∑
s

	R2
s cos2 θq,	Rs

)
q2 + gμBB, (23.29)

where θq,	Rs is the angle between the vectors q and 	Rs . For a simple cubic system, the
mean value of cos2 θq,	Rs is 1/3 and the mean value of Z	R2

s is 6a2, where a is the lattice
constant. This yields the dispersion relation

h̄ω(q) = 2JS a2 q2 + gμBB, (23.30)
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Figure 23.4 Magnon, or spin-wave, dispersion for a simple cubic ferromagnet (lattice constant a = 1)
along the [1 0 0]-direction. The dispersion is parabolic at small q.

which has a parabolic dependence on the wavevector, as shown in Figure 23.4. The eigen-
functions of the magnon Hamiltonian in the occupation number representation have the
well-known form ∣∣. . . .nq . . .

〉 =∏
q

1√
nq!

(â†
q)
nq
∣∣0〉, (23.31)

where
∣∣0〉 is the magnon vacuum state, which corresponds to complete ferromagnetic

alignment.

23.3.3 Magnon–Magnon Interactions in Mean Field

The quartic terms in Hq, which we neglected, represent magnon–magnon (particle–
particle) interactions. We shall study here the effect of such interactions on the magnon
dispersion. We are now familiar with the Hartree–Fock-like approximation; here it is
essentially equivalent to RPA. We find

Hq = −J
N2

∑
q,q1

q2,q3

∑
<lm>

[
e−i(q·Rl+q1·Rm−q2·Rm−q3·Rl ) − 1

4

(
e−i(q·Rl+q1·Rl−q2·Rl−q3·Rm)

+ e−i(q·Rl+q1·Rm−q2·Rm−q3·Rm) + e−i(q·Rm+q1·Rl−q2·Rl−q3·Rl )

+ e−i(q·Rm+q1·Rm−q2·Rm−q3·Rl )

)]
â†

q â†
q1

âq2 âq3 .

With Rm = Rl +	Rs
m, we obtain

Hq = −J
N

∑
q,q1,q2

∑
s

[
e−i(q−q2)·	Rs − 1

4

(
ei(q+q1−q2)·	Rs + eiq·	Rs + e−iq·	Rs

+ e−i(q+q1−q2)·	Rs

)]
â†

q â†
q1

âq2 âq+q1−q2
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= −J
N

∑
q,q1,q2

∑
s

[
e−i(q−q2)·	Rs − 1

2

(
cos
[
q ·	Rs

]
+ cos

[
(q+ q1 − q2) ·	Rs

])]
× â†

q â†
q1

âq2 âq+q1−q2 .

Now we use the HF approximation for the quartic operator product

â†
qâ†

q1
âq2 âq+q1−q2 ≈ â†

qâq+q1−q2

〈
â†

q1
âq2

〉
+
〈
â†

qâq+q1−q2

〉
â†

q1
âq2 +

〈
â†

qâq+q1−q2

〉 〈
â†

q1
âq2

〉
+
〈
â†

q âq2

〉
â†

q1
âq+q1−q2 + â†

q âq2

〈
â†

q1
âq+q1−q2

〉
+
〈
â†

q âq2

〉 〈
â†

q1
âq+q1−q2

〉
=
⎧⎨⎩
[
nq1 â†

q âq + nq â†
q1 âq1 − nq1 nq

]
→ q1 = q2[

nq1 â†
q âq + nq â†

q1 âq1 − nq1 nq

]
→ q = q2

.

Substituting in Hq, we get

Hq = −J
∑

q,q1;s

[
1+ e−i(q−q1)·	Rs − cos

[
q ·	Rs

]

− 1

2

(
cos
[
q ·	Rs

]
+ cos

[
q1 ·	Rs

])] [
[nq1 â†

q âq + nq â†
q1

âq1

]
= −J

∑
q,q1;s

[
2+2 cos

[
(q− q1) ·	Rs

]
−2 cos

[
q ·	Rs

]
−2 cos

[
q1 ·	Rs

]]
nq1 â†

q âq

=
∑

q

h̄ 	ωq â†
q âq,

where

h̄ 	ωq = −2J
∑
q1;s

[
1+ cos

[
(q− q1) ·	Rs

]
− cos

[
q ·	Rs

]
− cos

[
q1 ·	Rs

]]
nq1

= −2ZSJ
(

1

Z
∑
s

(
1− cos

[
q ·	Rs

]) 1

NS

∑
q1

(
1− cos

[
q ·	Rs

])
nq1

= −2ZSJ
(

1− γq

) 1

NS

∑
q1

(
1− cos

[
q ·	Rs

])
nq1 .

In the second line, we used the property∑
q1

cos
[
(q− q1) ·	Rs

]
=
∑
q1

(
cos
[
q ·	Rs

]
cos
[
q1 ·	Rs

]
+ sin

[
q ·	Rs

]
sin
[
q1 ·	Rs

])
=
∑
q1

2 cos
[
q ·	Rs

]
cos
[
q1 ·	Rs

]
.
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The mean-field renormalization of the ferromagnetic spin-wave dispersion due to magnon–
magnon interaction is

h̄ωMF
q = 2ZSJ

(
1− γq

) ⎡⎣1− 1

NS

∑
q1

(
1− cos

[
q1 ·	Rs

])
nq1

⎤⎦ .

To assess the magnitude of this correction, we consider a simple cubic lattice with the
dispersion relation (23.30), valid at low temperatures, we write

1

N

∑
q1

(
1− cos

[
q ·	Rs

])
nq = 


N

∫
dq

(2π)3
1− cos

[
q ·	Rs

]
eβh̄ωq − 1

� 


(2π)2N

∫ ∞
0

dq q2
∫ 1

−1
dx

1− cos(qax)

e2βJSa2q2 − 1
= 


2π2N

∫ ∞
0

dq q2 1− sin(qa)/qa

e2βJSa2q2 − 1

� 


(2π)2N

∫ ∞
0

2dq q2 q2a2/6

e2βJSa2q2 − 1
= a5

(2π)2(2βJSa2)5/2

∫ ∞
0

dt
t3/2

et − 1

= ζ(5/2)

32π3/2(2βJS)5/2
= 5.3× 10−4

(
kB

SJ

)5/2

T 5/2.

23.3.4 Thermal Fluctuations in a Ferromagnet

The magnetization (per site) is

M = 1

N

∑
l

〈
Szl

〉
.

Using the Holstein–Primakoff transformation at leading order, we have

M = S − 1

N

∑
k

〈
a

†
k ak

〉
.

Now, since the excitations are bosons, the thermal average is given by the Bose distribution,
and we obtain

1

N

∑
k

〈
a

†
k ak

〉
→ 1




∫
BZ

dkd
1

eβε(k) − 1
.

The most interesting aspects of this result are the generic ones, which emerge at low
temperature. In that regime, only low-energy magnons are excited, and for these we can
take the small wavevector form for their energy. We find, for example from (23.30), that

1

N

∑
k

〈
a

†
k ak

〉
= kBT

J

∫ √kBT /J
0

dk kd−1 1

k2
.
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The integral is divergent for T > 0 in d = 1 and d = 2, showing that long-range order is not
possible in the Heisenberg ferromagnet in low dimensions (an illustration of the Mermin–
Wagner theorem, which says that a continuous symmetry cannot be broken spontaneously
at finite temperature for d ≤ 2. In d = 3, the integral is ∝ T 3/2.

23.4 Antiferromagnetic Insulators

23.4.1 The Hubbard Model: Kinetic Exchange Revisited

The Hubbard model has served as a kind of Rosetta stone for interacting electron systems.
It is defined by the Hamiltonian

H = −1

2

∑
ij,σ

tij

(
c

†
iσ cjσ + c

†
jσ ciσ

)
+ U
∑
i

ni↑ni↓ + μBB ·
∑
I

c
†
iασαβciβ, (23.32)

where the first term describes hopping of electrons between ionic sites in the solid, with 〈ij〉
denoting sites i and j . The second term describes the local (onsite) energy cost of Coulomb
repulsion between two electrons of opposite spins in a single orbital. The last term is the
Zeeman interaction of the electron spins with an external magnetic field. Typically, the
Hubbard U parameter is on the order of electron volts. The short-ranged character of this
interaction is justified on the basis of effective screening of the Coulomb potential in metals.
It is a good approximation when the screening length is of the order of the lattice constant.
We note that the local nature of the interaction term U ni↑ ni↓ favors a local onsite moment.
We argue that the chemical potential fixes the mean value of the total occupancy ni↑ +ni↓,
and that it is preferable to maximize the difference

∣∣ni↑ − ni↓
∣∣ in order to minimize the

contribution from this interaction. We will focus here on the case of half-filling, namely,
n = 1, one electron per site on average, and limit the hopping term to nearest neighbors
(NN). There are two obvious limiting cases:

• Insulating atomic limit:

We set tij = 0 and B = 0. The ground state has exactly one electron on each lattice
site. This state is, however, highly degenerate. In fact, the degeneracy for N sites is 2N ,
since each electron has spin-1/2, we have∣∣∣�A

0 {σi}
〉
=
∏
i

c
†
iσi
|0〉 ,

where the spin configuration {σi} can be chosen arbitrarily. We will deal with the lifting
of this degeneracy later. The first excited states feature one lattice site without elec-
tron and one doubly occupied site. This state has energy U , and its degeneracy is even
higher, i.e., 2N−2 N(N − 1). Even higher excited states correspond to more empty and
doubly occupied sites. The system is an insulator, and the density of states is shown in
Figure 23.5
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Atomic limit

N(E)
U

E

N(E)

E

Metallic limit

Figure 23.5 Density of states of the Hubbard model in the atomic limit (left) and in the free limit
(right).

• Metallic band limit:
We set U = 0 and B = 0. The electrons are independent and move freely via hopping

processes. The band energy is found through a Fourier transform of the Hamiltonian.
With ciσ = 1√

N

∑
k ckσ e

ik·ri , we write

−t
∑
〈ij 〉,σ

(
c

†
iσ cjσ + h.c.

)
=
∑
kσ

εk c
†
kσ ckσ,

where, for a simple cubic lattice,

εk = −t
∑

a

eik·a = −2t
(
cos(kxa)+ cos(kya)+ cos(kza)

)
and the sum runs over all vectors a connecting nearest neighbors. The density of states is
also shown in Figure 23.5. Obviously, this system is metallic, with a unique ground state:∣∣∣�M

0

∣∣∣ =∏
k

(−εk) c
†
k↑ c

†
k↓ |0〉 .

Note that εF = 0 at half-filling, whereas the bandwidth 2D = 12t .

Kinetic Exchange Revisited

The Hubbard model provides a pedagogical approach to the kinetic exchange. We shall still
focus on the NN hopping Hamiltonian

H = −t
∑

<ij>,σ

c
†
iσ cjσ + U

∑
i

ni↑ ni↓.

We emphasize that the form of the interaction makes use of the fact that Pauli exclusion
prevents double occupancy of the same site with the same spin, so interactions only arise
when there are two particles, one of each spin, on a given site. Also, we still consider the
case of half-filling, and consider the limit U � t . In this case, the model is a Mott insulator,
since it costs an energy U to move an electron onto an already singly occupied site. One
may then ask what the magnetic state of this insulating phase is.
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We now consider a pair of sites and compare the energies of the states:

|1,1〉 =
∣∣∣↑ , ↑ 〉 , |1,0〉 = 1√

2

(∣∣∣↑ , ↓ 〉+ ∣∣∣↓ , ↑ 〉) , |0,0〉 = 1√
2

(∣∣∣↑ , ↓ 〉− ∣∣∣↓ , ↑ 〉)
(the state |1, − 1〉 is omitted since its behavior is clearly identical to |1,1〉). Since all of
these states have the same occupation of each site, and since the hopping term will produce
something orthogonal to each state, it is clear that at leading order,

〈1,1|H |1,1〉 = 〈1,0|H |1,0〉 = 〈0,0|H |0,0〉 .

However, since these states are eigenstates of the interaction part, let us now consider the
hopping as a perturbation at second order in perturbation theory:

δE(2)
n =

′∑
m

〈n| δH |m〉 〈m| δH |n〉
En − Em

.

One can immediately see that δH |1,1〉 = 0, since the hopping cannot move a spin-up
particle to a site already occupied by a spin-up particle. However, for the other states,
one has

δH
∣∣∣↑ , ↓ 〉 = −t (+ ∣∣∣↑↓ , 〉+ ∣∣∣ , ↑↓

〉)
(23.33)

δH
∣∣∣↓ , ↑ 〉 = −t (− ∣∣∣↑↓ , 〉− ∣∣∣ , ↑↓

〉)
. (23.34)

In order to relate the preceding two terms, it is necessary to choose a sign convention for
how the diagramatic configurations relate to ordering of operators. The choice that has been
used in the preceding case is⎧⎪⎪⎨⎪⎪⎩

∣∣∣↑ , ↓ 〉 = c
†
1↑ c

†
2↓ |∅〉 , operators appear in the same order as sites

∣∣∣↑↓ , 〉 = c
†
1↑ c

†
1↓ |∅〉 , spin-up operators appear first.

