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Preface

The greatest mathematicians,
as Archimedes, Newton, and Gauss,

always united theory and
applications in equal measure.

Felix Klein

This text book is based on my class notes for an introductory quantum
theory course attended by advanced undergraduate mathematics students
who had no or only very little prior knowledge of physics. However, it is aimed
at those from the scientific community, such as advanced undergraduate and
graduate students in chemistry, computer science, engineering, mathematics
and quantum biology (to name some fields in alphabetic order), who can
benefit provided that they arrive with the mathematical portfolio which is
described in the following section on Prerequisites. It could serve some of
the needs of undergraduate physics students as well. Scientists who have
terminated their formal education can also use this book for independent
study. And the occasional philosopher may find something of interest, too.

Despite the large number of texts on quantum theory, I could find none
attuned to the needs of my students. On the one hand they were not physics
students, and so many fine texts were beyond them. On the other hand their
mathematics background was minimal, and so slugging through the rigors of
functional analysis to do everything ‘right’ was not an option. Besides,
quantum physics as presented here motivates the study of functional analysis
and not vice versa. They needed clear explanations that explained. And that
is how I got motivated to write this book.

The leitmotif of this book is that students in scientific fields who have
enough mathematical knowledge can use that to learn quantum theory by
seeing how certain mathematical structures are relevant to quantum physics.
These structures include the Schrödinger equation, linear operators acting in
a Hilbert space, commutation relations, and representations of Lie groups
among others. These topics include most, but not all, of the basic material of
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an introductory physics quantum mechanics course together with some
emphasis on the role that calculations play in providing insight. But even
more emphasis is put on the underlying physics ideas and meanings and how
the mathematics helps in understanding all that. An important point here is
that many aspects of quantum theory are notoriously counter-intuitive, and
so the mathematics is an anchor point which allows us to organize our
thoughts about quantum theory. So there is an essential unification of the
physics and its mathematics.

Yet make no mistake! This is primarily a physics book, although written in
modern mathematical language, and so the reader’s kit of mathematical tools
will not be prerequisite enough without a healthy dose of interest in physics.
Of course, the interest many people have in quantum theory comes from its
‘weird’ notions and their philosophical consequences. However, I feel strongly
that these considerations can not be rationally addressed without first
dominating at the very least the physics and mathematics as presented in this
book. So another motivation for me was to write down here what I think is
the ‘theoretical minimum’ for understanding quantum theory. But I could
well have underestimated; even more may be required.

Also I think that it is important to state ever so clearly that this is not
intended to be a text on the mathematical methods used in quantum theory.
Of course, such methods can be studied quite independently of any interest in
quantum theory itself. But this book is meant to show how the language and
the logic of mathematics help us to understand the ideas in quantum theory.
While at times this objective is not totally distinct from that of a study of
mathematical methods, my primary aim is to get a better understanding of the
physical ideas that make quantum theory what it is and how those ideas
motivate the study of the underlying mathematics. For me quantum theory,
such as that of atoms andmolecules, motivates the study of the spectral theory
of unbounded operators (whatever that is!) and not the other way around. So I
feel that the physics should be the starting point, even for mathematicians.
And, by the way, this was the historical process, the path traveled by the
giants who founded quantum theory. For those interested in mathematical
methods in and of themselves there are any number of excellent texts on that
important topic.

The organization and emphasis of this book reflect in large part my own
path to understanding quantum theory. Since certain topics do not help me
or my intuition, I do not emphasize them, though I do try to explain why they
are side issues at best for me. But sometimes they appear to me to be
unnecessary distractions from the main ideas of quantum theory. This will
brand me as a heretic in some eyes. The reader is free to analyze these topics
and come to a different conclusion. This is welcome. After all, quantum
theory is widely recognized as both a highly successful scientific enterprise as
well as a work in progress.
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My understanding is that the Schrödinger equation is the central structure
in quantum theory in terms of both physics and mathematics. Actually, in
the first paper of Schrödinger concerning his eponymous equation there is an
idea that I have called Schrödinger’s razor. His idea is that a partial
differential equation alone tells us what its solutions are and that quantum
theory should be based on such a partial differential equation, its solutions
and nothing else. Here is an eminent physicist saying that a physical theory
should be based strictly on a mathematical foundation.

The uncertainty principle on the other hand is not much needed nor much
used in physics. It merits a chapter only because so much has been made of it
that I wanted to show how marginal it is. It is an optional chapter, of course.
Complementarity, including the famous ‘wave/particle’ duality, also is
rather a side issue at best and a distraction at worst. Therefore, it only
deserves another optional chapter to support my opinion. No doubt, many
will find this perspective of mine to be heretical. Or worse. The
correspondence principle is so marginal, having only to do with a relation of
quantum theory to classical theory, that I will only refer to it once more.
Unfortunately, the principles mentioned in this paragraph, as well as
quantum fluctuations and decoherence, are often used to provide buzz words
instead of a valid scientific explanation. I try to avoid such errors and have
even included an optional chapter on how to speak (correctly!) about
quantum theory.

However, the interpretation of the solution of the Schrödinger equation
is so important that it is given in three chapters, the first one for a
mathematical interpretation and the second one for a physical interpretation.
The latter then feeds back to motivate the use of the abstract mathematical
structure of Hilbert spaces in quantum theory. So physics leads to this
mathematics whose basics are presented without proofs in the first 15 pages
of Chapter 9. Then there is a third chapter on the relation of measurement
with the solution of the Schrödinger equation. This is part and parcel of what
that solution means and so must be included. And this includes the famous
collapse (or quantum jump) condition, which is used in the theory of
quantum information and quantum computation and in experiments as a
way to prepare known initial conditions. While some do object to one or more
of these aspects of the interpretation of quantum theory, it is my intention to
present the standard formulation of quantum theory as is. If others wish to
change that theory, then they must know what they propose to change, since
standard quantum theory has had so much success. Besides beginners are
well advised to begin at the beginnings.

I present the harmonic oscillator and the hydrogen atom in as much
careful detail as can be tolerated by a beginner. The point is to see
Schrödinger’s razor in action in concrete examples. The fact that these are
exactly solvable systems is irrelevant, since all that matters is that everything
boils down to understanding the solutions of the appropriate Schrödinger
equation. If the only way such understanding can be achieved with currently
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available techniques is via approximate solutions, then so be it. But the
purpose of this book is to aid the reader understand the basics of quantum
theory, not to delve into those important technical aspects of approximation
theory.

The role of symmetry in quantum theory is a key factor, too. This is first
seen here with the hydrogen atom, where the spherical symmetry of the
system plays a crucial role in its solution. The topic of symmetry then
continues with chapters on angular momentum and its relation with the Lie
group SOð3Þ of the rotations of 3-dimensional space (leaving a point
unmoved) and its universal covering Lie group SUð2Þ (words which we will
get to know better). This might give the reader enough motivation to study
the general role in quantum theory of Lie groups and their associated Lie
algebras, all of which can be found in other texts. One of my favorites is [38],
which devotes over 650 pages to what the author refers to as an introduction
to the role of groups and representations in quantum theory.

Other topics that are not usually included in an introductory text are
presented, such as the Heisenberg picture, the quantum plane, and quantum
probability. I do this since it seems to me that this is the right time in one’s
education to be exposed to these rather basic ideas. Important, yet rather more
technical topics such as variational methods, theHartree-Fock approximation,
scattering theory and the Born-Oppenheimer approximation (among many
others) can be learned in advanced courses or by independent reading. Another
missing topic is a thorough discussion of the quantum theory of multi-particle
systems, since the theory of tensor products is needed to do that cleanly.
And I did not wish to limit my audience to those readers with a knowledge of
that rather abstract mathematical subject. However, there is a brief chapter
on bosons and fermions, just enough to get the flavor. Besides, this is
something best understood in quantum field theory (QFT Þ, which is also
beyond our limited terrain. Actually, this book mainly concerns the
non-relativistic quantum theory of one or two body systems. Certainly QFT is
an important part of quantum theory, but it is best left to serious study after
learning the basics as presented in this and other books.

The role of time in quantum theory remains problematical. This physical
observable does not fit well into current quantum theory since it has no
corresponding self-adjoint operator, a crucial (though quite technical) detail
that you will learn about later. The topic of time in itself merits its own book,
but that is not going to be this book. Besides it is a subject open for further
research and so is not appropriate for an introductory text. We will take the
simple, everyday intuition of time as that irreversible flow embodied by the
readings of a clock.

Another topic that will not be considered in any detail is the famous
two-slit experiment. While this is an important experiment that defies both
common sense and classical physics, it is not sufficient for justifying all of
quantum theory. Think of justifying one’s love for operatic arias by appealing
only to Nessun Dorma. One over-performed aria is not able to demonstrate
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the value of an entire art form. Not even the greatest aria could do that.
Think of the two-slit experiment as an over-invoked example of the success of
quantum theory. And since there are a multitude of expositions of it, the
reader is well advised to look for the best of them, keeping in mind that not all
performances of Nessun Dorma are all so great. And remember that quantum
theory has an enormous number of successes which explain things that
classical physics does not. Only a paltry fraction of those successes is
mentioned in this book. Think of this book as your first flight on an airplane.
I want you to see how it flies and how things look from this new viewpoint.
But it won’t be a world tour, and so some standard important destinations
will be missed.

There is a long chapter about the specific probability theory associated
with quantum physics, known as quantum probability. I have various reasons
for doing this. First, this non-deterministic aspect of quantum theory seems
to me to be inescapable despite some famous strong objections. Second, I
think that many, if not all, of the counter-intuitive aspects of quantum theory
arise from its probabilistic interpretation. So it is best that we understand
how this works. Actually, I think that this is the most important chapter in
the book. Moreover, this was the first example historically speaking of a
non-commutative probability theory, which has become an independent and
quite active area of contemporary mathematical research.

I feel that an axiomatic approach is appropriate for quantum theory. But I
describe that in the penultimate chapter, since the axioms are meant to
express the most fundamental principles that have been introduced in the
course of the book. So my exposition is not the axiomatic approach as that is
usually understood in, say, Euclidean geometry. This seems to be the best
way to do this, since the beginner has no preestablished intuitions about
quantum theory in contrast to our innate spatial intuitions. Physicists tend
to regard axioms as ‘too mathematical’ which is an understandable attitude.
But strangely enough, quite a few mathematicians also dislike the axiomatic
method when applied to physics. Nonetheless, D. Hilbert thought that the
axiomatization of physics was important enough to be included in his famous
list of mathematical problems for the 20th century. Since then opinion has
diverged. Some think that the problem is not well stated and others that it is
no longer scientifically relevant. Even others think the problem is both
important and unsolved. Count me in the last group. Of course, antagonists
to this approach can easily skip the chapter explicitly about axioms and
remain unaware of what the list of the axioms is and just carry on. This is
sometimes referred to as the philosophy of ‘‘shut up and compute’’. While
this can keep one going for a long time, even for a lifetime (all of which is
fine), I wish to advocate for ‘‘speak up and comprehend’’ as well.

The very last and shortest chapter concerns the enigmatic relation of
quantum theory to modern gravitational theory as expounded in general
relativity. It is one important indication that physics is an ongoing activity.
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The book ends with Appendix A, a 14-page crash course on measure
theory. This is done not only to make this presentation more self-contained,
but also to convince the reader that the amount of material in measure theory
that is essential for doing physics is quite small. And the only goal is simply to
get a decent theory of integration. Actually, even this brief treatment of
measure theory is probably more than twice what you might really need.
However, I decided to put in the extra slack to give somehow a bit more
context to the theory. Feel free to pick and choose. My only advice is that it is
best to avoid the famous texts by the famous authors. They have a different
agenda and so go into details of no interest for us.

Now a rather interesting aspect of the axiomatization of quantum theory is
that it is almost certainly incomplete. Even though it is nearly a century old,
the foundations of current quantum theory remain a work in progress. While
writing this book, word of new experimental and theoretical research on the
foundations of quantum theory reached me. It is quite hard to keep up with it
all. I think the time has not yet arrived for a definitive monograph on
quantum theory. This is a small part of the motivation for writing this book,
namely that it is worthwhile to carefully write down what is widely accepted
in order to see if it can indeed endure further scrutiny! No doubt some of the
‘axioms’ presented here will become as obsolete as the ‘rule’ prohibiting the
splitting of an infinitive. Here are some of the puzzling, unanswered problems
about quantum theory. And there are others. But let the reader be warned
that all of these are topics for other books and for further research projects.

• Why do some observables, such as the mass of an electron, have only
one value, and how can this fit into a probabilistic theory?

• How can observables of quantum systems be measured by ‘classical’
systems (which give us one unique reading), when in fact all systems,
including the measuring system, are quantum systems (which can give
many non-unique readings)?

• Can one even treat time as an observable in the context of quantum
theory or some generalization of it? If so, how? If not, why not?

• Behind the probabilistic interpretation of quantum theory is there
some other more intuitive, though not necessarily deterministic,
theory which makes experimentally accessible predictions that
distinguish it from standard quantum theory?

As a course textbook, Chapters 1 to 15 could be used for a one-semester
course, either at the advanced undergraduate or graduate level, for students
in any scientific field, provided they have the mathematical prerequisites
described in the next section. If time permits some of the remaining chapters
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could be included too. I like to include some of the chapter on uncertainty,
since the students already have that buzz word in their collective bonnet.
The chapter on the Heisenberg picture is useful too, since it gets one to think
outside of the box about what is ‘really’ moving in a quantum system.

It has become a cliché, but it bears repetition: Doing the exercises is an
integral part of the learning process. The relevant verbs in the imperative in
order of their importance are: understand, calculate, and prove. The first
of these is behind all the exercises. Some problems will be too hard for you.
They then serve as motivation for studying from other sources. Above all, do
not be discouraged but learn to carry on. No illustrations are given. If the
reader feels the need for them, then making them becomes an implicit
exercise, too.

Students of all sorts—whether they happen to be registered in a course or
not—are encouraged to use this book as a springboard for further studies. Be
it in physics, mathematics, engineering, biology, chemistry, computer
science, or philosophy, the literature on quantum theory is enormous.
However, for those who wish to continue to the frontier of scientific research,
please note that this book will not take you there, though it can be the start of
a longer path to get you there. In that regard I especially like [20] for its
wonderful mix of mathematical techniques and physical ideas. It can get you
closer to that frontier. And it is chock full (in over 1000 pages!) with many
topics not even mentioned here. But whatever your future interests may be,
have fun!

My understanding of quantum theory comes from innumerable sources,
including many colleagues whom I have known over many years as well as
authors whom I have never met. If I were to make a list, it would surely be
incomplete. Nonetheless I do greatly thank all those unnamed scientists in
one fell swoop. But having named no one, it follows that I can not lay blame
on anyone for my shortcomings, inconsistencies, minor mistakes, or major
errors. I would dearly appreciate any and all comments on those flaws for
which I, and I alone, bear the responsibility.

I do greatly thank and appreciate the support of Springer in bringing this
work to the public. I especially thank my editor Donna Chernyk.

Some of my colleagues might disagree with some of my statements or even
on the rational discourse I give to support them. We might disagree as to the
meaning of ‘rational discourse’. So be it. Please make your scientific
arguments, and please let me make mine. I do try to base my assertions on
the current state of the experimental science of physics, though I may fail in
that regard. For one thing, experimental physics is an ongoing activity! And
for that matter so is rational discourse.

Guanajuato, Mexico Stephen Bruce Sontz
November 2019
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Prerequisites

If I have seen further than others, it is by
standing upon the shoulders of giants

Isaac Newton

Since the 17th century scientific descriptions of physical phenomena have
been encoded in equations, and so the reader must deal with the math behind
those equations. Since then mathematics, and especially its role in physics,
has been a growth industry. The reader will need at least the following pre-
requisites in mathematics to understand this book. Also you must think
symbolically and logically with a gumption and dedication for learning.

• How to deal with the four arithmetic operations (addition, subtraction,
multiplication, and division) of these number systems and how they
relate to each other: positive and negative integers, real numbers R

(that is, decimal numbers) and complex numbers C, including
i ¼ ffiffiffiffiffiffiffi�1

p
. Know what is the absolute value and the triangle inequality

in each system. Know what is a square root, although not necessarily
how to calculate it. Know how to extend R with the two ‘infinite’
symbols þ1 and �1.

• How to manipulate algebraic expressions, including polynomials, using
the four arithmetic operations. How to solve a quadratic equation.

• The concepts of set, subset and empty set as well as the notation used to
describe sets. Cartesian product, union, intersection and complement.
Finite set, countably infinite set. Functions between sets, the arrow
notation used for functions and what it means for a function to be:
one-to-one, onto, bijective.What is a relation, a partial order and, more
specifically, an equivalence relation and the set of equivalence classes of
an equivalence relation.
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• Knowwhat are the trigonometric functions sin and cos, the exponential
function to the base e and the identity eih ¼ coshþ i sinh.

• Some analytic geometry including the relation of the plane Euclidean
geometry with the Cartesian plane R2. The equation of a circle in R

2.
The relation of the 3-dimensional Euclidean space with the Cartesian
space R

3. The equation of a sphere in R
3.

• The basic rules of calculus of functions of one real variable. How to
take a derivative of elementary functions and how to evaluate some
simple integrals, both definite and indefinite. Finite and infinite def-
inite integrals. The Leibniz (or product) rule, the chain rule, inte-
gration by parts and change of variable formulas. What an ordinary
differential equation (ODE) is and how to recognize a solution of one
without necessarily knowing how to solve it. Know that linear ODEs
have solutions and how initial conditions give a unique solution.

• Some basics of multi-variable calculus such as what a partial derivative
is and what a multiple integral is. What a partial differential equation
is and how to recognize a solution of one without necessarily knowing
how to solve it. Some vector calculus such as grad and curl.

• Familiarity with limits, sequences, infinite series, convergence.

• Linear algebra with scalars in R or in C. Vector space, linear map,
linear functional, kernel, range, linear independence, basis. Relation
between linear maps and matrices. Dimension of a vector space. Know
these operations of matrices: matrix multiplication, determinant,
trace. Invertible matrix and its inverse. Eigenvectors and eigenvalues.
Know what is an eigenvalue problem and what its solution consists of.
Know what isomorphism and isomorphic (denoted ffi) mean for vector
spaces.

• Some words from topology such as open, closed, dense and boundary.

As for physics the only prerequisite is curiosity, probably having to do
with a desire to understand quantum ‘weirdness’, plus some notion of what
velocity is (such as that experienced in cars) and that mass is somehow
related to weight. One should understand that energy is the coin of the realm
in nature, that energy is what makes things move and that it comes in many
forms that are interchangeable to some extent. You need not know how
energy is represented mathematically. No prior physics study is required.

xvi Prerequisites



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Notations and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction to this Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A New Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 A Bit of Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Neither Particle nor Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Basics of Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Black Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Schrödinger’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Some Classical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Introducing Schrödinger’s Equation . . . . . . . . . . . . . . . . . 22
4.3 The Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Operators and Canonical Quantization . . . . . . . . . . . . . . . . . 29
5.1 First Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 The Quantum Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xvii



6 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 The Classical Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 The Quantum Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Interpreting ˆ: Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1 A Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Interpreting ˆ: Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.1 The Entrance of Probability . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Copenhagen and Philosophy . . . . . . . . . . . . . . . . . . . . . . . 57
8.4 Trajectories (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9 The Language of Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . 61
9.1 Facts and Definitions, No Proofs . . . . . . . . . . . . . . . . . . . 61
9.2 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.3 More Facts without Proofs . . . . . . . . . . . . . . . . . . . . . . . . 65
9.4 States Revisited (Optional) . . . . . . . . . . . . . . . . . . . . . . . 74
9.5 The Spectrum (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.6 Densely Defined Operators (Optional) . . . . . . . . . . . . . . . 79
9.7 Dirac Notation (Optional) . . . . . . . . . . . . . . . . . . . . . . . . 82
9.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10 Interpreting ˆ: Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.1 Some Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.2 Some Controversies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.3 Simultaneous Eigenvectors, Commuting Operators . . . . . . 89
10.4 The Inner Product—Physics Viewpoint . . . . . . . . . . . . . . 92
10.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 The Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.1 A Long and Winding Road. . . . . . . . . . . . . . . . . . . . . . . . 95
11.2 The Role of Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3 A Geometrical Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.4 The Radial Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.5 Spherical Coordinates (Optional) . . . . . . . . . . . . . . . . . . . 113
11.6 Two-body Problems (Optional) . . . . . . . . . . . . . . . . . . . . 116
11.7 A Moral or Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.2 Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xviii Contents



12.3 Ladder Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.4 Relation to Laplacian on R

3 . . . . . . . . . . . . . . . . . . . . . . . 129
12.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

13 The Rotation Group SOð3Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.2 Euler’s Theorem (Optional) . . . . . . . . . . . . . . . . . . . . . . . 135
13.3 One-parameter Subgroups . . . . . . . . . . . . . . . . . . . . . . . . 141
13.4 Commutation Relations, soð3Þ and All That . . . . . . . . . . . 145
13.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

14 Spin and SUð2Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.1 Basics of SUð2Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.2 A Crash Course on Spin . . . . . . . . . . . . . . . . . . . . . . . . . . 151
14.3 The Map p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.4 The Representations qs . . . . . . . . . . . . . . . . . . . . . . . . . . 157
14.5 qs and Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . 159
14.6 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
14.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

15 Bosons and Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
15.1 Multi-particle Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 165
15.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

16 Classical and Quantum Probability . . . . . . . . . . . . . . . . . . . . 169
16.1 Classical Kolmogorov Probability . . . . . . . . . . . . . . . . . . . 169
16.2 Quantum Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
16.3 States as Quantum Events . . . . . . . . . . . . . . . . . . . . . . . . 185
16.4 The Case of Spin 1=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
16.5 Expected Value (Revisited) . . . . . . . . . . . . . . . . . . . . . . . 187
16.6 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
16.7 Probability 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
16.8 A Feature, Not a Bug . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.9 Spectral Theorem as Diagonalization . . . . . . . . . . . . . . . . 198
16.10 Two Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
16.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

17 The Heisenberg Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
17.1 Kinetics and Dynamics chez Heisenberg . . . . . . . . . . . . . . 209
17.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

18 Uncertainty (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
18.1 Moments of a Probability Distribution . . . . . . . . . . . . . . . 213
18.2 Incompatible Measurements . . . . . . . . . . . . . . . . . . . . . . . 216

Contents xix



18.3 Example: Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . 220
18.4 Proof of the Uncertainty Inequality . . . . . . . . . . . . . . . . . 222
18.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

19 Speaking of Quantum Theory (Optional) . . . . . . . . . . . . . . . 229
19.1 True vs. False . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
19.2 FALSE: Two places at same time . . . . . . . . . . . . . . . . . . . 230
19.3 FALSE: Any state can be determined . . . . . . . . . . . . . . . . 232
19.4 Expected Values—One Last Time . . . . . . . . . . . . . . . . . . 233
19.5 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
19.6 Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
19.7 Quantum Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
19.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

20 Complementarity (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . 237
20.1 Some Ideas and Comments . . . . . . . . . . . . . . . . . . . . . . . . 237
20.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

21 Axioms (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
21.1 A List of Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
21.2 A Few Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
21.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

22 And Gravity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Appendix A: Measure Theory: A Crash Course . . . . . . . . . . . . . . 255
A.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
A.2 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
A.3 Absolute Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
A.4 The Big Three. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
A.5 Counting Measure and Infinite Series . . . . . . . . . . . . . . . . . . . 264
A.6 Fubini’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
A.7 L1ð�Þ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
A.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
A.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

xx Contents



Notations and Abbreviations

Symbol Meaning
a or a Acceleration,

the second time derivative of position as a function of time.
a0 The Bohr radius.
a 2 A The element a is in the set A.
a 62 A The element a is not in the set A.
½a; b� The set of real numbers x satisfying a�x� b.
ða; bÞ The set of real numbers x satisfying a\x\b.
a� b The number a is approximately equal to b.
fag The set with exactly the one element a.
AnB The set of elements in the set A but not in the set B.
At The transpose of the matrix A.
½A;B� Commutator of the operators A and B, namely AB�BA.
A[B The union of the sets A and B.
A\B The intersection of the sets A and B.
B ¼ ðB1;B2;B3Þ The magnetic field.
BðRÞ Borel subsets of R.
ºC Degrees of temperature in Celsius.
C2 Functions with continuous partial derivatives of all orders

� 2.
C1 Functions which have partial derivatives of all orders.
C1

0 C1 functions f identically zero in the complement of
some compact set (that depends on f).

C The set of complex numbers.
C

n The complex Euclidean space of complex dimension n.
CCR Canonical commutation relations.
curl The curl (of a vector-valued function).
det Determinant.
dim Dimension.
DomðAÞ Domain of a densely defined operator A.
e Electric charge on an electron.

xxi



e Real number (about 2.818), which is the base
for exponentials and (natural) logarithms.

e The identity element of a group.
E Energy.
E Quantum event.
E ^ F The infimum of the quantum events E and F .
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t Time.
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Chapter 1

Introduction to this Path

Si le chemin est beau, ne nous
demandons pas où il méne.

Anatole France

1.1 A New Physics

By the time of the start of the 20th century physics had settled down to what
we nowadays call classical physics, based on Newton’s theories of motion and
gravitation as well as on the Maxwell equations concerning electricity and
magnetism. At this point the reader need not be concerned with what these
theories were. Rather what they were not is important. And they were not
adequate for explaining lots of properties of solids, liquids, and gases. Most
dramatically, the data coming from the new science of spectroscopy, which
we will describe later, seemed inconsistent with classical physics. And so it
was!

But then M. Planck in his celebrated paper of December 1900 on black
body radiation was lead to introduce the idea that the energy contained in
light sometimes comes in packets given by the famous equation E = �ω,
where E is the energy of a ‘packet’ of light that is represented by a ‘wave’ of
angular frequency ω, measured in the standard units of radians per second.
(The frequencies of radio stations are measured in Hertz, abbreviated Hz,
which are cycles per second. One cycle is 360 degrees or 2π ∼ 6.28 radians.)
Notice that in this simple equation we see a ‘particle’ property on the left
side being related to a ‘wave’ property on the right side, though Planck did
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2 Introduction

not think of it that way. When the dust settles we will have to admit that
we are dealing with entities that are neither particles nor waves, though they
can have some properties of particles and some properties of waves.

It was already known that classical physics could not explain black body
radiation. With his new hypothesis Planck was able to get the correct spectra
(each of which depends only on the temperature of the black body) as well as
to get a good approximation of �, which does not depend on the temperature—
nor on anything else. So, � was immediately recognized by Planck as a new
constant of nature; it is nowadays called Planck’s constant.

The challenge to the generation of physicists from 1901 to 1925 was to
explain how Planck’s hypothesis could be included in a new theory that would
extend the classical theory, which had so many wonderful successes, and also
accommodate the known, new measurements. It is important to realize that
experimental physicists continued, as they always had, to measure physical
quantities in laboratories and observatories. They did not stop measuring
‘classical’ energy in order to turn their attention to measuring ‘quantum’
energy, for example. Speaking of ‘quantum’ energy as a new distinct entity
is the sort of doublespeak that I hope my readers will learn to avoid. And
so it is for all the measured quantities: position, time, velocity, mass, and so
on. These are neither ‘classical’ nor ‘quantum’ quantities. Rather they are
experimental quantities that are to be explained by some sound theory.

This new theory had already been named as quantum mechanics before
it was fully developed. This is not the best of names for this new theory, but
we are stuck with it. I prefer to call it quantum theory as in the title of this
book. Whatever. The first part of the process by which this new theory was
produced out of existing classical ideas plus the new role of Planck’s equation
is known as canonical quantization, another unfortunate choice of wording.

This gives a broad overview of how quantum theory arose as a new theory
of physical systems. But so far we have kept mathematics on the sideline,
most particularly in its modern form (definitions + theorems + proofs). One
of the great intellectual achievements of the 20th century was to put a lot
of quantum theory on a sound, modern mathematical basis. But that is an
abstract, technical development which can discourage many from studying
quantum theory. Most mathematicians and other scientists lack an adequate
background in physics to be able to appreciate the motivation for the math.
This book presents the basic ideas of quantum theory in order to arrive at
the accepted, precise definitions. The meaning of these definitions is then
amplified in the statements of the theorems which themselves become steps
to further ideas. Proofs are of secondary importance at this stage of learning,
although they serve as a check that the original ideas have been correctly
formulated. Otherwise, at a more advanced level, a feedback loop is initiated
by modifying the ideas or the definitions.

One motivation that can be given is that the physicists need this abstract
mathematics. But the physicists usually do not want it! The physicists are
often happy to proceed using what they know about physical systems from
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experiment along with a good dose of ‘physical intuition’. The latter is mainly
mythical. How can one have intuition about quantum processes that defy
our everyday experience? And even worse, physical intuition has been known
to lead to incorrect explanations. Since there is only one universe (at least
locally) it might make more sense if we all “get on the same page”, as the
saying goes. For example, we see the importance of this mathematical point of
view in the rather new fields of quantum information and quantum computing.
A strong interplay between physics and mathematics is nothing new; it is
clearly evident already in the scientific works of Archimedes.

In this text we will present how that modern mathematics is relevant to
quantum theory. One way to read this book is as a path for studying both
physics and mathematics as united disciplines. Though some background
in classical physics would be useful, it is not at all required since we will
review what we will be needing. And most importantly, absolutely nothing
about quantum theory is assumed to be known by the reader. Everything is
organized for the most innocent of novices in that regard.

As far as topics go, I cover most of what is in an introductory one-semester
course as taught at the college level in a physics department. Those topics
are found in the Table of Contents and are described in the Preface.

1.2 Notes

While it is traditional to date the start of quantum theory with the 1900
paper by M. Planck, there were earlier experimental indications that things
do consist of discrete entities. I do not refer to those ancient Greeks who
advocated the existence of atoms, that is, indivisible structures composing
all matter. Their idea was not supported by contemporary experimental
evidence.

But on the other hand, J. Dalton at the start of the 19th century provided
a way of understanding the measured weights of substances before and after
chemical reactions in terms of integer multiples in the appropriate unit of
each basic chemical (nowadays known as an element) involved in the reaction.
The ‘tricky bit’ was finding the appropriate unit, which in modern science
is called the dalton! This is known as the Law of Multiple Proportions and
lead Dalton to propose the first version of the modern atomic theory, namely
that chemicals consist of arrangements of discrete units, the latter leading
to the modern idea of an ‘atom’ of matter, which we now know can be
divided into pieces. It is interesting to note the comparison of the etymology
of the word ‘atom’ with that of the word ‘individual’. Atom derives from the
ancient Greek whereas individual derives from Latin. Both originally meant
something which can not be divided. In contemporary usage these words
are applied to things which can be divided though the resulting parts are
considered to be of a different type. For example, an individual frog can
be dissected in order to study its anatomy, but none of the structures so
identified in its body is considered to be a frog.
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Subsequently, in 1869 D. Mendeleev introduced the first version of the
Periodic Table which is a discrete sequence of the chemical elements, each
one of which corresponds to a type of atom. But even the existence of atoms
and molecules was a controversial issue that was not settled until the early
20th century. Again, the integers enter into this classification: there is a
first element, a second, a third, and so forth. The role of the integers can
be regarded with hindsight as essentially ‘fingerprints’ of quantum theory.
However, as noted in Chapter 21, I regard Planck’s constant as an essential
feature of quantum theory. And Planck introduced his eponymous constant
in 1900. The role of the integers as well as the periodicity itself of the Periodic
Table are understood as consequences of quantum theory.

I once was talking with a rather clever person, who happened to be a
bookseller. He asked me quite unexpectedly to describe what my work is
about in one word! My immediate reaction was to tell him that he knew
perfectly well that there is no such description. But before I could speak, it
suddenly struck me that there was such a word. “Quantum,” I said. “Oh,”
he replied, “I sell a lot of books with that word in the title.” And that ended
that part of the conversation. This book is intended to introduce the reader
to what is the science behind the word ‘quantum’, which is so overused in
popular culture. And which is so important in modern science.



Chapter 2

Viewpoint

. . . our wisdom is the point of view from which
we come at last to regard the world.

Marcel Proust

2.1 A Bit of Motivation

There are two famous sayings that describe our knowledge of quantum theory.
The first says that in order to learn quantum theory one has to solve 500
problems. The other says that nobody understands quantum theory. There is
no contradiction. The point of the first saying is that quantum theory consists
of some rules of calculation that one can learn with enough experience. The
point of the second saying is that nobody can explain the rules in and of
themselves, except that they give a correct description of physical systems.
The first says we can build some sort of intuition of quantum theory. The
second says that this intuition is limited, a least for the current state of
human knowledge.

Quantum theory, as any scientific theory, is an attempt to understand and
explain, and not just to predict and control, natural events. Being a science,
quantum physics is an intellectual discipline as well as a way of observing
and experimenting. There have been various traditions for developing the
intellectual side of physics, but nowadays there are just two established, living
traditions in physics which are represented by two scientific communities
centered on active professionals working in academic, industrial, government,
and other institutions. These are called physicists and mathematicians. This
division is artificial. And lopsided. All physicists work in physics, while only
a minority of mathematicians work in what is called mathematical physics.

These two communities have so much in common that the general public
can not distinguish them. But both communities are well aware that there
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are quite marked differences. The mathematical physics community tends to
entirely ignore aspects of prediction and control and becomes, according to
many in the physics community, “too mathematical”. In the question period
after a conference talk by a mathematical physicist, a (real!) physicist in the
audience is apt to ask what are the experimental consequences of the material
just presented. Too often the answer is: “I don’t know”.

On the other hand the physics community tends to produce explanations
in an ad hoc manner that depends on everything from subjective intuitions
to universal principles. Such explanations frustrate those in the mathematics
community for their lack of a self-consistent, logical structure. But even
worse, such “explanations” can even fail to pass the experimental test. In
ancient times it was intuitive that certain objects move naturally in circles
while others naturally remain at rest. This intuition is no longer accepted
by physicists. “Nature abhors a vacuum” was once accepted as a universal
principle by just about everybody who thought about it, but no more.

Each community has some good points to make. And each community
could clean up its act. I hope to satisfy both communities for whom this
book is intended. And the rest of the scientific world is invited to come along
for what I hope is a fun ride. The physics community needs to be more aware
that the mathematical, logical structure of quantum theory is an aid and not
an obstacle. The mathematics organizes the rules, making some of them more
basic while other rules are logical consequences of the basic rules. These basic
rules are called, since the time of Euclid, the axioms. Some people, even some
mathematicians, do not wish to consider the axioms of quantum theory. Why
is this so? I suspect for mathematicians this is largely due to their lack of
background in physics, so that the axioms ring hollow. So the mathematicians
are invited to roll up their sleeves and learn some of the physics that motivates
doing the math.

But one does not arrive at a Euclidean exposition without a lot of prior
thought. The Elements, the textbook that Euclid wrote on geometry and
other topics, was a result of a historical process of finding basic principles
and deriving their consequences. Then Euclid wrapped it up in a very pretty
package. So mathematicians think that what they need is such a pretty
package of pure mathematics in order to learn quantum theory. But they
are wrong. The mathematical sequence (axiom, definition, theorem, proof,
corollary) lacks motivation. What the mathematicians need is the motivation
to just start the mathematical sequence; otherwise they quickly lose their way
along the ‘mathematically correct’ sequence. Without proper motivation they
do not know what ‘it’ is all about. It seems that “there is no there there.” For
the topics in the Elements that motivation comes from common experiences
in dealing with spatial and numerical relations.

But the motivation for quantum theory comes from attempts to explain
some experiments by using rather new ideas. We will start with those ideas
that survived and leave unmentioned those that fell by the wayside. We
continue by showing how the language of mathematics expresses these ideas
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and how mathematics can relate and develop these ideas. We consider the
ideas behind first quantization and how the Schrödinger equation fits into that
setting, even though it is not a mathematical consequence of that setting.
We follow two basic ideas of Schrödinger that we express in contemporary
language as:

1. A partial differential equation (nowadays known as the Schrödinger
equation), and nothing else, via all of its solutions gives us a complete
description of a quantum system. I call this idea Schrödinger’s razor.

2. Eigenvalue problems are at the heart of quantum theory.

This leads naturally to the delicate question of the interpretation of a
solution, called a wave function, of the Schrödinger equation. We do this
at two levels: mathematical and physical interpretations. The latter leads in
turn to the introduction of a certain, specific Hilbert space and, consequently,
to the mathematics of Hilbert spaces in general.

We also present the two fundamental physical systems of the harmonic
oscillator and the hydrogen atom. We discuss the quantization of angular
momentum (of classical physics) and how it leads to the introduction of a
new type of quantum angular momentum, called spin.

Even though I regard the Heisenberg uncertainty principle to play a rather
minor role in quantum theory, I discuss it in a lot of detail. There are two
reasons for this. The first is that by long standing tradition it is presented in
every introductory course on quantum theory. The second is that its rather
straightforward probabilistic interpretation is too often confounded with a
philosophical discussion about the limits of human knowledge of physical
reality. Such a philosophical discussion belongs properly to a consideration
of the probabilistic aspect in general of quantum theory, and not just to one
small corner of quantum theory. Actually, I feel that it is such a small corner
that this topic appears in an optional chapter near the end of the book.

And during all this, I try to maintain a reasonable, although by no means
perfect, level of mathematically acceptable rigor, in part not to lose the
mathematicians in a flurry of disorganized formulas and also in part to show
the physicists that mathematical rigor is a useful razor for excluding wishful
thinking—and more importantly for finding all of the solutions of a given
Schrödinger equation. As mentioned earlier this is Schrödinger’s razor.

And we will end, rather than start, this exposition with the axioms, which
then give us the standard description of quantum theory. I will take the strict
positivistic approach that anything that is not inferred from this axiomatic
approach is not quantum theory. This is not because I think that all that
strays from standard quantum theory is unpardonable heresy. Quite the
contrary! I simply want all deviations from the straight and narrow road
to be identified clearly as such, because these several different and intriguing
possibilities must then be considered:

• We have actually arrived at an affirmation that is only apparently not
part of quantum theory, but can be shown to be a logical consequence
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of the axioms. So our understanding of quantum theory has improved.
An example of this is the possibility, as shown by J. von Neumann and
E.P. Wigner in [33], of having a Schrödinger operator which has an
eigenvalue embedded in its continuous spectrum.

• We have stated an affirmation that is demonstrably in contradiction
with quantum theory. In this case it is important to identify exactly
the experimental conditions which will give sufficient information for
deciding whether quantum theory or the new affirmation is true. If
experiment decides in favor of the new affirmation, then we have the
intellectual challenge to find a new theory that replaces the currently
accepted standard quantum theory with something that explains all
previously explained experiments and is also consistent with the new
affirmation. Bell’s inequalities fall into this rubric.

• We have an affirmation that is logically independent from standard
quantum theory, but makes clear experimental predictions. Such an
affirmation then must be checked by said experiments; however, the
experimental results will neither confirm nor reject quantum theory.
Either way quantum theory will have to be modified to include an
explanation of the new affirmation. It seems that grosso modo this was
how spin came to be incorporated into quantum theory. A similar case
was the proposal that parity violation could better explain what are
now known as neutral kaon decays. Some physicists fiercely rejected this
proposal at first as being in contradiction with quantum theory, which it
is not. In this case some experiments came first, and they were followed
up by other experiments which confirmed parity violation. This lead to
an understanding of how the already established quantum theory could
be amplified to allow for spin and for parity violation.

• We have an affirmation that is logically independent from quantum
theory, but in no way changes quantum theory since it makes no new
experimental predictions at all. Such explanations are often justified
on the basis that they allow a person to better understand quantum
theory. But such a subjective evaluation valid for one person may well be
perceived subjectively by another person as being confusing and quite
unnecessary. An example of this is the statement that the elementary
particles possess the same sort of consciousness as humans have. Yes, I
have heard this. Of course, Ockham’s razor cuts away such statements.

Almost all statements about the relation between standard quantum
theory and human consciousness seem to fall into this category. Such
statements can not be said by any stretch of the imagination to be
supported nor rejected by quantum theory. For the time being, they
remain inaccessible to quantum theory. Human consciousness (as well
as any other property of any biological organism, of course) is a part
of the natural world, and quantum theory may well be the ultimate
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fundamental description of the natural world. If all this is true, then we
may well expect an explanation of all biological phenomena, including
human consciousness, in terms of quantum theory some day. But I guess
that will not be very soon.

I hope the reader realizes the utility of analyses along these lines as an
integral part of the development of scientific theory in general and of quantum
theory in particular. Also, we all tend to think ‘classically’ in the sense that
we believe that to change undesirable results of our actions we must change
what we did to get those results. The quantum viewpoint denies this!

2.2 Notes

The two basic ideas that I ascribe to Schrödinger are implicit in his papers
of 1926. I have not found them explicitly stated. What I call Schrödinger’s
razor is found in the opening words of the first of his 1926 papers, [27]. My
rendition also has an implicit element to it. Explicitly, the solution must be
in the Hilbert space associated with the partial differential equation. Also,
the elliptic regularity theorem, may tell us that the solution must be in a
certain subspace of that Hilbert space. The point that Schrödinger makes
quite clearly is that integers are not put in at the start, but rather come out
naturally by solving the partial differential equation. (It should be noted that
during the period 1901–1925 there were proposed explanations that did put
in the integers by hand. Schrödinger rejected that methodology.) However,
Schrödinger puts conditions on the solution, which we now can understand
as guaranteeing the square integrability (a Hilbert space condition) of the
solution or as arising from regularity theorems. Of course, Schrödinger was
not thinking in 1926 about Hilbert spaces or regularity theorems. All that
came later.

The second basic idea comes from the very title of his 1926 papers. (See
[27].) While Schrödinger equates quantum theory with eigenvalue problems,
that is only strictly true for a part of the spectrum of the Hamiltonian.
(The meaning of Hamiltonian and spectrum will be central topics for us.)
However, due to a theorem of H. Weyl, every number in the spectrum of a
(self-adjoint) Hamiltonian is an approximate eigenvalue as described in the
optional Section 9.5. So this sort of generalized eigenvalue problem is indeed
at the heart of quantum theory.

I can not emphasize strongly enough that Schrödinger, a physicist par
excellence, proposed a strict mathematical formulation as the correct basis
for quantum theory. However, we must not fall into a cult of personality.
Schrödinger has it right not by some inherent birthright, but rather because
experiment bears him out. Schrödinger’s razor is a guiding principle behind
almost all experimental and theoretic quantum physics. Because it almost
works. It falls short with the collapse (or quantum jump) criterion as will be
discussed in Chapter 10.
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In science texts one emphasizes the ideas that have survived to the day and
typically does not even mention those that have fallen to the wayside. So it is
with Schrödinger’s razor, which has been a success even though this particular
name appears to be new. It is curious to point out that M. Born in 1924
had a similar idea that has not flourished. He proposed that a discrete, finite
difference equation might be the correct way to describe the still incompletely
understood quantum phenomena. There is a certain plausibility to the idea
that the discrete transitions observed by spectroscopy could be described by
discrete equations. But it was not to be.

My understanding is that the two sayings are due to R. Feynman, but
that may be folklore.

The paper by Wigner and von Neumann has an error. The potential
energy was incorrectly calculated. This error was recognized and corrected in
the subsequent literature. Their basic idea still holds with the correction.

Bell’s inequalities have generated an enormous literature, both on the
experimental and theoretical sides. The interested reader is invited to look
into this further.



Chapter 3

Neither Particle nor Wave

Neither fish nor fowl.
Folklore

The basic equation of quantum theory is the Schrödinger equation. It
is the dynamical time evolution equation of the theory. It can no more be
proved mathematically than the equally famous equation of motion F = ma
of classical mechanics, which is also called the Second Law of Motion of
I. Newton. However, there are certain basic ideas—which become intuitions
as time goes by—behind these equations. For example, behind Newton’s
Second Law is the idea that every material body has a mass (denoted by
m > 0) which, when it is acted upon by a total force (denoted by F),
results in an acceleration (denoted by a) of that material body. And moreover,
that is all one has to understand in order to understand the motion of any
thing. A material body at rest (so that its velocity is zero and therefore
its acceleration a is also zero) is simply a particular case, which has an
enormous importance in engineering. Aristotle’s opinion was that motion
and rest were quite different properties of a material object. This is not how
Newton thought about the physics of motion and of rest.

After viewing the world though “Newtonian glasses” for a good while,
one sees everything in motion and everything at rest as the result of forces
and masses. Just forces and masses. And Newton’s Second Law. And nothing
else, except Newton’s First Law and his Third Law. One can become quite
comfortable with the idea that Newton’s equation of motion is a universal
law of nature. Indeed, it was considered as such by the scientific community
for some 250 years.
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3.1 Basics of Quantum Theory

This chapter is devoted to discussing what some consider is the most central
idea in quantum theory, namely, that all matter and interactions are made
up out of basic constituents that are neither particles nor waves in the usual
sense of those words. However, those basic constituents are described with
some concepts that are associated with particles as well as with some other
concepts that are associated with waves. Sometimes these constituents are
called wave/particles (or particle/waves). I feel that it is misleading to say,
as it is often done, that these constituents of matter are both particles and
waves. I hope that saying that they are neither particles nor waves is a much
clearer statement. After all, some bats can swim and fly, but that does not
make them fish/fowls. Rather, those bats are a different sort of beast with
some properties in common with both fish and fowl.

There is a lot of sound and fury used by those who say that the basic
constituents of matter are both waves and particles. This is the infamous
wave/particle duality. Do not feel intimidated by such rhetoric, even when
it is encased in a verbal coating consisting of an undefined ‘complementary
principle.’ None of this is actually used in quantum theory a la Schrödinger
equation. If this sort of vagueness ‘helps’ some scientists to ‘understand’
quantum theory, all the more power to them. But I have no idea what they
are talking about nor what ‘intuition’ they get from all that. However, when
I say that the basic constituents of matter are neither waves nor particles,
that is a statement with a meaning, even though it is a negative meaning. I
could just as well have said that the basic constituents of matter are neither
goose nor gander. But the way I have said it is intended to make a rhetorical
point in opposition to the usual rhetorical clap-trap. I hope the reader will
appreciate the spirit with which this mot has been presented.

3.2 Black Bodies

Behind all this is the idea that there are many, many more small things
than large things, since every large thing is composed of many, many small
things. Think of bacteria which are composed of molecules, each of which
is composed of atoms, each of which is composed of electrons and nuclei.
(Whether this is like a Russian matryoshka which eventually has a smallest
doll or rather continues in infinite regress is an irrelevant question for this
analogy, though most physicists lean toward the first possibility.) And the
subsequent idea is that to be able to understand the large things, one has to
understand the small things, at least to some degree. And, as it turns out, to
understand the small things well enough, classical physics is sometimes not
adequate. Although sometimes it is! The birth of quantum theory occurred
with a seminal paper by M. Planck published in 1900. In it he was trying to
understand a big thing, a type of physical system known as a black body. To
achieve this he introduced for the first time in physics an inkling of the idea
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that something, in this case light, could have both a particle property as well
as a wave property.

First off, a black body is not what you might expect it to be. A black
body is some material object in thermal equilibrium with its environment.
By ‘material object’ I mean some combination of chemical compounds, i.e.,
ordinary matter. The way to produce a black body in the laboratory is to
heat a sealed, enclosed oven to some temperature and allow enough time for
its interior and its contents to arrive at thermal equilibrium, that is to say,
everything inside is at the same temperature. Then one quickly opens and
closes a door in the oven in order to let out whatever electromagnetic energy
(possibly light) might be inside. This is done so quickly that the thermal
equilibrium inside the oven is essentially left unchanged. Then a spectral
analysis is done on the emitted light. This means that the light is spread
out, say by a prism, into the rainbow of its constituent colors (frequencies),
and the intensity of the light for each color is measured. One next produces
from this data the graph of the intensity as a function of the frequency. This
type of analysis of light is called spectroscopy.

Then there is a mind-boggling result, namely that this graph has a shape
that only depends on the interior temperature of the oven. Stated more
strongly, the shape of the graph does not depend on the nature of the objects
inside nor on the walls of the oven. You can not see any particular thing inside
the oven because the emitted light coming out of the oven in any direction is
identical to the emitted light coming out in any other direction. The resulting
graph is called the spectrum of black body radiation at the given temperature.

There is a black body that is a common object of everyday experience. It
is the Sun. This might seem absurd since the Sun emits enormous quantities
of light, a small fraction of which in turn powers the weather and biological
systems here on Earth. However, this emitted energy is a minute fraction of
the energy in the photosphere, the visible surface of the Sun. So it is a trickle,
that is, it does not effectively change the energy of the photosphere by much.
(That lost energy is replenished by the energy coming up from the lower
regions of the Sun.) And, sure enough, the measured spectrum of Sun light
closely agrees with that of a black body with temperature of approximately
5500oC. This is how we can measure the surface temperature of the Sun—and
of any star!

This is all well and good, but how do we explain this? The physicist
W. Wien came up with a description of the black body spectra using the then
known (so-called classical) physics. The problem was that it totally disagreed
with the experimentally measured spectra. Then M. Planck published a
watershed paper in December 1900 in which he could explain these spectra,
provided he made an assumption in contradiction to classical physics. He
assumed that the oven walls could absorb and emit electromagnetic energy
(in the form of light) inside the oven only in discrete packets, each of which
contained the quantity of energy E given by Planck’s equation,

E = �ω = hν,
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where ω is the angular frequency (measured in units of radians/second) of
the transferred electromagnetic wave component. Similarly, ν is the (usual)
frequency measured in cycles/second = Hertz. The constant h does not
depend on the temperature of the black body and so is a new universal
constant of nature. Strictly speaking, h is called Planck’s constant. But the
form E = hν is rarely used anymore. Since 1 cycle is 2π radians, we see that
ω = 2πν. Consequently,

� =
h

2π
.

Nowadays � rather than h is often called Planck’s constant. As we shall see
later when discussing angular momentum, it is more fundamental than h in
some sense.

In 1905 Albert Einstein refined Planck’s hypothesis by introducing the
idea that E = � ω is a universal formula for all electromagnetic radiation,
including light as a special case. But now the formula is used to describe
a photon, which is a discrete ‘particle’ packet of electromagnetic radiation
of energy E associated with a ‘wave’ of angular frequency ω. This idea is
really the first explicit reference to the composite ‘wave/particle’ nature of
the constituents of physical systems, though Planck had the germ of this idea.
With this photon hypothesis Einstein was able to explain the photoelectric
effect. In 1921 Einstein was awarded the Nobel prize in physics for this work,
and not for his theory of special relativity, also published in the same year
1905. Can you believe it?

After having introduced this new constant and having the experimental
data of the spectra of black bodies at various temperatures, Planck was able
to fit the data with a specific value of h. These fits were judged to be good.
How that numerical analysis was done in 1900 is beyond my ken. But anyway
Planck got a numerical value for h, which is not half-bad. Nowadays extremely
accurate measurements of � have been made.

3.3 Dimensions and Units

Since � was a new quantity in physics, Planck knew that it was important
to identify its dimensions of measurement. (Since 2π is dimension-less, the
dimensions of h are the same as those of �.) We can compute these dimensions
directly from E = �ω as follows:

dim[E] = dim[�] dim[ω]

Recall that three basic dimensions are length, time, and mass, whose units
in the Système international d’unités (SI) are meters, seconds, and kilograms,
respectively. The notation for these dimensions are, respectively, [L], [T ], and
[M ]. The dimensions for a dimension-less quantity (that is, a pure number)
are denoted by [ ]. One can use any formula for an energy in order to compute
dim[E]. One such famous formula is E = mc2, where m is a mass and c is
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the speed of light. Speed is a real number (or scalar), namely, the magnitude
of a velocity vector, the derivative of a position vector with respect to time.
So we see that dim c = [L] / [T ] = [L][T ]−1 and therefore

dim[E] = [M ][L]2[T ]−2.

This gives us an incredibly important result which we will see again:

dim[�] = dim[E] (dim[ω])−1 = [M ][L]2[T ]−2[T ] = [M ][L]2[T ]−1. (3.3.1)

But for now, we want to take note of what Planck had already noted
in 1900. There were already identified two other fundamental constants of
physics: the speed of light c as noted above and the constant G of Newton’s
law of gravitation. One can also compute the dimensions of G in terms of the
three basic units [L], [T ], and [M ].

Exercise 3.3.1 Compute dim G.
Hint: Gm1m2/r2 is the gravitational force between two objects of masses
m1 and m2 with distance r between them. Also, force F is related to mass
m and acceleration a by Newton’s second law, F = ma. Finally, acceleration
is the second derivative x′′(t) with respect to time t of the position x(t) as a
function of time.

Next, Planck noted that certain combinations of the dimensions of c, G
and � give the dimensions of [L], [T ], and [M ], respectively.

Exercise 3.3.2 Find real numbers α, β, γ such that dim[c]α dim[G]β dim[�]γ

is equal to i) [L], ii) [T ], iii) [M ].
Then for each of these three cases compute the numerical value of cαGβ

�
γ

in the units of the SI.

The first case of this exercise gives us the Planck length, the second case
gives the Planck time and the third case gives the Planck mass. This can be
extended to other physical quantities. For example, there is Planck energy,
Planck frequency, Planck density as well as Planck units for electromagnetism
and thermodynamics. It is widely accepted that these Planck quantities have
some sort of importance in fundamental physics, but no one knows what that
might be exactly. So quantum theory starts with a still unsolved puzzle.

3.4 Notes

The prehistory of current quantum theory begins with Planck’s paper in 1900
and ends with Heisenberg’s in 1925. This time period is discussed in detail
in many books, but here I have only used some of the basic ideas that have
survived. The terminology quantum mechanics has also survived from that
period and has become an immovable object. I do not like this terminology
first since not all measured quantities come in discrete quanta and second
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since mechanics in classical physics is the science of motion. And quantum
mechanics is not exactly a science of motion, but of another type of change.
I prefer quantum theory, but that too has the overworked word ‘quantum’ in
it. However, the pre-1925 theory did not disappear overnight. For example,
I have heard that when Enrico Fermi arrived at the University of Chicago
there still was a physics professor there teaching the ‘old quantum mechanics’
from before 1925.

The spectra of black bodies as well as of many heated materials were
measured in the 19th century first by prisms and later in the same century
more accurately due to the development of precision machined diffraction
gratings. This new science of spectroscopy generated an enormous amount
of data that classical physics could not explain. The structure of the visible
light from the Sun and other stars was studied extensively, including the
dark lines which were soon realized to be due to absorption in the stellar
atmosphere. The history of spectroscopy and how it led to quantum theory
is nicely summarized in Appendix F of [29].

The wonderful idea that every equation in physics can be analyzed in
terms of physical dimensions seems to have been missed by many a physicist,
starting at least as early as C. Huygens who seems to be the first to use
equations in physics. I have heard any number of stories of a collaboration of
a mathematician and a physicist, where the mathematician comes up with
a formula which the physicist rejects at first sight. The mathematician then
objects that his physicist colleague has not even read the long, rigorous proof.
“I don’t have to,” responds the physicist. “The dimensions are wrong!”

Graphs of the classical (Wien) and quantum (Planck) spectra for black
body radiation (and the measured spectra) are on the Internet.

Yes, surprisingly enough, some bats are rather good swimmers, and they
are mammals, neither fish nor fowl. The ultimate irony of the ‘wave/particle
duality’ is that the basic constituents of matter are nowadays usually called
particles, though the meaning of this terminology is remote from the idea
of very small dust particles, say. These elementary particles, which it seems
are never called elementary waves nor anything else, are described by the
Particle Data Group in periodic updates available on the Internet. The most
commonly known elementary particles (in historical order of discovery) are
the electron, the photon, the proton, the neutron, and the neutrino.

During my student days I once commented to a fellow student (but I
forget who) that I did not understand what ‘wave/particle duality’ really
means. The response, after a reflective pause, was that a quantum system is
described by a wave function, a concept which we will be getting to shortly.
That’s a good answer, but we are going to spend three chapters interpreting
the wave function!

The idea that the fundamental constituents of matter are neither particles
nor waves is not new at all. There is a discussion of this in 1963 in chapter 37
of the first volume [12] of the Feynman Lectures on Physics.



Chapter 4

Schrödinger’s Equation

Nature is the realization
of the simplest conceivable

mathematical ideas.
Albert Einstein

Some physicists will tell you the Heisenberg uncertainty principle is the
most basic aspect of quantum theory. This is clearly wrong. The uncertainty
principle as Heisenberg originally proposed is not even an exact quantitative
statement; it basically says some sorts of situations can not happen. Later it
was cast as an inequality. But no inequality can be used to predict what will
occur in nature, although it can predict what can not occur.

The basic principle of quantum theory simply has to be a time evolution
equation. And that is exactly what Schrödinger’s equation is, and what the
Heisenberg uncertainty principle is not. And just as Newton’s equation of
motion starts by describing a massive point particle, Schrödinger’s equation
starts by describing a massive ‘wave/particle’.

We start with Planck’s equation E = �ω, which we now use as a general
relation for a ‘wave/particle’ such as a photon or an electron. Since energy
zero states seem to be undetectable, we take E �= 0 or equivalently ω �= 0.

But photons also have (linear) momentum as has been measured. We
write p = (p1, p2, p3) ∈ R

3 in general for the momentum vector. For classical
massive point particles with mass m > 0, this is defined by p = mv, where
v = (v1, v2, v3) ∈ R

3 is the velocity vector of the particle. But the momentum
p of a photon can not be given by mv. Firstly m = 0 for a photon and
secondly ||v|| = c, the speed of light, is a universal constant.

In analogy with E = �ω, we are lead (following an idea of L. de Broglie)
to write for photons and for massive particles the formula

p = �k,
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where the vector k ∈ R
3 needs to be better understood. In analogy with

energy, it seems that momentum zero states are also undetectable, and so
p �= 0 or equivalently k �= 0.

(By the way, from the theory of special relativity, we know that (E,p) =
(E, p1, p2, p3) is a 4-vector if we choose our units so that c = 1. Even if you
do not understand special relativity, the only point here is that energy is
naturally associated with linear momentum and not with velocity. Explicit
reference to the mass, whether zero or non-zero, is avoided this way.)

What are the dimensions of k? Clearly,

dim[k] = dim[p] dim[�]−1.

We recall from (3.3.1) that

dim[�] = dim[E] dim[ω]−1 =
(
[M ][L]2[T ]−2

)
[T ] = [M ][L]2[T ]−1.

Since � is a fundamental constant of nature, this result is rather important.
For example, one question about this is what quantities in physics have the
dimensions [M ][L]2[T ]−1. We will come back to this curious consideration.
But for now we continue as follows:

dim[k] = dim[p] dim[�]−1 =
(
[M ][L][T ]−1

)(
[M ]−1[L]−2[T ]

)
= [L]−1.

So, k has dimensions of inverse length in close analogy with ω, which
has dimensions of inverse time. (In special relativity with the speed of light
c = 1, we have that (t,x) = (t, x1, x2, x3) is also a 4-vector, where t is time
and x = (x1, x2, x3) ∈ R

3 is an ordinary spacial vector.)
In fact the cosine wave, cos(ωt) as a function of t, where t has dimensions

of time makes sense, since then dim(ωt) = [ ], i.e, ωt is dimension-less. Recall
that is our units, ωt has the units of radians. So we can use the rules of calculus
for cos θ, where θ is a dimension-less number whose units are radians. By the
way, the radian is a unit in the SI. We remind the reader that cos (Q) does
not have a sensible meaning if Q has non-trivial dimensions.

Of course, we can also associate to ω the sine wave function, sin(ωt). So
the parameter ω in Planck’s equation E = �ω can be associated to either of
the waves cos(ωt) or sin(ωt). But for many reasons (simpler formulas, relation
to Fourier analysis) we prefer to use the complex wave where i =

√−1:

e−iωt = cos(ωt) − i sin(ωt).

(The reader might wonder why the minus sign is used. Well, the minus sign
is just a convention, though a very standard one. If I had used the plus sign,
would you wonder why I used that equally valid convention?) Notice that
this wave has a periodicity in time. Its period is Tp = 2π/ω, that is,

e−iω(t+Tp) = e−iωt

and no other positive number strictly smaller that Tp has this property. Recall
that ω �= 0.
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A similar, 3-dimensional analysis works for k = (k1, k2, k3) ∈ R
3, to which

we associate the complex wave eik·x as a function of x = (x1, x2, x3) ∈ R
3.

Here k · x = k1x1 + k2x2 + k3x3, the inner product of the vectors k and x.
Then this wave has a periodicity in space. Its period is xp = (2π/k2)k,
namely

eik·(x+xp) = eik·x,

where k2 = ||k||2 = k · k, the usual Euclidean norm squared, is a standard
notation. We call k the wave vector. Its norm ||k|| is called the de Broglie
wavelength. The period xp is not unique since xp +y has the same periodicity
property provided that k · y = 0. So we can chose y to be any vector in the
two-dimensional subspace orthogonal to k. However, xp is the vector with
smallest length as well as being parallel to k with the periodicity property.
Recall that a vector w is parallel to k if w = rk for some real number r > 0.

So Aeik·x is a ‘wave’ representing a ‘particle’ with momentum �k, provided
that A does not depend on x. And Be−iωt is a ‘wave’ representing a ‘particle’
with energy �ω, provided that B does not depend on ω.

Finally, by taking a product, we see that eik·x e−iωt = ei(k·x−ωt) is a ‘wave’
representing a ‘particle’ with momentum p = �k and energy E = �ω. Yet
another way to write this fundamental ‘wave’ is

ei(p·x−Et)/� = e−i(Et−p·x)/�.

(The expression Et−p ·x arises naturally in special relativity, while Et+p ·x
does not.) The ‘wave/particle’ in all of these statements could be any massive
particle, such as an electron, a proton, a neutron, etc., as well as the mass
zero photon.

4.1 Some Classical Physics

Now we need an interlude in classical mechanics. Suppose that the curve
γ : (−b, b) → R

3 for some b > 0 solves Newton’s equation of motion, namely
F = ma for some mass m > 0 and acceleration a = x′′(t), the second
derivative with respect to t of the position x(t). Here the variable t ∈ (−b, b)
represents time. By the way, any such solution γ is called a trajectory. We
also assume that F : R

3 → R
3. We say that F is a force field, which itself is a

special case of a vector field. This says that the force at any point x in space
depends only on that point x, nothing else. This is a big, big assumption. It
means that the force does not depend on the velocity of the classical particle,
its temperature, the ambient pressure, the time, etc. Now we make an even
more restrictive assumption. We assume that there exists a scalar valued
function f : R

3 → R such that grad f = ∇f = F. Recall from calculus that
the gradient of f is defined by

grad f = ∇f :=
(

∂f

∂x1
,

∂f

∂x2
,

∂f

∂x3

)
.
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If such a function f exists, we say in mathematics that F is exact. (Or more
precisely, that the 1-form associated to the vector field F is exact.) If such
a function f exists, we say in physics that the force field F is conservative.
A necessary condition for F to be conservative is that curlF = ∇× F = 0.
If this is so, we say that F is closed. This is so, since we have the calculus
identity

∇× (∇f) = 0,

provided that f is a C2 function. Here we are using:

Definition 4.1.1 A function which has continuous partial derivatives of all
orders ≤ 2 is said to be a C2 function.

In general, ∇× F = 0 is not a sufficient condition for F to be conservative.

Exercise 4.1.1 Without looking in a book, find a closed vector field F which
is not exact. Hint: The domain of F must be some proper open subset of R

3.

Now when the force field F is exact, we write

F = −∇V,

where V = −f : R
3 → R. The reason for changing the sign will soon become

apparent. Whenever we introduce a new quantity into physics, we should
identify what its dimensions are. We leave it to the reader to check that
dim[V ] = dim[Energy]. So we call V the potential energy associated to the
force field F. Sometimes we simply say that V is the potential. This is a
misuse of the definite article ‘the’ in English, since V + c is also a potential
energy, provided that c is a constant, i.e., a real number.

There is another energy that is important in classical mechanics. If a
particle with mass m has velocity v = (v1, v2, v3) ∈ R

3, then we say that

EK :=
1
2
mv2

is the kinetic energy. (As usual, v2 = v · v = ||v||2.)
Finally, a particle of mass m and velocity v moving in a conservative force

field with potential V (x) has total (mechanical) energy defined by

ET (x,v) := EK + V =
1
2
mv2 + V (x).

Now why is all this important? Well, let’s consider how the total energy
changes with time as our particle moves according to Newton’s equation of
motion. So we consider ET (γ(t), γ′(t)), where γ′(t) = dγ/dt is the usual
derivative with respect to the time variable t. So, using the Leibniz rule and
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the chain rule of multi-variable calculus we see that

d

dt

(
ET (γ(t), γ′(t))

)
=

d

dt

(1
2
m γ′(t) · γ′(t) + V (γ(t))

)

=
2
2
m γ′′(t) · γ′(t) + ∇V (γ(t)) · γ′(t)

=
(
m γ′′(t) + ∇V (γ(t))

) · γ′(t)

=
(
m γ′′(t) − F(γ(t))

) · γ′(t)
= 0.

The last equality is true simply because γ(t) is a trajectory, that is, solves F =
ma. Since (−b, b) � t 	→ ET (γ(t), γ′(t)) is a function defined on an interval
and has derivative equal to zero in that interval, it follows that it is a constant
function. So, there exists a constant, say E0, such that ET (γ(t), γ′(t)) = E0

for all t ∈ (−b, b). Of course, E0 has dimensions of energy. The moral of
this story is that if we measure the total energy of our particle at any time,
then that will be (or was) its total energy at all other times. The kinetic
energy may change, and the potential energy may change. But any increase
in one of these energies corresponds exactly to a decrease of the other. This
is called the conservation of total mechanical energy for a particle acted on
by a conservative force. And now you see how the terminology conservative
force arose. It has nothing to do with politics.

We summarize this discussion in words as follows:

Proposition 4.1.1 Suppose that a classical massive particle moves in R
3

according to Newton’s equation of motion in a conservative force field. Then
the total mechanical energy of the particle is constant as it moves along its
trajectory.

Another way to think of this is to consider the so-called tangent space
T (U) := U × R

3 = {(x,v) |x ∈ U, v ∈ R
3}, where U is an open set in R

3.
Then T (U) is the domain of definition of the force field and its potential, and
the total energy functional

ET : T (U) → R

is defined by ET (x,v) := 1
2mv2 + V (x) for all x ∈ U and v ∈ R

3. Then for a
given initial energy E0 of our classical particle, its trajectory must lie for all
times (past as well as future) on the hypersurface

S(E0) := {(x,v) ∈ T (U) |ET (x,v) = E0}.
Notice that even though we are studying a classical motion in 3 dimensions,
we are lead to considering the six-dimensional space T (U) and a family of
5-dimensional hypersurfaces S(E0), where E0 ∈ R.

Exercise 4.1.2 Actually, there are potentials such that for some values of
E0 the set S(E0) is empty. Understand how this can happen.
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We end here this very brief interlude in classical mechanics, which continues
to this day as a rich and active area of research.

4.2 Introducing Schrödinger’s Equation

Next, let’s try some intuitive reasoning, namely that if a massive ‘particle’
such as an electron also is a ‘wave’, then it should be described as the solution
of a partial differential equation that looks like (though need not be exactly)
the usual wave equation. We start from the equation for total energy

ET =
1
2
mv2 + V (x). (4.2.1)

Let’s consider the kinetic energy first. Since we do not have the velocity v in
the function ei(k·x−ωt) (recall i =

√−1), we rewrite the kinetic energy as

EK =
1
2
mv2 =

1
2m

(mv)2 =
1

2m
p2 =

1
2m

�
2k2.

But k2 = k2
1 + k2

2 + k2
3 also is not seen in the expression ei(k·x−ωt). However,

if we take a partial derivative with respect to x1 we get

∂

∂x1
ei(k·x−ωt) = ik1 ei(k·x−ωt) (4.2.2)

But this still is not what we want. So we take the second partial and get

∂2

∂x2
1

ei(k·x−ωt) = −k2
1 ei(k·x−ωt)

This is closer to what we are looking for. Then passing on to the Laplacian
operator

Δ :=
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

we get

Δ
(
ei(k·x−ωt)

)
= (−k2

1 − k2
2 − k2

3)e
i(k·x−ωt) = −k2 ei(k·x−ωt).

(An operator is just a way of changing a function into another function. This
is what the Laplacian does; it changes a function f into Δf . We will be seeing
a lot of operators!) Multiplying by a constant gives us

− �
2

2m
Δ ei(k·x−ωt) =

�
2

2m
k2 ei(k·x−ωt) = EK ei(k·x−ωt).

Similarly, for the total energy we take a partial derivative with respect to t
as follows:

∂

∂t
ei(k·x−ωt) = −iω ei(k·x−ωt).
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Identifying ET with �ω we see that

i�
∂

∂t
ei(k·x−ωt) = �ω ei(k·x−ωt) = ET ei(k·x−ωt).

We go back to the fundamental relation (4.2.1) from classical physics, now
written as

�ω =
1

2m
�

2k2 + V (x). (4.2.3)

We multiply through by ei(k·x−ωt) and get

�ωei(k·x−ωt) =
1

2m
�

2k2ei(k·x−ωt) + V (x)ei(k·x−ωt).

Next, we identify two of these terms as derivatives of ei(k·x−ωt) as noted
above, thereby getting:

i�
∂

∂t
ei(k·x−ωt) = − �

2

2m
Δei(k·x−ωt) + V (x)ei(k·x−ωt). (4.2.4)

Here the expression Δei(k·x−ωt) must be interpreted as Δ
(
eik·x)

e−iωt, since ω
depends on x according to equation (4.2.3), which itself is called a dispersion
relation. In this case the dispersion relation assigns an angular frequency (or
equivalently, an energy) to every point (x, �k) = (x,p) in the phase space of
positions and momenta.

Next comes an enormous leap. You could even call it a non sequitur.
In analogy to the prototype equation (4.2.4) we write down the following
Schrödinger equation:

i�
∂

∂t
ψ(t,x) = − �

2

2m
Δψ(t,x) + V (x)ψ(t,x) (4.2.5)

and say that this is the fundamental partial differential equation of quantum
theory for a massive ‘particle’ of mass m > 0 that is subject to a potential
energy (scalar) field V (x). In one form or another (4.2.5) or equations much
like it are the fundamental equations of quantum theory. These equations
always include two important constants: Planck’s constant � and i =

√−1.
This is the first fundamental equation in physics that involves these constants.
In fact, it may be that just the one constant i� is what is physically important.
It is worthwhile to remind the reader that � is a real, positive number.

Notice that ψ(t,x) is the unknown in (4.2.5). In 1926 in one of his four
seminal papers on quantization Schrödinger wrote down this very equation,
but he justified it differently, though he did not (and could not) prove it. This
equation (and others similar to it) is called the time dependent Schrödinger
equation. For now we simply call it the Schrödinger equation. (The time
independent Schrödinger equation will be discussed shortly.)

Many, many comments are in order. First of all, the above discussion
is not a mathematical proof. The only way to justify the correctness of
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the Schrödinger equation is by comparing its predictions with experimental
results. Approximately 105 scientific papers have been written that refer, one
way or another, to the Schrödinger equation. Despite criticisms in some of
these papers, the bulk of them do support the Schrödinger equation. In 1933
Erwin Schrödinger shared the Nobel prize in physics with Paul Dirac. Other
Nobel laureates have been decried as being undeserving of their prize. But
not these guys!

The Schrödinger equation is a time evolution equation due to the partial
derivative with respect to time. Thus it is the quantum analogue of Newton’s
equation of motion. Newton’s equation of motion is, in general, non-linear in
the unknown trajectory, while Schrödinger’s equation is linear in its unknown
ψ(t,x). Despite many attempts, to date no instance of non-linearity has
been observed experimentally to contradict this. In particular the constant
function ψ(t,x) ≡ 0 always solves Schrödinger’s equation, but as we will see
it has no physical meaning. In fact, it is not clear at all at this point what
physical meaning a solution ψ(t,x) might have.

One extremely important fact here is that the potential energy V (x) in
the Schrödinger equation (4.2.5) is the same potential energy that gives the
conservative force F(x) = −∇V (x) in classical mechanics.

Some other important points are that the Schrödinger equation is one
partial differential equation while Newton’s equation is a system of ordinary
differential equations, and this system is typically coupled. Moreover, the
Schrödinger equation is linear. Despite many experimental attempts, to date
no instance of non-linearity has been observed to contradict this. However,
Newton’s equation is typically non-linear. Also, Newton’s equation is second
order in time, while Schrödinger’s equation is first order in time.

But there is an equivalent way (known as Hamiltonian mechanics in
physics) of formulating the Newtonian theory for systems with conservative
forces so that the equation of motion is first order in time. This equivalent
way is a well-known technique in the theory of ordinary differential equations,
though it might not have a name. Anyway, in part it consists in replacing
the derivatives of the unknown with new variables, which are then taken to
be new unknowns. However, Hamiltonian mechanics is only a special case
of Newtonian mechanics, which is the theory that allows one to also study
non-conservative forces such as friction forces. If you think friction forces are
not important, I recommend that you think about how automobile brakes
work and why ships don’t have brakes.

Any partial differential equation that is first order in time leads one to a
Cauchy problem, which asks whether a unique solution exists for that partial
differential equation combined with any ‘reasonable’ initial condition for the
solution. This holds for the Schrödinger equation provided that the initial
condition is taken to be an element in an appropriate Hilbert space.

Sound, light, and other wave phenomena had already been well studied by
the time Schrödinger’s seminal paper appeared in 1926. They are described
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by wave equations, the simplest of which is

1
v2

∂2u

∂t2
= Δu,

where v is a constant with dimensions of [L] [T ]−1, that is, v is a speed. Wave
equations are second order in the time variable. So, Schrödinger’s equation is
not a wave equation. Nonetheless, by a standard abuse of language, everyone
(mathematicians as well as physicists) calls a non-zero solution ψ(t,x) of
(4.2.5) a wave function.

