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In Memoriam

Boris Pavlov (1936–2016)
© M. Nowaczyk
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Professor Boris Pavlov (Boris Sergeeviq Pavlov) passed away on Janu-
ary 30, 2016, just a few months before his 80th birthday. He was one of the bright-
est and most influential members of Leningrad/Saint Petersburg Mathematical
School. In particular, he was the founder of the Leningrad school of non-self-adjoint
operators. Born in Kronshtadt (an island in the Finish Gulf visible from Leningrad
when the weather is good) on July 27, 1936, he entered the Physics Faculty of
Leningrad University in 1953. His supervisor was M.S. Birman, an outstanding
specialist in mathematical physics and operator theory. In fact, Pavlov was the
first PhD student of the at-that-time young professor Birman. Boris Pavlov’s the-
sis, devoted to the spectral theory of non-self-adjoint Schrödinger operators (the
research direction proposed to him by his supervisor), had a strong influence on the
field and attracted the attention of one of the most distinguished mathematicians
of the 20th century, M.G. Krein, who wrote a letter expressing his appreciation of
the outstanding work.

His second (Doctor of Sciences or Habilitation) thesis was devoted to a newly
established field – the theory of self-adjoint dilations of dissipative operators and
their applications in various problems of Mathematical Physics. Studies of these
problems are connected with the names of B. Sz.-Nagy, C. Foias, R.S. Phillips and
P.D. Lax, but Pavlov’s extraordinary work made him one of the world’s leading
specialists in that specific field. A strong interest in applications was one of the
main features of Pavlov’s scientific activity. He liked to repeat the words said to
him by R. Phillips: “Boris, keep close to applications”. A combination of that
interest with professional use of modern Complex Analysis and Operator Theory
can be found in almost all of his papers, including the brilliant work on scattering
theory on the Lobachevsky plane done in collaboration with L.D. Faddeev. That
paper was the basis for the book Scattering Theory for Automorphic Functions by
P.D. Lax and R.S. Phillips.

In addition, Boris Pavlov was a remarkable teacher and lecturer. People who
attended his lectures forever remember his special style and his love for Mathemat-
ics which he tried to instill in his students. Unsurprisingly, he was the supervisor
to an unusually large family of students (see below). His students will always
remember the unusual care and understanding received from their mentor.

Concerning Pavlov’s administrative activity, we mention that he was a Head
of the Department of Higher Mathematics and Mathematical Physics (Faculty of
Physics) and later of the Department of Mathematical Analysis (Faculty of Math-
ematics and Mechanics). He even worked as a vice-rector of Leningrad University.
Here it is worth mentioning one fact which perfectly characterises his personal-
ity: when in 1981 he had to leave the vice-rector position — still being Head of
the Dept. of Mathematical Analysis — he also resigned from the later position
and returned to the Faculty of Physics as an ordinary professor. The reason was
that Boris had earlier promised the Head of Mathematical Analysis position to
Prof. S.A. Vinogradov and felt unable to allow himself to violated that promise,
although at the time it was not so easy for him. In 1994, Pavlov moved to New
Zealand, where he held a Personal Chair in Pure Mathematics at the University of
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Auckland, later becoming a member of the Institute for Advanced Study at Massey
University, Albany. He continued to work at the Saint Petersburg University as
the Head of the Laboratory of Complex Systems Theory at the Physics Faculty.

Pavlov became a Fellow of the Royal Society of New Zealand in 2004 and a
member of the Russian Academy of Natural Sciences in 2010.

Finally, just a few words about Pavlov’s personality: he liked mountain skiing,
kayak trips and many other activities typical for his generation. Moreover, he was
a talented artist, and drawing was probably the second strongest passion in his
life after Mathematics.

Pavel Kurasov
Ari Laptev

Barry Simon

In Memoriam

Sergey Naboko
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Curriculum Vitae

Boris Pavlov
(Kronshtadt, Russia, 27 July 1936 – Auckland, New Zealand, 30 January 2016)

Educational Qualification
1959, Leningrad University, Faculty of Physics, grad. 1958.
Academic Degrees
1. Doctor of Sciences in Mathematical Analysis (Leningrad University, 1974),

Title: “Dilation Theory and Spectral Analysis of Nonselfadjoint Differential
Operators”.

2. Ph.D. in Mathematical Analysis (Leningrad University, 1964),
Title: “Spectral Investigation of Non-self-adjoint Operator −y′′ + qy”.
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1. Professor (since Feb. 2009) in the Institute of Advanced Study at Massey

University, Albany Campus, Auckland, New Zealand.
2. Head of the Laboratory (since Feb. 1995) of Quantum Networks at V. Fock

Institute for Physics at the Faculty of Physics, Saint Petersburg University,
Saint Petersburg, Russia.

3. Professor, Personal Chair in Pure Mathematics, Dept. of Mathematics, the
University of Auckland, New Zealand, March 1994 – Dec. 2007. NZ-citizen
since 2000.

4. Professor, Higher Mathematics and Mathematical Physics, Physics Faculty,
Leningrad University [1982–1995].

5. Vice-rector of Leningrad University [1978–1981] (Research).
6. Chair of Analysis, Mech.– Mathem. Faculty, Leningrad University [1978–

1982].
7. Professor, Higher Mathematics and Mathematical Physics, Physics Faculty,

Leningrad University [1977–1978].
8. Associate Professor, Higher Mathematics and Mathematical Physics, Physics

Faculty, Leningrad University [1966–1977].
9. Assistant professor, Department of Higher Mathematics and Mathematical

Physics, Physics Faculty, Leningrad University [1961–1966].
10. Postgraduate student, Department of Higher Mathematics and Mathematical

Physics, Physics Faculty, Leningrad University [1959–1961], supervisor Prof.
M.S. Birman.
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Significant Distinctions, Awards
• 1967 Distinguished Teaching Award of Leningrad University
• 1984 First Leningrad University Prize for Research
• 2004 Fellow of Royal Society of New Zealand
• 2010 Full member of Russian Academy of Natural Sciences.
• 2007 Silver Medal from the World exhibition of inventions, research and in-
dustrial innovation Brussels Eureka
(with A. Pokrovski, E. Ryumtsev, T. Rudakova, A. Kovshik)

• 2007 Professor of category A (highest category in NZ scale awarded).

Professional Societies, Service, Other Activities
• Saint Petersburg Mathematical Society;
• New Zealand Mathematical Society;
• International association of Mathematical Physics.

Research Specialties, Career
Summary Statement
I am a specialist in Analysis and Mathematical Physics, a participant of Congresses
of Mathematics in Poland 1983 and in Japan 1991, 1st Leningrad University prize
for research (1984), Fellow of the Royal Society of New Zealand (2004), Full mem-
ber or Russian Academy of Natural Sciences (2010).

Patents
1. Quantum Interference electronic Transistor (with G. Miroshnichenko) Patent

2062530, (Russia) Date of priority 12.03.1992.
2. Provisional Patent: A System and Method for Resonance manipulation of

Quantum Currents Through Splitting Auckland University Limited, 504590,
17 May 2000, New Zealand.

3. Quantum Domain relay, United States Patent application 10/276,952, Patent
Appl. Publication US 2003/0156781 A1, Aug. 21, 2003.

Research Interests
Spectral analysis of partial differential operators and Mathematical Physics. In
particular: transport problems and scattering problems for Quantum Networks,
fitted models of resonance scattering systems and analytic perturbation procedure.
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1. V.L. Oleinik Master, PhD 1965–1971 (Docent, SPb Univ.)

2. S.V. Petras Master, PhD 1965–1970 (Docent, ITMO SPb)

3. M.G. Suturin Master PhD 1966–1971 (Docent, SPb Airspace Inst.)

4. S.N. Naboko Master, PhD 1969–1976 (Professor, SPb Univ.)

5. S.A. Avdonin Master, PhD 1969–1980 (Professor, Univ. Alaska Fairbanks)

6. M.A. Shubova Master, PhD 1969–1982 (Professor, Univ. New Hampshire)
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15. M.D. Faddeev PhD student 1982–1985 (Docent, SPb Univ.)

16. P.B. Kurasov Master, PhD 1981–1987 (Professor, Stockholm Univ.)

17. V.V. Evstratov Master, PhD 1984–1992 (now in business)

18. A.A. Shushkov PhD 1984–1987 (now in Canada)

19. N.I. Gerasimenko PhD 1985–1987 (Docent, Military Academy SPb)

20. M.M. Pankratov Master, PhD 1987–1991 (Insurance Comp., Sweden)

21. S. V. Frolov Master, PhD 1988–1993 (Professor, Techn. Refrig. Inst, SPb)

22. A.A. Pokrovski Master, PhD 1990–1995 (Researcher, SPb Univ.)

23. R. Killip Master, PhD (continued with B. Simon) 1994–1996 (Associate Pro-
fessor, UCLA)

24. M. Harmer Master, PhD 1996–2000 (Lecturer, Otago Polytechnic)
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[54] V.S. Buldyrev and B.S. Pavlov, Lineĭna� algebra i funkcii mnogih peremennyh,



10 Publications by Boris Pavlov

[57] B.S. Pavlov and I.Yu. Popov, Surface waves and extension theory, Vestnik Leningrad.
Univ. Mat. Mekh. Astronom. vyp. 4 (1986), 105–107, 126 (Russian, with English summary).
MR880688

[58] Yu.A. Kuperin, K.A. Makarov, and B.S. Pavlov,Model of resonance scattering of compound
particles, Teoret. Mat. Fiz. 69 (1986), no. 1, 100–114 (Russian, with English summary).
MR882173

[59] B.S. Pavlov and A.E. Ryzhkov, Neutron scattering by a point nucleus in a random magnetic
field. I, Wave propagation. Scattering theory (Russian), Probl. Mat. Fiz., vol. 12, Leningrad.
Univ., Leningrad, 1987, pp. 54–83, 257 (Russian). MR923971

[60] B.S. Pavlov and N.V. Smirnov, A model of a crystal from potentials of zero radius with
internal structure, Wave propagation. Scattering theory (Russian), Probl. Mat. Fiz., vol. 12,
Leningrad. Univ., Leningrad, 1987, pp. 155–164, 258 (Russian). MR923976

[61] B.S. Pavlov, The spectral aspect of superconductivity—the pairing of electrons, Vestnik
Leningrad. Univ. Mat. Mekh. Astronom. vyp. 3 (1987), 43–49, 127 (Russian, with English
summary). MR928160

[62] , An explicitly solvable one-dimensional model of electron-phonon scattering, Vest-
nik Leningrad. Univ. Fiz. Khim. vyp. 2 (1987), 60–66, 135 (Russian, with English summary).
MR928367

[63] , The theory of extensions, and explicitly solvable models, Uspekhi Mat. Nauk 42
(1987), no. 6(258), 99–131, 247 (Russian). MR933997

[64] , An electron in a homogeneous crystal of point-like atoms with internal structure.
I, Teoret. Mat. Fiz. 72 (1987), no. 3, 403–415 (Russian, with English summary). MR936388

[65] Yu.A. Kuperin, K.A. Makarov, and B.S. Pavlov, Scattering on a dynamic quark bag, Vest-
nik Leningrad. Univ. Fiz. Khim. vyp. 4 (1987), 60–62, 108 (Russian, with English summary).
MR953777

[66] V.M. Adamyan and B.S. Pavlov, Zero-radius potentials and M.G. Krĕın’s formula for
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his sixtieth birthday), Uspekhi Mat. Nauk 43 (1988), no. 3(261), 201–202, DOI
10.1070/RM1988v043n03ABEH001768 (Russian); English transl., Russian Math. Surveys
43 (1988), no. 3, 233–235. MR955795

[70] Yu.A. Kuperin, K.A. Makarov, S.P. Merkur′ev, A.K. Motovilov, and B.S. Pavlov, The quan-
tum problem of several particles with internal structure. I. The two-body problem, Teoret.
Mat. Fiz. 75 (1988), no. 3, 431–444, DOI 10.1007/BF01036264 (Russian, with English sum-
mary); English transl., Theoret. and Math. Phys. 75 (1988), no. 3, 630–639. MR959726

[71] , The quantum problem of several particles with internal structure. II. The three-
body problem, Teoret. Mat. Fiz. 76 (1988), no. 2, 242–260, DOI 10.1007/BF01028583
(Russian, with English summary); English transl., Theoret. and Math. Phys. 76 (1988),
no. 2, 834–847 (1989). MR965509

[72] B.S. Pavlov, Boundary conditions on thin manifolds and the semiboundedness of the three-
body Schrödinger operator with point potential, Mat. Sb. (N.S.) 136(178) (1988), no. 2,



Publications by Boris Pavlov 11

163–177, 301, DOI 10.1070/SM1989v064n01ABEH003300 (Russian); English transl., Math.
USSR-Sb. 64 (1989), no. 1, 161–175. MR954922

[73] , Zero-range interactions with an internal structure, Applications of selfadjoint ex-
tensions in quantum physics (Dubna, 1987), Lecture Notes in Phys., vol. 324, Springer,
Berlin, 1989, pp. 3–11, DOI 10.1007/BFb0022943. MR1009837

[74] B.S. Pavlov and A.E. Ryzhkov, Scattering on a random point potential, Applications of
selfadjoint extensions in quantum physics (Dubna, 1987), Lecture Notes in Phys., vol. 324,
Springer, Berlin, 1989, pp. 100–114, DOI 10.1007/BFb0022963. MR1009844

[75] B.S. Pavlov, Thin lattices as waveguides, Applications of selfadjoint extensions in quantum
physics (Dubna, 1987), Lecture Notes in Phys., vol. 324, Springer, Berlin, 1989, pp. 241–
256, DOI 10.1007/BFb0022952. MR1009851

[76] Yu.A. Kuperin, K.A. Makarov, and B.S. Pavlov, An exactly solvable model of a crystal
with nonpoint atoms, Applications of selfadjoint extensions in quantum physics (Dubna,
1987), Lecture Notes in Phys., vol. 324, Springer, Berlin, 1989, pp. 267–273, DOI
10.1007/BFb0022955. MR1009853

[77] B.S. Pavlov, Coherent conductance in a random medium, Schrödinger operators, stan-
dard and nonstandard (Dubna, 1988), World Sci. Publ., Teaneck, NJ, 1989, pp. 206–212.
MR1091999

[78] V.V. Evstratov and B.S. Pavlov, Electron-phonon scattering, polaron and bipolaron: a
solvable model, Schrödinger operators, standard and nonstandard (Dubna, 1988), World
Sci. Publ., Teaneck, NJ, 1989, pp. 214–240. MR1092000

[79] Yu.A. Kuperin, Yu.B. Mel′nikov, and B.S. Pavlov, Quantum scattering problem in triangle
representation and induced gauge fields, Schrödinger operators, standard and nonstandard
(Dubna, 1988), World Sci. Publ., Teaneck, NJ, 1989, pp. 294–319. MR1092004

[80] B.S. Pavlov and A.A. Shushkov, The theory of extensions, and null-range potentials
with internal structure, Mat. Sb. (N.S.) 137(179) (1988), no. 2, 147–183, 271, DOI
10.1070/SM1990v065n01ABEH001308 (Russian); English transl., Math. USSR-Sb. 65
(1990), no. 1, 147–184. MR971692

[81] B.S. Pavlov and S.I. Fedorov, Harmonic analysis on a Riemann surface, Dokl. Akad. Nauk
SSSR 308 (1989), no. 2, 269–273 (Russian); English transl., Soviet Math. Dokl. 40 (1990),
no. 2, 316–320. MR1021093

[82] , Shift group and harmonic analysis on a Riemann surface of genus one, Algebra
i Analiz 1 (1989), no. 2, 132–168 (Russian); English transl., Leningrad Math. J. 1 (1990),
no. 2, 447–490. MR1025160

[83] Yu.A. Kuperin, K.A. Makarov, and B.S. Pavlov, An extensions theory setting for scat-
tering by breathing bag, J. Math. Phys. 31 (1990), no. 1, 199–201, DOI 10.1063/1.528860.
MR1029228

[84] Yu.A. Kuperin, K.A. Makarov, S.P. Merkuriev, A.K. Motovilov, and B.S. Pavlov, Extended
Hilbert space approach to few-body problems, J. Math. Phys. 31 (1990), no. 7, 1681–1690,
DOI 10.1063/1.528715. MR1056608

[85] P.B. Kurasov and B.S. Pavlov, Localization effects in nonhomogeneous dielectrics, Order,
disorder and chaos in quantum systems (Dubna, 1989), Oper. Theory Adv. Appl., vol. 46,
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[98] G.V. Galloonov, V.L. Olĕınik, and B.S. Pavlov, Estimations for negative spectral bands of
three-dimensional periodical Schrödinger operator, J. Math. Phys. 34 (1993), no. 3, 936–
942, DOI 10.1063/1.530202. MR1207959
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vol. 132, Birkhäuser, Basel, 2002, pp. 287–322. MR1924986
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Boris Pavlov’s attitude towards scientific research is perfectly reflected in
Terenin’s1 rules, which Pavlov had displayed in his office in Leningrad and even
took with him to New Zealand.

Academician A.N. Terenin’s rules for researchers

I consider the following to be basic commandments in the formulation of
scientific (research) works, and I am sure that you will agree with them:

I Do not do what other researchers do.
II Do not do it as they do; instead, do it cleanly.

III When you research, look with both eyes (Ivan Pavlov’s Attention, attention
and attention again).

IV Read, but not too much, otherwise your work will not be read (a rephrasing
of the German: Wer zu viel liest, wird nicht gelesen).

V Do not neglect a negative result if it was obtained correctly.
VI Do not try to squeeze your results into invented explanations prior to an

unequivocal crucial test.
Such elementary rules should be instilled into the minds of students working

in laboratories, but not only students.
Nowadays, international and national scientific competition makes it partic-

ularly difficult to fulfil the first two commandments.

1Academician A.N. Terenin was a prominent physicist, one of the founders of photochemistry
and photophysics research at Leningrad University.
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Pavlov’s contribution to science is not limited to his publications, he used
to say that papers should be written for political reasons. Nevertheless, most of
Pavlov’s ideas are reflected in his publications showing us different facets of his
scientific personality. A few years ago he summarised his achievements as follows:

My highest achievements are
1. Spectral theory of non-selfadjoint singular differential operators, 1962.

2. Riesz-basis property of exponentials on a finite interval, 1979.

3. Operator-theoretic interpretation of critical zeros of the Riemann zeta-function,
1972.

4. Symmetric Functional Model for dissipative operators, 1979.

5. Zero-range potentials with internal structure and solvable models, 1984.

6. Theory of the shift operator on a Riemann surface, jointly with S. Fedorov,
1987.

7. Modified analytic perturbation procedure (”Kick-start”) for operators with
eigenvalues embedded in the continuous spectrum, 2005.

8. Fitting of a zero-range solvable model of a quantum network based on rational
approximation of the Dirichlet-to-Neumann map of the original Hamiltonian,
2007.

9. Fitting of a solvable model of stressed tectonic plates, in connection with
prediction of powerful earthquakes, jointly with L. Petrova, 2008.

10. Quasi-relativistic dispersion and high mobility of electrons in Si–B sandwich
structures, jointly with N. Bagraev, 2009.

11. Theoretical interpretation of the low-threshold field emission from carbon
nano-clusters, jointly with Y. Fursey and A. Yafyasov, 2010.

One clearly sees that Pavlov ranked his fundamental contributions to pure
analysis on the same level as his more recent work on applications, which stretched
from dynamics of tectonic plates to semiconductors (see, for example, his posthu-
mous paper with Victor Flambaum and Gaven Martin in the current volume).

The aim of this section is to describe Pavlov’s research in pure analysis and
operator theory, covering approximately the top half of the above list. Pavlov’s
work on non-self-adjoint operators (items 1 and 4) is well known to specialists
as a base for modern theory of differential operators. The importance of the
Pavlov–Faddeev paper (item 3) is best reflected by the book of P. D. Lax and
R. S. Phillips, Scattering Theory for Automorphic Functions, for which the article
served as a starting point. To complete the picture, we asked several world-leading
experts, most of them long-time collaborators of Boris, to describe Pavlov’s atti-
tude towards analysis and mathematical physics, as well as his influence on the
development of mathematics as a whole.



Zero-range potentials with internal struc-
ture and solvable models
V.M. Adamyan

The investigation of electron properties of polyatomic systems reduces, as a
rule, to the spectral and scattering problems for the Schrödinger operator

HV = − ~2

2m
∆+ V (r)

in L2 (R3) with an effective self-consistent potential V (r) that incorporates in some
way the effect of electron–ion and electron–electron multi-particle interactions on
a single valence electron. Less often under certain assumptions the description of
electronic states of compounds is based on results of the spectral theory of self-
adjoint operators in L2 (R3) formally given as the Laplace differential operator
−∆ on a suitable set of functions f(r) satisfying a variety of boundary conditions

lim
ρj→0

{
∂

∂ρj
ρjf(r)− bjρjf(r)

}
= 0, ρj = |r− rj | , (0.1)

for a given ensemble of points {rj} and real numbers {bj}. In applications to
valence electrons of polyatomic systems {rj} are positions of ions and {bj} are
some parameters that account for the total influence of ions and other electrons
on the single valence electron states. The latter approach is known as the the zero-
range (or null-range) potential (ZRP) model. It is worth mentioning that the ZRP
model can be applied and was applied more than once not only to the study of the
electron structure and spectra of molecules and crystals. In fact, E. Fermi, who
pioneered this model back in 1934, used it first to solve the problem of the shift of
higher-order spectral lines in the presence of perturbing centers and then for the
analysis of neutron scattering in substances that contain hydrogen. Examples of the
use of ZRPs for modeling and simulation of real physical objects and phenomena
can be found in the monograph [6].

The mathematical meaning of the ZRP model, which initially was associated
with the formal differential operator

H = −∆+
∑
j

b−1
j δ (r− rj) , (0.2)

© Springer Nature Switzerland AG 2020 
P. Kurasov et al. (eds.), Analysis as a Tool in Mathematical Physics, Operator Theory: 
Advances and Applications 276, https://doi.org/10.1007/978-3-030-31531-3_  

33

3

https://doi.org/10.1007/978-3-030-31531-3_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31531-3_3&domain=pdf


34 V.M. Adamyan

was clarified by F.A. Berezin and L.D. Faddeev in the short note [5]. In fact, it
was shown in [5] that instead of the incorrect expression (0.2) one should consider
a certain self-adjoint extension of the symmetric Laplace operator −∆0 defined on
the set of smooth finite functions that vanish in a neighborhood of the given points,
namely, the extension defined by the boundary conditions (0.1). This observation
by F.A. Berezin and L.D. Faddeev became the starting point for numerous studies
on the mathematical nature of ZRP models and their possible natural extensions
and generalizations. The list of mathematical works directly related to this topic
has long exceeded a thousand titles [4]. Among the works in this list, which contain
fundamentally new approaches, objects and story lines related to the model being
considered a prominent place is occupied by more than 50 articles and reviews
authored or coauthored by B.S. Pavlov and numerous works of his disciples.

Returning to the ZRP model, we note that in the case of a single atom it
gives poorer results than the potential model mentioned above. When it comes
to reproducing the detailed structure and properties of real compounds, the ap-
proaches based on the ZRP model and those based on the potential model differ,
loosely speaking, like a black-and-white drawing from an oil painting. However,
for specific problems inherent to polyatomic systems, the ZRP model, remaining
easily solvable, allows one to fully take into account the interference effects typi-
cal for multicenter systems, while the complexity of the potential model for such
systems does increase.

An indisputable significant achievement of B.S. Pavlov is the far-reaching
enrichment of the ZRP model by point potentials with internal structure. This
greatly expanded the range of problems that can be treated by the generalized
model and added colors to the black-and-white picture of its original version.

The special features of the ZRP model endowed with internal structure were
first described by B.S. Pavlov and M.D. Faddeev in their short paper [8] without
refering to ZRPs. To simulate one-electron states of a molecule interacting with
its environment, the authors of [8] used a self-adjoint extension of the orthogonal
sum of the above symmetric Laplace operator −∆0 and (at first not associated
with −∆0) the closure L0 of a symmetric Sturm–Liouville operator on a compact
graph L defined on the set infinitely differentiable functions that vanish near the
vertices {ξj} of the graph. In their analysis the vertices of the graph were identi-
fied with the assigned points {rj} in the definition of −∆0 and certain connecting
self-adjoint boundary conditions were imposed at those points. The approach and
constructions outlined in [8] with reference to a specific problem, gave impetus to
numerous in-depth studies of B.S. Pavlov, his followers, and many other authors,
devoted to deepening the ZRP method and developing a general theory of singular
perturbations of self-adjoint operators.

The object studied in [8] was formalized in the subsequent paper [7], which
apparently is the first place where the ZRP model with an internal structure was
first explicitly described. Subsequently, B.S. Pavlov and under his obvious influ-
ence many other authors repeatedly turned to this richer model, refining it and
finding significant applications of it in various problems of mathematical physics.
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The first phase in the mathematical development of the ZRP model was originally
based on the above-mentioned note [5] on von Neumann’s theory of self-adjoint
extensions of symmetric operators, and remained grounded on this theory right
up to the publication of the papers [8, 7]. The results of these earlier investiga-
tions were summarized somewhat later in the monograph [3]. The more general
model proposed in [7] did lead naturally to the theory of self-adjoint extensions
with exit to a certain extended space containing a subspace associated with the
internal states of point potentials. In the initial paper [8], a special self-adjoint
extension A of the orthogonal sum of the operators A0 = −∆0 ⊕ L0 without exit
from L2 (R3)⊕L2 (L) for which the subspace {0}⊕L2 (L) remained invariant was
compared from the viewpoint of scattering theory with an arbitrary self-adjoint
extension A1 of the same sum A0 determined by suitable local boundary condi-
tions at the points {rj ↔ ξj}. In the course of this study, a simple relationship
was discovered between the analytic parameter in M.G. Kreĭn’s formula for the
resolvents of self-adjoint extensions A and A1 of the operator A0, on the one hand,
and the scattering matrix for the pair A, A1, on the other hand. In the general
scattering problem for two self-adjoint extensions of the same symmetric operator
with finite defect indices, the corresponding result was established in [1]. (The
results and proofs of [1] remain valid also in the case of infinite defect spaces if for
the pair of extensions in question the existence of wave operators is guaranteed.)
As noted by B.S. Pavlov, the indicated relationship between M.G. Kreĭn’s formula
and the scattering matrix for a pair of extensions made it possible to understand
the algebraic uniqueness of the ZRP models with internal structure, which ensures
their solvability: the entire analysis reduces to the representation of the resolvent
of the model Hamiltonian by Kreĭn’s formula, after which it is already easy to
investigate its spectral structure, calculate the scattering matrix, and often solve
the inverse problem of reconstructing the interaction from spectral data.

In the process of solving the problems that emerged in [8] and also in the
note [9], devoted to the construction of an explicitly solvable model of a small-
opening resonator within the framework of extension theory, B.S. Pavlov undoubt-
edly gained insight into the essence of the ZRP model with internal structure and,
more generally, into the so-called theory of singular perturbations, which, with
respect to differential operators, reduces to perturbations of boundary conditions
on manifolds of low dimension. This immediately sparked a rich research activity
that revealed the features of natural generalizations and various applications of
the ZRP model and the theory of singular perturbations. Thanks to the creative
activity of students and close colleagues of B.S. Pavlov this research wave quickly
spread throughout the world. In particular, numerous works by P. Kurasov and
I. Popov made from the outset a substantial contribution in this direction (for an
early bibliography, see [4]).

It should be recalled that numerous profound results on the spectral the-
ory of dissipative operators were obtained by B. S. Pavlov with the ingenious
use of the Lax–Phillips non-stationary approach to scattering theory. Beginning
with the papers [8] and [9], B.S. Pavlov tried to use whenever possible this very
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effective (yet having a limited range of applications) approach to the scattering
problems for Schrödinger and wave equations with ZRP potentials and singularly
perturbed boundary conditions. He tried expand considerably the collection of
exactly solvable physical problems by combining the ZRP model with internal
structure, singular perturbations, and the Lax–Phillips approach. Unfortunately,
he did not manage complete this task.
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Pavlov’s perturbations
Sergey Khrushchev

Although I was not a direct student of Boris Sergeevich, he played a decisive
role in my mathematical career. I got acquainted with him for the first time in our
seminar on Complex Analysis in Leningrad. Occasionally, Boris Sergeevich visited
it to report his results and also to formulate very interesting open questions. Just
a few words to explain why Pavlov, being a member of a physics department, vis-
ited a mathematics seminar. Pavlov’s first research was devoted to one-dimensional
perturbations of self-adjoint operators which resulted in dissipative operators. To
study them, Pavlov developed his own model, called now the symmetric model (I
personally would suggest to call it Pavlov’s model). By contrast, in those days our
seminar was actually dealing with functional aspects of one-dimensional perturba-
tions for unitary operators that result in contraction operators. The two subjects
are related by well-known formulas. Questions considered in the seminar were
mostly related to abstract mathematics, whereas in his talks, Pavlov showed us
different problems, coming from physics. For this reason, Pavlov’s talks usually
made a great contribution to our seminar and led to progress.

One of Pavlov’s problems was related to the description of continuous spectra
of one-dimensional dissipative perturbations of Schrödinger operators with rapidly
decreasing potentials. Pavlov showed that such spectra are sets of non-uniqueness
for analytic functions in the upper half-plane with smooth boundary values in the
Gevrey class Gα. Moreover, he showed that if such a set has Lebesgue measure
zero and the intervals {lν} forming its complement satisfy the condition∑

ν

|lν |α ε < +∞ (∗)

for some ε > 0, then there is an outer function in Gα with the set in question as its
zero set. Such classes were considered previously by Lennart Carleson in his first
paper in Acta Mathematica [1]. However, an intriguing question was to describe
non-uniqueness sets for the class Gα. Stimulated by this important seminar talk
of Pavlov, I started to think about this problem. It turned out to be quite difficult.
The unusual feature of this problem, which distinguished it from similar problems
considered by Carleson in [1], was that the answer could not be stated solely in
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terms of the lengths of the intervals forming the complement. The necessary and
sufficient conditions I found (see [2]) were not simple, yet it still was possible to
work with them. In particular, I showed that all previously known results follow
from these conditions. Furthermore, I proved that for symmetric sets of Cantor
type, condition (∗) is in fact necessary and sufficient. Also, there are pairs of sets
with equal lengths of the intervals forming the complement, counting multiplicities,
such that one of the sets is a set of uniqueness, while the other is not.

Soon after that Boris Sergeevich was appointed vice-rector of the Leningrad
State University. He agreed with the rector that Friday would be his scientific day
to communicate with his students. I still feel very proud for being included in
this list of visitors. Later on, the Friday meetings turned into a course on inverse
scattering problems. Pavlov delivered his lectures in Peterhof. This was one of the
best Springs in my life. I left home and traveled by train to Peterhof. These were
extraordinary lectures, both in the clarity of exposition and in the importance for
applications. Later on, I used the lecture notes in the US to prepare a paper on
continuous spectra of dissipative Schrödinger operators [3]. This course of Pavlov
showed me how even such a difficult topic can be presented to students in a clear
fashion. I still have at home in Saint Petersburg my hand-written lectures notes.

Once Boris Sergeevich visited our seminar shortly after my talk on an impor-
tant paper of Muckenhoupt on the Riesz operators in weighted Lp spaces. What
Pavlov presented on this occasion was very impressive, since he actually found
necessary and sufficient conditions for a system of exponentials to form a basis
in L2(−a, a). This work by Pavlov stimulated a series of papers, including my
own paper [4] and our joint paper in Lecture Notes in Mathematics [5]. Some
time later, I applied Pavlov’s model and Bari’s theorem to show that the abstract
inverse scattering problem always has a solution, [6].

It was Pavlov who not only told me that I was ready for the defense of my
doctoral thesis, but also helped to set up the whole process. Boris Sergeevich was
a great diplomat. He didn’t tell me details, but it turns out that he managed to
convince L.D. Faddeev, who in those days decided everything in Mathematics in
Leningrad , that I had enough material for the thesis. I think that otherwise I
would have never been allowed to defend a doctoral thesis, regardless of what I
could solve. The main problem with authoritative leaders is that they want to
control everything but, in fact, can control only very few processes. This results in
numerous mistakes and wrong decisions. Pavlov did personally face similar prob-
lems later. When he found a job in New Zealand and met Faddeev in Leningrad,
Faddeev was angry because Pavlov did not ask his permission. Somehow Pavlov
managed to fix the issue. However, later, when he returned to Saint Petersburg,
he was not able to get any position in the Physics Department. He asked Faddeev
for help, but the answer was negative, since Faddeev claimed that he could not do
anything with people in the department.

My five-years fight with Faddeev for the Euler Institute, which he converted
into a laboratory of Saint Petersburg division of the Steklov Institute so as to keep
it under his control forever, clearly demonstrated that any question related to the
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personal needs of Faddeev could be solved. Just imagine: the conversion of the
Euler Institute into a laboratory of a division of another institute was possible,
but to create a position for Pavlov was impossible for him. Can you believe this? I
cannot. This was just a classical example of a lie. If Faddeev insisted that Pavlov
should ask his permission for a job in New Zealand, then why he could not solve
Pavlov’s problem when he returned? This rhetoric question has an obvious answer,
but it looked as if nobody in the Saint Petersburg mathematical community cared.
Thus Saint Petersburg University lost a great teacher. What was important was a
unanimous support for any of Faddeev’s wishes. So, what happened with Pavlov
at the end of his life in Saint Petersburg was not at all a surprise for me.

The Doctor’s diploma, which was awarded to me basically due to Boris
Sergeevich’s political efforts, helped me a lot in Almaty later on, allowing me
a privileged access to the two main libraries in Kazakhstan. Using this access, I
wrote what I think is the best mathematics paper in my life. This would have
never happened should I have continued this long-term struggle.

At the beginning of my career in mathematics, I hesitated between the de-
partments of physics and mathematics. Finally, I made my choice in favor of math-
ematics. Should I have chosen physics, I would have definitely been with Pavlov
and his group. The result, I believe, would have been the same, except that my
candidate thesis would not include the solution to the simultaneous approximation
problem.

Pavlov had not only great talent, but also great intuition. Scientific inter-
action with him showed me that the intuition is the main driving tool in math-
ematical research. Before my contacts with Pavlov, I paid too much attention to
Bourbaki. Now I think that no big theorem in Mathematics was proved Bourbaki’s
methods. Nevertheless, Bourbaki’s approach in mathematics remains important for
finding mistakes, or at least getting a feeling that something is wrong with some
specific arguments.

Pavlov liked mountain skiing very much. Those times Boris Mityagin orga-
nized regular winter schools in Drogobyuch. There was a mountain resort nearby.
So, once we both arrived to Drogobych with skis. Pavlov arranged a giant slalom
track, and I followed him along many times. I thus managed to improve my skills
considerably. His approach to mountain skiing was the same as to mathematics:
one shouldn’t try to demonstrate beautiful skiing, rather, one should aim for fast
skiing. He told me that he called this“sculpting.” Later, I rented with him a house
in Kavgolovo for skiing.

With his death we all lost a great Man, a great Teacher, and a great Mathe-
matician.
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Boris Pavlov and bases,
as I remember them

Nikolai Nikolski

Dedicated to the memory of Boris Pavlov,
a long-term friend and coauthor,

a remarkable mathematician with his fantastic ability
to foresee results before finding arguments,

and the only man I knew who could perceive mathematical theorems
as living physical systems.

Boris Pavlov, when I met him the first time, was a recent PhD student of Mikhail
Birman at the Department of Physics of the LSU (Leningrad State University,
now Saint-Petersburg State University). I suppose it happened around 1964–1965,
when we both assisted on one of Birman’s beautiful advanced courses in spectral
theory of selfadjoint operators (delivered, due to a bureaucratic caprice, at the old
building of the History Department of LSU, near the Twelve Colleges Building
on Vasilievsky Island). Pavlov was already among the young prodigious celebri-
ties of Saint Petersburg mathematical community, having discovered a complex
spectral structure of extensions of symmetric differential operators (the so-called
“nonphysical sheet” in scattering theory), mostly for Schrödinger operators.

This was exactly the field where B. Pavlov met the Riesz basis problem, es-
pecially for exponentials eiλkx as eigenfunctions of the operator −y′′ with “spread”
boundary conditions. Since the Riesz and unconditional basis problem was already
among my own preoccupations, we rapidly found common interests and fields for
a long lasting cooperation.

The Riesz and unconditional basis problem, especially for the expo-
nentials, was for a long time among the pointed interests of analysts.

By definition (N. Bari (Bary) [8]), a Riesz basis (RB) (xn) in a Hilbert space
H is an isomorphic image (xn = V en) of an orthonormal basis (ONB) (en). An
unconditional basis (UB) is a basis, i.e., every x ∈ H can be uniquely represented
in the form of a norm-convergent series

x =
∑
n

anxn
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(an ∈ C) and this series converges unconditionally, that is,

x = lim
k

Sσk
, Sσ = Sσ(x) =

∑
j∈σ

ajxj , σ ⊂ N,

for any sequence of finite subsets σk ⊂ N, σk ↑ N.
In 1934, G. Köthe and O. Toeplitz have shown [20] that for almost normalized

sequences (xn) (i.e., such that ‖xn‖≈ 1, meaning that 0 < c ≤ ‖xn‖ ≤ C < ∞)
in a Hilbert space, the property of being an unconditional basis is equivalent to
the Riesz basis property (using Bari’s language; the reason for the name “Riesz
basis” was the Riesz–Fischer property of orthonormal bases that the coefficient
space coincides with the space l2, but “Fischer” disappeared at some point from
the terminology...). E. Lorch [23] and M. Grinblyum [14] observed that (xn) is an
unconditional basis in H iff it is an isomorphic image (xn = V en) of an orthogonal
basis (ON) (en). Some of these equivalences were independently found by R. Boas
[10] and I.M. Gelfand [13].

One of the challenging problems of harmonic analysis and the theory of
differential operators in the period 1930–1980 was to understand when a sequence
of exponentials

EΛ =
(
eiλnt

)
is an unconditional basis in L2(I), I being an interval of R. The studies for the
case of infinite intervals started much later than those for finite intervals (although
the latter case is more involved), but were completed first (see Sect. 2 below). The
situation with finite intervals I turns out to be more delicate. Let us trace a few
steps in the evolution of this subject.

1. First step – uniform proximity
The studies started with exponentials xn(t) = eiλnt with real frequencies (λn) ⊂
R that are uniformly close to the harmonic ones (n : n ∈ Z); by scaling and trans-
lating, we can always reduce the analysis to the setting of L2(I) with I = (0, 2π).
The spirit of this beginning stage was completely determined by the famous Paley–
Wiener theorem [38] on “small perturbations” of the harmonic basis (eint)n∈Z in
L2(0, 2π):

Theorem. If (λn)n∈Z ⊂ R and δ := supn∈Z |n− λn| < 1/π2, then
(
eiλnt

)
is a Riesz

basis in L2(0, 2π).