Thus, (23.33) can be written as

−t
(
c

†
1↓ c2↓ + c

†
2↑ c1↑

)
c

†
1↑ c

†
2↓ = −t

(
−c†

1↓ c
†
1↑ + c

†
2↑ c

†
1↑
)

= −t
(
c

†
1↑ c

†
1↓ + c

†
2↑ c

†
1↑
)

It is thus clear that one has δH |1,0〉 = 0 due to cancellation of the two terms, but
δH |0,0〉 
= 0, and so

δE
(2)
00 =

2t × 2t

0− U
= −4t2

U
.
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Thus there is an antiferromagnetic interaction, strength J = 4t2/U favoring projection
onto the singlet state. For a pair of spin one-half particles, the operator

Sl · Sm =
[
(Sl + Sm)2 − S2

l − S2
m

]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2

(
0− 3

2

)
Singlet

1

2

(
2− 3

2

)
Triplet

= 1

4
− Psinglet,

where Psinglet projects onto the singlet state, thus this effective hopping term can again be
written as J S1 · S2, another isotropic magnetic interaction.

23.4.2 Quantum Ground State of Antiferromagnetic Insulators

Thus, at half-filling antiferromagnetic coupling arises in the low-energy Hamiltonian due
to virtual hopping processes reducing the energy for antiparallel spin configurations, giving
rise to the isotropic Heisenberg model. We will now turn to discuss what states this model
supports, but will generalize somewhat to discuss the case where |S| is not necessarily 1/2,
but can be larger – physically, this corresponds to multiple electrons per atom, or, in rare-
earth materials, to effects of spin–orbit coupling replacing spin by total angular momentum.

Inadequacy of the Classical Ground State: Bounds on Ground-State Energy

The classical spin antiferromagnetic ground state, known as the Néel state [141] (see
Figure 23.6), was described earlier. It has the form . . . ↑↓↑↓↑↓ . . ..

Whereas the ferromagnetic quantum ground state is exactly known (complete maximal
spin alignment), the exact ground state of the one-dimensional antiferromagnet has been
solved by Bethe in 1931; however, in the case of the two- and three-dimensional antiferro-
magnet, it is only approximately known. In fact, not only is the Néel state not the ground
state in all these cases, it is not even an eigenstate of the Heisenberg Hamiltonian

HH = J
∑
<lm>

Sl · Sm = J
∑
<lm>

[
Szl S

z
m +

1

2

(
S+l S−m + S−l S+m

)]

Figure 23.6 The classical Néel state of an antiferromagnet.
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since

Ŝ+l Ŝ
−
l+1

∣∣. . . .., ↑ (l − 1), ↓ (l), ↑ (l + 1), ↓ (l + 2), ↑ (l + 3), . . .
〉

= ∣∣. . . , ↑ (l − 1), ↑ (l), ↓ (l + 1), ↓ (l + 2), ↑ (l + 3), . . .
〉
, (23.35)

which is not the same as the initial state. Furthermore, there is an additional complication
owing to the orientational degeneracy. This can be removed for ferromagnets by an external
magnetic field, but for an antiferromagnet, it can only be removed by assuming the presence
of an alternating anisotropy field Ban that fixes the spin alignment with respect to the
crystal axes.

However, we may consider the Néel state as a provisional variational platform, with no
parameters to be varied. We shall use it to provide an upper bound on the ground-state
energy. The expectation value of the Heisenberg Hamiltonian in the Néel ground state is
given by

〈�Néel|HH |�Néel〉 =
〈
�Néel

∣∣∣∣∣J ∑
<lm>

Szl S
z
m

∣∣∣∣∣�Néel

〉
= −1

2
JS2ZN

for a lattice with coordination number Z . S is the magnitude of the spin, and N is
the number of lattice sites, which yields NZ/2 as the number of nearest-neighbor
pairs. Alternatively, we may determine a lower bound on the ground-state energy, by
considering formation of singlet pairs. For AFM coupling, the ground state is a singlet,
|�0〉 = (↑↓ − ↓↑) /2, since

S1 · S2 = 1

2

[
(S1 + S2)

2 − S2
1 − S2

2

]
and

E = J

2
[Stot (Stot + 1)− S (S + 1)] = −JS(S + 1),

which has the lowest energy, −JS(S + 1) for Stot = 0. This is lower than the Néel state,
which would have had −JS2; it is lower because it respects the rotation symmetry of the
Hamiltonian. We can then define an absolute lowest bound on the ground-state energy via
a fictitious system where every possible pair bond forms a singlet. This is not feasible in
reality because the same spin cannot form a singlet bond with more than one other spin.
The energy of this configuration is

−JS(S + 1)NZ
2

< Egs < −JS
2NZ
2

.

23.4.3 Spin Waves in Antiferromagnetic Insulators

Although the state with maximal sublattice magnetization is not actually the ground state
of an antiferromagnetic system, we may entertain the idea that the actual ground state
admits some spin deviations in the Néel state. Such spin deviations can be accounted
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for by zero-point fluctuations of the z-component of the spin. For a three-dimensional
antiferromagnetic system, the spin deviations were estimated to be of the order of 7% from
the maximal sublattice magnetization. So we shall adopt the assumption that though a two-
sublattice picture, or a bipartite lattice, is not exact, it may be sufficiently close to the truth to
serve as a base on which a more correct theory can be built. The simplest model consists of
two interpenetrating cubic sublattices that together form a bcc lattice. The nearest neighbors
belong to the two different sublattices. Further, the effective AFM exchange is taken only
between nearest neighbors. Thus in the assumed Néel state, we have

S+a
∣∣0〉 = S−b

∣∣0〉 = 0, (23.36)

where Sa and Sb represent the atomic spin on sublattice A and B, respectively. All of the
A spins are chosen to be ↑, and all of the B spins are ↓. The Hamiltonian for such a system
can be written as

HAF = Hex +HZ +Han

= 2J
∑
lm

Sl · Sm − gμBB

[∑
l

Ŝzl +
∑
m

Ŝzm

]

− gμBBan

[∑
l

Ŝzl −
∑
m

Ŝzm

]
, (23.37)

where l spans sublattice A and m spans sublattice B; Ban is a fictitious alternating
anisotropy field. The magnitude of the spin at each sublattice is the same, i.e., Sa = Sb = S.
The spin-deviation operators can be defined in a slightly different manner from the case of
a ferromagnet. For the sake of simplicity, we shall retain terms linear in the spin-deviation
operators. Thus, for sublattice A and B, we have the following:

Sublattice A Sublattice B

S+l ≈ (2S)1/2 âl S+m ≈ (2S)1/2 b̂†
m

S−l ≈ (2S)1/2 â†
l S−m ≈ (2S)1/2 b̂m

Szl = S − â†
l âl Szm = b̂†

mb̂m − S (23.38)

We introduce the spin-wave transformations

âl =
(

1

N

)1/2 ∑
q

exp ( iq · RL) âq

b̂m =
(

1

N

)1/2 ∑
q

exp (−iq · Rm) b̂q, (23.39)

where â†
q, âq and b̂†

q, b̂q are the spin-wave creation and annihilation operators for the two
sublattices in question. The wavevector q spans the N points of the Brillouin zone and
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corresponds to N spins of each sublattice. The spin-wave Hamiltonian is

HAF = −JS2NZ + 2JSZ
∑

q

[
â†

qâq + b̂†
qb̂q + γq

(
â†

qb̂†
q + âqb̂q

)]

+ gμB

∑
q

[(
Ban + B

)
â†

qâq +
(
Ban − B

)
b̂†

qb̂q

]
(23.40)

γq = 1

Z
∑
j

exp
(
iq · dj

)
.

Unlike the Hamiltonian for the ferromagnet, we here find terms that do not conserve the
total number of bosons. We have encountered terms of this form in the Bogoliubov theory
of superfluidity, where diagonalization is obtained with the aid of the Bogoliubov canonical
transformation

âq = α̂q cosh θq + β̂
†
q sinh θq

b̂q = α̂
†
q sinh θq + β̂q cosh θq (23.41)

together with their hermitian conjugates. The transformed Hamiltonian reads

HAF = −JS2NZ + JSZ
∑

q

(
2 sinh2 θq − 2γq cosh θq sinh θq

)
+
∑

q

{[(
cosh2 θq+ sinh2 θq

)(
gμBBan− 2JSZ

)+gμBB− 4 cosh θq sinh θqJSZγq

]
α̂

†
qα̂q

+
[(

cosh2 θq + sinh2 θq
)(
gμBBan − 2JSZ

)− gμBB − 4 cosh θq sinh θqJSZγq

]
β̂

†
qβ̂q

+
[

2 cosh θq sinh θq
(
gμBBan− 2JSZ

)− 2
(
cosh2 θq +sinh2 θq

)
JSZγq

][
α̂

†
qβ̂

†
q + α̂qβ̂q

]}
.

In order to diagonalize the Hamiltonian, we require that

2 cosh θq sinh θq
(
gμBBan − 2JSZ

)− (cosh2 θq + sinh2 θq
)

2JSZγq = 0

or

tanh 2θq = ωeγq

ωA − ωe

{
h̄ωe = 2ZSJ
h̄ωA = gμBBan.

(23.42)

Thus the Hamiltonian becomes

HAF = −JS2NZ + JSZ
∑

q

(√
1− γ 2

q − 1
)

+
∑

q

[
h̄ω(+)

q

(
α̂

†
qα̂q + 1

2

)
+ h̄ω(−)q

(
β̂

†
qβ̂q +

1

2

)]
(23.43)

ω(±)
q =

[(
ωe + ωA

)2 − ω2
eγ

2
q

]1/2

± ωH, h̄ωH = gμBB.
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Figure 23.7 Magnon, or spin-wave, dispersion for a body-centered cubic antiferromagnet (lattice
constant a = 1) along the [1 0 0]-direction. The dispersion is linear at small q.

We see that there are two magnon branches, with Bose creation and annihilation operators

α̂
†
q, α̂q and β̂

†
q, β̂q. The two branches are degenerate in the absence of the Zeeman term. It

should be noted that the anisotropy has been incorporated in the energy. It is readily seen
from (23.43) that the lowest excitation energy goes negative when ω2

H > ω2
A + 2ωeωa ,

implying instability. This is just the spin-flip transition induced by a magnetic field.
We now consider the dispersion relation in the long-wavelength limit. Setting

B,Ban = 0, the dispersion relation is considerably simplified. We obtain for the b.c.c.
system

h̄ω(±)
q = 2(2Z)1/2 SJa q. (23.44)

Thus, unlike the ferromagnetic case, we obtain a linear dispersion relation, as shown in
Figure 23.7. In this respect, magnons in antiferromagnets behave like phonons.

Correction to the Antiferromagnetic Ground State

The resulting effective Hamiltonian is approximate because we have neglected magnon
interactions. This was the only approximation we have made. The ground state |0〉 in this
noninteracting-magnon approximation satisfies α̂q |0〉 = 0, β̂q |0〉 = 0. It is the vacuum
of the new bosons. In the absence of external fields, the ground-state energy is

E0 = −JS(S + 1)NZ +
∑

q

h̄ωq = −JS(S + 1)NZ + JSZ
∑

q

√
1− γ 2

q

= −JS(S + 1)NZ + JSZ Nd

(2π)d

∫
dqd

√√√√√1−
⎛⎝ 1

d

d∑
j=1

cos(qj a)

⎞⎠2

,

where d is the space dimension. The integral can be evaluated numerically (and analytically
for d = 1). The results are
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E0 = dNJS2 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1+ 0.363

S

)
For d = 1(

1+ 0.158

S

)
For d = 2(

1+ 0.097

S

)
For d = 3

The correction is larger for decreasing d . For d = 1, the exact ground-state energy is known
from the Bethe ansatz. It is very close to E0.

It is also instructive to derive the sublattice polarization or staggered magnetization

M = 〈Szl 〉 ∣∣∣l ∈ A = 〈Szm〉 ∣∣∣m ∈ B.

In the ground state |0〉,

M0 = 〈0| Szl |0〉 = 〈0| S − a
†
l al |0〉 = S − 1

N

∑
q

〈0| a†
q aq |0〉

= S − 1

N

∑
q

〈
0
∣∣∣[cosh2 θq α

†
q αq + sinh2 θq β

†
q βq + sinh2 θq

− cosh θq sinh θq

(
αq βq + α†

q β
†
q

)]∣∣∣ 0〉 .
Since |0〉 is the vacuum state of αq and βq, we get

M0 = S − 1

N

∑
q

sinh2 θq = S − 1

N

∑
q

1

2

⎛⎝ 1√
1− γ 2

q

− 1

⎞⎠ = S + 1

2
− 1

2

ad

(2π)d

∫
dqd√
1− γ 2

q

.

For d = 1, the integral is of the form∫
dq√

1− (1− a2q2/2)2
� 1

a

∫
dq

q

at small q and thus diverges logarithmically. This indicates that for the 1D Heisenberg anti-
ferromagnet even the ground state does not show long-range order. For the 1D ferromagnet,
we know that the ground state does show long-range order but that the order is destroyed
by thermal fluctuations for any T > 0. Since thermal fluctuations cannot play a role for the
ground state, one says that the magnetic order in the 1D antiferromagnet is destroyed by
quantum fluctuations.