4.3 The Eigenvalue Problem

Now Schrödinger’s equation is like Newton’s equation of motion in that it is
meant to be a universal law of nature. Even though it describes a multitude of
physical systems, there are some general facts about Schrödinger’s equation.
Here is one of those facts. The idea is to identify those solutions that have
the form

ψ(t,x) = ψ1(t)ψ2(x). (4.3.1)

We do not assert that every solution has this form, since that is not true
as we shall see shortly. But we simply wish to identify as best we can those
solutions that have this particular form as a product of a function of t alone
and a function of x alone. So we substitute the above expression into (4.2.5)
to get:

i�
∂

∂t

(
ψ1(t)ψ2(x)

)
= − �

2

2m
Δ

(
ψ1(t)ψ2(x)

)
+ V (x)ψ1(t)ψ2(x)

Equivalently,

i� ψ′
1(t)ψ2(x) =

(
− �

2

2m
Δψ2(x) + V (x)ψ2(x)

)
ψ1(t)

Next, dividing both sides by ψ1(t)ψ2(x) we see that

i�
ψ′

1(t)
ψ1(t)

=
1

ψ2(x)

(
− �

2

2m
Δψ2(x) + V (x)ψ2(x)

)

The point of all this is that the left side does not depend on x while the
right side does not depend on t. But the two sides are equal! So, each side
does not depend on x and does not depend on t. And there are no other
variables in play. So the two (equal) expressions in (4.3.2) must be equal to a
constant complex number, which we denote by E. Why E? Because it has the
dimensions of an energy. In the general theory of partial differential equations
one calls E the separation constant. It is not clear at this point that E must
be a real number, though a physicist would say that it obviously must be real



26 Schrödinger’s Equation

since energies are measured quantities, and hence real. So we actually have
that

E = i�
ψ′

1(t)
ψ1(t)

=
1

ψ2(x)

(
− �

2

2m
Δψ2(x) + V (x)ψ2(x)

)
, (4.3.2)

where E is a real number.

Exercise 4.3.1 Verify that the dimensions of E are those of energy.

From the first two expressions in (4.3.2) we conclude that

i� ψ′
1(t) = Eψ1(t).

The unknown is the function ψ1(t). And the general solution of this first order
ordinary differential equation is known from calculus to be ψ1(t) = C1e

−itE/�,
where C1 is a constant of integration. Since the constant C1 can be absorbed
into the factor ψ2(x) we simplify things by putting C1 = 1. So we find that

ψ1(t) = e−itE/�. (4.3.3)

From the first and third expressions in (4.3.2) we conclude that

− �
2

2m
Δψ2(x) + V (x)ψ2(x) = Eψ2(x). (4.3.4)

A non-zero solution ψ2(x) of this is also called a ‘wave’ function and never
a ‘particle’ function. Another name for a non-zero solution of (4.3.4) is a
stationary state. Here ‘stationary’ means that ψ2(x) does not depend on the
time t. The justification for saying ‘state’ will come later with the physics
interpretation of ψ2(x).

It is very important to emphasize that the energy E here in this equation is
the same separation constant energy that appears in the equation for ψ1(t).
We call equation (4.3.4) the time independent Schrödinger equation, since
the time variable t does not appear in it. It is a linear second order partial
differential equation whose unknowns are ψ2(x) and the energy E. Being
linear, the constant function ψ2(x) ≡ 0 is always a solution, no matter what
value the energy E has. But this leads to the physically irrelevant solution
ψ(t,x) ≡ 0. So we are only interested in non-zero solutions ψ2(x). But the
question of whether such solutions exist will depend on the value of E. In
general, for some values of E we will have no non-zero solution. But for
other values of E we will have a non-zero vector space all of whose non-zero
elements will be non-trivial solutions of (4.3.4).

Exercise 4.3.2 Let E ∈ C be given. Define

VE := {ψ2 | − �
2

2m
Δψ2(x) + V (x)ψ2(x) = Eψ2(x)}.

Prove that VE is a complex vector space. (We understood that ψ2 : R
3 → C

and that ψ2 is of class C2. Recall Definition 4.1.1.)
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Definition 4.3.1 If VE is non-zero, we say that E is an eigenvalue for the
linear operator

H := − �
2

2m
Δ + V (x)

and that the non-zero elements in VE are eigenfunctions or eigenvectors of
that linear operator. We say that H is a Schrödinger operator, and also that
H is the (quantum) Hamiltonian of the physical quantum system. The time
independent Schrödinger equation Hψ = Eψ is called an eigenvalue problem.

Remarks: A linear operator A (usually just called an operator) is a mapping
of functions ψ to other functions Aψ that is linear in the same sense as in
linear algebra: A(ψ1 + ψ2) = Aψ1 + Aψ2 and A(λψ) = λ Aψ for all λ ∈ C.
Notice that parentheses are only used when absolutely necessary.

The solution of an eigenvalue problem consists in finding those eigenvalues
(for us the energy E) and the associated non-zero eigenfunction (for us the
function ψ). However, if ψ ∈ VE is non-zero and λ ∈ C is non-zero, then the
non-zero function λψ also is an eigenfunction associated with the eigenvalue
E. For this reason, the 100% correct way to solve the eigenvalue problem
Hψ = Eψ is to find those numbers E such that VE �= 0. Then the solution
consists of those numbers E together with the non-zero elements in VE . In
practice however, one usually specifies E and a corresponding eigenfunction.
If the dimension dimC VE ≥ 2, then one usually specifies a basis of VE ,
which will not be unique, of course. The reader should compare this with
the situation in linear algebra where one has an n × n matrix M and the
eigenvalue equation is Mv = λv whose the solution consists of those scalars
λ that have a corresponding non-zero vector v.

Another point must be noted here. The separation constant E can be a
non-real complex number as far as we can say mathematically as of now. But
we know that physically it represents an energy, and so it should be a real
number. We shall see later on that the Schrödinger operator H must satisfy
a mathematical property which will guarantee that its eigenvalues E are real
numbers.

The study of Schrödinger operators is just one of many active areas of
contemporary research in mathematical physics. See [2], [5], [10], [15], [30].

If E is an eigenvalue, then for every non-zero ψ2 ∈ VE , we have that

ψ(t,x) = e−iEt/�ψ2(x) (4.3.5)

is a non-zero solution of the time dependent Schrödinger equation. Finite
linear combinations of functions of the form (4.3.5) for various values of the
energy eigenvalue will again be solutions of the time dependent Schrödinger
equation, since it is a linear equation. However, such solutions will not have
the product form ψ(t,x) = ψ1(t)ψ2(x). We can also hope that some infinite
sums (or integrals) of functions of the form (4.3.5) will be solutions of the time
dependent Schrödinger equation. But that would require further analysis to
make sure that things do indeed work out correctly.
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The problem of finding the eigenvalues of a given linear operator is called
an eigenvalue problem. As Schrödinger says in the very title of his seminal
paper, quantum theory is viewed as an eigenvalue problem. It actually is a
spectral theory problem in general. This is so, since the spectrum (which we
have not yet defined!) of an operator always contains the eigenvalues, but
sometimes includes other types of spectrum. The complete analysis of the
relevant operators in quantum theory requires an understanding of all the
spectrum, not just the eigenvalues, but as a beginner you will do just fine
by thinking of the spectrum as the eigenvalues plus other real numbers that
are ‘almost’ eigenvalues. But Schrödinger pointed the scientific community
in the right direction, and research along these lines in mathematical physics
continues to this day.

At this point in the exposition the mathematicians among the readers
will feel uneasy because the operator H was not given a precise domain of
definition of functions ψ. This is a technicality which we will have to face.
The physicists among the readers will feel uneasy because, even though the
eigenvalues of H have been given a physical interpretation as energies, the
eigenfunctions of H so far do not have a physical interpretation. This is not a
technicality, but rather a fundamental problem at the very heart of quantum
theory. In fact, only after resolving this problem will we be able to see why
ψ(t,x) ≡ 0 does not have a sound physical interpretation and so must be
discarded from the theory.

4.4 Notes

In 1926 physicists were familiar with partial differential equations, but not
with matrices. In those days linear algebra was a technical mathematical
topic that only very few physicists learned. More generally, non-commutative
multiplication, such as that of the quaternions, was considered in the physics
community as a strange abstract concept of interest only to mathematicians.
When Heisenberg discovered his version of quantum theory, he was amazed
to find a physically natural non-commutative multiplication law. He was told
this multiplication was exactly that of matrices. And so Heisenberg’s theory
was dubbed matrix mechanics. But it was Schrödinger’s quantum theory that
swept through the scientific world like a wild fire, because it is expressed in
a more familiar language. We will follow the path that Schrödinger opened
up. Its relation to Heisenberg’s theory will be taken up later in Chapter 17.

For those who are interested, the precise definition of the spectrum of a
linear operator will be given in the optional Section 9.5. But if you prefer to
think intuitively of the spectrum as the set of real numbers which are almost
eigenvalues of a Schrödinger operator, then no harm will be done.



Chapter 5

Operators and Canonical
Quantization

One can measure the importance of
a scientific work by the number of

earlier publications rendered
superfluous by it.

David Hilbert

One essential feature of quantum theory should have become apparent
by now. And that is the central role played by linear operators, which we
shall merely call operators. We assume that the reader is familiar with vector
spaces and linear transformations from linear algebra of finite dimensional
spaces. In this book the vector space can be infinite dimensional. And we
say ‘operator’ instead of ‘transformation.’ The field of scalars will usually be
the complex numbers, in which case we are then considering complex vector
spaces. First as a quick refresher here are some basic definitions.

Definition 5.0.1 Suppose that V and W are vector spaces and T : V → W
is a function from V to W . We say that T is a (linear) operator if

T (v1 + v2) = Tv1 + Tv2 for all v1, v2 ∈ V,

T (λv) = λTv for all v ∈ V, λ ∈ C.

Notice that parentheses are omitted from the notation if no ambiguity arises.
Then for an operator T the kernel (or null space) of T is defined by

ker T := {v ∈ V |Tv = 0},
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while the range of T is defined by

Ran T := {w ∈ W | there exists v ∈ V with Tv = w}.
Also we advise the reader to review the case when T : V → V is a linear

operator and V has finite dimension. In this case from an introductory linear
algebra course, there are two important functions of T , the trace Tr(T ) and
the determinant det(T ), which also could be briefly reviewed before reading
Chapter 13.

5.1 First Quantization

For a first look at this topic in the setting of infinite dimensional spaces
we shall leave to a side questions of what are the domain and co-domain
spaces of these operators. For now they just take certain functions as input
and produce other functions as output. In the time independent Schrödinger
equation we saw that the kinetic energy p2/2m in classical mechanics was
replaced with the operator for the kinetic energy

K := − �
2

2m
Δ,

that is, this is the operator that sends the function ψ to the function

R
3 � x �→ Kψ(x) = − �

2

2m
Δψ(x).

So, the expression p2 = p2
1 + p2

2 + p2
3 was replaced by the operator

−�
2 Δ = −�

2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
.

This is a second order differential operator.
On the other hand, the potential energy V (x) in classical mechanics was

replaced by the operator that sends the function ψ to the function

R
3 � x = (x1, x2, x3) �→ V (x)ψ(x),

which is called a multiplication operator. Three examples of such a classical
potential are x1, x2, and x3. These then correspond to the three multiplication
operators given by x1, x2, and x3. This leads one to wonder what are the
operators that correspond to each component of p = (p1, p2, p3). The answer
is that each pj is given by the first order differential operator

pj =
�

i

∂

∂xj
for j = 1, 2, 3.

(Recall i =
√−1.) This can also be seen in the eigenvalue equation (4.2.2),

which is equivalent to saying that p1 = �k1 is an eigenvalue of the operator
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�

i

∂

∂x1
.

This almost algorithmic way of replacing functions of (x,p) ∈ R
3 × R

3, the
phase space, with operators is called the canonical quantization of classical
mechanics or first quantization. (At some later date you might learn about
second quantization, though it seems that there are no third or higher
quantizations.) And, in fact, this is an algorithm for all functions defined
on phase space having the form f(x,p) = f1(x) + f2(p), provided that f1

and f2 satisfy some mild condition.
But the method does not work so easily for functions on phase space such

as f(x,p) = x1p1 = p1x1, since the operators associated to the factors x1 and
p1 do not commute. (We will come back to this point in a moment.) This leads
to the so-called ordering problem of quantization. Should we use the order
x1p1 or p1x1 or something else as the ‘correct’ expression for quantizing? This
ordering problem has been solved, and the upshot is that there are many
non-equivalent solutions. Put another way, we can say that quantization is
not unique.

Physicists use canonical quantization without giving it a second thought.
They find the formula for the total energy of a classical system in terms of
positions and momentum. This is the classical Hamiltonian. Then they apply
the canonical quantization rules to produce a linear operator, the quantum
Hamiltonian, which is then declared to be appropriate for the corresponding
quantum system. Persons who do not understand classical physics think that
physicists are some sort of magicians.

To study the lack of commutativity that often occurs in quantum theory,
we introduce the extremely important notation of the commutator of two
operators A and B acting in a vector space:

[A,B] := AB − BA. (5.1.1)

Therefore, A and B commute (that is, AB = BA) if and only if [A,B] = 0.
Also, notice that [A,B] = −[B,A] and, in particular, [A,A] = 0.

We wish now to study all possible commutators among the six operators
x1, x2, x3, p1, p2, p3. First, we note that

[xj , xk] = 0 (5.1.2)

for all 1 ≤ j, k ≤ 3, since multiplication by xk first and then by xj gives the
same result as in the opposite order. Next, we note that

[pj , pk] = 0 (5.1.3)

for all 1 ≤ j, k ≤ 3, since differentiation with respect to xk first and then with
respect to xj gives the same result as in the opposite order. (For j �= k this
is the theorem about mixed partial derivatives from multi-variable calculus,
provided that one is differentiating relatively ‘nice’ functions, namely those
of class C2.)
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The remaining case is for the commutator [pj , xk] with 1 ≤ j, k ≤ 3.
We compute this explicitly by letting these operators act on an appropriate
function ψ = ψ(x1, x2, x3) as follows:

[pj , xk]ψ = (pjxk − xjpj)ψ

=
�

i

∂

∂xj

(
xkψ

)
− xk

(
�

i

∂

∂xj
ψ

)

=
�

i

∂xk

∂xj
ψ + xk

�

i

∂ψ

∂xj
− xk

�

i

∂ψ

∂xj

=
�

i
δjkψ,

where we used nothing other than the product (or Leibniz) rule of calculus
and the Kronecker delta defined by δjk = 1 if j = k and δjk = 0 if j �= k.
This is usually rewritten as

i[pj , xk] = � δjk I, (5.1.4)

where I denotes the identity operator, which is defined by Iψ = ψ for all
admissible functions ψ. (We won’t worry here about what those admissible
functions might be except to say that there are a lot of them.) One says
that (5.1.4) is the canonical commutation relation or briefly the CCR. For
some authors the commutation relations (5.1.2) and (5.1.3) are included in
the CCR, but usually not.

In particular, as noted above, [p1, x1] �= 0, since � �= 0. For those who
understand a bit of classical mechanics we remark that in the classical theory
the position and momentum observables are represented by functions (that
is, not by operators as here) and any pair of functions whatsoever commute.
In short, the lack of commutativity of pj and xj for each j = 1, 2, 3 is a
purely quantum property. However, it is a curious fact that the quantum
commutation relations (5.1.2), (5.1.3), and (5.1.4) for j �= k are the same as
the corresponding classical commutation relations.

5.2 The Quantum Plane

A standard procedure used in the mathematics motivated by physics is to
take the relevant physical variables or observables and consider all possible
ways of adding and multiplying them together. If we also have a scalar
multiplication (by real or complex numbers), this will typically give us a
vector space which also has a product for every pair of its elements; such
a structure is called an algebra. For now this is the idea that counts, and
we leave the technical, rigorous definition to a side. In the case at hand the
variables are going to be position x and momentum p for a simple (i.e., spin
zero, single particle) physical system constrained to the one-dimensional real
line R. (See Chapter 14 for spin zero.) Using the last section as motivation
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we posit that x and p satisfy the commutation relation

px − xp = [p, x] =
�

i
1 (5.2.1)

and no other relations. Here we could take � to be another (formal) variable,
but for now we consider � to be a positive real number. The algebra we get
this way is denoted as Q�. Here 1 denotes the identity element of the algebra
Q�, which satisfies 1 · a = a · 1 = a for all a ∈ Q� as well as x0 = 1 and
p0 = 1. The algebra Q� is what I prefer to call the (Weyl-Heisenberg) quantum
plane, even though it seems that M. Born was the physicist who discovered
the commutation relations (5.2.1). The standard name for this algebra is the
Weyl-Heisenberg algebra, which conceals its geometric structure.

I now ask the reader to accept the idea (and definition!) that a point of an
algebra A with an identity element 1A is a linear function l : A → C which
is also multiplicative (that is, l(ab) = l(a)l(b) for all a, b ∈ A) and satisfies
l(1A) = 1. Then it is an easy exercise to show that the quantum plane has
no points, i.e., there does not exist any such linear function l for the algebra
Q� defined above. (Hint: If such a point l existed, apply it to equation (5.2.1)
to get a contradiction.) This is a fundamental example of a non-commutative
space, which in turn one studies in non-commutative geometry. The quantum
plane Q� is a non-commutative space with no points that arises directly from
the most basic aspects of quantum theory.

The next exercise motivates this strange definition of point of an algebra.

Exercise 5.2.1 Let R[x, y] be the (commutative!) algebra of all polynomials
in the variables x and y with real coefficients. For each point (r, s) in the
Euclidean plane R

2 (that is, a pair of real numbers) define lr,s : R[x, y] → R

by lr,s(p) := p(r, s) for every polynomial p(x, y). (So, lr,s is evaluation of the
polynomial at the point (r, s) in the Euclidean plane R

2.) Prove that lr,s is a
point of the algebra R[x, y].

It turns out that any point l of the algebra R[x, y] is equal to lr,s for a
unique point (r, s) in the Euclidean plane. But this is more difficult to prove.
Anyway, the points of the algebra R[x, y] correspond to the points (in the
usual sense) of the Euclidean plane R

2.

The next exercise identifies the symmetries of the quantum plane and
thereby serves to justify why we call it a plane. But first we need a definition
of a fundamental mathematical object that is used to describe symmetries.

Definition 5.2.1 Suppose that G be a set that has a binary operation, that
is, a function G×G → G which is denoted as (g, h) �→ gh for g, h ∈ G. Then
we say that G (together with this operation, which is called multiplication) is
a group if these properties hold:

• (Associativity) (gh)k = g(hk) for all g, h, k ∈ G.
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• (Identity element) There exists a unique element e ∈ G such that eg = g
and ge = g for all g ∈ G. In certain contexts the identity element e is
denoted as I or as 1. Or even as 0 when ones uses an additive notation.

• (Inverses) For each g ∈ G there exists a unique element denoted as
g−1 such that g g−1 = e and g−1 g = e. We say that g−1 is the inverse
element of g.

If gh = hg for all g, h ∈ G, then we say the group G is abelian. Otherwise, we
say that G is non-abelian. It turns out that non-abelian groups play important
roles in physics.

We say that a group is represented (as symmetries) of a set S or G acts
on S if there is a function G × S → S, denoted as (g, s) �→ g · s, satisfying

• e · s = s for all s ∈ S,

• (gh) · s = g · (h · s) for all g, h ∈ G and all s ∈ S.

In this case we also say that there is an action of G on S. For s, t ∈ S we
write s ≡G t if there exists some g ∈ G such that g · s = t.

A morphism of groups is a function α : G1 → G2, where G1 and G2 are
groups, such that α(gh) = α(g)α(h) and α(g−1) = (α(g))−1 for all g, h ∈ G1

and α(e1) = e2, where ej is the identity element of Gj for j = 1, 2. (This is
also called a homomorphism.)

Exercise 5.2.2 Prove that ≡G is an equivalence relation on S. (Compare
with Exercise 9.3.11. The set of its equivalence classes is denoted S/G.)

Exercise 5.2.3 Suppose that p and x satisfy (5.2.1). Find necessary and
sufficient conditions on the six complex numbers a, b, c, d, e, f such that the
pair (p′, x′) satisfies i[p′, x′] = � 1, where

p′ = ap + bx + c and x′ = dp + ex + f.

Identify the set of all such ‘change of variables’ as a group and represent it as
a group of symmetries of the complex vector space C

2, the complex ‘plane’.
Identify the dimensions of a, b, c, d, e, and f assuming that p and p′ have

dimensions of momentum and that x and x′ have dimensions of length.

5.3 Notes

The role of quantization in quantum theory is problematic at best. It is not
clear why the merely approximate classical theory of a system should be the
point of departure for arriving at the correct, exact quantum theory of that
same system. Some scientists maintain that quantization should not only be
excluded from quantum theory, but also that it has no role whatsoever in
science. Unfortunately, this is not how physicists actually arrive at a suitable
quantum theory for a system of interest; canonical quantization is used in
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practice by practicing physicists. But the mathematical fact is that the way
of converting functions on phase space to operators in Hilbert space is not
unique, at least given our current understanding. This is encapsulated in the
first part of a saying due to E. Nelson: “First quantization is a mystery.” The
second part goes: “Second quantization is a functor.” But second quantization
is for another day, for another book.

It is my opinion that the problem of quantization properly understood
has nothing to do in any way with classical physics, because in principle
quantization simply deals with finding the correct operators, including the
(quantum, of course) Hamiltonian, for any given quantum system. And
nothing else. The touchstone for knowing if this has been done correctly
is experiment and not, as far as I can see, either mathematics or classical
physics. For this reason the discussion of quantization given here, which is
also usually given in other texts, is rather problematic. The concepts—based
on experiment—that have been central to the development of the theory of
classical physics have been taken over into quantum theory. For example,
we should understand energy in the first instance as a property of physical
nature. Energy is energy, and that’s that. There is no ‘classical energy’ nor
‘quantum energy’. Moreover, experiments are neither classical nor quantum,
despite the claims of some famous physicists. It may well be that quantum
theory is fundamental, but even if it is not, we have now arrived at the
clear understanding that classical physics is surely not fundamental. Thus, it
makes more sense logically to introduce quantum theory with absolutely no
reference to classical physics. But I have followed the historical, rather than
the logical, path.

It is unfortunate that many texts introduce the Hamiltonian formulation
of classical physics as a motivation for the quantum Hamiltonian. This is
because an audience of physics students is being addressed, not the audience
of this book. As I am trying to make clear, it should be the other way
around, namely that quantum theory should motivate classical theory. So,
kind reader, do not fret about your lack of knowledge of classical physics!

However, it is widely accepted that classical theory should arise as an
emergent theory from quantum theory. There are several ways this might be
done, though the semi-classical limit of quantum theory, that is, the limit as
� → 0, is the most common. The correspondence principle is another. These
relations of quantum theory to classical theory will not be discussed in this
book, since I consider classical physics to be a side issue for us.



Chapter 6

The Harmonic Oscillator

Music of the spheres.
Ancient philosophy

Having his equation well in hand, Schrödinger proceeded to solving it
for various important physical systems. We now will consider the first such
system, the harmonic oscillator moving along a straight line.

6.1 The Classical Case

First, we study the harmonic oscillator in classical mechanics. This physical
system consists of a massive point particle constrained to move on a straight
line, which we model by the real numbers R. There is also a force given as a
function of position x ∈ R by F = −kx, where k > 0 is a constant. Of course,
k has dimensions which we now compute:

dim[k] = dim[F ](dim[x])−1 = [M ][L][T ]−2[L]−1 = [M ][T ]−2

We can think of the harmonic oscillator as a mathematical model of a
physical system consisting of massive block, thought of as a point particle,
sliding on a friction-less horizontal plane subject to the force applied to it by
a massless spring attached to the block at one end and attached to a fixed
wall at its other end. By a standard and useful convention the position where
the spring applies zero force is taken to be the origin 0 ∈ R. Because of this
system, we say that k is the spring constant. The condition k > 0 means
that the force is in the opposite direction to any non-zero displacement of
the particle from position x = 0. We say that F is a restoring force. Without
any further ado we write down Newton’s equation of motion for the particle
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with mass m > 0:

m
d2x

dt2
= −kx or

d2x

dt2
= − k

m
x.

Next we note that dim[k/m] = [T ]−2 and that k/m > 0. So we introduce
ω > 0 by

ω := +

√
k

m
.

Then dim[ω] = [T ]−1. These formulas show that ω is an angular frequency
associated to the physical system by this explicit function of its physical
parameters k and m. So Newton’s equation now has this form:

d2x

dt2
= −ω2 x.

This is a linear ordinary differential equation of order 2 with constant
coefficients. As such it is explicitly solvable and has a 2-dimensional vector
space of solutions. By just thinking a little about calculus we see that

x1(t) = cos(ωt) and x2(t) = sin(ωt)

are two linearly independent solutions. So the general solution is

x(t) = α cos(ωt) + β sin(ωt),

where the real numbers α and β are determined by the initial position and
the initial velocity of the particle. Another common way to write this solution
is

x(t) = A cos(ωt + φ),
where A is called the amplitude and φ is called the phase.

Exercise 6.1.1 Find formulas that express A and φ in terms of α and β.

It turns out that
F = −kx = −dV

dx
,

where V (x) = 1
2kx2. So F is a conservative force whose potential energy is

V (x). So the total energy of the classical harmonic oscillator for (x, p) ∈ R
2

is
ET (x, p) =

1
2m

p2 +
1
2

kx2

in terms of the parameters k and m. One often uses the relation k = mω2 to
write

ET (x, p) =
1

2m
p2 +

1
2

mω2x2

in terms of the parameters ω and m.
Recall that for a function f : X → Y between sets X and Y we define

the range of f by Ran f := {y ∈ Y | there exists x ∈ X with f(x) = y}.
Exercise 6.1.2 Prove Ran ET = [0,∞). This means that the total energy of
the classical harmonic oscillator can have any non-negative value.
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6.2 The Quantum Case

Putting � = 1, m = 1 and ω = 1, dimension-less quantities, the quantum
harmonic oscillator Hamiltonian is given by the canonical quantization as

Hosc =
1
2

(
p2 + x2

)
. (6.2.1)

Also, both x and p = −i d/dx are now dimension-less. We want to solve
the time independent Schrödinger equation Hosc ψ = Eψ. Now Dirac had an
uncanny knack for seeing the basic structure behind a problem. So we are
going to see how he solved this problem.

First off, we have the identity α2 + β2 = (α− iβ)(α + iβ), where α and β
are real numbers. And p and x are real quantities, though not real numbers.
Anyway, Dirac wanted to factor the oscillator Hamiltonian more or less the
same way. He then considered the factorization

(x − ip)(x + ip) = x2 + p2 − i(px − xp) = x2 + p2 − i[p, x]

and realized that he was dealing with a non-commutative multiplication and
so he had to evaluate the commutator [p, x]. But we have already seen this
essentially in (5.1.4), which in this 1-dimensional setting becomes
i[p, x] = I, since � = 1. So, we have

(x − ip)(x + ip) = x2 + p2 − I.

Dividing by 2 then gives

1
2
(x − ip)(x + ip) = Hosc − 1

2
I.

We rewrite this as
Hosc = a∗a +

1
2
I,

where a = (x + ip)/
√

2 and a∗ = (x − ip)/
√

2. Since p = 1
i

d
dx , it follows that

a and a∗ are first order linear ordinary differential operators.
As the cartoon says: Now a miracle occurs. How? For suppose that a

non-zero ψ solves the first order ordinary differential equation (ODE) aψ = 0.
Then ψ also solves the second order ODE

Hoscψ =
1
2
ψ

and, since ψ is non-zero, this means that 1/2 is an eigenvalue of Hosc. But
aψ = 0 is equivalent to (x + d/dx)ψ = 0 or ψ′(x) = −xψ. The general
complex valued solution of this ODE is

ψ(x) = Ce−x2/2, (6.2.2)
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where C is any complex number. (That this solves the ODE we leave to the
reader as an exercise. Then the theory of ODE’s says that this gives the
general solution.) Picking any C �= 0 we get a non-zero function ψ(x). Hence,
1/2 is an eigenvalue of Hosc. For the time being we will simply put C = 1, but
later we will see that there is a ‘better’ choice. But that does not matter now.
So, we define ψ0(x) = e−x2/2, which is called a Gaussian function or simply
a Gaussian. Then ψ0 is an eigenfunction whose eigenvalue is E0 = 1/2. This
also proves that ker a = {zψ0 | z ∈ C}.

Exercise 6.2.1 Due to choosing dimension-less quantities m = ω = � = 1,
the eigenvalue E0 does not look like an energy. But it is! Show by reinstating
the standard dimensions that we have

E0 = � ω/2,

where we recall that ω is the angular frequency of the associated classical
harmonic oscillator. Also, show that (6.2.1) changes back to its original form
with the standard dimensions.

We will see later on that E0 is the smallest eigenvalue for this physical
system. For reasons that also come later on, the eigenfunction ψ0 represents
a state of the system. Since its associated energy is the lowest possible, we
say that ψ0 is the ground state of the harmonic oscillator and that E0 is the
ground state energy of the harmonic oscillator.

This is quite different from the classical harmonic oscillator which can
have any energy E ≥ 0 as you have already proved in Exercise 6.1.2. But the
quantum harmonic oscillator has no energy eigenvalue E with

0 ≤ E < E0 = � ω/2.

The interval [0, E0) is called a gap. For some physical systems it is a major
result that the system even has a ground state (Theorem I) with a gap
(Theorem II). An entire, highly technical research paper is often required
to prove such a result. In fact, one of the Millennium Problems of the Clay
Institute is essentially of this type. The quantum harmonic oscillator is a
relatively trivial system in this regard.

Next we see how to get the rest of the eigenvalues and eigenfunctions of the
quantum harmonic oscillator. To achieve this we will use more commutation
relations, but unlike the CCR proved above, these are only valid for this
particular physical system. For convenience we write H = Hosc for the rest
of this chapter. First, we commute [H, a∗] as follows:

[H, a∗] = [a∗a + (1/2)I, a∗] = [a∗a, a∗]
= a∗aa∗ − a∗a∗a = a∗(aa∗ − a∗a)
= a∗[a, a∗]. (6.2.3)
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This leads us to evaluate another famous canonical commutation relation
which is also abbreviated as CCR:

[a, a∗] = aa∗ − a∗a =
1
2
[x + ip, x − ip]

=
1
2

(
[x, x] − i[x, p] + i[p, x] + [p, p]

)

=
1
2

(
i[p, x] + i[p, x]

)
= i[p, x]

= I. (6.2.4)

Here we used two basic identities for commutators, namely, [A,A] = 0 and
[A,B] = −[B,A], where A and B are any operators.

Substituting (6.2.4) back into (6.2.3) we obtain

[H, a∗] = a∗. (6.2.5)

While this is a very, very nice formula in itself, we now will see how it lets us
construct new eigenfunctions. We suppose that ψ �= 0 is an eigenfunction of
H with eigenvalue E ∈ C. So, Hψ = Eψ.

Next, we consider the function a∗ψ and ask whether it is an eigenfunction
of H as well. So, using (6.2.5) in the first equality, we compute:

Ha∗ψ = a∗Hψ + a∗ψ = a∗Eψ + a∗ψ = (E + 1)a∗ψ.

One has to be very careful at this step, since there are two mutually
exclusive possibilities:

• a∗ψ = 0.

• a∗ψ �= 0 and so E + 1 is also an eigenvalue of H.

At this point we can see why we call a∗ a raising operator. After all, it raises
eigenvalues by +1. We will soon see that these eigenvalues are real.

Now a∗ψ = 0 is a first order, linear ordinary differential equation which
we can easily solve, since it is equivalent to

ψ′(x) = xψ(x).

The general solution of this is easily seen to be ψ(x) = Cex2/2, where C is
any complex number. Of course, this is not a Gaussian. We summarize this
by noting that

ker a∗ = {ψ | a∗ψ = 0} = {Cex2/2 |C ∈ C}.

Now we start with the eigenfunction ψ0(x) = e−x2/2 of H with eigenvalue
1/2 and construct an infinite sequence of eigenfunctions and eigenvalues of
H. First, ψ1 := a∗ψ0 is non-zero (since ψ0 /∈ ker a∗) and so has eigenvalue
(1/2) + 1 = 3/2.
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We can evaluate a∗ψ0 to see that ψ1(x) = C1xe−x2/2 for some constant
complex number C1 �= 0. Consequently, ψ2 := a∗ψ1 �= 0 is an eigenfunction
of H (since ψ1 /∈ ker a∗) whose eigenvalue is (3/2) + 1 = 5/2. Again, we
can get more specific information, namely that ψ2(x) = H2(x)e−x2/2, where
H2(x) is a polynomial of degree 2. And so ψ2 /∈ ker a∗.

This proceeds (by mathematical induction), and we see for each integer
k ≥ 0 that

ψk(x) := (a∗)kψ0(x) = Hk(x)e−x2/2 (6.2.6)

is an eigenfunction of H with eigenvalue k + (1/2), where Hk(x) is a specific
polynomial of degree k which we can compute. Up to constant factors which
will depend on k these are the famous Hermite polynomials. Again, up to
conventional constant factors, ψk is called a Hermite function.

At this point in the argument we have shown that the harmonic oscillator
has an infinite sequence of eigenvalues. And we have (more or less) identified
the corresponding eigenfunctions. Now comes the ‘tricky bit’. We want to
show that there are no more eigenvalues! This is an amazing result, since it
says that the quantum harmonic oscillator can only be in stationary states
for the energies (k + 1/2) �ω in the standard notation. This contrasts with
the classical harmonic oscillator which can have any energy E ≥ 0.

How will we do this? Well, if a∗ is a raising operator, then what is the
operator a? Again we compute its commutation relation with H. So we get

[H, a] = [a∗a + (1/2)I, a] = [a∗a, a]
= a∗aa − aa∗a = (a∗a − aa∗)a
= [a∗, a]a
= −a, (6.2.7)

where we used (6.2.4). This differs by a very important algebraic sign from
the commutation relation (6.2.5) for H and a∗.

Again we ask what happens to an eigenfunction ψ �= 0 of H when we act
on it with the operator a. So, we have Hψ = Eψ for a complex number E.
Using (6.2.7), we then compute:

Haψ = aHψ − aψ = aEψ − aψ = (E − 1)aψ.

One has to be even more careful at this step than with the argument for a∗.
Again, there are two mutually exclusive possibilities:

• aψ = 0 if and only if ψ ∈ ker a if and only if ψ = Cψ0 for some C ∈ C.

• aψ �= 0 and so E − 1 is also an eigenvalue of H.

At this point we can see why we say that a is a lowering operator. After all,
it lowers eigenvalues by +1. It is time to understand why these eigenvalues
of H are real—and a bit more.
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Proposition 6.2.1 Suppose that Hψ = Eψ for some non-zero ψ and some
complex number E. Then E is a real number and E ≥ 0.

Remark: As commented on earlier, we even have that E ≥ (1/2)�ω > 0.
But for now we will be happy just knowing that E ≥ 0.

Sketch of Proof: The first part of the conclusion holds for any H that
satisfies the symmetry condition

∫
R

dx ϕ1(x)∗Hϕ2(x) =
∫

R

dx (Hϕ1(x))∗ϕ2(x), (6.2.8)

where z∗ denotes the complex conjugate of z ∈ C. This condition can be
written in terms of the inner product of functions defined as

〈f1, f2〉 :=
∫

R

dx f∗
1 (x)f2(x), (6.2.9)

where f1, f2 : R → C are functions such that this integral is defined. For
now this is just convenient notation, but later will be seen as an essential
structure for Hilbert spaces. In the notation of (6.2.9) we write (6.2.8) as

〈ϕ1,Hϕ2〉 = 〈Hϕ1, ϕ2〉, (6.2.10)

and we say that H is a symmetric operator. For the eigenfunction ψ we have

〈ψ,Hψ〉 = 〈ψ,Eψ〉 = E〈ψ,ψ〉.
On the other hand we have that

〈Hψ,ψ〉 = 〈Eψ,ψ〉 = E∗〈ψ,ψ〉.
By the symmetry condition (6.2.10) for H we see that

E〈ψ,ψ〉 = E∗〈ψ,ψ〉.
Next, the condition that ψ is non-zero really means that 〈ψ,ψ〉 > 0. And
consequently, E = E∗, that is, E is real.

Actually, the operators x and p are symmetric. Hence, in the case of x we
have

〈ϕ, x2ϕ〉 = 〈xϕ, xϕ〉 ≥ 0.

Similarly, 〈ϕ, p2ϕ〉 ≥ 0 by integration by parts. These two facts imply that
〈ϕ,Hϕ〉 = (1/2)〈ϕ, p2ϕ〉 + (1/2)〈ϕ, x2ϕ〉 ≥ 0. Therefore,

0 ≤ 〈ψ,Hψ〉 = 〈ψ,Eψ〉 = E〈ψ,ψ〉
But again we use 〈ψ,ψ〉 > 0 to conclude that E ≥ 0. �

The above proof has gaps in it. The integrals must be shown to exist and
the partial integration must be justified. This can be done by specifying
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exactly which functions we are using in that proof. This will eventually
lead us to study Hilbert spaces, which have a nice inner product. But then
linear operators such as x and p give us headaches since xψ and pψ will not
necessarily be elements of the Hilbert space even though ψ is an element in
the Hilbert space. This will eventually lead us to consider densely defined
(linear) operators, which are unfortunately often called unbounded operators.
We only mention this poorly chosen latter expression since so many texts use
it. The point is that some naturally arising, densely defined operators are
bounded and so not unbounded, if my gentle reader will permit me a double
negative. More on densely defined operators can be found in the optional
Section 9.6.

Now we suppose that we have Hψ = Eψ for some non-zero ψ and some
E ∈ R \ {1/2, 3/2, 5/2, . . . }. We want to show this leads to a contradiction.
What do we do? We keep lowering ψ by repeatedly applying the lowering
operator a. Since we assumed E �= 1/2, we know that ψ is not a constant
multiple of ψ0. This gives us an eigenfunction aψ �= 0 with the eigenvalue
E − 1. If E − 1 < 0 we have arrived at a contradiction.

If E − 1 ≥ 0, we note that E − 1 �= 1/2 since E �= 3/2 was assumed. So
aψ is not a constant multiple of ψ0. Then we lower again to get a2ψ �= 0.
Then E−2 is an eigenvalue. If E−2 < 0 we have a contradiction. Otherwise,
we continue lowering. Eventually, we have that E − k < 0 for some k ≥ 1
is an eigenvalue. And this is a contradiction. So the set {1/2, 3/2, 5/2, . . . }
contains all the eigenvalues of H. We would like to understand the dimension
of the eigenspaces Vk := {ψ |Hψ = (k + 1/2)ψ}.

Exercise 6.2.2 Prove that dimC Vk = 2.
Hint: Use the theory of linear ordinary differential equations.

Schrödinger’s razor is going to tell us that not all of the solutions of
the Schrödinger equation are physically relevant, but only those that are
square integrable. We will see why this is so when we discuss the physical
interpretation of the ‘wave’ function. This gives context for the next exercise.

Exercise 6.2.3 Recall the definition of the Hermite functions ψk in (6.2.6).
Show that ψk ∈ Vk is square integrable, that is

∫
R

dx |ψk(x)|2 is finite which we write as :
∫

R

dx |ψk(x)|2 < ∞.

Show that any φ ∈ Vk \ Cψk is not square integrable.
Hint: For the second part prove this for one such φ first and then prove that
this implies the result for all such φ. Be warned that this problem will require
some knowledge of ODE’s and integrals that you might not yet have. In that
case be patient and use this problem as motivation for learning more!

We would also like to say that H has only eigenvalues in its spectrum,
and not other types of spectrum. But we do not yet have the definition of
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spectrum, so we can not prove this for now. However, with more tools from
functional analysis this can be proved. Patience, dear reader.

Exercise 6.2.4 Solve the Schrödinger equation Hψ = Eψ for ψ : R → C

where E ∈ R and H = − �
2

2m
d2

dx2 + V in these cases:

• V (x) = 0 for all x ∈ R.
(This is always called the free particle and never the free wave.)

• The finite square well:

V (x) =
{

0 if x ∈ [0, 2],
E0 > 0 if x /∈ [0, 2].

We say that the energy E0, a real number, is the depth of the well.

• The infinite square well:

V (x) =
{

0 if x ∈ [0, 2],
+∞ if x /∈ [0, 2].

In this case take ψ(x) = 0 for x /∈ [0, 2] and use Dirichlet boundary
conditions, namely, ψ(0) = ψ(2) = 0. Or, if you prefer, take the limit
as E0 → +∞ of the solution of the previous part of this exercise.

• A potential barrier:

V (x) =
{

0 if x < 0,
E0 > 0 if x ≥ 0.

We say that the energy E0, a real number, is the height of the barrier.
In this case we seek solutions ψ such that ψ(x), ψ′(x) are continuous at
x = 0 and limx→+∞ ψ(x) = 0.

Warning! A solution of the eigenvalue equation Hψ = Eψ consists in finding
two unknowns: the eigenvalue E and the eigenvector ψ �= 0.

6.3 Notes

The cartoon is by S. Harris and is available on a T-shirt from the American
Mathematical Society. It seems that Harris is not a scientist, but that he has
an uncanny understanding of how we think.

The seven Millennium Problems of the Clay Institute can be found on
the Internet. I referred to the one on the existence of a quantum gauge field
theory. It is generally considered to be a formidable problem.

Operators with the same CCR as the raising operator a∗ and the lowering
operator a arise in more advanced topics such as quantum field theory. In
those contexts the raising operators are given a new name: creation operators.
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And the lowering operators are then called the annihilation operators. The
reason for this colorful terminology comes from the new context.

The standard physics texts for quantum theory include the harmonic
oscillator, the hydrogen atom (which we will discuss in Chapter 11) and
a slew of other examples of solutions, some approximate, of Schrödinger’s
equation, such as square wells, double wells and potential barriers. While
this is great practice and slowly but surely builds up some sort of ‘intuition’
about quantum theory, I leave most of that to those fine standard texts. Here
I am aiming for another sort of ‘intuition’ which arises by taking the path
indicated by the mathematical structures, which in turn arise naturally from
the physics. So, I continue with the first of three chapters dedicated to a
detailed interpretation of the ‘wave’ function ψ.



Chapter 7

Interpreting ψ: Mathematics

The limits of my language
are the limits of my world.

Ludwig Wittgenstein

Before entering into the physics interpretation of the wave function, we
give its mathematical interpretation, which will be our starting point. This
also introduces state into the mathematical language.

7.1 A Cauchy Problem

Schrödinger’s 1926 paper introduced the wave function ψ as the solution
of what is now called the Schrödinger equation. But there was no physical
interpretation of ψ in that paper. That seems to be an important missing part
of the theory. Actually, we introduced two related versions of the Schrödinger
equation, the first dependent on time and the second independent of time. We
have yet to give a physical interpretation of the solutions of these equations.
Before addressing this fundamental and controversial problem in physics, we
will first discuss the problem of the mathematical interpretation. This will
aid us in understanding the physical interpretation as well as motivating the
role that functional analysis plays in quantum theory.

Let’s denote by Ψ(t,x) the unknown of the time dependent equation and
by ψ(x) the unknown of the time dependent equation for the energy E. The
time dependent equation is first order in the time derivative. In fact it has
the form

i�
∂Ψ
∂t

= HΨ, (7.1.1)

where H is a special operator, the quantum Hamiltonian. So we expect
(mathematically as well as physically!) that this is a good Cauchy problem,
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which means that for each initial value Ψ0(x) there should exist a unique
solution Ψ(t,x) of (7.1.1) such that

Ψ(0,x) = Ψ0(x).

This fits well with an idea from classical physics, known as determinism,
that complete knowledge of a physical system at some time determines the
complete knowledge of that system at all future times. The seemingly obvious
concept of knowledge, let alone complete knowledge, remains problematical
to this day in the interpretation of quantum theory and is one of the reasons
that some philosophers are actively interested in quantum theory.

One of Dirac’s clever ways of speaking about quantum theory was to use
the expressions c-number and q-number. While this terminology is not much
used any more, it has a certain charm. Let’s see why. First, c-number just
means a complex number. And that is clear enough. But q-number means
a quantum number, whatever that means! Well, Dirac tells us what that
means; it is a linear operator. But this seemingly strange terminology comes
from an equally strange intuition, namely, that the q-numbers are pretty
much like the c-numbers with the notable exception that one q-number
need not commute with another q-number. We consider the time dependent
Schrödinger equation (7.1.1) in this light, and then we ask ourselves what
the solution of (7.1.1) must be. Well, if H were a c-number, then the solution
would be

Ψ(t,x) = e−itH/�Ψ0(x),

where Ψ0(x) is the initial value at time t = 0, just as above. Of course, in
this case the expression e−itH/� will be a c-number, too.

So we make the quantum leap (sorry about that!) and suppose that when
H is a q-number the same formula holds for the solution, except that now
the expression e−itH/� is a q-number. This means we would like to define an
operator e−itH/� (given that H is a q-number) in such a way that all this
really makes sense. And this can be done, although the full details require the
spectral theorem for a self-adjoint densely defined operator. We leave that full
story to any good functional analysis text. The conclusion of that story is that
the time dependent Schrödinger can be made, as we anticipated earlier, into
a Cauchy problem, namely, for every initial condition (in some ‘nice’ space)
there is a unique solution. We will say more about this in Chapter 9 where
we introduce the appropriate ‘nice’ space, which will be a Hilbert space.

For now here are some partial details. Suppose that the initial condition
Ψ0 lies in the eigenspace VE = {ψ |Hψ = Eψ} where E is an eigenvalue (or
eigenenergy) of H. Then H when restricted to this subspace is the same as
the operator of multiplication by E, that is

H |VE
= EI,

where I is the identity operator on VE . On this subspace VE the q-number
e−itH/� becomes (the operator of multiplication by) the c-number e−itE/�
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and the solution on that subspace is indeed

Ψ(t,x) = e−itH/�Ψ0(x) = e−itE/�Ψ0(x).

We have seen this all before, of course. Only in our earlier presentation we
wrote ψ2 instead of Ψ0 for the solution of the time independent Schrödinger
equation with eigenvalue E. (See (4.3.1) and (4.3.3).) Now here are two
elementary comments. First, we can do this for every possible eigenvalue
of H. Second, suppose that we can write the initial condition as a sum of
functions, each of which lies in some VE , say

Ψ0 =
∑

j∈J

λjψj , (7.1.2)

where λj ∈ C and ψj ∈ VEj
. Then by the linearity of the time independent

Schrödinger equation we would expect that

Ψ(t,x) =
∑

j∈J

λj e−itEj/� ψj(x)

is a solution of it. And this works out, even when the index set J is infinite,
provided we use the appropriate sense of the convergence of the infinite series.
Recall that the quantum harmonic oscillator has infinitely many eigenvalues.
So the presence of infinite sums is not avoidable in this discussion.

This exposition motivates an ad hoc definition, namely that

e−itH/� Ψ0 =
∑

j∈J

λj e−itEj/� ψj ,

provided that the expansion (7.1.2) holds. Ultimately, we want a definition of
the exponential for a large class of operators. Actually, we want a definition
of any ‘reasonable’ function of an operator for a large class of operators. The
functional calculus, which is one form of the spectral theorem, does that. And
these topics are part of a mathematical subject called functional analysis.

Another item on our wish list is that every possible initial condition Ψ0

can be expanded out as in (7.1.2) in terms of eigenfunctions. Here ‘possible’
means that Ψ0 lies in the appropriate Hilbert space. This is a wish upon a
sometimes star. Because sometimes we can do this. But sometimes we can
not. For example, we can do this for the harmonic oscillator. And that is an
important theorem about the harmonic oscillator. But we can not do this
for the free particle, which is described by the Schrödinger operator with
V ≡ 0. Obviously, we can not avoid discussing this rather simple example in
quantum theory. So, in that case the quantum Hamiltonian is

H = − �
2

2m
Δ. (7.1.3)

What goes wrong? Again, the appropriate Hilbert space comes into the
discussion, because there are no eigenfunctions in that Hilbert space for this
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operator. So, there are no eigenvalues. But the operator does have non-trivial
spectrum, and the spectral theorem does apply to it. And using (7.1.3),

e−itH/� = eit�2Δ/(2m�) = e(it�/2m)Δ

is an operator in that Hilbert space for every real number t. There is a
formula for this operator as a convolution integral operator. In this way we
have an explicit solution for any initial condition for the free particle. The
mathematical details require familiarity with the Fourier transform. This is
worked out very carefully in various books, such as [11].

There is here an underlying unexpressed idea, which says that a quantum
physical system is completely described by the solution of its associated time
dependent Schrödinger equation. Again, this is Schrödinger’s razor. Also,
we see now that the time dependent Schrödinger equation is deterministic,
that is to say, given an initial condition there exists a unique solution of it
satisfying that initial condition. Also, that solution as a function of x will
remain in the appropriate Hilbert space as t changes if the initial condition
also lies in that Hilbert space. So, the function that completely describes the
system at time t = 0 evolves to the unique function that completely describes
the system at time t = T at any later (or earlier!) time T . And then that
function for time t = T can be used as the initial condition for the same time
dependent Schrödinger equation. In other words, ‘initial condition’ and ‘final
condition’ are just two cases of the general concept of ‘condition’. For this
reason we say that any non-zero solution Ψ(t,x) is the state of the physical
system at time t. (Already we can see two problems with the identically zero
solution, Ψ(t,x) ≡ 0. First, it has trivial time dependence. And second, it
is a solution for every quantum system.) In the next chapter this notion of
state will be modified somewhat due to a physics criterion, but this basic
idea will remain. That criterion will also give another reason for excluding
the solution Ψ(t,x) ≡ 0 from further consideration.

As an aid in understanding the idea of the state of a physical system,
we can refer to the classical theory. (For those without previous familiarity
with this topic, you can skip to the next paragraph.) For example, Newton’s
equation of motion for a single particle is second order in time, and so we need
initial conditions for both position and velocity. That solution is usually taken
to be the trajectory R � t �→ γ(t) ∈ R

3 of the particle, that is, its position
as a function of time t. But the position alone at a future time does not
describe the physical state of the system; we also need the velocity. So the
state of this physical system is (γ(t), γ′(t)) ∈ R

3 × R
3. In this way, the state

of the system at any time can be used as the initial condition for the motion
of the particle. An alternative and equivalent way of describing the state of
this physical system is to use the phase space of position and momentum
variables. But I digress.

If we have the case Ψ(t,x) = e−itE/� ψ(x), where ψ is an eigenfunction
with eigenvalue E for the time independent Schrödinger equation, we note
that the time evolution of Ψ(t,x) is rotation in the one-dimensional subspace
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Cψ of VE . However, we shall see later on that this phase factor e−itE/� does
not really change the state “as time goes by”. (A phase factor is a complex
number whose absolute value is 1.) So we say that Ψ(t,x) is a stationary
state with energy E. We also say that ψ(x) is an eigenstate with eigenenergy
E. Earlier we said that ψ(x) is also called a stationary state. One just learns
to live with this mild sort of ambiguity.

The concept of a state depends very much on context. It survives in the
theory of C∗-algebras, for example. That in turn feeds back into probability
theory, where a probability measure is recognized as a special type of state.
But the logical, though maybe not historical, origin of the word ‘state’ comes
from physics and is then incorporated into mathematics.

7.2 Notes

The material in this chapter is basically mathematical, though some of the
statements require a more precise presentation of the mathematics of Hilbert
space. However, the outline given here is correct. The only statement that
goes beyond mathematics per se is that the time dependent Schrödinger
equation gives a complete description of a quantum system, that is to say,
Schrödinger’s razor. And that is a controversial statement because of (among
many other reasons) the concept of collapse (or quantum jump) of the wave
function as we shall discuss in Chapter 10. But, as a matter of practice, there
is only one fundamental quantum time evolution equation, though possibly
in a disguised form, used by physicists. And that’s the Schrödinger equation.

Determinism as a philosophical principle has a long history, going back
at least to some ideas of the Pre-Socratics, who seem to be the first to try to
explain nature using reason. Other major adherents in the Western tradition
include Aristotle, Leibniz, and Spinoza. The Cauchy problem is a more recent
development in the study of differential equations and clearly has intellectual
connections with deterministic doctrines.

For whatever reason determinism is often defended by citing the example
of an object falling due to the gravity of the Earth. So, suppose you have a ball
in your hand and you release it. And it falls. And using classical physics you
can quite well describe—even predict—how it will fall and when it will hit.
Even taking into account air resistance. You have defended determinism. But
wait! You only described—and predicted—the motion of the ball for a few
seconds. The deterministic viewpoint says that one can do this indefinitely
into the future. And that future is vast, much more than a matter of seconds.
The current age of the (known) universe is around 1017 seconds, and we
expect it to last at least that long into the future, though probably much
longer. Let’s say that you dropped your ball from the top of a very high
skyscraper. The time until it hits ground might be around 10 seconds. The
argument in favor of determinism requires an extrapolation of some 16 orders
of magnitude. Yet it is extremely difficult to say where the ball will be even 10
seconds after it hits ground. Will it bounce? How? Will it break into pieces?
How many? Where will it be in just one year, let alone 10 years?



Chapter 8

Interpreting ψ: Physics

Sir, I have found you an argument;
but I am not obliged to find you

an understanding.
Samuel Johnson

A physics theory must be provided with ways for explaining empirical
data, whether experimental or observational. Otherwise, there is no method
for testing that theory. This methodology is called its interpretation.

8.1 The Entrance of Probability

While the comments in the previous chapter give a lot more meaning to
the wave functions Ψ(t,x) and ψ(x), they still lack a more direct physical
interpretation. That standard interpretation was given by M. Born who used
an unpublished suggestion provided by A. Einstein. This is one of those
“bolts from the blue” as the saying goes. In other words, do not expect any
motivation for this!

The idea is that one wants a solution Ψ(t,x) = Ψt(x) of the Schrödinger
equation that also satisfies the normalization condition

∫
R3

dx |Ψ(t,x)|2 = 1 (8.1.1)

for every time t. In the case of a stationary state Ψ(t,x) = e−itE/� ψ(x) with
E ∈ R this normalization condition becomes

∫
R3 dx |ψ(x)|2 = 1. Notice that

this normalization condition is a non-linear, inhomogeneous condition on the
solution of the linear, homogeneous Schrödinger equation. We next define

ρt(x) := |Ψ(t,x)|2 ≥ 0 and ρ(x) := |ψ(x)|2 ≥ 0. (8.1.2)
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Then ρt(x) is a probability density function on R
3 for every time t, and ρ(x)

is a probability density function on R
3. This terminology comes from classical

probability theory. Here is the definition:

Definition 8.1.1 We say that a (measurable) function f : R
n → R is a

probability density function on R
n provided that

f(x) ≥ 0 for all x ∈ R
n and

∫
Rn

dnx f(x) = 1.

This definition could lead to a detailed, boring discussion about measure
theory, measurable functions, and Lebesgue integrals. But in practice the
probability density function f in quantum theory will be continuous and
Riemann integration theory from an elementary calculus course works just
fine. If you wish to know a bit more (including all the technical terms in
parentheses), see the crash course on measure theory in Appendix A.

The ‘wave’ function Ψt(x) is interpreted as saying that the ‘particle’ which
it describes has the probability of being in a (‘nice’) subset B of R

3 at time
t given by

Prob(B |Ψt) :=
∫

B

dx ρt(x) =
∫

R3
dxχB(x) |Ψt(x)|2 = 〈Ψt, χB Ψt〉,

where we used the inner product notation (6.2.9) in the last expression. Here
χB is the characteristic function of the subset B, defined as χB(x) = 1 if
x ∈ B and χB(x) = 0 if x /∈ B. Let’s note that Prob(B |Ψt) is indeed a real
number between 0 and 1. This is so since

0 ≤
∫

B

dx ρt(x) ≤
∫

R3
dx ρt(x) = 1.

This first inequality follows because the integral of a non-negative function
is a non-negative number and the second inequality because integrating a
non-negative function over a bigger set than B gives us a bigger number.

For those who are savvy about such things in measure theory, B should
be a Borel set. And for those who are not so blessed, do not worry since you
do not have the sophisticated mathematical tools needed even to consider or
construct a set which is not Borel. Lucky you! In practice, B will be a closed,
solid ball, or a rectangular box or some quite other simple geometrical objects,
all of which are Borel sets. And the integrals will be Riemann integrals. If
these words are not enough for you, then have a look at Appendix A.

If we consider a system described by a stationary state ψ, then

Prob(B |ψ) :=
∫

B

dx ρ(x) =
∫

R3
χB(x)|ψ(x)|2 = 〈ψ, χB ψ〉

is interpreted as the probability that the associated ‘particle’ is in the (Borel)
subset B for all times t. We note one very immediate consequence that
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we already mentioned earlier. And that is that ψ ≡ 0 is excluded from
consideration by this physical interpretation. Also, Ψt ≡ 0 is excluded for
each value of t.

An implication of this interpretation is that one can experimentally test
if a theoretically given ‘wave’ function is correct by doing the experiment to
measure the location of the ‘particle’ repeatedly (and identically in some
sense) many times. At the atomic scale and below such experiments for
measuring position are non-trivial and for many systems have never been
done nor are expected to be feasible.

Another implication of this is that eiθ Ψ(t,x) describes the same physical
system as does Ψ(t,x) provided that θ is real. Similarly, we can multiply a
stationary state ψ by any such phase eiθ and get a state describing the same
physical system. A consequence of this probabilistic interpretation is that we
want to define differently what is the state of a physical system. We will come
back to this when we discuss Hilbert spaces.

Yet another important consequence of this interpretation is that we do
not look for a curve t 	→ γ(t) ∈ R

3 for t in some interval in R in order
to describe, even partially, the time evolution of a quantum physical system.
Instead the time dependent probability density function ρt in (8.1.2) gives the
time evolution of the location of the ‘particle’. In a stationary state, the time
independent probability density function ρ in (8.1.2) describes the location
of the ‘particle’ for all times t, that is, the probability density remains the
same for all time and the ‘particle’ can not be thought of as moving on some
complicated trajectory that somehow produces the probability density ρ.

This is infamously difficult to understand. Without going now into more
details, which will be discussed later in Chapter 16, quantum probability
theory says that identically prepared systems which undergo identically
performed measurements will give different results in general (though with
some rather important exceptions). Moreover, it says that there are no further
hidden properties that distinguish among the seemingly identical systems or
experiments. This fundamental lack of determinism is sometimes referred to
as quantum fluctuations. If one is thinking of this expression as a way of
encoding the essential probabilistic aspect of quantum theory, then that is
fine. But if one thinks that the quantum fluctuations are varying physical
properties that distinguish between ‘identical’ systems, then one is thinking
classically. By the way, such variations are often considered to be actual
changes in time of a stationary (i.e., time independent) quantum state, quite
a contradiction! Quantum probability excludes any such hidden physical
property. Of course, one must not be too dogmatic about this, just a little
dogmatic. I think it is clearly true that quantum probability says that such
hidden properties are excluded. However, it is a question for experiment
to verify or falsify that assertion of quantum probability. And experiment,
nothing else, always has the final say.

In general, the time dependent ‘wave’ function Ψt(x) is complex valued,
while its associated probability density function ρt(x) := |Ψ(t,x)|2 is real
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valued and non-negative. Consequently, another common name for Ψt(x) is
the probability amplitude. As expected, the time independent ‘wave’ function
ψ(x) is also called a probability amplitude. In classical probability, there are
very many probability density functions, but there are no complex valued
probability amplitudes. While this comment is elementary, it indicates a
profound, fundamental difference between classical and quantum probability.

8.2 Expected Value

The probability density function ρt(x), as introduced in (8.1.2), is the sort
of object studied in classical probability theory, even though what it comes
from, namely Ψ(t,x), is not. As such we can use all the tools of classical
probability to study ρt(x) once we have calculated it using quantum theory.
For example, for every (integrable) function f : R

3 → C we have its integral
with respect to this probability density function, namely

E(f) = 〈f〉 =
∫

R

f(x) ρt(x) d3x,

which in classical probability theory is called the expected value of f although
in some other contexts it also is referred to as the average value of f . Here
we are introducing some standard notations for the well known integral.
The notation E(f) comes from classical probability theory, while 〈f〉 comes
from physics. These notations are ambiguous since they omit reference to the
probability density function ρt(x) or to its underlying probability amplitude
Ψ(t,x). In order to remove that ambiguity sometimes these notations are
embellished with the appropriate symbols as subscripts. But no matter how
you write it, the integral is the integral is the integral. Or in other words, old
wine in new bottles.

We also have that E(f) = 〈Ψt, f Ψt〉, which shows how we calculate the
classical expected value in terms of the ‘wave’ function of quantum theory.

One of the most common aspects of classical probability and statistics is
the study of the moments of a probability density function, which in this case
are given for each integer i ≥ 1 and each coordinate xk of x = (x1, x2, x3) as

〈xi
k〉 :=

∫
R

xi
k ρt(x) d3x

provided that this integral converges absolutely. Of course, this is simply the
expected value of xi

k. Historically, the first moments (that is, the case when
the exponent i = 1) have received much attention. It is convenient to put
them into an expected (or average) position vector

〈x〉 := (〈x1〉, 〈x2〉, 〈x3〉) ∈ R
3,

again provided that the integrals defining these three expected values are
absolutely convergent. It is critically important to realize that the expected
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position vector does not tell us where we will measure the position in any one
particular experiment, but rather gives us the expected (i.e., average) position
that comes from a lot of identically prepared experiments. Moreover, the basic
object that experiment should address is the probability density function
itself which always exists even if its first moments do not. Again, this must
be done by using a large ensemble of identically prepared experiments. This is
done using classical statistics, a science which was invented precisely to deal
with this sort of problem. Due to quantum theory we might want to measure
the probability amplitude, a fundamentally quantum object, as well. We will
come back later to this important problem.

8.3 Copenhagen and Philosophy

Pour digérer le savior, il faut
l’avoir avalé avec appétit.

Anatole France

A much fuller development of Born’s interpretation was given by N. Bohr,
a Danish physicist who worked in Copenhagen. Without fleshing out that
further for now, let me note that this combination of the works of Born and
Bohr (and others) has come to be known as the Copenhagen interpretation.

Some scientists hold that some of these consequences are ridiculous, and
so the Copenhagen interpretation must be wrong. Basically, this is because
the consequences fly in the face of the standard ways of considering physical
phenomena in classical physics. Two of Aristotle’s four causes (which I prefer
to call four types of explanation) already fell to the wayside with the advent
of the modern scientific period in (approximately) the early 17th century.
Those that fell were the final cause and the formal cause. The arguments
for discarding these two types of explanations, or even what they are, need
not concern us. The success of the subsequent scientific achievements over
the next four centuries serves as a partial justification a posteriori for their
elimination.

The two causes that survived were the material cause and the efficient
cause. This was a major contribution by F. Bacon, who curiously enough
is not remembered for his scientific activities. In Newtonian physics this
corresponds to the statement that everything (with the exception of light)
consists of masses (the material causes) subject to nothing other than forces
(the efficient causes). This is still enough to have a deterministic theory. But
quantum theory in the Copenhagen interpretation admits no determinism as
had been previously understood, due to the probabilistic interpretation of
the wave function. Consequently with the advent of quantum theory, these
two remaining causes have also come under reconsideration. Maybe they
should go, too! But some physicists want to preserve determinism and, at
least in some form, the material and efficient causes. This leads to non-trivial
questions about what ‘material’ means and what properties account for the
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‘reality’ of ‘material’. The concept of ‘reality’ itself has even been rejected by
a vocal community! I don’t want to get deeper into these considerations, let
alone what one might mean by ‘reality’.

It is interesting to note that light has played the central role twice in
revising, one can even say in overturning, the Newtonian world view. The
second time (in 1905) was the special theory of relativity as introduced by
A. Einstein. We leave that discussion to other texts. The first time was the
quantum theory as already foreseen by M. Planck in 1900. The whole confused
argument over whether light either is only a ‘wave’ or is only a ‘particle’ can be
seen as an attempt to see light as material (i.e., particles) which interacts with
other materials (lenses, mirrors, retinas, etc.) by some unspecified efficient
(i.e., intermediating) cause or as a wave (riding on some background, the
unspecified material ether) which is nothing other than the efficient cause
mediating interactions between one material object and another material
object. The identification in the middle of the 19th century via Maxwell’s
equations of light as a time dependent electromagnetic field only added fuel
to the fire, since it is not clear which side of the scale this weighs on, even
though it was considered by most physicists at the time as definitive evidence
for the wave interpretation, and therefore indirect evidence for the existence
of a material ether. The current view is that there is no ether whose physical
modes of vibration are light.

But is the electromagnetic field some sort of physical material in its
own right or an efficient cause acting between material objects? My guess
is that most physicists nowadays would find this question, even on the level
of classical electromagnetic theory, to be annoyingly besides the point and, if
some answer were insisted open, they would say that the electromagnetic field
has physical meaning as a material (though zero mass) object in itself and as
an interaction between other materials. The subsequent quantization of this
classical ‘wave/particle duality’ of light does not help us better understand
the nature of things, as far as I can make out. Rather I argue that it helps us
realize that the distinction into two distinct types of causation (material and
efficient) imposes a certain duality on nature, a duality which apparently is
not there. But what does this have to do with what we do in physics? We
have equations; we solve them (whether exactly or approximately is quite
unimportant); we compare with appropriate experiments. And the whole idea
of deterministic causes becomes a forgotten issue. What remains is the task
of formulating new general ways for explaining quantum phenomena.

The wide success of the Baconian approach should be chalked up its being
adequate for the study of classical theories, such as almost all of biology, but
not having absolute universal applicability. Similarly, the classical Newtonian
theory also has had enormous success in very many fields, but it also is
not a universal theory. I shall comment later on about non-deterministic
explanations (‘causes’) for quantum phenomena. These will be probabilistic
explanations, but in terms of the appropriate concept of probability called
quantum probability, which is explained in detail in Chapter 16.
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There have been numerous intents to modify or replace the Copenhagen
interpretation. We will not concern ourselves with those. Rather we remark
that this physical interpretation feeds back to the mathematical underpinning
of quantum theory. It tells us that we want to work with solutions of the
Schrödinger equation that lie in a specific Hilbert space: L2(R3). This aspect
of the theory deserves its own chapter, which will be Chapter 9.

8.4 Trajectories (Optional)

This brief section is optional, since it concerns the contrast of quantum theory
to classical theory, a topic outside the scope of this book. A trajectory is the
one-dimensional, continuous path along which a classical point particle moves
according to Newton’s Second Law of Motion. This is a fundamental concept
in classical theory. Trajectories of quantum ‘particles’ do exist; however, they
are not fundamental but rather secondary concepts in quantum theory. The
solutions of the time dependent Schrödinger equation are fundamental in
quantum theory.

For example, the observation of an electron in a bubble chamber should be
understood within the context of quantum theory. The electron is observed at
a finite number of positions, namely, where the bubbles are formed. Now we
think of a classical point particle as moving continuously along its trajectory,
despite the fact that even the highest speed movie or video only measures
that particle at a finite number of places at a corresponding finite number of
times. This is much like the observation of an electron in a bubble chamber.
However, in classical theory the underlying theoretical concept is a function
x(t) ∈ R

3 of time t; this function is what we think of as the motion of the
classical particle. On the other hand, in quantum theory the time evolution of
a quantum ‘particle’ is a function ψ(t) in a Hilbert space, as will be explained
in the next chapter. (Here again, t denotes the time.) In this sense there is
no motion in quantum theory, at least in the classical sense of continuous
motion along a theoretical trajectory in three-dimensional space.

Unfortunately, many scientists fall into the fallacy of thinking that there is
an underlying classical, continuous, one-dimensional trajectory for a quantum
‘particle’. However, I do not wish to be overly critical, since it does make sense
to think of a discrete version of a trajectory in quantum theory as is the case
with bubble chamber observations.

8.5 Notes

Aristotle was not the first philosopher of science, nor of knowledge in general.
But for all his flaws, he was a person who took these issues seriously. Probably
his errors are in large measure due to the historical context; there were no
serious contemporaries to challenge him. He was surrounded by students and
was no doubt an excellent expositor of his ideas as evidenced in his books,
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which appear to be what we would call lecture notes. But there does not
seem to have been a strong tradition that valued constructive criticism of the
teacher. Of course, in those days it was nigh well impossible to think of the
motions of celestial objects in the same terms as those of terrestrial objects.
So some of Aristotle’s thinking was essentially doomed to be wrong from the
start. But his ‘intuitive’ idea that a heavy object gravitates to Earth faster
than a light one is an unforced error.

The problem for contemporary philosophy of science is that quantum
theory throws a monkey wrench into whatever ‘intuitive’ approach with which
Darwinian natural selection has provided our brains. We have evolved to
interact with a world of ‘classical reality’ since that has had survival value.
In this regard Aristotle is one of us. So we had best be careful lest we be
doomed also to be wrong from the start.

Entirely too much emphasis is put on measure theory in the standard
mathematics curriculum. The general picture is presented in Appendix A in
about 14 pages. Though not everything is proved there, the basic facts are
all clearly stated. Unless one plans on doing research in measure theory or
in fields where measures are important in and of themselves, there is little
reason to delve much deeper. The real motivation for knowing a bit of measure
theory is that it allows one to calculate real life integrals, not just integrals of
characteristic functions. And as a physicist once remarked to me: “In physics
we evaluate the integral.” So one must get used to rolling up one’s sleeves
and doing the integral to develop some sort of ‘intuition’ for quantum theory.
In this regard almost all the famous measure theory texts by the famous
mathematicians are utterly useless. But I do admire the authors of [7] for
their enthusiastic approach and abundance of examples. Also [14], [19] and
[23] are some other handy references for doing integrals.



Chapter 9

The Language of Hilbert Space

Da wäre noch eine Sache.
Was ist ein Hilbertraum?

David Hilbert

The basic mathematical language of quantum physics is the theory of
Hilbert spaces. The basic facts are presented without giving proofs. The
first three sections form a mini-course of some 14 pages and can be read
as need arises in order to understand concepts and notation. The next four
sections are explicitly optional. This chapter overlaps the material in many
fine functional analysis texts, such as [34], where proofs can be found.

The amazing idea which has motivated so much of modern mathematical
analysis is to view a function not only as a way of sending points in one set
to points in another set, but also as itself a point in an infinite dimensional
space with its own mathematical structure. It is in these function spaces, such
as Hilbert spaces, where we search for the solutions of differential equations.

9.1 Facts and Definitions, No Proofs

Let’s understand what the Hilbert space L2(R3) is and how it dovetails with
Born’s interpretation. Unfortunately, this leads us into the world of technical
details of measure theory. (See Appendix A for those details.) Anyway, as
a first approximation we oversimplify by defining L2(R3) to be all functions
φ : R

3 → C such that the integral
∫

R3 dx |φ(x)|2 exists and is finite. (Actually,
we should also assume that φ is measurable, for those who speak the language
of measure theory.) Such a function φ is said to be square integrable. The first
important mathematical consequence is this:
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Proposition 9.1.1 If φ1, φ2 ∈ L2(R3), then the integral
∫

R3
dxφ1(x)∗φ2(x)

exists. (Here for any complex number λ = a + ib ∈ C with a, b ∈ R we define
its complex conjugate by λ∗ := a − ib ∈ C. Of course, i =

√−1.)

What this means is that this integral makes sense within the context
of measure theory, and in particular is equal to a complex number. The
proof of this proposition essentially is an application of the Cauchy-Schwarz
inequality, though it uses a ‘tricky bit’ from measure theory (called absolute
integrability) as well. This proposition invites the next definition.

Definition 9.1.1 If φ1, φ2 ∈ L2(R3), then we define their inner product by

〈φ1, φ2〉 :=
∫

R3
dxφ1(x)∗φ2(x)

So, 〈φ1, φ2〉 ∈ C. This inner product satisfies the usual properties of the
Hermitian inner product defined on the finite dimensional complex vector
space C

n, where n ≥ 1 is an integer. That inner product is defined by

〈w, z〉 := w∗
1z1 + · · · + w∗

nzn, (9.1.1)

where w = (w1, . . . , wn) ∈ C
n and z = (z1, . . . , zn) ∈ C

n.
This turns out to be the natural generalization to complex vector spaces

of the more familiar inner product defined on the real vector space R
n by

〈x, y〉 := x1y1 + · · · + xnyn (9.1.2)

for x, y ∈ R
n, where x = (x1, . . . , xn) and y = (y1, . . . , yn).

Here are the properties of these inner products on complex vector spaces
expressed in the notation of L2(R3). We take ψ, φ, φ1, φ2 ∈ L2(R3) and λ ∈ C.

1. 〈ψ, φ1 + φ2〉 = 〈ψ, φ1〉 + 〈ψ, φ2〉 and 〈φ1 + φ2, ψ〉 = 〈φ1, ψ〉 + 〈φ2, ψ〉.
2. 〈ψ, λφ〉 = λ〈ψ, φ〉 and 〈λψ, φ〉 = λ∗〈ψ, φ〉.
3. 〈φ, φ〉 ≥ 0.

4. Moreover, 〈φ, φ〉 = 0 implies that φ = 0, except on a set of measure
zero, another concept from measure theory.

5. 〈φ, ψ〉 = 〈ψ, φ〉∗ (Complex Symmetry)

Property 1 is called bi-additivity. Combining this with Property 2 we have
sesqui-linearity, which is not to be confused with bi-linearity where there
would be no complex conjugation in the second equation. Property 3 together
with 〈φ, φ〉 = 0 =⇒ φ = 0 is called positive definiteness.
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The complex vector space L2(R3) with this inner product turns out to be
a particular case of what is known as a Hilbert space (Well, almost. Item 4
on the above list is a thorn in our side. In a Hilbert space we have that the
inner product is positive definite. So, we are sweeping under the rug this
technical detail.) And this Hilbert space is the ‘nice’ space referred to several
times earlier. J. von Neumann recognized that this is the space for doing the
spectral analysis of quantum Hamiltonian operators. That theory includes the
eminently important spectral theorem and its associated functional calculus,
which can be found in any good functional analysis text. Here is the definition:

Definition 9.1.2 We say that a vector space H over the field of complex
numbers C is a (complex) Hilbert space if there is a bi-additive, sesqui-linear,
positive definite, complex symmetric inner product 〈·, ·〉 mapping H×H → C

with the completeness property:

• Define ||φ|| := +
√〈φ, φ〉 and d(φ1, φ2) := ||φ1 −φ2||, which are a norm

and a metric, respectively. (Look up definitions for these concepts if need
be.) Then we require that H is a complete metric space, that is, every
Cauchy sequence of elements in H converges to a (necessarily unique)
element in H.
Recall from analysis that a sequence {φj | j ∈ N} is said to be Cauchy if
for every ε > 0 there exists an integer M > 0 such that ||φj − φk|| < ε
whenever j, k ≥ M .

Then the Riesz-Fischer theorem from functional analysis says precisely
that L2(R3) is a complete metric space. The other defining conditions for a
Hilbert space are easily checked. So we have that L2(R3) is a Hilbert space.