The proof is based on the observation that the linear operator V : L2 → L2

acting as V eint = eiλnt, n ∈ Z, satisfies ‖I − V ‖ < 1. Later on, R. Duffin and
J. Eachus (1942) improved the computations, showing that δ < log 2/π (∼ 0.22 . . . )
implies already the (RB) property for (eiλnt), and finally M. Kadec [18] found the
sharp sufficient condition δ < 1/4 (for δ = 1/4, counterexamples were known
already to A. Ingham in the 1930s, see N. Levinson’s book [22]).
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2. Second step – generating and sine-type functions
In the next period, starting at the beginning of the 1960s, complex frequencies Λ
were also allowed, and so were infinite intervals I. As a consequence of the Carleson
interpolation theorem [12] and its basis interpretation in [42], the following theorem
is stated in [37, 19] for the generic infinite interval I = (0,∞) = R+:

Theorem. Let Λ = {λn} ⊂ C+ = {z ∈ C : Im z > 0}; then EΛ is an unconditional
basis in its (closed) span in L2(R+) if and only if Λ is a Carleson interpolating
sequence for the half-plane C+ (written Λ ∈ (C)).

Notice that EΛ is never a basis (unconditional, or Schauder) in the whole space
L2(I), with I an infinite interval. Interpolating sequences admit clear geometric
descriptions, see, e.g., [32].

As to finite intervals I, |I| < ∞, the next step of the exponential basis
problem was dominated by the use of the so-called “generating functions/sine-
type functions”. The research was limited to the question on Riesz bases EΛ, and
so to frequencies Λ lying in a strip of finite width, parallel to the real axis. The
idea of “generating function” can be traced back to [38], where it was used to
treat the minimality and completeness properties of EΛ. But it was developed into
a true theory only under the masterly hands of Boris Levin and his collaborators,
see [21, 19] (and references therein). An entire function GΛ of exponential type
whose zero set coincides with Λ and for which the width of the indicator diagram
is equal to the length of the interval I is called a generating function for the family
EΛ|I. An entire function F of exponential type is called a sine-type function if its
zero set is contained in a strip S of finite width, parallel to the real axis, and if
F |∂S is an invertible function in L∞(∂S). The following results were obtained.

Theorem. (a) If Λ (lying in a strip) is separated, i.e.,

inf
n ̸=k

|λn − λk| > 0

(a necessary condition), and if a generating function for EΛ|I is a sine-type
function, then EΛ is a Riesz basis in L2(I) [21];

(b) If Λ satisfies the conditions of (a) above, and if (µn) is a separated sequence
such that

|Reµn − Reλn| ≤ d · inf
k,k ̸=n

|Reλn − Reλk|

and d < 1/4, then EM is a Riesz basis in L2(I), with M = (µn) [19].

In fact, S.A. Avdonin [1] found an even stronger sufficient condition for the
(RB)-property of EM , replacing the uniform Kadets (Kadec)-type inequality in
Katsnelson’s theorem by a weaker condition of “closedness in the mean” of Λ and
M . However, under certain restrictions on the frequency sets Λ and M , a kind of
necessity of Katsnelson’s proximity of a basis EM to a “sine-type basis EΛ” was
proved in [3].
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Despite all these efforts and the beautiful theorems they produced, the ade-
quate language for a solution of the Riesz basis problem was not yet found: neither
the uniform proximity, nor sine-type functions could definitely settle the problem.

3. Third step – B. Pavlov’s idea
Boris Pavlov’s main idea appeared first in [39], and was subsequently developed in
[40] into a complete theory that solved the Riesz basis problem for exponentials.
The idea splits into the following two points:

(I) Consider the space L2(0, a), a > 0, as a subspace of L2(R+) consisting of the
functions f with f(x) = 0 for x > a, and, assuming that Λ ⊂ C+, consider
the exponentials on (0, a) as orthogonal projections

Pae
iλx = eiλxχ(0,a)

of exponentials
(
eiλx

)
λ∈Λ

in L2(R+) (notice that for a Riesz basis of expo-
nentials

(
eiλxχ(0,a)

)
λ∈Λ

in L2(0, a), the frequencies Λ lie always in a strip
supλ∈Λ |Imλ| < ∞, and so the assumption Λ ⊂ C+ does not diminish gen-
erality, up to an isomorphic transformation L2(0, a) → L2(0, a), f 7→ eαxf
with a large α > 0);

(II) Knowing already a Carleson-type criterion for Riesz basic sequences
(
eiλx

)
λ∈Λ

in L2(R+) (see Sect. 2 above; for sequences in a strip, condition (C) coincides
with the separation condition from Sect. 2 (a)), it remains to determine when
the projection Pa is an isomorphism from

K := spanL2(R+)

{
eiλx : λ ∈ Λ

}
onto L2(0, a) (or “into”, if looking for “Riesz basic sequences”

(
eiλxχ(0,a)

)
λ∈Λ

in L2(0, a)).
Using some known facts concerning the so-called Cartwright class of entire

functions and defining a “canonical generating function” G (with [−ia, 0] as the
growth diagram) by

G(w) = eiaw/2 lim
R→∞

∏
λ∈Λ,|λ|<R

(
1− w

λ

)
,

B. Pavlov showed that Pa|K : K → L2(0, a) is a bounded invertible operator if and
only if the operator GHG−1 is bounded, where H is the famous Hilbert transform

Hf(x) =
1

2π
p.v.

∫
R

f(t)

x− t
dt

(see Sect. 4 for more details). Finally, the main theorem of [40] is stated as follows.

Theorem. A family of exponentials
(
eiλxχ(0,a)

)
λ∈Λ

is a Riesz basis in L2(0, a) if
and only if
(a) supλ∈Λ |Imλ| < ∞,
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(b) infn ̸=k |λn − λk| > 0,
(c) W := |G|2 satisfies the Hunt–Muckenhoupt–Wheeden condition (A2) on a

line iα+ R, α ∈ R, parallel to the real line.

It is known that condition (A2) can be replaced by the following equivalent
Helson–Szegö condition (HS):

|G|2 = eu+ṽ,

where u, v ∈ L∞(R) are real functions, ṽ stands for the harmonic conjugate, and
‖v‖∞ < π/2. Notice that the equivalence (HS)⇐⇒ (A2) is known only because
each of these conditions is equivalent to the boundedness of the Hilbert transform
in the weighted space L2(R, |G|2dx); for details, see, for example, [34, Chap. 4].
It is interesting that B. Pavlov’s paper [40] was printed in a row (in the same
journal issue) with S. Hruschev’s paper [16], which explained many important
hidden nuances of the techniques and also showed how to derive all preceding
results from Pavlov’s results (condition (c) is always used in the (HS) form). Some
other consequences of Pavlov’s discovery are described in the next Sect. 4.

4. Post-Pavlov developments, unconditional bases
The first step after Pavlov’s work was to overcome the framework of the Riesz
bases and pass to general unconditional bases of exponentials (beyond the “almost
normalization” condition), replacing condition (a) of Pavlov’s theorem by the semi-
boundedness condition infλ∈Λ Imλ > −∞ (or symmetrically, supλ∈Λ Imλ < ∞).
In fact, this trend started already in [40], where, however, the half-plane analog of
condition (b) — the Carleson condition (C) — was imposed. This drawback was
eliminated in [30] (and in the Russian “Nauka” 1980 edition of [32, pp. 256–257]:

Theorem. The Carleson condition (C) on the frequencies iα+Λ, lying in the half-
plane α + infλ∈Λ Imλ > 0, is necessary for the functions

(
eiλxχ(0,a)

)
λ∈Λ

to form
an unconditional basic sequence in L2(0, a).

Several other aspects distinguish the approach in [30] from the Pavlov–
Hruschev approach: instead of exponentials, general reproducing kernels

(
kθζ

)
ζ∈Z

of the model spaces Kθ := H2	θH2 are considered, and the language of generating
functions is replaced by that of the Toeplitz operators TθB (B = BZ stands for the
Blaschke product over Z (over Λ for exponentials)), which allowed to separate the
roles of Λ and θ (the case of bases of exponentials corresponds to θ = θa := eiax,
a > 0). Generally speaking, the usage of Toeplitz operators is based on Pavlov’s
ideas and the following identity, which holds for every pair of inner functions θ,Θ:

θJTθΘJΘ = idH2
−
⊕ (Pθ

∣∣KΘ) on the space ΘH2
− = H2

− ⊕KΘ,

where Jf = zf and Pθ stands for the orthogonal projection on Kθ (see [32, p. 334],
or [31, p. 91]. This approach was then adopted in [17, 32, 33], as well as in a number
of subsequent publications.
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To be more specific, recall that it was clear for a long time that the problem
of unconditional basic sequences of exponentials (i.e., bases in their closed linear
span), (

eiλx
)
λ∈Λ

in L2(R+), Λ ⊂ C+,

is equivalent (via the Fourier transform) to a similar problem for reproducing
(Cauchy) kernels,(

1

w − λ

)
λ∈Λ

in H2(C+) (the Hardy space),

or (with a change of variables), to the analogous property of reproducing (Szegö)
kernels in the unit disc D,(

1

1− ζz

)
ζ∈Z

in H2(D), Z ⊂ D.

The case of the bases (eiλx)λ∈Λ on a finite interval, say in L2(0, a), Λ ⊂ C+,
corresponds to the case of reproducing kernel bases(

1− θ(w)θ(λ)

w − λ

)
λ∈Λ

in a translation co-invariant subspace K = H2(C+)	 θH2(C+), where θ = θa :=
eiaw.

Pavlov’s solution to the Riesz bases problem for exponentials in L2(0, a)
provided a sample recipe for settling the similar problem for general “model spaces”
Kθ (θ stands for a (Beurling) inner function). Namely, in the unit disc setting and
under the following “half-plane-type” frequency restriction

Z ⊂ {ζ : |θ(ζ)| ≤ q}, 0 < q < 1

(which coincides with infλ∈Λ Imλ > 0 in the case of exponentials), the following
criterion holds [30]:

Theorem. A family

K(Z, θ) :=
(
kθζ

)
ζ∈Z

, kθζ :=
1− θ(z)θ(ζ)

1− ζz
,

is an unconditional basis of the space Kθ = H2(D) 	 θH2(D) if and only if
Z ∈ (C) and the Toeplitz operator TθBZ

is invertible (i.e., if and only if θBZ =

c(h̃/h), where |c| = 1 and h is an outer function satisfying (HS), and if and
only if distL∞(θBZ ,H

∞) < 1 and distL∞(θBZ ,H
∞) < 1). (For the “uncondi-

tional basic sequence” property, the equivalent condition reduces to Z ∈ (C) and
distL∞(θBZ ,H

∞) < 1).

It is not completely clear what is the role of the above “half-plane-type”
frequency restriction for the unconditional basis (UB) criteria. To be more specific,
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I summarize below the known relationships (see [17]) between the four properties
figuring in (UB) criteria:

(I) sup
ζ∈Z

|θ(ζ)| < 1, (III) TθBZ
is invertible,

(II) Z ∈ (C), (IV)
(
kθζ

)
ζ∈Z

is an (UB) in Kθ,

as follows:
• (IV) =⇒ (II);
• (III) =⇒ (I);
• (II) & (III) =⇒ (IV)& (I),
• but (IV) 6=⇒ (I) (and hence, (IV) 6=⇒ (III)); in particular, there are UBs

with limζ∈Z |θ(ζ)| = 1.
Modifying the language, one can obtain some other expressions for the (UB)

property; for example, in [17, Sect. II.4] (and in [32, p. 210]), it is mentioned that
property (II) (above) together with the invertibility of the operator T : Kθ → KB ,
f 7→ PBGf , where G is a suitable H2 function, is necessary and sufficient for
the (UB) property (IV). The paper [11] developed another language that uses the
Schur parameters for θ at points of Z, and furnished interesting new information
on the geometry of reproducing kernels in Kθ.

The fact that in the case of the exponentials, the corresponding “half-plane”
condition (I) (infλ∈Λ Imλ > 0) can be omitted was shown in [27] (with a reasoning
based on results obtained in [17]). This wrote the final chapter in the saga of
exponential bases, as follows:

Theorem. If Λ ⊂ C and α ∈ R is such that (iα+Λ) ∩R = ∅, then (eiλx)λ∈Λ is an
unconditional basis in L2(0, a) if and only if
(a) infn ̸=k |λn − λk| > 0,
(b) iα+ Λ± ∈ (C) (for the corresponding half-plane),
(c) W := |G|2 satisfies the Hunt–Muckenhoupt–Wheeden condition (A2) (on the

line iα+R), where G stands for an appropriately defined generating function.

It is also known, see [28], that for frequencies Λ having a strip gap, Λ ⊂
{|Im z| > d > 0}, condition (c) above can be replaced by distL∞(θaB,H∞

± ) < 1,
where B is the Blaschke product for Λ+ ∪ Λ−, Λ± = Λ ∩ C±. In an important
paper [24], the authors introduce a large class of reproducing kernel Lp spaces
of entire functions (the “weighted Paley–Wiener spaces”) and provide (among
other results) a complete characterisation of the reproducing kernel unconditional
bases (in Pavlov’s style: a generalized Carleson condition combined with an (Ap)
condition for a kind of generating function).

5. Generalizations and applications
The applications of the above results have started even before the general the-
ory flourished, specifically, for unconditionally convergent spectral decompositions
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of differential and integral operators, for “free interpolation” (in the Carleson–
Shapiro–Shields style), for similarity problems in operator theory, for the control
theory of systems “with distributed parameters”. Later on, the reproducing kernels
framework was developed (for model spaces, for de Branges, Fock, Dirichlet, and
other spaces). It is impossible to give here a sufficiently representative survey of
all these applications, generalizations, and links. Below, I restrict myself to a few
thorough sources where the reader can find further references.

For earlier results/applications of B. Pavlov’s work see [36, 37, 39], as well
as the extensive survey of that time [35] (including bases of subspaces, multiple
interpolation, etc., V. Vasyunin’s basic results [43], and more).

For applications of the theory of unconditional bases (now classical) to the
spectral theory of differential operators see [41, 15] (the latter (posthumous) book
reprints all important papers of Gubreev and gives complete lists of references on
the unconditional bases problem and its applications/relations to operator theory;
in particular, Gubreev’s more general point of view on bases of resolvent values
(λI −A)−1e, λ ∈ Λ of a given operator A is presented).

For various and important applications of exponential and reproducing kernel
bases to control theory, see [2], [33, vol. 2], and references therein.

Generalizations and developments of the “theory of bases of reproducing
kernels” as an independent subject were also numerous and important during last
decades. The framework of this memorial essay does not allow me to quote and/or
analyse them in any representative way. Instead, I am indicating below just a few
recent results most closely related to Pavlov’s operator approach. But first here
is a list (in alphabetical order) of members of the community actively working
in the field (restricted to exponentials and reproducing kernels): S. Avdonin, A.
Baranov, Yu. Belov, A. Borichev, I. Boricheva, E. Fricain, P. Gorkin, G. Gubreev,
A. Hartmann, K. Isaev, S. Ivanov, I. Joó, K. Kellay, A. Lunyov, Yu. Lyubarskii,
N. Makarov, M. Malamud, A. Minkin, M. Mitkovski, B. Mityagin, A. Poltoratskii,
K. Seip, B. Wick, D. Yakubovich, and R. Yulmukhametov.

Among the recent results on the topics discussed, I mention the following:
(1) A new important development of the “Toeplitz operator philosophy” in its

applications to the geometry of exponentials is presented in the influential
papers [25, 26]. In particular, for real-valued frequencies Λ ⊂ R, the au-
thors have modified the language, replacing TθBZ

for TθΘ, where Θ is for a
meromorphic inner function having Θ(λ) = 1, λ ∈ Λ; this opens the door
to the world of de Branges spaces. For some specific classes of Λ’s, further
progress was made in [5] (not in the “Toeplitz language”, but mostly in that
of “de Branges spaces”) and [29] (still using Toeplitz invertibility), leading
to necessary and sufficient unconditional basis conditions for these Λ’s.

(2) It was shown in [7] that (minimal) systems of reproducing kernels
(
kθζ

)
ζ∈Z

in
Kθ are unitarily equivalent to systems of eigenvectors of rank-one perturba-
tions of selfadjoint operators. (Earlier, such a statement was known only for
perturbations having a complete system of eigenvectors.)
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(3) A complete description of unconditional bases of the form
(
kθζ

)
ζ∈Z

was ob-
tained for certain classes of inner functions θ (in particular, for Blaschke
products with “lacunary” zeros), see [9, 6].

(4) Stability results for reproducing kernels unconditional bases (in the style of
Kadec and Katsnelson) were obtained by E. Fricain and A. Baranov, see [4].
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The work of Pavlov on shift operators
on a Riemann surface
Victor Vinnikov

Prelude
Boris Pavlov’s mathematical quest was centered on the interplay between operator
theory, complex analysis, and mathematical physics. More specifically, he had an
amazing vision relating the spectral analysis of an operator to nontrivial phenom-
ena in function theory and to relevant properties of associated physical systems.
The bilateral shift, its restriction the unilateral shift, compressions thereof to coin-
variant subspaces, and vector-valued versions of all these, where of course central
players in the story.

As far as I know, Boris was never particularly interested in multidimensional
versions such as shifts in several complex variables. One reason may have been
that he could not identify interesting physical models; indeed, these are still largely
lacking, despite major progress of the last two decades in multivariable operator
theory.

However, Boris became very interested in another generalization of the shift
operator, from the unit disc to finitely connected domains (or more generally,
finitely connected open Riemann surfaces), and made a major contribution to this
fascinating topic in his joint work [39] with Sergei Fedorov. One motivation here
is quite clear. If the discrete unitary evolution is constructed from a selfadjoint
operator whose absolutely continuous spectrum consists of a single band [a, b], the
Lax–Phillips scattering scheme can be an effective tool for studying the (perturbed)
dynamics using function theory on the simply connected domain C \ [a, b] via the
conformal equivalence with the unit disc, see, e.g., [20] and the references therein.
But there are natural situations when the absolutely continuous spectrum of the
selfadjoint operator in question has a more complicated structure, e.g., it consists of
several bands [a1, b1], . . . , [an, bn]. We then need, in the words of [20], to “develop a
modified Lax–Phillips scattering theory based on the spectral theory of functions”
on the multiply connected domain (C∪{∞})\

∪n
i=1[a, b] (in the example discussed

there, n = 2).
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Some background

The study of Hardy spaces and related topics in function theory on a multiply
connected domain was of course not new (and the following references are by no
means exhaustive). Parreau [38] and others defined Hardy spaces on multiply con-
nected domains via harmonic majorants, and Ahlfors studied extremal problems
for bounded analytic functions [3, 4]. In the process he established the fundamen-
tal fact that any finitely connected domain (in fact, any finitely connected open
Riemann surface) can be represented as a finite branched covering of the unit disc
(see [22] for a detailed survey on this topic). This was followed by the work of
Widom [50, 51], who gave a precise characterization of the infinitely connected
open Riemann surfaces that admit a sufficiently rich theory of Hardy spaces (they
are usually referred to now as Riemann surfaces of Parreau–Widom type).

Meanwhile, an analogue of Beurling’s representation for subspaces of the
Hardy space on a finitely connected open Riemann surface S that are invari-
ant under multiplication by bounded analytic functions on S have been obtained
by Sarason [43] in the case of the annulus and by Forelli [21], Hasumi [24], and
Voichick [47, 48] in the general case, while Voichick and Zalcman [49] established
an analogue of the inner-outer factorization. These results were then generalized
by Neville [36, 37] and Hasumi [25] to infinitely connected open Riemann surfaces
of Parreau–Widom type. Finally, Abrahamse and Douglas [2] considered the case
of vector-valued functions on a finitely connected domain, and Abrahamse [1] and
Ball [9] studied interpolation problems.

One key and natural feature that distinguishes the multiply connected case
is that even if one is interested in bona fide functions, it is necessary to con-
sider multivalued functions that acquire multipliers of absolute value 1 when going
around closed loops that generate the fundamental group. More precisely, these
are character-automorphic (rather than automorphic) functions on the universal
covering surface corresponding to a character of the fundamental group or equiva-
lently, sections of a flat unitary line bundle. (In the vector-valued case, a character
is replaced by a unitary representation of the fundamental group, and a flat unitary
line bundle by a flat unitary vector bundle.)

Before discussing the paper of Pavlov–Fedorov [39] and its contributions,
two comments are in order. The first one is on the level of methodology. Ahlfors’
study of function theory on a finitely connected open Riemann surfaces S made
an explicit use of the classical theory of compact Riemann surfaces via the so
called (Schottky) double: this is a compact Riemann surface X that is obtained by
taking a mirror image S′ of S and gluing S and S′ together along their common
boundary; e.g., the double of an annulus is a torus. On the other hand, most of the
work around the generalization of Beurling’s theorem to the multiply connected
setting used the lifting to the unit disc via the universal covering map D → S (the
first use of this in the Hardy space setting is probably due to Rudin [42]). While
this provides a relatively quick way to some proofs, it usually lacks expliciteness.
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The second comment is on a conceptual level. In function theory on the unit
disc and related operator theory, Beurling’s theorem is but the first step. Once one
has a full description of invariant subspaces for the unilateral shift, one considers
the restrictions of the adjoint operator, namely the backward shift, to its invariant
subspaces, and develops a rich spectral analysis for these. These restrictions also
turn out to be model operators for contraction operators of class C00 (i.e., such
that Tn and T ∗n both tend strongly to zero as n → ∞).

A pair of contractive analytic functions that are unimodular on the
boundary; the vector representation of Hardy and Lebesgue spaces
What is then the analogue in the multiply connected case? The answer of Pavlov
and Fedorov is that instead of considering a single operator of multiplication by z,
we have to consider two operators of multiplication by Θ0 and Θ1 — two contractive
analytic functions on S that are continuous and have absolute value 1 on the
boundary. These functions can be then meromorphically continued to the second
half S′ of the double X of S, where they have poles at the mirror images of their
zeroes on S. The two functions Θ0 and Θ1 have to be chosen so that together they
separate (or at least generically separate) the points of S (equivalently, the pair
(Θ0,Θ1) gives a birational embedding of the double X into the complex projective
plane).

For the case of a doubly connected domain S = (C∪{∞})\ ([−1,−a]∪ [a, 1])
(0 < a < 1) that is considered in [39], the authors construct the functions Θ0 and
Θ1 explicitly by hand. They place themselves from the start in the setting of the
double, i.e., the Riemann surface X of the algebraic curve w2 = (z2 − a2)(z2 − 1).
This is of crucial role in the follow-up papers of Fedorov [14, 15], which treat the
case of higher connectivity through a systematic use of the theory of compact
Riemann surfaces, much in the spirit of Ahlfors. It is also important since it allows
the authors to use the orthogonal direct sum decomposition of the L2 space of the
boundary into the H2 spaces on S and on S′. (To be precise, the authors consider
the space L2(∂S) with respect to a harmonic measure, and H2(S) ⊕H2(S′) has
in fact codimension 1 in L2(∂S), with the defect (the orthogonal complement)
explicitly identified. There is a useful alternative technical way of considering L2

spaces of half-order differentials rather than functions [26, 13, 7, 8] that avoids the
need of choosing the harmonic measure and makes the defect subspace disappear.)

The unitary functions Θ0 and Θ1 allow Pavlov and Fedorov to build orthonor-
mal bases in the spaces H2(S) and L2(∂S) that are analogous to the basis of the
powers of z in the case of the unit disc. Even more important, it allows them to
build an explicit isometric isomorphism (the vector representation) between these
spaces and the corresponding C2-valued spaces on the unit disc. This isomorphism
is essentially induced by the two-sheeted branched covering Θ0 : S → D (extending
to Θ0 : X → C ∪ {∞}).
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A different version of the vector representation appeared later in the work
of Alpay and Vinnikov [7]. As it turns out, the vector representation intertwines
the multiplication by Θ0 with multiplication by z and multiplication by Θ1 with
multiplication by an explicit 2× 2 rational matrix function, indicating a clear link
with the later work of Agler and McCarthy [5].

The main results

With the vector representation at hand [39, Section 1], the authors turn to the
study of subspaces of the Hardy space H2(S) that are invariant for the pair of
commuting multiplication operators, namely the operators of multiplication by Θ0

and Θ1. Proceeding exactly along the same lines as in the case of the unit disc,
they obtain [39, Section 3] an explicit Beurling-type representation. The represen-
tation of Pavlov and Fedorov is somewhat different than the description of Forelli,
Hasumi, and Voichick, but the later can be recovered as a corollary. I want to
emphasize once again that the authors construct the Beurling-type representation
directly without lifting first to the universal covering. In essence, the universal cov-
ering has been replaced as the main technical tool by a finite branched covering
of the domain onto the unit disc (and of its double onto the Riemann sphere).

Now that the cast of characters has been fully identified and the descrip-
tion of invariant subspaces D+ ⊆ H2(S) is available, the authors turn in [39,
Chap. 4] to their main goal. They consider the restrictions of the adjoints of the
multiplication operators by Θ0 and Θ1 to their invariant subpaces, namely the op-
erators PH2(S)Θ̄0|K and PH2(S)Θ̄1|K , where K = H2(S)⊖D+, or equivalently, the
commutative semigroup of contractions with two generators, PH2(S)Θ̄

m0
0 Θ̄m1

1 |K ,
m0,m1 ∈ Z+. They develop a detailed spectral analysis for these operators along
the same lines as in the classical case. Namely, they compute explicitly the resol-
vents and identify the spectra, which turn out to be given by the values of Θ̄0

and Θ̄1, respectively, on the subset σ ⊆ S ∪ ∂S consisting of the closure of zeroes
and the support of the singular measure of the multivalued inner function B on
S corresponding to the invariant subspace D+. They compute the (joint) eigen-
functions of the discrete spectrum, which are given by reproducing kernels for the
Hardy space at the corresponding points, as well as the biorthogonal (joint) eigen-
functions of the adjoint operators PKΘ0|K and PKΘ1|K . Much like in the case of
the unit disc, the eigenfunctions form a complete system if and only if B has only
simple zeroes and no singular inner factor. In this case the spectral expansions
for the adjoint operators are interpolating series for these zeroes, and the authors
show that these series converge (i.e., the eigenfunctions form a Riesz basis) if and
only if the corresponding Carleson-type condition is satisfied.
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Aftermath
Pavlov and Fedorov dealt in [39] only with the case of doubly connected domains.
Fedorov generalized both the methods and the results to the case of arbitrary
finitely connected domains in the complex plane in [14, 15], see also [16] (the
treatment there can be adapted, with some modifications, to the case of arbitrary
finitely connected open Riemann surfaces). The basic layout is similar, however
many items that were immediate in the doubly connected case require now an
extensive use of the classical theory of compact Riemann surfaces, in particular
Abelian differentials and the Riemann–Roch theorem. This applies especially to
the construction of a pair (or a triple) of contractive analytic functions that are
unimodular on the boundary. The results of Fedorov here — which are, of course,
motivated by the programme of Pavlov and Fedorov in [39]) — are a significant
improvement over the results of Ahlfors in [3, 4]. They deserve to be better known,
especially with the renewed interest in real fibered morphisms that are a higher
dimensional generalization of finite branched coverings from finitely connected
open Riemann surfaces onto the unit disc [27].

Fedorov’s further work [17, 18, 19] deals with the angles between Hardy spaces
of multivalued (character automorphic) functions on S and on S′ with respect to
a weighted L2 product on the boundary ∂S (the analogues of the results of Helson
and Szegö, Helson and Sarason, and Hunt, Muckenhoupt and Wheeden in the
case of the unit disc) and the related estimates of projections from one coinvariant
subspace onto another one. This is very much the next natural question in the
programme laid out in [39]. It is remarkable that the author manages to obtain
complete and explicit answers (which turn out to be character dependent). It
would be interesting to apply the methods of these papers, which are a natural
continuation of the methods of [39], to other problems in function theory on a
multiply connected domain where no complete and explicit answers are known as
yet. Interpolation problems, where the currently known citeria involve testing the
positivity of a continuum of character-dependent Pick type matrices [1], could be
a good candidate for such an application.

Some related developments
Spectral analysis in the Hardy space of the unit disc (or of the upper half-plane) is
one of the two components of the usual theory of operator models. The other com-
ponent is an identification of a large and natural class of abstract operators, namely
contractions of class C00 (or dissipative operators such that eitT tends strongly to
zero as t → ∞), that are (explicitly) unitarily equivalent to the restrictions of the
(vector-valued) backward shift to its invariant subspaces.

The unilateral shift is the simplest instance of a subnormal operator. Abra-
hamse and Douglas [2], Xia [52, 53, 54], and Yakoubovich [55, 56, 57] have consid-
ered natural classes of subnormal operators which turn out to be unitarily equiva-
lent to a multiplication operator in a Hardy space on a finitely connected domain
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or on a finitely connected open Riemann surface; see also the work of Putinar
[40, 41] and Gustafsson and Putinar [23] on hyponormal operators with rank one
self-commutator associated to a quadrature domain. However, all of these (with
the exception of [12], see also [46], which continue the work of [55, 56]) do not
consider the compressions of a shift operator on a multiply connected domain to
its coinvariant subspaces.

In 1978, M.S. Livšic discovered [29, 30, 31] that a pair of commuting com-
pletely nonselfadjoint operators with finite non-Hermitian ranks satisfy a real poly-
nomial equation in two variables. This was the starting point of an extensive theory
of commuting nonselfadjoint or nonunitary operators (and associated overdeter-
mined multidimensional systems) based on the theory of algebraic curves and com-
pact Riemann surfaces [35, 45, 33, 10, 11]; see also [32, 34] for physical/biological
models and [44, 6] for some recent developments. One of the central notions is
that of a joint characteristic function (the analogue of the characteristic function
in the usual operator model theory) which is a mapping of vector bundles over a
compact real Riemann surface. While there is some overlap with the tools devel-
oped by Pavlov and Fedorov in [39] and their generalizations, this theory is largely
complementary. Much like the work of Livšic and his collaborators and of Sz.-
Nagy and Foias in the single operator case, it provides explicit functional models
for commuting dissipative operators with finite non-Hermitrian rank or commut-
ing contractions with finite defects in coinvariant subspaces in Hardy spaces on a
finitely connected open Riemann surface. It would be interesting to apply Pavlov’s
spectral analysis in these Hardy spaces to obtain further and finer results in the
spectral theory of commuting nonselfadjoint and nonunitary operators.

Epilogue
Although Pavlov had several clear ideas that he shared, he never had the time or
the opportunity to investigate in detail physical models where a Lax–Phillips type
scattering theory would be naturally related to spectral analysis in the Hardy
space on a multiply connected domain. The paper [20, Sect. 6], which is based
on the work of Kurasov [28], presents a concrete example that still awaits being
worked out, very likely showing a path for new developments.

The verses of Tyutchev that we never know how our words will resonate
apply to natural philosophers as well as to poets.
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Singular perturbations of unbounded
selfadjoint operators. Reverse approach
V.M. Adamyan

In memory of Boris Pavlov: brilliant mathematician and fascinating personality

Abstract. Let A and A1 be unbounded selfadjoint operators in a Hilbert
space H. Following [3], we call A1 a singular perturbation of A if A and A1

have different domains D(A),D(A1) but D(A) ∩ D(A1) is dense in H and
A = A1 on D(A) ∩ D(A1). In this note we specify without recourse to the
theory of selfadjoint extensions of symmetric operators the conditions under
which a given bounded holomorphic operator function in the open upper and
lower half-planes is the resolvent of a singular perturbation A1 of a given
selfadjoint operator A.

For the special case when A is the standardly defined selfadjoint Laplace
operator in L2(R3) we describe using the M.G. Krein resolvent formula a class
of singular perturbations A1, which are defined by special selfadjoint boundary
conditions on a finite or spaced apart by bounded from below distances infinite
set of points in R3 and also on a bounded segment of straight line embedded
into R3 by connecting parameters in the boundary conditions for A1 and the
independent on A matrix or operator parameter in the Krein formula for the
pair A,A1.
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1. Introduction
The so called solvable models associated with zero-radius potentials [2] and more
general singular perturbations has come to the foreground in the late oeuvre of
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Boris Pavlov. He and his numerous disciples and followers enriched these models
and significantly expanded the boundaries of their applications, endowing the in-
volved point potentials and singular perturbations with internal structures. The
results pertaining to the initial stages of the relevant studies can be found in
the review [8] and subsequent monograph [3]. Recall that Schrödinger operators
with zero-range potentials appeared in physical applications more than 80 years
ago (historical references and comments can be found in the well-known books
[5, 2, 3]). However, a clear understanding of the mathematical nature of these ob-
jects was achieved much later in [4]. After the note [4] the theory of extensions of
symmetric operators turned out the main tool for solving the problems of spectral
theory and scattering theory for Schrödinger and afterwards for Dirac operators
with potentials or analogues of potentials formally given as combinations of Dirac
δ-functions.

As it was traced in [1, 8], the solvability of the zero-range potential models
and problems for a wide class of singular perturbations of selfadjoint operators lie
in the algebraic simplicity and universality of M.G. Krein resolvent formula for
selfadjoint perturbations of a given selfadjoint operator. It appears that to solve
specific problems of spectral and scattering theory for sufficiently wide class of
perturbations of selfadjoint operators the mentioned M.G. Krein formula can be
used as the only tool of analysis.

However, despite the large number of deep and interesting mathematical
results on the zero-range potential models and singular perturbations and their
effective, elegant and useful physical applications obtained in subsequent years, a
profound analysis of related problems with quest for analytically solvable models
does not apply to interests of the majority of today’s consumers of mathematical
physics. Instead, they would prefer to solve their problems using computer algebra
systems and numerical calculations. This paper is an attempt to develop an avail-
able to the mass consumer simplified theory of singular perturbations of seladjoint
operators dealing only with that resolvent formula.

In auxiliary Sect. 2, we recall the necessary and sufficient conditions under
which a function on an open set of the complex plane whose values are bounded
linear operators in Hilbert space is a resolvent of densely defined closed linear oper-
ator, particularly, of selfadjoint operator. We also give here the known description
of resolvents for finite-dimensional selfadjoint perturbations of a given selfadjoint
operator.

A short Sect. 3 is devoted to the derivation of the Krein formula for resolvents
of certain classes of singular perturbations of a given selfadjoint operator. Using
the approach of M.G. Krein, but not referring to the theory of extensions, we
justify a well-known, in our opinion application-friendly parametrizations of this
formula.

The first of two obtained versions of the Krein formula is illustrated in Sect. 4
by the example of singular selfadjoint perturbations of the selfadjoint Laplace
operator in L2(R3) that have form of a sum of zero-range potentials spaced apart
by bounded from below distances.
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The second obtained version of the Krein formula is more suitable for de-
scribing singular perturbations of the classical Laplace operator in L2(R3) whose
action is concentrated on one- and two-dimensional manifolds in R3. This version
was illustrated in Sect. 5 by singular perturbation of the Laplace operator, which
is located on a straight-line segment embedded into R3. The role of the parameter
in the Krein formula in this case is played by the selfadjoint Sturm–Liouville op-
erator on the given segment. The results of this section can easily be extended to
the case when the singular perturbation of the Laplace operator in L2(R3) is given
on a compact quantum graph embedded into R3. In the latter case, we obtain an
extension of the proposed in [9] model for describing the interaction of molecules
with the surrounding medium.

2. Reminder of resolvents’ basic properties
Theorem 2.1. Let R(z) be a strongly continuous operator function on a non-
empty open domain D of complex plane and values of this function are bounded
operators in a Hilbert space H. R(z) is the resolvent of a linear densely defined
closed operator A in H with the resolvent set ϱ(A) ⊇ D if and only if

•
kerR(z) = kerR(z)∗ = {0}; (2.1)

• R(z) is holomorphic on D and for any z1, z2 ∈ D the Hilbert identity

R(z1)−R(z2) = (z1 − z2)R(z1)R(z2) (2.2)

hold.

Proof. By (2.1) for each z ∈ D the linear relation{
g = R(z)f, f ∈ H,
Azg = f + zR(z)f = f + zg

(2.3)

defines a linear operator Az with the dense domain R(z)H and such that the range
of Az − zI is H.

If for some sequence fn ∈ H the sequences gn = R(z)fn and Azgn = fn+zgn
converge to vectors g∞ and h∞, respectively, then by virtue of (2.3) the sequence
fn converges to some vector f∞. Since R(z) is a bounded operator, then g∞ =
R(z)f∞. Therefore and g∞ belongs to the domain of Az and

Azg∞ = f∞ + zg∞ = lim
n→∞

(fn + zgn) = lim
n→∞

Azgn = h∞,

that is Az is a closed operator.
According to (2.2), for any z1, z2 ∈ D we have R(z1)R(z2) = R(z2)R(z1) and

R(z2)H = R(z1)[I + (z2 − z1)R(z2)]H ⊆ R(z1)H.

Hence the domains of all Az coincide.
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Taking some g = R(z1)f = R(z2)[I + (z1 − z2)R(z1)]f, f ∈ H, we obtain
with account of (2.3), (2.2) that

Az2g = [I + (z1 − z2)R(z1)] f + z2R(z2) [I + (z1 − z2)R(z1)] f

= Az1g + z2 {−R(z1)f +R(z2)f + (z1 − z2)R(z1)R(z2)f} = Az1g.

Therefore the action of Az does not depend on z and for the operator A ≡ Az, z ∈
D, by construction

(A− zI)−1 = (Az − zI)
−1

= R(z), (2.4)
which is the desired conclusion.

The proof of “only if” part is trivial. �

Theorem 2.2. If R(z) as in Theorem 2.1 and in addition
z ∈ D ⇐⇒ z̄ ∈ D, (2.5)

R(z̄) = R(z)∗, z ∈ D, (2.6)
then R(z) is the resolvent of a selfadjoint operator A.

Proof. As mentioned in the proof of Theorem 2.1, the range of A − zI for A =
Az, z ∈ D, defined by linear relation (2.3) is the whole space H. Therefore it
suffices to show that A is a symmetric operator. But for any g1 = R(z)f1, g2 =
R(z)f2, f1, f2 ∈ H, z ∈ D, by virtue of (2.6) and (2.2),
(Ag1, g2)− (g1, Ag2) = ([f1 + zR(z)f1], R(z)f2)− (R(z)f1, [f2 + zR(z)f2])

= ([R(z̄) + zR(z̄)R(z)−R(z)− z̄R(z̄)R(z)]f1, f2) = 0. �

Theorem 2.3. Let A be a selfadjoint operator in H; R(z), Imz ̸= 0, is the
resolvent of A; f1, . . . , fN , 1 ≤ N ≤ ∞, are linearly independent vectors from H;
Q(z) is the Nevanlinna N ×N -matrix function with the elements

qmn(z) = (R(z)fn, fm) , 1 ≤ m,n ≤ N. (2.7)

Then for any invertible Hermitian N ×N matrix W = (wmn)
N
1 the matrix Q(z)+

W, Imz ̸= 0, is invertible and the operator function

R1(z) = R(z)−
N∑

m,n=1

(
[Q(z) +W ]

−1
)
mn

(·, R(z̄)fn)R(z)fm (2.8)

is the resolvent of a selfadjoint operator A1.

Proof. By our assumptions Q(z) (as well as Q(z) + W ) is a Nevanlinna matrix
function with the imaginary part

1

2i
[Q(z)−Q(z)∗]

having property
1

z − z̄
[Q(z)−Q(z)∗] = ((R(z)fm, R(z)fn))

N
m,n=1

= Γ(R(z)f1, . . . , R(z)fN ) ≥ λmin(R(z)f1, . . . , R(z)fN )I,
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where Γ(R(z)f1, . . . , R(z)fN ) is the Gram–Schmidt matrix for vectors
R(z)f1, . . . , R(z)fN

and λmin(R(z)f1, . . . , R(z)fN ) is the minimal eigenvalue of Γ(R(z)f1, . . . , R(z)fN ).
Since vectors f1, . . . , fN are linearly independent and kerR(z) = {0},

λmin(R(z)f1, . . . , R(z)fN ) > 0.