For d > 1, the integral converges. For the models considered earlier, we get

M0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S

(
1− 0.197

S

)
For d = 2

S

(
1− 0.078

S

)
For d = 3
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Note that for d = 2 and S = 1/2 we obtain a roughly 40% reduction compared to the Néel
state due to quantum fluctuations.

Exercises

23.1 Anisotropic Heisenberg ferromagnet
Consider a 1D Heisenberg-type model with nearest-neighbor-only interactions

H = Jz
∑
i

Szi S
z
i+1 +

J⊥
2

∑
i

(
S+i S−“+1 + S−i S+“+1

)
.

(a) Show that for Jz > J⊥ the magnon dispersion E(q) is similar to the isotropic
case, but with nonzero energy as q → 0.

(b) Show for the opposite case Jz < J⊥ that the ferromagnetically ordered state with
magnetization along z is not the ground state!



24

Quantum Theory of Magnetism: Itinerant-Electron
Systems and the Kondo Effect

When we think about magnetism in an itinerant electron system, a Sommerfeld model
immediately comes to mind. However, we also immediately realize that, depending on the
sign of the susceptibility χ , a noninteracting electron gas can exhibit paramagnetism or
diamagnetism, but it can never develop a spontaneous magnetic moment: M

∣∣
B=0 = 0.

What then gives rise to magnetism in itinerant electron systems? Again, it must be that
Coulomb repulsion between electrons is responsible for magnetism whenever it arises in
itinerant-electron systems. At the outset, this might seem odd, since the Coulomb inter-
action is spin independent. How then can it lead to a spontaneous magnetic moment? To
arrive at a reasonable explanation, we shall introduce the Stoner model.

24.1 Stoner Mean-Field Theory: Ferromagnetic Case

Stoner developed a very simple picture of ferromagnetism based on the competition
between the kinetic energy cost of making the ↑ and ↓ spin electron numbers different and
the corresponding gain in exchange energy. The basic idea can be explained as follows.

In the absence of Coulomb interaction, the Pauli principle allows double occupancy
of each energy level with electrons of opposite spins, up to the Fermi energy. If, instead,
we make the number of ↑ and ↓ electrons unequal, we will have to occupy levels above
the designated Fermi energy. However, in the presence of Coulomb interaction, such an
unequal configuration results in a decrease of exchange energy. In the extreme case of
complete polarization, shown in Figure 24.1, the exchange energy cost becomes zero. To
make the argument more precise, we consider a system with equal ↑ and ↓ filling up to the
same EF . The density of ↑ or ↓ electrons is equal to n. We compute the change in energy
that results from a reduction in the density of ↓ spin electrons by δn and at the same time
an increase the number of ↑ spin electrons by δn. The potential energy changes by

	V = U (n+ δn) (n− δn)− U n2 = −U (δn)2 .

Placing an extra δn electrons into the ↑ group requires occupying energy levels above EF .
With the density of states D(E) = dN/dE, we have δn = D(E) δE. This delineates the
range of energies above EF filled by δn. It also gives the energy range of emptied levels

769
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(E)(E)(E)

E

EE

(E)

Figure 24.1 Increase in kinetic energy.

Figure 24.2 Left: Stoner criterion. Right: a more typical rendering of an itinerant ferromagnet is
given on the right, showing the high density of states (DOS) of a 3d system.

below EF that used to be occupied by down-spin electrons. The net result of this process
is to shift δn electrons up in energy by an amount δE. The change in the kinetic energy
is then

δT = δn δE = 1

D(E) (δn)
2 .

Combining these two contributions,

δE = δT + δV =
(

1

D(E) − U

)
(δn)2 = (1− U D(E)) (δn)2

D(E) .

It is clear that for U D(E) > 1 the total energy change δE < 0, so it is favorable to have
different ↑ and ↓ electron densities, which favors ferromagnetism. This is called the Stoner
criterion (see Figure 24.2). It tells us that magnetism is favored by large electron inter-
actions. As we shall see, this simple calculation yields results in precise agreement with
mean-field theory.
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24.1.1 Mean-Field Hubbard Model

The simplest model that can describe itinerant magnetism is the Hubbard model:

H = −t
∑

<ij>,σ

(
c

†
iσ cjσ + c

†
jσ ciσ

)
+ U

∑
i

ni↑ ni↓ − μB B
∑
i

(
ni↑ − ni↓

)
.

As is quite clear by now, we cannot devise general methods to solve for the exact ground
state of such an interacting many-body Hamiltonian. However, we can solve this problem,
approximately, using a mean-field theory due to Stoner. As we have stated, the Hubbard
model accounts for onsite Coulomb interactions only, and hence it has a constant value in
reciprocal space. Thus, we write the Hubbard Hamiltonian in k-space as

H =
∑
kσ

εk c
†
kσ ckσ + U

2


∑
kk′q
σσ ′

c
†
k+q,σ c

†
k′−q,σ ′ ck′σ ′ ckσ . (24.1)

We apply the Hartree–Fock approximation to this model, but search for a ferromagnetic
solution by allowing for the expectation values to depend on the direction of the spin. We
substitute

c
†
k+q,σ c

†
k′−q,σ ′ ck′σ ′ ckσ = 2

〈
c

†
k+q,σ ckσ

〉
c

†
k′−q,σ ′ ck′σ ′ − 2

〈
c

†
k+q,σ ck′σ ′

〉
c

†
k′−q,σ ′ ckσ

−
〈
c

†
k+q,σ ckσ

〉 〈
c

†
k′−q,σ ′ ck′σ ′

〉
+
〈
c

†
k+q,σ ck′σ ′

〉 〈
c

†
k′−q,σ ′ ckσ

〉
in the interaction component of (24.1), and we obtain the mean-field interaction
Hamiltonian

VMF
int =

U




∑
kk′q
σσ ′

c
†
k+q,σ

〈
c

†
k′−q,σ ′ ck′σ ′

〉
ckσ − U




∑
kk′q
σσ ′

〈
c

†
k+q,σ ck′σ ′

〉
c

†
k′−q,σ ′ ckσ

− U

2


∑
kk′q
σσ ′

[〈
c

†
k+q,σ ckσ

〉 〈
c

†
k′−q,σ ′ ck′σ ′

〉
−
〈
c

†
k+q,σ ck′σ ′

〉 〈
c

†
k′−q,σ ′ ckσ

〉]
.

With the mean-field parameters defined as〈
c

†
k↑ ck′↑

〉
= δkk′ nk↑,

〈
c

†
k↓ ck′↓

〉
= δkk′ nk↓ (24.2)

and the spin densities

n̄σ = 1




∑
k

〈
c

†
kσ ckσ

〉
,

we get

VMF
int = U

∑
kσσ ′

c
†
kσ ckσ [n̄σ ′ − n̄σ δσσ ′ ]− U


∑
σσ ′

n̄σ ′ n̄σ + U

∑
σ

n̄2
σ .
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The full Stoner mean-field Hamiltonian is now given by

HMF =
∑
kσ

EMF
kσ c

†
kσ ckσ − U


∑
σσ ′

n̄σ ′ n̄σ + U

∑
σ

n̄2
σ

EMF
kσ = εk + U

(
n̄↑ + n̄↓ − n̄σ

) = εk + U n̄σ̄ . (24.3)

We obtain the T = 0 mean-field solution via the self-consistency equations

n̄σ = 1




∑
k

〈
c

†
kσ ckσ

〉
=
∫

dk
(2π)3



(
μ− h̄2k2

2m
− U n̄σ̄

)
= 1

6π2
k3
Fσ,

where
h̄2k2

Fσ

2m + U n̄σ̄ = μ, leading to

h̄2

2m
(6π2)2/3 n̄

2/3
↑ + U n̄↓ = h̄2

2m
(6π2)2/3 n̄

2/3
↓ + U n̄↑ = μ. (24.4)

Defining the quantities

n̄ = n̄↑ + n̄↓, ζ = n̄↑ − n̄↓
n̄

, γ = 2mU n̄1/3

(6π2)2/3 h̄2

and rearranging the self-consistency conditions (24.4), we get

n̄
2/3
↑ − n̄2/3 = 2mU

(6π2)2/3 h̄2

(
n̄↑ − n̄↓

) ⇒ (1+ ζ )2/3 − (1− ζ )2/3 = γ ζ . (24.5)

A graphic solution of (24.5) is depicted in Figure 24.3. It shows three solution regimes:

γ <
4

3
: Isotropic solution (normal state) ζ = 0

4

3
< γ < 22/3 : Partial polarization (weak ferromagnet) 0 < ζ < 1

γ > 22/3 : Full polarization (strong ferromagnet) ζ = 1

We note that the initial slope of the lhs is 4/3, and its value at ζ = 1 is 22/3, which signals
complete polarization. The different solutions are sketched in Figure 24.4.

24.1.2 Temperature Dependence of Magnetization in Mean Field

We write the site occupancy niσ as

niσ = 〈nσ 〉 + δniσ, (24.6)
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Figure 24.3 Plot of the two sides of (24.5).

Normal state

γ < 4
3

Partial polarization
4
3 < γ < 22/3

Full polarization

γ > 22/3

Figure 24.4 The three possible solutions of the Stoner model. The polarization is thus a function of
the interaction strength; the stronger the interaction, the larger the polarization. The Stoner model
provides a clear physical picture for how the exchange interactions induce a ferromagnetic phase
transition in a metal with strong onsite interactions.

where 〈niσ 〉 is the thermodynamic average, and δniσ the fluctuating component, such that
|δniσ |2 � 〈nσ 〉2. Substituting in the Hubbard Hamiltonian, we get

HMF =
∑
kσ

εk c
†
kσ ckσ + U

∑
i

[
ni↑
〈
n↓
〉+ ni↓

〈
n↑
〉+ 〈n↑〉 〈n↓〉]

=
∑
kσ

(
εk + U 〈nσ̄ 〉

)
c

†
kσ ckσ + UN

〈
n↑
〉 〈
n↓
〉
, (24.7)
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The advantage of this approximation is that the many-body problem is now reduced to
an effective one-particle problem, where only the mean electron interaction is taken into
account. We express 〈nσ 〉 as

〈nσ 〉 = 1

N

∑
k

〈
c

†
kσ ckσ

〉
=
∫

dε
1

N

∑
k

δ (ε − εk − U 〈nσ̄ 〉) nF (ε)

=
∫

dε
1

2
D (ε − U 〈nσ̄ 〉) nF (ε). (24.8)

To solve for the 〈nσ 〉s self-consistently, we introduce the average occupancy, n̄, and average
spin polarization, m

n̄ = 〈n↓〉+ 〈n↑〉
m = 〈n↑〉− 〈n↓〉

}
⇒ 〈nσ 〉 = 1

2
(n̄+ σm) (24.9)

and obtain

n̄ = 1

2

∫
dε

[
D
(
ε − U

〈
n↓
〉)+D

(
ε − U

〈
n↑
〉)]

nF (ε)

= 1

2

∑
σ

∫
dεD

(
ε − U n̄

2
− σ

Um

2

)
nF (ε) (24.10)

m = 1

2

∫
dε

[
D
(
ε − U

〈
n↓
〉)−D

(
ε − U

〈
n↑
〉)]

nF (ε)

= −1

2

∑
σ

σ

∫
dεD

(
ε − U n̄

2
− σ

Um

2

)
nF (ε), (24.11)

which presents two coupled equations that can be solved approximately for m � n̄, by
allowing a change in the chemical potentialμ that depends on temperature and polarization:

μ(m,T ) = εF + U n̄

2
+	μ(m,T ) = ε̄F +	μ(m,T ).

For small m, T , and

nF (ε,T ) = 1

eβ(ε−μ(m,T )) + 1
= nF (ε,0)+ ∂nF

∂μ

∣∣∣∣
μ=ε̄F

	μ(m,T )+ ∂nF

∂T
kBT , kBT � εF,

we expand (24.10) as

n̄ �
∫

dε

[
D (ε)+ 1

2

(
Um

2

)2
d2D (ε)

dε2
+ · · ·

]
nF (ε)

≈
∫ ε̄F

0
dεD (ε)+D (ε̄F ) 	μ+

[
π2

6
(kBT )

2 dD (ε)

dε
+ 1

2

(
Um

2

)2
dD (ε)

dε

]
ε̄F

,

where we used ∫ ∞
−∞

dx x2 ex

(ex + 1)2
= π2

3
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and we expanded D(ε) around ε̄F . We note that∫ ε̄F

0
dεD (ε) = n̄

and we obtain

	μ(m,T ) = −D′ (ε̄F )
D (ε̄F )

[
π2

6
(kBT )

2 + 1

2

(
Um

2

)2]
.

Next we carry out a similar expansion for m and substitute for 	μ(m,T )

m �
∫

dε

[
dD (ε)

dε

Um

2
+ 1

3!