9.2 Unitary Operators

Whenever we introduce new objects into mathematics, we also really must
introduce the ideas of isomorphism and isomorphic, (which are concepts in
category theory). This is because someone could be studying a mathematical
object, say a group G1, and someone else (or even the same person!) could
be studying the group G2 and they could come to realize that every group
property of G1 was also a group property of G2. And vice versa. This could
lead to the hunch that the groups G1 and G2 are actually the ‘same’ group.
Specifically, they may be isomorphic groups, which means that there exists
an isomorphism f : G1 → G2 of groups. And an isomorphism of groups is a
bijective function that preserves all the group operations. And if that turns
out to be true, we can conclude that every property of G1 as a group is a
property of G2 as a group, and vice versa. Put more bluntly, we do not want
to waste our time studying isomorphic groups G1 and G2 individually. We
would rather prove that they are isomorphic groups and be done with it.

So we are led to ask what is the appropriate definition of an isomorphism
of Hilbert spaces H1 and H2. In analogy with other situations (such as an
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isomorphism of groups) we want to have a bijective function H1 → H2 which
preserves all the operations of a Hilbert space. And these operations are those
of a vector space and the inner product. The functions preserving the vector
space operations, namely the vector sum and scalar multiplication, are the
linear transformations, also known as (linear) operators. See Definition 5.0.1.
So here is the definition:

Definition 9.2.1 Suppose that H1 and H2 are Hilbert spaces. We say that
U : H1 → H2 is a unitary operator if U is a linear bijection that satisfies

〈Uϕ1, Uϕ2〉H2 = 〈ϕ1, ϕ2〉H1

for all ϕ1, ϕ2 ∈ H1. (In particular, U is onto.)
We say that H1 is isomorphic to H2 if there exists a unitary operator

U : H1 → H2.

For historical reasons we still usually say to this day ‘unitary operator’ instead
of the completely correct ‘isomorphism of Hilbert spaces’. But the latter
expression shows exactly why unitary operators are so important.

Exercise 9.2.1 In this problem H, H1, H2, and H3 denote Hilbert spaces.
Here are some basic properties of unitary operators:

1. The identity map I : H → H is unitary.

2. If U : H1 → H2 is unitary, then its inverse U−1 : H2 → H1 is unitary.

3. If U : H1 → H2 and V : H2 → H3 are unitary, then the composition
V U : H1 → H3 is also unitary. Composition is also denoted by V ◦ U .

4. Prove that
U(H) := {U : H → H |U is unitary}

is a group where the multiplication is composition of operators. This is
called the unitary group of the Hilbert space H.

5. Any unitary operator U : H1 → H2 is norm preserving, that is to say,
||Uϕ|| = ||ϕ|| for all ϕ ∈ H1. (Here || · || denotes the norm in the
appropriate Hilbert space.)

Whenever we study mathematical objects together with isomorphisms
between certain pairs of objects, we always have a classification problem,
namely to identify all such objects up to isomorphism. As an example, the
classification problem for finite groups is a monstrously difficult open problem.
However, the classification problem for finite simple groups has been claimed
to have been solved, though only a handful of experts may have read the
entire proof. What about the classification problem for Hilbert spaces? Here
is the relevant result.
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Theorem 9.2.1 For every Hilbert space H there is an associated cardinal
number dim H called its dimension, which will be defined in the next section.

The Hilbert spaces H1 and H2 are isomorphic (as Hilbert spaces) if and
only if dim H1 = dim H2.

For example, dim C
n = n for every finite integer (finite cardinal) n. Also,

most of the commonly used, infinite dimensional Hilbert spaces such as
L2(Rn), the Sobolev spaces, the Bergmann spaces, etc., have dimension ℵ0,
the first infinite cardinal. So why study so many seemingly different infinite
dimensional Hilbert spaces given that they are all the same? The answer is
we are interested in operators acting in these spaces, and often an operator
can have a manageable analytic formula in one of these Hilbert spaces, but
nothing easy to deal with in an arbitrary isomorphic Hilbert space.

We have already seen examples of unitary operators, though that was
not mentioned when they were introduced because we did not have enough
available concepts to say much. But anyway here is a sketch of what happens.
If H is any densely defined self-adjoint operator acting on the elements in a
dense subspace of the Hilbert space H, then the operator Ut := e−itH/� for
every t ∈ R is a unitary operator acting on every element in H. Moreover,
these unitary operators satisfy U0 = IH, the identity map, and Us Ut = Us+t

for all s, t ∈ R. This means that the map t �→ Ut is a group morphism from
the additive group R to the unitary group U(H). The moral of this story is
that the solution of the time dependent Schrödinger equation with any initial
state ϕ ∈ H is given by its unitary flow Ut ϕ, which is also a state for every
time t since Ut is norm preserving. Everything in this paragraph is discussed
thoroughly and proved in any good functional analysis text.

9.3 More Facts without Proofs

In this section we collect some more facts about Hilbert spaces which will be
needed later. For the sake of brevity proofs are not given, though some proofs
are left as optional exercises. In any case, the reader should understand what
each of these facts asserts. So read the exercises carefully, too.

The metric on a Hilbert space H gives it a corresponding topology, which
roughly means a way to define convergence (and limits) of sequences. For us
this is a language more than anything else. We let S denote a subset of H in
the rest of this paragraph. We say that S is open if S is the union of open
balls Br(φ) := {ψ ∈ H | ||ψ − φ|| < r}, where φ ∈ H and r > 0. On the other
hand, a subset S is closed if its complement H \ S is open or, equivalently,
if the limit of any convergent sequence of points in S is itself in S. And S is
(sequentially) compact if every sequence in S has a convergent sub-sequence.
If H has finite dimension, then every subspace is closed; this is not so for
infinite dimension. The closure of S, denoted S, is the smallest closed set
containing S or, equivalently, S together with all of its limit points. We say
that S is dense if S = H. For an infinite dimensional Hilbert space there
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are (infinitely many!) subspaces that are not closed, and there are (infinitely
many!) subspaces that are dense.

Let H be a Hilbert space. Suppose that Φ = {φj ∈ H | j ∈ J} is given,
where J is an index set. In most of quantum theory J will be finite or
countably infinite, but for the time being it can be arbitrary. We say that
the set Φ is orthonormal provided that ||φj || = 1 for each j ∈ J and that
〈φj , φk〉 = 0 for all j, k ∈ J with j �= k.

We say that Φ is an orthonormal basis of H if it is orthonormal and
spanning. Spanning means that the subspace of all finite linear combinations
of elements in Φ is dense in H. Equivalently, Φ is an orthonormal basis if and
only if for every element φ ∈ H there are unique complex numbers cj for j ∈ J
such that

∑
j |cj |2 < ∞ and φ =

∑
j cjφj . The latter (possibly infinite) sum

is defined with respect to the convergence using the metric, as defined above,
associated to the norm of the Hilbert space. Every Hilbert space H �= 0 has
a (non-unique!) orthonormal basis Φ, whose cardinality does not depend on
the choice of Φ. This leads to the definition dimH := card(Φ), the dimension
of H.

We say that a Hilbert space H is separable if it has a dense, countable
subset. It turns out that H is separable if and only if dimH ≤ ℵ0.

One says φ, ψ ∈ H are orthogonal if 〈φ, ψ〉 = 0 with the notation: φ ⊥ ψ.
If S1 and S2 are subsets such that ψ1 ∈ S1 and ψ2 ∈ S2 imply that ψ1 ⊥ ψ2,
then we say that S1 and S2 are orthogonal and write this as: S1 ⊥ S2.

If S is any subset of H, we define S⊥ (read: S perp), to be the set of all
elements orthogonal to all the elements in S, namely

S⊥ := {ψ ∈ H | 〈ψ, φ〉 = 0 for all φ ∈ S}. (9.3.1)

Then S⊥ is a closed subspace of H.

Definition 9.3.1 Let H be a Hilbert space and T : H → H be a (linear)
operator. (See Definition 5.0.1.) Then we say that the operator T is bounded
if there exists some real number M ≥ 0 such that for all φ ∈ H we have that
||Tφ|| ≤ M ||φ||.

Given a subset of the real numbers, it is critically important to understand
what its supremum and infimum are.

Definition 9.3.2 Let S be any subset of R. The supremum (or least upper
bound) of S is the smallest number u such that

• u is an upper bound of S, that is, s ≤ u for all s ∈ S,

• u is the least such upper bound, that is, if s ≤ v for all s ∈ S, then
u ≤ v.

If S has some upper bound, then an important property of the real numbers
is that a unique supremum exists. Notation: u = sup S. If the nonempty set
S has no upper bound, then we put sup S = +∞.

We also put sup ∅ = −∞, where ∅ denotes the empty set.
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This definition does not apply to the complex numbers, for which we do
not define a relation ≤ for arbitrary pairs of complex numbers.

If sup S /∈ S, then S has no maximal (or largest) element.

Exercise 9.3.1 The quickest definition of the infimum (or greatest lower
bound) of a subset S of R is inf S := − sup(−S), where −S := {−s | s ∈ S}.
Alternately, one can rewrite Definition 9.3.2 by reversing inequalities so that
inf S is defined as the lower bound that is larger than any other lower bound.
First, carefully write out this alternative definition. Second, prove that it is
equivalent to the quickest definition.

Definition 9.3.3 If T : H → H is a bounded operator, then we define its
operator norm by

||T || := sup {||Tφ|| | φ ∈ H, ||φ|| ≤ 1}. (9.3.2)

Exercise 9.3.2 Prove ||T || = inf{M ≥ 0 | ||Tφ|| ≤ M ||φ|| for all φ ∈ H}.
This is often given as the definition of ||T || instead of (9.3.2).

A central problem in Hilbert space theory is to prove that a given linear
operator is bounded and then to calculate its operator norm. The latter is
a non-linear optimization problem. What do these words mean? Well, define
the unit sphere in a non-zero Hilbert space H as S := {φ ∈ H, ||φ|| = 1}.
Then the operator norm of T is the ‘maximal’ (or ‘optimal’) value of the
non-linear function S → [0,∞) given by φ �→ ||Tφ||. If the dimension of H is
finite, then S is a compact metric space (meaning that every sequence in it
has a convergent sub-sequence). A continuous real-valued function defined on
a compact metric space always has a maximal value. But S is not compact if
the dimension of H is infinite, and so we lack an important tool for solving the
optimization problem. The moral of this paragraph is that a basic problem
in the theory of linear operators is a difficult non-linear problem.

Exercise 9.3.3 Prove that S is not compact if the dimension of H is infinite.
Hint: Take an orthonormal basis B of H and show that there is a sequence
in B that has no convergent sub-sequence.

For any Hilbert space H we let

L(H) := {T : H → H |T is a bounded operator}.

Exercise 9.3.4 Prove that L(H) is a vector space over the complex numbers,
where the sum is defined by (S + T )ψ := Sψ + Tψ and the scalar product by
(λS)ψ := λ(Sψ) for S, T ∈ L(H), λ ∈ C and ψ ∈ H. Prove that the operator
norm is indeed a norm on the complex vector space L(H).

With definition d(S, T ) := ||S − T || for S and T bounded operators, it turns
out that d is a metric, and L(H) is a complete metric space. It can be shown
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that the norm on L(H) does not come from an inner product. This means
that L(H) with the operator norm is not a Hilbert space. Rather, L(H) is an
example of a complete, normed space which is abbreviated as Banach space.

The identity operator or identity map I, defined by Iψ := ψ for all ψ ∈ H,
is a bounded, linear operator. Therefore I ∈ L(H).

Exercise 9.3.5 Find a condition on H such that the identity operator I
satisfies ||I|| = 1. Evaluate ||I|| if H does not satisfy that condition.

Exercise 9.3.6 Let T be a bounded operator acting in the Hilbert space H.
Prove that for all φ ∈ H we have

||T φ|| ≤ ||T || ||φ||.

It is important that you understand the meanings of each of the three norms
in this inequality.

Definition 9.3.4 We say that
∑∞

j=0 φj, is a convergent (infinite) series if the
sequence of partial sums

∑n
j=0 φj, where each φj ∈ H, converges as n → ∞

to a limit φ ∈ H with respect to the standard metric on the Hilbert space H.
If this is the case, we denote this as φ =

∑∞
j=0 φj.

Exercise 9.3.7 Let T : H → H be a linear operator. Show that the following
statements are equivalent:

• T is bounded.

• T is continuous, that is, for any convergent sequence ψ = limn→∞ ψn in
H, where each ψn ∈ H, we have Tψ = limn→∞ Tψn. Or, equivalently,
if φ =

∑
j φj is a convergent infinite series in H, where each φj ∈ H,

then we have Tφ =
∑

j Tφj. (We say that T commutes with limits and
with infinite sums.)

Here is a fundamental result which can be proved with nothing other
than the definition of Hilbert space, the definition of its norm and a speck of
algebra. We leave the proof to other textbooks or to the industrious reader.

Theorem 9.3.1 (Cauchy-Schwarz inequality) For φ, ψ ∈ H, a Hilbert
space, we have that

|〈φ, ψ〉| ≤ ||φ|| ||ψ||. (9.3.3)

Exercise 9.3.8 Use the Cauchy-Schwarz inequality to show that the inner
product, considered as the function H × H → C that maps the ordered pair
(φ, ψ) to its inner product 〈φ, ψ〉, is a continuous function. Explicitly, you are
asked to prove that if ψ = limn→∞ ψn and φ = limn→∞ φn are convergent
sequences in H, then 〈ψ, φ〉 = limn→∞〈ψn, φn〉. A similar property also holds
for the inner product of infinite sums.
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Exercise 9.3.9 Let U : H → H be a unitary map, where H is a Hilbert space.
Find an extra hypothesis which then implies that ||U || = 1. What happens if
that hypothesis fails? In any case conclude that U ∈ L(H).

There is a something related to unitary operators. But the reader is
advised to note the subtle difference.

Definition 9.3.5 Let H1,H2 be Hilbert spaces. We say that a linear map
T : H1 → H2 is an isometry if T preserves distances between pair of vectors,
that is, ||Tψ−Tφ|| = ||ψ−φ|| for all ψ, φ ∈ H1. We say that H1 is isometric
to H2 if there exists an isometry T : H1 → H2 that is also onto (surjective).

Remark: Note that we do not require an isometry to be onto. Recall that a
unitary operator is onto by definition.

Exercise 9.3.10 Let T : H1 → H2 be a linear map. Prove:

• T is an isometry if and only if T preserves norms, that is, ||Tψ|| = ||ψ||
for all ψ ∈ H1.

• If T is unitary, then T is an isometry.

• An isometry is one-to-one (injective).

• A surjective isometry is unitary. (Use the polarization identity (9.3.7).)

• Find an isometry that is not unitary.

• Prove that ||T || = 1 if T is an isometry and H1 �= 0. Find a bounded
linear map T with ||T || = 1 but T is not an isometry.

• The range of an isometry is a closed subspace. Find a bounded linear
map T with ||T || = 1 but whose range is not closed.

The norm symbol || · || has three different meanings in this exercise. Be sure
you understand what they are.

Exercise 9.3.11 Prove that isometric is a relation between Hilbert spaces
that is reflexive, symmetric, and transitive. (You might need to look up these
three words. One says that isometric is an equivalence relation.)

Another important fact is known as the Riesz representation theorem.
Here is one lengthy way of saying it, though in practice one typically only
needs a part of the second paragraph of the following result.

Theorem 9.3.2 (F. Riesz) Let f : H → C be a bounded linear map, which
is called a (linear) functional. (Here f bounded means that there exists a real
number C such that |f(ψ)| ≤ C||ψ|| holds for all ψ ∈ H. Necessarily, C ≥ 0.
Moreover, we define ||f || := sup{|f(ψ)| : ||ψ|| ≤ 1}.)
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Then there exists a unique element φf ∈ H such that f(ψ) = 〈φf , ψ〉 for
every ψ ∈ H. Also the map f �→ φf is an anti-linear, isometric bijection
of the dual space H′ onto H, where we define H′ to be the vector space of
all bounded functionals H → C together with the norm ||f || defined above,
thereby making it into a complete normed complex vector space (that is, a
Banach space).

Finally, this norm on H′ arises from a unique inner product 〈·, ·〉H′ ,
thereby making H′ into a Hilbert space, and then the map f �→ φf is not
only anti-linear, but also anti-unitary meaning that for all f, g ∈ H′ we have

〈φf , φg〉H = 〈g, f〉H′ .

In just a few words we can summarize this as saying that the dual of a
Hilbert space is (almost) isomorphic to itself, and that this is achieved in a
‘canonical’ way.

For any T ∈ L(H) one can prove using the Riesz representation theorem
that there exists a unique operator, denoted by T ∗ ∈ L(H) and called the
adjoint of T , that satisfies for all φ, ψ ∈ H the condition

〈φ, Tψ〉 = 〈T ∗φ, ψ〉. (9.3.4)

Exercise 9.3.12 Prove for all T ∈ L(H) that T ∗ ∈ L(H) and moreover that
||T ∗|| = ||T ||, where || · || denotes the operator norm.

Prove that the mapping L(H) → L(H) given by T �→ T ∗ is anti-linear
and also satisfies (ST )∗ = T ∗S∗ for all S, T ∈ L(H). Prove as well I∗ = I,
where I is the identity operator, and 0∗ = 0, where 0 is the zero operator
defined by 0(ψ) := 0, the zero vector, for all ψ ∈ H.

Definition 9.3.6 Let T ∈ L(H). If T = T ∗, then we say T is self-adjoint.

Exercise 9.3.13 Let λ ∈ C be an eigenvalue of a self-adjoint operator T ,
meaning that Tψ = λψ for some ψ �= 0. Prove that λ ∈ R.

Suppose that λ1 �= λ2 are eigenvalues of a self-adjoint operator T with
eigenvectors φ1 and φ2, respectively. Prove that φ1 and φ2 are orthogonal,
that is 〈φ1, φ2〉 = 0.

Exercise 9.3.14 Suppose that U ∈ L(H). Prove that U is unitary if and only
if U∗U = UU∗ = I.

Let λ ∈ C be an eigenvalue of a unitary operator. Prove that |λ| = 1.

Definition 9.3.7 Suppose S, T ∈ L(H) are self-adjoint operators. Then we
define S ≤ T to mean that 〈ψ, Sψ〉 ≤ 〈ψ, Tψ〉 holds for every ψ ∈ H.
Equivalently, we write T ≥ S.

If T ≥ 0 we say that T is a positive operator. If T ≤ 0 we say that T is
a negative operator. (In these two statements 0 is the zero operator.)
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Exercise 9.3.15 If T ∈ L(H) is self-adjoint, prove that 〈ψ, Tψ〉 is a real
number. (Consequently, the inequality in Definition 9.3.7 is between real
numbers, and so makes sense.)

Let λ ∈ C be an eigenvalue of a positive operator. Prove that λ ∈ R

satisfies λ ≥ 0. Prove the analogous result for negative operators.

Exercise 9.3.16 Prove that ≤ is a partial order on the set of self-adjoint
operators of a Hilbert space H. To say that this is a partial order means that
for all self-adjoint operators A,B,C we have these three properties:

• Reflexivity: A ≤ A,

• Anti-symmetry: If A ≤ B and B ≤ A, then A = B,

• Transitivity: If A ≤ B and B ≤ C, then A ≤ C.

If dimH ≥ 2, show there exists a pair S, T of self-adjoint operators such that
neither S ≤ T nor T ≤ S. (This is why we say that ≤ is a partial order.)

Definition 9.3.8 We say that P ∈ L(H) is a projection if P = P 2 = P ∗.

The condition P = P ∗ says that P is self-adjoint. We put the condition
P 2 = P into words by saying that P is idempotent. Projections are important
operators in quantum theory as we shall see.

Exercise 9.3.17 Prove that the zero operator 0 and the identity operator I
are projections.

A seemingly unrelated concept is defined next. We have already seen this
earlier, but it bears repetition.

Definition 9.3.9 A closed subspace V of H is an algebraic subspace (that
is, φ + ψ ∈ V and λφ ∈ V whenever φ, ψ ∈ V , and λ ∈ C) and moreover is
topologically closed which means that every limit of a convergent sequence of
elements in V is itself in V .

As noted before, S⊥ (see (9.3.1)) is a closed subspace if S is any subset of H.

Exercise 9.3.18 Let V be any (not necessarily closed) subspace of a Hilbert
space. Show that V ⊥⊥ = V , the closure of V . In particular, if V is a closed
subspace, then V ⊥⊥ = V . Here V ⊥⊥ := (V ⊥)⊥ is the ‘perp’ of the ‘perp’.

Definition 9.3.10 Let V1 and V2 be closed subspaces of a Hilbert space H
with V1 ⊥ V2 and such that every vector ψ ∈ H can be written (uniquely) as
ψ = ψ1 + ψ2, where ψ1 ∈ V1 and ψ2 ∈ V2. Then we say that H is the direct
sum of V1 and V2. Notation: H = V1 ⊕ V2.

Note that V1 ⊥ V2 implies that V1 ∩ V2 = 0, the zero subspace. It follows
that the expression ψ = ψ1 + ψ2 in this definition is necessarily unique. This
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concept is sometimes called the internal direct sum in order to contrast it
with another concept known as an external direct sum, which we can live
without for the time being.

Theorem 9.3.3 (Projection Theorem) Suppose V is a closed subspace of
a Hilbert space H. Then H = V ⊕ V ⊥. Moreover, if we take ψ ∈ H and
write it as ψ = ψ1 + ψ2, where ψ1 ∈ V and ψ2 ∈ V ⊥, then the function
PV : H → H defined by PV ψ := ψ1 is an orthogonal projection and, in
particular, a bounded linear operator.

Finally, ψ1 is the unique nearest vector in the closed subspace V to the
vector ψ ∈ H, that is, ||ψ − ψ1|| < ||ψ − φ|| for all φ ∈ V with φ �= ψ1.

The proof of this theorem depends on the parallelogram identity discussed
below. The result of the Projection Theorem does not hold in general for
vector spaces with a norm. It is a geometric property of Hilbert spaces.

Exercise 9.3.19 Given ψ = ψ1 +ψ2 as in the Projection Theorem, prove the
Pythagorean theorem: ||ψ||2 = ||ψ1||2 + ||ψ2||2.

Use this result to prove that ||PV ψ|| ≤ ||ψ|| for all ψ ∈ H or, in other
words, ||PV || ≤ 1.

Next, show that ||PV || = 1 if and only if V �= 0.

Exercise 9.3.20 Let P ∈ L(H) be a projection.

• For all φ ∈ H we have that 〈φ, P φ〉 is a real number and, in particular,
0 ≤ 〈φ, P φ〉 ≤ 1. Show that this is equivalent to saying 0 ≤ P ≤ I.

• Let λ ∈ C be an eigenvalue of P . Prove that λ = 0 or λ = 1.

• If P �= 0 and P �= I, then the set of eigenvalues of P is {0, 1}. What
happens in the cases P = 0 and P = I?

Given a Hilbert space H there is a one-to-one and onto correspondence
between the set of all of its projections and the set of its closed subspaces.
This correspondence maps any closed subspace V to the projection PV given
in the Projection Theorem. And to any projection P we assign its range

Ran P := {φ ∈ H | ∃ψ ∈ H such that φ = Pψ}. (9.3.5)

Exercise 9.3.21 Show that these two mappings are inverses of each other.
Prove that Ran P in (9.3.5) is a closed subspace.

Now the set of all the closed subspaces has a partial order, namely V1 ⊂ V2

means that V1 is a subset of V2. And the set of all projections, being self-adjoint
operators, also has a partial order. (Recall Exercise 9.3.16.) The next exercise
says among other things that this bijection of sets preserves order.
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Exercise 9.3.22 Let P1 and P2 be projections. Prove that P1 ≤ P2 if and
only if Ran P1 ⊂ Ran P2 if and only if P1P2 = P1 if and only if P2P1 = P1.

Also, the set of closed subspaces becomes an complete, complemented
orthomodular lattice with respect to its partial order. (Look it up if this
is new to you.) For example, the complement of V is V ⊥, the orthogonal
complement. Therefore, the set of projections has that structure, too. For
example, the complement of the projection P is I−P , where I is the identity
map of H.

Another handy fact is called the parallelogram identity, which says that

||φ + ψ||2 + ||φ − ψ||2 = 2
(||φ||2 + ||ψ||2) (9.3.6)

holds for all φ, ψ in a Hilbert space. This is actually a statement about the
smallest subspace containing the vectors φ and ψ, that being a subspace of
dimension ≤ 2. Thinking about the case when that subspace has dimension
exactly 2, we can visualize φ and ψ as two sides of a parallelogram, whose
two diagonals are then φ+ψ and φ−ψ. Then the parallelogram identity can
be put into words this way: The sum of the squares on the two diagonals of
the parallelogram is equal to the sum of the squares on its four sides. Perhaps
this wording reminds you of the Pythagorean Theorem. However, you most
likely never learned the parallelogram identity in a basic course of Euclidean
geometry. I know I didn’t.

Exercise 9.3.23 Prove the parallelogram identity (9.3.6).

Here is another useful formula, known as the polarization identity. It says

〈ψ, φ〉 =
1
4

(
||φ + ψ||2 − ||φ − ψ||2 + i||φ + iψ||2 − i||φ − iψ||2

)
(9.3.7)

holds for all φ, ψ in a complex Hilbert space. Notice that the formula does
not even make sense (due to the presence of i =

√−1) for a real Hilbert
space, that is, a Hilbert space which only admits scalar multiplication by real
numbers. This identity says that if you know how to evaluate the norm of
every vector in the Hilbert space, then you can evaluate the inner product of
any pair of vectors. That’s quite amazing!

Here is a useful generalization of (9.3.7). Suppose that T : H → H is
a bounded, linear operator and H is a complex Hilbert space. Then for all
ψ, φ ∈ H we have

〈ψ, Tφ〉 =
1
4

(
QT (φ+ψ)−QT (φ−ψ)+ iQT (φ+ iψ)− iQT (φ− iψ)

)
, (9.3.8)

where QT (ψ) := 〈ψ, Tψ〉 for all ψ ∈ H defines the quadratic form associated
to the linear operator T . This is also called the polarization identity. Notice
that (9.3.7) is just the special case of (9.3.8) when we take T = I, the identity
operator.
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Exercise 9.3.24 Prove the polarization identity (9.3.8).

Exercise 9.3.25 The parallelogram and polarization identities express a lot
of the structure, one might even say geometry, of Hilbert spaces. To see
this suppose we have a complex vector space with a norm that satisfies the
parallelogram identity (9.3.6). Use the polarization identity (9.3.7) to define
〈ψ, φ〉 in terms of the known norms on the right side. Then prove that this is
indeed an inner product whose associated norm is the norm we started with.

9.4 States Revisited (Optional)

For the stationary states ψ ∈ L2(R3) of a quantum Hamiltonian we now write
the normalization condition on ψ as ||ψ|| = 1. So ψ is a unit vector. This says
that ψ lies on the unit sphere in L2(R3), which is not a linear subspace.
Moreover, this interpretation says that such a unit vector ψ represents the
same physical state as the unit vector λψ provided that λ ∈ C satisfies |λ| = 1,
that is, λ lies on the unit circle S

1 := {z ∈ C | |z| = 1} in the complex plane
C. So, for any Hilbert space H, we let S(H) denote the sphere of its unit
vectors. This is a metric space where the metric d comes from the norm on H
through the definition d(φ1, φ2) := ||φ1 − φ2||. Then the quotient topological
space S(H)/S

1 is the space of states, or more briefly, the state space. Note
that this is purely kinematical, that is, the way we describe a quantum system
before considering its time evolution. The space S(H)/S

1 is well known in
geometry; it is called the projective space associated to the Hilbert space H.
If we take the complex Hilbert space C

n+1 where n ≥ 1 is an integer, the
associated projective space is denoted by CPn in some texts and is called the
complex n-dimensional projective space.

Definition 9.4.1 A (pure) state for a quantum system described by the
Hilbert space H is an element of S(H)/S

1. In particular, for a single (spin
zero) ‘particle’ in R

3 a state is an element in S(L2(R3))/S
1. (See Chapter 14

for spin zero.)

We will not deal with the more general mixed states in this book, but only
with the pure states, which will simply be called hereafter states.

Another equivalent and standard way of doing this is to say that any
non-zero ψ represents the state ψ/||ψ|| modulo S

1. Again equivalently, one
can construct the projective space as the quotient topological space

L2(R3) \ {0}
C \ {0} .

This means that the non-zero functions φ1, φ2 ∈ L2(R3)) are identified if
there exists a non-zero λ ∈ C such that φ1 = λφ2. This alternative definition
of the projective space has the virtue that it does not require the existence of
a norm and so is applicable in more general algebraic contexts. For example,
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let K be any field with finitely many elements. Then for each integer n ≥ 1
the finite quotient set

K
n+1 \ {0}
K \ {0}

is the projective space over K of dimension n.
This new definition of a state has an immediate consequence, namely

that the set of states is not a vector space. This is rather strange since the
set of solutions Ψt of the time dependent Schrödinger equation is a vector
space under the point-wise operations for adding functions and multiplying
functions by complex numbers (≡ scalars):

(Ψt + Φt)(x) := Ψt(x) + Φt(x) and (λΨt)(x) := λ(Ψt(x)),

where λ ∈ C and x ∈ R
3. This is called the superposition principle, and

it is true because the time dependent Schrödinger equation is linear in its
unknown. (Parenthetically, let me emphasize that the superposition principle
is a property of any linear equation, not just the Schrödinger equation.) And
a related observation is that the Hilbert space L2(R3) is itself a vector space.
But it is better to think of a state ψ ∈ L2(R3) as being a way of identifying
the one dimensional subspace Cψ of scalar multiples of ψ �= 0.

Now ψ1 + ψ2 makes sense for any pair of non-zero functions ψ1 and ψ2 in
L2(R3), and this determines a unique state provided that ψ1 �= −ψ2. But this
does not define a sum of the subspaces Cψ1 and Cψ2. Why not? Well, the
non-zero vectors eiθ1ψ1 and eiθ2ψ2 represent the same pair of states, provided
that θ1, θ2 ∈ R. (Recall that complex numbers of absolute value 1, such as
eiθ1 and eiθ2 , are called phases or phase factors. Just to keep you on your
toes, sometimes θ1 and θ2 are called phases.) But their sum is

eiθ1ψ1 + eiθ2ψ2 = eiθ1(ψ1 + ei(θ2−θ1)ψ2).

The vector ψ1+ei(θ2−θ2)ψ2 will be non-zero, provided that ψ1 and ψ2 represent
two distinct states (as we assume from now on), which implies that ψ1 and
ψ2 determine two distinct one dimensional subspaces and so are linearly
independent. And the overall phase factor eiθ1 does not change the state
that ψ1 + ei(θ2−θ2)ψ2 represents. However, the relative phase factor ei(θ2−θ2)

does enter in determining the corresponding state. And since θ1 and θ2 are
arbitrary real numbers, the relative phase factor can be any complex number
of absolute value 1.

Exercise 9.4.1 Suppose that λ, μ ∈ C satisfy |λ| = |μ| = 1 and λ �= μ. Prove
that ψ1 + λψ2 and ψ1 + μψ2 do not represent the same state. (We are still
assuming that ψ1 and ψ2 are linearly independent.)

Note that we can also write eiθ1ψ1 + eiθ2ψ2 = eiθ2(ei(θ1−θ2)ψ1 + ψ2) whose
overall phase factor is eiθ2 . As the reader can check, ei(θ1−θ2)ψ1 + ψ2 and
ψ1 + ei(θ2−θ1)ψ2 represent the same state.
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Let’s now see how this relates to the probability densities ρ1(x) = |ψ1(x)|2
and ρ2(x) = |ψ2(x)|2, where ψ1 and ψ2 are two distinct normalized states.
Also, for a specific combination of ψθ := ψ1+eiθψ2 of ψ1 and ψ2 with relative
phase factor θ ∈ R we have that the associated probability density function
is proportional to

|ψθ|2 = |ψ1 + eiθψ2|2 =(ψ1 + eiθψ2)∗(ψ1 + eiθψ2)=(ψ∗
1 + e−iθψ∗

2)(ψ1 + eiθψ2)

= |ψ1|2 + |ψ2|2 + 2Re
(
eiθψ∗

1ψ2

)
= ρ1 + ρ2 + 2Re

(
eiθψ∗

1ψ2

)
. (9.4.1)

Recall that the real part of z ∈ C is defined by Re z := (z + z∗)/2. We
still need to divide (9.4.1) by the normalization factor ||ψθ||2 to obtain the
probability distribution associated to ψθ. Nonetheless, (9.4.1) indicates that
the relative phase factor θ can be measured modulo 2π, which has been done
in experiments. The last term in (9.4.1) can be negative or positive (or zero),
depending on the value of the suppressed spatial variable x. In spatial regions
where the last term is positive, we say that there is constructive interference.
And in spatial regions where the last term is negative, we say that there is
destructive interference. This demonstrates that the probability density of
the combination explicitly depends on the relative phase factor eiθ and is
not necessarily the weighted sum (ρ1 + ρ2)/2 of the individual probability
densities ρ1 and ρ2. The last term in (9.4.1) satisfies this estimate:

|2Re
(
eiθψ∗

1ψ2

)| ≤ 2|eiθψ∗
1ψ2| = 2|ψ∗

1 | |ψ2| ≤ |ψ∗
1 |2 + |ψ2|2 = ρ1 + ρ2.

where we used the inequality 2ab ≤ a2 + b2 for a, b ∈ R. Consequently,

0 ≤ |ψ1 + eiθψ2|2 ≤ 2(ρ1 + ρ2),

an upper and a lower bound which are independent from the relative phase
factor, which does appear in the normalization factor ||ψθ||2. This says that
the destructive interference can reduce the probability density all the way
down to zero. On the other hand the constructive interference can increase
the probability density up to the weighted sum of the probability densities,
(ρ1 + ρ2)/2. These results arise simply from the non-linear relation between
a state and its associated probability density function. These results do not
come from the so-called ‘wave nature’ of quantum theory nor ‘wave/particle
duality’, but rather from the facts that the Schrödinger equation is linear and
probability densities are real quantities calculated from complex quantities by
using a quite explicit non-linear formula. These mathematical considerations
help explain the two-slit experiment for those interested in following up on
that overly expounded topic.

These considerations defy the way we usually think about the role of
equations in physics. Let us be quite clear about this. The Schrödinger
equation gives solutions that completely describe a quantum system. But
changing that solution by multiplying it by a phase factor provides another
solution that also describes completely that quantum system. There is no
physical test that can distinguish between these two mathematical solutions;
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physically they are the same. But when we take two distinct (that is, linearly
independent) solutions, the linearity of the Schrödinger equation implies that
their sum is also a solution and so should have a physical meaning. But
by changing each summand by a physically insignificant phase factor, these
sums give a family of solutions that do depend on the relative phase, which
is physically significant since it can be and has been measured.

There is a way to specify physically what a state is, namely a state of
a physical system is the minimal amount of information needed to describe
completely that system. More information is not required; less information
is not adequate. This does not uniquely define the concept of a state, since
equivalent information can be used. However, it does specify what a state is.
In physics, the usual starting point for finding the states of a physical system
is a time dependent differential equation for which the Cauchy problem, as we
discussed earlier, has a unique solution. The Cauchy problem asks whether a
given differential equation with a given initial condition has a solution and, if
so, whether that solution is unique. This gets into a lot of technical questions
about what space of functions the initial condition is to lie in and what space
of functions the solution is to lie in. Even the meaning of solution can become
a technical problem! But however the technical dust settles, the elements of
the space of solutions are typically taken to be the states.

For quantum theory the time dependent (possibly partial) differential
equation is the Schrödinger equation

i�
∂ψ

∂t
= Hψ,

where H is a self-adjoint operator acting in a Hilbert space H. When all these
words are correctly defined, then the Cauchy problem for an initial condition
φ ∈ H and for all t ∈ R has the unique solution

ψ(t) = e−iHt/� φ (9.4.2)

in the Hilbert space H, where the unitary operators {Ut := e−iHt/� | t ∈ R}
form a unitary group, that is to say UsUt = Us+t for all s, t ∈ R and U0 = I.
(Parenthetically, we note ||φ|| = 1 in (9.4.2) implies ||ψ(t)|| = 1 for all t ∈ R,
since ψ(t) is the image of φ by a unitary operator. This is the well known
conservation of probability. This tells us that the Cauchy solution stays in
the sphere S(H) if it starts in S(H).)

This is as far as the story goes for the pure states of a quantum system.
But the physics has led us down a curious rabbit hole! We have learned
that the state space for the physical initial value problem is the non-linear
complex projective space CP(H) = S(H)/S

1. Moreover, the conservation of
probability is automatically built into the definition of CP(H). There is no
physics reason why the solution in CP(H) should come from a solution of a
Cauchy problem associated to a linear differential equation ‘upstairs’ on the
Hilbert space H nor why this solution should be given in terms of a group
of unitary operators. (The second fact is often called unitarity.) After all,
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the physically relevant states for the quantum system are the elements of
CP(H). However, the ‘overlying’ mathematical structure of a Hilbert space
and a linear differential equation is assumed to be necessary for developing
quantum theory, to the point that many a physicist gives this mathematical
‘over-pinning’ a role in the ‘intuition’ behind (or ‘above’?) quantum theory.

Again, my point is that the physically relevant dynamical system is the
study of a curve (also called a trajectory) in the state space CP(H). And
this curve, and nothing else, describes how the state of the quantum system
is changing in time. And the state of the system describes completely the
quantum system. There is nothing more–or less–to quantum physics than
that. So the fact that this trajectory comes from the solution of a linear
equation ‘upstairs’ in the Hilbert space H seems to be an unnecessary feature
of quantum theory. But that’s what we have.

9.5 The Spectrum (Optional)

The remaining sections of this chapter are optional. We have already said
that the spectrum of a self-adjoint operator consists of all of its eigenvalues
plus other numbers that are ‘almost’ eigenvalues. This half precise and half
vague description can serve you well. But for those who want more details,
here we will go into a few of those. So without further ado:

Definition 9.5.1 Let T ∈ L(H) be a bounded linear operator, where H is a
Hilbert space. We define the resolvent set of T to be

ρ(T ) := {λ ∈ C |A(λI − T ) = (λI − T )A for some A ∈ L(H)},
which can be described as the set of λ’s such that (λI − T )−1 exists in L(H).
Then the spectrum of T is defined as Spec(T ) := C \ ρ(T ).

Important facts that are Spec(T ) is a non-empty, closed, and bounded
subset of C for every T ∈ L(H), provided that H �= 0. Moreover, if T is
self-adjoint, then Spec(T ) ⊂ R.

It is not clear at all that Definition 9.5.1 has any relevance to quantum
theory or to anything else for that matter! Only as we apply this definition
in practice do we begin to understand its importance. The next exercise is
the first step in that process.

Exercise 9.5.1 Show that every eigenvalue of T is in the spectrum of T .

The next exercise exhibits some new aspects of this spectral theory.

Exercise 9.5.2 In the Hilbert space H = L2([0, 2]), define a linear operator
by Tf(x) := x3f(x) for all x ∈ [0, 2] and all f ∈ L2([0, 2]). Show that T is
a bounded linear operator with operator norm ||T || = 8 and Spec(T ) = [0, 8].
(Hint: First find the resolvent set of T .) Prove that T has no eigenvalues.
However, prove that any λ ∈ Spec(T ) is an approximate eigenvalue in the
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sense that there exists a sequence fn ∈ L2([0, 2]), where n ∈ N, such that
||fn|| = 1 for all n ∈ N and limn→∞ ||(T − λ)fn||H = 0. And finally, prove
that any λ ∈ ρ(T ) is not an approximate eigenvalue.

Exercise 9.5.3 Prove that any eigenvalue of a linear operator acting in a
Hilbert space is an approximate eigenvalue.

There is an important theorem due to H. Weyl which says that the spectrum
of a self-adjoint operator is exactly its set of approximate eigenvalues. This
extends Schrödinger’s insight that quantum theory is an eigenvalue problem.

Theorem 9.5.1 (Weyl’s Criterion) Suppose T is a self-adjoint operator
acting in the Hilbert space H and λ ∈ Spec (T ). Then there exists a sequence
of states ψn ∈ H, that is ||ψn|| = 1, such that limn→∞ ||(T − λ)ψn|| = 0.
Such a sequence is called a Weyl sequence of approximate eigenvectors of T .

This short section is much less than even the tip of an iceberg. The science
for identifying the spectrum of a given linear operator is a highly developed
and ongoing field in contemporary mathematics, especially for unbounded
operators which we will discuss in the next section. See [15] and [30] (and
their many references) for a quantum physics perspective on spectral theory.
The encyclopedic treatment in the classic [6] is for those who want to see
spectral theory in all of its mathematical detail.

9.6 Densely Defined Operators (Optional)

In this section we present some basic facts, again without proof, for this rather
technical topic. The idea is to get the reader familiar with some mathematics
behind a lot of quantum theory. The most important detail for the beginner
to be aware of is the difference between symmetric operators and self-adjoint
operators. And why that difference matters in quantum physics! A definite
mathematical reference for this topic with complete proofs is [26].

First, a subset D ⊂ H is said to be a dense subspace if it is closed under
the formation of linear combinations of elements of D and if the topological
closure of D (i.e., D plus all its limit points) is equal to H. If dimH is finite,
then the only dense subspace is H itself. But for dimH infinite there is a
multitude of distinct, dense subspaces which are proper (meaning not equal
to H). So the next definition is only non-trivial when dimH is infinite.

Definition 9.6.1 Suppose that H is a Hilbert space with D ⊂ H a dense
subspace. A mapping T : D → H is said to be a (linear) densely defined
operator if we have

T (λ1φ1 + λ2φ2) = λ1T (φ1) + λ2T (φ2)

for all λ1, λ2 ∈ C and all φ1, φ2 ∈ D. (Note that these conditions imply that
λ1φ1 + λ2φ2 ∈ D. So both sides of the previous equation make sense.)
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Since the dense subspace D of T is an essential part of this definition, we
often write Dom(T ) or D(T ) instead of D. One says D = Dom(T ) = D(T )
is the domain of T .

In particular we allow the possibility that there exists C > 0 such that
||Tφ|| ≤ C||φ|| holds for all φ ∈ Dom(T ). If so, we say that T is a bounded
operator. (This agrees with our previous definition of bounded operator in the
case when Dom(T ) = H.) If no such constant C exists, then we say that T
is an unbounded operator.

A special case is Dom(T ) = H. If so, we say that T is globally defined.

In our definition, not all densely defined operators are unbounded. For
example, just take any bounded operator defined on H and restrict it to any
dense subspace. The result will be a densely defined, bounded operator. In
many texts the only densely defined operators (in their definition) are the
unbounded ones. We do not follow that convention.

Here is another property that is related to that of restriction.

Definition 9.6.2 Suppose Tj : Dom(Tj) → H are densely defined operators
for j = 1, 2 such that Dom(T1) ⊂ Dom(T2) and T2 restricted to Dom(T1) is
equal to T1. Then we say that T2 is an extension of T1.

If we have Dom(T1) �= Dom(T2) here, then it follows that T1 �= T2. This
is because a necessary condition for mappings to be equal is that their
domains must be equal. Or to put it positively, if T1 = T2, then we have
both Dom(T1) = Dom(T2) and T1φ = T2φ for all φ ∈ Dom(T1) = Dom(T2).

The basic property of bounded, densely defined operators is given next.

Proposition 9.6.1 Let T : Dom(T ) → H be a bounded, densely defined
operator which satisfies ||Tφ|| ≤ C||φ|| for all φ ∈ Dom(T ). Then T has
a unique globally defined extension S which satisfies ||Sφ|| ≤ C||φ|| for all
φ ∈ H.

Because of this result, we often identify T with the unique extension S.
Technically, this is incorrect. But the reader can usually see what’s happening
and so no harm is done.

The fact that we are working in Hilbert space means that we have its
inner product at our disposal. This enters into the next definition.

Definition 9.6.3 Let T : Dom(T ) → H be a densely defined operator. We
define its adjoint operator, denoted T ∗ in the following two steps:

1. We first define

Dom(T ∗) :={φ ∈ H | ∃ξ ∈ H such that 〈φ, Tψ〉=〈ξ, ψ〉 ∀ψ ∈ Dom(T )}
Note that by the density of Dom(T ) one can quickly prove that this
element ξ is unique for a given φ ∈ Dom(T ∗). Also, ξ depends on φ.

2. For each φ ∈ Dom(T ∗), define T ∗φ := ξ, where ξ ∈ H is defined in the
previous part of this definition. (Therefore 〈φ, Tψ〉 = 〈T ∗φ, ψ〉 holds.)
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Exercise 9.6.1 Given φ ∈ Dom(T ∗) prove that ξ is unique as claimed.

Exercise 9.6.2 Prove that Dom(T ∗) is a linear subspace of H as well as that
T ∗ : Dom(T ∗) → H is a linear mapping.

The alert reader will have noticed that it has not been claimed that
Dom(T ∗) is dense in H. And, yes, there are examples where it is not dense.
However, in quantum theory we are interested mainly in certain types of
operators. Here is one such type.

Definition 9.6.4 Let T : Dom(T ) → H be a densely defined operator that
satisfies

〈φ, Tψ〉 = 〈Tφ, ψ〉
for all φ, ψ ∈ Dom(T ). Then we say that T is a symmetric operator.

By reading definitions carefully, we see that for a symmetric operator
we have that φ ∈ Dom(T ) implies that φ ∈ Dom(T ∗) (which is to say,
Dom(T ) ⊂ Dom(T ∗)) and that T ∗φ = Tφ for all φ ∈ Dom(T ).

In short, T ∗ is an extension of T if T is symmetric. (Conversely, T is
symmetric if T ∗ is an extension of T .) The inclusion Dom(T ) ⊂ Dom(T ∗)
together with the assumed density of Dom(T ) then implies that the larger
subspace Dom(T ∗) is also dense. So, the adjoint of a symmetric operator is
a densely defined operator.

An even more important type is operator is defined next.

Definition 9.6.5 Let T : Dom(T ) → H be a densely defined, symmetric
operator that satisfies Dom(T ) = Dom(T ∗) (and also T ∗φ = Tφ for all
φ ∈ Dom(T ) = Dom(T ∗) because it is symmetric). Then we say that T is a
self-adjoint operator.

The role of the domains is the critical factor here. There is a multitude of
symmetric operators with Dom(T ) ⊂ Dom(T ∗) (by definition), but yet with
Dom(T ) �= Dom(T ∗). The self-adjoint operators are therefore a very special
type of symmetric operator.

One amazing property of self-adjoint operators is that the spectral theory
applies to them. This means that they have a Borel functional calculus as
well as a spectral representation in terms of a uniquely determined projection
valued measure. While this is quite useful, another amazing property is that
every self-adjoint, densely defined Hamiltonian operator H has an associated
family of unitary operators exp(−itH/�) for t ∈ R, which gives the solution
ψt of the time dependent Schrödinger equation with initial condition φ as

ψt = exp(−itH/�)φ.

It turns out that the operators exp(−itH/�) are guaranteed to exist by the
Borel functional calculus, but the explicit calculation of them for a specific
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H can be quite a chore. These two properties of self-adjoint operators are
not enjoyed by those symmetric operators which are not self-adjoint.

All this theory–and more–is important in quantum theory. For now we
lay out the facts such as they are, and let the reader get used to dealing with
them. Complete expositions exist in many fine texts, such as [25].

9.7 Dirac Notation (Optional)

One can understand quantum theory without ever using Dirac notation, and
I have decided not to use it much in this book. I feel that it is outdated, but
that it hangs around for whatever reason. Think of it like Latin, once the
universal language of science. But Dirac notation is still found in a lot of the
literature and so merits an optional section devoted to it.

We suppose that H is a Hilbert space. The first idea is that every vector
ψ ∈ H is denoted as |ψ〉 and is called a ket. Similarly (almost dually) every
vector φ ∈ H determines a bounded linear functional (according to the Riesz
representation theorem 9.3.2), which is denoted as 〈φ| and is called a bra.
The bra 〈φ| maps the ket |ψ〉 to the complex number 〈φ, ψ〉, which is called
the bracket. This last sentence can be written as 〈φ||ψ〉 := 〈φ, ψ〉 or in words
as “bra + ket = bracket”.

It turns out that the opposite way of combining a bra and a ket is useful
(and meaningful!) as well. The notation is |ψ〉〈φ| and it is defined to be the
linear operator mapping H to itself given by its action on a ket |α〉 as

|ψ〉〈φ| |α〉 := 〈φ, α〉ψ.

The reader can begin to see why this notation is so easy to use. Here are
some exercises that re-enforce this remark.

Exercise 9.7.1 Prove that the composition of two of these operators satisfies
(|ψ〉〈φ|) ◦ (|ψ′〉〈φ′|) = 〈φ, ψ′〉 (|ψ〉〈φ′|)

for all ψ, φ, ψ′, φ′ ∈ H, where ◦ denotes the operation of composition. This
formula is usually written compactly as |ψ〉〈φ| |ψ′〉〈φ′| = 〈φ, ψ′〉 |ψ〉〈φ′|.
Exercise 9.7.2 Prove that for all ψ, φ ∈ H the linear operator |ψ〉〈φ| is
bounded and its operator norm is || |ψ〉〈φ| || = ||ψ|| ||φ||. In particular,
|ψ〉〈φ| = 0 if and only if either ψ = 0 or φ = 0.

Exercise 9.7.3 If |ψ〉〈φ| �= 0, prove Ran(|ψ〉〈φ|) = Cψ. In particular, the
range of this operator has dimension 1 and is said to be a rank 1 operator.

Exercise 9.7.4 The adjoint operator of |ψ〉〈φ| is (|ψ〉〈φ|)∗ = |φ〉〈ψ|.
Exercise 9.7.5 Let e ∈ H be a vector with ||e|| = 1. Prove P := |e〉〈e| is a
self-adjoint projection operator whose range is Ce, which has dimension 1.

Conversely, let P be a projection operator whose range has dimension 1.
Prove P := |e〉〈e| for any vector e in the range of P which satisfies ||e|| = 1.
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Exercise 9.7.6 Suppose that {ej | j ∈ J} is an orthonormal basis of a Hilbert
space H. Prove that we can write the identity operator I of H as

I =
∑

j∈J

|ej〉〈ej | (9.7.1)

in the sense that |ψ〉 =
∑

j∈J |ej〉〈ej ||ψ〉 holds for every ket |ψ〉 in H. Here
the multiplication of a ket by a complex number from the right means the
(usual) scalar multiplication of that ket by that complex number from the left.
In other words, old wine in new bottles.

One says that the formula (9.7.1) is a resolution of the identity.

Exercise 9.7.7 Suppose that T : H → H is a bounded linear operator acting
in the Hilbert space H. Suppose that T is diagonalizable, meaning that there
exists an orthonormal basis {ej | j ∈ J} of the Hilbert space and there exist
complex numbers {λj ∈ C | j ∈ J} such that Tej = λjej holds for all j ∈ J .
Here J is a countable set of indices. Prove that

T =
∑

j∈J

λj |ej〉〈ej | (9.7.2)

in the sense that the following holds for every ket |ψ〉 in H:

T |ψ〉 =
∑

j∈J

λj |ej〉〈ej ||ψ〉.

We also define 〈φ|T |ψ〉 := 〈φ, Tψ〉 = 〈T ∗φ, ψ〉 for φ, ψ ∈ H.
In physics texts the formula (9.7.2) is often used instead of the rigorously

correct spectral theorem in order to represent an arbitrary, densely defined
self-adjoint operator. While it is okay to think of such an operator as being
diagonalizable in some more general sense, it is not true that it always has a
representation as given in (9.7.2). However, some densely defined self-adjoint
operators (such as the harmonic oscillator Hamiltonian) can be represented
as in (9.7.2), in which case λj ∈ R, but any number of important physical
observables (such as the coordinates of position or momentum) can not be
so represented.

9.8 Notes

The quotation of Hilbert translates as: “There would be just one detail. What
is a Hilbert space?” It is anecdotal. It may be false, or it may be that he
said something else. The story is that one of Hilbert’s colleagues, J. von
Neumann (a junior colleague since Hilbert had no colleague senior to him),
was speaking in a seminar and deliberately used the phrase ‘Hilbert space’
or rather in German ‘Hilbertraum’. Knowing that Hilbert was a stickler for
clarity, this was a provocation to get the quoted question. The rest, as they
say, is history. Or maybe not.
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What is true is that Hilbert and collaborators developed an extensive
theory which in modern terms is known as the theory of bounded operators
in Hilbert spaces. This not only included what we now call spectral theory,
but also the word ‘spectrum’ (in German, of course) was introduced due to
a seemingly coincidental relation with the field of spectroscopy in physics.
With the advent of quantum theory J. von Neumann realized that a new
class of operators acting in the previously known Hilbert space (the densely
defined, self-adjoint, unbounded operators) was being implicitly used by the
physicists. He then developed much of the needed spectral theory, which
appeared rather promptly in his famous book on quantum mechanics [32].
And the ultimate irony is that the spectra of this mathematical theory are
related to the spectra measured in spectroscopy.

The study of quantum states in the optional Section 9.4 is the beginning of
a fascinating theory that includes entanglement and the relation of geometry
with quantum physics. A nice introduction to this field where physics and
mathematics are inseparable is [4].

The mathematics of quantum theory is the mathematics of Hilbert space.
But don’t be fooled! The physics of quantum theory is very much more
than the mathematics of Hilbert space. This is why so many mathematicians
(and others with a background only in mathematics) have so much trouble
learning quantum theory. The mathematics gets you a good way down the
path, but it is not enough to get you all the way to understanding what is
going on physically. And since quantum theory is based on a probabilistic
interpretation, it is no easy matter to understand it. You do not need a
knowledge of classical physics to only feel comfortable with classical thinking.
Old habits are hard to break. An analogy: For those who think English is a
form of Latin, you have to learn to like splitting infinitives.



Chapter 10

Interpreting ψ: Measurement

In science, novelty emerges only with difficulty.
Thomas Kuhn

The physical interpretation in Chapter 8 of the ‘wave’ function ψ is not
complete. We still need to clarify how ψ is related to experiments, that is,
to measurements. So we continue this topic. To see the basic idea clearly
without getting bogged down in technicalities, we present a simple, though
representative, example. Later on in Chapter 16 we will consider this idea in
its full generality.

10.1 Some Statements

We start with a linear operator T acting in some Hilbert space H. We suppose
that T has the special property that there exists a non-empty orthonormal
set φj ∈ H with j ∈ J , a finite or countably infinite index set, such that

Tφj = tj φj ,

where each tj ∈ R and the set {tj | j ∈ J} is closed in R (that is, it has no
limit points outside of {tj | j ∈ J} itself). To avoid trivial cases we assume
that dimH ≥ 2.

Moreover, we assume that every φ ∈ H can be written as

φ =
∑

j∈J

αjφj (10.1.1)

for unique numbers αj ∈ C. Thus {φj | j ∈ J} is an orthonormal basis of H.
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Exercise 10.1.1 Suppose that φ ∈ H is a state. Using the above expansion
(10.1.1) of φ, prove that

1.
∑

j |αj |2 = 1.

2. αj = 〈φj , φ〉.
3.

∑
j |〈φj , φ〉|2 = 1.

4. 0 ≤ |〈φj , φ〉|2 ≤ 1.

As we have seen, the harmonic oscillator Hamiltonian is such a linear
operator. In this more general case we suppose that T represents a physically
measurable quantity of some quantum system. Then its possible measured
values are given exactly by the closed set of real numbers {tj ∈ R | j ∈ J},
which is the set of eigenvalues of T . As a technical aside for those who know
what the following italicized words mean, T determines a unique densely
defined self-adjoint operator that acts in a dense subspace of H, and the
spectrum Spec (T ) of that operator is Spec (T ) = {tj | j ∈ J} ⊂ R.

One final assumption is that tj �= tk for j �= k. This means that each
eigenvalue has an associated eigenspace whose dimension is 1, that is,

dim {φ ∈ H |Tφ = tj φ} = 1 for each j ∈ J.

Putting Vj := {φ ∈ H |Tφ = tjφ} this means that Vj is a one-dimensional
space. Clearly, the one element set {φj} is a basis of Vj . This assumption is
expressed by saying that each eigenvalue tj has multiplicity one. Then the
unit eigenvector φj is a state associated to the eigenvalue tj . We now have:

Measurement Condition: Suppose H is a Hilbert space which corresponds
to a quantum system S. Suppose φ ∈ H is any state. If an experiment is
done on S when it is in the state φ in order to measure the physical quantity
associated with T, then the experimental value of that quantity will be tj with
probability |αj |2, where φ =

∑
j αjφj is the unique expansion as given above

in (10.1.1). It is convenient to write this statement in the notation of quantum
probability as follows:

P (T = tj |φ ) = |αj |2, (10.1.2)

which can be read as: “The probability that the observable T when measured
yields the value tj given that the system is in state φ is |αj |2.” (This may
remind you of a conditional probability, if you have seen such things.) This
is a probabilistic affirmation.

Moreover, given that the experimental value is tj , then αj �= 0 and the
state of the system becomes φj with no further information about the initial
state φ of the system. Note that this condition is deterministic. This second
affirmation is known as the collapse condition.

A more colloquial reading of equation (10.1.2) is: “The probability that
T is tj , given φ, is |αj |2”. Notice that the expression T = tj when expressed
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by itself simply means that T is the operator tjI. That is not what that
expression means in the above context.

The measurement condition, and especially the collapse condition, is
sometimes referred to as the observer effect, which is then often confused
with the Heisenberg uncertainty inequality. Other common expressions for
the collapse condition are quantum leap, quantum jump, and reduction of the
wave function.

Notice that the case when dimH = 1 is deterministic, since there is only
one eigenvalue (and so only one possible measurable value of the observable).
Also, the collapse condition in this case sends the initial (and only) state φ1

to the same state φ1.
Before coming to the controversy surrounding these conditions, we refer

back to Part 1 of Exercise 10.1.1, which allows us to construct a unique
discrete probability measure μφ on the subset of eigenvalues {tj | j ∈ J} of T
in R which satisfies μφ({tj}) = |αj |2 = |〈φj , φ〉|2 for every j ∈ J . Note that
μφ depends on the observable T as well as the state φ. We can extend μφ to
a probability measure on the whole real line R by putting it equal to zero on
the complement of {tj | j ∈ J}. Then the support of μφ, that is, the set on
which μφ ‘lives’, turns out to be {tj |αj �= 0} ⊂ Spec (T ). See Appendix A
for the definition of the support of a measure.

What is being said here is that the probability measure μφ is predicted by
quantum theory. As with any probability measure, μφ can have an average
or expected value, E(μφ) :=

∑
j |αj |2tj (also predicted by quantum theory if

the sum converges absolutely), but this number is not enough information to
determine μφ. This was known as early as 1932 by von Neumann. See [32].

The complex number 〈φj , φ〉 is called the probability amplitude of the state
φj given the initial state φ. Sometimes this is said more colloquially as: The
amplitude of finding φj given φ is 〈φj , φ〉.

Already we can see a difference between the sort of probability that arises
in quantum theory and that of probability theory a la Kolmogorov. (See
Chapter 16 for Kolmogorov’s theory.) In the former complex numbers play
an essential role while they do not in the latter.

This interpretation generalizes in a non-trivial way to the case of a
self-adjoint operator S acting in a Hilbert space. In that case for every state
there is a new type of probability measure on the real line R whose support is
a subset of the spectrum of S. We will come back to this during the discussion
of quantum probability in Chapter 16.

But the measurement condition, and specifically the collapse condition,
is controversial among physicists. Before elaborating on the controversy,
let’s note that these conditions are an essential part of the recent studies
of quantum information theory and, more especially, quantum computation
theory. Also all experiments on systems with spin are consistent with this
condition. In short, no experiment has ever falsified this condition while many
experiments are consistent with it. We will see this in greater detail after spin
is presented in Chapter 14. An unsettling aspect of the collapse condition is
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that the transition from the initial state before measurement to the final
state is not linear. This is clear, since the set of states, as we have seen in
Section 9.4, is not a vector space. But this flies in the face of the linearity
of the time evolution given by the Schrödinger equation. While this is not a
paradox, it is puzzling.

10.2 Some Controversies

So why the controversies? Both aspects of this interpretation are criticized.
The first is that it refers directly to measurements, which seems to refer only
to experiments (or perhaps just observations) made by humans. While all
theories must eventually pass the scrutiny of experimental situations, this
principle is not easily applied to the universe at large. How does it apply
to nuclear interactions deep inside of rocks on Mars? Can it explain events
that occurred billions of years before the creation of the solar system, such
as supernova explosions? Does any physicist seriously accept that quantum
phenomena can not exist without some interaction with a conscious observer?
Unfortunately, the answer to this last seemingly rhetorical question is: Yes.

Some attempts to modify this principle have been proposed. For example,
it could refer to all interactions rather than just to measurements. After
all measurements are a type of interaction. But usually a measurement is
thought of as a deliberate intent to measure a physical quantity associated
with a given self-adjoint operator. (Note the hidden conscious observer who
has the intent.) But the interactions in nature are not so clearly controlled or
intended. However, the Measurement Condition surely does apply to
measurements, whatever meaning it might have in other contexts. So it can
be checked with experiments. As far as I am aware, it has always been verified
in an experiment and never falsified. That is a fine record. Nonetheless, the
Measurement, and especially, the Collapse Condition remain a puzzlement.

The Measurement Condition is uncomfortable for those who have become
accustomed to deterministic theories of nature. This is understandable, since
this condition is not at all deterministic, but rather probabilistic. It says that
starting with an identical initial state and performing an identical experiment
repeatedly for an observable with two or more possible values in that initially
prepared state, one will not get one unique measured result (given a precise
enough measurement), but rather a variety of different results. Even spin
measurements for spin 1/2 states, which give only two different values, are
difficult to accept in a purely probabilistic way. One can be profoundly
tempted into believing that the initial conditions were not ‘really’ identical.
This leads one down the trail to the non-laughing place where the nature of
‘quantum reality’ is discussed ad nauseum. When we come back to spin, we
shall try to find a place of rational repose, though not a true laughing place
for considering this situation.

Another critique is that the collapse of the ‘wave’ function is not physical.
This refers mainly to Hilbert spaces like L2(R3). In such a context a state
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(or ‘wave’ function) has an interpretation in terms of the infinitely large
space R

3, which engulfs the Moon, the Solar System, and all the galaxies.
And the collapse implies an instantaneous change throughout this enormous
space to a new ‘wave’ function. What is the mechanism behind this? Well,
maybe that is not a good question. But it does leave one wondering. One
argument, which I am unable to support, says that the ‘wave’ function itself
is not physically observable. This argument is then pushed further by positing
that being a non-observable, the ‘wave’ function does not exist physically,
that it is merely a convenient mathematical construction. See Section 16.3
for my opinion that states are a special type of quantum event, which in
turn is a special type of observable. Also, recall that the idea of the physical,
rather than the merely mathematical, existence of electric and magnetic fields
was slow in being accepted by the scientific community in the 19th century.
I leave this for your further consideration. But this is a tough nut to crack.

As is quite usual, in this exposition the collapse condition is considered
to be one part of the measurement condition. But the collapse condition is
deterministic given the result of the probabilistic measurement condition.
Behind all of this is the deterministic time dependent Schrödinger equation.
This strange mixture of both deterministic and probabilistic aspects within
quantum theory might not be here to stay. But it seems to be here for now.

Since the measurement is a source for human knowledge, one can see how
those philosophers who study epistemology, the study of knowledge, have
gotten interested in quantum theory and so have made contributions to this
ongoing discussion. Let me remind the reader that what we call physics was
once commonly called natural philosophy. So we should not be surprised by,
nor be unwelcome to, this participation by experts in another academic field.

10.3 Simultaneous Eigenvectors,
Commuting Operators

The topic of this section is not typically discussed in the context of the
measurement condition. But I find that this is the correct logical place in
quantum theory for understanding this phenomenon which has no correlate
in classical physics. A basic, if often hidden, assumption in classical physics
is that any pair of observables can be simultaneously measured as well as
that these two measurements do not interfere with each other in any way.
In quantum theory this just isn’t so. Please note that time is playing a role
here, since the time order of the two measurements is crucial.

To understand this we start by considering two observables represented
by the self-adjoint operators A and B acting in some Hilbert space H. To
get to the basic idea we will consider a rather special case. First, we assume
that the two operators are defined in a common dense subspace V of H and
that V is all finite linear combinations of all the eigenvectors of A as well as
being all finite linear combinations of all the eigenvectors of B. Furthermore,
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we assume that each operator has only a discrete spectrum corresponding
to these eigenvectors. Putting this into mathematical notation we let φj be
the eigenstates of A with corresponding eigenvalues aj , and we let ψk be
the eigenstates of B with corresponding eigenvalues bk. Finally, we assume
that each eigenvalue for both A and B has multiplicity one, meaning that
Aφi = aiφi and Aφj = ajφj with ai = aj imply that φi = φj . (Recall this
quite different and general property: Aφi = aiφi and Aφj = ajφj with ai �= aj

imply that φi ⊥ φj .) A similar assumption is made for B. The eigenvectors,
or eigenstates, introduced here are time independent states.

Now, as Dirac often noted, the key property (at least for him) of quantum
theory was that observables need not commute. And that is exactly what
concerns us here. So we define the subspace of V where they do commute:

C := {ψ ∈ V |ABψ = BAψ}. (10.3.1)

Exercise 10.3.1 Prove that V is invariant under the actions of A and B
because of the above hypotheses. (To say that V is invariant under A simply
means that Aψ ∈ V whenever ψ ∈ V . And similarly for B.) Therefore, the
expressions ABψ and BAψ make sense in the definition (10.3.1) of C.

There are two extreme cases here. In the first case C = V , so that A and B
commute on the common domain V . The second extreme case is that C = 0,
which means that AB and BA are as different as they possibly could be on
V . Clearly, intermediate cases also exist, but again for the sake of simplicity
we will not discuss them. We will now consider how measurements work in
quantum theory in these two extreme cases.

Say that we are in the first case, so that AB = BA on all of V . Suppose we
start with a physical system in some state χ ∈ H. Let’s make a measurement
of A. The result has to be one of the real numbers aj , since there is no other
spectrum, and the system must then collapse into the eigenstate φj , since the
multiplicity of aj is 1. (Recall that Aφj = ajφj .) Next we see that

ABφj = BAφj = Bajφj = ajBφj .

If Bφj �= 0, this says that Bφj is an eigenvector of A with eigenvalue aj .
And since aj has multiplicity 1, that means that Bφj = λjφj , for some
λj ∈ C\{0}. On the other hand, Bφj = 0 implies Bφj = λjφj , where λj = 0.
Putting these last two sentences together we see that Bφj = λjφj holds, for
some λj ∈ C. But φj �= 0, since it is a state. Thus, φj is an eigenvector of
B with associated eigenvalue λj . However, we know the eigenvalues of B.
So, λj must be one of them, say λj = bk, with corresponding eigenstate ψk.
Consequently, ψk must be the same state as φj . (Of course, this means that
ψk = αφj for some norm 1 complex number α.)

The story so far for the case AB = BA: If we start with the system in an
arbitrary state and measure A, then the system collapses into some eigenstate
of A which turns out always to be an eigenstate of B as well.
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Now we continue with a measurement of B which will give the eigenvalue
bk always (that is, with probability 1) and the state collapses from being ψk

to being ψk, which is the state φj . So, the collapse is trivial in this case and
therefore resembles classical physics. If a measurement of A then follows, the
value aj will be found with probability 1 and again the collapse is trivial. So
the measurements, excluding the first one, give their results with probability 1
and do not change the state via the collapse. This case is that of commuting
operators and their common (or as we also say, simultaneous) eigenstates.
Actually, the fact is that the commuting operators A and B, as given in
this section, have the same set of eigenstates, but with different eigenvalues
in general. And this fact has nothing to do with time, so the terminology
‘simultaneous’ eigenstate may be misleading.

Exercise 10.3.2 Understand why A and B have simultaneous (or common)
eigenstates without appealing to measurements or time.

All of this so far should be reminiscent, except for the one non-trivial
collapse, of classical physics for those with some background in that subject.

As the reader must have guessed by now, the other extreme case is wildly
different. Recall that in this case C = 0. As in the first case we start with a
physical system in some state χ ∈ H and make a measurement of A. Just as
before the result has to be one of the real numbers aj and the system must
then collapse into the eigenstate φj . So far everything is the same. But next
we will make a measurement of B and things are quite different, since φj is
not an eigenstate of B. Why not? Well suppose it were, that is, Bφj = bφj

for some real number b. But then we would have

ABφj = Abφj = bAφj = bajφj = ajbφj = ajBφj = Bajφj = BAφj ,

which implies that 0 �= φj ∈ C. And that contradicts the hypothesis of this
case, namely that C = 0. So, as claimed, φj is not an eigenstate of B.

Now, as indicated above, we proceed to the next step, which is to measure
B given that the system is in the state φj . When we make this measurement
the value measured will be some bk and then the state will also collapse to
the corresponding eigenstate ψk. But since the starting state φj is not an
eigenstate of B, there are many (i.e., at least two) outcomes with non-zero
probability, say bk �= bl with corresponding eigenstates ψk and ψl and, most
importantly, with k �= l. We are face to face with the probabilistic aspect of
quantum theory. Given that the system is now in a state that ‘has’ the value
ak with probability 1 (very much like classical physics), we have that same
system in a state that ‘has’ at least two possible values for the observable
B. So we measure B and indeed get one of these values as well as collapsing
the system into the corresponding eigenstate. This collapse is a non-trivial
operation; it is not the identity map. Now a subsequent measurement of A
will give results that depend on which of these various states the system
is in after the measurement of B. And by a similar argument none of the



92 Measurement Interpretation of ψ

eigenstates of B is an eigenstate of A. So again various distinct values for A
are possible and the collapse of the eigenstate is non-trivial.

So it goes on and on with alternating measurements of A and B. And at
no time do we have the system in a common eigenstate of both A and B. At
no time do we have a system that has value aj for A with probability 1 and
at the same time has value bk for B with probability 1. As noted earlier this
can be understood directly as a property of the operators A and B by using
an argument that mentions neither measurements nor time. But anyway this
now shows that a simultaneous measurement of A and B can not be possible
in theory. And yes, I mean simultaneous in time. Because if this were possible
the arbitrary initial state would have to collapse into a common eigenstate
of A and B. But there is no common eigenstate in this case. But we warned!
Experiment always stands present ready to test theory. If an experiment can
be performed that actually does measure simultaneously (in time) both A
and B, then this aspect of quantum theory is wrong.

Please note that this property of quantum theory is often confused with
the Heisenberg uncertainty principle. What is being stated here is that, for
observables A and B for which do not commute in the strong sense that C = 0,
it is completely impossible to have a simultaneous measurement of both A and
B. A common ‘intuitive’ justification for the Heisenberg uncertainty principle
is that the lack of commutativity of A and B implies that they can not both be
simultaneously measured with arbitrary precision. What I am saying is that
they can not both be simultaneously measured in any way, shape or form;
forget about precision! We will discuss this in more detail in Section 16.10
and Section 18.2.

10.4 The Inner Product—Physics Viewpoint

The inner product in a Hilbert space seems to be mathematical–some would
even say geometrical–concept. But there is some physics associated to it.
First off, physics hints that the inner product 〈φ, ψ〉 of two states might have
a physical meaning. And it almost does!

But let’s back off and think about classical physics, where a (pure) state is
a point in a certain space P , called the phase space. You don’t need to know
much about classical physics, just that a point in P completely describes
a classical system and that two different points give completely different
descriptions of that system. If I consider a system in a particular state p1 ∈ P
and ask what is the probability that it is in the state p2 ∈ P , then there are
precisely two possible answers. If p2 = p1, then the probability requested is 1
or, as we sometimes say, 100%. If p2 �= p1, then the probability requested is 0
or equivalently 0%. This is so in classical physics because observations of a
system never change its state. (Or, more strictly speaking, the change can
be made as negligible as one wishes.) So you can now see why we don’t ask
this question in classical physics. The answer is never a probability strictly
between 0 and 1, that is to say, we never get a really interesting probability.
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The situation is rather different in quantum physics. If we are given a
quantum system in the state ψ, we can again ask what is the probability
that it is also in the state φ. If φ = ψ (or even if φ = λψ with |λ| = 1),
then we do have that this probability is 1. So far this is like the classical
case. But if ψ and φ are two unequal states (meaning that they are linearly
independent), then the requested probability is |〈φ, ψ〉|2. All of a sudden the
inner product enters into a formula that is experimentally verifiable. And we
are facing the counter-intuitive nature of quantum probabilities.

Let’s address first the experimental meaning of this probability statement.
We suppose that the quantum system is in the state ψ and that we perform
a measurement of an observable A which has φ as an eigenvector with the
eigenvalue a. Also, we suppose the multiplicity of the eigenvalue a is 1. In
other words, we have carefully chosen A so that it has these properties with
respect to the state φ. An example of this is given by taking A = |φ〉〈φ|, the
Dirac notation for the projection onto the subspace Cφ. As we will see in
Chapter 16, this choice for A is the quantum event that φ has occurred. So if
we measure a we know that the system collapses to the state φ. Also, if we
do not measure a, then the system collapses to a state orthogonal to φ, since
the multiplicity of a is 1. If we measure A and get the value a, we say that
the initial state ψ overlaps or transitions to the state φ. And we express this
by saying that the state ψ has some probability to be also in the state φ. This
may seem to be a sloppy way of expressing the results of the measurement
process just described, but it is common parlance.

Let’s address the issue of calculating this probability. By the Projection
Theorem we can decompose ψ as ψ = c1φ+c2χ, the sum of its projection onto
the subspace spanned by φ plus a vector c2χ in the orthogonal complement of
φ, such that χ ⊥ φ, ||χ||2 = 1 and |c1|2+|c2|2 = 1. It also follows immediately
that

〈φ, ψ〉 = 〈φ, c1φ〉 + 〈φ, c2χ〉 = c1〈φ, φ〉 + c2〈φ, χ〉 = c1,

since 〈φ, φ〉 = ||φ||2 = 1 and 〈φ, χ〉 = 0. It seems natural to expect that |c1|2
is the probability of having ψ transition to φ. In fact, some physicists take
this to be a fundamental rule of quantum physics, although we will see later
in Chapter 21 that it can also be understood as a consequence of a more
general axiom of quantum theory. In any case we do find that

|c1|2 = |〈φ, ψ〉|2,

which is called the transition probability for ψ to transition to φ. The inner
product 〈φ, ψ〉 is called the transition amplitude for the transition of ψ to φ.
This is the physics viewpoint of the Hilbert space inner product of states.