Hence Q(z) +W is invertible.
Suppose that R1(z)h = 0, Imz ̸= 0 for some h ∈ H, that is,

R(z)h =

N∑
m,n=1

(
[Q(z) +W ]

−1
)
mn

(h,R(z̄)fn)R(z)fm. (2.9)

Hence R(z)h is a linear combination of the vectors R(z)f1, . . . , R(z)fN and in view
of invertibility of R(z) we see that h = α1f1 + · · ·+ αNfN with some coefficients
α1, . . . , αN . By (2.8),

R1(z)fj =

N∑
m=1

(
[Q(z) +W ]

−1
W

)
mj

R(z)fm, j = 1, . . . , N.

Therefore
0 = R1(z)h = R(z) (β1f1 + · · ·+ βNfN ) ,

βm =
N∑

m=1

(
[Q(z) +W ]

−1
W

)
mj

αj .
(2.10)

Since kerR(z) = {0} and f1, . . . , fN are linearly independent, β1 = · · · = βN = 0.
But if W is invertible then, by virtue of invertibility of Q(z) + W and (2.10),
α1 = · · · = αN = 0, that is, h = 0. Hence kerR1(z) = 0.

Relation R1(z)
∗ = R1(z̄) follows directly from (2.8) because
R(z)∗ = R(z̄), Q(z)∗ = Q(z̄), W ∗ = W.

Taking into account that for R(z) the Hilbert identity holds and that for
1 ≤ m,n ≤ N and Imz1, z2 ̸= 0,

qmn(z2)− qmn(z1) = [qmn(z2) + wmn]− [qmn(z1) + wmn]

= (z2 − z1) (R(z1)fn, R(z̄2)fm)) ,

one can easily verify by elementary algebraic manipulations that for R1(z) the
Hilbert identity also holds.

We see that R1(z) satisfies all conditions of Theorems 2.1 and 2.2, which
implies the desired conclusion. �

Remark 2.4. Comparing the formal inverse for operators in the left- and right-
hand sides of (2.8) yields

A1 = A+

N∑
m,n=1

(
W−1

)
mn

(·, fn) fm , (2.11)
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that is, if N < ∞, then A1 is a finite-dimensional perturbation of A.

Remark 2.5. Let W in (2.8) be not invertible and

A =
{
h ∈ H : h = α1f1 + · · ·+ αNfN , (α1, . . . , αN )T ∈ kerW

}
.

Then R1(z)h ≡ 0 for any h ∈ A but in this case the restriction to R1(z) on the
subspace A⊥ = H⊖A is the resolvent of selfadjoint operator A1 in A⊥.

Indeed, in the course of proof of Theorem 2.1 it was actually shown that
kerR1(z) = A. Since R1(z)

∗ = R1(z̄), then R1(z)A⊥ ⊆ A⊥ and for the restriction
of R1(z) to the invariant subspace A⊥ all conditions of Theorems 2.1 and 2.2 hold.

Specifically, if W = 0 in (2.8) and A is a bounded operator, then PA⊥R1(z)|A⊥

where PA⊥ is the orthogonal projector on A⊥ is the resolvent of selfadjoint operator
PA⊥A|A⊥ in A⊥.

3. M.G. Krein’s line of argument
M.G. Krein was the first who realized that the statement of Theorem 2.3 can be
strengthened in the following way.

Theorem 3.1. Let A be an unbounded selfadjoint operator in H and R(z), Imz ̸=
0, is the resolvent of A; {gn(z)}Nn=1, 1 ≤ N ≤ ∞, is the set of H-valued holomorphic
in the open upper and lower half-planes vector functions satisfying the conditions

• for any non-real z, z0
gn(z) = gn(z0) + (z − z0)R(z)gn(z0), j = 1, . . . , N ; (3.1)

• at least for one non-real z0 vectors {gn(z0)}Nn=1 form a basis (Riesz basis if
N = ∞) in their (closed if N = ∞) linear span N and none of non-zero
vectors from N belong to the domain D(A) of A;

Q(z) is a holomorphic in the open upper and lower half-planes N × N -matrix
function (that generates a bounded operator in the space l2 if N = ∞) such that

• Q(z)∗ = Q(z̄), z ̸= 0;
• for any non-real z, z0

Q(z)−Q(z0) = (z − z0) ((gm(z), gn(z̄0)))
T
1≤m,n≤N . (3.2)

Then for any Hermitian N × N matrix W = (wmn)
N
1 ( such that the closure of

the linear operators defined as multiplication by W on a set of l2-vectors with a
finite number of non-zero coordinates is a selfadjoint operator in l2 if N = ∞) the
matrix (operator in l2 if N = ∞) Q(z) + W, Imz ̸= 0, is (boundedly) invertible
and the operator function

R1(z) = R(z)−
N∑

m,n=1

(
[Q(z) +W ]

−1
)
mn

(·, gn(z̄)) gm(z) (3.3)

is the resolvent of some selfadjoint operator A1.
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Proof. If {gn(z0)}Nn=1 is a (Riesz) basis in N for some non-real z0, then {gn(z)}Nn=1

is a (Riesz) basis in N for any non-real z. Indeed, by (3.1)

gn(z) = Uz0(z)gn(z0), Uz0(z) = (A− z0I) · (A− zI)
−1

, (3.4)

and for any non-real z, z0 the operator Uz0(z) is bounded and boundedly invertible.
The invertibility of Q(z)+W can be expressis verbis proved as in Theorem 2.3

if one remembers that in the limit case N = ∞ for any Riesz basis, in particular for
{gn(z)}∞n=1, Im ̸= 0, the corresponding infinite Gram–Schmidt matrix generates a
bounded, positive and boundedly invertible operator in l2 (see, for example, [6]).

Suppose that there is a vector h ∈ H such that R1(z0)h = 0 for some non-real
z0. By (3.3), this means that

R (z0)h (∈ D(A)) =

N∑
m,n=1

(
[Q(z) +W ]

−1
)
mn

(h, gn(z̄0)) gm(z0)

=
N∑

m=1

{
N∑

n=1

(
[Q(z) +W ]

−1
)
mn

(h, gn(z̄0))

}
gm(z0) ∈ N .

(3.5)

But for any h ∈ H the vector in the left-hand side of (3.5) belongs to D(A) while
the corresponding vector in the right-hand side of (3.5) belongs to N . However,
by our assumptions D(A) ∩ N = {0}. Hence both sides of (3.5) are zero-vectors,
particularly R (z0)h = 0. Recalling that the resolvent R (z0) of selfadjoint operator
A is invertible, we conclude that h = 0.

The property R1(z)
∗ = R1(z̄), Imz ̸= 0 is evident.

The fact that R1(z) satisfies the Hilbert identity for any two non-real z1, z2
can be checked out by an elementary algebraic computation. �

The following theorem extends the class of singular perturbations of selfad-
joint operators.

Theorem 3.2. Let H and K be Hilbert spaces, A be an unbounded selfadjoint
operator in H and R(z), Imz ̸= 0, is the resolvent of A, G(z) is a bounded
holomorphic in the open upper and lower half-planes operator function from K to
H satisfying the conditions

• for any non-real z, z0
G(z) = G(z0) + (z − z0)R(z)G(z0), (3.6)

• at least for one and hence for all non-real z zero is not an eigenvalue of the
operator G(z)∗G(z) and the intersection of the domain D(A) of A and the
subspace N = G(z0)K ⊂ H consists only of the zero-vector;

Q(z) is a holomorphic in the open upper and lower half-planes operator function
in K such that

• Q(z)∗ = Q(z̄), z ̸= 0;
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• for any non-real z, z0
Q(z)−Q(z0) = (z − z0)G(z̄0)

∗G(z). (3.7)
Then for any invertible selfadjoint operator L in K such that L−1 is compact the
operator Q(z) + L, Imz ̸= 0, is invertible, has compact inverse and the operator
function

RL(z) = R(z)−G(z) [Q(z) + L]
−1

G(z̄)∗ (3.8)
is a resolvent of some selfadjoint operator A1.

Proof. Suppose that for some non-real z0 zero is not an eigenvalue of G(z0)
∗G(z0)

and at the same time there are a non-real z1 and a non-zero h ∈ K such that
G(z1)h = 0. Then by (3.6)

G(z0)h = [I + (z0 − z1)R(z0)]R(z1)h = 0,

a contradiction.
By our assumptions for any non-real z zero is not an eigenvalue of the op-

erator Q(z) + L. Indeed, suppose that for some h from the domain of L we have
[Q(z) + L]h = 0. Then

0 = Im ([Q(z) + L]h, h) = Im (Q(z)∗Q(z)h, h) .

But Q(z)∗Q(z) is a non-negative invertible operator. Hence h = 0.
Since for non-real z, zero is not an eigenvalue of the operator Q(z) + L, by

virtue of the invertibility of the operator L, compactness of L−1 and the obvious
equality

Q(z) + L = L
[
L−1Q(z) + I

]
,

“–1” is not an eigenvalue of operator L−1Q(z). But L−1Q(z) is a compact opera-
tor. Therefore the operator L−1Q(z) + I is boundedly invertible [7] and so is the
operator Q(z) + L,

[Q(z) + L]
−1

=
[
L−1Q(z) + I

]−1
L−1.

Obviously, the inverse of Q(z) + L is a compact operator.
The fact that R1(z) is the resolvent of a self-adjoint operator is proved by

the same arguments as above. �

4. Singular perturbations of selfadjoint Laplace operator.
Null-range potentials

Let A be an unbounded selfadjoint operator. By a regular perturbation of A we
call any selfadjoint operator A1 defined as in Theorem 2.3. Following [3], we say
that A1 is a singular perturbation of A if A1 is defined by A as in Theorem 3.1 or
3.2. In this section we will consider a special class of singular perturbations of the
selfadjoint Laplace operator

−∆ = − ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3
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in L2(R3) defined on the Sobolev subspaces H2
2

(
R3

)
, namely, the class of operators

which fit into the conditions of Theorem 3.1. We will use here the symbol A to
denote the specified unperturbed Laplace operator and the symbol R(z) to denote
the resolvent of A. Recall that

(R(z)f) (x) =
1

4π

∫
R3

ei
√
z|x−x′|

|x− x′|
f (x′) dx′, Im

√
z > 0, x = (x1, x2, x3) . (4.1)

A simple, but fundamentally important example of singular perturbation of A was
first rigorously examined in the short note [4] in the framework of the theory of
self-adjoint extensions of symmetric operators. Actually, it was proved in [4] that
for

g(z;x) = (R(z)δ) (x) =
1

4π

ei
√
z|x|

|x|
,

where δ (x) is the Dirac δ-function, and for any real α the operator function

Rα(z) = R(z)− 1

Q(z) + α
(·, g(z̄; ·)) g(z; ·), Q(z) =

i
√
z

4π
, (4.2)

is the resolvent of selfadjoint operator Aα. In accordance with (4.2), the domain
Dα of Aα consists of functions

f(x) = f0(x)−
1

Q(z) + α
· f0(0) · g(z;x), (4.3)

where functions f0(x) run over the space H2
2 and

(Aαf) (x) = (Af0) (x)−
z

Q(z) + α
· f0(0) · g(z;x). (4.4)

The expressions (4.3)–(4.4) are correct since any vector f̂0 of H2
2

(
R3

)
is equiv-

alent to some Hölder-continuous function f0(x) with any index γ < 1
2 [7], and

consequently the product |x| · f0(x) is differentiable in |x| at x = 0 and

lim
|x|↓0

∂

∂|x|
(|x|f(x)) = f0(0). (4.5)

With account of (4.3) and (4.5) it can be argued that functions f(x) from Dα

satisfies the “boundary condition”

lim
|x|↓0

[
∂

∂|x|
(|x|f(x)) + 4πα|x|f(x)

]
= 0. (4.6)

For real α the selfadjoint operator Aα legalizes the formal expression −∆+
(4πα)−1‘ ·δ(x) and associated with Aα the condition (4.6) is said to be a zero-range
potential [4, 2].

Note that the g(z; ·) in (4.2) does not belong to D(A), otherwise the functional

φ(0) = −
∫
R3

[(∆φ) (x) + zφ (x)] · ¯g(z;x)dx (4.7)
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would be bounded on the set of infinitely smooth compact function φ (x). Besides,
(z − z0) (g(z), g(z̄0)) = lim

|x|↓0
[g(z;x)− g(z0;x)] = Q(z)−Q(z0).

Therefore the result from [4] is a special case of Theorem 3.1, where A is the
standardly defined Laplace operator and N = 1.

Referring to the conditions of Theorem 3.1, it is easy to check that the stated
assertion about Rα(z) admits the following (in fact, well-known [2, 3]) generaliza-
tion. Let

gn(z;x) = R(z)δ(· − xn)(x) =
1

4π

ei
√
z|x−xn|

|x− xn|
, 1 < n ≤ N < ∞;

Q(z) = (qmn(z))
N
m,n=1 =

{
qmn(z) = gn(z;xm − xn), m ̸= n,

qmm(z) = i
√
z

4π .

(4.8)

Using the same arguments as above, it is easy to check that any non-zero linear
combination of functions gn(z;x) does not belong to D(A). Besides, Q(z) is a holo-
morphic in the open upper and lower half-planes infinite matrix function defining
at each non-real z a bounded operator in the space l2 such that

• Q(z)∗ = Q(z̄), z ̸= 0;
• for any non-real z, z0

Q(z)−Q(z0) = (z − z0) ((gm(z), gn(z̄0)))
T
1≤m,n<∞ . (4.9)

As follows by Theorem 3.1, for any invertible Hermitian matrix W = (wmn)
N
m,n=1

the operator function

Rα(z) = R(z)−
N∑

m,n=1

(
[Q(z) +W ]−1

)
mn

(·, gn(z̄; ·)) gm(z; ·) (4.10)

is the resolvent of the selfadjoint operator AW in L2(R3).
Let us denote by N the linear span of functions {gn(z;x)}. The operator AW

is, loosely speaking, the Laplace differential operator −∆ with the domain

DW :=
{
f : f = f0 + g, f ∈ H2

2

(
R3

)
, g ∈ N ,

lim
ρm→0

[
∂

∂ρm
(ρmf(x))

]
+

N∑
n=1

4π · wmn lim
ρn→0

[ρn f(x)] = 0,

ρn = |x− xn|, 1 ≤ n ≤ N} .

(4.11)

If the matrix W is diagonal, that is, wmn = αm ·δmn, then AW is the Laplace
operator perturbed by a collection of “zero-range” potentials

lim
ρm→0

[
∂

∂ρm
(ρmf(x)) + 4παm · ρmf(x)

]
= 0.

Under some conditions, the last statements remain true also in the case of the
infinite set of points {xn}∞−∞. Let the set of functions gn(z;x) and infinite matrix
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function Q(z) be like in (4.8) and N denotes the closed linear span of functions
gn(z;x).

Theorem 4.1 (A. Grossmann, R. Høegh-Krohn, M. Mebkhout). If
inf

−∞<m,n<∞
|xm − xn| = d > 0,

then for a selfadjoint operator in l2 defined by the infinite matrix
W = (wmn)

∞
m,n=−∞ ,

the operator function

RW (z) = R(z)−
∞∑

m,n=−∞

(
[Q(z) +W ]−1

)
mn

(·, gn(z̄; ·)) gm(z; ·)

is the resolvent of selfadjoint operator −∆W in L2(R3), which is the Laplace
operator with the domain

DW :=
{
f : f = f0 + g, f0 ∈ H2

2

(
R3

)
, g ∈ N ,

lim
ρm→0

[
∂

∂ρm
(ρmf(x))

]
+

∞∑
n=−∞

wmn lim
ρn→0

[ρn f(x)] = 0,

ρn = |x− xn|, −∞ ≤ n < ∞}.

Theorem 4.1 is a direct consequence of Theorem 3.1 and the following propo-
sition.

Proposition 4.2. If
inf
m,n

|xm − xn| = d > 0 (4.12)

and Imz ̸= 0, then Q(z) is the matrix of a bounded operator in the natural basis of
l2 and the sequence of L2(R3)-vectors {gn(z; ·)}∞1 is the Riesz basis in its closed
linear span N .

Proof. By (4.8) and (4.12), for Im
√
z = η + iκ with κ > 0 we see that∑

n

|qmn(z)| ≤
√

η2 + κ2

4π
+

1

4πd

∑
n ̸=m

e−κ|xn−xm| < ∞.

and noting that there are at most 3n2+ 1
4 points xn in the spherical layer (n− 1

2 )d ≤
|x− xm| < (n+ 1

2 ), n ≥ 1, we obtain that∑
n ̸=m

e−κ|xn−xm| ≤ 13

4
e−κd +

∞∑
2

(
3n2 +

1

4

)
e−(n−

1
2 )κd

≤ 13

4
e−κd +O

(
e−

3
2κd

)
(as κ → ∞).

(4.13)

Hence for non-real z,
M(z) = sup

m

∑
n

|qmn(z)| < ∞,
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and the infinite matrix Q(z) generates a bounded operator in l2 with the norm
∥Q(z)∥ ≤ M(z).

As it was mentioned in the proof of Theorem 3.1, in order to establish that
for any regular point z of the Laplace operator A the set of L2(R3)-functions
{gn(z) = g(z;x − xn)} forms a Riesz basis in its linear span, it suffices to verify
this for at least one such point, say for a point −κ2, where κ is a sufficiently large
positive number. For z = −κ2 the Gram–Schmidt matrix for the set of functions
{gn(−κ2)} has form

Γ(−κ2) =
1

8πκ

(
e−κ|xm−xn|

)∞

−∞
. (4.14)

By (4.14) the matrix 8πκ · Γ(−κ2) is the sum I + ∆(−κ2) of the infinite unity
matrix I and the matrix ∆(−κ2), which according to (4.13) generates a bounded
operator in l2 with norm of less than one for sufficiently large κ. Therefore the
matrix Γ(−κ2) generates a bounded and boundedly invertible operator in l2. Hence
vectors {gn(−κ2)} form a Riesz basis in their linear span. �

5. Singular perturbations of selfadjoint Laplace operator.
1D-located perturbation

We describe further a special class of singular selfadjoint perturbations of the
Laplace operator A falling under the conditions of Theorem 3.2. In the cases
discussed below, L2(R3) plays naturally the role of Hilbert space H, the usual
space L2([0, l]) of square integrable functions on the interval [0, l] with l < ∞
appears as the Hilbert space K wherein this interval itself is identified with the
subset l = {0 ≤ x1 ≤ l, x2 = 0, x3 = 0} of R3. We define the holomorphic operator
function G(z), Im(z) ̸= 0 from L2([0, l]) to L2(R3) setting

(G(z)u) (x) =

l∫
0

g (z|x1, x2, x3;x
′
1, 0, 0)u(x

′
1)dx

′
1, u(·) ∈ L2([0, l]),

g (z|x1, x2, x3;x
′
1, x

′
2, x

′
3) = g(z|x,x′) =

1

4π

ei
√
z|x−x′|

|x− x′|
, Im

√
z > 0.

(5.1)

It follows from (5.1) that

|(G(z)u) (x)|2 ≤
l∫

0

|g (z|x1 − x′
1, x2, x3; 0, 0, 0)|

2
dx′

1 · ∥u∥
2
.

Therefore for z ̸= 0, the operator G(z) is bounded and

∥G(z)∥ ≤ 1√
8πIm

√
z
. (5.2)
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Note that the Fourier transform

Ĝ(z)u (k1, k2, k3) =
1

2π
· 1

k21 + k22 + k23 − z
û(k1)

of G(z)u(x), where

û(k1) =
1√
2π

l∫
0

e−ik1x1u(x1)dx1,

equals to zero if and only if û(k1) ≡ 0 and as follows u(x1) = 0 almost everywhere
on [0, l]. Accordingly, G(z)u(·) = 0 in L2(R3) if and only if u(·) = 0 in L2([0, l]).
Therefore for any non-real z zero is not an eigenvalue of G(z)∗G(Z). We note that
the adjoint operator G(z)∗ from L2(R3) to L2([0, l]) is determined by the formula

(G(z)∗f) (x) =

∫
R3

g(z̄|x, 0, 0;x′)f(x′)dx′, f(·) ∈ L2(R3), x ∈ [0, l], (5.3)

which makes sense, since the functions

f(x) =

∫
R3

g(z̄|x;x′)w(x′)dx′, w(·) ∈ L2(R3), Imz ̸= 0,

forming the domain D(A) of A are continuous [7].
Suppose further that there is a vector h ∈ L2(R3) from the subspace N =

G(z)L2([0, l]) that belongs to the domain D(A) of the Laplace operator A. h as any
vector from D(A) can be represented in the form h = R(z)w with some w ∈ L2(R3)
while by our assumption there is a sequence of vectors {un ∈ L2([0, l])} such that

lim
n→∞

∥R(z)w −G(z)un∥L2(R3) = 0. (5.4)

Now recall that for each w ∈ L2(R3) and any ε > 0 it is possible to find an infinitely
smooth compact function ϕ(r) which is also equal to zero at some neighborhood
of the subset l to satisfy the condition∣∣∣(w, ϕ)L2(R3)

∣∣∣ ≥ (1− ε) ∥w∥2L2(R3 . (5.5)

Taking into account further that for ϕ(r), as well as for any smooth compact
function,

ϕ(r) =
1

4π

∫
R3

ei
√
z|x−x′|

|x− x′|
[−∆ϕ (x′)− zϕ (x′)] dx′, (5.6)

we notice that

(G(z)w, [−∆ϕ− z̄ϕ])L2(R3) = (w, ϕ)L2(R3) ,

(G(z)u, [−∆ϕ− z̄ϕ])L2(R3) = 0, u ∈ L2([0, l]).
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Hence for the above sequence {un ∈ L2([0, l])} by virtue of (5.5) we conclude that
∥R(z)w −G(z)un∥L2(R3) · ∥−∆ϕ− z̄ϕ∥L2(R3)

≥
∣∣∣([R(z)w −G(z)un] , [−∆ϕ− z̄ϕ])L2(R3)

∣∣∣
=

∣∣∣(w, ϕ)L2(R3)

∣∣∣ ≥ (1− ε) ∥w∥2L2(R3) .

(5.7)

But in view of (5.4) for n → ∞ the last inequality in (5.7) must necessarily be
violated unless w = 0. Therefore N ∩D(A) = {0}.

In accordance with our choice (5.1) of the mapping G(z) , the bounded holo-
morphic operator function Q(z) in L2([0, l]) in the corresponding Theorem 3.2 may
be determined by setting

(Q(z)u) (x) =

l∫
0

q(z|x, x′)u(x′)dx′

≡ 1

4π

l∫
0

ei
√
z|x−x′| − 1

|x− x′|
u(x′)dx′, u ∈ L2([0, l]), Im

√
z > 0.

(5.8)

Since the kernel q(z|x, x′) of integral operator Q(z) is a continuous function on
the set [0, l]× [0, l], then for any non-positive z the operator Q(z) is bounded and
moreover compact.

For the operator function Q(z) defined by the expression (5.8) the property
Q(z)∗ = Q(z̄) is obvious and the relation (3.6) follows immediately from the
Hilbert identity for the resolvent kernel of the Laplace operator A:

g(z|x,x′)− g(z0|x,x′) = (z − z0)

∫
R3

g(z0|x,x′′)g(z|x′′,x′)dx′′, Imz0, Imz ̸= 0.

in cases where x = (x1 = x, x2 = 0, x3 = 0), x′ = (x1 = x′, x2 = 0, x3 = 0).
Finally, in the case under consideration we can take as L in (3.8) the selfad-

joint Sturm–Liouville operator

L = − d2

dx2
+ v(x)

in L2([0, l]) with a real continuous “potential” v(x) assuming that the domain
D(L) of L consists of functions u(x) from the Sobolev class H2

2 ([0, l]) satisfying
the boundary conditions u(0) = u(l) = 0. We confine ourselves also to only those
potentials v(x) for which zero is not an eigenvalue of the operator L. Since the
concerned Sturm–Liouville operators are semi-bounded from below, have simple
discrete spectrum and for their eigenvalues λn numbered in increasing order, we
have the relation

λn =
n→∞

π2n2

l2

[
1 +O

(
1

n

)]
,

then L−1 is a compact operator of trace class.
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Thus, the related to the Laplace operator operator A operator functions G(z)
and Q(z) and defined by formulas (5.1) and (5.8), respectively and the introduced
selfadjoint Sturm–Liouville operator L in L2([0, l]) satisfy all the conditions of
Theorem 3.2. Hence, the operator function RL(z) defined by the expression (3.8)
is the resolvent of some singular perturbation AL of A in L2(R3).

Proposition 5.1. Any smooth compact function ϕ(r), which is equal to zero at
some neighborhood of the subset l belongs to D(AL) and

(ALϕ) (r) = (Aϕ) (r) = −∆ϕ(r).

Proof. By virtue of (5.3), the identity (5.6) and the assumptions of the proposition
(G(z̄)∗[−∆ϕ− zϕ]) (x) = ϕ(x, 0, 0) = 0, x ∈ [0, l].

In accordance with (3.8), this means that
(RL(z)[−∆ϕ− zϕ]) (r) = (R(z)[−∆ϕ− zϕ]) (r) = ϕ(r). (5.9)

Therefore ϕ ∈ D(AL) ∩ D(A) and, in view of (5.9),
(ALϕ) (r) = −∆ϕ(r)− zϕ(r) + z (RL(z)[−∆ϕ− zϕ]) (r)

= −∆ϕ(r)− zϕ(r) + zϕ(r) = −∆ϕ(r). �

Proposition 5.2. Let f(x1, x2, x3) be a function from D(AL) and uf (x), x ∈ [0, l],
be defined by

uf (x) = − lim
ρ→0

1

ln (ρ2)
f(x, x2, x3), ρ =

√
x2
2 + x2

3.

Then uf ∈ D(L) and

(Luf ) (x) = −4π · lim
ρ→0

[
f(x, x2, x3) + ln

(
1

ρ2

)
· uf (x)

+2 ln 2 · uf (x)−
l∫

0

s− x

|s− x|
ln |s− x|u′

f (s)ds

 .

Proof. Turning to the expressions (3.8) and (5.3), we recall first of all that the
functions from D(A) are continuous [7]. Therefore for any h(x) from L2(R3) the
functions (R(z)h) and (G(z)∗h) (x) from L2(R3) and L2([0, l]), respectively, are
continuous. We also take into account that the domains of operators L and L+Q(z)
coincide, since Q(z) is a bounded operator. By our assumptions “0” is a regular
point of operator L+Q(z), Imz ̸= 0. Therefore for any h ∈ L2(R3) the function

ûh(x) =
(
[L+Q(z)]

−1
G(z)∗h

)
(x)

belongs to D(L), that is, to the Sobolev class H2
2 ([0, l]) and satisfies the boundary

conditions ûh(0) = ûh(l) = 0.
Writing any f ∈ D(AL) in the form f(x) = (RL(z)h) (x) with some h ∈

L2(R3) we can find the limiting value of (RL(z)h) (x), when ρ =
√
x2
2 + x2

3 → 0
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and x1 ∈ [0, l] using the following elementary assertion, the proof of which are left
to the reader.

Lemma 5.3. Let u(x) be continuously differentiable function on [0, l] satisfying
the conditions u(0) = u(l) = 0. Then
l∫

0

1√
(x− s)2 + ρ2

u(s)ds =
ρ→0

u(x)·ln 1

ρ2
+2 ln 2u(x)−

l∫
0

s− x

|s− x|
ln |s− x|u′ (s) ds.

Using the expression (3.8) for (RL(z)h) (x) and applying Lemma 5.3 one can
easily verify that

uf (x) = −lim
ρ↓0

1

ln (ρ2)
f(x, x2, x3) = − 1

4π
ûh(x) ∈ D(L)

and

lim
ρ↓0

[
f(x, x2, x3) + ln

(
1

ρ2

)
· uf (x)

+2 ln 2 · uf (x)−
l∫

0

s− x

|s− x|
ln |s− x|u′

f (s) ds


= (G(z)∗h)−

(
Q(z) [L+Q(z)]

−1
G(z)∗h

)
(x)

= L
(
[L+Q(z)]

−1
G(z)∗h

)
(x) = Lûh(x) = − 1

4π
(Luf ) (x). �
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Generic asymptotics of resonance counting
function for Schrödinger point interactions
Sergio Albeverio and Illya M. Karabash

Abstract. We study the leading coefficient in the asymptotic formula N (R) =
W
π
R+O(1), R → ∞, for the resonance counting function N (R) of Schrödinger

Hamiltonians with point interactions. For such Hamiltonians, the Weyl-type
and non-Weyl-type asymptotics of N (R) was introduced recently in a paper
by J. Lipovský and V. Lotoreichik (2017). In the present paper, we prove that
the Weyl-type asymptotics is generic.
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Keywords. asymptotics of resonances, delta-interaction, directed graph, multi-
graph, exponential polynomial, quasi-normal-eigenvalue, Weyl-type asymp-
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This work is dedicated to the dear Memory of Boris
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meet him personally at a conference in Dubna back in
1987. At that time Boris was developing his original
approach to point interactions and was the leader of
a very strong group of young enthusiastic mathemati-
cians working in this area. From then on our steady
friendship developed, with him and his coworkers. The
authors are very grateful to Boris for the many insights
he has provided, that also influenced much of our work.
We deeply mourn his departure.

1. Introduction
The asymptotics as R → ∞ of the counting function NHa,Y

(R) for the resonances
of a “one particle, finitely many centers” Schrödinger Hamiltonian Ha,Y acting in
the complex Lebesgue space L2(R3) and associated with the formal differential
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expression

−∆u(x) + “
N∑
j=1

µ(aj)δ(x− yj)u(x)”, x = (x1, x2, x3) ∈ R3, N ∈ N, (1.1)

have being studied recently in [25], where the existence of Weyl-type and non-Weyl
type asymptotics of NHa,Y

(·) have been proved and similarities with the case of
quantum graphs [12, 13] have been noticed. The goal of the present paper is to
show that the case of Weyl-type asymptotics of NHa,Y

(·) is generic for operators
of the form (1.1).

We denote by ∆ the self-adjoint Laplacian in L2(R3) and assume throughout
the paper that N ≥ 2, where N is the number of point interaction centers yj ∈
R3, which are assumed to be distinct, i.e., ym ̸= yj if m ̸= j. The N -tuple of
centers (yj)

N
j=1 ⊂ (R3)N is denoted by Y . The numbers aj ∈ C are the “strength”

parameters for the point interactions forming a tuple a = (aj)
N
j=1 ∈ CN .

Roughly speaking, point interactions correspond to potentials expressed by
the Dirac measures δ(·−yj) and play the role of potentials in formula (1.1) (this can
be taken as definition in the 1-D case of Sturm–Liouville differential operators).
Rigorously, in 3-D case, the point interaction Hamiltonian Ha,Y associated with
(1.1) can be introduced as a densely defined closed operator in the Hilbert space
L2(R3) via a Krein-type formula for the difference (Ha,Y −z2)−1− (−∆−z2)−1 of
the perturbed and unperturbed resolvents of operators Ha,Y and −∆, respectively.
For the definition of Ha,Y and for the meaning of the “strength” parameters and
the factors µ(aj) in (1.1), we refer to [1, 2, 3, 7] in the case aj ∈ R, and to [4, 6]
in the case aj ̸∈ R (see also Sect. 2). Note that, in the case (aj)

N
j=1 ⊂ RN , the

operator Ha,Y is self-adjoint in L2(R3); and in the case (aj)
N
j=1 ⊂ (C−)

N , Ha,Y is
closed and maximal dissipative (in the sense of [16], or in the sense that iHa,Y is
maximal accretive [23]).

Eigenvalues and (continuation) resonances k of the corresponding operator
Ha,Y are connected with the special N × N -matrix Γ(z), which is a function of
the spectral parameter z and depends also on Y and a. The matrix-function Γ(·)
appears naturally as a part of the expression for (Ha,Y − z2)−1 − (−∆ − z2)−1,
see [3, 5, 6] and Sect. 2. The set Σ(Ha,Y ) of resonances associated with Ha,Y is
defined as the set of zeroes k of the determinant det Γ(·), which is an analytic of
z function.

This definition follows the logic of [15, 12, 25] and slightly differs from that
of the original definition [3, 5] since it includes in the set of resonances the zeroes
k ∈ C+ := {z ∈ C : Im z > 0}, which correspond to eigenvalues k2 of HY . It is
easy to see [3, 5, 6] that Ha,Y has only a finite number of eigenvalues and so the
inclusion of corresponding k ∈ C+ does not essentially influence the asymptotics
for R → ∞ of the counting function NHa,Y

(·), which is defined by
NHa,Y

(R) := #{k ∈ Σ(Ha,Y ) : |k| < R}.

Here #E is the number of elements of a multiset E.
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When the number of resonances in a certain domain is counted, Σ(Ha,Y ) has
to be understood as a multiset, i.e., an unordered set in which an element e can be
repeated a finite number me ∈ N of times (this number me is called the multiplicity
of e). The multiplicity of a resonance k is, by definition, its multiplicity as a zero
of det Γ(·), and it is always finite since the resolvent set of Ha,Y is nonempty (see
[3, 6]). The definition of the resonance counting function takes this multiplicity
into account.

The investigation of the counting function N−∆+V (·) for scattering poles of
Schrödinger Hamiltonians −∆+V in L2(Rn) with odd n ≥ 3 was initiated in [26]
(for the relation between the notions of scattering poles and resonances, see [15]).
This study was continued and extended to obstacle and geometric scattering in
a number of papers (see, e.g., [30, 18, 10, 11, 15, 31] and references therein). In
particular, it was proved in [10, 11] that for odd n ≥ 3 the formula

lim sup
R→∞

logN−∆+V (R)

logR
= n (1.2)

is generic for compactly supported L∞-potentials V . Generally, in such settings,
only the bound lim supR→∞

logN−∆+V (R)
logR ≤ n is proved [30] (see the discussion of

a related open problem in [10, 31]).
During the last two decades, wave equations, resonances, and related opti-

mization problems on structures with combinatorial geometry and graph theory
backgrounds have attracted a substantial attention, in particular, due to their en-
gineering applications, see monographs [3, 7, 8, 27], papers [6, 12, 13, 14, 17, 20,
21, 22] and references therein. One of the earliest studies of scattering on graphs
was done by Gerasimenko and Pavlov [19].

In [13, 12], the asymptotics NG(R) = 2WG

π R+O(1) as R → ∞ for the reso-
nance counting function of a non-compact quantum graph G have been obtained
and it was shown that the nonnegative constant WG, which was called the effective
size of the graph, is less or equal to the sum of lengths of the internal edges of
the graph. It was said that the quantum graph has a Weyl resonance asymptotics
if WG equals the sum of lengths of internal edges. Special attention was paid in
[12, 13] to the cases where non-Weyl asymptotics holds, i.e., to the cases where
WG is strictly less than the sum of lengths of internal edges.

In the recent paper [25], it was noticed that the resonance theories for point
interactions and for quantum graphs have a lot in common, and the asymptotics

NHa,Y
(R) =

W (Ha,Y )

π
R+O(1) as R → ∞ (1.3)

was established for point interaction Hamiltonians Ha,Y with a certain positive
constant W (Ha,Y ), which is called an effective size of the set Y . (Note that (1.3)
holds for the case N ≥ 2; in the simple case N = 1 it is obvious that only one
resonance exists.) On the other hand, the size of the family of centers Y was defined
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by

V (Y ) := max
σ∈SN

N∑
j=1

|yj − yσ(j)|,

where the maximum is taken over all permutations σ in the symmetric group
SN . The asymptotics of NHa,Y

(R) for R → ∞ was called of Weyl-type if the
effective size W (Ha,Y ) in (1.3) coincides with the size V (Y ). An example of Ha,Y

with non-Weyl-type asymptotics was constructed in [25]. (Note that, while [25]
considers only the case where all aj coincide and are real, the results and proofs of
[25] can be extended to the case of arbitrary a ∈ CN almost without any changes.)

The present paper studies how often the equality W (Ha,Y ) = V (Y ), i.e.,
Weyl-type asymptotics, happens. To parametrize rigorously the family of Hamil-
tonians Ha,Y , let us consider Y as a vector in the space (R3)N of ordered N -tuples
y = (yj)

N
j=1 with the entries yj ∈ R3. We consider (R3)N as a linear normed space

with the ℓ2-norm |y|2 = (
∑

|yj |2)1/2. Then the ordered collection Y of centers is
identified with an element of the subset A ⊂ (R3)N defined by

A := {y ∈ (R3)N : yj ̸= yj′ for j ̸= j′}.
We consider A as a metric space with the distance function induced by the norm
| · |2.

The following theorem is the main result of the present paper. It shows that
Weyl-type asymptotics is generic for point interaction Hamiltonians and gives a
precise sense to this statement.
Theorem 1.1. There exists a subset A1 ⊂ A that is open and dense in the metric
space A and has also the property that, for every Y ∈ A1 and every a ∈ CN ,
the counting function for the resonances of Ha,Y has the Weyl-type asymptotics
NHa,Y

(R) = V (Y )
π R+O(1) as R → ∞.

The proof is constructive and is given in Sect. 3.2.
Notation. The following standard sets are used: the lower and upper complex

half-planes C± = {z ∈ C : ± Im z > 0}, the set Z of integers, the closure S̄ of a
subset of a normed space U , in particular, C± = {z ∈ C : ± Im z ≥ 0}, open balls
Bϵ(u0) = Bϵ(u0;U) := {u ∈ U : ρU (u, u0) < ϵ} in a metric space U with the
distance function ρU (·, ·) (or in a normed space).

By yj ∼ ym we denote an edge between vertices yj and ym in an undirected
graph G (so yj ∼ ym and ym ∼ yj is the same edge). Directed edges in a directed
graph −→

G will be called bonds in accordance with [8] and denoted by yj ; ym,
which means that the bond is from yj to ym (note that this notation is slightly
different from that of [8]).

2. Resonances as zeroes of a characteristic determinant
Let the set Y = {yj}Nj=1 consist of N ≥ 2 distinct points y1, …, yN in R3. Let
a = (aj)

N
j=1 ∈ CN be the N -tuple of the strength parameters. The operator H
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associated with (1.1) is defined in [1, 2, 3] for the case of real aj , and in [6] for
aj ∈ C. It is a closed operator in the complex Hilbert space L2(R3) and it has
a nonempty resolvent set. The spectrum of H consists of the essential spectrum
[0,+∞) and an at most finite set of points outside of [0,+∞) [6] (all of those
points are eigenvalues).

The resolvent (H − z2)−1 of H is defined in the classical sense on the set of
z ∈ C+ such that z2 is not in the spectrum, and has the integral kernel

(H − z2)−1(x, x′) = Gz(x− x′) +
N∑

j,j′=1

Gz(x− yj) [Γa,Y ]
−1
j,j′ Gz(x

′ − yj′), (2.1)

where x, x′ ∈ R3 \ Y and x ̸= x′; see, e.g., [3, 6]. Here

Gz(x− x′) :=
eiz|x−x′|

4π|x− x′|
is the integral kernel associated with the resolvent (−∆ − z2)−1 of the kinetic
energy Hamiltonian −∆; [Γa,Y ]

−1
j,j′ denotes the (j, j′)-element of the inverse to the

matrix

Γa,Y (z) =
[(
aj − iz

4π

)
δjj′ − G̃z(yj − yj′)

]N
j,j′=1

, G̃z(x) :=

{
Gz(x), x ̸= 0,

0, x = 0.
(2.2)

The multi-set of (continuation) resonances Σ(H) associated with the operator
H (in short, resonances of H) is by definition the set of zeroes of the determinant
det Γa,Y (·), which we will call the characteristic determinant. This definition fol-
lows [15] and slightly differs from the one used in [5, 3] because isolated eigenvalues
are now also included into Σ(H). For the origin of this and related approaches to
the understanding of resonances, we refer to [5, 15, 28, 29] and the literature
therein. The multiplicity of a resonance k will be understood as the multiplicity
of a corresponding zero of the analytic function det Γa,Y (·) (see [3]).