(
Um

2

)3
d3D (ε)

dε3
+ · · ·

]
nF (ε)

�
[
D (ε̄F )+D′ (ε̄F ) 	μ+ π2

6
(kBT )

2 D′′ (ε̄F )+ 1

3!

(
Um

2

)2

D′′ (ε̄F )
]
Um

2

= A(ε̄F,T )m− B(ε̄F )m
3,

where

A(ε̄F,T ) = D (ε̄F )U

2

{
1−
[(D′ (ε̄F )

D (ε̄F )

)2

− D′′ (ε̄F )
D (ε̄F )

]
π2

6
(kBT )

2

}
= D(ε̄F ) U

2

(
1− αT 2

)
B(ε̄F ) = D (ε̄F )

(
U

2

)3 [1

2

(D′ (ε̄F )
D (ε̄F )

)2

− D′′ (ε̄F )
3!D (ε̄F )

]
.

We find that

m2 = A− 1

B
, A, B > 0.

Thus a nonzero real root exists for A > 1, which yields two conditions for a Fermi liquid
instability and the emergence of magnetism⎧⎪⎪⎨⎪⎪⎩

U >
2

D (ε̄F )
= Uc

T ≤ 1

α

√
1− Uc

U
= Tc,

where Tc is the Curie temperature. The emerging magnetization M exhibits a temperature
dependence

M ∝
√
Tc − T .

24.2 RPA Susceptibility: Stoner Excitations and Spin Waves

We now turn to explore the nature of excitations above the Stoner ground state. Such
excitations are described by the dynamical magnetic response contained in the magnetic
susceptibility, which we now consider.
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24.2.1 The RPA Magnetic Susceptibility

The magnetic susceptibility, χ(xt;x′,t ′), gives the change in spin density in response to an
external applied magnetic field:

δsα(x,t) =
∑
β

∫
dx′
∫

dt ′ χαβ(xt;x′,t ′) Bβ(x′,t ′).

The spin density s(x) is defined as

sα(x) =
∑
σ,σ ′

�†
σ (x)

(
σα
)
σσ ′ �σ ′(x),

where σα are the Pauli matrices. The magnetic field B enters into the Hamiltonian through
the Zeeman coupling,

HI = − h̄
2
μBg

∫
dx B(x,t) · s(x).

We can express the spin susceptibility in terms of the retarded spin–spin correlation, or
Green function as

χαβ(x,t;x′,t ′) = i
μBg

2
(t − t ′)

〈[
sα(x,t), sβ(x′,t ′)

]〉
,

where the minus sign characteristic of the Green function is removed by that appearing
in HI . Transformation to frequency space yields

δsα(x,ω) =
∑
β

∫
dx′ χαβ(x,x′,ω)Bβ(x′,ω)

χαβ(x,x′,ω) = i
μBg

2

∫
dt eiωt

〈[
sα(x,t), sβ(x′,0)

]〉
.

Moreover, for spatially homogeneous systems, we may carry out a spatial Fourier trans-
form, to obtain

χαβ(q,ω) = 1




∫
dx dx′ eiq·(x−x′) χαβ(x− x′,ω).

In the plane wave representation, we write

s(x,t) =
∑

q

eiq·x s(q,t), ⇒ sα(q,t) =
∑

k

c
†
k+q,s(t) σ

α
ss′ ck,s′(t),

s+(q,t) =
∑

k

c
†
k+q,↑(t) ck↓(t), s−(q,t) =

∑
k

c
†
k+q,↓(t) ck↑(t),

sz(q,t) = 1

2

∑
k

(
c

†
k+q,↑(t) ck↑(t)− c

†
k+q,↓(t) ck↓(t)

)
.
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We identify two types of spin susceptibility functions:

• The transverse spin susceptibility function, χ−+, which represents the response to a field
that couples to the spin-flip (deviation) component of the spin

• The longitudinal susceptibility χzz containing the response to a field that couples to the Sz
component

It is particularly interesting to examine the transverse spin fluctuations, or deviations.
A uniform transverse spin fluctuation corresponds to a rotation of the magnetization,
which costs no energy due to the rotational invariance of the system. If we carry out a slow
twist of the magnetization, this costs an energy that goes to zero as the pitch of the twist
goes to infinity. The corresponding normal mode is the “Goldstone mode” of the magnet.

For the case we are interested in, namely, ferromagnetic excitations, we shall consider
the retarded transverse susceptibility

χ−+(x,t;0,0) = i(t)
〈[
s−(x,t),s+(0,0)

]〉 =∑
q

χ−+(q,t).

We find that

χ−+(q,t) = i
μBg

2

(t)

∑
k,k′

〈[
c

†
k−q↓(t) ck↑(t), c†

k′+q↑(0) ck′↓(0)
]〉

. (24.12)

Diagrammatically, the susceptibility for noninteracting electrons can be represented as
shown in Figure 24.5. The gray circles are spin vertices that require a spin-flip between
incoming and outgoing spins, in the case of the transverse susceptibility χ−+.

In the case of noninteracting electron systems, the definition of χ−+ in (24.12) clearly
resembles $0, the polarizability of the noninteracting electron gas, and we write

χ−+0 (q,ω) = −μBg

2

$−+0 (q,ω) = −μBg

2


∑
k

nF↑(εk − μ)− nF↓(εk+q − μ)

ω + εk − εk+q + iη
. (24.13)

In a manner similar to our treatment of the interacting electron gas, we use diagrammatic
RPA techniques to derive expressions for the susceptibility in the present case. Typical RPA
diagrams are shown in Figure 24.6: the RPA amounts to adding to the diagram 24.6(a) all
possible interaction vertices of the form 24.6(b) that connect the two arms of the bubble to

+q +q

Figure 24.5 Diagrammatic representation of the transverse spin susceptibility χ−+ for noninteract-
ing electrons.
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Figure 24.6 (a) Diagrammatic representation of the susceptibility χ−+0 . (b) Diagrammatic repre-
sentation of the interaction vertex, with strength γ . (c) The sum of bubble diagrams that gives the
transverse spin susceptibility up to the RPA. Notice that the only way to connect the bare bubble is
through an exchange vertex of the form presented in (b).

a consecutive bubble (as shown in 24.6(c)). If we now consider a local interaction, like the
Hubbard model, Uni↑ ni↓, γ = U , summing up this series, we get

χ−+(q,ω) = χ−+0 (q,ω)

1− Uχ−+0 (q,ω)
.

Again, it is clear that an instability will occur if the condition U$−+0 (q,ω) ≥ 1 is satisfied.
This more general condition is satisfied for the ferromagnetic instability, when we take the
limit $−+0 (q → 0,0)→ D↑(εF ), yielding the Stoner criterion UD(εF ) ≥ 1.

24.2.2 Mean-Field Stoner Excitations

The mean-field approximation amounts to replacing the interacting system with an effective
noninteracting system where the original noninteracting particle spectrum gets renormal-
ized. In that spirit, we need to replace the denominator of (24.13) with corresponding terms
from the Stoner mean-field spectrum of (24.3), namely,
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−εk + εk+q → −EMF
k↑ + EMF

k+q↓ = −εk + εk+q − Un̄ (1− ζ )+ Un̄ (1+ ζ )

[2pt] = εk+q − εk + 2Un̄ζ

[2pt] = εk+q − εk +	. (24.14)

And we write the noninteracting Stoner magnetic susceptibility as

χ−+0, Stoner(q,ω) =
μBg

2


∑
k

nF↑(εk − μ)− nF↓(εk+q − μ)

ω − εk+q + εk −	+ iη
. (24.15)

The excitation energy of the noninteracting Stoner model is given by the poles of the Stoner
susceptibility, as

εk+q − εk +	 = h̄2

m
k · q+ h̄2

2m
q2 +	

depends on k for a fixed q 
= 0. Therefore, for any q 
= 0 we find a continuum of electron–
hole excitations, coined Stoner particle–hole continuum (see Figure 24.7). Only for q =0,
the excitation energy is sharp, 	 = 2Un̄ ζ > 0. Excitations with vanishing energy exist
when the two Fermi spheres above cross, as shown in Figure 24.8 since then we have at the
crossing points

εk − Un̄ ζ = EF,andεk+q + Un̄ ζ = EF

and thus

εk+q − εk + 2Un̄ ζ = εk+q + Un̄ ζ − (εk − Un̄ ζ ) = EF − EF .

Zero-energy excitations are dangerous, since they suggest an instability of the mean-field
ground state. One has to go beyond Stoner theory to see that they do not destroy the
ferromagnetic ground state in this case.

Figure 24.7 Stoner excitations spectrum.
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Figure 24.8 Relative disposition of the ↑ and ↓ Fermi seas at two different q vectors. The black dots
indicate zero energy excitations.

24.2.3 Susceptibility of Interacting System and Spin Waves

Following the RPA procedure, we can write the susceptibility of the interacting ferromag-
netic system as

χ−+(q,ω) = χ−+0, Stoner(q,ω)

1− Uχ−+0, Stoner(q,ω)
.

The poles of χ−+ determine the excitation spectrum of the itinerant ferromagnet with spin
flipping. The poles equation becomes

1− Uχ0, Stoner(q,ω) = 0 ⇒ χ0, Stoner(q,ω) = 1

U
.

At T = 0, we get

∑
k

(μ− εk + γ ζ )
[
1−(εk+q + γ ζ − μ)

]
ω − h̄2

m
k · q− h̄2

2m q2 −	
= 2


μBgU
= 1

V
. (24.16)

We note that there are two types of singularities:

• For fixed q, a series of poles fill the branch cut along the real ω-axis, between ωmin and
ωmax. We note that there are as many intersections of the curves, associated with these
poles, with the horizontal line χ−+0, Stoner = 1/U . These give rise to the Stoner excitations.

• There is one intersection that lies at some ω below the quasicontinuum. At long wave-
lengths and ω � 	, we have a new spin-wave excitation branch, reminiscent of plas-
mons, as indicated by the root ωq in Figure 24.9. Clearly, when U → 0, ωq → ωmin

and the discrete state merges into the quasicontinuum. However, unlike plasmons, when
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Figure 24.9 Extraction of spin-wave dispersion.

q = 0, (24.16) shows that χ−+0, Stoner = 1/U has one root ω = 	 + μBgU
2
 , so that the

spin-wave frequency

lim
q→0

ωq = 0.

24.3 Nesting and Spin-Density Waves

We now explore instabilities that may possibly lead to magnetic orderings other than a uni-
form ferromagnetic phase in itinerant electronic systems. Such instabilities will be manifest
as ω = 0 singularities in the response function

χ−+(q,0) = χ−+0, Stoner(q,0)

1− Uχ−+0, Stoner(q,0)
⇒ 1− Uχ0, Stoner(q,0) = 0

at some finite q, indicating a spatially varying magnetization. However, a q wavevector
instability is likely to develop if there exists a large region of the Fermi surface where
εk = εk+q for some fixed vector q, in a nesting fashion similar to the case of charge-
density waves described in Chapter 7. As we have seen, in one dimension, the problem is
particularly simple because we have natural nesting; and the instability occurs at q = 2kF .
In dimensions >1, such an instability relies on there being a part of the Fermi surface that
is parallel to another part, so that a constant wavevector can connect particles and holes
across the Fermi sea. Examples of how this may occur are shown in Figure 24.10; note that
at half-filling, tight-binding band structures show the presence of nesting across the entire
Fermi surface.

Spin-Density Waves versus AFM

The AFM behavior of a half-filled insulator can be regarded as a spatially varying mag-
netization. However, we should distinguish between such a phase and the presence of
spin-density waves: the AFM phase displays strong sublattice polarization, in the sense
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a

a

0

0

Figure 24.10 Right: half-filling, so (π,π)/alattice wavevector generically leads to nesting. Left:
Fermi surface in which a region is nested, so that the same spin-density-wave wavevector couples
many points on the Fermi surface.

that each site had its entire magnetic moment points in some direction. By contrast, the
spin-density wave scenario, which is the subject of this section, describes an instability
that grows continuously from zero, and represents a small, partial magnetization at each
site. It is however worth noticing that half-filling is a state particularly susceptible to spin-
density wave ordering, and that with increasing interaction strength, there is a crossover
from the spin-density wave ordering of a weakly interacting half-filled itinerant electron
system to the AFM of a half-filled Mott insulator.

24.4 Anderson Model of Magnetic Impurities

The magnetic instabilities previously discussed mainly occur in metals with narrow bands,
such as 3d-bands in the first row transition metals or f -bands in rare-earth metals and metal
actinides.

Here we shall study the process of formation of local magnetic moments and the effect
of substitutional magnetic impurities in a nonmagnetic host metal. When atoms of these
magnetic metals are disolved in nonmagnetic metallic hosts, they sometimes retain many
features of magnetism, such as temperature-dependent susceptibility following a Curie-
like behavior. Since such behavior cannot be explained by a one-electron model, it is
obvious that interelectron interactions must play an essential role. We have studied the
s–d exchange interaction, and derived the form of the long-range RKKY interaction among
spins localized on different sites in a nonmagnetic metal, such as Mn in Cu. However,
when elements of the iron group are introduced into a nonmagnetic metal, it is not always
the case that they display a permanent magnetic moment. Fe and Mn in Cu maintain their
spins, while Mn in Al does not. For the first case, we may use the s–d exchange interaction
model. In the second case, one must understand why there is no magnetic moment on the
transition ion impurity.