Exercise 10.4.1 Prove that the transition probability is invariant if each
state vector is multiplied by a phase factor, but that the transition amplitude
does change in general.
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10.5 Notes

All aspects of the topic of this chapter are controversial. Dissenting opinions
are numerous and are held by persons with a lot of knowledge of the matter.
The content of this chapter is my way of expressing what is more or less the
‘standard’ view. Take it with buckets of salt, if you like. The interested reader
is recommended to search the literature for other viewpoints.

One of my own worries about the measure and collapse condition is that
it is not consistent with Schrödinger’s razor, but rather adds something that
does not come from the basic partial differential equation of quantum theory.
More specifically, we end up with a theory that has two distinct ways of
describing time evolution: a deterministic way coming from the Schrödinger
equation and a probabilistic way coming from measurement (or interaction
or whatever). Of course, only the first, deterministic way is consistent with
Schrödinger’s razor. So you can see why Schrödinger himself never accepted
the second probabilistic way. As far as I am aware quantum theory is the
only theory in physics that has two ways for describing how things change
with time. And remember that understanding how things evolve in time is
the fundamental goal of physics.

One argument against the collapse condition is that the state (or ‘wave’
function) that is collapsing does not really exist, and so it makes no sense
to speak of its collapse. While this may well be a parody of the complete
argument, let me note that the question of what is real (and what is not) is
difficult to decide even in classical physics, where the ether supporting the
vibrations of electromagnetic waves was taken by some in the 19th century
to be a physical reality, though it is now considered to be non-existent. Is
that going to be the fate of the ‘wave’ function too? On the other hand,
a quantum state is essentially the same as a one-dimensional self-adjoint
projection, which itself ‘is’ a quantum observable (of a certain type known as
a quantum event.) So then one has to address the question whether quantum
observables, or even just quantum events, really exist. It’s quite a rabbit hole.

The role of measurement in quantum theory is complicated, certainly
much more so than in classical theory which therefore does not serve at all
as an aid for understanding the quantum theory. So far we have only seen
the tip of an iceberg; a detailed exposition of quantum measurement can be
found in the recent text [8].

I once had the good fortune to hear P. Dirac give a talk. And he did say on
that occasion that the characteristic property of quantum mechanics is that
the observables do not commute. I agree. But I would like to extend this a bit
further by adding that each pair of non-commuting observables should satisfy
a commutation relation that expresses the non-commutativity explicitly in
terms of Planck’s constant � and that, moreover, this commutation relation
in the semi-classical limit when � → 0 should say that the pair do commute.
This makes � a necessary part of the characteristic property of quantum
mechanics. After all, I think that a theory without � entering in an essential
way should not be considered a theory of quantum phenomena.



Chapter 11

The Hydrogen Atom

Water, water everywhere.
Samuel Taylor Coleridge

One of the most important considerations of physics, dating to ancient Greek
times, was whether the matter of everyday experience is infinitely divisible
into ever smaller parts with the same properties or, on the other hand, at
some point one would arrive at a piece of matter that is no longer divisible,
such an indivisible entity being named an atom. The well-established answer
is more complicated than this formulation would indicate, but let’s note that
as matter gets divided into ever smaller pieces one arrives at small structures
that correspond to each of the chemical elements in the Periodic Table. These
are called atoms, even though they are further divisible but not into other
atoms. And all the objects of our immediate world are combinations of these
atoms. It took over two millennia to settle this question. But now that we
know that atoms (at least in the modern sense of that word) do exist, the
remaining question is how do they exist! The answer to that question comes
from quantum theory. We start with the simplest atom, the first one in the
Periodic Table.

11.1 A Long and Winding Road

We return to the study of a particular physical system, the hydrogen atom.
This is a long and beautiful story that shows the importance of eigenvalue
problems in quantum theory. As will become clear shortly, this is the two body
problem of quantum theory. As such, it corresponds to the Kepler problem in
classical mechanics of understanding the motion of a planet in orbit around
a star. This was one of the first problems solved by quantum theory and so
was important in establishing the validity of that new theory.
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First, here is a bit of spectroscopy. Hydrogen gas, that is easily produced
in the laboratory using electrolysis of water or is readily available from a
gas supply company, is a molecule H2 consisting of two hydrogen atoms held
together by a chemical bond. This molecule can be divided in the laboratory
into two unattached hydrogen atoms, which can be studied experimentally.
In the 19th century an incredible amount of spectroscopy of visible light (and
electromagnetic energy beyond the red end of the visible band) was done. The
upshot is that every chemical in the gas phase had its unique spectrum for
absorption and emission of light. This spectrum is obtained by spreading out
the light into its component colors (at first by using prisms, later diffraction
gratings) and seeing what one gets. Because of the geometry of the prisms
and diffraction gratings, the observed spectrum typically consisted of parallel
lines, each of which has its own unique color or frequency. Typically, spectra
of emitted light show a discrete set of lines of different colors between which
there are gaps with no light at all. These are the emission lines.

On the other hand absorption spectra show that white light (i.e., light with
a full range of colors) when passed through a supposedly transparent gas, has
almost the same spectrum as the initial white light, except for certain lines of
light that have dimmed considerably, though they still show some light. These
are the absorption lines. The emission and absorption lines for a given gas are
typically at the same frequencies (or actually wave numbers to use the jargon
of spectroscopy, but never mind). However, the width of these lines (that is,
they are not actually perfect lines) as well as their intensities added more
data to be explained. For example, the notations S, P,D, F were introduced
to qualitatively describe these spectral lines. And the classical physics of the
19th century was not up to the task of providing an explanation for any of
this data.

Enough was known that the absorption lines of light from the Sun (and
eventually from other stars as well) could be interpreted as indicating the
presence of a variety of chemicals, mostly elements, in the photosphere of
the Sun. (As indicated earlier sunlight can also be used to measure the
temperature of the photosphere). However, there were some absorption lines
in sunlight which were unknown in spectroscopy. These were thought to
indicate the presence of a chemical in the Sun that was not known on Earth.
So this unknown chemical was named helium, which is a neologism based
on ancient Greek and means the sun metal. Subsequently, this chemical was
found on Earth, probably in the gas from natural gas wells. This turned out
to be the second element in the Periodic Table and is still called helium,
even though we now know it is a noble gas and not a metal. Moreover, it
is not so rare since it is the second most abundant element in the universe,
only exceeded by hydrogen. All of this shows the importance of the then new
science of spectroscopy.

Let’s get back to hydrogen atoms. A long and winding experimental road
led to the detection in an ordinary matter of the first structures smaller
than atoms, namely the electron (J.J. Thomson, 1897) and the nucleus



The Hydrogen Atom 97

(E. Rutherford, 1911). This was the birth of sub-atomic physics. The electrons
carry negative electric charge while the nuclei (plural of ‘nucleus’) carry
positive electric charge. In a macroscopic sample of matter, these opposite
charges cancel out (or very nearly cancel out) and so the electrical nature
of ordinary matter was an extremely non-trivial discovery. Next, a planetary
model of the hydrogen atom (N. Bohr, 1913) was proposed. It consisted of
a single negatively charged electron in an orbit around a positively charged
nucleus, which we nowadays know to typically be a single proton, even though
other nuclei are possible. By the way, Rutherford discovered the proton later
in 1917. For our present purposes the charges of the electron and the proton
will be taken as −1 and +1, respectively. Still, each is a measurable quantity
using the standard SI unit of charge, the coulomb, denoted C. In terms of the
basic SI units of the ampere and the second, the coulomb is an ampere-second.
The charge of an electron in these units is about −1.6 × 10−19 C.

Of course, nowadays we do not think in terms of orbits nor of other sorts of
trajectories of ‘wave/particles’. And they will not enter the following analysis
of the hydrogen atom. So what did Schrödinger know about the hydrogen
atom? First off, the masses of these states were known. The electron mass is
me ∼ .511 MeV/c2 and the proton mass is mp ∼ 938/c2 MeV/c2. Here c is
the speed of light and MeV is a mega-electron-volt, a unit of energy commonly
used in high energy physics. (The Einstein equation E = mc2 is used here to
convert units of energy into units of mass.) So, mp/me ∼ 1835, that is, the
proton mass is some 3 orders of magnitude larger than the electron mass. Due
to the electron mass being very much smaller than that of the first element
in the Periodic Table, it was recognized that the electron was a sub-atomic
particle. The proton is also usually described as being a sub-atomic particle,
even though it is exactly the same as most positively ionized hydrogen atoms
found in nature. (Perhaps it is worth pointing out parenthetically that the
nucleus of some hydrogen atoms is not a proton, but a rather more massive
nucleus due to the presence in it of one or two neutrons, a sub-atomic particle
with zero electric charge. These are the isotopes of hydrogen.)

So, the first assumption that we will make is that the proton is a point
source of an electric field centered on a given point in R

3. For convenience
we take that point to be the origin 0 ∈ R

3. The potential energy V (x) of the
electron in that electric field in our units is obtained from Coulomb’s law for
the force between electrically charged objects:

V (x) = − 1
||x|| =

−1
√

x2
1 + x2

2 + x2
3

.

This is the classical potential energy of the attractive force F between a
proton at the origin and an electron at the point x = (x1, x2, x3) ∈ R

3 \ {0},
since

F = −∇V (x) = −grad V (x) = − 1
||x||3 x
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is the classical Coulomb’s law, that is, an attractive force that points at the
proton (a central force) with magnitude (norm) inversely proportional to the
distance squared ||x||2, that is, an inverse square law.

According to the canonical quantization, the quantum Hamiltonian H for
the electron in the hydrogen atom is

H = − �
2

2me
Δ − 1

√
x2

1 + x2
2 + x2

3

. (11.1.1)

The eigenvalue problem is Hψ = Eψ, where the unknowns are E ∈ R and
a non-zero ψ ∈ L2(R3). Mathematically, it is not clear whether this problem
has any solution at all. If not, then the Schrödinger equation is useless!

But physically, we have the spectroscopic data which had already been
interpreted as implying that the hydrogen atom has discrete energy levels and
that the spectrum of the hydrogen atom was given by �ω = E2 − E1. Here
E1 < E2 are two of these energy levels and the transition of the hydrogen
atom from the level with energy E2 down to the level with E1 is accompanied
by the emission of a photon of angular frequency ω and hence, according to
Einstein’s photon hypothesis, with energy �ω.

Similarly, a hydrogen atom at the energy level E1 could be excited up to
energy level E2 via the absorption of a photon of angular frequency ω provided
that the angular frequency ω is ‘tuned’ so as to satisfy �ω = E2 − E1. So
only the light whose frequencies correspond to differences of energy levels are
absorbed by the atoms, while light of all other frequencies passes through the
gas without change.

So the idea is to see if the eigenvalues of the hydrogen atom Hamiltonian
are the same as the experimentally determined energy levels of the hydrogen
atom. You might already have guessed that this story has a happy ending,
namely that the eigenvalues give the measured energy levels almost exactly.
But not all stories have a Hollywood ending. Schrödinger himself had already
solved the eigenvalue problem for a more plausible candidate for the hydrogen
atom Hamiltonian by using Einstein’s special relativity theory as a guide.
That path led to what we now call the Klein-Gordon equation. And he found
that those eigenvalues did not correspond to the measured energy levels.
He then tried using a non-relativistic approach, which is what we will now
present since it does agree with the experiment.

11.2 The Role of Symmetry

But back to the Hollywood screenplay. The first thing to do with the
Hamiltonian H in (11.1.1) is to use its symmetry property. What is that?
Well, acting by rotations fixing the origin of R

3 leaves both the Laplacian
Δ and the potential energy invariant. This means that if the coordinates
y = (y1, y2, y3) are obtained from x = (x1, x2, x3) by a rotation 3 × 3 matrix
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R (that is, y = R x, see Chapter 13), then

y2
1 + y2

2 + y2
3 = x2

1 + x2
2 + x2

3,

∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
2

=
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
2

.

So H is also invariant under these rotations, since � and me are constants.
This indicates that we should change from the standard system of Cartesian
coordinates (x1, x2, x3) to spherical coordinates (r, θ, ϕ). These coordinate
systems are related by this transformation:

x1 = r sin θ cos ϕ

x2 = r sin θ sin ϕ (11.2.1)
x3 = r cos θ

Here r = +
(
x2

1 + x2
2 + x2

3

)1/2. So r ∈ [0,∞), i.e., r ≥ 0. The function
(x1, x2, x3) �→ r is C∞ on R

3 \{0}, i.e., it has partial derivatives of all orders.
Also, θ is the angle between the ray from the origin passing through the

north pole (0, 0, 1) on the unit sphere S
2 and the ray from the origin passing

through the vector (x1, x2, x3), which we assume is not the zero vector. (The
ray through 0 	= v ∈ R

3 is the set {sv | s ≥ 0}.) Also, we take 0 ≤ θ ≤ π with
θ = π/2 corresponding to the equator of S

2. Hence, −1 ≤ cos θ ≤ +1. The
function (x1, x2, x3) �→ θ := cos−1(x3/(x2

1 + x2
2 + x2

3)
1/2) is C∞ on R

3 \ Z,
where Z is the z-axis (also called the x3-axis),

Z := {(0, 0, z) | z ∈ R}. (11.2.2)

Finally, ϕ is the angle between a vector (x1, x2, x3) not on Z and the open
half-plane which has Z as its boundary and passes through the point (1, 0, 0).
We can think of the intersection of that half-plane HP with the unit sphere
as defining the Greenwich meridian of the spherical coordinates. We take
0 ≤ ϕ < 2π. The coordinate ϕ in defined on R

3 \ Z but is discontinuous on
HP , while ϕ is a C∞ function of the coordinates (x1, x2, x3) on R

3\(HP∪Z).
However, we do not wish to write down a formula now for ϕ in terms of
(x1, x2, x3). We will come back to this detail later.

Notice that the spherical coordinates for the surface of the Earth have
different intervals of definition for the two angles θ and ϕ which are called
latitude and longitude, respectively

Changing the potential energy to spherical coordinates is easy enough:
V = −1/r, which has a singularity at the origin where r = 0. But the
spherical coordinates also have a singularity at the origin.

Exercise 11.2.1 At the origin we have that the variable r is well defined,
namely r = 0. Understand why there is a singularity at the origin for the
spherical coordinates.
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The next thing to do is to write the Laplacian Δ in spherical coordinates.
And even though this is nothing other than an application of the chain rule
(in dimension 3, of course), that is quite a chore! Here’s the answer:

Δ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2
. (11.2.3)

Notice that the partial derivative ∂/∂r means the usual derivative taken with
respect to r while the other variables θ and ϕ are held constant. And mutatis
mutandi for the other partial derivatives in this formula. For example, in the
usual defining formula for the Laplacian, namely

Δ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

, (11.2.4)

the partial derivative ∂/∂x2 means the usual derivative taken with respect to
x2 while the other variables x1 and x3 are held constant. And so forth. So the
meaning of a partial derivative depends on all the variables, not just the one
that comes in the notation itself. This is a universal abuse of notation that
is found throughout the supposedly rigorous mathematical literature. I point
this out since beginning students can all too easily misinterpret the meaning
of a partial derivative in a given formula. It seems that only physicists, and
then only when doing thermodynamics, take the effort to include in the
notation of a partial derivative what are the variables being held constant.
Remark: You really should try to prove (11.2.3) in total detail, rather than
relying on a formula from a text or a handbook. I have found too many well
known books that get this formula wrong.

Exercise 11.2.2 Prove (11.2.3).

The formula (11.2.4) looks so much simpler than (11.2.3). For example,
(11.2.4) is defined in all of R

3, while (11.2.3) only makes sense in the dense
open subset R

3 \ Z of R
3, since Z is the set where either r = 0 or sin θ = 0.

Recall that Z is defined in (11.2.2). A rather curious fact is that the variable
ϕ is well defined and discontinuous on R

3 \ Z, even though the vector field
∂/∂ϕ is well defined and continuous on R

3 \Z. (If you don’t have vector field
in your scientific vocabulary, then replace that phrase for now with partial
derivative.) A technical point is that Z is a subset of measure zero in R

3.

Exercise 11.2.3 Find the subset of R
3 where ∂/∂r is well defined. Then do

the same for ∂/∂θ. Understand how ∂/∂ϕ is well defined on R
3 \Z and why

it is continuous. How do these results relate to the subset where (11.2.3) is
well defined?

Yet for our purposes (11.2.3) is much, much simpler than (11.2.4). How
could that be so? Well, we are going to use separation of variables using the
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variables r, θ, ϕ in order to study the eigenvalue equation Hψ = Eψ. So we
are thinking of ψ as a function of the spherical coordinates, that is ψ(r, θ, ϕ).
We therefore look for solutions of Hψ = Eψ of the form

ψ(r, θ, ϕ) = F (r)Y (θ, ϕ).

So, using (11.1.1) and (11.2.3), the eigenvalue equation Hψ = Eψ becomes

Y (θ, ϕ)
∂

∂r

(
r2 ∂

∂r

)
F (r) + F (r)

( 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

)
Y (θ, ϕ)

− 2me

�2
r2V (r)F (r)Y (θ, ϕ) = −2me

�2
r2E F (r)Y (θ, ϕ).

Next, we divide by F (r)Y (θ, ϕ) and re-arrange getting

1
Y (θ, ϕ)

( 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

)
Y (θ, ϕ) =

− 1
F (r)

∂

∂r

(
r2 ∂

∂r

)
F (r) +

2mer
2

�2
(V (r) − E).

The right side does not depend on θ, ϕ while the left side does not depend
on r. But the two sides are equal, so that each side does not depend on any of
the three variables r, θ, ϕ. This implies that both sides are the same constant.
So we see that there is a separation constant, say K ∈ C, such that

1
Y (θ, ϕ)

( 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

)
Y (θ, ϕ) = K (11.2.5)

and
− 1

F (r)
∂

∂r

(
r2 ∂

∂r

)
F (r) +

2me

�2
r2(V (r) − E) = K. (11.2.6)

We proceed to study these two equations, starting with the first.

11.3 A Geometrical Problem

Notice that (11.2.5) does not involve the energy E nor the potential V (r). So
it is an eigenvalue problem about the unit sphere in terms of its coordinates
θ and ϕ. This geometrical problem arose from the Schrödinger equation for
the hydrogen atom. But it is an independent problem for the unit sphere;
this problem arises also in the mathematical subject of harmonic analysis
without any reference to quantum physics at all. Here is equation (11.2.5)
again, but now looking a bit more like an eigenvalue equation:
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( 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

)
Y (θ, ϕ) = K Y (θ, ϕ) (11.3.1)

By the way, the differential operator of the left side of (11.3.1) can be shown to
be a symmetric, negative operator, thereby implying that K is a real number
and that K ≤ 0. We will come back to the exact values for K later.

Also, we did not use the explicit form of the potential energy V (r) to
arrive at (11.2.5) and (11.2.6), only the fact that it is a function of r alone.
We say that such a function V is a radial function. So this separation of
variables argument works for any radial potential. This symmetry property
alone gives rise to the geometrical eigenvalue problem (11.3.1). We will see
in Chapter 12 what this has to do with angular momentum.

Exercise 11.3.1 Show that the force field F = −∇V associated to any radial
potential V is a central force, that is, the direction of the vector F(x1, x2, x3)
points directly at or directly away from the origin (0, 0, 0) ∈ R

3.

And how are we going to solve (11.3.1)? Again, by separation of variables!
We write Y (θ, ϕ) = Q(θ)E(ϕ) and then substitute into (11.3.1) to get

E(ϕ)
( 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Q(θ) + Q(θ)

( 1
sin2 θ

∂2

∂ϕ2

)
E(ϕ) = K Q(θ)E(ϕ).

(Let me make a parenthetical apology for using the letter E for something
which is not an energy but, as we shall see, an exponential.) Next we divide
by Q(θ)E(ϕ), multiply by sin2 θ and re-arrange to arrive at

1
E(ϕ)

∂2

∂ϕ2
E(ϕ) = K sin2 θ − 1

Q(θ)

(
sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Q(θ).

The left side does not depend on θ, and the right side does not depend on ϕ.
So both sides are the same constant. We let M be the separation constant
such that

∂2

∂ϕ2
E(ϕ) = M E(ϕ) (11.3.2)

and therefore

(
sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Q(θ) + MQ(θ) = K (sin2 θ)Q(θ). (11.3.3)

Technical remark: The eigenfunction ψ(r, θ, ϕ) = F (r)Q(θ)E(ϕ) has to
be square integrable as a function on R

3, and this imposes square integrability
conditions on F (r), Q(θ) and E(ϕ), each being a function of one variable.
From the change of coordinates formula dx dy dz = J dr dθ dϕ for multiple
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Riemann (and Lebesgue) integrals, where J is the Jacobian, we get
∫ ∞

0

dr r2 |F (r)|2 < ∞,

∫ π

0

dθ sin θ |Q(θ)|2 < ∞,

∫ 2π

0

dϕ |E(ϕ)|2 < ∞,

since in this case the Jacobian is J = r2 sin θ. (This fact may be difficult for
you to see now. However, we will come back to it in Exercise 12.2.2.) These
three conditions can also be written as:

F ∈ L2((0,∞), r2 dr), Q ∈ L2((0, π), sin θ dθ), E ∈ L2((0, 2π), dϕ).

Since we are now working on a purely mathematical problem which is
independent from the original physics context, the separation constants K
and M can not be guessed by using ‘physical intuition’. But mathematics
comes to the rescue! Since the original eigenvalue problem is (H − E)ψ = 0
and H − E is an elliptic differential operator on R

3 \ {(0, 0, 0)}, a powerful
theorem from partial differential equation (PDE) theory applies. This is
known as the elliptic regularity theorem. It implies that the solution ψ must
be C∞ on R

3 \ {(0, 0, 0)}.
But this forces E(ϕ) to be C∞ as well. In short, it is necessary that E(ϕ) is

defined on [0, 2π] and satisfy the periodic boundary conditions E(0) = E(2π)
and E′(0) = E′(2π). But, by an integration by parts argument, the operator
∂2/∂ϕ2 is a symmetric operator when defined on the dense domain of C∞

functions in L2([0, 2π]) that satisfy these periodic boundary conditions. This
implies that M is a real number. Moreover, ∂2/∂ϕ2 ≤ 0, that is, it is a
negative operator. Hence, M ≤ 0.

Exercise 11.3.2 Prove that ∂2/∂ϕ2 is a symmetric, negative operator on the
dense domain defined above.

So, we define m := +
√

(−M) ≥ 0. (Warning: This m is not a mass.)
By elementary calculus, for m > 0 the general solution of (11.3.2) is then
E(ϕ) = aeimϕ + be−imϕ for complex constants a and b. (We will consider
the other case m = 0 in a moment.) We next apply the periodic boundary
conditions, using the above formula for E(ϕ) and

E′(ϕ) = iameimϕ − ibme−imϕ.

Therefore, the periodic boundary conditions give

a + b = ae2πim + be−2πim,

iam − ibm = iame2πim − ibme−2πim.
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We then divide the second equation by im 	= 0 giving the pair of equations

a + b = ae2πim + be−2πim,

a − b = ae2πim − be−2πim.

Adding and subtracting these two equation then yields

2a = 2ae2πim and 2b = 2be−2πim. (11.3.4)

Now the choice of integration constants a = b = 0 gives us the zero solution
E(ϕ) ≡ 0, implying ψ(r, θ, ϕ) ≡ 0 which has been excluded for lacking a
physical interpretation. But if either a 	= 0 or b 	= 0, then at least one of
these last two equations (11.3.4) tells us that e2πim = 1. Then by using a
standard identity, this means the real number m > 0 satisfies

cos(2πm) + i sin(2πm) = 1.

This is satisfied if and only if m > 0 is an integer, in which case we have
two linearly independent solutions of the eigenvalue problem, namely the
eigenfunctions eimϕ and e−imϕ, each having the eigenvalue −m2 < 0. Also,
each of them is C∞ on R

3 \ Z. In short, {eimϕ |m ∈ Z \ {0}} is an infinite
family of linearly independent eigenfunctions.

We now return to the case m = 0. In this case the general solution of the
differential equation (11.3.2) is

E(ϕ) = a + bϕ

for a, b ∈ C. The boundary condition E(0) = E(2π) says that a = a + 2πb,
which implies that b = 0. Moreover E(ϕ) = a solves the differential equation,
since M = −m2 = 0. And in this case eimϕ = e0 = 1, which is not only a
solution but also a C∞ function. So the complete solution of the eigenvalue
problem (11.3.2) with C∞ eigenfunctions is that the eigenfunctions are given
(up to a non-zero multiplicative factor) by the infinite family

{Em(ϕ) := eimϕ |m ∈ Z} (11.3.5)

and the corresponding eigenvalue M in (11.3.2) is −m2. So we have

∂2

∂ϕ2
Em(ϕ) = −m2Em(ϕ). (11.3.6)

While a physics text will arrive at the same ‘answer’ for this eigenvalue
problem, often the derivation is not as detailed as that given here. But this
extra mathematical care to detail is important, since we do not want to find
just some of the solutions of (11.3.2) but rather all of them. Why? Because
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each valid solution tells us something about the physics of the situation.
Therefore this is, or should be, a textbook example of the interdependence
of mathematics and physics.

The reader may have already noticed that the family of functions (11.3.5)
plays a central role in Fourier analysis. The next exercise considers this.

Exercise 11.3.3 Prove that (11.3.5) is a family of orthogonal functions in
L2[0, 2π]. Find the normalization factor for each of those functions so that
we obtain an orthonormal set.
Remark: A fundamental result in Fourier analysis is that this orthonormal
set is actually an orthonormal basis of L2[0, 2π].

Now we go back to (11.3.3) and put M = −m2 with m ∈ Z to get

(
sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Q(θ) − m2Q(θ) = K (sin2 θ)Q(θ). (11.3.7)

So for each m ∈ Z we have an eigenvalue problem whose unknowns are
the separation constant K and the function Q(θ), where 0 ≤ θ ≤ π. Note
that (11.3.7) is a second order, linear ordinary differential equation with
variable coefficients. Since the coefficient of the highest order derivative (i.e.,
the second derivative) is sin2 θ, this differential equation is singular at the
values of θ where sin2 θ = 0, that is, for θ = 0 and θ = π. So we restrict
ourselves to solving (11.3.7) on the domain R

3 \ Z, where θ is a well defined
variable and 0 < θ < π. Again by the elliptic regularity theorem, the solution
Q(θ) will be C∞ in θ ∈ (0, π). But we only want those solutions that give a
solution Q ∈ L2((0, π), sin θ dθ).

Solving (11.3.7) is a dicey business, and we will not do that in total detail.
However, we will re-write it by changing variables to get a form that is more
frequently used in the literature. So, we let t = cos θ for θ ∈ (0, π). Hence
t ∈ (−1,+1). Then

∂

∂θ
=

∂t

∂θ

∂

∂t
= (− sin θ)

∂

∂t
.

which implies that

sin θ
∂

∂θ
= (− sin2 θ)

∂

∂t
= (t2 − 1)

∂

∂t
.

We now apply this change of variable to (11.3.7) and write P (t) = Q(cos−1 t)
to get

(t2 − 1)
∂

∂t

((
t2 − 1

) ∂

∂t
P (t)

)
− m2P (t) = K(1 − t2)P (t). (11.3.8)

We are using the standard branch cos−1 : (−1,+1) → (0, π), which is C∞.
So Q being C∞ on (0, π) implies that P is C∞ on (−1,+1) by the chain rule.
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Moreover, the condition Q ∈ L2((0, π), sin θ dθ) under the change of variables
t = cos θ becomes P ∈ L2((−1, 1), dt).

Finally, let’s divide (11.3.8) by 1 − t2 to obtain an eigenvalue equation

∂

∂t

(
(
1 − t2

) ∂

∂t
P (t)

)
− m2

1 − t2
P (t) = K P (t).

Recall that 1− t2 	= 0 for t ∈ (−1,+1). This is a second order linear ordinary
differential operator with variable coefficients. Using the standard notation
for functions of one variable, we can also write this eigenvalue equation as

(1 − t2)P ′′(t) − 2tP ′(t) − m2

1 − t2
P (t) = K P (t). (11.3.9)

There are still more techniques which one can now apply here. It seems
that A.-M. Legendre did just that in the very productive 19th century. Or one
can turn to the handbooks to see this is a well known differential equation. It
seems that Schrödinger depended a lot on H. Weyl for help with differential
equations. The material in the classic [9] by R. Courant and D. Hilbert
was apparently also rather useful. We will follow that strategy here, and let
the interested reader consult the mathematical literature on Sturm-Liouville
equations in general, and this equation in particular, for the justification of
what we are about to assert about (11.3.9) in the next paragraph.

The left side of (11.3.9) defines a self-adjoint operator (on an appropriate
domain) in L2(−1,+1) whose spectrum is given by

{−l(l + 1) | l ∈ N, l ≥ |m|}.

This tells us the allowed values of K in (11.3.9). Each of these eigenvalues
has multiplicity 1 and a corresponding eigenfunction is given for t ∈ (−1,+1)
and |m| ≤ l by the associated Legendre function

Pm
l (t) := (−1)m(1 − t2)m/2 dm

dtm
(
Pl(t)

)
,

where Pl(t) is the Legendre polynomial of degree l that itself is defined for
t ∈ (−1,+1) and l ∈ N by

Pl(t) :=
1

l! 2l

dl

dtl
(t2 − 1)l.

One finds other normalization conventions in the literature for the Legendre
polynomials and the associated Legendre functions. The reader should be
aware that Schrödinger’s razor has been applied here, since we are discarding
all solutions of (11.3.9) that are not in the Hilbert space L2(−1, 1).

Therefore, the eigenvalue problem (11.3.1) for the function Y (θ, ϕ) of the
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angular variables is solved by the eigenfunctions

Yl,m(θ, ϕ) = eimϕ Pm
l (cos θ)

for all pairs of integers −l ≤ m ≤ l with the associated eigenvalue K being
−l(l + 1) for every integer l ≥ 0. Putting this into (11.3.7) we get

1
sin2 θ

[(
sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
−m2

]
Yl,m(θ, ϕ) = −l(l+1)Yl,m(θ, ϕ) (11.3.10)

Of course, l is a quantum number associated to this geometric, as well as
physical, problem. One inelegant name for this is the azimuthal quantum
number. We will eventually give it a better name: the angular momentum
quantum number.

The functions Yl,m : S2 → C on the unit sphere S2 are usually multiplied
by some normalization constant (depending on l and m) and are then called
the spherical harmonics, fundamental objects in harmonic analysis.

The integer m is called the magnetic quantum number. In the next section
when we come to the radial problem, we will see immediately that m does
not enter into that problem, although l does. Thus, the energy eigenvalues E
do not depend on m. So how do we know about m experimentally? Well, as
its name suggests, when a hydrogen atom is placed in a magnetic field the
degenerate levels associated with an energy E are split into distinct energy
levels (the Zeeman effect), and we use m to label these levels. This also
happens for other quantum systems that interact with magnetic fields. From
the theoretical viewpoint this amounts to changing the Hamiltonian of the
system and using perturbation theory to learn how the energy levels change.
This is the topic of the amazingly well written text [17] by T. Kato.

11.4 The Radial Problem

Next we attack the eigenvalue equation (11.2.6) for the radial function F (r).
To do this we will use the explicit formula V (r) = −1/r for the Coulomb
potential energy. Recall that we have identified the separation constant as
K = −l(l + 1) for l ∈ N in the angular part of the problem. So we obtain

− ∂

∂r

(
r2 ∂

∂r

)
F (r) +

2me

�2
r2

(
− 1

r
− E

)
F (r) = −l(l + 1)F (r). (11.4.1)

The equation (11.4.1) contains all the physics of this problem: the mass of
the electron me, Planck’s constant �, the energy E of the hydrogen atom,
and the potential energy. Note that the electric charges of the nucleus and
the electron are included in the constant −1 in the potential energy.

The solution of (11.4.1) must combine with the spherical harmonic Ylm to
give a solution of Hψ = Eψ in L2(R3), where ψ(r, θ, ϕ) = F (r)Ylm(θ, ϕ). As
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noted earlier F (r) must satisfy F ∈ L2(0,∞, r2 dr). This condition, which
is a consequence of Schrödinger’s razor, excludes many solutions of (11.4.1)
and will impose some condition on the energy E, as we shall see. Recall that
(11.4.1) is a linear ordinary differential equation of second order and so has
two linearly independent solutions for every energy E.

Expanding formula (11.4.1) in units with me = 1 and � = 1 then yields

r2F ′′(r) + 2rF ′(r) + 2(r + Er2)F (r) − l(l + 1)F (r) = 0. (11.4.2)

Recall that the last two equations come from the original eigenvalue equation
Hψ = Eψ, where E is the eigenvalue. In particular, that means that we have
to solve for all admissible values of E. Of course, (11.4.2) is also an eigenvalue
equation with eigenvalue E, if we re-arrange the terms and divide by 2r2 > 0.
So we have two unknowns: E and the eigenfunction F (r).

By just looking at equation (11.4.2), we expect E to depend non-trivially
on the integer l ≥ 0, though the magnetic quantum number m has totally
disappeared from this part of the theory. The particular formula for the
potential energy V (r) = −1/r gives us a problem that we can solve explicitly.
For general radial potentials V (r) that is not the case. Another unexpected
consequence is that the energy eigenvalue E does not depend on l. This rather
curious property of the Coulomb potential energy will emerge later.

Now we are going to play with (11.4.2) in a non-rigorous, intuitive way to
see if we can understand it better. We are going to speculate that F (r) = rα

is a solution. Then, as the reader can check, the left side of (11.4.2) gives us

−α(α + 1)rα − 2(rα+1 + Erα+2)

while the right side gives −l(l+1)rα. This clearly is not a solution! However,
it does show that near r = 0 it is approximately correct if we take α = l,
since the terms proportional to rl+1 and to rl+2 go to zero faster than the
terms proportional to rl as r → 0. So we expect, though we do not know,
that the solution of (11.4.1) looks like rl as r → 0. This sort of statement is
said to be about the asymptotic behavior of the solution as r → 0.

What can we say about the asymptotic behavior of the solution of (11.4.2)
as r → ∞? Well, again we will deal in intuition. We assume (hope!) that F (r)
and its derivatives go to zero very rapidly as r → ∞, so that the only terms
in (11.4.1) that matter for very large r are those proportional to r2, since this
is the highest power of r that we see in that equation. Dropping the ‘lower
order terms’ and dividing by r2, we assert that as r → ∞ the dominant
terms in (11.4.2) give us F ′′(r) + 2EF (r) = 0. We want the solution of this
to be square integrable near r = +∞, so this forces E < 0 with two linearly
independent solutions

F (r) = e+
√−2E r and F (r) = e−

√−2E r.
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But only the second of these functions is square integrable near r = +∞. So
we hope that the asymptotic behavior of the solution of (11.4.1) as r → ∞
is e−λ r, where E < 0 and λ :=

√−2E > 0.
We really do not know if any of this helps. And so it goes when doing

research; one looks for clues which sometimes help. But not always. Anyway,
we use these ideas to re-write the solution as

F (r) = rle−λ rG(r). (11.4.3)

Rigorously speaking, this is merely a definition of a new function G(r), of
course. This changes the problem from that of finding F (r) to that of finding
G(r). The condition on G(r) is that F (r) as given in (11.4.3) must be in
L2((0,∞), r2 dr). When we have solved this problem we will see that G(r)
is typically an unbounded function. But that will not matter provided that
the decaying exponential factor in (11.4.3) is enough to guarantee that F (r)
is in L2((0,∞), r2 dr).

This new problem is not exactly equivalent to the original one, since
we have imposed the condition E < 0 on the eigenvalue of the original
problem Hψ = Eψ. This restriction on the energy can be understood both
physically and mathematically. Physically, it means we have limited ourselves
to look only for the bound states of the hydrogen atom, though there are also
scattering states with positive energy. Mathematically, it means we are not
considering the continuous spectrum [0,∞) of the hydrogen atom but only
its point spectrum in (−∞, 0).

Now we have to find the differential equation that G(r) satisfies. To do
this we first compute derivatives:

F ′(r) =
(
lrl−1G(r) − λrlG(r) + rlG′(r)

)
e−λ r

F ′′(r) = −λ
(
lrl−1G(r) − λrlG(r) + rlG′(r)

)
e−λ r

+
(
l(l − 1)rl−2G(r) + lrl−1G′(r) − λlrl−1G(r)

− λrlG′(r) + lrl−1G′(r) + rlG′′(r)
)
e−λ r.

Combining terms we find that

eλ rF ′′(r) =
(
l(l − 1)rl−2 − 2λlrl−1 + λ2rl

)
G(r)

+
(
− 2λrl + 2lrl−1

)
G′(r) + rlG′′(r).
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Going back to (11.4.2) and substituting in these formulas we obtain

rl+2G′′(r) +
(
− 2λrl+2 + 2lrl+1

)
G′(r)

+
(
l(l − 1)rl − 2λlrl+1 + λ2rl+2

)
G(r)

+
(
2lrlG(r) − 2λrl+1G(r) + 2rl+1G′(r)

)

+
(
2(Er2 + r)rl − l(l + 1)rl

)
G(r) = 0.

The three terms that are scalar multiples of rl G(r) cancel. So we can divide
out by rl+1 without introducing singularities. There remain three terms with
G′(r) and four terms with G(r). Here is what we now have:

rG′′(r) + (−2λr + 2l + 2)G′(r) + (−2λl + λ2r − 2λ + 2Er + 2)G(r) = 0.

Since λ2 = −2E, the two terms proportional to r in the coefficient of G(r)
cancel, giving

rG′′(r) + (−2λr + 2l + 2)G′(r) + (−2λl − 2λ + 2)G(r) = 0. (11.4.4)

This is a type of second order linear ordinary differential equation which
was studied in the 19th century by E. Laguerre. We now rely on several facts
about the solutions of this equation. First, we define the Laguerre polynomials
by the Rodrigues formula

Lj(x) := ex dj

dxj
(xje−x)

for all integers j ≥ 0 and x ∈ R. Clearly, Lj(x) is a polynomial of degree j.
Next, we define the associated Laguerre polynomials by

Lk
j (x) :=

dk

dxk

(
Lj(x)

)

for all integers j, k ≥ 0 and x ∈ R. Clearly, for k ≤ j this is a polynomial of
degree j − k. Also, it is non-zero if and only if k ≤ j. Then the associated
Laguerre differential equation

xy′′ + (k + 1 − x)y′ + (j − k)y = 0

has y = Lk
j (x) as a non-zero solution for integers 0 ≤ k ≤ j.

It follows immediately that G(x) = Lk
j (ax) satisfies

xG′′(x) + (k + 1 − ax)G′(x) + a(j − k)G(x) = 0.

Consequently, G(x) will satisfy (11.4.4) provided that a = 2λ, k = 2l +1 and

a(j − k) = −2λl − 2λ + 2.
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These three equations imply that j = l + 1/λ as the reader can check.
Now we appeal to the mathematical literature (but without proof here)

for this critical fact about the associated Laguerre differential equation: The
only solutions of (11.4.4) that give a non-zero eigenfunction in L2(R3) for the
original problem Hψ = Eψ are the associated Laguerre polynomials. This
is proved by expanding G(x) in a power series and doing a lot of analysis.
One consequence is that the degree d of the polynomial G(x) = Lk

j (2λx) is
d = j − k ≥ 0.

Another amazing consequence is that j− l = 1/λ must be a both positive
(since λ > 0) and an integer (since j and l are integers). So we introduce
the notation n := j − l = 1/λ ≥ 1. Recalling that λ =

√−2E > 0, we
immediately get this formula for the energy E, which is the eigenvalue in the
original problem of the hydrogen atom:

E = − 1
2n2

=: En,

where n ≥ 1 is an integer. We also have that λ = 1/n and j = l + n.
The moral of this long story is that the eigenvalues of the hydrogen atom

form a discrete sequence of strictly negative numbers which have a unique
accumulation point at 0 ∈ R. We say that n is the principal quantum number
for the eigenfunctions ψ satisfying Hψ = Enψ. The relation of n with the
angular quantum number l ≥ 0 is 2l + 1 = k ≤ j = l + n, which is equivalent
to l ≤ n − 1.

Putting this all together we see that the eigenfunctions for the hydrogen
atom are given by

ψnlm(r, θ, ϕ) := rle−r/n L2l+1
l+n (2r/n)Pm

l (cos θ) eimϕ

for integers n, l, m satisfying n ≥ 1, 0 ≤ l ≤ n − 1 and −l ≤ m ≤ +l.
They satisfy Hψnlm = Enψnlm. (Notice that L2l+1

l+n is a polynomial of degree
n−l−1. However, be aware that other notations are used in the literature for
this polynomial.) These are non-zero functions, but they are not normalized,
that is, they do not have norm 1 in the Hilbert space L2(R3). In applications
one would multiply these functions by a positive constant in order to get
norm 1 elements in the Hilbert space, namely, states of the hydrogen atom.
But there are scattering states in the Hilbert space that are orthogonal to
all of these eigenfunctions, a point that we leave to the reader’s further
consideration. However, we do have the next result.

Exercise 11.4.1 Prove that the family ψnlm with integers l,m, n as given
above is orthogonal.

Given the constraints on the the three quantum numbers n, l,m we can
count how many eigenfunctions there are for each fixed value of energy En.
For each fixed value of l ≥ 0 the quantum number m has 2l + 1 allowed



112 The Hydrogen Atom

integer values in the interval [−l,+l]. So the total number of eigenfunctions
having energy En is

n−1∑

l=0

(2l + 1) = n2,

a standard formula that can be proved by induction on n ≥ 1. Since these
eigenfunctions are orthogonal, they span a subspace of dimension n2. One
says that the degeneracy or multiplicity of the energy level En is n2.

The case n = 1 has special interest, since that gives the lowest (negative)
energy of all the values of En. Also, the degeneracy is n2 = 1, that is, the
state is unique up to a scalar multiple. Moreover, in this case l = m = 0 and
the corresponding (normalized) eigenfunction Φ is called the ground state
and is given by Φ(r, θ, ϕ) = c ψ100(r, θ, ϕ) = c e−r for some normalization
constant c > 0. It follows that the ground state is a strictly positive function.
As expected from elliptic regularity, it is a C∞ function on R

3 \ {0}.
It is important to note how Scrödinger’s razor has worked in this problem.

At no point did we impose an ad hoc condition in order to get the quantum
numbers l,m, n that define the eigenfunction. Nor did we use anything except
the condition that the solution must be square integrable in order to conclude
that the bound states have energies that lie in a discrete subset of the real
line. By finding the solutions of the Schrödinger equation that are in L2(R3)
we have automatically found all the so-called ‘quantum numbers’.

The units we have used were convenient up to now, but to compare with
experiment we have to introduce the standard values in physical units of
Planck’s constant �, the mass of the electron me and the electric charge e
of the electron, three constants of nature known from experiments quite
independent from the atom of hydrogen. We then find for n ≥ 1 that

En = −Ry

n2
,

where Ry > 0 is the Rydberg energy and is given by Ry = mee
4/2�

2. (We
are using Gaussian units here for the electric charge.) By using the measured
values of �, me and e, one can evaluate the predicted value of Ry ∼ 13.6 eV,
where eV is an electron-volt, a unit of energy that is not the basic energy
unit, the joule, of the SI. The electron-volt is the amount of energy gained by
an electron when it is accelerated through an electrical potential difference
of one volt and with no other forces acting on the electron.

The dimension-less variable r in our previous analysis becomes r/a0 in
physical units, where a0 is the Bohr radius defined by

a0 :=
�

2

mee2
.

Again, this formula is in Gaussian units. The approximate value, using
independently measured values of �, me and e, is a0 = 5.29×10−11 meters or
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a0 = 0.529 Å, where Å is the called the Ångström, a common unit of length
in atomic physics, (1 Å = 10−10 meters). Thus the exponential factor in the
ground state of the hydrogen atom becomes e−r/a0 . This says roughly that the
‘size’ of the hydrogen atom is a0. Other atoms have comparable sizes. While
atoms seem incredibly small compared to sizes of objects in our everyday lives,
a0 is amazingly larger than the Planck distance of ∼ 1.6 × 10−35 meters. So
the unsolved problem is to explain why atoms are so very large.

Notice that despite the original expectation, the predicted energy levels
do not depend on l. This is a very special property of the Coulomb potential
energy, and not a general property of radial potentials. The discrete spectrum
{−Ry/n2 |n ≥ 1} given by this quantum theory agrees quite well with the
experimental values of the energy levels of the hydrogen atom. To date all
discrepancies between this quantum theory and experiment can be explained
using a version of quantum theory that incorporates the theory of special
relativity. The Schrödinger equation is consistent with the symmetries of
classical Newtonian mechanics (embodied in the Galilean group), while the
group of symmetries of special relativity is the Poincaré group.

11.5 Spherical Coordinates (Optional)

This section concerns subtle details of the spherical coordinate system. This
is not directed to those who have a good geometrical notion of how these
coordinates work on and near the surface of (the approximately spherical)
Earth. Rather it is directed at those with some background in differential
geometry and how coordinate systems work in that context. The point is that
spherical coordinates, as used in physics, are not quite what one is studying
in differential geometry. But, almost. So, heads up, mathematicians! The
physicists have got this right, even if they do not spell it out in the detail
you might like. We shall now present this material in that detail.

Using our conventions, the three vector fields ∂/∂r, ∂/∂θ, and ∂/∂ϕ of
the spherical coordinate system correspond to three well known physical
directions near the Earth’s surface. And a complete set of directions always
gives directional derivatives, namely, hold all variables constant for all the
directions except one and then vary the remaining variable (in the remaining
direction) to get a partial derivative in that remaining direction. So what are
these directions for the Earth? First, ∂/∂r is ‘up’. Second, ∂/∂θ is ‘south’.
And finally, ∂/∂ϕ is ‘east’. The coordinate r is used near the Earth’s surface,
for example for the positions of airplanes. However, r is that case is usually
measured with respect to mean sea level. But that does not change the
meaning of ∂/∂r. In fact, thinking mathematically, ∂/∂r is well defined on
R

3 \ {0}. And r = +(x2
1 + x2

2 + x2
3)

1/2 is a C∞ function of the Euclidean
coordinates (x1, x2, x3) on the domain R

3 \ {0}.

Exercise 11.5.1 Prove that the three directions up, south, east in that order
form a right handed basis at each point for which all three directions are defined.
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Hint: Let u, s and e represent the unit vectors in these three directions,
respectively. Then the assertion of this exercise is equivalent to u × s = e.

The coordinate θ is also well defined on R
3 \ {0}. Here is a way to think

of θ geometrically. The set where θ is a constant in the interval [0, π] is a
cone of rays (without vertex) emitting from the origin such that all of these
rays have the same angle with respect of the ray (0, 0, z) with z > 0, i.e., the
positive z-axis. When θ = π/2, this cone is actually the x1, x2-plane (minus
the origin). The x1, x2-plane itself is usually called the equatorial plane. This
particular cone for θ = π/2 is not a singularity of the spherical coordinate
system. However, the cones for θ = 0 and θ = π reduce to a single ray
(the positive and negative z-axis, respectively), and these are singularities.
Mathematically, what is going on is that the change of ‘coordinates’

θ = cos−1

(
x3

+(x2
1 + x2

2 + x2
3)1/2

)
, (11.5.1)

using the principal branch of cos−1, is a well defined continuous function
R

3 \ {0} → [0, π], but it is not differentiable on the z-axis, that is to say,
for x1 = x2 = 0. So, even though the ‘coordinate’ θ is well defined on this
domain R

3\{0}, it is not a C∞ coordinate as required in differential geometry.
However, θ : R

3 \ Z → (0, π) as defined in (11.5.1) is a C∞ function. Notice
that the direction ∂/∂θ (south) on the Earth is not well defined at the poles.
At the North Pole all directions are south, while at South Pole there is no
direction south. Nonetheless, the function R

3 \ {0} → [−1,+1] given by

(x1, x2, x3) �→ x3

+(x2
1 + x2

2 + x2
3)1/2

= cos θ

is C∞, being the quotient of C∞ functions with a non-zero denominator.
In this last formula the non-smooth ‘coordinate’ θ lies in the closed interval
[0, π]. We say that the function cos removes the singularity in the variable θ.

Exercise 11.5.2 Prove that the function sin θ is also C∞ on R
3 \ {0}.

The coordinate ϕ also requires very careful consideration. The perfectly
correct formula tan ϕ = x2/x1 has multiple built-in difficulties. First, it does
not make sense on the plane x1 = 0. Second, it only defines ϕ implicitly and
to get an explicit formula for ϕ in terms of the Euclidean coordinates is not so
easy, since no branch of tan−1 will do the job. The expression tan−1(x2/x1)
only equals ϕ in an open half-space, no matter which branch of tan−1 one
chooses. To see that this is so, just consider the two distinct points (x1, x2, x3)
and (−x1,−x2, x3) for x1 	= 0. Nonetheless, the geometrical definition of ϕ
gives a well-defined function ϕ : R

3 \ Z → [0, 2π), which is discontinuous
along the half-plane where ϕ = 0, the Greenwich meridian plane G. However,
ϕ : R

3 \ G → (0, 2π) is a C∞ function. Here, G, the closure of G, includes
the z-axis. Proving that ϕ is C∞ is a bit tricky, since it is not clear how to
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write one formula for ϕ as a function of (x1, x2, x3) on this domain. Hint:
We do not need one formula. Various formulas on open subsets that agree on
overlaps is sufficient.

To see what is happening geometrically, let’s fix some r > 0 and some
θ ∈ (0, π). This gives us the intersection of a cone with vertex at the origin
and the sphere of radius r. So this is a circle. Such a circle on the Earth is
known as a circle of constant latitude. We have excluded θ = 0 and θ = π for
which values this circle degenerates to a point, namely, one of the poles. The
coordinate ϕ locates the points on this circle but is not a globally defined
continuous coordinate (let alone C∞), while the directional derivative ∂/∂ϕ
(east) is perfectly well defined at every point on that circle.

It is well known that a circle has no global coordinate system (in the
sense of differential geometry), although it does have discontinuous global
coordinates. In our case, ϕ is such a discontinuous coordinate. But the 2π
periodic function eiϕ is C∞ on R

3 \ Z as are its real and imaginary parts,
cos ϕ and sinϕ. One says that these functions remove the singularity of the
variable ϕ. Also the vector field ∂/∂ϕ extends uniquely to a continuous, and
even C∞, vector field on the unit circle in the (x1, x2) plane as well as on
R

3 \Z. This is proved using at least two coordinate systems for the circle or
for the spherical coordinates on R

3 \ Z.
Using the definition of coordinate system from differential geometry, the

spherical coordinates form a chart κ defined on the open subset R
3 \ G of

R
3, given by κ : R

3 \ G → (0,∞) × (0, π) × (0, 2π), which sends the point
(x1, x2, x3) ∈ R

3 \G to κ(x1, x2, x3) = (r, θ, ϕ). We already have formulas for
r and θ that exhibit them as C∞ functions of (x1, x2, x3) ∈ R

3 \ G. As we
commented earlier, this is the ‘tricky bit’:

Exercise 11.5.3 Prove that ϕ is a C∞ function of (x1, x2, x3) ∈ R
3 \ G.

But what is the domain of the definition of the spherical coordinates as
used in physics? That depends on what you want to do! The main point of
this section is that this can be a tricky business, but if one shuts one’s eyes
and does what comes ‘naturally’, then things could be okay. But a better
policy is to keep one’s eyes open.

When studying the hydrogen atom, we have a potential that is singular
only at the origin, while the spherical coordinates introduce singularities all
along the z-axis Z. But at the end of the day, elliptic regularity tells us that
the solutions of the time independent Schrödinger equation for the hydrogen
atom must be C∞ on R

3 \ {0}. So, even though we initially work on R
3 \ Z

or on R
3 \ G, eventually we must extend our solutions to C∞ functions on

R
3 \ {0}. This is the principle, an idea originally due to Schrödinger, that an

equation tells us what its solutions are. As you already know, I have dubbed
this idea Schrödinger’s razor. This idea is very appealing for mathematicians,
but seems to have been overlooked by some physicists.
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11.6 Two-body Problems (Optional)

The two-body problem of quantum theory is usually called the hydrogen
atom, while the two-body problem of Newtonian gravitation is called the
Kepler problem. In both cases one can reformulate the problem as a one-body
problem for the less massive object moving in a potential energy field generated
by the more massive object. But why don’t we study this as a one-body
problem for the more massive object moving in the potential energy field
generated by the less massive object? What is good for the goose is good for
the gander, and all that. But, no! Either way we are making an approximation,
but one way the approximation is very, very good while the other way it is
wildly bad.

In both cases we have to start with R
6 as the configuration space: three

spatial variables for each of the two bodies. (There are some comments
on configuration spaces in the Notes for this Chapter.) Let’s denote these
variables by x = (x1, x2, x3) for the body with the bigger mass M and by
y = (y1, y2, y3) for the body with the smaller mass m. For the quantum case
the appropriate Schrödinger operator acting in L2(R6) is

Hatom = − �
2

2M
Δx − �

2

2m
Δy − 1

||x − y|| .

This is the total kinetic energy operator plus the potential energy operator.
While the variables x and y enter symmetrically in the potential energy,
they do not have the same ‘weight’ in the kinetic energy terms. One way
to think about this is to let M → +∞ and see that the first term goes to
zero (in some sense which is not clearly specified). But this is not such a
good idea, because we are also interested in other two-body problems. One
such is the positron-electron ‘atom’. This is described by the above atomic
Hamiltonian, but now with M = m = the common mass of the positron and
the electron. (The positron is the anti-particle of the electron. It turns out
that every particle has an associated anti-particle with the same mass.) The
analogous gravitational situation prevails in a binary star system (that is,
two stars rotating around each other) with stars of equal mass.

In both the classical and the quantum cases we make a change of variables
to the center of mass coordinates. These are defined by

Xcm :=
1

M + m
(Mx + my), Xrel := x − y.

This change of variables allows us to write the original problem in terms of
two uncoupled Schrödinger operators. For the variables Xcm the Schrödinger
operator acting in L2(R3) is

−
(

1
M + m

)
ΔXcm

, (11.6.1)
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which is the Hamiltonian for a free massive ‘particle’ with mass M +m. Here
free means that the ‘particle’ is subject to zero potential energy. This is called
a one-body problem, even though there is no ‘body’ here with mass M + m,
because of the mathematical form of the Schrödinger operator (11.6.1), that
is, it acts on functions whose domain is R

3.
Next, for the variables Xrel the Schrödinger operator acting in L2(R3) is

− �
2

2mred
ΔXrel

− 1
||Xrel|| ,

where the reduced mass mred is defined implicitly by the formula

1
mred

=
1
M

+
1
m

. (11.6.2)

So the Schrödinger operator in the relative coordinates Xrel is the one–body
Schrödinger operator for a state with reduced mass mred subject to the
potential energy field of an attractive central Coulomb force. Hence, in all
our calculations for the hydrogen atom, we should replace the electron mass
with mred. Moreover when M >> m, as is the case of the proton mass in
comparison with the electron mass, we can approximate (11.6.2) by

1
mred

∼ 1
m

.

This says that mred ∼ m, that is, the reduced mass is equal to the smaller
mass in very good approximation. Clearly, the reduced mass is not well
approximated by the larger mass. For the two-body positron-electron system
we have that mred = (1/2)me, where me is the electron mass, which is equal
to the positron mass. The energies of the bound states of the positron-electron
system, known as positronium, have been measured experimentally and agree
quite well with this theory. We will discuss known discrepancies between
experiment and this theory in the Notes. Of course, the experiment wins in
all cases.

11.7 A Moral or Two

There is a moral or two to the long story told in this chapter. And one
has to do with the discipline and perseverance of the scientific researcher.
Schrödinger knew that publishing an abstract partial differential equation by
itself would not be sufficient to justify a new quantum theory. He needed
to show that it could explain significant experimental results. This gave
him more than enough motivation to solve the highly non-trivial eigenvalue
problem for the hydrogen atom. So when one sees that the only obstacle to
getting an important result is a tedious calculation, then one must roll up
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one’s sleeves and do that calculation. But doing long calculations just for the
sake of demonstrating one’s virtuosity is not worth much esteem. At least,
that is my opinion of what one moral of this story is.

But even the long and winding road of the calculations of this chapter
still is an incomplete rendition of the strict mathematical development of
the theory of the hydrogen atom. Believe it or not, there have been gaps
in our presentation. Just to cite one such gap, we never proved that there
are no positive eigenvalues of the hydrogen Hamiltonian. The curious reader
can find a fully rigorous mathematical treatment of the hydrogen atom in
Teschl’s book [30] for example, but only after more than 200 pages of highly
technical mathematical details. My point of view is that those details would
not be worth the effort to learn without the fantastic payoff of a thorough
understanding of something as fundamental in physics as the hydrogen atom.
So another moral to this story is that to get a truly complete and rigorous
mathematical description of even a rather simple quantum system is no easy
matter at all, but that the physics behind it motivates the effort to achieve
that. But on the other hand the presentation in this chapter gives a rather
good idea of what is going on.

There is also a moral about the technique of separation of variables, which
replaced one partial differential equation in three spatial variables with three
ordinary differential equations (ODE). The point is that the study of ODE
is more than a mathematical exercise; it helps us understand the physics of
what happens in three-dimensional space. And as noticed previously, this
technique works well for any radial potential whatsoever. So this motivates
the study of a wide class of ODE on the half-line [0,∞).

11.8 Notes

Since R
3 models well (at least locally) the space we inhabit, it seems more

or less reasonable that the Hilbert space L2(R3) should enter in quantum
theory. Since quantum theory was developed by physicists all of whom knew
classical mechanics, it was natural for them to also think of R

3 in classical
mechanical terms, namely as the configuration space for a single point mass.
When interest arose in studying quantum systems with n ≥ 2 particles for
which the classical mechanical configuration space is R

3n, it was not clear
whether the Hilbert space for the quantum theory should still be L2(R3) or
rather L2(R3n). Opinion was divided! Of course, this is part of the mystery
of first quantization of choosing ‘correctly’ the Hilbert space as well as the
self-adjoint operators acting in it. We now know that L2(R3n) is the ‘correct’
Hilbert space because it gives us results that agree with experiment. But I
have tried to avoid justifying such choices by appealing to classical mechanics,
since when all is said and done quantum theory should stand on its own legs.

The hydrogen atom and other two particle states have been a testing
ground for quantum theory. Heisenberg found the spectrum for the negative
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energy states using his matrix mechanics in 1925. Schrödinger did the same
using his version of quantum theory in 1926. So both theories passed a key test
successfully. The degenerate levels were split with external fields (electric or
magnetic) and the corresponding perturbation theory was able to explain them
also in terms of quantum theory. Effects were detected and explained with
relativistic corrections to the non-relativistic theory we have presented. A
grandson of Charles Darwin was involved with that! The quantum field theory
known as QED (quantum electrodynamics) has explained hyperfine splittings
in the hydrogen spectrum. Other two particle systems such as proton and
negative muon, positron and electron, anti-proton and positron have been
studied experimentally. And to date quantum theory in general and QED in
particular hold true.



Chapter 12

Angular Momentum

The miracle of the appropriateness of
the language of mathematics for the
formulation of the laws of physics is

a wonderful gift which we neither
understand nor deserve.

Eugene Wigner

The symmetry property of the hydrogen atom or of any quantum system
with a radial potential is related to the mathematics of angular momentum,
as we shall see.

12.1 Basics

There are various quantities from classical mechanics that we have yet to
quantize, that is, give them their corresponding quantum theory. So far we
have only considered linear momentum, which we simply called momentum.
Now we wish to consider angular momentum. In classical mechanics the
definition of the angular momentum of a point particle with mass m > 0 is

L := x × p,

where x = (x1, x2, x3) ∈ R
3 is the particle’s position and p = (p1, p2, p3) ∈ R

3

is its (linear) momentum. Here p = mv, where v is the velocity vector of the
particle. Also × denotes the usual cross product (or vector product) of vectors
in R

3. Then using the definition of the cross product, L = (L1, L2, L3) is
given by

L1 = x2p3 − x3p2, L2 = x3p1 − x1p3, L3 = x1p2 − x2p1. (12.1.1)
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Exercise 12.1.1 Verify the formulas in (12.1.1). Look up the definition of
cross product, if needed.

Each Lj in (12.1.1) is a function of (x1, x2, x3, p1, p2, p3) ∈ R
6, the phase space

of classical mechanics. Now the product of any two such functions does not
depend on their order, that is, the multiplication of functions is commutative.
(By the way, real-valued functions defined on the phase space are known as
observables in classical mechanics.) In particular, in classical mechanics, all
the x’s commute with all the p’s, since multiplication in R is commutative.
But that is not so in quantum theory where the x’s and p’s are operators and
satisfy the canonical commutation relations (5.1.2), (5.1.3), and (5.1.4).

Remark: In these relations and the subsequent material the domain of
definition of the operators will not be specified. One can use either a vector
space of functions for which all expressions are defined or a vector subspace of
the appropriate Hilbert space of (equivalence classes of) functions for which,
again, all expressions are defined.

Exercise 12.1.2 Compute the dimensions and units of angular momentum
in the SI. Compare this with the dimensions of Planck’s constant �.

By (5.1.4) pj xk = xk pj for j �= k in quantum theory, and so the canonical
quantization is unambiguous and gives these angular momentum operators:

L1 =
�

i

(
x2

∂

∂x3
− x3

∂

∂x2

)
,

L2 =
�

i

(
x3

∂

∂x1
− x1

∂

∂x3

)
,

L3 =
�

i

(
x1

∂

∂x2
− x2

∂

∂x1

)
. (12.1.2)

These are first order partial differential operators. We do not use notation
to distinguish between the classical and quantum expressions for angular
momentum, since from now on we will only consider the quantum version.

Exercise 12.1.3 Verify that L1, L2, and L3 are symmetric operators by a
formal argument (or, if these words make sense to you, on some appropriate
dense vector subspace of L2(R3), such as C∞

0 (R3), the space of all
complex-valued C∞ functions of compact support).

Exercise 12.1.4 Verify the commutation relations for the operators of the
angular momentum:

[L1, L2] = i�L3, [L2, L3] = i�L1, [L3, L1] = i�L2.

This implies that no two of these operators correspond to simultaneously
measurable observables.
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Exercise 12.1.5 Let A,B,C be linear operators acting on a Hilbert space.
Prove that

[A,B C] = [A,B]C + B [A,C].

Compare this with the Liebniz rule in calculus.

Exercise 12.1.6 Define

L2 := L2
1 + L2

2 + L2
3.

Beware: L2 is defined as one thing, namely, a certain second order partial
differential operator. It is not defined as the square of something else. The
notation L2 is universally used, and so I would be doing you, my kind reader,
a disservice if I were to change it.

Prove these commutation relations:

[L2, L1] = 0, [L2, L2] = 0, [L2, L3] = 0.

Physically, this means that L2 and any one (but not two) of the Lj’s are
simultaneously measurable.

We call L2 the total angular momentum. We say that L2 is a Casimir operator
because it has the property of commuting with all algebraic combinations
(sums and products in any order) of L1, L2, L3.

Exercise 12.1.7 Prove the last statement. Hint: Use Exercise 12.1.5.

12.2 Spherical Symmetry

While all this is fine and well, it might be worthwhile to write these three
operators in spherical coordinates, which were introduced in (11.2.1). Why?
Because, if we have a function ψ(r, θ, ϕ) and we apply to it the first order
differential operator L1, the chain rule gives

(L1ψ)(r, θ, ϕ) =
∂ψ

∂r
L1r +

∂ψ

∂θ
L1θ +

∂ψ

∂ϕ
L1ϕ.

Let’s focus on the coefficient of ∂ψ/∂r. For this we have

L1r =
�

i

(
x2

∂r

∂x3
− x3

∂r

∂x2

)
=

�

i

(
x2

x3

r
− x3

x2

r

)
= 0.

Here we have used the following exercise.

Exercise 12.2.1 Prove for j = 1, 2, 3, and 0 < r = (x2
1 + x2

2 + x2
3)

1/2 that

∂r

∂xj
=

xj

r
.
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Thus we have seen that L1ψ only depends on the two angular partial
derivatives of ψ. By similar arguments we see that L2ψ and L3ψ also depend
on the two angular partial derivatives. This gives some hint that spherical
coordinates are a good thing for studying this topic. And this is a hint that
angular momentum is important for the hydrogen atom.

Let’s start with the change of coordinates at the infinitesimal level. Using
(11.2.1), the chain rule gives us

∂

∂r
=

∂x1

∂r

∂

∂x1
+

∂x2

∂r

∂

∂x2
+

∂x3

∂r

∂

∂x3

= sin θ cos ϕ
∂

∂x1
+ sin θ sin ϕ

∂

∂x2
+ cos θ

∂

∂x3
.

Continuing with the partial with respect to θ we have

∂

∂θ
=

∂x1

∂θ

∂

∂x1
+

∂x2

∂θ

∂

∂x2
+

∂x3

∂θ

∂

∂x3

= r cos θ cos ϕ
∂

∂x1
+ r cos θ sin ϕ

∂

∂x2
− r sin θ

∂

∂x3
.

Finally, for ϕ we see that

∂

∂ϕ
=

∂x1

∂ϕ

∂

∂x1
+

∂x2

∂ϕ

∂

∂x2
+

∂x3

∂ϕ

∂

∂x3

= −r sin θ sin ϕ
∂

∂x1
+ r sin θ cos ϕ

∂

∂x2
.

These three formulas for the partial derivatives with respect to the three
spherical coordinates are true, but employ a ‘mixed’ notation. What I mean
by this is that the expressions on the right sides of these equations have
coefficients written in spherical coordinates while the partial derivatives are
with respect to the Cartesian coordinates. So in this sense we are mixing
the notations from two different coordinate systems in one expression. This
is perfectly acceptable. However, eventually we want expressions entirely
written in just one coordinate system.

We next write these three equations as one matrix equation
⎛
⎝

∂/∂r
∂/∂θ
∂/∂ϕ

⎞
⎠ =

⎛
⎝

sin θ cos ϕ sin θ sinϕ cos θ
r cos θ cos ϕ r cos θ sin ϕ −r sin θ
−r sin θ sinϕ r sin θ cos ϕ 0

⎞
⎠

⎛
⎝

∂/∂x1

∂/∂x2

∂/∂x3

⎞
⎠ .

Let M denote the 3 × 3 matrix in this formula.

Exercise 12.2.2 Prove that det M = r2 sin θ, where det is the determinant
of a matrix.

So detM �= 0 on the complement of the z-axis Z, that is, on R
3 \ Z, where

Z := {(0, 0, z) | z ∈ R}. On that set, we have that the inverse of the matrix
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M is given by

M−1 =
1

r2 sin θ

⎛
⎝

r2 sin2 θ cos ϕ r cos θ sin θ cos ϕ −r sin ϕ
r2 sin2 θ sin ϕ r cos θ sin θ sin ϕ r cos ϕ
r2 cos θ sin θ −r sin2 θ 0

⎞
⎠ .

Exercise 12.2.3 Verify this formula for M−1. Hint: Cramer’s rule if you
know it. Otherwise, verify by matrix multiplication that M−1M = I.

So, we obtain
⎛
⎝

∂/∂x1

∂/∂x2

∂/∂x3

⎞
⎠=

⎛
⎝

sin θ cos ϕ cos θ cos ϕ / r − sin ϕ / r sin θ
sin θ sin ϕ cos θ sin ϕ / r cos ϕ / r sin θ

cos θ − sin θ / r 0

⎞
⎠

⎛
⎝

∂/∂r
∂/∂θ
∂/∂ϕ

⎞
⎠ .

Note that the expressions on the right side here are now written exclusively
in spherical coordinates. Of course, the entries in this matrix are the nine
partials of the spherical coordinates r, θ, ϕ with respect to the Cartesian
coordinates x1, x2, x3. One could calculate this matrix by calculating those
partials. The tricky bit is writing the spherical coordinate ϕ as a well-defined
function of the Cartesian coordinates on appropriate subsets of R

3 \Z. This
can be done, but is not as easy as you might think.

In the next exercise we come back to a point we emphasized earlier.

Exercise 12.2.4 Find explicit formulas for the spherical coordinate ϕ in
terms of the Cartesian coordinates (x1, x2, x3).

Warning: This is not so easy. In many texts one finds ϕ = tan−1(x2/x1),
which is correct on a proper subset of R

3 \ Z, but not on all of R
3 \ Z. And

remember that ϕ had better be a C∞ function of the Cartesian coordinates
on all of R

3 \ Z.

Now we can write L3 in spherical coordinates. We obtain

i �
−1L3 =

(
x1

∂

∂x2
− x2

∂

∂x1

)

= (r sin θ cos ϕ)
(

sin θ sin ϕ
∂

∂r
+

cos θ sin ϕ

r

∂

∂θ
+

cos ϕ

r sin θ

∂

∂ϕ

)

− (r sin θ sinϕ)
(

sin θ cos ϕ
∂

∂r
+

cos θ cos ϕ

r

∂

∂θ
− sin ϕ

r sin θ

∂

∂ϕ

)

=
∂

∂ϕ

where the last equality is straightforward. Therefore, on R
3 \ Z we have

L3 =
�

i

∂

∂ϕ
. (12.2.1)
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We already knew that this first order linear operator was going to be a linear
combination of ∂/∂θ and ∂/∂ϕ with possibly variable coefficients. So this
result is consistent with that expectation, but gives us only one of the partial
derivatives. And its coefficient is constant. So our expectations are exceeded.
However, the partial derivative (≡ vector field) ∂/∂ϕ does not exist on Z.
Intuitively, the direction ‘east’ does not exist for the points on Z. But the first
order differential operator L3 is singular for those points x1, x2, x3 satisfying
x1 = x2 = 0, that is along the axis Z, since by (12.1.2) on the axis Z we have
L3 = 0, which is not a direction. Similar comments hold for L1 and L2.

The operator L3 was defined for functions whose domain is R
3, but the

spherical coordinates introduce singularities. It is a curious and important
fact that the partial derivative (also known as a vector field) ∂/∂ϕ is well
defined on R

3 \ Z, even though the coordinate ϕ is only defined as a C∞

function on the complement of the closed half-plane x1 ≥ 0 in the coordinate
x1, x3 plane. Also, the functions cos ϕ and sinϕ are C∞ functions on R

3 \Z.
The calculations for L1 and L2 do not work out anywhere as nicely. Let’s

start with L1. We find that

i�−1L1 =
(
x2

∂

∂x3
− x3

∂

∂x2

)

= (r sin θ sinϕ)
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)

− (r cos θ)
(

sin θ sinϕ
∂

∂r
+

cos θ sinϕ

r

∂

∂θ
+

cos ϕ

r sin θ

∂

∂ϕ

)

= − sin ϕ
∂

∂θ
− cot θ cos ϕ

∂

∂ϕ
.

Finally, here’s L2:

i�−1L2 =
(
x3

∂

∂x1
− x1

∂

∂x3

)

= (r cos θ)
(

sin θ cos ϕ
∂

∂r
+

cos θ cos ϕ

r

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ

)

− (r sin θ cos ϕ)
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)

= cos ϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ
.

We are now in a good position to solve the eigenvalue problem for L3,

L3ψ = Mψ.

Since L3 is a linear, first order partial differential operator, this equation
has solutions for every complex number M . But in quantum theory we want
solutions in L2(R3). And since L3 is a symmetric operator acting in that
Hilbert space, M must be a real number. Using spherical coordinates we have

�

i

∂ψ

∂ϕ
= Mψ,
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whose general solution is
ψ(ϕ) = a eiMϕ/�,

where a ∈ C. The argument given in Chapter 11, which shows that ψ and ψ′

must have periodic boundary conditions on (0, 2π) applies here because L3

reduces to the ordinary derivative d/dϕ of one variable (modulo a non-zero
constant), which is an elliptic operator. Therefore, as we saw in Chapter 11,
the set of eigenvalues of L3 is

�Z = {m� |m ∈ Z}.
An eigenfunction corresponding to m� is ψm(ϕ) := eim�ϕ/� = eimϕ for

ϕ ∈ [0, 2π). Since �Z is an unbounded subset of R, it follows by functional
analysis that any self-adjoint extension of the symmetric operator L3 is an
unbounded operator.

Strange as it may seem the operators L1 and L2 are like L3 in disguise.
What could that possibly mean? Well, in coordinates analogous to the usual
spherical coordinates, except with the z-axis replaced by the x-axis or y-axis,
respectively, the angular coordinate (say ϕx and ϕy, respectively) measuring
rotations about that axis will correspond to L1 and L2 via

L1 =
�

i

∂

∂ϕx
and L2 =

�

i

∂

∂ϕy
,

respectively. So now I hope that it is clear that the eigenvalues of L1 and
L2 are the same as those for L3, while the eigenfunctions will be eimϕx and
eimϕy , respectively, where m ∈ Z.

12.3 Ladder Operators

This section concerns some very helpful, but rather technical, operators that
will remind us of the raising and lowering operators of the harmonic oscillator.
So, we introduce the ladder operators

L+ := L1 + iL2 and L− := L1 − iL2.

Since L1 and L2 are symmetric operators, the adjoint of L+ (resp., L−) is
L− (resp., L+). So neither L+ nor L− is a symmetric operator, and therefore
neither represents a physical observable. Nonetheless, they are quite useful.

Exercise 12.3.1 Prove these identities:

L+L− = L2 − L2
3 + �L3 L−L+ = L2 − L2

3 − � L3 [L+, L−] = 2� L3

[L3, L+] = � L+ [L3, L−] = −� L−

Exercise 12.3.2 Suppose that L3ψ = m� ψ for some real number m and
some ψ �= 0. (This simply says that ψ is an eigenvector of L3 with eigenvalue
m�. We already know that m ∈ Z, but that fact does not enter into this
exercise.)
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• Prove that L+ψ = 0 or else L+ψ is an eigenvector of L3 with eigenvalue
(m + 1)�.

• Prove that L−ψ = 0 or else L−ψ is an eigenvector of L3 with eigenvalue
(m − 1)�.

These results are often stated under the hypothesis that we have chosen units
such that � = 1 and � is dimensionless. This exercise shows why we call L+

the raising ladder operator and L− the lowering ladder operator.

As mentioned above, these ladder operators should remind you a little bit
of the raising and lowering operators associated with the harmonic oscillator.
However, they are not the same.