An important common feature of quantum graphs and point interaction
Hamiltonians is that the function that is used to determine resonances as its zeroes
is an exponential polynomial. That is, the function

D(z) := (−4π)N det Γa,Y (z) (2.3)
has the form

ν∑
j=0

Pbj (z)e
ibjz, (2.4)

where ν ∈ N ∪ {0}, bj ∈ C, and Pbj (·) are polynomials. One can see that, for the
particular case of D(·), bj are real and nonnegative numbers.

In what follows, we assume that the polynomials Pbj (·) in the representation
(2.4) for D(·) are nontrivial in the sense that Pbj (·) ̸≡ 0, and that all bj in (2.4)
are distinct and ordered such that

b0 < b1 < · · · < bν .
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Under these assumptions, the set {bj}νj=0 and the representation (2.4) are unique.
It is obvious that b0 = 0 and the corresponding polynomial is equal to

P0(z) =
N∏
j=1

(iz − 4πaj).

It is easy to notice [6] that ν ≥ 1, i.e., there are at least two summands in the
sum (2.4) and at least one of them involves nonzero number bj . (Let us recall that
N ≥ 2 is assumed throughout the paper.)

The asymptotic behavior of the counting function NH for resonances of H is
given by the formula

NH(R) =
bν
π
R+O(1) as R → ∞, (2.5)

which was derived in [25] from [12, Theorem 3.1] (for more general versions of this
result in the context of the general theory of exponential polynomials see [9] and
references therein). So, following the terminology of [25],

bν is the effective size W (H) (2.6)

associated with the N -tuples Y and a that define the Hamiltonian H.

Remark 2.1. This raises the natural question of whether there exist a family of
centers Y such that the effective size W (Ha,Y ) of Ha,Y might change with the
change of the ‘strength’ tuple a ∈ CN . (Note that we do not allow aj to take the
value ∞. Otherwise, the answer becomes obvious since aj = ∞ means that the
center yj is excluded from Y , see [3, 6]).

3. Absence of cancellations in Leibniz formula
In this section, we assume that the tuple a is fixed and consider the operator H
and the set Σ(H) of its resonances as functions of the family Y of interaction
centers. Therefore we will use the notation HY for H, and

DY (z) := (−4π)N det Γa,Y (z) (3.1)

for the corresponding modified version (2.3) of the characteristic determinant (2.2).
The Leibniz formula expands DY (z) into the sum of terms

eizVσ(Y )P [σ,Y ](z) (3.2)

taken over all permutations σ in the symmetric group SN , where the constants
Vσ(Y ) ≥ 0 depends on σ and Y , and P [σ,Y ](·) are polynomials in z depending on
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σ and Y . They have the form

Vσ(Y ) :=
N∑
j=1

|yj − yσ(j)| =
∑

j:σ(j)̸=j

|yj − yσ(j)|, (3.3)

P [σ,Y ](z) := (−1)ϵσK1(σ, Y )
∏

j:σ(j)=j

(iz − 4πaj), (3.4)

where K1 is the positive constant depending on σ and Y ,

K1(σ, Y ) :=
∏

j:σ(j)̸=j

|yj − yσ(j)|−1

(K1(e, Y ) := 1 in the case where σ is the identity permutation e = [1][2] . . . [N ])
and ϵσ is the permutation sign (the Levi-Civita symbol).

Here and below we use the square brackets notation of the textbook [24]
for permutation cycles, omitting sometimes, when it is convenient, the degenerate
cycles consisting of one element. For each permutation σ, there exists a decompo-
sition

σ =

M(σ)∏
m=1

cm (3.5)

of σ into disjoint cycles cm (in short, the cycle decomposition of σ). The changes
in the order of cycles in the product (3.5) does not influence the result of the
product. Up to such variations of order, the decomposition (3.5) is unique (see,
e.g., [24]). So the number M(σ) of cycles in (3.5) is a well defined function of σ.
It is connected with the permutation sign ϵσ by the well-known equality

ϵσ = (−1)N−M(σ). (3.6)
(To see this it is enough to conclude from the equality [1 2 . . . n] = [1 2][2 3] . . . [(n−
1) n] that the sign of a cycle cm equals to (−1)#(cm)−1, where #(cm) is the number
of elements involved in the cycle cm.)

We will use some basic notions of graph theory that are concerned with the
directed and undirected graphs with lengths. Such graphs can be realized as metric
graphs or as weighted discrete graphs. Because of connections of the topic of this
paper with quantum graphs (see [25]), we try to adapt terminology and notation
close to (but not coinciding with) that of the monographs [8, 27].

The numbers Vσ(Y ) have a natural geometric description from the point of
view of pseudo-orbits of directed metric graph having vertices at the centers yj ,
j = 1, …, N (see [25] and references therein). Namely, Vσ(Y ) is the metric length
(the sum of length of bonds) of the directed graph −→

Gσ associated with σ ∈ SN

and consisting, by definition, of bonds yj ; yσ(j), j = 1, …, N , of metric length
|yj −yσ(j)|. Note that loops of zero length from a vertex to itself are allowed in −→

Gσ.
Namely, in the case where the cycle decomposition of a permutation σ includes
a degenerate cycle [j] (i.e., j = σ(j)), the bond yj ; yσ(j) degenerates into the
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loop yj ; yj from yj to itself, which has zero length. If the cycle decomposition
of σ contains the cycle [j σ(j)], then the corresponding cycle of the directed graph
−→
Gσ consists of the two bonds yj ; yσ(j), yσ(j) ; yj between j and σ(j) with two
opposite directions, and so, the contribution of this cycle to the metric length of−→
Gσ is 2|yj − yσ(j)|.

This, in particular, explains why the number
V (Y ) = max

σ∈SN

Vσ(Y ) (3.7)

is called in [25] the size of Y .
The coefficients bj in (2.4) are called frequencies of the corresponding expo-

nential polynomial DY (·). Similarly, Vσ(Y ) is the frequency of the term (3.2) in
the Leibniz formula. By (3.7), there exists a term of the form (3.2) that has V (Y )
as its frequency. In the process of summation of the terms (3.2) in the Leibniz
formula some of the terms may cancel so that, for a certain permutation σ ∈ SN ,
Vσ(Y ) is not a frequency of DY (·). If this is the case, we say that there is fre-
quency cancelation for the frequency Vσ(Y ). An example of frequency cancelation
for the highest possible frequency V (Y ) have been constructed in [25] to prove
that non-Weyl asymptotics is possible for Ha,Y .

By Gσ we denote the metric pseudograph (i.e., the undirected metric graph
with possible degenerate loops and multiple edges) that is produced from the
directed graph −→

Gσ by stripping off the direction for all bonds. So if σ(j) = j, Gσ

contains the loop-edge yj ∼ yj of zero length. If σ(j) ̸= j and σ(σ(j)) = j, Gσ

contains two identical edges yj ∼ yσ(j) each of them contributing to the metrical
length Vσ(Y ) of Gσ (that is the multiplicity of the edge yj ∼ yσ(j) is 2). These
two cases describe all “nonstandard” situations where the multiplicity of an edge
is strictly larger than 1, or a loop can appear in Gσ. That is, if σ(j) ̸= j ̸= σ(σ(j)),
then Gσ has exactly two edges involving yj , namely, yj ∼ yσ±1(j), which are distinct
and of multiplicity 1.
Definition 3.1. We will say that two permutations σ and σ′ are edge-equivalent
and write σ ∼= σ′ if Gσ = Gσ′ .

Here the equality Gσ = Gσ′ is understood in the following sense: for any
j, j′ ∈ [1, N ] ∩ N,

the multiplicities of the edge yj ∼ yj′ in the graphs Gσ and Gσ′ coincide. (3.8)
It is easy to see that σ ∼= σ′ exactly when the cycle decomposition of σ′ can

be obtained from that of σ by inversion of some of the cycles, i.e., for σ with the
cycle decomposition (3.5), the edge-equivalence class of σ consists of permutations
of the form

∏M(σ)
m=1 cαm

m , where each αm takes either the value 1, or −1.
From (3.6) and (3.3) we see that,

if σ ∼= σ′, then ϵσ = ϵσ′ and Vσ(Y ) = Vσ′(Y ). (3.9)
The reason for the introduction of the edge-equivalence is the following state-

ment.
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Proposition 3.1. Assume that Y is such that the following assumption holds:

Vσ(Y ) = Vσ′(Y ) only if σ ∼= σ′. (3.10)

Then the Weyl-type asymptotics takes place, i.e., W (Ha,Y ) = V (Y ).

Proof. Under condition (3.10), it is clear from (3.9) and the form (3.4) of the
polynomials P [σ,Y ](·), that in the process of summation of (3.2) by the Leibniz
formula the terms with the frequency V (Y ) cannot cancel each other in DY (·).
Thus, V (Y ) = bν = W (Ha,Y ) (see (2.5), (2.6)). �

Theorem 3.2. Let σ, σ′ ∈ SN . Then the following statements are equivalent:
(i) σ ∼= σ′;
(ii) Vσ(Y ) = Vσ′(Y ) for all Y ∈ A;
(iii) Vσ(Y ) = Vσ′(Y ) for all Y in a certain open ball Bδ0(Y0) of the metric space

A, where δ0 > 0 and Y0 ∈ A.

3.1. Proof of Theorem 3.2
The implications (i) =⇒ (ii) =⇒ (iii) are obvious.
Let us now prove (iii) =⇒ (ii).

Lemma 3.3. Let the closed segment [Y0, Y1] = {Y (t) = (1−t)Y0+tY1 : t ∈ [0, 1]}
belong to the set A and Y0 ̸= Y1. Let Y0 satisfy statement (iii) of Theorem 3.2.
Then:

(1) Vσ(Y ) = Vσ′(Y ) for all Y ∈ [Y0, Y1];
(2) Y1 satisfies statement (iii) of Theorem 3.2 in the sense that Vσ(Y ) = Vσ′(Y )
for all Y ∈ Bδ1(Y1) with a certain δ1 > 0.

(3) statement (ii) of Theorem 3.2 is satisfied, i.e., Vσ(Y ) = Vσ′(Y ) for all Y ∈ A.

Proof. Let δ2 := min{|y − Y (t)|2 : y ∈ bdA, t ∈ [0, 1]}, where

bdA := {y ∈ (R3)N : yj = yj′ for a certain j ̸= j′}

is the boundary of the set A in the normed space (R3)N . Since [Y0, Y1] ⊂ A and A
is open in (R3)N , we see that δ2 > 0.

(1) Consider the function f(t) = Vσ(Y (t)) − Vσ′(Y (t)) for t ∈ (−δ3, 1 + δ3),
where δ3 := δ2/|Y1 − Y0|2.

It follows from (3.3) that f(·) is analytic in the interval (−δ3, 1+ δ3). Indeed,

|yj − yj′ | =
(∑3

m=1(yj,m − yj′,m)2
)1/2

, where yj,m and yj′,m, m = 1, 2, 3, are
the R3-coordinates of yj and yj′ , respectively. Since Y (t) ∈ A for this range of
t, the sum cannot be 0 for j ̸= j′, and we see that, for (yj(t))

N
j=1 = Y (t), each

|yj(t)− yj′(t)| is a composition of functions which are analytic in t.
Hence, we can consider a complex t and extend f(·) as an analytic function

in a neighborhood of (−δ3, 1 + δ3) in the complex plane C. Since Y0 satisfies (iii),
we have f(t) = 0 in a neighborhood of 0. Due to analyticity, f(t) = 0 for all
t ∈ (−δ3, 1 + δ3). This proves (1).
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(2) It follows from the definition of δ2 that [Y0, Y ] ⊂ A for every Y ∈ Bδ2(Y1).
So statement (1) of the lemma can be applied to each of these segments. This gives
claim (2).

(3) follows from statement (2) and the fact that A is piecewise linear path
connected in (R3)N . �

Let us prove (ii) =⇒ (i). Assume that σ ̸∼= σ′. Then, by Definition 3.1 and
(3.8), there exists a center yj∗ such that the sets of centers which are connected with
yj∗ in the graphs Gσ and Gσ′ do not coincide. This can happen in several situations,
which, by a possible exchange of roles between σ and σ′, can be reduced to the
following six cases:
(a) σ(j∗) = j∗ and σ′(j∗) ̸= j∗.
(b) Both graphs Gσ and Gσ′ have the common nondegenerate edge yj∗ ∼ yj1

of multiplicity one, but the second edge involving yj∗ in Gσ and Gσ′ do not
coincide. To be specific let us assume that Gσ and Gσ′ have the edges yj∗ ∼ yj
and yj∗ ∼ yj′ , resp., and that yj∗ , yj1 , yj , yj′ are distinct centers.

(c) The graph Gσ has two edges yj∗ ∼ yjm , m = 1, 2, the graph Gσ′ has two
edges yj∗ ∼ yj′m , m = 1, 2, and all the five centers yj∗ , yjm , yj′m , m = 1, 2, are
distinct.

(d) The graph Gσ has the edge yj∗ ∼ yj of multiplicity 2, the graph Gσ′ has two
edges yj∗ ∼ yj′m , m = 1, 2, and the 4 centers yj∗ , yj , yj′1 , yj′2 are distinct.

(e) The graph Gσ has the edge yj∗ ∼ yj1 of multiplicity 2, the graph Gσ′ has two
edges yj∗ ∼ yj1 , yj∗ ∼ yj2 , and the 3 centers yj∗ , yj1 , yj2 are distinct.

(f) The graph Gσ has the edge yj∗ ∼ yj of multiplicity 2, the graph Gσ′ has the
edge yj∗ ∼ yj′ of multiplicity 2, and the 3 centers yj∗ , yj , yj′ are distinct.

Let us show that, for each of the 6 above situations, statement (ii) of Theorem 3.2
does not hold true under the assumption that σ ̸∼= σ′.

Case (a). The function Vσ(Y ) is obviously constant for all small changes of
yj∗ since this center is connected only with itself in Gσ. This is not true for Vσ′(Y )
because in Gσ′ , yj∗ is connected with at least one of the other centers. Hence,
statement (ii) of Theorem 3.2 does not hold true.

Case (b). Let us take for t ∈ (0, 1), Y (t) ∈ A such that yj∗ = (1− t)yj + tyj′ ,
but all the centers except yj∗ do not depend on t. Then as t changes in (0, 1), the
function Vσ(Y (t))−Vσ′(Y (t)) is strictly increasing. This contradicts statement (ii)
of Theorem 3.2.

Cases (c)–(f) can be treated by arguments similar to that of Case (b) with
some modifications, which we consider briefly below.

Case (c). One can take Y (t), t ∈ (−1, 1), such that for m = 1, 2, the R3-
coordinates of yjm are (−m, 0, 0), the R3-coordinates of yj′m are (m, 0, 0), and put
yj∗ = (t, 0, 0). Thus, Vσ(Y (t))− Vσ′(Y (t)) is strictly increasing for t ∈ (−1, 1) and
so the statement (ii) of Theorem 3.2 does not hold.

Case (d). In the graph Gσ, the center yj∗ is connected only with yj . That
is why it is easy to construct the evolution Y (t) of Y in such a way that only
yj∗ moves, the distance |yj∗ − yj | is constant, but

∑
m=1,2 |yj∗ − yj′m | changes,



90 S. Albeverio and I.M. Karabash

and so also Vσ′(Y (t)) changes contradicting the statement (ii) of Theorem 3.2. For
example, let yj′m = ((−1)m, 0, 0) for m = 1, 2, yj = (0, 1, 0), and assume that yj∗(t)
move along a circle of radius 1 in Ox1x2-plane.

Case (e). It is enough to choose yj∗(t) = (1 − t)yj1 + tyj2 for t ∈ (0, 1) with
all other centers fixed, and then to follow arguments of Case (b).

Case (f). It is enough to put yj∗(t) = (1− t)yj + tyj′ and use the arguments
of Case (b). This completes the proof of Theorem 3.2.

3.2. Proof of Theorem 1.1
Let us denote by n ∈ N the number of edge-equivalence classes in SN and let us
take one representative σ̃j , j = 1, . . . , n, in each of them. Let

A1 := {Y ∈ A : Vσ̃j
(Y ) ̸= Vσ̃m

(Y ) if j ̸= m}.

Lemma 3.4. The set A1 is open and dense in the metric space A.

Proof. Consider the sets

Aj,m := {Y ∈ A : Vσ̃j
(Y ) ̸= Vσ̃m

(Y )}, j,m = 1, . . . , n.

Since the functions Vσ̃j
(·) are continuous in A, the sets Aj,m are open.

Let us show that Aj,m is dense in A whenever j ̸= m. Assume ad absurdum
that the converse is true. Then statement (iii) of Theorem 3.2 holds for σ̃j and
σ̃m. By Theorem 3.2, σ̃j

∼= σ̃m. This contradicts the choice of σ̃j and σ̃m as
representative of different edge-equivalence classes.

We see that A1 =
⋂

1≤j<m≤n Aj,m is the intersection of a finite number of
open dense sets. This completes the proof. �

Proposition 3.1 shows that for each Y ∈ A1 and each a ∈ CN the Weyl-type
asymptotics of NHa,Y

(·) takes place. This completes the proof of Theorem 1.1.
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Spectral clusters, asymmetric spaces,
and boundary control for Schrödinger equa-
tion with strong singularities

Sergei Avdonin and Julian Edward

Abstract. We consider a linear system composed of N+1 Schrödinger equa-
tions connected by point-mass-like interface conditions. We show that the
system is exactly controllable with a Dirichlet boundary control at one end,
and various homogeneous boundary conditions on the other end. The reach-
able set is characterized by spectral data. We then study the regularity of the
reachable functions using a family of Riesz bases of asymmetric spaces.

Devoted to memory of Boris Sergeevich Pavlov, out-
standing mathematician and great person, who was
a teacher of many St. Petersburg mathematicians in-
cluding the first author of this paper.

1. Introduction

Asymmetric spaces arise naturally in evolution equations with strong singularities.
The first time this was studied in the context of control theory was, to the best our
knowledge, in [21], which considered a vibrating string with one attached mass,
also see [12, 13, 4, 5]. Asymmetric spaces associated to point masses have also been
observed for a Rayleigh beam [14], but not for Euler–Bernoulli beams, see [26, 15].
Internal point masses have also been considered for the heat equation [20].

In this current work, we study controllability results for the following sys-
tem based on the Schrödinger wave equation, featuring point-mass-like interface

© Springer Nature Switzerland AG 2020 
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conditions:

i
∂u

∂t
− ∂2u

∂x2
+ qu = 0, t ∈ (−∞, T ), x ∈ (0, l) \ {aj}Nj=1, (1.1)

u(x, t) = 0, t ≤ 0,

u(0, t) = f(t),

β1u(l, t) + β2ux(l, t) = 0,

u(a−j , t) = u(a+j , t) = u(aj , t), j = 1, . . . , N,

ux(a
+
j , t)− ux(a

−
j , t) = iMjut(aj , t). (1.2)

In what follows, we will refer to β2 = 0 as Dirichlet boundary conditions at x = l,
and all other cases as “mixed” boundary conditions. We will assume throughout
that f ∈ L2(0, T ) for some T > 0, and that (β1, β2) 6= (0, 0). In what follows, we
will refer to the singularities at x = aj as “masses”. Let qj be the restrictions of q to
the interval (aj , aj+1). Following [4], we assume throughout that for j = 0, 1, 2, that
qj extends to C[aj , aj+1], while for j > 2, qj extends to a function in Cj−2[aj , aj+1].

To state the results, we first discuss the underlying Sturm–Liouville problem.
Let AD, resp. AM, be the semi-bounded, self-adjoint operator for the associated
Sturm–Liouville problem on an appropriately defined Hilbert space L2

M and with
the Dirichlet, resp. mixed, boundary condition at x = l. Fix b equal either D or
M. We use Ab to construct Sobolev-type spaces Hs,b. Then we have:

Proposition 1. Assume b = D or M. Suppose u solves the system (1.1)–(1.2).
Then the mapping t 7→ uf (x, t) is a continuous mapping R 7→ H−1,b(0, l).

This result is proven in Sect. 3. In Sect. 2, it is shown that H−1,D = H−1(0, l)
In the case of no masses (Mj = 0) and Dirichlet boundary condition at x = l,

it was proven in [25] that for any T > 0, the reachable set is H−1(0, l); more
precisely, for any v ∈ H−1(0, l) and any T > 0, there exists f ∈ L2(0, T ) such that
u(·, T ) = v(·) as elements of H−1. In the case of one positive mass, the system was
studied recently by Hansen in [19]. In that work, the author assumed also a1 = l/2,
and q = 0 and assumed Dirichlet boundary condition at x = l. He proved that for
any T > 0, the reachable set was the H−1(0, l); thus reachable set is symmetric in
the sense that its elements are H−1 both to the left and to the right of x = l/2.
The author then considered Neumann control at x = 0 with Dirichlet boundary
condition at x = l. Somewhat surprisingly, for any T > 0, the reachable set in this
case is asymmetric in the sense that it is L2(0, l/2) to the left of the mass, and
H1(l/2, l) to the right. The result for Dirichlet control shows that the presence of
the mass does not itself cause the asymmetry of the reachable set.

One result in this paper is that for the Dirichlet boundary condition, the
reachable set is not always H−1(0, l).

Theorem 1. Suppose M = N = 1, l = 1, and q = 0, and assume Dirichlet
boundary condition at x = 1. Then the reachable set is H−1(0, 1) if and only if
a1 ∈ {p/(p+ 1) : p ∈ N}.
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The proof of this result, and also Hansen’s, uses a rather precise analysis of the
spectral asymptotics of the associated Sturm–Liouville problem. The key element
of the proof is either the existence or the non-existence of a certain subsequence of
eigenvalues which are uniformly separated from the rest of the spectrum. Without
such a sequence, the reachable set is H−1(0, 1). It appears difficult to extend these
methods to the most general case in the system (1.1)–(1.2).

To further study the general case using spectral methods, we apply the theory
of Riesz bases of exponential functions as developed by Pavlov [27] and use the
results in this area obtained in [2, 3, 7, 8]. To give a spectral characterization of
the reachable set, in Sect. 4.2 we will parametrize the spectrum of Ab as

{µp
j : p ∈ N, j = 1, . . . ,N (p)}

where N (p) ≤ N + 1. This parametrization is designed so that for each p the
set

{√
µp
1, . . . ,

√
µp
N (p)

}
are close together. Let φp

j be a unit norm eigenfunction
associated to µp

j . Defining

ζ(p, k) =
N (p)∑
j=k

φp
j (x)(φ

p
j )

′(0)
k−1∏
l=1

(
µp
j − µp

l

)
,

we use exponential divided differences to prove that the reachable set, denoted Rb,
is given by

Rb =


∞∑
p=1

N (p)∑
k=1

cp,kζ(p, k), with cp,k ∈ ℓ2

 .

More precisely,

Theorem 2. Fix b = M or D. Let v ∈ Rb. Then for any T > 0, there exists
f ∈ L2(0, T ) such that u solving the system (1.1)–(1.2) satisfies u(x, T ) = v(x) as
elements of H−1,b.

The proof of this result, and also of some estimates on ||f ||L2(0,T ), will be
given in Sect. 5.

The main focus of this work will be study the local regularity of functions in
Rb. To this end, we will apply to this problem the framework developed in [4] and
[5]. In these works, we studied the exact boundary controllability for a vibrating
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string with N attached masses. Let w(x, t) solve
∂2w

∂t2
− ∂2w

∂x2
+ q(x)w = 0, t ∈ (0, T ), x ∈ (0, l) \ {aj}Nj=1,

w(x, t) = 0, t ≤ 0,

w(a−j , t) = w(a+j , t) = w(aj , t), j = 1, . . . , N,

Mjwtt(aj , t) = wx(a
+
j , t)− wx(a

−
j , t),

w(0, t) = f(t),

β1w(l, t) + β2wx(l, t) = 0. (1.3)
This system is well posed in asymmetric spaces whose regularity to the right of each
mass exceeds the regularity to the left by one Sobolev order. More precisely, for f ∈
L2, we have (w,wt) ∈W b

0 ×W b
−1, where W b

i are subsets of ⊕N
j=0H

i+j(aj , aj+1)⊕
(RN ). Here the elements of RN will account for the position of the masses. The
formal definition of W b

i , which is somewhat technical, is deferred until Sect. 4.
One of the main results in [4] and [5] was to construct Riesz bases of WD

i in
terms of {µp

j , φ
p
j}. This construction will also give similar Riesz bases for WM

i . By
comparing the terms in these Riesz bases with ζ(p, k), we prove

Theorem 3. Fix b = M or D. The following inclusions are valid:
W b

−1 ⊂ Rb ⊂ H−1,b(0, l).

Furthermore, let

v =
∞∑
p=1

Np∑
k=1

cp,kζ(p, k) ∈ Rb.

Then there exist positive constants C1, C2 such that

C1||v||2W b
−N−1

≤
∞∑
p=1

Np∑
k=1

|cp,k|2, (1.4)

and if v ∈W b
−1, then

∞∑
p=1

Np∑
k=1

|cp,k|2 ≤ C2||v||2W b
−1
. (1.5)

Of course, ||v||2
W b

−1
is possibly infinite, in which case the second inequality

will be vacuous.
One can refine Theorem 3 if the clusters have small cardinality.

Proposition 2. Let J ∈ {1, . . . , N + 1}. The condition
#
{
p : N p ≥ J

}
= ∞, (1.6)

is necessary and sufficient for there to exist
v ∈ Rb ∩

(
W b

−J \W b
−J+1

)
.
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The following corollaries will now follow easily for mixed boundary conditions
at x = l.
Corollary 1. Let lj = aj+1 − aj. Assume

lj
lN

∈ Q and lj
lN

6= 2m

2n+ 1
, ∀m,n ∈ N, j = 0, . . . , N − 1.

Then RM ⊂ WM
−N . In particular, the restriction to (aN , l) of any reachable ele-

ments will be in L2.
Specializing to N = 1, we have a sharp characterization of the reachable set.

Corollary 2. If N = 1, then RM =WM
−1 .

With Dirichlet boundary condition at x = l, however, (1.6) always holds with
J = N + 1:
Proposition 3. Assume Dirichlet boundary conditions at x = l. Then

#
{
p : N p = N + 1

}
= ∞. (1.7)

The proof of this result uses a diophantine approximation argument.
We conclude this section by mentioning that the methods of this paper should

also be adaptable to Neumann control. Also, in future work we plan to apply the
analysis here to study the exact controllability of a certain system of beams with
masses at their point of coupling.

The rest of the paper is organized as follows. The operator Ab and spaces
Hs,b, W b

i will be defined in Sect. 2. In Sect. 3, we present the control problem as a
moment problem, and we prove that the reachable set is always in H−1,b. We also
prove Theorem 1. In Sect. 4 we define the exponential divided differences (EDD)
and prove Proposition 3. In Sect. 5, we prove Theorems 2 and 3, Proposition 2,
and Corollaries 1 and 2.

2. Preliminaries
2.1. Sturm–Liouville problem
The Sturm–Liouville problem associated to the system (1.1) is:

−ϕ′′(x) + q(x)ϕ(x) = µϕ(x), x ∈ (0, l) \ {aj}N1 ,
β1ϕ(l) + β2ϕ

′(l) = 0,

ϕ(0) = 0,

ϕ(a−j ) = ϕ(aj) = ϕ(a+j ),

ϕ′(a+j ) = ϕ′(a−j )−Mjµϕ(aj), j = 1, . . . , N. (2.8)
We now discuss the self-adjoint operators associated to (2.8). In what follows,

it will be convenient to define

L := − d2

dx2
+ q(x),
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the differential operator acting on distributions living on (0, a1)∪ · · · ∪ (aN , l). We
define an associated Hilbert space L2

M which accounts for ϕ’s value at the masses.
In particular, (ϕ(x), ϕ(a1), . . . , ϕ(aN )) ∈ L2

M if

||ϕ||2M :=

N∑
j=0

∫ aj+1

aj

|ϕ(x)|2dx +

N∑
j=1

Mj |ϕ(aj)|2 <∞.

Denote by 〈·, ·〉M the associated inner product. This space is canonically isomorphic
to L2(0, l) ⊕ RN . Here and it what follows Hs(aj , aj+1) refers to the standard
Sobolev space, with H0 = L2.

We define a quadratic form on L2
M by

QD(u, v) =
N∑
j=0

∫ aj+1

aj

(u′v′ + quv) dτ,

with domain
QD = {u ∈ L2

M (0, l) :u|(aj ,aj+1) ∈ H1(aj , aj+1), u(a
−
j ) = u(aj) = u(a+j ),

j = 1, . . . , N, and u(0+) = u(l−) = 0}.

We also define, if β2 6= 0, a quadratic form by

QM(u, v) =

N∑
j=0

∫ aj+1

aj

(u′v′ + quv) dx+
β1
β2
u(l)v(l),

with domain
QM = {u ∈ L2

M (0, l) : u|(aj ,aj+1) ∈ H1(aj , aj+1), u(a
−
j ) = u(aj) = u(a+j ),

j = 1, . . . , N, and u(0+) = 0}.

We remark in passing that the masses do not come into the definition of the
quadratic forms. Associated with these semi-bounded, closed quadratic forms (and
the norm ||u||M ) are the self-adjoint operators Ab, with b = D or M, and with
operator domain

Dom(Ab) = {u ∈ Qb : Ab(u) ∈ L2
M (0, l)}.

Then for u ∈ Dom(Ab),

Abu(x) =

{
(Lu)(x), x 6= aj , j = 1, . . . , N,
1

Mj
(u′(a−j )− u′(a+j )), x = aj , j = 1, . . . , N.

(2.9)

Example 1. Set q = 0, N =M = 1, l = 2 and a1 = 1. Let

u(x) =

{
1− |x− 1|, x 6= 1,
1, x = 1,

so u ∈ QD. Then

ADu(x) =

{
0, x 6= 1,
2, x = 1.
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One can use standard spectral theory arguments to show that the spectrum
of Ab is discrete. Let {(λn)2}∞n=1 be the set of eigenvalues of system (2.8) listed
in increasing order. It follows by standard arguments that the eigenvalues are
simple, see [4]. Let {φn} be a basis of normalized eigenfunctions. By simplicity of
the spectrum and the self-adjointness of Ab we have that the eigenfunctions are
orthonormal with respect to 〈·, ·〉M .

We use the spectral representation to create a scale of Sobolev-type spaces.

Definition 1. Let b = D or M. Choose E ≥ 0 such that µ1 + E > 0. Define

Hs,b =

{
u(x) =

∞∑
n=1

anϕn(x) : ||u||2s =

∞∑
n=1

|an|2(µn + E)s/2 <∞

}
, s ∈ R.

Thus Hs,b = Dom((Ab + E)s/2).

Associated to these spaces are various equations that hold at x = aj . For
instance, for v ∈ Hs,b, s ≥ 1, we have

v(a−j ) = v(aj) = v(a+j ), j = 1, . . . , N, (2.10)

and for v ∈ Hs,b with s ≥ 3, we have for j = 1, . . . , N,

1

Mj

(
v′(a−j )− v′(a+j )

)
= Lv(a−j ) = Lv(a+j ), (2.11)

as well as (2.10). Clearly, these equations hold for v an eigenfunction, and so by
basic Fourier theory they hold for all v ∈ Hs,b. In what follows, we will refer
to such equations as “compatibility conditions”. We have the following list of all
compatibility conditions.

Lemma 1. For s ≥ 0 and v ∈ Hs,b, the following compatibility conditions hold
for j = 1, . . . , N :
v(a−j ) = v(aj) = v(a+j ) for s ≥ 1, and Lnv(a−j ) = Lnv(a+j ), 0 ≤ n ≤ ds/2e−1,

(2.12)
and for 0 ≤ n ≤ ds/2e − 2,

1

Mj

( d
dx

(Lnv)(a−j )−
d

dx
(Lnv)(a+j )

)
= Ln+1v(a+j ) = Ln+1v(a−j ). (2.13)

Also, for b = D we have
Lnv(0) = Lnv(l) = 0, 0 ≤ n ≤ ds/2e − 1, (2.14)

while for b = m

Lnv(l) = 0, 0 ≤ n ≤ ds/2e − 1, (β1L
nv + β2L

nv′)(l) = 0, 0 ≤ n ≤ bs/2c − 1.
(2.15)

For proof of this result, the reader is referred to [4].
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Remark 1. In (2.12), we interpret the condition 0 ≤ n ≤ −1, which holds for
s = 0, to mean no such compatibility condition holds.

Remark 2. Recall the well known Sobolev space
H1

0 (0, l) =
{
u ∈ H1(0, l) : u(0) = u(l) = 0

}
,

and its dual H−1(0, l). Then the following spaces are canonically isomorphic:

H1
0 (0, l) = H1,D = QD.

Consequently, we can identify H−1,D(0, l) = H−1(0, l).

2.2. Asymmetric spaces associated to wave equation
We discuss some asymmetric spaces that arise naturally in considering the regu-
larity of the following wave equation. Suppose u = (u(x, t), u(a1, t), . . . , u(aN , t))
solves

∂2u

∂t2
− ∂2u

∂x2
+ q(x)u = 0, t ∈ (0, T ), x ∈ (0, l) \ {aj}Nj=1,

u(x, t) = 0, t ≤ 0,

u(a−j , t) = u(aj , t) = u(a+j , t), j = 1, . . . , N,

Mjutt(aj , t) = ux(a
+
j , t)− ux(a

−
j , t), j = 1, . . . , N,

u(0, t) = f(t),

β1u(l, t) + β2ux(l, t) = 0. (2.16)

An important property of this system is that for the wave generated by f , as it
propagates from left to right, the part of the wave that is transmitted across a mass
will be one Sobolev order more regular than incoming wave, whereas the reflected
part of the wave has the same Sobolev order as the incoming wave. This was first
observed, to the best of our knowledge, in [21]. Below, we will define spaces that
characterize the reachable set of positions and velocities for system (2.16), as was
shown in [4].

Letting X ′ denote the dual space to X, define
Θ−1(0, a1) := {u ∈ H1(0, a1) : u(0) = 0}′.

We define a scale of spaces by
Wi =

(
(⊕N

j=0H
i+j(aj , aj+1))

)
⊕ RN for i = 0, 1, 2, . . . ,

and
W−1 = Θ−1(0, a1)⊕

(
⊕N

j=1 H
j−1(aj , aj+1)

)
⊕ RN−1.

Following [4], we pose certain compatibility conditions that solution u must satisfy
at {aj}. These conditions arise naturally from the equations in (2.16) provided u is
sufficiently regular. These conditions resemble those listed for Hs,b in the previous
subsection, but also account for the fact that a solution u to system (2.16) is more
regular near x = aj+1 than near x = aj .
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Definition 2. Let j = 1, . . . , N , and let k be any integer. A function ϕ(x) satisfies
Condition Ck,D at x = aj if

d

dx
Lnϕ(a−j ) =

d

dx
Lnϕ(a+j )−MjL

n+1ϕ(a+j ) (2.17)

is satisfied for 0 ≤ n ≤ dk/2e − 2, and
ϕ(aj) = ϕ(a+j ) if k ≥ 0, and Lnϕ(a−j ) = Lnϕ(a+j ) (2.18)

is satisfied for 0 ≤ n ≤ dk/2e − 1. For j = 0 or (N + 1), a function ϕ(x) satisfies
Condition Ck,D at x = aj if

Lnϕ(aj) = 0, n = 0, 1, 2, . . . , (2.19)
is satisfied for 0 ≤ n ≤ dk/2e − 1.

For convenience, for k ≤ 0 we denote Condition Ck,D at x = aj to be a
vacuous condition.

Definition 3. A function satisfies Condition Ci,D
∗ if it satisfies Condition Cj−1+i,D

at x = aj for all j = 1, . . . , N + 1, and Condition Ci,D at x = 0.
A function satisfies Condition Ci,M

∗ if it satisfies Condition Cj−1+i,D at x = aj
for all j = 1, . . . , N , Condition Ci,D at x = 0, and

β1(L
nϕ)(l) + β2(L

nϕx)(l) = 0, n ≤
⌊
N − 2 + i

2

⌋
.

Definition 4. Let b = D or M. For integer i ≥ −1, define the space
W b

i :=
{
ϕ ∈Wi : ϕ satisfies Condition Ci,b

∗
}
.

Then W b
i are real Hilbert spaces with inner product

〈ϕ, ψ〉i =
N∑
j=0

〈ϕ, ψ〉Hi+j(aj ,aj+1) +
N∑
j=1

Mjϕ(a
+
j )ψ(a

+
j ). (2.20)

Here we define

||ϕ||2Hn(aj ,aj+1)
=

∥∥∥∥dnϕdxn

∥∥∥∥2
L2(aj ,aj+1)

+ ||ϕ||2L2(aj ,aj+1)
.

It is easy to see that we have a canonical inclusion of
W b

i ⊂ Hi,b.

Furthermore, the set of restrictions of elements of W b
i to the interval (aj , aj+1) will

be the same as the set of restrictions of elements of Hi+j,b to the same interval.
The following was proven in [5] for Dirichlet boundary conditions, and a

similar proof works for mixed boundary condition at x = l.

Theorem 4. Let b = D or M. Choose a constant E so that (Ab + E) > 0. Let
i = 1, 2, . . . Then (Ab + E) maps W b

i bijectively onto W b
i−2, and this mapping is

an isomorphism with respect to the norms || · ||W b
i

and || · ||W b
i−2

.



Spectral clusters, asymmetric spaces, and boundary control 103

Definition 5. Choose E so that (Ab + E) > 0. For negative integer i, suppose
i+2n ≥ 0. Then we define W b

i = (Ab+E)n(W b
i+2n), with norm given by ||v||W b

i
=

||
(
Ab + E

)i/2
v||W b

0
for i even, and ||v||W b

i
= ||

(
Ab + E

)(i+1)/2
v||W b

−1
for i odd.

The following relation now easily follows for any pair of integers j, k:
W b

j ⊂W b
k if j > k.

3. Spectral solution for the Schrödinger equation
3.1. An associated moment problem
In the first subsection here, we present the control problem as a moment problem.
We use this to prove that the reachable set lies in H−1(0, l). In the second subsec-
tion, we consider the special case where N = 1 and q = 0, with Dirichlet boundary
condition at x = l. In this case, precise spectral asymptotics are computed, and we
are able to characterize the set of a1 for which the reachable set equals H−1(0, l).

It will be useful to present the asymptotics of the eigenvalues {µn : n ∈ N}
for the system (2.8). Let

λn =
√
µn.

Here we choose the square root of a negative real to have positive imaginary part.
We will refer to the set Λ := {λn, n ∈ N} as the eigenfrequencies. Let lj = aj+1−aj .
The following result was proven in [5].