Another role of magnetic impurity atoms is revealed in the historic origin of the Kondo
problem. This problem is interesting in showing a large separation of energy scales between
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ε

ε ε

Figure 24.11 P. W. Anderson. Schematic of the Anderson magnetic impurity model.

the microscopic Hamiltonian and the effective binding energy of the ground state, hence
producing a wide range of temperatures in which response properties are dominated by
excited, rather than ground-state, configurations.

In order to study the conditions for an impurity to sustain a permanent magnetic moment,
we require an approach where both cases can be explained with the same model. Such an
approach is based on the Anderson model.

24.4.1 Anderson Hamiltonian and Local Moment Formation

Anderson realized that the moment formation has origins in strong correlations, which
implies strong Coulomb interactions. Thus, in order to study the formation of localized
magnetic states, Anderson proposed a model Hamiltonian [14], which turns out to be
very closely related to the Hubbard Hamiltonian discussed earlier. As we have seen so
far, Coulomb repulsion, specially onsite between antiparallel spins, tends to localize elec-
trons. In contrast, Anderson also recognized that localized atomic orbitals are amenable to
tunneling into free electronic states, as shown in Figure 24.11, when their atomic energy
level overlaps with the free electron band.

The Anderson Hamiltonian depicts a model of localized states, represented by the oper-
ators1 d†, d, coupled to delocalized conduction electrons. Because of their spatial confine-
ment, the localized states have a strong Hubbard U , which justifies the neglect of the much
weaker repulsive interaction between conduction electrons. The Hamiltonian is written as

HA =
∑
kσ

εkσ c
†
kσ ckσ + εd

∑
σ

d†
σ dσ + U d

†
↑ d↑ d

†
↓ d↓ +

V√



∑
kσ

[
d†
σ ckσ + c

†
kσ dσ

]
.

The impurity spin operator can be written as

S = 1

2

∑
σσ ′

d†
σ τσσ ′ dσ ′,

1 Although we are using the symbol d to denote creation and annihilation operators associated with the localized orbital, the
orbital may be of d or f type. Similarly, we shall use εd to denote the orbital energy.
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where τ is the Pauli matrix. We write

S · S = 5

4

(
nd↑ + nd↓

)+ 3

4
nd↑ nd↓

so that the impurity Hamiltonian can be written as

Hd =
∑
kσ

(
εkσ + 5

3
U

)
c

†
kσ ckσ − 4

3
U S · S.

Thus, if U is “large enough,” and if we can arrange things such that 〈nd〉 
= 0, the impurity
will maximize S · S, and will acquire a moment!

First, we shall determine the conditions required for the single occupation of the local-
ized level, namely, one electron, rather than zero or two. Second, we shall investigate
when this localized magnetic moment remains free, rather than being screened by spin
fluctuations of the surrounding Fermi sea.

It is important to note the energy scales of these two different processes; the interesting
physics is that two very different energy scales arise from these two problems.

Virtual Bound-State Formation and Hybridization Resonance

In order to separate the different competing mechanisms contained in the Anderson Hamil-
tonian, we will turn off the interaction U and consider hybridization effects only. The effect
is manifest in a narrow resonance induced by the impurity, which is essentially an atomic
level broadened by the hybridization with the conduction electrons of the host metal.

We shall examine here the ensuing resonant scattering off a noninteracting d/f -level,
using the Green function approach.

Impurity Green Function

The localized retarded Green function Gd is given by

Gd(t) = −i(t)
〈[
dσ (t), d

†
σ (0)
]〉

.

The equation of motion is

∂Gd

∂t
= −iδ(t)

〈[
dσ (t), d

†
σ (0)
]〉
− i(t)

〈[
∂dσ (t)

∂t
, d†

σ (0)

]〉
i
∂Gd

∂t
= δ(t)− i(t)

〈[
[dσ (t),H] , d†

σ (0)
]〉

. (24.17)

The commutator couples Gd to a mixed propagator

Gkd(t) = −i(t)
〈[
c

†
kσ (t), d

†
σ (0)
]〉

according to the equation

i
∂Gd

∂t
= δ(t)+ εd Gd +

∑
k

V Gkd(t) ⇒ (ω − εd)Gd(ω) = 1+
∑

k

V Gkd(ω).
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We find in the same way that

(ω − εk) Gkd(ω)− V Gd(ω) = 0.

Eliminating Gkd , we finally have

Gd(ω) = 1

ω − εd −�(d,ω)
= 1

G
(0)−1
d −�(d,ω)

�(d,ω + iη) =
∑

k

V 2

ω − εk + iη
.

We represent the propagator of the bare d/f -electron by a black line, and that of the
conduction electron by a gray line:

G
(0)
d (ω) = 1

ω − εd
,

ω

G
(0)
k (ω) = 1

ω − εk
,

ω

The hybridization enables the d/f -electron to tunnel back and forth into the continuum,
with a manifest self-energy diagram:

ω
,

where we have assumed a k-independent (contact scattering) hybridization interaction.
This diagram can also be considered as an effective retarded (frequency/time-dependent)
scattering potential for d/f -electrons, since the electron can spend significant time in the
conduction band. The multiple scattering processes of the d/f -electron are represented by

We note that the electron assumes a different momentum each time it tunnels into the
conduction band, and we have to sum over all possible values of these intermediate state
momenta available in the conduction band.

We assume a broad conduction band of width [−W,W ], and we calculate
�(d,ω ± iη) as

�(d,ω + iη) =
∫

dε

π
D(ε) πV 2

ω − ε + iη
=
∫

dε

π

	(ε)

ω − ε + iη
,
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Figure 24.12 Resonance in the absence of Coulomb interactions. No localized moments.

where D(ε) is the DOS of the conduction band, and 	(ε) = πDc(ε)V
2. We further

simplify the problem by assuming a uniform DOS, such that 	(ε) = 	, and obtain

�(ω + iη) = 	

π

∫ W

−W
dε

ω − ε + iη
= 	

π

(
P
∫ W

−W
dε

ω − ε
− iπ (W − |ω|)

)

= −	
π

ln

[
ω +W

ω −W

]
− i	(W − |ω|).

Re�c is of order O(ω/W), which for 	 � W is negligible. Consequently, we obtain the
simple form of the d, f -propagator

Gd(ω) = 1

ω − εd − i	
.

It describes a resonance of width 	, centered around εd , as shown in Figure 24.12, with a
density of states

Dd(ω) = 1

π
ImGd(ω − εd − iη) = 	

(ω − εd)2 +	2
.

Conduction Electrons Green Function

Next we consider this multiple scattering process from the perspective of the conduction
electrons, where we reverse the roles of the propagators, and write

(24.18)

First, note that the presence of the impurity breaks the translation symmetry of the Hamilto-
nian, and G(k′,k;ω) is no longer diagonal in the momentum variables. Moreover, we note
that the multiple scattering from the impurity can be cast in terms of a T-matrix, which
contains the shaded areas in (24.18), and similar diagrams in higher terms – this yields
precisely V 2Gd . Consequently, we represent the full (broadened) d, f -propagator by
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G(k′,k;ω) = δkk′ G
(0)(k,ω)+ G(0)(k,ω) V 2 Gd(ω)G

(0) (k′,ω)

= δkk′ G
(0)(k,ω)+ G(0)(k,ω) T(ω) G(0) (k′,ω). (24.19)

We write the T-matrix as

T(ω) ≡ V 2 Gd(ω) = 1

πD(ω)
	

ω − εd + i	
= − 1

πD(ω)
1

εd − ω

	
− i

. (24.20)

Scattering Phase Shift and Friedel Sum Rule

We recall from scattering theory that the S-matrix can be expressed as

S(ω) = e2iδ(ω) = 1− 2πiD(ω)T(ω + iη),

where δ(ω) is the scattering phase shift, so that

T(ω + iη) = 1

2iπD(ω)
[
S(ω)− 1

]
= − 1

πD(ω)
1

cot[δ(ω)]− i
. (24.21)

From (24.20) and (24.21), we obtain the scattering phase shift

δd(ω) = cot−1
(
εd − ω

	

)
.

δd(ω) increases from δd(ω � εd) ∼ 0 to δd(ω � εd) = π ; at resonance, δ(εd) = π/2.
The Anderson model provides a microscopic manifestation of the Friedel sum rule,

which relates the phase shifts of the conduction electrons scattered on the impurity to the
number of displaced electrons.

Friedel Sum Rule

Friedel considered the presence of a localized impurity in a host metal [68]. We recall from
quantum mechanics that the scattering wavefunction can be written as

�(x) = 1

k

∑
l

(2l + 1) il eiδl Pl(cos θ)ψl(r).

Setting ψl = ϕl/r , and taking spin degeneracy into account, we obtain the total electron
number within a sphere of radius R as

4π
∫ R

0
dr r2 n(r) = 4π

∫ R

0
dr r2 2

∫ kF

0
4π dk k2 1

(2π)3
∑
l

(2l + 1)
ψ2
l (r)

k2

= 4

π

∑
l

(2l + 1)
∫ kF

0
dk

∫ R

0
dr ϕ2

l (r).
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The Schrödinger equation for ϕl is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d2ϕl

dr2
+
[
k2 − l(l + 1)

r2
− 2mV (r)

h̄2

]
ϕl = 0

d2ϕ̄l

dr2
+
[
k̄2 − l(l + 1)

r2
− 2mV (r)

h̄2

]
ϕ̄l = 0

From these two equations, we obtain

(k̄2 − k2)

∫ R

0
dr ϕ̄ ϕ =

∫ R

0
dr

[
ϕ̄
d2ϕ

dr2
− ϕ

d2ϕ̄

dr2

]
=
[
ϕ̄
dϕ

dr
− ϕ

dϕ̄

dr

]R
0

.

which in the limit k̄→ k yields∫ R

0
dr ϕ2

l (r) =
1

2k

[
dϕ

dk

dϕ

dr
− ϕ

d2ϕ

drdk

]
r=R

.

Using the asymptotic form of ϕ

ϕ(R) � sin

(
kR + δl(k)− lπ

2

)
,

we obtain∫ R

0
drr2n(r) = 2

π

∑
l

(2l + 1)
∫ kF

0
dk

[(
R + dδl

dk

)
− 1

2k
sin (2kR + 2δl(k)− lπ)

]
.

The change in electron number is given by

	N =
∫ R

0
(n(r)− n0(r)] 4π r2 dr

= 2

π

∑
l

(2l + 1)
∫ kF

0
dk

[(
dδl

dk

)
− 1

k
sin δl(k) cos (2kR + δl(k)− lπ)

]
.

Considering the weak k-dependence of δl(k) compared to 2kR, and partially integrating,
we obtain

	N = 2

π

∑
l

(2l + 1)

[
δl(kF )− 1

2kFR
sin δl(kF ) sin (2kFR + δl(kF )− lπ)

]
.

In the limit R→∞, we should obtain the density difference between the impurity and the
host, namely

	n = 2

π

∑
l

(2l + 1) δl(kF ).
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Thus we surmise that the phase shift δd = δd(εF = 0) at the Fermi surface determines the
amount of charge bound inside the resonance. We can determine this charge by using the
d/f -spectral function to calculate the ground-state occupancy:

nd =
∫ 0

−∞
dωD(ω) = 2

∫ 0

−∞
dω

π

	

(ω − εd)
2 +	2

= 2

π
cot−1

(εd
	

)
= δd

π/2
. (24.22)

Note that when δd(0) = π/2, nd = 1. This is a particular example of the Friedel sum rule.

24.4.2 Hartree–Fock Physics of the Anderson Model

The Anderson model presents a competition between the Coulomb interaction and
hybridization. We would expect that local moments will develop when the Coulomb
interaction exceeds the hybridization – the question is how can we quantify this. For
U 
= 0, we rewrite (24.17) in the form

i
∂Gdσ

∂t
= δ(t)− i(t)

〈[
[dσ (t),H] , d†

σ (0)
]〉

= δ(t)+ εd Gdσ (t)+ V
∑

k

Gkdσ (t)− i(t) U
〈[
dσ (t) nσ̄ (t),d

†
σ (0)
]〉

and we find that the right-hand side contains a higher-order Green function that eventually
leads to an infinite hierarchy of equations. We can avoid this complication by applying
the Hartree–Fock approximation to terminate the hierarchy and simplify the problem.
This amounts to neglecting the correlations between the “up” and “down” electron in the
impurity orbital, namely,

nσ̄ (t) = (nσ̄ (t)− 〈nσ̄ 〉)+ 〈nσ̄ 〉 � 〈nσ̄ 〉 .

The validity of the Hartree–Fock solution would require that the correlation time scale
1/U be much larger than the lifetime of the localized state 1/	. This translates to 	� U ,
which may not apply in the magnetic regime!

