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Preface

This book is the culmination of a set of notes that has been growing and fer-
menting in a bottom drawer of my desk for over 30 years. The goal was that
after the right amount of pedantic aging, they would be ready to uncork the bot-
tle and share with the world. It is my hope that the finished product harbors the
perfect blend of intuition and rigorous preciseness, theory versus pragmatism,
hard-nosed mathematics, and an enjoyable learning experience.
I must confess that when the entrails of this book were taking form, the

intended audience was the 25 or so students in my Introduction to Higher Math
class, but now that they have been released into the wild, my hope is they will
find a wider audience.

vii





Possible Beneficial Audiences

• College students who have taken courses in calculus, differential equations,
and perhaps linear algebra, may be unprepared for themore advanced courses
of real analysis, abstract algebra, and number theory that lie ahead. (If you
cannot negate a logical sentence, you are probably not ready for prime time.)
Although the basic calculus et al. sequence is important for developing a
rounded background in mathematics as well as developing problem-solving
skills, most calculus courses are not intended to prepare the student for
advanced mathematics. Few students, after going through the basic sequence,
are even familiar with the basic language of mathematics, such as the
sentential and predicate logic. If a student is to develop skills for reading,
analyzing, and appreciating mathematical arguments and ideas, knowledge of
the basic language of mathematics is a must.

•Mathematics teachers andmath education studentswill hopefully find this
book a valuable aid for teaching an inspiring and exciting introduction to
mathematics that goes beyond the basics. The large and varied collection of
historical notes and varied problems at the end of each section should be
worth the “price of admission” alone.

• Bright high school students with good backgrounds and a strong interest in
mathematics will hopefully fall in love with this book, all the way from the
“Important Note” inserts to the exciting problem sets.

• Scientists, engineers, and out-of-practice others in the professional
workforce, who are discovering the mathematics they learned long ago is not
adequate for their current needs, will benefit by spending some time with this
book. This book might even show self-study individuals just how uncom-
plicated and enjoyable mathematics can be, possibly at variance from their
college days, and in fact might develop newly foundmathematical confidence.
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Wow Factors of the Book

Although this book is intended to raise the mathematical thought process of the
reader, it is not intended for the reader to come away thinking that mathematics
consists simply in reading and proving theorems. The goal is to blend a nuanced
amalgam of inductive and deductive reasoning. Utmost in the goal of the book
was to avoid the dogmatism of page-after-page of theorems and proofs, to
prompt the reader in thinking about the ideas presented.
The book is loaded with informative sidebars, historical notes, and tons of

graphics, which hopefully provides an enjoyable atmosphere for a constructive
learning process.
Over the years, I have managed to track down, dig up, sniff out, and evenmake

up a few fascinating problems myself. Each section of the book is packed with
loads of problems for readers of all interests and abilities. Each section is filled
with a broad range of examples intended to add clarity and insight to abstract
concepts. The book takes time to explain the thinking and intuition behind
many concepts.
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Chapter by Chapter (the nitty-gritty)

Chapter 1: Logic and Proofs
This book is no Principia Mathematica by Alfred North Whitehead and Ber-
trand Russell, who famously prove 1 + 1 = 2 after 378 arduous pages in their
seminal 1910 work on the foundations of mathematics. That said, there are
many mathematical proofs in this book, and each and every one of them is
intended to act as a learning experience. The first and foremost, of course, being
that before anything can be proven true or false, mathematics must be stated in a
precise mathematical language, predicate logic. Chapter 1 introduces the reader
to sentential and predicate logic and mathematical induction. After two intro-
ductory sections of sentential logic and the connectives: “and,” “or,” “not,” “if
then, if and only if,” we move up the logical ladder to predicate logic and the
universal and existential quantifiers and variables. Sections 1.4 and 1.5 are spent
proving theorems in a variety of ways, including direct proofs, proofs by contra-
positive, and proofs by contradiction. The chapter ends with the principle of
mathematical induction.

Chapter 2: Sets and Counting
Sets are basic tomathematics, so it is natural that after a brief introduction to the
language of mathematics, we follow with an introduction to sets. Section 2.1
gives a barebones introduction to sets, including the union, intersection, and
complements of a set. Section 2.2 introduces the reader to the idea of families
of sets and operations on families of sets, tools of the trade for more advanced
mathematical subjects like analysis and topology. Section 2.3 is an introduction
to counting, including permutations, combinations, and the pigeonhole princi-
ple. Sections 2.4, 2.5, and 2.6 introduce the reader to the basics of Cantor’s dis-
coveries on the cardinality of infinite sets. Brief discussions are included on the
continuum hypothesis and the axiom of choice, as well as the Zermelo–Frankel
axioms of set theory.
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Chapter 3: Relations
As the English logician Bertrand Russell once said, mathematics is about rela-
tions. This chapter introduces order relations, e.g. partial, strict, and total order,
followed by equivalence relations and the function relation. Section 3.5 intro-
duces the idea of the image and inverse image of a set, concepts important in
analysis and topology.

Chapter 4: The Real and Complex Number Systems
Sections 4.1 and 4.2 show how the real numbers can either be defined axiomat-
ically, or constructed all the way from the natural numbers, to the integers,
to the rational numbers, and finally to the real numbers using equivalence rela-
tions introduced in Chapter 3. The Dedekind cut is introduced in Section 4.2,
which defines the real numbers in terms of the rational numbers. Finally, in
Section 4.3, a brief tutorial on the complex numbers, a subject often overlooked
in the undergraduate curricula.

Chapter 5: Topology
This chapter introduces a number of sides of topology, starting with Sections 5.1
and 5.2 on graph theory. Section 5.3 introduces some basic ideas of geometric
topology, such as homeomorphisms, topological equivalence, Euler’s equation
for Platonic solids, and a hint at its verification. Finally, Section 5.4 introduces
the basic ideas of point-set topology on the real line, including open and closed
sets, limit points, interior, exterior and boundary of a set, and so on.

Chapter 6: Algebra
Chapter 6 provides a brief introduction to symmetries and abstract groups,
rings, and fields. Section 6.1 finds the symmetries of geometric objects and
shows who a composition of symmetries gives rise to the algebraic structure
of a group. Sections 6.2, 6.3, and 6.4 introduce the symmetric and cyclic groups
of permutations, along with the idea of a subgroup. Finally, Section 6.5 gives a
brief summary of rings and finite fields.

Conclusion
May the ghosts of past students of this book be with you as you find your way
to a mathematical utopia. In proper hands, this book can be used in a one-
semester course, covering the entire book or portions of the book. For a more
leisurely pace, an instructor can pick and choose depending on one’s prefer-
ences. If rushed, one may pass over portions of the book, depending on one’s
preferences.

Enjoy.
Stanley Farlow

Professor Emeritus of Mathematics
University of Maine

Chapter by Chapter (the nitty-gritty)xii



Note to the Reader

And here let me insert a parenthesis to insist on the importance of written exer-
cises. Compositions in writing are perhaps not given sufficient prominence in
certain examinations. In the École Polytechnique, I am told that insistence on
compositions would close the door to very good pupils who know the subject,
yet are incapable of applying it in the smallest degree. The word “understand”
has several meanings. Such pupils understand only in the first sense of the word,
and this is not sufficient to make either an engineer or a geometrician.

—Henri Poincaré

Keeping a Scholarly Journal

One cannot help but be impressed with the huge number of important English
naturalists who lived during the nineteenth century. In addition to Darwin,
there were Wallace, Eddington, Thompson, Haldane, Galton, and others.
One characteristic that permeated their work was the keeping of detailed
journals where every observation and impression was recorded. In addition
to recording data, a journal provides a way to organize one’s thoughts, explore
relationships, and formulate ideas. In fact, they stimulate learning through
writing.
Journal keeping has declined in the twentieth and twenty-first centuries,

but readers of this book have the ability to recapture that important tool of
learning-through-writing.
Entries in your (leather-bound) journal can be entered daily or in conjunction

with each section of the book. It is useful to date entries and give them short
descriptive titles. While there are no specific rules on what to include in the
journal or how to write them, you will eventually find your “voice” on what
works best. From the habit of rereading old entries each time you write new
ones, see how your grasp of material grows. After years have passed, you will
be impressed on the value you give past journal entries.

xiii



About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/farlow/advanced-mathematics

The famous mathematician, George Polya, once remarked that mathematics is
not a spectator sport, and to learn mathematics, youmust domathematics. Oth-
erwise, he argued, you are simply a mathematical spectator.
In the context of this book, Polya’s observation means that while reading the

book, the reader is a mathematical spectator, after which the reader develops
serious mathematical skills and becomes a mathematician by solving, untan-
gling, playing with, etc., yes, even enjoying the problems in the book.
Solving mathematical problems is similar to other endeavors in life, even

activities far afield frommathematics, like swimming or playing a musical instru-
ment.We acquire skills in these activities by trial and error, by practice, bymaking
observations, throwing out what does not work, and keeping what does. After a
while, we become adept, even proud of our skills, and more often than not, enjoy
such activities, that earlier we might have disliked, even abhorred.
I seriously hope the reader will enjoy and develop mathematical skills from

the problems in this book, as much as I enjoyed making them.
Enjoy,

Stanley Farlow
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Chapter 1

Logic and Proofs

1





1.1

Sentential Logic

Purpose of Section To introduce sentential (sen-TEN-shuhl) or propositional
logic and the fundamental idea of a sentence (or proposition) and show how
simple sentences can be combined using the logical connectives “and,” “or,”
and “not” to form compound sentences. We then analyze themeaning of these
connectives by means of truth tables and then introduce the concepts of log-
ical equivalence, tautologies, and contradictions. We close by introducing
conjunctive and disjunctive normal forms of logical expressions.

1.1.1 Introduction

So what is mathematics? The word itself is derived from the Greek word
mathēmatikē, meaning “knowledge” or “learning.” To both the practitioners
of mathematics as well as the general public, the definition of the Queen of
the Sciences varies widely.

• One of the greatest mathematician of Greek antiquity, Aristotle
(384–322 BCE) defined mathematics as follows:

Mathematics is the science of quantity.

• Later, the Italian physicist Galileo (1564–1642), who was more interested in
how it was applied, wrote:

“Mathematics is the language of the Universe and its characters are
triangles, circles, and other geometric figures, without which it is impossi-
ble to understand a single word of it.”

• A more generic definition is given by the encyclopedia Britannica, which
defines mathematics as follows:

3

Advanced Mathematics: A Transitional Reference, First Edition. Stanley J. Farlow.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/farlow/advanced-mathematics



Mathematics is the science of numbers and shapes and the relations
between them.

• Then there is the beauty in mathematics as observed by the physicist Albert
Einstein, who wrote

Pure mathematics is, in its way, the poetry of logical ideas.

• Iranian mathematician Maryam Mirzakhani once shared her thoughts about
mathematics.

There are times when I feel like I’m in a big forest and don’t know where
I’m going, but then I come to the top of a hill and can see everything more
clearly.

1.1.2 Getting into Sentential Logic

Although mathematics uses symbolic notation, its logical arguments are formu-
lated in natural languages and so it becomes necessary to examine the truth
value of natural language sentences. We begin by introducing the logical system
behind reasoning called sentential (or propositional) logic, which is the most
basic formal system of logic1 and uses symbols and rules of inference such as

if P is true and P implies Q, then Q is true2

Sentential logic is generally the first topic introduced in a formal study of logic,
followed by more involved systems of logic, like predicate logic and modal logic.

Important Note The study of logic had its origins in many ancient cultures,
but it was the writings of the Greek logician Aristotle (384–322 BCE) who most
influenced Western culture in a collection of works known collectively as the
Oranon.

English, as do all natural languages, contains various types of sentences, such
as declarative, interrogative, exclamatory, and so on, which allow for the

1 There are other formal systems of logic other than sentential (or propositional) logic, such as
predicate and modal logic. Because the rules of formal logic are precise, they can be programmed
for a computer and are capable of analyzing mathematical proofs. Formal logical systems are
important in artificial intelligence, where computers are programmed in the language of formal logic
to carry out logical reasoning.
2 Greek logicians called this rule of inference modus ponens, meaning the way that affirms.

1.1 Sentential Logic4



effective communication of thoughts and ideas. Some sentences are short and to
the point, whereas others are long and rambling.
Some sentences can be classified as being either true or false, such as the

sentence, “It will rain tomorrow.” Although we may not know if it will rain
or not rain, the sentence is nevertheless either true or false.
Other sentences, like the interrogatory sentence, “Why doesn’t Burger King

sell hotdogs?” or the exclamatory sentence, “Don’t go there!” express thoughts,
but have no truth or false value. Although statements like these are useful for
effective communication, they are no concern in our study of logic. The sen-
tences we study in this book are declarative and are intended to convey infor-
mation. In formal logic, the word “sentence” is used in a technical sense as
described in the following definition.

Definition A sentence (or proposition) is a statement which is either true or
false. If the sentence is true, we denote its truth value by the letter T and by F if it
is false. In computer science they are often denoted by 1 and 0, respectively.

Example 1 Are the Following Statements Sentences?

a)
17
231

−
4
10

isapositive number

b)
1

0
exdx= e is false

c) 2 isa rational number
d) Love is sharing your popcorn.
e) Come here!
f) N is an even integer.
g) Who first proved that π is a transcendental number?
h) Who was the greatest mathematician of the twentieth century?
i) This sentence is false.

a)–d) The statements are sentences. The reader can decide whether they are
true or false.

e) The statement has no truth value so it is not a sentence.
f ) Granted the statement is true or false, its truth value depends on the value of

an unknown number N, so it is not considered a sentence. In Section 1.3, we
will introduce quantifiers that will turn this statement into a sentence.

g) This is an interesting question, but questions are not sentences. The person
who first proved π is a transcendental number was the German mathemati-
cian Ferdinand von Lindemann, who proved it in 1882. The number π is also
irrational, which was proved by another German mathematician Johann
Lambert in 1768.

1.1.2 Getting into Sentential Logic 5



h) This statement is not a sentence, but you can find candidates for the greatest
mathematician by googling “famous mathematicians of the 20th century.”

i) If you say the statement is true, then according to what the statement says, it
is false. But on the other hand, if you say the statement is false, then the state-
ment says it is true. In either case, we reach a contradiction. Hence, we con-
clude the statement is neither true nor false, and hence, it is not a sentence.
This logical paradox that arises when a statement refers to itself in a negative
way is one of the many forms of what is called the Russell paradox.

Liar Paradox Consider the following statement
This sentence is not true.

This statement is paradoxical since if we say the sentence is true, the sentence
itself says it is false, which yields a contradiction. On the other hand, if we say the
sentence is false, the sentence itself says it is false, hence, it must be true. In
either case, one is led to a contradiction, so one cannot say the sentence is true
or false, and thus not what we call a sentence.

Russell’s Barber Paradox The Russell Barber Paradox is an example of a self-
referential statement that refer to itself in a negative way. The paradox considers
a barber in a small town that shaves all men in the town, but only those men, who
do not shave themselves. The prophetic question then arises, does the barber
shave himself? If you say the barber shaves himself, then barber does not shave
himself since he only shaves those who do not shave themselves. On the other
hand, if you say the barber does not shave himself, then he shaves himself since
he shaves those who do not shave themselves. This paradox was formulated by
the English logician Bertrand Russell (1872–1970) in 1901, and played a major
role in the modern development set theory.

1.1.3 Compound Sentences (“AND,” “OR,” and “NOT”)

In arithmetic, we combine numbers with operations +, × , −, and so on. In logic,
we combine sentences with logical expressions. The sentences discussed thus
far are examples of simple (or atomic) sentences since they are made up of
a single thought or idea. It is possible to combine these sentences to form
compound sentences using logical connectives.3

3 We can also combine compound sentences to form more complex sentences.

1.1 Sentential Logic6



Important Note It has been said that love and the ability to reason are the two
most important human traits. Readers interested in the former must go else-
where for advice, but if the reader is interested in the human trait of reasoning,
you are in the right place.

Definition Logical Connectives.
Given the sentences P and Q, we define:

Logical AND: The conjunction of P and Q, denoted P Q, is the sentence
“P and Q” which is true when both P and Q are true, otherwise false.
Logical OR: The disjunction of P and Q, denoted P Q, is the sentence “P or
Q” which is true when at least one of P or Q are both true, otherwise false.
NOT operator: The negation of P, denoted P, is the sentence “not P” and P
is true when P is false, and P is false when P is true.

Example 2 Logical Conjunction
Let P and Q be the sentences

P: “Jack went up the hill.”
Q: “Jill went up the hill.”

The conjunction P Q refers to the sentence

“Jack and Jill went up the hill.”

The truth of P Q depends on the truth values of the two simple sentences
P and Q. The conjunction P Q is true if both Jack and Jill went up the hill,
and false if either Jack or Jill (or neither) did not go up the hill. We summarize
this symbolically by means of the truth table shown in Table 1.1, which exam-
ines the truth value of P Q for the four possible truth values of P and Q.
The two columns at the left list the four possible truth values for the sentences
P and Q.

Table 1.1 Logical AND.

P Q P Q

T T T

P Q is true if both P and Q
are true, otherwise false.

T F F

F T F

F F F

1.1.3 Compound Sentences (“AND,” “OR,” and “NOT”) 7



Important Note Because the rules of formal logical systems (like sentential
logic, predicate logic, …) are precisely defined, it is possible to write computer
programs and sometimes have a computer evaluate mathematical proofs.

Example 3 Logical Disjunction
Again let

P: “Jack went up the hill.”
Q: “Jill went up the hill.”

The disjunction P Q refers to the sentence

“Jack or Jill went up the hill.”

The disjunction P Q is true if either Jack or Jill (or both) went up the hill.
If neither Jack nor Jill went up the hill, then the disjunction is false. This is
summarized in the truth table in Table 1.2.

Sometimes, in normal English discourse, the word “or” is used in an exclusive
sense. For example, when someone says “for dessert I will have pie or cake,” it is
normally understood to mean the person will have one of the two desserts, but
not both. In this case, we would say “or” is an exclusive OR. In sentential logic,
unless otherwise stated, “or” means the inclusive OR as defined in Table 1.2.

Example 4 Negation of a Sentence
If

P: “Jack went up the hill.”

then P is the sentence “Jack did not go up the hill.” In other words, if P is true,
then P is false, and if P is false then P is true. This is summarized by Table 1.3.

Table 1.2 Logical OR.

P Q P Q

T T T

P Q is false if both P and Q
are false, otherwise true

T F T

F T T

F F F

1.1 Sentential Logic8



Important Note To check the accuracy of a truth table, there are webpages
that carry out these computations.

1.1.4 Compound Sentences

We can also combine sentences to form more complex sentences as illustrated
in Table 1.4.

The truth values of P Q can be analyzed using the values in Table 1.5. The
numbers above the columns give the order in which the truth values in the col-
umns were filled.

Note that P Q is false only when P is true and Q is false, otherwise it is true.

Table 1.4 Forming new sentences.

P Q Jack went up the hill but Jill did not.

(P Q) Neither Jack nor Jill went up the hill.

(P Q) It is not true both Jack and Jill went up the hill.

P Q Either Jack did not go up the hill or Jill did.

Table 1.5 Truth table for P Q.

(1) (2)

P Q P P Q

T T F T

T F F F

F T T T

F F T T

Table 1.3 Negation.

P P

T F P is true when P is false, and
P is false when P is true.F T

1.1.4 Compound Sentences 9



The compound sentence (P Q) R contains three sentences P, Q, and R,
and its truth value is determined by enumerating all 23 = 8 possible truth values
for P, R, and R, followed by finding the truth values of the component parts of
the sentence until arriving at the truth values of (P Q) R. These computa-
tions are shown in the truth table in Table 1.6.

Historical Note In 1666, the philosopher and mathematician Gottfried
Wilhelm Leibniz (1646–1716) laid out a plan in his work De Arte Combinatorial
in which reasoning could be reduced to mental calculations. He wrote,

The method should serve as a universal language whose symbols and spe-
cial vocabulary can direct reasoning in such a way that errors, except for
fact, will be mistakes in computation.

It is tragic that Leibniz’ ideas were considered fantasy and his ideas sank into
oblivion. It was not until the twentieth century, well after symbolic logic had
been rediscovered by George Boole, that Leibniz’ ideas became known to
the general public.

An example of a sentence containing four component sentences is (P Q)
(R S), which depends on P, Q, R, and S. The truth value of this sentence is
found by examining a truth table with 24 = 16 rows listing the 16 possible truth
values of the four components. Table 1.7 shows how this truth table is
computed.

Table 1.6 Truth table for (P Q) R.

(1) (2) (3)

P Q R P Q R (P Q) R

T T T T F F

T T F T T T

T F T T F F

T F F T T T

F T T T F F

F T F T T T

F F T F F F

F F F F T F

1.1 Sentential Logic10



Historical Note After Leibniz, the next major development in sentential logic
was due to the work of English logicians George Boole (1815–1854) and Augus-
tus DeMorgan (1806–1871). Boole was interested in developing a logical alge-
bra, whereby the symbols x, y represented sets4 or classes, where the empty set
was denoted by 0, the universal set denoted by 1, intersection of sets by xy, and
union of sets by x + y. Boole interpreted x = 1 tomean “x is true” and x = 0 as “x is
false.” In this system, xy = 1 means x and y are both true, x + y = 1means x or y is
true, and so on. Boole’s ideas sparked immediate interest among logicians and
Boole’s Boolean algebras are the basis for sentential logic and are used today in
computer science and design of circuits.

Table 1.7 Truth table for (P Q) (R S).

(1) (2) (3) (4)

P Q R S S P Q R S (P Q) (R S)

T T T T F T F T

T T T F T T T T

T T F T F T F T

T T F F T T F T

T F T T F F F F

T F T F T F T T

T F F T F F F F

T F F F T F F F

F T T T F F F F

F T T F T F T T

F T F T F F F F

F T F F T F F F

F F T T F F F F

F F T F T F T T

F F F T F F F F

F F F F T F F F

4 We are getting a little ahead of ourselves, but we will get to sets in Chapter 2.

1.1.4 Compound Sentences 11



1.1.5 Equivalence, Tautology, and Contradiction

In mathematics and in particular logic, the statement “means the same thing” is
often used and has a precise meaning, which brings us to the concept of logical
equivalence.

Definition Two sentences P, Q simple or compound, are logically equiva-
lent, denoted by P ≡Q, if they have the same truth values for all truth values
of their component parts.

For example the sentences 1 + 1 = 3 and 10 < 5 are logically equivalent, the rea-
son being they have the same truth value. The fact they have nothing to do with
each other is irrelevant from the point of view of sentential logic, although the
logical statements we study will be more useful. The following De Morgan’s
Laws are an example of two useful logical equivalences.

1.1.6 De Morgan’s Laws

Two useful logical equivalences are De Morgan’s Laws5 stated in Table 1.8.

Can you speak these equivalences in the language of Jack and Jill?
We can verify De Morgan’s laws by making truth tables for each side of

the equivalences. The top De Morgan Law6 in Table 1.8 is valid since col-
umns (2) and (5) in Table 1.9 have T and F values for all truth/false values of
P and Q.

Table 1.8 De Morgan’s laws.

De Morgan’s laws

(P Q)≡ P Q

(P Q)≡ P Q

5 Augustus De Morgan (1806–1871) was an Indian-born British mathematician and logician who
formulated what we call DeMorgan’s Laws. Hewas the first person tomake the idea ofmathematical
induction rigorous.
6 This De Morgan law says the negation of a disjunction is the conjunction of its negatives.
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Interesting Note Although sentential logic captures the truth or falsity of sim-
ple sentences, it will never replace natural languages. Consider two lines from
T.S. Eliot’s Love Song of J. Alfred Prufrock:

In the room the women come and go
Talking of Michelangelo.

As logicians, we might let

• WC = women come into the room

• WL = women leave the room

• WT = women talk of Michelangelo

and restate Eliot’s poem asWC WL WT. This conjunction captures the under-
lying facts of the situation, but the essence of the poem is undoubtedly lost.

1.1.7 Tautology

Definition A tautology is a sentence (normally compound) that is true for all
truth values of its individual components.7

The sentence P P is called the Law of the Excluded Middle and is a
tautology since it is always true, regardless of the truth of its component parts.
This is shown by the truth table in Table 1.10.
The Law of the Excluded Middle is a principle that says everything is either

true or false and nothing else. This seems an obvious and trivial concept, but this
principle is fundamental when we study proofs by contradiction.

Table 1.9 Verification of De Morgan’s law.

(1) (2) (3) (4) (5)

P Q P Q (P Q) P Q P Q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

same truth values

7 In natural language, a tautology is often thought of as a sentence that says the same thing twice in a
different way.
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Example 5 Verifying a Tautology

Show that

P Q P Q

is a tautology.

Solution

The truth value of (P Q) ( P Q ) is T for all truth values of P and Q
which can be seen in Table 1.11.

The opposite of a tautology is a contradiction.

Definition A contradiction is a sentence that is false for all truth value of its
components.

An example of a contradiction is P P, as in “It is raining and it is not rain-
ing.” Regardless of the truth value of P, the truth value of P P is false. Many
contradictions are obvious, while others are not so obvious. For example is the
sentence (P Q) (Q R) always false regardless of the truth values of P, Q,
and R? The answer is yes, and you might try to convince yourself of this fact
without resorting to Table 1.12.

Table 1.10 Verification of a tautology.

P P P P

T F T

F T T

Table 1.11 Verification of a tautology.

P Q P Q P Q P Q (P Q) ( P Q )

T T T F F F T

T F F F T T T

F T F T F T T

F F F T T T T
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1.1.8 Logical Sentences from Truth Tables:
DNF and CNF

Until now, we have found truth tables associated with various compound sen-
tences. We now go backwards and find the logical expression that creates a
given truth table. For example, what is the compound sentence that yields
the truth table in Table 1.13.

Table 1.12 Verification of a contradiction.

(1) (2) (3) (4)

P Q R Q P Q Q R (P Q) (Q R)

T T T F F T F

T T F F F F F

T F T T T F F

T F F T T F F

F T T F F T F

F T F F F F F

F F T T F F F

F F F T F F F

Table 1.13 Three variable truth table.

P Q R ? Row

T T T T 1

T T T F 2

T T F F 3

T T F T 4

T F T T 5

T F T F 6

T F F T 7

T F F F 8
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1.1.9 Disjunctive and Conjunctive Normal Forms

To find a logical sentence that yields a given truth table, there are two equivalent
logical expressions that can be found, one called the disjunctive normal form
and the other called the conjunctive normal form. These forms are defined
as follows:

Definition Disjunctive and conjunctive normal forms are

a) disjunctive normal form (DNF) is a disjunction ( ) of conjunctions ( ).
b) conjunctive normal form (CNF) is a conjunction ( ) of disjunctions ( ).

Simple examples are the following:

Adisjunctive normal form P Q R S

Aconjunctive normal form P Q R S

To find the DNF for the truth table in Table 1.13, we look at rows where the
value of the truth table is TRUE, which are rows 1, 4, 5, and 7, then write the
create formulas that yield a T. Doing this, we get

• row 1 true as a result that P Q R is true

• row 4 true as a result that P Q R is true

• row 5 true as a result that P Q R is true

• row 7 true as a result that P Q R is true

Hence, the truth table yields a T when at least one of the above conjunctions is
true, which leads to the disjunctive normal form (DNF) for the truth table in
Table 1.13.

DNF P Q R P Q R P Q R P Q R

To find the conjunctive normal form, we look at the rows where the truth table
is FALSE, which are rows 2, 3, 6, and 8, which happens when the following are
satisfied:

• row 2 is false when P Q R

• row 3 is false when P Q R

• row 6 is false when P Q R

• row 8 is false when P Q R

Hence, we have the conjunctive normal form for the truth table in Table 1.13:

CNF P Q R P Q R P Q R
P Q R
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You can verify that both the above disjunctive and conjunctive forms create
the truth table in Table 1.13 and are thus logically equivalent. Conjunctive
and disjunctive normal forms are important in circuit design where designs
of integrated circuits are based on Boolean functions involving on/off switches.

Historical Note The first systematic discussion of sentential logic comes from
the German logician Gottfried Frege (1848–1925) in the work Begriffscrift. Many
consider him the greatest logician of the nineteenth century.

Problems

1. Simple Sentences
Which of the following are sentences?
a) WE TAKE YOUR BAGS AND SEND THEM IN ALL DIRECTIONS

(posted at an airline ticket counter)
b) The Riemann hypothesis is still unsolved.
c) The Battle of Hastings was fought in 1492.
d) The constant π is an algebraic number.
e) DROP YOUR TROUSERS HERE FOR THE BEST RESULT. (sign

posted at a dry cleaners)
f) The constant π is a transcendental number.
g) I am a monkey’s uncle.
h) Never again!
i) ABSOLUTELY NO SWIMMING
j) 2 + 5 = 1
k) e is an irrational number
l) It is not true that 1 + 1 = 2.

m) This sentence is false.

n) 1
0 x

2dx= 0
o) Digit 0 does not appear in π.
p) We sit on the porch watching cows playing Scrabble.
q) The Chicago Cubs will win the World Series this year
r) To be or not to be, that is the question.
s) A woman, without her man, is nothing.
t) A woman, without her, man is nothing.
u) I think, therefore I am.
v) All generalizations are false, including this one.
w) These pretzels are making me thirsty.
x) The fifth order polynomial equation has not been solved.
y) Who was Niels Abel?
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2. Truth Tables
For simple sentences P, Q, R make the truth table for the following com-
pound sentences.
a) P P
b) P P
c) P Q
d) P Q
e) (P Q)
f) (P Q) R
g) P (Q R)
h) P (Q R)
i) (P Q) ( P Q)
j) (P Q) (Q R)
k) (P Q) (Q R)

3. True or False
Let

• P be the sentence “4 > 2,”

• Q be the sentence “1 + 2 = 3”

• R be the sentence “5 + 2 = 9”

What is the truth value of the following compound sentences?
a) P Q
b) (P Q)
c) P Q
d) (P Q)
e) P Q
f) ( P Q) P
g) ( P Q) R
h) ( R Q) R
i) ( P Q) (P R)

4. Tautologies and Contradictions
Suppose P and Q are sentences. Tell whether the following compound sen-
tences are tautologies, contradictions, or neither. Verify your conclusion.
a) P Q
b) P Q
c) Q Q
d) P P
e) P (Q P)
f) P (Q P)
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5. In Plain English
In English, fill in the blanks in Table 1.14.

6. Denial of Sentences
State the negation of each of the following sentences.
a) π is a rational number.
b) 317 is a prime number.
c) The function f(x) = x2 + 1 has exactly one minimum.
d) It will be cold and rainy tomorrow.
e) It will be either cold or rainy tomorrow.
f) It is not true that I am shiftless and lazy.
g) It is not true that I am either lazy or shiftless.
h) 2 is the only even prime number.

7. Exclusive OR
In natural language the word “or” requires a certain amount of care. In this
lesson we defined the word “or” in the inclusive sense, meaning one or the
other or both. The exclusive or is slightly different; it means one or the
other but not both
a) Make a truth table for the exclusive or (denote it by )
b) Verify that P Q≡ (P Q) (P Q).

8. Prove or Disprove
Prove or disprove the statement

P Q≡ (P Q) (Q P)

where P Q denotes the exclusive or, meaning P orQ are true but not both.

9. Alternate Forms for Truth Tables
Truth tables for logical disjunction, conjunction and negation are analo-
gous to addition, multiplication and negation in Boolean algebra, where
1 is defined as truth, 0 is taken as false, and minus as negation. Verify
the following Boolean algebra statements in Figure 1.1 and find their logical
equivalents in the sentential calculus.

Table 1.14 Fill in the blanks.

The sentence Is TRUE when Is FALSE when

P

P

P Q

P Q
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a) 1 + (−1) = 1
b) 1 × (−1) = 0
c) −(1 + 0) = 0 × 1
d) −(0 × 1) = 1 + 0
e) 1 × (1 + 0) = (1 × 1) + (1 × 0)
f) 1 + (1 × 0) = (1 + 1) × (1 + 0)

10. Logical AND for IP Addresses
An IP address is a numerical label assigned to each device connected to a
computer network. A typical IP address is a four-dotted string of eight
binary numbers (0s and 1s), which in decimal and binary form might be

193 170 6 1 = 11000001 10101010 00000110 00000001

The network might consist of 10 computers connected to a router, where
each computer in the network is assigned a subnet mask. If the subnet
mask of one of the computers is

11111111 11111111 11111111 00000000

then the IP of this computer is the logical AND of the network IP and this
subnet mask, which is the same as logical binary multiplication. What is
the IP address of this computer using binary arithmetic 0 0 = 1, 0 1 = 0,
1 0 = 0, 1 1 = 1?
Show that this sentence is a tautology.

11. Disjunctive and Conjunctive Normal Forms
Find disjunctive and conjunctive normal forms that create the following
truth tables.
a)

0× 1

00P

P Q

Q

0

01 1

0+ 1

00P

P

P

Q

Q

1
0 1

1~P 0
11 1

Figure 1.1 Numeric truth table.

Table 1.15 Find the CNF and DNF for the truth table.

P Q Logical function

T T T

T F T

F T T

F F F
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b)

c)

d)

Table 1.16 Find the CNF and DNF for the
truth table.

P Q Logical function

T T T

T F F

F T F

F F F

Table 1.17 Find the CNF and DNF for the
truth table.

P Q Logical function

T T T

T F T

F T T

F F T

Table 1.18 Find the CNF and DNF for the truth table.

P Q R Logical function

T T T T

T T F F

T F T T

T F F F

F T T T

F T F F

F F T T

F F F F
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12. Syllogisms
In Aristotelian logic,8 a syllogism is an argument in which two premises
(which are assumed true) lead to a valid conclusion. The most general
form being

Major premise Ageneral statement

Minor premise Aspecific statement

Conclusion basedonthe twopremises

An example would be

Major premise Allhumansaremortal

Minor premise Mary is human

Conclusion Mary is mortal

In the language of sentential logic, this syllogism takes the form

P Q P Q

Show that this sentence is a tautology.

13. Digital Logical Circuits I
Find the truth table for each of the following digital logical circuits in
Figure 1.2 to prove they are equivalent. What logical law does the equiv-
alence of these circuits represent? The individual electronic components
are self-explanatory.

8 This form of a syllogism is but one of several devised by the Greek philosopher Aristotle (384 B.C.
322 BCE). Aristotle, along with Plato and Socrates, are three of the most important founding figures
of Western philosophy and thought.

x

y

x

y

z

z

OR

(a)

(b)

NOT

AND

NOT

NOT

Figure 1.2 Logical circuit.
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14. Digital Logical Circuits II
Find the truth table for each of the following digital logical circuits in
Figure 1.3 to prove they are equivalent. What logical law does the equiv-
alence of these circuits represent? The individual electronic components
are self-explanatory.

15. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward sentential logic, first-order-logic, liar paradox, de Morgan’s
laws, and disjunctive normal form.

x
y

x

y

z

z

AND

(a)

(b)

NOT

OR

NOT

NOT

Figure 1.3 Logical circuit.
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1.2

Conditional and Biconditional Connectives

Purpose of Lesson To introduce the conditional and biconditional sentences
along with three equivalent forms of the conditional sentence called the
converse, inverse, and the contrapositive.

1.2.1 The Conditional Sentence

The conditional sentence (or implication), is a compound sentence of
the form

“if P then Q”

From a purely logical point of view, conditional sentences do not necessarily
imply a cause and effect between P and Q, although generally there is a definite
cause and effect. For example the conditional sentence

If 1 + 1 = 3, then pigs fly.

is a true conditional sentence, although the reader would have to think long and
hard to find a cause and effect relation between 1 + 1 = 3 and flying pigs. Amore
common implication in mathematics would be

If a positive integer n is composite, then n has a prime divisor less than or
equal to n.

which provides an important cause and effect between P and Q. No doubt the
reader has seen conditional sentences in Euclidean geometry, where the subject
is explained through cause and effect implications of this type. The sentence, “If
a polygon has three sides, then it is a triangle,” is a conditional sentence relating
two important concepts in geometry.
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Historical Note The idea of enumerating all possible truth values in tables we
now call “truth tables” seems to have been rediscovered several times through-
out history. The philosopher and logician, Ludwig Wittgenstein and Emil Post,
respectively, used them in the late 1800s where Wittgenstein labeled them
“truth tables.” Other early researchers who made contributions to symbolic
logic are the English logician Bertrand Russell and the American logician
Benjamin Peirce.

The conditional statement P Q can be visualized by the Euler (or Venn)
diagram as drawn in Figure 1.4.
For example all polygons are triangles that we illustrate by the diagram in

Figure 1.5.

Conditional Sentence If P and Q are sentences, then the conditional sen-
tence “if P then Q” is denoted symbolically by

P Q

and whose truth values are defined by the truth table: See Table 1.20.

Note that a conditional sentence is false when T F, otherwise it is true.
The sentence P is called the assumption (or antecedent or premise) of the con-
ditional sentence (or implication) and Q is called the conclusion (or
consequent1).

Table 1.20 Truth table.

P Q P Q

T T T

T F F

F T T

F F T

1 In pure logical systems, P and Q are generally referred to as antecedent and consequent,
respectively. In mathematics, they are more likely to be called the assumption and conclusion.
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Example 1 Conditional Sentences
The following sentences are conditional sentences. Are they true or false?

i) If f is a real-valued differentiable function, then f is continuous. TRUE
ii) If N is an even number greater than 2, then N is the sum of two primes.2

Points in this region
have property P

Points in this region
have property Q

P

Q

Figure 1.4 Euler diagram for P Q.

2 You get an A for the course if you can prove this statement. Just slide your solution under your
professor’s door. The truth value of this conjecture, called the Goldbach Conjecture, is unknown.

Polygons

Triangles

Figure 1.5 Subsets of triangles.
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iii) If a and b are the lengths of the legs of a right triangle, and c is the length of
the hypotenuse, then c2 = a2 + b2. TRUE

1.2.2 Understanding the Conditional Sentence

The conditional sentence “if P, thenQ” is best understood as a promise, where if
the promise is kept, the conditional sentence is true, otherwise the sentence is
false. As an illustration suppose your professor makes you the promise:

If pigs fly, then you will receive an A for the course.

The proposition is true since your professor has only promised an A if pigs fly,
but since they do not, all bets are off. However, if you see a flying pig outside
your classroom and your professor gives you a C, then you have reason to com-
plain to your professor since the promise was broken, hence the proposi-
tion false.
The conditional sentence P Q is often called an inference, and we say P

implies Q. Another way of stating P Q is to say P is a sufficient condition
forQ, whichmeans the truth of P is sufficient for the truth ofQ. We also say that
Q is a necessary condition for P, meaning the truth of Q necessarily follows
from the truth of P.

Example 2 Necessary Conditions and Sufficient Conditions
Table 1.21 illustrates some typical necessary and sufficient conditions.

Important Note A famous conditional statement is due to the French philos-
opher/mathematician Rene Decartes (1591–1650) who once said “Cogito ergo
sum,” which means “I think therefore I am.” As a conditional sentence it would
be stated as “If I think, then I am.”

Table 1.21 Necessary conditions and sufficient conditions.

P Q Condition

Being pregnant Being female Q is necessary for P

N is an integer 2N is an integer P is sufficient for Q

Life on earth Air Q is necessary for P

Run over by a truck Squashed P is sufficient for Q
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Important Note Normally, in mathematics, when one writes the implication
P Q one assumes the assumption is true since it makes no sense to assume
a false hypotheses. In fact, if one assumes a false hypothesis, the implication is
true regardless of the truth value of Q.

1.2.3 Converse, Inverse, and the Contrapositive

The implication P Q gives rise to three related implications shown in
Table 1.22, one equivalent to the implication, the others not.

It is easy to show by truth tables that

converse P Q≢Q P

inverse P Q≢ P Q

contrapositive P Q Q P

1.2.4 Law of the Syllogism

A fundamental principle of logic, called the law of the syllogism, states:

“if P implies Q, and Q implies R, then P implies R”

which is equivalent to the compound conditional sentence

P Q Q R P R

This sentence is a tautology since Table 1.23 shows all T ’s in column (5).

Well-Formed Sentences The statement P Q R is not what is called a
well-formed sentence since its meaning is unclear. One would have to include
parentheses to tell which sentence (P Q) R or P (Q R) is intended.
Well-formed sentences are similar to “well-formed sentences” in natural lan-
guages like English: a capital letter at the start, a period at the end, and all
the other rules of grammar in between.

Table 1.22 Converse, inverse, contrapositive.

Implication Converse Inverse Contrapositive

P Q Q P P Q Q P
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1.2.5 A Useful Equivalence for the Implication

The implication P Q is true if either P is false orQ is true. Hence, we have the
useful logical equivalence

P Q P Q

which we verify by means of the truth table in Table 1.24.

Also the negation of the implication P Q is another useful equivalence that we
obtain by one of De Morgan’s laws:

P Q P Q P Q

In other words, an implication is (only) false when the premise is true and the
conclusion false.

Table 1.23 Truth table verification of the syllogism.

1 2 3 4 (5)

P Q R P Q Q R P R P Q Q R P Q Q R P R

T T T T T T T T

T T F T F F F T

T F T F T T F T

T F F F T F F T

F T T T T T T T

F T F T F T F T

F F T T T T T T

F F F T T T T T

Table 1.24 Equivalence of P Q≡ P Q.

P Q P Q P P Q

T T T F T

T F F F F

F T T T T

F F T T T
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1.2.6 The Biconditional

Compound sentences of the form

“P if and only if Q”

are fundamental in mathematics, which leads to the following definition.

Definition Given that P and Q are sentences, the compound sentence

“P if and only if Q”

is called a biconditinal sentence, denoted by

P Q

And whose truth values are defined by the truth table in Table 1.25.

The biconditional P Q is generally read “P if and only if Q” or P iff Q for
shorthand. Another common phrasing of P Q is P is a necessary and suffi-
cient condition for Q. In other words, P Q is true if P and Q have the same
truth value, otherwise false.

Example 3 Biconditional Equivalent to Two Implications
Show that the biconditional P Q is logically equivalent to

P Q Q P

Solution
The truth values in the following truth table under columns (3) and (4) in
Table 1.26 are identical. ▌

Table 1.25 Biconditional sentence.

P Q P Q

T T T

T F F

F T F

F F T
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Warning Be careful not to confuse the biconditional sentence P Qwith log-
ical equivalence P≡ Q. Logical equivalence P≡ Q says that P and Q are logical
equivalent sentences and always have the same truth values regardless of the
truth values of component parts. On the other hand, the biconditional P Q
does not necessarily mean P and Q have the same truth values because the
biconditional sentence can be false that in case they do not.

Example 4 Truth Values of Biconditional Sentences
A few typical biconditional sentences are shown in Table 1.27.

Important Note Greek philosophers referred to Modus Ponens as the valid
argument

“if P is true and if P Q is true, then Q is true”

which in sentential logic notation is

P P Q Q

Table 1.26 Equivalence of (P Q) (Q P)≡ P Q.

(1) (2) (3) (4)

P Q P Q Q P (P Q) (Q P) P Q

T T T T T T

T F F T F F

F T T F F F

F F T T T T

Table 1.27 Biconditional sentences.

Biconditional Truth value

1 + 2 = 5 if and only if 1 − 3 = 4 True

3 + 5 = 8 if and only if 3 × 4 = 12 True

1 + 2 = 3 if and only if (a + b)2 = a2 + b2 False

π = 22/7 if and only if 6/3 = 2 False
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Important Note The origin of the “iff” notation, meaning “if and only if” first
appeared in print in 1955 in the text General Topology by John Kelly, although its
invention is generally credited to the Hungarian/American Paul Halmos.

Problems

Working Definitions The following definitions are needed in some problems
in problem set as well as later ones.

• An integer n divides an integer m, denoted n|m) if there exists an integer q
satisfying m = n × q. If n does not divide m, we write n m.

• An integer n is even if there exists an integer k such that n = 2k.

• An integer n is odd if there exists an integer k such that n = 2k + 1.

• A natural number N = {1, 2, 3,…} is prime if it is only divisible by 1 and itself.

1. True or False
Identify the assumption and conclusion in the following conditional sen-
tences and tell if the implication is true or false.
a) If pigs fly, then I am richer than Bill Gates.
b) If a person got the plague in the seventeenth century, they die.
c) If you miss class over 75% of the time, you are in trouble.
d) If x is a prime number, then x2 is prime too.
e) If x and y are prime numbers, then so is x + y.
f) If the determinant of a matrix is nonzero, the matrix has an inverse.
g) If f is a 1–1 function, then f has an inverse.

2. Contrapositive
Write the contrapositive of the conditional sentences in Problem 1.

3. True or False
Let P be the sentence “4 > 6,” Q the sentence “1 + 1 = 2,” and R the sentence
“1 + 1 = 3.” What is the truth value of the following sentences?
a) P Q
b) (P Q)
c) (P Q)
d) P Q
e) P Q
f) P Q
g) Q R
h) P (Q R)
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i) (P Q) R
j) (R Q R) (P Q R)

4. True or False
Let P be the sentence “Jerry is richer than Mary,” Q is the sentence “Jerry is
taller than Mary,” and R is the sentence “Mary is taller than Jerry.” For the
following sentences, what can you conclude about Jerry and Mary if the
given sentence is true?
a) P Q
b) P Q
c) P Q
d) Q R
e) Q R
f) P (P Q)
g) P (Q R)
h) Q (P R)
i) P Q R
j) P (Q R)

5. Truth Tables
Construct truth tables to verify the following logical equivalences.
a) (P Q)≡ ( P Q)
b) [ (P Q)]≡ [(P Q) ( P Q)]
c) (P Q)≡ ( P Q)

6. Conditional Sentences
Translate the given English language sentences to the form P Q.
a) Unless you study, you will not get a good grade.
b) “Do you like it? It is yours.”
c) Get out or I will call the cops.
d) Anyone who does not study deserves to flunk.
e) Criticize her and she will slap you.
f) With his toupee on, the professor looks younger.

7. In Plain English
Without making a truth table, say why the following implications are true.
a) [(P Q) P] Q
b) [P (Q Q)] P
c) (P Q) ( P Q)

8. Distributive Laws for AND and OR
For P, Q, and R verify the distributive laws
a) P (Q R)≡ (P Q) (P R)
b) P (Q R)≡ (P Q) (P R)
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9. Inverse, Converse, and Contrapositive
One of the following sentences is logically equivalent to the implication
P Q. Which one is it?

inverse P Q

converse Q P

contrapositive Q P

For the two sentences not equivalent to P Q, find examples illustrating
this fact.

10. True or False
Is the following statement a tautology, a contradiction, or neither?

P Q Q P

11. Logical Equivalent Implications
Show that the following five implications are all logically equivalent.
a) P Q (direct form of an implication)
b) Q P (contrapositive form)
c) (P Q) P (proof by contradiction)
d) (P Q) Q (proof by contradiction)
e) (P Q) R R (reduction ad absurdum)

12. Hmmmmmmmmmmm
Is the statement

P Q P Q

true for all truth values of P and Q, or is it false for all values, or is it some-
times true and sometimes false?

13. Interesting Biconditional
Is the statement

P Q P Q

true for all truth values of P and Q, or is it false for all values, or is it some-
times true and sometimes false?

14. Finding Negations
Find the negation of the following sentences.
a) (P Q) R
b) (P Q) (R S)
c) ( P Q) R
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15. If possible, find an example of a true conditional for which
a) its contrapositive is true.
b) its contrapositive is false.
c) its converse is true.
d) its converse is false.

16. The inverse of the implication P Q is P Q.
a) Prove or disprove that an implication and its inverse are equivalent.
b) What are the truth values of P and Q for which an implication and its

inverse are both true?
c) What are the truth values of P and Q for which the implication and its

inverse are both false?

17. For the sentence

“If N is an integer, then 2N is an even integer.”

write the converse, contrapositive, and inverse sentences.

18. Let P, Q, and R be sentences. Show that
a) P (Q R) requires the given paranthesis
b) (P Q) R requires the given paranthesis
c) ( P Q) R can not be written as P (Q R)

19. Challenge
Rewrite the sentence

P Q R

in an equivalent form in which the symbol “ ” does not occur.

20. Nonobvious Statement
The statement

P Q P

can be read “If P is true, then P follows from any Q.” Is this a tautology,
contradiction, or does its truth value depend on the truth or falsity of
P and Q?

21. Another Nonobvious Statement
The statement

Q P P Q

can be read “For any two sentences P and Q, it is always true that
P implies Q or Q implies P.”
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Is this a tautology, contradiction, or does its true value depend on the
truth or falsity of P and Q?

22. Three-Valued Logic
Two-valued (T and F) truth tables were basic in logic until 1921 when the
Polish logician Jan Lukasiewicz (1878–1956) and American logician Emil
Post (1897–1954) introduced n-valued logical systems, where n is any
integer greater than one. For example, sentences in a three-valued logic
might have values True, False, and Unknown. Three-value logic is useful
in computer science in database work. The truth tables for the AND, OR,
and NOT connectives are given in Table 1.28.
From these connectives, derive the conditional P Q and biconditional

P Q by drawing a truth table.

23. Modus Ponens3 and Modus Tollens?4 are systematic ways of making
logical arguments of the form:

If P, thenQ

P

Therefore, Q

If P, thenQ

Q

Therefore, P
Modus Ponens Modus Tollens

Write Modus Ponens and Modus Tollens as compound sentences, and
show they are both tautologies.

Table 1.28 Three-valued logic.

P Q P OR Q P AND Q NOT P

True True True True False

True Unknown True Unknown False

True False True False False

Unknown True True Unknown Unknown

Unknown Unknown Unknown Unknown Unknown

Unknown False Unknown False Unknown

False True True False True

False Unknown Unknown False True

False False False False True

3 Latin: mode that affirms.
4 Latin: mode that denies.

1.2 Conditional and Biconditional Connectives36



24. Interesting
Are the following two statements equivalent?

P Q R

P Q R

25. Sixteen Logical Functions of Two Variables
Figure 1.6 below shows the totality of 16 relations between 2 logical vari-
ables. One expression can be proven from another if it lies on an upward
path from the first. For example

P Q Q P Q

Verify a few of these implications using truth tables. The compound
sentence PΔQ refers to the exclusive OR, which means either P or Q true
but not both.

26. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward conditional connectives, biconditional, truth tables, and
necessary and sufficient conditions.

T

F

~P∧~Q

~P∧Q

~P~Q

P∧~Q

P∧Q

P

P⇔Q

P⇒Q

P∆Q

Q⇒P

Q

P∨Q ~P∨~Q

Figure 1.6 Sixteen logical functions.
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1.3

Predicate Logic

Purpose of Section This section introduces predicate logic (or first-order
logic) that is the “language” of mathematics. We will see how predicate logic
extends the language of sentential (or propositional) logic, introduced in the
first two sections, by adding universal and existential quantifiers, functions,
and variables.

1.3.1 Introduction

Although sentential logic studied in Sections 1.1 and 1.2 is probably sufficient to
get you through your daily activities, it is not sufficient for higher mathematics.
This was realized in the late 1800s by the German logician Gottlob Frege, who
observed that mathematics requires a more extensive language than simple log-
ical sentences connected by , , , , . Frege introduced what is called
predicate logic1 (or first-order logic), which are sentences which in addition
to the logical connectives of sentential logic, includes quantifiers, variables,
and functions called predicates (or propositions). Predicate logic allows one
to express concepts we often hear in mathematics, like

for any real number x, there exists a real number y such that x < y

which is impossible to express in sentential logic.

1.3.2 Existential and Universal Quantifiers

Two phrases one hears again and again in mathematics are for all, and there
exists. These expressions are called quantifiers and are necessary to

1 Predicate logic is also called first-order logic in contrast to sentential calculus which is sometimes
called zero-order logic.

38

Advanced Mathematics: A Transitional Reference, First Edition. Stanley J. Farlow.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/farlow/advanced-mathematics



describe mathematical concepts. The meaning of an expression like x < y in
itself is not clear until we describe the extent of x and y. This leads to the two
basic quantifiers of predicate logic, the universal quantifier, meaning “for
all” and denoted by (upside down A), and the existential quantifier,
meaning “there exists,” and denoted by (backwards E). Inherent in the
use of quantifiers is the concept of a universe set, which is the collection
or set of objects under discussion, often being the real numbers, integers,
natural numbers, and so on.

Quantifiers of Predicate Logic Let U be the universe, or a collection of all
objects under consideration.

• Universal Quantifier: The statement ( x U) P(x) means “for all (or any) x inU,
the proposition P(x) is true.”

• Existential Quantifier: The statement ( x U) P(x) means “there exists an x in
U such that the proposition P(x) is true.”

Some common number universes in mathematics are the following.

N= 1,2,3,… natural numbers

Z= 0, ± 1, ± 2,… integers

Q= p q pandq are integers withq 0 rational numbers

R= real numbers

ℂ= complex numbers

1.3.3 More than One Variable in a Proposition

Propositions (or predicates) in predicate logic often contain more than one var-
iable, which means the proposition must contain more than one quantifier to
put limits on the variables. The following Table 1.29 illustrates propositions
with two variables and what it means for the propositions to be true or false.
To simplify notation, we assume the universe is known, so we do not include it.

Example 1 Converting Predicate Logic to English
The following propositions in Table 1.30 are translated into natural
language.2

2 The expression x A is set notationmeaning an element x belongs to a setA. This notation will be
front and center when we arrive at sets in Chapter 2.
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Historical Note Frege’s 1879 seminal work Begriffsschrift (“Conceptual Nota-
tion”) marked the beginning of a new era in logic, which allowed for the quan-
tification of mathematical variables, just in time for the more precise
arithmetization of analysis of calculus, being carried out in the late 1800s by
mathematicians like German Karl Weierstrass (1815–1897).

Table 1.29 Propositions with two variables.

Proposition Proposition is true when Proposition is false when

( x)( y)P(x, y) For all x and y, P(x, y) is true There exists some x, y. such that
P(x, y) is false

( x)( y)P(x, y) There is an x such that for all y,
P(x, y) is true

For all x, P(x, y) is false for some y

( x)( y)P(x, y) For all x, P(x, y) is true for some y There exists an x such that for all y
P(x, y) is false

( x)( y)P(x, y) There exists x, y. such that P(x, y)
is true

For all x, y. P(x, y) is false

Table 1.30 Sentences in predicate logic.

Proposition English meaning Truth value

( x R) (x2 ≥ 0) For any real number, its square is
nonnegative.

True

( n N) (n is a prime
number)

There exists a prime number. True

( n N) (2 | n) There exists at least one odd natural
number.

True

( n N) (2 | n) There exists at least one even natural
number.

True

( x N) ( y N) (x = y + 1) For any natural number x, there is a
natural number y satisfying x = y + 1.

False

( x R) ( y R) (x < y) For any real number x, there is a real
numbery greater than x.

True

( x R) ( y R) (x < y) There exists a real number x such that all
real numbers y are greater than x.

False

( x R)( y R) (y = 2x) For any positive real number x, there is a
real number y that satisfies y = 2x.

True
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1.3.4 Order Matters

Here’s a question to ponder. Do the two propositions ( x)( y)P(x, y) and ( y)
( x)P(x, y) mean the same thing or does one imply the other or are they com-
pletely unrelated? For example do the following to two propositions:

• ( x R)( y R)(x < y)

• ( y R)( x R)(x < y)
mean the same thing? The answer is they do not since the first proposition is
false, while the second proposition is true. Do you understand that?
To show how the order of the universal and existential quantifiers makes a

difference in the meaning of a proposition, here’s a simple example of a
third-grade class consisting of three boys and three girls, members of the sets

B= Abe,Bob,Carl

G = Ann,Betty,Carol

and the two-variable predicate (or proposition)

P b,g means boy b likes girl g

where Figure 1.7 illustrates the relationships between the quantifiers , ,
, . The dot at the intersection of a boy and girl indicates the boy likes the

Carol

Betty

Ann

Abe
(∀b)(∀g)P(b,g) (∃b)(∀g)P(b,g)

(∀g)(∃b)P(b,g) (∃b)(∃g)P(b,g)

Bob Carl

Carol

Betty

Ann

Abe Bob Carl

Carol

Betty

Ann

Abe Bob Carl

Carol

Betty

Ann

Abe Bob Carl

(a) (b)

(c) (d)

Figure 1.7 Universal and existential implications.
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girl. For example, Figure 1.7a means every boy likes every girl, while Figure 1.7c
means Bob likes Ann and Betty, and Carl likes Carol.
Figure 1.7 gives visual support for the implications

g b b g b g g b g b b g

which is stated explicitly in Figure 1.8.

1.3.5 Negation of Quantified Propositions

In the next few sections, we will introduce strategies for proving theorems, and
it will be necessary to know how quantified propositions are negated. The pro-
positions in Table 1.31 show their negations in the language of predicated logic.
The universe U, where the variables x and y are members might be any one of
the common number systems N, Z, Q, R, ℂ or a subset of one line the intervals
[0, 1], [0, ∞), and so on.

Predicate logic Equivalent English

Every girl is liked by some boy

Some girl is like by some boy

Every boy likes every girl

Some boy likes every girl

⇓ ⇓

⇓ ⇓

⇓ ⇓

(∀b ∈ B) (∀g ∈ G) P(b,g)

(∀g ∈ G) (∃b ∈ B) P(b,g)

(∃b ∈ B) (∀g ∈ G) P(b,g)

(∃g ∈ B) (∃g ∈ G) P(b,g)

Figure 1.8 g b≡ b g b g g b g b≡ b g.

Table 1.31 Negation in predicate logic.

Proposition Negation of proposition

( x U) P(x) ( x U) [ P(x)]

( x U) P(x) ( x U) [ P(x)]

( x U) ( y U) P(x, y) ( x U) ( y U) [ P(x, y)]

( x U) ( y U) P(x, y) ( x U) ( y U) [ P(x, y)]

( x U)( y U)P(x, y) ( x U)( y U)[ P(x, y)]

( x U)( y U)P(x, y) ( x U)( y U)[ P(x, y)]
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Example 2 Negations
State the negation of the following propositions. In these cases, we do not bother
to specify the universe for the variables. You might imagine for yourself some
possible universes.

a) ( x)[x > 0 ( y)(x + y = 1)]
b) ( n)(n is a prime number)
c) ( x)( y)(xy = 10)
d) ( x)( y)(xy 10)

Solution

a) ( x)[(x > 0) ( y)(x + y 1)]
b) ( n)(n is not a prime number)
c) ( x)( y)(xy 10)
d) ( x)( y)(xy = 10) ▐

Logicism The development of predicate logic is generally attributed to
the German logician Gottlob Frege (1848–1925), considered by many to be
the most important logician of the nineteenth century. It was Frege’s belief
(misguided as it turned out) that all mathematics could be derived from logic.
The philosophy that states mathematics is a branch of logic and mathematical
principles are reducible to logical principles, is called logicism.

Predicate Logic in Analysis Real analysis is an important area of mathematics.
Here are a few definitions about sequences xn, n = 1, 2, … of real numbers
stated in the language of predicate logic.

• limn ∞ xn =2 ε> 0 N N n>N xn−2 < ε

• limn ∞ xn 2 ε> 0 N N n>N xn−2 ≥ ε

• {xn} is Cauchy ( ε > 0)( N N)( m, n > N)(|xm − xn| < ε)

• {xn} not Cauchy ( ε > 0)( N N)( m, n > N)(|xm − xn| ≥ ε)

1.3.6 Conjunctions and Disjunctions in Predicate Logic

As an aid to understanding and involving conjunctions and disjunctions,
Professor Snarf has conducted a survey among his students about their liking
for peanuts and qumquats.3 If we let

3 Author apologizes for the misspelling of kumquats, but the example desperately needs a fruit that
starts with “q.”
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P(s)= student s likes peanuts (p)
Q(s)= student s likes qumquats (q)

we can write the following propositions about students likings of peanuts and
qumquats.

1) ( s)[P(s) Q(s)] means all students like p and q
2) ( s)P(s) ( s)Q(s) means all students like p and all students like q
3) ( s)[P(s) Q(s)] means some student likes p and q
4) ( s)P(s) ( s)Q(s) means some student likes p and some student likes q
5) ( s)[P(s) Q(s)] means some student like p or q
6) ( s)P(s) ( s)Q(s) means some student likes p or some student likes q
7) ( s)P(s) ( s)Q(s) means all students like p or all students like q
8) ( s)[P(s) Q(s)] means all students like p or q

There are several important relations between these propositions, including

s P s s Q s s P s Q s

whichmeans that if every student likes peanuts or every student likes qumquats,
then it follows that every student likes peanuts or qumquats. But the converse
does not follow since just because every student in the class likes either peanuts
or qumquats that does not mean the class belongs to one of two distinct groups,
peanut lovers or qumquat lovers.
Several important relationships between the previous propositions are as

follows:

a) ( s)[P(s) Q(s)] ( s)P(s) ( s)Q(s)
b) ( s)[P(s) Q(s)] ( s)P(s) ( s)Q(s)
c) ( s)P(s) ( s)Q(s) ( s)[P(s) Q(s)]
d) ( s)[P(s) Q(s)] ( s)P(s) ( s)Q(s)

No Truth Tables in Predicate Logic Proofs in predicate logic cannot be ver-
ified with truth tables. It is not easy to prove . For
example although we know the statement ( x R)(x2 ≥ 0) is true, to make a
truth table to verify it would require a row for each real number x which would
require an infinite number of rows.

Example 3 All Even or Odd versus All Even or All Odd

Consider the propositions involving an integer n Z:

O n = n isodd

E n = n is even
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and compare the following two statements.

• ( n Z)(E(n)) ( n Z)(O(n))

• ( n Z)(E(n) O(n))

Are the statements equivalent, if not does one imply the other?

Solution

The following implication

n Z E n n Z O n n Z E n O n

is true since the assumption states “all integers are even or all integers are odd” is
false. The assumption is clearly false since it states that Z consists of all even
integers or all odd integers, but we know that Z contains both even and odd
numbers, and hence the implication is true.
On the other hand, the converse of the implication states that if every integer

is even or odd, which we know to be true, then we conclude a fact we know as
false. Hence, we have a true assumption and a false conclusion, thus the con-
verse implication

n Z E n O n n Z E n n Z O n

is false. ▐

Historical Note In the early 1900s, German mathematician David Hilbert
(1862–1943) attempted to formalize all mathematics within the language
of predicate logic by proposing a series of axioms from which all of math-
ematics would follow. If Hilbert’s grand plan had succeeded, it would put
mathematicians out of business and turn them into “deduction robots” and
turn mathematics into a “turn-the-crank” predicate-logic machines. Unfor-
tunately, Hilbert’s grand scheme failed due to Godel's Incompleteness The-
orem of 1931, which proved that no matter what axiom system4 is chosen,
there are always theorems that can never be proven or disproven.5

4 Hilbert’s plan to formalize mathematics can be found online by interested readers.
5 Then too, mathematics is more than a pure deductive discipline. It relies a great deal on intuition
and creativity.
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Problems

1. Write the following quotes in the symbolic language of predicate logic.
a) Learn from yesterday, live for today, hope for tomorrow.

…Albert Einstein
b) A woman can say more in a sigh than a man in a sermon.

…Arnold Haultain
c) “We all go a little mad sometimes.”

…Norman Bates
d) Cowards die many times before their deaths, the valiant never taste of

death but once.
…William Shakespeare

e) All people are mortal.
f) All that glitters is not gold.

2. Translate to Predicate Logic
Write the following sentences in the symbolic language of predicate logic.
The universe of each variable is given in parentheses. For these problems,
we use the notation

Z= integers

R= real numbers

a) If a|b and b|c, then a|c, where a, b, c are integers. (Integers)
b) 4 does not divide n2 + 2 for any integer. (Integers)
c) x3 + x + 1 = 0 for some real number x. (Real numbers)
d) Everybody loves mathematics. (All people)
e) For every positive real number a, there exists a real number x that

satisfies ex = a. (Real numbers)
f) For every positive real number ε > 0, there exists a real number δ > 0

such that |x − a| < δ |f(x) − f(a)| < ε, where a, x are arbitrary real
numbers.

g) Everyone always attends class. (All students)
h) The equation x2 + 1 = 0 has no solution. (Real numbers)
i) The equation x2 − 2 = 0 has no solution. (Rational numbers)

3. True or False
Which of the following propositions are true in the given universe?
The universe is given in parentheses.
a) ( x)(x ≤ x) (Real numbers)
b) ( x)(x2 = 2) (Real numbers)
c) ( x)(x2 = 2) (Rational numbers)
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d) ( x)(x2 + x + 1 = 0) (Complex numbers)
e) ( x)[x≡ 1 (mod5)] (Integers)
f) ( x)(ex = 1) (Real numbers)
g) ( x)(x ≤ x) (Integers)

4. True or False
Very quickly, true or false.
a) ( x)(P(x))≡ ( x)[ P(x)]
b) ( x)(P(x))≡ ( x)[ P(x)]
c) ( x)[ P(x)]≡ ( x)[P(x)]
d) ( x)[ P(x)]≡ ( x)[P(x)]
e) ( x)[P(x) Q(x)]≡ ( x)[P(x) Q(x)]
f) ( x)[P(x) Q(x)]≡ ( x)[P(x) Q(x)]

5. Expanding Universes
In which of the universes N, Z, Q, R, ℂ are the following sentences true for
x and y.
a) ( x)( y)(y = 1 − x)
b) ( x 0)( y)(y = 1/x)
c) ( x)(x2 − 2 = 0)
d) ( x)(x2 + 2 = 0)

6. Not as Easy as It Looks
Tell if the sentence

x U x is even 5 ≤ x ≤ 10

is true or false in the following universe U.
a) U = {4}
b) U = {3}
c) U = {6, 8, 10}
d) U = {6, 8, 10, 12}
e) U = {6, 7, 8, 10, 12}

7. Small Universe
Which statements are true in the universe U = {1, 2, 3}.
a) 1 < 0 ( x)(x < 0)
b) ( x)( y)(x ≤ y)
c) ( x)( y)(x ≤ y)
d) ( x)( y)(y = x + 1)
e) ( x)( y)(xy = yx)
f) ( x)( y)(y ≤ x + 1)
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8. Well-Known Universe
Given the statements

R x x is a rational number

I x x is an irrational number

which of the following sentences are true in the universe of real numbers.
a) ( x)[I(x) R(x)]
b) ( x)[I(x) R(x)]
c) ( x)R(x) ( x)I(x)
d) ( x)[R(x) I(x)] [( x)R(x) ( x)I(x)]
e) [( x)R(x) ( x)I(x)] ( x)[R(x) I(x)]

9. Famous Theorems
State the following famous theorems in the language of predicate logic.
a) Intermediate Value Theorem Let f be a continuous function on the

closed interval [a, b]. If f changes sign from negative to positive on
[a, b], then there exists a number c between a and b, such that f(c) = 0.

b) Fermat’s Last Theorem If n is a natural number greater than 2, then
there are no natural numbers a, b, and c that satisfy an + bn = cn.

c) Euler’s Theorem If P is any regular polyhedron and if v, e, f are the
number of vertices, edges, and faces, respectively, then v − e + f = 2.

d) Binomial Theorem If a, b are real numbers and n is a positive
integer, then

a+ b n =
n

k = 0

n
k n−k

akbn−k

10. Negation
Negate the following sentences in words.
a) All women are moral.
b) Every player on the team was over 6 feet tall.
c) For any real number y, there exists a real number x that satis-

fies y = tan x.
d) There exists a real number x that satisfies 0 < x < 5 and x3 − 8 = 0.
e) The equation an + bn = cn does not have positive integer solutions

a, b, c for n a natural number n > 2.

11. Negation in Predicate Logic
Negate the following sentences in symbolic form.
a) ( x)[P(x) Q(x)]
b) ( x)[x > 0 ( y)(x2 = y)]
c) ( x)( y)( z)(xyz = 1)
d) ( x)( y)( z)(xy < z)
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12. Convergence and Nonconvergence
A sequence xn

∞
n= 1 of real numbers converges to a limit L if and only if

( ε > 0)( N N)( n >N)(|xn − L| < ε)

a) State the negation of this sentence.
b) Using this negation show the sequence 1/2n, n = 1, 2,… does not con-

verge to 1/4.

13. Graph to the Rescue
If P(x, y) : y ≤ x2 + 1, where (x, y) are points in the plane, determine which
of the following is true. Hint: A picture (i.e. graph) is worth a thou-
sand words.
a) ( x)( y)P(x, y)
b) ( x)( y)P(x, y)
c) ( x)( y)P(x, y)
d) ( x)( y)P(x, y)
e) ( y)( x)P(x, y)
f) ( y)( x)P(x, y)

14. Order Counts
Which of the following statements are true and which are false for real
numbers x, y?
a) ( x)( y)(x < y)
b) ( x)( y)(x < y)
c) ( y)( x)(x < y)
d) ( x)( y)(x < y)

15. Fun Time
State the denial of words of wisdom attributed to Abraham Lincoln: “You
can fool some of the people all the time and all the people some of the time,
but you can’t fool all the people all of the time.”

16. In Plain English
Restate the following sentences in plain English.
a) ( x R)( y R)[(x < y) ( z R)[(x < z) (z < y)]]
b) ( x R)[(x > 0) ( y R)(x = y2)]
c) ( m, n N)[(n > 1) [m n (m = 1) (m = n)]]

17. True Here, False There
Tell if the following sentences are true or false in each universeN, Z,Q,R.
a) ( x)( y)(x < y)
b) ( y)( x)(x < y)
c) ( x)( y)(x < y)
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d) ( y)( x)(x < y)
e) ( x)[(x > 0) ( y)(y = x2)]

18. Satisfiable in Predicate Logic
A satisfiable sentence is a sentence that is true in at least some universe.
For example, the sentence ( x U)(x > 0) is satisfiable since it is true in the
universe of real numbers. Tell if the following sentences are satisfiable, and
if so, give a universe.
a) ( x U)[(x > 0) (x < 0)]
b) ( x U)(x2 = − 3)
c) ( x U)[P(x) P(x)]
d) ( x U)[(x > 0) (x < 0)]

19. Translation into Predicate Logic
Letting

E x = x is even

O x = x isodd

translate the following sentence to predicate logic.
a) Not every integer is even.
b) Some integers are odd.
c) Some integers are even, and some integers are odd.
d) If an integer is even, then it is not odd.
e) If an integer is even, then the integer two larger is even.

20. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward predicate logic, negation of logical statements, first-order-
logic, and universal quantifier.
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1.4

Mathematical Proofs

Purpose of Section Most theorems in mathematics take the form of a condi-
tional P Q or biconditional statement P Q, where the biconditional can be
verified by proving both P Q and P Q. In this section, we describe several
different ways for proving P Q including a direct proof, proof by contrapos-
itive, and three variations of proof by contradiction, one of which is called
proof by reductio ad absurdum.

1.4.1 Introduction

Proof is basic to mathematics; we do not know if a proposition is true or false
until we have proved or disproved it, which raises the obvious question, what is a
mathematical proof? The precise definition of mathematical proof varies from
mathematician to mathematician. The famed mathematician GianCarlo Rota
once remarked: “Everybody knows what a mathematical proof is, it’s a series
of steps which leads to the desired conclusion.” Amore rigid viewpoint of proof
might be manipulating definitions and accepted rules of logic in a valid way,
going from the assumption to the conclusion. But regardless of its definition,
the history of what constitutes a mathematical proof has gone through several
refinements over the years, each refinement attaining a higher level of “rigor”
from its predecessors.1 Some mathematical proofs proposed by such greats
as Newton and Euler2 do not hold up to today’s scrutiny.

1 Although a mathematical argument must be logically precise, the American mathematician
George Simmons once said, “Mathematical rigor is like clothing, it ought to suit the occasion.”
2 Euler often manipulated infinite series without regard to convergence of the series.
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As an example of a mathematical proof, consider the proposition:

Proposition: If a, b, c are real numbers, a 0 that satisfy ax2 + bx + c = 0, then

x=
−b± b2−4ac

2a
This proposition has the form P Q and says if P is true, then so isQ. A proof

of the proposition consists of the following algebraic steps:

Assume x satisfies ax2 + bc+ c= 0 a 0

a x2 +
b
a
x= −

c
a

divide by a and transpose a term

b x2 +
b
a
x+

b
2a

2

=
b
2a

2

−
c
a

add
b
2a

2

to each side

c x+
b
2a

2

=
b2−4ac
4a2

complete the squareonthe left

d x+
b
2a

= ±
b2−4ac
2a

take the square root

e x=
−b± b2−4ac

2a
isolate x and simplify

Is this proof convincing or is there something about the argument that is lack-
ing? You might also ask if the converse holds. Is it possible to go backwards by
starting with the conclusion and reproducing the quadratic equation? In this
case, the answer is yes, so we would say that the quadratic equation holds if
and only if the given solution holds.
The previous statement is an example of a mathematical theorem.

A theorem3 is a mathematical statement that can be demonstrated to be
true by accepted mathematical operations and arguments. The chain of
reasoning used to convince one of the truth of the theorem is called a proof
of the theorem.4

Theorems are ultimately based on a collection of principles considered so self-
evident and obvious that their truth value is taken as fact. Such acceptedmaxims
are called axioms, and in every area of mathematics, be it real or complex anal-
ysis, algebra, geometry, topology, and even arithmetic is based on a collection of
self-evident truths or axioms.