Theorem 5. (A) Assume Dirichlet boundary conditions at x = l. Let Λ′ be any
subset of Λ obtained by deleting N elements. Then Λ′ can be reparametrized
as

Λ′ =
N⋃

m=0

{
λ(k)m

}
k∈K,

where for each m, ∣∣∣λ(k)m − πk

lm

∣∣∣ = O
(
|k|−1

)
.

(B) Assume mixed boundary conditions at x = l. Let Λ′ be any subset of Λ obtained
by deleting N elements. Then Λ′ can be reparametrized as

Λ′ =

(
N−1⋃
m=0

{
λ(k)m

}
k∈K

)
∪
{
λ
(k)
N

}
k∈Z,

where for each j < N , ∣∣∣λ(k)m − πk

lm

∣∣∣ = O
(
|k|−1

)
,

and ∣∣∣λ(k)N − (2k + 1)

2

π

lN

∣∣∣ = O
(
(|k|+ 1)−1

)
. (3.21)
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For the rest of this subsection, we will parametrize the frequencies by {λn}.
In what follows, we denote by φn a unit-norm eigenfunction corresponding to λn.

We present the solution, uf , of system (1.1) in the form of the series

uf (x, t) =
∑
n∈N

an(t)φn(x). (3.22)

We wish to find f solving
uf (x, T ) = v(x). (3.23)

For any f ∈ L2(0, T ), multiplying the equation (1.1) by eitµnφn(x) and then
integrating by parts gives for each n

an(t) = −i(φn)
′(0)

∫ t

0

f(τ)ei(t−τ)µn dτ. (3.24)

We say that {an} ∈ ℓ2s if
∑∞

1 |an|2ns <∞.
Proof of Proposition 1: It follows by [28, Chap. 1, Theorem 3] that

|(φn)
′(0)| = O(n). (3.25)

Also, by Theorem 5, either case A or B, the set {eitµn : n ∈ N} is a finite union
of Riesz sequences in L2(0, T ). It follows from (3.24) that {an(T )} ∈ ℓ2−1, so by
definition we have u(x, T ) ∈ H−1,b. The proof of continuity follows from (3.24);
the details are left to the reader.

We now formulate the control problem as a moment problem. Denote en(t) =
exp(iµnt). We set

αn =
ian(T )

(φn)′(0)
. (3.26)

Let 〈·, ·〉T be the standard complex inner product on L2(0, T ). Let fT (t) = f(T−t).
Then by (3.24), the control problem for t = T can be written as

αn =
〈
en, f

T
〉
T
, n ∈ N. (3.27)

There are two important points to be made about this moment problem.
First, it is not certain in the general case that there exists a spectral gap, i.e., that

inf
m ̸=n

|µm − µn| > 0.

As a consequence, it is not obvious that that {en} forms a Riesz sequence. For
this reason, in later sections we will rewrite this problem using Exponential Di-
vided Differences. Second, an important role will be played by the asymptotics of
{(φn)

′(0)}. If Mj = 0 for all j, then it is well known that (3.25) can be strengthened
to

|(φn)
′(0)| � |λn|+ 1 � n. (3.28)

However, as we shall see below (also see [4]), that is not necessarily the case for
Mi > 0.
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3.2. The special case N = 1, q = 0, and Dirichlet boundary conditions
We will assume N = 1, q = 0, with Dirichlet boundary condition at x = l for the
remainder of this subsection. For simplicity of presentation, we also assume M = 1
and l = 1, and set a1 = a. With these assumptions, it is easy to find finer spectral
asymptotics than those given by Theorem 5.

Example 2. We consider the interval (0, 1) with a single mass M = 1 placed
at a = 1/2, and q = 0. The following result was proven in [19], but our proof is
slightly different and serves to highlight the methods of this section. We first state
some results on the spectral data that can be deduced by the methods used in the
proof of Theorem 1 below. It can be shown that frequencies are all real, and after
deletion of one term, can be decomposed as Λ1 ∪ Λ2, with

Λ1 :=
{
λ
(n)
1

}
=
{
2nπ

}∞
1
,

Λ2 :=
{
λ
(n)
2

}
=
{
2nπ − 4

πn
+O(1/n2)

}∞

1
.

It follows that there exists a uniform, positive spectral gap, and that the density
of {µn : n ∈ N} is zero. Furthermore, it follows from [21] that (3.28) holds.

We apply these results to our moment problem. It follows from [8, Theo-
rem 3(ii)], that {eiµnt : n ∈ N} forms a Riesz sequence on L2(0, T ) for any T > 0.
Let u0 ∈ H−1. Then it follows from (3.26) and (3.28) that

∑
n |αn|2 <∞, and so

the moment problem (3.27) is solvable with control f satisfying

||f ||2L2(0,T ) �
∑
n

|αn|2 � ||u0||2H−1,D .

The rest of this subsection is devoted to proving Theorem 1, which we restate
for the reader’s convenience:
Theorem 1 Suppose M = N = 1, l = 1, and q = 0. Then RD = H−1,D if and
only if a ∈ {p/(p+ 1) : p ∈ N}.

Here we will adopt the parametrization (m,n) 7→ λ(n)m , m = 1, 2; n ∈ N,
given by Theorem 5. In what follows, set a = l0, 1 − a = l1. Recall that the
frequency spectrum, after deletion of one term, can be expressed as the union
Λ1 ∪ Λ2, with Λm =

{
λ(n)m

}
satisfying

λ(n)m =
nπ

lm
+O(1/n). (3.29)

Lemma 2. The following are equivalent:
(A) a ∈ {p/(p+ 1) : p ∈ N},
(B) as |n| → ∞, dist(λ(n)2 ,Λ1) → 0.

Proof. That (A) implies (B) follows easily by Theorem 5. Now assume (B). It
follows that, after removal of one frequency, there exists p ∈ N such that

λ
(n)
2 =

pnπ

a
+ o(1).
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But since λ(n)2 = nπ
1−a + O(1/n), we have pnπ

a = nπ
1−a . Solving for a, we conclude

(A). �

In what follows, we denote by
{
φ
(n)
m : n ∈ N

}
the orthonormal eigenfunctions

corresponding to λ(n)m .
For the purposes of our calculations, non-normalized eigenfunctions ϕnm are

chosen so that for x ∈ (0, a) we have ϕnm(x) = sin(λ(n)m x), so that (ϕnm)′(0) = λ(n)m .
Solving for ϕnm on (a, 1) using (2.8) and then setting ϕnm(1) = 0, we obtain the
equation

0 = sin
(
λ(n)m a

)
cos
(
λ(n)m (1− a)

)
+
(
cos
(
λ(n)m a

)
− λ sin

(
λ(n)m a

))
sin
(
λ(n)m (1− a)

)
.

(3.30)
For what follows, we will need the following sharpening of Theorem 5 which is
possible given our special assumptions:

Lemma 3. Suppose a ∈ {p/(p + 1) : p ∈ N}. Then there exists a constant
C = C(p) 6= 0 such that the frequency spectrum decomposes into the following
union:

{(p+ 1)πk : k ∈ N} ∪
{
(p+ 1)πk +

C

k
+O

( 1

k2

)
: k ∈ N

}
∪
{p+ 1

p
πk +O

(1
k

)
: k ∈ N, k 6= mp,m ∈ N

}
.

The proof of this lemma, which is a calculus exercise applied to (3.30), re-
sembles the proof of [19, Prop. II A.2] and is left to the reader.

Corollary 3. Suppose a ∈ {p/(p + 1) : p ∈ N}. Let T > 0. Then the set of
exponentials {

exp(itµn) : n ∈ N
}

forms a Riesz sequence on L2(0, T ).

We now consider the asymptotics of
∣∣(φ(n)

m )′(0)
∣∣, where

{
φ
(n)
m

}
are the unit

norm eigenfunctions. Since

(φ(n)
m )′(0) =

λ(n)m

‖ϕnm‖L2
M

,

we will now compute ‖ϕnm‖L2
M

. Recall

||v||2L2
M

=

∫ a

0

|v(x)|2dx+ |v(a)|2 +
∫ 1

a

|v(x)|2dx.
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First, since ϕ
(n)
m (x) = sin

(
λ(n)m x

)
on (0, a), we have ‖ϕnm‖L2

M (0,a) � 1. Also,
sin2

(
λ(n)m a

)
= O(1). Solving for ϕnm on (a, 1) using (2.8),∫ 1

a

|ϕnm|2 =

∫ 1

a

∣∣ sin (λ(n)m a
)
cos
(
λ(n)m (x− a)

)
+
(
cos
(
λ(n)m a

)
− λ(n)m sin

(
λ(n)m a

))
sin
(
λ(n)m (x− a)

)∣∣2dx
=

∫ 1

a

∣∣ sin (λ(n)m x
)
− λ(n)m sin

(
λ(n)m a

)
sin
(
λ(n)m (x− a)

)∣∣2dx.
To estimate this last integral, we must consider separate cases.

Case i: m = 1. In this case, by (3.29),∣∣λ(n)1 sin
(
λ
(n)
1 a

)∣∣ = O(1). (3.31)

Thus
∫ 1

a
|ϕnm|2 is bounded as a function of n, and hence∣∣(φ(n)

m )′(0)
∣∣ � ∣∣λ(n)m

∣∣ � |n|, (3.32)

from which (3.28) follows.
Case ii(a): m = 2 and a ∈ {p/(p+1) : p ∈ N}. In this case l1 = 1/(p+1),

so we have by (3.29) that ∣∣λ(n)2 sin
(
λ
(n)
2 a

)∣∣ = O(1).

We now prove the theorem in this case. Arguing as in Case i, we obtain (3.32).
Also, by Corollary 3, we see {

exp(itµn) : n ∈ N
}

forms a Riesz sequence in L2(0, T ). Thus the moment problem (3.27) is solvable for
any sequence {αn} ∈ ℓ2. Thus, by (3.26), the reachable set of Fourier coefficients
{an(T )} equals ℓ2−1, so the reachable set is R = H−1,D.

Case ii(b): m = 2 and a 6= p/(p + 1). By Lemma 2, there exists a subse-
quence, which we will label

{
λ̃
(n)

2

}
, of

{
λ
(n)
2

}
, and there exists δ > 0 such that∣∣∣ sin(λ̃(n)2 a

)∣∣∣ > δ. (3.33)

Let ϕ̃n2 be the associated eigenfunction with (ϕ̃n2 )
′(0) = λ̃

(n)

2 , and let φ̃n
m be the

associated normalized eigenfunction. We have∣∣∣λ̃(n)2 sin
(
λ̃
(n)

2 a
)∣∣∣ � n.

Thus ∥∥ϕ̃n2∥∥L2(0,1)
� n,

and hence
(φ̃n

2 )
′(0) � 1. (3.34)



108 S. Avdonin and J. Edward

We construct an unreachable state in H−1,D(0, 1) as follows. Let T > 0. Let
{cn} ∈ ℓ2−1 \ ℓ2. Let

v(x) =
∞∑
k=1

cnφ̃n
2 (x).

It is easy to see that v ∈ H−1,D = H−1(0, 1). Furthermore, the associated moment
problem (3.26) can be written

cn

(φ̃n
2 )

′(0)
= 〈fT , ẽn〉,

where {ẽn} is a Riesz sequence in L2(0, T ). Clearly, this moment problem is un-
solvable.

Corollary 4. Suppose a ∈ {p/(p+ 1) : p ∈ N}. Let T > 0. For any v ∈ H−1,D =
H−1(0, 1), there exists a control f ∈ L2(0, T ) such at the solution u to the system
(1.1) satisfies u(x, T ) = v(x) in the sense of H−1, and ||f ||L2(0,T ) � ||v||H−1(0,T ).

4. Riesz bases associated to the string equation
4.1. Divided differences
Definition 6. Assume {µj} is a non-repeating sequence. The exponential divided
difference (EDD) of order zero for {eiµnt} is [eiµ1t](t) := eiµ1t. The EDD of order
n− 1 is given by

[eiµ1t, . . . , eiµnt] =
[eiµ1t, . . . , eiµn−1t]− [eiµ2t, . . . , eiµnt]

µ1 − µn
.

One then easily derives the formula

[eiµ1t, . . . , eiµnt] =
n∑

k=1

eiµkt∏
j ̸=k(µk − µj)

.

It is shown in [7] that the functions [eiµ1t], . . . , [eiµ1t, . . . , eiµnt] depend on the
parameters µj continuously and symmetrically.

Assume either Dirichlet or mixed boundary conditions at x = l. Recall the set
of eigenfrequencies Λ = {λk : k ∈ N}. We apply divided differences to

{
ei(λn)

2t
}

,
using a partition of Λ described in [7] that we now sketch. For any z ∈ C, denote
by Dz(r) the disk with center z and radius r. Let G(p)(r), p = 1, 2, . . . be the
connected components of the union ∪z∈ΛDz(r). Write Λ(p)(r) for the subset of Λ
lying in G(p), Λ(p) :=

{
λi|λi ∈ G

(p)
0 (r)

}
. By Theorem 5, Λ can be decomposed into

the union of N + 1 uniformly discrete sets, which we label Λj . Let
δj := inf

γ ̸=µ;γ,µ∈Λj

|γ − µ|, δ := min
j
δj .

Then for r < r0 := δ
2N+2 , the number N (p)(r) of elements of Λ(p) is at most N+1.

We now fix such r. In what follows, we refer to the sets Λ(p) as “clusters”. We use
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the divided difference scheme outlined above to partition Λ into clusters. In what
follows, we denote the frequencies of the system (2.8) by

Λ =
{
λpj : p ∈ N, j = 1, . . . ,N (p)

}
, (4.35)

with φp
j the corresponding orthonormal eigenfunctions. In what follows, the reader

should distinguish between {λpj}, where the frequencies are partitioned according
to clustering, and

{
λ(n)m

}
, where the partition is associated to the subintervals

(am, am+1), m = 0, . . . , N . We note for future reference that we have

λpj � p, ∀j = 1, . . . ,N (p).

Set µp
j = (λpj )

2. We now use the partition above to construct Exponential
Divided Differences for the exponential family {eiµ

p
j t : p ∈ N, j = 1, . . . ,N (p)} for

the either the Dirichlet or the mixed spectrum. Thus, with b = D or M, we denote

Eb =
⋃
p∈N

{[
eiµ

p
1t
]
,
[
eiµ

p
1t, eiµ

p
2t
]
, . . . ,

[
eiµ

p
1t, . . . , e

iµp

N(p)
t]}

.

By Theorem 5, the spectral density of {µp
j} equals zero, and so it follows from [8,

Theorem 3] that for any T > 0, Eb forms Riesz sequence on L2(0, T ).

We conclude this section by proving Proposition 3. Thus, assuming the Dirich-
let boundary condition at x = l, we wish to prove

#
{
p : N p = N + 1

}
= ∞ (4.36)

In what follows, for positive integer n, denote zn = (zn0 , . . . , z
n
N ) to be a vector in

ZN+1. We will construct a sequence {zn} such that

lim
n→∞

∣∣∣zn0
l0

−
znj
lj

∣∣∣ = 0, j = 1, . . . , N. (4.37)

In view of the eigenvalue asymptotics given in Theorem 5(A), this proves (4.36).

Lemma 4. Let ϵ > 0. Let U be the set of (x0, . . . , xN ) ∈ RN+1 solving the system
x0
l0

− xj
lj
< ϵ, j = 1, . . . , N. (4.38)

Then U has the following properties:
(A) U is open, convex, and symmetric about the origin,
(B) U has infinite volume.

Proof. Part (A) is obvious. To prove part (B), consider first the system
x0
l0

− xj
lj

= 0, j = 1, . . . , N.

We claim the solution set to this system is a one-dimensional subspace in RN+1,
which we denote V . In fact, rewriting the system in matrix form, it is easy to see
that the matrix has rank N , so the kernel, which is V, has dimension 1.
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Since V ⊂ U , this shows U is non-empty. Let v = (v0, . . . , vN ) be a spanning
vector for V . Then clearly for each j, we have

∣∣ v0
l0

− vj
lj

∣∣ = 0. This implies that
if x ∈ U , then by (4.38) we have x + tv ∈ U for any t ∈ R, which means U is a
cylinder in RN+1. Thus U has infinite volume, and the lemma is proved. �

We now complete the proof of the proposition. Fix ϵ1 > 0, and set ϵ = ϵ1 in
Lemma 4. We apply a theorem of Minkowski (see [11, Appendix B, Theorem 2])
to conclude there exists an integer-entry vector z1 in U .

Case 1: z1 ∈ V . In this case, setting zn = nz1, with n ∈ N, we are done.
Case 2: z1 /∈ V . In this case, let

ϵ2 = min

(
ϵ1
2
,min

j

(∣∣∣∣z10l0 −
z1j
lj

∣∣∣∣)).
Let U2 be the solution set to (4.38) with ϵ = ϵ2. Arguing as above, there exists an
integer-entry vector z2 in U2.

We can now iterate this argument, using Case 1 or Case 2, to obtain a se-
quence {(ϵn, zn)}, with ϵn tending to zero, and zn integral solutions to (4.38) with
ϵ = ϵn.

Proposition 3 is illustrated in Example 2 above, where M = N = 1, q = 0,
and l0 = l1 = 1/2. Then Λ splits into two subsequences, {2πn}∞1 and {ωn}∞1 ,
with ωn = 2πn− 4

πn +O
(
1/n2

)
. Thus the eigenfrequency set naturally splits into

clusters of two.

5. Proof of main results
5.1. The reachable set
We begin by stating the following result.
Theorem 6. Assume either Dirichlet or mixed boundary conditions at x = l.
Assume 0 is not in the spectrum of Ab. Let

{
λpj : p ∈ K, j = 1, . . . ,N (p)

}
be the

set of frequencies, with associated eigenfunctions
{
φp
j : p ∈ N, j = 1, . . . ,N (p)

}
orthonormal with respect to L2

M . Then for l = 0, 1, 2, . . . ,
Np∑
j=k

(λpj )
l−1(φp

j )
′(0)φp

j (x)
k−1∏
l=1

(λpj − λpl )
∣∣∣ p ≥ 1, k = 1, . . . ,N (p)


forms a Riesz basis of W b

−l.

Here we use the convention that
0∏

j=1

(λpn − λpj ) = 1.

For Dirichlet boundary conditions at x = l, this result was proven in [5]. How-
ever, the proof goes over with minor modifications to the case of mixed boundary
condition at x = l. The details are left to the reader.
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We wish to rewrite the moment problem (3.27) above in terms of our EDD.
For λpk as above and ap1, . . . , a

p
n ∈ C, we construct divided differences of these

numbers iteratively by [ap1]
′ = ap1, and

[ap1, . . . , a
p
n]

′ =
[ap1, . . . , a

p
n−1]

′ − [ap2, . . . , a
p
n]

′

µp
1 − µp

n
.

The following analogue of Lemma 8 in [5] holds, by the same proof as that
lemma. For n = 1, . . . ,N (p),

apn =
n∑

k=1

[ap1, . . . , a
p
k]

′
k−1∏
j=1

(
µp
n − µp

j

)
.

Define

αp
k = i

apk(T )

(φp
k)

′(0)
.

We rewrite (3.27) in the form

[αp
1, . . . , α

p
k]

′ =
〈
[ep1, . . . , e

p
k], f

T 〉
, p ∈ N, k = 1, . . . ,N (p). (5.39)

In what follows, we write θpk = −iφp
k(x)(φ

p
k)

′(0). Thus

u(x, T ) =
∞∑
p=1

N (p)∑
k=1

apk(T )φ
p
k(x)

=

∞∑
p=1

N (p)∑
k=1

αp
kθ

p
k

=
∞∑
p=1

N (p)∑
n=1

θpn

n∑
k=1

[αp
1, . . . , α

p
k]

′
k−1∏
l=1

(µp
j − µp

l ),

=

∞∑
p=1

N (p)∑
k=1

[αp
1, . . . , α

p
k]

′(

N (p)∑
j=k

θpj

k−1∏
l=1

(µp
j − µp

l )).

(5.40)

Since Eb forms a Riesz sequence of L2(0, T ), it follows from (5.39) that{
[αp

1, . . . , α
p
k]

′} ∈ ℓ2 if and only if f ∈ L2(0, T ). Thus the reachable set, which
we denote Rb, with b equal to D or M, will be given by

Rb =


∞∑
p=1

N (p)∑
k=1

cp,k

N (p)∑
j=k

θpj

k−1∏
l=1

(
µp
j − µp

l

) , with cp,k ∈ ℓ2

 .

Thus we have the following:

Theorem 7. Let b equal M or D, and let v ∈ Rb. For any T > 0, there exists
f ∈ L2(0, T ) such that uf (x, T ) = v(x) as elements of H−1,b. Furthermore, we
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have
||f ||2L2(0,T ) �

∑
p,k

∣∣[αp
1, . . . , α

p
k]

′∣∣2.
Proof. We assume for now that 0 is not in the spectrum of Ab. The simple mod-
ifications in the other case will be pointed out at the end of the proof. In what
follows, we use our Riesz bases to study some local properties of the functions in
Rb. First,we prove Theorem 3, which we restate for the reader’s convenience.
Theorem 3. The following inclusions are valid:

W b
−1 ⊂ Rb ⊂ H−1,b.

Furthermore, let

v =
∞∑
p=1

Np∑
k=1

cp,k

Np∑
j=k

θpj

k−1∏
l=1

(µp
j − µp

l )

 ∈ Rb.

Then there exist positive constants C1, C2 such that

C1||v||2W b
−N−1

≤
∞∑
p=1

Np∑
k=1

|cp,k|2 ≤ C2||v||2W b
−1
. (5.41)

Here ||u||2
W b

−1
is possibly infinite, in which case the second inequality is vacuous.

We adopt the following notation:

ξ(p, k) :=
Np∑
j=k

θpj

k−1∏
l=1

(λpj − λpl ), ζ(p, k) =
Np∑
j=k

θpj

k−1∏
l=1

(
(λpj )

2 − (λpl )
2
)
. (5.42)

Proof. The key is to prove some relations between the ζ and ξ. Fix p in what
follows; when convenient we will drop from the notation the p dependence.

We first illustrate the computations on the simple cases k = 1, 2. First, re-
calling the convention

∏0
1 = 1,

ξ(1) =
N∑
j=1

θj = ζ(1).

Next, we derive a relation for k = 2. We have
ζ(2) = θ2

(
(λ2)

2 − (λ1)
2
)
+ θ3

(
(λ3)

2 − (λ1)
2
)
+ · · ·+ θN

(
(λN )2 − (λ1)

2
)

= (λ2 + λ1)
(
θ2(λ2 − λ1) + θ3(λ3 − λ1) + · · ·+ θN (λN − λ1)

)
+
(
θ3(λ3 − λ1)[(λ3 + λ1)− (λ2 + λ1)]

+ · · ·+ θN (λN − λ1)[(λN + λ1)− (λ2 + λ1)]
)

= (λ2 + λ1)ξ(2)

+ (θ3(λ3 − λ2)(λ3 − λ1) + · · ·+ θN (λN − λ2)(λN − λ1))

= (λ2 + λ1)ξ(2) + ξ(3).

(5.43)
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We now exhibit the algebra that we apply for general k, starting with k = 3.
Fix k. The zeta term corresponding to k is

ζ(k) =

(
θk

k−1∏
l=1

(
(λk)

2 − (λl)
2
)
+ · · ·+ θN

k−1∏
l=1

(
(λN )2 − (λl)

2
))

=

(
k−1∏
l=1

(λk + λl)

)
ξ(k)

+

(
θk+1

k−1∏
l=1

(λk+1 − λl)

[
k−1∏
1

(λk+1 + λl)−
k−1∏
1

(λk + λl)

]

+ · · ·+ θN

k−1∏
l=1

(λN − λl)

[
k−1∏
1

(λN + λl)−
k−1∏
1

(λk + λl)

])
.

For each j > k, (λj − λk) divides
[∏k−1

1 (λj + λl) −
∏k−1

1 (λk + λl)
]
, so there

exists a polynomial P (k,k+1) of order (k − 2), with coefficients depending only on
k, such that the last two lines equal(

P (k,k+1)(λ1, . . . , λk, λk+1) θk+1

k∏
l=1

(λk+1 − λl)

+ · · ·+ P (k,k+1)(λ1, . . . , λk, λN ) θN

k∏
l=1

(λN − λl)

)
.

(5.44)

Furthermore, there exists a polynomial P (k,k+2) of order (k − 3) such for j =
K + 2, . . . ,N , we have

P (k,k+1)(λ1, . . . , λk, λj)− P (k,k+1)(λ1, . . . , λk, λk+1)

= (λj − λk+1) P
(k,k+2)(λ1, . . . , λk, λk+1, λj).

Thus (5.44) equals

P (k,k+1)(λ1, . . . , λk, λk+1)ξ(k + 1)

+

(
P (k,k+2)(λ1, . . . , λk, λk+1, λk+2)θk+2

k+1∏
l=1

(λk+2 − λl)

+ · · ·+ P (k,k+2)(λ1, . . . , λk, λk+1, λN )θN

k+1∏
l=1

(λN − λl)

)
.

In what follows, we label P (k,k) =
∏k−1

l=1 (λk + λl). Iterating the argument
above, we get

ζ(k) =
N∑
j=k

P (k,j)ξ(j), (5.45)
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where P (k,j) denotes P (k,j)(λ1, . . . , λk, . . . , λj), and P (k,j) is a polynomial of degree
(2k − j − 1) in (λ1, . . . ).

We extend P := P (k,j) to an N p ×N p matrix by setting P k,j = 0 for j < k.
Thus P is an upper triangular matrix that depends on p. The diagonal elements,
which are also the eigenvalues, are by (5.45)

1, (λp1 + λp2), . . . ,

(Np−1∏
l=1

(λpNp + λpl )

)
.

For future reference, we define Q = Q(k,j)(p) to be the inverse of P . Then Q is
upper-triangular and the entries to Q are bounded uniformly in p. Let || · ||∗ be the
standard norm on CN (p) . It follows that for any c ∈ CN (p) , there exists positive
constant C, independent of p, such that

C||c||∗ ≤ ||Pc||∗, ∀p. (5.46)

Now suppose u ∈ Rb. Thus

u =
∑
p

Np∑
k=1

ck,pζ(p, k)

with {ck,p} ∈ ℓ2. Fix a p for the moment. By (5.45) we have

up :=
N∑
k=1

cp,kζ(p, k) =
N∑
k=1

cp,k

N∑
j=1

P (k,j)ξ(p, j)

=
N∑
j=1

ξ(p, j)
N∑
k=1

cp,kP
(k,j).

Since {ξ(p, j)} forms a Riesz basis of W b
−1, we have

‖up‖2W b
−1

�
N∑
j=1

∣∣∣∣∣
N∑
k=1

cp,kP
(k,j)

∣∣∣∣∣
2

=
∥∥P tc

∥∥2
∗ ≥ C

N∑
k=1

|cp,k|2.

Here P t denotes the transpose of P , and the constant C is independent of p. Thus
there exists a positive constant C such that

‖u‖2W b
−1

≥ C
∑
p

‖up||2W b
−1

≥ C1

∑
p

Np∑
k=1

|cp,k|2.

We now show there exists a positive constant C2 such that

||u||2W b
−N−1

≤ C2

∑
p

Np∑
j=1

|cp,k|2.
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The details are as follows. Suppose

u =
∑
p

Np∑
k=1

cp,kζ(p, k) ∈ Rb.

Fix p for the moment. Then

up =
N∑
k=1

cp,kζ(k) =
N∑
k=1

cp,k

N∑
j=k

P (k,j)ξ(j) =
N∑
j=1

ξ(j)

j∑
k=1

cp,kP
(k,j)

=
N∑
j=1

(λpj )
(N−1)ξ(j)

N∑
k=1

cp,kP
(k,j)/(λpj )

(N−1).

Hence using Theorem 6, there exists positive constant C independent of p such
that

||up||2W b
−N

≤ C
N∑
j=1

∣∣∣∣∣∣
N∑
k=j

cp,kP
(j,k)/(λpj )

(N−1)

∣∣∣∣∣∣
2

, ∀p.

By the nature of the clusters λpj � p, and hence it follows that P (k,j) � p2k−j−1.
Hence P (k,j)/(λj)

(N−1) � 1 if (k, j) = (N ,N ) = (N + 1, N + 1) as p → ∞, and
P (k,j)/(λj)

N = O(1/p) otherwise. Thus

||u||W b
−N−1

≤
∑
p

||up||W b
−N−1

≤ C
∑
p

N (p)∑
j=1

∣∣∣∣∣∣
N (p)∑
k=j

cp,kP
(k,j)/(λpj )

N (p)

∣∣∣∣∣∣
2


1/2

≤ C

∑
p

N (p)∑
k=1

|cp,k|2
1/2

.

This concludes the proof of (5.41).
We now prove W b

−1 ⊂ Rb. The key fact, which follows easily from (5.45), is
that for fixed p,

ξ(p, k) =

Np∑
j=k

Q(k,j)ζ(p, j). (5.47)

Let u :=
∑

p

∑Np

k=1 dp,kξ(p, k) ∈W b
−1, so {dp,k} ∈ ℓ2. For fixed p,

N∑
k=1

dp,kξ(p, k) =
N∑
j=1

ζ(p, j)
N∑
k=1

Q(k,j)dp,k.

Setting cp,j =
∑N

k=1Q
(k,j)dp,k, it is easy to check that

∑
p,j |cp,j |2 < ∞, proving

u ∈ Rb.
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Finally, consider the case where, say, λ11 = 0. In this case, we can modify our
clustering algorithm so that λ11 is not clustered with any other frequency. It is not
hard to show in this case that for l ∈ N,

φ1
1 ∪


Np∑
j=k

(
λpj
)l−1

(φp
j )

′(0)φp
j (x)

k−1∏
l=1

(λpj − λpl )
∣∣∣ p ≥ 2, k = 1, . . . ,N (p)


forms a Riesz basis of W b

−l. The proof above now applies word for word. We remark
that the same modification works in the proofs below. �

The following now follows from (5.39).

Corollary 5. Let v ∈ Rb. For any T > 0, there exists f ∈ L2(0, T ) such that
uf (x, T ) = v(x) as elements of H−1(0, l). Furthermore, there exist positive con-
stants C1, C2 such that

C1||v||2W b
−N−1

≤ ||f ||2L2(0,T ) ≤ C2||v||2W b
−1
.

We now prove Proposition 2, which we restate for the reader’s convenience.

Proposition 2. Assume b equals either D or M. Let J ∈ {1, . . . , N + 1}. The
condition

#
{
p : N p ≥ J

}
= ∞, (5.48)

is necessary and sufficient for there to exist
u ∈ Rb ∩

(
W b

−J \W b
−J+1

)
.

Proof. First we prove sufficiency. Let ϵ ∈ (0, 1/10). Define

cp,k =

{
p−ϵ−1/2, if k = J,
0, otherwise.

Thus

u =
∞∑
p=1

cp,J θ
p
J

J−1∏
l=1

(
µp
J − µp

l

)
∈ Rb.

We have

u =

∞∑
p=1

(
cp,J

J−1∏
l=1

(λpJ + λpl )

)
θpJ

J−1∏
l=1

(λpJ − λpl ). (5.49)

Let lI be the length of the shortest subinterval, and lJ the length of the
longest. It is easy to see that for all p sufficiently large,

πp

lJ
− 1 < λpk <

πp

lI
+ 1, ∀k such that 1 ≤ k ≤ J.

Thus we have
J−1∏
l=1

(
λpJ + λpl

)
� pJ−1.



Spectral clusters, asymmetric spaces, and boundary control 117

Thus by Theorem 6, u ∈W b
−J−1 \W b

−J . To prove necessity, suppose N (p) ≥ J for
only finitely many p. Then for any u ∈ Rb with coefficients {cp,k}, the finite sum

uJ :=
∑
p

N (p)∑
k=J

cp,k

N (p)∑
j=k

θpk

k−1∏
l=1

(µp
j − µp

l )

must be in W b
1 . It is not hard to show that u−uJ ∈W b

−J+1. In fact, since k ≤ J−1,
this follows from the estimate

k−1∏
l=1

(
λpJ + λpl

)
< CpJ−2,

together with a factorization analogous to (5.49) and Theorem 6. �

5.2. Proofs of Corollaries 1 and 2
Assume the N masses are placed so that

lj
lN

∈ Q and lj
lN

6= 2m

2n+ 1
, ∀m,n ∈ N, j = 0, . . . , N − 1.

In this case, by Theorem 5(B), the frequencies
{
λ
(n)
N

}
are uniformly separated

from the frequency set
{
λ
(n)
j : j = 0, . . . , N − 1

}
. Thus by Proposition 2, we have

RM ⊂ WM
(−N). This implies that for ϕ ∈ RM, ϕ|(aN ,l) ∈ L2(aN , l). Of course, by

an analogue of Theorem 3, we also have ϕ ∈ H−1,M(0, l).
Now we specialize to the case N = 1. By Theorem 3, we can conclude RM =

WM
−1 .
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The second Weyl coefficient
for a first order system
Zhirayr Avetisyan, Johannes Sjöstrand and Dmitri Vassiliev

Abstract. For a scalar elliptic self-adjoint operator on a compact manifold
without boundary we have two-term asymptotics for the number of eigenval-
ues between 0 and λ when λ → ∞, under an additional dynamical condition.
(See [3, Theorem 3.5] for an early result in this direction.)

In the case of an elliptic system of first order, the existence of two-term
asymptotics was also established quite early and as in the scalar case Fourier
integral operators have been the crucial tool. The complete computation of
the coefficient of the second term was obtained only in the 2013 paper [2]. In
the present paper we simplify that calculation. The main observation is that
with the existence of two-term asymptotics already established, it suffices to
study the resolvent as a pseudodifferential operator in order to identify and
compute the second coefficient.

Mathematics Subject Classification (2010). Primary 35P20; Secondary
35J46, 35R01.
Keywords. Spectral theory, asymptotic distribution of eigenvalues.

1. Statement of the problem
Let A be a first order linear psedodifferential operator acting on m-columns of
complex-valued half-densities over a connected closed (i.e. compact and without
boundary) n-dimensional manifold M . Throughout this paper we assume that
m,n ≥ 2.

Let A1(x, ξ) and Asub(x, ξ) be the principal and subprincipal symbols of A.
Here x = (x1, . . . , xn) denotes local coordinates and ξ = (ξ1, . . . , ξn) denotes the
dual variable (momentum). The principal and subprincipal symbols are m × m
matrix-functions on T ∗M \ {ξ = 0}.

Recall that the concept of subprincipal symbol originates from the classical
paper [4] of J.J. Duistermaat and L. Hörmander: see formula (5.2.8) in that paper.
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Unlike [4], we work with matrix-valued symbols, but this does not affect the formal
definition of the subprincipal symbol.

We assume our operator A to be formally self-adjoint (symmetric) with
respect to the standard inner product on m-columns of complex-valued half-
densities, which implies that the principal and subprincipal symbols are Hermitian.
We also assume that our operator A is elliptic:

detA1(x, ξ) 6= 0, ∀(x, ξ) ∈ T ∗M \ {0}. (1.1)

Let h(j)(x, ξ) be the eigenvalues of the matrix-function A1(x, ξ). Throughout
this paper we assume that these are simple for all (x, ξ) ∈ T ∗M\{0}. The ellipticity
condition (1.1) ensures that all our h(j)(x, ξ) are nonzero.

We enumerate the eigenvalues of the principal symbol h(j)(x, ξ) in increasing
order, using a positive index j = 1, . . . ,m+ for positive h(j)(x, ξ) and a negative
index j = −1, . . . ,−m− for negative h(j)(x, ξ). Here m+ is the number of positive
eigenvalues of the principal symbol and m− is the number of negative ones. Of
course, m+ +m− = m.

Let λk and vk(x) be the eigenvalues and the orthonormal eigenfunctions of
the operator A; the particular enumeration of these eigenvalues (accounting for
multiplicities) is irrelevant for our purposes. Each vk(x) is, of course, an m-column
of half-densities.

Let us define the two local counting functions

N±(x, λ) :=

{
0 if λ ≤ 0,∑

0<±λk<λ ‖vk(x)‖2 if λ > 0.
(1.2)

The function N+(x, λ) counts the eigenvalues λk between zero and λ, whereas
the function N−(x, λ) counts the eigenvalues λk between −λ and zero. In both
cases counting eigenvalues involves assigning them weights ‖vk(x)‖2. The quanti-
ties ‖vk(x)‖2 are densities on M and so are the local counting functions N±(x, λ).

Let ρ̂ : R → C be a smooth function such that ρ̂(t) = 1 in some neighbour-
hood of 0 and the support of ρ̂ is sufficiently small. Here ‘sufficiently small’ means
that supp ρ̂ ⊂ (−T,T), where T is the infimum of the lengths of all possible loops.
A loop is defined as follows. For a given j, let (x(j)(t; y, η), ξ(j)(t; y, η)) denote the
Hamiltonian trajectory originating from the point (y, η), i.e. solution of the system
of ordinary differential equations (the dot denotes differentiation in time t)

ẋ(j) = h
(j)
ξ (x(j), ξ(j)), ξ̇(j) = −h(j)

x (x(j), ξ(j))

subject to the initial condition (x(j), ξ(j))
∣∣
t=0

= (y, η). Suppose that we have a
Hamiltonian trajectory (x(j)(t; y, η), ξ(j)(t; y, η)) and a real number T > 0 such
that x(j)(T ; y, η) = y. We say in this case that we have a loop of length T origi-
nating from the point y ∈ M .

We denote ρ(λ) := F−1
t→λ[ρ̂(t)], where F−1 is the inverse Fourier transform.

See [2, Sect. 6] for details.
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Further on we will deal with the mollified counting functions (N± ∗ ρ)(x, λ)
rather than the original discontinuous counting functions N±(x, λ). Here the star
stands for convolution in the variable λ. More specifically, we will deal with the
derivative, in the variable λ, of the mollified counting functions. The derivative
will be indicated by a prime.

It is known [1, 2, 9, 10, 11, 12, 13, 15, 16] that the functions (N ′
± ∗ ρ)(x, λ)

admit asymptotic expansions in integer powers of λ :

(N ′
± ∗ρ)(x, λ) = a±n−1(x)λ

n−1+a±n−2(x)λ
n−2+a±n−3(x)λ

n−3+ · · · as λ → +∞.
(1.3)

Definition 1.1. We call the coefficients a±k (x) appearing in formula (1.3) local
Weyl coefficients.

Note that our definition of Weyl coefficients does not depend on the choice
of mollifier ρ.

It is also known [1, 2, 9, 10, 11, 12, 13, 15, 16] that under appropriate geo-
metric conditions we have

N±(x, λ) =
a±n−1(x)

n
λn +

a±n−2(x)

n− 1
λn−1 + o(λn−1) as λ → +∞. (1.4)

Remark 1.2. Our Definition 1.1 is somewhat nonstandard. It is customary to
call the coefficients appearing in the asymptotic expansion (1.4) Weyl coefficients
rather than those in (1.3). However, for the purposes of this paper we will stick
with Definition 1.1.

Further on we deal with the coefficients a+k (x). It is sufficient to derive formu-
lae for the coefficients a+k (x) because one can get formulae for a−k (x) by replacing
the operator A by the operator −A.

If the principal symbol of our operator A is negative definite, then the op-
erator has a finite number of positive eigenvalues and all the coefficients a+k (x)
vanish. So further on we assume that the principal symbol has at least one posi-
tive eigenvalue. In other words, we assume that m+ ≥ 1.