Exercise 12.3.3 Derive these formulas for the ladder operators written in
spherical coordinates:

L+ = � eiϕ
( ∂

∂θ
+ i cot θ

∂

∂ϕ

)
and L− = � e−iϕ

(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)
.

We next use this machinery to compute L2 in spherical coordinates, which
is the whole point of this section. But be prepared; the calculation is messy.
We start off with this:

e−iϕ
�
−2L+L− =

( ∂

∂θ
+ i cot θ

∂

∂ϕ

)[
e−iϕ

(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)]

= e−iϕ
(
− ∂2

∂θ2
− i

1
sin2 θ

∂

∂ϕ
+ i cot θ

∂2

∂θ∂ϕ

)
(action of ∂/∂θ)

+ e−iϕ cot θ
(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)
(action of i cot θ ∂/∂ϕ on e−iϕ)

+ e−iϕ i cot θ
(
− ∂2

∂ϕ∂θ
+ i cot θ

∂2

∂ϕ2

)
(rest of action of i cot θ ∂/∂ϕ)

= e−iϕ
(
− ∂2

∂θ2
− i

1
sin2 θ

∂

∂ϕ
− cot θ

∂

∂θ
+ i cot2 θ

∂

∂ϕ
− cot2 θ

∂2

∂ϕ2

)

So, this gives

L+L− = �
2
(
− ∂2

∂θ2
− i

1
sin2 θ

∂

∂ϕ
− cot θ

∂

∂θ
+ i cot2 θ

∂

∂ϕ
− cot2 θ

∂2

∂ϕ2

)
.

Then from this we calculate

L2 = L+L− + L2
3 − �L3

= �
2
(
− ∂2

∂θ2
− i

1
sin2 θ

∂

∂ϕ
− cot θ

∂

∂θ
+ i cot2 θ

∂

∂ϕ

− cot2 θ
∂2

∂ϕ2
− ∂2

∂ϕ2
+ i

∂

∂ϕ

)
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= �
2
(
− ∂2

∂θ2
− cot θ

∂

∂θ
− cot2 θ

∂2

∂ϕ2
− ∂2

∂ϕ2

)

= �
2
(
− ∂2

∂θ2
− cot θ

∂

∂θ
− 1

sin2 θ

∂2

∂ϕ2

)

= −�
2
( 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

)
. (12.3.1)

In the third equality the three terms with ∂/∂ϕ canceled out, since

−1
sin2 θ

+ cot2 θ + 1 =
−1

sin2 θ
+

cos2 θ

sin2 θ
+ 1 =

−1 + cos2 θ + sin2 θ

sin2 θ
= 0.

The fourth equality also follows from a trigonometric identity.

12.4 Relation to Laplacian on R
3

We have seen the expression (12.3.1) for L2 before, though in a context where
� was not present. See the left side of (11.3.1). Also see the formula (11.2.3)
for the Laplacian on R

3 in spherical coordinates which now becomes

Δ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2

=
1
r2

∂

∂r

(
r2 ∂

∂r

)
− 1

�2r2
L2.

Exercise 12.4.1 Prove from its definition that L2 ≥ 0.

However, Laplacians are generally ≤ 0. But −L2 ≤ 0 and so we get a
Laplacian type operator associated with the unit sphere. This is actually the
Euclidean Laplacian Δ on R

3 restricted to the unit sphere S
2, which is a

Riemannian manifold with respect to the restriction of the Euclidean inner
product on R

3 to each of its tangent spaces, that is the planes tangent to each
of the points of S

2. Also, −L2 is a special case of a Laplace-Beltrami operator
associated to a Riemannian manifold.

All of this geometry was relevant to the study of the hydrogen atom due
to the invariance of its Hamiltonian H under rotations. This leads to these
commutation relations:

[H,Lj ] = 0 for j = 1, 2, 3 and [H,L2] = 0. (12.4.1)

The last commutation relation in (12.4.1) tells us that the total angular
momentum is conserved in the quantum system of the hydrogen atom. This
means we can find states which are eigenfunctions of both H and L2. This is
what we did in Chapter 11 where we identified those states to be the ψnlm’s.

Exercise 12.4.2 Prove that the commutation relations (12.4.1) holds for any
Schrödinger operator H = −Δ + V (r), where the potential energy V depends
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only on the radial variable r. So, angular momentum is conserved for such
an operator.

This exercise is an instance of Noether’s theorem that says roughly that
symmetries imply conservation laws. However, in many common examples
L2 does not commute with the Hamiltonian, and one has to include spin, a
new type of angular momentum, in order to maintain this conservation law.

Our solution for the negative energy states ψnlm of the hydrogen atom
gave simultaneous eigenfunctions for H, L2 as well as L3. But note, that in
general these are not eigenfunctions of L1 nor of L2. This is a common feature
of Hamiltonians satisfying (12.4.1).

Exercise 12.4.3 Evaluate L1ψnlm. Find necessary and sufficient condition
on the integers n, l,m such that ψnlm is an eigenfunction of L1. Do the same
for L2ψnlm.

Suppose that ψ is a simultaneous eigenfunction of L2 and L3, which are
commuting operators. By the way, in the solution of the angular part of the
hydrogen atom we have shown that such a ψ does exist, namely the spherical
harmonic ψ = Ylm and, according to (11.3.10), (12.3.1), (11.3.6), and (12.2.1)
we have

L2 ψ = �
2l(l + 1)ψ and L3 ψ = �mψ, (12.4.2)

where l ≥ 0 is an integer and m is an integer with |m| ≤ l. (Note that these
formulas have the dimensionally correct powers of �. In the angular part of
the hydrogen atom problem we considered only dimension-less quantities.)
Also, these are the only solutions which are square integrable with respect
to the angular variables θ and ϕ. Therefore, contrary to a possibly näıve
expectation, the eigenvalues of L2 are not proportional to l2, but rather
to l2 + l. Nonetheless, this is still close enough to motivate calling l the
(orbital) angular momentum quantum number, although as already noted in
Chapter 11 it is also called the azimuthal quantum number.

The point of this discussion is that the relation |m| ≤ l satisfied by the
quantum numbers l and m comes from conservation of angular momentum
of the hydrogen Hamiltonian and so works equally well for any quantum
two-body problem with a central force.

12.5 Notes

The quantum theory of angular momentum gives a good learning experience,
since we have little intuition, only operators, equations, and commutation
relations. And so this is a great topic for strengthening the skill set needed in
quantum theory. This becomes second nature, which is a good news, though
it should not be confused with intuition. This fits in well with the philosophy
of “shut up and compute.” However, we also become accustomed to working
with the very useful ladder operators, which are not self-adjoint and so do
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not correspond to observables. Still we think of them as pushing states up
and down, as if those were physical processes. Ladder operators show us how
amazingly useful mathematics can be, but we should not always consider
such mathematics to be physics, but rather as aids for the comprehension of
not-so-intuitive quantum physics.



Chapter 13

The Rotation Group SO(3)

What goes around comes around.
Proverb

We are now going to see how the geometry of physical space is related to
its rotations. This allows us to understand angular momentum as a topic in
geometry. This is part of a larger program of understanding various physics
theories in terms of geometry, including spin in Chapter 14. Often this is
achieved by finding a Lie group of symmetries associated with the theory. In
this chapter we study the geometry and linear algebra of the Lie group SO(3)
and how that is related to angular momentum. Familiarity with matrices
(especially matrix multiplication, determinants, and traces) is assumed.

13.1 Basic Definitions

We consider the Euclidean space R
3 with its standard inner product

and norm. This space is important in physics since it models (at least locally)
the three-dimensional spatial world in which we live. A linear operator
A : R

3 → R
3 that preserves the inner product on R

3, and hence distances
and angles as well, is a geometrical symmetry of this space. So we define

O(3) := {A ∈ Mat(3 × 3; R) | 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ R
3}.

(Recall (9.1.2) for n = 3.) Here Mat(3 × 3; R) is the vector space over R of
all 3 × 3 matrices with real entries. Since there are 9 independent entries in
a 3 × 3 matrix,

Mat(3 × 3; R) ∼= R
9,
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a Euclidean space. Clearly, O(3) is a subset of Mat(3×3; R) and so inherits its
topology, since the usual metric on R

9 allows us to define what the limit of a
sequence (of matrices!) is. But O(3) is not a vector subspace of Mat(3×3; R).
We say that O(3) is the orthogonal group of R

3 and that a matrix in O(3)
is an orthogonal matrix. We will see presently that O(3) is indeed a group
under the binary operation of matrix multiplication.

The topological space O(3) can also be given local C∞ coordinates in
order to make it into a differential manifold and into a Lie group.

We note that the following statements are equivalent by some elementary
results in linear algebra:

• 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ R
3.

• 〈AtAv,w〉 = 〈v, w〉 for all v, w ∈ R
3, where At is the transpose of A.

• AtAv = v for all v ∈ R
3.

• AtA = I, the identity matrix. (1’s on the diagonal, 0’s off the diagonal)

Therefore, an alternative description of O(3) is

O(3) = {A ∈ Mat(3 × 3; R) |AtA = I}.

This is often used as the definition of O(3), but then its geometric significance
is not so obvious.

Exercise 13.1.1 Prove that O(3) is a group, where its binary operation is
matrix multiplication. In particular, identify which matrix serves as the
identity element. (Recall Definition 5.2.1.)

Exercise 13.1.2 Prove that −I ∈ O(3).

The condition AtA = I tells us something about the determinant, denoted
as det, of an orthogonal matrix A, namely that

1 = det I = det AtA = det At detA = det A det A = (detA)2.

Here we used standard properties of the determinant. Hence, detA = ±1.

Exercise 13.1.3 Find orthogonal matrices A1 and A2 such that det A1 = 1
and det A2 = −1.

The last exercise proves that the function det : O(3) → {−1,+1} is onto.

Exercise 13.1.4 Prove that det : O(3) → {−1,+1} is continuous.
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Exercise 13.1.5 Prove that O(3) is not a connected topological space.

Remark: If you do not know what connected means in this context, prove
that there exist orthogonal matrices A and B such that there is no continuous
path lying entirely in O(3) that starts at A and ends at B. This means that
O(3) is not pathwise connected.

Since the value of the determinant seems to play a role in this theory, we
are lead to make the next definition.

Definition 13.1.1 We define the special orthogonal group of R
3 to be

SO(3) := {A ∈ O(3) | det A = 1}.

This is also called the rotation group of R
3.

Exercise 13.1.6 Prove that SO(3) is a subgroup of O(3), which means that
A,B ∈ SO(3) implies AB ∈ SO(3) and A−1 ∈ SO(3). In particular SO(3)
with matrix multiplication is a group in and of itself.

13.2 Euler’s Theorem (Optional)

Euler’s Theorem justifies our calling SO(3) the rotation group of R
3. Though

it is a mathematical interlude, the reader should understand what it says,
but the lengthy proof can be skipped.

First, we recall that a ray in R
3 is a half-line R

+v for some 0 �= v ∈ R
3,

where R
+ = (0,+∞). Since the ray determined by v �= 0 and the ray

determined by λv for λ > 0 are the same ray, we can identify rays with
points on the unit sphere S2 := {x ∈ R

3 | ||x|| = 1} ⊂ R
3. For each ray the

corresponding point on S2 is called the direction of the ray. For any point
v ∈ S2 we say that v and −v (the latter of which also lies on S2) are antipodal
points on S2 and that the corresponding rays are antipodal rays.

Here is an intuitive, but not totally rigorous, definition. A rotation of R
3

is an invertible linear map R : R
3 → R

3 such that either R = I or there is
exactly one subspace of dimension one that is pointwise fixed by R and the set
complement of that subspace undergoes a rigid motion that revolves around
that subspace. It is clear that a rotation R, being a rigid motion, preserves
distances and angles. Therefore R preserves the inner product and so
R ∈ O(3). Also, R can be connected by a continuous curve to the identity I ∈
SO(3) and so R ∈ SO(3). (If R rotates around a subspace with the angle θ,
the curve consists of rotations around the same subspace by the angle tθ for
t ∈ [0, 1].) It is not obvious that the composition of two rotations is necessarily
a rotation, although this is an immediate, non-trivial consequence of Euler’s
Theorem.
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Theorem 13.2.1 (Euler’s Theorem) Let A ∈ SO(3). Then A can be
viewed as the rotation in the counter-clockwise direction by a unique angle
θ ∈ [0, π] around some ray in R

3.
Here are the various cases of this statement:

• A = I: In this case any ray will do and θ = 0.

• A �= I and A2 �= I: In this case the ray is unique and θ ∈ (0, π).

• A �= I and A2 = I: In this case there are exactly two possible rays,
which are antipodal, and θ = π.

Remark: We will describe what counter-clockwise means rather than give a
fully rigorous mathematical definition. So, suppose that 0 �= v ∈ R

3 so that
v determines the ray R

+ v := {rv | r > 0}. Then the orthogonal complement

W := {v}⊥ = {w ∈ R
3 | 〈v, w〉 = 0}

is a two-dimensional vector subspace of R
3. Notice that v /∈ W . Now suppose

we are at the point v ∈ R
3, and we look towards the origin (0, 0, 0) in the

Euclidean plane W . Then a rotation in R
3 around the ray R

+ v produces a
rotation in the plane W .

Then by using our common experience about how the hands of a clock
rotate, we understand what is a rotation in the plane W in the opposite,
that is counter-clockwise, sense. Notice that by viewing the plane W from
the point −v /∈ W the rotation which is counter-clockwise when viewed from
v now becomes a clockwise rotation. This finishes this description, which is
hoped to be intuitive.

Proof: Before discussing the three cases, we make some general observations.
First, let’s suppose that Av = λv for some 0 �= v ∈ C

3 and some λ ∈ C. This
simply means that λ is one of the eigenvalues of A. Then we have

〈Av,Av〉 = 〈λv, λv〉 = λ∗λ〈v, v〉 = |λ|2〈v, v〉,

where we are using the standard inner product on C
3. But the identity

AtA = I still holds when these matrices act on C
3 instead of on R

3. Since A
has real entries, its adjoint matrix satisfies A∗ = (A)t = At, where A denotes
the complex conjugate of the matrix A. So, we also have

〈Av,Av〉 = 〈A∗Av, v〉 = 〈AtAv, v〉 = 〈v, v〉.

We conclude that |λ|2〈v, v〉 = 〈v, v〉. But v �= 0, and therefore |λ|2 = 1. So,
λ ∈ S1, the unit circle in the complex plane.

We next define p(x) := det(xI −A), which is known as the characteristic
polynomial of A. This is a polynomial of degree 3 with real coefficients, since
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the entries of A are real numbers. By the theory of polynomials we know that
this polynomial has exactly three roots (i.e., solutions of p(x) = 0) in the
complex numbers C, provided that we count each root with its multiplicity.
We denote these roots by λ1, λ2, λ3, realizing there can be repetitions in this
list. These are the eigenvalues of A considered as an operator mapping C

3

to itself. A fundamental theorem of linear algebra says that any orthogonal
matrix A is diagonalizable, meaning there exists a unitary map U : C

3 → C
3

such that U∗AU = diag{λ1, λ2, λ3}, where diag{a, b, c} is the diagonal matrix
with the complex numbers a, b, c along the diagonal and zeros elsewhere.

The eigenvectors corresponding to these eigenvalues are in C
3. We claim

that at least one of these eigenvalues is +1 and that there is a corresponding
eigenvector lying in R

3. This claim has to depend on the fact that A is
orthogonal with determinant 1, since it is not true for arbitrary 3×3 matrices
with real entries.

Well, we know by the general theory of polynomials that the eigenvalues
of A (which are exactly the distinct roots of p(x)) satisfy exactly one of these
two cases:

1. All the eigenvalues λ1, λ2, λ3 are real numbers.

2. Exactly one eigenvalue is a real number, say λ1 while the other two
eigenvalues lie in C \ R and are a pair of conjugate complex numbers,
that is, λ2 = λ∗

3.

In case 1, we have that each eigenvalue lies both on the unit circle and
on the real line. So λj = ±1 for each j = 1, 2, 3. But 1 = detA = λ1λ2λ3.
There are exactly two possibilities: All the eigenvalues are +1 or exactly two
of them are −1 and the remaining eigenvalue is +1. Using the diagonalization
of A, one sees that the first possibility corresponds to A = I, while for the
second possibility we have A �= I but A2 = I. However, for both possibilities
we have that at least one eigenvalue is equal to +1.

In case 2, one of the two non-real eigenvalues lies in the upper half-plane,
say λ2. Then there exists θ ∈ (0, π) such that λ2 = eiθ and so λ3 = λ∗

2 = e−iθ.
From this it follows that

1 = det A = λ1λ2λ3 = λ1e
iθe−iθ = λ1.

So λ1 = +1 is an eigenvalue as are both λ2 and λ3. Also, the matrix A2 has
eigenvalues +1, e2iθ, e−2iθ. But e±2iθ �= +1 for θ ∈ (0, π) and so A2 �= I.

In short, as claimed, there is always at least one eigenvalue equal to +1.
Also, if A �= I, we have seen that the other two eigenvalues are distinct from
+1. It remains to show that there is an eigenvector in R

3 corresponding to
the eigenvalue +1. But we do know that there exists 0 �= w ∈ C

3 which is an
eigenvector for the eigenvalue +1, that is Aw = w. Now since the entries of
A are real, we have by taking the real part that

ARe(w) = Re(Aw) = Re(w).



138 The Rotation Group SO(3)

Similarly, by taking the imaginary part, we get

AIm(w) = Im(Aw) = Im(w).

Next, we remark that Re(w), Im(w) ∈ R
3. Also, w �= 0 implies that either

Re(w) �= 0 or Im(w) �= 0. Picking v to be one of these two vectors and to be
non-zero, we see that 0 �= v ∈ R

3 and that Av = v. This was the second part
of our claim above.

Now we are ready to analyze the three cases as stated in the theorem
itself. First, if A = I, then clearly the rotation around any ray by the angle
θ = 0 is the identity I. Also, rotation by θ ∈ (0, π] around any ray is not the
identity I. So, θ = 0 is the unique angle in this case.

If A �= I and A2 �= I, then we are in the case of three eigenvalues 1, λ2, λ3

with λ∗
2 = λ3 and |λ2| = |λ3| = 1. Let 0 �= v ∈ R

3 be an eigenvector of A
corresponding to the eigenvalue +1.

We claim that the orthogonal complement W = {v}⊥ ⊂ R
3 is invariant

under the action of A. To show this let w ∈ W be arbitrary. So we have
〈v, w〉 = 0. We have to consider 〈v,Aw〉 = 〈At v, w〉. We next want to find a
formula for At v. But we know that Av = v and so by acting on each side
with At we get v = AtAv = At v since AtA = I. Substituting this back into
our equation we obtain 〈v,Aw〉 = 〈At v, w〉 = 〈v, w〉 = 0. In other words,
Aw ∈ W as claimed.

Let {η1, η2, η3} be any orthonormal basis of R
3 such that η1 = v/||v||. It

follows that W = span{η2, η3}. Then the matrix of A with respect to this
orthonormal basis is represented by the 3 × 3 matrix

A′ =

⎛
⎝

1 0 0
0 b11 b12

0 b21 b22

⎞
⎠ =

(
1 0
0 B

)

in block matrix form, where B = (bij) is the 2 × 2 matrix which represents
A restricted to W . Here bij ∈ R for 1 ≤ i, j ≤ 2. From this we have that
1 = det A = det A′ = 1 · detB = detB. Clearly, B is also orthogonal, that is,
BtB = I. So we have reduced this situation to studying the Lie group

SO(2) := {T ∈ Mat(2 × 2; R) |T tT = I, det T = 1},

which is called the special orthogonal group in dimension 2. Next, we write
an arbitrary element T ∈ SO(2) as

T =
(

a b
c d

)
for a, b, c, d ∈ R. (13.2.1)

For the next exercise recall from linear algebra that T t T =I implies T T t =I.
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Exercise 13.2.1 Using the notation (13.2.1), prove T tT = I is equivalent to
these three equations:

a2 + c2 = 1, b2 + d2 = 1, ab + cd = 0.

Similarly show that T T t = I is equivalent to these three equations:

a2 + b2 = 1, c2 + d2 = 1, ac + bd = 0.

We learn from this exercise that each column and each row of T is a unit
vector. Moreover, we learn that the two columns are orthogonal vectors and
as well that the two rows are orthogonal vectors. We have learned a lot!

We start out with the first column of T . Since it is a unit vector, there
is a unique θ ∈ [−π, π) such that (a, c) = (cos θ, sin θ), because (a, c) lies on
the unit circle in the Euclidean plane. This forces the second column vector
of T , which is a unit vector orthogonal to the first column, to be one of these
two possibilities: (b, d) = ±(− sin θ, cos θ). Which sign will it be? To decide
this we use det T = 1. Clearly, by choosing the sign + we obtain this matrix
with determinant 1:

T =
(

cos θ − sin θ
sin θ cos θ

)
for θ ∈ [−π, π). (13.2.2)

And choosing the sign − gives determinant −1. So every matrix T ∈ SO(2)
has the form (13.2.2). A matrix of the form (13.2.2) when acting on R

2 is
called a rotation of R

2 by the angle θ. This is a counter-clockwise rotation if
and only if θ > 0, and it is a clockwise rotation if and only if θ < 0.

Exercise 13.2.2 Prove that every matrix of the form (13.2.2) is in SO(2).
Prove that SO(2) is isomorphic as a group to the group (whose product is
complex multiplication)

S
1 := {z ∈ C | |z| = 1},

the unit circle in the complex plane.

This ends our detour for studying SO(2). We now apply this to the 2× 2
matrix B. So, B is a rotation of the plane W by some unique angle θ ∈ [−π, π).
But we know in this particular case that θ �= 0 and θ �= −π. Thus, we have
θ ∈ (0, π) or θ ∈ (−π, 0). The first case is a counter-clockwise rotation by
θ ∈ (0, π) with respect to one of the two rays lying on the line Rη1. The second
case is also a counter-clockwise rotation, but now by −θ ∈ (0, π) with respect
to the antipodal ray. (Recall that η1 is an eigenvector of A with eigenvalue +1,
that is, Rη1 is fixed pointwise by A.)

We now know that A fixes the one-dimensional subspace Rη1 pointwise
and rotates its orthogonal subspace passing through the origin by an angle
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θ ∈ (0, π). The reader should understand that by the linearity of A this
implies that A rotates R

3 counter-clockwise around one of the rays lying on
Rη1 by the same angle θ ∈ (0, π). This finishes the argument for this case.

The last case remaining is A �= I but A2 = I. We have seen that in
this case the three eigenvalues are +1,−1,−1, including multiplicity. The
eigenvector 0 �= v ∈ R

3 corresponding to the eigenvalue +1 then has as
before the orthogonal complement W = {v}⊥ ⊂ R

3. In this case A restricted
to the plane W is −IW , where IW is the identity map of W . But −IW is the
rotation by the unique angle θ = π in the counter-clockwise direction when
viewed from v and also when viewed from −v. These are the only possible
rays for A. Again, the reader is advised to draw a picture of this situation.
While that picture is not a rigorous mathematical argument, it is worth a
thousand words of such arguments. Please draw it!

This exhausts all the cases and therefore concludes the proof. �

Here is a non-trivial result whose proof is now amazingly easy.

Corollary 13.2.1 Let R1 and R2 be rotations of R
3. Then their product

R1R2 is also a rotation of R
3.

Proof: By the comments at the beginning of this section R1, R2 ∈ SO(3).
But that implies R1R2 ∈ SO(3), since SO(3) is a group. Consequently R1R2

is a rotation by Euler’s theorem. �

We are now in a position for describing SO(3) in terms of coordinates. We
define the solid, closed ball B(π) in R3 centered at the origin and of radius
π by

B(π) := {v ∈ R3 | ||v|| ≤ π}.
The boundary ∂B(π) of this ball is the two-dimensional sphere S(π) centered
at the origin with radius π:

S(π) = ∂B(π) = {v ∈ R3 | ||v|| = π}.

Now we use Euler’s Theorem to identify elements in SO(3) with points in
B(π). So consider A ∈ SO(3).

• If A = I, we identify A with the origin (0, 0, 0) ∈ B(π).

• If A �= I and A2 �= I, then we have a unique angle θ ∈ (0, π) and a
unique unit vector v ∈ R

3 such that A is the counter-clockwise rotation
by the angle θ around the ray determined by v. Then we identify A
with the vector w = θv ∈ B(π). In this case ||w|| = θ and so w �= 0 and
w /∈ S(π).

• If A �= I but A2 = I, then we identify A with the two points

πv,−πv ∈ S(π) ⊂ B(π),
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where A is the rotation in the counter-clockwise direction by the angle
π with respect to the unit vectors v and −v.

This paragraph uses some topology but is worth skimming. Each point
in the interior of B(π) corresponds to a unique element in SO(3), while each
pair of antipodal points on S(π) corresponds to a unique element in SO(3).
In all cases the norm of the point(s) in B(π) is the angle of rotation of the
corresponding element in SO(3). So, we can identify SO(3) as the quotient
space of B(π) when we divide out by the equivalence relation πv ∼= −πv
for points on the boundary S(π) of B(π), where v,−v are antipodal unit
vectors. It is to be devotedly wished that this quotient topological space
of B(π) is homeomorphic to the topological space SO(3). (Homeomorphic
means isomorphic as topological spaces.) Given that this is so (and it is), we
see that SO(3) is a compact, connected topological space being the quotient
of a compact, connected space. Also, dim SO(3) = 3 follows.

13.3 One-parameter Subgroups

While SO(3) is not a vector space, but rather a compact group, we would still
like to understand its elements in terms of three basic elements, where each
element corresponds in some sense to one of three ‘independent’ directions
in SO(3). Actually, we are going to construct three families of elements of
SO(3). For every θ ∈ R we define these matrices:

Rx(θ) :=

⎛
⎝

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠ (13.3.1)

Ry(θ) :=

⎛
⎝

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞
⎠ (13.3.2)

Rz(θ) :=

⎛
⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞
⎠ (13.3.3)

Exercise 13.3.1 Prove that Rx(θ), Ry(θ), Rz(θ) ∈ SO(3) for every θ ∈ R.

For θ ≥ 0 each of Rx(θ), Ry(θ), and Rz(θ) is a rotation in the counter-clockwise
direction by the angle θ with respect to the corresponding positive semi-axis
(which is a ray), namely the positive x-axis, the positive y-axis or the positive
z-axis. We assume throughout that these positive axes form a right-handed
orientation on R

3. (The southpaws among my readers should not feel imposed
upon. It is perfectly fine to consistently use the left-handed orientation on
R

3 throughout.)
In particular Rx(0) = Ry(0) = Rz(0) = I, the 3 × 3 identity matrix.
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Exercise 13.3.2 Draw pictures to convince yourself that each of these three
families consists of counter-clockwise rotations by the angle θ around the
appropriate positive semi-axis (x, y or z) provided that θ ≥ 0. Hint: Doing
this for θ = π/2 should be enough to convince you.
Having done that, it is an easy next step to see that these are clockwise
rotations by the angle −θ around the same positive semi-axis for θ ≤ 0.

Exercise 13.3.3 The previous exercise should have convinced you also that
Rx(θ1+θ2) = Rx(θ1)Rx(θ2) holds. Prove that is so for any θ1, θ2 ∈ R. Similar
identities hold for the families Ry(θ) and Rz(θ). Prove those identities too.

Exercise 13.3.4 Prove Rx(θ1)Rx(θ2) = Rx(θ2)Rx(θ1) for all θ1, θ2 ∈ R.

Note that Rx : R → SO(3) is a C∞ function in the sense that each matrix
entry in Rx(θ) is a C∞ real-valued function of θ ∈ R. Also, Exercise 13.3.3
says that this is a group morphism from the (abelian) group R with + as
its group operation to the (non-abelian) group SO(3). One says that Rx

is a one-parameter subgroup of SO(3). This is an unfortunate terminology,
since it is the range of Rx that is a subgroup of SO(3), while Rx itself is a
morphism of groups. Similar statements hold for the functions Ry and Rz.
For the record here is a more general definition:

Definition 13.3.1 We say R : R → SO(3) is a one-parameter subgroup of
SO(3) if R is a differentiable function and a group morphism.

We can also think of each of Rx, Ry, and Rz as a curve in SO(3). And
at each point of a differentiable curve, we have an associated direction given
by its derivative, which in geometry is also called its tangent vector and in
physics is called its velocity vector. Let’s evaluate these tangent vectors at
θ ∈ R. For example, applying elementary calculus to each of the 9 entries of
Rx we see that

R′
x(θ) =

⎛
⎝

0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ

⎞
⎠. (13.3.4)

This is called the infinitesimal rotation around the positive x-axis at the
‘point’ Rx(θ) in SO(3). Now believe it or not, it is not heresy to speak of
infinitesimals. However, this matrix is definitely not a rotation matrix, despite
its name. In particular it has 0 as an eigenvalue or, in other words, its kernel
(also called its null space) is non-zero. Also its determinant is zero. All of this
is quite different from the properties of a rotation matrix. We now compute
the other two infinitesimal rotations of interest:

R′
y(θ) =

⎛
⎝

− sin θ 0 cos θ
0 0 0

− cos θ 0 − sin θ

⎞
⎠, (13.3.5)



The Rotation Group SO(3) 143

R′
z(θ) =

⎛
⎝

− sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

⎞
⎠. (13.3.6)

These are also matrices with non-zero kernel and determinant zero.
Here is an important result about one-parameter subgroups. Suppose that

R : R → SO(3) is any one-parameter subgroup. So, R could be one of the
three one-parameter subgroups introduced above, or it could be the family
of rotations, parameterized by the angle θ of rotation, around any given
one-dimensional subspace of R

3. In particular, we have that R(0) = I. The
properties we will now use are that R(θ) is differentiable at θ = 0 and is a
group morphism. We compute its infinitesimal rotation by first considering
the usual difference quotient for 0 �= α ∈ R from a calculus course:

R(θ + α) − R(θ)
α

=
R(α)R(θ) − R(θ)

α
=

R(α) − R(0)
α

R(θ).

The quotient on the right side has limit R′(0) by hypothesis. Therefore, by
taking the limit as α → 0 we obtain

R′(θ) = lim
α→0

R(θ + α) − R(θ)
α

= R′(0)R(θ). (13.3.7)

This is an amazing result! It says that the infinitesimal generator at an
arbitrary angle θ depends only on the infinitesimal generator at θ = 0 and the
rotation itself at the arbitrary angle θ. But even more remarkably (13.3.7) is
a first order, ordinary differential equation (ODE) for R(θ) with the constant
coefficient G := R′(0), which is called the infinitesimal generator of the
one-parameter subgroup. Also, the initial condition for this ODE is R(0) = I.

Of course, this is a differential equation for matrix valued functions of θ
and not for scalar valued functions, which one studies in elementary calculus.
If all is for the best in the best of all possible worlds, then the unique solution
should be R(θ) = exp(θG), where the exponential of a matrix M is defined
by the usual infinite series:

exp(M) := I + M +
1
2!

M2 +
1
3!

M3 + · · · + 1
k!

Mk + · · · (13.3.8)

Another common notation for this is eM . As the reader may have already
guessed, all of this does hold rigorously. One technical point is that the infinite
series (known as power series) for eM does converge. Also, the infinite series
etM can be differentiated term by term with respect to a variable t when
M is a matrix that does not depend on t. Here t can be a real or complex
variable.
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Exercise 13.3.5 Let M be a matrix. Prove that eM commutes with M and
hence with any power Mn with integer n ≥ 0. (Note that M0 := I.) Also, if
M is invertible, prove that eM commutes with (M−1)n for any integer n ≥ 1.
Finally, differentiate the infinite series for etM term by term to see that

d

dt
etM = MetM = etMM.

The moral of this little story is that a one-parameter subgroup of SO(3) is
determined by its infinitesimal generator. Of course, the infinitesimal generator
is determined by the one-parameter subgroup; one just evaluates the derivative
of the one-parameter subgroup at θ = 0. This relation between one-parameter
semigroups and their infinitesimal generators turns out to be a major industry
in functional analysis. (See [28] for example.) But you have already seen the
basic ideas in a concrete example.

Let’s evaluate the infinitesimal rotations at θ = 0 (also known as the
infinitesimal generators) for Rx, Ry, and Rz. So we evaluate the expressions
(13.3.4), (13.3.5), and (13.3.6) at θ = 0. We get the following:

R1 := R′
x(0) =

⎛
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎠ (13.3.9)

R2 := R′
y(0) =

⎛
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎠ (13.3.10)

R3 := R′
z(0) =

⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ (13.3.11)

Exercise 13.3.6 To check that our understanding of this is really right,
prove by direct calculation what we already know must be true, namely that
Rx(θ) = exp(θR1) for all θ ∈ R. (You will need to use the power series
representations of cos θ and sin θ.)

We pause for some definitions and an exercise.

Definition 13.3.2 For any n × n matrix A = (aij) with aij ∈ C we define
its adjoint matrix to be A∗ := (a∗

ji), that is, the transpose matrix complex
conjugated. Here 1 ≤ i, j ≤ n. We say that A is symmetric (or self-adjoint
or hermitian) if A∗ = A and that it is anti-symmetric if A∗ = −A.

Exercise 13.3.7 Let A = (aij) be an n × n matrix with entries aij ∈ R. Let
Tr(A) :=

∑n
i=1 aii denote the trace of A and det(A) its determinant. Prove

that if A is anti-symmetric, then Tr(A) = 0. Moreover, if n is an odd integer,
show that det(A) = 0.
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Now rotations about distinct axes will not commute in general. This is
sometimes referred to as a textbook exercise because of the following exercise
with a textbook.

Exercise 13.3.8 Take a textbook and consider the rotations about its three
symmetry axes. (The plural of ‘axis’ is ‘axes’.) To your own satisfaction prove
that in general AB is not equal to BA if A is a rotation about one of these
axes and B is a rotation about another of these axes. It is easier to see this
with rotations by π/2 radians (colloquially known as 90o) but you can try
other angles too. This is basically an experimental exercise, though you might
try to describe what happens in words. (Suggestion: For 21st century readers
who do not have printed textbooks, use your laptop instead.)

13.4 Commutation Relations, so(3)
and All That

Well, if rotations about distinct axes do not commute in general, what about
infinitesimal rotations about distinct axes?

Exercise 13.4.1 If R1 commutes with R2, prove that every rotation Rx(θ)
commutes with every rotation Ry(τ). Conclude that R1 does not commute
with R2. Recall that R1 and R2 are defined in (13.3.9) and (13.3.10).

Of course, one can simply compute R1R2 and compare with the computed
value of R2R1, something which we are about to do anyway. The point of the
previous exercise is to give an intuition behind this lack of commutativity.
So we are motivated to evaluate the commutators [R1, R2] = R1R2 − R2R1,
and so forth.

Exercise 13.4.2 Prove the following commutation relations:

[R1, R2] = R3, [R2, R3] = R1, [R3, R1] = R2.

In words we can say that the infinitesimal rotations R1 and R2 around the
x-axis and y-axis, respectively, fail to commute by the infinitesimal rotation
R3 around the z-axis. Similar remarks hold for the other two commutation
relations.

Try to verify this using your textbook or laptop. Rotate it by a small
angle θ first around the y-axis and then the x-axis in that order and then
compare that with rotations by the small angle −θ and again first around
the y-axis and then the x-axis in that order. Be careful! All of these must
be counter-clockwise rotations around the appropriate positive semi-axis. The
result of these four rotations should be equal approximately to a very, very
small counter-clockwise rotation around the z-axis.
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These three commutation relations in the previous exercise look rather
familiar. They are almost the same as the commutation relations for the
angular momentum operators L1, L2, and L3. But not exactly! Recall that
for � = 1, we have that [L1, L2] = iL3 and its cyclic permutations. So the
difference is a factor of i =

√−1. This difference has to do with the difference
between symmetric operators and anti-symmetric operators. Here, L1, L2,
and L3 are symmetric operators while R1, R2, and R3 are anti-symmetric
matrices (and therefore anti-symmetric operators).

For example, if we define Mj := (1/i)Lj for j = 1, 2, 3, then we have
the commutation relations [M1,M2] = M3 and cyclic permutations for the
anti-symmetric operators M1, M2, and M3. In general the difference between
symmetric and anti-symmetric operators which act on complex vector spaces
is simply a factor of i =

√−1.
You might think that you can not multiply the matrices R1, R2, R3 with

real entries by i =
√−1. But of course you can! And what will happen is that

the resulting 3 × 3 matrices will not have real entries and therefore will not
represent operators acting on R

3. But they will represent operators acting on
C

3. In fact, the original matrices R1, R2, R3 also represent operators acting
on C

3 by using the same formula for their action on R
3.

Exercise 13.4.3 Suppose that A and B are symmetric operators acting in a
complex vector space with inner product. Prove that [A,B] is anti-symmetric,
and therefore i[A,B] and (1/i)[A,B] are symmetric.
Suppose that C and D are anti-symmetric matrices. Prove that [C,D] is
anti-symmetric. (For this part of the problem the vector space may be real or
complex. Notice that real vector spaces are making an appearance here in the
quantum world. More on this in a moment.)

The moral of this exercise is that the symmetric operators are closed
under the binary operation (1/i)[·, ·], while the anti-symmetric matrices are
closed under the binary operation [·, ·]. The first operation only makes sense
for vector spaces over the complex numbers C, while the second operation
makes sense for vector spaces over the real numbers R as well as over the
complex numbers C. In quantum physics the basic field is C and so there is
no obvious advantage in using anti-symmetric operators together with the
usual commutator [·, ·]. And in fact, in quantum physics one typically only
considers symmetric operators. But in mathematics one often wishes to study
the purely real case including only anti-symmetric operators. Of course, such
a mathematical study sometimes leads to useful results for physics. So it is
best to keep both points of view in mind.

Right now, let’s consider the matrices R1, R2, and R3 as defined above.
We define a vector space over the real numbers by

so(3) := span
R
{R1, R2, R3} = {aR1 + bR2 + cR3 | a, b, c ∈ R}.
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We remark that this an important real vector space in quantum theory.
By its very definition we have that dimR so(3) ≤ 3.

Exercise 13.4.4 Prove that the three matrices R1, R2, and R3 are linearly
independent. Consequently, dimR so(3) = 3.

Exercise 13.4.5 Prove that any anti-symmetric 3× 3 matrix can be written
uniquely in the form aR1 + bR2 + cR3, where a, b, c ∈ R. Conclude that so(3)
is the real vector space of all anti-symmetric 3 × 3 matrices.
Suppose that R : R → SO(3) is a one-parameter subgroup. Prove that R′(0)
is an anti-symmetric matrix and therefore R′(0) ∈ so(3).
Suppose that M ∈ so(3). Prove that M is the infinitesimal generator of the
one-parameter subgroup R  t �→ etM ∈ SO(3).

The upshot is that the set of one-parameter subgroups of SO(3) is in
bijective correspondence with the elements of the vector space so(3).

Since the matrices R1, R2, and R3 are tangent to the space SO(3) at
the point I ∈ SO(3), we call so(3) the tangent space to SO(3) at the point
I ∈ SO(3). While SO(3) is some sort of three-dimensional compact space,
so(3) is a three-dimensional real vector space that infinitesimally, and it turns
out even locally, approximates the space SO(3) at the point I ∈ SO(3). But
so(3) has even more structure. For any two elements R,S ∈ so(3) we define
[R,S] := RS − SR, the commutator of matrices.

Exercise 13.4.6 Prove that the binary operation [·, ·] so defined on so(3)
satisfies the following properties for R,S, T ∈ so(3):

• (Closure) [R,S] ∈ so(3).

• (Bilinear) The binary operation R,S �→ [R,S] is bilinear.

• (Anti-symmetry) [R,S] = −[S,R].

• (Jacobi’s identity) [R, [S, T ]] + [S, [T,R]] + [T, [R,S]] = 0.

This leads to an extremely important definition.

Definition 13.4.1 Let G be any vector space over the real numbers R (resp.,
the complex numbers C) with a binary operation G × G → G, denoted by
X,Y �→ [X,Y ] for X,Y ∈ G, which is bilinear, anti-symmetric, and satisfies
Jacobi’s identity. Then we say that G together with this Lie bracket [·, ·] is a
real (resp., complex) Lie algebra. We often say simply Lie algebra when the
field of scalars is implicitly known.

This structure is named in honor of the mathematician Sophus Lie. We
will not dwell on the much more technical definition of a Lie group. However,
we do remark that SO(3) is a Lie group. It turns out that every Lie group has
a tangent space at the identity, and it is given by differentiating one-parameter
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subgroups. And that tangent space is always a finite-dimensional Lie algebra,
because I am supposing that the Lie group is itself a finite-dimensional space.
An arbitrary finite-dimensional Lie algebra over the field R always comes in
this manner from some Lie group, but that Lie group need not be unique.

So we have seen that so(3) is the Lie algebra of the Lie group SO(3).

Exercise 13.4.7 a) Prove that Mat(n × n; R), the vector space of all n × n
matrices with real entries, equipped with the commutator as its Lie bracket,
forms a Lie algebra. b) Prove that R

3 with the cross product (also known as
the vector product) is a Lie algebra isomorphic to so(3).

13.5 Notes

Euler did indeed prove something like Euler’s Theorem. However, matrices
came much after his time. He formulated this result in terms of the geometry
of Euclidean three-dimensional space. Thought of in that way it is quite
remarkable that rotations form a group. That is to say, given first a rotation
by some angle about some axis passing through some point p and following
that by another rotation by some other angle about some other axis passing
through the same point p, then it is amazing that the combination of these
two rotations is itself a rotation about yet another axis, but still passing
through the same point p. After all, there must be a way (an algorithm!)
for finding the axis and angle of the combined rotation from that data for
the two individual rotations. This may be intuitively obvious to you, but it
leaves me wondering. Yet this is what Euler proved. Explicitly, he showed that
any rigid motion of a solid sphere that leaves the center fixed will always leave
(at least) one diameter fixed pointwise and so is a rotation about that
diameter. Since the combination of two such rigid motions is again such a
rigid motion, Euler clearly knew what was going on.

The modern form of Euler’s Theorem identifies the rotations as the group
of matrices SO(3). This thereby allows us to study geometry by using linear
algebra.



Chapter 14

Spin and SU(2)

The wheel is come full circle.
Edmund in King Lear, William Shakespeare

In quantum theory the commutation relations of pairs of observables play
a central role. In the last two chapters we saw the commutation relations
of the three components of the angular momentum operators and the three
infinitesimal rotations R1, R2, and R3. These commutation relations are more
important than the particular operators that satisfy them, believe it or not!
This is one of the great insights in the development of quantum theory. This
is all part and parcel of the role played in quantum theory by Lie groups
and Lie algebras. This aspect of quantum theory was originally developed by
H. Weyl, W. Pauli, and E.P. Wigner. Some work by E. Noether around 1918
in classical physics foreshadowed developments in quantum theory.

14.1 Basics of SU(2)

The theory of spin can begin with the Lie group

SU(2) := {U ∈ Mat(2 × 2; C) |U∗U = I and detU = 1}.
This is called the special unitary group for C

2. For the sake of completeness
we note that this is a group which itself is a subgroup of

U(2) := {U ∈ Mat(2 × 2; C) |U∗U = I},
which is called the unitary group for C

2. Of course, Mat(2 × 2; C) denotes
the complex vector space of all 2 × 2 matrices with complex entries.

Exercise 14.1.1 Show that U ∈ U(2) if and only if 〈Uw,Uz〉 = 〈w, z〉 for all
w = (w1, w2) and z = (z1, z2) in C

2, where the inner product 〈·, ·〉 is defined
by 〈w, z〉 := w∗

1 z1 + w∗
2 z2. We say such a matrix U is unitary.
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Alternatively, the theory of spin can begin with the Lie algebra su(2)
associated to the Lie group SU(2). This involves finding the infinitesimal
generator of every one-parameter subgroup of SU(2). Now, a one-parameter
subgroup is a differentiable morphism of groups h : R → SU(2). So h satisfies
these two conditions for every t ∈ R:

h(t)∗ h(t) = I and deth(t) = 1.

Taking derivatives at t of the first condition gives

h′ (t)∗ h(t) + h(t)∗ h′(t) = 0. (14.1.1)

Next evaluating at t = 0 yields

h′(0)∗ + h′(0) = 0,

since h(0) = I. We set G := (1/i)h′(0). So this says that G is a self-adjoint
matrix. Also, h(t) = eitG for all t ∈ R is the unique solution of (14.1.1)
satisfying h(0) = I as can be seen by using Exercise 13.3.5.

The condition on the determinant gives us

1 = det h(t) = det eitG = eit Tr(G)

for all t ∈ R, where Tr(G) is the trace of G. The last equality is an identity
in linear algebra. The only way this can hold for all t ∈ R is if Tr(G) = 0.

Exercise 14.1.2 Conversely, prove that any self-adjoint, trace zero, 2 × 2
matrix A with complex entries exponentiates to the one-parameter subgroup
eitA ∈ SU(2) for all t ∈ R. Thus, the set of one-parameter subgroups of
SU(2) is in bijection with the real vector space defined by

su(2) := {A ∈ Mat(2 × 2; C) |A∗ = A and Tr(A) = 0}.
N.B. A matrix A ∈ su(2) is allowed to have entries which are complex
numbers. Nevertheless, the vector space su(2) of all such matrices is only a
vector space over the real numbers, not over the complex numbers.

Next, we address the problem of identifying all self-adjoint 2×2 matrices.

If A =
(

α β
γ δ

)
, then A∗ =

(
α∗ γ∗

β∗ δ∗

)
.

So, A = A∗ if and only if α, δ ∈ R and β = γ∗. Therefore,

A =
(

a b − ic
b + ic d

)

where a, b, c, d ∈ R. We conclude that the real vector space of 2×2 self-adjoint
matrices has dimension 4. A vector space basis of this space of matrices is
given by the identity matrix I together with the three Pauli matrices:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(14.1.2)
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This particular choice of basis is taken, since we then have that all of the
Pauli matrices are in su(2), while I /∈ su(2). Therefore, dimR su(2) = 3. One
immediate consequence from manifold theory is that the Lie group SU(2) is
a real differential manifold with dimension 3.

Exercise 14.1.3 Directly from the definition of SU(2), prove that SU(2) is
homeomorphic (that is, isomorphic as topological space) to the 3-sphere S3.
Recall that S3 := {v ∈ R

4 | ||v|| = 1}.
The Pauli matrices have many elementary, but important properties.

Exercise 14.1.4 Prove that

σ2
1 = σ2

2 = σ2
3 = I

and that

σ1σ2 = iσ3 = −σ2σ1 σ2σ3 = iσ1 = −σ3σ2 σ3σ1 = iσ2 = σ1σ3.

Prove that Spec(σ1) = Spec(σ2) = Spec(σ3) = {−1,+1}, where Spec(M)
means the spectrum of M , that is the set of all eigenvalues of the matrix M .

It follows immediately from this exercise that

[σ1, σ2] = σ1σ2 − σ2σ1 = 2iσ3.

Also, we obtain two more identities by cyclically permuting the three
sub-indices in this identity. But these identities are not quite those of the
angular momentum operators. To get those commutation relations we define
the spin matrices by Sj := (1/2)σj for j = 1, 2, 3.

Exercise 14.1.5 Prove that [S1, S2] = iS3 plus cyclic permutations of this
identity. Also show that Spec(S1) = Spec(S2) = Spec(S3) = {−1/2,+1/2}.

Clearly, the set {S1, S2, S3} is a basis of su(2). Also, su(2) is a real Lie
algebra under the bilinear operation M,N �→ {M,N} := (1/i)[M,N ] for
M,N ∈ su(2).

The most important consequence is that the commutation relations of the
Sj in su(2) with respect to its Lie bracket {·, ·} are exactly the same as those
for the Rj in so(3) as given in Exercise 13.4.2. The conclusion is that the real
Lie algebras so(3) and su(2) are isomorphic as Lie algebras.

14.2 A Crash Course on Spin

In this section we present a telegraphic discussion of spin. Please consult a
text on representation theory if you need to flesh out this overview.

The isomorphism of so(3) and su(2) might lead one to suspect that the
Lie groups SO(3) and SU(2) are isomorphic as Lie groups. Now that is not
right, but very nearly. What happens is that there is a group morphism

p : SU(2) → SO(3)
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that is a C∞ function, too. The map p is onto, but it is not one-to-one.
Rather it is two-to-one, which means that for every A ∈ SO(3) there are
exactly two elements in SU(2) whose image under p is A. In other words,
p−1(A) := {U ∈ SU(2) | p(U) = A} is a set with two elements. For example,
ker p = p−1(I3) = {−I2, I2}, the two element abelian group. Here I3 is the
3 × 3 identity matrix and I2 is the 2 × 2 identity matrix. It turns out that
U ∈ SU(2) implies −U ∈ SU(2) and U �= −U . Moreover, p(−U) = p(U).

The morphism p is the universal covering map of the Lie group SO(3),
and SU(2) is its universal covering space. These topics are covered in most
introductory topology texts. The definition of p as well as the proofs of its
properties are given in the next section.

Using the identification SU(2) ∼= S3 and the morphism p one can prove
that SO(3) ∼= RP 3, the 3-dimensional real projective space. Some standard
results from topology identify the fundamental homotopy groups, denoted by
π1, of these spaces. It turns out that π1(SU(2)) = π1(S3) = 0, that is SU(2)
is simply connected, and π1(SO(3)) = ker p ∼= Z2, the abelian, cyclic group
with two elements. See a topology text for more details.

For a Lie algebra G whose Lie bracket is [·, ·] and an integer n ≥ 1 we
say that a Lie algebra morphism ρ : G → Mat(n × n; C) is a (Lie algebra)
representation of G of dimension n. A Lie algebra morphism is a linear map
that preserves the Lie bracket operation. So this means that ρ is linear and
that ρ([A,B]) = [ρ(A), ρ(B)] for all A,B ∈ G. (Recall Exercise 13.4.7, which
defines the Lie bracket on the right side.)

It turns out that the representation theory as Lie algebra for the the Lie
algebra su(2) is equivalent to the representation theory as Lie group for the
Lie group SU(2). This is a theorem that holds for all simply connected Lie
groups. The representation theory of su(2) is well known. It turns out that
for every integer n ≥ 1 there is a unique irreducible representation of su(2)
denoted by

ρn : su(2) → Mat(n × n; C).

Here unique means up to isomorphism (of representations of Lie algebras).
Also, irreducible means that any subspace V ⊂ C

n invariant under ρn

(meaning that ρn(A)(V )⊂V for all A∈su(2)) must be either V =0 or V = C
n.

For physical reasons, we write n = 2s + 1, where s ∈ {0, 1/2, 1, 3/2, 2, . . . }.
This is because s is the spin of the irreducible representation ρn in units where
� = 1. Every irreducible representation of su(2) is interpreted physically as
corresponding to angular momentum. For s ∈ N we saw this in the solution
of the eigenvalue problem for the hydrogen atom, in which case we had what
is known as orbital angular momentum with the notation l ∈ N instead of s.
So, we are led to the idea that spin is a type of angular momentum, even
when s ∈ {1/2, 3/2, 5/2, . . .}. We will come back to this idea.

The Lie algebra representation ρn always corresponds infinitesimally to a
Lie group representation (meaning a C∞ group morphism)

τn : SU(2) → Gl(n × n; C),
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where Gl(n × n; C) is the Lie group of all invertible n × n matrices with
complex entries. One can ‘factor τn through SO(3)’ if and only if n = 2s + 1
with s ∈ N. To factor τn through SO(3) means that there exists a Lie group
representation τ̃n : SO(3) → Gl(n × n; C) such that τn is equal to the
factorization (i.e., composition) τn = τ̃n ◦ p, namely

SU(2)
p−→ SO(3) τ̃n−→ Gl(n × n; C) for odd integers n ≥ 1.

Thus the representation τn of SU(2) has an associated representation of
SO(3) if and only if n is an odd integer. At the level of Lie algebras we
have an isomorphism su(2) ∼= so(3), so there is no difference between Lie
algebra representations of su(2) and so(3). But at the level of Lie groups
there is a difference between the Lie group representations of SU(2) and
SO(3). Actually, Gl(n×n; C) can be replaced in this discussion by U(n), the
Lie group of all unitary n×n matrices with complex entries, thereby making
τn a unitary representation for every integer n ≥ 1.

A state with spin s is a unit vector ψ ∈ C
2s+1. But this ignores any

possible spatial dependence. More generally, a spatially dependent state with
spin s is a unit vector in L2(R3; C2s+1), this being the space of (equivalence
classes of) measurable square integrable functions ψ : R

3 → C
2s+1, meaning

∫
R3

d3x ||ψ(x)||2 =
∫

R3
d3x

2s+1∑
j=1

|ψj(x)|2 < ∞,

where ψ(x) = (ψ1(x), . . . , ψ2s+1(x)) ∈ C
2s+1 for all x ∈ R

3. The special case
s = 0, spin zero, has the usual Hilbert space L2(R3; C) for one ‘particle’.

The Lie algebra su(2) also has an associated representation on the Hilbert
space L2(R3; C2s+1) given for each A ∈ su(2) by

ρ̃2s+1(A)ψ := ρ2s+1(A) ◦ ψ : R
3 → C

2s+1.

Exercise 14.2.1 The Lie group SU(2) acts on L2(R3; C2s+1) in a way which
corresponds to ρ̃2s+1. Find this action. (This is a rather advanced exercise.)

In atomic, nuclear and particle physics there many observed states with
integer spin and with half-integer spin. Spin is also a particle property. For
example, the spin of a pion is 0; the spin of an electron is 1/2; the spin of a
photon is 1; the spin of a Δ++ is 3/2. (All of these in units with � = 1.)

For other physical reasons the states with spin s ∈ {0, 1, 2, . . .} = N are
called bosons in honor of the physicist S.N. Bose. On the other hand the
states with spin s ∈ {1/2, 3/2, 5/2, . . .} are called fermions in honor of the
physicist E. Fermi. These two types of states have quite different properties
as we shall discuss later in Chapter 15.
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14.3 The Map p

In this section we present the details of the C∞ group morphism

p : SU(2) → SO(3).

First off, we have to define it. To do this we take an arbitrary self-adjoint
matrix X = X∗ ∈ Herm(2 × 2; C), the real vector space of 2 × 2 hermitian
(i.e., self-adjoint) matrices with entries in C. Then we write X uniquely as

X = x0I + x1σ1 + x2σ2 + x3σ3 =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (14.3.1)

where (x0, x1, x2, x3) ∈ R
4 and σ1, σ2, σ3 are the Pauli matrices (see (14.1.2)).

This shows that Herm(2 × 2; C) ∼= R
4 as real vector spaces. Next, we take

A ∈ Mat(2 × 2; C) and define q(A) for all X ∈ Herm(2 × 2; C) by

q(A)(X) := AXA∗,

a product of three 2×2 matrices. Then q(A)(X) is linear over R in the vector
X. Also, q(A)(X) is self-adjoint (that is, q(A)(X) ∈ Herm(2 × 2; C)), since

(q(A)(X))∗ = (AXA∗)∗ = A∗∗X∗A∗ = AXA∗ = q(A)(X).

So, q :Mat(2×2; C) → L(Herm(2×2; C)) ∼=L(R4), where for any real Hilbert
space H we define L(H) := {T : H → H |T is real linear and bounded}.
We note that q(A)(X) is not a linear function in A, although its entries
are homogeneous polynomials of degree 1 in the four variables x0, x1, x2, x3

with coefficients that are quadratic expressions in the entries of A and A∗.
Consequently, q(A) is a C∞ function of the entries of A.

Exercise 14.3.1 This function q is a unital ring morphism, meaning:

• q(I) = I where each occurrence of I is the appropriate identity.

• q(AB) = q(A)q(B) for all A,B ∈ Mat(2 × 2; C).

This map q has another property related to determinants, namely

det
(
q(A)(X)

)
= det AXA∗ = det A det X det A∗= |det A|2 det X. (14.3.2)

Exercise 14.3.2 This exercise is a fun interlude for those who have seen a
little of special relativity. Using the matrix representation (14.3.1) of X prove

det X = x2
0 − x2

1 − x2
2 − x2

3. (14.3.3)

This is a familiar expression from special relativity known as the Minkowski
metric on the spacetime R

4.
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We next define r = q|SU(2), the restriction of q to SU(2). Since SU(2) is a
group and r preserves multiplication, the range of r will be contained in the
group Gl(4; R) of all invertible maps acting on Herm(2 × 2; C) ∼= R

4. Now
the three Pauli matrices σ1, σ2, σ3 span a 3-dimensional real subspace V of
the real vector space Herm(2 × 2; C).

Exercise 14.3.3 V consists exactly of the matrices A ∈ Herm(2×2; C) with
trace zero, that is Tr A = 0. Therefore, V = su(2).

For convenience we will use the shorter notation V in the following.

For each Pauli matrix σj we see that

Tr(r(U)(σj)) = Tr(UσjU
∗) = Tr(U∗Uσj) = Tr(σj) = 0

holds for all U ∈ SU(2), where Tr(M) is the trace of the matrix M . Hence,
r(U)(σj) ∈ V and then by linearity it follows that r(U)V ⊂ V for every
U ∈ SU(2). So we define p(U) := r(U)|V , the restriction of r(U) to V .
Therefore, p(U) ∈ Gl(V ) ∼= Gl(R3), the group of invertible, real linear maps
of R

3 to itself. Here, we are identifying V with R
3 by using the basis σ1, σ2, σ3

of V . We take the inner product of V that makes σ1, σ2, σ3 an orthonormal
basis; this then corresponds to the standard orthonormal basis on R

3.

Exercise 14.3.4 Show that this inner product on V is given for A,B ∈ V by

〈A,B〉 =
1
2
Tr(AB).

Using this formula, prove that

〈p(U)A, p(U)B〉 = 〈A,B〉
for all A,B ∈ V and U ∈ SU(2).

In other words, the linear map p(U) is an orthogonal map on V ∼= R
3,

that is p(U) ∈ O(3).

So at this point in the argument we have that

p : SU(2) → O(3)

is a C∞ group morphism. It is time for a little topology. (The rest of this
paragraph might be too much for some of you. Not to worry. Just skip ahead.)
We use the homeomorphism of the topological space SU(2) with the unit
sphere S3 ⊂ R

4 (see Exercise 14.1.3) in order to see that SU(2) is a connected
topological space. But the image of a connected space under a continuous
function is again connected. Now the composition

SU(2)
p−→ O(3) det−→ {−1,+1}

of two continuous functions is itself continuous. So its range is connected.
But {−1,+1} is not a connected space. Since (det ◦ p)(I2) = det I3 = 1 and
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I2 ∈ SU(2), it follows that det ◦ p has its range in the singleton set {+1},
which means that p has its range in SO(3). Expressing this as a diagram, we
have

p : SU(2) → SO(3).

Beware that we have not yet proved that p is onto SO(3). An explicit way
of seeing that is to compute the ‘images’ of various one-parameter subgroups
of SU(2) under the map p. For example consider this one-parameter subgroup
of SU(2):

R  θ �→ Uθ := e−iθσ3 =
(

e−iθ 0
0 eiθ

)
.

Exercise 14.3.5 Write X ∈ V in the form (14.3.1) with x0 = 0. Prove

p(Uθ)(X) =
(

x3 e−2iθ(x1 − ix2)
e2iθ(x1 + ix2) −x3

)
.

Show that this is the rotation in V ∼= R
3 with coordinates x1, x2, x3 given by

R3(2θ) =

⎛
⎝ cos(2θ) − sin(2θ) 0

sin(2θ) cos(2θ) 0
0 0 1

⎞
⎠ ∈ SO(3),

the rotation around the x3-axis by the angle 2θ.

Note that Uθ is a periodic function in θ with (smallest, positive) period 2π,
while p(Uθ) is a periodic function in θ with (smallest, positive) period π.
So when θ goes through one period of Uθ and thereby goes around a circle
once, its image p(Uθ) goes through two periods and thereby goes around a
circle twice. This is a reflection of the fact that p is two-to-one. Similarly, the
one-parameter subgroups e−iθσ1 and e−iθσ2 of SU(2) have images under p
that are one-parameter subgroups of SO(3) of rotations around the x1-axis
and the x2-axis, respectively.

Exercise 14.3.6 Prove the previous sentence and then understand why these
three one-parameter subgroups generate SO(3), thereby proving that p is onto.

Alternatively, compute the one-parameter subgroup p(e−i θ u·σ) in SO(3),
where u = (u1, u2, u3) is a unit vector in R

3 and σ = (σ1, σ2, σ3), the ‘vector’
of the three Pauli matrices. Also, we put u · σ := u1σ1 + u2σ2 + u3σ3. Then
use this result to prove that p is onto.

The last remaining property to prove about p is that it is two-to-one.

Exercise 14.3.7 ker p = {−I, I} implies that p is two-to-one. (Recall that
−I ∈ SU(2) so this statement does make sense.)

So we have to show that ker p = {−I, I}. It is clear that {−I, I} ⊂ ker p.
So take an arbitrary element U ∈ ker p, that is, p(U)X = UXU∗ = X for all
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X ∈ V . We have to show that U = ±I. Well, by taking X = σ3 we have that
Uσ3U

∗ = σ3 must hold. We write U in the form

U =
(

α β
−β∗ α∗

)
,

where α, β ∈ C and |α|2 + |β|2 = 1. So we calculate

Uσ3U
∗ =

(
α β

−β∗ α∗

)(
1 0
0 −1

)(
α∗ −β
β∗ α

)

=
(

α −β
−β∗ −α∗

)(
α∗ −β
β∗ α

)

=
( |α|2 − |β|2 −2αβ

−2α∗β∗ −|α|2 + |β|2
)

.

This matrix is equal to σ3 if and only if |α|2 − |β|2 = 1 and αβ = 0. Now the
second equality implies that either α = 0 or β = 0. But α = 0 together with
the first equality implies −|β|2 = 1, which has no solution. So we must have
β = 0 and |α|2 = 1. This means that U ∈ ker p must have the form

U =
(

α 0
0 α∗

)
,

where α ∈ C and |α|2 = 1. To learn more about α we use that U ∈ ker p
implies the equation Uσ1U

∗ = σ1. So we calculate

Uσ1U
∗ =

(
α 0
0 α∗

)(
0 1
1 0

)(
α∗ 0
0 α

)

=
(

0 α
α∗ 0

)(
α∗ 0
0 α

)

=
(

0 α2

(α∗)2 0

)
.

So this matrix is equal to σ1 if and only if α2 = 1, which has the two
solutions α = ±1. And this implies U = ±I, which concludes the proof that
ker p = {−I, I}. �

14.4 The Representations ρs

In this section we define the irreducible representations

ρs : SU(2) → Gl(Vs),

where the dimension of Vs is 2s + 1 for each s ∈ {0, 1/2, 1, 3/2, 2, . . . }. To
achieve this we define Vs to be the complex vector space of all homogeneous
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polynomials of degree 2s in the two indeterminants x and y, namely

Vs := spanC {xjy2s−j | j = 0, 1, . . . , 2s} =
{ 2s∑

j=0

aj xjy2s−j
∣∣ aj ∈ C

}
.

For our choice of s we have that 2s ≥ 0 is an integer and dimC Vs = 2s+1 ≥ 1.
Conversely, any integer n ≥ 1 can be written as n = 2s + 1 for a unique
s ∈ (1/2) N.

Let f =
∑2s

j=0 cjx
jy2s−j ∈ Vs be given, where each cj ∈ C. This gives

a polynomial function f : C
2 → C. Next for any U ∈ SU(2) consider the

composition

C
2 U−1

−→ C
2 f−→ C.

Then we define ρs(U)(f) by ρs(U)(f) := f ◦ U−1. The reason for using
U−1 here instead of U is given in the next exercise.

(Parenthetically, let me note for the cognescetti that ρs(U)(f) in category
theory is called the pull-back of f by U−1. The standard categorical notation
is ρs(U)(f) = f ◦ U−1 = (U−1)∗f , which clashes fatally with our notation ∗

for the adjoint. However, this viewpoint shows how the contravariant functor,
pull-back, is compensated by using U−1 instead of U .)

Exercise 14.4.1 Establish the following basic properties:

• Prove that f ∈ Vs implies that ρs(U)(f) ∈ Vs, that is, ρs(U) maps each
homogeneous polynomial of degree 2s to a homogeneous polynomial of
degree 2s.

• Prove that ρs(U) : Vs → Vs is linear.

• Prove that ρs : SU(2) → L(Vs) is a representation, that is, ρs(I) = I
and ρs(U1U2) = ρs(U1)ρs(U2).
Remark: The very last identity would not have worked out if we had
chosen U rather than U−1 in the definition of ρs(U).
Prove that ρs : SU(2) → Gl(Vs), the group of invertible linear maps
Vs → Vs and that ρs is a group morphism.

It remains to prove that ρs is irreducible. This result is somewhat more
complicated. The proof can be found in many basic texts on representation
theory of Lie groups. (One of my favorites is [22].) Or the reader can take it to
be a very challenging exercise. Moreover, it is also true that every irreducible
representation of su(2) “is equal to” ρs for some half-integer s. Of course,
the expression in quotes really means: isomorphic as a representation, which
is a something that must be defined. This is also quite difficult, but very
important since it says we have obtained a complete classification of all
possible spin states. Here is a more accessible exercise.

Exercise 14.4.2 Prove that ρs(−I) = I if and only if s is an integer. Prove
that ρs(−I) = −I if and only if s ∈ {1/2, 3/2, 5/2, . . . }, in which case we say



Spin and SU(2) 159

s is a half-integer. Hence, ρs factors through p : SU(2) → SO(3), and thus
gives an irreducible representation of SO(3), if and only if s is an integer.

14.5 ρs and Angular Momentum

While spin can be given a classical counterpart, it truly is a child of
quantum theory. The fact that the physically motivated SO(3) symmetries
of R

3 do not suffice for physics is rather amazing. The mathematical facts
are that SO(3) has SU(2) as its universal covering space and that SU(2)
has representations that do not come from SO(3). This could have all been
a very pretty mathematical theory with no relation to physics. But the basic
building blocks of everyday matter are electrons, protons, and neutrons, all
of which have spin 1/2. And the stability of that matter depends on the
Fermi-Dirac statistics of such states. Dark matter could be a totally new ball
game. We just don’t know. But to understand the fraction of the universe
that interacts strongly with us, we have to include representations of SU(2)
that do not come from SO(3). So all the heavy, abstract mathematics has a
big physics payoff.

What does the representation ρs have to do with angular momentum?
First, for the case when s ≥ 0 is an integer, ρs is equal (up to isomorphism)
to the irreducible representation of the real Lie algebra spanned by the three
operators (i�)−1Lx, (i�)−1Ly, (i�)−1Lz (the angular momentum operators
up to a multiplicative constant) restricted to the complex vector space spanned
by the spherical harmonics {Y s

m | − s ≤ m ≤ s} of odd dimension 2s + 1,
as introduced in the spherically symmetric 2-body problem which includes
the important special case of the hydrogen atom. Since the mathematics of
ρs for integer s ≥ 0 is identical (that is, isomorphic) with the mathematics
of angular momentum, it seems reasonable to suppose that the physics is
identical as well in this case. Second, for the case when s in not an integer,
we assume that this too is a type of angular momentum, called spin in this
case. To see that this is a reasonable assumption, we define S2 := S2

1 +S2
2 +S2

3

in analogy with L2 for orbital angular momentum.

Exercise 14.5.1 Prove that [S2, Sj ] = 0 for j = 1, 2, 3.

Now we want to see how S2 looks like in the representation ρs. Up to this
point ρs(S2) has not been defined. We remedy this as follows:

ρs(S2) :=
(
ρs(S1)

)2 +
(
ρs(S2)

)2 +
(
ρs(S3)

)2
.

Then it can be proved that ρs(S2) = s(s + 1)I, where I here is the identity
operator acting on Vs, though the proof might be beyond you. This formula
should remind you of how L2 acts on the spherical harmonics. In fact, all of
the formulas for the angular momentum operators in Chapter 12 have exact
analogues for all allowed values of s, if we put � = 1.

But what about the physically important case s = 1/2? It turns out that
a system with two spin 1/2 distinguishable particles (such as an electron and
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a proton, but not two neutrons) has the representation ρ1/2 ⊗ ρ1/2 of SU(2),
where ⊗ denotes the tensor product of representations. And ρ1/2⊗ρ1/2 acts on
C

2 ⊗C
2 ∼= C

4, where now ⊗ denotes the tensor product of vector spaces. (So
this is unintelligible for those without some inkling of what tensor products
are about. Anyway, this physically important situation motivates the study
of tensor products.) But something a bit untoward happens. Even though
ρ1/2 is irreducible, the tensor product ρ1/2 ⊗ ρ1/2 is not irreducible. In fact,
there is a direct sum decomposition C

4 = C
1 ⊕ C

3 such that

ρ1/2 ⊗ ρ1/2 = ρ0 ⊕ ρ1,

where ρ0 with s = 0 acts on the first summand C
1 ∼= C of dimension 2s+1 = 1

while ρ1 with s = 1 acts on the second summand C
3 of dimension 2s+1 = 3.

We say that we have a singlet state with spin 0 and a triplet of states with
spin 1. The idea is that since we get angular momentum (according to the
previous paragraph) by combining two spin 1/2 states, then it is plausible to
think that spin 1/2 itself is a type of angular momentum. So a mathematical
formalism leads to a physical interpretation, which then in practice works
quite well.

14.6 Magnetism

How do we see spin in experiments? One technique is to measure the angular
correlations among the tracks of products of radioactive decays, a fascinating
story in its own right. But another way is via interactions with magnetic
fields. It turns out that some spin 1/2 particles not only have electric charge,
but also a magnetic moment. This can be thought of as a miniature compass
needle that tends to align with any ambient magnetic field. Even the neutron
with zero electric charge has a non-zero magnetic moment. And any nucleus
with non-zero spin has a non-zero magnetic moment. One example of this is
the most common nucleus of a hydrogen atom: a proton.

The way this works in classical physics is that the magnetic moment is a
vector −→μ = (μ1, μ2, μ3) that interacts with a magnetic field

−→
B = (B1, B2, B3)

to give an interaction magnetic energy E = −−→
B ·−→μ = −(B1μ1+B2μ2+B3μ3).

(The negative sign is a convention made so that for a given magnetic field the
energy is minimized when the magnetic moment points in the same direction
as the magnetic field.) The non-trivial step is to quantize this. The way to
do this for an electron is to replace −→μ with μ̂ defined by

μ̂ := g
qe�

2me
Ŝ,

where qe < 0 is the electric charge of an electron, me is the mass of an
electron, g is a dimension-less, real quantity known as the Landé g-factor of
an electron and

Ŝ := (S1, S2, S3)
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is the vector whose entries are the three 2× 2 spin matrices. (The expression
μB := −qe�/2me is known as the Bohr magneton. So, μ̂ = −g μB Ŝ.) Then
the quantum Hamiltonian is defined by

H := −−→
B · μ̂ = −g

qe�

2me
(B1S1 + B2S2 + B3S3),

which is a 2 × 2 self-adjoint matrix since the components of
−→
B are real. All

of this is valid for a magnetic field that varies in space and in time. If all this
seems very implausible to you as it originally did to me, just remember that
this is the sort of imaginative theorizing that led to a Nobel prize. Because
it all works out!

A simple case is a time independent, constant (in both magnitude and
direction) magnetic field, say

−→
B = (0, 0, B). Then the dynamics is obtained

from the unitary group

e−itH/� = eitgqeBS3/2me =
(

eitgqeB/4me 0
0 e−itgqeB/4me

)
.

(Recall that S3 = σ3/2.) The time evolution of the state

ψ↑
3 =

(
1
0

)

is e−itH/�ψ↑
3 = eitgqeB/4meψ↑

3 , which gives just a trivial phase factor and so
is the same state ψ↑

3 . But the time evolution of the state

ψ↑
1 = 2−1/2

(
1
1

)
,

an eigenvector of S1 with eigenvalue 1/2, is not trivial, but rather is

ψt := e−itH/�ψ↑
1 = 2−1/2

(
eitgqeB/4me

e−itgqeB/4me

)
= 2−1/2

(
eiωBt

e−iωBt

)
,

where ωB := gqeB/4me. So a measurement of S1 in this time dependent state
ψt yields +1/2 with probability

P (S1 = 1/2 |ψt) = 〈ψt, PS1({1/2})ψt〉
= |〈ψ↑

1 , ψt〉|2
= |2−1(eiωBt + e−iωBt)|2
= cos2(ωBt)

=
1
2
(1 + cos(2ωBt)),

a time dependent probability which oscillates between 0 and 1 with angular
frequency 2ωB . The first two equalities in this calculation are fully justified
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in Chapter 16. (Or the reader may be more quickly pleased by the remark
that 〈ψ↑

1 , ψt〉 is the probability amplitude for finding the state ψt in the state
ψ1, which is the eigenvector for S1 with eigenvalue 1/2, and thus |〈ψ↑

1 , ψt〉|2
is the corresponding probability. This way the first step in this calculation
can be skipped.) Clearly,

P (S1 = −1/2 |ψt) = 1 − P (S1 = 1/2 |ψt) = sin2(ωBt) =
1
2
(1 − cos(2ωBt)),

which also oscillates between 0 and 1 with angular frequency 2ωB . The other
eigenvector of S1 as well as the eigenvectors of S2 have the same oscillatory
time dependence with angular frequency 2ωB .

The Landé g-factor of an electron is bit larger than 2, closer to 2.002319,
while the muon g-factor is around 2.002332 and is definitely not equal to that
of an electron. (A muon is a particle that is rather like an electron though
with much larger mass.) The analysis we have done can readily be adapted
to other particles with a magnetic moment, provided that the appropriate
Landé g-factor, mass and charge are used.

This mathematics of spin is what is behind nuclear magnetic resonance
(NMR) and its technological offshoot, magnetic resonance imaging (MRI),
which has many applications in medicine among other sciences. It is also the
theory that accounts for the Zeeman effect and the Stern-Gerlach experiment.
Quantum computation based on spin systems is also understood in terms of
this mathematical language, which is found in the very nice text [21].

14.7 Notes

H. Weyl published the book Gruppentheorie und Quantenmechanik [35] in
1928. This remarkable achievement either went unnoticed or was disparaged
as ‘Gruppenpest’, a plague of groups. E. Noether’s famous theorem relating
symmetries in classical physics to conservation laws appeared in 1918, well
before modern quantum theory. It seems hard to believe that so little interest
and so much antagonism was paid to these ideas for so long. Of course,
W. Pauli was not shy about introducing his eponymous matrices in order to
explain spin.