3 The Hungarian mathematician Paul Erdos (1913–1996) once said that a mathematician is a
machine for converting coffee into theorems.
4 Keep inmind that theremay bemore than one proof of a theorem. For example, there are over 200
different proofs of the Pythagorean Theorem.

1.4 Mathematical Proofs52



1.4.2 Types of Proofs

Many theorems in mathematics have the form of a conditional statement or
implication P Q where one assumes the validity of P, then with the aid of
existing mathematical truths and accepted rules of inference, arrives at Q.
Although the goal is always to “go from P to Q,” there is more than one way
of achieving this goal, which are displayed in Table 1.32.

The five statements in Table 1.34 are equivalent inasmuch the five columns
numbered (4) through (8) in Table 1.33 that have the same truth values of
TFTT. Hence, there are five forms of the basic implication P Q, each provid-
ing a different approach for proving the basic implication.

Table 1.32 Five ways to prove P Q.

Five ways to prove P Q

P Q Direct proof

Q P Proof by contrapositive

(P Q) Q Proof by contradicting the conclusion

(P Q) P Proof by contradicting the hypothesis

(P Q) (R R) Proof by reductio ad absurdum

Table 1.33 Five equivalent forms for the basic implication.

(1) (2) (3)

P Q P Q P Q

T T F F F

T F F T T

F T T F F

F F T T F

(4) (5) (6) (7) (8)

P Q Q P (P Q) Q (P Q) P (P Q) (R R)

T T T T T

F F F F F

T T T T T

T T T T T
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In this and the next section, we demonstrate different methods of proof.
Before presenting some theorems and proofs, we begin by stating a few defini-
tions that are important since they give precise meaning to mathematical
concepts.

Primes, Composites, Even, and Odd Integers
Prime number: A prime number is a natural number greater than 1 that is divis-
ible only by 1 and itself. In the language of predicate logic, a natural number
p N greater than 1 is prime if and only if

n N n p n= 1 n= p

An integer n Z is composite if it is not a prime. In the language of predicate
logic, an integer n is composite if and only if

m Z m 1 m n m n

Odd integer: An integer n Z is an odd integer if it is not divisible by 2. In the
language of predicate logic, an integer n Z is odd if and only if

k Z n= 2k + 1

Even integer: An integer n Z is an even integer if it is divisible by 2. In the
language of predicate logic, an integer n Z is even if

k Z n= 2k

Proof in Experimental Sciences Experimental sciences (as biology, physics,
chemistry, …) use laboratory experiments to proof results, which are then ver-
ified by repeated experimentation. Most experimental sciences are not based
on fundamental axioms as they are in mathematics, the net result being that
over time more sophisticated experiments may change the accepted beliefs.
That is in contrast with mathematics, which is based on fundamental axioms
and definitions, what was proven true 2000 years ago is just as valid today.

1.4.3 Analysis of Proof Techniques

• Direct Proofs [P Q] A direct proof starts with an assumption P, then uses
existing accepted mathematical truths and rules of inference to establish the
truth of the conclusion Q.

Indirect proofs5 refer to proof by contrapositive or some proof by
contradiction.

5 The formal name for an indirect proof is modus tollens (Latin for “mode that denies”).
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• Proof by Contrapositive [ Q P] Here, one assumes the conclusion Q
false and then proves the hypothesis P false.

• Proofs by Contradiction The two proofs by contradiction have the form

P Q P

P Q Q

In each case, one assumes the hypotheses P as true and the conclusion
Q false and then arrives at a contradiction either contradicting the assump-
tion P in the first case, or contradicting the assumed denial Q in the
second case. Both of these proofs by contradiction6 are powerful methods
of proof.

• Reductio ad absurdum

P Q R R

This is another form of proof by contradiction. Here, one assumes P true
and Q false, then seeks to prove some type of internal contradiction7 (like 1 = 0
or x2 < 0), which is denoted by R R.

1.4.4 Modus Operandi for Proving Theorems

Before getting into the nitty-gritty of proving theorems, the following steps are
always useful, maybe crucial.

1) Be sure you understand the terms and expressions in the theorem.
2) Ask yourself if you believe the theorem is true or false.
3) Write the theorem in the language of first-order logic so that you understand

its logical structure.
4) Determine how the proof might proceed, i.e. a direct proof, proof by contra-

positive, or a proof by contradiction.
5) Start the proof.

Theorem 1 Direct Proof
If n is an odd natural number, then n2 is odd.

Direct Proof Since n N is odd, it can be written in the form n = 2k + 1 for
some integer k Z. Squaring both sides of this equation yields

6 The English mathematician, G. H. Hardy, said proof by contradiction is one of the finest weapons
in the mathematician’s arsenal.
7 Hence, the name reductio ad absurdum (reduction to the absurd).
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n2 = 2k + 1 2

= 4k2 + 4k + 1

= 2 2k2 + 2k + 1

Since k Z is an integer so is 2k2 + 2k. Hence, n2 has the form of an odd
integer. ▌

Lemmas and Corollaries In addition to theorems, there are lemmas and cor-
ollaries.8 Although theorems, lemmas, and corollaries are similar logically, it is
how they are used and their importance that distinguishes them.

A lemma is a statement that is proven as an aid in proving a theorem. Often,
unimportant details are included in a lemma so as not to clutter a the proof of a
theorem. Occasionally, lemmas take on a life of their own and become as impor-
tant or more important than the theorem they support. (i.e. Zorn’s lemma, Burn-
side’s lemma, Urysohn’s lemma, …)

A corollary is a statement that easily follows from a theorem and whose
results are generally secondary to that of the theorem. The statement:

if a, b are the sides of a right isosceles triangle, then the hypotenuse

has length c = 2a

is a simple corollary of the Pythagorean theorem.

Historical Note The American logician Charles Saunders Pierce (1839–1914)
introduced what is called second-order logic, which in addition to quantifying
variables like x, y, … also quantifies functions and entire sets of variables.
Although Pierce also made contributions to the development of first-order
logic, it was Frege who carried out first-order logic earlier and whose name
is associated with its development. It was Pierce who coined the word “first-
order” logic.

Theorem 2 Proof by Contrapositive

n N n2 even neven

Proof
Since it is more natural to start with n rather than n2, we prove this result by
proving its contrapositive, where we assume the conclusion false and prove

8 Someone once remarked, we plant the lemmas, grow the theorems, and harvest the corollaries.
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the assumption false. That is, we assume n odd and prove n2 odd. But this is the
result we proved in Theorem 1. Hence, the proof is complete. ▌

Important Note Note the important equivalences of the conditional

P Q P Q P Q

Theorem 3 Proof by Contrapositive
If a, b N, then

a+ b≥ 15 a ≥ 8 b ≥ 8

Proof
The contrapositive form of this implication is

a ≥ 8 b ≥ 8 a+ b≥ 15

Using one of De Morgan’s laws, this implication becomes

a < 8 b < 8 a+ b < 15

But a < 8 and b < 8 implies a ≤ 7 and b ≤ 7, which gives the desired result a +
b ≤ 14 < 15. ▌

There is no magic bullet for proving theorems. Sometimes the result to be
proven provides the starting point, and the theorem can be proven by working
backwards. The proof of the following theorem shows how this technique is car-
ried out.

Theorem 4 Backwards Proof
Prove for any two positive real numbers x and y, the algebraic mean is greater
than or equal to the geometric mean. That is

x+ y
2

≥ xy

Proof
This result is a prime example of “working backwards.” We begin by rewriting
the conclusion as

x+ y≥ 2 xy

or
x+ y−2 x y≥ 0
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and factoring gives

x− y
2
≥ 0

But this statement is true so to prove the desired result, we simply carry out the
steps in reverse order. ▌

Important Note A conjecture is a mathematical statement which is believed
to be true but has not been proven. Once proven to be true, it is called a the-
orem.9 The Goldbach conjecture is one of the oldest unsolved problems in
mathematics, which claims that every even integer greater than 2 can be writ-
ten as the sum of two (not necessarily distinct) primes. For example

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 + 5,…

and so on. There are many conjectures in number theory, including Legendre’s
Conjecture (unsolved as of 2019) that claims there exists a prime number
between n2 and (n + 1)2 for all natural numbers n (check out some yourself ).
The Poincare Conjecture,10 was proved by Russian mathematician Grigori Perel-
man in 2002, and should be retired from conjecture status and be called Poin-
care’s Theorem, but will probably keep its original name as a conjecture.

Important Note Not Mathematical Proofs:

• The proof is so easy we will skip it.

• Do not be stupid, of course, it’s true!

• It’s true because I said it’s true!

• Scribble, scribble QED

• God let it be true!

• I have this gut feeling.

• I did it last night.

• It works for 2 and 3.

• I define it to be true!

• Sounds good to me.

• All in favor …?

• My boyfriend said it’s true.

Although we suspect readers of this book would never be guilty of applying
one of the aforementioned proof techniques, there is one habit, however,
almost equally heinous that is often used, and that is the overuse of the word
“obvious.” If something is “obvious,” then go ahead and prove it.

9 Sometimes, however, a conjecture is also proven false, as in the case of the Polya Conjecture.
Interested readers can read about this (false) conjecture online.
10 Every simply-connected, closed 3-manifold is homeomorphic to the 3-sphere.
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Fundamental Theorem of Arithmetic The Fundamental Theorem of Arith-
metic states that any natural number greater than 1 can be uniquely factored
as the product of prime numbers. For example

21 = 3 × 7
40 = 23 × 5
180 = 22 × 32 × 5
235 = 5 × 47
453,569,345 = 5 × 773 × 117,353

Youmight thinkof theprimenumbersasbuildingblocks for thenaturalnumbers.

The Prime Number Theorem (PNT): We now prove that there are an infinite
number of prime numbers, a proof that goes back to 300 BCE to the Greekmath-
ematician Euclid of Alexandra (present-day Egypt). Although Euclid proved the
theorem by reductio ad absurdum, the German mathematician Dirichet (DEER-
a-shlay) later developed a direct proof using analytic function theory.

Theorem 5 Infinite Number of Prime Numbers
There are an infinite number of prime numbers.11

Proof
We assume that there are only a finite number of prime numbers, which we enu-
merate in the increasing order p1 = 2, p2 = 3, p3 = 5,… , pn, where pn is the largest
prime number. We now construct the product of these primes plus 1, or

M = p1,p2,…,pn + 1

We now show one of the assumed prime numbers p1, p2,… , pn both divides
M and does not divideM, which is a contradiction, and contradicts the assump-
tion that there are only finitely many primes.

SinceM is larger than the largest prime number pn, it must be a composite num-
ber, and thus is divisible by one of our finite number of primes,12 say pm(with 1 ≤
m ≤ n). But when we divide M by pm, we get a remainder of 1 as seen by

p1,p2,…,pm,…,pn + 1
pm

= p1,p2,…,pn +
1
pm

11 Youmight ask what is the assumption in this theorem? Amore explicit statement of the theorem
might be if a prime number is a natural number divisible only by 1 and itself, then there are an infinite
number of such numbers.
12 We have used the Fundamental Theorem of Arithmetic here, which states that every natural
number greater than 1 is either a prime number or can be written as the product of primes.
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Hence, pm does not divide M, thus showing that pm divides M and does not
divide M, contradicting the assumption of a finite number of primes. Hence,
we are left to conclude that there are an infinite number of prime numbers.▌

Euler’s Proof of the PNT: Another proof that there are an infinite number of
prime numbers is obtained from the identity

2
2−1

3
3−1

5
5−1

p
p−1

=
∞

n= 1

1
n
= ∞

proved by Leonard Euler (1707–1783), which uses the fact that since the har-
monic series on the right diverges, then the product on the left, taken over prime
numbers p = 2, 3, 5, 7, …. is also infinite, giving rise to an infinite number of
prime numbers.

The Prime Number Theorem The next question to ask after knowing there
are an infinite number of prime numbers is what proportion of the natural
numbers are prime? It was observed by Karl Friedrich Gauss (1777–1856) and
A. M. Legendre that although prime numbers do not occur in any regularity,
the proportion of prime numbers among the first n natural numbers is approx-
imately 1/ ln(n). For example, of the first million numbers the fraction of primes
is 1/ ln(1,000,000) 0.07. It took almost a hundred years after Gauss and
Legendre made their conjecture for French and Belgian mathematicians
Jacques Hadamard (1865–1963) and de la Vallee Poussin (1866–1962) to simul-
taneously and independently prove the Prime Number Theorem correct.

Important Note Indirect arguments or proofs by contradiction are not foreign
to our psyche. When a parent tells a child not to do something, the child thinks
the contrapositive, “If I do it, what will they do to me?”

We now come to one of the most famous theorem of antiquity, the proof of
the irrationality of 2.

Theorem 6 2 Is Irrational: Proof by Contradiction

2 is an irrational number.13

Proof
Assume the contrary, which says 2 is rational. Hence, we can write 2 = p q,
where p, q Z with q 0 and p and q have no common factors. If they have
common factors, we cancel the common factors.

13 It may not be obvious, but this theorem is of the form P Q. The theorem simply says 2 is
irrational, so where is the “if” in the theorem? The “if”would define the square root. We generally do
not say it here in the theorem since it is understood by everyone.
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We will now show that even after p/q is reduced to lowest form, both p and q
must be even, thus contradicting the fact that we have reduced p/q to low-
est form.
We begin by squaring both sides of the above equation, getting

2
2
=

p
q

2

2 =
p2

q2
p2 = 2q2

which means p2 is even, but we have seen in Theorem 2 that if p2 is even so is p.
But if p is even, it can be written as p = 2k, which implies p2 = 4k2, where k is an
integer, hence p2 = 2q2 can be written as

4k2 = 2q2 2k2 = q2

which in turn means q2 is even and thus q is even. Thus, we have shown that
both p and q are even, which contradicts the fact we reduced p/q to lowest
terms. Hence, our assumption of the rationality 2 = p q leads to a contradic-
tion, and hence, by reductio ad absurdum, we conclude that 2 is irrational. ▌

Ugh There is the story about a student who was asked to prove a given the-
orem or find a counterexample. The student asked the teacher if extra credit
was given for doing both.

Historical Note The reader should know the story of Hippasus, supposedly a

Pythagorean who first proved that 2 is irrational. The Pythagoreans were a
religious sect that flourished in Samos, Greece, around 500 BCE and founded
by the Greek philosopher and mathematician Pythagoras. They believed that
all numbers were either natural numbers 1, 2, 3, … or fractions. So when Hip-

pasus proved 2 was irrational, which according to legendwasmade at sea, the
Pythagoreans considered the proof an act of heresy and threw him overboard.
So much for making one of the greatest mathematical discoveries of all time.

Important Note Many important theorems in mathematics are proven by
contradiction. Three of the most famous are

• Cantor’s seminal theorem: the real numbers are uncountable.

• Euclid’s proof: there are an infinite number of primes.

• Pythagoras’proof: 2 is irrational.
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Tips for Proving Theorems Here are a few guidelines that might be useful for
proving theorems.

• Draw figures to visualize the concepts.

• Construct examples that illustrate the general principles.

• Try working backwards

• For “ ” theorems, ask if the converse “ ” is true.

• Modify the theorem to make it easier.

• Generalize, does the theorem hold in more general cases?

• Did you actually use all the assumptions?

1.4.5 Necessary and Sufficient Conditions (NASC)

We are all familiar with the concept of a necessary condition. For example, air is
necessary for human survival, since without it there is no life. But on the other
hand, air is not sufficient for human life inasmuch as we also need food to sur-
vive. Thus, we would say air is a necessary condition for human life, but not a
sufficient condition.
On the other hand, there are conditions that are sufficient, but not necessary.

For example, being a resident of California is sufficient for being a resident of the
United States, but not necessary. In other words, sufficient conditions are more
restrictive than necessary conditions.
And finally, there are conditions that are both necessary and sufficient.14 For

example, a differential function has a maximum value at x = a is a necessary and
sufficient condition for the function to have a zero first derivative and negative
second derivative at x = a.
Table 1.34 summarizes these ideas.

Historical Note When Newton found the derivative (which he called the flux-
ion) of x2 (whichhecalled the fluent), he arrivedat theexpression2x +Δx. TheΔx
was referred to as an “infinitely small” quantity and thus was omitted, giving the

Table 1.34 Necessary and sufficient conditions.

(A is sufficient for B)≡ (A B)

(A is necessary for B)≡ (B A)

(A is necessary and sufficient for B)≡ (A B)

14 Finally, there are conditions that are neither sufficient nor necessary. For example being the
smartest student in the class is neither necessary nor sufficient for achieving the highest grade in
the class.
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derivative (or fluxion) of 2x. It was not until a hundred years later when mathe-
maticians in the nineteenth century, such as Cauchy, Dedekind, Cantor, and
Weierstrass, put mathematics on a more solid logical footing, and the old math-
ematical expressions like infinitely small were laid to rest, replaced by more pre-
cise “limits” and “ε − δ arguments.”

The earlier discussion motivates logical statements of the form P Q, which
means “P is true if and only if Q is true,” which is often stated as P is a necessary
and sufficient condition for Q, due to the logical equivalence

P Q P Q P Q

The methodology for proving theorems of this type is to prove both P Q and
Q P. The following theorem illustrates this idea:

Theorem 7 If and Only If
Let n be any natural number, then 3 divides n2 − 1 3 does not divide n.

Proof
( ) First we prove

3 divides n2 − 1 3 does not divide n.

Since 3 is a prime number and divides n2 − 1 = (n − 1)(n + 1), it must divide
either n − 1 or n + 1. If 3 divides n − 1, it cannot divide n (it will have a remainder
of 1), and if 3 divides n + 1, it cannot divide n (it will have a remainder of 2).
Hence, 3 does not divide n.

( ) We now prove the other way that 3 divides n2 − 1 3 does not divide n :
If 3 does not divide n, then we can write

n
3
= q +

r
3

or n = 3q + r, where the remainder r is either 1 or 2. If r = 1, then n − 1 = 3q,
which means 3 divides (n − 1)(n + 1) = n2 − 1. Finally, if r = 2, then n − 2 = 3q
or n + 1 = 3q + 3 = 3(q + 1), which also means 3 divides n2 − 1 = (n − 1)(n + 1).▌

Who Has Proven the Stronger Theorem? Jerry and Susan have each proven
an important theorem with the same conclusion C, and each hopes to win a
Field’s Medal.15 However, although their conclusions are the same, their hypoth-
eses are different. Jerry has assumed a hypothesis J, so his theorem has the form
J C, whereas Susan has assumed a hypothesis S, so her theorem has the
form S C. In their battle to see who has the stronger theorem, or which

15 The Fields Medal is regarded as the “Nobel Prize” of mathematics, awarded every four years to
one or more outstanding mathematicians under the age of 40.
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theorem implies the other, Jerry makes the discovery that his hypothesis J is
sufficient for Susan’s hypothesis S. That is, J S and so he claims he has the
stronger theorem. Is Jerry correct? The answer is no! Susan’s weaker hypothesis
means she has the stronger theorem as can be seen by the implication

J S S C J C

The validity of this tautology is left to the reader. Hint: truth table.

The following Theorem 8 is best proved with the aid of the following
Lemma 1.

Lemma 1 Every natural number n can be written in the form n = s + 3m,
where s is the sum of the digits of n andm is some natural number. For example,
675 = 18 + 3(219).

Proof
Writing n as

n= ak10
k + ak−110

k−1+ + 10a1 + a0

and summing of its digits, getting s = a0 + a1 + + ak, we compute the difference

n−s= ak10
k + ak−110

k−1+ + 10a1 + a0 − ak + ak−1+ + a0

= 999…9ak+ + 99a2 + 9a1

= 3 333…3ak+ + 33a2 + 3a1

= 3m

which proves the lemma. ▌

We now use this lemma to prove the following interesting result.

Theorem 8 If and Only if

n N 3 n 3 sumof the digits of n

Proof
( ) If 3 divides n, we can write n = 3k, where k is a natural number. Then using
Lemma 1, we have 3k = s + 3m and solving for the sum s gives

s= 3k−3m= 3 k−m

which proves that the sum of the digits of n is divisible by 3.

( ) Assuming 3 divides the sum of the digits of n, we write s = 3k, where k is a
natural number. Appealing again to Lemma 1, we have

n= s+ 3m= 3k + 3m= 3 k +m
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which proves n is divisible by 3. ▌

Corollary: 3 divides 9031827540918.

Problems

1. Direct Proof
Prove the following by a direct proof:
a) The sum of two even integers is even.
b) The sum of an even and an odd integer is odd.
c) If a divides b, and b divides c, then a divides c.
d) The product of two consecutive natural numbers plus the larger num-

ber is a perfect square.
e) Every odd integer n greater than 1 can be written as the difference

between two perfect squares. Give examples.
f) If n is an even positive integer, then n is the difference of two positive

integer squares if and only if n = 4k for some integer k > 1.
g) If a, b are real numbers, then a2 + b2 ≥ 2ab.
h) The sum of two rational numbers is rational.
i) Let p(x) be a polynomial, where E is the sum of the coefficients of the

even powers, and O is the sum of the coefficients of the odd powers.
Show that E +O = p(1) and E −O = p(−1), where by p(1) and p(−1)
we mean p(x) evaluated at x = 1 and x = − 1, respectively.

2. Divisibility by 4
Show that a natural number is divisible by 4 if and only if its last two digits
are divisible by 4. For example both 256 and 56 are divisible by 4. The same
holds for 64 and 34,595,678,206,754,964.

3. Divisibility by 3
Show that a natural number is divisible by 3 if and only if the sum of its
digits is divisible by 3. For example, the number 9,003,186 is divisible by 3.

4. Proof by Contradiction
Prove the following by contradiction:
a) If n is an integer and 5n + 2 is even, then n is even.
b) If I is an irrational number and R is a rational number, then I + R is

irrational.
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5. Divisibility Problem
Prove the following for any natural number n.
a) 5 | n2 5 | n.
b) 9 n if 9 divides the sum of the digits of n.
c) 3n + 1 even n odd.

6. Counterexamples
A counterexample16 is an exception to a rule. Counterexamples are used in
mathematics to probe the boundaries of a result. Find counterexamples for
the following faulty statement and tell how you could add new hypothesis to
make the claim a valid theorem.
a) If a > b, then |a| > |b|.
b) If (a − b)2 = (m − n)2, then a − b = m − n.
c) If xandyarereal numbers , then xy= x y.
d) If f is a continuous function defined on [a, b], then there exists a

c (a, b) such that

f c =
f b − f a

b−a

7. Valid Proof: Invalid Conclusion
If the assumption of a theorem is false, then the conclusion can be false even
if the proof of the theorem is valid. For example if you assume there is a
largest positive integer N, it is possible to prove N = 1. Can you find such
a proof?

8. Comparing Theorems
Verify the statement

J S S C J C

showing if J S, then J C is the weaker theorem.

9. Comparing Theorems
Suppose a hypothesis J implies two different results C1 and C2, i.e. J C1

and J C2, and that C2 is the weaker of the results, i.e. C1 C2. Show that
J C1 is the stronger theorem, or

(C1 C2) [(J C1) (J C2)]

16 A nice reference book for any mathematician is Counterexamples in Mathematics by Bernard
Geldbaum and John Olmsted, Springer-Verlag (1990).
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10. Hmmmmmmmm
Infinite decimal expansions are sometimes needed to represent certain
fractions. Prove that 1/3 = 0.333. … by writing the decimal form
0.333… as the infinite series

0 333…=
3
10

+
3
100

+
3

1000
+

and showing the sum of this series is 1/3.

11. Another Irrational Number
Prove that log10 3 is irrational.

12. Not Proofs
The following statements are not considered as valid proofs by most of the
mathematicians. Maybe the reader knows of a few others.
a) Proof by obviousness: Too trivial to prove.
b) Proof by plausibility: It sounds good, so it must be true.
c) Proof by intimidation: Do not be stupid; of course, it’s true!
d) Proof by definition: I define it to be true.
e) Proof by tautology: It’s true because it’s true.
f) Proof by majority rule: Everyone I know says it’s true.
g) Proof by divine words: And the Lord said, “Let it be true,” and it

was true.
h) Proof by generalization: It works for me, that’s enough.
i) Proof by hope: Please, let it be true.
j) Proof by intuition: I got this gut feeling.

13. Just a Little Common Sense
You are given a column of 100 ten-digit numbers by adding them, you get
a sum of 2,437,507,464,567. Is your answer correct?

14. Syllogisms
The Greek philosopher Plato is recognized as the first person associated
with the concept a logical argument. His arguments took the form of
two premises followed by a conclusion. This basic logical form is called
a syllogism, the most famous being the “Socrates syllogism”:

• First premise: All men are mortal.

• Second premise: Socrates is a man.

• Conclusion: Therefore, Socrates is mortal.

which has the general form

• First premise: M R

• Second premise: S M

• Conclusion: S R
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where
M = “ being a man”
S = “ being Socrates”
R = “ being mortal”
Plato classified each premise and conclusion as one of the four basic
types:17

• E Every A is B (example: Every dog has a tail.)

• S Some A is B (example: Some dogs have black hair.)

• N No A is B (example: No dog has orange hair.)

• SN Some A are not B (example: Some dogs are not poodles.)

which means there are a total of 4 × 4 × 4 = 64 possible syllogisms, some
logically true, some false. For example, a syllogism of type NENmeans the
first premise is of basic type N, the second premise of type E, and the con-
clusion of type N. Which of the following syllogism types are valid and
which are invalid? Draw Venn diagrams to support your argument.
a) NEN Ans: true
b) ESS Ans: true
c) NSSN Ans: true
d) SSS Ans: false
e) EES Ans: false
f) SES Ans: false

15. Euler’s Totient Function
Euler’s totient function, denoted by ϕ(n), gives the number of natural num-
bers less than a given number n, including 1, that are relatively prime to n,
where two numbers are relatively prime if their greatest common divisor is 1.
For example ϕ(p) = p − 1 for any prime number since 1, 2, 3,… , p − 1 are

all relatively prime with p. On the other hand, ϕ(12) = 4 since 1, 5, 7, and
11 are the numbers less than 12 relatively prime with 12. Prove that for a
power of a prime number pk, k = 1, 2, … the Euler totient function is
ϕ(pk) = pk − 1(p − 1) by proving the following results.
a) Find the number of natural numbers strictly between 1 and pk that are

not relatively prime with pk, i.e. divide pk.
b) Subtract the result a) from pk − 1 to obtain ϕ(pk).

16. Pick’s Amazing Formula
In 1899, an Austrian mathematician, Georg Pick, devised a fascinating for-
mula for finding the area A inside a simple polygon whose vertices lie on
grid points (m, n) in the plane, wherem and n are integers. The formula he
came up with was

17 We use A and B to denote the properties S, P, and M.
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A=
B
2
+ I−1

where B is the number of vertices that lie on the boundary of the polygon,
and I is the number of vertices that lie interior to the polygon.
a) Verify that Pick’s formula yields an area of 1 for a simple square

bounded by four adjacent vertices.
b) Use Pick’s formula to find the area inside the polygons in Figure 1.9.
c) Prove that Pick’s formula yields the correct area ofmn inside a rectan-

gle withm rows and n columns.We draw am = 8 by n = 11 rectangle in
Figure 1.10 for illustration

17. Twin Prime Conjecture
Twin primes are pairs of prime numbers of the form (p, p + 2) of which
(17, 19) and (197, 199) are examples. It is not known that if there are

Figure 1.9 Applying Pick’s formula.

Figure 1.10 The area of mn inside an m × n rectangle.
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an infinite number of such pairs, although it is currently known that there
are an infinite number of prime pairs that are at most 246 apart. This leads
one to the question about triple primes of the form (p, p + 2, p + 4) of
which (3, 5, 7) is an example. Prove this is the only triple prime sequence
of this form.

18. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward types of mathematical proofs, proof by contradiction, reduc-
tio ad absurdum, and prime number theorem.
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1.5

Proofs in Predicate Logic

Purpose of Section We continue our discussion of mathematical proofs by
focusing on theorems of the form ( x U)P(x), ( x U)P(x) as well as theorems
with multiple quantifiers, such as ( x U)( y V) P(x, y). To solve theorems with
a quantified variable, like x, x, it is important we know how to negate such
theorems in order to prove them by contradiction.

1.5.1 Introduction

Most theorems in mathematics begin with quantifiers such as “for all” or “there
exists,” or some variation of these such as “for all x, there exists a y,” although
often not stated explicitly inasmuch the quantification is understood. Euclid’s
famous theorem about prime numbers is often stated simply as “there are an
infinite number of prime numbers,” which begs the question, where is the
“if” in the theorem? The answer is that the assumption is the definition of a
prime number. In this section, we always include the all-important quantifiers
and prove theorems stated in the language of predicate logic.

1.5.2 Proofs Involving Quantifiers

Since many theorems in mathematics are stated in the form ( x U)P(x) or
( x U)P(x), the question we ask is how do we go about proving them. We
begin by proving theorems that include a single universal quantifier.

Universal Quantifier To prove a theorem of the form

x U P x

one selects an arbitrary x U, then proves that the proposition P(x) is true.
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Theorem 1 Universal Direct Proof
All integers divisible by 6 are even.

Proof
Stated in the language of predicate logic, we have

n Z 6 n n is even

Since n is assumed divisible by 6, there exists an integer m that satisfies
n = 6m, which can be rewritten as n = 2(3m) = 2k, where k = 3m. Hence,
n is an even integer, which completes the proof. We could streamline this
argument symbolically as

n Z 6 n m Z n= 6m= 2 3m
▌

Note: We could also prove Theorem 1 by writing the theorem in a contrapos-
itive form as

n Z n isodd 6∤n

where 6∤ n means 6 does not divide n.

Counterexample To prove a theorem that contains a universal quantifier
false, one only needs to find a counterexample, i.e. an example where the
theorem is invalid. At one time, there was a conjecture in number theory by
Fermat that stated

n N 22
n
+ 1 isaprime number

until Leonard Euler proved the conjecture was false with the embarrassing
observation that for n = 5:

22
5
+ 1 = 232 + 1 = 4294967297 = 641 × 6700417

In other words, Euler proved the negation of the theorem

n N 22
n
is not prime

Proofs involving the existential quantifier are often easier than ones invol-
ving the universal quantifier since it is only necessary to find one element in
the universe that satisfies the given proposition.
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Existential Sentences To prove a theorem of the form
( x U) P(x)

find one (or more) element x U that satisfies P(x).

Simply because we only have to find one object that satisfies the given con-
dition, does not automatically mean the theorem is easy to prove. There are
many unsolved conjectures related to finding just one thing. For example, a per-
fect number is a natural number that is equal to the sum of its proper divisors,1

such as 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14, …. Currently, it is unknown if
there are any odd perfect numbers. The largest perfect number currently
known is

274 207 280 27 420 728−1

and contains 44 677 235 digits.

Theorem 2 Proof by Demonstration
Show that there exists an even prime number.

Proof
One should never use the word trivial in mathematics, but in this case it is. The
number 2 is both even and prime.

Intuitionism In the philosophy of mathematics, there is a school of thought,
called Intuitionism introduced by the Dutch mathematician L. E. J. Brouwer
(1881–1961) with advocates like the Germanmathematician Leopold Kronecker
(1823–1891). Intuitionists (or constructionists) feel that mathematics is purely
the result of the constructive mental activity of humans, contrary to the belief
that mathematical concepts exist outside of human existence. Kronecker once
said, God made the integers, all else is the work of man. In the late 1800s and early
1900s, several intuitionists felt that new mathematical theories of the time such
as Cantor’s infinite sets, imaginary numbers, proof by contradiction and none-
uclidean geometries were taking mathematics down the road to mysticism.
Even the great French mathematician Henri Poincare (1854–1912) felt that Can-
tor’s theory of infinite sets and transfinite arithmetic should be excluded from
mathematics. Today, the intuitionist school of mathematics is not held in favor
among many mathematicians.

1 The proper divisors of a number are the numbers that divide the number other than the number
itself. For example the proper divisors of 6 are 1, 2, and 3. The proper divisors of 28 are 1, 2, 4, 7,
and 14.
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Theorem 3 Use of the Law of the Excluded Middle
There exists irrational numbers a, b such that ab is rational.2 In the language of
predicate logic, if we call I the set of irrational numbers, we would write

a,b I ab Q

Proof
One hesitates to call a proof “cute,” but this is one strange theorem to say the
least. Consider the number

2
2

which is either rational or irrational. We consider each case.

Case 1: If 2
2
is rational, then the proof is complete since we simply pick the

irrational numbers as a= b= 2.

Case 2: If 2
2
is irrational, then since

2
2

2

= 2
2
= 2

we pick the two irrational numbers

a= 2
2
, b= 2

▌

Note that we have not determined which of the two powers

2
2
or 2

2
2

is rational, but we have shown one of them is rational.

1.5.3 Proofs by Contradiction for Quantifiers

Proofs by contradiction are important tools in a mathematician’s toolkit.

Proof of ( x)P(x) by Contradiction To prove a theorem of the form ( x)P(x) by
contradiction, assume the theorem false

x P x x P x

and arrive at a contradiction, thus proving the theorem cannot be negated.

2 The Law of the Excluded Middle states the accepted logical principle that every proposition is
either true or false, unlike the weatherperson who says, rain, no rain, or maybe.
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Theorem 4 Proof by Contradiction
If m, n are integers, then 14m + 21n 1, or in the language of predicate logic:

m,n Z 14m+ 21n 1

Proof
Assume the proposition is false, so taking the negative of the above proposition,
we have

( m, n Z)(14m + 21n = 1)

But this equation obviously3 cannot hold since seven divides the left side of
the equation but not the right side. Hence, the denial of the theorem is false,
so the theorem is true. ▌

Important Note If a theorem is true for thousands of cases, that does not
prove the theorem. The equation

n−1 n−2 n−1000000 = 0

has a solution for n = 1, 2,… , 1 000 000, but has no solution for n = 1 000 001.

Historical Note Frege’s 1879 seminal work Begriffsschrift (“Conceptual Nota-
tion”) marked the beginning of a new era in logic, which allowed the quantifi-
cation of mathematical variables, just in time for the more precise
arithmetization of analysis of calculus, being carried out in the late 1800s by
mathematicians like the German Karl Weierstrass (1815–1897) and others.

Some theorems contain both universal and existential quantifiers. The follow-
ing theorem is an example.

1.5.4 Unending Interesting Properties of Numbers

Is the number 10 008 036 000 540 a multiple of 9? The answer is yes, and if you
know a certain theorem, you can answer the question in about five seconds. To
prove this result, one must make the observation that 10 = 9 + 1. Here is the
theorem stated in the language of predicate logic.

3 There is the story about a professor who pointed to an ominous looking equation on the board and
after scratching his head for 15 minutes, said at last, “Aha, it’s obvious!”
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Theorem 5 Interesting Property of Numbers (Casting Out 9s)

n N 9 n 9 sumof the digits of n

Semi-Proof
Sometimes proofs are easy conceptually, but the arithmetic or algebra of the the-
orembecomesmessy, this problembeing suchanexample.Weprove the result for
a two-digit number and let you prove it for a three-digit number. See Problem 9.
( ) We assume 9 d1d2, which implies d1d2 = 9k for some k N, which fur-

ther implies:

starting withd1d2 = 9k

hence 10 × d1 + d2 = 9k

hence 9 + 1 d1 + d2 = 9k

hence d1 + d2 = 9k−9d1 = 9 k−d1 = 9k1 wherek1 = k−d1 N

Hence, the sum of the digits, d1 + d2, is a multiple of 9.
( ) Assuming the sum of the digits a multiple of 9, we can write

starting with d1 + d2 = 9k

hence d1 + d2 = 9k + 9d1−9d1

hence10d1 + d2 = 9k + 9d1 = 9 k + d1

hence d1d2 = 9k1

where k1 = k + d1, which proves the result. ▌

In general, to determine if a large number is a multiple of 9, one sums the digits to
get a new number. If it is not immediately known if the new number is a multiple
of 9, sum the digits again, and again. If the end product of all this is 9, then the
original number is divisible by 9, otherwise no. Try a few numbers yourself.

It is also possible to prove theorems involving the existential quantifier by
contradiction.

Proof of ( x) P(x) by Contradiction To prove a proposition of the form ( x)P(x)
by contradiction, assume the proposition false, or

x P x x P x

and then reach some kind of contradiction.
Another proposition involving the existential quantifier is of the form

( x)P(x). To prove a proposition of this form by contradiction, assume the
contrary, i.e.( x) P(x) and then reach a contradiction.
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Theorem 6 No Largest Even Integer
There is no largest even integer.

Proof
Assume there is a largest even integer we call N, which we can write N = 2k for
some k Z. Now consider N + 2, which we can write as

N + 2= 2k + 2= 2 k + 1

But this says N + 2 is an even integer greater than N, which contradicts the
assumption that N is the largest even integer. Hence, we cannot claim there
is a largest even integer. ▌

Historical Note There are theorems and then there are theorems. In the Clas-
sification Theorem for Simple Groups (known lovingly at the enormous theorem).
The proof required the work of hundreds of mathematicians and consists of an
aggregate of hundreds of papers. If the theorem were to be written out, it is
estimated it would take between 10 000 and 15 000 pages.

1.5.5 Unique Existential Quantification !

A special type of existential quantifier is the unique existential quantification

Proving Unique Existential Theorems A theorem of the form

x U P x

with an exclamation point ! after the existential quantifier states there exists a
unique element x such that P(x) is true, the emphases being on the word
“unique.” To prove a theorem of this form, we must show P(x) is true for exactly
one element of the given universe U. A common strategy is to first show P(x) is
true for some x U, and then if P(x) is true for another element y U, then x = y.

The concept of uniqueness is important in mathematics. For many problems,
the first step is to first show existence, and the second step is to show
uniqueness.

Theorem 7 Uniqueness: Diophantine Equation
There exist unique natural numbers m and n that satisfy

m2−n2−12

or ( !m N)( ! n N)(m2 − n2 = 12).
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Proof
An equation that allows only integer solutions is called a Diophantine
equation. We begin by factoring

m2−n2 = m+ n m−n = 12
and note that the difference between the two factors (m + n)(m − n) is 2n, which
means that both factors must be even or bothmust be odd. But the only factor of
12 that meets this requirement is 12 = 2 × 6. Hence, we are left with

m+ n= 6

m−n= 2
which only has the solution m = 4, n = 2. ▌

Historical Note In the late 1800s and early 1900s, there was a shift in the phi-
losophy of mathematics, from thinking that logic was simply the tool for math-
ematics to thinking that logic was the foundation or precursor of mathematical
thought. This thesis, called the “logistic thesis” (or “Frege–Russell thesis”), con-
tends that mathematics is an extension of logic, as described in Russell and
Whitehead’s seminal work, Principia Mathematica. For others, like Giuseppe
Peano, symbolic logic is only a tool for mathematics, which is the philosophy
of many mathematicians today.

Historical Note The American logician Charles Saunders Pierce (pronounced
“purse”) introduced second-order logic, which in addition to quantifying vari-
ables like x, y, … also quantifies functions and entire sets of variables. For most
mathematics, first-order logic is adequate. Pierce also developed first-order logic,
but Frege carried out his research earlier and is generally given credit for its devel-
opment. However, it was Pierce who coined the term “first-order” logic.

Theorem 8 Proof by Pictures
Does the drawing in Figure 1.11 constitute a
“legitimate” proof of the Pythagorean theorem
a2 + b2 = c2, with legs having lengths a, b and a
hypotenuse having length c? Some people say
yes, others say no, but the best way to think about
“visual” proofs is that they provide an idea that
can be turned into a valid logical proofs.

Proof by Picture
Setting the area of the large square equal to the
sum of the areas of the four triangles plus the area
of the smaller square yields.

a+ b 2 = 2ab+ c2 a2 + b2 = c2 ▌

c

c

c

c

b

a

a b

a

b

b a

Figure 1.11 Visual proof of the
Pythagorean theorem.
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Important Note A great mathematical proof is one that is distinguished by
beauty and economy. There are some proofs that get the job done but do
not lift ones’ intellectual spirit. On the other hand, some proofs overwhelm
one with creative and novel insights. You might grade the proofs in this
section according to those principles.

Problems

1. True or False
Which of the following are true?
a) ( x R)(x2 + x + 1 > 0)
b) ( x R)[x2 > 0 x2 < 0 ]
c) ( x Z)(x2 > x)
d) ( x R)( y R)(y = sin x)
e) ( x R)( y R)(y = tan x)
f) ( x R)( y R)(y = sin x)
g) ( x, y N)( n > 2)(xn + yn = 1)
h) ( x R)( a, b, c R)(ax2 + bx + c = 0)
i) ( x ℂ)( a, b, c R)(ax2 + bx + c = 0)
j) ε > 0 N N n >N 1

n < ε
k) ( ε > 0)( δ > 0)(|x − 2| < δ |x2 − 4| < ε)

2. Predicate Logic Form
Write the following theorems in the language of predicate logic.
a) A number is divisible by 4 if and only if its last two digits are divisible

by four.
b) A natural number is divisible by 2n if and only if its last n digits are divis-

ible by 2n.
c) There exists irrational numbers a, b such that ab is rational.

d) n
k = 1k =

n n+ 1
2

e) For positive real numbers a, b, we have ab ≤ a+ b
2 .

f) If a, b are integers and b 0, then there exists unique integers q, r such
that a = qb + r where 0 ≤ r < |b|.

g) If p is a prime number that does not divide an integer a, then p divides
ap − a.

h) The square of any natural number has each of its prime factor occurring
an even number of times in its prime factorization.

i) All prime numbers p greater than 2 are of the form either p = 2n + 1 or
p = 2n + 3 for some natural number n.
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j) Every even number greater than 4 can be expressed as the sum of two
prime numbers.

k) Euler’s Conjecture: There are no natural numbers a, b, c, d that satisfy
a4 + b4 + c4 = d4.

3. Negation
Negate the following propositions and tell whether the original statement
or the negation is true. Let x and y be real variables.
a) ( x)( y)(xy < 1)
b) ( x)( y)( z)(xyz = 1)
c) ( x)( y)( z)( w)(x2 + y2 + z2 +w2 = 0)
d) ( x)( y)(x < y)
e) ( x)( y)(xy < 1 xy > 1)
f) ( x)( y)(xy = 0 xy 0)

4. Counterexamples
All the following statements are wrong. Prove them wrong by finding a
counterexample.4

a) All mathematicians make tons of money writing textbooks.
b) For all positive integers n, n2 + n + 41 is prime.5

c) Every continuous function defined on the interval (0,1) has a maximum
and minimum value.

d) Every continuous function is differentiable.
e) If the terms of an infinite series approach zero, then the series converges.
f) The perimeter of a rectangle can never be an odd integer.
g) ( x R)( y R)(x = y2)
h) Every even natural number is the sum of two primes.
i) Ifm and n are positive integers such thatm divides n2 − 1, thenm divides

n − 1 or m divides n + 1.
j) If {fn : n = 1, 2,…} is a sequence of continuous functions defined on (0, 1)

that converge to a function f, then f is continuous.

5. If and Only If Theorems
State each of the following theorems in the language of predicate logic. Take
the function f as a real-valued function of a real variable.
a) A function f is even if and only if for every real number x we have f(x) =

f(−x).
b) A function f is odd if and only if for every real number x we have f(x) =

− f(−x).

4 A nice book outlining many counterexamples in mathematics is Counterexamples in
Mathematics by Bernard R. Gelbaum and John Olmsted (Holden Day, Inc.), 1964.
5 A famous mathematician once said that he was once x2 years old in the year x. Can you determine
the year this person was born?
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c) A function f is periodic if and only if there exists a real number p such
that f(x) = f(x + p) for all real numbers x.

d) A function is increasing if and only if for every real numbers x and y we
have x ≤ y f(x) ≤ f(y).

e) A function f is continuous at x0 if and only if for any ε > 0 there exists a
δ > 0 such that |x − x0| < δ |f(x) − f(x0)| < ε.

f) A function f is uniformly continuous on a set E if and only if for any ε > 0
there exists a δ > 0 such that |f(x) − f(y)| < ε for any x, y in E that satisfy
|x − y| < δ.

6. Hard or Easy?
Prove that if there is a real number a R that satisfies a3 + a + 1 = 0, then
there is a real number b R that satisfies b3 + b − 1 = 0. This problem is
either very hard or very easy, depending how it is approached. It is your
job to determine which is true.

7. Predicate Logic in Analysis
The so-called ε − δ proofs in analysis were originated by the German math-
ematician Karl Weierstrass in the 1800s and involve inequalities and uni-
versal and existential quantifiers. They often start with ( ε > 0) followed
by ( δ > 0). The idea is that your adversary can pick ε > 0 as small as one
pleases, but you have the advantage of picking the δ second. Of course, your
choice of δ will most likely depend on ε.
a) Show that for every real number ε > 0 there exists a real number δ > 0

such that 2δ < ε. In the language of predicate logic, prove ( ε > 0)
( δ > 0)(2δ < ε).

b) For every real number ε > 0, there exists an integer N > 0 such that for n
>N one has 1/n < ε. In the language of predicate logic, prove ( ε > 0)
( N > 0)( n >N)(1/n < ε).

c) Show that for every real number ε > 0, there exists a real number δ > 0
such that if |x| < δ then x2 < ε. In the language of predicate logic, prove
( ε > 0)( δ > 0)( x R)(|x| < δ x2 < ε)

d) Show that for every positive integerM there is a positive integer N such
that x >N x >M.

In the language of predicate logic, this says

M > 0 N > 0 x R x >N x >M

8. Doing Mathematics
Textbooks sometimes lead one to believe that theorems appear out of thin
air for mathematicians to prove. If this were so, mathematics would be a
purely deductive science, but in fact “doing mathematics” and mathemat-
ical research is as much an inductive science as deductive. Table 1.35 below
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lists the number of divisors τ(n) of n for the first 24 natural numbers. Look-
ing at the table, can you think of any question to ask about the number of
divisors of a natural number? A couple of candidates are

Theorem 1: τ(n) is odd if and only if n is a square, like 4, 9, 16, …
Theorem 2: If m and n have no common factor, then τ(m)τ(n) = τ(mn).

9. Casting Out 9s
Show that a number d1d2d3 is a multiple of 9 if and only if d1 + d2 + d3 is a
multiple of 9.

10. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your search engine
toward philosophy of intuitionism, Gottlob Frege, casting out nines, proofs
in predicate logic, and proofs by pictures.

Table 1.35 Divisors of a few natural numbers.

n τ(n) n τ(n)

1 1 13 2

2 2 14 4

3 2 15 4

4 3 16 5

5 2 17 2

6 4 18 6

7 2 19 2

8 4 20 6

9 3 21 4

10 4 22 4

11 2 23 2

12 6 24 8
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1.6

Proof by Mathematical Induction

Purpose of Section To introduce the Principle of Mathematical Induction,
both the weak and strong forms, and show how a certain class of theorems
can be proven by this technique.

1.6.1 Introduction

An important technique for verifying proofs in combinatorics and number
theory is the Principle of Mathematical Induction. The technique was used
implicitly in Euclid’s Elements in the “descent proof” that states that every nat-
ural number has a prime divisor. The term “Mathematical Induction” was first
coined in 1828 by the English logician Augustus DeMorgan (1806–1871) in an
article called Induction.
Mathematical Induction is generally not used in deriving new formulas, but is

an effective tool to verify formulas and facts you suspect are true. That said, it is
part of the repertoire of any mathematician.
The beauty of mathematical induction is it allows a theorem to be proven in

cases when there are an infinite number of cases to explore without having to
examine each case. Induction is the mathematical analogue of an infinite row of
dominoes, where if you tip over the first domino, it tips over the next one, and so
on, until they all are tipped over. The nice thing about induction is you do not
have to prove that it works. It is an axiom1 in the foundations of mathematics.

1 In 1889 Italian mathematician Giuseppe Peano (1858–1932) published a list of five axioms which
define the natural numbers. Peano’s fifth axiom is called the induction axiom, which states that “any
property which belongs to 1 and also to the successor of any number which has the property belongs to
all numbers.”
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Mathematical induction provides a convenient way to establish that a state-
ment is true for all natural numbers 1, 2, 3, …. The following statements are
prime candidates for proof by mathematical induction.

• For all natural numbers n, 1 + 3 + 5 + + (2n − 1) = n2

• If a set A contains n elements, then the collection of subsets of A contains 2n

elements.

•
1
2
3
4
5
6

2n−1
2n

≤
1

3n+1
for all natural numbers n.

Here, then is how induction works.

1.6.2 Mathematical Induction

The Principle of Mathematical Induction is a method of proof for verifying that
a proposition P(n) is true for all natural numbers n = 1, 2,…. The methodology
for proving theorems by induction is as follows:

Methodology of Mathematical Induction
To verify that a proposition P(n) holds for all natural numbers n, the Principle of
Mathematical Induction consists of carrying out two steps.

• Base Case: Prove P(1) is true.

• Induction Step: Assume P(n) is true for an arbitrary n, then prove P(n + 1) is true.

If the above two steps are proven, then the Principle of Mathematical Induction
states that P(n) is true for all natural numbers n. In the language of predicate
logic, this states

P 1 is true

n N P n true P n+ 1 true
n N P n is true
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Important Note Do not confusemathematical inductionwith inductive reason-
ing often associated with the natural sciences. Inductive reasoning in science is
a scientific method whereby one induces general principles from specific obser-
vations. Mathematical induction is not the same thing: it is a deductive form of
reasoning used to establish the validity of a proposition for all natural numbers.

Important Note There are many variations of the basic induction proof. For
example, there is no reason the base case starts with P(1). If the base case is
replaced by proving P(a), where “a” is any integer (positive or negative), math-
ematical induction would then conclude that P(n) is true for all n ≥ a. Also, if the
induction step is replaced by P(n) P(n + 2), then mathematical induction
would conclude that P(n) is true for P(1), P(3),… , P(2n + 1), …

Theorem 1 Famous Identity
If n is a positive integer, then

1 + 2+ + n=
n n+ 1

2

Proof
Denote P(n) as

P n 1 + 2+ + n=
n n+ 1

2

Base Case: We can show that P(1) is true since2 P(1) says

1 =
1 2
2

Induction Step: Assuming P(n) true for arbitrary n, this says

P n 1 + 2+ + n=
n n+ 1

2

Now, adding n + 1 to each side of this equation, we get

1 + 2+ + n+ n+ 1 =
n n+ 1

2
+ n+ 1

=
n n+ 1 + 2 n+ 1

2

=
n+ 1 n+ 2

2

2 The reader can verify that P(2) and P(3) are also true, but that is not relevant to proof by induction.
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which is statement P(n + 1). Hence, we have proven P(n) P(n + 1) and so by
induction the result is proven. ▐

The result from Theorem 1 can also be found with pictures.

Visual Proof. The n × n array3 drawn in Figure 1.12 has n2 boxes where

• number of boxes containing xs is 1 + 2 + 3 + + n

• number of unmarked boxes is 1 + 2 + + (n − 1),

Hence,

n2 = 1 + 2+ + n + 1 + 2+ + n−1

Adding n to each side of this equation gives

n2 + n= 2 1 + 2+ + n

and solving for 1 + 2 + 3 + + n gives the desired result

1 + 2 + 3+ + n=
n2 + n
2

=
n n+ 1

2

Although a direct proof of the following theorem is fairly difficult, an induction
proof is easy.

Theorem 2 Induction in Calculus
Prove that for every natural number n

P n
dn xex

dxn
= x+ n ex

n

n

x

x x

x x

x x

x x

x x x x x

x x

x

x

x

x

x

Figure 1.12 Visual proof.

3 The array is really a 6 × 6 array but we imagine it is an n × n array.
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Proof
Using mathematical induction, we have
Base Step: When n = 1 and using the product rule for differentiation, we have
d xex

dx
= x

d
dx

ex + ex = x+ 1 ex.

Induction Step: Assuming

P n
dn xex

dxn
= x+ n ex

is true for arbitrary natural number n > 1, we compute

P n+ 1
dn+1 xex

dxn+1
=

d
dx

dn xex

dxn

=
d
dx

x+ n ex induction assumption

= x+ n ex + ex product rule

= x+ n+ 1 ex

which proves P(n + 1), and so by induction the theorem is proven. ▐

Theorem 3 Inequality by Induction
If n ≥ 5, then 2n > n2.

Proof
Defining P(n) : 2n > n2 we prove:
Base Case: P(5) : 25 = 32 > 25 = 52.
Induction Step: P(n) P(n + 1) for n ≥ 5.
Assuming the statement is true for an arbitrary n > 5, the goal is to prove

2n > n2 2n+1 = n+ 1 2, n ≥ 5

which we do in the following steps:

2n+ 1 = 2 2n

> 2n2 induction hypothesis

= n2 + n2

≥ n2 + 5n weareassumingn > 5

= n2 + 2n+ 3n

> n2 + 2n+ 1

= n+ 1 2

Hence, we have proven P(n + 1), so by induction P(n) true for all n ≥ 5. ▌
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You may now ask, how did we ever arrive at the nonintuitive inequalities in the
proof that made everything turn out so nice? The answer is we worked out the
inequalities backwards starting with the conclusion.
Sometimes a result can be proven by induction or with a direct proof. The

following problem is such an example. You can decide if you have a preference.

Theorem 4 Direct Proof or Proof by Induction?
For any n N, the number n(n + 1) is even.

Direct Proof
The idea is to show that for any natural number n, the number n(n + 1) contains
a factor 2. We consider both cases when n is even or odd.
If n is even, we have

k N n= 2k n n+ 1 = 2k n+ 1

If n is odd, we have

k N n= 2k + 1 n n+ 1 = 2k + 1 2k + 2 = 2 k + 1 k + 2 ▐

Proof by Induction
The basic proposition states P(n) : n(n + 1) is even. Using mathematical induc-
tion, we show
Base Step: Show P(1) : 1(1 + 1) = 2 is even
Induction Step: Show P(n) P(n + 1). Assuming n(n + 1) is even, we have
n(n + 1) = 2k for k N. Hence, we can write

P n+ 1 n+ 1 n+ 2 = n n+ 1 + 2 n+ 1

= 2k + 2 n+ 1

= 2 k + n+ 1

which proves P(n + 1) and so by induction the result is proven. ▐

Important Note Someone once said mathematical induction is the formal
way of saying “and so on.”?

The type of induction discussed thus far is sometimes called weak induction.
We now introduce another version of induction called strong induction.
Although the two versions are logically equivalent, there are problems where
strong induction is more convenient.
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1.6.3 Strong Induction

Surprising as it might seem, both weak and strong induction are logically equiv-
alent, the difference being practical, sometimes strong induction is more con-
venient and sometimes weak induction is more convenient. The methodology
of strong induction consists in carrying out the following steps.

Methodology of (Strong) Mathematical Induction To verify a proposition P
(n) holds for all natural numbers n, the Principle of (Strong) Mathematical
Induction consists of carrying out the following steps.

1) Base Case: Prove P(1) is true.
2) Induction Step: Show

n N P 1 P 2 P n P n+ 1

or equivalently

n N P 1 P 2 P n−1 P n

The following theorem shows how strong can be useful in proving certain
results.

Theorem 5 Every natural number n greater than 1 is divisible by a prime
number.

Proof
Base Case: The result is true for n = 2 inasmuch as 2 is prime and 2 divides 2.
Induction Step: Assume all natural numbers 2 through n − 1 are divisible by a
prime number, where n − 1 is an arbitrary natural number. The goal is to show n
is divisible by a prime number. If n is prime, then it is divisible by a prime num-
ber, itself. If n is not prime, then n is a product of numbers less than n, and one
(or any) of these numbers m, by hypothesis, is divisible by a prime number p.
Hence, we have p dividesm, andm divides n, and so, as we have proven earlier,
p divides n, or symbolically

p m m n p n

Hence, the induction step in proven, so by the Principle of Strong Induction, the
result is proven. ▐

A fundamental result in number theory is the Fundamental Theorem of
Arithmetic, which can be proven by strong induction.
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Theorem 6 Fundamental Theorem of Arithmetic
Every natural number greater than 1 can be written as the product of prime
numbers.4 For example 350 = 2 × 52 × 7, 1911 = 3 × 72 × 13.

Proof
Using the principle of strong induction, we prove
Base Case: P(2) holds since 2 is prime.
Induction Step: Using strong induction, we prove that for an arbitrary natural
number n ≥ 2:

P 2 P 3 P 4 P n P n+ 1

Assuming P(2), P(3),… , P(n) true implies every natural number 2, 3,…, n can
be written as the product of primes. To prove that n + 1 can be written as a prod-
uct of prime numbers, consider two cases:

Case 1: If n + 1 is a prime number, the result is proven since we can write n +
1 = n + 1.
Case 2: If n + 1 is not prime, it can be written as a product n + 1 = p q, where
both factors p and q are less than n + 1 and greater than or equal to 2. By the
induction hypothesis both p and q can be written as the product of primes:

p= p1p2 pm q = q1q2 qn

Hence, we have

n+ 1= pq = p1p1 pm q1q2 qn

which shows P(n + 1) is true. Thus, by the principle of strong induction P(n) is
true for all n ≥ 2. ▐

History of Mathematical Induction Although some elements of mathemati-
cal induction have been hinted at the time of Euclid, one of the oldest argument
using induction goes back to the Italian mathematician Francesco Maurolico,
who used induction in 1575 to prove that the sum of the first n odd natural
numbers is n2. The method was later discovered independently by the Swiss
mathematician John Bernoulli, and French mathematicians Blaise Pascal
(1623–1662) and Pierre de Fermat (1601–1665). Finally, in 1889, the Italian logi-
cian Giuseppe Peano (1858–1932) introduced five axioms, called Peano’s
axioms, for logically deducing the natural numbers in which the fifth axiom
was the Principle of Mathematical Induction. Hence, the Principle of Mathemat-
ical Induction is an axiom of arithmetic.

4 Moreover, this representation is unique up to the order of the factors. However, we will not prove
the uniqueness of the representation here.
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The next example shows a variation of the base step in induction. Each prob-
lem is different, and the induction proof must be modified accordingly.

Problems

1. Proof by Induction
Prove the following propositions, either by weak or strong induction.

a) 12 + 22 + 32+ + n2 =
n n+ 1 2n+ 1

6

b) P n 13 + 23 + 33+ + n3 =
n2 n+ 1 2

4
c) 1 + 3 + 5 + + (2n − 1) = n2.
d) 9n − 1 is divisible by 8 for all natural numbers n.
e) For n ≥ 1, 1 + 22 + 23 + 24 + + 2n = 2n + 1 − 1
f) For n ≥ 5, 4n < 2n,
g) n3 − n is divisible by 3 for n ≥ 1.
h) 2n − 1 ≤ n!, n N
i) For all positive integers n, n2 + n is even.
j) For any real numbers a, b and natural number n, we have (ab)n = anbn.

2. Something Fishy
Let us prove by induction n2 + 7n + 3 is even for all natural numbers n = 1,
2, …. What is wrong with the following induction argument? Letting
P(n) denote

P n n2 + 7n+ 3 is an even integer

we prove P(n) P(n + 1). Assuming P(n) true, we have

P n+ 1 n+ 1 2 + 7 n+ 1 + 3= n2 + 7n+ 1 + 2n+ 10

= 2k + 2 n+ 5 induction hypothesis

= 2 k + n+ 5

Hence, P(n + 1) is true which by induction proves that n2 + 7n + 3 is even for
all natural numbers n. Note: Check the result for n = 2.

3. Clever Mary
To prove the identity

1 + 2 + 3+ + n=
n n+ 1

2
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Mary evaluates the left-hand side of the equation for n = 0, 1, 2 getting

n 0 1 2

p(n) 0 1 3

and then finds the quadratic polynomial p(n) = an2 + bn + c that passes
through those points, getting

p n =
1
2
n2 +

1
2
n=

n n+ 1
2

Mary turns in this proof to her professor. Is her proof5 valid?

4. Hmmmmmmmm
Is there something fishy with this argument that Mary can carry a 50-ton
load of straw on her back. Clearly, she can carry one straw on her back, and
if she can carry n straws on her back, she can certainly carry one more.
Hence, she can carry any number of straws on her back, which can amount
to a 50-ton load.

5. Geometric Principle by Induction
Show that every convex polygon6 can be divided into triangles. An example
illustrating a triangulation of an eight-sided convex polygon is drawn in
Figure 1.13.

Figure 1.13 Triangulation of a polygon.

5 This problem is based on a problem in the bookA= B byMarko Petkovsek, Doron Zeilberger, and
Herbert Wilf.
6 A convex polygon is a simple polygon (sides do not cross) whose interior is a convex set. (i.e. the
line segment connecting any two points in the set also belongs to the set.
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6. Fibonacci Sequence
The Fibonacci sequence

Fn,n= 1,2,…

is defined for n ≥ 1 by the equations

F1 = F2 = 1, Fn+ 1 = Fn + Fn−1, n ≥ 2

A few terms of the sequence are 1,1,2,3,5,8,13. Show the nth term of the
sequence is given by

Fn =
αn−βn

5

where α= 1 + 2 2, β = 1− 2 2.

Parting Note Just because something is true for the first million num-
bers does not mean it is true for the millionth and one. For example, the
equation

n−1 n−2 n−1000000 = 0

is true for n from 1 to a million, but not true when n = 1 000 001.

7. Peano’s Axioms
The Principle of Mathematical Induction is generally taken as an axiom for
the natural numbers and is in fact the fifth axiom for Peano’s axioms. Goo-
gle Peano’s axioms and read about them on the Internet.

8. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward mathematical induction, and Giuseppe Peano.
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2.1

Basic Operations of Sets

Purpose of Section We now present an informal discussion of some of the
basic ideas related to sets, including membership in sets, subsets, the empty
set, power set, union and intersection of sets, and other fundamental concepts.
The material presented in this section will provide a foundation for study in all
areas of mathematics.

2.1.1 Sets and Membership

Sets are (arguably) the most fundamental of all mathematical objects. Quite
simply, a set is

a collection things, the things belonging to the set are called members

or elements of the set.1 Other synonyms for the word “set,” are collection, class,
family, and ensemble. We refer to a collection of people, family of functions, an
ensemble of voters, and so on. We even consider sets whose members them-
selves are sets, such as the set of classes at a university, where each class consists
of students. In mathematics, we might consider the set of all open intervals on
the real line or the set of solutions of an equation.
If a set does not contain too many members, we can specify the set by simply

writing down the members of the inside a pair of brackets, such as {3, 7, 31},

1 However, we will see in Section 2.6 when it comes to infinite sets, more care must be taken in its
definition.
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which denotes the first threeMersenne primes.2 Sometimes sets contain an infi-
nite number of elements, like the natural numbers, where we might specify
them by {1, 2, 3, …}, where the three dots after the 3 signify “and so on.”
We generally denote sets by capital letters such as A, B, C,… and members of

sets by small letters, like a, b, c,…. If a is a member of a set A, we denote this by
writing a A, and we say “a is a member of A” or “a belongs to A.” If an element

does not belong to a set, we denote this by a A.
One can also specify a set by specifying defin-

ing properties of the member of the set, such as
illustrated in Figure 2.1.

which we read as “the set of all x in a setA that
satisfies the proposition P(x).” The set of even
integers could be denoted by

Even integers = n Z n is an even integer

Some common sets in mathematics are listed in Table 2.1.

The half-open intervals (a, b] and [a, b) are defined similarly.
Some examples illustrating membership and nonmembership in sets are the

following.

All x ∈ A
Such that

{x ∈ A:P(x)}

P(x) holds

Figure 2.1 Set notation.

Table 2.1 Some common sets.

Common sets in mathematics

N= 1,2,3,… the natural numbers or positive integers

Z= …, −3, −2, −1,0,1,2,3,… integers

Q= n n= p q,p andq 0 integers rational numbers

R= thesetof real numbers

ℂ= thesetof complex numbers

a,b = x R a < x < b open interval froma tob

a,b = x R a ≤ x≤ b closed interval froma tob

a,∞ = x R x > a and −∞ ,a = x R x< a open rays

a,∞ = x R x ≥ a and −∞ ,a = x R x ≤ a closed rays

2 Mersenne primes are prime numbers of the form 2n − 1, n = 1, 2, …. At the present time 2019,
there are 51 known Mersenne primes, the largest being 282 589 993–1, which has 24 862 048 digits.
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π R

π Q

7
12

Q

e x R x is transcendental

0 x R 0 < x < 1

Rigor inMathematics Although inmathematics, there should always be a suf-
ficient degree of precision or rigor, which generally refers to the degree in which
mathematical arguments are logically valid, it is also important to create intu-
ition about mathematical concepts. The great Swiss mathematician Leonhard
Euler had an uncanny intuition about concepts and often did not prove results
he believed to be true. That said, no mathematician would ever say he wasn’t
one of the greatest mathematicians who ever lived.

2.1.2 Universe, Subset, Equality, Complement,
Empty Set

• Universe: The universe U is the set consisting of the totality of elements
under consideration. A common universe in number theory is the natural
numbers N, whereas in calculus, a common universe is the real numbers
R, or intervals of real numbers such as [0, 1] or [0, ∞).

• Subset:One is often interested in a setAwhich is part of a larger set B. We say
that a set A is a subset of a set B if every member of A is also a member of B.
Symbolically, we write this as A B and is read “A is contained in B.” If A B
butA B, we say thatA is a proper subset of a set B and denote this byA B.
Sets are often illustrated visually by Venn diagrams, where sets are

represented by circles or ovals and elements of a set as points inside the
circle. Figure 2.2 shows a Venn diagram that might ring a bell for most
students and illustrates A B. The diagram also illustrates that A is not
a subset of C.

Important Sets: N Z Q R ℂ

• Equality of Sets:Two sets A and B are equal if they consist of the samemem-
bers. In other words,

A=B A B and B A
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• Complement of a Set: If a set A belongs to a universe U, the complement of
A, written A consists of all members of U that do not belong to A. In
other words,

A= x U x A

• Empty Set: The set that does not contain any members is called the empty
set3 (or null set) and plays an important role in set theory. It is denoted by the
Greek letter Ø or by the empty bracket { }.
The empty set is not is not nothing, it is something, it is just that it contains

nothing. You might think of the empty set as a bag that has nothing in it. In
this regard, it might be better to denote the empty set by { } rather than Ø. For
example

all people over 500yearsold = x R x2 + 1 = 0

which may seem a bit strange, but it makes a point. There is only one empty
set regardless of how differently it is expressed.

Important Note versus : When you ask if a A, you are asking the
question is “a” amember of A, but when you ask if B A, you are asking is every
member of B is also a member of A. For example

a, a a, a but a, a a, a

Things in the course

Things on the exam

A

B

CThings studied

Figure 2.2 Venn diagram you may be familiar.

3 If you object to a set with no elements, you are like the persons in the past who objected to the
number 0, since it stood for nothing. The number 0 was resisted for centuries as a legitimate number.
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• Power Set: For every set A, the collection of all subsets of A is called the
power set of A and denoted by P(A) or sometimes 2A. For example the power
set of the set A = {a, b, c} consists of the following set (or collection) of eight
subsets of A:

P A = Ø , a , b , c , a,b , a,c , b,c , a,b,c

A few power sets of some other sets are given in Table 2.2

Later, we will prove that for any set of n elements, the power set contains 2n

elements, which we will prove by induction.4

Important Note Often, the power set of a set A is denoted by 2A since a set
with n members has 2n subsets, hence, the power set has this many members.

Theorem 1 Guaranteed Subset
Every set contains at least one subset since for any set A, we have Ø A.

Proof
We must show x Ø x A. But our job is finished before we even begin
since the hypothesis x Ø is false inasmuch as the empty set contains no
members, hence, the implication is true. ▌

Theorem 2 Transitive Subsets
For sets A, B, and C, the following property holds:

A B B C A C

Proof
The strategy is to assume x A and prove x C with the help of the assumption
(A B) (B C). Letting x A and since A B, we have x B, but B C

Table 2.2 Typical power sets.

Set Power set

Ø {Ø}

{a} {Ø, {a}}

{a, b} {Ø, {a}, {b}, {a, b}}

{a, {b}} {Ø, {a}, {{b}}, {a, {b}}}

4 Things get a lot more interesting when we consider the family of all subsets of an infinite set like
the natural numbers. It turns out that … well, we do not want to ruin the fun for you.
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and, hence x C. Hence, A C which proves the result. Figure 2.3 illustrates
this result with a Venn diagram. ▌

Important Note One reason the concept of a set is so powerful is the fact that
its elements can be anything, even sets themselves. In the area of mathematics
called real analysis, sets normally consist of sets of numbers, like intervals on the
real line, and so on. In geometry, they are geometric objects, in probability, they
are sample spaces and events, and so on. In topology, one studies certain
families of subsets of a given set, called the open sets of the set.

Note: 5 {5}, {a, b} {a, b}, Ø Ø , Ø {Ø}

Example 1 Membership and Subset
Do you understand why the following are correct?

a Ø x R x2 = −1

b 3 N
c −1 N
d π Q
e e R
f 3 5 ℂ

g 3 + 2i R
h x x2−1 = 0 ⊄ x x3−1 = 0

C

B
A

x

Figure 2.3 Venn diagram illustrating subsets.
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Example 2 Membership versus Subsets
Yes or no, do the following expressions make correct usage of and ?

a) Ø {Ø, {Ø}} Ans: Yes
b) Ø {Ø, {Ø}} Ans: Yes
c) Ø {{Ø}} Ans: No
d) a {{a}, {a, {a}}} Ans: No
e) {a} {{a}, {a, {b}}} Ans: Yes
f) {Ø} {{Ø}, {Ø, {Ø}}} Ans: No
g) {a, {b}} {a, {a, {b}}} Ans: Yes
h) {a, {b}} {{b}, a} Ans: No

Theorem 3 Power Set
For any two sets A and B

A B P A P B

Proof
There are two steps to the proof.

(A B) (P(A) P(B)): If X P(A) that means X A. But A B so X B,
which in turn means X P(B). Hence, P(A) P(B).
(A B) (P(A) P(B)): If x A, then {x} P(A) and by assumption {x} P(B),
which in turn means x B. Hence, we have A B. ▌

2.1.3 Union, Intersection, and Difference of Sets

In arithmetic, we have the binary operations + and ×, whereas in logic, we have
analogous binary operations of and , and now for sets, we have the binary
operations of union and intersection .

Definition Let A, B be subsets of some universe U.

• Union: The union of two sets A and B, denoted A B, is the set of elements
that belong to A or B or both.5

A B= x U x A or x B

5 This “or” is the inclusive “or” in contrast to the exclusive “or” which means one or the other but
not both.
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See Figure 2.4

• Intersection: The intersection of two sets A and B, denoted A B, is the set
of elements that belong to both A and B.
See Figure 2.5.

A B= x U x A and x B

If A B = Ø, the sets A and B are called disjoint.

• The difference of two sets, denoted A − B, is defined to be the set of elements
that belong to A but not B.

A−B= x U x A and x B

Important Note The Italian mathematician Giuseppe Peano introduced the
notation for set inclusion ( ), set union ( ), and set intersection ( ) in 1889
in a treatise on axioms for the natural numbers.

A B

A ∪ B

U

Figure 2.4 Set union.

A B

A ∩ B

U

Figure 2.5 Set intersection.
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Historical Note Although the origin of the idea of a set is vague, Greek math-
ematicians defined a circle as

A circle is a plane figure contained by one line such that all the straight-lines
falling upon it from one point among those lying within the figure equal one
another.

When the English mathematician George Boole referred to sets in 1854
in his seminal treatise, An Investigation of the Laws of Thought, the concept
of a “set” per se was well established. That said, the distinction between “finite
sets” and “infinite sets” eluded mathematicians over the centuries until the late
1800s in the work of the German mathematician George Cantor, whose works
we study in Sections 2.4–2.6.

2.1.4 Venn Diagrams of Various Sets

Venn diagrams for subsets A, B of a universe U are shown in Figure 2.6. The
universe is represented by the rectangle containing the sets.

Historical Note George Venn (1834–1923) was an Englishmathematician who
further developed George Boole’s symbolic logic but is known mostly for his
pictorial representations of the relations between sets.

Figure 2.7 illustrates Venn diagrams for three subsets of a universe U.

Naive versus Axiomatic Set Theory Naive set theory, as we introduce in this
section, studies basic properties of sets, such as complements, union, intersec-
tion, De Morgan’s laws, and so on, using intuition. Unfortunately, when it comes
to infinite sets, unless care is taken on exactly what kinds of collections of
objects can be “accepted” as a set, it is possible to arrive at contradictions
(i.e. Russell’s paradox). Axiomatic set theory was created to place set theory
on a firm axiomatic foundation where the axioms are consistent (one cannot
prove contradictions) and independent (no one axiom can be proven from
the others). The most accepted axioms of set theory are the Zermelo–Fraenkel
(ZF) axioms, named after logicians Ernst Zermelo (1871–1953) and Abraham
Fraenkel (1891–1965).
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A ∪ B A
B

A ∩ B A
B

A
– A

B

A – B A
B

A
B

A
B

(A ∪ B)

(A ∩ B)

Figure 2.6 Venn diagrams for two sets.

A B

C

A B

C

A B

C

A B
A B

C

A B

C

A ∩ B ∩ C A ∩ B ∩ C A ∪ B ∪ C

A ∩ B ∩ C A ∪ B ∪ C(A ∩ B) (A ∩ B)∪

U U U

UUU

Figure 2.7 Venn diagrams for three sets.
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2.1.5 Relation Between Sets and Logic

The properties of “ ” and “ ” in set theory have their counterparts in the prop-
erties of “ ” and “ ” in sentential logic. Table 2.3 illustrates these counterparts.