However, to gain an initial insight into the effect of hybridization on local moment
formation, Anderson originally developed following Hartree–Fock mean-field treatment:
first, we modify the impurity Green function, to read

Gdσ (ω) = 1

ω − εd − U 〈nσ̄ 〉 − i	
,

which means that we set

εd → Edσ = εd + U 〈nσ̄ 〉

〈ndσ 〉 = δdσ

π
= 1

π
cot−1

(
εd + U 〈nσ̄ 〉

	

)
.
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Anticipating that the development of a magnetic moment amounts to
〈
nd↑
〉 
= 〈nd↓〉, we

introduce the following definitions:

Total occupancy nd =
∑
σ

〈ndσ 〉

Magnetization μ = 〈n↑〉− 〈n↓〉
〈ndσ 〉 = 1

2
(nd + σ μ), σ = ±1

The self-consistent mean-field equation for occupancy and magnetization become

nd = 1

π

∑
σ=±1

cot−1
(
εd + (U/2) (nd − σ μ)

	

)
(24.23)

μ = 1

π

∑
σ=±1

σ cot−1
(
εd + (U/2) (nd − σ μ)

	

)
. (24.24)

To obtain the critical interaction strength Uc, which defines the threshold for local moment
formation, we set μ = 0 in (24.23), yielding

εd + (Uc/2) nd
	

= cot
(πnd

2

)
.

However, to ensure that we are taking the limit μ → 0, we take the derivative of (24.24)
with respect to μ and then set μ = 0; we obtain2

1 = Uc

π	

1

1+
(
εd+(Uc/2) nd

	

)2
= Uc

π	
sin2
(πnd

2

)
so that for a local moment to exist, namely, nd = 1, we obtain

Uc = π	.

For U > Uc, there are two solutions, corresponding to an “up” or “down” spin polarization
of the d/f -state. We will see that this is an oversimplified description of the local moment,
but it gives us an approximate picture of the physics. The total density of states now contains
two Lorentzian peaks, located at εd ±M:

Dd(ω) = 1

π

[
	

(ω − εd − UM)2 +	2
+ 	

(ω − εd + UM)2 +	2

]
.

The critical curve obtained by plotting Uc and εd as a parametric function of nd is shown
in Figure 24.13.

The Anderson mean-field theory allows a qualitative understanding of the experimen-
tally observed formation of local moments. When dilute magnetic ions are dissolved in a

2 d cot−1(x)

dx
= 1

1+ x2
.
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1

5 10 15
U/

Figure 24.13 Mean-field magnetic moment.

(a)

n(ω)

+U

(b)

n(ω)

Figure 24.14 Mean-field phase diagram of the Anderson model, illustrating how the d, f -electron
resonance splits to form a local moment. (a) U < π	, single half-filled resonance. (b) U > π	, up
and down components of the resonance are split by an energy U .

metal to form an alloy, the formation of a local moment is dependent on whether the ratio
U/π	 is larger than or smaller than unity. When iron is dissolved in pure niobium, the
failure of the moment to form reflects the higher density of states and larger value of 	
in this alloy. When iron is dissolved in molybdenum, the lower density of states causes
U > Uc, and local moments form.

The case in which a magnetic moment can arise, as illustrated in Figure 24.14, is when
the localized level has energy less than the Fermi level, so it will be occupied by at least one
electron, but the interaction strength is large enough that the energy to have two electrons
is greater than the Fermi level, i.e., εd < εF < εd + U .

The singly occupied impurity ground state is given by

∣∣∣d1
σ

〉
= d†

σ

kF∏
k

c
†
k↑ c

†
k↓ |0〉 .

For simplicity, we also assume that excitations to∣∣∣d2
〉
= d

†
σ̄ ckσ̄

∣∣∣d1
σ

〉
, or

∣∣∣d0
〉
= c

†
kσ dσ

∣∣∣d1
σ

〉
,
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i.e., respectively adding an electron to or removing an electron from the impurity cost the
same amount of energy U/2. As a result, the situation becomes electron–hole symmetric:
there are two Hubbard bands at the same energy that are each other’s mirror image through
electron–hole inversion. Effectively, the impurity is now a localized S = 1/2 system that
can switch its magnetization through either of two virtual processes, each with a transition
rate 2V 2/U : ∣∣∣d1

σ̄

〉
= c

†
k′σ dσ d

†
σ̄ ckσ̄

∣∣∣d1
σ

〉
via
∣∣∣d2
〉

∣∣∣d1
σ̄

〉
= d

†
σ̄ c

†
k′σ̄ c

†
kσ dσ

∣∣∣d1
σ

〉
via
∣∣∣d0
〉

.

We note that in this simple Hartree–Fock approach, we have a state consisting of a singly
occupied d/f -state plus a filled Fermi sea: as shown in Figure 24.15, the occupancy is
either

〈
nd↑
〉 = 1,

〈
nd↓
〉 = 0, or

〈
nd↓
〉 = 1,

〈
nd↑
〉 = 0, accounting for the two degenerate

situations. We recall from the Friedel sum rule that the phase shift δ(εF ) divided by π gives
the total number of occupying electrons. Thus for this doublet case, we have δ↑ = π,δ↓ = 0
or δ↑ = 0,δ↓ = π , as shown in Figure 24.16.

The question we turn to now it that of the ultimate fate of a local moment immersed
in a sea of conduction electrons. In the large U limit, that is the limit in which the onsite
repulsion energy U is much greater than the local moment resonance width 	, we will
examine the residual interaction between the local moment and the conduction electrons.

E
n
e
rg

y

V, U=0
(k) V≠0

E
n
e
rg

y

V≠0, U≠0

E
n
e
rg

y

Figure 24.15 Electron dispersions: left U = V = 0; middle V 
= 0, U = 0; right U,V 
= 0. εd is the
singly occupied d/f energy level, while εd + U is the doubly occupied level.

Figure 24.16 The impurity scattering phase shift for the conduction band states, reflecting single-
occupancy in the mean-field state.
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24.4.3 Relating the Anderson and Kondo Models: Schrieffer–Wolff Transformation

We understand now that in the regime 	 � |εd |, εd � εF ≡ 0, and εd + U > 0, the
energies of the empty and double occupied state,

∣∣d0
〉

and
∣∣d2
〉
, lie above the

∣∣d1
〉

states,
and they can be neglected at low temperatures – a local moment represented by a spin-1/2
is formed. This implies that local charge fluctuations on the d-level are suppressed at low
temperatures, and only virtual exchange with conduction band electrons survive, leading to
spin-flip processes. In other words, in systems that display an impurity moment, we surmise
that the prerequisite of large V � U means suppressing charge (or occupancy) fluctuations
on the impurity, thus effectively quenching the impurity charge degree of freedom. The only
degree of freedom that remains at the impurity is its spin, which carries low-energy spin
excitations. For such systems, we write the Anderson Hamiltonian as

HA = H0 +Hh

H0 =
∑
kσ

εkσ c
†
kσ ckσ + εd

∑
σ

d†
σ dσ + U d

†
↑ d↑ d

†
↓ d↓

Hh = V√



(
d†
σ ckσ + H.c.

)
,

where we treat Hh as a perturbation. We conjure the scenario where an electron that is
strongly localized at the impurity may occasionally hop into the band, or a band electron
hops on to the impurity site to gain kinetic energy. From our previous discussions, we infer
that this leads to an antiferromagnetic exchange interaction between the local impurity spin
and the conduction electron spin at the impurity site.

In 1966, Schrieffer and Wolff [162] proposed a scheme whereby the Anderson Hamilto-
nian is transformed into an effective one that supports the prescribed low-energy scenario.
Following their approach, we consider an effective Hamiltonian restricted to the subspace
in which the localized level is singly occupied.

We now follow the prescription proposed by Schrieffer and Wolff that involves the
application of a canonical transformation of the form eiS H e−iS = H̃. In the general
scheme of the Schrieffer–Wolff transformation and within the restricted Hilbert space, we
begin by partitioning Hh into components that effect transitions between Hilbert subspaces
with different occupancies, as shown in Figure 24.17,

Hh = V√



∑
k

[H21(k)+H12(k)+H01(k)+H10(k)]

H12(k) =
∑
σ

nσ̄ d
†
σ ckσ, H10(k) =

∑
σ

(1− nσ̄ ) c
†
kσ dσ,

where n ≡ nd is the population of the d level. We note that H12 takes the localized state
from singly occupied to doubly occupied, nd = 1 → 2, and H10 takes it from singly
occupied to empty. The presence of nσ̄ in H12 and 1− nσ̄ in H12 ensures that the impurity
level is already singly occupied. H21,H01 are the appropriate Hermitian conjugates.
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Figure 24.17 Virtual spin-flip transitions under impurity single-occupancy constraint.

At this point, we should be familiar with the application of this type of canonical
transformation. We expand to second order

H̃ = H0 + i [S,H0]+Hh + i [S,Hh]− 1

2
[S, [S,H0]]+ · · ·

and require that [S,H0] = iHh. We then arrive at

H̃ = H0 + i

2
[S,Hh] .

To determine S, we note that

[H12(k),H0] = (εk − εd − U)
∑
σ

nσ̄ d
† ckσ

[H10(k),H0] = − (εk − εd)
∑
σ

(1− nσ̄ ) c
†
kσ dσ .

The energy prefactors represent the difference between before and after the application of
the corresponding Hh operator. The Hermitian conjugate terms should have opposite signs.
We obtain

S = i
V√



∑
k

[H21(k)−H12(k)
εk − εd − U

− H10(k)−H01(k)
εk − εd

]
. (24.25)

In the expansion of [S,Hh], we only retain terms pertinent to the Hilbert subspace of single
occupancy, namely terms like H12(k)H21(k) and H10(k)H01(k), which represent virtual
double or single occupancy. We thus obtain

i

2
[S,Hh] ≈ −V 2

2


∑
kk′

[
−H12(k)H21(k′)+H12(k′)H21(k)

εk − εd − U

+H10(k)H01(k′)+H10(k)H01(k′)
εk − εd

]
. (24.26)

Note the opposite signs coming from the opposite signs of H21 and H10 in (24.25).
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To simplify the procedure, we invoke the assumption that the k-dependence of the
denominators is slow, which is justified when εd is far below the Fermi surface, and εd +U

far above. This allows us to introduce the quantities

J12 = 2V 2




∑
k

1

εk − εd − U
, J10 = 2V 2




∑
k

1

εk − εd

and write

i

2
[S,Hh] = − 1

2


∑
kk′

[
J12 H12(k)H21(k′)− J10 H10(k)H01(k′)

]
.

Next we consider how products of operators affect the states of the impurity spin and of the
conduction electrons, namely,

H12(k′)H21(k)=
∑
σ

[
nσ̄ c

†
k′σ dσ nσ̄ d

†
σ ckσ + nσ c

†
k′σ̄ dσ̄ nσ̄ d

†
σ ckσ

]
=
∑
σ

[
nσ̄ (1− nσ ) c

†
k′σ ckσ − d†

σ dσ̄ c
†
k′σ̄ ckσ

]
= (2 ↔ 1)

H10(k)H01(k′)=
∑
σ

[
(1− nσ̄ ) d

†
σ ck′σ (1− nσ̄ ) c

†
kσ dσ+(1− nσ ) d

†
σ̄ ck′σ̄ (1− nσ̄ ) c

†
kσ dσ

]
=
∑
σ

[
−nσ (1− nσ̄ ) c

†
kσ ck′σ − d

†
σ̄ dσ c

†
kσ ck′σ̄

]
= (1 ↔ 0). (24.27)

Recalling that n↑ (1− n↓) = 1/2+ Sz and n↓ (1− n↑) = 1/2− Sz, we can write

(2 ↔ 1) = n↓ (1− n↑) c†
k′↑ ck↑ − d

†
↑ d↓ c

†
k′↓ ck↑ + n↑ (1− n↓) c†

k′↓ ck↓ − d
†
↓ d↑ c

†
k′↑ ck↓

=
(

1

2
− Sz
)
c

†
k′↑ ck↑ − S+ c†

k′↓ ck↑ +
(

1

2
+ Sz
)
c

†
k′↓ ck↓ − S− c†

k′↑ ck↓

= 1

2

(
c

†
k′↑ ck↑ + c

†
k′↓ ck↓

)
− 2S · c†

k′σ ′ s
σ ′σ ckσ (24.28)

and

(1 ↔ 0) = −1

2

(
c

†
k′↑ ck↑ + c

†
k′↓ ck↓

)
− 2S · c†

k′σ ′ s
σ ′σ ckσ,

where s = h̄
2 σ , with σ being the Pauli matrix.

The sum of these terms produces two distinct scattering channels:

• A spin-independent scattering channel, carrying regular impurity disorder scattering,
with a coefficient J10 + J12

• A second channel containing the exchange interaction of the impurity spin with the
conduction electrons with a coefficient J10 − J12
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Here we are interested in the second channel, which yields the Kondo Hamiltonian

HKondo =
∑
kσ

εkσ c
†
kσ ckσ + J



S ·
∑
kk′
σσ ′

c
†
k′σ ′ s

σ ′σ ckσ, (24.29)

where

J = J10 − J12 = 2V 2




∑
k

−U
(εk − εd − U)(εk − εd)

≈ −2V 2




U

εd(εd + U)

J ≈ −2V 2




1

εd
, U � εd Strong repulsion limit.