But a most amazing upshot of this emphasis on using Lie groups in physics
is that it provides a new mathematical structure for describing what are
otherwise ambiguously defined, basic constituent states of matter. These basic
states are identified with the unit vectors in a Hilbert space on which an
irreducible unitary representation of a Lie group acts. The mathematics of
unitary representations acting on a Hilbert space is far beyond the scope of
this introductory book, but it must be remarked that it is a central aspect
of quantum theory. This seminal breakthrough is due to E.P. Wigner in [37]
for a particular Lie group, the Poincaré group of special relativity theory.

For an up-to-date reference on the relation of groups to quantum theory
I highly recommend the recent, voluminous tome [38] by P. Woit. Also, the



Spin and SU(2) 163

presentation in [22] is quite nice, but it only takes one up to the early 70’s.
A definite, encyclopedic text of the pure mathematics of Lie theory is the
classic [31].

Folk wisdom says that one should not do quantum theory without having
a quantum Hamiltonian in hand. At my own peril I have not paid much heed
to that advice in this book. Besides the Hamiltonians for the one-dimensional
harmonic oscillator and the hydrogen atom (plus some simple Schrödinger
operators in the exercises), we have now added that for a particle with
magnetic moment in a magnetic field. And there will be no others. As I
remarked earlier, a lot of understanding comes from a hand-on approach to
solving or approximating the Schrödinger equation in many concrete examples.
It is how we understand crystals, molecules, semi-conductors, lasers,
superconductivity, and the Periodic Table. An excellent reference for some of
this is [3] on solid state physics. I encourage my readers to pursue the paths of
their interests beyond the limitations of this book. It is not an exaggeration
to say that the variety of applications of quantum theory is due to the variety
of quantum Hamiltonians.



Chapter 15

Bosons and Fermions

Yin and Yang.
Ancient Chinese concepts

The rest of this book is dedicated to the quantum theory of a one-body (or
one-particle) system. Even the hydrogen atom, which is called the quantum
two-body problem, reduces to two one-body problems: one for the center
of mass of the two bodies and one for an electron (with a slightly adjusted
mass) interacting with the external potential energy generated by the electric
charge of a proton located at a fixed position. However, we must make some
mention in this short chapter of how multi-body problems are handled.

15.1 Multi-particle Statistics

The general theory of multi-particle systems depends on the types of the
particles involved. It turns out that there are two basic types of particles:
bosons and fermions. We have already seen this dichotomy when we discussed
spin. Recall that in units with � = 1 bosons have spin that is an integer n ≥ 0,
while a fermion has half-integer spin n + 1/2, where n ≥ 0 is an integer. But
the important difference for multi-particle systems is that each of these two
particle types has its own statistics. This is an unfortunate, and unchangeable,
choice of terminology.

The bosons satisfy Bose-Einstein statistics. This starts with a Hilbert
space H that describes the one-body system of a boson. Then to describe
the n-body system with n ≥ 2 identical bosons one forms states ψ1 ◦ · · · ◦ψn

where each ψj ∈ H. The ‘tricky bit’ is to understand what the product ◦
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is and then how these states combine to form an associated Hilbert space,
denoted as H ◦ · · · ◦ H with n factors. Sweeping these important technical
details to a side, let’s simply note that the symmetric product ◦ satisfies

ψ1 ◦ · · · ◦ ψi ◦ · · · ◦ ψj ◦ · · · ◦ ψn = ψ1 ◦ · · · ◦ ψj ◦ · · · ◦ ψi ◦ · · · ◦ ψn

for all pairs of integers i, j for which 1 ≤ i < j ≤ n. We describe this by saying
that the state does not change under the interchange of any pair of identical
bosons. This interchange property is the essential ingredient of Bose-Einstein
statistics.

Fermions satisfy Fermi-Dirac statistics. This also starts with a Hilbert
space H that describes the one-body system of a fermion. Then to describe
the n-body system with n ≥ 2 identical fermions one forms states ψ1∧· · ·∧ψn

where each ψj ∈ H. As before the ‘tricky bit’ is to understand what this new
product ∧ is and then how these states combine to form an associated Hilbert
space, denoted as H∧ · · · ∧H with n factors. Continuing to sweep important
technical details to a side, we note that the wedge product ∧ satisfies

ψ1 ∧ · · · ∧ ψi ∧ · · · ∧ ψj ∧ · · · ∧ ψn = −ψ1 ∧ · · · ∧ ψj ∧ · · · ∧ ψi ∧ · · · ∧ ψn

for all pairs of integers i, j for which 1 ≤ i < j ≤ n. We describe this
by saying that the state changes sign under the interchange of any pair of
identical fermions. This interchange property is the essential ingredient of
Fermi-Dirac statistics. You may have already seen the wedge product in the
study of differential forms in an advanced calculus course or in a differential
geometry course.

Of course, at a mathematical level inner products must be defined for
these new Hilbert spaces, and they must be proved to be complete. The
technical details require a clear understanding of how to construct the tensor
product of Hilbert spaces even though neither of these new Hilbert spaces is
a tensor product. We leave those details to other texts.

More importantly, at a physical level one must grapple with the idea that
identical ‘particles’ are really and truly (that is, fundamentally) identical.
Such a concept is not found in classical physics. For example, a dust particle
in a dust storm is distinguishable from all the other nearby dust particles by
its shape, mass, velocity, angular momentum, and (if none of the previous
apply) its position. But electrons in a cloud, just as one example, are not so
distinguishable. As a concrete case, the electrons in a solid crystal form such
a cloud of identical fermions. With all due respect to those ancient Greeks
who advocated an atomic theory of matter, I do not think they were talking
about bosons and fermions.

There is also a curious duality going on here. Each of the fundamental
particles of the standard model of particle physics is either a boson or a
fermion. Of course. But something else is also true. It turns out that all of
the building blocks of ordinary matter are fermions, and all the mediators of
interactions are bosons. So the two standard modes of scientific explanation,
the material cause, and the effective cause of Bacon are described by two very
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distinct, mathematically precise Hilbert spaces, each with its own statistics.
I am led to think that somehow this did not have to be so. Certainly, Bacon
could not have had this in mind when he advocated in favor of his new
logic. And these are complementary aspects of physical reality. After all,
matter without interactions is undetectable. And interactions without matter
is almost inconceivable. This neat duality may not hold for the so-called dark
matter, about which we know almost nothing. For example, we do not know
whether quantum theory applies to dark matter. We do not know how that
will play out.

15.2 Notes

The words boson and fermion were coined by Paul Dirac. The classification
of all matter and interactions in terms of just these two concepts is one of
the greatest discoveries ever in physics, although dark matter might not be
so classified. Three of the physicists whose names appear in the expressions
“Bose-Einstein statistics” and “Fermi-Dirac statistics” received the Nobel
prize. The one who did not, although he was nominated several times, was
S.N. Bose, who was also the only one not born in Europe.

To understand why spin and statistics are so intimately linked is beyond
the scope of this book. It is a consequence of quantum field theory, where the
result is known as the Spin-Statistics theorem.

Another aspect unique to the quantum theory of multi-particle systems
is entanglement. There is nothing like this in classical theory. But this is one
among many other advanced topics in quantum theory which we will not
discuss, except to say that its experimental success is another reason why
quantum theory has replaced classical theory. The curious reader is invited
to consult the extensive literature on this.



Chapter 16

Classical and Quantum
Probability

Curiouser and curiouser.
Lewis Carroll

This chapter requires much more mathematical sophistication. It is crucial,
however, for the understanding of the profound difference between classical
probability and quantum probability. In my opinion it is quantum probability
and nothing else that makes quantum theory so strange and difficult to grasp.
Whatever else it is, quantum probability is not classical probability. Hence,
Einstein’s oft-quoted critique of quantum theory, namely that “the Old One
does not play dice”, is quite true, though not in the way he meant, since
playing dice is described purely by classical probability. So I start this chapter
with a review of the basics of classical probability in order to contrast it with
quantum probability. As I said in the Preface, this is the most important
chapter in this book. Undoubtedly, it is the most difficult.

16.1 Classical Kolmogorov Probability

The perfectly respectable scientific theory of classical probability was born in
1654 in an exchange of letters between P. Fermat and B. Pascal about games
of chance, especially dice. In 1657 C. Huygens published the first book on the
topic, where he explained expected value. It took almost 280 years to arrive
at the modern theory of classical probability as axiomatized by Kolmogorov
in 1933. (See [18].) At a mathematical level, this is a special topic within
measure theory. However, the actual details of this specific topic give it a
sweet, wonderful flavor that is quite distinct from the unpalatable sawdust
of pure measure theory.
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Here is a crash course on the Kolmogorov axiomatization. We start with
the first case where we have a finite set Ω whose elements are interpreted
to be the elementary results of seemingly identical experiments. The whole
point of probability theory is that identical situations can produce a variety
of different results, or as they are commonly called: outcomes. Why this is so,
and even how this might be so, is not the business of probability theory, but
rather its starting point. So we suppose that the set of outcomes contains at
least n ≥ 2 elements, say Ω = {ω1, . . . , ωn}. We further suppose that each of
the possible outcomes ωk has an experimentally measurable frequency fk of
occurring, that is, in N measurements of the identical experiments which give
nk occurrences of the outcome ωk the ratio nk/N approaches the number fk

as N becomes large. Clearly, 0 ≤ fk ≤ 1 and f1 + · · · + fn = 1 hold. That’s
on the experimental side.

On the theoretical side we suppose that there are real numbers pk, for
1 ≤ k ≤ n, associated with each possible outcome ωk. We want these numbers
pk to correspond to the experimental quantities fk. So we require that these
numbers satisfy 0 ≤ pk ≤ 1 and p1 + · · · + pn = 1. We include the limiting
cases pk = 0 and pk = 1 for theoretical completeness. If ωk never occurs (and
so should not have been included in Ω, but was anyway), then we put pk = 0.
If ωk always occurs (and so none of the other outcomes in Ω ever occurs),
then we put pk = 1. We also think of every subset E ⊂ Ω as an event and we
define the probability of the event E to be

P (E) :=
∑

k : ωk∈E

pk. (16.1.1)

So we have the probability measure P : Pow(Ω) → [0, 1], where Pow(Ω) is
the set whose elements are all of the subsets of Ω. The probability measure
P satisfies P (∅) = 0, where ∅ denotes the empty set (since by convention the
sum over an empty index set is 0), and it satisfies

P (E1 ∪ E2) = P (E1) + P (E2) (16.1.2)

for any pair of events E1, E2 such that E1 ∩E2 = ∅. (In such a case one says
that the events E1 and E2 are disjoint.)

Exercise 16.1.1 Prove that 0 ≤ P (E) ≤ 1, P (Ω) = 1 and that (16.1.2)
holds.

The classical example of this case is the tossing of two dice. Each die
(singular of ‘dice’) is a cube with each of its six sides labeled with a number
of dots that goes from 1 to 6 dots. The ‘experiment’ is to toss the dice
onto a horizontal plane surface and wait until they come to rest. The pair
of numbers that are on the top side of the dice is the outcome. This means
we can put Ω = S × S where S = {1, 2, 3, 4, 5, 6}, giving 62 = 36 possible
outcomes. We can now assign probabilities pk to these 36 outcomes in many,
many ways. However, if we think that the dice are fair and neither affects the
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other, then we put pk = 1/36 for each outcome. We can check whether actual
physical dice conform to this probabilistic model by tossing them many times
to see whether the measured frequency of each outcome is reasonably close to
the theoretical value of 1/36. The science for making this sort of assessment
is statistics about which I will have nothing further to say. Of course, the
manner in which the dice are tossed may influence the validity of this model.
I was once told by a rather street smart person to never trust someone who
just tosses dice down onto the sidewalk, but that I should insist that they
bounce the dice off a wall! Behind this advice is the idea that the motion
of the dice is described by a deterministic, classical mechanics model which
must include friction forces. Since the initial conditions of the dice at the
moment of release are not usually controlled, a probabilistic model is used in
such circumstances. But with practice one might have enough control over
the initial conditions to get any desired outcome if the dice are tossed onto
a horizontal uniform surface. However, when tossed against a wall, one can
not expect to control the angle of impact against it, and so a probabilistic
model is adequate. I suppose that this sort of classical probability model is
what Einstein was referring to in his famous quote.

The second case is to allow the set of outcomes Ω to be an infinite, discrete
set, which is almost the same notation: Ω = {ω1, . . . , ωn, . . . }. Again, we
suppose that there is a real number pk ∈ [0, 1] associated with each possible
outcome ωk and that

∑∞
k=1 pk = 1. Again, we define the probability measure

P : Pow(Ω) → [0, 1] by (16.1.1), but now the index set of the summation can
be infinite. Then we have P (∅) = 0 and

P (∪j∈JEj) =
∑

j∈J

P (Ej). (16.1.3)

provided that Ek ∩ El = ∅ whenever k 
= l. And now the index set J can be
finite or countably infinite.

Exercise 16.1.2 Prove for this second case that 0 ≤ P (E) ≤ 1, P (Ω) = 1,
P (∅) = 0 and (16.1.3).

One famous example of this second case is the Poisson distribution. In
this case Ω = N = {0, 1, 2, . . . }, the non-negative integers. The experiment
typically consists in counting the number of ‘random’ events that occur in a
given time period, such as the number of cosmic rays that arrive at a fixed
detector per hour or the number of beta decays per hour of a radioactive
substance. Suppose that the average value of such a count is the real number
m > 0. (Recall that the average value of an integer valued quantity can be
any positive real number as, for example, the average number of children per
family can be 2.4.) For the Poisson distribution with parameter m > 0, the
theoretic probability model is

pk := e−m mk

k!
(16.1.4)
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for each outcome k ∈ Ω = N. Justification for this formula, given certain
hypotheses, can be found in elementary texts on probability theory.

Exercise 16.1.3 For the Poisson distribution as given in (16.1.4) verify that
this is actually a probability model, namely that pk ∈ [0, 1] and

∑
k∈N

pk = 1.
As a challenge try proving that the mean value, defined to be

∑
k∈N

k pk, is
equal to m. This says the parameter m of the probability model corresponds
to the experimentally determined average (or mean) value of an ensemble of
outcomes.

For the general case of classical probability, which includes as special cases
the previous two cases, one starts with an arbitrary non-empty set Ω, which
is called the sample space. One lets F be a collection of subsets of Ω such
that

• ∅,Ω ∈ F . We have denoted the empty set by ∅.
• If E ∈ F , then the complementary set satisfies Ω \ E ∈ F , where

Ω \ E := {ω ∈ Ω |ω /∈ E}.
• Whenever Ej ∈ F for all j ∈ J , any finite or countably infinite index

set, then their union satisfies ∪j∈JEj ∈ F .

One says that F is a σ-algebra in Ω and that an element E ∈ F is an event.
In this most general case, we do not assign probabilities to the elements of
Ω, but rather directly to the events. In other words, we suppose there is a
function P : F → R, called the probability measure, such that

• 0 ≤ P (E) ≤ 1 for all E ∈ F .

• P (∅) = 0 and P (Ω) = 1.

• Whenever Ej ∈ F for all j ∈ J , any finite or countably infinite index
set, is a disjoint family (that is, Ej ∩ Ek = ∅ for all j 
= k), then

P (∪j∈JEj) =
∑

j∈J

P (Ej).

We read P (E) as “the probability that the event E occurred” or more
simply as “the probability of E”. The triple (Ω,F , P ) is called a (classical)
probability space. In analogy to quantum theory P is also called a state.

If we take Ω = R and no σ-algebra is indicated, then implicitly it is
understood that we are taking F to be the Borel σ-algebra B(R), which by
definition is the smallest σ-algebra of subsets of R that contains all of the
open intervals in R. We say that B ⊂ R is a Borel set if B ∈ B(R). If you
have never heard of Borel sets, then do not worry, since every set you will
ever see is a Borel set.

A famous example, which is not covered by the first two cases, is the
Gaussian probability measure defined on Ω = R. For this there are two
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parameters, a real number μ ∈ R and a positive real number σ > 0. The
Gaussian probability of the open interval (a, b), where a < b are extended
real numbers (that is, a, b ∈ [−∞,∞]), is given by

P
(
(a, b)

)
=

1√
2πσ2

∫ b

a

e(x−μ)2/(2σ2) dx. (16.1.5)

Those who understand a lot of measure theory understand that this extends
in a unique way to a definition of a probability measure P (B) defined for
every Borel subset B of R. But in practice (16.1.5) is all you need to know.

Exercise 16.1.4 For the Gaussian probability measure defined in (16.1.5)
prove that P (R) = 1. (Hint: R = (−∞,∞).)

For those who know measure theory, try showing that P ({a}) = 0 for any
a ∈ R, where the singleton set {a} ⊂ R is the (Borel, of course) subset of R

that contains only one element, namely a.

Exercise 16.1.5 Prove there exists a subset of R which is not a Borel set.
Warning: This is an extremely non-trivial problem that requires some rather
advanced mathematical tools. Don’t be disappointed if it is beyond you. And
besides you will never be needing this bizarre fact.

Exercise 16.1.6 Let (Ω,F , P ) be a probability space. Prove that for all E ∈
F we have that P (Ω \ E) = 1 − P (E).

A measured real-valued quantity of a system, which is being described
probabilistically, is modeled by a random variable which is defined to be a
measurable function X : Ω → R meaning that X−1(B) ∈ F for all Borel
subsets B ⊂ R. Recall from set theory that the inverse image of B by X
is defined to be X−1(B) := {ω ∈ Ω |X(ω) ∈ B}. In this context X−1(B)
is called the event that X takes a value in B. We recall something we have
already seen in Section 8.2.

Definition 16.1.1 The expected value of a random variable X : Ω → R is
E(X) = 〈X〉 :=

∫
Ω

X(ω)P (dω) provided that this integral exists.

Exercise 16.1.7 Find a formula for E(X) in the context of Exercise 16.1.2.
This should convince you that the definition of E(X) is reasonable.

Exercise 16.1.8 Let X : Ω → R be a random variable for the probability
space (Ω,F , P ). Show that B(R) � B �→ P (X−1(B)) =: (X∗P )(B) is a
probability measure on R.

For those who know measure theory show that E(X) =
∫

R
λ (X∗P )(dλ)

and, more generally, that the nth moment E(Xn) =
∫

R
λn (X∗P )(dλ) for

every integer n ≥ 0 provided the relevant integrals exist.

We say that X∗P is the (probability) distribution induced by X on R. (Or in
the language of category theory, that X∗P is the push-forward of P by the
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random variable X.) But more importantly, (X∗P )(B) is interpreted as the
probability of the event that X takes a value in B ⊂ R.

The overwhelming success of probability theory is due in no small measure
to its amazing range of applications in all areas of modern science. And
this success arises from a nearly universal aspect of these applications. And
what is that aspect? It is incomplete knowledge. The ideal of having complete
knowledge at some moment of time about a physical, chemical, biological or
economic system is rarely realized. So even though a deterministic approach
may seem to be appropriate, in practice this just can not be carried out. This
is because determinism requires complete knowledge at some moment in time
in order to be able to predict what will happen at later times.

Now incomplete knowledge can be described more positively as partial
information. And partial information about what is happening at some time
should help us to understand something, if not everything, about what will
happen at some later time. And this is what classical probability theory
sets out to do. Moreover, this admirable goal quite often yields rather good,
though less than ideal, results.

But it also gives us a way of thinking about probability. For example, if
we can increase our information about a particular situation, we can change
our probabilistic analysis to yield even better results. As a specific example,
if horse racing is not being fixed behind the scenes (which in general is true,
I believe), then getting ever more information about the horses allows you
to improve your chances of winning at the race track without ever arriving
at complete certainty of winning. This is consistent with the notion that
increasing our information to the maximum possible should give us complete
information about what happens at future times. Of course, this can be
checked experimentally to some extent, namely it can be falsified. Continuing
with the example above, the fact that some people are able to win consistently
at the horse track, by digging up more and more information on the horses,
leads me to my belief that horse racing in general is not fixed.

There are two types of events of special interest in classical probability.
First, if P (E) = 0, then E is interpreted as an event which never occurs.
On the other hand if P (E) = 1, then E is interpreted as an event which
always occurs. In either case we have complete knowledge about the event E.
Such an event is called a deterministic event. We know all of its properties,
whatever reasonable meaning we care to give to ‘property’. Of course, we
do not introduce the machinery of classical probability theory just to study
these deterministic events. But they are there. And they are the limiting, ideal
cases as knowledge is increased to be used to construct ever more accurate
probability theories that approximate some underlying deterministic theory.

However, verifying determinism directly seems to be out of the question.
After all, how can one know that there exists some missing information, if we
do not have that information? Nonetheless, so long as a deterministic basis
yields good results, there is no reason to use any other approach.
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And there’s the rub! Quantum theory involves a probability theory that
does not admit improvements with ever more available information, let alone
with complete knowledge. The maximum possible information of a quantum
system is encoded in the quantum state of the system. And that’s it, no
more. (And sometimes not even all of this information is available, but more
on that later.) So, even with full knowledge of the quantum state, the theory
remains probabilistic. No deterministic limiting case is there to be achieved,
not even in principle. It can be difficult to wrap one’s mind around this.

Therefore this is not consistent with the approach of classical probability
theory. Then it should be no surprise to learn that a new type of probability
comes into play. This is called quantum probability. And it is quite different
from classical probability. An ongoing problem is that valid notions formed
while learning classical probability do not always remain so when introduced
into quantum probability. Here is what I consider to be the most important
example of that. In classical probability a la Kolmogorov any two distinct
measurements, corresponding to the random variables X and Y respectively,
have a joint probability distribution P (X−1(B1) ∩ Y −1(B2)), which does not
depend on the time order of the two measurements. Here B1 and B2 are Borel
subsets of R. So, X−1(B1)∩Y −1(B2) is the event that X takes a value in B1

and Y takes a value in B2. As we shall see in detail in Section 16.10, there is
no construction like this in general in the quantum theory of two observables
that do not commute. For non-commuting quantum observables there is no
joint probability distribution. Rather in quantum theory the order in which
two such measurements are performed in time will non-trivially impact their
individual probability distributions.

16.2 Quantum Probability

Now one major difference in quantum probability is that to get numbers
in [0, 1], which are to be compared with experiment, we need a quantum
observable A (that is, a self-adjoint operator acting in some Hilbert space),
a quantum state ψ of the system and a (Borel) subset B of the real line R.
(For measure theory challenged readers, just think of B as an open interval
(a, b) = {r ∈ R | a < r < b} with a < b being real numbers.) For a system in
the state ψ, we want to know what is the probability that a measurement of
A lies in the set B. We denote that as

P (A ∈ B |ψ) ∈ [0, 1]. (16.2.1)

This notation looks like the notation for a conditional probability in classical
probability theory, that is, the probability of the quantum event A ∈ B given
that the system is in a quantum state ψ. Our goal is to define mathematically
this new type of probability which for now appears in (16.2.1) as a new
notation only. However, (16.2.1) will include (10.1.2) as a special case.

We already know what A, B, and ψ are. But what about a quantum
event? Well, a classical event E ∈ F corresponds to its characteristic function
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χ ≡ χE , which satisfies χ = χ∗ = χ2. Conversely, every such real-valued
(Borel) function χ equals χE for a unique E ∈ F . This helps to motivate the
following.

Definition 16.2.1 A quantum event for a quantum theory that is based on
a Hilbert space H is a projection operator E acting on H. We recall that a
projection operator E is a linear operator E : H → H which is self-adjoint
(that is, E∗ = E) and idempotent (that is, E2 = E).

As we have seen in Chapter 9 each quantum event E determines a closed
subspace of H, namely its range Ran E. Conversely, to every closed subspace
S of H there is a unique quantum event E whose range is S, that is to
say, S = RanE. So, an alternative definition is that a quantum event is
any closed subspace of H. Definition 16.2.1 actually looks more natural after
one has studied the spectral theorem for self-adjoint operators. Here is one
version of the spectral theorem. It relates self-adjoint operators to quantum
probability. For the rest of this Chapter we assume the Hilbert space H 
= 0.

Theorem 16.2.1 (Spectral Theorem) Suppose A is a densely defined
self-adjoint operator defined in a Hilbert space H. Then there exists a unique
projection valued measure (or pvm), denoted by PA, such that
A =

∫
R

λdPA(λ).

It may seem preposterous, but this theorem is saying that A is diagonalizable.
But to understand all this, we must attend to the mundane business of giving
more definitions.

Definition 16.2.2 A projection valued measure (pvm) in a Hilbert space H
is a function P : B(R) → L(H), where L(H) is the space of all (bounded!)
linear maps T : H → H, that satisfies the following:

• P (B) is a projection for all B ∈ B(R), that is, for all Borel subsets B
of R. Equivalently, P (B) is a quantum event for all Borel subsets B.

• P (∅) = 0 and P (R) = I, the zero and identity map of H, respectively.

• If Bj for j ∈ J , a finite or countably infinite index set, is a disjoint
family of Borel subsets (that is, Bj ∩ Bk = ∅ for j 
= k), then

P (∪j∈JBj) =
∑

j∈J

P (Bj)

in the sense that
P (∪j∈JBj)φ =

∑

j∈J

P (Bj)φ

for all φ ∈ H with the convergence of the sum on the right side of the
last equation (when J is infinite) being with respect to the norm of the
Hilbert space H.
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This is very analogous to a probability measure, except now the values of
the ‘probabilities’ are quantum events (≡ projections) instead of being real
numbers between 0 and 1. For example, suppose that we are considering a
quantum observable A and a Borel subset B of the real line R. Then the
expression PA(B) has a physical interpretation, namely it is the quantum
event that says a measurement of A has resulted in a measured value in the
subset B. We say that the quantum event PA(B) is the quantum probability
of A being in B. Despite this (more or less?) intuitive physical interpretation,
the mathematical object PA(B) is not a number in [0, 1], which we could then
compare with a relative frequency measured in experiment.

The point of the first part of Exercise 9.3.20 is that the projections lie
between the extreme values 0 and I (which are projections themselves) in
analogy with the values of a classical probability measure, which lie between
the real numbers 0 and 1. In particular, we have that 0 ≤ P (B) ≤ I for
any pvm P , where ≤ is the partial order for self-adjoint operators. (See
Exercise 9.3.16.) Moreover, the limiting cases P (∅) = 0 and P (R) = I are the
quantum events that never occur and that always occur, respectively. This
is analogous to a classical probability measure P for which P (∅) = 0 and
P (Ω) = 1 are the limiting values corresponding to the classical events that
never occur and that always occur, respectively.

Since this is a sort of measure theory, there should be integrals lurking
around. In the first instance the goal of measure theory is to define integrals
and establish their properties. This simple fact is usually lost in a blizzard of
technical details that is the standard mathematics course in measure theory.
Yet another fact often omitted in such courses is that the full generalization
in analysis of the purely algebraic concept of finite sum is not infinite sum,
but rather integral. Small wonder that integrals are so important. Infinite
sums as well as finite sums are just special cases of integrals. But I digress.

So, the expression
∫

R
λ dPA(λ) in Theorem 16.2.1 is just the integral of

the real-valued function R → R that maps λ to λ (the identity function) but
integrated with respect to the pvm PA. The generalized measure theory gives
this integral a meaning (actually as a densely defined self-adjoint operator),
and then the Spectral Theorem 16.2.1 asserts that this integral is exactly the
densely defined self-adjoint operator A itself.

The Spectral Theorem 16.2.1 has a converse, which says that for any pvm
P on R we can define an operator A via the formula A :=

∫
R

λ dP (λ). Then
A is a densely defined, self-adjoint operator whose uniquely associated pvm
PA satisfies PA = P . In short, there is a bijective (i.e., one-to-one and onto)
correspondence between densely defined, self-adjoint operators and pvm’s
defined on R. So, we can pass freely in a discussion back and forth between
the analytic object A and the quantum probabilistic object PA.

We have yet to produce real numbers in the interval [0, 1] that can then
be compared with experimentally measured frequencies. It is about time to
do this. The idea behind this was first published by M. Born.
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Definition 16.2.3 (Born’s rule) Let E be a quantum event and ψ be a
quantum state. Then the probability that the event E occurs when the system
is in the state ψ is defined to be

P (E |ψ) := 〈ψ,Eψ〉. (16.2.2)

This definition had better give us a real number in [0, 1].

Exercise 16.2.1 Prove that P (E |ψ) = ||Eψ||2. Using this identity show that
0 ≤ P (E |ψ) ≤ 1.

A minor technical point should be dealt with as well. In the next exercise
you are asked to prove that P (E |ψ) depends only on the state represented
by the equivalence class of norm 1 vectors determined by ψ.

Exercise 16.2.2 Suppose that ψ1 and ψ2 with ||ψ1|| = ||ψ2|| = 1 represent
the same state, that is ψ1 = λψ2 for some complex number λ that satisfies
|λ| = 1. Prove that P (E |ψ1) = P (E |ψ2).

Quantum theory is mostly a linear theory. For example, it is a theory of
linear operators acting in a Hilbert space, and the time evolution is given
by the linear Schrödinger equation. But Born’s rule (16.2.2) for computing
probabilities of an event E is not linear in ψ, the solution of the Schrödinger
equation. This non-linearity of quantum theory seems to be basic.

Note that a quantum event E is a self-adjoint operator by definition, that
is, it itself is a quantum observable. (Strictly speaking, super-selection rules
exclude certain self-adjoint operators, and in particular certain projections,
from being associated with experimental observables. But super-selection
rules do not occur in the quantum theory of many systems, including all
those considered in this book.)

Exercise 16.2.3 Let E be a quantum event in a Hilbert space H. Prove that
the spectrum Spec(E) is a subset of the two-point subset {0, 1} of R. There are
exactly four subsets of {0, 1}, and the reader may wish to accept the challenge
to prove that all four of these possibilities occur.
Hint: By functional analysis the spectrum of E consists only of eigenvalues.
If you can not prove that statement, then simply assume it is so and then
find all possible eigenvalues.

So the measured values of E are either 0 or 1. We interpret 0 as saying
that the event E did not occur and 1 as saying that E did occur. Notice
that P (E |ψ) = 〈ψ,Eψ〉 can also be interpreted as the expected value of the
observable E in the state ψ. In some formulations of quantum theory, there
are self-adjoint operators that do not correspond to physical observables.

Nonetheless a quantum event is usually understood to represent a special
type of physical observable known as a Yes/No experiment which answers a
question with Yes meaning that 1 was measured and No meaning that 0 was
measured. The exact question being asked is: “Is the system in a state that
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is in the range of E?” Note that the answer does not concern the initial state
of the system (which is often unknowable) but rather is about the final state
after the measurement has been made. The answer Yes means that the final
state is in the range of the quantum event E, while the answer No means
that the final state is in the range of the quantum event I − E.

For the case E = 0, the zero operator, (which is a projection) we have
Spec(0) = {0} (recalling that the Hilbert space H 
= 0) and P (0 |ψ) = 0 for
all states ψ. Therefore E = 0 is an event which never occurs, no matter what
the state is.

For the case E = I, the identity operator, (which is a projection) we have
that Spec(I) = {1} and P (I |ψ) = 1 for all states ψ. So, E = I is an event
which always occurs, no matter what the state is.

Exercise 16.2.4 Let E be a quantum event with E 
= 0 and E 
= I. Prove
that Spec(E) = {0, 1}.
So all the intermediate events 0 < E < I will occur for some states and will
not occur for some (other) states. There are three mutually exclusive cases
here for the state ψ:

• ψ ∈ Ran E, in which case ψ is an eigenvector of E with eigenvalue 1
and so P (E |ψ) = 〈ψ,Eψ〉 = 〈ψ,ψ〉 = 1.

• ψ ∈ (Ran E)⊥ = ker E, in which case ψ is an eigenvector of E with
eigenvalue 0 and so P (E |ψ) = 〈ψ,Eψ〉 = 〈ψ, 0〉 = 0.

• ψ /∈ Ran E ∪ (Ran E)⊥, in which case ψ is not an eigenvector of E and
moreover 0 < P (E |ψ) < 1.

Let’s underline that for 0 < E < I, the third case does occur, that is,
Ran E∪ (Ran E)⊥ 
= H. Of course, Ran E⊕ (Ran E)⊥ = H by the Projection
Theorem 9.3.3, since RanE is closed whenever E is a quantum event.

Exercise 16.2.5 Prove (Ran E)⊥ = ker E = Ran(I − E) = (ker(I − E))⊥

provided that E is a quantum event.

At this point we can see quite clearly how probability 1 events in quantum
probability are different from probability 1 events in classical probability. In
the first place a quantum event E has probability 1 in a given state ψ means
that P (E |ψ) = 1. The mapping E �→ P (E |ψ) for fixed ψ is not a classical
probability measure, since its domain is not a σ-algebra if dimH ≥ 2. The
only quantum event that has probability 1 for all states ψ is E = I = IH, the
identity operator on the Hilbert space H 
= 0. But more profoundly consider
the observable A = S1, one of the spin matrices acting in the Hilbert space
C

2, that takes exactly the two values −1/2 and 1/2. (Recall Exercise 14.1.5.)
Let ψ ∈ C

2 be a fixed state. Then consider these two statements:

• The observable A has a value in the set {−1/2, 1/2}.
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• Either the observable A has the value 1/2 or the observable A has the
value −1/2.

Recall that “the observable A has value in the Borel subset B ⊂ R” is the
quantum event EA(B) where EA is the pvm associated with A. The first
statement refers to the quantum event EA({−1/2, 1/2}) = I, the quantum
event which always occurs. So the first statement is true.

The second statement refers to the quantum event EA({1/2}) in the first
half of that statement and to the quantum event EA({−1/2}) in the second
half of that statement. Each subspace RanEA({1/2}) and RanEA({−1/2})
has dimension 1 and so RanEA({1/2}) ∪ RanEA({−1/2}) 
= C

2.
Now we see that the word ‘has’ is playing an important role. Classically, A

has the value 1/2 means that the system is in a state in which a measurement
of A always gives the value 1/2. Taking this interpretation directly over into
quantum theory, A has the value 1/2 means that the system is in a given
quantum state ψ ∈ Ran EA({1/2}). Similarly, A has the value −1/2 means
that the system is in a given quantum state ψ ∈ Ran EA({−1/2}).

If we now interpret the disjunctive ‘or’ classically (in the manner going
back at least to Aristotle and continuing with Boole), then in the second
statement we are speaking of Ran EA({1/2}) ∪ Ran EA({−1/2}). Therefore,
classically speaking, for any state ψ /∈ Ran EA({1/2}) ∪ Ran EA({−1/2})
the second statement is false. And there are plenty of such states! But if we
interpret ‘or’ as the quantum disjunction (or lattice meet operation, that is,
direct sum in this finite dimensional setting), then

Ran EA({1/2}) ⊕ Ran EA({−1/2}) = C
2,

which corresponds to the quantum event I, which always occurs, then the
second statement is true. So the meaning of little words like ‘or’ can be
crucially important for thinking correctly about quantum theory.

The upshot is that quantum probability leads to a new way to think about
the logical connective ‘or’, which is studied in quantum logic. For whatever
reasons, quantum logic has not become a very active area of current research,
while quantum probability has. Nonetheless, it is important to understand
some of these basics of quantum logic.

Exercise 16.2.6 Review the details in the analysis of these two statements.
Make sure you clearly understand this, especially the properties of the pvm
EA. (Hint: Find a basis that diagonalizes A = S1.)

Also, while this is an exercise about the specific operator S1, do understand
why the same sort of situation holds for any observable that takes two or more
values. And try to keep in mind what your ‘classical intuition’ tells you about
all this!

One can also see why a one-dimensional Hilbert space is trivial in quantum
theory, because in that case there are no intermediate quantum events, but
only the two quantum events, E = 0 and E = I. And these are somewhat
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trivial events in the sense that they are deterministic, and they also ‘form’
a σ-algebra, that is, profoundly these two quantum events have the same
lattice structure (see discussion below) as the σ-algebra F = {∅,Ω} where Ω
is any non-empty set. Of course, as we have already seen, in the setting of
the Hilbert space H = C

2 there is a non-trivial quantum theory, namely spin
1/2. In fact, we have the following.

Exercise 16.2.7 Suppose that H is a Hilbert space with dimension ≥ 2.
Prove that there are quantum events E in H with 0 < E < I.

The next exercise is a long excursion into basic set theory. It is meant to
provide insight since it contains some of the language which we will be seeing
in quantum theory.

Exercise 16.2.8 If A,B are sets that satisfy a ∈ B for all a ∈ A, then we
say that A is a subset of B. Notation: A ⊂ B.

Let S be a set. We define its power set to be the set of all of its subsets,
that is Pow(S) := {A |A ⊂ S}. Prove that the relation ⊂ defines a partial
order on Pow(S). (See Exercise 9.3.16 for the definition of ‘partial order’.)

Notice that ∅, the empty set, and S itself are elements in Pow(S). Prove
that ∅ ⊂ A ⊂ S for all A ∈ Pow(S). (We say that Pow(S) has a minimal
element ∅ and a maximal element S.)

Prove that for any A,B ∈ Pow(S) there is a unique minimal upper bound
C for A and B. To say that C is an upper bound means that A ⊂ C and
B ⊂ C. To say that C is the minimal upper bound means that C ⊂ D
whenever D is an upper bound of A and B. We say that C is the union of A
and B. Notation: A ∪ B := C.

Prove that for any A,B ∈ Pow(S) there is a unique maximal lower bound
E for A and B. To say that E is a lower bound means that E ⊂ A and
E ⊂ B. To say that E is the maximal lower bound means that F ⊂ E
whenever F is a lower bound of A and B. We say that E is the intersection
of A and B. Notation: A∩B := E. Note that this paragraph is dual (in some
sense) to the previous one.

Prove that for any A ∈ Pow(S) there is a unique element Ac ∈ Pow(S)
such that A∪Ac = S and A∩Ac = ∅. One says Ac is the complement of A.

Prove the following two identities, which are called de Morgan’s laws:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ B), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ B)

for all A,B ∈ Pow(S). These are actually distributive laws of each of the
binary operations ∩ and ∪ with respect to the other.

With these operations Pow(S) is a Boolean algebra. (You might want to
look up the exact definition of a Boolean algebra.)

For the next exercise recall that projections E are in bijective correspondence
with closed subspaces via E �→ Ran E. (See Exercise 9.3.21.)
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Exercise 16.2.9 Define Proj(H) := {E ∈ L(H) |E is a projection}, where
H is a Hilbert space. Prove that with the partial order E ≤ F of self-adjoint
operators, one has the following properties of Proj(H):

• There is a unique maximal element, namely the identity operator I,
whose corresponding closed subspace is H.

• There is a unique minimal element, namely the zero operator 0, whose
corresponding closed subspace is the zero subspace.

• Each pair of elements E,F has a unique minimal upper bound, denoted
as E ∨ F , with corresponding closed subspace (Ran E ∪ Ran F )−−, the
closure of the union of the ranges.

• Every pair of elements E,F has a unique maximal lower bound, denoted
as E ∧ F , with corresponding closed subspace Ran E ∩ Ran F .

• For every E there is a unique element E⊥ such that E ∨ E⊥ = I and
E ∧ E⊥ = 0. The closed subspace corresponding to E⊥ is (Ran E)⊥.

The point of this exercise is that a pvm is a function whose co-domain
is Proj(H), which is a partially ordered set. This set has some similarity
with the co-domain of a classical probability measure, namely the interval
[0, 1], which is a totally ordered set. However, Proj(H) is also the domain of
the functions P (· |ψ) for every state ψ. (See Definition 16.2.3.) Even though
these functions bear some resemblance to a classical probability measure,
their common domain Proj(H) is not a σ-algebra as you are asked to show
next. In fact, it is not even a Boolean algebra.

Exercise 16.2.10 Show that the de Morgan law

E1 ∧ (E2 ∨ E3) = (E1 ∧ E2) ∨ (E1 ∧ E3)

does not hold for all E1, E2, E3 ∈ Proj(H), provided that dimH ≥ 2.
Prove that in general Proj(H) is not a σ-algebra. Identify the exceptional

cases when it is.
Remark: Every σ-algebra is an ortho-complemented lattice. So to say that
an ortho-complemented lattice is not a σ-algebra really means that it is not
isomorphic to any σ-algebra. Therefore, you are being asked to understand
(and maybe even define) both isomorphism and isomorphic in this context.

We now define some classical probability measures that do appear in
quantum probability theory.

Definition 16.2.4 Suppose that H is a Hilbert space. Let A be a self-adjoint
densely defined operator acting in H, let ψ be a state in H, and let B be
a Borel subset of R. Then we put the previously defined structures together,
viewing A and ψ as fixed and thereby defining a function B(R) → [0, 1] by

P (A ∈ B |ψ) := P (PA(B) |ψ) = 〈ψ,PA(B)ψ〉 for B ∈ B(R).
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The left-hand side is read as “the probability that the observable A yields a
measured value in the set B given that the system is initially in state ψ” or
more briefly as “the probability that A is in B given ψ”.

This fulfills the goal of defining the notation introduced in (16.2.1).

Exercise 16.2.11 Continuing with the notation of the previous definition,
for A = A∗ and a state ψ ∈ H prove that B �→ P (A ∈ B |ψ) is a classical
probability measure, which is called a spectral measure of A.

We now have all the tools on the table in order to present the complete
form of the Measurement and Collapse Condition as given in preliminary
form in Chapter 10.

Measurement and Collapse Axiom: Suppose that a quantum system is
in the state represented by ψ and that a measurement of the observable A is
made.

a) The probability that this measurement yields a value in the Borel subset
B ⊂ R is P (A ∈ B |ψ).

b) Suppose that this measurement did yield a value in B. In particular, the
corresponding classical probability satisfies

P (A ∈ B |ψ) = 〈ψ,PA(B)ψ〉 = ||PA(B)ψ||2 
= 0.

Then after this measurement the system will be in the state represented by
the unit vector

1
||PA(B)ψ|| PA(B)ψ.

Part a) seems inescapable. After all, we are obliged to give some physical
interpretation to the classical probability measures B �→ P (A ∈ B |ψ), which
arise from the self-adjoint operator A. (Also, the set of all these probability
measures, one for each ψ, in turn determine uniquely A.) And Part a) does
just that in a ‘natural’ way. However, due to its essential use of probability,
Part a) is controversial.

Part b) is even more controversial, even though it is totally deterministic.
However, experimental evidence has never falsified it. Moreover, it is used
extensively in quantum computation theory, which is a theory as its name
implies. So Part b) has applications in theory as well as in experiments.
But, as noted earlier, the collapse from the initial to the final state is not
linear. Nor could it be, since the space of states is not a vector space. (See
Section 9.4.) This is not a paradox, but it remains a curious, puzzling aspect
of quantum theory.

Of course, one would like an extension of this axiom to situations that
are not experiments. Or some more general understanding of ‘measurement’
might be adequate. Even so, the initial state may be unknown—or worse
yet, unknowable. In classical mechanics the state of a physical system can
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be known to any level of precision desired. But the state ψ of a quantum
mechanical system may be unknowable.

It turns out that Part a) of this axiom is not only the origin of much
controversy; it also leads to a rejection of the intuitive notion that quantum
states only have properties with probability 1. This is a tricky business,
because there are some such probability 1 properties in quantum theory.
For example, the measured value me of the mass of an electron is always the
same; it is a property that all electrons have. Such properties are cataloged
and can be found in particle properties tables in the physics literature. (By
the way such a table is never called a wave properties table.) We fall into
language dripping with this classical viewpoint. For example, we say that
the “mass of the electron is me” or “the electron has mass me”. While these
usages can be defended, the verbs “to be” and “to have” are linguistic traps
when used cavalierly in quantum theory as we already saw in studying the
spin components of an electron. The spin itself of an electron is a particle
property with value �/2, where � is Planck’s constant. Thus its spin in units
where � = 1 is 1/2 with probability 1.

But there are other aspects of the state of an electron (such as the just
mentioned components of spin) that are not properties in this deterministic
sense but nonetheless appear to be very similar to ‘properties’. And such
aspects invariably concern the results of two (or more!) measurements of
observables that do not commute. The point here is that the time order of
these measurements matters due to the collapse of the state vector with each
measurement. And this is a question of an axiom (that is, basic principle) of
quantum theory.

In classical physics the time order of measurements does not matter in
principle, though it might matter in practice. Why in practice? Because the
first measurement could perturb the state of the system, thereby having a
significant effect on the second measurement. Why not in principle? Because
the perturbations due to the first measurement could be made so small as
to not impact significantly on the second measurement. Of course, also in
practice, it might be quite difficult to control the size of these perturbations.
However, this results in exactly the sort of partial information that classical
probability theory was built to deal with. And besides, measurements never
give precise values. All of this is handled, and handled quite well, by classical
probability theory.

But quantum systems are quite different, and so our intuitions that come
from years of using classical probability theory do not apply. We are obliged
to develop something else in order to deal with quantum theory, whether it
be quantum probability theory as presented here or something else. The goal
here is to present standard quantum theory, so we will only discuss quantum
probability theory. Any other new, proposed theory must be better in the
scientific sense that, at least in some cases, it makes predictions different
than the standard theory and that the appropriate experiments support the
new theory and therefore also falsify the standard quantum theory. I do
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not wish to discourage such alternative proposals, but I do wish to describe
what the scientific test for them is. Of course, if a proposed new quantum
theory makes exactly the same predictions as standard quantum theory, then
it is neither better nor worse than the standard theory. Rather, it would be
an alternative way of formulating the standard theory. By the way, this is
more than intellectual chitchat. The Heisenberg picture of quantum theory,
presented in Chapter 17, gives such an alternative, equivalent reformulation
of standard quantum theory.

16.3 States as Quantum Events

The framework of quantum probability leads to an interesting way to view
quantum states. Recall that a vector ψ 
= 0 represents a state or, equivalently,
the one-dimensional subspace Cψ is the state. And any one-dimensional
subspace V of the Hilbert space can be written as V = Cψ for any non-zero
ψ ∈ V . So the states are exactly the one-dimensional subspaces, that is,
the states are those quantum events E with dim E = 1. And we are taking
the standard point of view that all quantum events correspond to physical
observables. Consequently, every quantum state corresponds to a physical
observable, namely, a Yes/No experiment.

This is an important point since sometimes even the experts claim that
a solution of the Schrödinger equation is not an observable. (For example,
see [11].) This is technically correct, since the solution is a normalized vector
in the appropriate Hilbert space. However, that normalized solution ψ does
uniquely determine a one-dimensional subspace and hence a corresponding
quantum event, which is a physical observable and is written as |ψ〉〈ψ| in
Dirac notation. (See Section 9.7.) So, a solution of the Schrödinger equation
does give us immediately a quantum event, which itself is an observable.

16.4 The Case of Spin 1/2

Now let’s see how the collapse part of the Measurement Axiom works in the
specific example of a spin 1/2 system. (See a description of the Stern-Gerlach
experiment to see how this was originally done.) First, we establish a Cartesian
coordinate system (x1, x2, x3) in an experimental setup. The initial state of
the system is unknown. One measures the x3-component of the spin. This
measurement is represented by the self-adjoint spin matrix S3 = (1/2)σ3 with
eigenvalues {−1/2, 1/2}. Say −1/2 is measured. So the unknown initial state
collapses to the normalized eigenvector of S3 with eigenvalue −1/2, namely

ψ↓
3 :=

(
0
1

)
.

If we next measure the x3-component of the spin again, then we get the
value −1/2 with probability 1, since a quick calculation shows that
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P (S3 ∈ {−1/2} |ψ↓
3) = 1,

where {−1/2} is the subset of R containing exactly the one element −1/2.

Exercise 16.4.1 Do this calculation.
Hint: You will have to find the pvm for S3.

Classical intuition leads one to think that the state ψ↓
3 ‘has’ the property that

its x3-component of the spin equals the value −1/2. But this is not a property
in the usual sense of that word. Or another way to say this is that ‘has’ is
not to be taken in its usual sense. Why is this so? Well, instead of repeating
the measurement for the x3-component of the spin, let’s suppose that we
measure next the x1-component of the spin. The corresponding self-adjoint
spin matrix is S1 = (1/2)σ1.

Exercise 16.4.2 Demonstrate that the eigenvalues of S1 are {−1/2, 1/2}
with corresponding normalized eigenvectors given uniquely (modulo a complex
phase factor) by

ψ↓
1 :=

1√
2

(
1
−1

)
and ψ↑

1 :=
1√
2

(
1
1

)
respectively.

So the probability of measuring 1/2 for the x1-component of the spin, given
that the initial state is now known to be ψ↓

3 , is

P (S1 ∈ {1/2} |ψ↓
3) = 〈ψ↓

3 , PS1({1/2})ψ↓
3〉,

where PS1 is the pvm for the self-adjoint matrix S1.

Exercise 16.4.3 The projection PS1({1/2}) is the projection whose range is
Cψ↑

1 , that is, for all φ ∈ H we have

PS1({1/2})φ = 〈ψ↑
1 , φ〉ψ↑

1 .

In particular, you should show that the formula on the right side does give
the projection with range Cψ↑

1 . In Dirac notation (see Section 9.7) we can
rewrite this result as PS1({1/2}) = |ψ↑

1〉〈ψ↑
1 |.

So we can now carry through the calculation as follows:

P (S1 ∈ {1/2} |ψ↓
3) = 〈ψ↓

3 , PS1({1/2})ψ↓
3〉 = 〈ψ↓

3 , 〈ψ↑
1 , ψ↓

3〉ψ↑
1〉

= |〈ψ↑
1 , ψ↓

3〉|2

=
∣∣∣
〈

1√
2

(
1
1

)
,

(
0
1

)〉 ∣∣∣
2

=
1
2
.
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Given that S1 yields the measured value 1/2, the state collapses to ψ↑
1 . Then

further measures of S1 will yield 1/2 with probability 1.
Since we are dealing with a classical probability measure on the two-point

space {−1/2, 1/2}, we immediately conclude that

P (S1 ∈ {−1/2} |ψ↓
3) = 1 − P (S1 ∈ {1/2} |ψ↓

3) =
1
2
.

Or we could have calculated this directly using the same method. This is
known as the Bernoulli probability measure for a fair coin. (See any basic
probability text for details about this and many other important probability
measures.) Consequently, it makes no sense to say that the state ψ↓

3 has a
particular, or even a preferred, value of the x1-component of the spin.

But if we next remeasure S3 after having measured S1, we find ourselves
in the situation of a Bernoulli probability distribution but now for S3. The
property that the observable S3 has value 1/2 with probability 1 has been
lost. And so it goes as we alternate back and forth between measurements
of S3 and S1. Any repeated sequence of measurements of one of these will
all give the same value, but continuing with a measurement of the other
gives us a Bernoulli distribution. This is quite different from measurements
of the mass of an elementary particle, since these give the same value with
probability 1 always.

This discussion of spin is easily generalized to take care of measurements
of spin components in any pair of directions. The first of these directions can
be taken to be the positive x3-direction. So that is no different. If the second
direction is taken to be orthogonal to the first direction, then we are repeating
the previous example, and we get a fair coin Bernoulli probability measure.
So what happens if we take a general direction, that is not orthogonal to
the first direction, for the second direction? Well, we get a skewed Bernoulli
probability measure with probabilities p and 1 − p for the two possible spin
values, where p ∈ [0, 1]. The reader is invited to consider the exact details.

The general case of two quantum observables is discussed in detail in
Section 16.10. This section is just a special case of that.

16.5 Expected Value (Revisited)

We will again consider the expected value of an observable (see Section 8.2),
but now as an aspect of both classical and quantum probability. This is the
theoretical structure that corresponds to the empirically determined average
of a sequence of measurements. As we have seen in classical probability an
observable is a (measurable) function X : Ω → R, also known as a random
variable, whose domain Ω is a space with a probability measure P , which is
also called a state. Then recall from Definition 16.1.1 that

E(X) = 〈X〉 :=
∫

Ω

X(ω)dP (ω) (16.5.1)
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is called the expected value of the observable X. An example of this is a finite
or countably infinite set Ω = {ω1, ω2, . . . } where each point ωj has probability
P (ωj) = pj ∈ [0, 1] such that

∑
j pj = 1. In this case any function X : Ω → R

is measurable, and by Exercise 16.1.7 its expected value is

E(X) = 〈X〉 =
∑

j

pj X(j). (16.5.2)

As a technical aside you should be aware that the right side (16.5.1) or
(16.5.2) may not be well defined in all situations. For that reason we restrict
our discussion precisely to the case when those expressions do make sense,
namely when the integral in (16.5.1) converges absolutely or when the infinite
sum in (16.5.2) converges absolutely.

Now let’s see how this is done in quantum probability. We let X denote a
quantum observable, which is a self-adjoint operator acting in some Hilbert
space, H. For convenience, we assume that X is bounded. In particular, this
means that Xψ ∈ H is well defined for every ψ ∈ H. Then we define the
expected value of X in the pure state ψ ∈ H to be

E(X) = 〈X〉 := 〈ψ,Xψ〉. (16.5.3)

Recall that ||ψ|| = 1 is the condition on ψ for it to represent a pure state and
that two such unit vectors ψ, φ represent the same pure state if and only if
φ = αψ for some complex number α satisfying |α| = 1. Notice that the value
of (16.5.3) does not change if we replace ψ with φ = αψ where |α| = 1. While
the notations E(X) and especially 〈X〉 are often used in quantum theory,
this is quite unfortunate since the state ψ is often time dependent. In other
words, we often are considering a dynamical situation with a changing state
of the system. Better notations are Eψ(X) and 〈X〉ψ.

An important property is that the expected value 〈X〉 is a real number if
X = X∗. This follows from elementary Hilbert space calculations:

〈X〉 = 〈ψ,Xψ〉 = 〈X∗ψ,ψ〉 = 〈Xψ,ψ〉 = 〈ψ,Xψ〉∗ = 〈X〉∗.
Even though (16.5.3) looks nothing like an integral, we emphasize that

it is the expression in quantum theory that most closely corresponds to an
‘integral’ of X. This parallelism of mathematical structures between classical
and quantum probability is explained more fully in the theory of C∗-algebras,
which we commend to the adventurous reader as an advanced mathematical
marvel with amazing relations to physics.

The physical intuition behind the mathematical definition (16.5.3) is not
trivial. It is a more general formulation of Born’s rule, which we already saw
in (16.2.2). This gives (16.5.3) a lot of authority without actually explaining
anything. Before getting into that, let’s note that both in classical probability
and in quantum probability there are two theoretical ingredients needed for
defining the expected value: an observable and a state.

Here’s a quite common, but not general, example of Born’s rule (16.5.3).
Nonetheless we hope this sheds some light on this topic. We suppose that
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the quantum observable X is diagonalizable in the sense that there exists an
orthonormal basis {ψj | j ∈ J} of the Hilbert space such that for every j ∈ J
there exists λj ∈ R (called an eigenvalue of X) so that

Xψj = λjψj . (16.5.4)

(As a technical aside, we also assume that X is a bounded operator.) We
take any unit vector ψ ∈ H and expand it in the orthonormal basis as

ψ =
∑

j∈J

αjψj , (16.5.5)

where ||ψ|| = 1 implies that
∑

j∈J |αj |2 = 1. It follows that αj = 〈ψj , ψ〉.
Then we calculate the quantity on the right side of Born’s rule to get

〈ψ,Xψ〉 = 〈
∑

j

αjψj ,X
∑

k

αkψk〉 =
∑

j,k

α∗
jαk〈ψj ,Xψk〉

=
∑

j,k

α∗
jαk〈ψj , λkψk〉 =

∑

j,k

α∗
jαkλk〈ψj , ψk〉 =

∑

j,k

α∗
jαkλkδj,k

=
∑

j

|αj |2λj .

Here we used (16.5.4) and (16.5.5). The interchange of the summation with
X is allowed, since X is bounded. As usual δj,k is the Kronecker delta. Now
〈ψj , ψ〉 = αj is called the probability amplitude for the state ψ to transition
to the state ψj , while pj := |〈ψj , ψ〉|2 = |αj |2 is called the probability for the
state ψ to transition to the state ψj . Clearly each pj ∈ [0, 1] and

∑
j pj = 1.

So now Born’s rule (16.5.3) boils down to simply saying

〈ψ,Xψ〉 =
∑

j

pjλj ,

which is the classical expected value of a classical observable which takes the
value λj with probability pk. But it must be emphasized that these classical
probabilities pj arise in quantum theory from the complex numbers αj , which
need not be real numbers. In short, quantum probability is not classical
probability.

While this example may give some of the intuition behind Born’s rule, it
does not cover the case when X is not diagonalizable in the above sense,
for example when X has continuous spectrum. And the case when X is
unbounded presents the usual technical details. We will see that Born’s
rule (16.5.3) is a logical consequence of an axiom. (See (21.2.2) and the
accompanying discussion.) This shows the power of the axiomatic method
to place otherwise ad hoc rules into a consistent framework.
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16.6 Dispersion

Dispersion is one of the major differences between classical and quantum
probability. We now examine this important concept. The definition is the
same for either type of probability—or even any more general probability
theory with a reasonable definition of expected value! We suppose that X is
an observable for which the expected value E(X) = 〈X〉 is well defined. Then
the dispersion (or variance) of X is defined to be

Δ(X) := 〈 (
X − 〈X〉)2 〉

provided that the expected value on the right side also is well defined. Notice
that the state (whether it be P or ψ) is suppressed from the notation. In
classical probability this typically causes no confusion, since there is only one
state under consideration. However, in quantum probability one often uses
the notation Δψ(X) to indicate that the state being considered is ψ, and one
refers to this as the dispersion of X in the state ψ.

Exercise 16.6.1 Prove that Δ(X) = 〈X2〉 − 〈X〉2 ≥ 0 in both classical and
quantum probability.

A related concept, which is important in statistics, is the standard deviation
of X,

σ(X) := +
√

Δ(X).

We say that X is dispersion-free (with respect to some implicitly given state)
if Δ(X) = 0. In the case of classical probability the dispersion in the state P
is given by

Δ(X) =
∫

Ω

(
X(ω) − 〈X〉)2

dP (ω),

where
〈X〉 =

∫

Ω

X(ω) dP (ω).

So, X is dispersion-free with respect to the (classical) state P simply
means that the non-negative function (X(ω)−〈X〉)2 integrates to 0. In turn,
this means that (X(ω) − 〈X〉)2 = 0 for all (well, almost all if you speak of
measure theory) points ω ∈ Ω. So, X = 〈X〉 (well, almost everywhere), which
means that X is (well, almost) a constant function.

Let’s look at this in detail for the discrete case Ω = {ω1, ω2, . . . } with
P (ωj) = pj ∈ [0, 1] for each j and

∑
j pj = 1. If X is dispersion-free, then

Δ(X) =
∑

j

pj(X(ωj) − 〈X〉)2 = 0.

So we have a sum of non-negative terms adding up to 0. And that implies
that each term must be 0, that is,

pj(X(ωj) − 〈X〉)2 = 0
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for each index j. But this then implies for each j that

pj = 0 or X(ωj) = 〈X〉.

Of course, the points ωj for which pj = 0 are not very important; they are the
outcomes which never occur! So we give the set of these outcomes a name:

N := {ωj | pj = 0}.

Then X = 〈X〉, a constant, on the set Ω \N . And the values of X on the set
N do not matter, since they never happen! So, X is the constant function on
the part of Ω that does matter. (N is an example of a null set.)

Now here is an extreme case: pk = 1 for some fixed integer k ≥ 1 and
pj = 0 for all j 
= k. This is a probability given by the Kronecker delta, that
is, the probability KDk of each outcome ωj is given for all j by

KDk(ωj) := δk,j .

Then, for any X : Ω → R we see that

〈X〉 =
∑

j

KDk(ωj)X(ωj) =
∑

j

δk,j X(ωj) = X(ωk). (16.6.1)

In particular, N = Ω\{ωk} and so X is a constant function on Ω\N = {ωk}.
In other words, for this probability measure every observable is essentially
constant and (16.6.1) holds. So, 〈X2〉 = (X(ωk))2 = 〈X〉2 and therefore
Δ(X) = 0 for every observable X.

The Kronecker delta probability measure KDk is a pure state, meaning
that if KDk is a convex combination, KDk = λP1 +(1−λ)P2 with λ ∈ [0, 1]
and P1, P2 being probability measures, then we must have P1 = P2 = KDk.
Also, if a probability measure P is a pure state, then P = KDk for some k.
While the pure state KDk is uninteresting as a probability (because it means
one outcome occurs 100% of the time and the remaining outcomes never
occur), it turns out that every probability measure is a (possibly infinite)
convex combination of these pure states.

The situation for dispersions in quantum probability is quite different.
Let’s consider a quantum observable X = X∗. For simplicity we first consider
the case 〈X〉 = 0. Next we reintroduce the implicitly given pure state ψ into
the notation to obtain

Δψ(X) = 〈X2〉ψ = 〈ψ,X2ψ〉 = 〈Xψ,Xψ〉 = ||Xψ||2. (16.6.2)

(If X is a bounded operator, all this makes sense. If X is unbounded, we
must assume that ψ is the domain of X and that Xψ is also in the domain of
X.) Therefore in the case 〈X〉ψ = 0, X is dispersion-free in the state ψ if and
only if Xψ = 0 if and only if ψ is an eigenvector of X with eigenvalue 0. For
the case of any value of 〈X〉ψ we define a new observable Y := X − 〈X〉ψ.
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Exercise 16.6.2 Prove that 〈Y 〉ψ = 0 and Δψ(Y ) = Δψ(X).

So we can apply (16.6.2) to Y getting that Y is dispersion -free in the state
ψ if and only if Y ψ = 0 if and only if (X − 〈X〉)ψ = 0 if and only if

Xψ = 〈X〉ψ.

By the previous exercise we conclude that if X is dispersion-free in the state
ψ, then ψ is an eigenvector of X with eigenvalue 〈X〉ψ.

Conversely, if the state ψ is an eigenvector of X, say Xψ = λψ where
λ ∈ C, then X2ψ = X(λψ) = λXψ = λ2ψ and so in the state ψ we get

Δψ(X) = 〈X2〉ψ − 〈X〉2ψ
= 〈ψ,X2ψ〉 − 〈ψ,Xψ〉2
= 〈ψ, λ2ψ〉 − 〈ψ, λψ〉2
= λ2 − λ2 = 0.

We have proved this important result.

Theorem 16.6.1 Let X = X∗ be a quantum observable and let ψ be a state
such that Δψ(X) is defined for the state ψ. Then X is dispersion-free in the
state ψ if and only if ψ is an eigenvector of X with eigenvalue 〈X〉ψ.

The next corollary is one immediate consequence of this theorem.

Corollary 16.6.1 Let X be a quantum observable that acts in a separable
Hilbert space H. Suppose there exists an orthonormal basis of eigenvectors
of X and that each eigenvalue has multiplicity 1. Define the set of states for
which X is dispersion-free to be the quotient set:

D := {ψ ∈ H | ||ψ|| = 1, Δψ(X) = 0} / S
1.

Then D is either a finite set or is countably infinite. Here S
1 is the unit circle

in the complex plane C.

Remark: The set of states in H is uncountably infinite if dim H ≥ 2. For
example, if H = C

2, then the set of states is S
3 / S

1 = S
2, where S

3 is the
unit 3-sphere in R

4. (By the way, this is the Hopf fibration of S
3 over S

2.) So
in this case (and given the hypotheses on X) there is an abundance of states
ψ for which Δψ(X) > 0.
Proof: Let B = {ψk} be an orthonormal basis of eigenvectors of X. The map
that sends ψk to its S

1 equivalence class in D is an injective function from B
to D. Since each eigenvalue has multiplicity 1, there are no other eigenvectors
of X, except for constant multiples of the ψk. So this map is surjective as
well. Therefore the cardinality of D is equal to the dimension of H, which by
the separability hypothesis is finite or countably infinite. �

The previous theorem has another immediate and powerful consequence.
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Corollary 16.6.2 Suppose that X = X∗ is a quantum observable that has no
eigenvectors. Then Δψ(X) > 0 for any state ψ for which Δψ(X) is defined.

This corollary has application to two fundamental observables in physics:
position and (linear) momentum. Let’s see how that works in the
one-dimensional case, where the Hilbert space is L2(R) and the position
operator Q is defined for all ψ ∈ D(Q) as

Qψ(x) := xψ(x).

(Parenthetically, we remark that

D(Q) := {ψ(x) ∈ L2(R) |xψ(x) ∈ L2(R)}

and, by functional analysis, Q = Q∗ and SpecQ = R.) Then the eigenvalue
equation for Q is Qψ = λψ for some real number λ. But this is equivalent
to (x − λ)ψ(x) = 0 which in turn implies ψ(x) = 0 for every real x 
= λ. No
matter what the value of ψ(λ) might be chosen to be, we have that ||ψ|| = 0.
(Technically, ψ = 0 ∈ L2(R) by measure theory.) So, ψ is not an eigenvector,
since an eigenvector by definition is non-zero and has non-zero norm. So the
eigenvalue equation for Q has no non-trivial solution, thereby implying that
Q has no eigenvalues.

We learn immediately from this that Δψ (Q) > 0 for all pure states ψ
for which the left side is defined. This important fact is usually derived in
physics texts from the Heisenberg uncertainty principle, which relates Q with
the momentum operator P . But we see that this is a ‘stand-alone’ result about
the observable Q in its own right.

This contrasts dramatically with the discrete case in classical probability,
where there are pure states (namely, the Kronecker delta states KDj) with
respect to which we have Δ(X) = 0 for every observable X. Thus Q shows
how quantum pure states and quantum observables are very different from
their classical analogues. The fact that Q is not a bounded operator is not
essential. If we consider a bounded self-adjoint operator with no eigenvectors,
we get the same sort of result. For example, we could take (1+Q2)−1 as such
as an operator.

Next, let’s see that the momentum operator P , defined by

Pψ =
�

i

dψ

dx
,

has no eigenvalues. (Here ψ ∈ D(P ) which we do not define, P = P ∗ and
Spec P = R. However, we do remark that ψ ∈ D(P ) implies that ψ is
differentiable and so, in particular, ψ is continuous.) Then the eigenvalue
equation says Pψ = λψ for some real number λ, which is equivalent to

�

i

dψ

dx
= λψ(x).
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The general solution of this first order, linear differential equation is

ψ(x) = c eiλx/�

for all x ∈ R, where c ∈ C is an arbitrary complex constant. Therefore,
|ψ(x)|2 = |c|2 for all x ∈ R. And so this function is in L2(R) if and only if
c = 0, in which case ψ ≡ 0 and so ψ is not an eigenvector. So the eigenvalue
equation for P has no non-trivial solution, thereby implying that P has no
eigenvalues.

We learn immediately from this that Δψ (P ) > 0 for all pure states ψ
for which the left side is defined. This important fact is usually derived in
physics texts from the Heisenberg uncertainty principle, which relates P with
the position operator Q. But we see that this is a ‘stand-alone’ result about
the observable P in its own right.

If X = λI for some λ ∈ R on a Hilbert space H 
= 0, then X = X∗ and
Spec X = {λ}. So X is the observable that only has one measured value,
namely λ. Since probability theory is about observables with several possible
values, this is a trivial situation. Moreover, Δψ (X) = 0 for every state ψ.

Exercise 16.6.3 Suppose that X is a quantum observable which satisfies
Δψ (X) = 0 for every state ψ. Show that X = λI for some real number λ.

Exercise 16.6.4 Let X = X∗ be a quantum observable with Spec X = {λ}
for some real number λ. Prove that X = λI.

The previous exercise is an ‘eye exam’, since the functional analysis needed
to solve it can be found somewhere (earlier!) in this book. Also, the industrious
reader is invited to find a 2 × 2 matrix X with SpecX = {λ} for some real
number λ, but nonetheless X 
= λI.

16.7 Probability 1

A limiting case consists of events with probability one. The only quantum
event which has probability 1 in all states, as we have seen, is the projection
operator I, the identity operator on the Hilbert space, H.

But there are also quantum observables such that SpecX = {λ} for some
real number λ. Taking the result from the last section, we know that X = λI.

Exercise 16.7.1 Given this situation, show that P (X = λ |ψ) = 1 for all
states ψ.

For example, the mass of an elementary particle gives, as far as we know,
the same numerical value, say m, in every possible measurement. Then the
corresponding quantum observable has to be mI, for which the collapse of
the state following a measurement is the identity map since the initial state
is an eigenvector of mI. While this is consistent with experiment, it hardly
explains the various masses of the elementary particles.
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The moral is that probability 1 fits into quantum probability, but there
is something lacking that can best be described as je ne sais quoi.

16.8 A Feature, Not a Bug

le hasard . . . qui est en réalité
l’ordre de la nature

Anatole France

Some comments are in order about objections to the probabilistic aspect
of quantum theory. The probability theory to be improved or replaced is
the quantum probability theory as presented in this chapter. And quantum
probability I shall argue is an essential feature of quantum theory. That is
the issue which must be faced.

Now there are three aspects of quantum theory that are generally accepted
by the physics community. The first aspect is that many, though maybe not
all, observables are represented by self-adjoint operators. The second is that
many, though maybe not all, self-adjoint operators correspond to physical
observables. The third aspect is that the expected values of such self-adjoint
operators are essential for understanding the associated physical observables.
The first two aspects have nothing to do explicitly with probability, while
the third aspect does use an expression (‘expected value’) that comes from
classical probability theory. However, as we shall see, even this third aspect
can be viewed as a simple algebraic operation (in linear algebra) with an
interest that is independent from probabilistic considerations.

Let’s discuss the first aspect. The spectral theorem and its converse, as
abstract as they are, tell us that the study of self-adjoint operators is exactly
equivalent mathematically to the study of projection valued measures on
the measure space R equipped with the σ-algebra of Borel sets. The phrase
‘projection valued measure’ has been lumped into ‘pvm’ and thought of as a
single object. Which it is. However, projections are exactly quantum events
and so the phrase ‘quantum event valued measure’ (or ‘qevm’) is just as
reasonable for naming this object. So a qvem is a pvm and vice versa. This
means that if one admits that self-adjoint operators are a central to the
study of quantum theory, one has admitted that qevm’s are central too.
Even if qevm’s are not discussed explicitly, they are still there behind every
self-adjoint operator A which has its qevm PA.

But now that the quantum events PA(B) are recognized as central to
quantum theory (where A = A∗ is a quantum observable and B ⊂ R is a
Borel set), one has to understand what role these self-adjoint operators play in
quantum theory. Specifically, we come to the second aspect mentioned earlier.
Do these self-adjoint operators PA(B) correspond to physical observables?
Well, we have already seen that they have a physical interpretation! We know
that the spectrum of the projection PA(B) is a subset of {0, 1} and so these
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are the only possible values the corresponding physical observable can take.
We have interpreted 0 to mean that the quantum event does not occur and
1 to mean that it does occur.

But there is another argument for accepting that PA(B) corresponds to a
physical observable. We start by discussing a self-adjoint operator A that does
represent a physical observable. Then there is another version of the spectral
theorem (called the functional calculus) which says that for any bounded
(Borel) function f : R → R there corresponds a self-adjoint, bounded linear
operator f(A) : H → H with various nice properties. The operator f(A)
is interpreted physically as the observable that consists of this composite of
two operations: First, measure A and get a real number a; second, evaluate
f(a) ∈ R. In other words, the physical interpretation of A gives us a physical
interpretation of f(A).

Now we take the special case when f = χB , the characteristic function of
the Borel set B. This function is defined for λ ∈ R by

χB(λ) :=
{

1 if λ ∈ B,
0 if λ /∈ B.

Then χB is a bounded, Borel function. Taking into account the physical
interpretation in general for f(A), we see that χB(A) (which is self-adjoint
as a consequence of the functional calculus) represents the physical observable
that yields the value 1 when A has its observed value in B and has value 0
when A has its observed value in the complement of B, namely in R \ B.

At this point it should not surprise the reader to learn that we have
PA(B) = χB(A). This explicitly shows that the self-adjoint operator PA(B)
corresponds to a physical observable. As we have remarked, this physical
observable is a type of what is called a Yes/No experiment. Such experiments
yield exactly two possible values, which can be interpreted as answering a
question by Yes or by No. In this case the question is: Did the measurement
of A give a value in B?

(Parenthetically, we note that the spectral theorem gives us a qevm PA

associated with a self-adjoint operator A such that A =
∫

R
λ dPA(λ). Then

we define the functional calculus by f(A) :=
∫

R
f(λ) dPA(λ). Conversely, a

functional calculus for A gives a qevm PA defined by PA(B) := χB(A), as
noted above. These two operations are inverses to each other. Furthermore,
the properties of a qevm translate into those of a functional calculus, and vice
versa. See a good functional analysis text for all this in appropriate detail.)

Proceeding, we next wish to understand PA(B) better via its expectation
values. This is the third aspect mentioned above. So we take a state ψ and
consider the expectation value of the self-adjoint operator PA(B) in that
state. This is colloquially known as using ψ to ‘sandwich the observable’. In
other words, it is the simple algebraic operation given by forming

〈ψ,PA(B)ψ〉 with ||ψ|| = 1. (16.8.1)

In physics, such an expression is often called a diagonal matrix entry of
PA(B). Here one is thinking of a matrix representation of PA(B) with respect
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to an orthonormal basis of the Hilbert space and that the state ψ is one
element in that orthonormal basis. Indeed, the above real number (16.8.1)
does then appear on the diagonal of the associated matrix. So this is actually
an operation in linear algebra without an explicit probabilistic interpretation.

Let me indulge in a brief interlude concerning the maps lψ in linear algebra
defined by

lψ(T ) := 〈ψ, Tψ〉,
where T : H → H is a linear bounded operator (i.e., T ∈ L(H)) and ψ ∈ H is
a state. Then lψ : L(H) → C is a linear map, known as a (linear) functional
on L(H). The claim is that knowing the values lψ(T ) for all possible states ψ
completely determines T .

Exercise 16.8.1 Suppose T1, T2 : H → H are linear bounded operators. Show
that lψ(T1) = lψ(T2) for all states ψ ∈ H implies that T1 = T2.
Hint: Use the polarization identity (9.3.8) for complex Hilbert spaces.

Exercise 16.8.2 Show there exists a Hilbert space H as well as operators
T1 and T2 acting on it such that lψ(T1) = lψ(T2) for all elements ψ in one
orthonormal basis of H, but T1 
= T2.
Hint: Take H = C

2.

The point of this brief interlude is that in passing from the study of PA(B)
to the study of all of its diagonal matrix elements (16.8.1) we do not lose
information about the operator PA(B).