Theorem 4 Complement Relation
For sets A and B, we have

A B B A.

Proof
The goal is to show B A with the aid of A B.

Letting x B,

we have x B from the definition of the compliment of B,

hence, x A by the hypotheses A B,

hence, x A from the definition of the compliment of A ▌

Theorem 5 Distributivity
Let A, B, and C be sets. Then “ ” distributes over “ .” That is

A B C = A B A C

Proof
( ) We prove A (B C) (A B) (A C)
Since

B B C

C B C

Table 2.3 Equivalence between some laws of logic and laws of sets.

Tautology Set equivalence

P Q≡Q P A B = B A

P Q≡Q P A B = B A

P (Q R)≡ (P Q) R A (B C) = (A B) C

P (Q R)≡ (P Q) R A (B C) = (A B) C

P (Q R)≡ (P Q) (P R) A (B C) = (A B) (A C)

P (Q R)≡ (P Q) (P R) A (B C) = (A B) (A C)

P P≡ P A A = A

P P≡ P A A = A
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we intersect each side with A, getting6

A B A B C

A C A B C

and so

A B A C A B C

( ) We now prove A (B C) (A B) (A C)
If x (A B) (A C) we have x A B or x A C.
We now use the logic indicated in the sentential logic equivalence

p q p r p q r

translated to sets to show that if x A and x B C, we have

x A B C ▐

2.1.6 De Morgan’s Laws for Sets

In sentential logic, we were introduced to the important tautologies
P Q P Q and P Q P Q

called De Morgan’s laws. We now prove the set versions of these laws.

Theorem 6 De Morgan’s Laws
For sets A and B, prove De Morgan’s laws:

a) A B =A B
b) A B =A B

Proof

a) We prove the first De Morgan law by first proving:

( ) To show A B A B, we let

x A B x A B

x A and x B

x A and x B

x A B

6 We have used the fact that if B C then A B A C, but we will assume that fact as a lemma.
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Hence, A B A B
( ). To show A B A B, we let

x A B x A and x B

x Aand x B

x A B

x A B

Combining the results of a) and b) we have A B =A B. ▌

The second De Morgan law is left to the reader. See Problem 21.

2.1.7 Sets, Logic, and Arithmetic

We compare the set operations of union and intersection with the logical opera-
tions of “and” and “or,” and the arithmetic operations of + and + and × in
Table 2.4.

Problems

1. Set Notation
Write the following sets in notation {x : P(x)}.
a) The real numbers between 0 and 1.
b) The natural numbers between 2 and 5.
c) The set of prime numbers.
d) {1, 2, 3, …}

Table 2.4 Sets, logic, and arithmetic.

Sets Sentences Arithmetic

+

×

≤

A P −

= ≡ =

Ø F 0

U T 1
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e) {5, 6, 7}
f) The solutions of the equation x2 − 1 = 0.

2. True or False
If A = {{a}, {b, c}, {d, e, f }}, tell if the following are true or false:
a) a A
b) a A
c) c A
d) {b, c} A
e) Ø A
f) Ø A

3. Checking Subsets: True or False
a) Z R
b) R ℂ
c) (0, 1) [0, 1]
d) (0, 1) R
e) (2, 5) Q
f) Q (2, 5)
g) [1, 3] {1, 3}
h) {1, 3} [1, 3]
i) {3, 15} {3, 5, 7, 15}

4. The Empty Set: True or False
a) Ø = {Ø}
b) Ø {Ø}
c) Ø {Ø}
d) A Ø = A
e) {Ø} Ø
f) {Ø} {{Ø}}
g) {{Ø}} {Ø, {Ø}}

5. True or False
a) A A
b) If A B and x B then x A
c) A B then A B.
d) A B then A B
e) A B and B C then A C
f) A B and B C then A C
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6. Sets, Members, and Subsets
Which pair ( , ), , , ( , ), , of connectives describe the rela-
tionship between the quantity on the left with the set on the right. The
answer to a) is , since a is a member of {c, a, t} but not a subset.

a) a___{c, a, t} Ans: ,

b) a___{c, a, {a}, t} Ans: ,
c) {a, t}___{c, a, t} Ans: ,
d) {a}___{c, {a}, t}
e) {a, {t}}___{c, a, t, {t}}
f) {a, {t}}___{c, a, t, {t}, {a, {t}}}
g) {c, a, {t}}___{a, t, {t}}
h) {a, {t}}___{c, a, t, {t}}
i) Ø___Ø
j) {Ø}___{Ø}
k) {Ø}___{Ø, {Ø}}
l) Ø___{Ø}
m) {Ø}___Ø

7. Power Sets
Find the power set of the given sets.
a) A = {4, 5, 6}
b) A = { , , }
c) A = {a, {b}}
d) A = {a, {b, {c}}}
e) A = {a, {a}}
f) A = {Ø, {Ø}}

8. Find the Set
Let A = {a1, a2,…}, where an is the remainder when n is divided by 5. List
the elements of the set A.

9. Interesting
If A = {a, b, c} are the following relations true or false?
a) A P(A)
b) A P(A)

10. Power Set as a Collection of Functions
The power set of a set can be interpreted as the set of all functions7 defined
on the set whose values are 0 and 1. For example the functions defined on
the set A = {a, b} with values 0 and 1 are

7 Although we have not introduced functions yet in this book, we are confident most readers have
familiarity with the subject.
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• f(a) = 0, f(b) = 0 corresponds to Ø

• f(a) = 1, f(b) = 0 corresponds to {a}

• f(a) = 0, f(b) = 1 corresponds to {b}

• f(a) = 1, f(b) = 1 corresponds to {a, b}

Show that the elements of the power set ofA = {a, b, c} can be placed in this
“one-to-one” correspondence with the functions on A whose values are
either 0 or 1.

11. Second Power Set
The second power set of a set A is the set of subsets of the set, or P(P(A)).
What is the second power set of A = {a}?

12. Power Set of the Empty Set
Prove P(Ø) = {Ø}

13. Identities
Let A, B, and C be arbitrary subsets of a universe U. Prove the following.
a) A A
b) A Ø = A
c) A Ø = Ø
d) Ø =U
e) A U = A
f) A A= Ø
g) A B A B = B
h) A A = A A

i) A=A

14. Difference Between Sets
The formula A−B=A B defines the difference between two sets in terms
of the operations of intersection and complement. Can you find a formula
for the union A B in terms of intersections and complements?

15. NASC for Disjoint Sets
Prove A B = Ø A − B = A.

16. Distributive Law
Prove that if A, B, and C are sets, then “ ” distributes over “ .” That is
A (B C) = (A B) (A C).

17. Set Identity
Prove A B A B = B.
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18. Proving Set Relations with Truth Tables
It is possible to prove identities of sets using truth tables. For example one
of DeMorgan’s laws

A B =A B

is verified from Table 2.5, replacing the union by “or,” the intersection by
“and,” and set complementation by “not.”

Prove the following identities using truth tables.
a) A A= Ø
b) A A=U
c) A (B C) = (A B) C
d) A B = (A B) (A − B) (B −A)

19. Sets and Their Power Sets
Prove

A B P A P B

20. Computer Representation of Sets
Finite sets can be represented by vectors of 0s and 1s. For the set U = {a1,
a2,… , an}, we can represent a subset S of this set by a bit string, where the
ith bit is 1 if ai S and 0 if ai S. The following problems relate to this
representation of sets. Take as the universe, the set U = {0, 1, 2, 3, 4, 5,
6, 7}.
a) If U = {3, 9, 2, 5, 6 }, what is S U for the bit string 11001?
b) If U = {1, 2, 3, 4, 5, 6 }, what is the bit string for A = {2, 6}?

Table 2.5 Verifying set relations with truth tables.

(1) (2) (3) (4) (5)

x A x B A B A B A B A B

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

Same truth values
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c) If U = {1, 2, 3, 4, 5, 6 } and S = {1, 4, 5}, T = {1, 2, 4, 6}, what is the bit
string for S T?

d) If U = {1, 2, 3, 4, 5, 6 }and S = {1, 4, 5}, T = {1, 2, 4, 6}, what is the bit
string for S T?

e) How would you represent the complement of a subset ofU = {1, 2, 3, 4,
5, 6 }?

21. De Morgan’s Law
Prove the De Morgan law A B =A B.

22. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward mathematical rigor, naive set theory, George Boole, power
set of a set.
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2.2

Families of Sets

Purpose of Section Wenowextend the operations of union and intersection of
sets from two sets to several sets, even an infinite number. In many areas of
mathematics, such as topology, analysis, measure theory, probability, and others,
finding the intersection and union of large families of sets is common.

2.2.1 Introduction

The union and intersection of sets can be extended to the union and inter-
section of many sets, even an infinite number. When dealing with a collection
of several sets, it is usual practice to refer to them as families or classes of sets.
To denote a family of sets, one often uses indices such as {A1,A2,A3,… ,A10} and
for an infinite family, we might write {A1, A2, A3, …} or

Ak
∞
k = 1

Other common ways to denote families of sets are

Ai i Λ or Ak k Λ

where the set Λ is called an index set.
For example

In = 0,
1
n

n N = 0,1 , 0,
1
2

, 0,
1
3

,…

The reader might recall the notation for infinite sums and products as

∞

k = 1

ak = a1 + a2+ ,
∞

k = 1

ak = a1a2

which motivates the following notation and definition for sets.
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Definition Unions and Intersections of Families of Sets
The union of the family of n subsets A1, A2,… , An in a universe U is defined as

A1 A2 An =
n

k = 1

Ak = x U x Ak for some k = 1,2,…,n

The intersection of n sets A1, A2,… , An is

A1 A2 A3 An =
n

k = 1

Ak = x U x Ak forall k = 1,2,…,n

Sometimes one has a family of sets {Aα}α Λ, where the index α ranges over
some index set Λ. The index set Λ might be a finite or infinite set. For these
cases, the union of a family {Aα}α Λ is defined as

α Λ
Aα = x U x Aα forat least one α Λ

and the intersection of a family {Aα} is

α Λ
Aα = x U x Aα forallα Λ

The following examples illustrate these ideas.

Example 1 Infinite Intersections and Unions
Define the family of closed intervals

Ak = 0,
k−1
k

, k = 2,3,…

where a few are drawn in Figure 2.8. Find the following unions and intersections.

A2

0 1/2 1

A3

0 2/3 1

A4

0 3/4 1

Ak

0 k–1
k

1

…

Figure 2.8 Increasing family of closed intervals.
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a
4

k = 2

Ak

b
∞

k = 2

Ak

c
4

k = 2

Ak

d
∞

k = 2

Ak

Solution
The sets A1 A2 A3 in Figure 2.8 form an increasing family of closed
intervals, each member in the family is a subset of the next.

a
4

k = 2

Ak = 0,
3
4

b
∞

k = 2

Ak = 0,1

c
4

k = 2

Ak = 0,
1
2

d
∞

k = 1

Ak = 0,
1
2

Important Note We have introduced five number systems N, Z, Q, R, and ℂ.
We know thatN stands for natural numbers,Q for quotients,R for real numbers,
and ℂ for complex numbers, but where does the letter Z which represents the
integers come from? The answer is that Z refers to the first letter of the word
“Zahlen,” the German word for number.

Example 2 Infinite Intersections of Unions
Define the sequence of open intervals

Ak = 0,
k + 1
k

, k = 1,2,…

Find the following infinite union and intersection.

a
∞

k =1

Ak =A1 A2 … b
∞

k =1

Ak =A1 A2 …
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Solution

A few sets in the family are drawn in Figure 2.9.

We find

∞

k = 1

Ak =
∞

k =1

0,
k + 1
k

= 0,
2
1

0,
3
2

0,
4
3

= 0,2

∞

k = 1

Ak =
∞

k =1

0,
k + 1
k

= 0,
2
1

0,
3
2

0,
4
3

= 0,1

Example 3 Indexed Family
Define the sequence of sets

Ak = k + 1,k + 2,…,2k , k = 1,2,…

Here, we have
∞

k = 1

Ak = n N n ≥ 2
∞

k =1

Ak = Ø

Example 4 Set Projection
The set S {(x, y) : x, y R} denotes the large oval-shaped set of points in the
plane drawn in Figure 2.10. For each real number x, we define the set

Ax = y R x,y S

3/2

4/3

5/4

A1

0 1 2
))

A2

0 1
))

A3

0 1
))

A4

0 1
))

Figure 2.9 Decreasing family of open intervals.
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which defines the values of y such that (x, y) S. The union

x R
Ax

is the projection of S on the y-axis.

2.2.2 Extended Laws for Sets

Many rules for the intersection and union of sets introduced in Section 2.1 can
easily be extended to families of sets. We leave the proofs to many of these laws
to the reader.

Laws for Families of Sets

a) A
α Λ

Bα =
α Λ

A Bα

b) A
α Λ

Bα =
α Λ

A Bα

c)
α Λ

Aα =
α Λ

Aα (De Morgan’s Law)

d)
α Λ

Aα =
α Λ

Aα (De Morgan’s Law)

1

Ax

x∈R

S

y

x

A3

A2
A1

2 3

⋃

Figure 2.10 Projection of a set.
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Proof of d)

( ): To show
α Λ

Aα

α Λ
Aα we let

x
α Λ

Aα x
α Λ

Aα

α Λ x Aα

α Λ x Aα

x
α Λ

Aα

Hence,

α Λ
Aα

α Λ
Aα

( ): The proof of the set containment as well as the proofs of a), b), and c)
follows along similar lines and is left to the reader.

2.2.3 Topologies on a Set

A topology on a set is a family of subsets of the set that places a “structure” on
the set that allows for the study of convergence and limits of points in the set.
The study of point-set topology, which we introduce in Section 5.4, forms the
“metrical” structure for several areas of mathematics, such as real and complex
analysis.
The idea is to introduce a family J of subsets of a given setU, such as a family J

of subsets of the real numbers U = R. The sets in the family J are called open
sets, and these sets act as “neighborhoods” of points in U, allowing for the dis-
cussion of convergence sequences in U. The family of open sets J is called a
topology on U. But not any collection of subsets of U is a topology. There
are three restrictions on a family J in order that it be a topology on U, They
are as follows:

Definition A topology J on a set U is any collection of subsets ofU that satis-
fies the following three conditions:

1) The empty set Ø and U itself belong to the family J.
2) The union of any collection of sets in J also belongs to J.
3) The intersection of any finite number sets in J also to J.

The sets in the topology J are called the open sets in the topology
(or just open sets). Properties 2) and 3) say that the family J is closed under all
unions (finite or infinite) and finite intersections.
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Example 5 Tiny Topologies
As examples of topologies on a set, consider the set U of three elements

U = a,b,c

where we have listed below five families J1, J2, J3, J4, J5 of subsets of U. We leave
it to the reader to verify that each of these families is a topology on U.
See Problem 8.

a) J1 = {Ø, U} indiscrete topology
b) J2 = {Ø, {a}, U}
c) J3 = {Ø, {a}, {b, c}, U}
d) J4 = {Ø, {a, b}, U}
e) J5 = {Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, U} discrete topology

Theorem 1 Show That the Family of Subsets

J = Ø , a , b,c , a,b,c P U

of U = {a, b, c} is a topology on U.

Proof
We must verify the three conditions required for a family J of subset to be a
topology. The first condition is verified since the topology J contains both
the empty set Ø and U. To verify that J is closed under unions, we simply take
all possible unions of sets in J and verify that the union also belongs to J For
example

a b,c = a,b,c J

Ø a = a J

a a,b,c = a,b,c J

To show the family J is closed under intersections, we take intersections of
open sets of J and observe their intersections also belong to J. For example

a b,c = Ø J

b b,c = b J

b,c a,b,c = b,c J

Hence, we say J is a topology on U, and that the pair (U, J) is a topologi-
cal space.
To understand how a topological structure on a set allows for the study of

convergence, limits, etc., wait until Section 5.4 and the introduction of point-
set topology on the real line. ▌
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Problems

1. Unions and Intersections
Let A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 4} and in general Ak = {k, k + 1}. Write
explicitly the following sets:

a)
5

k =1
Ak

b)
k N

Ak

c)
k ≥ 5

Ak

d)
1 ≤ k ≤ 4

Ak

e)
5

k =1

Ak

f)
k N

Ak

2. More Unions and Intersections
Find the infinite union and intersections

∞

k = 1

Ak and
∞

k = 1

Ak

of the following sets:

a) Ak = 0,
k−1
k

b) Ak = −
1
k
,
1
k

c) Ak = 0,
1
k

d) Ak = k
1
k
,2k

e) Ak = [k, k + 1]

f) Ak = 0,1 +
1
k

3. Families of Sets in the Plane
Define a family of subsets

Am n = x,y R2 x ≥m, y ≥ n

of the plane R2 by where m, n N. Find the following sets. Hint: Proceed
like one does with double series.
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a)
3

m=1

3

n= 2
Am,n

b)
3

m= 1

3

n=2
Am,n

4. Identity of an Indexed Family
Prove the following distributive property for indexed families of sets:

B
α Λ

Aα =
α Λ

B Aα

5. Algebra of Sets
LetA be a set andℑ a collection of subsets ofA. The collectionℑ is called an
algebra1 of sets if
c) C D is in ℑ whenever C and D are in ℑ
d) C is in ℑ whenever C is in ℑ

When this happens, we say the family ℑ is closed under unions and com-
plementation. Which of the following collections of subsets of A = {a, b, c}
constitute an algebra of subsets of A?
a) The power set ℑ = P(A)
b) ℑ = {Ø, A}
c) ℑ = {Ø, {a}, A}
d) ℑ = {Ø, {a}, {b, c}, A}

6. Sets of Length Zero
In measure theory, a subset A of the real numbers is said to have length
(or measure) zero if ε > 0 and there exists a sequence of intervals
Ak = (ak, bk) that satisfy

A
∞

k =1

ak ,bk

where their total length is less than ε; that is
∞

k = 1

bk −ak < ε

Show that any sequence of real numbers {ck, k = 1, 2,…} has measure zero.
Hint: Cover {ck} by a union of intervals (ak, bk), where the length of each

1 Algebras of sets and sigma algebras (families of sets closed under countable unions) are
fundamental in the study of measure theory. Note the difference between an algebra of subsets and a
topology of subsets on a universe; just a minor differencemakes for vastly different structures on the
universe.
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interval satisfies |bk − ak| = ε/2k. Use this result to show that the rational
numbers have a total length of 0.

7. Compact Sets
A subset A of the real numbers is said to be compact if for every collection
ℑ= {(aα, bα) : α Λ} of open intervalswhoseunion contains (or covers)A; i.e.

A
α Λ

aα,bα

there exists a finite subcollection of intervals of ℑ whose union also con-
tains (or covers) A. Show the set A = (0, 1) is not compact by showing the
following.

a) A is covered by ℑ= 0,1−
1
k

: k= 1,2,…

b) There does not exist a finite subcollection ofℑwhose union containsA.

8. Topologies I
Verify that the following families of subsets of A form topologies on
A = {a, b, c}.

J1 = Ø ,A

J2 = Ø , a ,A

J3 = Ø , a , b,c ,A

J4 = Ø , a,b ,A

J5 = Ø , a , b , c , a,b , a,c , b,c ,A

9. Topologies II
Which of the families of subsets of {a, b, c} are topologies on {a, b, c}?

10. Finding Intersections
Find an infinite family of sets whose intersection is
a) {1}
b) [0, ∞)

11. Finding Unions
Find an infinite family of sets whose union is
a) (0, ∞)
b) R

12. Internet Research
There is a wealth of information related to topics introduced in this section
just waiting for curious minds. Try aiming your favorite search engine
toward unions and intersections of families of sets, topology on a finite set.
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2.3

Counting

The Art of Enumeration

Purpose of Section To introduce some basic tools of counting the members
of a set, and to do this, we introduce a variety of tools of the trade, such as the
multiplication principle, permutations, and combinations. We show how the
multiplication rule gives rise to counting permutations and combinations. We
close with a brief introduction to the pigeonhole principle, and show how such
a ridiculously simple idea can solve some ridiculous difficult problems.

2.3.1 Introduction

Although counting is one of the first things we learn at a tender age, be assured
there are counting problems that test the mental agility of the brightest minds
among us. In this section, we will learn to count, although we refer to it as com-
binatorics. We will answer such counting questions as

how many ways can 10 people choose sides and play a game 5 against 5?

Counting problems often require almost no technical background and are
often characterized by being easy to understand and hard to solve. Finding
the number of ways to cover an 8 x 8 checkerboard with dominoes is a good
example. The problem is easy to understand, but the number of coverings
was not determined until 1961 by a M. E. Fischer, who found the number to
be 24 × (901)2 = 12 988 816.
To assist you in perfecting counting skills, we introduce one of the basic tools

of the trade, the multiplication principle.
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2.3.2 Multiplication Principle

One of the basic principles of counting is the multiplication principle,
although the principle is simple, it has far-reaching consequences. For example,
how many dots are there in Figure 2.11?

We suspect you said 30 after about three seconds, and you did not even bother
to count all the dots. You simply counted the number of columns in the first row
and then multiplied by 3. If so, you used the multiplication principle.
As a small step up the counting ladder, count the number of paths in

Figure 2.12 going from A to C. No doubt this problem did not stump you either,
getting 4 5 = 20 paths. Again, you used the multiplication principle.

This leads us to the formal statement of the multiplication principle.

Multiplication Rule If a procedure can be broken into successive stages, and if
there are s1 outcomes for the first stage, s2 outcomes for the second stage, …,
and sn for the nth stage, then the entire procedure has s1 s2… sn outcomes.

We now let you test your counting skills using the multiplication rule with
something a little harder.

Example 1 Counting Subsets
Show that a set A = {a1, a2,… , an} containing n elements has 2n subsets.

Figure 2.11 Counting exercise.

BA
C

Figure 2.12 How many paths from A to C?
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Proof
Any subset of A can be formed in n successive steps. On the first step, pick or
not pick a1, on the second step pick or not pick a2, and so on. On each step, there
are two options, to pick or not to pick. Using the multiplication principle, the
number of subsets that can be picked is

2 2 2

n twos

= 2n

Hence, the set A = {a, b, c} containing three members has 23 = 8 the eight
subsets, and since they are so few we can enumerate them:

2A = Ø, a , b , c , a,b , a,c , b,c , a,b,c

Example 2 Counting Functions
How many functions are there from the set A = {0, 1} to itself?1

Solution
For each of the twomembers inA, the function can take on two values and so by
the multiplication rule, the number of functions is 2 2 = 22 = 4. We graph these
functions in Figure 2.13.

In general, the number of functions from a set with nmembers to a set withm
members ismn. For example, the number of functions from A = {0, 1} to B = {0,
1, 2} is 32 = 9. Can you draw their graphs?

2.3.3 Permutations

One of the important uses of the multiplication principle is counting permuta-
tions. A permutation is simply an arrangement of things. For example, there
are six permutations of the three letters abc, which are

abc, acb, bac, bca, cab, cba

1

0
0 1

1

0
0 1

1

0
0 1

1

0
0 1

Figure 2.13 Four functions from {0, 1} to {0, 1}.

1 We will talk more about functions in Chapter 4.
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The number of permutations increases dramatically as the size of the set
increases. The number of permutations of the letters of the alphabet is

26 = 403 291 461 126 605 635 584 000 000

To determine the number of permutations of these letters, we begin by select-
ing one member of the alphabet as the left-most member in the permutation (or
arrangement), which can be done in 26 ways. Once this is done, there are
25 remaining letters for the second member, the third member 24 ways, and
so on, down to the last member. Using the principle of multiplication, the num-
ber of permutations of 26 objects is 26!.

2.3.4 Permutations of Racers

Suppose four individuals a, b, c, d are in a foot race, and we wish to find the
number of ways four runners can finish first and second. Since each of the four
runners can finish first, and for each winner, there are three possible second-
place finishers, there are 4 3 = 12 possible ways the runners can go 1–2.
The tree diagram in Figure 2.14 illustrates these finishes.

This leads to the general definition of permutations of different sizes.

Definition A permutation of r elements taken from a set of n elements is an
arrangement of r elements chosen from a set of n elements. The number of such
arrangements (or permutations) is denoted by P(n, r).

Using the multiplication principle, we can find the number of permutations of
r elements taken from a set of n elements.

First place

Second place

Permutations

a b c d

b

ab ac ad ba bc bd ca cb cd da db dc

c d ca d a b d a b c

Figure 2.14 Permutations of two elements from a set of four elements.

2.3 Counting: The Art of Enumeration128



Theorem 1 Number of Permutations
The number of permutations of r elements taken from a set of n elements is

P n,r = n n−1 n−2 n−r + 1 =
n

n−r

Proof
Choosing r elements from a set of size n, we have

• the first element can be selected n ways.

• the second element can be selected n − 1 ways.

• the third element can be selected n − 2 ways.

• the rth element can be selected n − r + 1 ways.

Hence, by the principle of sequential counting (or the multiplication rule),
we have

P n,r = n n−1 n−2 n−r + 1

r factors

When r = n, we have the number of permutations of n objects is n factorial, or

P n,n = n n−1 n−2 2 1 = n ▌

Important Note To evaluate P(n, r) start at n and multiply r factors.

P 4,2 = 4 3= 12

P 7,3 = 7 6 5= 210

P 4,1 = 4= 4

P 10,3 = 10 9 8= 720

Big Number Factorials grow very fast. The number 50! is 30 vigintillion, 404
novemdecillion, 93 octodecillion, 201 septendecillion, 713 sexdecillion, 378 quinde-
cillion, 43 quatuordecillion, 612 tredecillion, 608 dodecillion, 166 undecillion,
64 decillion, 768 nonillion, 844 octillion, 377 septillion, 641 sextillion, 568 quintillion,
960 quadrillion, 512 trillion. That is

50 = 30404093201713378043612608166064768844377641568
960512000000000000
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Example 3 Permutations of a Set with Three Elements
Find the permutations of size r = 1, 2, 3 selected from {a, b, c}.

Solution
The permutations of size r = 1, 2, 3 taken from the set {a, b, c} with n = 3
elements are listed in Table 2.6.

We do not use set notation for writing permutations2 since order is impor-
tant. The permutation ab is not the same as ba.

2.3.5 Distinguishable Permutations

The number of permutations of elements in a set of the three letters is 3! = 6,
however, for the three letters in the word “too” we cannot distinguish one “o”
from the other, hence, we only have three distinguishable permutations that
we can distinguish with our eyes, which are too, oto, oot.

Example 4 Distinguishable Permutations
How many distinguishable permutations are there of the letters of the word
SYSTEM?

Solution
Since the two S’s in SYSTEM are indistinguishable,3 we must modify our count-
ing strategy. If we momentarily denote the two S’s as S1 and S2, we have

Table 2.6 Permutations P(n, r).

r = 1 r = 2 r = 3

a ab abc

b ac acb

c ba bac

bc bca

ca cab

cb cba

2 Sometimes permutations are written with round parenthesis, such as ab = (ab).
3 If we interchanged the two S’s, we would get two different permutations, SYSTEM and SYSTEM,
but they are not distinguishable permutations since the S’s look alike.
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S1YS2TEM, which has 6! permutations. But the two letters S1 and S2 have
two permutations, so we must divide 6! by 2!, getting the number of
distinguishable

6
2

= 6 5 4 3 = 360

A few more distinguishable permutations are given in Table 2.7.

2.3.6 Combinations

Now that we have mastered permutations, we turn to combinations.
A combination of things is simply a subset of things selected from larger collec-
tion of things. For the set {a, b, c} of three elements, a typical combination of two
elements is {a, c}. We write combinations in set notation { } since the order of
the members in the combination does not matter. The combination {a, c} is the
same as the combination {c, a}. Just remember, order counts in permutations
but not in combinations.

Example 5 Combinations
Find the combinations of size r = 1, 2, 3 selected from the set {a, b, c}.

Solution
The combinations are listed in Table 2.8, which are the eight subsets of {a, b, c}
with the exception of the empty set Ø.

Table 2.7 Distinguishable permutations.

Word Indistinguishable permutations

Too 3
2

= 3

Error 5
3

= 20

Toot 4
2 2

= 6

Mississippi 11
4 4 2

= 34650
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Theorem 2 Number of Combinations
The number of combinations of size r taken from a set of size n is

C n,r =
n

r
=

n
r n−r

Proof
Since the number of permutations of size r taken from a set of size n is

P n,r =
n

n−r

and since the r elements can be permuted r! ways, the number of combinations
is the number of permutations divided by r! or

C n,r =
P n,r
r

=
n

r n−r
▌

We denote combinations by either notation

C n,r or
n

r

The second notation is possibly familiar to the reader since it is often the nota-
tion for the coefficients in binomial expansion formulas:

a+ b 2 =
2

0
a2 +

2

1
ab+

2

2
b2 = a2 + 2ab+ b2

a+ b 3 =
3

0
a3 +

3

1
a2b+

3

2
ab2 +

3

3
b3 = a3 + 3a2b+ 3ab2 + b3

It helps in thinking about combinations to read C(n, r) as “n choose r” since it
represents the number of ways one can choose r things from a set of n things.
For example C(4, 2) = 6 is read “4 choose 2”meaning there are six ways you can

Table 2.8 Nonempty subsets of {a, b, c}.

r = 1 r = 2 r = 3

{a} {a, b} {a, b, c}

{b} {a, c}

{c} {b, c}
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choose two things from four things. Can you visualize in your mind the six sub-
sets of size two from the set {a, b, c, d}?

Example 6 Game Time
Howmany ways can 10 players choose sides to play five-against-five in a game of
basketball?

Solution
As in many counting problems, there is more than one way to do the counting.
Perhaps the simplest way here is to determine the number of ways one player
can choose his or her four teammates from nine players. In other words, deter-
mine the number of subsets of size four taken from a set of size nine, or “nine
choose four,” which is

9

4
=

9
4 5

=
9 8 7 6
4 3 2 1

= 126 ways

Example 7 Number of Seven-Game-Series
Howmany ways can two teams play a best-of-seven game series, like the World
Series4 in the United States? By “ways” we do not distinguish the two teams. For
example, Team A or Team B can sweep the series in four games, but we call this
the single outcome WWWW, not two outcomes as AAAA when Team A
sweeps or BBBB when Team B sweeps.

Solution
Since the number of games played will be four, five, six, or seven, we begin by
finding the number of each of those series. Since the winner of the series wins a
total of four games and always wins the last game, we ask how many ways can
the series be played before the last game. For example, for a six-game series, we
find the number of ways the winner can win three games in the first five games,
which is “5 choose 3” orC(5, 3) = 10. For all four, five, six, and seven game series,
the number of each of those series is

Number of four-game series =C 3,3 = 1

Number of five-game series =C 4,3 = 4

Number of six-game series =C 5,3 = 10

Number of seven-game series =C 6,3 = 20

.

4 The World Series is a best-of-seven game series.
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Adding these series gives 35 possible outcomes for a best-of-seven game
series. If we distinguish between the teams A and B, the total is 70.

Example 8 Going to the Movies
Three boys and two girls are going to the movies.

a) How many ways can they sit next to each other if no boy sits next to
another boy.

b) How many ways can they sit next to each other if the two girls sit next to
each other.

Solution
a) Since the only arrangement is boy-girl-boy-girl-boy, and since the boys can

be permuted 3! = 6 ways, and the girls 2! = 2 ways, the total number of ways is
3! 2! = 12.

b) Momentarily, think of the two girls as “one girl,” so there are now four indi-
viduals, and so we have 4! = 24 permutations of the “four” individuals. How-
ever, there are 2! = 2 permutations of the two girls, hence, the total number
of permutations is 4! 2! = 48.

Example 9 How Many Ways Home?
How many ways can Mary go home from school in the road system in
Figure 2.15 when she always moves to the right or down?

School

Home

Figure 2.15 Counting paths.
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Solution
Since all paths pass through the one-point gap, we find the number of paths
before the gap and the number of paths after the gap, then multiply the results.
From start to the gap, we travel a total of eight blocks, four blocks to the right
and four blocks down. Labeling each block as R or D, depending whether the
move is to the right or down, all paths can be written {x, x, x, x, x, x, x, x}, where
four xs are R and four x’s are D. Hence, the total number of paths is the number
of ways one can select four D’s (or four R’s) from a set of size 8, which is “8
choose 4” or C(8, 4) = 70. Similarly, the number of paths from the “gap” to
end is C(7, 3) = 35 Hence, the total number is

C 8,4 C 7,3 = 70 35= 2450 paths

2.3.7 The Pigeonhole Principle

The pigeonhole principle (or Dirichlet Principle) illustrated in Figure 2.16 is
based on the observation that if n items are placed in m containers, where n
>m, then at least one container will contain more than one item. Although
the principle seems almost too trivial to yield useful ideas, nothing is further
from the truth. Its applications are far-reaching and deep and widely used in
many fields, including computer science, mathematical analysis, probability,
number theory, geometry, and statistics.

&^(*$^@)*&%$#

Figure 2.16 Pigeonhole principle.
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Important Note People often misinterpret the difference between axioms
and definitions. An axiom is an assumed truth, whereas a definition assigns
names and symbols to given concepts to make it easier to talk about things.

Example 9 Pigeonhole Principle at Work
Given any set A of n natural numbers, there are always two numbers in the set
whose difference is divisible by n − 1.

Solution
When any number in the set, regardless of its size, is divided by n − 1, its remain-
der will be one of the n − 1 values 0, 1, 2,…, n − 2. But if the setA has nmembers,
then by the pigeonhole principle, at least two members of A have the same
remainder, say r, when divided by n − 1. Letting N1, N2 be two numbers with
the same remainder, we can write

N1

n−1
=Q1 +

r
n−1

N2

n−1
=Q2 +

r
n−1

and subtracting gives

N1−N2

n−1
=Q1−Q2

which means their difference N1 −N2 is divisible by n − 1. The reader may try a
few examples to verify this result.

Should the pigeonhole principle be taken as an axiom or should it be proven
from more fundamental principles? The word “obvious” is a loaded word in
mathematics, since many famous “obvious” claims of the past have turned
out not only nonobvious but nontrue.5 Although the pigeonhole principle
seems obvious, it can be proven from more “basic principles” of set theory,
although one wonders what could be more basic than the pigeonhole principle.
Interested readers can find references on the Internet.

5 Many geometric ideas that were taken as facts at the beginning of the nineteenth century were
overturned by the “arithmetization” of mathematics prevalent in the nineteenth century.
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Example 10 Pigeonhole Principle Goes to a Party
There are 20 people at a dinner party, where each person shakes hands with
someone at least once. Show there are at least two people who shook hands
the same number of times.6

Solution
Label each person with the number of handshakes they make. Each person then
has a label of 1 through 19. But there are 20 people at the party, so by the pigeon-
hole principle, at least two persons must have the same label.

Example 11 Points in a Square
Show that for any five points in a square whose sides have length 1, there will
always be two points whose distance is less than or equal to 2 2.

Solution
Figure 2.17 shows five points, pigeons if you like, randomly placed in the unit
square. If the square is subdivided into four equal subsquares, the pigeonhole
principle says one of the subsquares (pigeonholes) contains at least two num-
bers. But the diameter of each subsquare has length 2 2, hence, the distance
between any two points in the subsquare is less than or equal to 2 2.

Important Note The popular example of the pigeonhole is the claim that
there are at least two nonbald persons in New York City with exactly the same
number of hairs on their head. The argument being no one person hasmore than
a million hairs on their head, and since there are over a million people living in
New York, the pigeonhole principle states that at least two people have the same
number of hairs.

1

2
2 2

1

a1 a1
a5

a5

a4 a4

a3
a3

a2 a2

Figure 2.17 Pigeonhole principle at work.

6 We assume that people do not shake hands with themselves.
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Historical Note The first statement of the pigeonhole principle was made in
1834 by the Germanmathematician Peter Gustav Lejeune Dirichlet (1805–1859)
who called it Schubfachprinzip (“the drawer principle”).

Problems

1. Compute the following
a) P(5, 3)
b) P(30, 2)
c) C(4, 1)
d) C(10, 8)

e)
7
2

f)
9
2

g) (a + b)6

2. Distinguishable Permutations
Find the number of distinguishable permutations in the following words.
a) SNOOT
b) DALLAS
c) TENNESSEE
d) ILLINOIS

3. Going to the Movies
Find the numbers of ways in which four boys and four girls can be seated in
a row of eight seats if they sit alternately as boy and girl.

4. Movies Again
Three couples go to themovies and sit together in six seats. Howmany ways
can they be arranged so that each couple sits together?

5. Counting Softball Teams
A college softball team is taking 25 players on a road trip. The traveling
squad consists of three catchers, six pitchers, eight infielders, and eight out-
fielders. Assuming each player can only play her own position, how many
different teams can the coach put on the field?

6. Counting Functions
How many functions are there from A = {a, b, c} to B = {0, 1, 2}?
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7. Interesting Problem
How many three-digit numbers d1d2d3 are there whose digits add up to
eight? That is, d1 + d2 + d3 = 8, Note: 063 is not a three-digit number, it
is the two-digit number 63.

8. World Series Time
Two teams compete in a best-of-five game series. In other words, the team
that wins three games wins the series. Howmany possible ways are there to
play a five-game series when we do not distinguish between the two teams?

9. Bell Numbers
A partition of a set A is defined as a collection of nonempty subsets of A
that are pairwise disjoint and whose union is A. The number of such
partitions of a set A of size n is called the Bell number Bn of the set.
For example when n = 3, the Bell number B3 = 5 since there are five par-
titions of a set of size three. For example, if A = {a, b, c}, then the five
partitions are

a , b , c

a , b,c

b , a,c

c , a,b

a,b,c

Enumerate the partitions of the set {a, b, c, d} to find the Bell number B4.

10. Two Committees
What is the total number of ways the Snail Darter Society, which consists
of 25 members, can elect an executive committee of 2 members and an
entertainment committee of 4 members, if no member can serve on both
committees?

11. Serving on More than One Committee
Howmany different ways can the Snail Darter Society, which has 25mem-
bers, elect an executive committee of 2 members, an entertainment com-
mittee of 3 members, and a welcoming committee of 2 members, if
members can serve on more than one committee?

12. Single-Elimination Tournaments
In a 64-team single elimination tournament, what is the total number of
possible outcomes of the tournament?
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13. Counting Handshakes
There are 20 people in a room and each person shakes hands with every-
one else. How many handshakes are there?

14. Not Serving on More than One Committee
How many ways can the Snail Darter Society, who has 25 members, elect
an executive committee of 2 members, an entertainment committee of 3
members, and a welcoming committee of 2 members if members can not
serve on more than one committee?

15. Counting Softball Teams
A college softball team is taking 25 players on a road trip. The traveling
squad consists of three catchers, six pitchers, eight infielders, and eight
outfielders. Assuming each player can only play her own position, how
many different teams can the coach put on the field?

16. Catalan Numbers
The Catalan numbers Cn, n = 1, 2, 3, … are the number of ways a convex
polygon with n + 2 sides can be subdivided into triangles. The following
Figure 2.18 illustrates the Catalan numbers C1, C2, and C3. Can you find
the Catalan number C4 which is the number of ways to triangulate a con-
vex hexagon which has six sides?

17. Famous Apple Problem
We wish to distribute eight identical apples to four children. How many
ways is this possible if each child gets at least one apple?

18. Basic Pizza Cutting
You are given a circular pizza and ask to cut it into as many pieces as pos-
sible, where a cut means any line that passes all the way through the pizza
although not necessarily through the center.
a) How many different pieces can you obtain with three slices?
b) How many different pieces can you obtain with four slices?

C1 = 1

C2 = 2

C3 = 5

Figure 2.18 First three Catalan numbers.
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19. Pizza Cutter’s Formula
A pizza cutter wants to cut a pizza in such a way that it has the maximum
number of pieces, not necessarily the same size or shape. The only restric-
tion on how the pizza is cut is that each cut much pass all the way through
the pizza, not necessary through the center. See Figure 2.19.
a) If P(n) is the maximum number of pieces from n cuts, then

P n = P n−1 + n

b) Show the pizza cutter’s formula is given by

P n =
n2 + n+ 1

2

20. Round Robin Tournaments
In a round robin tournament, every team plays every other team exactly
once. Normally, an even number n teams compete and the tournament
goes n − 1 rounds, where each team competes on each round. Find the
total number of games played in a round robin tournament of n teams,
assuming n is an even number.

21. Lottery Problem
A lottery works as follows. A container is filled with 36 marbles numbered
1, 2, …, 36 whereupon six marbles are selected at random by the lottery
organizers. You buy a ticket and fill in six blanks with numbers between
1 and 36. You win if you choose the same six numbers selected by the orga-
nizers, regardless of order. Howmany different choices of six numbers can
you select and since only one choice is a winner, the probability you win is
1 over that number. How many ways can you pick your six numbers and
what are your chances of winning?

Figure 2.19 Typical pizza after three cuts with seven pieces.
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22. Relatively Prime Light
How many positive integers ≤32 are relatively prime to 32? Two numbers
are relatively prime if their greatest common divisor is 1. For example, the
positive integers relatively prime to 10 are 1, 3, 7, and 9.

23. Relatively Prime Medium
How many positive integers ≤35 are relatively prime to 35? Two numbers
are relatively prime if their greatest common divisor is 1. For example the
positive integers relatively prime to 10 are 1, 3, 7, and 9.

24. Relatively Prime Hard
How many positive integers ≤70 are relatively prime to 70? Two numbers
are relatively prime if their greatest common divisor is 1. For example the
positive integers relatively prime to 10 are 1, 3, 7, and 9.

25. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward problems in combinatorics, applications of combinatorics,
and pigeonhole principle.
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2.4

Cardinality of Sets

Purpose of Section To introduce the concept of cardinality of a set and the
equivalence of two sets. We also define what it means for a set to be finite and
infinite and how to compare sizes of sets, both finite and infinite. We end our
discussion by defining the cardinality of the natural numbers.

2.4.1 Introduction

No one knows exactly when people first started counting, but a good guess
might be when people started accumulating things. However, long before num-
ber systems were invented, two people might have determined whether they had
the same number of goats and sheep as illustrated in Figure 2.20 by simply pla-
cing them in a one-to-one correspondence with each other.
Another person might have designated a stone for each goat, thus obtaining a

one-to-one correspondence between the goats and a pile of stones. Today, we
no longer use stones to enumerate things since we have symbolic stones in the
form of 1, 2, …. To determine the number of goats, we simply “count,” 1, 2, …
and envision the rocks R = {1, 2, 3, 4, 5} in our mind as illustrated in Figure 2.21.
Throughout the history of mathematics, the subject of infinity has been

mostly taboo, more apt to be included in discussions on religion or philosophy.
The Greek philosopher Aristotle (c. 384–322 BCE), was one of the first math-
ematicians to think seriously about the subject, said there were two kinds of
infinity, the potential and actual. He said the natural numbers 1, 2, 3, … are
potentially infinite since they can never be completed. The philosopher and the-
ologian Thomas Aquinas (1225−1275) argued that with the exception of God,
nothing is actual infinite.
In the seventeenth century, the Italian astronomer Galileo made an observa-

tion concerning the perfect squares 1, 4, 9, 16, 25, …. He said since they
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constitute a subset of the natural numbers, there should be “fewer” of them than
the natural numbers, and Table 2.9 would seem to bear this out.
However, he also observed that when one lines up the perfect squares as in

Table 2.10, it appears that both sets contain the same number of members.

Figure 2.20 Counting sheep.

1

2

3

4

5

Figure 2.21 Modern way to count.

2.4 Cardinality of Sets144



His argument was that for every perfect square n2, there is exactly one natural
number n, and conversely for every natural number n, there is exactly one
square n2. Using this reasoning, he concluded terms like less than, equal, and
greater than apply to the size of finite sets but not infinite sets.

2.4.1.1 Early Bouts with Infinity

To get an idea how difficult it is to think about infinity, the ancient Greek phi-
losopher Zeno of Elea (fifth century BCE) argued that motion is an illusion since a
person who wishes to travel a fixed distance must first travel half the distance,
then half the remaining distance, and then half that remaining distance and so
on. So how could a person travel an infinite number of distances in a finite
amount of time? Surprisingly, the paradox was not satisfactorily resolved until
the tools of calculus were rigorously developed in the nineteenth century.
Today, we understand that an infinite number of objects can add ad infinitum
and still yield a finite result, much like the one-foot square in Figure 2.22, whose

Table 2.9 More natural numbers than perfect squares.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 4 9 16

Table 2.10 Equal number of perfect squares as natural numbers.

1 2 3 4 5 6 7 8 9 10 11 n

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

1 4 9 16 25 36 49 64 81 100 121 n2

1/2

1/8

1/32
1/64

1/16

1/4

Figure 2.22 Visual response to Zeno’s paradox.
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area is the union of an unending series of areas of smaller and smaller and smal-
ler squares and rectangles, but yielding a total area of

1
2
+
1
4
+
1
8
+

1
16

+ = 1

Cantor’s Seminal Contribution to Infinity The ground-breaking work of Ger-
man mathematician, Georg Cantor (1845–1918), whose seminal insights into
infinity transformed our thinking about “potential” versus “actual” infinities.
Many mathematicians at the time resisted Cantor’s ideas, but by the time of
Cantor’s death in 1918, his ideas were accepted for their importance.

Cantor’s big discovery was the realization that although it is not possible to
“count” the members of an infinite set, it is possible to determine if one infinite
set contains the same number of members as another infinite set by simply
matching members of one set with members of another set.

This is not any different from the way you determine that you have the same
number of fingers on one hand as you have on your other hand. You place your
thumb of one hand against the your thumb on the other hand, then place your
index finger of one hand against your index finger of your other hand, and so
on. When you are finished your fingers are matched with each other in a one-to-
one correspondence; every finger on one hand having a “matched finger” on the
other hand. You may not know how many fingers you have, but Figure 2.23
shows both hands have the same number.

Figure 2.23 One-to-one correspondence.
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The above discussion motivates the formal definitions related to Cantor’s
fundamental ideas.

2.4.2 Cardinality, Equivalence, Finite, and Infinite

We begin with several important definitions.

We now know there are two kinds of sets when it comes to size, finite and infi-
nite. We know that some finite sets are larger, smaller, or equal in size to other
sets. The cardinality of A = {a, b, c} is |A| = 3 and the cardinality of B = {a, b, c, d}
is |B| = 4, and so we have |A| < |B|. But what about the cardinality of infinite sets,
such as N, Z, and Q? We know these sets have infinite cardinalities, but are the
cardinalities the same, or is one cardinality larger than the others? And if that is
so, exactly how many different cardinalities are there? Is there more than one
infinity?

Definition

• The cardinality of a set A is the number of members of A and denoted by |A|.
Two sets A and B have the same cardinality or cardinality number when
their members can be placed in a one-to-one correspondence with each other.
Such sets are called equivalent sets, which we denote by A≈ B.
The setsA = {a, b, c} and B = {1, 2, 3} are equivalent sets since we have a one-

to-one correspondence as1 a 1, b 2, c 3 describes and one-to-one cor-
respondence between the members of A and B. Thus, we write A≈ B.

• A nonempty set A is finite if and only if it is equivalent to a set of the form
Nn = {1, 2,… , n} for some natural number n. In this case, the set has cardi-
nality n and is denoted by |A| = n.
The set A = {a, b, c} has cardinality |A| = 3 since its members can be put in a

one-to-one correspondence with members of N3 = {1, 2, 3}.

• A set is infinite if it is not finite. The natural, rational, and real numbers are all
examples of infinite sets. Themembers of any of these sets cannot be placed in
a one-to-one correspondence withmembers of a set of the form {1, 2, 3, … , n}
for any natural number n.

1 There are, of course, many one-to-one correspondences between these sets. In fact the readermay
list a few, and even ask, how many one-to-one correspondences there are between these sets?
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When it comes to comparing sizes of sets, finite or infinite, we have a good
friend, and a friend the reader is no doubt familiar. It is the concept of a function,
and although we do not formally introduce functions until the next chapter, the
reader no doubt will have an adequate understanding of functions to under-
stand the ideas presented here. We begin by introducing three important types
of functions f :A B that map a domainA into a set B; the one-to-one function,
the onto function, and the one-to-one correspondence function.

One-to-One Function If a function f : A B sends different members x A to
different values f(x) B, the function f is called one-to-one (1–1) or an injective
function. In the language of predicate logic, we write this as

x1,x2 A x1 x2 f x1 x2

or equivalently, its contrapositive:

x1,x2 A f x1 = f x2 x1 = x2

Wemight think of 1–1 functions as those functions that “spread out” points of
A, resulting in images not doubling up in B. The following Figure 2.24 illustrates a
1–1 function and illustrates how 1–1 functions are related to the sizes of A and B.

The second type of function is onto function.

Onto Function A function f : A B from A to B is said to be from A onto B (or a
surjection) if every member y B is the image of at least one preimage x A. In
other words

y B x A y= f x

B

A

f : 1–1

│A│≤│B│

Figure 2.24 One-to-one correspondence.
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Wemight think of onto functions as those that “cover up”members of B. The
following Figure 2.25 illustrates an onto function and how onto functions are
related to the sizes of A and B.

The third type of function we introduce is the one-to-one correspondence.

One-to-One Correspondence A function f : A B is called a one-to-one-cor-
respondence2 (or bijection) between A and B if it is both 1–1 and onto. We can
think of a one-to-one correspondence between sets as a relation connecting
each member of one set to exactly one member of the other set. The following
Figure 2.26 illustrates a one-to-one correspondence between A and B and how a
one-to-one correspondence between sets is related to their cardinality.

│A│≥│B│

f ontoA

B

Figure 2.25 Onto function.

f one-to-one correspondence

A B

│A│=│B│

Figure 2.26 One-to-one correspondence.

2 Be careful not to confuse a 1–1 function with a function that is a one-to-one-correspondence. The
language is a bit ambiguous. You might want to use the alternate names, injection and bijection.
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2.4.3 Major Result Comparing Sizes of Finite Sets

Theorem 1 (Comparing Finite Sets)
Let f be a function that assigns each member of a set A a member of a set B,
denoted by f : A B. We can compare the sizes of A and B using the following
rules3:

a) If f : A B is 1–1, then |A| ≤ |B|.
b) If f : A B is 1–1 but not onto, then |A| < |B|.
c) If f : A B is onto, then |A| ≥ |B|.
d) If f :A B is onto but not 1–1, then |A| > |B|.
e) If f : A B is a one-to-one correspondence, then |A| = |B|.

Proof
We prove (a) and leave the proofs of others to the reader.

a) The proof that

f A B is1−1 A ≤ B

is by a contradiction of the form

C D C C D

In other words, if we assume that f is 1–1 and |A| > |B|, this leads to the con-
tradiction that f is not 1–1, hence, we conclude |A| ≤ |B|. We begin by using the
assumption |A| > |B| where

A= a1,a2,…,am ,B= b1,b2,…,bn

and m > n. Since f is 1–1, we can write4

f a1 = b1, f a2 = b2,…, f an = bn, f an+1 = nowhere togo

where all the bjs are distinct. But, there are more members in B than in A, so we
have run out of places to mapmembers ofA, thus fmust map an + 1 to a previous
values of bj, thus proving the contradiction that that f is not 1–1. Hence, the
result is proven. ▌

3 These “if–then” results can be stated as “if and only if,” but we are only interested in the given
direction of the theorems.
4 There is no reason the specific ajs have to map to the bjs with the same index, but there is no
reason we cannot write the function in this way.
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For finite sets A, B we know what is means when we say |A| < |B|, but this
meaning breaks down for infinite sets when sets cannot be counted. However,
the language of sets helps us overcome this difficulty. For finite sets, it is intu-
itively clear that |A| ≤ |B| when there is an injection (1–1) from A to B. We now
use this motivation do define what it means by |A| ≤ |B| for infinite sets.

Comparing Infinite Sets The previous discussion for finite sets motivates how
functions can aid in comparing the cardinalities of infinite sets. If A and B are two
infinite arbitrary sets, we define:

a) |A| = |B| means there is a bijection A B
b) |A| ≤ |B| means there is a 1–1 function A B
c) |A| < |B| means there is a 1–1 function but no onto function A B
d) |A| ≥ |B| means there is an onto function A B
e) |A| > |B| means there is an onto function but no 1–1 function A B

Useful Note Sometimes words in mathematics do not suggest the type of
information that is most useful. It might be useful to think of 1–1 functions
as “expanding” functions since 1–1 maps f : A B result in |A| ≤ |B|. By the same
token, it might be useful to think of onto functions as “contracting” functions
since onto maps f : A B result in |A| ≥ |B|.

2.4.4 Countably Infinite Sets

We defined an infinite set as a set that is not finite. We now define a countably
infinite (or denumerable) set.

Infinity can be tricky. If we add a new member to a finite set, we increase its
cardinality by one, but things behave much differently for infinite sets. If we add
“0” to the natural numbers N = {1, 2, 3, …} getting N {0}, do we increase the

Definition
An infinite set A is countably infinite (or denumerable) if and only if its mem-
bers can be arranged in an infinite list a1, a2, a3,…, and the cardinality (i.e. num-
ber of elements) is given the name aleph null and written ℵ0. The most obvious
example of a countably infinite set is the natural numbers N = {1, 2, 3, …}, thus
we write |N| = ℵ0.

2.4.4 Countably Infinite Sets 151



“size” of the set? The answer is no since we can relate the two sets with the one-
to-one correspondence shown in Table 2.11.

Example 1
Z≈N Show that there is a one-to-one correspondence between the natural
numbers N and the integers Z, which means the sets have the same
cardinality.

Solution
There aremanyone-to-onecorrespondences betweenN andZ, butwe require just
one. A single one-to-one correspondence is illustrated graphically5 in Figure 2.27,
which implies the sets have the same cardinality, namely |Z| = |N| = ℵ0.

The rows in Table 2.12 illustrate the same correspondence in tabular form as
the visual correspondence in Figure 2.27.

Table 2.11 N {0}≈N.

N {0} 0 1 2 3 4 5 n

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

N 1 2 3 4 5 6 n + 1

..., –3, –2, –1, 0, 1, 2, 3, ...

Figure 2.27 One-to-one correspondence between N and Z.

5 A one-to-one correspondence between two sets can be an equation or some type of visual
diagram.

Table 2.12 Bijection between N and Z.

N 1 2 3 4 5 6

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Z 0 1 −1 2 −2 3
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Cardinal and Ordinal Numbers Numbers are used in two different ways. The
number 3 is called a cardinal number when we say the “three little pigs,” but
when we say “the third little pig built his house out of bricks,” the number three
(or third) is called an ordinal number.

Important Note The symbol “∞,” from calculus is not intended to stand for an
infinite number. The phrase x ∞ simply refers to the fact that we allow the
variable x to grow without bound.

Theorem 2 Rational Numbers Are Countably Infinite
The cardinality of the rational numbers Q is ℵ0.

Proof
Again, we resort to a visual one-to-one correspondence illustrated in Figure 2.28.
Here, every rational number, reduced to lowest form, lies somewhere in the array,
and the given path passes through every rational number one and only one time. If
we assign “1” to the firstmember in the path, “2” to the secondmember, and so on,
we have found a one-to-one correspondence between the natural numbersN and
the rational numbers Q. Hence, Q≈N or |Q| = |N| = ℵ0. ▌
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Figure 2.28 Graphical illustration of Q≈N.
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Interesting Note We sometimes call 1–1 function an injective function and
an onto function a surjective functions. The words “injection” and “surjection”
come from the French language, where the French word injectifmeans injecting
something into another. The word “sur” in French means “on,” hence, the word
surjection for an onto mapping. The terminology was originally coined by the
Bourbaki group, a society of French mathematicians named after a French gen-
eral. Interested readers can learn about this group of mathematicians online.

Cantor was initially convinced that all infinite sets were countably infinite as
suggested from |N| = |Z| = |Q|. The next obvious question was what about the
cardinality of the real numbers?What is |R|? Cantor tried and tried to prove the
real numbers are countably infinite by proving they could be put in a one-to-one
correspondence with the natural numbers, but in the process discovered some-
thing amazing. What did he discover? Wait until the next section.

Problems

1. Countable Sets
Show that the union of two countable sets is countable.

2. Equivalent Sets
For the following sets, find an explicit one-to-one correspondence that
shows the intervals are equivalent.
a) {a, b, c}≈ {1, 2, 3}
b) [0, 1) ≈ [0, ∞)
c) (0, 1)≈R
d) [0, 1] ≈ [3, 5]

3. Even and Odd Natural Numbers
Let E be the set of even positive integers and O be the set of odd positive
integers. Given is an explicit function to show the following equivalences:
a) E≈O
b) N≈O
c) N≈ E
d) N ×N≈N

4. Infinite Sets
A set is infinite if and only if it is equivalent to a proper subset of itself. Use
this definition of an infinite set to show the following sets are infinite:
a) N
b) R
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5. Bijection from the Prime Numbers
The following sets are equivalent. Find a bijection f :A B.
a) A = N, B = prime numbers
b) A = N, B = {10, 12, 14, …}
c) A = R, B = (0, ∞)

6. Cardinality Test
Use the results of Theorem 1 to show the following.
a) Prove the cardinality ofA = {a, b} is less than or equal to the cardinality of

B = {1, 2, 3} by finding a 1–1 function f :A B.
b) Prove the cardinality of A = {a, b} is strictly less than the cardinality of

B = {1, 2, 3} by finding a 1–1 function f : A B that is not onto.
c) Prove that the cardinality of A = {a, b, c} is greater than or equal to the

cardinality of B = {1, 2} by finding an onto function f : A B.
d) Prove the cardinality of A = {a, b, c} is strictly greater than that of B = {1,

2} by finding an onto function f :A B that is not 1–1.
e) Prove that the cardinality of A = {a, b, c} is equal to the cardinality of

B = {1, 2, 3} by finding a one-to-one correspondence between the sets.

7. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward countably infinite, Georg Cantor, Zeno of Elea, and cardinal-
ity of a set.
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2.5

Uncountable Sets

Purpose of Section We now present Cantor’s seminal result that the cardinal-
ity of real numbers is uncountable. We then continue with the equally exciting
result that the cardinality of the two-dimensional plane is the same as the car-
dinality of the one-dimensional real line.

2.5.1 Introduction

Thus far, the only infinity considered has been countable infinity, which is the
cardinality of the natural numbers or any set of many sets that can be written as
a sequence. This begs the question are all infinite sets equivalent to the natural
numbers? In 1874, the German mathematician Georg Cantor proved that there
are in fact sets with even larger cardinalities than of the natural numbers, which
led to the development of modern set theory.
At the time Cantor believed, as did all mathematicians, that infinity was infin-

ity. Thinking along those lines, Cantor tried to prove that the real numbers have
the same cardinality as the natural numbers, but failed and his failure was one of
the greatest failures in the history of mathematics since in the process he
proved that the real numbers have a larger cardinality than that of the natural
numbers.

Definition An infinite set with cardinality larger than that of the natural num-
bers is said to have uncountable cardinality, or simply an uncountable set.
.

The above discussion leads us to Cantor’s famous diagonalization theorem.
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Theorem 1 Cantor’s Diagonalization Theorem
The set of real numbers in the open interval (0, 1) has a cardinality larger than
the natural numbers called an uncountable set.1

Proof
First, note that mapping f :N (0, 1), defined by

f 1 = 2 3

f n = 1 n, n= 2,3,…

maps different natural numbers into different numbers in the interval (0, 1)
points and is thus 1–1 (an “expanding” function), which implies |N| ≤ |(0, 1)|.
To prove strict inequality |N| < |(0, 1)|, Cantor assumed the contrary that
|N| = |(0, 1)|, meaning there exists a one-to-one correspondence between N
and (0, 1). We illustrate Cantor’s assumed correspondence in Table 2.13, where
natural numbers are listed on the left and numbers in the interval (0, 1), expressed
in decimal form,2 on the right.

Cantor showed that regardless how this correspondence is formed there is
always a real number not on the list, which implies there is no one-to-one
correspondence between N and R.

Table 2.13 Hypothesized one-to-one correspondence N (0, 1).

N (0, 1)

1 0 . 1 4 3 2 0 2 8 1 4 …

2 0 . 3 5 5 4 4 4 6 2 6 …

3 0 . 6 3 0 3 5 3 4 1 5 …

4 0 . 8 7 8 7 3 5 5 3 3 …

5 0 . 0 5 8 6 5 8 8 7 5 …

6 0 . 4 9 6 5 8 7 7 5 4 …

… … . … … … … … … … …

1 Cantor proved this result known as his diagonalization proof in 1877. He had another proof which
he published earlier in 1874.
2 Every real number can be expressed uniquely in decimal form a0a1a2a3…, where a0 is an integer
and the numbers a1, a2,… after the decimal are integers between 0 ≤ ai ≤ 9, provided the convention
is made that if the decimal expansion ends with an infinite string of 9’s, such as 0.499 999… this is
taken as the same as 0.5.Making this convention provides a one-to-one correspondence between the
real numbers and their decimal expansion.
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To show how Cantor creates a “rogue” real number 0. a1a2a3… not on the list
in Table 2.13, Cantor picks the first digit a1 different from the first digit of the
real number corresponding to 1 (i.e. the number 0.143 202 814…). In other
words, pick a1 anything other than 1, say a1 = 3. See Table 2.14. Now select
the second digit a2 anything other than the second digit of the real number
corresponding to the 2. So we select a2 different from 5, which we (randomly)
pick a2 = 2.
Continuing this process, working down the diagonal of the table, the first six

digits of our rogue number might be 0.327 245… and continuing this process
indefinitely, we arrive at a real number that does not correspond to any natural
number. Hence, the assumed one-to-one correspondence f :N (0, 1)
described in Table 2.14 is not a one-to-one correspondence between N and
(0, 1) since we have found an element of (0, 1) that does not correspond to
any natural number. Thus we conclude that the open interval (0, 1)has a larger
cardinality than the natural numbers, or |N| < |(0, 1)|. ▌

Example 1 More Real Numbers than Natural Numbers
Show the open interval (0, 1) has the same cardinality of the real numbers, i.e.
|(0, 1)| = |R|, thus proving |N| < |(0, 1)| = |R|.
Solution
We can visualize in Figure 2.29 a one-to-one correspondence betweenmembers
of the interval (0, 1) and real numbers by wrapping the interval (0, 1) around
the bottom half of a circle and whose center lies on the upper y axis of the
Cartesian plane. Hence, we have equal cardinalities |(0, 1)| = |R| and thus
|N| < |(0, 1)| = |R|.

Table 2.14 Cantor’s diagonalization process.

N (0, 1)

1 0 . [1] 4 3 2 0 2 8 1 4 …

2 0 . 3 [5] 5 4 4 4 6 2 6 …

3 0 . 6 3 [0] 3 5 3 4 1 5 …

4 0 . 8 7 8 [7] 3 5 5 3 3 …

5 0 . 0 5 8 6 [5] 8 8 7 5 …

6 0 . 4 9 6 5 8 [7] 7 5 4 …

… … … … … … … … … … … … …

… … … … … …

… … 0 . 3 2 7 2 4 5 … … … …
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Definition
The cardinality of the real numbers is called the cardinality of the continuum
and denoted by the letter c. Sets with cardinality c are called uncountable sets
(or uncountably infinite).

Important Note Roughly speaking, an uncountable set has so many points
that its members cannot be arranged in a sequence.

You may now ask what other sets have the cardinality of the continuum.
The answer will surprise you.

Example 2 Equivalent Intervals
If (a, b) and (c, d) are any two intervals of finite length on the real line, then
(a, b)≈ (c, d).

Proof
The function

y=
d−c
b−a

x−a + c

provides a one-to-one correspondence betweenmembers of (a, b) andmembers of
(c,d). Figure2.30gives the visual representationof this one-to-onecorrespondence.

0 1

 ℝ

Figure 2.29 Visual proof of |(0, 1)| = |R|.

d

y

c

a b

x

y = d–c
b–a

(x–a) + c

Figure 2.30 Equivalence of two intervals of real numbers.
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Important Note Cantor’s proof that there are different “sizes” of infinity is one
of the cornerstones of all mathematics and plays an important role in many
areas of pure mathematics such as topology and analysis.

Example 3 All Lines are Equal
Show that all line segments have the same cardinality, namely the cardinality of
the continuum.

Solution
The drawing in Figure 2.31 shows one-to-one correspondence between line seg-
ments of different lengths. In other words, any two line segments AB and AB of
different lengths can be placed in one-to-one correspondence by the one-to-one
x x . This fact, combined with the fact that (0, 1)≈R, we have that any line
segment, regardless of its length, has cardinality c, the cardinality of the
continuum.

Important Note The intervals

a,b , a,b , a,b , a,b , −∞ ,b , a,∞ ,

all have cardinality c.

Important Note The lazy figure eight symbol “∞” does not represent infinity,
but is simply a symbol used to denote that a set of real numbers is unbounded,
such as (a, ∞), (−∞ , b), (−∞ , ∞), and so on.

A
x

B

O

x′
A′ B′

Figure 2.31 AB and A B have the same cardinality.
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2.5.2 Cantor’s Surprise

Cantor had not finished surprising the mathematics world with his discovery of
more than one kind of infinity. It completely destroyed previous thinking that
“infinity was infinity.” Cantor’s next project was to prove there are more points
in the plane than there are real numbers, and again Cantor failed, and again
his failure made another monumental discovery. Cantor worked tirelessly from
1871 to 1874 to prove the cardinality of the plane is greater than the cardinality
of the real line, but to his amazement he proved they are the same. In a letter to
his good friend Richard Dedekind, he said, “I see it, but I don’t believe it.”Here is
a summary of Cantor’s proof.

Theorem 2 Cantor’s Surprise
The cardinality of the open interval (0, 1) drawn in Figure 2.32 is the same as the
cardinality of the open unit square

Proof
The function f : (0, 1) (0, 1) × (0, 1), defined by

f x = x,
1
2

, 0 < x < 1

maps different numbers in (0, 1) to different points in the unit square (0, 1) ×
(0, 1), hence, the function is 1–1 (remember an “expanding” function) which
implies |(0, 1) ≤ |(0, 1) × (0, 1)||. Going the other way, the function g : (0, 1) ×
(0, 1) (0, 1) that maps the unit square to the unit interval, defined by3

g 0 a1a2a3…,0 b1b2b3… 0 a1b1a2b2a3b3… 0,1

1

0
0 1(0,1)

(0,1) × (0,1)

│(0,1)│=│(0,1) × (0,1)│

Figure 2.32 |(0, 1)| = |(0, 1) × (0, 1)|.

3 To avoid ambiguity, choose 0.5 instead of 0.499 99… for the number 1/2. In this way, each decimal
form represents exactly one number.
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is also 1–1 (“expanding” function), which implies |(0, 1) × (0, 1)| ≤ |(0, 1)|. Hence,
we are left with |(0, 1) × (0, 1)| = |(0, 1)|, which showed that both sets have the car-
dinality of the continuum c. Figure 2.33 illustrates the mapping g from the unit
square to the unit interval.

Final Step: The mapping (x, y) (X, Y) from the open unit square (0, 1) ×
(0, 1) to the Cartesian plane R2 defined by

X = tan π x−1 2 , 0 < x< 1

Y = tan π y−1 2 , 0 < y < 1

with inverse

x=
1
π
arctan X +

1
2
, −∞ <X < ∞

y=
1
π
arctan Y +

1
2
, −∞ <Y < ∞

is a one-to-one correspondence. You can envision the nature of this transfor-
mation. First, realize that the point (x, y) = (0.5, 0.5) maps to the origin
(0, 0). Now envision tiny squares (horizontal and vertical sides) centered at
(0.5, 0.5) and visually expand them so they approach the unit square. Doing this,
by the nature of the tangent function, the images of these tiny expanding
squares will be large expanding squares centered at (0, 0) that will approach
the Cartesian plane.
Hence, step by step we have shown

R2 = 0,1 × 0,1 = 0,1 = R = c

In fact, this line of reasoning can continue, the net result being that the
cardinality of n-dimensional space Rn for any n = 2, 3, … is the same as the
cardinality c of the real numbers. ▌

1

0
0 1

0 1(0,1) × (0,1)

(0,1)

(x,y)

y

x
z

g:(0,1) × (0,1) → (0,1)

Figure 2.33 One-to-one map showing |(0, 1) × (0, 1)| ≤ |(0, 1)|.
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Historical Note Between the years 1871–1884, Cantor created a new and spe-
cial mathematical discipline, the theory of infinite sets.

2.5.2.1 Cardinality of the Irrational Numbers

The interval (0, 1) is the disjoint union of rational and irrational numbers. Since
the interval (0, 1) has cardinality c and the rational numbers have cardinality ℵ0

and the union of two countably infinite sets is countably infinite, this implies
that the irrational numbers have cardinality c. In other words, there are more
irrational numbers than rational numbers.

Important Note One may think that the study of infinite sets is simply an aca-
demic curiosity for set theorists, but nothing could be further from the truth. Set
theory is intimately related to many branches of pure mathematics, notably
topology, real analysis, probability, andmeasure theory. Amajor concept in topol-
ogy is connectedness and connectedness is related to cardinality by the property
that only uncountable sets (like the real numbers) are connected and countable
sets (like the rational numbers) are disconnected. In measure theory, countably
infinite sets always have measure zero, a concept important in the study of inte-
gration theory.

2.5.2.2 Algebraic and Transcendental Numbers

A number x is called a real algebraic number if it is a real root of a polynomial
equation4

xk + ak−1x
k−1+ + a1x+ a0 = 0

where the coefficients ak ’ s are integers. The irrational number 2 is an exam-
ple of an algebraic number being a root of x2 − 2 = 0. Numbers that are not alge-
braic are called transcendental. One would guess there are more algebraic
numbers than transcendental numbers since the first transcendental number,
called the Liouville constant after who had discovered it, was only discovered
in 1851. It was later discovered that π and Euler’s constant e are also transcen-
dental. Later, Cantor shocked the mathematical world when he proved there are
more transcendental numbers than algebraic ones.

4 We restrict ourselves here to real algebraic numbers.
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Theorem 3 The Set of Algebraic Numbers Has Cardinality ℵ0

Proof
The idea is to express the algebraic numbers as a countable union of finite sets
and thus countable. To do this, we let An be the collection of polynomial
equations5

Pk x = xk + ak−1x
k−1+ + a1x+ a0 = 0 k = 1,2,…,n

where the coefficients a0, a1,… , ak − 1 of each polynomial Pk(x) are allowed to
take on any of the 2n + 1 integers {−n, − n + 1,… , − 1, 0, 1,… , n}. For example
A10 is the collection of all polynomial equations of degrees 1 through 10, where
the coefficients of each polynomial are allowed any of the 21 integers ranging
from −10 to +10. Three such equations in A10 are

9x+ 4 = 0

x4 + 8x3−2x+ 3= 0

x8 + 10x3−4 = 0

To show each An, n = 1, 2, … is finite, we count the polynomial equations
Pk(x) = 0 for k = 1, 2,… , n in the special case when n = 10. These equations
are listed in Table 2.15, along with the number of their roots, real and complex.

The sum in the middle column of Table 2.14 yields the total number of pol-
ynomial equations in A10 and the rightmost column yields the total number of
roots, real and complex, of the polynomial equations in An. We now observe
(and this is the important part) that all polynomial equations belong to An

for some n = 1, 2, …. For example take a random the polynomial equation like

x55 + 3304x3 + 3 = 0

Table 2.15 Polynomial equations of A10 and their roots.

k Polynomial equation Pk(x) = 0 # Equations # Roots

1 P1(x) = x + a0 = 0 2n + 1 = 21 1 (2n + 1) = 21

2 P2(x) = x2 + a1x + a0 = 0 (2n + 1)2 = 212 2 (2n + 1)2 = 2 212

3 P3(x) = x3 + a2x
2 + a1x + a0 = 0 (2n + 1)3 = 213 3 (2n + 1)3 = 3 213

10 P10(x) = x10 + a9x
9 + + a1x + a0 = 0 (2n + 1)10 = 2110 n (2n + 1)10 = 10 2110

5 There is no loss of generality of taking the coefficient of xk as 1 since one can always divide the
equation by the coefficient of the highest power and not change the roots of the equation.
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This polynomial equation belongs to A3304 since A3304 consists of all polyno-
mial equations of degrees from 1 to 3304 whose coefficients take on values
ranging from −3304 to +3304.
Hence, every algebraic number is a solution of some polynomial equation An

for some n = 1, 2, … and since there are a countably infinite number of these
equations, and since each polynomial equation has a finite number of roots, real
and complex, we conclude that the algebraic numbers can be written as a coun-
tably infinite number of finite sets, and thus countable. ▌

The fact that the algebraic numbers are countable implies the transcendental
numbers are uncountable since if the transcendental numbers were countable
that would imply the real numbers would also be countable being the union of
countable sets. But the real numbers are uncountable and so the transcendental
numbers must be uncountable.

Problems

1. Which of the following sets are finite, countable, or uncountable?
a) [0, 1] N
b) {N, Z, Q, R, ℂ}
c) {1/n : n N − {0}}
d) {x R : x2 + 1 < 0}
e) The set of all 2 by 2 matrices with natural numbers for elements.