The task at hand is to write down explicit formulae for the coefficients
a+n−1(x) and a+n−2(x) in terms of the principal and subprincipal symbols of the
operator A.

The explicit formula for the coefficient a+n−1(x) has been known since at least
1980, see, for example, [9, 10, 11, 12, 13, 15, 16]. It reads

a+n−1(x) =
n

(2π)n

m+∑
j=1

∫
h(j)(x,ξ)<1

dξ , (1.5)

where dξ = dξ1 · · · dξn.
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The explicit formula for the coefficient a+n−2(x) was derived only in 2013, see
[2, formula (1.24)]. This formula reads

a+n−2(x) = −n(n− 1)

(2π)n

m+∑
j=1

∫
h(j)(x,ξ)<1

([
v(j)
]∗
Asubv

(j) − i

2

{[
v(j)
]∗
, A1 − h(j), v(j)

}
+

i

n− 1
h(j){[v(j)]∗, v(j)}

)
(x, ξ) dξ .

(1.6)

Here curly brackets denote the Poisson bracket on matrix-functions

{P,R} := PxαRξα − PξαRxα

and its further generalisation

{F,G,H} := FxαGHξα − FξαGHxα , (1.7)

where the subscripts xα and ξα indicate partial derivatives and the repeated index
α indicates summation over α = 1, . . . , n.

Note that if q(x, ξ) is a function on T ∗M \ {0} positively homogeneous in ξ
of degree 0, then ∫

h(j)(x,ξ)<1

q(x, ξ) dξ

is a density on M . Hence, the quantities (1.5) and (1.6) are densities.
The problem with the derivation of formula (1.6) given in [2] was that it was

very complicated. The aim of the current paper is to provide an alternative, much
simpler, derivation of formula (1.6).

It may be that the approach outlined in the current paper would allow one,
in the future, to calculate further coefficients in the asymptotic expansion (1.3).
Note that for an operator that is not semibounded this is a nontrivial task.

2. Strategy for the evaluation of the second Weyl coefficient
Let z ∈ C, Im z > 0. Our basic idea is to consider the resolvent (A − zI)−1 and,
by studying it, recover the second Weyl coefficient a+n−2(x). Unfortunately, the
operator (A − zI)−1 is not of trace class, therefore one has to modify our basic
idea so as to reduce our analysis to that of trace class operators.

Let us consider the self-adjoint operator

i
[
2(A− zI)1−n − (A− 2zI)1−n − 2(A− z̄I)1−n + (A− 2z̄I)1−n

]
. (2.1)

We claim that the operator (2.1) is of trace class. In order to justify this claim we
calculate below, for fixed z, the principal symbol of the operator (2.1) and show
that it has degree of homogeneity −n− 1.
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Let B be the parametrix (approximate inverse) of A, see [18, Sect. 5] for
details. Then, modulo L−∞(M) (integral operators with infinitely smooth integral
kernels), we have

A− zI ≡ A− zAB = A(I − zB),

(A− zI)n−1 ≡ An−1(I − zB)n−1,

(A− zI)1−n ≡ (I − zB)1−nA1−n ≡ (I − zB)1−nBn−1. (2.2)
But

(I − zB)1−n ≡ I + (n− 1)zB − n(n− 1)

2
(zB)2 + · · · , (2.3)

where the expansion is understood as an asymptotic expansion in smoothness (each
subsequent term is a pseudodifferential operator of lower order). Substituting (2.3)
into (2.2), we get

(A− zI)1−n ≡ Bn−1 + (n− 1)zBn − n(n− 1)

2
z2Bn+1 + · · · . (2.4)

Replacing z by 2z, we get
(A− 2zI)1−n ≡ Bn−1 + 2(n− 1)zBn − 2n(n− 1)z2Bn+1 + · · · . (2.5)

Formulae (2.4) and (2.5) imply
2(A− zI)1−n − (A− 2zI)1−n ≡ Bn−1 + n(n− 1)z2Bn+1 + · · · . (2.6)

Replacing z by z̄, we get
2(A− z̄I)1−n − (A− 2z̄I)1−n ≡ Bn−1 + n(n− 1)z̄2Bn+1 + · · · . (2.7)

Formulae (2.6) and (2.7) imply that the operator (2.1) is a pseudodifferential
operator of order −n− 1 with principal symbol −4n(n− 1)(Re z)(Im z)A−n−1

1 .
It might seem more natural to consider the operator

(A− zI)−n−1 (2.8)
instead of (2.1). The operator (2.8) is also of order −n − 1, hence, trace class.
Unfortunately, the algorithm presented in the remainder of this section won’t work
for the operator (2.8). The reason is that if we start with (2.8), we end up with
the integral ∫ +∞

0

µn−2

(µ− z)n+1
dµ , (2.9)

where the exponent in the numerator is lower that the exponent in the denominator
by more than one. The integral (2.9) is a polynomial in 1

z (no logarithm!) and it
does not exhibit a jump when z crosses the positive real axis. Starting with (2.8)
one can recover a+n−2−(−1)na−n−2 , but it appears to be impossible to recover a+n−2

itself. We need a logarithm in order to separate contributions from positive and
negative eigenvalues.

The operator (2.1) is a pseudodifferential operator of order −n − 1 , hence
it has a continuous integral kernel. This observation allows us to introduce the
following definition.
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Definition 2.1. By f(x, z) we denote the real-valued continuous density obtained
by restricting the integral kernel of the operator (2.1) to the diagonal x = y and
taking the matrix trace tr .

The explicit formula for our density is

f(x, z) = i
∑
λk

[
2

(λk − z)n−1
− 1

(λk − 2z)n−1

− 2

(λk − z̄)n−1
+

1

(λk − 2z̄)n−1

]
‖vk(x)‖2 .

(2.10)

This formula can be equivalently rewritten as

f(x, z) = i

∫ +∞

0

[
2

(µ− z)n−1
− 1

(µ− 2z)n−1

− 2

(µ− z̄)n−1
+

1

(µ− 2z̄)n−1

]
N ′

+(x, µ) dµ

− (−1)n
2n − 1

2n−1
i

[
1

zn−1
− 1

z̄n−1

] ∑
λk=0

‖vk(x)‖2

− (−1)n i

∫ +∞

0

[
2

(µ+ z)n−1
− 1

(µ+ 2z)n−1

− 2

(µ+ z̄)n−1
+

1

(µ+ 2z̄)n−1

]
N ′

−(x, µ) dµ .

(2.11)

The expression in the middle line of (2.11) is the contribution from the kernel
(eigenspace corresponding to the eigenvalue zero) of the operator A.

Let us also introduce another density

fρ(x, z) := i

∫ +∞

0

[
2

(µ− z)n−1
− 1

(µ− 2z)n−1

− 2

(µ− z̄)n−1
+

1

(µ− 2z̄)n−1

]
(N ′

+ ∗ ρ)(x, µ) dµ

− (−1)n i

∫ +∞

0

[
2

(µ+ z)n−1
− 1

(µ+ 2z)n−1

− 2

(µ+ z̄)n−1
+

1

(µ+ 2z̄)n−1

]
(N ′

− ∗ ρ)(x, µ) dµ .

(2.12)

Put z = λeiφ, where λ > 0 and 0 < φ < π. We will now fix the angle φ and
examine what happens when λ → +∞.
Lemma 2.2. The density fρ(x, λeiφ)− f(x, λeiφ) tends to zero as λ → +∞.
Proof. See Appendix A. �
Lemma 2.3. The density fρ(x, λeiφ) admits the asymptotic expansion

fρ(x, λeiφ) = b1(x, φ)λ+ b0(x, φ) + o(1) as λ → +∞, (2.13)
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where
b1(x, φ) = −4(ln 2)(n− 1)(sinφ)

[
a+n−1(x) + (−1)n a−n−1(x)

]
, (2.14)

b0(x, φ) = −2
[
(π − φ) a+n−2(x) + (−1)n φa−n−2(x)

]
. (2.15)

Proof. See Appendices B and C. �

Lemmata 2.2 and 2.3 imply the following corollary.

Corollary 2.4. The density f(x, λeiφ) admits the asymptotic expansion

f(x, λeiφ) = b1(x, φ)λ+ b0(x, φ) + o(1) as λ → +∞, (2.16)
where the coefficients b1(x, φ) and b0(x, φ) are given by formulae (2.14) and (2.15),
respectively.

Suppose that we know the coefficient b0(x, φ) for all φ ∈ (0, π). It is easy to
see that formula (2.15) allows us to recover the second Weyl coefficient a+n−2(x).
Namely, if we take an arbitrary pair of distinct φ1, φ2 ∈ (0, π) then

a+n−2(x) =
φ1 b0(x, φ2)− φ2 b0(x, φ1)

2π(φ2 − φ1)
. (2.17)

Alternatively, the second Weyl coefficient a+n−2(x) can be recovered by means of
the identity

a+n−2(x) = − 1

2π
lim

φ→0+
b0(x, φ) . (2.18)

Formulae (2.16)–(2.18) tell us that the problem of evaluating the second Weyl
coefficient has been reduced to evaluating the second coefficient in the asymptotic
expansion of the density f(x, λeiφ) as λ → +∞. Recall that the latter is defined
in accordance with Definition 2.1.

3. The Weyl symbol of the resolvent
Let z = λeiφ, where λ > 0 and 0 < φ < π. We formally assign to z a ‘weight’, as
if it were positively homogeneous in ξ of degree 1. Our argument goes along the
lines of [18, Sect. 9].

We performed formal calculations evaluating the symbol of the operator (A−
zI)−1 in local coordinates and then switched to the Weyl symbol. (One could have
worked with Weyl symbols from the very start.) Further on we denote the Weyl
symbol of the operator (A−zI)−1 by [(A−zI)−1]W . We calculated [(A−zI)−1]W
with the two leading terms:[

(A− zI)−1
]
W

= (A1 − zI)−1 − (A1 − zI)−1Asub(A1 − zI)−1

+
i

2

{
(A1 − zI)−1, A1 − zI, (A1 − zI)−1

}
+O

[
(1 + |ξ|+ |z|)−2(1 + |ξ|)−1

]
.

(3.1)
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Here the curly brackets denote the generalised Poisson bracket on matrix functions
(1.7).

The concept of a Weyl symbol was initially introduced for pseudodifferential
operators in Rn, see [18, subsection 23.3]. In the case of pseudodifferential oper-
ators acting on half-densities over a manifold it turns out that the Weyl symbol
depends on the choice of local coordinates. However, in the two leading terms the
Weyl symbol does not depend on the choice of local coordinates, see Appendix D.
Note that a consistent definition of the full Weyl symbol for a pseudodifferential
operator acting on half-densities over a manifold requires the introduction of an
affine connection, see [14]. In the current paper we do not assume that we have a
connection.

See Appendix E for a discussion of symbol classes and an explanation of the
origins of the particular structure of the remainder term in formula (3.1), as well
as remainder term estimates in subsequent formulae. In (E.22) we obtain (3.1) in
the appropriate symbol classes.

Note that the expression in the second line of (3.1) can be equivalently rewrit-
ten as
{(A1−zI)−1, A1−zI, (A1−zI)−1} = (A1−zI)−1{A1, (A1−zI)−1, A1}(A1−zI)−1,

(3.2)
which is the representation used by V. Ivrii, see second displayed formula on page
226 of [11]. We mention (3.2) in order to put our analysis within the context of
previous research in the subject.

Let us now express the principal symbol A1 in terms of its eigenvalues h(j)

and eigenprojections P (j):
A1 =

∑
j

h(j)P (j). (3.3)

In what follows, we will be substituting (3.3) into our previous formulae. But
before proceeding with the calculations let us discuss which expression, the one
in the RHS of (3.2) or the one in the LHS of (3.2), is better suited for practical
purposes. Substitution of (3.3) into the RHS of (3.2) gives a sum over five indices,
whereas substitution of (3.3) into the LHS of (3.2) gives a sum over only three
indices. Hence, we will stick with the representation from the LHS of (3.2).

Substituting (3.3) into (3.1), we get[
(A− zI)−1

]
W

=
∑
j

P (j)

h(j) − z
−
∑
k,l

P (k)AsubP
(l)

(h(k) − z)(h(l) − z)

+
i

2

∑
j,k,l

(h(j) − z)

{
P (k)

h(k) − z
, P (j),

P (l)

h(l) − z

}
+O

[
(1 + |ξ|+ |z|)−2(1 + |ξ|)−1

]
.

(3.4)

Our eigenprojections satisfy the identity

P (k)P (j) = δkjP (k). (3.5)
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The identity (3.5) allows us to rewrite formula (3.4) as[
(A− zI)−1

]
W

=
∑
j

P (j)

h(j) − z
−
∑
k,l

P (k)AsubP
(l)

(h(k) − z)(h(l) − z)

+
i

2

∑
j,k,l

h(j) − z

(h(k) − z)(h(l) − z)

{
P (k), P (j), P (l)

}
− i

2

∑
k,l

P (k)
(
h
(k)
xα P

(l)
ξα

− h
(k)
ξα

P
(l)
xα

)
+
(
h
(l)
ξα
P

(k)
xα − h

(l)
xαP

(k)
ξα

)
P (l)

(h(k) − z)(h(l) − z)

+O
[
(1 + |ξ|+ |z|)−2(1 + |ξ|)−1

]
.

(3.6)

4. The matrix trace of the resolvent
Let B be a matrix pseudodifferential operator acting on m-columns of half-densities,
v 7→ Bv. The action of such an operator can be written in more detailed form as

v1
v2
...
vm

 7→


B1

1 B1
2 . . . B1

m

B2
1 B2

2 . . . B2
m

...
... . . . ...

Bm
1 Bm

2 . . . Bm
m




v1
v2
...
vm

 , (4.1)

where the Bj
k are scalar pseudodifferential operators acting on half-densities.

Definition 4.1. The matrix trace of the operator (4.1) is the scalar operator
trB := B1

1 +B2
2 + · · ·+Bm

m. (4.2)

Obviously, the Weyl symbol of the matrix trace of an operator is the matrix
trace of the Weyl symbol of the operator. Hence, formula (3.6) implies[

tr(A− zI)−1
]
W

=
∑
j

1

h(j) − z
−
∑
j

tr
[
AsubP

(j)
]

(h(j) − z)2

+
i

2

∑
j,k,l

h(j) − z

(h(k) − z)(h(l) − z)
tr
{
P (k), P (j), P (l)

}
+O

[
(1 + |ξ|+ |z|)−2(1 + |ξ|)−1

]
.

(4.3)

Note that formula (4.3) does not contain terms with derivatives of Hamiltonians
h(j) because all such terms cancelled out after we took the matrix trace.

Formula (3.5) implies
tr
{
P (k), P (j), P (l)

}
= 2δkjδjl tr

{
P (j), P (j), P (j)

}
− δkj tr

{
P (l), P (j), P (l)

}
−δjl tr

{
P (k), P (j), P (k)

}
+ δkl tr

{
P (k), P (j), P (k)

}
.

(4.4)
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Substituting (4.4) into (4.3) and using (3.3), we get[
tr(A− zI)−1

]
W

=
∑
j

1

h(j) − z
−
∑
j

tr
[
AsubP

(j)
]

(h(j) − z)2

+
i

2

∑
j

tr
{
P (j), A1 − h(j)I, P (j)

}
(h(j) − z)2

+ i
∑
j

tr
{
P (j), P (j), P (j)

}
h(j) − z

+O
[
(1 + |ξ|+ |z|)−2(1 + |ξ|)−1

]
.

(4.5)

Detailed calculations leading up to (4.4) and (4.5) are presented in Appendix F.
Formula (4.5) provides a compact representation for the Weyl symbol of the

matrix trace of the resolvent. Even though our intermediate calculations involved
summation over several (up to three) indices, summation in our final formula (4.5)
is carried out over a single index.

5. The matrix trace of a power of the resolvent
In order to implement the strategy outlined in Sect. 2, we need to write down the
Weyl symbol of the operator tr(A− zI)1−n .

We have the operator identity

(A− zI)1−n =
1

(n− 2)!

dn−2

dzn−2
(A− zI)−1 . (5.1)

The operations of taking the matrix trace and differentiation with respect to a
parameter commute, so formula (5.1) implies

tr(A− zI)1−n =
1

(n− 2)!

dn−2

dzn−2
tr(A− zI)−1 . (5.2)

The latter formula, in turn, implies[
tr(A− zI)1−n

]
W

=
1

(n− 2)!

dn−2

dzn−2
[tr(A− zI)−1]W . (5.3)

Substituting (4.5) into (5.3), we get[
tr(A− zI)1−n

]
W

=
∑
j

1

(h(j) − z)n−1
− (n− 1)

∑
j

tr
[
AsubP

(j)
]

(h(j) − z)n

+
i

2
(n− 1)

∑
j

tr
{
P (j), A1 − h(j)I, P (j)

}
(h(j) − z)n

+ i
∑
j

tr
{
P (j), P (j), P (j)

}
(h(j) − z)n−1

+O
[
(1 + |ξ|+ |z|)−n(1 + |ξ|)−1

]
.

(5.4)
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We can view this as an explicit version of the result of applying (d/dz)n−2 to the
trace of (E.22) (cf. (E.39)).

6. Asymptotic expansion for the density f

We have previously defined the density f(x, z), see Definition 2.1. In this section
we shall derive the asymptotic expansion for the density f(x, λeiφ) as λ → +∞.
The angle 0 < φ < π will be assumed to be fixed.

Put

s
(j)
1−n(x, ξ, z) :=

1

(h(j) − z)n−1
, (6.1)

s
(j)
−n(x, ξ, z) := −(n− 1)

tr
[
AsubP

(j)
]

(h(j) − z)n
+

i

2
(n− 1)

tr
{
P (j), A1 − h(j)I, P (j)

}
(h(j) − z)n

+ i
tr
{
P (j), P (j), P (j)

}
(h(j) − z)n−1

, (6.2)

where the subscripts indicate the degree of homogeneity in ξ. Recall, yet again,
that our convention is ‘z and ξ are of the same order’. Comparing (5.4) with (6.1)
and (6.2) we see that

∑
j s

(j)
1−n is the leading (principal) component of the Weyl

symbol of the operator tr(A− zI)1−n, whereas
∑

j s
(j)
−n is the next (subprincipal)

component.
The structure of formula (6.1) is very simple, whereas the structure of formula

(6.2) is nontrivial. This warrants a discussion.
The first term in the RHS of (6.2) contains the expression tr[AsubP

(j)]. It
gives the ‘obvious’ contribution to the second Weyl coefficient. The expression
tr[AsubP

(j)] appears in the early papers of V. Ivrii and G. V. Rozenblyum.
The second term in the RHS of (6.2) contains the expression

tr
{
P (j), A1 − h(j)I, P (j)

}
.

It gives a contribution to the second Weyl coefficient which is not so obvious. The
expression tr{P (j), A1 − h(j)I, P (j)} first appeared in [16].

Finally, the third term in the RHS of (6.2) contains the expression

tr
{
P (j), P (j), P (j)

}
.

It gives a U(1) curvature contribution to the second Weyl coefficient. This contri-
bution to the second Weyl coefficient was identified in [2] and did not appear in
previous publications.

The density f(x, λeiφ) is the value of the integral kernel of the operator

i tr
[
2(A− zI)1−n − (A− 2zI)1−n − 2(A− z̄I)1−n + (A− 2z̄I)1−n

]
(6.3)

on the diagonal. We obtain the asymptotic expansion (2.16) for f(x, λeiφ) by
replacing the operator (6.3) with its Weyl symbol and integrating in ξ. This gives
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the following formulae for the asymptotic coefficients:

b1(x, φ) =
1

(2π)n

∑
j

b
(j)
1 (x, φ), (6.4)

b0(x, φ) =
1

(2π)n

∑
j

b
(j)
0 (x, φ), (6.5)

where

b
(j)
1 (x, φ) = i

∫ [
2s

(j)
1−n(x, ξ, e

iφ)− s
(j)
1−n(x, ξ, 2e

iφ)

−2s
(j)
1−n(x, ξ, e

−iφ) + s
(j)
1−n(x, ξ, 2e

−iφ)
]
dξ, (6.6)

b
(j)
0 (x, φ) = i

∫ [
2s

(j)
−n(x, ξ, e

iφ)− s
(j)
−n(x, ξ, 2e

iφ)

−2s
(j)
−n(x, ξ, e

−iφ) + s
(j)
−n(x, ξ, 2e

−iφ)
]
dξ. (6.7)

The integrands in (6.6) and (6.7) decay as |ξ|−n−1 as |ξ| → +∞, so these integrals
converge.

Strictly speaking, we also have to consider the contributions from the terms
K(n) in (E.35). However, it follows from the remark after (E.37) that they are o(1)
as λ → +∞.

7. The second Weyl coefficient
Let us us examine what happens to the integral (6.7) when φ → 0+. It is easy to
see that if j is such that h(j) < 0 then the integral (6.7) tends to zero as φ → 0+:
one can simply set φ = 0 in the integrand. This means that only those j for which
h(j) > 0 contribute to the limit of the expression (6.6) when φ → 0+. Therefore,
formulae (2.18) and (6.5) give us the following expression for the second Weyl
coefficient:

a+n−2(x) = − 1

(2π)n+1

m+∑
j=1

lim
φ→0+

b
(j)
0 (x, φ) . (7.1)

Here the enumeration of eigenvalues of the principal symbol A1 is assumed to be
chosen in such a way that j = 1, . . . ,m+ correspond to positive eigenvalues h(j).

It remains only to evaluate limφ→0+ b
(j)
0 (x, φ) explicitly. Here b

(j)
0 (x, φ) is

defined by formula (6.7), where the integrand is defined in accordance with (6.2).
Let us rewrite formula (6.2) as

s
(j)
−n(x, ξ, z) = s

(j;1)
−n (x, ξ, z) + s

(j;2)
−n (x, ξ, z), (7.2)
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where

s
(j;1)
−n (x, ξ, z) := −(n− 1)

tr
(
AsubP

(j) − i
2{P

(j), A1 − h(j)I, P (j)}
)

(h(j) − z)n
, (7.3)

s
(j;2)
−n (x, ξ, z) := i

h(j) tr{P (j), P (j), P (j)}
h(j)(h(j) − z)n−1

. (7.4)

Note that the numerators in (7.3) and (7.4) are positively homogeneous in ξ of
degree zero.

Formula (6.7) now reads

b
(j)
0 (x, φ) = b

(j;1)
0 (x, φ) + b

(j;2)
0 (x, φ), (7.5)

where for k = 1, 2,

b
(j;k)
0 (x, φ) = i

∫ [
2s

(j;k)
−n (x, ξ, eiφ)− s

(j;k)
−n (x, ξ, 2eiφ)

−2s
(j;k)
−n (x, ξ, e−iφ) + s

(j;k)
−n (x, ξ, 2e−iφ)

]
dξ .

(7.6)

Denote by (S∗
xM)(j) the (n− 1)-dimensional unit cosphere in the cotangent

fibre defined by the equation h(j)(x, ξ) = 1 and denote by d(S∗
xM)(j) the surface

area element on (S∗
xM)(j) defined by the condition

[
d

dµ

∫
h(j)(x,ξ)<µ

g(ξ) dξ

]
µ=1

=

∫
(S∗

xM)(j)
g(ξ) d(S∗

xM)(j) , (7.7)

where g : Rn → R is an arbitrary smooth function. This means that we introduce
spherical coordinates in the cotangent fibre with the Hamiltonian h(j) playing the
role of the radial coordinate, see also [17, subsection 1.1.10].

Switching to spherical coordinates, we see that each integral (7.6) is a product
of two integrals, an (n−1)-dimensional surface integral over the unit cosphere and
a 1-dimensional integral over the radial coordinate. Namely, we have

b
(j;k)
0 (x, φ) = c(j;k)(x) d(j;k)(φ) , (7.8)
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where

c(j;1)(x) := −(n− 1)

∫
(S∗

xM)(j)
tr
[
AsubP

(j) − i

2
{P (j), A1 − h(j)I, P (j)}

]
d(S∗

xM)(j),

(7.9)

c(j;2)(x) := i

∫
(S∗

xM)(j)
h(j) tr{P (j), P (j), P (j)} d(S∗

xM)(j), (7.10)

d(j;1)(φ) := i

∫ +∞

0

[
2

(µ− eiφ)n
− 1

(µ− 2eiφ)n

− 2

(µ− e−iφ)n
+

1

(µ− 2e−iφ)n

]
µn−1 dµ, (7.11)

d(j;2)(φ) := i

∫ +∞

0

[
2

(µ− eiφ)n−1
− 1

(µ− 2eiφ)n−1

− 2

(µ− e−iφ)n−1
+

1

(µ− 2e−iφ)n−1

]
µn−2 dµ. (7.12)

Integrating by parts we see that the integrals in the right–hand-sides of (7.11)
and (7.12) have the same values, i.e. they do not depend on n. Hence, it is sufficient
to evaluate the integral (7.12) for n = 2. We have

d(j;1)(φ) = d(j;2)(φ)

= i

∫ +∞

0

[
2

µ− eiφ
− 1

µ− 2eiφ
− 2

µ− e−iφ
+

1

µ− 2e−iφ

]
dµ

= −2(π − φ) ,

(7.13)

so substituting (7.5), (7.8) and (7.13) into (7.1), we get

a+n−2(x) =
1

(2π)n

m+∑
j=1

[
c(j;1)(x) + c(j;2)(x)

]
. (7.14)

Formulae (7.14), (7.9) and (7.10) give us the required explicit representation
of the second Weyl coefficient. However, integrating over a unit cosphere is not
very convenient, so we rewrite formulae (7.9) and (7.10) as

c(j;1)(x) = −n(n− 1)

∫
h(j)(x,ξ)<1

tr

[
AsubP

(j) − i

2
{P (j), A1 − h(j)I, P (j)}

]
(x, ξ) dξ,

(7.15)

c(j;2)(x) = n i

∫
h(j)(x,ξ)<1

(
h(j) tr{P (j), P (j), P (j)}

)
(x, ξ) dξ . (7.16)
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Working with eigenprojections P (j) is also not very convenient, therefore we
express them via the normalised eigenvectors v(j) of the principal symbol A1 as

P (j) = v(j)[v(j)]∗. (7.17)

Substituting (7.17) into (7.15) and (7.16) we get

c(j;1)(x)

= −n(n− 1)

∫
h(j)(x,ξ)<1

[
[v(j)]∗Asubv

(j) − i

2
{[v(j)]∗, A1 − h(j)I, v(j)}

]
(x, ξ) dξ,

(7.18)

c(j;2)(x) = −n i

∫
h(j)(x,ξ)<1

(
h(j) {[v(j)]∗, v(j)}

)
(x, ξ) dξ . (7.19)

The transition from (7.15) to (7.18) is quite straightforward, but the transition
from (7.16) to (7.19) warrants an explanation. Here we have

tr
{
P (j), P (j), P (j)

}
= − tr

(
P (j)

{
P (j), P (j)

})
= −

{[
v(j)
]∗
, v(j)

}
,

where at the last step we made use of [2, formula (4.17)].
The advantage of formulae (7.18) and (7.19) is that they do not involve the

matrix trace.
Combining formulae (7.14), (7.18) and (7.19), we arrive at (1.6).
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Appendix A. Proof of Lemma 2.2
Let us introduce the functions

gn(µ, z) :=
2

(µ− z)n
− 1

(µ− 2z)n
− c.c., n ∈ N, µ ∈ R, z ∈ C \ R. (A.1)

Here and further on ‘c.c.’ stands for ‘complex conjugate terms’.
The functions (A.1) possess the following properties:

∂1gn(µ, z) := ∂µgn(µ, z) = −ngn+1(µ, z), (A.2)

|gn(µ, z)| ≤
4

|µ− z|n
+

2

|µ− 2z|n
. (A.3)
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Formula (2.12) can be rewritten as

fρ(x, z) = i

∫ +∞

0

gn−1(µ, z) (N
′
+ ∗ ρ)(x, µ) dµ

− (−1)ni

∫ +∞

0

gn−1(µ,−z) (N ′
− ∗ ρ)(x, µ) dµ,

(A.4)

where
N ′

±(x, ν) =
∑

±λk>0

δ(ν ∓ λk)‖vk(x)‖2 (A.5)

is a tempered distribution in ν supported on R+ and taking values in densities.
The convolution

(N ′
± ∗ ρ)(x, µ) =

∫ +∞

0

N ′
±(x, ν) ρ(µ− ν) dν (A.6)

is a continuous function of µ taking values in densities. It is known that
|(N ′

± ∗ ρ)(x, µ)| ≤ c(x)(1 + |µ|n−1),

where c(x) is a fixed positive density. Arguing as in (2.2)–(2.7), it is easy to see
that, for fixed z, the function gn−1(µ, z) decays as |µ|−n−1 when µ → ±∞, so the
integrals in (A.4) converge.

We have∫ +∞

0

gn−1(µ, z) (N
′
± ∗ ρ)(x, µ) dµ

=

∫ +∞

0

gn−1(µ, z)

(∫ +∞

0

N ′
±(x, ν) ρ(µ− ν) dν

)
dµ

=

∫ +∞

0

N ′
±(x, ν)

(∫ +∞

0

gn−1(µ, z) ρ(µ− ν) dµ

)
dν

=

∫ +∞

0

N ′
±(x, µ)

(∫ +∞

0

gn−1(ν, z) ρ(ν − µ) dν

)
dµ.

(A.7)

In going from the second line of (A.7) to the third we changed the order of inte-
gration. This can be justified, for example, by replacing the infinite series (A.5)
by a finite partial sum and going to the limit.

Substituting (A.7) into (A.4) and using formula (2.11), we find that
fρ(x, z)− f(x, z)

= i

∫ +∞

0

N ′
+(x, µ)

(∫ +∞

0

gn−1(ν, z) ρ(ν − µ) dν − gn−1(µ, z)

)
dµ

− (−1)ni

∫ +∞

0

N ′
−(x, µ)

(∫ +∞

0

gn−1(ν,−z) ρ(ν − µ) dν − gn−1(µ,−z)

)
dµ

+ (−1)n
2n − 1

2n−1
i

[
1

zn−1
− 1

z̄n−1

] ∑
λk=0

‖vk(x)‖2.
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Now, let z = λeiφ with λ > 0 and fixed φ ∈ (0, π). In view of the fact that
N±(x, λ) = O(λn), in order to show that fρ(x, λeiφ)− f(x, λeiφ) → 0 as λ → +∞
it is sufficient to prove that∣∣∣∣∫ +∞

0

gn−1(ν, λe
iφ) ρ(ν − µ) dν − gn−1(µ, λe

iφ)

∣∣∣∣ ≤ constφ
λ(1 + µn+1)

, ∀λ ≥ 1, ∀µ ≥ 0.

(A.8)
Recall that according to our definition of the mollifier ρ we have

|ρ(ν)| ≤ cp
(1 + |ν|)p

, ∀p ∈ N, (A.9)

∫ +∞

−∞
ρ(ν)dν = 1, and

∫ +∞

−∞
ρ(ν)νmdν = 0, ∀m ∈ N. (A.10)

Formula (A.10) implies that∫ +∞

0

gn−1(ν, λe
iφ)ρ(ν − µ)dν − gn−1(µ, λe

iφ)

=

∫ +∞

−∞

[
gn−1(ν, λe

iφ)− gn−1(µ, λe
iφ)
]
ρ(ν − µ)dν

−
∫ 0

−∞
gn−1(ν, λe

iφ)ρ(ν − µ)dν.

(A.11)

Using (A.3) and (A.9) with p = n+ 3 we get∣∣∣∣∫ 0

−∞
gn−1(ν, λe

iφ)ρ(ν − µ)dν

∣∣∣∣ ≤ ∫ 0

−∞

6

λn−1| sinφ|n−1

cn+3

(1 + |ν|+ µ)n+3
dν

≤ 6cn+3

λn−1| sinφ|n−1(1 + µn+1)

∫ 0

−∞

dν

1 + ν2

≤ constφ
λ(1 + µn+1)

, ∀λ ≥ 1.

(A.12)

In order to estimate the first integral in the RHS of (A.11) let us perform a change
of variable ν 7→ µ+ ν,

∫ +∞

−∞

[
gn−1(ν, λe

iφ)− gn−1(µ, λe
iφ)
]
ρ(ν − µ) dν

=

∫ +∞

−∞

[
gn−1(µ+ ν, λeiφ)− gn−1(µ, λe

iφ)
]
ρ(ν) dν. (A.13)
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Writing Taylor’s formula with remainder in Lagrange’s form and using (A.2), we
get

gn−1(µ+ ν, λeiφ)− gn−1(µ, λe
iφ) = −(n− 1)gn(µ, λe

iφ) ν

+
n(n− 1)

2
gn+1(µ, λe

iφ) ν2

− (n+ 1)n(n− 1)

6
R(µ, ν, λ, φ) ν3,

(A.14)

where
R(µ, ν, λ, φ) = gn+2(ξµ,µ+ν , λe

iφ) (A.15)
and ξµ,µ+ν is some real number strictly between µ and µ+ ν. From (A.10), (A.14)
and (A.2), we obtain∫ +∞

−∞

[
gn−1(µ+ ν, λeiφ)− gn−1(µ, λe

iφ)
]
ρ(ν) dν

= − (n+ 1)n(n− 1)

6

∫ +∞

−∞
R(µ, ν, λ, φ) ν3ρ(ν) dν. (A.16)

Comparing formula (A.8) with (A.11)–(A.13) and (A.16), we see that the
proof of Lemma 2.2 has been reduced to proving that∫ +∞

−∞

∣∣R(µ, ν, λ, φ) ν3ρ(ν)
∣∣ dν ≤ constφ

λ(1 + µn+1)
, ∀λ ≥ 1, ∀µ ≥ 0. (A.17)

In order to prove (A.17), it is sufficient to prove the following two estimates:∫ +∞

−∞

∣∣R(µ, ν, λ, φ) ν3ρ(ν)
∣∣ dν ≤ constφ

λn+2
, ∀λ ≥ 1, ∀µ ∈ [0, λ], (A.18)∫ +∞

−∞

∣∣R(µ, ν, λ, φ) ν3ρ(ν)
∣∣ dν ≤ constφ

λµn+1
, ∀λ ≥ 1, ∀µ ≥ λ. (A.19)

Observe that formulae (A.15) and (A.3) give us the rough estimate

|R(µ, ν, λ, φ)| ≤ 6

| sinφ|n+2λn+2
, ∀λ > 0, ∀µ, ν ∈ R. (A.20)

Formulae (A.20) and (A.9) with p = 5 imply (A.18).
Formulae (A.15) and (A.3) also tell us that

|R(µ, ν, λ, φ)| ≤ constφ
µn+2

≤ constφ
λµn+1

uniformly over all µ ≥ λ > 0 and ν ≥ −µ/2. Using this estimate and formula
(A.9) with p = 5 we get∫ +∞

−µ/2

∣∣R(µ, ν, λ, φ) ν3ρ(ν)
∣∣ dν ≤ constφ

λµn+1
, ∀λ ≥ 1, ∀µ ≥ λ. (A.21)
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Comparing formulae (A.21) and (A.19), we see that the proof of Lemma 2.2
has been reduced to proving that∫ −µ/2

−∞

∣∣R(µ, ν, λ, φ) ν3ρ(ν)
∣∣ dν ≤ constφ

λµn+1
, ∀λ ≥ 1, ∀µ ≥ λ. (A.22)

Using (A.20) and (A.9) with p = n+ 5, we get∫ −µ/2

−∞

∣∣R(µ, ν, λ, φ) ν3ρ(ν)
∣∣ dν ≤ 6cn+5

| sinφ|n+2λn+2

∫ +∞

µ/2

dν

νn+2

=
6 · 2n+1cn+5

(n+ 1)| sinφ|n+2λn+2µn+1
, ∀λ ≥ 1, ∀µ ≥ λ,

which implies (A.22). �

Appendix B. Some integrals involving the functions gn

In this appendix we evaluate some integrals involving the functions (A.1). These
results will be used later in Appendix C.

Let us evaluate the following indefinite integral:∫
µndµ

(µ− z)n
=

∫ (
1 +

z

ν

)n
dν =

∫ [
1 +

nz

ν
+

n∑
k=2

(
n

k

)
zk

νk

]
dν

= ν + nz log ν +

n∑
k=2

(
n

k

)
1

1− k
zkν1−k

= µ+ nz log(µ− z) +
n∑

k=2

(
n

k

)
1

1− k
zk(µ− z)1−k.

(B.1)

Here in performing intermediate calculations we used the change of variable ν =
µ− z.

Similarly,∫
µn−1dµ

(µ− z)n
=

∫ (
1 +

z

ν

)n−1 dν

ν
=

∫ [
1 +

n−1∑
k=1

(
n− 1

k

)
zk

νk

]
dν

ν

= log ν −
n−1∑
k=1

(
n− 1

k

)
1

k
zkν−k

= log(µ− z)−
n−1∑
k=1

(
n− 1

k

)
1

k
zk(µ− z)−k.

(B.2)
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Formulae (A.1), (B.1) and (B.2) imply∫
gn(µ, z)µ

n dµ = 2nz log(µ− z)− 2nz log(µ− 2z)

+ 2
n∑

k=2

(
n

k

)
1

1− k
zk(µ− z)1−k

−
n∑

k=2

(
n

k

)
1

1− k
2kzk(µ− 2z)1−k − c.c.,

(B.3)

∫
gn(µ, z)µ

n−1 dµ = 2 log(µ− z)− log(µ− 2z)

− 2
n−1∑
k=1

(
n− 1

k

)
1

k
zk(µ− z)−k

+
n−1∑
k=1

(
n− 1

k

)
1

k
2kzk(µ− 2z)−k − c.c..

(B.4)

Using (B.3) and (B.4) we can finally evaluate definite integrals:∫ +∞

0

gn(µ, z)µ
n dµ =

[
2nz log

(
µ− z

µ− 2z

)
− 2nz̄ log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣+∞

0

, (B.5)

∫ +∞

0

gn(µ, z)µ
n−1 dµ =

[
log

(
µ− z

µ− 2z

)
+ log

(
µ− z

µ− z̄

)
− log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣+∞

0

.

(B.6)
Here the complex logarithms are continuous multivalued functions which have to
be handled carefully.

Note that for any z ∈ C \ R and any real positive µ we have

Im
µ− z

µ− 2z
=

µ Im z

|µ− 2z|2
6= 0,

Im
µ− z

µ− z̄
=

2 Im z(Re z − µ)

|µ− z|2
= 0 =⇒ Re

µ− z

µ− z̄
=

(Re z − µ)2 − (Im z)2

|µ− z|2
< 0,

so neither of the two arguments of our log crosses the positive real axis R+ . Hence,
we are free to switch from log to the single-valued Log : C \ {0} → R + i[0, 2π)
branch-cut along R+. Formulae (B.5) and (B.6) become∫ +∞

0

gn(µ, z)µ
n dµ =

[
2nz Log

(
µ− z

µ− 2z

)
− 2nz̄ Log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣+∞

0

= 2n(z − z̄) ln 2 = 4ni(ln 2) Im z,

(B.7)
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0

gn(µ, z)µ
n−1 dµ =

[
Log

(
µ− z

µ− 2z

)
+ Log

(
µ− z

µ− z̄

)
− Log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣+∞

0

= Log

(
µ− z

µ− z̄

)∣∣∣∣+∞

0

= iπ(1 + sgn Im z)− iArg z2,

(B.8)
where Arg : C \ {0} → [0, 2π) is also branch-cut along R+ .