J is clearly positive, since εd < 0 and εd + U > 0. Thus we find that the localized spin
couples to the spins of the conduction electrons that overlap it. Such coupling can cause
spin-flips and may enhance the scattering. We also note that the coupling is antiferromag-
netic, which favors the formation of a singlet; however, this competes with the kinetic
energy cost of single occupation of conduction electron levels.

24.5 The Kondo Effect

Normally the resistance of pure metals monotonically decreases as the temperature is
lowered, as electronic inelastic scattering processes, mainly due to phonons, are suppressed.
Adding impurities is expected to gives rise to a constant offset that does not change the
monotonicity. But, the story of the Kondo effect starts in the 1930s, when de Haas and
coworkers [48] in Leiden measured the resistance of some metals at very low temperatures.
Surprisingly, they found that gold samples’ resistance increased rather than decreased upon
cooling down below ∼8K, as shown in Figure 24.18. Subsequently, it was realized that
alloys containing dilute magnetic moments, such as a low concentration of Mn or Fe in
Cu, sometimes show similar trends. An explanation of the minimum was given by Kondo
in 1964, but it took a further decade before the nature of the ground state was properly
understood, and it was only in 1980 that a model for the phenomenon was solved exactly.

T

Resistance

Figure 24.18 Electrical resistance of an alloy exhibiting the Kondo effect.
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24.5.1 The Kondo Model

The mean field (Hartree–Fock) approximation to the Anderson model provided an
explanation for the local moment formation at magnetic impurity sites in nonmagnetic
metallic hosts. However, it failed to predict the strange behavior at low temperatures and
low energies that should be manifest in the model. A primary example is the peculiar
disappearance of the moments at low temperatures, where they become effectively
screened by the conduction electrons. The disappearance is found to be associated with one
quasielectron effectively binding with the impurity moment to create a local singlet state
that behaves like a nonmagnetic scatterer, at T = 0. This physical picture was proposed
by Kondo, in his attempt to explain the existence of the resistance minimum described
previously. Kondo treated the problem perturbatively in terms of an exchange coupling
between the magnetic impurity and the conduction band. The Hamiltonian constructed by
Kondo is

HK =
∑
kσ

εkσ c
†
kσ ckσ +Hs =

∑
kσ

εkσ c
†
kσ ckσ + J S · s(0), (24.30)

where S represents the local impurity moment and s(0) is the spin density of the conduction
electrons at the impurity site. It is in fact identical to (24.29), when we can write the
exchange interaction as

Hs = J S · s(0) = J

[
Sz sz(0)+ 1

2

(
S+ s−(0)+ S− s+(0)

)]

= J




∑
kk′

[
Sz
(
c

†
k′↑ ck↑ − c

†
k′↓ ck↓

)
+ S+ c†

k′↓ ck↑ + S− c†
k′↑ ck↓

]
. (24.31)

We now follow Kondo’s perturbative scheme by adiabatically turning on Hs in a system
that consists of a Fermi sea |FS〉 and an extra electron at the Fermi level, together with
the impurity level. The initial state is then |i〉 = c

†
kiσ
|FS〉. We determine the scattering

amplitude, with the aid of the T-matrix, between |i〉 and |f 〉 = c
†
kf σ ′ |FS〉,

〈f |T |i〉 = 2πi

〈
f

∣∣∣∣Hs +Hs

1

εk −H0
Hs + · · ·

∣∣∣∣ i〉 .

Since we are interested in scattering events that contribute to the resistivity, we have to
consider on-the-energy-shell scattering, where εki = εkf .

Scattering Amplitude

We find that in the case of large U , the Anderson model has a built-in local moment.
This local moment provides a scattering potential for the conduction electrons that is quite
different from a conventional scalar potential: it endows the impurity scatterer with internal
degrees of freedom. We will now explore the ramifications of this difference.
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Figure 24.19 Second-order spin-independent scattering processes: (a) direct, (b) exchange.

A. Nonmagnetic Impurity Scattering Pedagogically, it would be instructive to compare
the spin-dependent scattering outcome with that of a regular nonmagnetic scattering. We
shall first consider the case of a nonmagnetic impurity, with a scattering potential

Hs =
∑

kk′,σ
c

†
k′σ Vkk′ ckσ .

We have to consider the direct and exchange channels in second-order processes, as shown
in Figure 24.19:〈

0

∣∣∣∣ckf c
†
kf
Vkf pcp

1

εki −H0
c†

pVpki cki c
†
ki

∣∣∣∣ 0〉 = Vkf p
1− nF (εp)

εki − εp
Vpki〈

0

∣∣∣∣ckf c
†
pVpki cki

1

εki −H0
c

†
kf
Vkf pcpc

†
ki

∣∣∣∣ 0〉 = −Vpki
nF (εp)

εki − (εki − εp + εkf )
Vkf p

= Vpki
nF (εp)

εkf − εp
Vkf p.

We note that the first process only takes place if the intermediate state p is unoccupied,
while the second only if it is occupied. Recalling that εkf = εki , it is clear that the Fermi
function cancels when we take the sum of the two processes. This indicates that there is no
significant T dependence to this order in ordinary potential scattering.

B. Magnetic Impurity Scattering Next, we consider the corresponding processes for
spin-dependent scattering, where the perturbation is given by Hs in (24.31). Actually,
the exchange interactions of the impurity spin with the conduction electrons produce a
correlated choreography, where the impurity spin state at a given time depends on previous
scattering events.3 To demonstrate the ensuing effects, we will calculate the scattering
amplitude, to second order in J , which will give the scattering rate to O(J 3).

The first-order contribution to the amplitude is〈
kf ↑
∣∣Hs |ki ↑〉 = −

〈
kf ↓
∣∣Hs |ki ↓〉 = JSz


〈
kf ↓
∣∣Hs |ki ↑〉 = JS+



; 〈

kf ↑
∣∣Hs |ki ↓〉 = JS−




3 For example, we consider two electrons, both with spin-up, trying to spin-flip scatter from a spin-down impurity. The first
electron can exchange its spin with the impurity and leave it spin-up. The second electron therefore cannot spin-flip scatter
because of spin conservation. Thus the electrons of the conduction band cannot be treated as independent objects.
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giving a temperature-independent scattering rate of

� ∝ Nimp




J 2

ω

[
Sz2 + 1

2

(
S+S− + S−S+

)] ⇒ Nimp




J 2

ω
S(S + 1).

The second-order contribution is of the form∑
p

〈
kf ↑
∣∣Hs |p〉 1

ε − εp
〈p|Hs |ki ↑〉 ,

where, again, ε = εki = εkf , and |p〉 is an intermediate state with energy εp. The direct,
or non-spin-flip, processes are given by∑

p

〈
kf ↑
∣∣ Sz c†

kf ↑ cp↑
1

ε − εp
Sz c

†
p↑ cki↑ |ki ↑〉 = J 2

∑
p

SzSz
1− nF (εp)

εki − εp∑
p

〈
kf ↑
∣∣ Sz c†

p↑ cki↑
1

ε − εp
Sz c

†
kf ↑ cp↑ |ki ↑〉 = J 2

∑
p

SzSz
nF (εp)

εkf − εp
.

We thermal-averaged over the intermediate state, by setting

c
†
p↓ cp↓ →

〈
c

†
p↓ cp↓

〉
= nF (εp), and cp↓ c†

p↓ →
〈
cp↓ c†

p↓
〉
= 1− nF (εp).

Upon adding the two longitudinal contributions, as shown in Figure 24.20, the Fermi distri-
bution cancels out: the final probability does not depend on the occupation of intermediate
states and hence on temperature.

The interesting contributions involving spin-flips, shown in Figure 24.21, arise from the
processes∑

p

〈
kf ↑
∣∣ S− c†

kf ↑ cp↓
1

ε − εp
S+ c†

p↓ cki↑ |ki ↑〉 = J 2
∑

p

S−S+
1− nF (εp)

εki − εp∑
p

〈
kf ↑
∣∣ S+ c

†
p↓ cki↑

1

ε − εp
S− c†

kf ↑ cp↓ |ki ↑〉 = J 2
∑

p

S+S−
nF (εp)

εkf − εp
.

JS JS

p

JS JS

p

Figure 24.20 Longitudinal terms.

JS+ JS–

p

JS+JS–

p

Figure 24.21 Transverse terms.
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Combining terms, we then have contributions to the amplitude of

J 2




∑
p

1

εk − εp

[
S+ S− nF (εp)+ S− S+

(
1− nF (εp)

)]
= S− S+

J 2




∑
p

1

εk − εp
+ [S+, S−] J 2




∑
p

nF (εp)

εk − εp

= S− S+
J 2




∑
p

1

εk − εp
+ J 2Sz




∑
p

nF (εp)

εk − εp
.

The factor [εk−εp]−1 in the sums on the right-hand side is divergent at the energy εk of the
particle whose scattering amplitude we are calculating, which in the case of most interest
is the Fermi energy. For the first sum, this divergence is not important, since contributions
from above and below the Fermi energy cancel to leave a finite result. But in the second
term, the Fermi function limits this cancellation.

In evaluating the sum over the intermediate states p in the second term, we assume a
conduction bandwidth [−W,W ] and a flat density of states D, and we obtain

∑
p

nF (εp)

εk − εp
� D

∫ W

−W
dεp

nF (εp)

εk − εp

= D
(

ln |W + εk| +
∫ W

−W
dεp

(
−∂nF (εp)

∂εp

)
ln
[
εk − εp

])
. (24.32)

In the last integral, we can approximate the factor of order ∂nF /∂εp as finite only in the
range kBT , as shown in Figure 24.22, giving⎧⎨⎩ ln εk for εk > kBT

ln
[

W
kBT

]
+ const. for εk < kBT .

We obtain

1




∑
q

nF (εq)

εk − εq
= D(εF ) ln

[
W

kBT

]
.

=0

T

dn /d

–W
0

1

Figure 24.22 Fermi function and its derivative.
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Figure 24.23 Anomalous scattering contribution to the resistivity due to magnetic impurities.

Figure 24.24 Magnetic impurity moment screening above and below the Kondo temperature.

To calculate the scattering rate, we square the combination of the first- and second-order
contributions to the amplitude. We find a result proportional to

J 2 + 3J 3 D(εF ) ln

[
W

kBT

]
.

which grows with decreasing temperature. Thus, the spin part of the interaction, to a first
approximation, makes a contribution to the resistance of order J 3 ln(1/T ). Combined
with the phonon contribution to the electron scattering rate, this yields a minimum in the
resistance as a function of temperature, as shown in Figure 24.23, for alloys containing
magnetic impurities, which is the quest of the Kondo effect.

The temperature scale at which the logarithmic term becomes important is the Kondo
temperature TK = W e−1/2DJ , as shown in Figure 24.24. For the physically relevant
regime in which JD(εF ) is small, TK � W .

We might speculate that when Kondo found this result he might have said “eureka,”
I found it: a contribution to the resistivity that grows as T gets small. Yet, he might also
have realized that at temperatures T � TK , the divergence of this contribution signals that
perturbation theory is breaking down. Thus we arrive at the realization that even though we
are dealing with a single impurity, the Kondo problem is actually a complicated many-body
case. Once more we encounter a very singular problem where we have to find a way to sum
all the processes.
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24.5.2 Variational Approach to the Kondo Problem

Due to the breakdown of perturbation theory with the appearance of a logarithmic singu-
larity in the electron local moment scattering amplitude, we must seek a different approach
to analyzing the Kondo S-(d/f ) model. In our pursuit to reveal and understand the nature
of the Kondo ground state, we should contemplate the case of strong coupling limit in
which JD(εF ) is large, namely, an antiferromagnetic J where the impurity spin binds a
conduction electron into a singlet state.

To study this scenario, we shall employ a variational method, starting with the trial wave
function [187, 205]

|ψ0〉 =
⎡⎣α0 +

∑
k<kF ,σ

αk d†
σ ckσ

⎤⎦ ∏
k≤kF

(
c

†
k↑ c

†
k↓
)
|0〉 , (24.33)

where
∏

k≤kF
(
c

†
k↑ c

†
k↓
)
|0〉 represents the filled Fermi sea ground state of the pure system.

The first term is just the amplitude for a filled Fermi sea and an empty d/f -state, while
the second term is a superposition of states with a filled impurity d/f -level and a hole in
the Fermi sea at momentum k. Actually, the amplitude α0 is found to be very small, but it
does signal a nonzero probability of finding the d/f -level empty, which leaves a striking
footprint in the resultant spectrum. The more obvious feature of this trial state wavefunction
is that it represents a spin singlet state, shown in Figure 24.25, rather than a single-spin
doublet that we would have naively expected.