2. Cardinality of Functions
Show that the cardinality of the set of functions F = {f :N N} is
uncountable.

3. Irrational Numbers
Show that the irrational numbers in the interval [0, 1] is uncountable.

4. Algebraic Numbers
Show that the numbers

1 + 3
2

and
1− 3

2

are algebraic numbers.

5. Countable Plus Singleton
Prove that if we add a member to a countable set A, we still have a count-
able set.
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6. Proving Cardinality (R≈R3)
Show that the unit cube

C = x,y,z x,y,z R,0 < x < 1,0 < y < 1,0 < z < 1 R3

is equivalent to the unit interval (0, 1) R. Hint: Use the technique Cantor
used to prove (0, 1) is equivalent to the unit square.

7. Liouville Constant
Some famous transcendental numbers are π, e, eπ, πe, ln 2, ….The first
provable transcendental number was found 1851 by the French mathema-
tician Joseph Louiville (1809–1882), who constructed and proved the
constant

L=
∞

n=1

10−n

is transcendental. Write out the first few decimal digits of this number.
Google “Liouville’s constant” and read more about it.

8. Irrational Numbers
Prove or disprove. There exists a countably infinite subset of the irrational
numbers.

9. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward uncountable set, Cantor’s diagonization proof, and
examples of uncountable sets.
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2.6

Larger Infinities and the ZFC Axioms

Purpose of Section We state and prove Cantor’s power set theorem, which
guarantees the existence of infinities larger than the cardinality of the contin-
uum. We also state and discuss the Zermelo–Fraenkel axioms, which are the
most commonly used system of axioms for set theory, as well as the Axiom
of Choice (AC) and the Continuum Hypothesis (CH), topics that lie at the center
of the foundation of set theory and mathematics.

2.6.1 Cantor’s Discovery of Larger Sets

The nineteenth-century German mathematician Georg Cantor must have felt
that he was on a great adventure. He had just discovered that there were two
kinds of infinity, the counting infinity ℵ0 of the natural numbers and the larger
continuum infinity c of the real numbers. He then wondered if there were still
more infinities; infinities even larger than that of c. He also wondered if there
was an infinity between ℵ0 and c, or in other words, is there a set whose cardi-
nality is greater than the cardinality ℵ0 of the natural numbers and less than the
cardinality c of the real numbers. He would spend the remainder of his life trying
to answer that question and the result will amaze you.
Little ideas often lead to big ideas. We have seen that for finite sets, the power

set of a set is larger than the set itself. For example, the set A = {a, b, c} contains
three elements, whereas its power set

P A = ϕ, a , b , c , a,b , a,c , b,c , a,b,c

has 23 = 8 elements. This prompted Cantor to ask if the same property held
for infinite sets. This question was answered in the affirmative by the following
theorem that allows one to create an infinity of infinites.
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Theorem 1 Cantor’s Power Set Theorem
The power set P(A) of any set A, finite or infinite, has a cardinality strictly larger
than the cardinality of A.

Proof
For any point a A, we define the 1–1mapping f : a {a} that sends a point a
A into the set that contains only a, that is {a}. Hence, we have |A| ≤ |P(A)|.
To show the inequality is strict, that is |A| < |P(A)| Cantor used his favorite
method of proof, contradiction, and assumed the contrary A≈ P(A). To make
the proof more visual, we let A be the countable set1 A = N = {1, 2, 3, …} and
assume there is a one-to-one correspondence between the natural numbers N
and its power set P(N). A typical one-to-one correspondence is shown in
Table 2.16.
Here is where the proof gets tricky. Note that some numbers, like 1, 3, 4 are

not members of the subset of which they are paired, while 2 and 5 belong to
the sets they are paired. We call the numbers 1, 3, 4 unmatched and the num-
bers 2 and 5 matched. We now form the sets of matched and unmatched
numbers:

U =unmatchedset = n N nunmatched P N
M =matchedset = n N nmatched P N

But the unmatched set U N itself is a subset of natural numbers itself so by
hypothesis, it must be possible2 to pair with some natural number u, which we
indicate u U and illustrate in Figure 2.34.

1 We present the proof for countable infinite sets. The proof for uncountable sets follows along
similar lines.
2 We will see this assumption leads to a contradiction.

Table 2.16 Pairing of the natural numbers with its power set.

N P(N) Matched or unmatched

1 {3, 5} Unmatched

2 {1, 2, 7} Matched

3 {9, 13, 20} Unmatched

4 {1, 5, 6} Unmatched

5 {2, 5, 11, 23} Matched
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Cantor now asks the fascinating (and tongue-twisting) question, does the
number u that is matched with the unmatched set U belong to the unmatched
set? That is, does u U or does u U? Take your best guess.
Yes: If you say u belongs to the unmatched set U you are in trouble since U

consists only of those numbers that are not members of the set which they are
matched. So your answer must be no. Right?
No: If you say u does not belong to the unmatched set U, you are again

in trouble since again U consists of numbers that are not members of
their matched set, which implies that u U. So regardless of whether
you say u U or u U you arrive at a contradiction. Hence, Cantor con-
cludes there does not exist a one-to-one correspondence from A to P(A),
hence |N| < |P(N)|. ▌
We illustrated these ideas in Figure 2.34

2.6.1.1 Summary

Since the power set of a set has more members than the set itself, regardless of
whether the set is finite or infinite, it is possible to construct a sequence of
larger and larger infinities by simply taking the power set of a power set as
illustrated

ℵ0 = N < P N < P P N < P P P N <

which are all uncountably infinite except for smallest infinity ℵ0. Cantor called
all numbers that are not finite transfinite numbers, which means numbers
larger than finite numbers.

51{9,13,20}

{1,5,6}

{3,5}

4

39

42
155

3

 = unmatched set u?

u?u

U

Figure 2.34 u U or u U?.
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Since Cantor’s theorem shows that for any set, there is always a larger set, it
follows there does not exist a set of all sets. That is, there is no set of everything3

since there is always more.
Now that we know the power set of a set has larger cardinality than the set

itself, how does the cardinality of the power set of natural numbers compare
with the cardinality of the real numbers? The answer is that they are equal, that
is |P(N)| = |R|, but to prove this, we need the help of the Cantor–Bernstein–
Schroeder theorem.

2.6.2 The Cantor–Bernstein Theorem

We know from real numbers that a ≤ b and b ≤ a imply a = b. We now ask if the
same result holds for cardinalities, does |A| ≤ |B| and |B| ≤ |A| imply |A| = |B|?
The answer is yes, and you are probably saying the result if obvious since the
cardinalities |A| and |B| are just real numbers. However, keep in mind how car-
dinalities are defined. The statement |A| ≤ |B| between infinite sets means there
is a 1–1 map f :A B and |B| ≤ |A| means there is a 1–1 map g : B A, but the
1–1 maps f and g do not have to be the same. The Cantor–Bernstein–Schroeder
theorem says that if there exists a 1–1 map f : A B and a 1–1 map g : B A,
then there exists a one-to-one correspondence h : A B, thus proving |A| = |B|.

Theorem 2 Cantor-Bernstein
Given sets A and B if there exists a 1–1 mapping f : A B and a 1 − 1 mapping
g : B A, then |A| = |B|.

Proof
For finite sets A = {a1, a2,… , am} and B = {b1, b2,… , bn}, the proof is straight-
forward since f : A B being 1–1 implies m ≤ n, and if g : B A being 1–1
implies n ≤m, hence, we are left withm = n. For infinite sets, however, this argu-
ment breaks down, and the proof is quite deep and is not given here. Interested
readers can find discussions online.
We now get to the main event. ▐

Theorem 3 The cardinality of the power set of the natural numbers is equal to
the cardinality of the real numbers. In other words |P(N)| = |R|.
Proof
The goal is to find a one-to-one correspondence between the subsets of N and
members of the interval [0, 1], and since [0, 1]≈R, we have P(N)≈R.

3 The German mathematician David Hilbert said in 1910 that “No one shall drive us from the
paradise which Cantor created.” Later in 1926, Hilbert said, “It appears to me the most admirable
flower of the mathematical intellect and one of the highest achievements of purely rational human
activity.”
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We begin by observing that any real number x [0, 1] can be expressed in
binary decimal form x = 0. b1b2b3… where each bj is 0 or 1. For example

x= 0 1101000…=
1
2
+

1

22
+

0

23
+

1

24
+ =

13
16

x= 0 1111111…=
1
2
+

1

22
+

1

23
+

1

24
+ = 1

We now associate to each real number x = 0.b1b2… in [0, 1] the subset of N
consisting of those natural numbers j for which bj = 1. For example,

x= 0 0000…0 0, 1 = Ø P N
x= 0 1101… 0, 1 1,2,4,… P N
x= 0 011011… 0, 1 2,3,5,6,… P N
x= 0 11111… 0, 1 1,2,3,4,… =N P N

This relationship defines a one-to-one correspondence between the decimal
expansions of numbers in [0, 1] and subsets of N, or P(N)≈ [0,1]. But we have
seen [0,1]≈R and so P(N)≈R or |P(N)| = |R|. ▐

Important Note We must be careful since some numbers in [0, 1] have two
decimal representations for the same number, so we must omit one of them
to get a one-to-one correspondence. For example, the number 1 can be repre-
sented both by 1 and 0.999… and 0.5 can be expressed both by 0.5 and by
0.049 99…. In order that each real number in [0, 1] has exactly one decimal
expansion, we use the convention that an infinite string of 9s is never used,
but replaced by its numeric equivalent. In other words, 0.009 99… is replaced
by 0.01. Also, infinite strings of 0s are omitted, hence, 0.101 000… is replaced by
0.101. Making these conventions results in a one-to-one correspondence
between [0, 1] its binary representations.

2.6.3 The Continuum Hypothesis

We have seen that the cardinality of the real numbers is larger than the cardi-
nality of the natural numbers, which begs the question is there an infinity
between the two? It was Cantor’s belief that c was the next largest infinity after
ℵ0, but was never able to prove it. The hypothesis or belief that there is no infin-
ity between c and ℵ0 is known as the continuum hypothesis.

The Continuum Hypothesis (CH) There is no set S whose cardinality satisfies
|N| < |S| < |R|.
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A proof of the continuum hypothesis (CH) would confirm the belief that the
cardinality of the real numbers c is the smallest uncountable set and bridges the
gap between countable and uncountable sets.
After Cantor’s death, due to the logical paradoxes of Bertrand Russell and

other logicians like Ernst Zermelo and Abraham Fraenkel, set theory was placed
on an axiomatic foundation based on the Zermelo–Fraenkel axioms. In 1938,
under the framework of these axioms, the Austrian logician Kurt Gödel
(1906–1978) proved that the negation of CH cannot be proven, which means
the CH is either false, cannot be proven false, or is true. Later in 1963, the Amer-
ican logician Paul Cohen proved that the CH cannot be proved true under the
Zermelo–Fraenkel axioms. In other words, the CH cannot be proven true or be
proven false, which means it is independent of the Zermelo–Fraenkel axioms.
It is analogous to Euclid’s fifth axiom of geometry in the sense that you treat it

an axiom and accept it as true or accept it as false. If the CH is accepted as true
and included with the other Zermelo–Fraenkel axioms, the resulting theory is
called Cantorian set theory, whereas if the CH is assumed false, the theory is
called non-Cantorian set theory. In either case, one has a valid set of axioms,
albeit much different. Very strange indeed!4

Gödel’s Incompleteness Theorem In 1931, the Austrian logician Kurt Gödel
(1906–1978) stated and proved, what arguably is, the most famous and far-
reaching theorem in the foundation of mathematics. The theorem states that

Any axiom system containing sufficient axioms to deduce elementary
arithmetic cannot be both consistent and complete.

A set of axioms is consistent if one cannot prove contradictions from the axioms,
and a set of axioms is complete if there are statements in the language of the
axioms that are not provable using the given axioms. The implication of Gödel’s
theorem is immense since it says in any consistent axiom system, there will
always be statements that cannot be proved and hence, their truth value has
no meaning in the framework of the axioms. And which statements are those
“undecidable” statements? We will never know.

2.6.4 Need for Axioms in Set Theory

The reader should not entertain the belief that Cantor was the first mathema-
tician to think about sets and their operations, such as union, intersection, and
compliment. The concept of a set has been known for centuries. Cantor’s

4 Most logicians accept Cantorian set theory.

2.6 Larger Infinities and the ZFC Axioms172



contribution was to introduce the formal study of infinite sets and a deep anal-
ysis of the infinite and its many unexpected properties. Although Cantor pro-
duced many deep ideas, his interpretation of a set was intuitive. That is, to him a
set was simply a collection of objects. It was Bertrand Russell who upset that
view of sets with his 1901 discovery, called Russell’s Paradox, which showed
that Cantor’s the naive view sets as “a collection of objects” leads to contradic-
tions. Thus, it became clear in order to have a consistent theory of sets one must
formalize its study with “rules-of-the-game.” That is, axioms.

Russell’s Paradox Russell’s paradox is the most famous of all set-theoretic
paradoxes that arises in the naive (nonaxiomatic) set theory and motivates
the need for an axiomatic formulation of set theory. The paradox was con-
structed by English logician Bertrand Russell (1872–1970) in 1901, who pro-
posed the rather strange set R, consisting of all sets that do not contain
themselves. He then asked whether the family R itself was a member of R.
The claim that R R leads to a contradiction since R consists of sets that do
not contain themselves. Also, the claim that R R also leads to a contradiction
since R contains sets that do not contain themselves, which means R R. Hence,
we are left with the contradictory statement

R R R R

Hence, we conclude that we must “restrict” the meaning of a set from the naive
point of view of simply being a “collection of things” to being defined by
well-thought-out axioms.

2.6.5 The Zermelo–Fraenkel Axioms

The most commonly accepted axioms of set theory are the Zermelo–Fraenkel5

(ZFC) axioms, developed by German logicians Ernst Zermelo (1871–1953) and
Abraham Fraenkel (1891–1965). The original axioms, proposed by Zermelo,6

restricts the wide latitude of Cantor’s interpretation of a set, thus avoiding
“bad” things like Russell’s paradox, but allowing enough “objects” to be taken
as sets for ordinary use in mathematics. The “C” in “ZFC” refers to the Axiom
of Choice (AC), the most controversial and debated of the 10 ZFC axioms.

5 There are other axioms of set theory than the ZFC axioms, such as the Von Neumann–Bernays–
Gödel axioms (which are logically equivalent to ZFC) and the Morse–Kelly axioms, which are
“stronger” than ZF.
6 Zermelo published his original axioms in 1908 and were modified in 1922 by Fraenkel and
Skolem, and today are called the Zermelo–Fraenkel (ZF) axioms.
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Although there is no agreement on the names for each of the 10 axioms and are
often written in varying notation, we have settled on the following list.

Zermelo–Fraenkel Axioms
1) Axiom of the Empty Set: There is a set Ø with no elements.7

Comment: This set is called the empty set and denoted by Ø. This axiom
says that the whole theory defined by these 10 axioms is not vacuous by
stating at least one set exists, albeit nothing in it.

2) Axiom of Equality: Two sets are equal if and only if they have the same
members.
Comment: The Axiom of Equality (often called the Axiom of Extension)
defines what it means for two sets to be equal. The first two axioms say
that the empty set (guaranteed by Axiom 1) is unique.

3) Axiom of Pairs: Sets {a, b} exist.

a b A z z a,b z = x z = y

Comment: If we pick a = b, then the axiom implies there exists sets with
one element {a}. Note that the existential quantifier A quantifies a set,
which is not allowed in the first-order predicate logic we studied in
Chapter 1.

4) Axiom of Unions (Unions of Sets Exist): For any collection of sets F = {Aα}α Λ,
there exists a set

Y =
α Λ

Aα,

called the union of all sets in F. That is

F A x x A C F x C

Comment: From Axioms 3 and 4, we can construct finite sets. (We are mak-
ing progress.)

5) Power Set Axiom (Power Sets Exist): For every set A, there is a set B (think
power set) such that the members of B are subsets of A.

6) Axiom of Infinity (Infinite Sets Exists) There exists a set A (think infinite)
such that

Ø A x x A x x A

7 Zermelo’s original axioms were stated in the language of second-order logic, i.e. logical system
where sets are quantified (like ( A), ( A)) in addition to variables like we studied in Chapter 1. There
are versions of the ZFC axioms that use only first-order logic notation, but for convenience, we have
quantified sets in a few instances.
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Comment: This axiom “creates” the numbers A = {0, 1, 2, 3,…} according to
the correspondence: 0 = Ø, 1 = {0}, 2 = {1}, 3 = {2}, and so on. We conclude
the set of natural numbers exist.

7) Correct Sets Axiom (Axiom that Avoids Russell’s Paradox): If P(x) is a state-
ment and A any set, then

x A P x

defines a set.
Comment: This axiom rules out sets of the form {x : x x} which is the basis
of the Russell paradox. The axiom is also an example of what logicians call
an axiom schema, meaning it is really an infinite number of axioms, one for
each statement P(x).

8) Images of Sets Are Sets: The image of a set under a function is again a set.
In other words if A, B are sets and if f : A B is a function with domain A and
codomain B, then the image

f A = y B y= f x

is a set.
9) Axiom of Regularity (No Set Can Be an Element of Itself ): Every nonempty

set contains an element disjoint from the set. In other words

A Ø x x A x A= Ø

Comment: As an example, if A = {a, b, c}, we can pick “a” and observe a {a,
b, c} = Ø, since {a} {a. b. c} = {a} Ø but a {a, b, c} = Ø. What this axiom
accomplishes is to “keep out” sets that contain themselves, like A = {1, 2,
3, A}.

10) Axiom of Choice (AC): Given any collection of nonoverlapping, nonempty
sets, it is possible to choose one element from each set.
Comments: The AC is a pure existence axiom that claims the existence of a
set formed by selecting one element from each set in a collection of non-
empty sets. The objection to this axiom lies in the fact that the axiom pro-
vides no rule for how the items are selected from the sets, simply that it can
be done. Some mathematicians argue that mathematics should not allow
such a vague rule for declaring the existence of a set.

2.6.6 Comments on the AC

A group of mathematicians are attending a buffet dinner, and as they pass the
dessert line containing plates of cookies, each individual plate containing iden-
tical cookies, one mathematician says she will appeal to the AC and selects one
cookie from each plate, that is the AC. The AC says, given a collection of

2.6.6 Comments on the AC 175



nonempty disjoint sets, it is possible to define a new set by selecting onemember
from each set in the collection, regardless of the fact the objects are identical and
there is no logical way to decide on what object to select. So what is the fuss over
AC? It seems so trivial.
The AC is a pure existence axiom, and for that reason, it is a bone of contention

for some mathematicians who prefer a constructive approach to sets. Should the
AC be an accepted axiom of a set theory. The majority of set theorists say, yes.

Bertrand Russell’s Shoe Model for AC Bertrand Russell once gave an intuitive
reason why the AC is sometimes required and why sometimes it is not. Suppose
you are supplied with an infinite number of pairs of shoes and are told to pick
one shoe from each pair. How would you do it? It is easy, simply choose the left
shoe (or right) from each pair.

However, if you are given an infinite pair of socks and told to pick a sock from
each pair, then that is a different matter. If you are the kind of person who
demands a constructive reason for everything, then you are in trouble. There
is no way to pick a sock from each pair if you require a reason for your selection.
However, the AC comes to your rescue, which says there is such a rule, although
not stated, that allows you to pick one sock fromeach pair. So you simple say, I am
appealing to the AC, and randomly pick one of the shoes. It is the nonconstructive
aspect of the AC that causes angst to some mathematicians and logicians. To
some intuitionists, the word “exists” belongs more to religion thanmathematics.8

2.6.7 Axiom of Choice Well-Ordering Principle

When Zermelo introduced the AC to set theory, most of the mathematicians
accepted it and never gave it much thought.9 However, in 1905, Zermelo proved
a theorem that did give people some thoughts. We are getting ahead of our-
selves, but consider the less than relation “<” which you have known since mid-
dle school, comparing the size of two real numbers R. Now, unlike the interval
[0,∞), the real numbers do not have a smallest element. What Zermelo proved
was that for any nonempty set, the real numbers being an example, it is possible
to order them in such a way that the ordered set and any subset of it always has a
smallest element. This theorem is called Zermelo’s Well-Ordering Theorem.
Unfortunately, the theorem does not say how to make this ordering; only that

8 Mywife is notorious about notmaking up hermind about what dress, coat, socks,… to buy.When
she says, “How can I decide, they look exactly all alike, I just tell her to use the Axiom of Choice.”
9 However, many of the foremost mathematicians of the day objected to the axiom of choice,
including measure theory pioneers Henri Lebesgue and Emile Borel.

2.6 Larger Infinities and the ZFC Axioms176



one exists. To this day, no one has ever discovered a way to order the real num-
bers so they and any subset have a smallest number under this new ordering.
What makes Zermelo’s Well-Ordering Theorem so perplexing is that on an

intuitive level, it seems very hard to accept, but what is even more perplexing is
that Zermelo proved that it is equivalent to the AC, which most people feel is
obvious.

Section Summary So what do we know about infinite sets?

Question: Is there more than one type of infinity (or cardinality)?

Answer: Yes,ℵ0 is the smallest infinity, but there are an infinite number of larger
infinities.
Question: Is there a largest infinity (or cardinality)?

Answer: There is no largest infinity, Cantor’s theorem shows that power sets of
sets always yield larger infinities.
Question: Is there a set of all sets?

Answer: No. If S is the set of all sets, Cantor’s theorem states that |S| < |2S|. But
2S S since we are assuming S is everything, and so |2S| ≤ |S| which is a contra-
diction. Hence, the statement there is a set of all sets is meaningless. There is no
everything.

Problems

1. Cardinality of Sets of Functions
Show that the set of all functions defined on the natural numbers with
values 0 and 1 has cardinality c. Hint: Relate each sequence of 0s and 1s
to a subset of natural numbers and then use Cantor’s theorem.

2. Well-Ordered Integers
A set is said to be well-ordered if every nonempty subset of the set has a least
element. The usual ordering ≤ of the integers is not a well-ordering of the
integers since the set itself has no smallest element. However, the following
relation ≺ is a well-ordering of the integers

x≺y x < y x = y x ≤ y

Order the following subsets of Z with the above ordering.
a) Z
b) {n Z: n ≤ −1}
c) {2,−3,5,−9,−2}
d) {3,2,1}
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3. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward Zermelo Fraenkel axioms, Cantor’s theorem, Zermelo,
well-ordering principle, and Cantor’s paradox.
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3.1

Relations

Purpose of Section To introduce the concept of a (binary) relation between
two objects: the objects being almost anything you can imagine, although in
mathematics they normally are integers, real numbers, functions, and so on.
This section acts as the background for the relations studied in the following
sections: the order relations, the equivalence relation, and the function relation.

3.1.1 Introduction and the Cartesian Product

The idea of things being related enters our consciousness a dozen times a day.
We talk about people being related in many way, such as gender, race, height,
age, and so on. In mathematics, the word relation is used to show the relations
between pairs of objects, as when we say

“is less than” “is a subset of”

“is perpendicular to” “divides”

“is greater than” “is congruent to”

“is parallel to” “is equivalent to”

“is homeomorphic to” “is isomorphic to?”

However, before defining a relation, it is necessary that we introduce the
Cartesian product of two sets.

Definition of Cartesian Product Let A and B be arbitrary sets. The Cartesian
product ofA andB, denotedA × B, and read “A crossB,” is the set of ordered pairs

A×B= a,b a A,b B

You are already familiar with one Cartesian product, namely the Cartesian
plane, which is R ×R, often denoted by R2.
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Example 1 Cartesian Product and Its Graph
If A = {1, 2} and B = {1, 3, 4}, then their Cartesian product is

A×B= 1,1 , 1,3 , 1,4 , 2,1 , 2,3 , 2,4

The dots in Figure 3.1 are the graph of the Cartesian product, where we have
labeled the horizontal and vertical axes by x and y.

Order is important for Cartesian products. For the sets A, B in Example 1,
we have

A×B= 1,1 , 1,3 , 1,4 , 2,1 , 2,3 , 2,4

B×A= 1,1 , 3,1 , 4,1 , 1,2 , 3,2 , 4,2

which illustrates that in general A × B B ×A. Note that the graph of the Car-
tesian product B ×A consists of points reflected through the 45 line y = x from
the graph of A × B as illustrated in Figure 3.2.

5

y

x

4

3

2

1

54321

Figure 3.1 Graph of the {1, 2} × {1, 3, 4}.

5

y

x

4

3

2

1

54321

Figure 3.2 Graph of {1, 3, 4} × {1, 2}.
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The Cartesian product interacts with the union and intersection of sets in the
following way as one might suspect.

Example 2 Identities of Relations
If A, B, and C are sets, then

a A× B C = A×B A×C
b A× B C = A×B A×C
c A×B C ×D = A C × B D
d A×B C ×D = A C × B D

Proof
a) Note how the proof employs the distributive property from sentential logic
involving “and” and “or.”

x,y A× B C x A and y B C

x A and y B or y C

x A and y B or x A and y C

x,y A×B or x,y A×C

x,y A×B A×C

Figure 3.3 illustrates a typical example of this identity, although in general A,
B, C need not be intervals of real numbers.

A few typical Cartesian products are drawn in dark in Figure 3.4.

3.1.2 Relations

A (binary) relation is a rule that assigns truth values (true or false) to two things,
which normally are numbers, sets, functions, and so on.When the value assigned
by the relation is true, we say the things are related. For example, the pair of

C

A

B

Figure 3.3 Visualization of A × (B C) = (A × B) (A × C).
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numbers (2, 3) would be assigned “true” for the relation “is less than” since 2 < 3.
The reader is well familiar with many relations, such as the equal relation “=,”
which would assign a truth value to the pair (3, 3) but not to the pair (3, 4). What
this chapter does is it provides a general theory behind many of the relations you
already known, and some you do not know.

Definition Relation
LetA and B be sets and A × B their Cartesian product. A binary relation R from
A to B is simply a subset R A × B. The elements in a relation R form the graph
of the relation. If (x, y) R, we say that “x and y are related,” and we denote this
by writing xRy. If (x, y) R, we say “x and y are not related” and denote this by

xRy. When the two sets A and B are the same set A = B, we say that the relation

R A ×A is a relation on R.

Important Note You might think of a relation from A to B as similar to a func-
tion from A to B, like y = sin x, which assigns to each x A the value y = sin x,
except that for a relation R from A to B, an element x in A does not necessarily
map to a single element y in B, but possibly to several. Functions are a special
type of relation that we will study in Section 3.4.

The following examples will familiarize you with some common relations.

y

x

y

x

y

x

y

x

[0,1] × [0,1] ℤ × ℝ

ℤ × ℤ {1,2} × ℤ

Figure 3.4 Typical Cartesian products.
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Example 3 Typical Relation
Let A be a set of five students and B a set of four university classes, where

A= Mary, John,Ann,Sally, Jim

B= Math,Literature,Chemistry,Psychology

and consider the relation R A × B defined by

xRy= x likes classy

This relation is represented by the set of xs in Table 3.1, showing which student
likes which classes. Since (John, Math) R, this means John likes the math class,
and since (Ann, Literature) R, this means Ann does not like the literature class.

Important Note The definition of a relation can be a bit confusing at first,
thinking of it as both a set and a relation between things. Just realize when
(x, y) R, we denote this by writing xRy just like we do when we write x ≤ y,
x = y, and so on.

Important Note Binary relations are standard fare in many areas of mathemat-
ics and computer science. Common binary relations are “is greater than,” “is equal
to,” “divides” in arithmetic, “is congruent to” in geometry, “is adjacent to” in graph
theory; “is orthogonal to” in linear algebra; “is linked to” in computer science, and
so on.

Example 4 Identify the Relation
The Cartesian product of the sets A = {1, 2}, B = {1, 2, 3} consists of the 2 3 = 6
pairs of points

A×B= 1,1 , 1,2 , 1,3 , 2,1 , 2,2 , 2,3

A popular relation from A to B is given by

R= 1,2 , 1,3 , 2,3 A×B

Have you seen this relation before? Name the relation.

Table 3.1 Relation “likes class” on {Students} × {Classes}.

Math x x

Literature x x x

Chemistry x x

Psychology x x x

Mary John Ann Sally Jim
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Solution
We write the relation in the more suggestive form:

a) (1, 2) R 1R2 more commonly written 1 < 2
b) (1, 3) R 1R3 more commonly written 1 < 3
c) (2, 3) R 2R3 more commonly written 2 < 3

Hence, the relation is “is less than,” which we normally express by writing
“<.” The graph of this relation is illustrated by the dots in Figure 3.5.

3.1.3 Visualization of Relations with Directed Graphs

Another way to visualize a relation is with a directed graph, which consists of a
collection of dots representing members of A, and arrows connecting the dots if
members are related. For example, the relation

R= 1,2 , 2,5 , 2,3 , 3,1 , 4,5 , 5,5

on A = {1, 2, 3, 4, 5} can be visualized by the directed graph drawn in
Figure 3.6.

y

x

A

B

1

2

3

1 2

Figure 3.5 Relation “<” on A × B.

1 2 5

43

Figure 3.6 Directed graph of a relation on {1, 2, 3, 4, 5}.
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Common Relations in Mathematics

1. = Equals

2. ≤, ≥ Less than or equal, greater than or equal

3. <, > Less than, greater than

4. Lines parallel

5. ⊥ Lines perpendicular

6. Congruent figures

7. ≈ Has the same cardinality

8. ≡mod(n) Numbers equivalent modulo n

9. | Divides

10. ≡ Similar figures

11. f Is a function of

12. Is homeomorphic to

13. Is isomorphic to

Example 5 Directed Graph of the Division Relation
Let A = {1, 2, 3, 4, 5, 6} and define the relation R on A by

xRy xdividesy

Draw the directed graph that represents this relation.

Solution
The directed graph in Figure 3.7 illustrates the division relation on the set {1, 2,
3, 4, 5, 6}.

1

2

3

6

5

4

Figure 3.7 Division relation on {1, 2, 3, 4, 5, 6}.
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Higher-Order Relations In set theory and logic, a n-ary is a relation that
assigns a truth value to nmembers of a given set, and a ternary relation is a
relation R(a, b, c) that assigns a truth value to three members. For example,
for natural numbers a, b, c the relation a3 + b3 = c3 is a ternary relation on N,
which according to Andrew Wiles,1 is false.

3.1.4 Domain and Range of a Relation

A relation R is a generalization of a function f in the sense that every function is
also a relation, but not vice versa. When the relation is a function, the relation
maps a single element x A into a single value f(x) B, whereas for a general
relation, a single value of x A can be related to none or many values of y B.
But like functions, relations also have domains and ranges.

Definition Domain and Range of a Relation
Let R be a relation from A to B. The domain of the relation is the set

• Dom(R) = {x A : y B such that xRy} A

The range of the relation R is

• Range(R) = {y B : x A such that xRy} B

In Plain English:The domain of a relation R fromA to B is the set of first mem-
bers of the ordered pairs in R and the range of R is the set of second members of
the ordered pairs. By definition, we have

Dom R A,Range R B

For example, if A = {1, 2, 3, 4} and B = {2, 3, 4} with relation R from A to B,
given by

R= 1,2 , 1,3 , 2,3 , 2,4

we have

Dom R = 1,2 A

Range R = 2,3,4 B

1 English mathematician Andrew Wiles verified Format’s Last Theorem in the affirmative by
proving that if a, b, c are positive integers, the equation an + bn = cn has no integer solutions when
n ≥ 3.
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3.1.5 Inverses and Compositions

Two common ways of constructing new relations from old ones are inverse
relations and compositions of relations.

Definition Inverse Relation
If R is a relation from A to B, the inverse of R is defined as

R−1 = y,x x,y R

If R = {(1, 2), (3, 5), (4, 1)} then R−1 = {(2, 1), (5, 3), (1, 4)}.

Example 6 Relation and Its Inverse
Define a relation on the set A = {1, 2, 3, 4} by

R= 1,2 , 1,3 , 2,4 , 3,4

The inverse of R is

R−1 = 2,1 , 3,1 , 4,2 , 4,3

Both R and R−1 are drawn in Figure 3.8, where R is denoted by round dots and
R−1 by square dots. Note that the graphs of R and R−1 are reflections of each
other through the 45 line y = x.

3.1.6 Composition of Relations

The composition of two (or more) relations is similar to the composition of
functions that the reader might be familiar. Recall that the composition of func-
tions f and g, written f ∘ g, is defined by

x

1 2 3 4 5

y

1

2

3

4

5

Figure 3.8 Graphs of R and R−1.
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f ∘g x = f g x

for all x in the domain of g, where g(x) in the domain of f. The generalization of
this definition to relations goes as follows.

Definition Composition of Relations
If R is a relation from A to B, and S a relation from B to C, then the composition
(or composite) of the relations R and S is the relation

S∘R= a,c A×C b B such that a,b Rand b,c S

In plain language, the composition is the collection of all “paths” from A to C
as illustrated in Example 7.

Example 7 Composition of Relations
Given sets

A= 1,2,3,4

B= a,b,c

C = cat,dog,horse

and relation R from A to B and relation S from B to C defined by

R= 1,a , 1,c , 2,a , 3,b , 4,b A×B

S = a,dog , b,horse , b,cat , c,dog , c,horse B×C

the composition S ∘ R is illustrated in Figure 3.9 and displays all paths starting at
A and ending at C. They are

S∘R= 1,dog , 1,horse , 2,dog , 3,cat , 3,horse , 4,cat , 4,horse

1

2

3

4

a

S

b

c

Cat

Dog

Horse

1

2

3

4

Cat

Dog

Horse

S RR
A B C A C

Figure 3.9 Composition S ∘ R.
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Problems

1. True or False
Tell whether the following statements are true or false.
a) Q ×Q R ×R
b) aRb (a, b) R
c) aRb bRa
d) aRa
e) For any two sets A, B, A × B = B ×A
f) For some sets A, B, A × B = B ×A

2. Relations
For the setA = {1, 2, 3, 4}, write out the ordered pairs in the relation R onA if
a) xRy x < y
b) xRy x = y
c) xRy x divides y
d) xRy x is a multiple of y

3. Four Basic Cartesian Products
Given A = {1, 2, 3}, B = {a, b}. Find the following Cartesian products.
a) A × B
b) B ×A
c) A ×A
d) B × B

4. Cartesian Products
For each of the following pair of sets A and B, find the Cartesian products
A × B and B ×A.
a) A = {0, 2}, B = {−1, 0}
b) A = {a, b}, B = {b, c}
c) A = R, B = N
d) A = Z, B = N
e) A = R, B = {−1, 0, 1}

5. Graphing a Relation
Draw a sketch of the following relations.
a) R = {(x, y) R ×R : x2 + y2 = 1}
b) R = {(x, y) R ×R : y = sin x}
c) R = {(x, y) R ×R : x = y2}
d) R = {(x, y) R ×R : |x| ≤ 1, |y| ≥ 1}
e) R = {(x, y) N ×N : x≡ 0(mod3), y≡ 1(mod3)}
f) R = {(x, y) N ×N : x divides y}
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6. Algebra of Relations
Given are the closed intervals

A= 0,3 ,B= 2,5 ,C = 1,4

on the real line R. Sketch the following relations in the plane.
a) R = (A B) ×C R ×R
b) R = (A B) ×C R ×R
c) R = (A × B) (A ×C) R ×R
d) R = A × (A C) R ×R

7. Naming a Relation
Give common names that describe the following relations on A= 1,2,3 .
Then find the inverse relation. What is a name for the relation and inverse
relation?
a) R = {(1, 1), (2, 2), (3, 3)}
b) R = {(1, 2), (1, 3), (2, 3)}
c) R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

8. Important Types of Relations
Two important types of relations are injections (1–1) and surjections
(onto), whose definitions we have seen in Section 2.4 in conjunction with
the cardinality of sets. The definition of an injection and surjection defined
especially for relations are as follows:
Surjective Relation: A relation R X × Y is surjective if

y Y x X xRy

Injective Relation: A relation R X × Y is injective if

x1,x2 X y X x1Ry x2Ry x1 = x2

For X = Y = {1, 2, 3}, give an example of an injective and surjective relation
from X to Y.

9. Meaning of Relations
For each of the following, describe the members of the relation R.

a) R Q×Q,R=
p
q
,
r
s

ps= rq

b) R Q ×Q, R = Ø
c) R R ×R, R = R ×R

10. Inverse Relation of Compositions
Given A = {1, 2, 3} verify the following identity for the inverse of a
composition:

S∘R −1 =R−1∘S−1
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for relations

R= 1,2 , 2,3 A×A

S = 2,2 , 3,1 A×A

11. Composition of Relations
Find the composition of the relations S ∘ R given the sets

A= a,b,c,d ,B= 1,2,3 ,C = x,y,z

and the relations

R= a,2 , a,3 , b,2 , c,1 , d,3 A×B

S = 2,x , 1,y , 1,z , 3,y B×C

12. Cartesian Product Identities
Prove the identity

A−B ×B= A×B − B×B

13. Number of Relations
If a set A has m elements and B has n elements, show that the number of
relations from A to B is 2mn.

14. Graphing Relations and Their Inverses
Graph the following relations and their inverses.
a) R R ×R, xRy y = 1/x
b) R R ×R, xRy y = ex

c) R R ×R, R = {(x, y) : |x| + |y| = 1}

15. Counting Relations I
What is the total number of relations that can be defined on the set
A = {1, 2}?

16. Counting Relations II
What is the total number of relations that can be defined on the set A = {1,
2, 3}?

17. Converse of a Binary Relation
If R is a binary relation on a set A, then the converse relation R on A is
defined by the relation xRy yRx. State in English or write out in ordered
pairs the converse of the following relations R.
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a) The relation “is the mother of.”
b) The relation “is a uncle of.”
c) The relation “<” on the real numbers.
d) The relation “=” on the real numbers.

18. Blood Typing
There are four blood, types A, B, AB, and O.

• Type A can receive blood from type A and O.

• Type B can receive blood from type B and O.

• Type AB can receive blood from all types.

• Type O can receive blood from only type O.

Given the set S = {A, B, AB, O}, define a binary relation R on S as follows:

xRy type x person can receive blood from type y persons

a) Write out the ordered pairs of R.
b) Draw a directed graph of the relation R.

c) Define the converse Rof R by xR y yRx. What is the interpretation of
the converse?

19. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward important relations in mathematics, visualizing mathemat-
ical relations, and composition of relations.
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3.2

Order Relations

Purpose of Section To introduce some important types of orderings, such as
a partial order and strict order as well as what it means for a set to be totally
ordered. Using the order relation, we introduce the concept of upper and lower
bounds of a set, the least upper bound, and greatest lower bound of a set. We
also show how order relations can be illustrated graphically by means of Hasse
diagrams.

3.2.1 Let There Be Order

The British philosopher Edmund Burke once said, “Order is the foundation of
all that is good,” and although he probably was not referring to inequalities of
numbers, nevertheless, order is as important in mathematics as it is anywhere
else. The reader is familiar with the inequality relations ≤ and < that impose an
ordering of real numbers, and the relation , which imposes an “order” on sets.
Other objects can be “ordered” as well, such as functions, matrices, and points in
the plane. Ordering objects according to given rules brings structure to an area
that might otherwise be difficult to analyze. In computer science, order not only
brings understanding, but efficiency. Imagine trying to find information on the
Internet if search engines did not have clever “ordering” strategies for searching
for information.

Definition Simple, Partial, and Strict Order

1) A partial order on a set A, denoted by ≤, is a binary relation on A such that
for all x, y, z in A, the following RAT conditions hold.
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Reflexive x ≤ x

Antisymmetric property x ≤ yandy ≤ x x= y

Transitive property x ≤ yandy ≤ z x ≤ z

When a partial order is defined on a set, the set is said to be partially
ordered or a partially ordered set. When x ≤ y, we say x precedes y. The
usual “less than or equals to” is a prime example of a partial order on the
real numbers.

2) A strict order, denoted by <, is a binary relation on a set A such that for all x,
y, z of A, the following IAT conditions hold.

Irreflexive property It is not true thatx < x

Asymmetric property If x < y, then y < x is not true

Transitive property x < yandy < z x < z

When a strict order is defined on a set, the set is said to be strictly ordered
or a strictly ordered set. The usual “less than” inequality (<) is a prime
example of a strict order on the real numbers, and we would say the real
numbers are strictly ordered by the less than order.

Both partially ordered and strictly ordered sets are said to be totally ordered if
every two members of the set are comparable. The usual “less than or equal to”
order (≤) is a total order on the real numbers since any two real numbers x, y satisfy
x ≤ y or y ≤ x. On the other hand, the set inclusion relation ( ) is a partial order on
the power set P(A) of A = {a, b, c}, but does not totally order the power set since
not all sets in the power set are comparable, an example being the sets {a, c}
and {b}.

Example 1 Relations
Given the set A = {1, 2, 3} and the relation on A

R= 1,1 , 1,2 , 2,3 , 1,3 A×A

a) Is R a partial order on A?
b) Is R a strict order on A?
c) Is R a total order on A?

Solution
a) (2, 2) R so R is not reflexive, hence not a partial order.
b) (1, 1) R so R is not irreflexive, hence not a strict order.
c) (3, 3) R so R is not a total order, 3 is not comparable with itself.
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Example 2 A Famous Relation You Might Know
Given the set A = {1, 2, 3} whose members are related by the following relation:

R= 1,1 , 2,2 , 3,3 , 2,1 , 3,1 , 3,2 A×A

Verify that R is a partial order on A. Do you recognize the ordering? It is the
greater than or equal to relation “≥.”The relation becomes clear when written in
a more common form as

1 ≥ 1,2 ≥ 2,3 ≥ 3,2≥ 1,3≥ 1,3≥ 2

Three ways to represent this partial order are illustrated in Figure 3.10.

Example 3 Ordering by Division Property
Let “ ” denote the relation “divides” on the set of natural numbers N. For exam-
ple, 1 7, 2 8, 3 9, 7 21. If m does not divide n, we denote this by m n as in
3 7. Show that “ ” defines a partial order on the natural numbers.

Solution
We show that division is reflexive, antisymmetric, and transitive.

• Reflexive [n n]: The relation is reflexive since natural numbers divide
themselves.

• Antisymmtric: We must show

m,n N m n n m m= n

Using what it means for one number to divide another, we write

m n

n m

k1 N such thatn= k1m

k2 N such thatm= k2n

so we have

m= k2n= k2 k1m = k2k1 m

(a) (b) (c)

3
2
1

3
2
1

3

21
3

2

1

321

Figure 3.10 Picturing partial orders (a) graphs, (b) arrow illustration, and (c) directed graph.
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which implies k2k1 = 1, and since k1 and k1 are positive integers, we have the
relation k1 = k2 = 1, which implies m = n.

• Transitive: We must prove

m,n N m n n p m p

Using what it means for one number to divide another, we write

m n

n p

k1 N such thatn= k1m

k2 N such thatp= k2n

Hence,

p= k2n= k2 k1m = k2k1 m

which implies m p.

Example 4 Partially Ordered Sets
The power set of A = {a, b, c} is

P A = Ø , a , b , c , a,b , a,c , b,c , a,b,c

Show that inclusion relation “ ” is defined by xRy x y, where x, y P(A)
defines a partial order on P(A).

Proof
We show “ ” satisfies the following properties:

• Reflexive: Any set is a subset of itself; hence, is reflexive.

• Antisymmetric: The relation is antisymmetric since

B,C P A B C C B B=C

• Transitive: The relation is transitive since

B,C,D P A B C C D B D ,

Hence, is a partial order on P(A).

3.2.2 Total Order and Symmetric Relations

Although, we have seen that “≤” and “ ” are partial orders on R and P(A),
respectively, there is an important difference. The partial order “≤” on the real
numbers is also a total order, inasmuch as any two real numbers x and y are
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comparable as in x ≤ y or y ≤ x. On the other hand, “ ” is not a total order on the
power set of {a, b, c} since it is not true that

{a, c} {a, b} or {a, c} {a, b}.

3.2.3 Symmetric Relation

We say a relation R on a set A is symmetric if xRy yRx for all x, y R. One
might think offhand that antisymmetry is the negation of being symmetric,
but this is not true. The equal relation “=” is both symmetric and antisymmetric.
However, the relation “is married to” is a symmetric relation but is not
antisymmetric, whereas the relation ≤ on the real line is antisymmetric but
not symmetric.

Historical Note The person who defined the order relation was a German
mathematician Felix Hausdorff (1868–1942) who did so in 1914. Hausdorff
was one of the founders of modern topology.

3.2.4 Hasse Diagrams and Directed Graphs

Although a partially ordered set can contain an infi-
nite number of elements, many important examples
are finite. A useful way to represent finite partially
ordered sets is a Hasse Diagram,1 where each ele-
ment of the ordered set is denoted by a dot (node)
and a line segment that goes upward from node x
to node y means that x ≤ y.
A Hasse diagram for a partial order on A = {a, b, c,

d, e, f, g} is drawn in Figure 3.11, where a few order-
ings are e ≤ d, f ≤ d, g ≤ d. Also e ≤ c by transitivity
since one can move upwards from e to c moving
through the nodes d and b. On the other hand,
e≰ f and a≰ c, so the order is not a total order since
some elements are not comparable.

1 A Hasse (pronounced Ha suh) diagram is named after the German mathematician Helmut Hasse
(1898–1979).

a c

b

d

gfe

Figure 3.11 Hasse diagram.
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Example 5 Ordering the Power Set
Draw the Hasse diagram for the power set

P A = Ø , a , b , c , a,b , a,c ,

b,c , a,b,c

of {a, b, c} ordered by set inclusion .

Solution
The Hasse diagram is shown in Figure 3.12.

Example 6 Hasse Diagram
The Hasse diagram for the power set of four
elements {a, b, c, d} is shown in Figure 3.13.

The concept of ordering objects introduces a whole collection of new ideas
and concepts.

3.2.5 Upper Bounds, Lower Bounds, glb, and lub

Definition Let ≤ be a partial order on a set U and S U a subset of U.

• Upper Bound of S: An element u U is an upper bound of S if and only if
( s S)(s ≤ u).

• Least Upper Bound (lub) of S: An element lub(S) U is the least upper
bound (or supremum) of S if lub(S) it is an upper bound for S and lub
(S) ≤ u for every other upper bound u of S.

• Lower Bound: An element l U is a lower bound of S if and only if ( s S)
(l ≤ s).

• Greatest Lower Bound (glb): An element glb (S) U is the greatest lower
bound (or infimum) of S if glb (S) is a lower bound for S and l ≤ glb (S)
for every other lower bound l of S.

{a,b,c}

{a,b}
{b,c}

{a,c}

{b}

𝜙 = { }

{c}{a}

Figure 3.12 Hasse diagram for
set inclusion on P(A).

{a,b,c,d}

{a,b,c}

{a,b}

{a} {b} {c}

Ø

{d}

{a,c} {a,d} {b,c} {b,d} {c,d}

{a,b,d} {a,c,d} {b,c,d}

Figure 3.13 Hasse diagram for the power set of four elements.
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•Maximum and Minimum: An elementM S is themaximum element of S
if and only if

s S s ≤M

An element m S is the minimum element of S if and only if

s S m ≤ s

•Maximal Element:An elementM S is amaximal element of S if and only if

s S M ≤ s

In other words, amaximal element is an element of the set that is not “smaller”
than any other member of the set.

•Minimal Element:An elementm S is aminimal element of S if and only if

s S s ≤m

In other words, a minimal element is an element of the set such than no other
member is “less” than the minimal member. See Figure 3.14.

Example 7 Bounds on an Open Interval
The open interval, S = (0, 1) R, is a partially ordered subset of the real num-
bers U = R ordered by ≤. Do you understand that

a) S has many upper bounds, 1, 3, 5.3, π, …
b) S has many lower bounds; −1, −5, −10.3, …
c) S has the least upper bound of 1
d) S has the greatest lower of 0
e) S has no maximum, no maximal, no minimum, and no minimal element.

Important Note Order theory is an area ofmathematics that provides a frame-
work for statements like “is greater than,” or “A precedes B,” and so on. Although
the history of ordering objects in mathematics is vague, an early explicit
mention of “order” is found in the nineteenth-century works of English

glb (S) = 0

S = (0,1)

lub (S) = 1

l
0 1

u

U

Figure 3.14 Ordering properties.
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mathematician George Boole. Other early researches who explicitly studied the
concept of “order” were Charles Saunders Peirce and Richard Dedekind. The
word “poset,” which was first used as an abbreviation for a “partially ordered
set” was coined by the American mathematician Garrett Birkhoff in his book
Lattice Theory.

Example 8 Partially Ordered Set
The set

S = A,B,C,D,E,F,G,H,I, J,L,M,N,O

is partially ordered according to the Hasse diagram in Figure 3.15.

Do you understand why the following properties are valid?

a) The set has no upper bound.
b) O is a lower bound of the set.
c) The set has no least upper bound since it has no upper bound.
d) The greatest lower bound of the set is O.
e) The maximal elements of the set are A, B, C.
f) The minimal element of the set is O.
g) The set has no maximum.
h) The minimum of the set is O.

B

E

H

D

F

G

K

N

L

I

C

A

J

M

O

Figure 3.15 Hasse diagram partial order.
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Example 9 Multiples and Divisors of 24
The following set A consists of the divisors of 24.

A= 1,2,3,4,6,8,12,24

Two partial orders on A are

aMb a is amultiple of b

aDb adividesb

Note that 24M8 denotes 24 is a multiple of 8 and 4D12 since 4 divides 12.
Draw Hasse diagrams for the two partial orders.

Solution
The Hasse diagram is drawn in Figure 3.16.

The 24 at the bottom of the Hasse diagram for the multiple relation denotes
the fact that 24 is a multiple of the other divisors. The 24 at the top of the divide
relation means all other divisors divide 24. The reader can verify that both rela-
tions are partial orders, but not total orders.

Important Note The inverse relation R−1 of a partial order relation R is also a
partial order. The inverse relation of ≤ on the real numbers is ≥.

Table 3.2 lists some common relations and their properties. The set over
which the relation is defined is given in parenthesis next to the relation.

3

6

12

24

8

8

4

2

1

3

6

12

24

4

2

1

Divide relation Multiple relation

Figure 3.16 Hasse diagrams for division and multiplication.
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Problems

1. Testing for an Order Relation
Tell whether the following relations on A = {1, 2, 3} are reflexive, antisym-
metric, and transitive. Plot the points of the relation in the Cartesian prod-
uct A ×A and denote the members of R A ×A. If the relation is an order
relation, draw a Hasse diagram and directed graph for the relation.
a) R = {(1, 1), (2, 2), (3, 3)}
b) R = {(1, 1), (1, 2), (2, 1)}
c) R = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)}
d) R = {(1, 2), (2, 3), (1, 3)}

2. Finding Relations
Find a relation on A = {1, 2, 3, 4} with the following properties.
a) Reflexive, but not antisymmetric
b) antisymmetric and reflexive
c) not reflexive, but transitive
d) not reflexive, not antisymmetric, not transitive

3. Ordering of Functions
Let C[0, 1] be the set of continuous functions defined on [0, 1]. For f, g C
[0, 1], define the ordering

f ≤ g x 0,1 f x ≤ g x

Show that “≤” defines a partial order on C[0, 1].

Table 3.2 Properties of common relations.

Reflexive Antisymmetric Transitive Symmetric

Relations xRx xRy yRx x = y xRy yRz xRz xRy xRx

≤ (R) Yes Yes Yes No

< (R) No No Yes No

≡ (mod n) Yes No Yes Yes

≈ (sets) Yes No Yes Yes

(sets) Yes Yes Yes No

⊥ (lines) No No No Yes

(lines) Yes No Yes Yes

on Z Yes No Yes No

on N Yes Yes Yes No

= (R) Yes Yes Yes Yes
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4. Upper and Lower Bounds
The Hasse diagram for the power set P(A) of A = {a, b, c, d} is drawn in
Example 6 with order relation . Use the Hasse diagram to find an upper
bound, a least upper bound, a lower bound, and the greatest lower bound of
the following subsets of P(A)
a) B = {{a}, {a, b}}
b) B = {{a}, {b}}
c) B = {{a}, {a, b}{a, b, c}}
d) B = {{a}, {c}, {a, c}}
e) B = {Ø, {a, b, c}}
f) B = {{a}, {b}, {c}}

5. Sups and Infs
If they exist, find the sup, inf, max, and min of the following sets.
a) (−∞ , 2)
b) (−∞ , 2]

c) 1 +
1
n

n N

d)
1
m

+
1
n

m,n N

e)
1
m

−
1
n

m,n N

f)
1
2
,
1
3
,
2
3
,
1
4
,
3
4
,
1
5
,
2
5
,
3
5
,
4
5
,… (omit fractions not in reduced form)

g)
n

n2 + 1
n N

h) {y : y = x2 + x − 2, x R}

6. Hasse Diagram
Jane is getting a degree in mathematics and has several courses to take.
Some of the courses have prerequisites as shown below.

Course needed Prerequisites

• Calculus I

• Calculus II Calculus I

• Calculus III Calculus II

• Linear Algebra Calculus III

• Differential Equations Calculus III

• Intro to Pure Math Linear Algebra, Calculus II

• Abstract Algebra Linear Algebra, pure math

• Advanced Calculus Calculus III, pure math

Draw aHasse diagram that illustrates the order which Janemust take courses.
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7. Hasse Diagram for Multiples
Let M be the order relation “a is a multiple of b” defined on the positive
divisors of 15. Draw a Hasse diagram for M.

8. A Partial Order for Points in the Plane
There are various ways to construct new orders from existing orders.
A partial order can be constructed on the Cartesian product of two par-
tially ordered sets by defining

a,x ≤ b,y a ≤ b x ≤ y

a) Construct a Hasse diagram that represents a partial order for

A= −1,3 , 0,3 , 1,7 , 0,6 , 0,5

b) Draw a directed graph for the partial order.

9. Equivalent form of Antisymmetry
State the contrapositive form of the antisymmetry condition

x,y R x ≤ y y ≤ x x= y

10. Ordering the Complex Numbers
Suppose we try to order the complex numbers z = a + bi according to
magnitudes

z1 ≤ z2 z1 ≤ z2

where z = a2 + b2 is the magnitude of the complex number. Is this a
partial order on the complex numbers?

11. Total Order of the Complex Numbers
The complex numbers can be totally ordered as follows. Given two com-
plex numbers in polar form

z1 = r1e
iθ1 , z2 = r2e

iθ2 , r1,r2 ≥ 0, 0 ≤ θ < 2π

order the complex numbers by

z1 ≤ z2
r1 < r2

r1 = r2,θ1 < θ2

Compare the following complex numbers.
a) z1 = i, z2 = 1 + i
b) z1 = i, z2 = − 1
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c) z1 = 6i, z2 = 2 + 3i
d) z1 = 0, z2 = 1

12. Counting Partial Orders
There are a total of three partial orders on A = {1, 2}. Can you find them?

13. Hasse Diagram
Given the subset S U represented by “stars” in the Hasse diagram in
Figure 3.17 which describes a partial ordering of the set:

U = A,B,C,D,E,F,G,H,I, J,K,L

find the following quantities of S:
a) upper bound(s)
b) lower bound(s)
c) the least upper bound
d) greatest lower bound
e) maximal element(s)
f) minimal element(s)
g) maximum
h) minimum

14. Test Your Knowledge of Sups and Infs
A Hasse diagram representation of a partial order is shown in Figure 3.18.
If they exist, find the sup and inf of the following sets. A partially ordered
set is called a lattice if every pair of elements in the set has a sup and inf. Is
the set under this partial order a lattice?

A D

B

E
GC

F

J H

K

L

I

Figure 3.17 Hasse diagram.
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a) {2, 3}
b) {8, 9}
c) {1, 2}

15. SUP or MAX?
If it exists, find the maximum value of the set

S =
n

n+ 1
n= 1,2,3,…

If it does not exist, find the least upper bound of S.

16. Lattices
A lattice L is a partially ordered set in which every two members a, b L
has a supremum and infimum in L. The supremum is called the join of a

11

1098

6 7

3 421

5

0

Figure 3.18 Sups and Infs.

e

d

b b

a a

c
c

d

dg

h

f

f

c e

e

b

a

(a) (b) (c)

Figure 3.19 Lattice or non lattice.
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and b and denoted by a b, and the infimum is called themeet of a and b,
and denoted by a b. Determine which of the partially ordered sets in
Figure 3.19 represented by Hasse diagrams, are lattices.

17. Lattice of Partitions
A lattice is a partially ordered set in which every two elements has a
unique least upper bound (called their join) and a unique greatest lower
bound (called theirmeet.) Figure 3.20 shows a Hasse diagram for the set of
all partitions of {1.2.3.4} into disjoint subsets, partially ordered by “increas-
ing merging of sets.” The slashes between numbers represent different
partitions. For instance 1/2/3/4 means the partition {1}, {2}, {3}, {4} and
14/23 denotes the partition {1, 4}, {2, 3}. Draw the lattice for the set of par-
titions of the set {a, b, c}.

18. True or False
Assuming the usual partial ordering ≤ for the rational and real numbers,
tell which of the following are true or false.
a) Every partially ordered set has a least upper bound.
b) Every set that is bounded above has a least upper bound.
c) Every set of rational numbers bounded above has a least upper bound.
d) Every set of real numbers that is bounded above has a least

upper bound.

19. Dense Orders
A partial order R on a set A is said to be dense in A if

x,y A xRy z A xRz zRy

1234

14/23 1/234

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

1/2/3/4

124/3 13/24 123/4 134/2 12/34

Figure 3.20 Lattice of partitions.
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Which of the following partial orders are dense on the given set?
a) “less than or equal to” ≤ on the rational numbers.
b) “is a subset of” on a power set P(A).
c) “less than” < on the real numbers R.
d) “is younger than” on a collection of people.

20. Inverse of a Partial Order
If R is a partial order on a set A, then show the inverse R−1 relation is a
partial order on A.

21. An Upper Bounded Set with No Sup
Show that the set

S = x Q 0 ≤ x ≤ 2

is bounded above but has no least upper bound.

22. Composition of Partial Orders
Let R be the usual “less than or equal to” ordering and S be the usual
“greater than or equal to” ordering on the set A = {1, 2, 3}. Find the com-
position R ∘ S = ≤ ∘ ≥ of the two orders.

23. Partitions of a Natural Number2

A partition of a positive integer is a way of writing the number as a sum of
positive integers where the order is not important and numbers can be
repeated. The five partitions of the number 4 are shown in Figure 3.21.

The function that gives the number of partitions of a natural number n is
called the partition function p(n), and in this case p(4) = 5. A convenient
way to organize the partitions on a number is a Ferrers diagram, where
the number of rows in the diagram represent the number of terms in the
partition and the number of squares in the row is the size of the term. The

2 The study of integer partitions arises in combinatorial problems in unexpected ways. The subject
got its big start with Euler in the eighteenth century and today is an active area of research among
additive number theorists. There are many unsolved problems in additive number theory, including
whether (asymptotically) half the values of p(n) are even and half are odd.

4 = 1 + 1 + 1 + 1
= 2 + 1 + 1
= 2 + 2
= 3 + 1
= 4

Figure 3.21 Partition of 4.
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Ferrers diagram for the partitions of numbers 1–5 is shown in Figure 3.22.
Find the partitions of 6 and draw the Ferrers diagram.

An asymptotic estimate for p(n) was found in 1918 by G.H. Hardy and
Ramanujan to be

p n
exp π 2n 3

4n 3
asn ∞

Use this formula to estimate p(100), p(200), p(1000).

24. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward ordered structures in math, ordered sets.

1
1 + 1

1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 2 + 1 + 1 + 1 2 + 2 + 1 3 + 1 + 1 3 + 2 4 + 1 5

2 + 1 + 1 2 + 2 3 + 1 4

2 1 + 1 + 1 2 + 1 3

C1 = 1

C4 = 5

C5 = 7

C2 = 2 C3 = 3

Figure 3.22 Ferrers diagram.
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3.3

Equivalence Relations

Purpose of Section To introduce the concept of an equivalence relation and
show how it partitions a set into disjoint subsets. We also introduce the idea of
the congruence of integers and modular arithmetic.

3.3.1 Introduction

As you well know every fraction has many equivalent forms. For example

1
2
,
2
4
,
5
10

,
−1
−2

,
−15
−30

,…

are different ways to represent the same number. They may appear different and
are called different names, but they are all equal. The idea of grouping things
together that appear different, but from a certain perspective are the samewhich
is the fundamental idea behind equivalence relations.
An equivalence relation is a relation that holds between two elements that

relaxes the sometimes over-restrictive “equals relation” and replaces it by “equals
from a certain point of view.” This allows one to partition sets into groups called
equivalence classes which share common properties. For example, we might say
two integers as the same if they have the same remainder when divided by a certain
number. For example, from some points of view, we may consider the integers…
−5, −2, 1, 4, 7,… “equal” since they all have a remainder of +1 when divided by 3.

Definition An equivalence relation on a setA, denoted by “≡” (or sometimes
by “~”) is a relation on A such that for all x, y, z in A, it is reflexive, symmetric,
and transitive. That is
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Reflexive: x≡ x
Symmetric: if x≡ y, then y≡ x
Transitive: if x≡ y and y≡ z, then x≡ z.

Example 1 Equivalence Relations
Some examples of equivalence relations are the following.

a) x≡ y means x = y for real numbers x, y.
b) x≡ y means x is congruent to y for triangles x, y.
c) x≡ y means x y for logical sentences x, y.
d) x≡ y means “x has the same birthday as y.”
e) x≡ y means x differs from y by a multiple of 5.
f) A≡ B means sets A, B have the same cardinality.

Example 2 Nonequivalence Relations
The following relations are not equivalence relations. Tell why one of the prop-
erties that defines an equivalence relation fails.
a) x≡ y means “x is in love with y” on the set of all people.
Ans: The relation is not symmetric for at least one couple.

b) x≡ y means x ≤ y on the real numbers.
Ans: The relation is not symmetric since 2 ≤ 3 does not imply 3 ≤ 2.

c) x≡ y means integers x, y have a common factor greater than 1.
Ans: The relation is not transitive; 2 and 6 have a common factor, 6 and 3 have a
common factor, but 2 and 3 have no common factors.

d) x≡ y means x y on a family of sets.
Ans: The relation is not symmetric since A B does not imply B A.

3.3.2 Partition of a Set

A partition of a set is a grouping of the members of the set into nonempty sets in
such a way that each element is included in one and only one of the subsets. This
leads us to the formal definition of a partition of a set.

Definition A partition of a set A (See Figure 3.23) is a (finite or infinite)
family of nonempty subsets E = {A1, A2, …} of A that satisfy

i)
k E

Ak =A

ii) Ai Aj = Ø for every pair Ai and Aj.

The following theorem reveals the reason equivalences relation play an
important role in mathematics.
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3.3.3 The Partitioning Property of the Equivalence
Relation

We now see how an equivalence relation on a set allows one to create a partition
of the set. If the equivalence relation was the equals relation “=,” then the sets
in the partition would consist of a single element, but for other equivalence
relations the size of the partitions vary.

Theorem 1 Equivalence Classes
If R is a relation defined on a set A, then

R is an equivalence relation on A R induces a partition of A

Proof
( ) We begin by defining the concept of an equivalence class. The set

x = y A,y x

consisting of members ofA that are equivalent to a fixed x A is called the equiv-
alence class of x, where x is called the class representative or representative of
the class.
To show that an equivalence relation “≡” induces a partition of A, note that

the reflexive property of an equivalence relation tells us x≡ x for all x A, which
in turn tells us that every equivalence class is nonempty and that the union of all
equivalence classes is the whole set A. Hence, the only remaining thing to
show is that distinct equivalence classes do not overlap. In other words, if
[x] [y] Ø, then [x] = [y]. So we assume [x] [y] Ø and prove [x] = [y].
We begin by doing a little “background” work by picking an element s [x]
[y] and using properties of an equivalence relation we have x≡ s and y≡ s.
But≡ is symmetric sowe also have y≡ s, and by transitivity x≡ y and by symmetry
y≡ x.We are now ready to start the proof of [x] = [y] by first showing [x] [y].We
select an arbitrary d [x] which implies d≡ x, but we have seen x≡ y and so by
transitivity we have d≡ y which means d [y]. Hence, [x] [y]. A similar

A1

A5
A2

A4

A

A3

Figure 3.23 Set partition.
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argument shows that [y] [x] and so [x] = [y]. Figure 3.24 gives a broad idea of
the players in the proof.
( ) If we define members of the set A as equivalent if they belong to the same

equivalence class, this defines an equivalence relation on A. ▌

3.3.4 Counting Partitions

Given a set with nmembers, how many ways are there to subdivide the set into
disjoint subsets? The total number of partitions of a set of size n is called the
Bell number Bn of the set, and the first few Bell numbers for sets of size
n = 0, 1, 2, … are

1,2,5,15,52,203,677,4140,21147,115975…

The set {a, b, c} of three members has a Bell number B3 = 5 and the five parti-
tions of {a, b, c} are drawn in Figure 3.25.

Note how this partition gives rise to an equivalence relation on {a, b, c}. We
say that two elements of the set are equivalent if they belong to the same set in
the partition.

s

x
y

d

[x] [y]

≡

≡
≡

≡≡

Figure 3.24 Disjoint equivalence classes.

a ≡ a

a ≡ b

a ≡ c

a ≡ b

c ≡ c

a ≡ c

b ≡ b

a ≡ a

b ≡ c

a ≡ b

a ≡ c

b ≡ c

a

b c c

a b a

c
b

a

b c

a b
c

Figure 3.25 Partitions of {a, b, c} and their induced equivalence relations.
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3.3.5 Modular Arithmetic

Two integers x, y Z are said to be congruent modulo N, denoted by1

x y modN

if they have the same remainder when divided by the integer N. Dividing two
congruent integers x, y by N, we have

x
N

=Q1 +
r
N
,

y
N

=Q2 +
r
N

whereQ1,Q2 are their respective quotients and r their common remainder. Sub-
tracting the two equations gives

x
N

−
y
N

= Q1−Q2 or x−y= Q1−Q2 N

which says if x, y are congruent moduloN, then their difference is divisible byN.
In other words,

x y modN k Z x−y= kN

We now show that the congruence relation is an equivalence relation.

Theorem 2 Congruence Is an Equivalence Relation on Z
Proof
We show the congruence relation ≡ is reflexive, symmetric, and transitive.

• Reflexive: x≡ x (mod N) since N divides x − x = 0.

• Symmetric: If x≡ y (modN), thenN divides x − y. Hence, there exists an inte-
ger k such that

x−y= kN ory−x= −kN =N −k

which means N divides y − x. Hence, y ≡ x (mod N) which means ≡ is a sym-
metric relation.

• Transitive: For integers x, y, z assume x≡ y(modN) and y≡ z(modN). Hence,

x y modN

y z modN

k1 Z x−y= k1N

k2 Z y−z = k2N

1 We use the notation “≡” here for integers being congruent since it is an equivalence relation.
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Adding these equations gives

x−y + y−z = k1N + k2N

or

x−z = k1 + k2 N

which shows N divides x − z or x ≡ z (mod N). Hence, ≡ is a transitive
relation. ▌

The congruence relation “≡” on Z partitions the integers into congruence
classes called residue classes, where integers in each residue class have the
same remainders when divided by N. For example if N = 5 the residue classes
are denoted by [0]5, [1]5, [2]5, [3]5, [4]5, which are listed in Table 3.3.

Note that the residue classes partition the integers into five disjoint sets:

Z= 0 5 1 5 2 5 3 5 4 5

The collection of partitions is called the quotient set of Z modulo 5, and
denoted by Z/5Z. In other words

Z 5Z= 0 5, 1 5, 2 5, 3 5, 4 5

Modular Arithmetic Modular arithmetic (also called clock arithmetic) is a sys-
tem of arithmetic whose numbers “wrap around” after they reach a certain
value, called themodulus. Modular arithmetic was introduced by Carl Friedrich
Gauss at the age of 24 in 1801 in his seminal book on number theory Disquisi-
tiones Arithmeticae (Latin: discourse into arithmetic).

Table 3.3 Residue classes mod 5.

Residue classes for Z modulo (5)

0 5 = 5n n Z = −10, −5,0,5,10

1 5 = 5n+ 1 n Z = −9, −4,1,6,11

2 5 = 5n+ 2 n Z = −8, −3,2,7,12

3 5 = 5n+ 3 n Z = −7, −2,3,8,13

4 5 = 5n+ 4 n Z = −6, −1,4,9,14
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Table 3.4 shows the properties of some common relations.

Important Note Doyouunderstandwhy the remainder of the fraction−3/5 is 2?
Remainders are defined as nonnegative integers, so−3/5 = (−5 + 2)/5 = − 1 + 2/5.

Example 3 Equivalence Classes in the Plane
The Cartesian product N ×N defines the grid points in the first quadrant of the
Cartesian plane (i.e. points with positive integer coordinates). The relation

a,b c,d a+ d = b+ c

between two points is an equivalence relation. We leave this proof to the reader.
See Problem 20.
The equivalence classes resulting from this equivalence relation are illustrated

in Figure 3.26, where each equivalence class consists of the grid point on a 45 line

Table 3.4 Common mathematical relations.

Reflexive Symmetric Transitive Antisymmetric

⊥ No Yes Yes Yes

= Yes Yes Yes Yes

≤ Yes No Yes Yes

< No No Yes Yes

Yes Yes Yes No

⊥ No Yes No No

Yes No Yes Yes

≡mod(n) Yes Yes Yes No

Yes Yes Yes No

a

b

1

(1,1) (2,1)

(1,2) (2,2) (3,2)

2 3 4 5 6

5 4 3 2 1 0

1

2

3

4

5

6 –1

–2

–3

–4

–5

(2,3) (3,3)

Figure 3.26 Equivalence classes as grid points on lines y = x + n.
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in the first quadrant. We will see in Section 4.1 that there is a one-to-one corre-
spondence between these equivalence classes and the integersZ, thus allowing us
to define the integers as equivalence classes of pairs of natural numbers.

Important Note The significance of equivalence relations and equivalence
classes in mathematics and other sciences lies in the fact that sometimes when
a theorem is proven or a scientific result is established for a single “thing,” the
result follows for other “things” without having to establish the result for other
things, being that the other “things” belong to the same equivalence class of
which its member share common properties. This is what happens in all areas
of science, one carries out an experiment and discovers some new phenome-
non and then interpolates the result to other situations that are believed to be
equivalent.

Problems

1. Testing Relations
Let A denote the student body at a university and individual students by x
and y. Determine if the following relations are equivalence relations on A.
a) x is related to y iff x and y have the same major.
b) x is related to y iff x and y have the same GPA.
c) x is related to y iff x and y are from the same country.
d) x is related to y iff x and y have the same major.

2. Equivalence Relations
Which of the following relations R are equivalence relations on the given set
A. For those relations that are equivalence relations, find the equivalence
classes.
a) xRy if and only if y = x2. (A = R)
b) mRn if and only if m is a factor of n. (A = N)
c) xRy if and only if x and y have the same remainder when divided by

5. (A = N)
d) xRy if and only if |x − y| ≤ 1. (A = R)
e) (a, b)R(c, d) if and only if a2 + b2 = c2 + d2. (A = R2)

3. Not Equivalence Relations
Determine if the following relations are equivalent relations and if not,
which condition: reflexive, symmetric, or transitive fails?
a) The relation “≤” on the real numbers.
b) The empty relation on an empty set (i.e. xRy never true)
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c) Relation “ ” of being a proper subset on a family of sets.
d) Relation of being perpendicular on lines in the plane.

4. Finding the Equivalence Relation
Partition the set A = {a, b, c, d, e} into the equivalence classes {{a, c}, {b, e},
{d}}. Find the equivalence relation induced by this partition.

5. Finding the Quotient Set
Show that the relation

R= 1,1 , 2,2 , 3,3 , 4,4 , 5,5 , 1,2 , 2,1

is an equivalence relation on A = {1, 2, 3, 4, 5}. What is the partition of A
induced by this relation?

6. Finding Equivalence Classes
The set {1, 2, 3, 4} is partitioned into {{1, 2}, {3, 4}} by an equivalence rela-
tion R. Find the following:
a) [1]
b) [2]
c) [3]
d) [4]

7. Hmmmmmmmmm
If an equivalence relation R on a set A has only one equivalence class, what
is the relation?

8. Unusual Equivalence Relation
Define the relation ≡ on Z by m≡ n if and only if 3 divides m + 2n.
a) Show that ≡ is an equivalence relation
b) Find the equivalence classes?

9. Equivalence Relation in Calculus
Given the set of continuous functions C[0, 1] defined on the closed inter-
val [0, 1], define R C[0, 1] ×C[0, 1] by

f Rg if and only if
1

0
f x dx=

1

0
g x dx

a) Show that R is an equivalence relation.
b) Find g C [0, 1] equivalent to f(x) = x, but f g.

10. Equivalence Relations in Analysis
LetA = [−1, 1] and define an equivalence relation R onA by xRy if and only
if x2 = y2, x, y [−1, 1]. Find the equivalence classes.
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11. Equivalence Sets of Polynomials
The set P consists of all polynomials defined on the real line, while I P
are those polynomials that satisfy p(0) = 0. For f, g P show that f≡ g f
− g I is an equivalence relation.2

12. Modular Arithmetic
If x, y Z we say x≡ y (mod n) if n divides x − y for a positive integer n.
Show the relation ≡ is an equivalence relation.