As we have already remarked, (16.8.1) is a classical probability function
taking B as variable and keeping A and ψ fixed. It is only a question then of
giving a name and notation to this classical probability function, something
which we have already done in Definition 16.2.4. Recall that notation:

P (A ∈ B |ψ) = 〈ψ,PA(B)ψ〉.

It is important to note that these classical probability measures ‘live’ on the
spectrum Spec(A) of A meaning that P (A ∈ (

R \ Spec(A)
) |ψ) = 0 for all

states ψ, since PA(R \ Spec(A)) = 0. This mathematical fact suggests that
Spec(A) should be given a physical interpretation. And this is what is done.
The standard interpretation of Spec(A) is that it is the set of possible values
of measurements of the observable A.

These classical probability functions, known as spectral measures, emerge
quite naturally from generally accepted standard non-probabilistic aspects
of quantum theory. And therefore it behooves us to give them a physical
interpretation. Of course, we have already done that. So we have arrived at
all of the structures of quantum probability theory by using some generally
accepted principles of quantum theory. Excuse me while I dwell on this
point. These principles are accepted by just about every physicist, and they
do not have any necessary reference to probability theory. Or to put this
in yet another way, I am asserting that all of this abstract mathematics
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of quantum probability theory is a consequence of the commonly accepted
physical ‘intuition’ of quantum theory. The physics and the mathematics are
inseparable. The physics leads to the mathematics of self-adjoint operators,
which in turn is equivalent to qevm’s. The physics leads to the mathematics
of states as well. Then the qevm’s and the states lead us mathematically
to classical probability measures. And having these probability measures
(or spectral measures) in hand, how can we not give them some physical
interpretation?

Therefore, the intellectual challenge for those who wish to improve or
even replace quantum probability is to deal with these comments that place
quantum probability as a necessary consequence of other generally accepted
quantum theoretical principles that are not at all probabilistic. But for now
quantum probability is a feature of quantum theory.

16.9 Spectral Theorem as Diagonalization

It is patently outrageous to say that the spectral theorem as presented earlier
is a generalization to the infinite dimensional setting of diagonalization of
self-adjoint matrices in the finite dimensional setting. The point of this section
is to convince the reader that this is not so nonsensical.

First off, we had better recall what diagonalization means in the finite
dimensional setting. So we suppose that A : C

n → C
n is a self-adjoint (or

Hermitian) operator, where we assume that n ≥ 1. This means that A = A∗.
Notice that the definition (9.3.4) of A∗ depends on the existence of an inner
product on C

n. For convenience we let this be the standard inner product
defined in (9.1.1). Now there is a theorem in elementary linear algebra that
says that this operator is diagonalizable.

We next describe this theorem without proving it. What this says is that
C

n has some orthonormal basis, say εj for j = 1, . . . , n, of eigenvectors of
A. This means that there exist scalars λj , not necessarily distinct, such that
Aεj = λjεj for j = 1, . . . , n. The λj ’s are the eigenvalues of A. Since A = A∗,
we have that each λj ∈ R. The set of all the eigenvalues is called the spectrum
of A, denoted by Spec(A). We write this set as

Spec(A) = {μ1, . . . , μk} ⊂ R where 1 ≤ k ≤ n,

and the μj ’s are distinct numbers. For 1 ≤ j ≤ k we define the eigenspace or
spectral subspace associated to the eigenvalue μj by

Vj := {v ∈ C
n |Av = μj v}.

Since μj is an eigenvalue of A we have that Vj 
= 0 for each j = 1, . . . , k. This
gives us an orthogonal direct sum decomposition of C

n as

C
n = V1 ⊕ V2 ⊕ · · · ⊕ Vk, (16.9.1)
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since eigenspaces for distinct eigenvalues are orthogonal (see Exercise 9.3.13)
and the eigenvectors form a basis. Furthermore, A restricted to Vj is a very
simple operator, namely, multiplication by the real number μj .

We rewrite these facts in terms of some projections. (See Definition 9.3.8.)
First, for every j = 1, . . . , k we have the projection Pj : C

n → C
n whose

range is Vj . More explicitly, we take an arbitrary vector v ∈ C
n and write

it (uniquely!) as v = v1 + · · · + vj + · · · + vk with each vl ∈ Vl. This is just
what the direct sum decomposition (16.9.1) gives us. Then we define Pj as
Pjv := vj .

Exercise 16.9.1 Prove for j = 1, . . . , k that Pj is a projection and Pj 
= 0.

Exercise 16.9.2 Prove that PiPj = 0 if i 
= j.
Hint: Vi is orthogonal to Vj for i 
= j.

This is a result that has clear geometrical meaning in terms of the ranges of
Pi and Pj . But note that this is very different from the properties of real (or
complex) numbers. Here we have Pi 
= 0 and Pj 
= 0, while their product is
zero, PiPj = 0. One says that Pi and Pj are zero divisors.

Now we can rewrite (16.9.1) in terms of these projections as

I = P1 + P2 + · · · + Pk. (16.9.2)

This equation is called a resolution of the identity. There are many, many
resolutions of the identity, but this particular one is chosen because A can be
written as a pretty formula using it. Actually, it is not so difficult to see that

A = μ1P1 + μ2P2 + · · · + μkPk. (16.9.3)

Exercise 16.9.3 Prove this is correct by restricting A to each Vj.

We say that the finite sum (16.9.3) is the spectral resolution of A. Next, we
want to write this finite sum as an integral, but with respect to a pvm instead
of a usual measure. To do this we let each point μj ∈ R have measure given
by the corresponding projection Pj , that is P ({μj}) = Pj . We say that the
points μj are atoms of the pvm. Also we want P (B) = 0, the zero operator,
for Borel sets B that do not have any point in common with Spec(A), that
is, if B ∩ Spec(A) = ∅, the empty set. This is all encoded in the definition of
PA for a general Borel subset B of R as follows:

PA(B) :=
∑

j : μj∈B

Pj .

The previous equation should be compared with (16.1.1). We recall that a
sum over the empty set is defined to be zero, which in this case is the zero
operator.
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Exercise 16.9.4 Prove that PA is a pvm and that A =
∫

R
λ dPA(λ).

Hint: For the second part show that the integral on the right side is equal to
the finite sum (16.9.3).

Now the full generalization of finite sum (an operation in algebra) to
the setting of analysis is integral (an operation par excellence in analysis). So
when we pass to the infinite dimensional setting, we expect a spectral theorem
for self-adjoint operators that has an integral instead of a finite sum. And that
is what happens. Of course, in that infinite dimensional setting that integral
sometimes reduces to a finite sum and other times to an infinite sum. In those
cases, the pvm is supported on atoms, that is, those points λ ∈ R such that
PA({λ}) 
= 0. But there are self-adjoint operators which have no eigenvalues
and hence no atoms. For these the integral form of the spectral theorem is
required.

We can also see how the functional calculus works out quite nicely in the
finite dimensional setting. We start with the spectral decomposition of A:

A = μ1P1 + μ2P2 + · · · + μkPk.

Now we evaluate A2 using simple algebra getting

A2 = (μ1P1 + · · · + μkPk)(μ1P1 + · · · + μkPk)

= μ2
1P

2
1 + · · · + μ2

kP 2
k

= μ2
1P1 + · · · + μ2

kPk.

In the second equality we used PiPj = 0 for i 
= j, while in the third we used
P 2

j = Pj . Iterating this we see that

Am = μm
1 P1 + · · · + μm

k Pk

for all integers m ≥ 2. But this formula is also true for m = 0 (the resolution
of the identity (16.9.2)) and for m = 1 (the spectral decomposition (16.9.3) of
A). Next, for any polynomial f : R → C, say f(x) = c0+c1x+c2x

2+· · ·+cdx
d

with complex coefficients cj , we see by linearity that

f(A) = f(μ1)P1 + · · · + f(μk)Pk, (16.9.4)

where f(A) := c0I + c1A+ c2A
2 + · · ·+ cdA

d. Notice that f(A) only depends
on the values of the polynomial f on the spectrum Spec(A). Its values on the
set R \ Spec(A), which has measure 0 according to the pvm PA, do not enter
into the formula (16.9.4).

But what about an arbitrary function g : Spec(A) → C? (By the way, such
a function g is a Borel function, since the Borel σ-algebra for the discrete
topological space Spec(A) consists of all subsets of Spec(A). Also, such a
function g is also bounded, since Spec(A) is finite.)

So, the question is: Given such a bounded, Borel function g does there
exist a polynomial f : R → C which is equal to g on the finite set

Spec(A) = {μ1, . . . , μk}.
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A problem of this type is called an interpolation problem. It is not an
approximation problem, that is a problem of approximating the function g
on the finite set Spec(A) by a polynomial. In this interpolation problem, the
sought-for polynomial must be exactly equal to the function g on the finite
set Spec(A). This particular interpolation problem is solved by using the
Lagrange polynomials associated with the set Spec(A). For each j = 1, . . . , k
we define the Lagrange polynomial

lj(x) :=

∏
i�=j(x − μi)∏
i�=j(μj − μi)

.

Notice that the numerator is a polynomial of degree k − 1. Since the μ’s are
distinct, the denominator is not equal to 0. So lj is a well defined polynomial
of degree k−1. With respect to the set Spec(A) it acts like a Kronecker delta.
Explicitly, lj(μj) = 1 while lj(μk) = 0 for all j 
= k. That is, lj(μk) = δj,k.

Now it is a straightforward exercise to show that

g = g(μ1)l1 + g(μ2)l2 + · · · + g(μk)lk =: f

as functions on the set Spec(A). Because the right side is a finite linear
combination of polynomials of degree k − 1, it follows that g is a polynomial
of degree at most k−1. So, the answer is that any arbitrary (bounded, Borel)
function g : Spec(A) → C is equal on Spec(A) to a polynomial f . Thus, we
define g(A) := f(A) for such g and its associated f . In short, we have defined
the functional calculus of A for any such function g.

Exercise 16.9.5 Let Fbb denote the space of all bounded, Borel functions
g : Spec(A) → C, that is the space of all functions g : Spec(A) → C. Prove
that Fbb is a commutative algebra with identity element. Let A = A∗ be a
self-adjoint operator acting in C

n. Prove that the map

Fbb � f �→ f(A) ∈ L(Cn)

is linear, preserves product, maps the identity element to the identity element,
and satisfies f∗(A) = (f(A))∗. Here L(Cn) is the algebra of all linear maps
T : C

n → C
n.

16.10 Two Observables

There is a remarkable difference between classical probability and quantum
probability when one considers two (or more) observables. In the case of
classical probability there always exists one sample space Ω together with
its probability measure P , which describes any given probabilistic situation.
This is not a theorem but rather just a description of how classical probability
works. (More on this in a moment.) And then we define all of the observables
as real-valued (Borel) functions (also called random variables) with domain
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being that sample space Ω. Suppose X,Y : Ω → R are two such observables,
and we wish to consider that X takes a value in the (Borel) set B ⊂ R and
that Y takes a value in the (Borel) set C ⊂ R. Of course, that is the event
E := X−1(B)∩Y −1(C) (which is always going to be in the σ-algebra that is
the domain of P ). So, P

(
X−1(B) ∩ Y −1(C)

)
is well defined and tells us the

probability of the event E. This is called the joint probability that X has a
value in B and that Y has a value in C. Let’s give it this notation:

P (X ∈ B, Y ∈ C) := P
(
X−1(B) ∩ Y −1(C)

)
.

The point is that in classical probability this exists for all pairs of observables
X and Y . And the order is unimportant in the sense that we have

P (X ∈ B, Y ∈ C) = P (Y ∈ C, X ∈ B).

Also, the time order of the measurements corresponding to these theoretical
observables does not enter the theory at all. But in quantum probability,
there simply is no such theoretical, order independent construct that merits
the name of joint probability for observables X and Y which do not commute.

However, first here are the promised words about how measure theory
guarantees that classical probability models can always be constructed with
exactly one sample space. (Those with little interest in measure theory are
invited to skip this paragraph.) What happens in practice is that one chooses
the theoretical sample space Ω so that one can define the observables
(real-valued functions Ω → R) of experimental interest. Now suppose that
we have found two adequate probability spaces (Ω1,F1, P1) and (Ω2,F2, P2),
each one with its associated observables of interest. You might say that we
are stuck with two sample spaces. But no! Because measure theory says that
the Cartesian product Ω := Ω1 × Ω2 has a unique σ-algebra F generated by
all the product sets B1 × B2, where Bi ∈ Fi for i = 1, 2, and such that the
definition P (B1 × B2) := P1(B1)P2(B2) extends uniquely to a probability
measure P on the σ-algebra F . Say X1 : Ω1 → R was one of the observables
of interest for us for the first sample space. Then this observable can be pulled
back to Ω by the composition

Ω π1−→ Ω1
X1−→ R,

where π1 is the projection map onto the first coordinate, that is we define
π1(ω1, ω2) := ω1 for all (ω1, ω2) ∈ Ω. Intuitively, the composition X1 ◦ π1

represents the ‘same’ experimental observable as X1. A similar construction
works for the observables of interest defined on the second sample space Ω2.
While an expert might complain that this produces independent observables,
the answer to that is that dependent observables must be defined in the
first place on a common sample space. That’s just how dependency works in
classical probability. One of Kolmogorov’s major achievements was to show
how to construct a single sample space Ω on which one can define all the
random variables {Xt | t ≥ 0} of a stochastic process.
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Now let’s return to the quantum case. Suppose that X,Y are observables
for a quantum system, that is, X,Y are self-adjoint operators acting in a
Hilbert space H. As above we let B,C be Borel subsets of the real line R. In
analogy to the classical case, we want to consider the event that X takes a
value in B. This is the quantum event PX(B), where PX is the pvm associated
to X. Similarly, PY (C) is the quantum event that Y takes a value in C.

In general, if E1 and E2 are quantum events (≡ projections), then there is
a unique quantum event E1 ∧E2, that is the greatest lower bound of E1 and
E2. We can read E1 ∧E2 as ‘E1 and E2’ (a logical connective) or also as ‘E1

meet E2’ (a lattice operation). The easiest way to think about this binary
operation is in terms of the closed subspaces V1 := Ran E1 and V2 := Ran E2,
the ranges of E1 and E2, respectively. Then the quantum event E1 ∧ E2 is
the projection onto the closed subspace given by their intersection V1 ∩ V2.
(See Exercise 16.2.9.) Here are some more exercises about this.

Exercise 16.10.1 Suppose that the quantum events E1 and E2 commute,
that is, E1E2 = E2E1. Then E1 ∧ E2 = E1E2 = E2E1.

In particular, show that E1 ∧ E1 = E1.

Exercise 16.10.2 Suppose that E1 and E2 are quantum events such that
E1E2 is also a quantum event. Prove that E1 and E2 commute.

Exercise 16.10.3 Find quantum events E1 and E2 such that the operator
E1E2 is not a quantum event, that is, it is not a projection.

Exercise 16.10.4 Let H = C
2 be the Hilbert space with the observables being

the spin matrices X = S1 and Y = S3. Prove that each of the quantum events
E1 := PX(1/2) and E2 := PY (−1/2) is a projection on a 1-dimensional
subspace, that these subspaces of C

2 are not equal and so E1 ∧ E2 = 0.
Finally, prove that E1E2 
= E2E1.
Hint: Recall the material in Section 16.4. In particular, the spin matrices S1

and S3 are defined there.

The last exercise tells us that the single event that S1 gives the value 1/2
and that S3 gives the value −1/2 is the event which never occurs, that is,
the event 0. This is typical of observables which do not commute. However,
we are more interested in the temporal sequence of two events: First S1 gives
the value 1/2 and then a bit later S3 gives the value −1/2.

Let’s see how this works out in general. So we start off with any two
quantum observables X and Y of the same quantum system, that is, two
self-adjoint operators acting in the same Hilbert space H. Suppose that B
and C are Borel subsets of R. We shall consider when X has a measured
value in B and Y has a measured value in C. The time order of these two
measurements is critically important! So we first suppose that X is measured
and that the system starts in the state ψ ∈ H, that is, ||ψ|| = 1. Then

P (X ∈ B |ψ) = 〈ψ,PX(B)ψ〉 = ||PX(B)ψ||2 (16.10.1)
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and, given that this has happened, the state of the system will become

ψ1 :=
1

||PX(B)ψ||PX(B)ψ.

This holds by the Collapse Axiom. Now a subsequent measurement is made
immediately of the observable Y , but with the system in the new state ψ1.
So we have that

P (Y ∈ C |ψ1) = 〈ψ1, PY (C)ψ1〉
=

1
||PX(B)ψ||2 〈PX(B)ψ,PY (C)PX(B)ψ〉. (16.10.2)

Moreover, given that this has happened, then the system will collapse to the
new state

ψ2 :=
1

||PY (C)ψ1||PY (C)ψ1

=
||PX(B)ψ||

||PY (C)PX(B)ψ||PY (C)
(

1
||PX(B)ψ||PX(B)ψ

)

=
1

||PY (C)PX(B)ψ||PY (C)PX(B)ψ.

Now we have to consider how to combine the probabilities from (16.10.1)
and (16.10.2). My opinion is that by interpreting these two probabilities as
theoretical quantities which predict experimental frequencies we are forced
to conclude that these probabilities are to be multiplied:

P (X ∈ B;Y ∈ C |ψ) =
1

||PX(B)ψ||2 ||PX(B)ψ||2〈PX(B)ψ,PY (C)PX(B)ψ〉

= 〈PX(B)ψ,PY (C)PX(B)ψ〉
= ||PY (C)PX(B)ψ||2, (16.10.3)

where the left side is to be read as follows: The probability of first measuring
that X ∈ B and second measuring that Y ∈ C given that ψ is the initial
state of the system. The validity of the formula (16.10.3) does not seem to
be derivable from the axioms of quantum theory, and so may have to be
considered just as an axiom in its own right. By interchanging X and Y
while simultaneously interchanging B and C, we arrive at

P (Y ∈ C;X ∈ B |ψ) = 〈PY (C)ψ,PX(B)PY (C)ψ〉
= ||PX(B)PY (C)ψ||2, (16.10.4)

which is the probability of first measuring that Y ∈ C and second measuring
that X ∈ B given that ψ is the initial state. If X and Y commute (which is
equivalent to saying that the projections PX(B) and PY (C) commute for all
Borel sets B,C by functional analysis), then clearly

P (X ∈ B;Y ∈ C |ψ) = P (Y ∈ C;X ∈ B |ψ).
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Furthermore, in this case ψ2 is an eigenvector with eigenvalue 1 for both
PX(B) and PY (C). So further repetitions of measurements of X ∈ B and
Y ∈ C in any order whatsoever will keep giving the same results and the
state repeatedly collapses from ψ2 to ψ2. It should be noted that even in this
commutative case ψ, ψ1, and ψ2 can be 3 distinct states.

Exercise 16.10.5 Justify the last sentence by constructing an example.

Of course, at this point it becomes an obligatory exercise to find an example
where

P (X ∈ B;Y ∈ C |ψ) 
= P (Y ∈ C;X ∈ B |ψ)

for some pair of observables X,Y and some pair of Borel sets B,C. This
can be seen with the simplest non-trivial Hilbert space for doing quantum
theory, namely H = C

2. In Section 16.4 we saw the spin matrices X = S1

and Y = S3. Using these one has that

PX(B) =
1
2

(
1 1
1 1

)
and PY (C) =

(
0 0
0 1

)
(16.10.5)

where both B = {1/2} and C = {−1/2} are sets with exactly one element.

Exercise 16.10.6 Complete this example by verifying (16.10.5) and then
continue by computing P (X ∈ B;Y ∈ C |ψ) and P (Y ∈ C;X ∈ B |ψ)
for any state ψ ∈ C

2. Identify for which states ψ these quantities are not
equal.

This example shows that quantum theory gets rather complicated, but
also rather interesting, for observables which do not commute. For example,
one might think that for given observables X,Y and a given state ψ the
mapping

B × C �→ P (X ∈ B;Y ∈ C |ψ)

determines a probability measure on R
2 = R × R, where B,C are Borel

subsets of R. Of course, this is what happens in classical probability. But not
so for quantum probability!

Exercise 16.10.7 As a challenging exercise, you might try to understand
why the last statement is true. Actually, in general neither (16.10.3) nor
(16.10.4) defines an additive set function on the rectangular sets B × C.

However, the marginals (to use terminology from classical probability) of
(16.10.3) and (16.10.4) do give the classical probability on the other factor.
For example,

P (X ∈ R;Y ∈ C |ψ) = 〈PX(R)ψ,PY (C)PX(R)ψ〉 = 〈ψ,PY (C)ψ〉
= P (Y ∈ C |ψ),

since PX(R) = I, the identity map. The other case works out equally quickly.
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One moral of this longish story is that for non-commuting observables,
the natural definition of their ‘joint probability measure’ is not a probability
measure. But for commuting variables (16.10.3) (which equals (16.10.4)) does
define their joint probability measure, which is indeed a probability measure.

Exercise 16.10.8 For those in the know about measure theory, the very last
sentence is a challenge exercise for you.

These curious properties of measurements of two observables are direct
consequences of the Collapse Axiom, which has received much scrutiny and
criticism. If this axiom is rejected, it seems that the simplest alternative
theory would have that the state does not change when a measurement is
made, but the rest of quantum theory is left intact. Continuing with the
notation established above, this would mean that starting in the state ψ and
measuring X and Y we obtain these probabilities:

P (X ∈ B |ψ) = ||PX(B)ψ||2 and P (Y ∈ C |ψ) = ||PY (C)ψ||2. (16.10.6)

And the point is that the time order of these measurements would not matter;
in either order these would be the probabilities. This already contradicts
(16.10.2), which is the probability of getting a value of Y in C after first
starting in the state ψ and measuring a value of X in B with collapse.

But under the hypothesis of no collapse, the probability of getting a value
of X in B and of getting a value of Y in C would be the product of the
probabilities in (16.10.6):

||PX(B)ψ||2 ||PY (C)ψ||2, (16.10.7)

which is actually a joint probability distribution. But this is different, in
general, from both (16.10.3) and (16.10.4). Therefore, this alternative to
the Collapse Axiom makes a prediction that is at odds with that made by
standard quantum theory. And so experiments must be called upon to decide
between these two alternatives. I am not sure whether such experiments have
been done for many quantum systems. But this has been extensively looked
at in the case of spin and, at least for that case, standard quantum theory
holds.

Exercise 16.10.9 Continue with Exercise 16.10.6. Evaluate the expression
(16.10.7) and find the conditions under which it is different from the results
previously obtained.

16.11 Notes

The quote from Lewis Carroll is what Alice says in the very first words of
Chapter 2 of “Alice in Wonderland.” Carroll has Alice realize that her English
is not quite right. The beauty in her error is that the meaning comes through
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anyway, even though it sounds strange. And that is what quantum probability
is like. Even more curiouser would it have been if Carroll had lived after
quantum theory was developed. (And yes, I realize that my English is not
quite right.) Maybe he would have written “Through the Quantum Looking
Glass.”

My underlying attitude about probability theories of whatever ilk is that
they serve to understand the relative frequencies of the results of identically
prepared experiments. (The quotation at the beginning of Chapter 8 applies
here.) I’m sure that I will be decried in some intellectual circles as hopelessly
näıve, quaintly out of date and who knows what other academic shortcoming,
if not outright sin. So I am not dans le vent, an expression which no doubt is
no longer in the wind. Well, gentle reader, if you wish to go down the path of
modern philosophical thought on probability theory, I wish you bon voyage.
It is not a path that interests me. It seems to me that relative frequencies
come directly out from experiments and so must be explained. If current
probability theories do not serve that end, then they must be replaced by
some better way to understand the experimental relative frequencies. Now I
don’t know what such a theory might be, but I do know what it should be
called: a probability theory.

In my terminology quantum probability refers to the probability theory
that arises in quantum theory, and nothing else. However, it is the first of an
infinitude of new probability theories, known generically as non-commutative
probabilities. The non-commutativity is that of a C∗-algebra, a very beautiful
theory which is way too advanced for inclusion in this book. In the context
of this chapter the relevant C∗-algebra is L(H), the bounded linear operators
mapping a Hilbert space H to itself. One can think about the Kolmogorov
axiomatization of classical probability as analogous to Euclid’s axiomatization
of geometry. While it took some two millennia after Euclid’s highly influential
book was written for non-Euclidean geometries to appear in the scientific
literature, the seeds of quantum probability theory were already sown before
Kolmogorov’s seminal work in the 1930s. And it is worthwhile to note that
quantum probability and non-commutative probability are very active fields
of research as of the moment of writing this. However, most forms of
non-commutative probability, such as free probability, involve one linear
functional that emulates the integral of calculus. In quantum probability,
as understood here, there is no such unique linear functional, but rather one
such for each quantum state.

There are major differences between classical probability and quantum
probability. I think that the most important of these is not at the level of
mathematics but rather at the level of physics. Simply put, there is no physics
in classical probability; there is no equation for time evolution. It is purely a
kinematical model. Of course, it can be part of some more inclusive theory
in which something changes in time, say there is a time dependence of the
probability measure (i.e., the state), and there is some way to describe that
change. However, this is in addition to the basic Kolmogorov theory.
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But quantum probability is a part of quantum theory. And that includes
the time dependent Schrödinger equation in an essential way as well as the
collapse of the state. While we can focus on the particular corner of quantum
theory known as quantum probability, we should not forget its fundamental
role in its physical context.

It is worth commenting on the analogy of the Collapse Axiom with the
idea of conditional probability in classical probability theory, as expounded
on in any number of fine texts. However, classical physics, despite its name,
is not a sub-discipline of classical probability. But there is a sub-discipline of
classical physics, known as classical statistical mechanics, which uses classical
probability as one of its principle tools. So this analogy, as far as I can make
out, is just that: an analogy. And not an explanation.

Feynman states in chapter 37 of [12] that the “only mystery” of quantum
theory is how probabilities are combined. (Emphasis in original.) I would add
that an even deeper mystery is why there are probabilities at all in quantum
theory and why we need complex numbers in order to evaluate them.

The expression ‘eye exam’ originally arises in the context of a lecture when
a student asks the professor a question whose answer is on the blackboard
at that very moment. So, the professor says that the answer is an eye exam,
thereby challenging the student to see (literally) the answer. Who was the
first professor to use this expression? I’m not sure, but it wasn’t me, even
though I have been known to use it.



Chapter 17

The Heisenberg Picture

The play’s the thing, wherein I’ll
catch the conscience of the King.

Hamlet in Hamlet, William Shakespeare

The Heisenberg picture is an equivalent reformulation of the standard
quantum theory, which in the present context is referred to as the Schrödinger
picture and which is what we have seen so far in this book. However, the
Heisenberg picture can muddle up the intuitions of quantum theory that you
may have acquired from learning the Schrödinger picture. This should be
an important lesson to those who think that ‘quantum intuition’ is easily
attainable.

17.1 Kinetics and Dynamics chez Heisenberg

The Heisenberg picture has exactly the same kinematics, that is, the same
mathematical structures as used in the Schrödinger picture. The Hilbert
space, the states and the observables are exactly the same. What is different
is the dynamics, that is, the time evolution equation. In each picture the
(time independent) Hamiltonian H of the system plays a central role in the
time evolution equation. In the Schrödinger picture, it is the time dependent
Schrödinger equation which tells us how the states change in time. As we
know, that equation is

i�
d

dt
ψ(t) = Hψ(t)

together with an initial condition ψ(0) = ϕ for some state ϕ. Then, as we
have seen, the solution is ψ(t) = e−itH/�ϕ. What was never said explicitly,
but is true nonetheless, is that the observables do not change in time in the
Schrödinger picture. In the Heisenberg picture we have exactly the opposite
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situation: the states do not change in time but the observables do! Let A be
a self-adjoint operator acting in the Hilbert space. In the following we take
t ∈ R to be the time. The time evolution of A is given formally by

i�
d

dt
A(t) = [A(t),H] (17.1.1)

together with the initial condition A(0) = A. This equation is far from being
rigorous. The right side could involve the commutator of two densely defined
operators, and consequently could be an operator with a very small domain,
possibly the zero subspace. The rigorous time evolution of A is given by

A(t) = eitH/� Ae−itH/�. (17.1.2)

Exercise 17.1.1 Prove that (17.1.2) is a rigorous solution of (17.1.1) with
the initial condition A(0) = A provided that the dimension of the Hilbert
space is finite. In particular, you should understand why (17.1.1) is a rigorous
equation in this case.
Hint: Recall the definition of the exponential of a matrix in (13.3.8).

Recall that the unitary group eitH/� is well defined for all t ∈ R, since H
is self-adjoint. Because of this we now see that the rigorous path is to take
(17.1.2) as the definition of A(t), given the initial condition A(0) = A.

Exercise 17.1.2 For readers with a good background in functional analysis,
prove the following statements. The rest of you should read and attempt to
understand what each statement says.

• Let H be the Hamiltonian of a quantum system and define H(t) using
(17.1.2). Prove that H(t) = H for all t ∈ R. (This is the statement in
the Heisenberg picture of conservation of energy.)

• If the self-adjoint operator A is densely defined in D, a dense subspace
of the Hilbert space, show that A(t) is a self-adjoint operator densely
defined in eitH/�(D).

• The spectrum is time independent, namely Spec A(t) = SpecA for all
t ∈ R.

• Suppose that EA is the pvm of the self-adjoint operator A. Show that
B �→ eitH/� EA(B) e−itH/� is the pvm of A(t), where B is a Borel subset
of the real line. We write this as EA(t) = eitH/� EA e−itH/�.

The quickest way to see the relation between the Heisenberg picture and
the Schrödinger picture is to take a state ϕ in the Hilbert space and consider

〈ϕ,A(t)ϕ〉= 〈ϕ, eitH/� Ae−itH/�ϕ〉= 〈e−itH/�ϕ, A e−itH/�ϕ〉= 〈ψ(t), Aψ(t)〉,

where ψ(t) = e−itH/�ϕ is the solution of the Schrödinger equation.
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On each side we have a time dependent diagonal matrix element (or
expected value) of an observable in a state. In the Heisenberg picture on
the left side, we have a constant state and a time dependent observable. In
the Schrödinger picture on the right side, we have a time dependent state
and a constant observable. And these two time dependent expressions are
equal. With the notation established above, the more general result in terms
of quantum probabilities is

P (A(t) ∈ B |ϕ) = 〈ϕ,EA(t)(B)ϕ〉
= 〈ϕ, eitH/� EA(B) e−itH/� ϕ〉
= 〈e−itH/� ϕ,EA(B) e−itH/� ϕ〉
= 〈ψ(t), EA(B)ψ(t)〉
= P (A ∈ B |ψ(t)).

Again, the Heisenberg picture is on the left side, while the Schrödinger
picture in on the right side. But each side gives the same time dependent
classical probability measure on the Borel subsets B of R. And this time
evolving probability measure is what we verify with experiment. Now the
time dependence in the Heisenberg picture resides in the expression A(t) only,
while in the Schrödinger picture it resides in the expression ψ(t) only. So the
idea that the state of a quantum system carries ‘properties’ that change in
time is completely invalid in the Heisenberg picture, in which all states are
stationary. What can change in the Heisenberg picture are the observables,
but there are also stationary observables which are those that are constant in
time. We leave to the reader to verify that stationary observables in the
Heisenberg picture are equivalent to stationary states in the Schrödinger
picture.

The language used to deal with these facts can be intimidating. The word
‘reality’ gets thrown around a lot. So does ‘quantum weirdness’. Do try to
keep thinking in a scientific manner and not be swept away by rhetoric. In
fact, the motivation for including this material in an introductory text on
quantum theory is to prepare the reader to deal with rhetorical excesses. But
also be warned that trying to get one’s mind around all this is quite daunting.
After all, we are accustomed to thinking of an experimental measurement
of a specific physical quantity as the result of using the same measuring
device, regardless of the time. Also we are used to thinking of the physical
system being measured as changing in time, and this change is reflected in
the changing ‘state’ of the system. But the Heisenberg picture throws out
this way of thinking! Colloquially speaking, the Heisenberg picture requires
thinking ‘outside of the box’.

Notice that in each picture the fundamental mathematical problem is
to find an explicit expression for the unitary group e−itH/� for a given
self-adjoint operator H acting in a Hilbert space. It is fair to say that the
unitary group, and not any particular equation that leads to it, is the dynamics
of the system. This means that Schrödinger’s razor only applies to the
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Schrödinger picture. In this regard a theorem of M. Stone is relevant. That
theorem says that any unitary group U(t) : H → H satisfying a mild
continuity hypothesis as t → 0 is of the form U(t) = e−itH/� for a unique
densely defined, self-adjoint operator H acting in the Hilbert space H. If t
has dimensions of time, then H has dimensions of energy.

Notice that in each picture the fundamental physical problem is to find
an explicit expression for a densely defined, self-adjoint operator H that is
supposed to describe a physical system. This problem is usually solved by first
quantization, one of the basic items in the tool kit of a quantum physicist.

There any number of other pictures besides those of Schrödinger and of
Heisenberg. For example, the interaction picture is also used in quantum
theory. In these other pictures both the state and the observable are time
dependent. However, the probability measure B �→ P (A(t) ∈ B |ψ(t)) does
not depend on the picture, that is, the physics is the same. It is a matter of
convenience which picture one uses to study a particular physical system.

17.2 Notes

After Heisenberg published in 1925 his quantum theory, known as matrix
mechanics, there was a flurry of activity. At long last there seemed to be
a consistent way of dealing with atomic and molecular physics. Then in
1926 Schrödinger published his seminal papers with a quantum theory whose
foundations were quite different. So, after a generation of searching for the
already dubbed quantum mechanics, there was an embarrassing abundance
of riches. However, very shortly Schrödinger proved that the two theories
are equivalent. Our proof is basically the same, but goes to the level of
quantum probability. Interestingly enough, Schrödinger never did accept the
probabilistic interpretation of the solution of his eponymous equation as
being fundamental. He remained a dedicated determinist. Of course, the
Schrödinger equation is completely deterministic. It is the interpretation of
its solution which is probabilistic.



Chapter 18

Uncertainty (Optional)

Information is the resolution of uncertainty.
Claude Shannon

A lot of what is said in this chapter is rejected by someone or other in
the scientific community. But it is what I have come to accept as a clear
accounting of a topic that touches on both the mathematical and physical
interpretations of quantum theory. Unfortunately, it seems to be almost
impossible to find an exposition of this topic that does not include some
bits of utter nonsense. If you can believe a nearly doubly negative, totally
self-referential sentence.

18.1 Moments of a Probability Distribution

Let’s consider the probability distribution ρ(x) := |ψ(x)|2 of a stationary
state ψ on R

3 from a mathematical point of view. One such consideration is
whether ρ has finite moments defined by

μk :=
∫

R3
dxxk|ψ(x)|2,

where xk := xk1
1 xk2

2 xk3
3 and k = (k1, k2, k3) is a multi-index of non-negative

integers. This is clearly too many sub-indices, and so we consider the case of
a ‘wave/particle’ on R instead. Besides, the basic ideas will be present in this
simple case. So for ψ ∈ L2(R) we consider

μk :=
∫

R

dx xk |ψ(x)|2, (18.1.1)

where k ≥ 0 is an integer. Notice that μk depends only on the physical
state defined by ψ, that is to say, if we replace ψ by λψ for some complex
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number λ with |λ| = 1, then μk remains unchanged provided that the integral
converges.

First off, μ0 = 1, since |ψ(x)|2 is a probability distribution. In general, we
can not say much more. If the integral in (18.1.1) converges, then μk is a real
number. Moreover, μk ≥ 0 if k is even. All of the remaining moments with
k ≥ 1 could be infinite or undefined. Or they could be finite. But it is common
to assume that μ1 and μ2 are finite real numbers. And in many interesting
examples this is true. But the fascination that these two moments μ1 and
μ2 have generated in the physics community is all out of proportion. Even
knowing all the moments of a probability distribution does not necessarily tell
us everything about it. Unfortunately, the meaning of these two particular
moments has been exaggerated, if not completely distorted, to the point that
these two alone are claimed to ‘explain’ the difference between classical and
quantum theory and that these two moments give us some essential knowledge
about ‘properties’ of the position of the ‘particle’.

Clearly, μ2 = 0 implies x2|ψ(x)|2 = 0 for (almost) all x ∈ R, which in
turn implies ψ = 0 in L2(R). But as noted above, μ2 ≥ 0. So, we must have
μ2 > 0 if ψ is a state. As for μ1 we have

μ1 =
∫

R

dx x |ψ(x)|2 =
∫

R

dx ψ(x)∗ xψ(x) = 〈ψ(x), x ψ(x)〉,

which is called the expected value of x in the state ψ. This is indeed the
average or mean of the probability distribution ρ(x) = |ψ(x)|2 on the real
line R as you can learn from almost any introductory probability book which
deals with continuous distributions.

Similarly,

μ2 =
∫

R

dx x2 |ψ(x)|2 =
∫

R

dx ψ(x)∗ x2 ψ(x) = 〈ψ(x), x2 ψ(x)〉

is called the expected value of x2 in the state ψ. However, we are usually more
interested in another real number associated with a probability distribution.
If μ1 exists, this is defined by

V ar = V ar(x |ψ) :=
∫

R

dx (x − μ1)2 |ψ(x)|2 = 〈ψ(x), (x − μ1)2ψ(x)〉

and is called the variance (or dispersion) of x in the state ψ. Its value indicates
how much the probability distribution is ‘spread out’ around its mean value
μ1. It is sometimes known as the second central moment of x in the state
ψ. Tinny! In physics especially the variance is often called the uncertainty,
which misleads one into thinking about lack of knowledge. This is even worse
than tinny. It’s sophistry!
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We note that a well known equality in probability theory also holds here:

V ar = V ar(x |ψ) = 〈ψ(x), (x − μ1)2ψ(x)〉
= 〈ψ(x), x2 ψ(x)〉 − 2μ1〈ψ(x), x ψ(x)〉 + μ2

1〈ψ(x), ψ(x)〉
= μ2 − 2μ2

1 + μ2
1

= μ2 − μ2
1.

So under the assumption that both μ1 and μ2 are finite for the state ψ,
we conclude that V ar, the variance of ψ, is also finite. In this context one
often considers as well the standard deviation defined by σ := +

√
V ar. In

quantum theory based on the Hilbert space L2(R3) we can say that σ > 0,
while in probability theory we can only say that σ ≥ 0. Just to complicate
matters, we often write σ2 instead of V ar. Worse yet, we read σ2 as the
standard deviation squared. This otherwise unfortunate expression does have
the virtue of showing that in good English grammar sometimes the adjective
can follow the noun.

We can use the standard notation E from probability theory for expected
values as well. So we write

μ1 = E(x |ψ), μ2 = E(x2 |ψ)

and so forth, where ψ is a state. Actually, for any f : R → R we can write

E(f |ψ) = 〈ψ(x), f(x)ψ(x)〉,

which is read as ‘the expected value of f in the state ψ’. In this notation, we
have that

V ar(x |ψ) = E(x2 |ψ) − E(x |ψ)2.

Exercise 18.1.1 Prove that σ > 0 as claimed above.

We often omit the state ψ from our notation. And this can mislead
the reader. All of these quantities depend on ψ. For example, if we make
measurements of x for an ensemble of systems, each of which is identically
prepared to be in the state ψ, we will obtain a set of measured values, say
α1, α2, . . . , αN . These values will not necessarily cluster closely around one
real number as we expect in deterministic classical physics. But from this list
we construct the usual statistical estimator

α :=
α1 + α2 + · · · + αN

N

for the theoretical value μ1. Similarly, we can construct the usual estimator
for the variance. A good introductory statistics book will give you the formula
for an unbiased estimator of the variance. As is usual in statistical analysis,
the conclusions apply to the ensemble rather than to any one thing in that
ensemble. It is not correct to think that each individual observation gives μ1
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or even something relatively close to μ1. The measured values could cluster,
for example, at +5 and −5 in a symmetric way with almost no values near
0 thereby agreeing with a theoretical probability distribution with peaks at
+5 and −5 and μ1 = 0. But then that would most likely give an estimator
α near μ1 = 0. Moreover, by taking ever larger ensembles the probability
that α differs from μ1 = 0 in absolute value by some given number ε > 0
approaches 0. The previous statement is a theorem in mathematical statistics.
It is equally incorrect, as this example shows, to think that the state ‘has’
a numerical value, which experiment ever better approximates through ever
more measurements.

The state ψ ∈ L2(R) determines a probability distribution of positions.
After all that is what the equation ρ(x) = |ψ(x)|2 is telling us. It might seem
strange to see the words ‘determines’ and ‘probability’ in the same sentence
(as they do appear above). Get used to it!

Also, given an ensemble of systems in the prepared state ψ, you can not
make the variance V ar as small as you like. However, by changing the state
ψ we can decrease the variance. A given state ψ determines a probability
distribution, which in turn gives us V ar(x|ψ) by using a simple formula. And
it could even happen that we are preparing a state for which the variance
does not even exist.

Of course, x is an example of a measurable quantity which is represented
in quantum theory by a self-adjoint operator. Almost all other physically
measured quantities are also represented by self-adjoint operators. (Recall
that time is a measured quantity for which there is no self-adjoint operator.)
Anyway, a measurable quantity associated with a self-adjoint operator will
always have a probabilistic interpretation that refers to ensembles of systems
prepared in the same state. Any such observable will have an expected
value as well as a variance for that state, if the moments μ1 and μ2 exist
for that probability distribution. Neither of these values can be controlled
experimentally once the prepared state has been fixed.

18.2 Incompatible Measurements

In this discussion we have only mentioned experiments which measure one
quantity. Are there experiments that can measure two or more quantities at
the same time? It seems obvious and natural to expect this should always
be possible. But it is not! There are some pairs of observables, as already
described in Section 16.10, that are compatible in this sense, while there are
other pairs which are not. This is radically different from classical mechanics
where there is an underlying assumption (supported by experiment) that
any pair of observables is compatible. If a car goes roaring down the road,
we feel confident that we can measure (at as many moments in time as our
current technology allows) its position, velocity, momentum, temperature,
kinetic energy, you name it. The only limiting factor is available technology.
Or so we think.
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But in experiments measuring quantum systems there are incompatible
pairs, like it or not. This is a theoretical statement and can, of course,
be falsified by experiment. However, it is a consequence of the collapse of
the ‘wave’ function. How so? Well, first note that incompatible pairs of
measurements can be made in succession, that is, one can be made and
then nanoseconds later the other can be made. But the first measurement
collapses the ‘wave’ function and so the second measurement (in general) is
not being made on the same initial state as was the first measurement. And
then the second measurement also collapses its initial ‘wave’ function. Clearly,
the order of the two measurements can be reversed and, again, there will be
two collapses of ‘wave’ functions. For example, we start with a state ψ and
measure A and then measure B, getting the values a and b, respectively. But
starting with the same state ψ we can measure B and then measure A, getting
the values b′ and a′. Given incompatible observables A and B it is perfectly
possible that a �= a′ or b �= b′. (And this is an inclusive ‘or’. Both may hold.)
All this can be discussed in quantum theory, and clear scientific statements
can be formulated. However, as shown in Section 16.10 none of this analysis
has anything to do with the Heisenberg inequality, which we will present in
(18.2.1) below. Nonetheless, this situation of consecutive measurements of
incompatible observables is often taken to be the physical interpretation of
the Heisenberg uncertainty principle. That is all well and good, provided that
this interpretation is not confused with (18.2.1).

Moreover, the theoretical assertion of the collapse condition forbids a
simultaneous measurement of a pair of incompatible observables, since which
of the two measurements would collapse the ‘wave’ function? The point here
is that these two measurements individually would collapse the same initial
‘wave’ function in two different ways. Hence a simultaneous measurement
of two incompatible observables would force Nature to make the choice of
Buridan’s ass.

The most famous example of such an incompatible pair of operators for R

is the pair of position x and momentum p. (Actually, any pair whatsoever
of non-commuting operators will do just as well.) The famous Heisenberg
position/momentum uncertainty principle has been encoded as the inequality
(due to Kennard, not to Heisenberg)

V ar(x |ψ)V ar(p |ψ) ≥ �
2/4, (18.2.1)

where ψ is a state, that is ||ψ|| = 1. So we can define the moments for the
operator p in the state ψ and then define the variance denoted by V ar(p |ψ),
which should be read as the variance of the observable p given the state
ψ. Similarly, V ar(x |ψ) denotes the variance of the observable x given the
state ψ, as presented above. Notice that the same state ψ appears in these
two variances. The mathematical proof of this extremely famous result is
quite disappointing. It is just a simple application of the Cauchy-Schwarz
inequality. We will return to this in order to give a more self-contained
exposition. But for now I would prefer to focus on ideas and calculations.
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First though, here is a little interlude on the more common way of writing
the Heisenberg uncertainty inequality (18.2.1) in physics. One considers the
standard deviation of each quantity instead of its variance. While we used
σ before to denote a standard deviation, we now use Δ. By taking positive
square roots the Heisenberg uncertainty inequality (18.2.1) is equivalent to

Δ(x |ψ)Δ(p |ψ) ≥ �/2.

Often the state ψ is dropped from the notation. So you will see this version
in the literature:

Δ(x)Δ(p) ≥ �/2.

Next a change of language occurs. Instead of saying ‘standard deviation’ one
says ‘uncertainty’. Even though definitions in mathematics can use arbitrary
words for the defined structure, this particular word can totally obscure the
mathematical meaning. The problem is that the word ‘uncertainty’ already
has a common meaning in English. And that meaning has something to
explicitly do with faulty human knowledge. Moreover, that meaning is not
equivalent to ‘standard deviation’. But the die can not be uncast.

So what does this uncertainty inequality say? Simply that if we estimate,
as described above, the variance of x in some state ψ of an ensemble of
experiments and we similarly estimate the variance of p of another ensemble
of experiments prepared in the same state ψ, then the above inequality will be
statistically verified. Note that the ensemble for p must be completely disjoint
from the ensemble for x, since these are incompatible measurable quantities.
Notice that there is no reference in this explanation of knowledge in any way
or form about individual elements in the ensembles. We are not speaking
of knowledge—or lack of knowledge—about the position or momentum of
any observed individual ‘wave/particle’. Simply we measure the position for
some of these observations (but not the momentum) while we measure the
momentum for other observations (but not the position).

If we replace the state ψ by a sequence of states ψn with n ≥ 0 such
that limn→∞ V ar(x |ψn) = 0 (as we can do by taking bump functions ψn

centered at a given real number), then we have limn→∞ V ar(p |ψn) = ∞
as a consequence of the Heisenberg uncertainty inequality. Similarly, we can
find a different sequence of states φn such that limn→∞ V ar(p |φn) = 0.
In that case it follows again by the Heisenberg uncertainty inequality that
limn→∞ V ar(x |φn) = ∞. So states with measured values of one of these
observables tightly distributed around its mean value will be states that have
measured values for the other observable widely dispersed around its mean
value. The Heisenberg uncertainty inequality also admits the possibility that
both of the variances are very large. These are not statements about the
value or the knowledge of the value of either of these two observables in a
given state, since no state has a single value for either of them, but rather
a distribution of values. The Heisenberg uncertainty inequality (18.2.1) says
something about the variances of those distributions, no more and no less.
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The Heisenberg uncertainty inequality is not about measurement any
more or less than any other theoretic prediction properly interpreted. It is
not a statement about one type of measurement limiting the information
available from another type of measurement, but rather that states with very
small variance in x will have large variance in p and similarly that states
with very small variance in p will have large variance in x. If one wishes to
think of variance as a measure of information (i.e., small variance corresponds
to a lot of information), then the increase in information about x (in some
state ψ) that one gets by changing that state can result in a decrease in
information about p for that same change of states. And vice versa. Since
we are dealing with an inequality, we only can say that a sufficiently large
increase in information about x due to some change of state will necessarily
result in a decrease in information about p due to the same change of state.
Viewed this way the Heisenberg uncertainty inequality is a statement about
the change of the information of observables due to a change of state.

Recall that once ψ has been given, the theoretical values of V ar(x |ψ) and
V ar(p |ψ) are determined, at which point the only remaining thing to do is
perform the experiment to see whether or not the theory holds. After all, we
test all theoretic predictions in physics by comparing them with experimental
data. And unlike the great Yogi’s saying, good experiments beat good theory
every time and not vice versa.

It is fine if one wishes to summarize this discussion about variances as
“the better one knows x the worse one knows p and conversely”. But only if
this refers, as above, to statements about an ensemble of quantum systems
in identical states. Trying to give this discussion an interpretation in terms
of any one individual system is not what one can legitimately get from the
Heisenberg uncertainty relation (18.2.1).

However, the quantum situation, properly understood, may run counter
to your intuition. To see this, the classical one-dimensional system of one
massive particle gives an instructive contrast. For such systems a (pure) state
is determined by two real numbers, one for its position and another for its
momentum. Knowledge about the position, no matter how precise, tells us
nothing at all about its momentum even if we perform a large ensemble
of identical experiments on identically prepared systems. (And conversely,
though we won’t get into that.) On the other hand, let’s think about an
ensemble of identical experiments on identically prepared one-dimensional
one-particle quantum systems all of which are in the same quantum state
ψ. Then the measured values of the position x for each system gives us
information about V ar(x |ψ) and so, using (18.2.1), at least some, admittedly
incomplete, information about V ar(p |ψ), the variance of p. So, contrary to
what you might expect, this can be seen as better than the analogous classical
case where no information about momentum is obtained.
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18.3 Example: Harmonic Oscillator

Let’s see how things work out for the ground state of the quantum harmonic
oscillator ψ0(x) = Ce−x2/2 where we now choose C > 0 so that ||ψ0|| = 1.
(See (6.2.2).) Note that∫

R

dx |e−x2/2|2 =
∫

R

dx e−x2
= π1/2,

where the last equality might be familiar to you. If not, you can check it out
in the literature. Or better yet, you can try to evaluate it yourself. Anyway,
this shows that ψ0(x) = π−1/4e−x2/2 gives a normalized ground state ‘wave’
function. Then the expected value of position in this state is

μ1 = 〈ψ0, xψ0〉 =
∫

R

dx (π−1/4e−x2/2)∗ xπ−1/4e−x2/2 =
∫

R

dxπ−1/2 x e−x2
= 0,

since the continuous integrand decays to zero sufficiently fast at infinity in
order to conclude that it is integrable and the integrand is an odd function.
So the measured values of x are predicted to have mean (or average) value
μ1 = 0. But how spread out will they be around that mean value?

V ar(x |ψ0) = μ2 − μ2
1 = 〈ψ0, x

2ψ0〉 =
∫

R

dxπ−1/2 x2 e−x2
=

1
2
,

where the last integral is also well known. In fact for every integer k ≥ 0, the
value of the integral ∫

R

dx xk e−x2

is well known. These are called Gaussian integrals.
The fact that V ar(x |ψ0) �= 0 does not imply that the ‘wave/particle’

is moving when in the ground state ψ0. The value of V ar(x |ψ0) simply
speaks to the results of position measurements of an ensemble of identically
prepared systems. The state ψ0 is a stationary state. Its time evolution is
Ψ(t) = e−itE0/� ψ0, where E0 is the ground state energy, a real constant.
By our previous discussion Ψ(t) represents the exact same state as ψ0 does,
since |e−itE0/�| = 1. Ψ(t) is a state that does not change with time. That
state is all the information we have about the ‘wave/particle’. It makes no
sense whatsoever to say that it—or something associated to it—is moving.
Or changing. Or fluctuating. Or whatever other obscure synonym one might
use instead of moving. In this case even Galileo would have to admit that it
does not move.

Let’s do the same for the momentum observable

p =
�

i

d

dx
.

The expected value of p in the state ψ0 is

〈ψ0, pψ0〉 =
∫

R

dx
(
π−1/4e−x2/2

)∗ �

i

d

dx
(π−1/4e−x2/2) = 0,
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since again the continuous integrand is integrable and is odd. But for the
record we note that

d

dx
(e−x2/2) = −x e−x2/2

and so
d2

dx2
(e−x2/2) =

d

dx
(−x e−x2/2) = (−1 + x2) e−x2/2.

So the variance of p in the state ψ0 is

V ar(p |ψ0) = 〈ψ0, p
2ψ0〉

=
∫

R

dx (π−1/4e−x2/2)∗
(

�

i

)2
d2

dx2
(π−1/4e−x2/2)

= −�
2π−1/2

∫
R

dx (−1 + x2) e−x2

= −�
2π−1/2

(
−π1/2 +

1
2
π1/2

)

=
1
2

�
2.

Again, the fact that V ar(p |ψ0) �= 0 does not imply that the ‘wave/particle’
or anything else is moving. It is also a statement about an ensemble of
momentum measurements. But I repeat myself repeatedly.

Next we compute the left side of the Heisenberg inequality (18.2.1)

V ar(x |ψ0)V ar(p |ψ0) =
1
2

(
1
2

�
2

)
=

1
4

�
2,

which is consistent with what the Heisenberg inequality says. Actually, for
this particular state ψ0 the inequality becomes an equality. We say that the
state ψ0 minimizes the Heisenberg inequality. Equivalently, we say that ψ0

saturates the Heisenberg inequality. Any state that minimizes the Heisenberg
inequality is called a minimal uncertainty state. This is often taken to be an
essential property of the so-called coherent states, which form an active area
of current research. See the encyclopedic volume [1] for more on this topic.

It is a long, but possibly instructive exercise to compute the left side of
the Heisenberg inequality for the rest of the eigenfunctions of the harmonic
oscillator. It turns out that for each of them the inequality holds in its strict
form, that is to say, the left side is strictly bigger than the right side. Hence
none of these excited states is a minimal uncertainty state.

Exercise 18.3.1 So to get a further taste of how this works, compute the left
side of the Heisenberg uncertainty inequality for the stationary state that has
energy eigenvalue (3/2)�ω.
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So far in this chapter we have been concerned only with a stationary state.
What can we say about a solution Ψ(t, x) of the time dependent Schrödinger
equation? Well, we simply fix some time t and use Ψ(t, x) instead of ψ(x) in
the above discussion. Then all the quantities become time dependent. So the
time dependent version of the Heisenberg inequality for the state Ψ(t, x) is
simply

V ar
(
x |Ψ(t, x)

)
V ar

(
p |Ψ(t, x)

) ≥ 1
4

�
2

for every time t. So we have two time varying quantities whose product at
any time is bounded below by a universal constant. There are some curious
possibilities. One possibility is that V ar(x |Ψ(t, x)) and V ar(p |Ψ(t, x)) can
oscillate with time between 0 and +∞. In fact, it is even possible that these
oscillations bring each of these quantities individually as close to 0 as you
like, but not at the same time! This is because when one of them is very, very
close to 0 the other must be very, very large indeed. However, there could be
times when both are very, very large.

Another fascinating possibility is that, while neither factor is constant in
time, nonetheless

V ar(x |Ψ(t, x))V ar(p |Ψ(t, x)) =
1
4

�
2

holds for every time t. In this case when one of the variances gets close to 0
at some time we know the exact (large) value of the other variance at that
same time.

My own opinion is that the importance of the Heisenberg uncertainty
inequality has been exaggerated and even, at times, distorted into saying
something meaningless at best or false at worst. I do not care to scold my
colleagues, whose sincere dedication to doing good science I do not doubt, in
more detail on this point. It suffices to note the obvious scientific fact that the
Heisenberg uncertainty inequality (18.2.1) is not an equation which allows us
to predict the time evolution of a physical system. In fact, it is not even an
equation. At best it tells us that certain situations, which we expect to occur
according to classical physics, do not occur in nature. And it is a perfectly
fine scientific statement since it can be checked by the ultimate scientific test:
experiment.

18.4 Proof of the Uncertainty Inequality

In this section we will prove the Heisenberg uncertainty inequality for the
position and momentum operators in dimension one. This argument can also
be applied to the position and momentum operators associated to the same
direction in R

n. There are also generalizations for pairs of operators acting
in a Hilbert space. A nice factoid is that for a pair of commuting operators
the lower bound of that Heisenberg inequality is zero. But for the quantum
(that is, non-commuting) case the lower bound is non-zero.
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Before proceeding with that proof I wish to note that, except in very
special cases, the energy operator, that is the Hamiltonian H, acting in a
Hilbert space H does not have a conjugate self-adjoint operator that acts in
H and represents the time. (A self-adjoint operator T conjugate to H would
satisfy i[H,T ] = �I.) In quantum theory time is a parameter and not an
observable. A way to see physically why this is so is that every measurement
is made simultaneously (by definition!) with a time measurement. So the
time measurement is compatible with all other measurements, and so would
have to be represented by a self-adjoint operator that commutes with all
operators, including energy operators. And this leads to the time operator
being a real multiple of the identity operator. And such an operator has a
single point spectrum, that is, only one possible measured value. And time
is not like that. You will see an energy-time uncertainty relation written in
the literature, but that is not a special case of the argument of this section.
In fact, the physical interpretations of such an uncertainty relation, again
found in the admittedly enormous literature, are never the interpretation of
the Heisenberg uncertainty inequality as given here. To be sure, what I am
saying in this paragraph is highly controversial in the physics community.
And I have not read all of the relevant literature. Who has?

Now we are going to see how the Heisenberg inequality is a consequence
of the Cauchy-Schwarz inequality (9.3.3). Recall that V ar(x|ψ) = μ2 − μ2

1

where ψ is a state. Define a new observable y by y := x − μ1. Then the
expected value of y is

E(y |ψ) = E(
(x − μ1) |ψ

)
= E(x |ψ) − μ1 = 0

and so

V ar(y |ψ) = E(y2 |ψ) − E(y |ψ)2

= E(y2 |ψ)

= E(
(x − μ1)2 |ψ

)
= V ar(x |ψ).

This simply says that by shifting the observable x by the appropriate constant
amount the expected value becomes 0 while the variance is unchanged. So
without loss of generality we can assume that the original observable x has
expected value 0. Similarly, we assume that the expected value of p is 0. These
assumptions clean up the algebraic manipulations of the following argument.

Next, since x is a real variable we have

V ar(x |ψ) = 〈ψ, x2ψ〉 = 〈xψ, xψ〉 = ||xψ||2.
A partial integration argument shows that p = �

i
d
dx is a symmetric operator,

which justifies the second equality here:

V ar(p |ψ) = 〈ψ, p2ψ〉 = 〈pψ, pψ〉 = ||pψ||2.
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The inner product and norm used in these equations are those of the
Hilbert space L2(R). Now the Cauchy-Schwarz inequality (9.3.3) and the
above identities say that

|〈xψ, pψ〉|2 ≤ ||xψ||2||pψ||2 = V ar(x |ψ)V ar(p |ψ). (18.4.1)

So now it is a question of identifying the left side of this inequality. In the
next calculation we use the symmetry of the operators x and p as well as the
fact that ψ is a state. So we have

〈xψ, pψ〉 = 〈(px)ψ,ψ〉
= 〈(px − xp + xp)ψ,ψ〉
= 〈(−i�I + xp)ψ,ψ〉
= i�||ψ||2 + 〈(xp)ψ,ψ〉
= i� + 〈pψ, xψ〉
= i� + 〈xψ, pψ〉∗,

where we also used px − xp = [p, x] = −i�I. (See (5.1.4).) This tells us that
the imaginary part of 〈xψ, pψ〉 is given by

Im
(〈xψ, pψ〉) =

1
2i

(〈xψ, pψ〉 − 〈xψ, pψ〉∗) =
�

2
.

This in turn gives us the lower bound

|〈xψ, pψ〉|2 ≥ |Im(〈xψ, pψ〉)|2 =
�

2

4
.

Combining this with (18.4.1) we obtain

V ar(x |ψ)V ar(p |ψ) ≥ �
2

4
.

And this is the Heisenberg inequality (18.2.1). This argument has not been
completely rigorous. Some consideration must be given to the existence of the
integrals that give the inner products. Also some work must be done to show
that p is a symmetric operator. This is a question of choosing an adequate
domain for the formal operator p. In fact, with a good choice of domain, p is
realized as a self-adjoint operator, which is a very special case of a symmetric
operator. These considerations are dealt with in many texts, such as [25].

While V ar(x |ψ) ≥ 0 and V ar(p |ψ) ≥ 0 both follow immediately from
the definition of the variance, the Heisenberg inequality actually implies
V ar(x |ψ) > 0 and V ar(p |ψ) > 0. Notice that ψ does not depend on time.
If ψ is an eigenfunction of the Hamiltonian H with eigenvalue E, then the
time evolution of ψ is given by

Ψ(t, x) = e−itE/�ψ(x).
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But the factor e−itE/� lies on the unit circle of C, and it does not depend on x.
Hence, Ψ(t, x) represents exactly the same state as ψ does. In other words, the
state of the quantum system is not changing in time. We already commented
on this for the special case of the ground state of the harmonic oscillator. The
point here is that this is a general result. So, the inequality V ar(x |ψ) > 0
means that even knowing everything possible according to quantum theory
about a system, the measurements of x do not give one unique (within
experimental precision) value, but rather a distribution of different values.
We already knew this, but now we have a quantitative statement of this fact.

Anyway, this distribution of measured values is often called the quantum
fluctuations of the observable, which is x in the present case. But the state
Ψ(t, x) is not changing or fluctuating in this case. So, we are not supposed
to think of the ‘wave/particle’ as moving around on some trajectory or in
some orbit. Similarly, the inequality V ar(p |ψ) > 0 does not mean that the
momentum of the ‘wave/particle’ has a value that is fluctuating around its
mean value. Simply put, in quantum theory a ‘wave/particle’ does not have a
single value of position (nor of momentum) that measurement then can give
us. Instead identical measurements starting from identical initial states give
us a non-trivial distribution of different values of position or of momentum.
And that’s what probability is all about!

This interpretation of quantum theory is so counter-intuitive to some
people that there have been several attempts to ‘rescue’ quantum theory
by introducing so-called hidden variables, whose currently unknown values
account in a deterministic manner for the distribution of measured values.
Unfortunately, emotions often play a role in discussions of such issues. While
hidden variables have not been completely ruled out, some ideas along those
lines, such as Bell’s inequalities, have been falsified by experiment. At least,
some physicists claim that such experiments have been done and have been
correctly interpreted. Nonetheless, the discussion of this and related issues
continues to this day in the physics as well as philosophical communities.
The purpose of these comments is to present something along the lines of the
Copenhagen interpretation in order to give context for such discussions.

Exercise 18.4.1 Suppose ψ1, ψ2 ∈ L2(R) are states. Prove the following
generalization of the Heisenberg inequality:

V ar(x |ψ1)V ar(p |ψ2) ≥ �
2

4
|〈ψ1, ψ2〉|2. (18.4.2)

Also show that 0 ≤ |〈ψ1, ψ2〉| ≤ 1.

As far as I know the inequality (18.4.2) has no name and is not very much
seen in the literature. In the case when ψ1 and ψ2 are orthogonal, this gives
us only the very weak result

V ar(x |ψ1)V ar(p |ψ2) ≥ 0
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even though it is true that

V ar(x |ψ1)V ar(p |ψ2) > 0,

since both factors on the left are strictly positive, as we have seen.

Exercise 18.4.2 Let A,B be operators representing physical observables.
(You can work under the condition that they are symmetric operators.) Find
and prove a generalization of the Heisenberg inequality for these observables.
Hint: The lower bound should contain the commutator [A,B].
N.B. This exercise is applicable to the spin operators S1, S2, S3 that were
introduced in Chapter 14. It is this form of the uncertainty principle which
has been most extensively checked in the experiment. The position/momentum
inequality (18.2.1) is more difficult to verify experimentally.

18.5 Notes

The literature on uncertainty relations is enormous. I leave it to the reader
to browse through it, though I recommend [24] for a clear discussion. If there
is one certainty, it is that no one has read it all.

My point of view is almost heretical, even though it is a straightforward
application of probabilistic ideas to a probabilistic statement. My near heresy
lies in not taking the uncertainty relation (18.2.1) as a statement about a
single experiment. Rather, I prefer to say it is only a meaningful statement
when referring to ensembles of identical experiments. Why? Because the
correct way to verify theoretical probabilistic statements, as far as I can see,
is to compare the predicted probabilities with the experimentally measured
relative frequencies by using established statistical methodology. Anything
besides that just is not science in my opinion. In any case the experimentally
measured relative frequencies have to be explained somehow, and quantum
theory does that by predicting a probability measure for any given observable
in any given state.

No doubt I will also be criticized for saying the Heisenberg uncertainty
principle is an optional topic with almost no importance in quantum theory.
But that is my sincere opinion. I included this chapter because the reader
most likely has heard about this topic, and so it is worthwhile to explain
what it is all about.

Heisenberg did not write a mathematical formulation of the uncertainty
principle, and so some scientists dispute whether (18.2.1) actually captures
Heisenberg’s insights correctly or completely. However, (18.2.1) is commonly
accepted as being the Heisenberg Uncertainty Principle (for position and
momentum in one dimension), and so I have only commented on it and not
on other mathematical statements purporting to represent Heisenberg’s ideas
better or more fully. For example, in [13] the authors give an alternative
interpretation of uncertainty that makes no reference to inequalities with
standard deviations.
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Of course, many totally rigorous mathematical results have been dubbed
as an uncertainty relation or even as a Heisenberg uncertainty relation. That
is all fine and dandy. But this is a physics book. And so I want to interpret
those mathematical results, if possible, in terms of the measurable properties
of physical systems, and most particularly, of quantum systems.

Yogi Berra and his famous sayings, the Yogi-isms, are discussed in the
Notes to Chapter 19.
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Speaking of Quantum Theory
(Optional)

Couvrir les fautes,
excuser les crimes,

c’est aller a l’ab̂ıme.
Émile Zola

How we speak about any subject is important because it reflects and
influences how we think about it. And it is generally recognized that it is
notoriously difficult to think about quantum physics. I think this is due to
two factors: the fundamental role played in it by a probability theory with no
underlying deterministic theory and the representation of time as a parameter
instead of as a self-adjoint operator.

19.1 True vs. False

There is so much nonsense said about quantum physics that it is difficult to
know where to even begin. Of course, the self-appointed experts with nary a
day in a science course (but often with an overload of New Age rhetoric
or cargo cult science at their disposal) are the easiest to confront. Such
overwhelming ignorance combined with an amazing level of hubris is too
easy a target. So I leave that critique to others. What really concerns me are
the people with the supposedly adequate credentials (Ph.D., full professor,
or Nobel Prize winner!) who should know better, but somehow end up as
DoubleSpeakers. They do the general public a great disservice by creating
juicy sound-bites, which are at times misleading and often downright lies.
While everyone has the right to express their ideas, no one is above scientific
criticism for what they say.
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19.2 FALSE: Two places at same time

Here is an example. Consider this often repeated FALSE statement:

An electron can be at two places at the same time. FALSE.

The very first comment has to be that there is no experimental evidence
to support this FALSE statement. And I mean absolutely none.

To avoid technical details, we discuss this in the simpler one-dimensional
case first. We will get back to the three-dimensional case in an exercise.
Suppose that Q represents the position observable, that is, for all x ∈ R

(Qψ)(x) = xψ(x).

Then Q is a self-adjoint operator when we take ψ in the dense linear subspace
of L2(R) defined by

D := {ψ ∈ L2(R) |xψ(x) ∈ L2(R)}.
Exercise 19.2.1 The quantum event that Q has a value in a Borel subset
B of R is EQ(B), which turns out to be the projection operator that maps
ψ ∈ L2(R) to

EQ(B)ψ = χBψ.

Here EQ denotes the pvm associated with the self-adjoint operator Q, and
χB is the characteristic function of B. (Recall that χB(x) = 1 if x ∈ B and
otherwise χB(x) = 0.)

Therefore, the range of EQ(B) consists of those functions that are zero
(almost everywhere, to be completely correct) on R \ B.

Recall that if E1 and E2 are quantum events with ranges V1 and V2,
respectively, then the quantum event that both events occur at the same
time is the projection operator (denoted by E1 ∧ E2) associated with the
closed subspace V1 ∩ V2. (See Exercise 16.2.9.)

Exercise 19.2.2 Let B1 and B2 be disjoint Borel subsets of R. Let χB1 ,
resp. χB2 , denote the characteristic function of B1, resp. B2. Prove that
Ran EQ(B1) ∩ Ran EQ(B2) = 0, the zero subspace. Then the corresponding
quantum event is the zero operator.

In other words EQ(B1) ∧ EQ(B2) = 0 is the quantum event that never
occurs no matter what state the system is in. Colloquially, an electron (or
any other ‘particle’) is never in two disjoint regions at the same time.

In any state ψ, the probability that the value of Q is both in B1 and B2 is

P (Q ∈ B1 ∩ B2 |ψ) = P (PQ(∅) |ψ) = 〈ψ, 0ψ〉 = 0.

So how do so many experts fall into this linguistic trap? Well, for two
given disjoint non-empty open intervals I1 and I2 of the real line, there exist
many states ψ such that
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0 < P (Q ∈ I1 |ψ) < 1 and 0 < P (Q ∈ I2 |ψ) < 1. (19.2.1)

But the statement that these two probabilities are non-zero does not say that
the electron (or whatever) is at one and the same time both in I1 and in I2.
Rather, these are probability statements that can be tested against measured
frequencies in an ensemble of identical experiments of occurrences of values
in I1 and I2 given that the system is in state ψ. So what is the reformulation
of the FALSE statement so that it becomes true? It is that there exist states
ψ that satisfy (19.2.1). Nontheless, (19.2.1) does not say that the ‘particle’ is
simultaneously in I1 and in I2. Besides, if an electron was simultaneously in
both I1 and I2, the conservation of electric charge would be violated! Another
wild consequence of this FALSE statement would be that the electron can be
in 3 places at the same time. And at 4 places at the same time. And so on
ad absurdum.

Moreover, given such disjoint intervals I1 and I2, there exist many states
φ1 such that

P (Q ∈ I1 |φ1) = 1 and P (Q ∈ I2 |φ1) = 0, (19.2.2)

and also there exist many states φ2 such that

P (Q ∈ I1 |φ2) = 0 and P (Q ∈ I2 |φ2) = 1. (19.2.3)

Exercise 19.2.3 Find states ψ, φ1, φ2 that satisfy the conditions (19.2.1),
(19.2.2) and (19.2.3), respectively. In the process to doing this, you should
understand why in each case there are many such states.

If you think that this is déjà vu all over again, you are right. This is a
reprise of the discussion about the spin matrices. As noted there, the same
argument applies to any observable which can have at least two values. The
fact that the Hilbert space for the the spin matrices is 2-dimensional while
the Hilbert space for Q is infinite dimensional is not pertinent. What matters
is that all of these observables have two or more possible values. And again,
the counter-intuitive aspect of quantum probability is that even complete
knowledge of the state of a system does not always tell us with probability 1
what the value of a particular measurement will be.

The discussion above was presented in order to show how the general
theory of quantum probability, including pvm’s and quantum events, can
deal with misinterpretations of quantum theory. In this particular case there
is an other way to correctly understand what quantum theory says.

Exercise 19.2.4 Understand why the above statement is FALSE by considering
the integral of the probability density function over the appropriate sets. Show
that this argument easily generalizes to R

3.
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19.3 FALSE: Any state can be determined

There are many other erroneous statements that come from respectable
sources. It is not worthwhile examining all of them, though I believe that
most are the result of not understanding quantum probability. Here is just
one more that is rarely explicitly stated, but can be a hidden assumption
that leads to incorrect conclusions. Consider this FALSE statement:

It is possible with one single measurement to determine the state of any
arbitrarily given quantum system. FALSE.

Well, if the Hilbert space of the system has dimension 1, this statement
is sort of true, because then there is only one possible state! But that is
not what I mean by a quantum system, which must have a Hilbert space of
at least dimension 2. Sorry about giving this criterion for being a quantum
system afterwards! The FALSE statement above contradicts quantum theory,
so if someone can actually find a measurement technique that does measure
the state of any arbitrary quantum system, then quantum theory will have
to be modified or replaced.

Why is this statement false? In general, with a given quantum system in
some initial state ψi, a measurement (self-adjoint operator) of it will give a
real number and collapse the system into a final state ψf . But the only thing
we learn about the initial state ψi is that the probability |〈ψi, ψf 〉|2 �= 0. This
is very far from measuring ψi, since it only excludes ψi from lying in the
subspace orthogonal to ψf .

Of course, given an ensemble of quantum systems all in the same state,
we can gain some information about what that state is by performing a
corresponding sequence of single measurements. But the previous sentence,
which is true, is not to be confused with the above FALSE statement. On
the other hand, using the collapse of the state as a tool, one can prepare a
system so that it is in a known state after a measurement. The moral is that
measurement is a probabilistic, not deterministic, process in quantum theory,
and so its result does not give sufficient information to determine the given,
prior state of the system. (Parenthetically, we note that quantum systems do
carry information, but of a new type known as quantum information, what
else?) Therefore, this error is also due to a flawed understanding of quantum
probability.

Exercise 19.3.1 While reading the previous paragraph, you most likely were
thinking about measurements that yield more than one possible value. Now
understand why that paragraph is valid also for the case of a measurement
which always yields one and the same value.
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19.4 Expected Values—One Last Time

It is often stated by persons who should know better that quantum theory
does not give information on individual events but only predicts expected
(or average) values. While it is true that individual events typically can not
be predicted, this misconception underestimates what quantum theory does,
which is to predict the classical probability distribution of any observable in a
fixed, given state. (Already stated in 1932 in [32].) This is more information
that just the first moment (also called expected value or average) of that
probability measure. To put it even more bluntly, if the observed values do
not coincide statistically with the predicted probability distribution, then the
theory is in error although the observed average turns out to be the predicted
expected value. See the comments on Axiom 5 in Chapter 21 for more details.

19.5 Tunneling

A third example is given by tunneling. This quantum property of matter can
be seen in many models, though the first was using Fowler-Nordheim (FN)
tunneling to understand electron field emission. (Parenthetically, we note that
this was also an early use of Fermi-Dirac statistics.) The idea is to consider
a potential energy that has a valley or well surrounded by an enclosing ridge
region (called the barrier) which then gives way to outlying lowlands. Here
is such a potential energy in dimension one. So for x ∈ R we let

V (x) =

⎧
⎨

⎩

0 for |x| < A,
B for A ≤ |x| ≤ A + 1,

B/4 for |x| > A + 1.

Here A and B are strictly positive real numbers. The region |x| < A is the
well, the barrier region is A ≤ |x| ≤ A + 1, and the outlaying lowlands
is |x| > A + 1. On the other hand B is referred to as the height of the
barrier. This potential energy is a ‘toy model’ for the combined strong and
electromagnetic energies felt by an alpha particle in and near a heavy nucleus.