Appendix C. Proof of Lemma 2.3
Formula (1.3) tells us that

(N ′
± ∗ ρ)(x, µ) = a±n−1(x)µ

n−1 + a±n−2(x)µ
n−2 + (1 + µ)n−3r±(x, µ), (C.1)

where r±(x, µ) is bounded uniformly in µ ≥ 0.
Let gn(µ, z) be defined in accordance with (A.1). We have

gn(λµ, λz) = λ−ngn(µ, z), ∀λ > 0. (C.2)
Using (C.2) we get∫ +∞

0

gn−1(µ, λe
iφ)µn−1 dµ = λ

∫ +∞

0

gn−1(µ, e
iφ)µn−1 dµ , (C.3)∫ +∞

0

gn−1(µ, λe
iφ)µn−2 dµ =

∫ +∞

0

gn−1(µ, e
iφ)µn−2 dµ, (C.4)

∫ +∞

0

gn−1(µ, λe
iφ) (1 + µ)n−3 r±(x, µ) dµ

=
1

λ

∫ +∞

0

gn−1(µ, e
iφ)

(
1

λ
+ µ

)n−3

r±(x, λµ) dµ = o(1) as λ → +∞. (C.5)

Recall (see Appendix A) that the function gn−1(µ, z) decays as µ−n−1 when µ →
+∞, so the integrals in (C.3)–(C.5) converge.

Substituting (C.3)–(C.5) into (A.4), we get

fρ(x, λeiφ) = λi

[
a+n−1(x)

∫ +∞

0

gn−1(µ, e
iφ)µn−1 dµ

−(−1)na−n−1(x)

∫ +∞

0

gn−1(µ, e
i(φ+π))µn−1 dµ

]
+ i

[
a+n−2(x)

∫ +∞

0

gn−1(µ, e
iφ)µn−2 dµ

−(−1)na−n−2(x)

∫ +∞

0

gn−1(µ, e
i(φ+π))µn−2 dµ

]
+ o(1) as λ → +∞.

(C.6)
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Formulae (B.7) and (B.8) give us the values of the integrals appearing in (C.6), so
(C.6) becomes

fρ(x, λeiφ) =− 4(n− 1)(ln 2)(sinφ)
[
a+n−1(x) + (−1)na−n−1(x)

]
λ

− 2
[
a+n+2(x)(π − φ) + (−1)na−n−1(x)φ

]
+ o(1) as λ → +∞,

thus proving the lemma. �

Appendix D. Weyl quantization on manifolds
Let M be a compact manifold.1 A pseudodifferential operator of order m ∈ R
is a continuous operator A : C∞(M) → C∞(M) which has a weakly continuous
extension D′(M) → D′(M) such that, with KA denoting the distribution kernel,

1) sing suppKA ⊂ diag (M ×M),
2) For every system of local coordinates γ : Ω 3 ρ 7→ x ∈ Ω′ ⊂ Rn where

Ω ⊂ M , Ω′ ⊂ Rn are open and γ a diffeomorphism, we have (identifying Ω
and γ(Ω))

Au(x) =
1

(2π)n

∫∫
ei(x−y)·θa(x, θ)u(y)dydθ +Ru, u ∈ C∞

0 (Ω), x ∈ Ω, (D.1)

where R is smoothing (KR ∈ C∞(Ω × Ω)) and a is a symbol of order m;
a ∈ Sm(Ω), which means that a ∈ C∞(Ω × Rn) and that for every K̂ b Ω
and all α, β ∈ Nn, ∃C = CK̂,α,β such that

|∂α
x ∂

β
θ a(x, θ)| ≤ C〈θ〉m−|β|, ∀ (x, θ) ∈ K̂ × Rn, where 〈θ〉 = (1 + |θ|2)1/2. (D.2)

If γ̃ : Ω̃ 3 ρ 7→ x̃ ∈ Ω̃′ is another local coordinate chart, then over the
intersection Ω ∩ Ω̃ we can express x = κ(x̃), where κ = γ ◦ γ̃−1 and we have

a(κ(x̃), θ) ≡ ã(x̃, (κ′(x̃))tθ) modSm−1. (D.3)

This allows us to define the symbol σA of A on T ∗M up to symbols of order 1
lower. More precisely, we have a bijection

Lm(M)/Lm−1(M) 3 A 7→ σA ∈ Sm(T ∗M)/Sm−1(T ∗M), (D.4)

with the natural definition of the symbol classes Sm(T ∗M), and with Lm(M)
denoting the space of pseudodifferential operators on M of order m.

It is well known that we can replace a(x, θ) in (D.1) with a((x+ y)/2, θ) and
this leads to the same definition of σA in Sm/Sm−1(T ∗M). Thus, working with

Au(x) = Op (a)u(x) +Ru, a ∈ Sm(Ω×Rn), KR ∈ C∞, (D.5)

1The content of this appendix can be found in a slightly more concentrated form in the ap-
pendix of [19]. The main ideas and related results appeared earlier in Appendix a.3 in [7]. We
recovered these precise references only after completing the section and decided to keep it for the
convenience of the reader. See also Sect. 18.5 in [8].
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leads to the same principal symbol map. Here we write2

Op (a)u(x) =
1

(2π)n

∫∫
ei(x−y)·θa

(
x+ y

2
, θ

)
u(y)dydθ. (D.6)

It seems to be a well-known result (though we did not find a precise reference)
that if we fix a positive smooth density ω on M , restrict our attention to local
coordinates for which ω = dx1 · · · dxn and work with the Weyl quantization as in
(D.5), (D.6), then (D.4) improves to a bijection

Lm/Lm−2(M) 3 A 7→ σA ∈ Sm/Sm−2(T ∗M). (D.7)

A natural generalization of this is to consider pseudodifferential operators
acting on 1/2-densities; A : C∞(M ; Ω1/2) → C∞(M ; Ω1/2). When using the Weyl
quantization, we get the local representation analogous to D.5:

A(u(y)dy1/2) = (Op (a)u)(x)dx1/2 + (Ru)dx1/2, (D.8)

where dx = dx1 · · · dxn. Recall that Duistermaat and Hörmander [4] have defined
invariantly the notion of subprincipal symbol of such operators when the symbols
are sums of a leading positively homogeneous term of order m in ξ and a symbol of
order m− 1. This result, as well as the fixed density invariance mentioned above,
follow from the next more or less well-known proposition (cf. the footnote on page
141).

Proposition D.1. Let Lm(M) denote the space of pseudodifferential operators on
M of order m, acting on half-densities. Then if (x1, . . . , xn) and (x̃1, . . . , x̃n) are
two local coordinate charts and we use the representation (D.8), so that

A(udx1/2) ≡ (Op (a)u)dx1/2 ≡ (Op (ã)ũ)dx̃1/2,

modulo the action of smoothing operators, for udx1/2 = ũdx̃1/2 supported in the
intersection of the two coordinate charts, then we have

a(κ(x̃), θ) ≡ ã(x̃, κ′(x̃)tθ) mod Sm−2, (D.9)

implying that we have a natural bijective symbol map

Lm/Lm−2(M) → Sm/Sm−2(T ∗M). (D.10)

Proof. We only verify (D.9) and omit the (even more) standard arguments for
(D.10). Our proof will be a straightforward adaptation of the proof of the invari-
ance of pseudodifferential operators under composition with diffeomorphisms by
means of the Kuranishi trick (cf. [5]).

In the intersection of the two coordinate charts Ω and Ω̃, we have u(y)dy1/2 =

ũ(ỹ)dỹ1/2. Here y = κ(ỹ), where κ is a diffeomorphism: γ̃(Ω ∩ Ω̃) → γ(Ω ∩ Ω̃),

2Strictly speaking, when Ω is not convex, we need here to insert a suitable smooth cutoff χ(x, y) ∈
C∞(Ω× Ω) which is equal to one near the diagonal, the choice of which can affect the operator
only by a smoothing one.
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κ = γ ◦ γ̃−1). Thus u(y) = ũ(ỹ)(detκ′(ỹ))−1/2, assuming that detκ′ > 0 for
simplicity. Thus, modulo the action of smoothing operators

A(udy1/2) ≡ (Op (a)u)dx1/2 = (detκ′(x̃))1/2(Op (a)u)dx̃1/2,

so up to a smoothing operator Op (ã) coincides with

B : ũ 7→ (detκ′(x̃))1/2Op (a)u, u(y) = ũ(ỹ)(detκ′(ỹ))−1/2.

We have

Bũ(x̃) = (detκ′(x̃))1/2
∫∫

ei(x−y)·θa

(
x+ y

2
, θ

)
u(y)dy

dθ

(2π)n

= (detκ′(x̃))1/2
∫∫

ei(κ(x̃)−y)·θa

(
κ(x̃) + y

2
, θ

)
ũ(ỹ)(detκ′(ỹ))−1/2dy

dθ

(2π)n

=

∫∫
ei(κ(x̃)−κ(ỹ))·θa

(
κ(x̃) + κ(ỹ)

2
, θ

)
ũ(ỹ)(detκ′(x̃) detκ′(ỹ))1/2dỹ

dθ

(2π)n
.

By Taylor’s formula (and restricting to a suitably thin neighborhood of the
diagonal by means of a smooth cutoff, equal to one near the diagonal), we get

κ(x̃)− κ(ỹ) = K(x̃, ỹ)(x̃− ỹ),

where K̃(x̃, ỹ) depends smoothly on (x̃, ỹ) and

K(x̃, ỹ) = κ′
(
x̃+ ỹ

2

)
+O

(
(x̃− ỹ)2

)
.

It follows that

Bũ(x̃) =

∫∫
ei(x̃−ỹ)·Kt(x̃,ỹ)θa

(
κ(x̃) + κ(ỹ)

2
, θ

)
ũ(ỹ)(detκ′(x̃) detκ′(ỹ))1/2dỹ

dθ

(2π)n

=

∫∫
ei(x̃−ỹ)·θ̃a

(
κ(x̃) + κ(ỹ)

2
,Kt(x̃, ỹ)−1θ̃

)
ũ(ỹ)

(detκ′(x̃) detκ′(ỹ))1/2

detK(x̃, ỹ)
dỹ

dθ̃

(2π)n
.

Here
κ(x̃) + κ(ỹ)

2
= κ

(
x̃+ ỹ

2

)
+O((x̃− ỹ)2),

Kt(x̃, ỹ)−1 =

(
(κ′)t

(
x̃+ ỹ

2

))−1

+O((x̃− ỹ)2),

detK(x̃, ỹ) = detκ′
(
x̃+ ỹ

2

)
+O((x̃− ỹ)2),

(detκ′(x̃) detκ′(ỹ))1/2 = detκ′
(
x̃+ ỹ

2

)
+O((x̃− ỹ)2).
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Thus,

Bũ = Op (ã)ũ+

∫∫
ei(x̃−ỹ)·θ̃b(x̃, ỹ, θ̃)u(ỹ)dỹ

dθ̃

(2π)n
,

where ã ∈ Sm is related to a as in (D.9) and b ∈ Sm(γ̃(Ω∩ Ω̃)2×Rn) (in the sense
that ∂α

x̃ ∂
β
ỹ ∂

|δ|
θ̃
b = O(〈θ̃〉m−δ) uniformly in θ̃ and locally uniformly in (x̃, ỹ)) and b

vanishes to the second order on the diagonal, x̃ = ỹ. By standard arguments we
have B ≡ Op(r), where r ∈ Sm−2 and the proposition follows. �

Appendix E. The resolvent and its powers as
pseudodifferential operators

Let γ : M ⊃ Ω → Ω′ ⊂ Rn be a chart of local coordinates and let us identify Ω′

with Ω in the natural way. Let a(x, ξ) ∈ S1(Ω×Rn) (defined modulo S−∞(Ω×Rn))
be the Weyl symbol of

A|C∞
0 (Ω)

: C∞
0 (Ω) → C∞(Ω), (E.1)

so that
Au(x) = Op (a)u(x) +Ru(x), x ∈ Ω (E.2)

for every u ∈ C∞
0 (Ω), where R ∈ L−∞(Ω) in the sense that KR ∈ C∞(Ω × Ω).

Here we identify 1/2 densities and scalar functions on Ω by means of the fixed
factor dx1/2. We first work in this fixed local coordinate chart and write simply A
for the operator in (E.1). We notice that

a− z ∈ S(Ω× Rn, 〈ξ, z〉) = S(〈ξ, z〉), (E.3)
in the sense that a− z ∈ C∞(Ω× Rn) and that for all K b Ω, α, β ∈ Nn,

|∂α
x ∂

β
ξ (a− z)| ≤ CK,α,β〈ξ, z〉〈ξ〉−|β|, (E.4)

uniformly when z ∈ C, |z| > 1, x ∈ K, ξ ∈ Rn. Here, we write 〈ξ〉 = (1 + |ξ|2)1/2,
〈ξ, z〉 = (1 + |z|2 + |ξ|2)1/2.

Similarly, if Γ ⊂ Ċ is a closed conic neighborhood of Ṙ and until further
notice we restrict our attention to z ∈ Ċ \ (Γ ∪D(0, 1)), we have

(a− z)−1 ∈ S(〈ξ, z〉−1) (E.5)
with the natural generalization of the definition (E.4).

Sometimes, we shall exploit the fact that a − z and (a − z)−1 belong to
narrower symbol classes, used in [6]. We say that b(x, ξ, z), defined for (x, ξ, z) as
in (E.5), belongs to S1(〈ξ, z〉m), m ∈ R, if

|∂α
x ∂

β
ξ b(x, ξ, z)| ≤ CK,α,β

{
〈ξ, z〉m, when α = β = 0,

〈ξ, z〉m ⟨ξ⟩
⟨ξ,z⟩ 〈ξ〉

−|β|, when (α, β) 6= (0, 0),
(E.6)

uniformly for x ∈ K b Ω, ξ ∈ Rn, z ∈ Ċ \ (Γ ∪D(0, 1)).
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If bj ∈ S(〈ξ, z〉mj ), j = 1, 2, the asymptotic Weyl composition

b1#b2 =
(
e(i/2)σ(Dx,ξ;Dy,η)b1(x, ξ)b2(y, η)

)
y=x
η=ξ

∼
∞∑
k=0

1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k

b1(x, ξ)b2(y, η)

)
y=x
η=ξ

(E.7)

is well defined in S(〈ξ, z〉m1+m2)/S(〈ξ, z〉m1+m2〈ξ〉−∞), where

S(〈ξ, z〉m1+m2〈ξ〉−∞) =
⋂
N≥0

S(〈ξ, z〉m1+m2〈ξ〉−N )

and with the natural definition of the symbol spaces to the right. Here
σ(Dx,ξ;Dy,η) = Dξ ·Dy −Dx ·Dη.

Notice that
1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k

b1(x, ξ)b2(y, η)

)
y=x
η=ξ

∈ S(〈ξ, z〉m1+m2〈ξ〉−k). (E.8)

When bj ∈ S1(mj) this improves to

1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k

b1(x, ξ)b2(y, η)

)
y=x
η=ξ

∈

{
S1(〈ξ, z〉m1+m2), k = 0,

S(〈ξ, z〉m1+m2−2〈ξ〉2−k), k ≥ 1.

(E.9)
In particular,

b1#b2 ≡ b1b2 mod S(〈ξ, z〉m1+m2−2〈ξ〉).
In the special case b1 = a− z, b2 = (a− z)−1 we get

(a− z)#(a− z)−1 = 1 + r, (E.10)

r ∼
∞∑
k=1

1

k!

(
i

2
σ(Dx,ξ;Dy,η)

)k (
a(x, ξ)(a(y, η)− z)−1

)
y=x
η=ξ

∈ S(〈ξ, z〉−2〈ξ〉)/S(〈ξ, z〉−2〈ξ〉−∞),

r ≡ i

2
σ(Dx,ξ;Dy,η)

(
a(x, ξ)(a(y, η)− z)−1

)
y=x
η=ξ

≡ i

2
{a, (a− z)−1} mod S(〈ξ, z〉−2),

(E.11)

with the Poisson bracket as defined in Sect. 1.
The symbolic inverse of A− z is now

b(x, ξ, z) ∼ (a− z)−1#(1− r + r#r − · · · (−1)kr#k + · · · ), (E.12)
where

r#k = r#r# · · ·#r︸ ︷︷ ︸
k factors

∈ S
(
(〈ξ〉/〈ξ, z〉2)k

)
⊂ S

(
〈ξ, z〉−k

)
.
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We see that b(x, ξ, z) ∈ S(〈ξ, z〉−1) and that

b ≡ (a− z)−1 mod S

(
〈ξ〉

〈ξ, z〉3

)
.

More precisely,

b ≡ (a− z)−1 − (a− z)−1#r mod S

(
1

〈ξ, z〉3

)
.

Here
(a− z)−1#r ∼ (a− z)−1r

+
∑
k≥1

1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k (
(a− z)−1(x, ξ)r(y, η)

))
y=x
η=ξ

≡ (a− z)−1r mod S

(
1

〈ξ, z〉3

)
,

so
b(x, ξ, z) ≡ (a− z)−1 − (a− z)−1r

≡ (a− z)−1 − i

2
(a− z)−1{a, (a− z)−1} mod S

(
1

〈ξ, z〉3

)
,

(E.13)

where we also used (E.11).
If bj ∈ S(〈ξ, z〉m〈ξ〉k−j) for j = 0, 1, . . . , we can apply a standard procedure

to construct a symbol b ∈ S((〈ξ, z〉m〈ξ〉k) such that

b−
N−1∑
0

bj ∈ S(〈ξ, z〉m〈ξ〉k−N )

for every N ≥ 1 and we still write b ∼
∑∞

0 bj where b is a concrete symbol
(uniquely determined up to S(〈ξ, z〉m〈ξ〉−∞)). If bj are holomorphic for z ∈ Ċ \
(Γ ∪ D(0, 1)), then the standard construction produces a symbol b which is also
holomorphic.

If b ∈ S(〈ξ, z〉m〈ξ〉k) is such a holomorphic symbol then by the Cauchy in-
equalities we get3

∂ℓ
zb ∈ S(〈ξ, z〉m〈ξ〉k〈z〉−ℓ)

in the sense that ∣∣∂α
x ∂

β
ξ ∂

ℓ
zb
∣∣ ≤ CK,α,β,ℓ〈ξ, z〉m〈ξ〉k−|β|〈z〉−ℓ

for x ∈ K b Ω, ξ ∈ Rn and omitting the slight increase of Γ ∪D(0, 1), mentioned
in the last footnote.

3After replacing Γ with any closed conic set containing Γ in its interior and D(0, 1) with D(0, 1+ϵ)
for any ϵ > 0
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With the holomorphic z-dependence in mind we return to (E.11) and write

r ∼
∞∑
k=1

rk(x, ξ, z) (E.14)

and get a concrete symbol r ∈ S(〈ξ, z〉−2〈ξ〉2−1) which is holomorphic in z, so that
for every N ≥ 1,

r −
N−1∑
1

rk ∈ S(〈ξ, z〉−2〈ξ〉2−N ) (E.15)

and by the Cauchy inequalities

∂ℓ
z

(
r −

N−1∑
1

rk

)
∈ S(〈ξ, z〉−2〈ξ〉2−N 〈z〉−ℓ). (E.16)

From the explicit expression of the rk (or from observing that they are defined
for z in (Ċ \ Γ) ∪D(0, 〈ξ〉/C) when ξ is large), we see that

∂ℓ
zrk ∈ S(〈ξ, z〉−2−ℓ〈ξ〉2−k), (E.17)

∂ℓ
z

(
N−1∑
1

rk

)
∈ S(〈ξ, z〉−2−ℓ〈ξ〉2−1). (E.18)

Choosing N = ℓ+ 1 in (E.16) and (E.18), we get
∂ℓ
zr ∈ S

(
〈ξ, z〉−2−ℓ〈ξ〉1

)
. (E.19)

This shows that (E.14) is valid in the symbol space S̃
(
〈ξ, z〉−2〈ξ〉2−1

)
, where

we say that c ∈ S̃(〈ξ, z〉m〈ξ〉k) if c(x, ξ, z) is a smooth, holomorphic in z and

∂ℓ
zc ∈ S̃(〈ξ, z〉m−ℓ〈ξ〉k), for all ℓ ≥ 0.

In (E.12) we can choose r#k and the asymptotic sums so that b ∈ S̃(〈ξ, z〉−1)
and so that (E.13) improves to

b(x, ξ, z) ≡ (a− z)−1 − (a− z)−1r

≡ (a− z)−1 − i

2
(a− z)−1{a, (a− z)−1} mod S̃

(
1

〈ξ, z〉3

)
,

(E.20)

where
r ∈ S̃(〈ξ, z〉−2〈ξ〉), (a− z)−1 ∈ S̃(〈ξ, z〉−1). (E.21)

In the main text we have
A = A1 +A0 +A−1, A0 = Asub,

where Aj ∈ S(〈ξ〉j) and A1, A0 are positively homogeneous in ξ of degree 1 and 0
respectively, in the region |ξ| ≥ 1. From the resolvent identity

(a− z)−1 = (A1 − z)−1 − (A1 − z)−1(a−A1)(A1 − z)−1

+ (A1 − z)−1(a−A1)(a− z)−1(a−A1)(A1 − z)−1
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we infer that
(a− z)−1 ≡ (A1 − z)−1 − (A1 − z)−1(A0 +A−1)(A1 − z)−1 mod S̃(〈ξ, z〉−3),

hence,

(a− z)−1 ≡ (A1 − z)−1 − (A1 − z)−1A0(A1 − z)−1 mod S̃(〈ξ〉−1〈ξ, z〉−2).

In particular,
(a− z)−1 ≡ (A1 − z)−1 mod S̃(〈ξ, z〉−2)

and from (E.20) we get
b ≡ (A1 − z)−1 − (A1 − z)−1A0(A1 − z)−1

− i

2
(A1 − z)−1{A1, (A1 − z)−1} mod S̃

(
1

〈ξ〉〈ξ, z〉2

)
,

(E.22)

which implies (3.1) (cf. (3.2)).
By construction, b is a realization of the symbolic inverse of a− z:

(a− z)#b ≡ 1 mod S̃(〈ξ, z〉−2〈ξ〉−∞).

Let B = Op (b) : C∞
0 (Ω) → C∞(Ω) (where we also insert a suitable cutoff ∈

C∞(Ω× Ω), equal to 1 near diag (Ω× Ω)). Then

∂k
zB(z) = O(〈z〉−k1) : Hs

comp(Ω) → Hs+k2

loc (Ω) uniformly for z ∈ Ċ \ (Γ ∪D(0, 1)),
(E.23)

when 1 + k = k1 + k2, kj ≥ 0, s ∈ R.
Let χ,Φ ∈ C∞

0 (Ω), with Φ = 1 near supp (χ). Then,
(A− z)ΦBχ = χ+R, (E.24)

where R = R(z) is a smoothing operator: D′(Ω) → C∞(Ω), depending holomor-
phically on z, such that Ru = 0 when supp (u) ∩ supp (χ) = ∅ and

∂k
zR = O(〈z〉−2−k) : H−s(Ω) → Hs

loc(Ω), z ∈ Ċ \ (Γ ∪D(0, 1)), (E.25)
for all s ∈ R, k ≥ 0. We omit the standard proof of this, based on the symbolic
results above, starting with the identity

(A− z)ΦBχ = [A,Φ]Bχ+Φ(A− z)Bχ.

Let M ⊂
⋃N

1 Ωj be a finite covering of M with coordinate charts as above. Re-
call that A is a globally defined pseudodifferential operator acting on 1/2-densities
so we can now view A−z as acting: C∞

0 (Ωj ; Ω
1/2) → C∞(M ; Ω1/2) for each j. We

have a corresponding operator Bj (as “B” above), now acting on 1/2-densities, so
that

Bj(udx
1/2) = (Op (bj)u)dx

1/2, u ∈ C∞
0 (Ωj) (E.26)

where dx1/2 is the canonical (and j-dependent) 1/2-density on Ωj . Let χj ∈
C∞

0 (Ωj) form a partition of unity on M . Equation (E.24) becomes
(A− z)ΦjBjχj = χj +Rj(z), (E.27)
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where Rj has the properties of “R” in (E.23), (E.25) except for the fact that Rj

acts on 1/2-densities and that we can actually define Rj as an operator on M such
that

‖∂k
zRj‖L(H−s,Hs(M)) ≤ Cs〈z〉−2−k, z ∈ Ċ \ (Γ ∪D(0, 1)). (E.28)

Here Hs(M) denotes the Sobolev space of 1/2-densities of order s ∈ R.
Let

B :=
∑

ΦjBjχj : C∞(M ; Ω1/2) → C∞(M ; Ω1/2). (E.29)

Then

(A− z)B(z) = 1 +R(z), (E.30)

R(z) =
∑

Rj(z), (E.31)

∂k
zB(z) = O(〈z〉−k1) : Hs → Hs+k2 , when k + 1 = k1 + k2, kj ≥ 0, (E.32)

∂k
zR(z) = Os(〈z〉−2−k) : H−s → Hs, (E.33)

for all s ∈ R.
On the other hand, by direct arguments, we know that (A− z)−1 also enjoys

the properties (E.32). Applying this operator to the left in (E.30), we get

(A− z)−1 = B(z)−K(z), K(z) = (A− z)−1R(z). (E.34)

Clearly, K(z) also satisfies (E.33).
Using the operator identity (5.1) in (E.34), we get

(A− z)1−n = B(n)(z)−K(n)(z), (E.35)

B(n) =
1

(n− 2)!
∂n−2
z B(z), (E.36)

K(n) =
1

(n− 2)!
∂n−2
z K(z) = Os(〈z〉−n) : H−s → Hs. (E.37)

From the last estimate it follows that K(n) is of trace class with a continuous
distribution kernel which is uniformly = O(〈z〉−n).

Let x0 be a point in a coordinate chart Ω = Ωj and assume for simplicity that
χ = χj is equal to 1 near that point. Then near (x0, x0) the distribution kernel of
B (identified locally with an operator acting on scalar functions) coincides with
that of Op (b), where b satisfies (E.20). Consequently,

B(n) = Op (b(n)), (E.38)

b(n) ≡ (a− z)−n − 1

(n− 2)!
∂n−2
z

(
(a− z)−1r

)
mod S̃

(
〈ξ, z〉−n−1

)
. (E.39)
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Appendix F. Proof of formulae (4.4) and (4.5)

Formula (3.5) implies

(∂P (k))P (j) + P (k)∂P (j) = δkj∂P (k), (F.1)

where ∂ is any partial derivative. We have

tr{P (k), P (j), P (l)} = tr
[
(∂xαP (k))P (j)∂ξαP

(l) − (∂ξαP
(k))P (j)∂xαP (l)

]
= tr

[(
(∂xαP (k))P (j)

)(
P (j)∂ξαP

(l)
)

−
(
(∂ξαP

(k))P (j)
)(
P (j)∂xαP (l)

)]
.

Using (F.1), we can rewrite the above formula as

tr{P (k), P (j), P (l)} = tr
[(
δkj∂xαP (j) − P (k)∂xαP (j)

)(
δjl∂ξαP

(j) − (∂ξαP
(j))P (l)

)
−
(
δkj∂ξαP

(j) − P (k)∂ξαP
(j)
)(
δjl∂xαP (j) − (∂xαP (j))P (l)

)]
.

Expanding the parentheses in the above formula and rearranging terms, we get

tr{P (k), P (j), P (l)} = δkjtr{P (j), P (l), P (j)}+ δjltr{P (j), P (k), P (j)}

− δkltr{P (j), P (k), P (j)}.
(F.2)

In the special case l = k, the above formula becomes

tr{P (k), P (j), P (k)} = 2δkjtr{P (j), P (j), P (j)} − tr{P (j), P (k), P (j)}. (F.3)

Each of the three terms in the RHS of (F.2) can now be rewritten using the identity
(F.3) with appropriate choice of indices, which gives us (4.4).
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Let us now substitute (4.4) into the triple sum in the RHS of (4.3):∑
j,k,l

h(j) − z

(h(k) − z)(h(l) − z)
tr{P (k), P (j), P (l)}

= 2
∑
j

1

h(j) − z
tr{P (j), P (j), P (j)} −

∑
j,l

1

h(l) − z
tr{P (l), P (j), P (l)}

−
∑
j,k

1

h(k) − z
tr{P (k), P (j), P (k)}+

∑
j,k

h(j) − z

(h(k) − z)2
tr{P (k), P (j), P (k)}

= 2
∑
j

1

h(j) − z
tr{P (j), P (j), P (j)} − 2

∑
j,k

1

h(k) − z
tr{P (k), P (j), P (k)}

+
∑
j,k

h(j) − z

(h(k) − z)2
tr{P (k), P (j), P (k)}

= 2
∑
j

1

h(j) − z
tr{P (j), P (j), P (j)} − 2

∑
k

1

h(k) − z
tr{P (k), P (k)}

+
∑
j,k

1

(h(k) − z)2
tr{P (k), h(j)P (j), P (k)} − z

∑
k

1

(h(k) − z)2
tr{P (k), P (k)}

= 2
∑
j

1

h(j) − z
tr{P (j), P (j), P (j)}+

∑
k

1

(h(k) − z)2
tr{P (k), A1, P

(k)}

= 2
∑
j

1

h(j) − z
tr{P (j), P (j), P (j)}+

∑
j

1

(h(j) − z)2
tr{P (j), A1, P

(j)}

= 2
∑
j

1

h(j) − z
tr{P (j), P (j), P (j)}+

∑
j

1

(h(j) − z)2
tr{P (j), A1 − h(j)I, P (j)},

(F.4)

where we used the identities
∑

j P
(j) = I, {P (k), P (k)} = 0 and (3.3). Substituting

(F.4) into (4.3), we arrive at (4.5).
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A Lieb–Thirring type inequality for mag-
netic Schrödinger operators with a radial
symmetry
Diana Barseghyan and Françoise Truc

This paper is dedicated to Professor Boris Pavlov, a great scientist and a man of great
humanity.

Abstract. The aim of the paper is to derive spectral estimates on the eigen-
value moments of the magnetic Schrödinger operators defined on the two-
dimensional disk with a radially symmetric magnetic field and radially sym-
metric electric potential.

Keywords. Eigenvalue bounds, radial magnetic field, Lieb–Thirring inequal-
ities, discrete spectrum.

1. Introduction
Let us consider a particle in a bounded domain Ω in R2 in the presence of a
magnetic field B and an electric potential V . We define the 2-dimensional magnetic
Schrödinger operator associated to this particle as follows:

Let A be a magnetic potential associated to B, i.e. a smooth real valued-
function on Ω ⊂ R2 verifying rot (A) = B and V ≥ 0 be a bounded measurable
potential defined on L2(Ω). The magnetic Schrödinger operator is initially defined
on C∞

0 (Ω) by HΩ(A, V ) = (i∇+A)2 − V .
The case of a non-constant magnetic field can be motivated by anisotropic

superconductors (see, for instance, [4]) or the liquid crystal theory.
Assuming some regularity conditions (RC) on A, namely, the magnetic field

B ∈ L∞
loc(Ω) and the corresponding magnetic potential A ∈ L∞(Ω), we get that the

magnetic Sobolev norm ∥(i∇+A)u∥L2(Ω), u ∈ H1
0(Ω), is closed and equivalent to

the non-magnetic one, which means that they both have purely discrete spectrum.
Thus using the boundedness of the potential V the self-adjoint Friedrichs extension
of HΩ(A, V ), initially defined on C∞

0 (Ω), has a purely discrete spectrum.
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In the paper we also consider the case when the magnetic field grows to
infinity as the variable approaches the boundary and has a non zero infimum

B(z) → ∞ as z → ∂Ω and K := inf B(z) > 0. (1.1)
In view of the lower bound

(HΩ(A, V )(u), u)L2(Ω) ≥
∫
Ω

(
B(z)− ∥V ∥L∞(Ω)

)
|u|2(z) dz,

one again can construct the Friedrichs extension of HΩ(A, V ) initially defined on
C∞

0 (Ω). Moreover, it still has a purely discrete spectrum [15].
For simplicity, we will use for the Friedrichs extension the same symbol

HΩ(A, V ), and we shall denote the increasingly ordered sequence of its eigenvalues
by λk = λk(Ω, A, V ).

The purpose of this paper is to establish bounds of the eigenvalue moments of
such operators. Let us recall the following bound which was proved by Berezin, Li
and Yau for non-magnetic Dirichlet Laplacians on a domain Ω in Rd; see [1, 2, 14],∑

k

(Λ− λk(Ω, 0, 0))
σ
+ ≤ Lcl

σ,d |Ω|Λσ+ d
2 for any σ ≥ 1 and Λ > 0 , (1.2)

where |Ω| is the volume of Ω, and the constant on the right-hand side,

Lcl
σ,d =

Γ(σ + 1)

(4π)
d
2Γ(σ + 1 + d/2)

, (1.3)

is optimal. Moreover, for 0 ≤ σ < 1, the bound (1.2) still exists, but with another
constant on the right-hand side [10]∑

k

(Λ− λk(Ω, 0, 0))
σ
+ ≤ 2

(
σ

σ + 1

)σ

Lcl
σ,d |Ω|Λσ+ d

2 , 0 ≤ σ < 1 . (1.4)

For Schrödinger operators HΩ(0, V ) with Dirichlet boundary conditions the fol-
lowing bound was proved by Lieb–Thirring [12]:∑

λk(Ω,0,V )≤0

|λk(Ω, 0, V )|σ ≤ Lcl
σ,d

∫
Ω

V σ+d/2(x) dx , σ ≥ 3/2 . (1.5)

There exists a similar estimate for Schrödinger operators HΩ(A, V ) with
Dirichlet boundary conditions and with non-zero magnetic field [13]∑

λk(Ω,A,V )≤0

|λk(Ω, A, V )|σ ≤ Lcl
σ,d

∫
Ω

V σ+d/2(x) dx , σ ≥ 3/2 . (1.6)

In the magnetic case, due to the pointwise diamagnetic inequality, which
means that under rather general assumptions on the magnetic potentials [11]

|∇|u(x)|| ≤ |(i∇+A)u(x)| for a.a. x ∈ Ω ,

we get that λ1(Ω, A, 0) ≥ λ1(Ω, 0, 0). However, the estimate
λj(Ω, A, 0) ≥ λj(Ω, 0, 0)
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fails in general if j ≥ 2. We remark that, nevertheless, momentum estimates are
still valid for some values of the parameters. In particular, it was shown [13] that
the sharp bound (1.2) holds true for arbitrary magnetic fields provided σ ≥ 3/2,
and for constant magnetic fields if σ ≥ 1 [7, 9]. In the two-dimensional case the
bound (1.4) holds true for constant magnetic fields if 0 ≤ σ < 1, and the constant
on the right-hand side cannot be improved [8].

In the present work we study the magnetic Schrödinger operators HΩ(A, V )
defined on the two- dimensional disk Ω centered in zero and with radius r0 > 0,
with a radially symmetric magnetic field B(x) = B(|x|) and electric potential
V = V (|x|) ≥ 0. Our aim is to extend a sufficiently precise Lieb–Thirring type
inequality to this situation. A similar problem was studied recently for magnetic
Dirichlet Laplacians in [3], but under very strong restrictions on the growth of the
magnetic field.

Let us also mention that some estimates on the counting function of the
eigenvalues of the magnetic Dirichlet Laplacian on a disk were established in [15],
in the case where the field is radial and satisfies some growth condition near the
boundary.

2. Main Result
Inspired by the weighted one-dimensional Lieb–Thirring type inequalities [6] we
establish the weighted eigenvalue bound for the operator HΩ(A, V ) in terms of the
magnetic and electric potentials B and V . The following theorem holds true:

Theorem 2.1. Let HΩ(A, V ) be a magnetic Schrödinger operator with Dirichlet
boundary conditions defined on the disk Ω of radius r0 centered in zero with a
radial magnetic field B(x) = B(|x|) and an electric potential V = V (|x|) ≥ 0. Let
us assume the validity of the conditions (RC) or the validity of (1.1). Then for
any 0 < ε ≤ 3/4, 0 ≤ α < 1 and σ ≥ (1− α)/2, the following inequality holds:

tr (HΩ(A, V ))
σ
−

≤
2r0Lσ+1/2,α√

1− ε

∫ r0

0

((
1

ε
− 1

)
1

r2

(∫ r

0

sB(s) ds

)2

+ V (r)− 1

4r2

)σ+1+α/2

+

rα dr

+
Lσ,α√
1− ε

∫ r0

0

((
1

ε
− 1

)
1

r2

(∫ r

0

sB(s) ds

)2

+ V (r)− 1

4r2

)σ+(1+α)/2

+

rα dr

+ Lσ,α

∫ r0

0

(
V (r)− 1

r2

(∫ r

0

sB(s) ds

)2
)σ+(1+α)/2

+

rα dr,

(2.1)

where Lσ+1/2,α and Lσ,α are some constants.
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Remark 2.1. If 0 ≤ σ < 3/2 then, even for magnetic Laplacians, (1.2)-type
inequality is known only for constant magnetic fields.

Remark 2.2. If
sup
r<r0

(
V (r)− 1

4r2

)
< −A2/3,

where
A = sup

r<r0

1

r

∫ r

0

sB(s)ds < ∞

then we can choose ε ≥ 3/4 such that the first two terms of the right-hand side of
(2.1) be equal to zero. So we decrease the order of the potential V in Lieb–Thirring
bound (1.6) from σ + 1 to σ + (1 + α)/2 < σ + 1.

Proof. We begin by recalling the standard partial wave decomposition [5]:

L2(Ω, dx) =
∞⊕

m=−∞
L2((0, r0), 2πrdr)

f → (. . . , f−1, f0, f1, . . . ) with f(r, θ) =
∞∑

m=−∞
eimθfm(r) .

Choosing the radial gauge A(r, θ) = (−a(r) sin θ, a(r) cos θ) where

a(r) :=
1

r

∫ r

0

sB(s) ds,

we get that the operator HΩ(A, V ) acts on
⊕∞

m=−∞ L2(0, r0) as follows:

HΩ(A, V ) =

∞⊕
m=−∞

hm(B, V ),

where the operators hm(B, V ) are the Friedrichs extension of the closures of the
quadratic forms

Q(hm(B, V ))[u] = 2π

∫ r0

0

(∣∣∣∣dudr
∣∣∣∣2 + (mr − a(r) ds

)2
|u|2 − V |u|2

)
r dr,

defined originally on C∞
0 (0, r0), and acting on their domain as

hm(B, V ) = − d2

dr2
− 1

r

d

dr
+
(m
r

− a(r)
)2

− V (r).

Employing the mapping U : C∞
0 (0, r0) → C∞

0 (0, r0) defined by

(Uf)(r) =
1√
2πr

f(r),

one gets the unitarily equivalence between the operators hm(B, V ) and

lm(B, V ) = − d2

dr2
− 1

4r2
+
(m
r

− a(r)
)2

− V (r)
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defined already on L2((0, r0), dr). Thus we are going to consider the self-adjoint
operators associated to the closures of the quadratic forms

Q(lm(B, V ))[v] =

∫ r0

0

(∣∣∣∣dvdr
∣∣∣∣2 − 1

4r2
|v|2 +

(m
r

− a(r)
)2

|v|2 − V (r)|v|2
)

dr,

defined originally on C∞
0 (0, r0).