13. An Old Favorite
The equals relation “=” is the most familiar equivalence relation. What are
the equivalence classes on the setA = {1, 2, 3, 4, 5} induced by this relation?

14. Equivalence Classes in Logic
Define an equivalence relation on logical sentences by saying two sen-
tences are equivalent if they have the same truth value. Place the following
sentences in their proper equivalence class.

a 1 + 2 = 3

b 3 < 5

c 2 7

d x2 < 0 for some real number

e sin2 x+ cos2 x= 1

f Georg Cantor was born in1845

g Leopold Kronecker wasabig fanof Cantor

h Cantor's theorem guarantees larger and larger infinite sets

15. Similar Matrices
Two square matrices A, B are equivalent if there is an invertible matrixM
that satisfies MAM−1 = B. Show this relation between matrices defines an
equivalence relation.

16. Counting Equivalence Relations
a) Count the number of equivalence relations on A = {1, 2}.
b) Count the number of equivalence relations on A = {1, 2, 3}.

2 In the language of abstract algebra, the set P(x) is a polynomial ring and the subset I a vanishing
ideal in the ring.
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17. Arithmetic in Modular Arithmetic
Suppose

a c mod 5

b d mod 5

Show that
a a+ b c+ d mod 5
b a−b c−d mod 5

c ab cd mod 5

18. Mapping into the Equivalence Class
Let X denote student body at your college or university and define the
equivalence relation on the student body as “being in the same class,” class
referring to freshman, sophomore, junior or senior. Define the mapping
f : x [x] that sends each student x X into his or her equivalence class
[x]. Is this a well-defined function? What is your own value under this
mapping?

19. Equivalence Classes as Directed Graphs
Inasmuch as equivalence relations are binary relations, they can be repre-
sented by digraphs. Draw a digraph that represents the equivalence classes
of the set {0, 1, 2, 3, 4, 5, 6, 7} if two elements are equivalent when they have
the same remainder when divided by 3.

20. Defining Integers from Natural Numbers
Example 3 shows how the integers can be defined in terms of pairs of
positive integers by means of the equivalence relation.

a,b c,d if and only if a+ d + b+ c

Show this relation is an equivalence relation on N ×N and describe the
different equivalence classes. Observe that the equivalence classes can
be placed in a one-to-one correspondence with the integers, thus allowing
one to define the integers in terms of pairs of natural numbers.

21. Counting Partitions
Find the different partitions of the sets
a) A = {1, 2}
b) A = {1, 2, 3}

22. Interesting Equivalence Relation
Define a relation R on the nonnegative integers

A= 0,1,2,3,…,29,30
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by
mRn (product of the digits of m= product of the digits of n).

For example 16R23, 4R14….
a) Show that R is an equivalence relation on A.
b) Find the equivalence classes of the relation.
c) The equivalence classes are listed in Table 3.5.

23. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward important equivalence relations in math, important equiv-
alence classes in math, important partitions of a set.

Table 3.5 Equivalence classes.

Product Integers

0 0,10,20,30

1 1,11

2 2,12,21

3 3,13

4 4,14,22

5 5,15

6 6,16,23

7 7,17

8 8,18,24

9 9,19

10 25

12 26

14 27

16 28

18 29
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3.4

The Function Relation

Purpose of Section We introduce the concept of the function, both as a “rule”
that assigns a unique value to every member of a set, and from the relation
viewpoint, as a subset of a Cartesian product. We discuss again the important
concepts of injections, surjections, and bijections, which were introduced earlier
in our study of the cardinality of sets.

3.4.1 Introduction

No doubt the concept of a function covers familiar territory for many readers of
this book.1 Normally, in the beginning of mathematics books, a function f :A
B is defined as a rule that assigns to each value x A a unique value y B. This
is the definition proposed by German mathematician Peter Lejeune Dirichlet
(1805–1859) in the 1830s. When we write an algebraic formula like

y= f x = sinx

where x is taken as a real number, the rule is clearly understood, it assigns to
each x the value sin x. We denote the function by the letter f and the value
of the function at x by f(x). This motivates the Dirichlet definition of a
function.

1 A fascinating reference for functions is Atlas for Computing Mathematical Functions by William
Jackson Thompson, which gives analytical, visual, and descriptive properties of over 150 special
functions useful in pure and applied mathematics.
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Peter Gustav Lejeune Dirichlet (1805–1859)

Dirichlet Definition of a Function Let A and B denote sets. A function f from A
to B, denoted f : A B, is a rule that assigns to each element x A, a unique ele-
ment f(x) in B. The set A is called the domain of the function, written dom(f), and
B is the codomain of the function. For x A, the assigned value in B is called the
image of x under f and denoted by f(x), which is read as the value of f at x. See
Figure 3.27.

The range of f, denoted by range (f), or f(A), is the set of “outputs” of the func-
tion, or

range f = f x x A B

The graph of a function f is the set

graph f = x, f x x A A×B

x

f
f(x)

range(f)

A = domain(f) B = codomain(f)

Figure 3.27 Illustration of a function.
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There are several synonyms for the word “function.” The words mapping (or
map), transformation, and operator are often used depending on the context as
well as the domain and codomain of the function.

Example 1 Functions
The following are examples of functions with different domains, codomains,
ranges, and graphs.

a) Define f : [−1, 1] R by the rule f x = 1−x2. Here

• domain(f ) = [−1, 1]

• codomain(f) = R

• range(f ) = [0, 1] R

• graph f = x, 1−x2 x −1,1

b) Define f :N R by the rule f(n) = sin n, n = 1, 2, …

• domain(f ) = N

• codomain(f ) = R

• range(f ) = {sin n, n = 1, 2, …}

• graph(f ) = {(n, sin n) : n N} N ×R

c) Define f : [0, ∞) R3 by the rule f(t) = (cos t, sin t, t).

• domain(f ) = [0, ∞)

• codomain(f ) = R3

• range(f ) = {(cos t, sin t, t) : 0 ≤ t <∞} R3

• graph(f ) = {(t, (cos t, sin t, t)) : 0 ≤ t <∞} [0, ∞) ×R3

We cannot view the graph of this function since it lies in a four-
dimensional space.We can view the image of the function, however, which
is a helix in three-dimensional space.

d) Define f :R2 R defined by the rule f(x1, x2) = 3x1 + 2x2.

• domain(f ) = R2

• codomain(f ) = R

• range(f ) = {3x1 + 2x2 : (x1, x2) R2} = R

• graph(f ) = {((x1, x2), 3x1 + 2x2) : (x1, x2) R2} R3
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A Brief History of the Function Although the concept of a function is one of
the most important concepts in all of mathematics, its history is relatively short.
The mathematician and writer of math history, Morris Kline, credits Galileo
(1564–1642) with the first statement of dependency of one quantity on another.2

In 1673, the Germanmathematician Gottfried Leibniz (1646–1716) used the word
“function” tomean any quantity that varies frompoint to point along a curve. One
of the first formal definition of a function is due to the Swissmathematician Leon-
hard Euler (1707–1783), who defined a function as

Quantities dependent on others, such that as the second changes, so
does the first, are said to be functions.

Euler and other leading mathematicians of the times, such as the French
mathematician Joseph Fourier (1768–1830), thought of functions in terms of
equations, such as y = x2 or y = sin x. For mathematicians of the time, an expression
like

f x =
0 x < 0

1 x ≥ 0

was not considered a function since it is not an equation, only a “rule” for assign-
ing values to a variable. Finally in 1837, the German mathematician Peter
Lejeune Dirichlet expanded the definition of a function to the meaning we
accept today, when he wrote:

A variable quantity y is said to be a function of a variable quantity x, if to
each value of x there corresponds a uniquely determined value of the
quantity y.

3.4.2 Relation Definition of a Function

In addition to defining a function as a rule (ala Dirichlet), we can also think of a
function in terms of relations.

Definition A relation between two sets A and B, called the domain and codo-
main of the relation, respectively, such that each member in the domain is
assigned exactly one element in the codomain, is called a function from A to B.

2 The statement is ‘The time of descent along inclined planes of the same height, but of different
slopes, are to each other as the length of these slopes.”
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An Important Classification of Functions
1) Algebraic Functions: An algebraic function is a function that can be

constructed, starting from x, using only a finite number of operations of addi-
tion, subtraction, multiplication, division, and root extraction. Typical alge-
braic functions are

f x = 1 x, f x = x, f x =
1+ x4 54

x− 3 + x3

2) Transcendental Functions: Functions that are not algebraic are called tran-
scendental functions. Important transcendental functions are sin x, cos x
and ex.

Important Note In 1890, the Italian mathematician Giuseppe Peano shocked
the mathematical world with a construction of a continuous space-filling curve;
a curve in the plane, defined by two continuous functions x = f(t), y = g(t), such
that as t varies over [0, 1], the point (x(t), y(t)) passes through every point in the
unit square [0, 1] × [0, 1].

3.4.3 Composition of Functions

The function f(x) = sin x2 can be interpreted as assigning x sin x2. However, it
can also be interpreted as a combination or composition of two functions: the
first assigning x x2, the second assigning x2 sin x2, which leads us to the
following definition.

Composition of Two Functions Given sets A, B, C and functions

g A B, f B C

we define the composition of f and g, denoted by f ∘ g , and read “f circle g” as
the function that sends the point x A into

f ∘g x = f g x C

The domain of f ∘ g consists of the following points of A:

dom f ∘g = x A x dom g x A g x dom f

where dom(f), dom(g) are the domains of f, g, respectively. See Figure 3.28.
In other words, the domain of a composition f(g(x)) consists of those x in the

domain of g whose values g(x) lie in the domain of f.
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Example 2 Composition of Real-Valued Functions
Find the compositions f ∘ g and g ∘ f of the functions

• f(x) = x2, −∞ < x <∞

• g x = x, 0 ≤ x <∞

Solution

• f ∘g x = f g x = f x = x 2 = x x 0,∞

• g∘f x = g f x = g x2 = x2 = x x R
Note that f ∘ g g ∘ f. Their domains are also different.

Domain of a Composition Here is a nice way to think about it. Person g and
person f want to move several bags of cement 200 yards. Person g carries the
bags the first 100 yards and gives them to person f, whose goal is to carry them
the last 100 yards. Person g is able to carry eight bags (domain of g) after which
he gives them to person f. Person f, however, is only able to carry only five bags
(domain of person f), thus only five bags make it from the start to the end, and
hence the domain of the composition f(g(x)) is five bags of cement.

A g B Cf

f(g(x))

(f ∘g)

g(x)x

Set form of a composition

Machine form of a composition

f(g(x))

g

x

g(x)

f

Figure 3.28 Illustrations of a function.
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1–1, Onto, and One-to-One Correspondence Three important types of
functions are 1–1 functions (injections), onto functions (surjections), and 1–1
correspondences (bijections).

• 1–1: A function f : A B is one-to-one (or an injection) if

direct form: ( a, b A)[a b f(a) f(b)]
contrapositive form: ( a, b A)[f(a) = f(b) a = b]

• Onto: A function f : A B is onto (or a surjection) if

b B a A f a = b

• 1–1 correspondence: A function f : A B is a one-to-one correspondence
(or a bijection) if it is both 1–1 and onto.

These three types of functions are illustrated in Figure 3.29.

Example 3 1–1, Onto, One-to-One Correspondence
The graphs in Figure 3.30 illustrate typical functions from R to R. Note that the
graph of a 1 − 1 function intersects any horizontal line at most once.

Example 4 Injection
Show that the function f :N N defined by f(n) = n2 is 1–1.3

Proof
If one simply lines up the natural numbers against their squares as shown in
Table 3.6, it is easy to see that the function maps different values into different
values and thus is a 1–1 mapping.

A B A B A B

1
2
3

1–1 function Onto function Bijection

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3

│A│≤│B│ │A│≥│B│ │A│=│B│

Figure 3.29 Three major types of functions.

3 The domain of a function can influence whether a function is one-to-one. The function f(x) = x2

with domain the real numbers is not one-to-one, but the same function defined on the nonnegative
real numbers is one-to-one.
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To actually prove f is 1–1, we show that for any m, n N, where m n, we
have f(m) f(n), and do this by proving its contrapositive

f m = f n m= n

We have

f m = f n m2 = n2

m2−n2 = 0

m−n m+ n = 0

m= n or m= −n

But m = − n is not possible since m, n are positive numbers. Hence, we con-
clude m = n verifying that f is 1 − 1 on N.

Table 3.6 An injection.

n 1 2 3 4 n

f(n) = n2 1 4 9 16 n2

No Yes

Onto

No

Yes

1–
1

1–1 2

1

2
3
4
5
6
7

y = ex

–20

–10
–1 1 2–2–3

10

20

y = x3

–1

–2

–3

1

1

2

–1–2

y = x3 – x

1

1–1–2 2

2

3

4

y = x2

Figure 3.30 Types of functions R R.
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Example 5 Surjection
If f :R R is defined by f(x) = x3 + 1, show that f maps R onto R. That is show
f is a surjection or onto mapping.

Proof
For any y R, we must show there exists an x R that satisfies y = x3 + 1.
Choosing

x= y−13 R

we see

f x = y−13
3
+ 1 = y−1 + 1 = y

Hence, f maps R onto R.

Example 6 Counterexample
Is f :R R defined by y = x2 + 2x a surjection?

Solution
The function is not a surjection since the number y = −2 in the codomain has no
preimage in the domain since the equation x2 + 2x = −2 has only complex
solutions.

3.4.4 Inverse Functions

In arithmetic, some numbers have inverses. For example −3 is the additive
inverse of +3 since 3 + (−3) = 0. Some functions also have inverses in the sense
that the inverse “undoes” the operation of the function.

Historical Note The study of functions changed qualitatively with ideas of the
Italian mathematician Vito Volterra (1860–1940), who introduced the idea of
functions of functions, functions whose arguments were themselves functions.
The French mathematician Jacques Hadamard (1865–1963) named these types
of functions functionals and Paul Lévy (1886–1971) gave the name functional
analysis to the study of functions interpreted as points in some abstract space,
not unlike points in the plane.
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Definition Function Inverse If f : A B is 1–1, then for each y f(A) in the
range of A, the equation f(x) = y has a unique solution x A. This yields a
new function f−1 : range(f) A, defined by

x= f −1 y

This function is called the inverse of f. See Figure 3.31.

Example 7 Inverse Function
The function f : [0, ∞) [1, ∞) defined by

f x = 1+ x2, x ≥ 0

is a 1–1 function from [0, ∞) onto [1, ∞) and, hence, has an inverse f −1 :
[1, ∞) [0, ∞). Find and draw the graph of this inverse.

Solution
Solving the equation

y= 1+ x2

for x ≥ 0 in terms of y, we find the unique value

x= y−1, y ≥ 1

or

f −1 y = y−1, y ≥ 1

At this stage, one often renames the variables and writes the inverse as

f −1 x = x−1, x ≥ 1

f(A)f –1

y

f

x

A
B

Figure 3.31 Inverse function.
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The graphs of f and f −1 are drawn in Figure 3.32. Note that the graph of f −1 is
the reflection of the graph of f through the 45 line y = x.

Some common inverses of 1–1 functions defined of given domains are listed
in Table 3.7.

Problems

1. Testing Relations
Determine which of the following relations are functions. For functions,
what is the domain and range of the function?
a) R = {(1, 3), (3, 4), (4, 1), (2, 1)}
b) R = {(1, 3), (1, 4), (1, 2), (3, 1)}
c) R = {(1, 3), (3, 4), (1, 1)}
d) R = {(1, 2), (2, 2), (3, 2), (2, 3)}

2. Graphing Relations and Functions
Graph each of the following relations on R and tell which relations are
functions.
a) R = {(x, y) : y = x2}
b) R= x,y y= ± x

c) R= x,y y=
1

x+ 1
d) R = {(x, y) : x = |y|}
e) R = {(x, y) : |x| + |y| = 1}

3. Find the Mystery Function
Find a function that “tears” the interval [0, 1] into two parts at its midpoint
and then “stretches” each part uniformly to twice its length.

B

A

A

B1

1

y = f(x) = 1 + x2 x= f –1(y) =   y –1

Figure 3.32 A function and its inverse.
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4. Compositions
Find f ∘ g and g ∘ f and their domains for the following functions f and g. We
assume the domains of the functions are all values for which the function is
well defined.

a)
f x = −2, 3 , −1, 1 , 0, 0 , 1, −1 , 2, −3

g x = 3, 1 , 0, 2 , −1, −2 , 2, 0 , −3, 1
b) f(x) = 2x + 3, g(x) = − x2 + 5

c) f x =
1

x2 + 1
, g x = x2

d) f(x) = |x|, g(x) = |x|
e) f x = x, g x = x−2

f) f x = 1−x2, g x = x2−1

5. Composition of Three Functions
For each function f, g, h below that maps {1, 2, 3, 4} to itself, find the com-
position f ∘ (g ∘ h).

f = 1, 3 , 2, 4 , 3, 1 , 4, 2

g = 1, 2 , 2, 2 , 3, 4 , 4, 3

h= 1, 4 , 2, 4 , 3, 1 , 4, 3

6. Backwards Compositions
One can sometimes interpret a function h as a composition of two func-
tions. For the given function h given below determine f, g such that h =
f ∘ g.
a) h(x) = (x − 1)2 + (x − 1) + 3
b) h(x) = sin(1/x)
c) h(x) = x2 + x + 1
d) h x = ex

2
+ 1

7. Decomposing a Function as a Composition
Write the function h(x) = x2 + 1 as a composition h = f ∘ g of two functions in
an infinite number of different ways.

8. Classroom Function
Let A be the set of students in your Intro to Abstract Math Class and B be
the natural numbers from 1 to 100.
a) To each student, assign the student’s age. Is this a function from A to B?
b) To each natural number n B, assign students in the class whose age

is n. Is this a function from B to A?
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9. More Compositions
Given functions f, g illustrated in Figure 3.33, both having domains and
codomains A = {1, 2, 3, 4}, find the following.
a) f ∘ g
b) g ∘ f
c) f ∘ f
d) g ∘ g

10. Shifting Domain of a Composition
Given the function defined by

f x =
1

1−x
, x 1

whose domain is the real numbers, except 1, find the domain of f ∘ f.

11. Graphing a Composition
Draw the graph for two arbitrary real-valued functions f, g of a real vari-
able. Then select an arbitrary real number x and use the graphs to find the
location of (f ∘ g)(x).

12. Compositions
Find f ∘ g if
f :R R3, f(t) = (t, t2, t3)
g :R R, g(t) = sin t

13. Composition of Operators
Given the differential operators

• L1( f ) = x f(x) + 1

• L2 f = x2
df
dx

y

x
1

2

3

4

1 2 3 4
f

y

x
1

2

3

4

1 2 3 4
g

Figure 3.33 Compositions.

3.4 The Function Relation236



find
a) L1 ∘ L2
b) L2 ∘ L1

14. Recursive Functions
A recursive function is one that is defined in terms of itself, normally
defined over a restricted subset of its domain. For example, the factorial
function n ! = n(n − 1)(n − 2) (2)(1) can be defined recursively as

n =
1 n= 1

n n−1 n > 1

Another example of a recursively defined function is the greatest common
divisor of two positive integers m and n, which is defined as the largest
positive integer that divides both m and n. For 0 < n ≤m, we can define
the greatest common divisor of m and n by

gcd m,n =
n if ndividesm

gcd n, remainder of m n otherwise

Use this recursive definition to find the greatest common divisor of the
following numbers.
a) m = 25, n = 5
b) m = 101, n = 13
c) m = 37, n = 3

15. Functional Equation
A functional equation is an equation which expresses the value of the
function at a point in terms of the value of the function at another point
or points. Below, are listed four well-known functional equations. Find a
function or functions that satisfies the given functional equation.
a) f(x + y) = f(x) + f(y)
b) f(x + y) = f(x)f(y)
c) f(xy) = f(x) + f(y), x, y > 0
d) f(xy) = f(x)f(y), x, y > 0

16. Injections, Surjections, Bijections
Give examples of the following functions f1, f2, f3, f4 fromN toN that satisfy
the following properties.
a) f1 is neither 1–1 or onto.
b) f2 is 1–1, but not onto.
c) f3 is onto, but not 1–1.
d) f4 is both 1–1 and onto.
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17. Find the Function
Find a function f that satisfies the following properties.
a) f maps R to {1, 2, 3}
b) f maps N to R
c) f maps R ×R to R
d) f maps R to R ×R
e) f maps {a, b, c} to [0, 1]

18. Injections, Surjections, and Bijections
Which of the following functions f :R R are injective, surjective, bijec-
tive, or none of the three. Assume the domains of the functions are subsets
of R for which the function is well-defined.
a) f(x) = x3 − 2x + 1
b) f(x) = sin(1/x)

c) f x =
x2 x ≤ 0

x+ 1 x > 0
d) f(x) = e−x

19. Interesting Function
Let f :N N be the function defined by

even numbers 2n n
odd numbers 2n − 1 n

a) Draw part of the graph of this function.
b) Is this function 1–1?
c) Is the function an onto function?

20. Inverse Function
Given the function defined by

f x = x−2, x ≥ 2

a) Draw the graph of f
b) Find the domain and range of f.
c) Prove that the function is 1–1.
d) Find the inverse of the function.
e) Find the domain and range of the inverse function.
f) Draw the graph of the inverse function.

21. Function as Ordered Pairs
For f : {1, 2, 3} N defined by the ordered pairs f = {(1, 3), (2, 5), (3, 1)}:
a) Is f 1–1?
b) Is f onto?
c) What is the range of f ?
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22. 1–1 But Not Onto
Give an example of a function f :R R that is 1–1, but not onto.

23. Hmmmmmmmmm
For what value of the exponent n N is the function f(x) = xn a 1–1
function?

24. Counting Functions I
Let A = {1, 2}, B = {a, b, c}. Answer the following questions. Hint: It may
help by drawing a simple picture.
a) How many functions are there from A to B?
b) How many 1–1 functions are there from A to B?
c) How many onto functions are there from A to B?
d) How many one-to-one correspondences are there from A to B?

25. Counting Functions II
Let A = {1, 2, 3}, B = {a, b}. Answer the following questions. Hint: It may
help by drawing a simple picture.
a) How many functions are there from A to B?
b) How many 1–1 functions are there from A to B?
c) How many onto functions are there from A to B?
d) How many one-to-one functions are there from A to B?

26. Finding Injections and Surjections
a) Find a function f :N N that is 1–1 but not onto.
b) Find a function f :N N that is onto but not 1–1.

27. Composition of Onto Maps
Prove that if

g X Y onto

f Y Z onto

then the composition f ∘ g is an onto function from X to Z. In short, the
composition of surjections is a surjection.

28. Composition of 1–1 Functions
Prove that if g is a 1–1mapping fromX to Y, and f is a 1–1mapping from Y
to Z, then the composition f ∘ g is a 1–1 mapping from X to Z. In other
words, the composition of injections is an injection.

29. Hmmmmmmmmmm
If

g A B, f B C, f ∘ g A C
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Find examples of the following:
a) A 1–1 composition f ∘ g, where f is not 1–1.
b) An onto composition f ∘ g :A C, where g : A B is not onto.
c) A one-to-one correspondence f ∘ g, where g is not onto and f is onto.

30. More Counting Functions
Let S = {1, 2, 3}.
a) How many functions are there from S to S?
b) How many onto functions are there from S to S?
c) How many 1–1 functions are there from S to S?
d) How many bijections are there from S to S?

31. Counting Functions in General
If a set A has m elements and B has n elements, how many functions of
different types map A into B?
a) All functions
b) All 1–1 functions
c) All bijections

32. Euler Totient Function
In number theory, the Euler totient function ϕ(n) (or phi function) is a
function

ϕ N N
defined on the natural numbers that gives the number of natural numbers
less than n that are coprime with n, where a number is coprime with
another if the greatest common divisor of the two numbers is 1. For exam-
ple ϕ(6) = 2 since 1 and 5 are coprime with 6, but 2, 3, and 4 are not. Verify
the following special cases of some important properties of the Euler toti-
ent function.
a) ϕ(17) = 16, general theorem ϕ(p) = p − 1, p prime
b) ϕ 1 +ϕ 2 +ϕ 4 +ϕ 8 = 8, general theorem k nϕ k = n

c) ϕ(15) = ϕ(3)ϕ(5), general theorem ϕ(mn) = ϕ(m)ϕ(n), m, n coprime
d) ϕ(53) = (5 − 1)52, general theorem ϕ(pk) = (p − 1)pk − 1

33. Carmichael’s Totient Function Conjecture
An open question in number theory is the Carmichael Totient Function
Conjecture, which states that for every natural number n, there is at least
one other natural number m that satisfies ϕ(m) = ϕ(n). In other words,
both have the same number of coprimes. As of 2019, it is unknown
whether the conjecture is true or false.
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34. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward strange functions, history of the function, and list of math-
ematical functions.

Problems 241



3.5

Image of a Set

Purpose of Section To introduce the concept of the image and inverse image
of a set. We show that unions of sets are preserved under a mapping, whereas
intersections are preserved under one-to-one functions. On the other hand, the
inverse function preserves both unions and intersections.

3.5.1 Introduction

In many areas of mathematics, be it topology, measure theory, real analysis, and
others, one seeks to find the image of a set A under the action of a function f :
A B, yielding the image set

f A = f x x A

In medical imaging, such as CT scans, MRI imaging, X-rays, one is not inter-
ested in images of points, but of images of sets. Although the image viewed
by the medical professionals is not the kind of function we have studied thus
far, it is a function nevertheless.
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Medical imagings are images of sets under some function.

This discussion motivates the image and inverse image of a set.

Definition Image and Inverse Image of a Set
Given sets X, Y let f : X Y and A X. As x takes on all values in the set A X,
the set of values f(x) Y defines the image of A:

f A = f x x A Y

Also, for B Y we can define the inverse image of B as the set

f −1 B = x X f x B

Note that f −1(B) is a well-defined set regardless of whether the function f is
1–1 and has an inverse. See Figure 3.34.

Example 1 Images of Sets
LetX = {1, 2, 3, 4},A = {1, 2, 3} X, and Y = {a, b, c}, and a function f : A f(A)
Y defined by

f 1 = a, f 2 = a, f 3 = c

Here

f A = a,c

f −1 b,c = 3
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f −1 a,c = 1,2,3

f −1 b = Ø

We illustrate these ideas visually in Figure 3.35.

Example 2 Image of a Set
Let f : X Y be defined by

f x = 1+ x2

as drawn in Figure 3.36.

f(A)A
f

f –1(B)
f –1

B

YX

YX

Figure 3.34 Image and inverse image of a set.

a

b

c

X Y

1

2

3

4

A

Figure 3.35 Image of a set.
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Then we have

a) f({−1, 1}) = {2} since both f(−1) = f(1) = 2.
b) f([−2, 2]) = [1, 5]
c) f([−2, 3]) = [1, 10]
d) f −1({1, 5, 10}) = {−3, − 2, 0, 2, 3}
e) f −1([0, 1]) = {0}
f) f −1([2, 5]) = [−2, − 1] [1, 2]

Important Note It is often important to know if certain properties of sets are
preserved under certain types of mappings. For instance, if X is a connected set
and f a continuous function, then it can be proven that f(X) is also connected.

3.5.2 Images of Intersections and Unions

The following theorem gives an important property for the image of the inter-
section of two sets.

Theorem 1 If f : X Y and A X, B X, then the images of intersections
satisfy

f A B f A f B

See Figure 3.37.

1

1 2

3

4

f(x) = x2 + 1

x
–1–2

y

2

5

Figure 3.36 f −1([2, 5]) = [−2, − 1] [1, 2].
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Proof
If y f(A B), then there exists an x A B such that f(x) = y which means
x A and x B. But

x A y= f x f A

x B y= f x f B

and so y = f(x) f(A) f(B), which proves the result.
To show the converse does not hold. That is

f A B ⊉ f A f B

we take A = [−1, 0], B = [0, 1], f(x) = x2. Hence

f A B = f 0 = 0

f A f B = 0,1 0,1 = 0,1

which shows f A B ⊉ f A f B . We illustrate this in Figure 3.38. ▌

Y
X

A

B f(B)

f(A)
f(A) ∩ f(B)

f(A ∩ B)(A ∩ B)

Figure 3.37 Image of an intersection.

x

y

A B

f(A) ∩ f(B)

–1 0 1

1

y = x2

f(A ∩ B)

Figure 3.38 Counterexample to show f(A) f(B)⊄ f(A B).
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Theorem 1 tells us that set intersections are not preserved under the image of
a function. However, if a function is 1–1 then intersections are preserved.

Theorem2 If a function f : X Y is 1–1 andA X, B X, then intersections
are preserved. That is

f A B = f A f B

Proof
( ) To show f(A) f(B) f(A B) we let y f(A) f(B) fromwhich we conclude
y f(A) and y f(B). Hence

x1 A such that f x1 = y

x2 B such that f x2 = y
f x1 = f x2

But f is 1–1 so x1 = x2 and so

x1 A and x1 Band thusx1 A B

Hence, y = f(x1) f(A B), which proves the result.
The proof of the set inclusion in the opposite direction ( ) was proven in

Theorem 1 without the 1–1 hypothesis. ▌

We now see that in contrast to intersections, unions are always preserved under
set mappings.

Theorem 3 Unions Preserved
Given

f X Y , A X , B X ,

the union of two sets is preserved. That is

f A B = f A f B

Proof

a) ( ) We begin by showing

f A B f A f B

The argument goes

y f A B x A B, f x = y

hence, x A or x B which implies f(x) f(A) or f(x) f(B). Hence
f(x) f(A) f(B) and so

f A B f A f B
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b) ( ) The verification that f(A B) f(A) f(B) follows along similar lines
and is left for the reader.

Although set intersections are not always preserved under the mapping of a
function, both intersections and unions are preserved under inverse images
of a function. ▌

Theorem 4 Unions, Intersections Preserved Under f −1

Let f : X Y, C Y, D Y. The inverse image of both intersections and
unions are preserved under the inverse image f −1. That is.

a) f −1(C D) = f −1(C) f−1(D)
b) f −1(C D) = f −1(C) f−1(D)

Proof
We prove a) by the series of if-and-only-if statements:

x f −1 C D f x C D

f x C and f x D

x f −1 C and x= f −1 D

x f −1 C f −1 D

▐

The proof of b) is left to the reader. See Problem 8.

3.5.2.1 Summary

Given a function f : X Y, where A, B are subsets of X and C,D are subsets of Y,
the following properties hold.

1) f(A B) = f(A) f(B)
2) f(A B) f(A) f(B) (= if f is 1 - 1)
3) f −1(C D) = f −1(C) f −1(D)
4) f −1(C D) = f −1(C) f −1(D)
5) f( f −1(C)) C (= if f is onto)
6) A f −1(f(A)) (= if f is 1 - 1)
7) A B f(A) f(B)
8) C D f −1(C) f −1(D)

9) f −1 A = f −1 A
10) f −1(C −D) = f −1(C) − f−1(D)

11) f
i I

Ai =
i I

f Ai

12) f
i I

Ai
i I

f Ai = if f is1-1
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13) f −1

i I

Ai =
i I

f −1 Ai

14) f −1

i I

Ai =
i I

f −1 Ai

Example 3 Inverse Images in Topology
In point-set topology, one is very much interested in inverse images of sets. It
can be shown that the inverse image of an open interval (a, b) is always an open
interval if the function is continuous.1 For example, show that for the real-
valued continuous function f(x) = x3 of the real variable x, the inverse image
of any open interval (c, d) R is an open interval.

Solution

For any interval (c, d) R on the y-axis, as drawn in Figure 3.39, its inverse
image under f(x) = x3 is

f −1 c,d = c3 , d3

which is an open interval. Typical examples are

f −1 1,8 = 1,2 ,

f −1 −8, −1 = −2, −1

f −1 −8,8 = −2,2

y = x3y

d

c
a b

c

d

a b
x

Figure 3.39 Inverse images of open intervals.

1 In Section 5.4, we will study open sets, but for now we restrict ourselves to open intervals.
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In measure theory, one defines a measurable function f as a function whose
inverse image f −1(A) of a measurable set A is a measurable set. In areas like
measure theory, topology, and probability, one is more interested in images
and inverse images of sets than images of points.

Note Although the inverse image of an open interval is preserved for contin-
uous functions, open intervals are not always preserved for continuous func-
tions. For example the constant function f(x) = 1 maps the open interval
(0, 1) into a set with one element, namely {1}, which is not an open interval.

Problems

1. Party Time
We are having a party with possible desserts

B= cake, icecream,pie

where the possible guests are among the groupA = {a, b, c, d, e}. Each guest’s
favorite dessert is indicted by the function f :A B where

f a =pie, f b = icecream, f c =pie, f d = icecream, f e = cake

What types of desserts will be required if the following groups of guests are
invited to the party?
a) f a,c
b) f b,d,e
c) f b
d) f Ø
e) f({a, b, c, d, e})

2. Images of Sets
Given the sets A = {1, 2, 3, 4}, B = {a, b, c, d} and the function f : A B
defined by

f 1 = b, f 2 = a, f 3 = d, f 4 = c

find the following:
a) f 1,3
b) f 2,3,4
c) f 2
d) f 1,2,3,4
e) f −1 a,c
f) f −1 a,b,c
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3. Interpretation of Images
Translate the following statements into English. For example y f(A)
means there exists an x A such that y = f(x).
a) y f A B
b) y f A f B
c) y f A B
d) y f A f B

e) y f
i I

Ai

f) y
i I

f Ai

g) y f
i I

Ai

h) y
i I

f Ai

4. Images of Sets
Given the function f :R R defined by f(x) = x2 + 2. Find the images of the
given sets under the mapping f.
a) f({−1, 1, 3})
b) f(Ø)
c) f([0, 2])
d) f([−1, 2] [3, 5])
e) f−1([−1, 2])
f) f−1([0, 2])
g) f−1([6, 11])
h) f−1([−1, 6])

5. Continuous Images of Intervals
Given the continuous function f :R R defined by f(x) = |x| + 1, find the
images.
a) f([−2, − 1))
b) f([−2, 3])
c) f([−2, 2])
d) f −1([0, 4])
e) f −1([−2, 0])
f) f −1({1, 2, 3})

6. Identity or Falsehood?
True or false

A B f A f B
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7. Image of a Union
Show f(A B) f(A) f(B).

8. Inverse of Union
Show f −1(A B) = f −1(A) f −1(B).

9. Complement Identity
Show f −1 A = f −1 A

10. Composition of a Function with Its Inverse
Prove the following and give examples to show that equality does not hold.
a) f [ f −1(A)] A
b) A f −1[f(A)]

11. Inverse Images
Let f :N R be a function defined by f(n) = 1/n. Find

a) f −1
1
10

,1

b) f −1
1

100
,
1
2

c) f −1 0,
1
10

12. Inverse Image of an Open Interval
In topology, a function f is defined as a continuous function if the inverse
image of every open set in the range is an open set in the domain. Show
that for the function f :R R defined by f(x) = x2, the inverse image of the
following open intervals2 is an open interval or the union of open intervals,
and thus f(x) = x2 is a continuous function.
a) f −1((−1, 1))
b) f −1((0, 4))
c) f −1(R)
d) f −1((4, 16))

13. Dirichlet’s Function
Given Dirichlet’s (shotgun) function3 f : [0, 1] R is defined by

f x =
1 x is rationial

0 x is irrational
0≤ x ≤ 1

2 Open intervals and union of open intervals are special cases of open sets and the real number
system is a special topological space.
3 Sometimes called the “shotgun” function since it is full of holes.
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Find

a) f −1
1
2
,1

b) f −1 0,
1
2

14. Image of a Singleton
Let f : X Y. Show that for x X one has

f x = f x

15. Connected Sets
It can be proven that the continuous image of a connected set is con-
nected.4 Find the image of the connected set [−1, 1] under the continuous
functions.
a) f(x) = x3 Ans: f ([−1, 1]) = [−1, 1]
b) f(x) = ex

c) f(x) = 2x + 1

16. Function of Functions
Define C[0, 1] to be the set of continuous functions defined on [0, 1].5

Define

I C 0,1 Rby I f =
1

0
f x dx

a) Find f, g C [0, 1] so I( f) = 1, I(g) = 0.5, I(h) = − 4.
b) Express the following integral property in terms of I

1

0

f x + g x dx=

1

0

f x dx+

1

0

g x dx

c) Is the function I 1–1?
d) Is the function I onto R?

17. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward properties of images of sets, images, and inverse images of
a set.

4 Connectedness is a precise topological concept we will not go into here. Use your intuition of what
it might mean for a set to be connected.
5 A function of a function is called a functional.
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4.1

Construction of the Real Numbers

Purpose of Section Starting with the natural numbers, we logically construct
the integers as equivalence classes of pairs of natural numbers. We then logi-
cally construct the rational numbers as equivalence classes of pairs of integers.
When we arrive at the real numbers, we use the Dedekind cut to define the real
numbers in terms of rational numbers.

4.1.1 Introduction

No doubt, most readers of this book think of real numbers as values on a num-
ber line, which has long been accepted by scientists and engineers as a model for
measurements of length, mass, and time.
Although there is nothing wrong with this intuitive interpretation, it is the

goal of this section to show how the real numbers can be logically created from
more primitive number systems like the natural numbers, as well as introducing
aspects of the real numbers decimal expansions, the least upper bound property,
types of real numbers like rational, irrational, algebraic, and transcendental, and
completeness properties.
Without going into the history of how numbers went from 1, 2, 3,… to the real

numbers, there are two fundamental approaches to how to define the real num-
bers. First, we can state axioms that we believe characterize our interpretation of
the real numbers. This is the here they are, the real numbers. This approach is
called the synthetic approach, whereby axioms hopefully embody what we
believe a “continuum” should be.
On the other hand, we can “construct” the real numbers, much like a carpen-

ter builds a house. In this approach, we begin with what our distant ancestors
gave us, the natural numbers 1, 2, 3,…. We then take these numbers and doing
some “mathematical carpentry” replacing hammers and nails with a little set
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theory and predicate logic, to logically construct, step-by-step, the real numbers.
This is the approach taken in this section, starting with the natural numbers we
construct the integers, then the rational numbers, all the way to real numbers.
The synthetic axiomatic approach of here they arewill be left to the next section.

4.1.2 The Building of the Real Numbers

The construction of the real numbers begins with the simplest numbers, the
natural numbers

N= 1,2,3,…

then, by a series of steps we construct the integers

Z= …−3, −2, −1,0,1,2,3,…

followed by the rational numbers

Q= p q p,q Z,q 0

and finally, the real numbers R.

Important Note The English mathematician/philosopher Bertrand Russell
once said, it must have taken many ages for humans to realize that a pair of
pheasants and a couple of days were both instances of the concept of “two.”

4.1.3 Construction of the Integers: N Z

The way we construct the integers 0, ± 1, ± 2,… from the natural numbers 1, 2,
3, … is to define integers as pairs of nonnegative integers, where we interpret
each pair (m, n) as the differencem − n. Thus, the pair (2, 5) of natural numbers
is defined as −3, the pair (7, 1) as 6, and the pair (4, 4) as zero. If we then define
addition, subtraction, and multiplication of these pairs (m, n) consistent with
the arithmetic of the natural numbers, we have successfully defined the integers
in terms of the natural numbers.
To carry out this program, we begin with the Cartesian product

N×N= m,n m,n= 1,2,…

of pairs of natural numbers, called grid points, which are illustrated in
Figure 4.1.
We now define an equivalence relation “≡” between pairs of natural num-

bers by
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m,n m ,n m+ n =m + n

This relation can easily be verified to be an equivalence relation and its ver-
ification is left to the reader. See Problem 1. We saw in Section 3.3 that equiv-
alence relations on a given set partitions the set into disjoint equivalence classes.
In this case, the equivalence classes consist of grid points on 45 lines as drawn
in Figure 4.1. A few of these equivalence classes are listed in Table 4.1, desig-

nated by which shows a representative member of each equivalence class.
Each one of these equivalence classes will define an integer. For example, the

equivalence class 0,0 defines zero, 1,2 defines −1, 2,1 defines +1.

8

7

6

5n

4

3

2

1
1 2 3 4

m

–6 –5 –4 –3 –2 –1

m – n

m – n = 1

m – n = 0

m – n = 2

m – n = 3

m – n = 4

m – n = 5

m – n = 6

5 6 7

Figure 4.1 Partitioning N ×N into equivalence classes.

Table 4.1 Five equivalence classes.

Equivalence class Integer definition

1,3 = 1,3 , 2,4 , 3,5 … −2

1,2 = 1,2 , 2,3 , 3,4 … −1

1,1 = 1,1 , 2,2 , 3,3 … 0

2,1 = 2,1 , 3,2 , 4,3 … 1

3,1 = 3,1 , 4,2 , 5,3 … 2
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We now define the integers Z as the collection of all these equivalences
classes. In other words

Z= … 1,4 , 1,3 , 1,2 , 1,1 , 2,1 , 3,1 , 4,1 ,…

which we write as

Z= …−3, −2, −1,0,1,2,3,…

We can also define the nonnegative and negative integers as

Nonnegative integers = k , 1 k N

Negative integers = 0,k k N

We now must define addition, subtraction, and multiplication for the inte-
gers, consistent with the rules of the natural numbers.We define for p, q, r, s N
addition , subtraction , and multiplication of integers (represented by
pairs of natural numbers) by:

• Addition: p,r q,s = p+ q,r + s

• Subtraction: p,q r,s = p+ s,q + r

•Multiplication: p,q r,s = pr + qs,ps+ qr

For example

• Addition: 3,5 1,4 = 4,9 or −5

• Subtraction: 3,6 2,7 = 10,8 or + 2

•Multiplication: 1,3 7,2 = 13,23 or−10

When p > r and q > s, the pairs (p, r) and (q, s) correspond to p − q > 0 and r − s >
0, hence, the above definition of addition, subtraction, and multiplication of pairs
of natural numbers reduces to identities of the natural numbers.

4.1.4 Construction of the Rationals: Z Q

We nowmove up the number chain and construct the rational numbersQ from
the integers Z using a strategy similar to what we did in constructing the inte-
gers as pairs of natural numbers.
To carry this out, define an equivalence relation on Z × (Z − {0}) by

m,n m ,n mn =m n

where (m, n) and (m , n ) are pairs of integers and we “interpret” them as m/n
and m /n , respectively. This equivalence relation partitions the grid points in
Z × (Z − {0}) into distinct equivalence classes as drawn in Figure 4.2. Observing
the following equivalences
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1,2 2,4 −3, −6 13,26 −5, −10

we see that the equivalence classes consist of the grid points on straight-lines
passing through the origin, where the equivalence class with representative
(m, n) is assigned the rational number m/n. For example

2,3 = 2 3, −3,4 = −3 4, 0,3 = 0 3 = 0

A few equivalence classes with an arbitrary designated representative are
shown in Table 4.2.

(–1, 3) = –1/ 3 (1, 3) = 1/ 3 (1, 1) = 1

(3, 2) = 3/2

(3, 1) = 3

(3, –1) = –3

(3, –2) = –3/2

(1, –1) = –1

n

m

Figure 4.2 Equivalence classes defining rational numbers.

Table 4.2 Five equivalence classes in Z × (Z − {0}).

Equivalence class Rational correspondence

1,2 = 1,2 , 2,4 , 3,6 … 1
2

1, −1 = 1, −1 , 2, −2 , 3, −3 … −1

3, −5 = 3, −5 , −3,5 , 6, −10 … −
3
5

0,1 = 0,1 0, −1 , 0,2 … 0
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We now define the rational number p/q as

p
q
= p,q , p,q Z, q 0

We now define the arithmetic operations on the newly formed rational
numbers.

• Addition: p,q r,s = ps+ qr,qs

• Subtraction: p,q r,s = ps−qr,qs

•Multiplication: p,q r,s = pr,qs

For example

• Addition: 1,2 2,10 = 14,20 or
14
20

• Subtraction: 3,6 1,4 = 6,24 or
6
24

Interesting Note In a recent seventh-grade textbook it was written that to add
and multiply fractions, one should use the rules given in the book, whereas to
add and multiply real numbers (guess the book is talking about irrational num-

bers like π and 2) one should resort to your calculator.

4.1.5 How to Define Real Numbers

We now come to a fork in the road. There are several ways to define the real
numbers and each has its merits and demerits. On the one hand, we could define
real numbers in the way they were described to you in grade school, as decimal
expansions. This is nice since all numbers, rational and irrational are more or
less treated in the same way, and we normally perform arithmetic when num-
bers are written in this form, like 2.35 + 4.91. However, on the negative side,
when real numbers are represented by expressions of the form

± a1a2a3 am b1b2b3

where the as and bs are decimal digits, it is the dot, dot, dot at the end of the
expansion that causes problems theoretically. Another problem is that certain
real numbers have more than one decimal expansion, like

2 318 = 2 317999…

Like we said, there is that nasty dot, dot, dot again.
Still another demerit for the decimal expansion interpretation of real numbers

is that they do not relate visually to points on a continuous number line, which is
how most people like to think of real numbers.

4.1 Construction of the Real Numbers262



However, there are two more approaches for defining the real numbers, one
due to Cantor and the other due to his close friend Richard Dedekind. Both of
these approaches are based on defining the real numbers in terms of the rational
numbers, much like we defined the rational numbers in terms of the integers.
Cantor’s approach defines real numbers limits of sequences of rational num-
bers, like in the definition of the irrational real number π being the limit of
the sequence

3, 3 1, 3 14, 3 141, 3 1415, 3 14159, 3 141592,… π

Although this approach has intuitive appeal, it demands that the reader
develop a background in sequences, convergence, null sequences, and other
concepts from real analysis, not introduced in this book. Hence, we follow
the second approach, that due to Richard Dedekind.

Historical Note The German mathematician Richard Dedekind (1831–1916)
was one of the major mathematicians of the nineteenth century. He made
major contributions to number theory and abstract algebra. His invention of
ideals in ring theory as well as his contributions to algebraic numbers, fields,
modules, lattice, and so on, were crucial in the development of abstract algebra.
His book Was sind and was sollen die Zahlen? (What are numbers and what
should they be?) laid the foundation for the real number system and was amile-
stone in the history of mathematics.

Although rational numbers have many desirable properties, they have from
the perspective of calculus, the undesirable property that they have “gaps” like
the gaps at 2 and π. In fact, there are an infinite number of gaps, and as we have
seen in Section 2.5, an uncountable number of gaps. The idea is to “fill in” these
gaps, and arriving at a new number system called the real numbers.

4.1.6 How Dedekind Cuts Define the Real Numbers

Dedekind’s 1872 idea appeals to our intuitive grasp of the rational numbers
aligned on a line. His idea was to partition the rational numbers into two disjoint
sets L and U satisfying the following two conditions.

Definition A Dedekind cut, denoted by (L, U), is a partition of the rational
numbers into two disjoint, nonempty subsets L Q and U Q such that all
members of Q in the so-called lower set L are less than all members of Q in
the upper setU. Stated analytically, a Dedekind cut (L,U) is a pair of nonempty
subsets of Q satisfying
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• L U = Q

• L U = Ø

• [l L and u U] l < u

The above definition of a Dedekind cut does not uniquely define a partition of
the rational numbers, but three different partitions called Dedekind cuts. They
are as follows.

Type 1 Dedekind Cut (L, U) The first type of partition of Q arises when the
lower set L does not have a largest element, but the upper set U has a smallest
element, this smallest element being a rational number r. We call this a type of
Dedekind cut a rational cut at r, where the lower and upper sets L, U can be
expressed as follows:

L= l Q l < r , U = u Q r ≤ u

which is visualized in Figure 4.3.

Type 2 Dedekind Cut (L, U) The second type of partition ofQ arises when the
upper set U does not have a smallest element, but the lower set L has a largest
element, this largest element being a rational number r. We call this a type of
Dedekind cut a rational cut at r, where the lower and upper sets L and U can be
expressed as follows:

L= l Q l ≤ r , U = u Q r < u

which is visualized in Figure 4.4.

Type 3 Dedekind Cut (L, U) The third type of Dedekind cut arises when the
lower set L does not have a largest element and upper set U does not have
a smallest element. Since the Dedekind cut partitions the rational numbers
there is no rational number between the lower and upper sets. This type of
Dedekind cut is expressed as follows:

) [
L r U

Figure 4.3 Type 1 Dedekind cut.

L r U

] (

Figure 4.4 Type 2 Dedekind cut.
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L= l Q l < r , U = u Q r < u

and is visualized in Figure 4.5. Dedekind cuts of this type identify gaps in the
rational numbers and each gap is identified with a nonrational number called
an irrational number.

This Dedekind cut is visualized in Figure 4.5.

Each Dedekind cut of Type 1 or Type 2 corresponds to a rational number,
whereas a Dedekind cut of Type 3 correspond to a number that is not rational.
These are numbers that fill all the gaps between rational numbers. These are
called irrational numbers. This leads us to the Dedekind cut definition of
the real numbers.

Definition of the Real Numbers The set of real numbers, denoted by R, is
defined as union of all Dedekind cuts of Type 1 and Type 3, or equivalently
of Type 2 and Type 3.

Example 1 Dedekind Cuts Defining Rational and Irrational Numbers

a) The Dedekind cut (L, U) for the rational number three is

• L = { l Q : l < 3}

• U = { u Q : 3 ≤ u}

defines the rational number three.

b) The Dedekind cut for 2 is slightly more complicated since we cannot use
2 in the definition, else we would be using 2 to define 2.

• L = {l Q : l < 0} {l Q : l2 < 2 }

• U = {u Q : u ≥ 0} {u Q : u2 > 2}

The reader can carefully exam the rational numbers in L and see that they are
less than any rational number inU, and both lower and upper sets of rational num-
bers have the form L = (−∞ , x) andU = (x,∞).1 Remember, the lower and upper

1 The number x is the square root of 2, but we are not allowed to write it at this stage.

L ? U

((

Figure 4.5 Type 3 Dedekind cut.
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sets of a Dedekind cut must partition the rational number into two disjoint sets
whose union gives the rational numbers. Figure 4.6 illustrates typical cuts.

4.1.7 Arithmetic of the Real Numbers

Now that we have defined the real numbers, the next job is to Dedekind cuts to
define addition, subtraction, multiplication, and division of the real numbers (as
well as defining order relations like < and ≤) consistent with those of the rational
numbers. Although we can define arithmetic operations of real numbers in this
way, they are rather complicated, and we will not include them here. If we had to
carry out even the easiest arithmetic, like adding π + 2 using the Dedekind cut
definition, it would a difficult task. As we all know, the way we do arithmetic
involving irrational numbers, we replace them by a decimal digits,
π 3 14, 2 1 41 and find the approximate value π + 2 4 55. Of course,
we cannot be 100% accurate like we are when we restrict arithmetic to the
rational numbers, like

1
3
+
4
5
=
17
15

but that is the price of enlarging our number system to the real numbers.

Problems

1. Equivalence Relation I
Show that the relation ≡ on N defined by

m,n m ,n if and only ifm+ n =m + n

between pairs of natural numbers (m, n) and (m , n ) is an equivalence
relation.

)[ UL )( UL

Dedekind cut for 2 Dedekind cut for

219 11 9 573
1042 10 4 2

70
50

71
50

3
2

5
2

2

2 21 2

Figure 4.6 Dedekind cuts for 2 and 2.
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2. Equivalence Relation II
Show that the relation ≡ on Z defined by

m,n m ,n mn =m n

between pairs of integers (m, n) and (m , n ) is an equivalence relation.

3. Arithmetic in Z
We defined the integers Z in terms of pairs of natural numbers (m, n)
belonging to an equivalence class. Perform the following arithmetic for
integers as defined in the book. What does each operation represent in
the language of integers?

a) 1,5 3,2

b) 1,5 3,2

c) 1,5 3,2

4. Arithmetic in Q
We defined the rational numbers Q in terms of pairs of integers (m, n)
belonging to an equivalence class. Perform the following arithmetic for
rational numbers using the definition in the book. What does each opera-
tion represent in the language of rational numbers?

d) 1,5 3,2

e) 1,5 3,2

f) 1,5 3,2

5. Decimal to Fractions
Find the fraction for each of the following real numbers in decimal form,
where the bar over numbers means the numbers are repeated.
a) 0.9999…. 0 9
b) 0.232 323 23…. 0 23
c) 0.012 312 312 3…. 0 0123
d) 0.001 111…. 0 001

6. Two Decimal Representations
The real numbers that have two different decimal representations agree up to
some point, but then one continues with a999…, while the other continues
with b000…, where the digit a is one more than the digit b. The dot, dot, dot
at the end of the expression refers to a never-ending list of digits. Write
several instances of real numbers that have two decimal representations.

7. Irrationals Everywhere
Show that between any two rational numbers, there is an irrational number.
Hint: For two rational numbers r1 < r2, there exists a natural number n that
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satisfies n r2−r1 > 2. Using this inequality, we can construct a number
between r1 and r2. The only remaining task is to show this number is
irrational.

8. Rationals Everywhere
Show that between every two irrational numbers there is a rational number.
Hint: Let i1 and i2 be two irrational numbers with i1 < i2. Hence, there exists
a natural number n satisfying

n >
1

i2− i1
n i2− i1 > 1 ni2−ni1 > 1

Use the last result to construct a rational number m/n that lies between
i1 and i2.

9. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward construction of the integers from the natural numbers, con-
struction of the rational numbers from the integers, Dedekind cut, and Rich-
ard Dedekind.
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4.2

The Complete Ordered Field

The Real Numbers

Purpose of Section We present the axiomatic definition of the real numbers
as a complete ordered field. We carry out this three-step process by first defin-
ing an algebraic field, then introduce an order on the algebraic field, yielding an
ordered field, and then the completeness axiom that allows us to define the
complete ordered field, of which there is only one, the real numbers.

4.2.1 Introduction

Advances in function theory in the nineteenth century demanded a deeper
understanding of the real numbers, which led to a “rigorization” of analysis
by such mathematical greats as Cauchy, Abel, Dedekind, Dirichlet, Weierstrass,
Bolzano, Frege, Cantor, and others. A deeper understanding of functions
required precise proofs which in turn required the real number system be placed
on solid mathematical ground.
Although we generally think of real numbers as points on a continuous line

that extends endlessly in both directions, the goal of this chapter is to strip away
everything you know about the real numbers and start afresh. This is not easy
since all knowledge and mental imagery of the real numbers created over a life-
time is firmly entrenched in our minds. But if the reader is willing to wipe the
slate clean and start anew, we will introduce you to a new mathematical entity,
known by mathematicians as the complete, ordered field, which, for lack of
another name, we call R. By building the axioms of the real numbers, you will
have a deeper understanding of them than simply as “points on a very long line.”
There are three types of axioms required to define the real numbers. First,

there are the arithmetic axioms, called the field axioms, which provide the rules
for adding, subtracting, multiplying and dividing. Second, there are the order
axioms, which allow us to compare sizes of real numbers like 2 < 3, 4 > 0,
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and −3 < 0, and so on. And last, there is an axiom, called the completeness
axiom, which gives the real numbers that special quality which allows us to
think of real numbers as “flowing” continuously with no gaps.
So let us begin our quest to define the holy grail of real analysis.

Important Note At this point in the book, we should stop and apologize to
female readers. You may have noticed that basically every named mathemati-
cians in the book is male, which is due to the fact that the great mathematicians
of the nineteenth century and before were mostly male. As any student of his-
tory knows, women were kept away from all academic studies, even the Queen
of the Sciences. Today, however, things are changing rapidly and women are
making contributions at the highest level in every area of mathematics.

4.2.2 Arithmetic Axioms for Real Numbers

We begin by defining a set R, but do not think of R as the real numbers yet. We
begin by defining two binary functions fromR ×R R, one called the addition
function and themultiplication function. The addition function assigns to each
pair (a, b) of numbers in R a new element of R called the sum of a and b and
denoted by a + b. Themultiplication function assigns to each pair of elements in
R a new element inR called the product of a and b and denoted by a × b or more
often simply ab. These operations are called closed operations since when a,
b R so are a + b and ab.
These axioms have passed the test of time and are now chiseled in stone in

the laws of mathematics and form an algebraic system called a field1 (or an
algebraic field), which is summarized as follows.

Table 4.3 Field axioms.

Field axioms

A field is a set, which we call R, with two binary operations, called + and ×, where for all
a, b and c in R, the following axioms hold.a

Addition axioms Name of axiom

a,b R a+ b+ c = a+ b + c

a,b R a+ b= b+ a

0 R a R a+ 0 = 0+ a= a

a R −a R a+ −a = −a + a= 0

Associativity of addition

Addition commutes

Unique additive identity

Unique additive inverse

1 Modern algebra or abstract algebra, which is distinct from elementary algebra as taught in schools,
is a branch of mathematics that studies algebraic structures, such as groups, rings, fields, modules,
vector spaces and other algebraic structures.
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4.2.3 Conventions and Notation

In addition to the above axioms, we make the following conventions;

1) The associative axioms for both addition and multiplication tell us it does
not matter where the parentheses are placed. In other words, we can write
a + b + c for a + (b + c) or (a + b) + c. The same associative law holds for mul-
tiplication, which allows us to write abc = a(bc) = (ab)c.

2) The unique additive inverse of an element a is denoted by −a. Hence, we
have a + (−a) = 0. The multiplicative inverse of a is denoted by a−1 and often
written 1/a. Hence, aa−1 = a (1/a) = 1.

Two other operations of subtraction and division can be defined directly from
addition and multiplication by

Subtraction a−b= a+ −b read a minus b

Division a b= ab−1 for b 0 read a dividedby b

Important Note A field is an algebraic system where you can add, subtract,
multiply, and divide (except by 0) in the same manner you did as a child. As
a child, you were taught these were “properties” of numbers. But they are
not properties, they are the definition or rules of engagement of the real num-
bers. A subtle, but important point.

We know what you are thinking: you have known all this since third−grade.
If your argument is that the axioms of arithmetic are simple and elementary,

Table 4.3 (Continued)

Multiplication axiomsb Name of axiom

a,b,c R a bc = ab c

a,b R ab= ba

1 R a R a 1 = 1 a= a

a R a 0 a−1 R a a−1 = a−1 a= 1

Associativity of multiplication

Multiplication commutes

Unique multiplicative identity

Unique multiplicative inverse

Distributive axiom Name of axiom

( a, b, c R)[a(b + c) = ab + ac] Multiplication distributes over addition

aWe call the field R since we are concentrating on the real numbers, but keep in mind there are
many examples of an algebraic field. It is assumed in the axioms for a field that the additive identity
0 and the multiplicative identity 1 are not equal.

bWe often drop the multiplication symbol “ ” and denote multiplication of two elements as
a b = ab.
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that is no argument at all. Axioms are supposed to be simple and elementary.
The question you should ask is what kind of results can be proven from the
axioms. The answer is an algebraic field can give rise to many deep results. Ask
yourself if these are the simplest axioms that give rise to a system of arithme-
tic? Do you need any more axioms? Can you get by with less? These are not
trivial questions and their answers are even less so. There are other systems of
axioms that allow you to perform “arithmetic” operations on elements of a set,
such as groups and rings that we will learn about in Chapter 6 when we study
abstract algebra.

4.2.4 Fields Other than R

1) Boolean Field: Let F2 = {0, 1} and define the binary operations of addition
and multiplication by Table 4.4.

The set Awith these arithmetic operations is an algebraic field. We leave it
to the reader to check all the properties a field must possess.

2) Complex Numbers: The complex numbers a + bi, where a, b are real num-
bers and i= −1, where addition and multiplication are defined in the usual
manner.

3) Rational Numbers Q: The rational numbers where addition and multi-
plication are defined in the usual way.

4) Rational Functions F: The set of all rational functions

f x =
p x
q x

where p(x), q(x) 0 are polynomials with real coefficients, where addition
and multiplication are defined in the usual way and 0 and 1 are the standard
additive and multiplicative identities.

There aremany other examples of fields studied bymathematicians, including
the Galois finite fields, p-adic number fields, and fields of functions, such as
meromorphic and entire functions.
We now come to the second group of the three types of axioms required to

describe the real numbers.

Table 4.4 Boolean field.

+ 0 1 × 0 1

0 0 1 0 0 0

1 1 0 1 0 1
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Important Note The real numbers are ineptly named. They are nomore or less
real from a mathematical point of view any other number system like the inte-
gers or rational numbers. The name “real numbers” is one of those chronicled
lapses, not unlike the name “Pythagorean Theorem”: which was known long
before Pythagoras was born.

4.2.5 Ordered Fields

Although an algebraic field allows us to carry out arithmetic on a set, what it
cannot do is compare sizes of members of the set. The job now is to include
“order” on the field. To do this, we split the field into two disjoint sets, P and
N, called the negative and positivemembers of the field. These two sets mimic
the properties of the positive and negative real numbers. This motivates the gen-
eral definition of an ordered (algebraic) field.

Definition: Ordered Field
An algebraic field F is said to be ordered if its nonzero members can be split
into two disjoint subsets, F = P N called respectively, the negative (N) and
positive (P) members in such a way that

• x, y P x + y P

• x, y P xy P

• x P − x N

These properties allow us to define a strict (total) order < on F by

x < y y−x P

which is a total order on F since

• irreflexive since x−x= 0 P x≮x

• asymmetric x < y (y < x)

• transitive since [(x < y) (y < z)] x < z

For convention, we say

• x > 0 when −x < 0

• x ≥ 0 when x > 0 or x = 0

• x ≤ 0 when x < 0 or x = 0

We can now prove all the usual properties of inequalities of real numbers.

Important Note One does not just make rules or axioms willy-nilly hoping
good things will follow. In fact, it is just the opposite. Knowing what is desirable,
one designs axioms fromwhich the desirable theorems will follow. As themath-
ematician Oswald Veblen once said, “The test of a good axiom system lies in the
theorems it produces.”
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Historical Note The concept of an ordered field was introduced by Austrian/
American mathematician Emil Artin (1898–1962) in 1927. Artin was one of the
leading algebraists of the twentieth century who emigrated to the United States
in 1937 and spent many years at Indiana University and Princeton University.

4.2.6 The Completeness Axiom

If we were to stop with ordered fields, we would be neglecting that special ingre-
dient that defines the real numbers as a continuum. There are many examples of
ordered fields that are not the real numbers, and all those algebraic systems have
“gaps” between their elements. The set of rational numbers is an ordered field,
which as we all know, has an uncountable number of gaps between its members,
two gaps being the solutions of x2 = 2,which are x= ± 2, which was proven long
ago to be not a rational number. What we need is an axiom that “fills in” these
gaps and this is where the completeness (or continuum) axiom comes into play.
An interesting aspect of this axiom is that over the years mathematicians have

found several completeness axioms that are logically equivalent. Thus, it is pos-
sible to introduce any one of them as the “completeness” axiom. In this book, we
have chosen the “version” of the completeness axiom as the least upper bound
axiom, our reason being many interesting concepts can be deduced by working
with it. Then, there is the other benefit, it is easy to understand. Before stating
the axiom, however, we review a few important ideas about the least upper
bound of a set introduced in Section 3.2.

4.2.7 Least Upper Bound and Greatest Lower Bounds

We use the four intervals in Figure 4.7 as a prop for reviewing the concepts of
the least upper bound (lub) and the greatest lower bound (glb) introduced in our
study of orders in Section 3.2.

]
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Aa b Aa b

Aa b Aa b

(a) (b)

(c) (d)

min(A) max(A)

max(A)

glb(A)

glb(A)

lub(A)

min(A) lub(A)
()

Figure 4.7 Max, min, lub, glb.
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The intervals (a, b), [a, b], [a, b), and (a, b] are all bounded, both above and
below. Bounded above simply means there is at least one number greater than
or equal to the elements in the set. Likewise, a lower bound for a set is a
number less than or equal to the elements in the set. Of course, not all sets
are bounded; the set [1, ∞) is bounded below but not above, and (−∞ , ∞) is
bounded neither above nor below. The intervals [a, b] and (a, b] each have a
maximum value of b, whereas the intervals (a, b) and [a, b) do not have a max-
imum value. The same arguments hold forminimum values. The intervals [a, b],
[a, b) each has a minimum value of a, but the intervals (a, b) or (a, b] do not have
minimum values.
So what is the meaning lub (A) and glb (A) in Figure 4.7? Note that two of the

intervals contain their maximum value and two do not. However, and this is the
important part, for each of the four intervals [a, b], [a, b), (a, b), and (a, b], the set
of upper bounds is the same, namely [b, ∞), and note that this set of upper
bounds contains its minimum of b. For the intervals (a, b), [a, b) where b does
not belong to the interval, we call b the least upper bound (or supremum) of
the set since it is the least of the upper bounds of the set.We denote this value by
lub(A). For the two sets [a, b] and (a, b] that have a maximum value, the least
upper bound of the set is the same as the maximum of the set. For the sets (a, b)
and [a, b) that do not have maximum values, the least upper bound b is a kind of
“surrogate” for the maximum.
The same principle holds for lower bounds. The set of lower bounds for the

four intervals is the same, namely (−∞, a]. The number a is the greatest of all
these lower bounds and is called the glb(A) for each of the four intervals. Any
set that is bounded below may or may not have a minimum value, but the
set of lower bounds will always have a maximum value, and that maximum
value is called the greatest lower bound (or infimum) of the set and denoted
by glb(A).

Definition Let A be a set in an ordered field that is bounded above. The num-
ber lub(A) is the least upper bound or supremum of A if

• lub(A) is an upper bound of A, i.e. x ≤ lub(A) for all x A.

• If u is any upper bound for A, then lub(A) ≤ u.

See Figure 4.8.

Points of A

lub(A) u

Figure 4.8 Least upper bound.
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Likewise the number glb(A) is the greatest lower bound or infimum of A if

• glb(A) is a lower bound of A, i.e. glb(A) ≤ x for all x A.

• If l is any lower bound for A, then l ≤ glb(A).

See Figure 4.9

This leads us to the completeness axiom forR, which up to now, we endowed
with only field and order axioms. The last set of axioms we assign to R (actually
only one axiom) is called the completeness axiom.

Completeness Axiom: least Upper Bound Axiom2 In an ordered field, if every
nonempty set that is bounded above has a least upper bound, then the ordered
field satisfies the completeness axiom.

We are now (finally) ready to define the real numbers.

Definition of the Real Numbers The real number system R is a complete
ordered field, that is, an ordered field that satisfies the completeness axiom.
Stated another way, it is a set R that satisfies the axioms of an algebraic field,
the order axioms, and the completeness axiom.

The least upper bound axiom is necessary since there are ordered fields that do
not “look like” the real numbers and the reason is that they do not satisfy the least
upper bound axiom. Of the ordered fields that do not satisfy the completeness
axiom, the rational numbers are the most well-known. By including the com-
pleteness axiom with an ordered field, the ordered field behaves like the real
numbers.
When we refer to the real numbers as a complete ordered field, we always say

the complete ordered field since all complete ordered fields are isomorphic. We
say that two abstract structures are isomorphic if they have exactly the same

Points of A

glb(A)
l

Figure 4.9 Greatest lower bound.

2 In Section 4.1, we defined the real numbers in terms of rational numbers by Dedekind cuts.
Although we did not prove it at that time, the real numbers defined by Dedekind cuts satisfies the
completeness axiom.
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mathematical structure and differ only in the symbols used to represent various
objects and operations in the system.

Example 1 Rational Numbers and the Completeness Axiom
Do the rational numbers satisfy the completeness axiom?

Solution
In order for the rational numbers to satisfy the completeness axiom, every set of
rational numbers that is bounded above must have a least member. The rational
numbers fail the completeness axiom since the set

A= q Q 0 < q < 2

of rational numbers is bounded above (5 is an upper bound), but it has no least
upper bound since the set of upper bounds

Setof upper bounds = 2,∞

has no smallest (rational) member.

Historical Note Czech mathematician Bernard Bolzano (1781–1848) concep-
tualized the least upper bound property of the real numbers in an 1817 paper in
which he gave the first analytic proof of the Intermediate Value Theorem. He
realized the proof must depend on deep properties of the real numbers.

Important Note In the previous Section 4.1, when we defined the real num-
bers in terms of Dedekind cuts of rational numbers, we did not show how an
ordering could be defined on the real numbers in terms of Dedekind cuts,
nor did we show the real numbers were complete using Dedekind cuts. This
could have been done, but it would have been a long and tedious task and
so it was generously omitted.

Problems

1. True or False
a) The natural numbers N with operations of addition and multiplication

is an ordered field.
b) Q and R are ordered fields but ℂ is not.
c) For A, B bounded sets of real numbers, the identity
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sup A−B = sup A −sup B

holds, where A − B = {a − b : a A, b B}.
d) The integers Z constitute an ordered field.
e) All finite sets of real numbers have a least upper bound.
f) The rational numbers less than 1 have a least upper bound.
g) If a subset of the real numbers has an upper bound, then it has exactly

one least upper bound.
h) sup(Z) = ∞
i) Every finite set can be ordered.
j) The set of linear functions f(x) = ax + bwith the usual addition and mul-

tiplication of functions is an algebraic field.
k) In plain English, the completeness axiom ensures there are no “holes”

in the real numbers.

2. Solving a Middle School Equation
Show that ( a, b R) the equation a + x = b has exactly one solution, which
is x = b + (−a).

3. Glb, Lub, Max, and Min
If they exist, find max(A), min(A), lub(A), and glb(A) for the follow-
ing sets.
a) A = {1, 3, 9, 4, 0}
b) A = [0, ∞)
c) A = {x Q : 0 ≤ x < 1}
d) A = [−1, 3]
e) A = {x : x2 − 1 = 0}
f) A = {n N : n divides 100}
g) A = {x R : x2 < 2}
h) A = (−∞ , ∞)

i) A= 1,
1
2
,
1
3
,
1
4
,…

4. More Difficult Sup and Inf
If they exist, find the least upper bound and greatest lower bound of the set

A=
1
n
−
1
m

m,n N

5. Algebraic Field
Show that the rational numbers with the operations of addition and multi-
plication form an algebraic field.
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6. Boolean Field
Show that the set F2 = {0, 1 } consisting of two elements and following
arithmetic operations forms an algebraic field as shown in Table 4.5.

7. Ordered Field
Show that the rational numbers with the operations of addition and
multiplication and usual ordering relation “less than” “<” form an ordered
field.

8. Not an Ordered Field
Show that the complex numbers is an algebraic field but not an
ordered field.

9. Well-Ordering Principle
The well-ordering principle3 states that every (nonempty) subset A N
contains a smallest element under the usual ordering ≤. Does this principle
hold for all subsets A Z?

10. Well-Ordering Theorem
A partial order “≺” on a set X is called a well-ordering (and the set X is
called well-ordered) if every nonempty subset S X has a least element.
The Well-Ordering Theorem4 states that every set can be well-ordered
by some partial order. Are the following sets well ordered by the usual “less
than or equal to” order “≤”?
a) N
b) {3, 4, 5}
c) Z

d)
1
n

n N

Table 4.5 Algebraic field.

+ 0 1 × 0 1

0 0 1 0 0 0

1 1 0 1 0 1

3 This principle is equivalent to the Principle of Mathematical Induction.
4 TheWell-Ordering Theorem is equivalent to the Axiomof Choice andwas proven by the German
mathematician Ernst Zermelo (1871–1953). Although the theorem says the real numbers R are
well-ordered, no one has ever found a well-ordering.
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11. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite
search engine toward least upper bound principle, least upper bound,
greatest lower bound, complete ordered field, and definition of the
real numbers.
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4.3

Complex Numbers

Purpose of Section To introduce the field (ℂ, + , ×) of complex numbers and
their Cartesian and polar representations in the complex plane. We also show
how Euler’s theorem connects the complex exponential to real trigonometric
functions.

4.3.1 An Introductory Tale

The study of numbers generally begins with children and counting numbers
1, 2, 3, … then progressing to negative numbers, and then to fractions, and
finally to the real numbers. To most students of mathematics, the complex
numbers come last, if at all. Throughout history, every enlargement of the
meaning of number had practical motivation. Negative numbers were required
to solve x + 3 = 1, rational numbers were required to solve 3x = 5, and real num-
bers were a response to the equation x2 = 2. Finally, complex numbers came
about when people wanted to solve equations like x2 + 1 = 0.
Square roots of negative numbers first appeared in Ars Magna (1545) by the

Italian mathematician Gerolamo Cardano (1501–1576) in his solution of the
simultaneous equations

x+ y= 10, xy= 40

getting the solution

x= 5+ −15, y= 5− −15

Cardano did not give any interpretation of the square root of negative num-
bers, although he did say that they obeyed the usual rules of algebra and that
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solutions containing them could be verified. Cardano and other mathematicians
at the time would go to great lengths to avoid both negative and complex num-
bers, referring to negative solutions as “false1” solutions and complex solutions
as “useless.” Even the great mathematician Carl Gauss said, as late as 1825, “the
true metaphysics of −1 is illusive.”He overcame his doubts, however, by 1831
when he applied complex numbers to number theory. His acceptance of com-
plex numbers provided a great boost to the acceptance of complex numbers in
the mathematical community.
Today, complex numbers are crucial in the study of many areas of mathemat-

ics, including harmonic analysis, ordinary and partial differential equations,
analytic number theory, analytic function theory, as well as being applied in
many areas of engineering and science, including theoretical physics, where
analytic function theory constitutes much of the foundations of quantum
mechanics.
Someone once argued that real numbers are more “natural” than complex

numbers since real numbers measure things we can all see and feel, like a per-
son’s height or weight, whereas no one can physically “experience” complex
numbers. The person whomakes such a claim just does not knowwhere to look.
Every engineer, physicist, and student of differential equations knows it is com-
plex numbers that allows for the description of oscillatory motion. The next
time you hear an orchestra tuning their instruments to the standard A above
Middle C, you are hearing the complex number 440 i, the complex number that
describes 440 oscillations per second.