Of course, B has dimensions of energy. One then considers the quantum
Hamiltonian for this potential energy:

H = − �
2

2m

d2

dx2
+ V (x).

Now it is an exercise to solve the time independent Schrödinger’s equation
Hψ = Eψ. Say we do this for E = B/2, half the height of the barrier. One
solution ψ has a probability density ρ(x) = |ψ(x)|2 that is concentrated in the
well |x| < A, continues to be positive in the barrier region A ≤ |x| ≤ A + 1,
and also is positive (though very small) for |x| > A+1. This solution is called
a tunneling solution. Call it what you will, what does it mean?

Some highly qualified physicists will say that it means that a ‘particle’
placed in the well can tunnel through the barrier region and appear in the
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outlying region. They say that the particle tunnels out of the well. But that
understanding is based on an initial condition in time and a notion that
the ‘particle’ is moving in time. However, the solution ψ does not depend
on time; it is a stationary state. Also the time independent Schrödinger’s
equation never has an initial condition in time. There is no ‘placing’ the
particle in the well to start with. And there is no motion, since neither ψ(x)
nor ρ(x) depends on time.

Considering a classical particle moving in this same potential V is usually
presented as a contrast to the quantum system. The only fact from classical
mechanics that you need to know in order to understand this paragraph is
that the total energy (defined as kinetic energy plus potential energy) of a
classical particle is constant as it moves along a trajectory satisfying Newton’s
equation of motion. In the classical case one does impose initial conditions.
Say we place the particle in the well region (zero potential energy) and give
it initial kinetic energy E = B/2. So the total energy of the particle is B/2.
Then its trajectory remains in the well for all time, since its kinetic energy
would have to become strictly negative in the barrier region. But the formula
(1/2)mv2 for the kinetic energy of a body with mass m > 0 shows that
it can not be negative. (It turns out m < 0 does not occur in nature.) In
this classical case, we simply can not place the particle in the barrier region
with total energy B/2, since that again would imply negative kinetic energy,
an impossibility. Finally, we can place the particle in the outlying region
with total energy B/2, half of which will be potential energy and the other
half kinetic energy. In this final case, again by conservation of total energy,
the particle will never enter the barrier region. Consequently, it can not get
beyond the barrier and into the well region.

What do we learn from the classical situation? First and foremost we see
that the time independent Schrödinger’s equation provides a solution that is
dramatically different from any classical particle solution. Furthermore, that
quantum solution does not display any interference effect which is taken as
being the indelible fingerprint of a wave. So tunneling is a purely quantum
phenomenon in which ‘wave/particle duality’ is not found.

If we wish to discuss time evolution in quantum theory, we start with
the time dependent Schrödinger’s equation. In that case we do start with an
initial state φ0, and we must find ψt = exp(−itH/�)φ0. To get non-trivial
time evolution we must pick φ0 to be different from a stationary state. For
example, we now can pick φ0 to be strictly positive in a small interval
|x| ≤ ε << B and zero in the complement of that small interval. Then
the solution ψt(x) and its probability density ρt(x) = |ψt(x)|2 will depend
non-trivially on the time t. One can find these functions numerically and
produce videos of them using computer programs. These videos can be very
impressive, especially since they show some sort of change with the passage
of time, that is, some sort of motion. But motion of what?

The change of a time dependent probability density is not the motion
of a particle nor of a wave. In classical physics the motion of a particle in
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space tells how its non-zero mass moves along a continuous trajectory, and
the motion of a wave tells how its non-zero energy propagates continuously
in many spatial directions. Neither of these is the motion of a probability
density in space. In order to compare a computer generated time dependent
probability density function with experiment, one has to measure position
in an ensemble of identically prepared experiments. And, as expected, the
measurement of the position will collapse the wave function. So that must
be taken into consideration, too. As far as I am aware, there is nothing in
the classical physics of a massive particle that corresponds to this collapse.
So speaking sensibly about tunneling solutions certainly is possible, but it
must be done within the framework of quantum theory. Using language from
classical physics can be misleading or, even worse, wrong.

19.6 Superposition

Any unit vector ψ ∈ H, a Hilbert space, can be expanded in any orthonormal
basis {φα |α ∈ A} as ψ =

∑
α cαφα for unique complex numbers cα satisfying∑

α |cα|2 = ||ψ||2 = 1. This is simply a statement about the geometry of
Hilbert space. In quantum physics, we interpret any unit vector as a possible
state. If we have a quantum system in the state ψ, then it has infinitely
many different such expansions if dimH ≥ 2. This geometric fact is called
superposition and is not a mystery requiring further considerations. The state
of the quantum system is ψ, no matter what (if any) expansion we use. If
now a measurement is made that collapses the quantum system to one of
the states φα, then that is also not a mystery requiring further rumination,
but rather an instance of the Measurement Condition. The new final state is
simply φα and, in general, no longer ψ. Of course, we can expand φα itself
in an infinite number of distinct orthonormal bases, and so it has the same
basic property as any other state, such as ψ itself, has.

However, in many expositions, especially for non-technical audiences, some
statement is made that the initial state ψ is fundamentally different in some
way (being ‘coherent’) from the final state φα (being ‘decoherent’). Sometimes
emphasis is placed in the value of the measurement that induced the collapse
to φα, as if that gave φα some extra virtue. But what if that value is lost
even though the measurement occurred? Or what if ψ had been produced by
the collapse associated with a measurement? The only possible distinction
between the states ψ and φα is that we might know no value of any
measurement for ψ while we know the value of one measurement for φα.
That is what the Measurement Condition gives us, and no more than that.
If there is any mystery here, then it resides in the Measurement Condition
itself. The point of this brief section is that there is no essential difference
between one state of a quantum system and another. Beware of attempts to
say the contrary!
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19.7 Quantum Fluctuations

Mieux vaut comprendre peu
que comprendre mal.

Anatol France

As a final example consider quantum fluctuations. This expression is often
used to increase intuition by supposing that a time independent state of a
quantum system is undergoing changes as time goes by. Put this way, this is
a contradiction and thus thwarts my intuition. What about your intuition?
One is again uncomfortably confronting the probabilistic interpretation of
quantum theory. Quantum theory tells us that the measurements of a time
independent quantum state can give various different values or, in common
parlance, these measured values fluctuate. But the underlying state remains
time independent; there is nothing changing (or fluctuating) about that state
itself. So beware of explanations invoking quantum fluctuations. They may
be wrong. But they may be right. It depends on what exactly is being said.

19.8 Notes

American readers will recognize the expression “déjà vu all over again” as
a Yogi-ism. These sayings are named for the Hall of Fame baseball player,
coach, and manager Yogi Berra. Whether he actually said this is summed up
in another famous Yogi-ism: “I really didn’t say everything I said.” This puts
Yogi (or somebody else) in the same ballpark with Bertrand Russell.

The other Yogi-ism referred to earlier: “Good hitting beats good pitching
every time. And vice versa.”

As the reader may be aware by now, I take exception to explanations
which could unkindly be called sophistry, that is, the use of some jargon
without any clear idea of what is being said. Such rhetorical tricks have been
known since antiquity. In quantum theory, they include cavalier appeals to
complementarity, duality, and uncertainty among others. But many of my
physics colleagues justify statements which are objectively false by claiming
that such statements help them (subjectively) understand quantum theory.
I can hardly imagine how. My own (subjective) reaction is that for me such
statements only add confusion to an already very complicated topic. But
we all, as scientists, should only rely on objectively (that is, experimentally
obtained) verifiable criteria for accepting or rejecting any statement. This
seems to me to be at the heart of the famous dictum of E. Rutherford,
Nobel Laureate in chemistry, that all science should have an explanation
understandable by a barmaid. The psychological, or possibly even
philosophical, analysis required to understanding why many people accept
objectively false statements as true is far beyond my area of expertise.
I leave it to others to ponder this important question.
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Complementarity (Optional)

There is something fascinating about science.
One gets such wholesale returns of conjecture

out of such a trifling investment of fact.
Mark Twain

20.1 Some Ideas and Comments

Complementarity is another one of those phrases that intimidates beginners
without adding much to quantum theory. It is easily confused with duality,
because neither of these expressions is clearly defined in most expositions.
But whatever might be meant is mostly irrelevant to the everyday business
of quantum theory, which has to do with Schrödinger’s equation and its
solutions.

One crude attempt is to define two observables A and B as complementary
if they do not commute. But in that case one can simply say they are
non-commuting observables and be done with it. Usually, the position operator
Q and the momentum operator P in a one-dimensional system are taken to
be the standard case of complementary observables. Of course, a motivating
example is far from being a general concept.

Complementarity is attributed to N. Bohr and is regarded by many to
be his crowning contribution to quantum theory. One common element is
that it refers to a pair of ‘properties’ of a quantum system. However, it is
interpreted variously as a principle of physics or of philosophy of science. Some
maintain that it is a manifestation of the Heisenberg uncertainty principle
while others say not. When it is exemplified by physical observables, these are
always non-commuting. But it is usually maintained that non-commutativity
is not the essential property of complementarity. Sometimes complementarity
is described by a series of examples without a clear statement about what
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is common to all these examples. In fairness, sometimes a common property
is given, and this has to do with properties of measurement or knowledge.
The assertion is that the measurement (resp., knowledge) of one of the pair of
properties impacts the measurement (resp., knowledge) of the other property.
However, this assertion (if formulated as a property of observables) is simply
a consequence of collapse for non-commutating observables.

I find this mixture of epistemology with duality to be quite troubling.
The collapse of the state clearly implies that measuring just one observable
will not be enough to know what the initial state was. But measuring two
non-commuting observables is not better when they are done on the same
system consecutively, where we invoke the collapse criterion which precludes
their simultaneous measurement. Consequently we are led to consider an
ensemble of measurements on identically prepared systems, which throws us
into the jaws of quantum probability.

There is some cultural preference for thinking that duality is a primary
property that unifies nature and that multiplicity is to be shunned. Strange
to think that duality gives rise to unity, no? But such thinking sometimes
seeps into science!

Often complementarity is also exemplified by the so-called ‘wave/particle
duality’ for which explicit observables do not exist. (I mean that there is
no wave observable nor is there a particle observable, where ‘observable’
means self-adjoint operator.) Since the basic constituents of matter are not
waves (that is, quantum ‘particles’ never spread out in all spatial directions)
and are not point particles following classical trajectories, the concept of
‘wave/particle duality’ is not clearly defined, except to the extent that certain
systems display some wave properties as well as some particle properties.
The idea is that different (i.e., complementary) measurements reveal this
dual ‘wave/particle’ structure. But the underlying concept of ‘wave/particle
duality’—and how it can be checked experimentally in general—is typically
not a concern. If this ‘duality’ is a fundamental principle of all quantum
systems, then it must be described in full generality.

Moreover, in quantum physics there are neither waves nor particles. (See
Chapter 3.) This renders the whole idea of ‘wave/particle duality’ suspect.
In this context the famous two-slit experiment is usually appealed to as an
important example. But one example does not suffice. And a few examples
do not suffice. What both the two-slit experiment and the associated one-slit
experiment show is that the basic constituents of matter are neither waves
nor particles. See Feynman’s explanation of this in chapter 37 of [12] in
1963. Another curious aspect of the literature is the almost total lack of
a discussion of the three-slit experiment, which leads to confused thinking
about a ‘particle’ being in 3 places at the same time. Or even worse the
four-slit experiment! Going down this particular rabbit hole leads one to the
infinite-slit experiment, wherein the screen is gone having been replaced with
an infinite number of infinitely thin slits. Then the ‘particle’ is at infinitely
many places at the same time. This particular way of incorrect thinking about
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quantum theory has already been analyzed in Chapter 19.
But there is a duality in quantum theory that everyone knows about, but

is never (as far as I know) emphasized in introductory, or even advanced,
texts. This is the conjugate duality of a Hilbert space with itself. By the
Riesz representation theorem 9.3.2, the space of bounded linear functionals
on a Hilbert space H is anti-unitarily identified with H canonically. I have
no idea whether this has any physical interpretation, though it is the fact
behind Dirac notation.

Perhaps some of the ideas of complementarity aid in the comprehension
of quantum theory for some people. But for me complementarity is at best
a side issue. As mentioned earlier the central business of quantum theory is
understanding Schrödinger’s equation.

20.2 Notes

This short chapter does not come close to doing justice to the enormous
literature on complementarity. Nor is it intended to. Since the importance of
this topic is so highly stressed by so many, I felt obliged to comment on it.
But my comments are highly controversial. An overwhelming multitude of
experts of all sorts take strong objection to what I say here. I let them speak
for themselves. The reader will have no trouble finding them.
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Axioms (Optional)

I had been told that Euclid
proved things and was much
disappointed that he started

with axioms.
Bertrand Russell

In this chapter we collect axioms for quantum theory in one place and
make some comments about them. However, this is very much a work in
progress. In fact, this is one of the reasons that quantum theory remains so
perplexing. And that is why the axiomatization is so important. Of course,
on a day to day basis most scientists can take the appropriate Schrödinger
equation as their starting point and work effectively with its quantum theory
in order to understand new quantum systems and applications of quantum
theory. But the desire to establish first principles should be acknowledged for
its value in providing a clearer understanding, which some day might even
lead to another, better theory. In some sense this is what is hoped for in the
desired unification of quantum theory with the theory of general relativity,
which I will comment on a bit more in Chapter 22.

I feel that this aspect of quantum theory should be presented to beginners
because in the first place it is accessible to them and in the second place
because it is good to learn early on that there is still a tentative element in
quantum theory. The discussion about axioms for quantum theory is ongoing,
opinions are divided, and the eventual outcome is, well, uncertain.

21.1 A List of Axioms

Axiom 1: (Kinematics) Every isolated system in nature has an associated
Hilbert space H together with a collection of relevant self-adjoint (though not
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necessarily bounded) operators acting in that Hilbert space. Each of these
operators represents in the quantum theory a physical observable for that
system. At least two of these operators do not commute. Either the Hilbert
space H or at least one of these operators must depend explicitly on Planck’s
constant �.

Axiom 2: (States) Every system is described completely at every moment
in time by its state, which is defined, up to a multiplicative complex constant
of absolute value 1, as a unit vector in the Hilbert space, that is, by a vector
ψ ∈ H with ||ψ|| = 1.

Axiom 3: (Statistics) Multi-particle systems have a Hilbert space that is a
tensor product of Hilbert spaces, each of which corresponds to a distinct type
of boson or distinct type of fermion. The number and types of the bosons and
fermions depends on the system being considered and this in turn determines
the number and types of the Hilbert spaces in the tensor product.

Axiom 4: (Dynamics) The time evolution of a quantum system is given
by Schrödinger’s equation

i�
∂ψ

∂t
= Hψ,

where H, the Hamiltonian of the system, is a self-adjoint operator acting in
H and that characterizes the system, together with an initial condition on
the solution at time t0. The solution of this equation is a function ψ : R → H.
This initial condition has the form ψ(t0) = ϕ, where ϕ ∈ H is a state of the
system and t0 ∈ R represents the initial time.

Axiom 5: (Measurement and Collapse Axiom) Suppose an experiment
is done on a system for measuring the physical quantity corresponding to a
self-adjoint operator T acting in H. Let Spec (T ) denote the spectrum of T .
Then the set of all the values obtained by measurements of the observable
corresponding to T is exactly the set Spec (T ). (By the way it is a theorem
that Spec (T ) is a non-empty, closed subset of R.)

We let PT be the unique quantum event (or projection) valued measure
associated with T by the spectral theorem. Let B ⊂ Spec (T ) be a Borel set.
Then the probability that the measurement of the observable corresponding
to T has its value in B, given that the system is in the state φ at the time of
the measurement, is given by Born’s rule

Prob(T ∈ B |φ) = 〈φ, PT (B)φ〉.
Given that the measurement did indeed yield a value in B, then PT (B)φ �= 0
must hold and the system has also collapsed (i.e., changed) into the state
determined by the unit vector

1
||PT (B)φ|| PT (B)φ.
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Axiom 6: (� Dependence of Non-commutativity) For every pair A,B
of bounded non-commuting, self-adjoint operators representing observables
(whose existence is posited in Axiom 1) their (ring) commutator

fA,B(�) := [A,B] = AB − BA

must be a function of Planck’s constant � > 0 for which this limit exists:
lim�→0+ fA,B(�) = 0.

For a pair of unbounded non-commuting self-adjoint operators A,B which
represent observables, this axiom must be rephrased as follows: The (group)
commutator

gA,B,t(�) := eitAeitBe−itAe−itB

for each 0 �= t ∈ R must be a function of Planck’s constant � > 0 for which
this limit exists: lim�→0+ gA,B,t(�) = I.

The topology in which these limits are taken is discussed below.

Axiom 7: (Planck’s Law) Suppose that a system has states ψ1 and ψ2

with respective energies E1 and E2. Suppose also that E2 > E1. If the system
changes from state ψ2 to state ψ1 with the emission of a photon, then that
photon has angular frequency ω = (E2 − E1)/�. Furthermore, if the system
is in state ψ1 and changes to state ψ2 with the absorption of a photon, then
that photon has angular frequency ω = (E2 − E1)/�.

Axiom 8: (Quantization) Given a physical system with a description
in classical theory, there is a way to construct the corresponding quantum
theory of the system from that classical theory. This construction is called
quantization and must satisfy all of the previous axioms.

21.2 A Few Comments

Axiom 1 is satisfied by all systems on the atomic and smaller spacial scales.
I call these quantum systems. The best guess is that every physical system
is a quantum system, and thus there is no need to define quantum systems.
However, it seems pointless to try to describe many larger systems by using
quantum theory when they are already so well described by classical theory.
It is not even clear how to define classical system. One uses experience when
deciding which description to use with a given system. The description that
works better wins, and that’s that. Moreover, this axiom does not tell us
how to find the Hilbert space and self-adjoint operators that are appropriate
for a given system. And theorists sometimes do play around with distinct
formulations, such as one based on a configuration space or on a phase space,
for example. But these concepts come from classical physics and so do not
seem to be conceptually important in quantum theory, though they can be
useful theoretical techniques.

While Axiom 1 requires at least one pair of non-commuting observables, it
does not require at least one non-trivial pair of commuting (that is, classically
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related) observables. However, this extra condition is always satisfied in
practice and so might merit inclusion in this Axiom.

Axiom 1 requires quantum theory to have two characteristic properties:
a Hilbert space and Planck’s constant. It is rather difficult for me to imagine
a quantum theory without these.

Axiom 2 is incomplete. The states described there are actually called the
pure states. There are other states as well; these are the mixed states, which
are important in statistical quantum mechanics. The definition and properties
of mixed states can be found manywhere in the literature. But I have decided
not to discuss them in this book.

In some theories not all unit vectors represent states. In other words
there are extra super-selection rules which also pose a puzzle for this axiom.
These rules exclude some unit vectors from being states for certain quantum
systems. For example, in a spin 1/2 system we not only have the states ↑ of
spin up and ↓ of spin down as eigenstates of the observable S3, but we also
have convex combinations of these such as

1√
2
(↑ + ↓). (21.2.1)

And this is a perfectly feasible state for this system. However, letting ↑
represent a proton and letting ↓ represent a neutron as is done in the theory
of isospin, the state (21.2.1) is not a valid state. A reason for justifying this
is that electric charge is a conserved quantity, and so it does not make sense
to have a state that has charge +1 with probability 1/2 and has charge
0 with probability 1/2. But these super-selection rules are in conflict with
Schrödinger’s razor since they are a posteriori conditions that do not arise
from a differential equation.

Axiom 3 to date looks correct. But the division of particles into different
types (beyond just bosons and fermions) is not completely understood. This
is the domain of the Standard Model of Particle Physics. While this model
has been wonderfully successful, including the prediction of the Higgs boson
as now seen in experiment, many experts seek something more fundamental
behind it. We don’t know how this will pan out. Also, to understand Axiom 3
you have to devote the time and effort to learn about tensor products.

Axiom 4 is rock solid to date. Of course, this is the Schrödinger picture.
But having good axioms in one picture, it is an easy matter to translate
them into any other picture. This axiom is also called the unitary condition
or simply unitarity. The point is that the Hamiltonian H being self-adjoint
determines the unitary group e−itH/� acting on the Hilbert space H for every
time t ∈ R (by the spectral theorem of functional analysis) and that unitary
group then solves the initial value problem (also called the Cauchy problem)
for the Schrödinger equation, namely the solution is ψ(t) = e−itH/� ϕ where
ϕ is the initial condition for ψ(t) at t = 0. So, unitarity is a consequence of
Schrödinger’s razor. Some prefer to put unitarity itself as an axiom.

The success of quantum theory is principally due to the multitude of
Hamiltonians that clever physicists have come up with in order to describe a
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corresponding multitude of quantum systems. This is the power of Axiom 4.
This is also the origin of the folklore that one should not be caught doing
quantum theory without having a Hamiltonian in play. The other axioms
serve to support Axiom 4.

Also, Axiom 4 is the only axiom which involves complex numbers directly
through the presence of i =

√−1 in it. But Planck’s constant � appears
in this axiom and in others too. However, a mysterious aspect is that time
appears in this equation as a parameter and time does not appear in quantum
theory as a genuine observable, that is, a physical quantity represented by a
self-adjoint operator. Of course, the Schrödinger equation is a non-relativistic
equation and so this may be the best we can get without going relativistic.

It is worth noting that many of the Hamiltonians that do arise in physics
have the form of a Schrödinger operator, which in its simplest form is

H = − 1
2m

Δ + V,

where m > 0 is the mass of a ‘particle’, Δ is the Laplacian operator acting
in H = L2(R3), and V : R

3 → R determines a multiplication operator, also
acting in H. This leads to a research area in mathematical physics concerning
this class of operators. Often, the potential energy term V studied defies
physical intuition, and so one gets results that are mainly mathematical in
nature. Also, one can change the dimension of the Euclidean space from 3
to other values, study complex valued or time dependent potentials, consider
m to be dependent on x ∈ R

3, and so forth. However, it happens that even
these cases can sometimes shed some light on more physically reasonable
situations.

Axiom 5 continues to be the most controversial of the axioms. This is its
complete formulation. In Chapter 10 we saw a special case of Axiom 5, and
the general case was presented in Chapter 16. Before getting into that, let’s
recall from Exercise 16.2.11 that

μT |φ(B) := 〈φ, PT (B)φ〉

for fixed self-adjoint T and state φ is a classical probability measure defined
for Borel sets B ⊂ R. So it makes sense to relate this probability measure to
experimentally determined frequencies. Of course, it is an experimental issue
to see if that relation is true. Being a probability measure, μT |φ can have
moments. For example, its first moment m1 (also called the expected value of
T or the average of T ) is given by another version of Born’s rule:

m1 :=
∫

R

λμT |φ(dλ) =
∫

R

λ 〈φ, PT (dλ)φ〉 = 〈φ,

∫
R

λPT (dλ)φ〉 = 〈φ, Tφ〉,
(21.2.2)

provided that φ is in the domain of definition of T . (The way to understand
(21.2.2) is to read it from left to right, though the rigorous proof of it reads
from right to left.) Some texts emphasize the importance of this formula for
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the first moment to the extent that the probability measure μT |φ is never
mentioned and only the expression 〈φ, Tφ〉 appears. But here we understand
that behind this version of Born’s rule is a well defined classical probability
measure, namely μT |φ, whose first moment enters the theory but does not
replace the role played by the probability measure μT |φ itself. So, Axiom 5 is
the most fundamental Born’s rule, while (21.2.2) is a consequence of it.

Axiom 5 is where probability enters quantum theory and that stirs up
a lot of concerns, doubts, and dissents. The jury is out on this axiom, even
though it has strong experimental support. There are even some who advocate
that this axiom should be entirely eliminated from quantum theory, though
it should then be replaced with something else to deal with the (apparent)
probabilistic aspect of quantum systems. Note that what I call collapse is
also called quantum jump, reduction of the state or the projection postulate of
von Neumann. See Isham’s book [16] for a thoughtful, detailed discussion on
probability, collapse, and many other important topics in quantum theory.

Axiom 5 is also where measurement enters quantum theory. This is so
conceptually different from how measurement is handled in classical theory
that it leads to what is called the measurement problem in quantum theory.
This is actually a collection of problems related to the nature and importance
of the measuring process. In the Copenhagen interpretation, measurement
was characterized as being an interaction of a ‘classical’ system (producing
measured values in a way consistent with classical physics) with a quantum
system. This approach is still advocated to this day, though many objections
have been made to it. The simplest objection is that all systems are basically
quantum in nature, and so one must address the problem of deciding which
of these systems are to be deemed ‘classical’ and what makes them different.

To fully understand what Axiom 5 says one has to fully understand the
definition of the spectrum of an operator, which was given in the optional
Section 9.5. The reader who skipped over that might wish to read it now.

I won’t give my opinion of Axiom 5, since that doesn’t count. Sorry, dear
reader, your opinion also does not count. This has to be settled in terms of an
objectively verifiable scientific analysis that the physics community can come
to accept solely on its merits for explaining experiments. For now, the axiom
just sits there looking at us. But we do use it! For example, experiments are
designed to put a system into a specific initial state by using the deterministic
collapse condition. This is known as preparation of the state. The experiment
then continues, for example, by studying how the system in this known initial
state interacts with other systems.

Axiom 5 applies to situations where the state is time dependent both
before and after the measurement. In this case φ refers to the state of the
system at the moment of the measurement.

One of the earliest physics insights in quantum theory is that for any state
φ ∈ L2(R3), its absolute value squared |φ|2 is the probability density for the
location measured in R

3 of the quantum system in that state. This basic
aspect of quantum theory seems not to be found in the axioms. But it is a
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consequence of Axiom 5 and an explicit understanding of what the observable
is for location. To simplify the exposition we first discuss the one-dimensional
case. So we consider the Hilbert space L2(R) and the position operator Q,
where Qψ(x) = xψ(x) for ψ ∈ L2(R) and x ∈ R

3. The fact we need from
the functional analysis of the unbounded, self-adjoint operator Q is that its
pvm PQ(B) is the projection operator given as multiplication by χB , the
characteristic function of the Borel set B ⊂ R. (See Exercise 19.2.1.) Then
for a given state φ ∈ L2(R) we have the probability that a measurement of
Q lies in B is

P (Q ∈ B |φ)=〈φ, PQ(B)φ〉L2(R) =〈φ, χBφ〉L2(R) =
∫

R

dxφ∗χBφ =
∫

B

dx |φ|2,

showing that the integral of the far right side has the standard probabilistic
interpretation. To generalize this to L2(R3), we consider the three commuting
operators Q1, Q2, Q3 associated with the three Cartesian coordinates x1, x2, x3

of R
3. Therefore the pvm’s of these three unbounded, self-adjoint operators

commute among themselves, and so we get a joint probability distribution
for the three of them. By a slight modification of the result in Section 16.10
for commuting operators, we see for a state φ ∈ L2(R3) that

P (Q1 ∈ B1, Q2 ∈ B2, Q3 ∈ B3 |φ) = ||PQ1(B1)PQ2(B2)PQ3(B3)φ||2

= ||χB1(x1)χB2(x2)χB3(x3)φ(x1, x2, x3)||2 =
∫

B1×B2×B3

dx1dx2dx3 |φ(x1, x2, x3)|2,

where B1, B2, B3 are Borel subsets of R. The left side can also be interpreted
as P ( (Q1, Q2, Q3) ∈ B1 × B2 × B3 ). With an appropriate magic touch of
measure theory, we can replace the product Borel set B1 × B2 × B3 with a
general Borel subset B of R

3 to get P ( (Q1, Q2, Q3) ∈ B ) =
∫

B
|φ|2. And this

is the result sought for.
Axioms 4 and 5 (and Axiom 7 implicitly) are the only ones which refer

to how quantum systems change in time, although these changes are quite
different. Axiom 4 concerns a deterministic, continuous time evolution of
the state of a quantum system, while Axiom 5 describes a probabilistic,
instantaneous time evolution. And it is a serious problem with quantum
theory that there are two distinct ways to describe the time evolution of
a physical system. As far as I am aware every other theory in physics entails
exactly one way for describing time evolution. This anomalous situation in
quantum theory leads one to suspect that this axiomatization of quantum
theory is not completely correct. Or, to put it explicitly, it seems there should
be one unified way for describing time evolution in quantum theory. Of course,
Axiom 4 refers to the time evolution of an isolated quantum system for which
unitarity holds, while Axiom 5 refers to a quantum system that is being
measured by another, interacting system in which case unitarity does not
always hold for the measured quantum system.

The statement of Axiom 6 is trivial if A and B commute. That is why
this axiom is only about non-commuting observables. Dirac is famous for
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saying on many occasions that the key property of quantum theory is that
the observables do not commute. Axiom 1 incorporates that observation.
This axiom strengthens this by saying how they do not commute as Planck’s
constant � (taken to be a parameter) approaches 0. This particular property
of quantum theory has certainly been recognized before. Anyway, it seems
to me to be an essential ingredient in quantum theory that is not included
in the other axioms. Moreover, it amplifies on the role, already mentioned
in Axiom 1, that � plays in quantum theory. Consequently, this property
deserves its own axiom, something which I have never seen in other axiomatic
presentations of quantum theory. This axiom can be overlooked in some
specific examples since one tends to use units in physics for which � = 1.
The limit in this Axiom is with respect to some topology on operators. Since
we often deal with densely defined, unbounded operators, we do not want to
use the operator norm. The exact topology as well as domain considerations
are technical issues which can be left on a side for now, though they must be
dealt with in a complete exposition.

It must be emphasized that Axiom 6 is about quantum theory and nothing
else. It is not to be confused with quantization schemes that have some
relation involving Planck’s constant between the Poisson bracket in classical
mechanics and the commutator in quantum mechanics. It seems that Dirac
was the first to discuss such a quantization scheme, which unfortunately
did not work out as expected. Nonetheless, Dirac’s ideas have survived in
modified form in deformation quantization. As will be proposed later on any
quantization scheme should satisfy Axioms 1 to 7.

Axiom 7 is the historical starting point of quantum theory in Planck’s
article of 1900, but for whatever reason is rarely considered a basic axiom.
Yet it is independent of the other axioms. Notice that it is not asserted
that the transition from the initial state to the final state must occur under
these circumstances, because in some systems there are other restrictions
which prohibit the transition. Also, this axiom should be included, since it
is essential in the interpretation of the experimentally determined spectra of
light. In a more comprehensive set of axioms it could be subsumed into an
axiom on the conservation of energy or, even better, into an axiom on the time
evolution of quantum systems that includes matter and light. Of course, there
are quantum theories which include time dependent interactions between
matter and light, but what I am speaking of seems not yet to exist, namely a
complete axiomatic approach to that sort of non-relativistic quantum theory.

Axiom 8 is not about quantum theory per se, but rather a relation of
it with classical theory. Maybe it would be better to think about quantum
theory strictly in its own terms without reference to the historically prior
classical theory, in which case quantization is simply the process of finding the
correct quantum theory for each quantum system. However, most physicists
use this axiom to start off their analysis of a system with quantum theory.
The quantization is often done so quickly that it is not even given explicit
recognition. A physicist will simply write down an expression and declare
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that it is the correct quantum Hamiltonian for the quantum theory of the
system being considered. What this amounts to usually is just the canonical
quantization of a specific function in classical theory; that function is called
the classical Hamiltonian, and it plays an important role in classical theory,
though that does not interest us now.

The exact quantization to produce quantum theory is deliberately not
specified in Axiom 8. However, it is (universally?) accepted by physicists
that the position and momentum observables of classical physics must be
quantized so that the canonical commutation relations (5.1.4) hold. Perhaps
this should be included in Axiom 8.

Typically, the most difficult part of quantization consists in quantizing
the functions that represent observables in a classical theory (for example,
functions on a classical phase space) to produce the self-adjoint operators
that represent the same observables in the quantum theory. Mathematically
speaking, there are many distinct ways to quantize a classical theory. Clearly,
nature does not recognize all these possibilities. Somehow, only one of them
is physically correct. So this is a problematic aspect of this axiom, so much
such that some experts reject it completely as being irrelevant to quantum
theory. But by doing so they make it more difficult, though not impossible,
to implement Axiom 1. In any case Axiom 8 is more of a wish than anything
else, since it does not specify at all the quantization to be used.

The saying “quantization is operators instead of functions” is based on
these ideas. It turns out that a form of the spectral theorem, called the
functional calculus, almost gives us a quantization. We suppose that T is
a bounded, self-adjoint operator acting on a Hilbert space H �= 0. We let
Spec (T ) (a closed, non-empty subset of R) denote the spectrum of T , and
let AT denote the set of bounded Borel functions f : Spec (T ) → C. Then
AT is a complex vector space that also is equipped with a multiplication
operation, namely point-wise multiplication of functions, under which the
constant function 1 is the identity element. One says that A is an algebra
with identity. An algebra map is a linear map between algebras that preserves
the multiplication. Given this setup, here is a relevant version of the spectral
theorem.

Theorem 21.2.1 (Spectral Theorem: Functional Calculus Version)
There is an algebra map φT : AT → L(H) that satisfies φT (1) = I, the
identity operator, and φT (id) = T if id is the identity function id(λ) = λ for
all λ ∈ Spec (T ). (The function id is bounded, since Spec (T ) is bounded.)

Remarks: There is also a version of this theorem for unbounded, self-adjoint
operators, which is an important situation in quantum physics. We often
use the notation f(T ) := φT (f). So, we get the operator f(T ) instead of
the function f , which looks something like a quantization. For example, if
f(x) = a0+a1x+· · ·+anxn, a polynomial, then f(T ) = a0I+a1T+· · ·+anTn.

Exercise 21.2.1 Prove the last sentence.
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Theorem 21.2.1 does not look much like the Spectral Theorem 16.2.1, but
the proof shows the close connection. The idea is to let PT denote the pvm
associated with T by that version of the Spectral Theorem and then define
f(T ) :=

∫
R

f(λ) dPT (λ). Next one shows that this defines an algebra map.
Conversely, given that Theorem 21.2.1 holds, one defines PT (B) := χB(T )
for every Borel subset B of R, where χB is the characteristic function of B.
Then one shows that this defines a pvm PT that satisfies T :=

∫
R

λ dPT (λ).
The image of the map φT is a commutative sub-algebra of L(H), since its

domain AT is a commutative algebra. Explicitly, for all f, g ∈ AT we have

φT (f)φT (g) = φT (fg) = φT (gf) = φT (g)φT (f),

where we used fg = gf and that φT preserves multiplication. Consequently,
the self-adjoint elements in the image of φT commute among themselves, and
so Axiom 1 is not satisfied. So this powerful theorem in functional analysis
does not give us a quantization. Also, note that Planck’s constant � does not
appear in the functional calculus.

21.3 Notes

Many physicists discount the importance of an axiomatic foundation for
quantum theory. Even some mathematicians have the same opinion. Of course,
one can always push proposed axioms to a side and proceed as one wishes,
starting with some sort of intuition rather than with a complete mathematical
model. But the Schrödinger equation can not be pushed aside! Ultimately, I
think that the axiomatic method will prevail as it has in other areas of physics.
D. Hilbert thought that the axiomatization of physics was important enough
to be included as his 6th problem for the 20th century, although he was
not thinking about quantum theory whose first inkling was given by Planck
in the last hours of the 19th century. Hilbert’s 6th problem is controversial
with some claiming that it is not clearly stated and others saying that it
is essentially unsolvable. For a sympathetic, though dated, defense of the
axiomatic approach, see [36]. How will this all turn out? Time will tell.

However, here is a discouraging word from B. Russell, the logician par
excellence. Of course, it bemoans that human belief tends to work exactly
backwards with respect to the rules of logic. Russell said:

“We tend to believe the premises because we can see that their consequences
are true, instead of believing the consequences because we know the premises
to be true.”

The point here is that in logic the truth of the premise p and of the implication
p ⇒ q, where p and q are propositions, tells us that the consequence q is true.
However, even though the implications p ⇒ q1, . . . , p ⇒ qn are true and the
consequences q1, . . . , qn are also true, this does not mean that the premise p
is itself necessarily true. Logically, it could be false.
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The quote at the start of the chapter is from Russell’s autobiography.
It can be interpreted as telling us that a logician is made and not born as
such.

As a final note, let’s remark that the axiomatic approach to quantum field
theory (QFT) has had some success, although so far not as much as originally
expected. However, various axiomatizations of QFT have been given, and
it is not clear which of them, if any, is the correct one for explaining the
relevant experimental physics. This ambiguity may be in part behind why
the Millennial Prize for a rigorous gauge theory is so difficult.



Chapter 22

And Gravity?
. . . such stuff as dreams are made on.

Prospero in The Tempest, William Shakespeare

In the first quarter of the 20th century, physics was advanced two times as it
has never been since. First came Einstein’s theories of relativity, both special
relativity and general relativity. The former supplanted Newton’s absolutist
(and quite intuitive to many to this day) world picture of space and time,
and the latter replaced Newton’s instantaneous action at a distance theory of
gravity with a gravitational theory based on a unified curved spacetime that
mediates gravitational interactions at the large, though finite, speed of light
rather than instantaneously. Still this remained within the realm of classical
physics in that the framework is deterministic and motion along trajectories
makes sense. Second was quantum theory, which brought into question such
classical ideas as deterministic interpretations as well as the intuitive idea of
motion itself. By any stretch of the imagination these both were revolutionary
developments in scientific thought.

However, there is to date no theory which incorporates in a unified way the
established gravitational and quantum theories, at least in some appropriate
sense. This hoped for but still non-existent unification is often called quantum
gravity. It seems safe to assert that physicists quite generally expect that some
sort of unification exists. And the consensus is that to achieve this unification,
quantum theory will not be changed while gravitation theory will be changed.
This consensus could well be wrong. We simply do not know. It could be
that there are more pieces of the puzzle, such as dark matter, that must be
included into a unified theory. But again, we do not know.

Quantum theory presents many unsolved problems. But among them this
unification is one of the biggest challenges in contemporary physics.

© Springer Nature Switzerland AG 2020
S. B. Sontz, An Introductory Path to Quantum Theory,
https://doi.org/10.1007/978-3-030-40767-4 22

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40767-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-40767-4_22


Appendix A

Measure Theory: A Crash
Course

. . . ils se tenaient aussi loin que
possible de la troublante réalité

et ne s’en occupaient pas plus
que l’algébriste de l’existence

des quantités qu’il mesure.
André Gide, L’immoraliste

To successfully use measure theory requires a lot less knowledge than the
experts would lead you to believe. In particular, mathematics students are
very vulnerable to feeling insecure about this topic. But think of it this
way: What do you really need to know about the real numbers R in order to
use them? The rationals Q form a sub-field, actually the smallest in terms of
the partial order given by set inclusion. Then there are zillions of sub-fields
F lying between: Q ⊂ F ⊂ R. Do you need to know about this in order to
do physics? No! Also there are zillions of types of irrational numbers, that is,
elements in R that are not in Q. Again, is this relevant for physics? I think
not. Of course, if you want to be an expert in the theory of real numbers,
then details like these become important. Much the same applies to measure
theory. If you want to be an expert in measure theory, then go for it. But
the goal of this Appendix is to present in about 14 pages the most essential
details needed for doing physics. Maybe only half of what is here will actually
be needed in practice. And from time to time maybe a bit more. My policy
is that proofs are totally optional, while definitions are quite helpful.
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A.1 Measures

A measure space is a triple (Ω,F , μ) satisfying various properties. First, Ω is
any non-empty set whatsoever. Next F , called a σ-algebra, is a collection of
subsets of Ω such that ∅,Ω ∈ F , Ω \ B ∈ F for all B ∈ F , and ∪j∈JBj ∈ F
whenever each Bj ∈ F and J is a finite or countably infinite set. The sets
in F are called measurable sets. Lastly, μ : F → [0,∞], which is called a
measure, satisfies μ(∅) = 0 and

μ(∪j∈JBj) =
∑

j∈J

μ(Bj) (A.1.1)

for every finite or countably infinite family Bj ∈ F of pair-wise disjoint sets,
which means that Bk ∩ Bl = ∅, whenever k 	= l. The condition (A.1.1) is
called σ-additivity. However, in the special case when J is finite, this is called
finite additivity, which in itself is a weaker property than σ-additivity. If the
sum on the right side of (A.1.1) is an infinite sum, it is taken to be equal to
∞ if it diverges. Also, if any term on the right is ∞, then the sum is ∞. Look
out! If the right side of (A.1.1) evaluates to ∞, then the left side also must
be equal to ∞.

If A ⊂ B are measurable sets, then just by finite additivity we have that
μ(A) ≤ μ(B), that is to say, μ is monotone. A set B ∈ F is called a set of
measure zero if μ(B) = 0.

If μ(Ω) = 1, then we say that μ is a probability measure and that Ω is a
probability measure space. And that opens the door to the wonderful world
of classical probability theory. More generally, if μ(Ω) < ∞, we say that μ is
a finite measure. If Ω = ∪j∈N Aj with each Aj ∈ F and μ(Aj) < ∞ (but the
family Aj need not be disjoint), we say that μ is σ-finite.

The arithmetic of the set [0,∞] := R
+ ∪ {∞} should be clarified before

continuing with measure theory per se. Here R
+ := {r ∈ R | r ≥ 0} has the

usual arithmetic operations of sum and product as well as linear order. The
only novelty concerns the element ∞ /∈ R

+. The order is extended so that
r < ∞ for all r ∈ R

+. As for sums we define a + ∞ = ∞ + a = ∞ for all
a ∈ [0,∞]. The rules for products are a · ∞ = ∞ · a = ∞ for all a > 0 and
0 · ∞ = ∞ · 0 = 0. The very last rule may appear strange at first sight, but
it is standard in mathematical analysis.

There is also a standard topology on [0,∞]. The basic neighborhoods of
a ∈ R

+ are given by (a − ε, a + ε) for a > 0 and [0, ε) for all ε > 0, while ∞
has basic neighborhoods given by (a,∞] where a ∈ R

+. With this topology
every monotone increasing sequence in [0,∞] converges to a unique limit in
[0,∞] and that limit is ∞ if and only if the sequence is not bounded above
by some a ∈ R

+.
There are many examples of measure spaces. For the most basic example

we take Ω = R
n, F = B(Rn) to be the smallest σ-algebra that contains all

the open subsets of R
n, and μ to be the Lebesgue measure, denoted as μL.

This measure is simply the appropriate concept of volume in n-dimensional
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space. The characteristic property of μL is that its value on open rectangular
sets is given by

μL

(
(a1, b1) × (a2, b2) × · · · × (an, bn)

)
= (b1 − a1)(b2 − a2) · · · (bn − an),

where a1 < b1, . . . , an < bn are real numbers. This simply says the volume
of an n-dimensional box is the product of the lengths of its sides. The sets
in the Borel algebra B(Rn) are called Borel sets. The exact definition of μL

depends on the author, but always boils down to the same thing. So, don’t
worry about it. The proof that μL is σ-additive is long and tedious. Also,
not to be worried about. Two basic facts: μL is not a finite measure, but it
is σ-finite. You might need to know these two regularity properties of μL:

μL(B) = sup{μL(K) |K ⊂ B and K is compact}, (A.1.2)
μL(B) = inf{μL(U) |B ⊂ U and U is open.} (A.1.3)

The supremum and infimum are taken with respect to the linear order of
[0,∞]. We say that (A.1.2) is interior regularity and (A.1.3) is exterior
regularity. Note that every compact set is measurable, so μL(K) is defined.
Since there are open rectangular sets with arbitrarily large Lebesgue measure,
we see that μL(Rn) = ∞. Also, by exterior regularity the Lebesgue measure
of any one-point set is zero. By σ-additivity it follows that the Lebesgue
measure of any finite or countably infinite set is zero. (However, there are
examples, such as the famous Cantor set, which are uncountably infinite
and yet have Lebesgue measure zero.) By monotonicity, if A ⊂ R

n is a
bounded set, then μL(A) < ∞. But the converse is false. For example,
(0, 1/2) ∪ (1, 1 + 1/4) ∪ (2, 2 + 1/8) ∪ · · · , an open subset of R, has Lebesgue
measure 1/2 + 1/4 + 1/8 + · · · = 1 by σ-additivity, but is unbounded.

It is not too difficult to see that for any Borel set B and vector v ∈ R
n the

translated set B + v := {b + v | b ∈ B} is Borel and that μL(B + v) = μL(B).
We say that μL is translation invariant. It is much trickier to show that
T (B) := {T (b) | b ∈ B} is Borel if B is Borel and T : R

n → R
n is linear. In

that case, μL(T (B)) = |det T |μL(B), where det denotes the determinant. In
particular, if T is orthogonal, then μL(T (B)) = μL(B). Since rotations R are
orthogonal linear maps, μL is rotation invariant, that is μL(R(B)) = μL(B).

Unlike Lebesgue measure which has these properties of invariance with
respect to translations and rotations, other measures μ on B(Rn) may have
the property that μ(U) = 0 for some non-empty open sets U , but not for
others. One defines the support of μ, denoted as suppμ, as the set of points
p ∈ R

n such that every open set U containing p has μ(U) > 0. If μ is σ-finite,
then suppμ is the smallest closed set whose complement has μ measure 0.

The next step in measure theory is to specify the appropriate functions.
For a general measure space (Ω,F , μ) we say that f : Ω → C is measurable if
f−1(B) := {ω ∈ Ω | f(ω) ∈ B} ∈ F for every Borel subset B of C. (We use the
Borel subsets that come from the identification of C with R

2.) Sometimes,
we want to use [0,∞] as the co-domain and special consideration is made
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for the extra element ∞ in this set. Usually, one requires that f−1(∞) is
measurable and that, as before, f−1(B) ∈ F for all Borel subsets of R that
are also subsets of [0,∞). We use the same definition if C is replaced by R

or R
n. The simplest example is a characteristic function χA : Ω → C for

A ⊂ Ω defined by χA(ω) = 1 if ω ∈ A and χA(ω) = 0 otherwise. Then χA is
measurable if and only if A ∈ F .

The set of measurable functions is closed under the four basic arithmetical
operations. This means that if f, g : Ω → C are measurable, then so are
f + g, f − g, and fg on the domain Ω. Also f/g is measurable on the domain
Ω \ g−1(0), which is easily seen to be a measurable set. Measurable function
are also closed under countably infinite limiting operations. For example,
if fn : Ω → C is measurable for every integer n ≥ 0, then limn→∞ fn is
measurable, provided that the limit (defined point-wise) exists. Similarly, if
fn : Ω → R or fn : Ω → [0,∞] are sequences of measurable functions,
then supn fn and infn fn are measurable. At some point one learns about
two more limiting type operations: lim sup and lim inf. These also preserve
measurability when applied to sequences of measurable functions. More on
this later.

A.2 Integrals

As far as we are concerned, measure theory exists in order to define integrals
that are better behaved than the Riemann integral. As we will see, this new
theory has nice properties when limits are taken. You could already see this
coming in the discussion of measurable functions. To give an idea of what we
will be doing, the integrable functions will be a special type of measurable
function. We do not integrate any other sort of function, nor do we need
to. The standard procedure for defining the integral is to do this for various
types of functions. At each step we get a nice theory, but only at the final
step do we get the general theory. And we will still have the basic properties
of the Riemann integral such as linearity and non-negative functions have
non-negative integrals. But we will have more properties, and these are the
big theorems of measure theory.

Let (Ω,F , μ) be a measure space. We define a simple function f : Ω → R

to be a measurable function whose image consists of a finite subset of R,
say {r1, . . . , rk} with exactly k distinct values, and Aj := f−1(rj) has finite
measure, namely μ(Aj) < ∞ for j = 1, . . . , k. (Note that k ≥ 1, since Ω
is non-empty.) Then we have f = r1χA1 + · · · + rkχAk

. Then we define its
integral by

∫

Ω

f =
∫

Ω

f(ω) dμ(ω) := r1μ(A1) + · · · + rkμ(Ak).

In particular, if f = χA with μ(A) < ∞, then
∫
Ω

f = μ(A). The set of all
simple functions is a vector space under the usual, point-wise defined sum
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of functions and multiplication by scalars, which in this context are real
numbers. Then we have the linearity of the integral, namely

∫

Ω

(af + bg) = a

∫

Ω

f + b

∫

Ω

g

for f, g simple functions and a, b ∈ R. This seeming triviality is a bit tricky
to prove. Also, the integral is positivity preserving, which means that if f is
a simple function that satisfies f ≥ 0 point-wise, then

∫
Ω

f ≥ 0.
The next step is to consider measurable non-negative functions f ≥ 0.

We can even admit functions f : Ω → [0,∞]. This excludes simple functions
with negative values, but it is nonetheless at step forward. So here is a crucial
fact. For every f ≥ 0 there exists an increasing sequence of simple functions
fn such that limn→∞ fn = f point-wise. So we have an increasing sequence
of real numbers

∫
Ω

fn (previously defined), which either has an upper bound,
and hence a limit in R, or does not have an upper bound, and hence no limit.
In both cases we define ∫

Ω

f := sup
n

∫

Ω

fn.

In the first case this gives a real number, and we say that f is integrable. In
the second case the integral is equal to ∞, that is to say, the integral has a
value. However, in this second case we say that f is not integrable. Now a
second crucial fact is needed. It turns out that this definition of

∫
Ω

f does not
depend on the particular choice of the increasing sequence of simple functions
that converges to f . Moreover, this new integral is linear provided that the
scalars are non-negative. It also preserves positivity.

The next step is to consider measurable functions f : Ω → R. Then we
define f+(ω) := max(0, f(ω)) and f−(ω) := max(0,−f(ω)) for ω ∈ Ω. Then
we clearly have f+ ≥ 0 and f− ≥ 0. Also, f = f+ − f−. And, of course, we
just can not get out of the class of measurable functions so easily. In fact,
it turns out that both the positive part f+ and and the negative part f− are
measurable non-negative functions. Therefore, the integrals

∫
Ω

f+ and
∫
Ω

f−
have values in [0,∞]. We then define

∫

Ω

f :=
∫

Ω

f+ −
∫

Ω

f− (A.2.1)

exactly when the arithmetic difference on the right is defined. To make sense
of this we must define the difference of a pair of elements a, b ∈ [0,∞], which
will give a result in [−∞,∞]. If a, b ∈ (0,∞), then a − b ∈ R is the usual
difference of real numbers. Two new cases are ∞−a := ∞ and a−∞ := −∞
for a 	= ∞. But the only case when this difference is not defined is when
a = b = ∞, that is ∞−∞ is not defined. This is the standard convention in
analysis. So, when both integrals on the right of (A.2.1) have the value ∞,
the difference is not defined and hence

∫
Ω

f is also not defined. When
∫
Ω

f is
defined it can have values in general in [−∞,∞]. If the integral is defined and
has its value in R = (−∞,∞), then we say that f is integrable. Otherwise we
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say that f is not integrable. So f is integrable if and only if both
∫
Ω

f+ and∫
Ω

f− are real numbers.
Watch out! There are two cases when f is not integrable. In one case

the integral has value either −∞ or ∞. In the other case, the integral does
not have a numeric value. This integral is linear and positivity preserving
when one deals with integrable functions. These properties can be extended
to functions whose integral has a value ±∞, but the reader is advised to
proceed with due caution.

Next, we consider a measurable f : Ω → C. We write f = Re(f)+ i Im(f)
and define

∫
Ω

f :=
∫
Ω

Re(f) + i
∫
Ω

Im(f), provided that both of the integrals
on the right side are finite real numbers. Consequently,

∫
Ω

f ∈ C.
Since measure theory is just a way to get a decent theory of integration

(for us!), we have to remark that these integrals are more stable than the
Riemann integral with respect to changes in the function f being integrated,
which is called the integrand. We first remark that an integrable function f
that is non-zero only on a set of measure zero has integral zero:

∫
Ω

f = 0 if
Ω \ f−1(0) has measure zero. Next, we consider integrable functions f and g
such that N := {x ∈ Ω | f(x) 	= g(x)} is a set of measure zero. Then, f − g is
an integrable function which is non-zero only on N . Therefore,

∫
Ω
(f −g) = 0,

and so
∫
Ω

f =
∫
Ω

g.
Putting this into words, we say that integrable functions which differ only

on a set of measure zero have the same integral. Even more colloquially, we
say that the values of a function can be changed on any set of measure zero
without any change in its integral. This even applies to functions that are
not integrable in the sense that a non-integrable function modified on a set
of measure zero will again give us a non-integrable function. For example the
function f : (−1, 1) → R defined by f(x) = 1/x for x 	= 0 and f(0) equal
to any real number whatsoever (or even ∞) is not integrable with respect to
Lebesgue measure. The point here is that the value of f on the singleton set
{0} of Lebesgue measure zero is irrelevant. The singular behavior of f very
near but not equal to 0 is what makes f non-integrable. However, one often
says informally (and incorrectly) that it is the singularity at 0 that makes f
non-integrable.

So far we have considered what are called positive measures μ, that is,
μ(B) ∈ [0,∞] for all B ∈ F . But this theory can be done almost identically
for signed measures for which μ(B) ∈ R or for complex measures for which
μ(B) ∈ C. First, for a signed measure μ by the Jordan Decomposition
Theorem there is a canonical way of writing μ = μ+−μ−, where both μ+ and
μ− are positive measures. Next one defines

∫
Ω

f dμ :=
∫
Ω

f dμ+ − ∫
Ω

f dμ−
with the usual caveats for avoiding the case ∞ − ∞. Second, for complex
measures μ one writes μ = μr + iμi, where both μr and μi are signed
measures. Next one defines

∫
Ω

f dμ :=
∫
Ω

f dμr + i
∫
Ω

f dμi. The properties
of these measures and their integrals then follow immediately. The resulting
integral will have values in R or C, respectively. And it will be linear, but not
positivity preserving.
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The spectral theorem tells us to consider projection valued measures E,
which have values in the vector space L(H). Here there are no infinite values
to worry about, and the value of an integral will be an element in L(H). This
starts by defining

∫
Ω

χB dE := E(B), where χB is the characteristic function
of the Borel set B. Next, for simple f = r1χA1 + · · · + rkχAk

, where each χj

is the characteristic function of f−1(rj), we define its integral by
∫

Ω

f(ω) dE(ω) =
∫

Ω

f(ω) dE(ω) := r1E(A1) + · · · + rkE(Ak) ∈ L(H).

So far, this mimics the theory for positive measures. Again for measurable
f ≥ 0 we use the fact that f = limn→∞ fn point-wise, where each fn is simple
and 0 ≤ fn ≤ fn+1 in order to define

∫

Ω

f(ω) dE(ω) := lim
n→∞

∫

Ω

fn(ω) dE(ω). (A.2.2)

But there is a technical detail here that is more than a mere technicality! And
that detail is which topology on the vector space L(H) should be used for
evaluating the limit in (A.2.2). And there are a plethora of distinct topologies
when dimL(H) = ∞, although there is only one reasonable topology in case
of dimL(H) < ∞. It turns out that the ‘correct’ topology is not that induced
by the norm, but rather that for which a sequence Tn of operators converges
to an operator T if and only if limn→∞ ||Tnψ−Tψ ||H = 0 for all ψ ∈ H. This
is called the strong operator topology. Its exact, rather technical, definition is
best left to functional analysis texts. But the crucial point is that the limit
in (A.2.2) does not depend on the sequence fn we have chosen.

We next define the integral with respect to the pvm E for functions f
with values in R by writing f = f+ − f−. Finally for functions f with values
in C we write f = Re(f) + i Im(f). In both cases we proceed analogously to
the case when the measure is positive.

Despite the clarity of this step-by-step procedure for defining integrals,
we almost never use these definitions for evaluating integrals, but rather for
developing tools for doing that. The first such tool is absolute integrability.

A.3 Absolute Integrability

I can not overestimate the importance of the two theorems in this section.

Theorem A.3.1 The (measurable) function f : Ω → R is integrable if and
only if |f | : Ω → [0,∞) is integrable. If either condition is true (and hence
both conditions are true), then we say that f is absolutely integrable. Also,
in this case we have | ∫

Ω
f | ≤ ∫

Ω
|f |. This is called the triangle inequality for

the integral.

Remark: We are taking here the absolute value of real numbers. The
import of this result is that the integral of |f | always has a value in
[0,∞] that we can try to calculate. If that value is not ∞, then not only
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is |f | integrable but f itself is also integrable at which point (and not before) it
makes sense to speak of the real number

∫
Ω

f . In particular, notice that we can
apply the triangle inequality only after establishing that f (or equivalently,
|f |) is itself integrable.

Proof: We start with the simple observation that |f | = f+ + f−. We first
suppose that f is integrable, which implies that both

∫
Ω

f+ and
∫
Ω

f− are real
numbers. Then by the additivity of the integral for non-negative functions it
follows that ∫

Ω

|f | =
∫

Ω

f+ +
∫

Ω

f− < ∞, (A.3.1)

which says that |f | is integrable.
Conversely, if |f | is integrable we have that (A.3.1) is true, and so each

of the two integrals on the right side is a real number. Consequently, f is
integrable.

Next, we suppose that at least one of the functions f and |f | is integrable.
(And hence both are integrable.) Then by the triangle inequality for real
numbers and positivity preservation we have

|
∫

Ω

f | = |
∫

Ω

f+ −
∫

Ω

f−| ≤ |
∫

Ω

f+| + |
∫

Ω

f−| =
∫

Ω

f+ +
∫

Ω

f− =
∫

Ω

|f |. �

Next we turn to the case of measurable f : Ω → C.

Theorem A.3.2 The (measurable) function f : Ω → C is integrable if and
only if |f | : Ω → [0,∞) is integrable. If either condition is true (and hence
both conditions are true), then | ∫

Ω
f | ≤ ∫

Ω
|f | which is also called the triangle

inequality for the integral.

Remark: In this theorem we are considering the absolute value of complex
numbers. As in the previous theorem

∫
Ω
|f | has a value in [0,∞]. However, in

this case
∫
Ω

f is a complex number provided that f is integrable. We omit the
proof, which may not be overly important. But the reader’s understanding
of what is being said is critically important.

Most often, we establish the absolute integrability of a function in order
to establish the equivalent property of its integrability, since it is easier to
work with non-negative functions. At this point enter three theorems that
help us do that.

A.4 The Big Three

We are now ready to take on the big theorems of measure theory. Their proofs
are not very complicated, but not really relevant to someone who just wants
to use them. However, it is vital that such a casual user should understand
what they say and so be able to use them correctly.
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Theorem A.4.1 (Monotone Convergence) Let fn : Ω → R be a monotone
increasing sequence of non-negative, integrable functions, i.e., 0 ≤ fn ≤ fn+1

for all integers n ≥ 0. Then
∫

Ω

lim
n→∞ fn = lim

n→∞

∫

Ω

fn ∈ [0,∞]. (A.4.1)

By positivity preservation we have 0 ≤ ∫
Ω

fn ≤ ∫
Ω

fn+1, that is, this is an
increasing sequence of real numbers, and, as such, always has a limit in [0,∞].
If we define f := limn→∞ fn, then f : Ω → [0,∞] is measurable, but need
not be integrable. However,

∫
Ω

f has a value in [0,∞] and (A.4.1) holds as an
equality between elements in the set [0,∞]. Of course, f is integrable exactly
in the case when

∫
Ω

f = limn→∞
∫
Ω

fn has a value in [0,∞).

Theorem A.4.2 (Dominated Convergence) Let fn : Ω → C be a sequence
of measurable functions for n ≥ 0 for which the point-wise limiting function
f := limn→∞ fn exists. Suppose that there exists some integrable function
g : Ω → [0,∞] such that |fn| ≤ g for all n ≥ 0. Then each fn is integrable
and f = limn→∞ fn is integrable. Moreover,

∫

Ω

lim
n→∞ fn = lim

n→∞

∫

Ω

fn ∈ C. (A.4.2)

Remark: The non-negative function g is called the dominating function. It
is assumed to be integrable, since counter-examples show that otherwise the
conclusion of this theorem can be false. The hypothesis that g is integrable
implies that the (measurable) set g−1(∞) has measures zero, that is g assumes
the value ∞ only on a set of measure zero. Therefore f−1

n (∞) also has measure
zero for every n. As noted earlier the values of a function on a set of measure
zero in its domain have no effect on the value of its integral.

Theorem A.4.3 (Fatou’s Lemma) Let fn : Ω → [0,∞] be a sequence of
non-negative, measurable functions for n ≥ 0. Then

∫

Ω

lim inf
n

fn ≤ lim inf
n

∫

Ω

fn ∈ [0,∞]. (A.4.3)

The three previous theorems allow the interchange of a limit with an
integral. Fatou’s Lemma has the most general hypothesis, but its conclusion
is the weakest, namely an inequality, while the first two theorems give us
an equality. The downside of Fatou’s Lemma is that you have to know what
lim inf means. The upside of Fatou’s Lemma is that the lim inf exists for any
sequence of elements in [0,∞]. The idea is that one can define lim inf of a
given sequence in [0,∞] by looking at all of its sub-sequences which do have
a limit in [0,∞] and then taking the smallest of all of those limits to be
the lim inf of the given sequence. That’s quite a mouthful. Just as a quick
example, lim inf (−1)n = −1 even though lim (−1)n does not exist. Also, if
the given sequence does have a limit, then its lim inf is precisely that limit.
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So, lim inf is a generalization of limit. If the lim inf’s on both sides of (A.4.3)
are actually lim’s in an application, then this theorem is easier to use.

The standard definition, which does realize the idea given above, is

lim inf
n

an := sup
l≥0

(
inf
n≥l

an

)
,

where an ∈ [0,∞] is a sequence for n ≥ 0. This definition is a veritable bag
of worms and takes a lot of time to get a hold on. In particular, you have to
come to terms with the infimum (inf) and supremum (sup) of a sequence of
real numbers. But sometimes Fatou’s Lemma is the only one of these three
big theorems that gets the job done. But if you are just starting out learning
this material, then you can ignore it for a while, though eventually at your
own risk.

Exercise A.4.1 Suppose that a = limn→∞ an exists, where an ∈ [0,∞] for
each integer n ≥ 0 and a ∈ [0,∞]. Prove that lim infn an = a.

A.5 Counting Measure and Infinite Series

Besides Lebesgue measure, another quite different and useful measure is
counting measure μC . For this we take Ω to be any non-empty set and F
to be the σ-algebra of all subsets of Ω. We then define μC : F → [0,∞] by
μC(A) := card(A), the number of elements in A, if A ⊂ Ω is a finite subset.
Otherwise, we define μC(A) := ∞. It is a bit of a chore to prove this is
σ-additive. But it is. In this case every function f : Ω → C is measurable.
Counting measure μC on Ω is σ-finite if and only if the cardinality of Ω is
finite or countably infinite.

The most famous example of counting measure is when we take Ω = N,
the set of non-negative integers n ≥ 0. Then a function f : N → C is usually
not written using the notation f(n) but rather fn or even more commonly
as an in order to indicate that what we are talking about is a sequence of
complex numbers. What is

∫
N

an dμC(n)? And what does it mean to say that
an is integrable? To address these questions we start with the characteristic
function χj of the one-point subset {j} ⊂ N for some j ≥ 0. By definition
μC({j}) = 1 and so

∫
N

χj dμC = 1, thinking of χj as the sequence that has
all elements equal to 0, except the jth element which is 1.

Next, suppose that a is a simple function, that is, a sequence which has
only finitely many non-zero values aj which occur only for j in a subset of
finite μC measure. So a has non-zero values only on some finite subset of N,
which we can take without loss of generality to be In := {j | 0 ≤ j ≤ n}
for some integer n ≥ 0. Then, a =

∑n
j=0 ajχj (think about it!) and so by

linearity of the integral of simple functions we get
∫

N

a dμC =
∫

N

n∑

j=0

ajχj dμC =
n∑

j=0

aj

∫

N

χj dμC =
n∑

j=0

aj =
∞∑

j=0

aj ,
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which is the sum of the non-zero values of a. As we already knew from the
general theory, all simple functions are integrable.

We move on to the next step in the definition of integral by considering
a function a : N → [0,∞). Since a having the value ∞ at some point implies
that a has the value ∞ on a set of positive measure, we exclude ∞ from the
co-domain here. Now we are going to construct a sequence of non-negative,
increasing, simple functions sn (0 ≤ sn ≤ sn+1) and with limn sn = a. Here
the limit is taken point-wise, namely limn sn(k) = a(k) for every k ≥ 0. Any
such sequence will do, but thinking a bit about the previous paragraph, we
are motivated to define the partial sums sn :=

∑n
j=0 ajχj . And this does

satisfy the required conditions as the reader can check. So, by definition of
the integral in this case and using the result from the previous paragraph,
we obtain ∫

N

a dμC = lim
n→∞ sn = lim

n→∞

n∑

j=0

aj ∈ [0,∞].

Moreover, a is integrable if and only if this limit exists in [0,∞). But this is
the standard definition for convergence of an infinite series. Consequently, a
non-negative function a : N → [0,∞) is integrable if and only if

∑∞
j=0 aj , the

corresponding infinite series, is convergent. And if either of these conditions
holds (and hence both hold), then the integral is equal to the infinite series.

The next case is when a : N → R, that is, we have a sequence aj of
real numbers. Using the general theory we have that a is integrable if and
only if |a| is integrable. And by the previous result |a| is integrable if and
only if

∑∞
j=0 |aj | is convergent, that is, if and only if the series

∑∞
j=0 aj is

absolutely convergent. We get the same result when a : N → C, namely that
a is integrable if and only if the series

∑∞
j=0 aj is absolutely convergent. And

this is the general case which covers all the prior special cases. In short, with
respect to counting measure on N we have that a function a is integrable if
and only if the corresponding series

∑∞
j=0 aj is absolutely convergent.

However, in the theory of infinite series there are also some series which
are only conditionally convergent, that is, the series is convergent but not
absolutely convergent. For a conditionally convergent series the limit of the
partial sums, limn→∞ sn exists, but for real-valued a neither a+ nor a− is
integrable. These conditionally convergent infinite series are analogous to
improper integrals, which is a topic we do not wish to discuss.

A.6 Fubini’s Theorem

The final big theorem is about two σ-finite measure spaces (Ω1,F1, μ1) and
(Ω2,F2, μ2). Then we can construct on the Cartesian product Ω = Ω1 ×Ω2 a
σ-algebra F and a measure μ. First, F is defined to be the smallest σ-algebra
containing all of the ‘rectangular’ sets B1 × B2, where Bk ∈ Fk for k = 1, 2.
(The σ-algebra F in general contains an enormous variety of sets that are
not rectangular. An example is the Borel σ-algebra on R

2 = R × R, which is
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the smallest σ-algebra containing the product sets B1×B2, where B1, B2 are
Borel subsets of R.) Then μ is the (unique!) measure on F with the property
that the measure of a rectangular set is as expected:

μ(B1 × B2) = μ1(B1)μ2(B2). (A.6.1)

We skip over the numerous, boring pages needed to justify all this rigorously.
However, we do pause to note that the product on the right side of (A.6.1)
is that of elements in [0,∞] as previously defined. So 0 ·∞ = ∞· 0 = 0. And
now we cut to the chase.

Theorem A.6.1 (Fubini’s Theorem) Let (Ω1,F1, μ2) and (Ω2,F2, μ1) be
σ-finite measure spaces. Let f : Ω1 × Ω2 → C be measurable with respect to
the σ-algebra F . Then f is integrable with respect to μ if and only if at least
one of these iterated integrals is finite:

∫

Ω2

[∫

Ω1

f(ω1, ω2) dμ1(ω1)
]
dμ2(ω2),

∫

Ω1

[∫

Ω2

f(ω1, ω2) dμ2(ω2)
]
dμ1(ω1).

(A.6.2)
In that case both of these iterated integrals are equal to the integral

∫

Ω1×Ω2

f(ω1, ω2) dμ(ω1, ω2).

Let g : Ω1 × Ω2 → [0,∞] be measurable with respect to F . Then

∫

Ω1×Ω2

g(ω1, ω2) dμ(ω1, ω2) =
∫

Ω2

[∫

Ω1

g(ω1, ω2) dμ1(ω1)
]
dμ2(ω2) (A.6.3)

in the sense that one side is ∞ if and only if the other side is ∞.

Here is a standard way of applying Fubini’s theorem. We start off with a
measurable function f : Ω1×Ω2 → C. We want to know if it is integrable. So
we first consider g = |f | : Ω1 × Ω2 → [0,∞). We use the second part of the
theorem for the function g by computing or estimating the iterated integral on
the right of (A.6.3) (or the other iterated integral, using the symmetry in the
first part). To estimate a quantity means to find another quantity (preferably
finite) that is bigger or equal to the quantity of interest. This always gives
a value in [0,∞] for the estimate of the iterated integral of g. If that value
actually lies in [0,∞), then we know that the integral for g on the left is
finite, and it satisfies the same estimate. This says that g = |f | is integrable
with respect to μ, which immediately implies that f is also integrable with
respect to μ. Going back to the first part of Fubini’s theorem, we see that
the integral of f can be calculated or estimated by using either of the (equal)
iterated integrals of f in (A.6.2).
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A.7 L1(Ω)

Let (Ω,F , μ) be a measure space. We define the associated space of integrable
functions by L1(Ω,F , μ) := {f : Ω → C | f is integrable}. One often denotes
this space as L1(Ω, μ) or even as L1(Ω). It is a vector space over C and has
a semi-norm defined by

||f || :=
∫

Ω

|f | dμ ∈ R
+.

In general, a semi-norm on a complex vector space V is a function V → R
+,

denoted as v �→ ||v||, that satisfies these properties:

• (Triangle Inequality) ||v + w|| ≤ ||v|| + ||w|| for all v, w ∈ V .

• (Homogeneity) ||λv|| = |λ| ||v|| for all λ ∈ C and all v ∈ V .

It follows from the second property by taking λ = 0 that ||0|| = 0. If we have
a semi-norm that also satisfies

• ||v|| = 0 implies that v = 0,

then we say that || · || is a norm. In general, there are non-empty measure
zero subsets of Ω and so there are non-zero functions f : Ω → C satisfying
||f || = 0. (Take N as such a non-empty measure zero subset and f = χN .)

The point is that one needs a norm || · || in order to have the associated
function, defined by d(v, w) := ||v −w||, be the distance function of a metric
space. The defining properties of a distance function d : X ×X → R

+, where
X is any set whatsoever, are

• (Positivity) d(x, y) ≥ 0 for all x, y ∈ X.

• (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X.

• (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

• d(x, y) = 0 if and only if x = y.

One says that the pair (X, d) is a metric space. When it is obvious what
the metric being used is, we simply say that X is a metric space.

In order to get a norm, and hence a metric, we introduce the following
equivalence relation ∼= on L1:

f ∼= g if and only if f = g almost everywhere.

We say that a property holds almost everywhere if there exists a measure
zero subset N of Ω such that the property holds on Ω \ N . We then define
L1(Ω, μ) to be the set of equivalence classes of L1(Ω, μ) under this equivalence
relation. So the elements of L1(Ω, μ) are equivalence classes of functions that
differ only on measure zero sets. For f ∈ L1(Ω, μ) we denote its equivalence
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class by [f ] ∈ L1(Ω, μ). It turns out that one can add these equivalence classes
and multiply them by complex numbers as follows:

[f ] + [g] := [f + g] and λ[f ] := [λf ].

And in this way L1(Ω, μ) becomes a complex vector space. Also, we define
|| [f ] || := ||f ||, where the right side uses the semi-norm of L1(Ω, μ). Then
this is a norm on L1(Ω, μ). So, L1(Ω, μ) becomes a metric space with the
associated distance function given by d([f ], [g]) = || [f ] − [g] ||.

Now metric spaces have a convenient necessary property for a sequence
to be convergent. But, inevitably, even more definitions!

Definition A.7.1 Let xn ∈ X for n ∈ N be a sequence in a metric space
(X, d). Then we say that this sequence is convergent with limit x ∈ X if for
every ε > 0 there exists N ≥ 0 such that d(xn, x) < ε for all n ≥ N .

We say that xn ∈ X is a Cauchy sequence if for every ε > 0 there exists
N ≥ 0 such that d(xn, xm) < ε for all n,m ≥ N .

Every convergent sequence in a metric space is a Cauchy sequence, but
not always conversely. This leads to the next definition.

Definition A.7.2 Let X be a metric space. Then we say that X is complete
if every Cauchy sequence in X is convergent.

The standard example is R with the distance d(r, s) := |r−s| for r, s ∈ R.
This is a complete metric space. On the other hand Q, the set of rational
numbers with the distance defined by the same formula (but now only for
r, s ∈ Q) is not a complete metric space. The big theorem here is the following.

Theorem A.7.1 (Riesz-Fischer) L1(Ω, μ) is a complete metric space.

A variant of the discussion in this section, including the technicality of
the equivalence relation for functions equal almost everywhere, works just
fine for L2(Ω, μ). So another version of this big theorem is as follows.

Theorem A.7.2 (Riesz-Fischer) L2(Ω, μ) is a complete metric space.

A.8 Concluding Remarks

Before ending this crash course, let us emphasize again the importance of
neglecting what happens with functions on sets of measure zero, since this
plays a large role in applications. This allows us to change as we wish any
measurable function on any measure zero set without changing the results.
We remark that it is also used for properties. If P (x) is a proposition about
the points x ∈ Ω, a measure space, then we say that P (x) is true almost
everywhere if there is a set N of measure zero such that P (ω) is true for
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all ω ∈ Ω \ N . In the case of probability measure spaces one says that the
property holds almost surely or with probability 1.

There is a lot more to measure theory, but this should be more than
enough to keep you afloat for a while, or maybe forever.

A.9 Notes

J.E. Littlewood’s famous three principles of real analysis, that were intended
to show the accessibility of measure theory, are at an even more advanced
level than these brief notes. They involve results such as Lusin’s theorem
and Egorov’s theorem. Other advanced topics include Vitali’s Lemma, the
Radon-Nikodym theorem, the Riesz representation theorem (for measures)
and all Lp analysis, including Hölder’s inequality and interpolation theory.
The reader might wish to study some of these topics if the need arises.

Improper integrals are not what I would call an advanced topic, and they
do come up in physics. For example, the Cauchy principle value is an improper
integral. I did not include them for the sake of brevity. I hope that they are
accessible to the reader with the tools presented here.

The actual evaluation of definite integrals is an art as well as a science
unto itself that relies on the Fundamental Theorem of Calculus, the theory
of residues in complex analysis, and a whole lot of ingenuity. And it’s a lot
of fun! For example, see [7], [14], [19], and [23].
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