To calculate the variational energy of the trial wavefunction, we use the variational
energy functional

Figure 24.25 Singlet state in the Kondo regime, showing the Kondo cloud.
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Ẽ[|ψ0〉] = 〈ψ0|HA |ψ0〉 − ε 〈ψ0 |ψ0〉
〈ψ0 |ψ0〉 = |α0|2 + 2

∑
k

|αk|2

〈ψ0|HA |ψ0〉 = |α0|2 E0 + 2
∑

k

|αk|2 (E0 + εd − εk)+ 2V
∑

k

[
α∗0 αkσ + α∗kσ α0

]
,

where ε is a Lagrange multiplier for the normalization condition. We shall measure all
energies in the Hamiltonian relative to the Fermi sphere and set E0 = 0 and take the
coefficients to be real. The extremum conditions become

∂

∂α0
⇒ 2V

∑
k

αk = ε α0

∂

∂αk
⇒ (εd − εk) αk + V α0 = ε αk. (24.34)

The solution of (24.34) yields the self-consistent equation

ε = 2
∑
k<kF

V 2

ε − εd + εk
. (24.35)

We introduce the binding energy 	K = ε − εd < 0, which provides a measure of the
energy of the Kondo singlet trial wavefunction to be compared with that of the singly
occupied d/f -state plus the filled Fermi sea configuration( E0 + εd = εd ). This allows us
to write (24.35) as

εd +	K = 2
∑
k<kF

V 2

	K + εk
= 2

∑
k<kF

V 2

	K − |εk|, (24.36)

where in the last line we used the fact that εk < 0 since the only available states are those
below the Fermi surface. Next we change the sum to an integral, setting |εk| = E , and we
write

εd +	K = 2D(0)
∫ εF

0
dE −V 2

E −	K

= 2D(0) V 2 ln

[
εF

|	K |
]

. (24.37)

We note that this result resembles the BCS self-consistent problem, showing a logarithmi-
cally divergent behavior at low energies. When the binding energy |	K | � εd , we can
neglect 	K on the left-hand side and rearrange to get

	K = −εF exp

[
− 1

2D(0) V 2/εd

]
. (24.38)

But V 2/εd is just the value of the coupling constant J in the Kondo Hamiltonian, and
we write

	K = −εF exp

[
− 1

2D(0) J

]
< 0. (24.39)
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This result supports the validity of our singlet ground state represented by our trial wave-
function. We can attribute the emergence of a logarithmic singularity in our results to
the possibility of making hole excitations with arbitrarily low energy. Such low-energy
excitations are available because of the presence of a sharp Fermi surface and the absence
of an energy gap. Thus it becomes easy to induce low-energy excitations, in order to gain
the hybridization energy.

There are thus two very different energy scales associated with the original Anderson
problem (∼εd ) and with the Kondo problem kBTK ∼ εd exp[−1/2D(0)J ]. The Kondo
temperature can become small, particularly when J is small, and a typical scale is around
10◦K. Since this is relatively low, it becomes relevant to ask what occurs at temperatures
where a localized moment exists, but the Kondo singlet is thermally dissociated, which we
will address next.

d/f -Level Occupation

Within the scenario of large U and εd < 0, the occupation of the impurity state 〈nd〉 ∼ 1.
Thus, it is more instructive to compute

1− 〈nd〉 =
α2

0

α2
0 + 2

∑
k<kF

α2
k

= 1

1+ 2
∑

k<kF

(
αk
α0

)2
. (24.40)

We find from (24.34) that (
αk

α0

)2

= V 2

(	K + εk)2
.

Recalling that 	K,εk < 0, we write

2
∑
k<kF

(
αk

α0

)2

= 2D(0)
∫ εF

0
dE V 2

(|	K | + |E |)2
= 2D(0) V

2

	K

= 2

π

	

	K

, (24.41)

where 	 is the resonance width of the impurity level. Substitution in (24.40) yields

1− 〈nd〉 = 1

1+ 2	
π	K

� π	K

	
� 1,

where the used the experimental quantities 	 ∼ 0.5 eV, and 	K ∼ 10−3 eV.
From this result, we see that the deviation of the d/f -level occupation from unity is very

small; in the variational Kondo wavefunction, the d/f -level is nearly singly occupied, but
not quite. In the preceding example, we obtained the Hartree–Fock solution to the Anderson
model. One key feature of this solution was that it predicted a doublet of degenerate ground
states for the system. In contrast, the Kondo variational ground state is a singlet and does
not distinguish up- from down-spins.
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D(  )

/

Figure 24.26 For the singlet ground-state function, the excess density of states in the conduction
band appears as a Kondo resonance at εF , satisfying δd↑(εF ) = δd↓(εF ) � π/2.

Huge density of states at Fermi level d, f
electrons participate at Fermi level

Figure 24.27 Electron dispersions and density of states withU,V 
= 0. kBTK is the Kondo linewidth,
	 the hybridization parameter, and Ed the ionic d/f energy level.

Kondo Resonance

The result that the d/f -level occupancy is less than unity leads to the presence of extra
electron density of states in the conduction band.

Because of the Pauli principle, this excess density of states appears at the Fermi energy
and is manifest as a Kondo resonance peak of width 	K and integrated magnitude of
1− 〈nd〉 = π	K

	
, as shown in Figure 24.26.

We can obtain an alternative physical perspective of this resonance if we consider it
through the lens of the Friedel sum rule. We note that the Kondo variational singlet state
contains equal probability of up- and down-spin occupation. Moreover, we found that the
effective occupation of the d/f -state 〈nd〉 ≈ 1. Consequently,

〈
nd↑
〉 = 〈nd↓〉 � 1/2, which,

according to the Friedel sum rule, means that at the Fermi energy we have resonances,
since δd↑ = δd↓ � π/2. Figure 24.27 shows a typical band dispersion and DOS of a
Kondo system.”
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Exercises

24.1 Spin susceptibility of a superconductor:
Using the Kubo formula, calculate the magnetization 〈μz〉 of a free Fermi gas asso-
ciated with an external Zeeman term in the Hamiltonian

HI = −
∫

dx′ μz(x′) Bz(x′,t)

μz(x) = μB

(
n↑(x)− n↓(x)

)
.

Calculate the spin susceptibility χzz(q,ω) (follow the Lindhard function derivation
in Chapter 7), and show that it is similar to that of the charge susceptibility, up to an
overall factor. Show the susceptibility reduces to the Pauli susceptibility, χzz(q → 0,
ω = 0,T → 0) = μ2

BN0.
Repeat the calculation for the superconducting state, and predict the temperature

dependence of the Pauli susceptibility for T � Tc in that state.
24.2 Frustration:

On a bipartite lattice (i.e., one in which the neighbors of one sublattice belong to
the other sublattice), the ground state (known as a Néel state) of a classical antifer-
romagnet can adopt a staggered spin configuration in which the exchange energy is
maximized. Lattices that cannot be classified in this way are said to be frustrated,
and the maximal exchange energy associated with each bond cannot be recovered.
Using only symmetry arguments, specify one of the possible ground states of a
classical three-site triangular lattice antiferromagnet. (Note that the invariance of
the Hamiltonian under a global rotation of the spins means that there is manifold
continuous degeneracy in the ground state.) Using this result, construct one of the
classical ground states of the infinite triangular lattice.

24.3 Commutators in the Anderson model:
Show that the Anderson model Hamiltonian gives

[dσ,HA] = εd dσ +
∑

k

V ckσ + U dσ nσ̄ .

24.4 Ruderman–Kittel–Kasuya–Yosida (RKKY) oscillations:
As we have learned, the RKKY interaction is a mechanism of coupling of local-
ized magnetic moments (nuclear magnetic moments or spins of localized electrons
in inner shells) through conduction electrons. The physics of the mechanism is as
follows: if we have a localized magnetic moment S, it couples locally to electrons via

Hint = J S�α(x) σαβ �β(x).

Without loss of generality, assume that S‖z. Then it is equivalent to the potential
±JS at the position x for up- and down-spins, respectively. This potential leads to
the modulation of density (the actual density, not the density of states!)

δn↑(y) = U(x− y) JS, δn↓(y) = −U(x− y) JS
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with some function U(x − y). If there is another local spin at the position y, this
modulation of electronic density leads to the interaction between the two magnetic
moments given by

ERKKY = 2J 2 S · S2 U(x− y).

Our goal is to calculate the function U(x−y). It is a linear response of the density δn
at the position y to the potential at the position x. Show that this response function is
given by the same diagram in Figure 24.9, with the only difference being that now we
integrate over the time difference at the positions x and y and use the time-ordered
Green function. In the frequency representation, it is given by

U(R) =
∫

dω

2π
[G(R,ω)]2 ,

where R = |x− y|. Hint: consider a noninteracting electron gas in the presence of a
localized spin S , interacting with the local spin density of electrons. The interaction
can be written as

H1 = J S δ(x).

Assume that J is small and calculate the spin density of electrons as a function of R
the distance to the spin for R � k−1

F in the first order in J .
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[64] Fock, V. A. 1930. Näherungsmethode zur Losung des quantenmechanischen
Mehrkörperproblem (Approximation method for the solution of the quantum
mechanical many-body problem). Z. Phys., 61, 126–148.

[65] Fradkin, Eduardo. 2013. Field Theories of Condensed Matter Physics. second edn.
Cambridge University Press.

[66] Franz, Marcel, and Molenkamp, Laurens (eds). 2013. Topological Insulators. Con-
temporary Concepts of Condensed Matter Science, vol. 6. Elsevier.
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breathing shell model, 183
insulators and semiconductors, 179
normal metals, 178
pseudocharge model, 181
shell model, 183

phonon dispersion measurement, 186
inelastic helium scattering, 191
inelastic neutron scattering, 189

rigid-ion model, 179
second-quantized Hamiltonian, 644
single-phonon scattering, 187

plasmons, 421, 492
principal bundle, 239
pseudopotentials, 92

angular momentum representation, 95
Ashcroft’s empty-core model, 102
direct empirical method, 97
first principles, 102
Heine–Abarenkov model, 101
nonlocality, 94
scattering phase-shift, 96
Ziman’s model, 101

pseudorotations, 278
pseudospin, 331

quantum spin Hall effect, 221
quantum spin Hall insulator, 222

Kane–Mele model, 348
Dirac γ matrices, 355
Hamiltonian, 354
helical edge states, 357
intrinsic spin–orbit coupling, 349
Rashba spin–orbit coupling, 352
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random phase approximation, 418, 490
Rashba effect, 134

S-matrix, 454
second quantization, 379

bosons, 380
fermions, 382
field operators, 384

equal-time commutators, 384
interaction potential

single-particle, 387
two-particle, 388

vacuum state, 386
self-consistent field, 35
Semenoff insulator, 340
semiconductor heterojunctions, 140
Sommerfeld gas, 10
spin–orbit interactions

Dresselhaus bulk-inversion asymmetry term, 123
in semiconductors, 119

spontaneous symmetry breaking, 556
ground-state degeneracy, 556
interacting boson systems, 562

population fluctuations, 562
noninteracting boson systems, 557

coherent ground states, 560
phase-particle number uncertainty, 559
quantum depletion, 563

Stoner mean-field theory, 769
Stoner criterion, 770
Stoner excitations, 775
Stoner magnetic susceptibility, 779

structure group, 238
superconductivity, 666

BCS theory, 677
Bogoliubov–de Genne Hamiltonian, 690
Bogoliubov–Valatin transformation, 677
gap parameter, 682
gauge-symmetry breaking, 684
Nambu spinors, 689
superconducting state, 680
transition temperature, 684

Cooper instability, 674
Cooper pairing, 668

binding energy, 669
pair size, 672

Ginzburg–Landau theory, 693
Anderson–Higgs mechanism, 703
electromagnetic fields, 698
free energy expansion, 694
Meissner effect, 701

Gor’kov Green functions, 691
Gor’kov equations, 686

superfluidity, 553
Ginzburg–Landau theory, 555

free energy, 566

Goldstone mode, 572
superfluid vorticies, 569
time-dependent equation, 570

Gross–Pitaevskii equation, 564
Landau criterion, 553

tangent space, 227
tenfold way, 291
tight-binding method, 83

Harrison’s scaling of matrix element, 86
time-evolution operator, 451

interaction picture, 451
time-ordering operator, 453
time-reversal symmetry, 16

classical mechanics, 16
invariant momenta, 299
operator, 19
quantum mechanics, 17
sewing matrix, 314
time-reversal polarization, 316
transformation of operators, 21
transformation of spin-1/2 ket, 24
transformation of spinless ket, 23

Tomonaga–Luttinger liquid, 616
bosonization, 616

spinless system, 622
topological crystalline insulators, 223
topological equivalence, 225

insulators, 286
topological insulator, 223
topological invariant, 221, 289

Z2, 319
Z2, 222
first Chern number, 221, 264, 304

topology, 224
transition function, 237
transition metals
d-bands and resonances, 87
model Hamiltonian, 91

trimer molecule, 270

vector fields, 234
commutators, 239

Wannier functions, 68
Weyl semimetals, 223

Fermi arc surface states, 363
types I and II, 365
Weyl points (nodes), 360

chirality and Berry charge, 360
classification, 361
monopole, 360

Wick’s theorem, 460
normal ordering and contractions,

460
Wilson ratio, 586
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