4.3.2 Complex Numbers

There are a number of ways to introduce complex numbers, each of which has
its merits and demerits.We choose to define complex numbers formally as pairs
of real numbers and then introduce a “more friendly” notation.

Definition We define the complex numbers ℂ as the set of pairs of real
numbers

ℂ= x,y x R,y R
with the binary arithmetic operations of addition2

1 The French mathematician Rene Descartes referred to square roots of negative numbers as
imaginary numbers, a word which unfortunately is still used by some people today. Descartes also
called negative solutions as false solutions, which fortunately did not stick.
2 We use + to denote addition for both complex numbers and real numbers, and the dot to denote
multiplication for complex numbers.
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a,b + c,d = a+ c,b+ d

and multiplication

a,b c,d = ac−bd,ad + bc

The question we ask is do these arithmetic operations result in a legitimate
arithmetic system having properties similar to those of the real numbers? We
have reason to believe this to be true since we can think of the complex numbers
ℂ as an extension of the real numbers R in the sense that complex numbers of
the form (a, 0) behave exactly like the real numbers:

a,0 + b,0 = a+ b,0 a,0 b,0 = ab,0

That is, we can think of the real numbers as those complex numbers where the
second coordinate is zero.

4.3.3 Complex Numbers as an Algebraic Field

The complex numbers alongwith the above binary operations of addition andmul-
tiplication forms an algebraic field similar to the real numbers, with (0, 0) being an
additive identity and (1, 0) the multiplicative identity. We will not list all the field
properties for the complex numbers, but a few of them you might recall are

a) (a, b), (c, d) ℂ (a, b) + (c, d) ℂ
b) (a, b), (c, d) ℂ (a, b) (c, d) ℂ
c) (a, b), (c, d) ℂ (a, b) + (c, d) = (c, d) + (a, b)
d) (a, b) ℂ (a, b) + (0, 0) = (a, b)
e) (a, b) ℂ (a, b) + (−a, − b) = (0, 0)
f) (a, b), (c, d) ℂ (a, b) (c, d) = (c, d) (a, b)

g) a,b ℂ 0,0 a,b
a

a2 + b2
,

−b
a2 + b2

= 1,0

h) (0, 1) (0, 1) = (−1, 0)

The last identity (h) introduces the special complex number (0, 1), which we
denote by the letter i, and since we identify the complex number (−1, 0) with the
real number −1, we can interpret this statement as i i = −1 or i2 = − 1. For this
reason, one often calls the complex number i as the square root of −1 and often
written i= −1. If we give the complex number (0, 1) the special name i, then
we can write the general complex number (a, b) as

a,b = a,0 + 0,b

= a,0 + b,0 0,1

= a,0 + b,0 i
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which normally is expressed as a + bi. Using this notation to express complex
numbers, we can express addition and multiplication of complex numbers as

Complex addition a+ bi + c+ di = a+ c + c+ d i

Complex multiplication a+ bi c+ di = ac−bd + ad + bc i

The real number a is called the real part of the complex number a + bi, and b
is called the imaginary part, often denoted by

Re a+ bi = a Im a+ bi = b

4.3.4 Imaginary Numbers and Two Dimensions

A good way of thinking about complex numbers is to think of them as a two-
dimensional vector of real numbers, and when plotting these vectors we call the
x-axis the real axis and the y-axis the imaginary axis.
We can give thanks to nonmathematicians Casper Wessel and Jean Robert

Argand for their insight in representing complex numbers as points in the plane
(see Figure 4.10).

Important Note The “+” in x + iy is unlike any “+” you have seen before. It is
not addition in the traditional sense, but a “placeholder” which separates the
real and pure imaginary parts of the complex number something else.

3i

3

2 + 3i

5+ i

–1 + 4i

–1–3

–3–2i 2–2i 4–2i

–1–4i

y

x

Figure 4.10 Complex plane representation of complex numbers.
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The absolute value (ormodulus) of a complex number z = x + iy is defined as
the nonnegative real number

z x2 + y2

which is the length of the line segment from the origin to z in the complex plane
(see Figure 4.11). The conjugate of a complex number z = x + iy is defined to be
z = x− iy, which geometrically is the reflection of z through the real axis. The
absolute value of a complex number can be written in terms of its conjugate
by z = zz.

The complex numbers do not form an ordered field like the real numbers, but
do form what is called an algebraically closed field,3 which means that all pol-
ynomial equations with complex coefficients have complex roots (real roots
being special cases of complex roots). This property contrasts with the real
numbers where polynomial equations like z2 + 1 = 0 with real coefficients,
but roots outside the real number system, i.e. x = ± i. Algebraists would say that
the complex numbers are an algebraically closed field, whereas the real num-
bers are not algebraically closed.

4.3.5 Polar Coordinates

Recall that a point (x, y) in the Cartesian plane can be written in terms of polar
coordinates (r, θ), where the relationship between them is given by x = r cos θ,

y

Im(z)

𝜃
𝜃

Re(z)

–y
z = x – iy

x

z = x + iy

Figure 4.11 Magnitude and complex conjugate of a complex number.

3 Algebraically closed is different from the topological completeness we defined when defining the
real numbers as a complete ordered field.
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y = r sin θ. Hence, any complex number can be written in terms of polar coor-
dinates as

z = x+ iy= rcosθ + ir sinθ = r cosθ + isinθ

where r = z = x2 + y2 is the absolute value of z, and θ is the argument of z,
written θ = arg(z), which measures the angle between the positive real axis
and the line segment from 0 to z (see Figure 4.12).

Since the argument θ can wrap around the origin several times, either clock-
wise or counterclockwise, the principle argument of a complex number is the
unique argument that lies in the interval (−π, π]. Thus, the complex number
i has argument π/2, and −1 has argument π, and −i has argument −π/2 (although
sometimes we say 3π/2).

4.3.6 Complex Exponential and Euler’s Theorem

Any student of calculus knows that the exponential function ex bears little rela-
tionship to the trigonometric functions sin x and cos x. The exponential func-
tion ex grows without bound as x gets large, while the trigonometric functions
oscillate between plus and minus 1. In one of the most important discoveries
in mathematics, Swiss mathematician Leonhard Euler showed in 1748 that
although real exponential functions may be unrelated to trigonometric func-
tions, complex exponentials and trigonometric functions have an intimate rela-
tionship. Euler does this by replacing the θ in the Taylor series expansion of
eθ with the complex number iθ, thus defining a new function eiθ, called the
complex exponential. Euler shows that this exponential had an interesting
relationship with the trigonometric functions.

y

y
x

x

r

𝜃

x + iy

Figure 4.12 Polar form of a complex number.
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Euler’s Theorem
If θ is an real number, then

ei θ = cosθ + isinθ

where ei θ is the result of replacing θ by iθ in the exponential eθ. Replacing θ
by −θ gives the reciprocal

e− i θ = cosθ− isinθ

Proof
The Taylor series expansions of eθ, sin θ, cos θ about the point θ = 0, which
converge for all real values θ, are

sinθ = θ−
θ3

3
+
θ5

5
−
θ7

7

cosθ = 1−
θ2

2
+
θ4

4
−
θ6

6
+

eθ = 1+ θ +
θ2

2
+
θ3

3
+
θ4

4
+

If we replace θ by i θ in eθ and using the fact that i2 = − 1, i3 = − i, i4 = 1, i5 = i,…,
we arrive at the complex exponential4

eiθ = 1+ iθ +
iθ 2

2
+

iθ 3

3
+

iθ 4

4
+

= 1−
θ2

2
+
θ4

4
−
θ6

6
+ + i θ−

θ3

3
+
θ5

5
−
θ7

7

= cosθ + isinθ ▌

Euler’s theorem allows one to work with exponentials and all their wonderful
manipulative properties like

• eiθ1eiθ2 = ei θ1 + θ2

• eθ
n
= enθ

Euler’s equation also allows us to write the important identity

ez = ex+ iy = exeiy = ex cosy+ isiny

4 The rearrangement of terms is allowed since the Taylor series are absolutely convergent.
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Example 1 Complex Exponentials

a) e−x + 3y = e−x(cos 3y + i sin 3y)
b) e(−3 + 2i)t = e−3t(cos 2t + i sin 2t)
c) e−i x = cos x − i sin x

4.3.7 Complex Variables in Polar Form

Euler’s equation allows us to write complex numbers either in Cartesian or
polar form by equation:

z = x+ iy= r cosθ + isinθ = reiθ

Note that

eiθ = cosθ + isinθ = cos2θ + sin2θ = 1

We can visualize the complex exponential eiθ as a point in the complex plane5

with argument θ lying on the unit circle. As θmoves from 0 to 2π, the exponen-
tial eiθ moves counterclockwise around the unit circle (see Figure 4.13).6

For example7

5 We get so used to representing complex numbers as points in the plane that we use them
interchangeably.
6 We really should say θ goes from −π to + π since we have adopted the negative angle convention,
but people are sloppy about this so we simply say 0 to 2π.
7 Note the convention of sometimes placing the “i” in front of the constants in the exponent and
sometimes at the end. Also the argument of −i is often represented interchangeably by either 3π/2
or −π/2.

y

x

r

eπi/2 = i

e2πi = 1

e3πi/2 = – i

eπi = –1

𝜃

Figure 4.13 The complex exponential eiθ.

4.3 Complex Numbers288



eπi 2 = i,eiπ = −1,e3πi 2 = e− iπ 2 = − i,e2πi = 1

Important Note Euler’s equation is a wealth of important information.
If we write eπi/2 = i, and then raise both sides to the ith power, we get
ii = e−π/2 0.207 879 57….

Example 2 Complex Numbers in Polar Form
There are always two ways to write a complex number, Cartesian or complex.

a) 1 + i= 2 cos π 4 + sin π 4 = 2ei π 4

b) i = cos(π/2) + i sin(π/2) = ei(π/2)

c) 1 + 3i= 2 cos π 3 + i sin π 3
d) −1 = cos(π) + i sin(π) = eiπ

Important Note Four important number systems are the one-dimensional
real numbers, the two-dimensional complex numbers, the four-dimensional
quaternions, and the eight-dimensional octonians. Although addition and mul-
tiplication are defined for all four systems, multiplication is not commutative for
quaternions as it is for real and complex numbers, and as for octonians, not only
is multiplication not commutative, the associative law does not hold.

4.3.8 Basic Arithmetic of Complex Numbers

Complex numbers are an algebraic field just like the real numbers. They can be
added, subtracted, multiplied, and divided and have interesting geometric inter-
pretations in the complex plane.

Addition

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

Two complex numbers are added by adding the real and complex parts of the
two numbers. In the complex plane, the sum of two complex numbers corre-
sponds to the point lying on the diagonal of a parallelogram whose sides are
the two complex numbers (see Figure 4.14).
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y

x

z1 + z2

z1

z2

Figure 4.14 Complex addition.

Subtraction

z1 − z2 = (x1 + iy1) − (x2 + iy2) = (x1 − x2) + i(y1 − y2)

Subtraction is analogous to addition but real and complex parts are subtracted
(see Figure 4.15).

y

x

z1

z2

– z2

z1 – z2

Figure 4.15 Complex subtraction.
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Division

z1
z2

=
r1eiθ1

r2eiθ2
=
r1
r2
ei θ1 −θ2

x1 + iy1
x2 + iy2

=
x2− iy2
x2− iy2

x1 + iy1
x2 + iy2

=
x1x2 + y1y2
x22 + y22

+ i
x2y1−x1y2
x22 + y22

Division of two complex numbers is also best interpreted in polar coordinates.
In the complex plane, the quotient of two complex numbers is a complex num-
ber whose magnitude is the quotient of the magnitudes of the two numbers,
and whose argument is the difference of the arguments of the two numbers.

Multiplication

z1z2 = r1e
iθ1 r2e

iθ2 = r1r2e
i θ1 + θ2

Or

x1 + iy1 x2 + iy2 = x1x2−y1y2 + i x1y2 + x2y1

The product of two complex numbers is best interpreted in polar coordinates.
In the complex plane, the product of two complex numbers is a complex num-
ber whose magnitude is the product of the magnitudes of the two numbers,
and whose argument is the sum of the arguments of the two numbers (see
Figure 4.16).

x

y

z1 = r1 ei𝜃1

z2 = r2 ei𝜃2

z1z2 = r1r2 ei(𝜃1 + 𝜃2)

Figure 4.16 Complex multiplication.
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Example 3 Complex Arithmetic

a) (2 + 3i)(3 + i) = 3 + 11i
b) 2eiπ 3eiπ/2 = 6e3πi/2

c)
2 + i
1−3i

=
1+ 3i
1 + 3i

2 + i
1−3i

=
2−3

12 + 32
+

1 + 6

12 + 32
i= −

1
10

+
7i
10

d)
6eiπ

2eiπ 2
= 3eiπ 2

e)
1
z
=
1
r
e− iθ =

1
r
cosθ− isinθ

4.3.9 Roots and Powers of a Complex Number

One of the benefits of representing complex numbers in polar form is visualiz-
ing the roots of the equation xn = a. Most beginning students of mathematics
know there are two square roots of a positive number like four, knowing them to

If division is performed in Cartesian form, it is accomplished by the process of
rationalizing the denominator, where one multiplies both numerator and
denominator by the conjugate of the denominator and then collecting real
and complex parts (see Figure 4.17).

x

y

=

z1=r1 ei𝜃1

z2=r2 ei𝜃2

z1
z2

r1
r2

ei(𝜃1 –𝜃2)

Figure 4.17 Complex division.
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be ±2. However, if you answered two as the cube root of eight, you would be
one-third correct, since there are two other two cube roots. And what about
the cube roots of a negative number like minus one? Certainly, minus one is
one cube root, but there are two more.
This leads to the following problem. Given a complex number a 0 and an

integer n greater or equal to two, find the roots of zn = a? To solve this equation,
we write z and a in polar form, getting

zn = reiθ
n
= rneinθ = a eiϕ

where |a| = rn. Taking the absolute value of each side of this equation yields rn =
|a| from which we get r = |a|1/n. Plugging this back into the equation, the equa-
tion reduces to einθ = eiϕ fromwhich we find nθ =ϕ or θ = ϕ/n. Hence, putting all
this together, the nth root of zn = a is

z = reiθ = a 1 neiϕ n = a 1 n cos ϕ n + isin ϕ n

However, this is not the only root since

zk a 1 nei ϕ+2πk n , k = 0,1,2,…,n−1

also satisfies zn = a, which can be seen by direct computation

a 1 nei ϕ+ 2π n
n
= a ei ϕ+2π = a eiϕe2πi = a eiϕ = a

These results can be summarized as follows.

Roots of a Complex Number For each nonzero complex number8 a = |a|eiϕ

ℂ there are n distinct nth roots. In the complex plane, they are the following n
points on a circle of radius |a|1/n.

a1 n = a 1 ne i ϕ+ 2πk n

= a 1 n cos
ϕ+ 2πk

n
+ isin

ϕ+ 2πk
n

, k = 0,1,2,…,n−1

The drawings in Figure 4.18 show the roots of the equation zn = 1 for n = 2, 3,
4, 5.

8 When we say complex number, this includes real numbers as well.
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Figure 4.19 shows the six roots of the equation z6 = 1 called the six roots
of unity.

To find the nth roots of the complex number a, first find the principal root,
whose absolute value is |a|1/n and whose argument is arg(a)/n. The other n − 1
roots are equally spaced points on the same circle whose angles between them
is 2π/n.

x

x x

x

y y

y y

–1 1 1

–1 1 –1 1

i i

–i –i

–i

i

–i

i

n = 2 n = 3

n = 4 n = 5

Figure 4.18 Roots of unity.

z1= i+

z0 =1z3 =–1 x

1
2

3
2

z2 = i+– 1
2

3
2

1

1 y

–1

–1

z4 = i–– 1
2

3
2

z5 = i–1
2

3
2

Figure 4.19 Six roots of unity.
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Example 4 Roots

a) 4 = 2 cos
0 + 2πk

2
+ isin

0 + 2πk
2

= 2 cos kπ + isin kπ , k = 0,1

=
2, k = 0

−2, k = 1

b) i= 1 cos
π 2 + 2πk

2
+ isin

π 2 + 2πk
2

= cos
π

4
+ kπ + isin

π

4
+ kπ , k = 0,1

=

1

2
+

i

2
, k = 0

−
1

2
−

i

2
, k = 1

c) i1 3 = 1 1 3 cos
π 2 + 2πk

3
+ isin

π 2 + 2πk
3

, k = 0,1,2

=

2
2

+
1
2
i k = 0

−
2
2

+
1
2
i k = 1

− i k = 2

The three cube roots of the complex number i are shown in Figure 4.20.

lm(z)

Re(z)

i

120° 120°
1–1

eiπ/3=

e3πi/2=–i

i+ 1
2

2
2e2πi/3= i+– 1

2
2
2

120°

Figure 4.20 Three cube roots of i.
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Problems

1. Complex Numbers
Let
a) w = i, z = 1 + i
b) w = 2, z = − i
c) w = i, z = − i
d) w = − 1 − i, z = 1 + i
e) w = 1 + i, z = − 1 + i

Find the following values.

• |z|

• θ = arg(z)

• w + z

• wz

• w z

2. Convert to Polar Form
Convert the following complex numbers to polar form.
a) 2i Ans: reiθ = 2ei(π/2)2

b) −1 + i
c) −i Ans: reiθ = ei(3π/2)

d) 2 − 2i

3. Convert to Cartesian Form
Convert the following complex numbers to Cartesian form x + iy.
a) e3πi Ans: e3πi = cos 3π + i sin 3π = − 1
b) 2eiπ/4

c) e2πi

d) e5πi

e) 5e3πi/4

Important Note There used to be a company that sold T-shirts with “Mathe-
maticians, we’re Number e2πi written on them.

4. Evaluate (1 + i)100.

5. Useful Identity I
Show that the complex conjugate of the sum of two complex numbers is the

sum of the conjugates; that is w+ z =w+ z.

4.3 Complex Numbers296



6. Useful Identity II
Verify the identity z 2 = zz for z = 2 + 3i.

7. Taking a Complex Function Apart
Find the real and imaginary parts of the following.
a) z3 Ans: Re(z3) = x3 − 3xy2, Im(z3) = 3x2y − y3

b) 1/z

8. Compute the following.
a) i
b) − i
c) 1 + i
d) −13

e) −14

9. de Moivre’s Formula
Use Euler’s theorem to prove de Moivre’s formula

cosθ + isinθ n = cosnθ + isinnθ

for any positive integer n. Hint: Use induction.

10. Primitive Roots of Unity
The n roots the equation zn = 1 are called the n roots of unity. Find and plot
the roots when n = 1, 2, 3, 4, and 8.

11. Fractional Powers
Find the following.
a) i3/2

b) (−1)3/4

c) 1 + i
d) ii

12. Hmmmmmmmmm

Show
1
i
= − i

13. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward applications of complex numbers, history of complex
numbers, and roots of unity.
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5.1

Introduction to Graph Theory

Purpose of Section To introduce the basics of one of the most important
areas of topology: graph theory and networks. We introduce Euler paths
and cycles, Hamiltonian tours, minimum spanning trees, and the Euler
Characteristic.

5.1.1 Introduction

The subject of graph theory and networks is an area of topology that is rapidly
moving into mainstream mathematics. It has modern applications in artificial
intelligence, data mining, large-scale communication networks, and industrial
scheduling. Few subjects in mathematics can be traced back to such an exact
and interesting beginnings as graph theory to the famous Seven Bridges of
Konigsberg Problem, solved by the Swiss mathematician Leonhard Euler
in 1736.
The town of Konigsberg, Prussia (now Kaliningrad, Russia), rests on the banks

of the Pregel River, and as it flows through the town, it divides the town into four
distinct regions connected by seven bridges, illustrated in the accompanying
drawing. The town flourished in the seventeenth and eighteenth centuries,
and the story goes that the people of Konigsberg spent their evenings strolling
throughout the city, crossing the seven bridges that spanned the river. The ques-
tion was asked whether it was possible to start at one of the four land areas, cross
each bridge exactly once, and return to the starting point. The mathematician
Euler learned of the problem and in a published paper1 demonstrated that in

1 Euler published his findings in a paper titled Solutio problematis ad geometriam situs pertinentis
(The solution of a problem relating to the geometry of position) in the Proceedings of St. Petersburg
Academy in 1736.
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order for a person to cross each bridge exactly once and return to the starting
point, each land mass must be connected by an even number (2, 4, 6, …) of
bridges. Since this was not the case for the Konigsberg bridges such a stroll
was not possible.
Before showing how Euler solved this problem, we must introduce the con-

cept of a graph.

Definition A graphG = (V, E) is a finite set V of ver-
tices (or nodes) and a finite set E of edges connecting
pairs of vertices. The diagram below depicts a graph
with five vertices and eight edges defined by

V = a,b,c,d,e

E = a,b , a,c , a,d , b,c , b,d , b,e , c,d , c,e

See Figure 5.1.

5.1.2 Glossary of Important Concepts in Graph Theory

Some of the main ingredients of a graph are

• The order of a graph G is the number of vertices in the graph, denote by |G|.

• The degree of a vertex is the number of edges connecting the vertex.

a

b

e

c

d

Figure 5.1 Typical graph.
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• A path is a sequence of vertices connected by edges.

• A cycle is a path starting and ending at the same vertex.

• A graph is connected if it is possible to traverse from any vertex to any
another vertex by a path.

• A vertex is odd (even) if it has an odd (even) number of edges adjacent to it.

In the graph illustrated in the definition, we have

• the order is |G| = 5.

• the degree of vertices a, b, c, d, e is 3, 4, 4, 3, 2.

• typical paths are acdb and aba.

• typical cycles are adbeca and cdac.

• the graph is connected.

• the vertices b, c, e are even, a, d are odd.

5.1.3 Euler Paths and Circuits

Two important concepts in the study of graphs are Euler paths and Euler
circuits.

• An Euler path is a path that passes through each edge of the graph exactly
once and ends at a different vertex.

• An Euler cycle (or tour) is a cycle that passes through each edge of the graph
exactly once and starts and ends at the same vertex.

Example 1 Euler Paths and Cycles
Find, if any, Euler paths and cycles in the graph in Figure 5.2.

A

B

C

DE

Figure 5.2 Typical graph.
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Solution
Typical Euler paths and tours are

Euler paths: BBADCDEBC, CDCBBADEB
Euler tours: CDCBBADEBC, CDEBBADC

5.1.4 Return to Konigsberg

We now state and indicate the proof of Euler’s famous 1736 theorem, effectively
solving the Konigsberg Bridge Problem.

Euler’s Original Graph Theorem If all vertices of a graph are even (2, 4, 6,…),
then the graph contains a cycle that crosses every edge exactly once. Such a cycle
through a graph is called an Euler Tour.2

Proof
Euler argued that since every vertex is even, a path arriving at a vertex other than
the starting vertex can always leave that vertex. ▌

Figure 5.3 shows a rough diagram of the Pregel River and four adjoining land
masses along with the graphical representation drawn by Euler. Note that not all
the vertices in the graph are even (in fact none are even), hence there does not
exist an Euler Tour in the graph.

The existence of Euler paths or cycles depends on the number of odd nodes:
0, 2, or more than 2.

Diagram of bridges Equivalent graph

Figure 5.3 Graphical representation.

2 Euler proved that if a connected graph has an “Euler” tour, then all the vertices must be even. The
converse that a connected graph with an Euler tour must have all even vertices was not proven
until 1873.
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5.1.4.1 Euler Paths and Tours and Odd Nodes

The following implications are basic to Euler tours and paths.

• zero odd vertices graph has an Euler tour.

• two odd vertices graph has an Euler path starting at one odd vertex and
ending at the other.

• more than two odd vertices graph does not have an Euler path.

Example 2 Euler Paths and Cycles
Determine if the graphs in Figure 5.4 have an Euler tour, Euler path, or neither3

Solution
We leave the fun for the reader.

Important Note Since the time Euler first realized that the Konigsberg Bridge
problem could be solved using the “geometry of relations,” others have acknowl-
edged the power of graph theory. In the 1800s, the German physicist Gustav
Kirchhoff observed that electric circuits could be analyzed by drawing them as
graphs with wires as edges and junction points as vertices. Today, graph theory
is an active area of mathematical research with applications in integrated circuits,
genomics, scheduling problems, and all sorts of large-scale networks.

Historical Note In a 1670 letter to Christian Huygens, themathematician Gott-
fried Leibniz (1646–1716) wrote as follows: “I am not content with algebra, in
that it yields neither the shortest proofs nor the most beautiful constructions
of geometry. Consequently, in view of this, I consider that we need yet another
kind of analysis, geometric or linear, which deals directly with position, as alge-
bra deals with magnitude.” What Leibniz thought needed was topology.

(a) (b) (c)

Figure 5.4 Finding Euler tours.

3 We thank the Math Forum at Drexel University for the use of these examples.
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One characteristic of graph theory is the variety of problems that can be
solved using its principles. One such fascinating problem that can be solved
using the tools of graphs is the Handshaking Problem.

Handshaking Problem At any social gathering, the number of people who
shake hands an odd number of times is an even number.4 The problem illus-
trates the type of reasoning often used in graph theory.

Proof
We begin by drawing a graph with a given number of vertices and no edges as
illustrated in Figure 5.5a) and note that each vertex has degree 0 and so the num-
ber of odd vertices is 0.We then simulate two persons shaking hands by drawing
an edge between two vertices and observing that for each new edge the number
of odd vertices goes up or down by 2, thus keeping the number of odd vertices an
even number.

One of the fascinating aspects of graph theory is that its applications are
almost endless. Anything that involves objects and relations between them
can be modeled as a graph. The nodes can be cities as vertices and airplane
flights as the edges between them. But how do we model the cost of a flight?
We simply use a weighted graph that assigns the costs of the flights to the edges.
There are algorithms for finding cheapest paths in a network.

(a) (b) (c)

(d) (e) (f)

Figure 5.5 Handshaking problem. (a) Odd vertices = 0, (b) odd vertices = 2, (c) odd
vertices = 4, (d) odd vertices = 2, (e) odd vertices = 4, and (f ) odd vertices = 2.

4 This theorem was also proven by Euler.
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5.1.5 Weighted Graphs

In many applications in modern technology, it is useful to assign nonnegative
numbers or weights to the edges of a graph.

Definition A weighted graph is a graph whose edges are assigned nonneg-
ative numbers called costs or weights.

One class of problems modeled by weighted graphs, which are becoming more
and more important in network design. Network design ranges from the design
of telephone and Internet landlines to electrical networks, gas lines, water
mains, sewage lines, and on and on. The goal is to design networks that operate
effectively at minimum cost.
Consider the weighted graph in Figure 5.6 consisting of eight cities, where the

numbers on the edges represent distances between cities. A problem might be
to design a high-speed train network connecting the cities and whose total
length is minimum. This is a simple task for eight cities, but when designing
communication networks connecting thousands of vertices, the problem is
far from trivial.
From the perspective of graph theory, the goal is to find the minimum span-

ning tree in the graph. A tree is a graph that contains no cycles, and a spanning
tree is a subtree that includes every vertex of the graph, and aminimum span-
ning tree is a spanning tree (there may be many) whose sum of its weights is a
minimum.
There is a well-known algorithm for finding the minimum spanning tree in a

graph called Kruskal’s Algorithm. The idea behind the algorithm is very sim-
ple. One starts with only the vertices of the graph, then, one by one, start add-
ing edges, starting with the edge with the smallest weight, then continue by
adding edges with increasing weights, provided no cycle is created. If a cycle
is formed, bypass that edge and continue on until all vertices are included in
the tree. The result will be a minimum spanning tree in the graph.5 Carrying
out Kruskal’s Algorithm for the eight cities in Figure 5.6, we find its minimum
spanning tree that we draw in Figure 5.7. The total length of the minimum
spanning tree is 4330 miles. This will give planners an estimate of the total cost
of the new rail system.

5 Kruskal’s minimum spanning tree algorithm is an example of a “greedy algorithm,” where the
strategy is to make the optimal choice at each stage. Most algorithms in graph theory are not greedy
algorithms and involve more intricate strategies.
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Figure 5.6 Weighted graph of cities and distances.

San Francisco Denver

Minneapolis

Dallas

Miami

Boston

St Louis

New York

Figure 5.7 Minimum spanning tree.



5.1.6 Euler’s Characteristic for Planar Graphs

In graph theory, a planar graph is one that can be drawn in the plane in a way
that no two edges cross each other. It is sometimes called the “integrated circuit”
graph. For example, the complete6 graph K4 of order four in Figure 5.8a) is a
planar graph. At first glance, the graph may not appear planar since two edges
cross, but keep in mind graph theory is not Euclidean geometry. Graph theory is
the “geometry of connections,” where shapes of edges are not important, only
how the vertices are connected. Hence, the graph in Figure 5.8a can be redrawn
as Figure 5.8b or Figure 5.8c that show no intersecting edges.

An important concept of planar graphs is that of the faces of graph, which
simply are regions bounded by the edges of the graph. The graph in
Figure 5.8 has four vertices, six edges, and four faces. The reader may have
counted only three faces, but in our present analysis, we count the infinite
region outside the graph as a face.
One property common to every connected planar graph is its Euler Charac-

teristic. Nomatter how different the graphs may appear, they have something in
common and that’s their Euler Characteristic. This leads us to Euler’s Charac-
teristic Theorem. We will see in Section 5.3 how the Euler Characteristic is an
important tool for distinguishing topological shapes in three dimension.

Euler’s Characteristic Theorem If G is a connected, planar graph with v
vertices, e edges, and f faces, then

v−e+ f = 2

Proof
First note that the “triangle graph” (v = 3, e = 3, f = 2) as drawn in Figure 5.9 has
an Euler Characteristic of 2.7

(a) (b) (c)

Figure 5.8 Equivalent drawings the planar graph K4.

6 A graph is called complete if every node is connected to every other node.
7 When counting the faces of a graph, it is an accepted practice to count the region of the plane that
lies “outside” the graph as one of the faces.
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Starting with an arbitrary connected, planar graph, the idea behind the proof
is to continually triangulate the graph, throwing out “boundary triangles,” until
eventually arriving at a triangle graph, and to show at each step of this process
the Euler Characteristic is unchanged. Hence, if the final graph has an Euler
Characteristic of 2, so does the initial graph.
Although we will not prove the result for an arbitrary connected, planar

graph, the general proof can be understood by working through the proof for
the planar representation for a cube as drawn in Figure 5.10a. Starting with
the graph in Figure 5.10a, we “triangulate” the five internal faces by drawing
edges between different vertices. If we now count the number of vertices, edges,
and faces in the triangulated graph in Figure 5.10b, we see that the number of
vertices is unchanged; the new graph has five additional edges and five new
faces, and so the Euler Characteristic v − e + f remains the same.

Figure 5.9 Euler characteristic.

(d) (e)

(a) (b) (c)

Figure 5.10 At each step v − e + f is unchanged. (a) Start, (b) triangulate faces, (c) remove
boundary triangles, (d) almost done, and (e) done.
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The next step is to eliminate the triangles that have one or two edges on the
boundary, such as four triangles in Figure 5.8b.We leave it to the reader to verify
that the removal of these four boundary triangles, either the type in Figure 5.10b
with one boundary edge, or the type in Figure 5.10c with two boundary edges,
does not change the Euler Characteristic. Continuing this process of eliminating
exterior triangles, we eventually arrive at the triangle graph whose Euler
Characteristic is two. Therefore, the original graph also has Euler Characteristic
of two. ▐

Problems

1. In the drawing in Figure 5.11 showing 10 bridges connecting 5 land masses,
determine if it is possible to start and end at any landmass and traverse each
bridge exactly once.
For Problems 2–7, determine if the given graph has an Euler Tour and if

so find one.

2.

Figure 5.11 Find an Euler tour.

gg h i j

a

b

d

c

f
e

Figure 5.12 Find an Euler tour.
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3.

4.

5.

a b

c d

e f g h i

kj

l m

Figure 5.13 Find an Euler tour.

a b

c d

e f

Figure 5.14 Find an Euler tour.

a b c d

Figure 5.15 Find an Euler tour.
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6.

7.

8. Euler Paths
If all nodes of a graph are even except two, then the graph has an Euler
path. This means one starts at one of the odd nodes, traverses all the edges
of the graph exactly once, and ends at the other odd node. Find the Euler
paths in the graphs in Figure 5.18.

Hamiltonian Tour
Another type of path, or more accurately tour, through a graph is theHam-
iltonian tour, which is a tour that starts at a given vertex, traverses each
vertex (not edge) exactly once, and then returns to the starting vertex.
A graph that contains a Hamiltonian tour is called a Hamiltonian graph.
Unfortunately, unlike Euler tours, there is no simple test for determining if a
graph has a Hamiltonian tour. For Problems, 9–12 find, if there is a Ham-
iltonian tour in the given graph.

a

b

c d

e f

Figure 5.16 Find an Euler tour.

a b c

f g h

d e

Figure 5.17 Find an Euler tour.
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9.

10.

(a) (b)

(c) (d)

Figure 5.18 Find an Euler path.

aa

b

c

de

f

g

h

Figure 5.19 Find a Hamiltonian path.

Figure 5.20 Find a Hamiltonian path.



11.

12.

13. Graphs of Order 3
Suppose the vertices of a graph are indistinguishable.
a) Draw all graphs with three vertices.
b) Draw all graphs with four vertices and three edges.

14. All Graphs of Order Four
Assuming the vertices of the graph are indistinguishable, draw all possible
graphs with four vertices. Hint: There are 11 of them.

15. Hamilton’s Famous Puzzle
In 1859, IrishmathematicianWilliam Rowan Hamilton (1805–1865) mar-
keted a puzzle shaped as a regular dodecahedron, a solid with 12 faces

Figure 5.21 Find a Hamiltonian path.

a

f

d

ec
b

i

g
h

j

Figure 5.22 Find a Hamiltonian path.
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where each face having the shape of a regular pentagon, as illustrated in
Figure 5.23. The name of a city was assigned to each corner of the dodec-
ahedron. The goal of the puzzle was to start at any city, find a route along
the edges of the dodecahedron, visiting each city exactly once and return-
ing to the starting city. Such a path is a Hamiltonian Tour. The planar rep-
resentation of a dodecahedron is shown in the following figure. Can you
find a Hamiltonian Tour through this dodecahedron?

16. Tours of Platonic Solids
Graphs in Figure 5.24 are planar representations of the five Platonic solids;
the tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Tell if
each has Euler and Hamiltonian Tours. If so, find one.

6

15

16

17
7

18

19
11

1220

13

14

1

2

34

1098

5

(a)(a) (b)

Figure 5.23 Planar representation of the regular dodachedron. (a) Regular
dodachedron and (b) planar representation of dodachedron.

Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure 5.24 Planar representations of the Platonic solids.

5.1 Introduction to Graph Theory316



17. Knight’s Tour
A knight’s tour on a chessboard in Figure 5.25 is a path on the board that
visits each square exactly once, then returns to the starting square. The
smallest chessboards for which a tour is possible are 5 × 6 board and
3 × 10 boards. A tour is not possible for 3 × 3 and 4 × 4 boards
a) Give an argument why a knight’s tour is not possible for a 4 × 4 board.

Hint: Any tour must pass through the upper left square 1 and the lower
right square 16.

b) Draw a graph of 16 nodes representing a 4 × 4 board, where each vertex
is connected by an edge if there is a knight’s move between the vertices.

c) Show that a Hamiltonian tour, which is a cycle that passes through each
vertex (not edge) exactly once and returns to the starting vertex, is not
possible for the graph you drew in part (b).

18. More Knight’s Tour
Place a chess knight (or a coin) on any one of the squares of the board
drawn in Figure 5.26 and find a tour that lands on each square exactly

11 22 33 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5.25 Knight’s tour.

Figure 5.26 Find the knight’s tour.
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once and returns to the starting square. Such a tour would be a Hamil-
tonian tour if one interprets the squares of the board as the vertices of
a graph.

19. Regular Graphs
A regular graph is one where all vertices have the same degree. A k-regular
graph is a regular graph where each vertex has degree k. Figure 5.27 below
shows k-regular graphs with six vertices for k ranging from zero to three.
Note that only the 3-regular graph is connected.
Draw the following regular graphs

a) 4-regular graph with 6 vertices
b) 5-regular graph with 12 vertices.
c) 3-regular graph with 8 vertices. These are called cubic graphs, and

there are five of them. Draw as many as you can.

20. Chromatic Number of a Graph
The chromatic number of a graph is the smallest number of colors needed
to color a graph so that no two adjacent vertices have the same color. Find
the chromatic numbers of the graphs in Figure 5.28.

0 - regular graph 1- regular graph

2 - regular graph 3 - regular graph

Figure 5.27 Regular graphs.

5.1 Introduction to Graph Theory318



21. Moser Spindle
The chromatic number of the plane is the smallest number of colors
required to color all the points in the plane so that no two points that
are exactly one unit apart have the same color. The chromatic number
is unknown but known to require at least five colors.8 It is also known that
any unit-distance graph, no matter how complicated, can be colored with
seven colors. The Moser spindle is a unit-distance graph with 7 vertices
and 11 edges all have the same length, and can be colored with four colors.
Can you four-color the Moser spindle unit-distance graph drawn in
Figure 5.29?

(a) (b) (c)

(d) (e) (f)

Figure 5.28 Find the chromatic number.

Figure 5.29 Moser Spindle.

8 In 2018 biologist Aubrey de Grey found a graph that could not be colored with four colors and
thus raised the question to five colors.
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22. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward applications of graph theory, graph theory in computer
science, and largest known graphs.
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5.2

Directed Graphs

Purpose of Section We introduce the directed graph and its corresponding
adjacency matrix and show how directed graphs arise in modern society,
including social networks, tournaments, the Google Page Rank system, and
the optimization technique of dynamic programming.

5.2.1 Introduction

Thus far in our discussion of graphs, we have not associated a “direction”with the
edges of the graph. Inmanymodels, however, such as hyperlinks connectingweb-
pages, traffic flow problems, we impose a direction on the edges. A directed
graph (or digraph) is defined as a graph whose edges are “directed” from one
vertex to another.We call these types of edges directed edges (or arcs). If a direc-
ted edge goes from vertex u to vertex v, then u is called the head (or source) and v
is called the tail (or sink) of the edge, and v is said to be the direct successor of u
and u is the direct predecessor of v. See Figure 5.30.
The applications of directed graphs range from transportation problems in

which traffic flow is restricted to one direction and one-way communication
problems, to asymmetric social interactions, athletic tournaments, and even
theWorld-WideWeb. Before talking about applications, however, we introduce
the concept of the adjacency matrix of a directed graph.

Definition The adjacency matrix of a directed graph with n vertices is an
n × n matrix M = (mij), where the mij entry of the matrix denotes

mij =
1 if there isadirected edge from vertex i to vertex j

0 if there isnodirected edge from vertex i to vertex j
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For example, the adjacency matrix for the digraph in
Figure 5.30 is

M =

0 1 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

1 0 1 0 1 0

0 1 0 1 0 1

1 0 0 0 0 0

5.2.2 Tournament Graphs (Dominance Graphs)

A tournament graph (or dominant graph) is a direc-
ted graph where every pair of vertices is joined by
exactly one directed edge. In other words, for every pair
of vertices u and v, there is a directed edge from u to v
or a directed edge from v to u. Figure 5.31 shows a tour-
nament graph with five vertices.
Tournament graphs are aptly named since they

model round-robin tournaments in tennis, baseball,
and so on, where every team plays every other team
exactly once, where we assume no ties.
The number of directed edges “leaving” a vertex u is

called the out-degree of the vertex and denoted by
od(u). In the directed graph in Figure 5.31, we have od(5) = 3, od(1) = 2. If the
vertices of a directed graph represent athletic teams, a directed edge from vertex
u to vertex v means team u beats team v and the out-degree of u represents the
number of wins for team u. On the other hand, the number of directed edges
arriving at a vertex v is called in-degree of v and denoted by id(v). In the graph
in Figure 5.31, we have id(5) = 1, id(1) = 2. In connection with athletic tourna-
ments, the in-degree of vertex v represents the number of losses for team v.
Tournament graphs are even used by sociologists, who call them dominance

graphs, and are used to model social interactions.

5.2.3 Dominance Graphs in Social Networking

Many social situations involve people or groups of people (countries, cultures,
universities, and so on) in which some individuals or groups “dominates” others.
The word “dominate” can refer to a wide variety of dominance: cultural,

1 2

3

45

6

Figure 5.30 A directed
graph with directed edges.

4 3

2

1

5

Figure 5.31 Tournament
graph with five vertices.
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physical, political, economic, and so on. Nowadays, online social networking
services such as Facebook, Twitter, LinkedIn, and so on, bring people together
and offer interesting dynamics between individuals.
Suppose a sociologist wishes to study dominance patterns in a close-knit

group of college women. The group consists of five students: Amy (A), Betty
(B), Carol (C), Denise (D), and Elaine (E). The sociologist begins by conducting
interviews with each pair to determine their pair-wise dominance.1 If it has been
determined that person A dominates person B by some metric, we denote this
by writing A B. (We assume in this simple model that for each pair of stu-
dents, one person dominates the other.) After conducting the interviews, the
sociologist draws the dominance graph that represents pair-wise dominations
of the entire group, which is shown in Figure 5.32. Note that Amy dominates
Betty and that Denise dominates Carol.

The adjacency matrix for the dominance graph is drawn in Figure 5.33.
The number of one’s in each row is the out-degree of the row vertex and

represents the number of first-stage dominances of that individual. Note that
Amy and Denise each have a “score” of three, Carol and Elaine each have a score
of two, and Betty has a score of zero. In other words, Amy and Denise are tied
after the first round.

Elaine

Denise
Carol

Betty

Amy

Figure 5.32 Dominance graph.

1 The determination of one-on-one dominance can be carried out by a series of questions, although
it can be subjective in some instances.

5.2.3 Dominance Graphs in Social Networking 323



The goal is to find the group leader.2 If one person dominates more people
than all others in the first round, then that person is declared group leader.
However, if two or more people tie in the first round, we resort to second-stage
dominances. In our example, we have a tie between Amy and Denise, so we
move on to the second round.
To understand second-stage dominances, note that Elaine dominates Denise

and Denise dominates Amy. Hence, we say that Elaine has a second-stage
dominance over Amy and denote this by Elaine Denise Amy. To find
the number of second-stage dominances, we find the square3 of the adjacency
matrix M2, which is given in Figure 5.34.

To interpretM2, note that Amy Elaine Denise, which is the only second-
stage dominance of Amy over Denise. This fact is indicated by the one in row
Amy, column Denise of M2. Amy has 2 second-stage dominances over Betty
(Amy Carol Betty) and (Amy Elaine Betty), indicated with a two
in row Amy, column Betty of M2. In other words, the elements of M2 give

Amy Betty Carol Denise Elaine

Amy 0 1 1 0 1

Betty 0 0 0 0 0

Carol
M =

0 1 0 0 1

Denise 1 1 1 0 0

Elaine 0 1 0 1 0

Figure 5.33 Adjacency matrix.

Amy Betty Carol Denise Elaine

Amy 0 2 0 1 1

Betty 0 0 0 0 0

Carol 0 1 0 1 0

Denise 0 2 1 0 2

Elaine 1 1 1 0 0

M2 =

Figure 5.34 Second order dominances.

2 If these were athletic teams playing in a round-robin tournament, we would want to know who
should be declared the winner.
3 It is not necessary that the reader knows how to find the square of amatrix. One can simply look at
the graph to count the second-order dominances.
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the second-order dominances of row members over column members. From
M2 we see that Denise has a total of 5 second-state dominances (sum of the
numbers in row Denise) while Amy has four (sum of the numbers in row
Amy). Thus, we declare Denise the second-stage group leader.4

We could continue by finding third-order dominances, but we stop here and
find the sum of the matrices M +M2, whose elements give the total number
of first-stage and second-stage dominances of each individual shown in
Figure 5.35.

Here, Amy has a total of 7 first- and second-stage dominances over the mem-
bers in the group while Denise has 8, so we call Denise the leader of the group.
It is interesting that a group leader in the social network depends on the out-

degrees of the vertices, whereas for ranking webpages on the Internet, one
focuses on the in-degrees or the number of links pointing to a webpage.

5.2.4 PageRank System

Google’s search engine models the Internet as a
directed graph where vertices are websites and the
edges are links between websites. The strategy
behind Google’s PageRank system is based on count-
ing the number and quality of links to a website as a
way to measure the importance of the site. Consider
the tiny Internet of four websites as drawn in
Figure 5.36 with several individuals online. The num-
bers on the edges of the digraph estimate the proba-
bility that an individual in the column website will
move to the row website.

Amy Betty Carol Denise Elaine

Amy 0 3 1 1 2

Betty 0 0 0 0 0

Carol 0 2 0 1 1

Denise 1 3 2 0 2

Elaine 1 2 1 1 0

M + M2 =

Figure 5.35 First and second order dominances.

1
1/3

1/3 1/3 1

1

1/2

1/2

2 4

3

Figure 5.36 Web graph of
a small internet.

4 Since Amy and Denise both have at least 3 second-stage dominances, we could compute M3(G),
which would give the number of third-stage dominances. One suspects, however, that although we
might define third-order dominances in theory, it is difficult to observe them in reality.
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The digraph in Figure 5.35 gives rise to the transition matrix in Figure 5.37.
Note that an individual at website one will probably move to websites two,

three, or four with equal probabilities of 1/3, whereas an individual at website
three will probably move to website one.
Initially, we assume the fraction of individuals at each website is 0.25, which

we represent by the PageRanks of the four sites:

R0 = 0 25, 0 25, 0 25, 0 25

The idea is to simulate the movement of online individuals, using the transition
matrix, and estimate the fraction of individuals frequenting each website after a
period of time. To determine this fraction after one “click of the mouse,”we com-
pute the product of the transitionmatrix with the initial PageRank distribution, or

R1 =TR0 =

0 0 1 0

1 3 0 0 0

1 3 1 2 0 1

1 3 1 2 0 0

0 25

0 25

0 25

0 25

=

0 25

0 08

0 45

0 21

This new PageRank tells us, probabilistically speaking, that 25% of online indi-
viduals will favor website one, 8% website two, 45% website three, and 21% favor
website four. These fractions come from multiplying the fraction of individuals
that prefer a given website times the probability people at that website will move
to the next website. The calculations that yield the values in R1 are

fraction at website 1 =(1)(0.25) = 0.25
fraction at website 2 =(1/3)(0.25) = 0.08
fraction at website 3 =(1/3)(0.25) + (1/2)(0.25) + (1)(0.25) = 0.45
fraction at website 4 =(1/3)(0.25) + (1/2)(0.25) = 0.21

We now continue this process again and again, finding

R2 =

0 45

0 08

0 33

0 12

,R3 =

0 33

0 16

0 32

0 19

,R4 =

0 32

0 12

0 37

0 19

,…,R100 =

0 35

0 13

0 35

0 17

Webpage 1 Webpage 2 Webpage 3 Webpage 4

Webpage 1 0 0 1 0

Webpage 2 1 3 0 0 0

Webpage 3 1 3 1 2 0 1

Webpage 4 1 3 1 2 0 0

T =

Figure 5.37 Transition matrix.
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which in the long run we interpret that 35% of individuals will be on webpage 1,
13% on webpage 2, 35% on webpage 3, and 17% on webpage 4. This ordering
gives search engines a way of measuring the popularity and importance of
website pages.

Important Note As the reader might suspect, Google’s actual PageRank
system includes several bell and whistles in addition to this basic description.
The mathematics behind Google’s search engine is a Markov Chain, which is
a probabilistic model that describes the movement of individuals through
the internet. The states of the Markov Chain are the websites and Google wants
to know the steady state of the Markov Chain, which determines the popularity
of websites.

5.2.5 Dynamic Programming

Many applications of directed graphs relate to the movement of objects – be it
cars, trucks, airplanes, or even Internet packets from one location to another,
and the objects being moved involve costs. Figure 5.38 shows a directed graph
which represents a collection of possible paths from the “start” to the “end”with
numbers on the edges representing the distance of traversing the edge. The
problem is to find the path that minimizes the total distance of going from
the start to the end.

Although a quick examination of this small graph will convince you the min-
imum path is 1 − 3 − 4 − 7 − 9, resulting in a minimum distance of 13, for larger
graphs with maybe 1000 nodes a visual inspection of the graph would probably
provide no useful information about the shortest path.
To solve this problem, we use a powerful technique called dynamic program-

ming, introduced by Richard Bellman in the 1950s. The general philosophy of
the technique is to subdivide complex problems into smaller parts, solve the
component parts and use these results to solve the larger problem.

1

3

22

2

33

Start End

10

3

4

5
12

5

8

5

5

4

10

9

9

4
7

8

6

Figure 5.38 Minimum path problem.
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In the current problem, the strategy is to work backwards, from the end node
to the starting node. We begin by introducing the quantity

si = shortest distance from vertex i to theend

In the graph in Figure 5.38, we have s9 = 0, s7 = 4, s6 = 9, s8 = 10. Our goal is to
find s1 We now let

dij = distance from vertex i to vertex j

whichmeans d12 = 3, d46 = 5, and so on. Hence, dij + sj= distance from vertex i to
vertex j plus the smallest distance from j to the end.
To find the shortest distance si from vertex i to the end, we compute the

minimum of

si = min
j

dij + sj

taken over all vertices j connected to vertex i. For example, to find the shortest
distance s4 from vertex i = 4 to the end, we find the minimum of the following
four distances

Table 5.1 Finding minimum distance to the end.

Vertex si = minimum path to end from vertex i Path

9 s9 = 0

8 s8 = d89 + s9 = 10 + 0 = 10 8 9

7 s7 = d79 + s9 = 4 + 0 = 4 7 9

6 s6 =min
d68 + s8

d69 + s9
=min

5 + 10

9 + 0
= 9 6 9

5 s5 = d57 + s7 = 4 + 4 = 8 5 7

4 s4 =min

d45 + s5 = 3 + 8= 11

d46 + s6 = 5 + 9= 14

d47 + s7 = 5 + 4= 9

d48 + s8 = 8 + 10 = 18

= 9 4 7

3 s3 =min
d34 + s4

d36 + s6
=min

2 + 9 = 11

12 + 9 = 21
= 11 3 4

2 s2 =min
d24 + s4

d25 + s5
=min

3 + 9

10 + 8
= 12 2 4

1 s1 =min
d12 + s2

d13 + s3
=min

3 + 12

2 + 11
= 13 1 3
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4to5distance+mindistance home from5= d45 + s5 = 3 + 8 = 11

4to6distance+mindistance home from6= d46 + s6 = 5 + 9 = 14

4to7distance+mindistance home from7= d47 + s7 = 5 + 4 = 9

4to8distance+mindistance home from8= d48 + s8 = 8 + 10 = 18

Taking the minimum of these subproblems, the shortest distance from vertex
four to the end vertex is s4 = 9. We continue this process, moving backward in
the graph and finding the minimum distances s8, s7,… , s1 from each vertex,
although not necessarily descending in perfect order. We now advise the reader
to get out pencil and paper compute the minimum distance to the end from
each vertex, eventually finding s1, the shortest distance from the starting vertex
to the final vertex. The computations in Table 5.1 show the shortest distant si to
the end from every vertex i in the graph.
Hence, the minimum distance from vertex 1 to vertex 9 is 13 and retracing the

path from start to end we find path that gives the shortest distance is 1 3
4 7 9.

Problems

1. Problems 1–6 find the adjacency matrixM of the given digraph. Then com-
pute M2 and M +M2 and verify that the elements of these matrices agree
with the number of dominations in the graphs.

2.

3.

1 2

Figure 5.39 Find the adjacency matrix.

1 2

Figure 5.40 Find the adjacency matrix.

3 2

1

Figure 5.41 Find the adjacency matrix.
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4.

5.

6.

7. Group Dominance
The graph shown in Figure 5.45 shows the dominance of a group of four
classmates: Amy, Betty, Charlie, and Denise.
a) Construct the adjacency matrix M for this graph.
b) Is there a first-stage dominance leader?
c) Compute M2 and interpret its elements.
d) Who is the group leader?
e) Which person is dominated by the most other people?

3 2

1

Figure 5.42 Find the adjacency matrix.

1 2

4 3

Figure 5.43 Find the adjacency matrix.

1 2

43

Figure 5.44 Find the adjacency matrix.
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8. Round-Robin Tournaments
The graph in Figure 5.46 shows the results of a round-robin tournament for
five baseball teams.
Round-robin tournament graph

a) Construct the adjacency matrix M for this graph.
b) Is there a consensus leader for the group?
c) Compute M2 and interpret its elements.
d) Which team is the conference winner?

Amy Betty

CharlieDenise

Figure 5.45 Group dominance.

1

2

34

5

Figure 5.46 Round robin tournament.
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9. Landau’s Theorem
A theorem by Landau states that if some vertex u in a dominance graph has
a larger out-degree than all other vertices, then either u dominates all
other vertices v, or if it does not dominate a given vertex v, then u dom-
inates a third vertex w which in turn dominates v. What does the theorem
say in the language of round-robin tournaments? Verify this theorem for
the dominance graphs in Problems 1–6.

10. Landau’s Theorem in the Yankee Conference
Suppose the football teams in the Yankee Conference play every other
team exactly once during the season. At the end of the season, Maine
has won more games than any other team. However, Maine lost to Ver-
mont. What does Landau’s theorem say in the language of the Yankee
Conference?

11. Dynamic Programming
Use dynamic programming to find the shortest way to accomplish the
project in Figure 5.47.

1

0

5

432

6 7 8

9

Time
1 h

2 h

3 h
3 h

3 h

2 h

2 h

4 h

1 h

2 h

2 h1 h

1 h

2 h

1 h

Start of job

Figure 5.47 Shortest time problem.
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12. Ranking Webpages
The dominance graph in Figure 5.48 illustrates a tiny Internet of four web-
pages where the vertices represent the webpages and the directed edges
represent links from one webpage to another. Rank the webpages from
first to last. Note that node 1 moves to nodes 2, 3, and 4, each with
probability 1/3, whereas node 2 moves to nodes 3 and 4, each with prob-
ability 1/2.

13. Game Time on a Directed Graph
Sixteen objects are placed on a table. At each play of the game, each player
selects either 1, 2, 3, or 4 objects from the pile. The players alternate turns
and the person who takes the last object (or objects) from the table wins.
Draw a directed graph of 17 vertices labeled from 0 to 16 illustrating the
number of objects on the table and directed edges between vertices that
give the best possible move at each vertex. The player who starts the game
will always win if the right strategy is used. Find the different paths
through the graph from vertex 16 to vertex 0 what will ensure the first
player wins. What is the strategy?

14. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward applications of directed graphs, Google’s PageRank system,
directed graphs in social rankings, and directed graphs in athletic rankings.

1 3

2 4

Figure 5.48 Ranking webpages.
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5.3

Geometric Topology

Purpose of Section To introduce the idea of topological equivalence between
figures (i.e. curves, surfaces, …) and the idea of a homeomorphism between
them. We show how the Euler characteristic, previously defined for connected,
planar graphs and convex polyhedra, comes into its own as an aid in determin-
ing if two figures are topologically equivalent.

5.3.1 Introduction

It is instructive to compare a geometer with a topologist. For a geometer, the
pattern of ridges on your fingers and palms are too amorphous for serious anal-
ysis. There are no lines, circles, or other geometric shapes which geometers love.
On the other hand, a topologist is not restricted to the rigid shapes of Euclidean
geometry, but studies more general patterns and classifies them according to
specific topological rules. See Figure 5.49.
When a topologist looks at the ridges on your fingers and palms, the topol-

ogist sees nearly parallel curves, which is nature’s way of preferring order and
continuity, but when ridges collide things get complicated. Ridges come
together in a variety of interesting, often unexpected ways, and it is the job
of a topologist to classify the ways this can occur. You may not have had an
interest in topology at this stage in your life, but the ridges on your fingers pro-
vide a lesson in basic topology.
The study of topology is not just about vertices and edges studied in the pre-

vious two sections on graphs, or even about one-dimensional fingerprints, but
extends to surfaces in higher dimensions 2, 3, 4,…, where the standard rules of
Euclidean geometry are relaxed, yielding an exciting new geometry, what some
call “rubber-sheet” geometry.
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When we are told topology is concerned with properties of surfaces, curves,
knots, and the intricacies of geometric objects, the first thing that comes tomind
iswhat? Physical objects are so commonplace to our experience that it is hard to
imagine anyone telling us something that is not familiar. That said, take a strip
of paper and give one of the ends a half-twist, then tape the ends together creat-
ing a loop. Now, take a second strip, but now give the ends a complete twist
rather than a half-twist. Now take a pencil and draw a line down the center
of each of the two strips. Anyone not familiar with this simple experiment will
be surprised with the result. The strip given a complete twist results in a simple
loop as expected, but the strip given a half-twist does not result in a loop at all,
but a one-sided surface called aMobius strip. Now take a pair of scissors and cut
theMobius strip down the middle. Does your lifetime experiences with surfaces
predict what happens? Are you left with two smaller Mobius strips? Or maybe
you get one long two-sided Mobius strip. Now try cutting the Mobius strip, not
down the middle of the strip, but one-third the way from an edge. Do you know
what happens now? Each time it is different. You can carry out your own experi-
ments to find out if it is not intuitively clear.
While the Mobius strip is mesmerizing, probably its greatest impact has been

to spur interest in topological concepts. Imagine if you can a surface made from
rubber that can be stretched, bent, twisted, and deformed in any way one
pleases, but just do not tear it. Although the shape can change in many ways,
there are properties that remain unchanged. In plane geometry, one is con-
cerned with distance, curvature, angle, and so on, but in topology one forgoes
those more rigid geometric properties with the aim of discovering what one
could argue are more fundamental properties of an object. Properties that
remain unchanged under a continuous deformation are called topological
properties, and we say two objects are topologically equivalent if each object
can be stretched, bend or continuously deformed into the other. Like the iconic
doughnut and coffee cup, they may not be geometrically equivalent in the sense
of Euclid, but they are topologically equivalent in the sense of topology since

Plain arch Tented arch Plain loop

Plain loop Whorl Pocket loop

Figure 5.49 Topological fingerprints.
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with a little time and effort one can pull, stretch, kneed one into the other (see
Figure 5.50).

We have often heard the story of the poor topologist who cannot distinguish a
doughnut from a simple coffee cup, but the story is false and the joke is on eve-
ryone else. The topologist can tell the difference, it is just that the topologist
does not care. Topology relaxes the rigid rules of geometry and seeks out
new properties of objects remain invariant under more general transformations.
The topologist discards the old geometric tools of ruler and protractor, repla-
cing them with the new tool of continuity (see Figure 5.51).

We go about our daily lives not giving much thought about many fundamental
difference between objects. Look around you and think about some qualitative
difference between objects. Figure 5.52 shows a few typical household objects
with some fundamental differences between them that interest topologists.
The previous discussion lead us to the formal definition of a homeomorphism

and homeomorphic (or topologically equivalent) objects.

Definition Amapping f : A B between sets is called a homeomorphism if it
is a one-to-one correspondence between A and B that is continuous and has a
continuous inverse. The sets A to B are then called homeomorphic, or topo-
logically equivalent, which is denoted by A≈ B. Intuitively, a homeomorphism
is a continuous stretching and bending of an object into a new shape.

Figure 5.50 The iconic doughnut and coffee cup equivalence.

Geometry

Topology

= =

≠≠

Figure 5.51 Topologically equivalent objects.
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5.3.2 Topological Equivalent Objects

Example 1 Topological Equivalent Letters
The letters of the alphabet can be treated as graphs like the ones studied in the
Section 5.1 that can be stretched and bent. However, no matter how much
stretching and bending of the letters, there are two properties that never change
(see Table 5.2).
One property that remains invariant is the property of having a given number

of “holes” (or faces in the language of graphs) like in the letter, like “Q” will
always have one hole in it, while B always has two, and M will never contain
a hole. Another property of the letters that never changes is the number of lines
connecting certain points on the letter, or vertices in the language of graphs. For
example the letter X contains a point (or vertex) where the letter meets itself

Sphere

Torus

Double torus

Triple torus

Figure 5.52 Household objects with topological similarities.
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four times (a degree four vertex), and nomatter howmuch stretching and bend-
ing, the letter X it will always have exactly one point that connects to four lines.
Table 5.2 groups the alphabet into equivalence classes according to holes and
‘tails’ of the letters adjacent to a vertex.

Important Note Topology is mostly the study of position without any regard
to distance and angle. It is concerned with connections between objects, much
like we saw when we studied graphs in the previous sections. Although topol-
ogy is studied for its own sake, like many areas of pure mathematics, many of its
ideas apply to the real world. Topological chemistry is an active area of research
helping to understand molecular structures.

Although many objects can be seen to be topologically equivalent visually, an
analytic solution is preference if possible.

Example 2 Open Real Intervals
There exists a homeomorphism between a bounded and unbounded set.
Suppose

f x =
1
x

This function is a homeomorphism between the bounded set (0, 1) and (1,∞).
It is interesting to think that we are able to “stretch” the bounded set (0, 1) to the
set (1, ∞) of infinite length.

Table 5.2 Topologically homeomorphic letters.

Topological invariants Homeomorphic letters

no holes, no tails {C, G, I, J, L, M, N, S, U, V, W, Z}

no holes, three tails {E, F, T, Y}

no holes, four tails {X}

one hole, no tails {D,O}

one hole, one tail {P,Q}

one hole, two tails {A, R}

two holes, no tail {B}

no holes, four tails {H, K}
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5.3.3 Homeomorphisms as Equivalence Relations

In Section 3.3, we saw that an equivalence relation partitions a set into equiv-
alence classes, where the members of each equivalence class share a common
property. We now show the relation of being homeomorphic between two sets
is an equivalence relation, thus enabling one to partition surfaces, curves, and
other objects into distinct equivalence classes whose members share a common
property.

Theorem 1 The relation of two objects being topologically equivalent is an
equivalence relation.

Proof
We must show the relation is reflexive, symmetric, and transitive.

Reflexive: A set is topologically equivalent with itself since the identity map
f(x) = x satisfies the conditions of a homeomorphism.

Symmetric: If sets A and B are topologically equivalent, this implies there exists
a one-to-one correspondence f from A to B that is continuous with a contin-
uous inverse, which in turn implies that f −1 exists and is also a one-to-one
correspondence from B to A with a continuous inverse. Hence, the relation
of two sets being homeomorphic is symmetric.

Transitive: If A and B are topologically equivalent, then there exists a contin-
uous, one-to-one correspondence from g : A B with a continuous inverse
g −1. If B is topologically equivalent to C, then there exists a continuous,
one-to-one correspondence between f : B C that has a inverse f−1. These
two facts imply that the composition

f ∘g x = f g x

also satisfies the conditions of a homeomorphism and hence, the relation of two
sets being homeomorphic is transitive. ▌

5.3.4 Topological Invariants

A major problem in geometric topology is to determine if two given objects are
topologically equivalent. To show two objects are topologically equivalent it suf-
fices to find just one homeomorphism between them. However, to prove that
two objects are not homeomorphic, there is no special function that identifies
nonhomeomorphic objects. To show that two objects are not homeomorphic,
the strategy is to look at properties, called topological invariants, that are
shared by homeomorphic objects. Thus, if two objects do not share a topological
invariant, they are not homeomorphic.
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One topological invariant of a surface is the property of being able to contin-
uously shrink any simple closed curve on the surface to a single point on the
surface. This is true for a sphere, but not true for a torus so we know the sphere
is not topologically equivalent to a torus. (A string tied around the inside circle
of a torus cannot be shrunk to a point.) (See Figure 5.53).

Other topological properties are the property of being connected (i.e. not the
union of two disjoint pieces), the cardinality of a set, and the number of sides of a
surface.
Table 5.3 lists a few topological properties for solid figures and surfaces. The

reader may not be familiar with many of them, but should appreciate the fact
that topologists have categorized dozens of such properties.

Can’t shrink
this string
to a single point

Figure 5.53 Topological test.

Table 5.3 A few topological properties.

Topological properties of sets in the plane

Path-wise connected

The number of path-wise components

The number of cut points of similar types

Closed and bounded

Connectedness

Euler characteristic

Number of sides of a surface

A curve being simply connected
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5.3.5 Euler Characteristic for Graphs, Polyhedra,
and Surfaces

We saw in Section 5.1 that a connected, planar graph with v vertices, e edges,
and f faces satisfied the relation

v−e+ f = 2

called the Euler characteristic. It is not difficult to visualize that if the graph was
drawn on a rubber sheet and no much you stretch or bend the rubber sheet, this
number will always be two.
Although the Euler characteristic is valid for planar connected graphs in the

plane, its importance is how it relates to polyhedra surfaces. A polyhedron is a
solid whose surface consists of faces like squares, triangles, pentagons, and so
on. Figure 5.44 shows the five famous polyhedra from Euclid’s Elements, called
the Platonic Solids. These solids, the tetrahedron, cube, octahedron, dodeca-
hedron, and icosahedron, along with their planar graph representations, are
drawn in Figure 5.54.

Theorem 2 Euler Characteristic for Polyhedra
Every simply connected, convex, polyhedra with v vertices, and e edges, and f
faces, satisfies the equation

v−e+ f = 2

known as the Euler characteristic.

Proof
Euler never actually proved his famous equation andmanymathematicians at the
time tried and failed. It was finally proven in 1811 by 20-year-old Augustin-Louis

v = 4

tetrahedron cube octahedron dodecahedron icosahedron

e = 6
f = 4

v – e + f = 2

v = 8
e = 12
f = 6

v – e + f = 2

v = 6
e = 12
f = 8

v – e + f = 2

v = 20
e = 30
f = 12

v – e + f = 2

v = 12
e = 30
f = 20

v – e + f = 2

Figure 5.54 Platonic solids and their planar graph representations.
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Cauchy. Cauchy’s idea was to think of a polyhedron as hollow objects and their
surfaces made of rubber. He then cut off one of its faces and stretched out what
remained onto a flat surface as a planar graph. We illustrate in Figure 5.55 how
Cauchy did this starting with a cube.

Observe that after completing the maneuver of cutting off the top of the cube,
the topless cube and the resulting planar graph both have 8 vertices, 12 edges,
and 5 faces. The five faces of the cube are the result of removing the top face
before bending. If we agree to associate this top face with an “outside” face
of the planar graph as we did in Section 5.2, then both the cube with its top face
and a planar graph with its “outside’ face both have six faces. Hence, the cube
and its planar representation both have the same number of vertices, edges, and
faces. But, as we saw in Section 5.1, the Euler characteristic of a connected, pla-
nar graph is 2, and hence the same holds for a cube. Although this proof is not a
general proof for arbitrary convex polyhedra, the general proof follows along the
same lines. ▌

Historical Note The word “topology”was first used in a 1847 paper by Johann
Listing called Vorstudien zur Topologie. Although that paper was not particularly
important, he published a more noteworthy paper in 1861 in which he
described the one-sided Mobius strip four years before Möbius.

5.3.6 The Euler Characteristic of a Surface

The role of Euler’s Characteristic in topology is that it helps determine if sur-
faces are topologically equivalent. If two surfaces do not have the same Euler
characteristic, they are not topologically equivalent. For example the Euler char-
acteristic of a sphere is two, while the Euler characteristic of a torus (doughnut)
is zero, thus the sphere is not topologically equivalent to the torus. It is not hard
to imagine that you cannot stretch and bend a sphere into the shape of a torus,
or vice-versa, no matter how hard you try.

Start wih
the cube

Cut off the top Stretch
it out

Until
flat

Figure 5.55 Converting a cube to its planar graph.
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Mathematicians find theEuler characteristic of a surfacebya processof covering
the surface with a net of polygons, often triangles consisting of vertices, edges, and
faces. To explain how this is done, we demonstrate how a sphere can be “triangu-
lated” with a series of vertices, edges, and faces in the form of a spherical tetrahe-
dron.1 This surface tetrahedron suggests an inscribed tetrahedron as shown in
Figure 5.56, and since the inscribed tetrahedron has Euler characteristic of two,
and does not change as the tetrahedron is inflated to the shape of the sphere, we
define theEuler characteristicof the sphere as thatof the tetrahedron,which is two.

It is not necessary to use triangles for the net of polygons of the sphere. For
example a net of squares leads to a topologically equivalent inscribed cube,
which also having Euler characteristic of two and is unchanged as the cube is
inflated to the shape of a sphere, thus defining the Euler characteristic of the
sphere again as two (see Figure 5.57).

To find the Euler characteristic of the torus, we again construct a net of poly-
gons that will inflate to that of the torus (see Figure 5.58).
We now compute the Euler characteristic by carefully counting the vertices,

edges, and faces of the (nonconvex) polygon in Figure 5.48. We cannot really
see every side of the polygon in the drawing, but we can still imagine what is on
the other side. Counting vertices, edges, and faces, we find the numbers given in
Table 5.4:

Terehedron Inflated tetrahedron

≈

Figure 5.56 Finding the Euler characteristic of a sphere.

Cube Polygonal net on
a cube

≈

Figure 5.57 Finding the Euler characteristic of a sphere.

1 In the spherical tetrahedron, the faces are not flat and the edges are not straight.
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Hence, we have the Euler characteristic of

v−e+ f = 16−32 + 16 = 0

Other types of surfaces like multihole tori containing multiple holes are not
topologically equivalent to either the sphere or single-hole torus. It turns out
that each hole in a sphere decreases its Euler characteristic by two, thus a
double-hole torus has Euler characteristic of −2, a triple-hole torus an Euler
characteristic of −4, and so on.

Problems

1. Experimenting with the Möbius Band
Take a piece of paper about a foot long and an inch wide. Bring the ends of
the paper together and give the ends of the paper a half twist then tape the
ends together. You have now created a Möbius strip drawn in Figure 5.59.2

You are now ready to carry out the following experiments.

Figure 5.58 Polygon inscribed in a torus.

Table 5.4 Euler characteristic of a torus.

Top Bottom Vertical Total

Vertices 8 8 0 16

Edges 12 12 8 32

Faces 4 4 8 16

2 Möbius strips are not that uncommon in the real world. Often, in industrial settings, conveyor
belts are given a half twist so each side of the belt wears evenly.
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a) Take a red pencil and color one of the edges of the Möbius strip. Start
anywhere on the strip and continue until you arrive back at the starting
point. How many edges are there? Surprise, only one edge.

b) Now let us color the sides of the strip. Draw a line down the middle of
the strip until you arrive back at the starting point. How many sides are
there to the strip? Double surprise.

c) Things just get more curious with the Möbius strip. Now take a pair of
scissors and cut the band lengthwise down the middle. What do you
think will happen?

d) Now create a second Möbius strip but this time instead of cutting the
band down the middle, cut it about one-third the way from one of
the edges. The results now are even more surprising.

2. The Doughnut and Coffee Cup
The doughnut and the coffee cup are two objects everyone knows are
homeomorphic. Can you find other objects that are not homeomorphic
to the doughnut or coffee cup? What are some topological properties
of these objects that are different from those of the doughnut or cof-
fee cut?

3. Euler Characteristic Experiment
Start with a planar graph consisting of only one point and compute the
Euler characteristic. Then start adding vertices and edges in any way you
please. Note the Euler characteristic will always be 2.

4. Euler Characteristic for Planar Polygons
Show that the Euler characteristic v − e + f of each of the polygons in the
plane, square, polygon, hexagon, and octagon is one, although if you count
the unbounded region outside the polygon as a face, then the Euler Char-
acteristic is 2.

Figure 5.59 Mobius strip.
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5. Euler’s Formula
Carry out the steps that Cauchy used to convert a polyhedron to a planar
graph for a tetrahedron and an octahedron.

6. Truncated Cube
A truncated solid is a polyhedra with its vertices clipped off drawn in
Figure 5.60. Find the number of vertices, edges, and faces of the truncated
cube and show that it has an Euler characteristic of two.

7. Nonconvex Polyhedra
Euler’s characteristic does not always have the value of two for nonconvex
polyhedra. Show that the nonconvex polyhedra in Figure 5.61 has an Euler
characteristic of 3.

8. Toroidal Polyhedra
The (nonconvex) polyhedron drawn in Figure 5.62 called a toroidal poly-
hedra, which is topologically equivalent to the torus. Show that the Euler

Figure 5.60 Truncated cube.

Figure 5.61 Nonconvex polyhedra.
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characteristic of this polyhedron is zero, thus defining the Euler character-
istic for the torus.

9. Double Torus
The (nonconvex) polyhedra shown in Figure 5.63 is topologically equiva-
lent to the double-holed torus. Show that the Euler characteristic of this
polyhedron is minus two, thus defining the Euler characteristic for the dou-
ble-holed torus.

10. Triple-Hole Torus
For each additional hole in the sphere, the Euler characteristic decreases
by 2. Hence, the sphere has Euler characteristic 2, the single-hole torus has
Euler characteristic 0, the double-hole torus −2, and the following triple-
hole torus −4. Show that the Euler characteristic of the triple-hole torus
drawn in Figure 5.64 is −4 Count carefully.

Figure 5.62 Toroidal polyhedra.

Figure 5.63 Double-holed torus.
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11. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward Euler’s characteristic of different surfaces, homeomorph-
isms, different topological properties, and visualizing topological
equivalence.

Figure 5.64 Triple-hole torus.
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5.4

Point-Set Topology on the Real Line

Purpose of Section To introduce some topological concepts of the real num-
ber system, such as open and closed sets, interior, boundary, and exterior points
of a set, and limit points. These act as the foundation of many concepts in
analysis.

5.4.1 Introduction

There are several areas of topology, such as graph theory and network topology,
geometric topology, algebraic topology, differential topology, combinatorial
topology, and point-set (or general) topology. Some areas of topology are suf-
ficiently diverse that practicing researchers in one area may have only a passing
knowledge of other areas. While graph theory is interested in connections
between objects, and geometric topology was interested in shapes of objects,
point-set topology is about “closeness.” By closeness, we mean closeness of
numbers, points, functions, matrices, operators, and other mathematical
objects. The interest in closeness lies in the fact it gives rise to limits, infinite
series, convergence, continuity, and mathematical concepts associated with
calculus, differential equations, real and complex analysis, as well as areas of
science and engineering.
Point-set topology can be studied in any dimension, even infinite, but in this

section, we restrict our attention to the one-dimensional real line, mostly
because it is easier to visualize than in two and three dimensions, and a whole
lot simpler than dimensions larger than three.1 The basic concepts of point-set
topology begin with open intervals and the concept of neighborhoods.

1 Someone once said, the way to visualize higher dimensions like 4, 5, 6, was to just close your eyes,
sit back, and visualize three dimensions.
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Definition Let a R and δ > 0. A δ-neighborhood of a is the open interval
Nδ(a) = (a − δ, a + δ) of radius δ centered at a. Alternate ways of writing this are

Nδ a = x R a−δ < x < a+ δ = x R x−a < δ

See Figure 5.65.

Important Note Point set topology depends strongly on the ideas of set the-
ory introduced by Georg Cantor in the late 1800s.

This brings us to the unifying concept of this section, and in much of point-set
topology, the open set.

Definition A subset of real numbers A R is an open set if for every a A
there exists a δ > 0 such that Nδ(a) A. That is

A R open a A δ > 0 Nδ a A

See Figure 5.66

In the definition of an open set, when we say “there exists a δ greater than
zero,” we normally are thinking of a small δ, not a large one. In plain language,
a set is open if you can “wiggle” any point in the set around, and if you do not
wiggle it around too much it will still be in the set. Still another way of thinking
about open sets is that every point in an open set is surrounded by other points
in the set, i.e. every point in the set is insulated from the outside.

a + 𝛿

a
x

a – 𝛿

Figure 5.65 δ-neighborhood.

a

A

x

N𝛿 (a)

Figure 5.66 Open set.
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Note Because one often thinks of real numbers as points on the number line,
we often refer to real numbers as “points.”

Example 1 Open Sets
The following subsets of the real numbers are open sets:

a) Open intervals (a, b) = {x R : a < x < b} are open sets.
b) Unbounded intervals of the following form are open sets.

a,∞ = x R x > a

−∞ ,b = x R x < b

What does it mean for a set not to be open? To answer that question, we
negate2 the definition of an open set and find

A R open a A δ > 0 Nδ a A

A R not open a A δ > 0 Nδ a ⊄ A

In other words, a set is not open if there exists at least one point a A right on
the boundary of A and not insulated from the outside by other points of A. The
interval (a, b] is not open since the point x = b cannot be “wiggled” any amount
without finding itself outside (a, b].
The most important properties of open sets relate to their union and

intersection.

Theorem 1 Main Theorem of Open Sets

• The union of any number of open sets, finite or infinite (countable or
uncountable infinite), is an open set.3

• The intersection of any finite number of open sets is an open set.

Proof
Union of Open Sets Is Open
We show that if {Aα}α Δ is an arbitrary family of open sets, then

α Δ
Aα

2 You can see the benefit of the predicate logic notion that allows one to negate sentences very easily.
3 All sets in this section are subsets of the real numbers unless otherwise specified.

5.4.1 Introduction 351



is an open set. To show this let

a
α Δ

Aα

Hence, a belongs to some neighborhood Nδ(a) in some member Aβ of the
family. Hence, we have

δ > 0 a Nδ a Aβ

α Δ
Aα

which implies that the union of open sets is open. ▐

Finite Intersection of Open Sets Is Open
The intersection of any finite number of open sets is open.

Proof
Let Ak

n
k = 1, be a finite family of open sets. To show that the intersection

n

k = 1

Ak

is open. To show this, let

a
n

k =1

Ak

Hence, a belongs to some neighborhoodNδk a Ak for each k = 1, 2,… , n. In
other words,

a Ak δk > 0 a Nδk a Ak

If we pick4 δ = min {δk : k = 1, 2,… , n} > 0, we have

a Nδ a
n

k =1

Ak

which proves the result. ▌

4 It is necessary that the number of open sets be finite, else the values of δk might not have a
minimum value.
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Important Note Infinite intersections of open sets may not be open. See
Figure 5.67.

Example 2 Unions and Intersections of Open Sets

a)
∞

n= 1
0,2−

1
n

= 0,1 0,
3
2

0,
5
3

= 0,2 open

b)
N

n= 1
0,1 +

1
n

= 0,2 0,
3
2

0,1 +
1
N

= 0,1 +
1
N

open

c)
∞

n= 1
0,1 +

1
n

= 0,2 0,
3
2

0,
4
3

= 0,1 not open

So what do open sets look like in general? Basically, they are nothing more than
unions of open intervals, although the union can be infinite, countable, and even
uncountable. We state without proof the general characterization of open sets.

Theorem 2 Characterization of Open Sets
A set A R of real numbers is open if and only if A is an open interval or a finite
or countable union of disjoint open intervals.

Closed Sets
The concept of open sets leads us to what might be called the opposite of an
open set, a closed set.

Definition A set A R is closed if and only if its complement A is open.

Example 3 Closed Sets
a) An interval likeA = [a, b], which is often the domain for functions in calculus

is closed since its complement A= −∞ ,a b,∞ is open. For example,
the intervals [0, 1], [−2, 3] are closed sets.

b) The unbounded intervals A = [a, ∞), B = (−∞, b] are also closed since
their compliments A= −∞, a , B= b,∞ are open. For example, [0, ∞),
(−∞, 0] are closed sets.

Figure 5.67 Infinite intersection of open sets.
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c) Any singleton set {a} consisting of a single real number is a closed set since its
complement (−∞, a) (a,∞) is open. In fact, any finite set {a1, a2,… , an} is
closed since its complement is the union of open intervals, which by Theo-
rem 1 is open.

d) The natural numbers N and the integers Z are both closed sets.

Keep inmind not all sets are open or closed; the setsA = (0, 1] and B = [−3, 2) are
neither open nor closed.
The set of real numbers R is open from the definition of an open set, and

hence its complement, the empty set Ø is closed. But the empty set is also open
vacuously by definition since there is no point a Ø to check the condition a
Nδ(a) Ø. But if the empty set is open, that means R is closed. This means R
and Ø are both open and closed sets. In fact, they are the only sets of real
numbers that are both open and closed. All other sets are either open, closed,
or neither.
We have seen that the union of an arbitrary number of open sets is open and

the intersection of a finite number of open sets is open. We now ask if there are
corresponding properties for closed sets. The following theorem answers this
question which shows the “dual” nature of these properties.

Theorem 3 Main Theorem of Closed Sets

• The intersection of an arbitrary collection of closed sets is closed.

• The union of a finite number of closed sets is closed.

Proof
The proof is based on DeMorgan’s laws whose proof is left for the reader.
See Problem 13. ▌

Important Note The infinite union of closed sets may not be closed. See
Figure 5.68.

Figure 5.68 Infinite union of closed sets.
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Example 4 Unions and Intersections of Closed Sets
The following examples illustrate that the intersection of an arbitrary number of
closed sets is closed, but that the union of closed sets may not be closed, unless it
is the union of a finite number of closed sets.

a)
∞

n= 1
0,1 +

1
n

= 0,2 0,
3
2

0,
4
3

= 0,1 closed

b)
N

n= 1
0,2−

1
n

= 0,1 0,
3
2

0,
5
3

= 0,1−
1
N

closed

c)
∞

n= 1
0,2−

1
n

= 0,1 0,
3
2

0,
5
3

= 0,2 not closed

5.4.2 Interior, Exterior, and Boundary of a Set

Three important concepts of topology are the concepts of interior, exterior, and
boundary of a set.5

Interior Point of a Set We define a point a R to be an interior point of a set
A R if and only if there exists a δ > 0 such that a Nδ(a) A. We denote the
interior points of a set A by Int (A) called the interior of the set. In the language
of predicate logic:

a Int A δ > 0 Nδ a A

An interior point of A always belongs to A. The interior Int (A) of A is always an
open set. See Figure 5.69.

a

A

x

N𝛿 (a)

Figure 5.69 Interior point.

5 We are studying basic topology of the real numbers, which allows us to talk about closeness,
convergence, and so on. In general, a topology on a set is a family of subsets, called open sets, which
are closed under unions and finite intersections.
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Exterior Point A point a R is an exterior point of a set A if and only if there
exists a δ > 0 such that a Nδ a A. We denote the set of exterior points, called
the exterior of A, by Ext (A). In the language of predicate logic, we have

a Ext A δ > 0 a Nδ a A

An exterior point of A will never belong to A. The set of exterior points Ext (A)
of a set is always an open set.

Important Note Intuitively, interior points of a set are points not “right on the
edge” of the set. Boundary points are points “right on the edge” of the set, and
exterior points the set cannot get “close” to.

5.4.3 Interiors, Boundaries, and Exteriors
of Common Sets

Table 5.5 shows the interiors, boundaries, and exteriors of some common sets.
Note that the interior and exterior of a set are always open. Also, note that the
exterior is the complement of the union of the interior and boundary, and is

Boundary Point of a Set A point a R is a boundary point of A if and only if
for any δ > 0 the δ-neighborhood of a intersects both A and the complement of
A. The boundary points of A are denoted by Bdy(A). In the language of predicate
logic, we have

a Bdy A δ > 0 Nδ a A Nδ a A

A boundary point of a set A may or may not belong to A. The set of boundary
points Bdy(A) of a set is always a closed set. See Figure 5.70.

Boundary points of A

Figure 5.70 Boundary points.

5.4 Point-Set Topology on the Real Line356



always closed. Note too that the union of the interior, boundary, and exterior of
a set is everything. In other words, the real numbers R.

5.4.4 Limit Points

The concept of a limit is fundamental in calculus and analysis. The reader will
recall that the two fundamental operations of the calculus, the derivative and
integral, are both limits. We can thank the French mathematician Augustin-
Louis Cauchy (1789–1857) and German mathematician Karl Weierstrass
(1815–1897) for providing rigorous definition of the limit, the so-called epsilon,
delta (ε, δ) definition, which allows mathematicians to reason with precision the
ideas of calculus and avoid the imprecise reasoning of the past.

Definition A number a is a limit point of a set A R if and only if for every
δ > 0 the δ-neighborhood of a contains a member ofA other than a itself. A limit
point of a set may or may not belong to the set. We denote the set of limit points
of a set A by Limits (A) (see Figure 5.71).

Table 5.5 Interiors, boundaries, and exteriors of sets.

A R Int(A) A Bdy(A) Ext(A)

Ø Ø Ø R
(a, b) (a, b) {a, b} (−∞ , a) (b, ∞)

[a, b] (a, b) {a, b} (−∞ , a) (b, ∞)

(a, b] (a, b) {a, b} (−∞ , a) (b, ∞)

{a} Ø {a} (−∞ , a) (a, ∞)

{a, b, c} Ø {a, b, c} R − {a, b, c}

1,
1
2
,
1
3
,…

Ø
1,
1
2
,
1
3
,
1
4
,…,0 R− 1,

1
2
,
1
3
,…,0

(0, 1) {2} (0, 1) {0, 1, 2} (−∞ , 0) (1, 2) (2, ∞)

(−1, 0) (0, 1) (−1, 0) (0.1) {−1, 0, 1} (−∞ , − 1) (1, ∞)

N Ø N R −N
Z Ø Z R − Z
Q Ø R Ø

R R Ø Ø
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Important Note Intuitively, a limit point of a set is a point that can be
“approached” by points in the set. In other words, a set likes to “snuggle up”
to its limit points.

5.4.5 Closed Sets Contain Their Limit Points

We have seen that a good way to determine if a set is closed is to show that its
complement is open. Although this indirect procedure is useful, there is a direct
way to determine if a set is closed. The following theorem makes this precise.

Theorem 4 A subset A R is closed if and only if it contains its limit points.

Proof
( ) Suppose A is closed and let x be a limit point of A. The goal is to show that
x A. Assume the contrary that x A which means x A. But A is open and so
there exists a neighborhood of x lying completely in A which means x is not a
limit point of A and contradicts the fact that x was assumed to be a limit point
of A. Hence, we have that x A meaning A contains its limit points.
( ) If A contains its limit points, then any x A in the compliment is not a

limit point of A, which means there exists an open neighborhood of x lying in A,
which means A is open and hence A is closed. ▌

Table 5.6 gives the limit points of some common sets of real numbers.

5.4.6 Topological Spaces

We saw in Chapter 4 how relations (ordering, equivalence, function, …) can be
defined on a set so that the elements of the set can be compared, ordered, and
classified. We now introduce a different structure on a set, a topology, which
places a general “distance” structure on a set, allowing one to make precise

a

Limit point

N𝛿 (a)

Figure 5.71 Limit point.
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concepts like closeness, limits, and all those concepts used in calculus, like con-
tinuous functions, derivatives, and integrals.
We now show how open sets are the foundation of a topological structure on a

set, in our case the real numbers R.

Topological Space A topological space (X, J) is a set X together with a collec-
tion J of subsets of X, the sets in the collection J called open sets that satisfy:

1) The union of any collection of sets in J is again a member of J.
2) The intersection of any finite collection of sets in J is again a member of J.
3) Both the empty set and the entire set X belong to J (i.e. are open sets).

Example 5 Usual Topology on R
The most famous topological space (as far as we are concerned) is the pair (R, J)
of real numbers along with the collection J of open subsets ofR. We have already
seen how open subsets of real numbers satisfy conditions 1), 2), 3) and thus (R, J)

Table 5.6 Limit points of some common sets.

A R Limit points(A) Limit points(A) A?

Ø Ø Closed

(a, b) [a, b] Open

[a, b] [a, b] Closed

(a, b] [a, b] Neither open or closed

{a} Ø Closed

{a, b, c} Ø Closed

1,
1
2
,
1
3
,
1
4
,… {0} Neither open or closed

(0, 1) {2} [0, 1] Neither open or closed

[0, 1] {2} [0, 1] Closed

N Ø Closed

Z Ø Closed

Q R Neither open or closed

R R Closed
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is a topological space, called the topological space of the real numbers with the
usual topology, the word “usual”meaning open sets with neighborhoods, etc., as
discussed in this section. We have seen how open sets give rise to concepts like
closeness, interiors, boundaries, exteriors, limits, and so on. It is this family of
open subsets of R that “does the job” allowing us to dig deep into the “metrical”
structure of the real numbers.6

5.4.7 Calculus Without Topology Is No Calculus

Recall that functions f :R R are the basis of many areas of mathematics, like
calculus, which the reader no doubt has some familiarity. If there is no topolog-
ical structure on R, there are no limits, continuity, differentiable and integral
functions, and so on.When a student of calculus thinks about the real numbers,
the student most likely is thinking about the topological structure of the real
numbers and the distance between points, and so on.7

Topology allows one to make precise many of the important concepts of
mathematics, one of the most important being continuous functions. We
now give the topological definition of continuity.

Definition A function f : X Y is continuous if for any open set U Y its
inverse image f −1(U) X is an open set in X.

Example 6 Continuity and Open Sets
Show that the function f :R R defined by f : x x3 is continuous.

Proof
We show that the inverse image of any open set in the range of f (i.e. real num-
bers) is an open set in the domain of f (also the real numbers). To do this let
U R be an arbitrary open set in the range of f. The goal is to show f −1(U) R
is an open set in the domain of f. Taking an arbitrary y = x3 U R, and sinceU
is assumed open, there exists an ε > 0 such that

x3−ε, x3 + ε U

6 It is an easy matter to extend open sets to higher dimensions, hence topological spaces in the
plane, 3-dimensions, and so on.
7 R is also an algebraic field where we can add, subtract, multiply and divide, as well as a complete
ordered fieldwhere numbers are ordered, but nowwe are thinking about the topological structure of
the real numbers.
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Students of calculus, who have studied the (ε, δ) method for showing conti-
nuity of functions, know that x R, the preimage of f(x) = x3, has a δ neighbor-
hood (x − δ, x + δ) that maps completely inside (x3 − ε, x3 + ε). In other words

f x−δ, x+ δ x3−ε, x3 + ε U

or

x−δ, x+ δ f −1 U

In other words, the inverse image f −1(U) of an arbitrary open set in the range
of f(x) = x3 is an open set in its domain. Hence f : x x3 is continuous. ▌

Problems

1. Tell if the following sets subsets of R are open, closed, both, or neither.
a) (−1, 0) (0, 1)
b) [0, ∞)
c) (0, ∞)
d) N
e) Z
f) Q
g) A = {0, 1, 2,… , 100}
h) {x : |x − 1| < 3}
i) Ø

j) 1,
1
2
,
1
3
,
1
4
,

k) 1,
1
2
,
1
3
,
1
4
, 0

l) {x : x2 > 0}

m)
∞

n= 1

1
n
,3−

1
n

n)
∞

n= 1
−
1
n
,
1
n

o)
∞

n= 2

1
n
,1−

1
n

p)
∞

k = 1
0,
1
k

2. Interiors, Boundaries, and Exteriors
Fill the blanks in Table 5.7.
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3. True or False
Answer true or false about the following sets of real numbers.
a) A nonempty set can be both open and closed.
b) A point can lie both in the interior and on the boundary.
c) Finite sets are always closed.
d) Infinite sets are always open.
e) The boundary of a set is always finite.

4. Mystery Sets
Find two sets, which are not equal, but have the same interior, boundary,
and exterior.

5. Finding Examples
Find the following sets of real numbers.
a) Set with two boundary points in the set, one not in the set.
b) Set with four boundary points in the set, three not in the set.
c) A set with three boundary points, none in the set.
d) A set with three boundary points, all in the set.

6. Finite Sets Closed
Show that the finite set A = {1, 2} is closed by finding its complement and
showing the complement is an open set.

7. Limit Points
If they exist, find the limit points of the following sets.
a) N
b) Q
c) R

Table 5.7 Interiors, boundaries, and exteriors.

A Int(A) Bdy(A) Ext(A)

a) Z
b) {sin x : 0 < x < 2π}

c) (0, ∞)

d) (0, 1) {2}

e) {1, 2}

f ) {sin x : 0 ≤ x ≤ π}

g) (−1, 0) (0, 1)

h) 1
n

n N 0
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d) (2, 4) (4, 5)
e) {(−1)n : n N}
f) Ø
g) Q (0, 1)

h)
m
2n

m,n N

i) m+
1
n

m,n N

8. Closed Sets
A set is closed if and only if it contains its limit points. Find the limit points
of the following sets and determine if the sets are closed.
a) Z Ans: Limits (Z) = Ø, hence, Z is closed.
b) Q
c) R
d) (2, 4) (4, 5)
e) {(−1)n : n N}
f) Ø
g) Q (0, 1)

h)
m
2n

m,n N

i) m+
1
n

m,n N

9. Examples
Give examples of the following.
a) A bounded set with no limit points.
b) An unbounded set with one limit point.
c) A set with two limit points.
d) An unbounded set whose limit points have cardinality ℵ0.
e) An unbounded with one limit point.
f) An open set with no limit points.

10. Sets and Limits
Find examples of a set A of real numbers with the following properties:
a) A set that is equal to its limit points.
b) A set that is a subset of its limit points.
c) A set that contains all its limit points.
d) A set that is not a subset of its limit points and its limit points are not a

subset of the set.

11. Intersections and Unions of Closed Sets
Show the following properties for collections of closed sets.
a) The intersection of any family (finite or infinite) of closed sets is closed.
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b) The union of a finite number of closed sets is closed.
Hint: Use the properties of open sets and DeMorgan’s laws.

12. Cantor Set
Let I = [0, 1]. Remove the open middle third

1
3
,
2
3

and call A1 the set that remains; that is

A1 = 0,
1
3

2
3
,1

Now remove the open third intervals from each of these two parts of A1,
and call the remaining part A2. Thus

A2 = 0,
1
9

2
9
,
1
3

2
3
,
7
9

8
9
,1

Continuing in this manner, remove the open middle third of each seg-
ment in Ak and call the remaining set Ak + 1. Note that we will get

A1 A2 A3 Ak

Continue this process indefinitely, always removing the middle third of
existing segments (see Figure 5.72). The limiting set of this infinite process
is called the Cantor set, and is defined as

C =
∞

k = 1

Ak

0 1/3 2/3 1

A1

A2

A3

Ak

Figure 5.72 Cantor set.
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a) Are there any points left in the Cantor set?
b) Show the Cantor set is closed.8

13. Intersection of Open Sets
Find an example of a family of open sets whose intersection is not open.

14. Union of Closed Sets
Find an example of a family of closed sets whose union is not closed.

15. Topologies on {a, b, c}
A topology on a set X is a family of subsets of X that is closed under unions
and finite intersections. Showwhether the families T1,T2 P(X) are or are
not topologies on X = {a, b, c}.
a) T1 = {Ø, {a}, {a, b}, {a, b, c}}
b) T2 = {Ø, {a}, {c}, {a, b}, {a, b, c}}

16. Continuous Image of an Open Set
We saw that for a continuous function, the inverse image of an open set is
open in their respective sets, but that does not mean the image of an open
set is open under a continuous mapping. Give an example of an open set
in U R and a continuous function f :R R whose image f(U) R is
not open.

17. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward history of point-set topology, what is point-set topology, types
of topology, interior, and boundary and exterior of a set.

8 The Cantor set has a variety of interesting mathematical properties. It has no interior, every point
in the Cantor set is a limit point. The Cantor set is uncountable, but at the same time has total
“length” (measure) of zero.
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6.1

Symmetries and Algebraic Systems

Purpose of Section To introduce the idea of a symmetry of an object in the
plane which will act as an introduction to the study of the algebraic group.

6.1.1 Abstraction and Abstract Algebra

The ability to think abstractly is a unique feature of human thought, a capacity
not shared by “lower forms” of living creatures.1 The power to capture the
essence of what we experience is so engrained in our mental processes that
we never give it a second thought. If the humanmind did not have the capability
to abstract commonalities in daily living, we would be living in a different world.
Imagine lacking the capacity to grasp the “essence” of what makes up a chair.
We would be forced to call every chair by a different name in order to commu-
nicate to others what we are referring to. The statement “the chair in the living
room” would have no meaning unless we knew exactly what chair was being
mentioned. Parents point to a picture of a dog in a picture book and tell their
one-year-old infant, “dog,” and it is a proud moment for the parent when the
child sees a strange dog in the yard and says, “dog!”
The concept of number is a crowning achievement of human’s ability to

abstract the essence of size of sets. It is not necessary to talk about “three
people,” “three days,” “three dogs,” and so on. We have abstracted among those
things the commonality of threeness, so there is no need to say “three goats plus
five goats is eight goats,” or “three cats plus five cats is eight cats,” we simply say
three plus five equals eight.
The current chapter is a glimpse into some ideas of what is called abstract

algebra. Before defining what wemean by an abstract algebra, you should realize

1 At least we humans think so.
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you have already studied some abstract algebras whether you know it or not.
The integers are an example of an abstract algebra, although you probably have
never called them abstract or even an algebra. The integers are a set of objects,
supplied with binary operations of addition, subtraction, multiplication, and a
collection of rules the operations must obey. Abstract algebra abstracts the
essence of the integers and other mathematical structures, and says, “let’s not
study just this or that, let’s study all things which have certain properties of
interest.” Not all that different from when the infant first says “dog,” realizing
there are more dogs than just the one in the picture book. Abstract mathematics
allows one to think about attributes and relationships, and not focus on specific
objects that possess those attributes and relationships.
The benefits of abstraction are many; it uncovers relationships between differ-

ent areas of mathematics by allowing one to “rise up” above the nuances of a par-
ticular area of study and see things from a broader viewpoint, like seeing the forest
and not simply the trees, like the saying goes. A disadvantage of abstraction, if
there is one, is that abstract concepts are more difficult to grasp and require more
“mathematical maturity” before they can be appreciated. It also might be argued
that by seeing things from afar, we are unable to get into the nitty-gritty of a dis-
cipline. In summary, abstract algebra studies general mathematical structures
with given properties, important structures being groups, rings, and fields.
However, before we start a formal discussion of algebraic groups in the next

section, we motivate their study with the introduction of symmetries.

Important Note One hundred years ago when the ideas of abstract algebraic
systems were starting to percolate into popular textbooks, the subject was
called “modern algebra.” However, over the years that term has become out
of date, and it is now simply called “algebra,” not to be confused with the basic
algebra studied in middle and high school.

6.1.2 Symmetries

We are all familiar with symmetrical objects, which we generally think of as
objects of beauty, and although you may not be prepared to give a mathematical
definition of symmetry, you know one when you see one.Most people would say
a square is more symmetrical than a rectangle, and a hexagonmore symmetrical
than a square, and a circle is the most symmetrical object of all.
Regular patterns and symmetries are known to all cultures and societies.

Although we generally think of symmetry in terms of geometric objects, we can
also include physical objects as well, like a molecule, the crystalline structure
of a mineral, a plant, an animal, the solar system, or even the universe.
The concept of symmetry embodies processes like chemical reactions, the scatter-
ing of elementary particles, a musical score, the evolution of the solar system, and
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even mathematical equations. In physics, symmetry has to do with the invariance
(i.e. unchanging) of natural laws under space and time transformations. A physical
lawthathas space/timesymmetriesestablishes that the law is independentof trans-
lating, rotating, or reflecting the coordinates of the system. The symmetries of a
physical systemare fundamental tohow the systemacts andbehaves.Theequation

x2 + y2 + z2 + 3xyz + 1= 0

is symmetric in the three variables x, y, z, since after interchanging any two the
equation is unchanged.
Symmetry also plays an important role in calculus. The graph of a real valued

function f of a real variable that satisfies f(x) = f(−x) is symmetric about the
y-axis, and when f(x) = − f(−x) the graph of the function is symmetric through
the origin and unchanged when the graph is rotated 180 about the origin.

6.1.3 Symmetries in Two Dimensions

For a single (bounded) figure in two dimensions, there are two types of symme-
tries.2 There is symmetry across a line inwhich one side of the object is themirror
image of its other half. This bilateral symmetry, or the symmetry of left and right,
and is common in the structure ofmany animals, especially humans. This type of
symmetry is called line symmetry (or reflective ormirror symmetry). Figure 6.1
shows an isosceles triangle with a line symmetry through its vertical median.

Figure 6.1 Line symmetry.

2 We do not include translation symmetries here since we are considering only bounded geometric
objects.
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We measure the extent to which an object is “symmetric” by counting the
number of its symmetries. The parallelogram, rectangle, and square in
Figure 6.2 have zero, two, and four lines of symmetry. You can envision your-
self other objects that have various lines of symmetry. Chemists are well aware
of lines of symmetry of molecules since they relate to how chemical com-
pounds behave.

A second type of symmetry is rotational (or radial) symmetry. An object has
a rotational symmetry if the object appears exactly the same when rotated a cer-
tain number of times around a central point. The triangle in Figure 6.1 has no
rotational symmetry, whereas the three figures in Figure 6.3 have various levels
of rotational symmetry. The letter “Z” has no line symmetries, but repeats itself
when rotated 0 and 180 ,3 so we say it has rotational symmetry of degree two.
The object the middle, again has no line symmetries, but repeats itself when
rotated 0, 120, and 240 , so it has rotational symmetries of degree three. Finally,
we have the most symmetric planar object of all, the circle which has both an
infinite number of rotational and line symmetries.

No lines of symmetry

Two lines of symmetry

Four lines of symmetry

Figure 6.2 Degrees of symmetry.

Figure 6.3 Rotational symmetries.

3 It is a convention to call a 0 rotation a rotational symmetry. Hence, all objects have at least one
rotational symmetry.
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Some objects have both reflective and rotational symmetries as illustrated by the
regular polygons4 in Figure 6.4 which have the same number of reflective and
rotational symmetries. The equilateral triangle has three rotational symmetries
(rotations of 0 , 120 , and 240 about a center point) and three reflective symme-
tries through median lines passing through the vertices. A regular polygon with n
vertices has n rotation symmetries (each rotation 360/n degrees) and n lines of
symmetry.

6.1.4 Symmetry Transformations

Although you can think of symmetries as a property of an object, there is
another interpretation of symmetries that is more beneficial for our purposes.
A symmetry is a function or mapping or transformation.

Equal number of rotation and line symmetries

Figure
Rotation

symmetries
Line

symmetries

Three rotations
0°, 120°, 240°

Four rotations
0°, 90°, 180°, 270°

Five rotations
0°, 72°, 144°, 216°, 288°

Three line
symmetries

Four line
symmetries

Five line
symmetries

Infinite number
of rotation symmetries

Infinite number of
line symmetries

Figure 6.4 Figures having both rotational and reflective symmetries.

4 Recall that a regular polygon is a polygon whose sides have the same length and whose angles are
the same.

6.1.4 Symmetry Transformations 373



Definition A one-to-one correspondence (bijection) of an object onto itself is
called a symmetry if it preserves the shape of the object and the image of the
object is indistinguishable from the original object. Visually, the image of an
object under a symmetry transformation looks exactly like the original object.
See Figure 6.5. The extent of symmetry of an object is measured by the number
of transformations that map the object to itself.

Important Note There are three types of symmetries in the plane, rotations,
and reflections, and translations. However, if an object is bounded (i.e. inside
some circle with finite radius), then a translation is not a symmetry since it alters
the location of the object. For our purposes, we are only interested in line and
rotation symmetries of bounded objects.

6.1.5 Symmetries of a Rectangle

Figure 6.6 shows a rectangle where the length and width are different and the
corners are labeled A, B, C, D,

Figure 6.5 Rotation symmetry of 180 .

A B

D C

Figure 6.6 Four symmetries of a rectangle.
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The rectangle has two rotational symmetries of 0 , 180 and two line (or flip)
symmetries, where the lines of symmetry are the horizontal and vertical mid-
lines. These four symmetries5 are illustrated in Figure 6.7.

So what do these symmetries have to do with algebraic structures, which is the
focus of this chapter? Since a symmetry is a transformation that maps the points
of an object back onto itself, we can define the product of two symmetries as the
composition of two symmetries and the result will be a new symmetry. If each
symmetry leaves the object unchanged so does the composition of two symme-
tries. Hence, the composition of symmetries defines a product of two symme-
tries, just like the product of two numbers 2 × 3 = 6 getting a new number.
If we perform a 180 rotation,6 denoted by R180, followed by H, a flip through

the horizontal midline, we denote this composition or product by R180H read-
ing left to right. The net result (product) of these two symmetry operations is
illustrated in Figure 6.8, and is the same as performing the single symmetry V, a
flip through the vertical midline. Hence, we write the product R180H = V. It is

Motion Symbol
First

position
Final

position

No
motion

e

Rotate
180°

R180

Flip over
horizontal

median
H

Flip over
vertical
median

V

A B

D C

C D

B A

D C

A B

B A

C D

A B

D C

A B

D C

A B

D C

A B

D C

Figure 6.7 Four symmetries of a rectangle.

5 Note that the two rotation symmetries keep the orientation the same (letters ABCD go around
clockwise), while the reflection change the orientation where ABCD go around counterclockwise.
Also note that to perform the reflections, one must move the two-dimensional rectangle into three
dimensions to perform the operation.
6 It is our convention that all rotations are done counterclockwise.
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important to note that symmetry operations are carried out from “left-to-right”
in the product notation.
Note that the “do nothing” symmetry e (rotation of zero degrees), called the

identity symmetry, is analogous to the number one in the multiplication of
integers. Note that some operations like e, R180,V,H return the figure to its orig-
inal position after operating two times. For that reason, we say these symmetries
are equal to their inverse, which we illustrate by the equations in Table 6.1.

Since the composition of symmetries, which we call products, yields a new
symmetry, we can construct multiplication tables for symmetries, much like
we did in grade school for multiplication tables of numbers. The multiplication
table for symmetries of a rectangle is shown in Figure 6.9. The product of two
symmetries lies at the intersection of the row and column symmetries, where
the row symmetry is carried out first. For example, the intersection of the
row labeled R180 and column labeled H is V, which means R180H = V. The bor-
ders of the cells containing the identity symmetry e are darkened as an aid in
reading the table.

A B

D C

B A

C D

C D

B A

R180 =

V =

H =

Figure 6.8 Product of symmetries R180H = V.

Table 6.1 Typical symmetry products.

Symmetry Symmetry products

e ee = e e = e−1

H HH = e H = H−1

V VV = e V = V−1

R180 R180R180 = e R180 =R−1
180
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6.1.6 Observations

1) Every row and column of the multiplication table contains one and exactly
one of the four symmetries. It is a Latin square.

2) The main diagonal contains the identity symmetry e, which means every
symmetry is its own inverse.

3) The table is symmetric about the main diagonal which means the multipli-
cation of symmetries is commutative. In other words, AB = BA, just like
multiplication of numbers. We call this a commutative algebraic system.

4) The four symmetries e, R180,V, H along with their product as defined by the
table, forms what is called an algebraic group. Observe how this system is
analogous to the integers with the operation of addition, with some simila-
rities and some differences.

Important Note Symmetries in physics are different from the symmetries of
geometric objects introduced in this section. In physics, a (continuous) symme-
try of a physical system refers to a feature of a physical system that is unchanged
under some transformations. The importance of symmetries in physics became
evident after the 1918 paper by German mathematician Emmy Noether, who
proved than symmetries of physical systems correspond to conservation laws.
Research at the most advanced level of theoretical physics is interested in the
symmetries of physical systems.

6.1.7 Symmetries of an Equilateral Triangle

We now examine the equilateral triangle drawn in Figure 6.10. It is “more
symmetric” than the triangle drawn in Figure 6.1 that had one line symmetry.
The equilateral triangle has three rotational symmetries where the triangle is
rotated 0 , 120 , 240 about its center, and three line symmetries where the
triangle is reflected through lines passing through vertices as drawn as dotted
line segments.

e H V

e e H V

e V H

H H V e

VV H e

R180

R180

R180R180

R180

R180

Figure 6.9 Multiplication table for symmetries of a rectangle.
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We denote these symmetry mappings by

e,R120,R240,Fv,Fnw,Fne

where

• e = R0 is the identity (rotation by 0 ) symmetry

• R120 = counterclockwise rotation of 120

• R240 = counterclockwise rotation of 240

• Fv = flip through the vertical median

• Fnw = flip through the northwest median

• Fne = flip through the northeast median

These symmetries are illustrated in Figure 6.11.
As we did for the rectangle, we can construct a multiplication table for the

symmetries called a Cayley table shown in Figure 6.12.
Again, we have drawn darker around the identity symmetry e = R0 as an aid in

understanding and interpreting its results. We have also shaded the “northeast”
and “southwest” blocks in the table as an aid in reading the table.

Important Note Some crystals in chemistry exhibit rotational symmetry but
no mirror symmetry. Such shapes are called enantiomorphic.

Important Note Some objects have no symmetry (other than the identity
map), such as a left-hand glove or the letters G, Q, J. Take a look around you.
Most objects have no symmetry at all.

Example 1 Commutative Operations
Are the symmetry operations for the equilateral triangle commutative? In other
words, does the order of the symmetries that are performedmake a difference to
the outcome?

Northeast
line

A Vertical
line

Northwest
line

CB

Figure 6.10 Six symmetries of an equilateral triangle.
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Motion Symbol
First

position
Final

position

No motion e = R0

Rotate 120°
counterclockwise

Rotate 240°
counterclockwise 

Flip through the
vertical axis 

Fv

Flip through the
northeast axis 

Fne

Flip over the
northwest axis

Fnw

A

CB

A

CB

A

CB

C

BA

A

CB

B

AC

A

CB

A

BC

A

CB

C

AB

A

CB

B

CA

R120

R240

Figure 6.11 Six symmetries of an equilateral triangle.

e = R0

e = R0

Fv

Fne

Fnw

Fv

Fne

Fnw

Fnw

Fv

Fv

Fne Fnw

Fnw Fv

Fv

Fne

Fne

Fne

Fne

Fne

Fnw

Fnw

Fv

Fnw

Fv

R0

R0

R0

R0

R120

R120

R240

R0 R240

R120

R240 R120 R0

R240

R120

R120

R120

R120

R240

R240

R240

R240

Figure 6.12 Cayley table for symmetries of an equilateral triangle.
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Solution
We can determine if symmetries are commutative by looking at the products in
the multiplication table in Figure 6.12. If the table is symmetric around its diag-
onal elements, the symmetries are commutative. In this case, the table is not
symmetric for all symmetries, so the symmetry operations are not commutative.
Note that Fnw Fne Fne Fnw, although R120R240 = R240R120 = R0.

Example 2 Inverse Symmetries
What is the inverse of each symmetry of the equilateral triangle?

Solution
Note that

R2
0 = F2

v = F
2
ne = F

2
nw =R0 R0 = e

which means R0, Fv, Fne, Fnv are their own inverses, which is denoted by

• R−1
0 =R0

• F −1
v = Fv

• F −1
ne = Fne

• F −1
nv = Fnv

• R−1
120 =R240

• R−1
240 =R120

The fact that there is exactly one identity symmetry e = R0 in every row and
column means that each symmetry has exactly one inverse.

Pure Mathematics The story is told how Abraham Lincoln, failing to convince
his cabinet how their reasoning was faulty, asked them, “Howmany legs does a
cow have?” When they said four, he then continued, “Well then, if a cow’s tail
was a leg, how many legs does it have?”When they said five, obviously, Lincoln
said, “That’s where you are wrong. Just calling a tail a leg doesn’t make it a leg.”
This story may be true in the real world, but in the world of pure mathematics it is
wrong. If you call a cow’s tail a leg, then it is a leg. In pure mathematics, we care
not what things are, only the rules or axioms that govern them.

6.1.8 Rotation Symmetries of Polyhedra

In addition to symmetries in the plane, there are symmetries in higher dimen-
sions that play an important role in many areas of science. For instance in crys-
tallography, which shows how atoms and molecules can be arranged within
crystals, chemists are interested in the symmetry axes of various polyhedra.
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Since polyhedra have vertices (v), edges (e), and faces ( f ), the symmetry axes can
be one of six types vv, ee, ff, ve, vf, ef. A vv symmetry means the axis of symmetry
passes through two vertices (vv), whereas a vf symmetry means the axis of sym-
metry passes through a vertex and an opposite face, and so on.

6.1.9 Rotation Symmetries of a Cube

Table 6.2 shows the 24 rotational symmetries of the cube of the form ff, ee, vv,
meaning the axis or rotation always passes through opposite faces, edges, and
vertices.

These 24 symmetries are visualized in Figure 6.13. The reader can try to
visualize these symmetries or obtain a child’s block to simulate them.

Table 6.2 Rotational symmetries of a cube.

Rotation symmetries of a cube Symmetry angles Total symmetries

3 ff symmetry axes 90 , 180 , 270 9

4 vv symmetry axes 120 , 240 8

6 ee symmetry axes 180 6

Identity map 0 1

3 ff symmetry axes
90°, 180°, 270°
rotations total
9 symmetries

(a) (b) (c)

6 ee symmetry axes
180° rotations

total 6 symmetries

4 vv symmetry axes
120°, 240° rotations
total 8 symmetries

Figure 6.13 Rotational symmetries of a cube.
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Problems

1. Finding Symmetries
Determine the symmetries of the letters of the alphabet. The more the sym-
metries, the more symmetric the letter. Which letter is the most/least
symmetric?

ABCDEFGHIJKLMNOPQRSTUVWXYZ

2. Drawing Symmetries
Draw a figure that has the following symmetries. We do not allow the iden-
tity symmetry to be a symmetry in these classifications.
a) 0 rotational and 0 line symmetries
b) 1 rotational and 0 line symmetries
c) 0 rotational and 1 line symmetry
d) 2 rotational and 0 line symmetries
e) 1 rotational and 0 line symmetries
f) 3 rotational and 0 line symmetries

3. Symmetries of a Parallelogram
Describe the symmetries of a parallelogram that is neither a rhombus nor a
rectangle.

4. Symmetries of an Ellipse
Describe the symmetries of an ellipse

5. Representation of D2 with Matrices
Show that the matrices

e=
1 0

0 1
, A=

−1 0

0 −1
, B=

0 1

1 0
, C =

0 −1

−1 0

with operation of matrix multiplication obey the multiplication table in
Figure 6.14. This is called the dihedral group D2.

O e A B C
e e A B C
A A e C B
B B C e A
C C B A e

Figure 6.14 Dihedral multiplication table.
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6. Symmetries of a Square
The following matrices define the six symmetries of a square. Find the
multiplication table for these symmetries.

e=
1 0

0 1
, R90 =

0 −1

1 0
, R180 =

−1 0

0 −1
, R270 =

0 1

−1 0

V =
−1 0

0 1
, H =

1 0

0 −1
, Fne =

0 1

1 0
, Fnw =

0 −1

−1 0
,

7. Symmetry Groups
Find the symmetries of the following letters andmake amultiplication table
for the symmetries of each letter.
a) S
b) T
c) J

8. Symmetries of a Tetrahedron
Can you find the seven axes of symmetries of the regular tetrahedron with
four identical triangular sides as illustrated in Figure 6.15.

9. Cayley Table for D3

Note that the Cayley table for the symmetries of an equilateral triangle
bunched together into four distinct blocks, two blocks consisting of rota-
tions, and two consisting of blocks of flips. From this table, tell if the follow-
ing statements are true or false.
a) rotation followed by a rotation is the rotation, i.e. RR = R
b) rotation followed by a flip is a rotation, i.e. RF = R

Figure 6.15 Tetrahedron.
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c) rotation followed by a rotation is a flip, i.e. RR = F
d) rotation followed by a flip is a flip, i.e. RF = F
e) flip followed by a flip is a rotation, i.e. FF = R
f) flip followed by a rotation is a rotation, i.e. FR = R
g) flip followed by a flip is a flip, i.e. FF = F
h) flip followed by a rotation is a flip, i.e. FR = F

10. Symmetries of Solutions of Differential Equations
The solutions of the differential equation dy/dx = y are the functions of the
form y = cex, where c is an arbitrary constant. Show that the transforma-
tion x = x + h, y = y, where h is an arbitrary real number that maps the set
of solutions back into the set of solutions, and hence is a symmetry trans-
formation of the solutions of the differential equation.

11. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward lines of symmetry (look under the image tab), rotational
symmetry, symmetry in theoretical physics, and history of symmetry.
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6.2

Introduction to the Algebraic Group

Purpose of Section To introduce the mathematical structure of an algebraic
group and to illustrate group concepts, we introduce two important groups: the
cyclic and dihedral groups.

6.2.1 Basics of a Group

The idea of a symmetry is fundamental in science and its in-depth study requires
the mathematical machinery of the algebraic group. Group theory is one of the
most useful mathematical tools for mathematicians and scientists alike, includ-
ing particle physicists, where group theory is the language for understanding the
structure of particle physics.

Historical Note Theword groupwas first used by the 20-year-old French genius
EvaristeGalois in1830,whowrotehis seminalpaperontheunsolvabilityof the fifth
order polynomial equation on the night before he was killed in a duel. Although
many of the greatest mathematicians at the time did not appreciate Galois’s bril-
liance, a letter Galois wrote eventually ended up in the possession of the French
mathematician Joseph Liouville, who published Galois’s results in 1846. Over
the next 50 years, mathematicians gradually came to understand the genius of
Galois’ ideas and his work gradually developed into the theory of groups.

The most fundamental component of a group is its binary operation.

6.2.2 Binary Operations and the Group

A binary operation on a setA is a rule, which assigns to each pair of elements of
A a unique element of A. Thus, a binary operation is a function f : A ×A A.
Two common binary operations familiar to the reader are +, × which assign
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the sum a + b R and product a × b R to a pair (a, b) R ×R of real numbers.
We now give a formal definition of a group.

Definition An algebraic groupG is a set of elements with a binary operation,
often denoted by “∗,” that satisfies the following properties:

• Closure: The operation ∗ is a closed operation. That is, if a, b G, then
a ∗ b G.,

• Associative:The operation ∗ is associative. That is, for all a, b, c G, we have
(a ∗ b) ∗ c = a ∗ (b ∗ c).
• Identity: G has a unique identity1 e. That is, there exists a unique e G

satisfying a ∗ e = e ∗ a = a for all a G.

• Inverse: Every element a G has a unique inverse.2 That is, for every a G,
there exists a unique a−1 G that satisfies a ∗ a−1 = a−1 ∗ a = e.

We often denote a group G with operation ∗ by {G, ∗}.

Often, it happens that a ∗ b = b ∗ a for all a, b G. When this happens, the
group is called a commutative (or Abelian) group. We also denote the group
operation a ∗ b simply as ab, or maybe by if the group operation is addition or
resembles addition. A group is called finite if it contains a finite number of
elements and the number of elements in the group is called the order of the
group. If the order of a group G is n, we denote this by writing |G| = n. If the
group is not of finite order, we say it is of infinite order.

In Plain English

• Associative: The associative property

a∗b ∗c= a∗ b∗c
says that when three elements a, b, c G (keeping them in the same order)
are combined, the result is the same regardless of which two elements are
combined first. Although most groups have an associative binary relation,
there are important examples in mathematics where binary operations are
not associative, including the cross product of vectors in vector analysis,
and the difference between two numbers.3 There is also the hypercomplex
number system of octonians, where octonian multiplication is not
associative.

1 It is not necessary to state that the identity is unique since it can be proven that there is only one
identity.
2 Again, it can be proven that the inverse is unique so it is not necessary to assume uniqueness.
3 (a − b) − c a − (b − c).
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• Identity: The identity element of a group is the element e G that leaves
every element a G unchanged when combined with e. In the group of
the integers Z with the binary operation + (addition), the identity is 0 since
a + 0 = 0 + a = a for every integer a.

• Inverse: The inverse a−1 of an element a depends not only on a, but on the
identity e. For example the inverse of an integer awith group operation addi-
tion + and identity 0, is −a since a + (−a) = (−a) + a = 0.

Table 6.3 shows some binary operations of different sets.

Example 1 Group Test
Tell which of the following sets and binary operations define a group.

a) {Z, +}
b) {Z, (m + n)/2}
c) {Z, −}

Solution
a) We leave it to the reader to show {Z, +} is a group.
b) Taking the average of two integers does not always result in an integer.

Hence, the group operation is not closed in Z. No need to check the other
properties.

c) The integers Z with the difference operation is not a group since subtraction
is not associative, which can be seen from

m− n−p m−n −p

Table 6.3 Properties of binary operations.

Properties of binary operations

Operation Associative Commutative Identity Inverse

on P(A) Yes Yes Yes No

on P(A) Yes Yes Yes No

gcd on N Yes Yes No No

+ on R Yes Yes Yes Yes

− on R No No No No

× on Q Yes Yes Yes Yes

min on R Yes Yes No No
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6.2.3 Cayley Table

The binary operation of a finite group can sometimes be illustrated by means of
a Cayley table as drawn in Figure 6.16, which shows the products gigj of two
members gi and gj of the group. It is much like the addition or multiplication
tables the reader studied as a child. A Cayley table is an example of a Latin
square, meaning that every element of the group occurs once and exactly once
in every row and column. We examine the Cayley table to learn about the inner
workings of a group.

Example 2 Order 2 and Order 3
For the two groups of order 2 and 3 illustrated in Figure 6.17 by their Cayley tables,
answer the following questions. These are the only groups of order 2 and 3.

a) Are the groups are commutative?
b) Find the inverse of each element in each group.
c) Show both groups are associative.

Solution
We leave this fun for the reader.

The graphs demonstrated in Figure 2 are the only graphs of order 2 and 3,
respectively. For order 4 however, there are two possible groups, one is the Klein
four-group and the other the cyclic group of order 4. The group in Example 3 is
the cyclic group of order 4. The Klein four-group will come later.

g2 g3 gj... ...* g1 = e

g1 = e e g2 g3 gj

g2gjg2g3

gigjgig3gig2gig1gi

g2 g2 g2
2

... ...

... ...

... ... ...

... ...

... ... ...

... ... ...

...

...

... ... ...

Figure 6.16 Cayley table for a group.

* e
e a
a

e
a e

a(a)

* e(b) a b
a b
b

b b
a a

a

e
e

e

e

Figure 6.17 (a) Order 2. (b) Order 3.
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Example 3 Order 4
The set G = {a, b, c, d} and binary operation ∗ define the group of order 4 illus-
trated in Figure 6.18.

a) What is the identity element of the group.
b) Find the inverse of each element.
c) Is the group commutative?
d) Does the associative property a ∗ (b ∗ c) = (a ∗ b) ∗ c hold?

Solution
a) Identity is a since ab = ba = b, ac = ca = c, ad = da = d.
b) a−1 = a, b−1 = d, c−1 = c, d−1 = b
c) The Cayley table is symmetric so the group is commutative.
d) Yes, a ∗ (b ∗ c) = a ∗ d = d and (a ∗ b) ∗ c = b ∗ c = d.

In general, there is no quick way to verify the associative property like there is
for the commutative property. One must check all possible arrangements to
verify the property. On the other hand, if one instance where the associative
property fails, then the binary operation ∗ is not associative.
Example 3 illustrates one of the two groups of order 4. We now present the

other group of order 4, the Klein four-group.

Example 4 Klein Four-Group
Show that the set of four members G = {e, a, b, c} described by the following
multiplication table in Figure 6.19 forms a group. This group is called theKlein4

four-group and is the symmetry group of a rectangle studied in Section 6.1.

* a b c
b c
c

c c
b b

a

a
d

d
d

b
a

d
d d b ca

a

Figure 6.18 Order 4 group.

* e a b

a b

e

b b

a a

e

e

c

c

c

a

b

c

c c a eb

e

Figure 6.19 Klein four-group.

4 Felix Klein (1849–1925) was a German geometer of the nineteenth century.
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Solution
We verify the following criterion for a group.

Closure: The binary operation is closed since all the members of the multipli-
cation table are members of G.
Identity: The element e is the identity since multiplying an element by e yields
the same element.
Inverse: To find the inverse r−1 of an element r follow along the row labeled “r”
until you get to the group identity e, then the inverse r−1 is the column label
above e. In the Klein four-group, each element e, a, b, c is its own inverse.
Associativity: The hardest requirement to verify for a group is the associative
property, which requires we check (r ∗ s) ∗ t = r ∗ (s ∗ t), where r, s, t can be any of
the elements e, a, b, c. Unfortunately, what this means is we must check 43 = 48
equations. The computations that can be simplified by observing the group is
commutative. Other shortcuts can be used (as well as computer algebra sys-
tems) to shorten the list of elements you must check. For this group, we observe
that the group operation ∗ is simply the composition of functions and we can
resort to the fact that composition of functions is associative.

Familiar Groups You are familiar with more groups that you probably realize.
Table 6.4 shows just a few algebraic groups you might have seen in earlier
studies.

Important Note All objects have a symmetry group consisting of the sym-
metry transformations that leave the shape of the object unchanged. The
more elements in the group, the more “symmetric” the object. Chemists
are well aware of the symmetry groups of molecules. Interested readers
can find the symmetry groups of different molecules online. Water has three
members in its symmetry group in addition to the identity symmetry, one
rotation and two mirror symmetries.

Table 6.4 Common groups.

Group Elements Operation Identity Inverse

Z n Z Addition 0 −n

Q + m n m,n > 0 Multiplication 1 n/m

Zn k {0, 1, 2,… , n − 1} Addition mod n 0 n − k

R − {0} x nonzero real number Multiplication 1 1/x

R2 (a, b) R2 Vector addition (0, 0) (−a, − b)
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6.2.4 Cyclic Groups: Modular Arithmetic

The most common and most simple of all groups are the cyclic groups, which
are well-known to every child who has learned to keep time.

Definition A finite cyclic group (Zn, ∗) of order n is a group that contains an
element g Zn called the generator of the group, such that

Zn = e,g,g2,g3,…,gn−1

where the “powers” of g are simply repeatedmultiplications5 of g; that is g2 = g ∗ g,
g3 = g2 ∗ g,…. If the group operation is addition, then we would write the group as

Zn = e,g ,2g ,3g ,…, n−1 g

An alternate notation for the finite cyclic group with generator g is <g>.

For example, the three rotational symmetries {e, R120, R240} of an equilateral tri-
angle form a cyclic group Z3 with generator g = R120 since R2

120 =R240,R3
120 = e.

Cyclic groups also describe modular (or clock) arithmetic, which is the arith-
metic we perform when keeping time on 12-hour clock. The 12-hour clock
leads us to the cyclic group Z12 with elements

Z12 = 0,1,2,3,4,5,6,7,8,9,10,11

and group operation

a b= a+ b mod12

which is basically the arithmetic you do when keeping time. The “mod 12” sim-
ply refers to computing a b by computing the ordinary sum (a + b), then tak-
ing its remainder after dividing by 12. We denote the group operation by to
remind us that the operation is addition, only reduced modulo 12. In clock
arithmetic, the equation 2 = (9 + 5) mod 12, which can be interpreted as mean-
ing five hours after 9 p.m. is 2 a.m.
The 12 hours of the clock, 0 through 11, alongwith the binary operation of addi-

tionmodulo12 is anAbelian groupoforder 12 called the cyclic groupof order12,
denoted by (Z12, ). The Cayley table for this group is shown in Figure 6.20.

Important Note The evolution of group theory has resulted in three main
areas of application: (i) the theory of algebraic equations, (ii) number theory,
and (iii) geometry. Early researchers in group theory were Joseph-Louis
Lagrange (1736–1813), Niels Abel (1802–1829), and Evariste Galois (1811–1832).

5 We use the word “multiplication” here, but keep inmind the group operation canmean any binary
operation, even addition.
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Figure 6.21 shows various clocks that give rise to different cyclic groups.

0⊕ 1 2 3 4 5 6 7 8 9 10 11
0

0
0

0

0 1

1

2

2

3

0 1 2 3
3

4

0 1 2 3 4
4
5
6
7
8
9
10
11

5

0 1 2 3 4 5

6

0 1 2 3 4 5 6

7

0 1 2 3 4 5 6 7

8

0 1 2 3 4 5 6 7 8

9

0 1 2 3 4 5 6 7 8 9

10 11

1 2

1 2
1

3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11
6 7 8 9 10 11
7 8 9 10 11
8 9 10 11
9 10 11

10
10

11
0 1 2 3 4 5 6 7 8 911

Figure 6.20 Cayley table for the cyclic group of 12 elements.

Cyclic groups Zn

0 3 6 9
0 0 3 6 9
3 3 6 9 0
6 6 9 0 3
9 9 0 3 6

Z6
Cyclic
group

order 6

Z4
Cyclic
group

order 6

Z3
Cyclic
group

order 3

Z2
Cyclic
group

order 2

0+ 6
0 0 6
6 6 0

0 4 8
0 0 4 8
4 4 8 0
8 8 0 4

0 2 4 6 8 10
10

10
10

10
10

1010

0 0 2 4 6 8
2 2 4 6 8 0
4 4 6 8 0 2
6 6 8 0 2 4
8 8 0 2 4 6

0 2 4 6 8

⊕

⊕

⊕

Figure 6.21 Finite cyclic groups.
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Example 5 Relatively Prime Group
Two integers are called relatively prime if they have no common factors other
than 1, or equivalently, if their greatest common divisor is 1. For example, 4 and
15 are relatively prime, but 4 and 14 are not. The positive integers less than
10 that are relatively prime with 10 are 1, 3, 7, and 9. We call this set U
(10) = {1, 3, 7, 9}, and along with the binary operation of multiplication modulo
10, it is a group with the following Cayley table drawn in Figure 6.22. What is
interesting is that this is the same group as the numbers 1, 2, 3, and 4 that are
relative prime to 5 with multiplication modulo 5. Also, since there are only two
groups of order 4, this group must be either the cyclic group of order 4 or the
Klein four-group. It may not be obvious which group is simply looking at the
Cayley table because the members of the group are not arranged in the Cayley
table in the same order. However, the group is commutative so that what it indi-
cates is the cyclic group of order 4.

Note that the group is Abelian and that 3−1 = 7, 7−1 = 3 since 3 × 7 = 1.

6.2.5 Isomorphic Groups: Groups that are the Same

Sometimes groups appear different when looking at their Cayley tables, but after
relabeling their elements, one discovers they are the same group. For example,
consider two groups illustrated in Figure 6.23.

The group at the left is the cyclic group Z4 = {0, 1, 2, 3} and the group at the
right consists of the four numbers G = {1, i, − 1, − i} which lie on the unit circle
in the complex plane, where the group operation is multiplication (see
Figure 6.24).

⊕ 0 1 2 3 × 1 i –1 –i

0 0 1 2 3 1 1 i –1 –i

1 1 2 3 0 i i –1 –i 1

2 2 3 0 1 –1 –1 –i 1 i

3 3 0 1 2 –i –i 1 i –1

Figure 6.23 Isomorphic groups.

1 3 7 9
11 3

3 3 9 1 7
7 7 1 9 3

3 1799

7 9
⊗

Figure 6.22 Cayley table for U(10).
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Looking carefully at the two Cayley tables in Table 6.4, you will see that the
numbers 0, 1, 2, 3 in the table for Z4 are arranged in the same order as the num-
bers 1, i, − 1, − i in the table for G. If we make the correspondences

0 1, 1 i, 2 −1, 3 − i, ×

we see that the groups Z4 andG are the same, they simply use different symbols.
When two groups are the same, but only different in their symbols used in their
description, the groups are called isomorphic. In this example, the described
one-to-one correspondence is called an isomorphism between the groups. This
motivates the following formal definition of an isomorphism.

Definition Let {G1, ∗} and {G2, } be two groups with respective group opera-
tions ∗ and . An isomorphism T :G1 G2 from G1 to G2 is a one-to-one and
onto mapping from G1 onto G2 that preserves group operations. That is

T a∗b =T a T b

for all a, b G1. When there exists an isomorphism from one group to another
group, the groups are called isomorphic (i.e. the same from an abstract point of
view). See Figure 6.25.

0

1 –1 1

–i

i

2

Modular arithmetic Complex plane

3

Figure 6.24 Isomorphism.

T T(b)

T(a)T

T

T:G1→G2

b

a

a *b

G1 G2

T(a)⊕T(b)

Figure 6.25 Isomorphism.
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Roughly speaking, for isomorphic groups, the mapping and the group opera-
tions can be carried out in either order. You can operate then map T(a ∗ b), or
you can map and then operate, T(a) T(b), the results are the same.

Example 6 Relatively Prime Group
The group U(10) described in Example 5 of positive integers less than 10 rela-
tively prime to 10, with group operation of multiplication modulo 10, is
described by the following Cayley table in Figure 6.26

and is isomorphic to the cyclic group Z4 = {0, 1, 2, 3}. We can see this by making
the correspondence

1 0, 3 1, 9 2, 7 3

from which we arrive at the familiar Cayley table for Z4 drawn in Figure 6.27.

Example 7 An Isomorphism You Know
Let G1 = (0, ∞) be the positive real numbers with group operation of multipli-
cation, and G2 = R the real numbers with group operation of addition. The
bijection T : (0, ∞) R defined by

T x = log x

is an isomorphism since it satisfies

T xy = log xy = log x+ log y=T x +T y

The inverse function T−1(x) = ex fromR to (0,∞) is also an isomorphism since

T x+ y = ex+ y = exey =T x T y

1 3 7 9
11 3

3 3 9 1 7
7 7 1 9 3

3 1799

7 9
⊗

Figure 6.26 Relative prime group.

0 1 2 3
00 1

1 1 2 3 0
2 2 3 0 1

1 2033

2 3
⊗

Figure 6.27 Cyclic group of order 4.
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6.2.6 Dihedral Groups: Symmetries of Regular Polygons

In Section 6.1, we saw how the symmetries of a figure form an arithmetic system
where one can “multiply” symmetries much like we multiply numbers. The set
of symmetries of an object along with the arithmetic operation of composition
of symmetries forms a group of symmetries for the figure. Every figure, no mat-
ter how “nonsymmetric,” has one symmetric group, the trivial symmetry, how-
ever, the more symmetric a figure, the larger its symmetry group. A rectangle
has four symmetries, whereas the more “symmetrical” square has eight symme-
tries. Can you find them?
A polygon is called regular if all its sides have the same length and all its inte-

rior angles are equal. An equilateral triangle is a regular 3-gon, a square is a reg-
ular 4-gon, a pentagon a regular 5-gon, and so on. The symmetry group of a
regular n-gon has n rotational symmetries and n flip symmetries for a total
of 2n symmetries. This group is called the dihedral group of the n-gon and
denoted by Dn Can you find the 10 symmetries of the dihedral group D5 of
the pentagon drawn in Figure 6.28?

Important Note A cyclic group of order n defines n symmetry rotations of an
object about a point. A dihedral group of order 2n defines n symmetry rotations
of an object about a point, plus n symmetry reflections of the object through
a line.

Historical Note At the International Congress of Mathematicians in 1900, the
Germanmathematician David Hilbert posed 23 problems for mathematicians to
solve in the next century. Hilbert’s 18th problem asked whether crystallographic
groups in n dimensions were always finite. The problem was solved in 1910 by
German mathematician L. Bieberbach, who proved they are finite in every
dimension, however, finding the number of these groups is another matter.
In R3, there are 230 symmetry groups; in R4, there are 4783.

Figure 6.28 Find the symmetric group D5.
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6.2.7 Multiplying Groups

There are only two (nonisomorphic) groups of order 6, the dihedral group D3

and the cyclic group Z6. Sometimes groups can be factored into smaller groups
somewhat like the number six that can be factored as 6 = 3 × 2. The cyclic group
Z6 can be factored as the Cartesian product

Z6 =Z3 ×Z2 = m,n m Z3,n Z2

of the two smaller cyclic groups Z3 and Z2 where if we define the group oper-
ation on the Cartesian product as

m1,n1 m2,n2 = m1 +m2 mod3, n1 + n2 mod2

we arrive at the Cayley table in Figure 6.29.

Also, if we make the following identification

0 0,0 , 1 1,1 , 2 2,0 , 3 0,1 , 4 1,0 , 5 2,1

the multiplication table in Figure 6.29 is the multiplication table for the cyclic
group Z6, as shown in Figure 6.30.

⊕ (0,0) (2,0)
(0,0)
(1,1)
(2,0)
(0,1)
(1,0)
(2,1)

(1,1)
(2,0)
(0,1)
(1,0)
(2,1)

(1,1)

(2,0)
(0,1)
(1,0)
(2,1)

(1,1) (2,0)

(2,0)
(0,0)

(0,0)

(0,0)

(0,1)

(0,1)
(0,1)

(0,1)

(1,0)
(1,0)

(1,0)

(2,1)
(2,1)

(2,1)

(1,1)
(1,1) (2,0)

(0,0)

(1,0)
(2,1)

(1,1)
(0,1)
(2,0)

(0,0)
(2,1)

(1,1)

(0,0)

(0,0)

Figure 6.29 Z3 ×Z2.

⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Figure 6.30 Multiplication table for Z6.
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Important Note Groups occur everywhere innature, science, andmathematics,
oftenas transformationsofa set thatpreserves interestingproperties.Chemistsare
interested in symmetries of molecules and the number and types of symmetries.
Physicists study space–time symmetry transformations of the laws of physics, rea-
lizing that symmetries are associated with conservation principles.

Problems

1. Groups?
Do the following sets with given binary operations to form a group? If they
do, find the identity element and the inverse of each element. If it does not
form a group, explain why not.
a) even integers, addition
b) {−1, 1 }, multiplication
c) nonzero complex numbers, multiplication
d) nonzero rational numbers, multiplication
e) positive rational numbers, multiplication
f) complex numbers 1, − 1, i, − i, multiplication
g) positive irrational numbers together with 1, multiplication
h) integers, subtraction.

2. Odd Integers Under Addition
Give reasons why the odd integers under addition do not form a group?

3. Finish the Group
Complete the following Cayley table in Figure 6.31 for a group of order 3.

4. Finish the Group
Complete the following Cayley table in Figure 6.32 for a group of order 4
without looking at the Cayley tables of the Klein four-group or the cyclic
group of order 4 in the text.

∗ e a b

e e a b

a a

b b

Figure 6.31 Order 3 Cayley table.
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5. Verification of a Group
Do the nonzero integers with the operation of multiplication form a group?

6. Group You are Well Familiar
Show {Z, +} is a group.

7. Property of a Group
Verify that for all elements a, b in a group, the following identity holds.

ab −1 = b−1a−1

Hint: Show (ab)(b−1a−1) = e.

8. Heisenberg Group
A group that plays an important role in quantum mechanics is the Heisen-
berg group which consists of all matrices of the form

1 x y

0 1 z

0 0 1

where x, y, z are real numbers, and the group operation is matrix multipli-
cation. Show that this is a group.

9. Direct Product of Groups
Define a group (Z2 ×Z2, ) consisting of the Cartesian product

Z2 ×Z2 = a,b a,b Z2

and binary operation

a,b c,d = a+ c mod2, b+ d mod2

Find the Cayley table for this group.

10. Modulo 5 Multiplication
Create the multiplication table for the integers 1, 2, 3, and 4, where multi-
plication is defined as mod(5) arithmetic.

∗ e a b

e e a b

c

c

a a

b b

c c

Figure 6.32 Klein four-group.
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11. Modulo 4 Multiplication
Create the multiplication table for the integers 1, 2, and 3 for modular
arithmetic mod(4) and show that this does not define a group. In other
that the numbers 1, 2,… , n − 1 forms a group under mod(n) multiplica-
tion, it must be true that n is a prime number.

12. Relative Prime Group U(10)
For each positive integer n, the set of positive integers 1, 2, …, n that are
relatively prime6 with n is denoted by U(n). For example, U(10) = {1, 3, 7,
9}. The set U(n) is a group under multiplication modulo n.
a) Draw the Cayley table for U(10).
b) Is the group Abelian?
c) What is the inverse of each element?

13. Relative Prime Group U(8)
For each positive integer n, the set of positive integers 1, 2, …, n that are
relatively prime with n is denoted by U(n). For example U(8) = {1, 3, 5, 7}.
The set U(n) is a group under multiplication modulo n.
a) Draw the Cayley table for U(8).
b) Is the group Abelian?
c) What is the inverse of each element?

14. Isomorphic Groups
Show that the following Group C and Group D in Figure 6.33 are isomor-
phic by interchanging the third and fourth columns of C, and then the
third and fourth rows to get the table for D.

0(a) 1 2 3
00 1

1 1 2 3 0
2 2 3 0 1

1 2033

2 3
⊕

1 2 3
1 1
2 2 4 1
3 3 1 4

3 244

2 3
4

3
2
1

4
⊗(b)

Figure 6.33 (a) Group C. (b) Group D.

6 Two numbers are relatively prime if and only if the greatest common divisor of both numbers
is one.
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15. Infinite Group
Show that the set of all rational numbers x in the interval [0, 1) form an
infinite group if the group operation is defined as

x+ y=
x+ y if 0 ≤ x+ y < 1

x+ y−1 if x+ y ≥ 1

16. Groups and Latin Squares
The Cayley table for a group forms what is called a Latin square. That is,
every element of the group occurs exactly once in every row and exactly
once in every column. The converse is not true, however, since there are
Latin squares that do not form groups. Find a Latin square for the num-
bers {0, 1, 2} that does not form a group.

17. Modular Fun
Compute the following sums and products in the given cyclic group
Zn = {0, 1, 2,… , n − 1}.
a) Z4 : 1 + 7 and 3 × 7
b) Z5 : 9 + 7 and 5 × 7
c) Z6 : 10 + 7 and 2 × 7
d) Z9 : 11 + 20 and 3 × 7
e) Z10 : 100 + 7 and 30 × 10
f) Z11 : 11 + 11 and 11 × 7
g) Z11 : 12 + 7 and 10 × 10
h) Z15 : 14 + 1 and 3 × 6

18. Group a+ b 2
If a, b are rational numbers, not both zero, then show the set a+ b 2
forms a group under multiplication

a1 + b1 2 a2 + b2 2 = a1a2 + 2b1b2 + a1b2 + a2b1 2

19. Verification of a Group
Prove that the nonzero real numbers R∗ = R − {0} with binary operation ∗
is a group, where

a∗b= 1
2
ab

20. Homomorphisms
The most important functions between two groups are homomorphisms,
those that “preserve” the group operations. More precisely, a function
f :G H between two groups is a homomorphism when
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f xy = f x f y for all x and y in G

where xy denotes the group operation in G and f(x)f(y) denotes the group
operation in H. The following identities describe homomorphisms
between two groups, where group operations are understood. What are
the groups G, H, and what is the homomorphism between the groups?
a) c(x + y) = cx + cy
b) |xy| = |x||y|
c) (xy)2 = x2y2

d) loga (xy) = loga x + loga y
e) xy= x y

21. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward applications of group theory, history of group theory, and
examples of groups of different sizes.
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6.3

Permutation Groups

Purpose of Section To introduce the idea of a permutation of a set and how a
composition of permutations can be interpreted as a binary operation yielding a
new permutation. This binary operation gives rise to an important group of per-
mutations called the symmetric group Sn.

6.3.1 Permutations and Their Products

In Section 2.3, we introduced the concept of a permutation (or arrangement) of
a set of objects. We now return to the subject, but now our focus is different.
Instead of thinking of a permutation as an arrangement of objects (which it
is, of course), we think of a permutation as a one-to-one correspondence (bijec-
tion) from a set onto itself. For example, a permutation of elements of the set
A = {1, 2, 3,… , n} can be thought of a one-to-one mapping of the set onto itself,
represented by

P =
1 2 k n

1P 2P kP nP

which gives the image kp of each element k A in the first row as the element
directly below it in the second row.
For example, a typical permutation of the four elements A = {1, 2, 3, 4} is

P =
1 2 3 4

2 3 4 1

A good way to think about this permutation is to think of a tomato, straw-
berry, lemon, and apple, arranged from left to right in positions we call 1, 2,
3, and 4. If we apply the permutation P mapping, we get the new arrangement
shown in Figure 6.34.
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The tomato that was originally in position 1 has moved to position 2, the
strawberry that was in position 2 has moved to position 3, and so on. The impor-
tant thing to know is that although the individual items have moved, the posi-
tions 1, 2, 3, and 4 remain the same.
Another way to think of a permutation is with a directed graph, as drawn in

Figure 6.35. Here, we see the movement of the fruits as everything is shifted to
the right, and the apple at the end goes to the front of the line. Again, think of the
fruits as moving, but the positions are fixed.

Position 1 Position 2 Position 3 Position 4
P

Position 1 Position 2 Position 3 Position 4

Figure 6.34 Permutation mapping.

Position 1 Position 2 Position 3 Position 4

P

Figure 6.35 Visualization of a permutation.
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6.3.1.1 Product of Permutations

Starting with the permutation:

P =
1 2 3 4

2 3 4 1

suppose we follow this permutation by a second permutationQ. In other words,
the composition of the permutation P is followed by a second permutation Q,
which gives rise to a “reshuffling of a reshuffling.” This leads us to the definition
of the product of two permutations.

Definition The composition of permutations P andQ is the product of P and
Q, and denoted1 by PQ.

The product of the permutations P and Q is shown in Figure 6.36.

History The idea of a permutation or arrangement of things has received
attention in various cultures throughout history. In the Chinese Book of Changes,
attention is given to “arrangements” of the mystic trigrams. The Greek historian
Plutarch writes that the philosopher Xenocrates (350 BCE) computed the
number of possible syllables as 1 000 000 000 000, which hints at taking permu-
tations of syllables.

Figure 6.37 illustrates the movement of the four fruits under the action of this
product.

PQ =

P

=
1

1

2

2

3

3

4

4

Q PQ

1

3

2

2

3

1

4

4

1

2

2

1

3

4

4

3
↓

Figure 6.36 Permutation product.

1 In compositions of functions (f ∘ g)(x) = f[g(x)] we evaluate from “right to left,” evaluating the
function g first and f second, but here, in the case of permutation functions, we evaluate from “left
to right.”
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A second visualization of this permutation product is shown in Figure 6.38.
This time we use Greek symbols.

Example 1 Multiplying Permutations
Find the product PQ of

P =
1 2 3 4

4 3 2 1
, Q=

1 2 3 4

2 1 4 3

P =

=

1

1

2

2

3

3

4

4

1

3

2

2

3

1

4

4
Q

Figure 6.37 Product (composition) of two permutations.

P

∆ ∆

Δ

Ω Ω

Ω

Ω

Δ

Q

Figure 6.38 Another representation of the product of permutations.
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Solution
We illustrate the product in Figure 6.39. Note that

PQ 1 = 3, PQ 2 = 4, PQ 3 = 1, PQ 4 = 2

The graph illustration of the product is shown in Figure 6.40.

If we carry out the permutations P, Q in Example 1 in the opposite order,
we find

QP =
1 2 3 4

2 1 4 3

1 2 3 4

4 3 2 1
=

1 2 3 4

3 4 1 2
=PQ

which leads us to believe that itmakes no difference in the order the permutations
are performed.However, this is not true ingeneral as the following example shows.

PQ=
1 2 3

2 1 3

1 2 3

3 2 1
=

1 2 3

2 3 1

QP =
1 2 3

3 2 1

1 2 3

2 1 3
=

1 2 3

3 1 2

PQ =

P

=
1

1

2

4

3

3

4

2

Q

1

3

2

2

3

1

4

4

1

2

2

3

3

4

4

1

Figure 6.39 Product of permutations.

P

Δ Δ

Δ
Ω Ω

Ω

Ω

Δ

Q

P = Q =1

1

2

4

3

3

4

2

1

3

2

2

3

1

4

4

Figure 6.40 Composition of two permutations.
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6.3.2 Inverses of Permutations

If a permutation P maps k to kP, then its inverse P−1 maps kP back onto k. In
other words, the inverse of a permutation can be found by simply interchanging
the top and bottom rows of the permutation P. For convenience in reading how-
ever, we reorder the top row 1, 2, n from left to right. For example

Q=
1 2 3 4

4 3 1 2
Q−1 =

1 2 3 4

3 4 2 1

P =
1 2 3 4

2 3 4 1
P−1 =

1 2 3 4

4 1 2 3

The reader can verify that

PP−1 =QQ−1 =
1 2 3 4

1 2 3 4

6.3.3 Cycle Notation for Permutations

Amore streamlinedway to display permutations is by the use of theCauchy cycle
(or cyclic) notation. To illustrate how this works, consider the permutation2

P =
1 2 3 4 5 6

3 2 5 6 1 4

To write this permutation in cyclic notation, we start at the upper left-hand
corner with 1 and write (1 and then follow it with its image 1P = 3, that is (13.
Next, note that Pmaps 3–5, so we write (135. Then Pmaps 5 back to the original
1, so we have our first cycle (135). We then continue on with 2 (next unused
element in the first row) and observe that Pmaps 2 to itself, so we have a 1-cycle
(2). Finally, we see that Pmaps 4–6, so we write (46 and since 6 maps back to 4
we have our final cycle, the 2-cycle (46). Hence, P is written in what is called the
product of three cycles: a 3-cycle, a 1-cycle, and a 2-cycle,

P = 135 2 46 = 135 46

where we dropped the 1-cycle (2) to streamline the notation.

2 Sometimes, only the bottom row of the permutation is given since the first row is ambiguous.
Hence, the permutation listed here could be expressed as {325614}.
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Example 2 Cycle Notation
Each of the following permutations is displayed in both function and cycle
notation. Make sure you can go “both ways” in these equations.

a)
1 2 3 4 5 6

2 4 3 5 6 1
= 12456 3 = 12456

b)
1 2 3 4

4 3 2 1
= 14 23

c)
1 2 3 4 5

1 2 4 5 3
= 1 2 345 = 345

d)
1 2 3

3 1 2
= 132

e)
1 2 3

1 2 3
= 1 2 3 =

Note the identity permutation in Example 2e) is sometimes written as ( ).

Important Note The cycle notation was introduced by the French mathema-
tician Cauchy in 1815. The notation has the advantage that many properties of
permutations can be seen from a glance.

6.3.4 Products of Permutations in Cycle Notation

When computing the product of permutations expressed in cycle notation, one
reads from left to right and thinks of each cycle as a function and the entire
product as the composition of functions.3 The process is best explained with
an example. Consider the product of four cycles

145 23 24 51 = 1234 5 = 1234

Startingwith 1 in the left-most cycle, we see itmaps to 4, whereuponwemove to
the second cycle that does not contain 4, so we move to the third cycle that maps
4–2,whereuponwemove to the last cycle that does not contain a 2, sowe conclude

3 The “left-to-right” convention for multiplying permutations is not universal. Another convention
is to write the order the permutations are carried out from right to left and so products are computed
from “right-to-left.”
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that the product 1 maps to 2, whereupon we start the product permutation as
(12…). We then carry out the same process starting at the leftmost permutation
to find the image of 2, whereupon the first cycle does not contain 2 so we move
to the secondcycle and see that 2maps to 3, and since noneof the remaining cycles
contain 3, we conclude the product maps 2 maps to 3, so we write the product as
(123…). Continuing this process, we obtain the final product of (1234).

Example 3 Permutations in Cycle Form
For the set

A= 1,2,3,4,5

we have the following products.

a) 12357 2476 = 147 2356 =
1 2 3 4 5 6 7

4 3 5 7 6 2 1

b) 1234 1432 = 1 2 3 4 = =
1 2 3 4

1 2 3 4

c) 1342 −1 = 1243 =
1 2 3 4

2 4 1 3

d) (14)−1 = (14) since (14)(14) = (1)(4) = ( )

e) (125)(34) = (34)(125) (cycles commute)

Note that in the inverse permutation, the orientation goes in the opposite
direction (i.e., counterclockwise versus clockwise). Although the commutative
law does not hold in general for permutations, there are cases where permuta-
tions do commute. For example, if two cycles share no common element, then
the order can be switched as in the case (123)(45) = (45)(123). However, (13)
(12) (12)(13).

Example 4 Permutation Group
The following permutations are written as the product of transpositions.

1234…n = 12 13 14 … 1n

4321 = 43 42 41

15324 = 15 13 12 14

Example 5 Products of Cycles
Find the product (1532)(35)(14) of three permutations written in product form.

Ans: The easiest way is to make a directed graph shown in Figure 6.44.
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Viewing the results of Figure 6.41, we find the product to be

1532 35 14 =
1 2 3 4 5

3 4 2 1 5

Using the directed graph in Figure 6.41 as a guide, see if you are able to carry
out the multiplication (1532)(35)(14) of these cycle permutations. Think of
someone giving three commands one after the other to a group of five people
standing in a row, then ask yourself where will each of the people end up. Think
of following each person moving from position to position at each command.
We see the person starting in location “1”moves to position “5” on the first com-
mand, then to position “3” on the second command, and stays at position “3”on
the third command.

6.3.5 Transpositions

A permutation that interchanges just two elements of a set and leaves all others
unchanged is called a transposition (or 2-cycle). For example

1 2 3 4

1 4 3 2
= 24

1 2 3 4 5

1 3 2 4 5
= 23

are transpositions. What may not be obvious is that any permutation can be
written as the product of transpositions. In other words, any permutation of ele-
ments can be carried out by repeated interchanges of just two elements. For
example Figure 6.42 shows four girls lined up from left to right waiting to

1

(1532) (35) (14)

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 6.41 Product of cycles.
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get their picture taken. The photographer asks the three on the left to move one
place to their right, and the end girl to move to the left position, which is a result
of the following permutation.
The question then arises, is it possible to carry out this maneuver by repeated

interchanges of members, two at a time? The answer is yes, and the equation is

1234 = 12 13 14

To see how this works, watch how they move in Figure 6.43.

P = = (1234)
1

1

2

2

3

3

4

4

↓

↓

Figure 6.42 Rotation permutation.

(1,2)

(1,3)

(1,4)

Figure 6.43 Permutation as a product of transpositions.
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Example 6 Factoring Permutations as Transpositions
Observe that the following permutation in Figure 6.44 can be expressed as a
series of transpositions.

1 2 3 4 5 6

4 3 6 1 5 2
= 34 45 23 12 56 23 45 34 23

6.3.6 Symmetric Group Sn

We now show that the set of all permutations of a set forms a group.

Theorem 1 The set of all permutations of the set A = {1, 2, 3,… , n} with n
members whose group operation is the composition of permutations is a group.
The group is called the symmetric group Sn on n elements, and the order of the
group is |Sn| = n!.

Proof
To show that the symmetric group is a group, we need to verify the group CIIA
axioms of closure, identity, inverse, and associativity.
Closure: Each permutation is a one-to-one mapping from A = {1, 2,… , n}

onto itself, so repeated permutations PQ is also a one-to-one mapping of {1,
2,… , n} onto itself.
Identity: The permutation that assigns every member to itself serves as the

identity of the group.
Unique Inverse: Permutations are one-to-one correspondences between

members of the set and itself and so it has a unique inverse.
Associative Law:The group operation is associative since it is the composition

of functions that arealways associative.Hence, theaxiomsofagroupare satisfied.▌

1 2 3 4 5 6

1 2 3 4 5 6
(23)

(34)

(45)

(23)

(56)

(12)

(23)

(45)

(34)

Figure 6.44 Permutation as the product of transpositions.
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6.3.7 Symmetric Group S3

In Section 6.2, we constructed the group of rotational and reflective symmetries
of an equilateral triangle called the dihedral groupD3.What we did not realize at
the time was that this dihedral group of symmetries is the same as the symmetric
group S3 of all permutations of the three vertices {1, 2, 3} of a triangle.
Figure 6.45 illustrates this relationship.

Group of
permutations of 

{1,2,3}

Group of symmetries
of an equilateral

triangle
Interpretation

(1)(2)(3)

1

1

2

2

3

3

Do nothing

(123)

Counterclockwise
rotation of 120°

Counterclockwise
rotation of 240°

(132)

(23)

Flip through
vertex 1

(13)

Flip through
vertex 2

P2 =

P3 =

P4 =

P5 =

P6 =

P1 =

(12)

Flip through
vertex 3

3 1

2

3 2

1

12

2

1 3

3

1

3

2

1 2

3

1

1

2

2 3

3

1

2

2

3 1

3

1

2

2

1 3

3

1

1

2

3 2

3

1

3

2

2 1

3

Figure 6.45 Abstract equivalence of S3 and D3.
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The Cayley table for the group symmetric group S3 is shown in Figure 6.46.

6.3.8 Alternating Group

From the Cayley table of S3 drawn in Figure 6.46, there is an obvious subgroup
located at the upper left of the table in the unshaded region called the alternat-
ing group A3 with members

A3 = e, 123 , 132

The property that characterizes this subgroup may not be obvious at first
glance, but when its members are expressed in terms of fundamental transposi-
tions, they all have an even number as seen by

0 transpositions even number

123 = 13 32 2 transpositions even number

132 = 12 23 2 transpositions even number

,

whereas the other three permutations of S3, namely (12), (13), (23) have an odd
number of transpositions (namely one). It is a general property of the symmetric
group Sn that half the n! permutations have an even number of transpositions,
called the even permutations, and half the permutations have an odd number of
transpositions, called the odd permutations. The even permutations (which
always contain the identity permutation) form an alternating subgroup An of
order n !/2. Many of these alternating groups have interesting properties. The
alternating group A4 of the 12 even permutations of S4 are the symmetries of
the regular tetrahedron.

PQ
Q

P

e = ( )

e = ( )

e

e

e

e

e(123)

(12)(123)

(123)

(123)

(23)

(132)

(132)

(132)

(13)

(12)(123)

(123)

(132)

(23)(132)

(132)

(13)

(23) (13)(12)

(12)

(13)

(23)

(123)

(132)

(12)

(13)

(23)

(132)

(123)

(23)

(12)

(13)

e

(13)

(23)

(12)

(13) (12)(23)

Figure 6.46 Symmetric group S3.
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Problems

1. Finding Permutations
Given the permutations

P =
1 2 3 4

2 4 3 1
, Q=

1 2 3 4

4 2 1 3

find:
a) PQ
b) P−1

c) QP−1

d) P2

e) (PQ)−1

2. Permutation Identity
For permutations

P =
1 2 3 4

4 3 2 1
, Q=

1 2 3 4

2 1 4 3

prove or disprove (PQ)−1 = Q−1P−1.

3. Cycle Notation
Fill in the blanks in the permutation

P =
1 2 3 4 5

− − − − −

represented by the following cyclic products.
a) (13)(24)
b) (123)(45)
c) (1432)
d) (1)(2)(35)(4)
e) (135)(42)

4. Composition of Permutations
Given the permutations:

P =
1 2 3 4 5

3 2 4 5 1
, Q=

1 2 3 4 5

2 4 1 3 5
, R=

1 2 3 4 5

2 5 3 1 4
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a) Show that PQ QP
b) Verify (PQ)R = P(QR)
c) Verify (PQ)−1 = Q−1P−1

5. Cycles as the Product of Two-Cycles
A two-cycle is an exchange of two elements of a set, such as the permutation
(23) of interchanging 2 and 3, leaving the other elements of the set
unchanged. Every permutation of a finite set can be written (not uniquely)
as the product of two-cycles. Write the permutation (12345) as the product
or composition of two-cycles. Take five different objects and put them
in a row and verify that your answer is correct by shuffling them in
both ways.

6. Symmetric Group S2
Given the set A = {1, 2}.
a) Construct the Cayley table for the group of permutations on A.
b) What is the order of this group?
c) Is the group Abelian?
d) What is the inverse of each element of the group?

7. Transpositions
Verify the following products.
a) (1234… n) = (12)(13)(14) (1n)
b) (214) = (21)(24) = (24)(41)
c) (4321) = (43)(42)(41)
d) (15324) = (15)(13)(12)(14)

8. Do Transpositions Commute?
Do transpositions commute in general? For the set {1, 2, 3}, is it true that
(12)(13) = (13)(12)?

9. Decomposition into Transitions Is Not Unique
Show that the decomposition of the permutation (12345) can be written in
any of the three forms:

12345 = 12 13 14 15

= 15 25 35 45

= 23 24 25 21
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Cartesian (or Direct) Product of Groups
It is possible to piece together smaller groups to form larger groups. If H
and G are groups, their Cartesian product4 is

H ×G = h,g h H ,g G ,

where the group operation ∗ in H ×G is

h,g ∗ h ,g = hh ,gg ,

where hh is the group operation in groupH, and gg is the group operation
in group G. The following problems illustrate some Cartesian products of
groups.

10. Cartesian Product Z2 ×Z2

Consider the cyclic groups Z2 = {0, 1},where the group operation is addi-
tion mod 2. Find the Cartesian product Z2 ×Z2 and construct its multipli-
cation table. Show the table is the same as the multiplication table for the
Klein four group of symmetries of a rectangle. In other words, the Klein
four group is isomorphic to Z2 ×Z2.

11. Cartesian Product Group Z2 ×Z3

Find the elements of the Cartesian product Z2 ×Z3. What is the order of
the group?What is the Cayley table for the group? Hint: Keep in mind that
the product (a, b)(c, d) = (e, f), where e = (a + c) mod 2, f = (b + d) mod 3.

12. Permutation Matrices
The permutation

P =
1 2 3

1 3 2

can be carried out with a 3 × 3 matrix.
a) Find the matrix?
b) Find the six matrices that represent the six permutations of S3.

13. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward permutations in cycle notation, symmetric group, permuta-
tion group, and puzzles with permutations.

4 The Cartesian product is often written H ×G. The Cartesian product can be extended to the
product on any number of groups, like G1 ×G2 × ×Gn.
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6.4

Subgroups

Groups Inside a Group

Purpose of Section To introduce the concept of a subgroup and find the
subgroups of various cyclic groups. We also introduce the idea of cosets of a
subset and the concept of a quotient group.

6.4.1 Introduction

Recall the six symmetries of an equilateral triangle: the identity map, three flips
about the midlines, and two (counterclockwise) rotations of 120 and 240 illus-
trated in Figure 6.47.

Althoughwe have seen that these symmetries, alongwith the operation of com-
positions forms an algebraic group, what is also true is that the group is made up
of several smaller groups, In the given case of the six symmetries of an equilateral
triangle, the subset of three rotational symmetries {e, R120, R240} whose multipli-
cation table is shown in Figure 6.48, can easily be verified to form a group.

Vertical
line

Northeast
line

Northwest
line

A

B C

Figure 6.47 Symmetries of an equilateral triangle.
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The above discussion motivates the following definition of “groups within
groups,” or subgroups.

Definition Let {G, ∗} be a group with operation ∗. If a subset H G itself
forms a group with the same operation ∗, then H is called a subgroup of G.

6.4.1.1 At Least Two Subgroups

Although all groups have two subgroups, the group itself and the trivial group
consist of only the identity {e}, and we are mainly interested in the other sub-
groups, called proper subgroups, although we often refer to them simply as
subgroups.

Example 1 Subgroups of Symmetries
Find the subgroups of the dihedral group D3 of symmetries of an equilateral
triangle.

Solution
The Cayley table for the dihedral group D3 of symmetries of an equilateral tri-
angle and its subgroups are displayed in Figure 6.49. There are four subgroups1

R120

R120

R120

R120

R120

R120

R120R120

e

e

e

e

e

e

e

e

R240

R240

Fv

Fv

Fne Fnw

Fv

Fv

Fv

Fv

Fv

Fv

Fne

Fne

Fne

Fne

Fne Fne

Fne

Fnw

Fnw

Fnw

FnwFnw

Fnw

Fnw

R240

R240

R120e

ee

e

e

R240

R120

R120

R120

R120

R240

R240R240

R240

R240

R240

R240R240

Figure 6.48 Subgroup of rotations of symmetries of an equilateral triangle.

1 Of course, (G, ∗) is a subgroup of itself, but when we say subgroups, we mean proper subgroups
when H G.
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of D3; the rotational subgroup {e, R120, R240} of order 3 and three “flip” sub-
groups {e, Fv}, {e, Fne}, {e, Fnw}, each of order 2.
We let the reader verify each of these subgroups satisfy the required condi-

tions to be a group.

∗ e Fne Fnw
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R120 R240

R120 R240

R120R240R240

R120

(b)

∗ e Fne Fnw

e e vF Fne Fnw
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Figure 6.49 (a) H1 = {e, Fv} flip around vertical axis. (b) H2 = {e, Fnw} flip around the northwest
axis. (c) H3 = {e, Fne} flip around the northeast axis. (d) Three rotations of a rectangle.
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6.4.2 Subgroups of the Klein Four-Group

Recall that the group of symmetries of a rectangle forms the Klein four-group
with elements

G = e,R180,H ,V

Figure 6.50 shows the Cayley table of these symmetries and three subgroups
of order 2.

Note that the order of a subgroup divides the order of the group. This funda-
mental property of subgroups is called Lagrange’s Theorem after the French/
Italian mathematician Joseph-Louis Lagrange (1736–1813).

6.4.3 Test of Subgroups

Although a subset H of a group G is a group only if it satisfies the requirements
for a group, it is only necessary to verify that the group operation ∗ is closed inH
and that every element of H has an inverse in H. There is no need to show the
associative property or the existence of an identity since the identity in G is also
an identity in H. This result is summarized in the following theorem.

∗ e H V

e e H V

e V H

H H V e

V V H e

∗ e H V

e e H V

e V H

H H V e

V V H e

Group of symmetries of a rectangle Subgroup of horizontal flips

∗ e H V

e e H V

e V H

H H V e

V V H e

∗ e H V

e e H V

e V H

H H V e

V V H e

Subgroup of vertical flips Subgroup of rotational symmetries

R180

R180

R180 R180

R180

R180 R180

R180

R180

R180

R180

R180

R180

R180R180

R180

R180

R180

R180

R180

R180R180

R180

R180

Figure 6.50 Symmetry group of a rectangle and three subgroups.
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Theorem 1 Conditions for Being a Subgroup
If {G, ∗} is a group and H a (nonempty) subset of G, then H with operation ∗ is a
subgroup of {G, ∗}, provided the following conditions are satisfied:

i) The operation ∗ is closed in H. That is,

x,y H x∗y H

ii) Every element h inH has an inverse h−1 H such that h ∗ h−1 = h−1 ∗ h = e
G.

That is,

h H h−1 H h∗h−1 = h−1∗h= e

where “e” is the identity element in G.

Proof
We assume properties (i) and (ii) and show that (H, ∗) satisfies the conditions
of closure, identity, inverse, and associativity.
Closure in H: This is the assumed property (i).
Identity in H: If h H, by condition (ii) there exists a h−1 H that satisfies
h ∗ h−1 = e G. But the closure assumption (i) says e = h ∗ h−1 H.
Inverse in H: This is the assumed property (ii).
Associative condition: The associative law.

a∗b ∗c= a∗ b∗c
holds for all a, b, c H since it holds for all elements of G. ▌

Example 2 Test of Subgroup
Let G = Z = {0, ± 1, ± 2,…} be the group of integers with addition + as the group
operation. Show that the set of even integers 2Z = {0, ± 2, ± 4,…} is a subgroup
of G.

Solution
We verify the two conditions for a subset of a group to be a subgroup.

Closure of Addition: Ifm = 2k1 and n = 2k2 are even integers, so is their sum as
can be seen from the equation

m+ n= 2 k1 + k2 2Z

Inverse in Subset: Every even integer 2k 2Z has an inverse, namely −2k 2Z,
as can be seen from

2k + −2k = 2+ −2 k = 0 2Z ▌
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Example 3 Group of Infinite Order
The points (a, b) in the Cartesian plane with group operation

a,b c,d = a+ c,b+ d

form a group. Show that H = {(x, 0) : x R} is a subgroup.
Solution
We verify the two conditions that ensure a subset of a group to be a subgroup.

Closure: The x-axis is a subset of the plane, and the operation is closed in
H since

x1,0 H

x2,0 H
x1,0 x2,0 = x1 + x2,0 H

Inverse: Since (x, 0) + (−x, 0) = (0, 0) every element (x, 0) H has the unique
inverse (−x, 0). ▌

Example 4 Subgroups of the Octic Group
Figure 6.51 shows the eight symmetries of the dihedral group

D4 = e,R90,R180,R270,FV ,FH ,Fnw,Fne

which represents the eight symmetries of a square, which is also called the
octic group.

a) Does the group commute? Hint: Compare R270Fne and FneR270.
b) There are ten subgroups of the octic group. Find them.

Solution
a) The reader can check that

R270Fne FneR270

Hence, the octic group is not commutative.

b) The eight proper subgroups of the octic group D4 are
2

e,V , e,H , e,R180 , e,Fnw , e,Fne ,

e,R180,V ,H , e,R90,R180,R270 , e,R180,Fnw,Fne

2 The octic group, which is a subgroup of itself, is not included here.
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The subgroups of the symmetry group of a square form a partially ordered set,
ordered by set inclusion, illustrated in Figure 6.52. The octic group D4 is itself a
subgroup of the group S4 of 24 permutations of four elements.

Symbol First and final positions

Rotate 90°
counterclockwise

Rotate 180°
counterclockwise  

Rotate 270°
counterclockwise 

Horizontal flip H

Vertical flip V

Northeast flip

Northwest flip

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A B

D C

A D

B C

C B

D A

B A

C D

D C

A B

D A

C B

C D

B A

B C

A D

A B

D C

R90

R180

R270

Fne

Fnw

No motion or
Rotate 0° 

e = R0

Figure 6.51 Eight symmetries of a square.
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6.4.4 Subgroups of Cyclic Groups

We have seen that the cyclic group Zn is generated by an element in the group.
That is, there exists a g Zn such that

g e,g,g2,g3,…,gn−1 =Zn

To find the subgroups of Zn, we begin with an arbitrary element h Zn and
compute the set h generated by h. The elements generated by h may or may
not be all of Zn, but they will always create a subgroup of Zn. We then pick a
second member h Zn which is not in the first generated set h and compute
h . This will yield another subset of Zn. Continuing this process will eventually
yield all subgroups of Zn.
Let us apply this technique to find all the subsets of the cyclic group

Z12 = 0,1,2,3,4,5,6,7,8,9,10,11 ,

where the group operation is addition modulo 12. Starting with 1, we generate
powers of g = 1, remembering that powers of one in this group are really
adding 1. Hence, we have

1 = 0,1,2,3,4,5,6,7,8,9,10,11 Z12

which generates the entire group Z12. We now select the element g = 2, which
generates the subgroup

2 = 0,2,4,6,8,10 Z12

{R0,R180,V,H} {R0,R90,R180,R270}

{R0,V} {R0,H} {R0,R180} {R0,Fnw} {R0,Fne}

{e = R0}

{R0,R180,Fne,Fnw}

D4

Figure 6.52 Hasse diagram for the subgroups of the octic group D4.
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Figure 6.53 shows the subgroups generated by g = 1, 2, 3, 4. Do you see why
5 = Z12 and 6 = {0, 6}.
You might notice that the numbers 1, 5, 7, 11 are relative prime to 12 to gen-

erate the entire group Z12. Do you also see a pattern between the orders of those
subgroups generated by numbers not relatively prime with 12? That is, the
orders of the subgroups 2 , 3 , 4 , 6 , 8 , 9 , 10 ?
Table 6.5 shows the subgroups generated by each element of the group and

the order of the subgroup generated by the generator.

6.4.5 Cosets and the Quotient Group

If G is a group with group operation “+” and subgroup H, then for any g G the
“g-translation” of H

g +H = g + h h H

is called the left coset3 of H with respect to g. Similarly, the right cosets are
defined by

H + g = h+ g h H

g = 1 generates the
entire group 

g = 2 generates the
subgroup 

g = 4 generates the
subgroup 

g = 3 generates the
subgroup 

1 = ℤ12 = {0,1,2,...,11} 2  = {0,2,4,6,8,10}

3 = {0,3,6,9} 4 = {0,4,8}

Figure 6.53 Four typical subgroups generated by elements of the group.

3 We could express the group operation multiplicatively as gH, rather than g +H. It is strictly a
matter of preference.
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If the left and right coset coincide,4 as they do for commutative groups or for
certain subgroups called normal subgroups, we simply refer to them as cosets
without specifying left or right. You can think of the cosets of a subgroup as
what you get when you “shift” the subgroup to the left or right with members
g G, that is “translated” subgroups. The subgroup H itself is a coset when the
“shifting factor” g G is the identity element in G. By selecting various g G,
one can create a partition of the groupG into equivalence classes of cosets. This
is useful since subdividing a group into disjoint parts allows one to identify parts
of the group that are similar from some point of view.
For example, the (commutative) group G = Z6 of integers mod 6 has a sub-

group H = {0, 3} of two elements 0 and 3. Translating the subgroup with the six
elements g Z6, we arrive at three cosets of the form

g +H = g + 0,3 ,g Z6

which are

0 +H = 3+H = 0,3

1 +H = 4+H = 1,4

2 +H = 5+H = 2,5

Note that the subgroup H = {0, 3} itself is a coset when g = 0 Z6.

Table 6.5 Generators of subsets of Z12.

Generator Order of the generator

1 = Z12 12(112 = 0)

2 = {0, 2, 4, 6, 8, 10} 6(26 = 0)

3 = {0, 3, 6, 9} 4(34 = 0)

4 = {0, 4, 8} 3(43 = 0)

5 = Z12 12(512 = 0)

6 = {0, 6} 2(62 = 0)

7 = Z12 12(712 = 0)

8 = {0, 4, 8} 3(83 = 0)

9 = {0, 3, 6, 9} 4(94 = 0)

10 = {0, 2, 4, 6, 8, 10} 6(106 = 0)

11 = Z12 12(1112 = 0)

4 The left and right cosets coincide if G is commutative or if the subgroup H satisfies g +H = H + g
for all g G. Subgroups H with this property are called normal subgroups.
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The question now arises, is it possible to do “arithmetic” with the cosets, and
the answer if yes, when the left and right cosets coincide. Without verification, it
is not difficult to show that the binary operation

g1 +H g2 +H = g1 + g2 +H additively

g1H g2H = g1g2H multiplicatively

acting on the cosets forms a group. This group is called the quotient (or factor)
group of G modulo H, and are written

G H = g +H g G

pronounced GmodH.
The following example illustrates how an infinite (commutative) group can

be “factored” into just three equivalence classes, each having a common
property.

Example 5 Cosets in Z
Let G = Z be the group of integers with group operation addition, and
H = 3Z = {0, ± 3, ± 6, …} the subgroup of multiples of 3. By selecting different
“shifting values” g G = Z, we can shift H to obtain its cosets, which are

0 + 3Z= …, −6, −3,0,3,6,… = equivalence class of 0mod3

1 + 3Z= …, −5, −2,1,4,7,… = equivalence class of 1mod3

2 + 3Z= …, −4, −1,2,5,8,… = equivalence class of 2mod3

Although the cosets of 3Z are formed by allowing the shifting value g Z to
roam over all integersZ, only three cosets are created. Note that they partitionZ
into three disjoint subsets.
The set 3Z and its two cosets

Z 3Z= 3Z,1 + 3Z,2 + 3Z
with binary operation defined by

a+ 3Z b+ 3Z = a+ b + 3Z
where a, b Z defines the quotient group Z/3Z whose Cayley table is shown in
Figure 6.54.5

5 If the group G is not a commutative, then one must require the subgroup H to be a normal
subgroup, meaning that for all g G one has g +H = H + g, which allows one to uniquely define the
cosets of H.
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Important Note The reason G/H is called a “quotient group” comes from divi-
sion of integers. The quotient 6/2 = 3 means one can subdivide six objects into
three subcollections, each containing two objects. The quotient G/H group is
the same idea, although here we end up with a group rather than a number.
However, the order of the quotient group (for finite groups) is the order of
the group G divided by the order of the subgroup H, that is |G/H| = |G|/|H|.

Problems

1. True or False
a) The order of any subgroup divides the order of the group.
b) Every subgroup of a group contains an identity element.
c) Some groups do not have any subgroups.
d) Z is a subgroup of R under the operation of addition.
e) The symmetric group S2 has two subgroups.
f) There are some groups where every subset is a subgroup.
g) The set {e, h} is a subgroup of the group of symmetries of a square, where

e denotes the identity map, and h is the horizontal flip.
h) There are five subgroups of order 2 of the group of symmetries of a

square.

2. Subgroups of Z6

List the subgroups of Z6 = {0, 1, 2, 3, 4, 5} generated by the different ele-
ments of the group. What is the order of each of these generated groups?

3. Cayley Table
Find the Cayley table for the subgroup {e, R180, v, h} of symmetries of a
square.

4. Cayley Table
Show that the group defined by the following Cayley table in Figure 6.55 is a
subgroup of S3.

2 + 3ℤ

2 + 3ℤ
2 + 3ℤ

2 + 3ℤ
1+ 3ℤ

1+ 3ℤ
1+ 3ℤ

1+ 3ℤ
2+ 3ℤ1+ 3ℤ

0+ 3ℤ
0+ 3ℤ

0+ 3ℤ
0+ 3ℤ

0+ 3ℤ

Figure 6.54 Quotient Group of Z/3Z.
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5. Subgroup Generated by R240

Find the subgroup of the dihedral groupD3 of symmetries of an equilateral
triangle generated by R240.

6. Generated Groups of Symmetries of a Rectangle
In the Klein Four-group {e, R180, v, h} of symmetries of a rectangle, find the
subgroups generated by each element in the group. What is the order of
each member?

7. Center of a Group
The center Z(G) of a group G consists of all elements of the group that
commute with all elements of the group. That is

Z G = g G gx= xg forallx G

It can be shown that the center of any group is a subgroup of the group.
Find the center of the group of symmetries of a rectangle. Note: The center
of a group is never empty since the identity element of a group always
commutes with every element of the group. The question is, are there
other elements that commute with every element of the group?

8. Hasse Diagram
Draw the Hasse diagram for the subgroups of symmetries of a rectangle.

9. Subgroups of Z8

Find the subgroups of the cyclic group Z8.

10. Subgroups of Z11

Find the subgroups of Z11.

11. Matrix Subgroup
The set G of all 2 × 2 invertible matrices with real entries forms a group
under matrix multiplication. Show that the subset of matrices of the form

H =
1 a

0 1
; a Z

is a subgroup of G.

∗ (123)(  )
(  )(  )

(132)

(123)

(  )
(  )

(132)

(123)(123) (132)

(132)(132) (123)

Figure 6.55 Subgroup S3.
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12. Cosets
The set 4Z = {…, − 12, − 8, − 4, 0, 4, 8, 12,…} is a subgroup of the integersZ
with the addition operation. What are the cosets of 4Z and show them
along with 4Z partition Z into disjoint sets.

13. Cosets in the Plane
The Cartesian plane

R2 = x,y x R,y R
with the usual operation pointwise addition is a group and the line
H = {(x, y) : y = x} passing through the origin is a subgroup.

a) What are the cosets of this subgroup?
b) What is the sum of the two cosets

0,1 + x,y y= x

2,3 + x,y y= x

14. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward why are subgroups important, number of subgroups, and
groups with no proper list of small groups.
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6.5

Rings and Fields

Purpose of Section To introduce the concept of an algebraic ring and an
important type of ring called a field.

6.5.1 Introduction to Rings

Although the algebraic group has one binary operation, the algebraic system we
studied in grade school has two binary operations: addition and multiplication.
This leads us to the study of rings and fields. We begin with one of the most
important abstract systems with two binary operations called a ring.1 A ring
is one of the basic structures of abstract algebra, which generalizes the common
arithmetic operations of the integers, polynomials, matrices, and so on. Ring
theory is used today to understand basic physical laws, such as those underlying
such things as symmetry phenomena in molecular chemistry.
You have seen examples of rings before. The integersZwith ordinary addition

(+) andmultiplication (×) are an example of an algebraic ring. In this regard, you
might think of a ring as “generalized integers.” The study of rings was initiated
(in part) by the German mathematician Richard Dedekind (1831–1916) in the
late 1800s, and the axiomatic foundations were laid down in the 1920s, andmost
of them by the German mathematician Emmy Noether.

Definition A set {R, +, ×} with two (closed) binary operations of +(addition)
and ×(multiplication) is called a ring if:

a) The system with operation + forms a commutative group.
b) The operation × is associative. In the language of predicate logic:

a,b,c R a× b × c= a× b× c

1 The word “ring” was coined by the German mathematician David Hilbert (1862–1943).
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c) The operation × distributive over + both on the left and right. In
other words

• a,b,c R a× b+ c = a× b + a× c

• a,b,c R b+ c × a= b× a + c× a

The first thing one notes about a ring is that practically no conditions are
imposed on the multiplication, only that it is associative and obeys distributive
laws. The action in a ring lies with the addition.
We denote the ring operation of addition by + and multiplication by ×,

although they do not necessarily denote addition and multiplication of num-
bers. We often denote ring multiplication by ab for shorthand. We also call
the additive identity in the ring, the zero (or additive identity) of the ring,
and denote it by 0. A ring need not have a multiplicative identity, but when
it does, we say the ring has a multiplicative identity (or unity) and is denoted
by, you guessed it, 1.

Important Note Roughly, a “ring” is a set of elements having two operations,
normally called addition andmultiplication, which behave inmany ways like the
integers. You can add, subtract, and multiply elements in a ring, but not in gen-
eral divide them. We must wait until we get to the general structure of a field
before we can add, subtract, multiply, and divide.

Special Kinds of Rings

• Commutative Rings: If multiplication commutes, i.e. ab = ba, then the ring is
called a commutative ring. We do not mention addition since addition
always commutates in a ring.

• Rings with Multiplicative Identity: A ring with a multiplicative identity is
called a ring with identity. Again, we do not mention the additive identity
since rings always have an additive identity.

• Ring with Zero Divisors: Nonzero elements a, b R in a ring are called zero
divisors if their product is zero; that is ab = 0 or ba = 0 (0 being the additive
identity in the ring). This conditionmay appear strange to the reader since the
familiar rings of integers, rational, and real numbers with ordinary addition
and multiplication do not have zero divisors. But some rings, such as rings
of matrices with ordinary addition and multiplication, have nonzero matrices
whose product is the zero matrix.
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6.5.2 Common Rings

• Example 1 The integers Z = {0, ± 1, ± 2,…} with usual addition and multipli-
cation are a commutative ring with the multiplicative identity of 1.

• Example 2 The set Z[x] of all polynomials in x with integer coefficients and
usual addition and multiplication is a commutative ring with multiplicative
identity f(x) = 1.

• Example 3 The set 2Z = {0, ± 2, ± 4, …} of even integers with usual addition
and multiplication is a commutative ring without a multiplicative identity.

• Example 4 The set Zn = {0, 1, 2,… , n − 1} with addition and multiplication
modulo n is a commutative ring with multiplicative identity 1. This ring is
called the ring of integers modulo n.

• Example 5 The set M2(Z) of all 2 × 2 matrices with integer entries is a non-
commutative ring with multiplicative identity

1 0

0 1

• Example 6 The sets Z,Q, R with the usual addition and multiplication are all
rings. The additive identity in each of these rings is 0 and the multiplicative
identity is 1.

• Example 7 An important ring is the set of polynomials of the form

anx
n + an−1x

n−1+ + a1x+ a0

for a given natural number n and real coefficients with normal addition and
multiplication of polynomials. Note that addition, subtraction, and multipli-
cation are closed operations, but division is not.

Important Note You cannot always solve simple linear algebraic equations in
rings. In the ring of integers Z with ordinary addition and multiplication, one
cannot solve 2x = 1 since 1/2 does not belong in the ring. Rings describe math-
ematical objects that can be added, subtracted, and multiplied, but not divided.

Example 7 Special Ring
Draw the addition and multiplication tables for the ring Z3 = {0, 1, 2}with
addition and multiplication modulo the prime number 3 (see Figure 6.56).

Solution
Carrying out these operations, we find.
Note that the addition table forms a commutative group, and if we only look at

the nonzero members {1, 2} of the multiplication table, they form a commuta-
tive group of order two. This is special kind of ring called a field. But not all rings
have this much structure, as the following example illustrates.
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Example 8 The Cyclic Group Ring
Draw the addition and multiplication tables for the ring

Z6 = 0,1,2,3,4,5

with addition and multiplication modulo 6.

Solution
Carrying out these operations, we find the tables in Figure 6.57.
Although the addition table for Z6 forms a commutative group with additive

identity 0, the nonzero members of the multiplication table do not form a group
for a variety of reasons. First off, the numbers 2, 3, and 4 do not have

00 1 2

00 1 2

11 2 0

22 0 1

+ 00 1 2

00 0 0

01 1 2

02 2 1

Addition modulo 3 Multiplication modulo 3

Figure 6.56 Special ring.

+ 0 1 2 3 4 5

00 1 2 3 4 5

11 2 3 4 5 0

22 3 4 5 0 1

33 4 5 0 1 2

44 5 0 1 2 3

55 0 1 2 3 4

0 1 2 3 4 5

00 0 0 0 0 0

01 1 2 3 4 5

02 2 4 0 2 4

03 3 0 3 0 3

04 4 2 0 4 2

05 5 4 3 2 1

Addition modulo 6 Multiplication modulo 6

Figure 6.57 Cyclic ring.
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multiplicative inverses since there is no member of the ring that satisfies the
equations 2 × a = 1, 3 × a = 1, 4 × a = 1.

Historical Note Emmy Noether (1882–1935) was a German mathematician
whomade groundbreaking contributions to ring theory and theoretical physics.
She was described by Albert Einstein as the most important woman in the his-
tory of mathematics. Noether’s theorem has been called one of the most signif-
icant results in theoretical physics and gives a fundamental connection
between symmetry and conservation laws.

Although rings are important algebraic structures in many areas of
mathematics,2 they sometimes are too restrictive. For example, in the ring of
integers Z under ordinary addition and multiplication, we cannot divide 3 by
5 to obtain a member of the ring. This leads us to the study of the algebraic
field.3

6.5.3 Algebraic Fields

Rings allow for addition, subtraction, and multiplication, but not division. The
equation 3x = 7 has no solution in the ring of integers but does have a solution in
the field of rational numbers. An algebraic field is the domain for many areas of
mathematics, including real and complex analysis. We saw in Section 4.2 that
the real numbers were a complete ordered field.

Definition A field is a set F with at least two elements with two closed binary
operations + and ×, such that

• F is a commutative group under the operation +.

• The nonzero elements of F form a commutative group under ×.

•Multiplication distributive over addition.

When one thinks of a field, one thinks of a structure with two operations
resembling addition and multiplication, where one can add, subtract, multiply,
and divide. The reader is well aware of three common fields from analysis, the
rational numbers Q, the real numbers R, and the complex numbers ℂ.
There are “hypercomplex” number systems past the complex numbers, like

2 Ring theory is fundamental in algebraic geometry where rings of polynomials are important.
3 Someone once said students learn about rings in the third grade when they learn to multiply, and
all about fields in the fourth grade when they learn to divide.
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four-dimensional quaternions and the eight-dimensional octonians, neither of
those number systems are fields, but more general abstract systems. Quaternion
multiplication does not commute, and octonian multiplication not only does
not commute but also is not even associative.

6.5.4 Finite Fields

Although we think of the rational numbersQ, the real numbers R, and the com-
plex numbersℂ as the major infinite fields, there are many important finite fields,
which contain only a finite number of elements. Finite fields play an important
role inmany areas ofmathematics, including algebraic geometry and number the-
ory, as well as applied areas like coding theory and cryptography.
An interesting property of finite fields is that they exist only for certain orders.

For example there are finite fields of order 2, 3, 4, and 5, but none of order 6.
There are finite fields of order 7, 8, 9, but none of order 10. To be specific, there
are finite fields of order pn, n = 1, 2,…where p is a prime number, but no others.
These finite fields are called Galois fields and denoted by GF(pn).4

There are two main classifications of finite fields. There are the finite fields
GF(p) of prime order and then the more involved fields of order pn when
n > 1. The prime order fields GF(p), when n = 1, are the field of permutations
Zp = {0, 1, 2,… , p − 1} of integers with addition and multiplication carried out
modulo p. However, we saw in Example 8 that Z6 = {0, 1, 2, 3, 4, 5} is not a field
since 6 is not a prime number.

Example 9 Galois Field
Draw the addition and multiplication table for the Galois field

GF 7 =Z7 = 0,1,2,3,4,5,6

and find the additive and multiplicative inverses of each element 0, 1, 2, …, 6.

Solution
Performing addition and multiplication modulo 7, we arrive at the tables in
Figure 6.58. The additive inverse of a number is found by moving across the
number’s row until reaching 0, where the additive inverse is the column num-
ber. A similar principle holds for multiplicative inverses.

4 GF(pn) stands for Galois field in honor of the French mathematician Evariste Galois (1811–1832)
who first studied them.
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Example 10 Subtraction and Division Modulo 7
SinceGF(7) =Z7 is a field, we should be able to carry out all four arithmetic opera-
tions: addition, subtraction, multiplication, and division. Since Figure 6.58 shows
us how to add and multiply, how do we subtract and divide?

a) Find 2 − 5
b) Find 5/3

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

Addition modulo 7

× 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Multiplication modulo 7

−a

0 0

a−1

−
1 6 1

2 5 4

3 4 5

4 3 2

5 2 3

6 1 6

Additive and multiplicative inverses modulo 7

a

Figure 6.58 Arithmetic operations for the field GF(7) = Z7.
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Solution
a) To find x = 2 − 5, we find x that satisfies x + 5 = 2. Figure 6.58 gives x = 4.
b) To find 4/3 = 4 × 3−1, we first find the inverse 3−1 by finding the value of x

that satisfies 3x = 1. From Figure 6.58, we find x = 5 and so

4 3 = 4 × 3−1 = 4 × 5= 6

Problems

1. True or False
a) A ring can be finite or infinite.
b) In a ring {R, +, ×}, the set R with × is a group.
c) In a ring {R, +, ×}, the set R with + is a group.
d) The ring Z11 is also a field.
e) The ring Z8 is also a field.
f) There are fields where a × b = 0, but neither a, b are zero.

2. Multiplicative Identity
For each of the following rings, tell if the ring is commutative and if there
exists a multiplicative identity. If a multiplicative identity exists, what is it?
a) The ring of integers Z with usual addition and multiplication.
b) The ring of even integers 2Z with usual addition and multiplication.
c) The ring C(R) of real-valued continuous functions with usual addition

and multiplication.
d) The ring consisting of the set

Z 2 = m+ n 2 m,n Z

with usual addition and multiplication.

e) The ring Z[x] of all polynomials in x whose coefficients are integer with
ordinary addition and multiplication.

f) The ring Q of rational numbers with ordinary addition and
multiplication.

g) The ring consisting of the set Z3 = {0, 1, 2} where addition and multi-
plication are defined modulo 3.

3. Ring of Matrices
Show that the set of all 2 × 2 matrices

R=
a b

c d
a,b,c,d Z

is a ring under matrix addition and matrix multiplication, but not a field.
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4. Rings that are not Fields
Why do the following rings fail to be fields?
a) The ring of polynomials with real coefficients with the usual addition

and multiplication.
b) The ring of n × n matrices with the usual matrix addition and

multiplication.
c) The set Zn = {0, 1, 2,… , n − 1}, where the operations of addition and

multiplication are performed mod n, where n is a composite natural
number.

5. Modulo 3 Field
The addition and multiplication tables for Z3 are shown in Figure 6.59.
What are the additive and multiplicative inverses for each member of
the field?

6. Construct the addition and multiplication tables for Z5.

7. Arithmetic in Z3

In the field GF(3) = Z3, compute the following.
a) 1 + 2
b) 1 − 2
c) 2 × 2
d) 1/2

8. Modular Algebra
Find values of x that satisfies the following equations.
a) 2x = 1(mod3), x Z3

b) 3x = 2(mod5), x Z5

c) 4x = 3(mod7), x Z7

9. Multiplicative Inverse
The integers Z under usual addition and multiplication form a commuta-
tive ring with unity 1. Do any members of this ring have multiplicative
inverses? If so, what are they?

+ 0 1 2 × 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

Figure 6.59 Modulo 3 field.
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10. More Modular Algebra
Solve the equation 7x – 3 = 5 in Z24.

11. Type of Ring
The set {0, a, b, c} with operations of addition and multiplication, defined
by the tables in Figure 6.60, forms a ring. Is this group commutative and
does it have a multiplicative identity?

Zero Divisors
In some rings, things do not obey the arithmetic you learned in grade
school. For example in the ring Z4 = {0, 1, 2, 3} modulo 4 arithmetic,
we found 2 × 2 = 0. In this case, we say that 2 is a zero divisor for this ring.
In general, an element a R in a ring is a zero divisor if there is a nonzero
element b R in the ring such that ab = 0. Matrix rings also have zero
divisors.

12. Zero Divisors
Find a zero divisor in the ring of 3 × 3 matrices with integer entries using
the usual operations of addition and multiplication?

13. Internet Research
There is a wealth of information related to topics introduced in this
section just waiting for curious minds. Try aiming your favorite search
engine toward importance of ring theory in mathematics, importance of
field theory in mathematics, important rings and fields in mathematics,
history of ring theory in mathematics, and history of field theory in
mathematics.

⊕ 0 a b c ⊗ 0 a b c
0 0 a b c 0 0 0 0 0
a a 0 c b a 0 a b c
b b c 0 a b 0 b c a
c c b a 0 c 0 c a b

Figure 6.60 Special ring.
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a
Abelian group 386
Abel, Niels 391
absolute value, complex number 285
abstract algebra 369–370
abstraction 370
additive identity 434
adjacency matrix 329–330

definition 321
dominance graph 323, 324

aleph null 151
algebra 370
algebraically closed field 285
algebraic field 270, 437–438
algebraic functions 228
algebraic group 377

binary operation 385–387
Cayley table 388–390
definition 386

algebraic numbers 163–165
algebra of relations 192
algebra of sets 123
antecedent/premise sentence 25
antisymmetric relation 197–198
Aquinas, Thomas 143
Argand, Jean Robert 284
Aristotle 3, 143
arithmetic axioms for real

numbers 270–271

arithmetic in modular arithmetic 222
arithmetization of analysis 40, 75
Ars Magna 281
Artin, Emil 274
associative operation 386, 433
assumption sentence 25
atomic sentences 6
axiomatic set theory 105
axiom of choice (AC)
comments on the 175–176
well-ordering principle 176–177

axioms 52, 136
completeness 270, 274
field 269
order 269

b
backwards compositions 235
backwards proof 57–59
Bell number 139, 215
Bernoulli, John 90
biconditional sentence 30–32
Bieberbach, L. 396
big number 129
bijection function 149
binary operation
associative property 386, 389
Cayley table 388
definition 385–386
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binary operation (cont’d)
identity element of 387
properties of 387

binary relation 184
binomial theorem 48
Birkhoff, Garrett 202
blood typing 194
Bolzano, Bernard 277
Boolean algebras 11
Boolean field 272, 279
Boole, George 11, 105, 202
boundary point 356
bounds on an open interval 201–202
Burke, Edmund 195
Burnside’s lemma 56

c
Cantor–Bernstein theorem 170–171
Cantor, George 105, 146, 156,

167, 350
Cantorian set theory 172
Cantor’s diagonalization

theorem 157–158
Cantor’s discovery of larger

sets 167–170
Cantor set 364–365
Cantor’s power set theorem 168–169
Cantor’s seminal contribution to

infinity 146
Cantor’s seminal theorem 61
Cardano, Gerolamo 281
cardinality of sets
counting sheep 143–144
definition 147
early bouts with infinity 145–147

cardinality of the continuum 159
cardinal number 153
Carmichael totient function

conjecture 240
Cartesian product 181–183, 191, 418
group 418
identities 193

Catalan numbers 140

Cauchy cycle notation 408
Cauchy, Louis 357, 409
Cayley table 378, 398
binary operation 388
cyclic group of 12 elements 391, 392
Klein four-group 389–390
order 2 and 3, 388
order 4 group 389
relatively prime group 393
subgroup 430, 431
symmetric group S3 415
symmetries 383–384

chromatic number of a
graph 318–319

circle 105
classroom function 235
closed operations 270
closed set 363
definition 353
example 353–354
infinite union of 354
intersections and unions of 355,

363–365
limit point 358, 359
theorem of 354

codomain of the function 225
Cohen, Paul 172
combinations
counting paths 134
definition 131
game time 133
going to the movies 134
number of 132–133
number of seven-game-

series 133–134
common rings 435–437
commutative algebraic

system 377, 386
commutative group 433
commutative rings 433
compact sets 124
complement of a set 99–103
completeness axioms 270, 274
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complete ordered field
algebraic field 278
arithmetic axioms for real

numbers 270–271
Boolean field 272, 279
completeness axioms 270, 274
complex numbers 272
conventions and notation 271–272
field axioms 269
least upper bound and greatest lower

bounds 274–277
not an ordered field 279
order axioms 269
ordered fields 273–274, 279
rational functions 272
rational numbers 272
well-ordering principle 279
well-ordering theorem 279

complex addition 289–290
complex division 291–292
complex exponential 286, 288
complex multiplication 291
complex numbers 272

as an algebraic field 283–284
basic arithmetic of 289–292
to Cartesian form 296
complex exponential and Euler’s

theorem 286–288
complex variables in polar

form 288–289
definition 282–283
de Moivre’s formula 297
fractional powers 297
imaginary numbers and two

dimensions 284–285
introduction 281–282
polar coordinates 285–286
to polar form 296
primitive roots of unity 297
roots and powers of a 292–295

complex subtraction 290
compositions

backwards 235

of functions 228–232
of operators 236–237
of relations 189–190

compound sentences 6–11
conclusion sentence 25
conditional sentence 24–27
biconditional sentence 30–32
converse, inverse, and the

contrapositive 28
law of the syllogism 28–29
understanding the 27–28
useful equivalence for the

implication 29
congruence classes 217
congruent modulo 216
conjecture 58
conjugate of complex number 285
conjunctions 43–45
conjunctive normal forms

(CNF) 16–17
connected sets 253
consequent sentence 25
consistent axioms 105
continuity
definition 360
open sets 360

continuous images of intervals 251
continuum hypothesis (CH) 171–172
contradiction 12, 14–15, 18
coprime 240
corollary 56
cosets 427–429, 432
countably infinite sets 151–154
counting
Bell number 139
Catalan numbers 140
combinations 131–135
distinguishable

permutations 130–131, 138
famous apple problem 140
functions 138
lottery problem 141
multiplication principle 126–127

Index 445



counting (cont’d)
permutations 127–128
permutations of racers 128–130
pigeonhole principle 135–138
pizza cutter’s formula 141
relatively prime hard 142
relatively prime light 142
relatively prime medium 142
round robin tournament 141
single elimination tournament 139
Snail Darter Society 139
world series time 139

counting functions 127
counting partitions 215
counting subsets 126–127
cycle notation 416
for permutations 408–409
products of permutations 409–411

cyclic group 391–393
of order 12, 391
ring 436–437
of subgroup 426–427

d
Decartes, Rene 27, 282
Dedekind cut
of rational numbers 277
real numbers 263–266

Dedekind, Richard 202, 263, 433
de Fermat, Pierre 90
degrees of symmetry 372
de la Vallee Poussin 60
delta 357
δ-neighborhood 350
de Moivre’s formula 297
DeMorgan, Augustus 11, 83
DeMorgan’s laws 12–13, 353
sets 108–109, 114

denial of sentences 19
dense orders 209–210
descent proof 83
difference of two sets 104
digital logical circuits I, 22

digital logical circuits II, 23
digraph. see directed graphs
dihedral group 396–397
dihedral group D2 382
dihedral multiplication table 382
Diophantine equation 77–78
directed edges 321
directed graphs 186–188
adjacency matrix of 321
definition 321
with directed edges 321, 322
dominance graphs

with five vertices 322
in social networking 322–325

dynamic programming 327–329
game time 333
Hasse diagrams 199–200, 205,

206, 207
PageRank system 325–327
tournament graphs 322

direct predecessor 321
direct product of groups 399, 418
direct proofs 54–56, 65, 88
direct successor 321
Dirichlet definition of a

function 224–225
Dirichlet, Peter Gustav Lejeune 138,

224–225, 227
Dirichlet principle. see pigeonhole

principle
Dirichlet’s function 252–253
disjoint sets 104, 112
disjoint subsets 273
disjunctions 43–45
disjunctive normal forms

(DNF) 16–17, 20–21
distinguishable

permutations 130–131, 138
distributive laws 33
distributive operation 434
division property 197–198
domain of a composition 229
domain of the function 225
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domain of the relation 188
dominance graphs

with five vertices 322
round-robin tournaments 322
in social networking
adjacency matrix 323, 324
dominance patterns 323
first-stage dominances 323
group leader 324
second-stage dominances 324
third-order dominances 325

double-holed torus 347
doughnut and coffee cup 335,

336, 345
drawer principle 138
dynamic programming 327–329, 332

e
Einstein, Albert 4
empty set 99–103
enantiomorphic shape 378
epsilon 357
equality of sets 99–103
equilateral triangle

commutative operations 378–380
inverse symmetries 380
rotational symmetry 373, 377
symmetries of 419

equivalence classes 214–215
in the plane 218–219

equivalence relation
in analysis 220
arithmetic in modular

arithmetic 222
in calculus 220
counting 221
counting partitions 215
definition 212–213
equivalence classes in logic 221
equivalence sets of polynomials 221
finding equivalence classes 220
finding the 220
modular arithmetic 216–219, 221

partitioning property of
the 214–215

partition of a set 213–214
similar matrices 221
unusual 220

equivalence sets of polynomials 221
equivalence, tautology, and

contradiction 12
equivalent intervals 159–160
equivalent sets 147, 154
Euclidean geometry 334
Euclid’s proof 61
Euler characteristic
planar graphs 341, 345
for planar polygons 345
polyhedra 341–342
surfaces 342–344

Euler cycle 303
Euler diagram 25–26
Euler, Leonard 60, 99, 227, 301
Euler paths 313–315
and circuits 303–304

Euler’s characteristic for planar
graphs 309–311

Euler’s conjecture 80
Euler’s formula 346
Euler’s original graph theorem 304
Euler’s proof of the PNT 60
Euler’s theorem 48, 287
Euler totient function 68, 240
Euler tour 304, 311–313
even and odd natural numbers 154
even integer 54
exclusive OR, 19
existential quantifiers 38–39
experimental sciences 54
extended laws for sets 119–120
exterior point of set 356

f
factor group 429
families of sets
algebra of sets 123
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families of sets (cont’d)
compact sets 124
extended laws for sets 119–120
identity of an indexed family 123
indexed family 118
index set 115
infinite intersections and

unions 116–117
infinite intersections of

unions 117–118
in the plane 122–123
set projection 118–119
sets of length zero 123–124
topologies on a set 120–121, 124
unions and intersections of 116, 122

famous identity, mathematical
induction 85–86

Fermat’s last theorem 48
Ferrers diagram 210–211
Fibonacci sequence 93
field
algebraic field 437–438
arithmetic in Z3 441
definition 437
finite 438–440
modulo 3, 441

field axioms 269
fields of functions 272
finite cyclic group 391, 392
finite field 438–440
finite group 386
first-order logic. see predicate logic
first-stage dominances 323
Fischer, M.E., 125
fluent 62
fluxion 62
Fourier, Joseph 227
four symmetries, rectangle 374, 375
Fraenkel, Abraham 105, 172, 173
Frege, Gottlob 43
Frege–Russell thesis 78
functional analysis 232
functional equation 237

function relation
backwards compositions 235
brief history of the 227
Carmichael totient function

conjecture 240
classroom function 235
composition of operators 236–237
compositions 228–232, 235
counting functions 239, 240
Dirichlet definition 224–225
Euler totient function 240
examples 226
functional equation 237
graphing 234
graphing a composition 236
injections, surjections,

bijections 237, 238
inverse functions 232–234, 238
mystery function 234
as ordered pairs 238
recursive function 237
relation definition of a 227–228
shifting domain of a

composition 236
testing 234

functions of functions 232
fundamental theorem of

arithmetic 59, 89, 90–91

g
Galileo 3, 143, 227
Galois, Evariste 385, 391
Galois fields 438
Galois finite fields 272
game time, directed graphs 333
Gauss, Carl 282
Gauss, Carl Friedrich 217
Gauss, Karl Friedrich 60
generalized integers 433
generator 391
geometric principle by induction 92
geometric topology
Euler’s characteristic in 342–344
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homeomorphisms 336, 339
household objects with 336, 337
iconic doughnut and coffee

cup 335, 336
Mobius strip 335
topological fingerprints 334, 335
topological invariants 339–340
topologically equivalent

objects 336–338
geometry 391
Gödel, Kurt 172
Gödel’s incompleteness theorem 172
Goldbach conjecture 58
Google’s PageRank system 325
Google’s search engine

models 325, 327
graph 182
graph of the function 225
graph theory

chromatic number of a
graph 318–319

definition 302
Euler circuits 303–304
Euler paths 303–304, 313–315
Euler’s characteristic for planar

graphs 309–311
Euler tour 311–313
knight’s tour 317–318
Konigsberg bridge

problem 304–306
main ingredients of 302–303
Moser spindle 319
Platonic solids 316
regular graph 318
weighted graphs 307–308

greatest lower bound (glb) 200–204
grid points 258–259
group dominance 330, 331
group leader 324
group theory

algebraic group
binary operation 385–387
Cayley table 388–390

definition 386
cyclic groups 391–393
dihedral 396–397
isomorphic groups 393–395
multiplying groups 397

guaranteed subset 101

h
Hadamard, Jacques 60, 232
Hamiltonian graph 313–315
Hamiltonian tour 313–315
Hasse diagrams and directed

graphs 199–200, 205, 206, 207
Hausdorff, Felix 199
head/source 321
Heisenberg group 399
higher-order relations 188
Hilbert, David 45, 170, 396
homeomorphic sets 336
homeomorphism
definition 336
as equivalence relations 339

homomorphisms 401–402
Huygens, Christian 305

i
identity 386, 387
symmetry 376

If and Only If theorems 80–81
image of a set
complement identity 252
connected sets 253
continuous images of intervals 251
definition 243
Dirichlet’s function 252–253
examples 243–245
image of a union 252
interpretation of images 251
intersections and unions 245–250
inverse images 252
inverse of union 252
medical imaging 242

image of the function 225
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imaginary numbers and two
dimensions 284–285

imaginary part of the complex
number 284

incompleteness theorem 45
in-degree 322
independent axioms 105
indexed family 118
index set 115
indirect proofs 54
induction in calculus 86–87
inequality by induction 87–88
inference 27
infinite arbitrary sets 151
infinite group 401
infinite intersections and

unions 116–117
infinite intersections of

unions 117–118
infinite number of prime

numbers 59–60
infinite order 386
infinite sets 154
injection 230–231
injective function 148, 154
injective relation 192
integers 258–260
integrated circuit graph 309–311
interior point of set 355
intermediate value theorem 48
International Congress of

Mathematicians 396
Internet Research 333, 348
interpretation of images 251
intersection of a family 116
intersection of sets 104
intersections and unions, image of a

set 245–250
inverse 386, 387
of permutations 408

inverse functions 232–234, 238
inverse image of a set 243
inverse images in topology 249–250

inverse relations 189, 192–193
irrational number 165, 166, 265
isomorphic groups 393–395, 394,

400, 418
isomorphism 394, 395

k
Kelly, John 32
Kirchhoff, Gustav 305
Klein four-group 388–390, 398–399,

422, 431
Kline, Morris 227
knight’s tour 317–318
Konigsberg bridge problem 304–306
Kruskal’s algorithm 307

l
Lagrange, Joseph-Louis 391, 422
Lagrange’s Theorem 422
Landau’s theorem 332
Latin square 388, 401
lattice 207–209
law of the excluded middle 13, 74
law of the syllogism 28–29
least upper bound (lub) 200–204
axiom 274
and greatest lower bounds 274–277

Legendre, A.M., 60
Leibniz, Gottfried Wilhelm 10,

227, 305
lemma 56
Lévy, Paul 232
Liar paradox 6
limit point 361–362
closed sets 358, 359
definition 357, 358

Lincoln, Abraham 380
line symmetry 371
Liouville constant 163, 166
Liouville, Joseph 166, 385
Listing, Johann 342
logical AND, 7
for IP addresses 20
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logical connectives 6
logical disjunction 8
logically equivalent sentences 12
logical OR, 7
logical sentences from truth tables 15
logicism 43
logistic thesis 78
lower bounds 200–204
Lukasiewicz, Jan 36

m
Markov Chain 327
Mary, Clever 91–92
mathematical induction

direct proof or proof by
induction 88

famous identity 85–86
induction in calculus 86–87
inequality by induction 87–88
introduction to 83–84
principle of 84
strong induction 89–91

mathematical proofs
analysis of 54–55
axioms 52
counterexample 66
direct proof 65
divisibility 65–66
Euler’s totient function 68
modus operandi for proving

theorems 55–62
necessary and sufficient

conditions 62–65
Pick’s amazing formula 68–69
proposition 52
syllogisms 67–68
theorem 52
twin prime conjecture 69–70
types of 53–54

mathematics, definitions 3–4
Maurolico, Francesco 90
maximal element 201
Mersenne primes 98

minimal element 201
minimum spanning tree 307
mirror symmetry 371
Mirzakhani, Maryam 4
Möbius band 344–345
Mobius strip 335, 342, 344–345
modern algebra 370
modular algebra 441, 442
modular arithmetic 216–219, 221
modulo 3 field 441
modulo 4 multiplication 400
modulo 5 multiplication 399
modus operandi, for proving

theorems 55–62
Modus Ponens 31, 36
Modus Tollens 36
Moser spindle 319
multiplication principle 126–127
multiplication rule 126
multiplicative identity 434, 440
multiplicative inverse 441
multiplying groups 397
multiplying permutations 406–407

n
naive set theory 105
vs. axiomatic set theory 105

n-ary relation 188
NASC for disjoint sets 112
necessary and sufficient conditions

(NASC) 62–65
negation of quantified

propositions 42–43
negative integers 260
Noether, Emmy 377, 433
non-Cantorian set theory 172
nonconvex polyhedra 346
nonequivalence relations 213,

219–220
nonnegative integers 260
nonnegative real number 285
nonobvious statement 35–36
nonzero members 273
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normal subgroups 428
NOT operator 7
null set. see empty set
number theory 391

o
octic group 424–426
odd integer 54
one-to-one correspondence

function 149, 230
one-to-one function 148, 230
onto function 148–149, 230
open interval, bounds on an 201–202
open set 102, 120
characterization of 353
continuous image of 360, 365
definition of 350, 359
finite intersection 352
infinite intersection 353
intersection of 365
real numbers 351
union 351–353

order 386
order axioms 269
ordered fields 273–274, 279
order matters 41–42
order relations
complex numbers 206–207
composition of partial orders 210
definition 195–196
dense orders 209–210
division property 197–198
finding relations 204
functions 204
Hasse diagrams and directed

graphs 199–200, 205, 206, 207
inverse of a partial order 210
lattice of partitions 209
lattices 208–209
partially ordered sets 198
partitions of a natural

number 210–211
sups and infs 205

symmetric relation 199
testing 204
total order and symmetric

relations 198–199
upper and lower bounds 205
upper bounds, lower bounds, glb, and

lub 200–204
ordinal number 153
out-degree 322

p
p-adic number fields 272
PageRank system 325–327, 326
partially ordered sets 198, 202
partial order 195–196
partition function 210
partition of a set 213–214
Pascal, Blaise 90
Peano, Giuseppe 78, 90, 104, 228
Peano’s axioms 90, 93
Peirce, Benjamin 25
Peirce, Charles Saunders 202
Perelman, Grigori 58
permutations 127–128
alternating group 415
composition of 416–417
cycle notation for 408–409
decomposition of 417
distinguishable 130–131, 138
finding 416
identity 416
inverses of 408
mapping 403, 404
matrices 418
product of 405–407
of racers 128–130
symmetric group S3 414–415
symmetric group Sn 413
transposition 411–413
visualization of 404

Pick’s amazing formula 68–69
Pierce, Charles Saunders 56, 78
pigeonhole principle 135–138
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for 309–311
plane symmetry 374
platonic solids 316, 341
Poincare Conjecture 58
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point-set topology
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calculus 360–361
closed set 353–355
concepts of 349
exterior point 356
interior 355–357
interiors, boundaries, and exteriors

of 356–357, 361–362
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open set 350–353
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polar coordinates 285–286
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Post, Emil 25
power set 101
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propositions 42–43
order matters 41–42
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prime number 54
prime number theorem (PNT) 59
principal root 294
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induction 83, 84
product of permutations
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definition 405
example 406–407

proof by contradiction 60–62
proof by contrapositive 56–57
proof by demonstration 73
proof by induction 88
proofs in predicate logic
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by contradiction for

quantifiers 74–75
counterexamples 80
If and Only If theorems 80–81
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axioms 52
counterexample 66
direct proof 65
divisibility 65–66
Euler’s totient function 68
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theorems 55–62
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propositions 38. see also sentences
negation of quantified 42–43
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quantifiers 38, 71–74
proofs by contradiction 74–75

quotient group 429–430
quotient set 217

r
radial symmetry 372
range of the function 225
range of the relation 188
ranking webpages 333
rational functions 272
rationalizing the denominator 292
rational numbers 153–154, 272
and the completeness

axiom 277
rationals 260–262
real analysis 43, 102
real numbers
arithmetic axioms for 270–271
arithmetic of the 266
building of the 258
construction of the

integers 258–260
construction of the

rationals 260–262
decimal representations 267
decimal to fractions 267
Dedekind cut 263–266
definition 262–263
equivalence relation 266–267
irrational number 267–268
mathematical carpentry 257
synthetic approach 257

real part of the complex
number 284

recursive function 237
reductio ad absurdum 55
reflections symmetry 374
reflective symmetry 371, 373
reflexive relation 197, 212
regular graph 318
regular polygons 396

relations
algebra of 192
binary 183–184, 193–194
blood typing 194
Cartesian product identities 193
composition of 189–190, 193
counting 193
definition 184
directed graphs 186–188
domain and range of a 188
graphing a 191
graphing relations and their

inverses 193
identifying 185–186
important types of 192
inverse 192–193
inverses and compositions 189
meaning of 192
naming a 192
number of 193
typical 185

relatively prime group 393, 395, 400
residue classes 217
ring
addition and multiplication 434
common rings 435–437
commutative 434
definition 433
generalized integers 433
of matrices 440
withmultiplicative identity 434, 440
multiplicative inverse 441
type of 442
with zero divisors 434

Rota, GianCarlo 51
rotational symmetry
of 180 , 374
of cube 381
equilateral triangle 373, 377
levels of 372
polygons 373
of polyhedra 380–381
rectangle 375
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rotation permutation 411–412
round-robin tournaments 322, 331
“rubber-sheet” geometry 334
rules of inference 4
Russell Barber paradox 6
Russell, Bertrand 25, 172, 173,

176, 258
Russell’s paradox 105, 173

s
same cardinality/cardinality

number 147
satisfiable sentence 50
Schubfachprinzip 138
second-order logic 56, 78
second-stage dominances 324
sentences

biconditional 30–32
compound 6–11
definition 4
logically equivalent 12
negation of a 8–9
satisfiable 50
simple (or atomic) 6
well-formed 28

sentential logic
compound sentences 6–11
De Morgan’s laws 12–13
disjunctive and conjunctive normal

forms 16–17
equivalence, tautology, and

contradiction 12
getting into 4–6
logical sentences from truth

tables 15
tautology 13–15

set inclusion 104
set intersection 104
set projection 118–119
sets

computer representation
of 113–114

De Morgan’s laws 108–109, 114

difference between 112
distributive law 112
vs. logic 107–108
logic, and arithmetic 109
members, and subsets 111
and membership 97–99
NASC for disjoint sets 112
notation 109–110
power sets 111
relations with truth tables 113
union, intersection, and difference

of 103–105
universe, subset, equality,

complement, empty 99–103
venn diagrams of 105–106

set theory, need for axioms
in 172–173

set union 104
simple sentences 6, 17
six roots of unity 294
Snail Darter Society 139
social networking, dominance

graphs 322–324
spanning tree 307
special ring 435, 436, 442
strict order 196, 273
strong induction 88, 89–91
subgroup
Cayley table 430, 431
center of a group 431
cosets 427–429, 432
of cyclic groups 426–427
definition 420
generated by R240 431
Hasse diagram for 431
Klein four-group 422
matrix 431
proper 420
quotient group 429–430
rotational symmetries of equilateral

triangle 420
of symmetries 420–421
test of 422–426
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subgroup (cont’d)
of Z6 430
of Z8 431
of Z11 431

subset 99–103
surjection 232
surjective function 148–149, 154
surjective relation 192
syllogisms 22
law of the 28–29
proofs, mathematical 67–68

symbols 4
symmetric group S2 417
symmetric group S3 414–415
symmetric group Sn 403, 413
symmetric relation 198–199, 212
symmetry
axes 380
in calculus 371
definition of 374
of differential equation 384
of ellipse 382
of equilateral triangle 377–381
groups 383
mapping/transformation 373–374
observations 377
of parallelogram 382
of rectangle 374–377
rotational (see rotational symmetry)
of square 383
of tetrahedron 383
in two dimensions 371–373

t
tail/sink 321
tautology 12, 13–15, 18
ternary relation 188
theorem 52
theory of algebraic equations 391
third-stage dominances 325
three-valued logic 36
tiny topologies 121
topological chemistry 338

topological fingerprints 334, 335
topological invariants 339–340
topologically equivalent,

definition 335
topologically equivalent objects
homeomorphic letters 337–338
open real intervals 339

topological properties 335
topological space 358–360, 359
topologies on a set 120–121, 124
topology 338, 342
toroidal polyhedra 346–347
totality of elements 99
total order 273
and symmetric relations

198–199
tournament graphs. see dominance

graphs
transcendental functions 228
transcendental numbers 163–165
transfinite numbers 169
transition matrix 326
transitive relation 198, 212
transitive subsets 101–102
translations symmetry 374
transposition 411–413, 417
transpositions commute 417
tree 307
triangle graph 309–310
triple-hole torus 347, 348
truncated cube 346
truncated solid 346
truth tables 18
alternate forms for 19–20
logical equivalences 33
logical sentences from 15

twin prime conjecture
69–70

two-cycle 411–413, 417
type 1 Dedekind cut 264
type 2 Dedekind cut 264
type 3 Dedekind cut 264–265
typical relation 185
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u
uncountable cardinality 156
uncountable set 156, 159

algebraic numbers 165
all lines are equal 160
Cantor’s diagonalization

theorem 157–158
Cantor’s surprise 161–165
cardinality of functions 165
countable plus singleton 165
definition 156
equivalent intervals 159–160
irrational numbers 165, 166
Liouville constant 166
more real numbers than natural

numbers 158–159
unending interesting properties of

numbers 75–77
union of a family 116
union of sets 103–104
unions and intersections 116, 122
unity identity 434
universal direct proof 72–73
universal quantifier 38–39, 71
universe set 99–103
unusual equivalence relation 220
upper bounds 200–204
Urysohn’s lemma 56

v
variable quantity 227
variables 38

Veblen, Oswald 273
Venn diagram 25
sets 99, 105–106

Venn, George 105
visual proof 86
Volterra, Vito 232
Vorstudien zur Topologie 342

w
weak induction 88
web graph of Internet 325
Weierstrass, Karl 40, 75, 357
weighted graphs 307–308
well-formed sentences 28
well-ordered integers 177
well-ordering principle 176–177, 279
well-ordering theorem 279
Wessel, Casper 284
Wittgenstein, Ludwig 25

x
Xenocrates 405

z
Zeno of Elea 145
Zeno’s paradox 145
Zermelo, Ernst 105, 172, 173
Zermelo–Fraenkel (ZF) axioms 105,

173–175
zero divisors 434, 442
zero identity 434
Zorn’s lemma 56
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