We have, for any 0 < ε < 1 and any v ∈ C∞
0 (0, r0),

Q(lm(B, V ))[v]

=

∫ r0

0

(∣∣∣∣dvdr
∣∣∣∣2 − 1

4r2
|v|2 + m2

r2
|v|2 − 2m

r
a(r)|v|2 + a2(r)|v|2 − V (r)|v|2

)
dr

≥
∫ r0

0

(∣∣∣∣dvdr
∣∣∣∣2 − 1

4r2
|v|2 + m2

r2
|v|2 − m2ε

r2
|v|2

−1

ε
a2(r)|v|2 + a2(r)|v|2 − V (r)|v|2

)
dr.

It follows from the above inequality that if m ̸= 0 and 0 < ε ≤ 3/4, then

lm(B, V ) ≥ gB,V +
(1− ε)m2 − 1/4

r20
, (2.2)

where the operator gB,V is associated with the closure of the form

Q(gB,V )[v] =

∫ r0

0

(∣∣∣∣dvdr
∣∣∣∣2 − (1

ε
− 1

)
a2(r)|v|2 − V (r)|v|2

)
dr

initially defined on C∞
0 (0, r0).
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Let {µk(B, V )}∞k=1 be the set of the negative eigenvalues of gB,V . Due to the
minimax principle, inequality (2.2) implies

tr

( ∞⊕
m=−∞

hm(B, V )

)σ

−

≤
∞∑

m=−∞
m ̸=0

tr

(
gB,V +

(1− ε)m2 − 1/4

r20

)σ

−
+ tr

(
− d2

dr2
− 1

4r2
+ a2(r)− V (r)

)σ

−

≤
∞∑

m=−∞
m ̸=0

∑
µk(B,V )+((1−ε)m2−1/4)/r20≤0

∣∣∣∣µk(B, V ) +
(1− ε)m2 − 1/4

r20

∣∣∣∣σ

+ tr

(
− d2

dr2
− 1

4r2
+ a2(r)− V (r)

)σ

−

≤
∞∑
k=1

∑
0<|m|≤

√
|µk(B,V )|r20+1/4

1−ε

∣∣∣∣µk(B, V ) +
(1− ε)m2 − 1/4

r20

∣∣∣∣σ

+ tr

(
− d2

dr2
− 1

4r2
+ a2(r)− V (r)

)σ

−

≤
∞∑
k=1

(
2
√
|µk(B, V )|r20 + 1/4√

1− ε
|µk(B, V )|σ

)

+ tr

(
− d2

dr2
− 1

4r2
+ a2(r)− V (r)

)σ

−

≤ 2r0√
1− ε

∞∑
k=1

|µk(B, V )|σ+1/2 +
1√
1− ε

∞∑
k=1

|µk(B, V )|σ

+ tr

(
− d2

dr2
− 1

4r2
+ a2(r)− V (r)

)σ

−
.

(2.3)

Let us extend the potential −
(
1
ε − 1

)
a2(r)− V (r) to R+ by zero and denote the

corresponding one-dimensional Schrödinger operator by g∗(B, V ). Since

C∞
0 (0, r0) ⊂ C∞

0 (R+),

by minimax principle for any δ > 0,∑
k

|µk(B, V )|δ ≤
∑
k

|νk(B, V )|δ, (2.4)

where {νk(B, V )}∞k=1 are the negative eigenvalues of g∗(B, V ).
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Applying the Lieb–Thirring inequality [6], for any α ∈ [0, 1) and σ ≥ (1 −
α)/2, we get

∞∑
k=1

|νk(B, V )|σ+1/2 ≤ Lσ+1/2,α

∫ r0

0

([
1

ε
− 1

]
a2(r) + V (r)− 1

4r2

)σ+1+α/2

+

rα dr,

∞∑
k=1

|νk(B, V )|σ ≤ Lσ,α

∫ r0

0

([
1

ε
− 1

]
a2(r) + V (r)− 1

4r2

)σ+(1+α)/2

+

rα dr, (2.5)

tr

(
− d2

dr2
− 1

4r2
+ a2(r)− V (r)

)σ

−
≤ Lσ,α

∫ r0

0

(
V (r)− a2(r)

)σ+(1+α)/2

+
rα dr.

where Lσ+1/2,α and Lσ,α are some constants.
This, together with the estimates (2.3)–(2.4), means

tr

( ∞⊕
m=−∞

hm(B, V )

)σ

−

≤
2r0Lσ+1/2,α√

1− ε

∫ r0

0

((
1

ε
− 1

)
a2(r) + V (r)− 1

4r2

)σ+1+α/2

+

rα dr

+
Lσ,α√
1− ε

∫ r0

0

((
1

ε
− 1

)
a2(r) + V (r)− 1

4r2

)σ+(1+α)/2

+

rα dr

+ Lσ,α

∫ r0

0

(
V (r)− a2(r)

)σ+(1+α)/2

+
rα dr,

(2.6)

which proves the theorem. �
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Scattering matrices and Weyl functions
of quasi boundary triples
Jussi Behrndt and Hagen Neidhardt

In memory of Boris Sergeevich Pavlov

Abstract. In this note a representation formula for the scattering matrix of
a pair of self-adjoint extensions of a non-densely defined symmetric operator
with infinite deficiency indices is proved with the help of quasi boundary
triples and their Weyl functions. This result is a generalization of a classical
formula by V.A. Adamyan and B.S. Pavlov.

1. Introduction
Mathematical scattering theory and its applications is a central theme in the works
of B.S. Pavlov. Among his numerous contributions in this area we mention here
the works [1, 3, 4, 5, 8, 26, 36, 37, 39, 40, 41, 42, 43] and we point out the
famous classical paper [2], which can also be viewed as the origin of the present
note on scattering matrices. In fact, in [2] V.A. Adamyan and B.S. Pavlov proved
a representation formula in terms of M.G. Krein’s Q-function for the scattering
matrix of a pair of self-adjoint extensions A and B of a symmetric operator with
finite deficiency indices (see also [6]). In this situation the resolvents of A and B
differ by a finite rank operator, that is,

dim
(
ran
(
(A− λ)−1 − (B − λ)−1

))
<∞ (1.1)

holds for some (and hence for all) λ ∈ ρ(A) ∩ ρ(B), and the S-matrix becomes a
matrix-valued function in a spectral representation of the absolutely continuous
part of A. This important result was revisited and newly interpreted in [15] using
the concept of ordinary boundary triples and their Weyl functions from extension
theory of symmetric operators, see also [14, 16]. Only very recently in [17] the finite
rank condition (1.1) was relaxed and, roughly speaking, replaced by the typical
trace class assumption

(A− λ)−1 − (B − λ)−1 ∈ S1 (1.2)
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for some (and hence for all) λ ∈ ρ(A) ∩ ρ(B). In this more general situation it is
convenient to work with so-called generalized or quasi boundary triples, instead
of ordinary boundary triples, in particular, this allows to apply the representation
formula for the S-matrix to scattering problems involving different self-adjoint
realizations of second order elliptic PDEs on unbounded domains. For related
recent results we also refer the reader to [33, 34, 35].

The main objective of the present note on scattering matrices is to provide a
slight generalization of the main representation formula for the scattering matrix
in [17]. Here we shall extend [17, Theorem 3.1] in two directions. Firstly, we for-
mulate and prove the representation formula in the framework of quasi boundary
triples (instead of generalized boundary triples), which allows a bit more flexibil-
ity in applications to differential operators (see also [10, 17]), and secondly, we
drop the assumption that the underlying symmetric operator is densely defined.
We also note that the trace class condition (1.2) will follow automatically from
our assumptions on the γ-field and Weyl function M of the quasi boundary triple;
instead of S1-regularity of the Weyl function as in [17, Theorem 3.1] we shall
impose a Hilbert–Schmidt condition on the γ-field and require the values of M−1

to be bounded. The present generalizations lead to some technical difficulties in
the proof of the representation formula for the S-matrix. More precisely, since the
values of the Weyl function of a quasi boundary triple may be non-closed and un-
bounded operators, particular attention has to be paid in some of the main steps
of the proof. Furthermore, if the domain of the underlying symmetric operator
is not dense the adjoint needs to be interpreted in the sense of linear relations
(multi-valued operators) and hence it is necessary to use boundary triple tech-
niques for linear relations here. However, these additional efforts are worthwhile
since problems in mathematical scattering theory naturally lead to non-densely de-
fined symmetric defined operators. As an example we consider a scattering system
consisting of one-dimensional Schrödinger operators with a real-valued bounded
integrable potential in L2(R). Here the underlying symmetric operator is defined
on all H2(R)-functions that vanish on the support of the potential, and hence is
non-densely defined. We shall illustrate how a quasi boundary triple for the adjoint
relation can be chosen and derive a representation of the scattering matrix in this
case from our main result Theorem 3.1.

2. Scattering systems and Weyl functions of quasi boundary
triples

Let A and B be self-adjoint operators in a separable Hilbert space H. The pair
{A,B} may be viewed as a scattering system, where A stands for the unperturbed
operator and B for the perturbed operator. In this preparatory section we do
not impose any conditions on the type of the perturbation. We shall discuss in
the following how (quasi) boundary triples may be used to regard A and B as
self-adjoint extensions of an underlying symmetric operator and how the resolvent
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difference of A and B can be factorized in a convenient Krein type formula. In the
following operators will often be identified with their graphs.

Let S = A ∩ B be the intersection (of the graphs) of A and B. Then S is
given by

Sf := Af = Bf, domS =
{
f ∈ domA ∩ domB : Af = Bf

}
. (2.1)

In general the domain of S is not a dense subspace of H, and it may happen that
domS = {0}. However, S is a closed operator in H and since A and B are self-
adjoint extensions of S it is clear that S is a symmetric operator in H. The adjoint
S∗ of S is defined as the linear relation

S∗ =
{
{g, g′} : (Sf, g) = (f, g′) for all f ∈ domS

}
⊂ H× H;

here and in the following we write elements in linear relations (linear subspaces)
in a pair notation, e.g., {g, g′}. It is clear that S∗ is (the graph of) an operator if
and only if domS is dense in H, otherwise S∗ has a nontrivial multivalued part
(that is, there exists elements of the form {0, g′} ∈ S∗, g′ 6= 0). We shall view A
and B as self-adjoint restrictions of the adjoint relation S∗ and use the techniques
of (quasi) boundary triples from extension theory of symmetric operators and
relations. We refer the reader to [7, 24, 25, 27] for more details on linear relations
and to [11, 12, 20, 21, 22, 23, 29, 46] for the notion of ordinary, generalized, and
quasi boundary triples for linear operators and relations. In the following we repeat
a few necessary definitions from [11, 12] and provide a useful factorization of the
difference of the resolvents of A and B in Proposition 2.4.
Definition 2.1. Let T be a linear relation in the Hilbert space H such that T = S∗.
Then Π = {G,Γ0,Γ1} is said to be a quasi boundary triple for S∗ if G is a Hilbert
space and Γ0,Γ1 : T → G are linear mappings such that the following conditions
(i)–(iii) are satisfied.

(i) The abstract Green’s identity
(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ T ;
(ii) The range of the mapping (Γ0,Γ1)

⊤ : T → G × G is dense;
(iii) A0 := ker Γ0 is a self-adjoint relation in H.

Assume that Π = {G,Γ0,Γ1} is a quasi boundary triple for T = S∗ and let
A0 = ker Γ0. For λ ∈ ρ(A0) one verifies the direct sum decomposition

T = A0 +̂ N̂λ(T ), N̂λ(T ) =
{
{fλ, λfλ} : fλ ∈ ker(T − λ)

}
, (2.2)

which implies that Γ0 � N̂λ(T ) is invertible. In the decomposition (2.2) the direct
sum A+̂N of linear relations A and N such that A ∩ N = {0} is defined by
A+̂N = {f + g, f ′ + g′}, where {f, f ′} ∈ A and {g, g′} ∈ N .

We then define the γ-field and Weyl function corresponding to the quasi
boundary triple {G,Γ0,Γ1} as operator functions on ρ(A0) by

λ 7→ γ(λ) = π1
(
Γ0 � N̂λ(T )

)−1 and λ 7→M(λ) = Γ1

(
Γ0 � N̂λ(T )

)−1
;
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here π1 denotes the projection onto the first component of H × H. We refer the
reader to [11, 12] for a detailed discussion of the properties of the γ-field and Weyl
function; here we only recall [11, Proposition 2.6].
Proposition 2.2. Let Π = {G,Γ0,Γ1} be a quasi boundary triple for S∗ with
γ-field γ and Weyl function M . For λ, µ ∈ ρ(A0) the following holds.

(i) γ(λ) is a densely defined operator from G into H with dom γ(λ) = ranΓ0 such
that the function λ 7→ γ(λ)φ is holomorphic on ρ(A0) for every φ ∈ ranΓ0

and
γ(λ) =

(
I + (λ− µ)(A0 − λ)−1

)
γ(µ)

holds. Moreover, for each λ ∈ ρ(A0) the operator γ(λ) is closable and its
closure γ(λ) is a bounded operator from G into H.

(ii) γ(λ)∗ is a bounded mapping defined on H with values in ranΓ1 ⊂ G and for
all h ∈ H we have

γ(λ)∗h = Γ1

(
(A0 − λ)−1h

(I + λ(A0 − λ)−1)h

)
.

(iii) M(λ) is a densely defined operator in G with
domM(λ) = ranΓ0 and ranM(λ) ⊂ ranΓ1.

(iv) M(λ)Γ0f̂λ = Γ1f̂λ for all f̂λ ∈ N̂λ(T ).
(v) M(λ) ⊆M(λ)∗ and

M(λ)φ−M(µ)∗φ = (λ− µ)γ(µ)∗γ(λ)φ, φ ∈ domM(λ).

The function λ 7→M(λ) is holomorphic in the sense that it can be written as
M(λ) = C + L(λ), where

Cφ := ReM(i)φ =
1

2
(M(i) +M(i)∗)φ, φ ∈ domC := domM(i),

is a possible unbounded symmetric operator and L(λ) is given by
L(λ) := γ(i)∗(λ+ (1 + λ2)(A0 − λ)−1)γ(i), λ ∈ ρ(A0).

In the next lemma we show that the inclusion ranM(λ) ⊂ ranΓ1 in Propo-
sition 2.2 (iii) becomes an equality if the relation A1 := ker Γ1 is assumed to be
self-adjoint in H. Note that by Green’s identity A1 is automatically symmetric.
Lemma 2.3. Let Π = {G,Γ0,Γ1} be a quasi boundary triple for S∗ with Weyl
function M and assume, in addition, that A1 = ker Γ1 is a self-adjoint relation in
H. Then for all λ ∈ ρ(A0)∩ρ(A1) the operator M(λ) maps ranΓ0 onto ranΓ1 and
M(λ)−1 exist and is defined on ranΓ1.
Proof. The assumption that A1 = ker Γ1 is self-adjoint implies that the transposed
triple Π⊤ = {G,Γ1,−Γ0} is also quasi boundary triple for S∗. The corresponding
Weyl function M⊤(λ), λ ∈ ρ(A1), is defined on ranΓ1 and has values in ranΓ0.
One easily checks that M⊤(λ)M(λ)g = −g, g ∈ ranΓ0, and M(λ)M⊤(λ)h = −h,
h ∈ ranΓ1, λ ∈ ρ(A0) ∩ ρ(A1). Hence M(λ) maps ranΓ0 onto ranΓ1 and is
invertible. �
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The next result will be used in the formulation and proof of our abstract
representation formula for the scattering matrix in the next section. The statement
on the existence of a quasi boundary triple follows for the case that S is densely
defined also from [17, Proposition 2.9 (i)] and the Krein-type resolvent formula in
(2.4) is a special case of [12, Corollary 6.17] or [13, Corollary 3.9].

Proposition 2.4. Let A and B be self-adjoint operators in H and consider the
closed symmetric operator S = A ∩ B. Then the closure of the linear relation
T = A +̂B coincides with the adjoint relation S∗ and there exists a quasi boundary
triple Π = {G,Γ0,Γ1} for T ⊂ S∗ such that

A = ker Γ0 and B = ker Γ1. (2.3)
Furthermore, if γ and M are the corresponding γ-field and Weyl function then

(B − λ)−1 − (A− λ)−1 = −γ(λ)M(λ)−1γ(λ)∗, λ ∈ ρ(A) ∩ ρ(B). (2.4)

Proof. Since A and B are self-adjoint extensions of the closed symmetric operator
S = A∩B (see also (2.1)) there exists an ordinary boundary triple Π′ = {G,Λ0,Λ1}
for S∗ and a self-adjoint operator Θ in G such that

A = kerΛ0 and B = ker(Λ1 −ΘΛ0). (2.5)
We note that in the present situation the self-adjoint parameter Θ in G is an
operator (and not a linear relation) since S = A∩B, that is, A and B are disjoint
self-adjoint extensions of S (cf. [20, 22, 23, 29]). Now consider the restriction
T := A +̂B of S∗. Since A and B are disjoint self-adjoint extensions of S it follows
that T = S∗, see [17, Proposition 2.9]. We claim that Π = {G,Γ0,Γ1}, where

Γ0f̂ := Λ0f̂ and Γ1f̂ := Λ1f̂ −ΘΛ0f̂ , f̂ ∈ T,

is a quasi boundary triple for T ⊂ S∗ such that (2.3) holds. In fact, (2.3) is clear
from (2.5) and the definition of Γ0 and Γ1, and hence it remains to check items
(i)–(iii) in Definition 2.1. For f̂ = {f, f ′}, ĝ = {g, g′} ∈ T one computes

(Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ) =
(
Λ1f̂ −ΘΛ0f̂ ,Λ0ĝ

)
−
(
Λ0f̂ ,Λ1ĝ −ΘΛ0ĝ

)
= (Λ1f̂ ,Λ0ĝ)− (Λ0f̂ ,Λ1ĝ)

= (f ′, g)− (f, g′)

and hence the abstract Green’s identity is valid. Next, assume that

0 =

((
φ
ψ

)
,

(
Γ0f̂

Γ1f̂

))
=
(
φ,Λ0f̂

)
+
(
ψ,Λ1f̂ −ΘΛ0f̂

)
holds for some φ,ψ ∈ G and all f̂ ∈ T . Since Π′ = {G,Λ0,Λ1} is an ordinary
boundary triple the map (Λ0,Λ1)

⊤ : S∗ → G × G is surjective. It follows that
Λ1 � kerΛ0 maps onto G and hence for f̂ ∈ A = kerΛ0 one has 0 = (ψ,Λ1f̂), and
therefore, ψ = 0. Now (φ,Λ0f̂) = 0 for f̂ ∈ T , and the fact that the range of the
restriction of Λ0 onto T is dense in G (since Λ0 : S∗ → G is surjective, continuous
with respect to the norm on S∗ ⊂ H × H and T is dense in S∗), yield φ = 0.
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Therefore, the range of the mapping (Γ0,Γ1)
⊤ : T → G × G is dense and hence

condition (ii) in Definition 2.1 holds. Condition (iii) is clear from (2.3). Thus, we
have shown that Π = {G,Γ0,Γ1} is a quasi boundary triple for T = S∗.

Next, we verify the Krein-type resolvent formula (2.4). To this end we note
that the right-hand side of (2.3) makes sense by Proposition 2.2 and Lemma 2.3.
It remains to show the equality of the left- and right-hand sides. Let g ∈ H and
define f̂ = {f, f ′} ∈ T = A0 +̂ N̂λ(T ) by

f : = (A− λ)−1g − γ(λ)M(λ)−1γ(λ)∗g,

f ′ : = (1 + λ(A− λ)−1)g − λγ(λ)M(λ)−1γ(λ)∗g.
(2.6)

Proposition 2.2 (ii) and the definition of the Weyl function yield

Γ1f̂ = Γ1

{
(A− λ)−1g, (1 + λ(A− λ)−1)g

}
−M(λ)M(λ)−1γ(λ)∗g = 0

and hence f̂ ∈ ker Γ1 = B. From (2.6), A,B ⊂ T , and ran γ(λ) = ker(T − λ) one
infers

(B − λ)f = (T − λ)(A− λ)−1g − (T − λ)γ(λ)M(λ)−1γ(λ)∗g = g

and together with (2.6) this yields the resolvent formula (2.4). �

3. Main result
Let again A and B be self-adjoint operators in a separable Hilbert space H, and
assume first that

(B − λ)−1 − (A− λ)−1 ∈ S1(H) (3.1)
holds for some, and hence for all, λ ∈ ρ(A) ∩ ρ(B). Here the symbol S1 is used
for the ideal of trace class operators. The ideal of Hilbert–Schmidt operators will
be denoted in a similar way by S2. The trace class condition (3.1) will follow in
Theorem 3.1 and Theorem 3.2 from other assumptions automatically. Denote the
absolutely continuous subspaces of A and B by Hac(A) and Hac(B), respectively,
let P ac(A) be the orthogonal projection onto Hac(A) and let

Aac = A � (domA ∩ Hac(A))

be the absolutely continuous part of A. It is well known (see, e.g., [9, 32, 45, 48, 49])
that under the trace class condition (3.1) the wave operators

W±(B,A) := s− lim
t→±∞

eitBe−itAP ac(A)

exist and are complete, i.e., ran(W±(B,A)) = Hac(B). The scattering operator
is defined as S(A,B) := W+(B,A)

∗W−(B,A) and it follows that S(A,B) is a
unitary operator in Hac(A). In the following we discuss a representation formula
for the scattering matrix {SAB(λ)}λ∈R, a family of unitary operators in a spectral
representation of the absolutely continuous part Aac of A (see, e.g., [9, Chap. 4]),
which is unitarily equivalent to the scattering operator S(A,B).
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The next theorem is a generalization of [17, Theorem 3.1] (see also [15, The-
orem 3.8]). Instead of generalized boundary triples the result is formulated for
quasi boundary triples here, and the assumption that the intersection of A and
B is densely defined is dropped. The proof is similar to the one in [17], although
more technical. For the convenience of the reader we give a self-contained complete
proof in Sect. 4.

Theorem 3.1. Let A and B be self-adjoint operators in H, suppose that the closed
symmetric operator S = A∩B is simple, choose a quasi boundary triple {G,Γ0,Γ1}
for T = S∗ such that A = ker Γ0 and B = ker Γ1 as in Proposition 2.4, and let
γ and M be the corresponding γ-field and Weyl function M , respectively. Assume
that

γ(λ0) ∈ S2(G,H) for some λ0 ∈ ρ(A),

and that M(λ1) is boundedly invertible in G for some λ1 ∈ ρ(A)∩ ρ(B). Then the
following holds.

(i) The resolvent difference of B and A is a trace class operator, that is,
(B − λ)−1 − (A− λ)−1 ∈ S1(H), λ ∈ ρ(A) ∩ ρ(B).

(ii) For all λ ∈ ρ(A) ∩ ρ(B) the closure of the Weyl function M(λ) exists and
is boundedly invertible. Moreover, L(λ) := M(λ) − ReM(i), λ ∈ ρ(A), is a
Nevanlinna function such that the limit L(λ+ i0) = limy↓0 L(λ+ iy) exists
in the operator norm for a.e. λ ∈ R and

M(λ+ i0) := ReM(i) + L(λ+ i0)

is boundedly invertible for a.e. λ ∈ R.
(iii) The space L2(R, dλ,Gλ), where Gλ := ran

(
ImM(λ+ i0)

)
for a.e. λ ∈ R,

forms a spectral representation of Aac such that the matrix {SAB(λ)}λ∈R of
the scattering system {A,B} admits the representation

SAB(λ) = IGλ
− 2i

√
ImM(λ+ i0)

(
M(λ+ i0)

)−1
√

ImM(λ+ i0)

for a.e. λ ∈ R.

In Theorem 3.1 it is assumed that the closed symmetric operator S = A∩B
is simple. This assumption can be dropped and Theorem 3.1 admits a natural
generalization, which will be explained next. If S is not simple then there is a
nontrivial orthogonal decomposition of H = H1 ⊕ H2 such that

S = H1 ⊕H2,

where H1 is a simple symmetric operator in H1 and H2 is a self-adjoint operator
in H2. Then there exist self-adjoint extensions A1 and B1 of H1 in H1 such that

A = A1 ⊕H2 and B = B1 ⊕H2.

Let L2(R, dλ,Hλ) be a spectral representation of the absolutely continuous part
Hac

2 of the self-adjoint operator H2 in H2. Then the following variant of Theo-
rem 3.1 holds.
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Theorem 3.2. Let A and B be self-adjoint operators in H, let S = A∩B, choose
a quasi boundary triple Π = {G,Γ0,Γ1} for T = S∗ such that A = ker Γ0 and
B = ker Γ1 as in Proposition 2.4, and let γ and M be the corresponding γ-field
and Weyl function M , respectively. Assume that

γ(λ0) ∈ S2(G,H) for some λ0 ∈ ρ(A),

and that M(λ1) is boundedly invertible in G for some λ1 ∈ ρ(A)∩ ρ(B). Then the
conclusions (i) and (ii) of Theorem 3.1 are valid and instead (iii) the following
holds.
(iii’) The space L2(R, dλ,Gλ⊕Hλ), where Gλ := ran

(
ImM(λ+ i0)

)
for a.e. λ ∈ R

forms a spectral representation of Aac and the scattering matrix {SAB(λ)}λ∈R
of the scattering system {A,B} admits the representation

SAB(λ) =

(
SA1B1

(λ) 0
0 IHλ

)
for a.e. λ ∈ R, where {SA1B1

(λ)}λ∈R given in Theorem 3.1 (iii) is the scat-
tering matrix of the scattering system {A1, B1}.

4. Proof of Theorem 3.1
The proof of Theorem 3.1 is split into steps. First we make clear in Lemma 4.1
and Lemma 4.2 in which sense the limits M(λ± i0) and ImM(λ± i0) of the Weyl
function M and its imaginary part are understood; cf. Theorem 3.1 (ii) and (iii).

Lemma 4.1. Let M be the Weyl function corresponding to the quasi boundary
triple Π = {G,Γ0,Γ1} of Theorem 3.1. Then ImM(λ) ∈ S1(G) for all λ ∈ ρ(A)
and the limit

ImM(λ+ i0) := lim
ε→+0

ImM(λ+ iε) (4.1)

exists for a.e. λ ∈ R in S1(G).

Proof. From Proposition 2.2 (i) and the assumption γ(λ0) ∈ S2(G,H) for some
λ0 ∈ ρ(A) it follows that γ(λ) ∈ S2(G,H) for all λ ∈ ρ(A). Hence we also have
γ(λ)∗ ∈ S2(H,G) and therefore Proposition 2.2 (v) yields

ImM(λ) = Im(λ) γ(λ)∗γ(λ) ∈ S1(G), λ ∈ ρ(A).

In particular, it follows that the limit in (4.1) exists for a.e. λ ∈ R in S1(G); cf.
[18, 19, 38] or [28, Theorem 2.2]. �

Lemma 4.2. Let M be the Weyl function corresponding to the quasi boundary
triple Π = {G,Γ0,Γ1} in Theorem 3.1. For all φ ∈ ranΓ0 and a.e. λ ∈ R the limit

M(λ± i0)φ := lim
ε→+0

M(λ± iε)φ (4.2)
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exists and the operator M(λ± i0) with domM(λ± i0) = ranΓ0 is closable. More-
over, for a.e. λ ∈ R the closure M(λ+ i0) is boundedly invertible and(

M(λ+ i0)
)−1

= lim
ε→0+

M(λ+ iε)−1 = lim
ε→+0

(
M(λ+ iε)

)−1 (4.3)

holds in the operator norm for a.e. λ ∈ R.

Proof. In order to see that the limit in (4.2) exists and defines a closable operator
in G we recall that M(λ), λ ∈ ρ(A), admits the representation

M(λ)φ = ReM(i)φ+ L(λ)φ

for φ ∈ ranΓ0, see Proposition 2.2 (v). Since γ(λ0) ∈ S2(G,H) by assumption
we also have γ(i) ∈ S2(G,H) by Proposition 2.2 (i). Hence [9, Proposition 3.14]
yields that the limits L(λ ± i0) of L(λ ± iε) exist as ε → +0 with respect to the
Hilbert–Schmidt norm for a.e. λ ∈ R. In particular, one has L(λ± i0) ∈ S2(G) for
a.e. λ ∈ R. Hence definition (4.2) makes sense and yields the representation

M(λ± i0)φ = ReM(i)φ+ L(λ± i0)φ

for all φ ∈ domM(λ ± i0) := ranΓ0 and a.e. λ ∈ R; thus there is a Borel set
Λ ⊂ R of Lebesgue measure zero such that for each λ ∈ R \ Λ the limit operator
M(λ± i0) is well defined. The operators M(λ± i0) are closable for a.e. λ ∈ R and
the closures M(λ± i0) are given by

M(λ± i0)φ = ReM(i)φ+ L(λ± i0)φ (4.4)

for all φ ∈ domM(λ± i0) = domReM(i) and a.e. λ ∈ R.
It will be shown next that the closures in (4.4) are boundedly invertible for

a.e. λ ∈ R and that (4.3) holds in the operator norm for a.e. λ ∈ R. Let us observe
first that M(λ) is boundedly invertible for all λ ∈ ρ(A) \ D, where D is a discrete
subset of ρ(A). In fact, since by our assumption there is some λ1 ∈ ρ(A) such that
M(λ1) is boundedly invertible it follows from Proposition 2.2 (v) that

M(λ) =M(λ1) + (λ− λ1)γ(λ1)
∗γ(λ)

=M(λ1)
[
I − (λ1 − λ)M(λ1)

−1
γ(λ1)

∗γ(λ)
]

holds for all λ ∈ ρ(A). Furthermore, the operator-valued function

λ 7→ (λ1 − λ)M(λ1)
−1
γ(λ1)

∗γ(λ)

is holomorphic on ρ(A) by Proposition 2.2 (i) and hence the analytic Fredholm
theorem (see, e.g., [44, Theorem VI.14]) implies that

M(λ)
−1

=
[
I − (λ1 − λ)M(λ1)

−1
γ(λ1)

∗γ(λ)
]−1

M(λ1)
−1

is a bounded operator for all λ ∈ ρ(A) \ D, where D is a discrete subset of ρ(A).
Note that the transposed triple Π⊤ = {G,Γ1,−Γ0} is also a quasi boundary

triple. The corresponding γ-field γ⊤ and Weyl function M⊤ are given by
λ 7→ γ⊤(λ) = γ(λ)M(λ)−1 and λ 7→M⊤(λ) = −M(λ)−1,
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for λ ∈ ρ(A) ∩ ρ(B), respectively. Hence M⊤(λ) is boundedly invertible for any
λ ∈ ρ(A) ∩ ρ(B) and

M(λ)M⊤(λ) =M⊤(λ)M(λ) = −I, λ ∈ ρ(A) ∩ ρ(B).

Since M⊤ is the Weyl function of Π⊤ = {G,Γ1,−Γ0} Proposition 2.2 (v) yields
the representation

M⊤(λ)φ = ReM⊤(i)φ+ γ⊤(i)∗
(
λ+ (λ2 + 1)(B − λ)−1

)
γ⊤(i)φ

for φ ∈ ranΓ1, and hence

K(λ) :=M⊤(λ) = ReM⊤(i) + L⊤(λ), λ ∈ ρ(A) ∩ ρ(B),

where
L⊤(λ) := γ⊤(i)∗

(
λ+ (λ2 + 1)(B − λ)−1

)
γ⊤(i).

Our assumptions in Theorem 3.1 yield γ⊤(i) = γ(i)M(i)
−1

∈ S2(G,H) and
γ⊤(i)∗ ∈ S2(H,G), and therefore we conclude from [9, Proposition 3.14] that
the limits K(λ + i0) of K(λ + iε) as ε → +0 exist for a.e. λ ∈ R in the operator
norm. Hence we get

K(λ+ i0)M(λ+ i0) =M(λ+ i0)K(λ+ i0) = −I

for a.e. λ ∈ R and it follows that the operator M(λ+ i0) is boundedly invertible
for a.e. λ ∈ R. �

The remaining part of the proof of Theorem 3.1 is similar to the proof of [15,
Theorem 3.8] and [17, Theorem 3.1]. The idea is mainly based on Theorem 4.3
below, which follows from [9, Theorem 18.4]; cf. [17, Theorem A.2]. Some of the
arguments require special care when working in the more general context of quasi
boundary triples since the values of the γ-field and Weyl function are not closed
operators in general; we provide the full details whenever necessary. In the following
we shall denote by L(G) the space of bounded and everywhere defined operators
in G.

Theorem 4.3. Assume that the self-adjoint operators A and B satisfy the trace
class condition (3.1) and suppose that the resolvent difference admits the factor-
ization

(B − i)−1 − (A− i)−1 = ϕ(A)CGC∗ = QC∗,

where C ∈ S2(G,H), let ϕ : R → R be a bounded continuous function and let
Q = ϕ(A)CG. Assume that

Hac(A) = clsp
{
Eac

A (δ)[ranC] : δ ∈ B(R)
}

(4.5)

holds and let D(λ) = d
dλC

∗EA((−∞, λ))C and Gλ = ranD(λ) for a.e. λ ∈ R.
Then L2(R, dλ,Gλ) is a spectral representation of Aac and the scattering matrix of
the scattering system {A,B} is given by

SAB(λ) = IGλ
+ 2πi(1 + λ2)2

√
D(λ)Z(λ)

√
D(λ)
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for a.e. λ ∈ R, where

Z(λ) =
1

λ+ i
Q∗Q+

1

(λ+ i)2
ϕ(λ)G+ lim

ε→+0
Q∗(B − (λ+ iε)

)−1
Q

and the limit of the last term on the right hand side exists in the Hilbert–Schmidt
norm.

Proof of Theorem 3.1. (i) Since γ(λ0) ∈ S2(G,H) for some λ0 ∈ ρ(A) andM(λ1)
−1

is bounded for some λ1 ∈ ρ(A) ∩ ρ(B) it follows from [13, Proposition 3.5] that
γ(λ) ∈ S2(G,H) for all λ ∈ ρ(A) and M(λ)−1 is bounded for all λ ∈ ρ(A) ∩ ρ(B);
cf. the proofs of Lemmas 4.1 and 4.2. Then we also have γ(λ)∗ ∈ S2(H,G) for all
λ ∈ ρ(A) and hence the resolvent difference

(B − λ)−1 − (A− λ)−1 = −γ(λ)M(λ)−1γ(λ)∗ = −γ(λ)M(λ)−1γ(λ)∗

is a trace class operator for all λ ∈ ρ(A) ∩ ρ(B).
(ii) This statement follows from Lemma 4.2.
(iii) This item is proved in two separate steps. In the first step we find a

preliminary form of the scattering matrix making use of Theorem 4.3. In the
second step we then obtain the final form of the scattering matrix.

Step 1. Expressing the resolvent difference at λ = i in the same way as in the proof
of (i) and using γ(i) = (A+ i)(A− i)−1γ(−i) we obtain

(B − i)−1 − (A− i)−1 = −γ(i)M(i)−1γ(−i)∗

= −(A+ i)(A− i)−1γ(−i)M(i)−1γ(−i)∗

= ϕ(A)CGC∗,

where we have chosen

ϕ(t) =
t+ i

t− i
, t ∈ R, C = γ(−i) and G = −M(i)−1.

It follows in exactly the same way as in [17, Proof of Theorem 3.1] that the
condition (4.5) in Theorem 4.3 holds. Now we compute the L(G)-valued function

λ 7→ D(λ) =
d

dλ
C∗EA((−∞, λ))C

and its square root λ 7→
√
D(λ) for a.e. λ ∈ R. First of all, we have

D(λ) = lim
ε→0+

1

2πi
C∗((A− λ− iε)−1 − (A− λ+ iε)−1

)
C

= lim
ε→0+

ε

π
C∗((A− λ− iε)−1(A− λ+ iε)−1

)
C.

On the other hand,
ImM(λ+ iε) = εγ(λ+ iε)∗γ(λ+ iε)

together with γ(λ+ iε) = (A+ i)(A− λ− iε)−1γ(−i) shows

ImM(λ+ iε) = εγ(−i)∗(IH +A2)
(
A− λ+ iε

)−1(
A− λ− iε

)−1
γ(−i)
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and hence we conclude
ImM(λ+ iε) = εC∗(IH +A2)

(
A− λ+ iε

)−1(
A− λ− iε

)−1
C.

This implies ImM(λ+ i0) = limε→0+ ImM(λ+ iε) = π(1+λ2)D(λ) for a.e. λ ∈ R
and, in particular, ran(ImM(λ+ i0)) = ranD(λ) for a.e. λ ∈ R, and hence

Gλ = ran
(
ImM(λ+ i0)

)
= ranD(λ) for a.e. λ ∈ R.

Therefore, Theorem 4.3 yields that L2(R, dλ,Gλ) is a spectral representation of
Aac and the scattering matrix {SAB(λ)}λ∈R is given by

SAB(λ) = IGλ
+ 2πi(1 + λ2)2

√
D(λ)Z(λ)

√
D(λ)

= IGλ
+ 2i(1 + λ2)

√
ImM(λ+ i0)Z(λ)

√
ImM(λ+ i0)

(4.6)

for a.e. λ ∈ R, where

Z(λ) =
1

λ+ i
Q∗Q+

1

(λ+ i)2
ϕ(λ)G+ lim

ε→0+
Q∗(B − (λ+ iε)

)−1
Q (4.7)

and Q = ϕ(A)CG is given by

Q = −(A+ i)(A− i)−1γ(−i)M(i)−1 = −γ(i)M(i)−1 ∈ S2(G,H).

Step 2. In this step we compute the explicit form

Z(λ) = − 1

1 + λ2
M(λ+ i0)−1 (4.8)

for a.e. λ ∈ R of Z(λ) in (4.7). From this and (4.6) the asserted form of the
scattering matrix follows immediately.

Observe that by Proposition 2.4 we have
Γ0(B − λ)−1 = Γ0(A− λ)−1 − Γ0γ(λ)M(λ)−1γ(λ)∗

= −M(λ)−1γ(λ)∗

= −M(λ)−1γ(λ)∗

for λ ∈ ρ(A) ∩ ρ(B) and hence

Γ0(B + i)−1 = −M(−i)−1γ(i)∗

=
(
−γ(i)(M(−i)−1)∗

)∗
=
(
−γ(i)M(i)−1

)∗
= Q∗,

where we have used (M(−i)−1)∗ = (M(−i)∗)−1 =M(i)−1. This yields
Q∗(B − λ)−1Q = Γ0(B + i)−1(B − λ)−1Q

= Γ0

(
Q∗(B − λ)−1(B − i)−1

)∗
= Γ0

(
Γ0(B + i)−1(B − λ)−1(B − i)−1

)∗
.

(4.9)
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Since

(B + i)−1(B − λ)−1(B − i)−1 =
−1

1 + λ
2

(
(B + i)−1 − (B − λ)−1

)
+

1

2i(λ− i)

(
(B + i)−1 − (B − i)−1

)
it follows from Proposition 2.4 that

Γ0(B + i)−1(B − λ)−1(B − i)−1 =
1

1 + λ
2

(
M(−i)−1γ(i)∗ −M(λ)−1γ(λ)∗

)
− 1

2i(λ− i)

(
M(−i)−1γ(i)∗ −M(i)−1γ(−i)∗

)
.

Taking into account (M(µ)−1)∗ =M(µ)−1 for µ ∈ ρ(A) ∩ ρ(B) we obtain for the
adjoint(
Γ0(B + i)−1(B − λ)−1(B − i)−1

)∗
=

1

1 + λ2
(
γ(i)M(i)−1 − γ(λ)M(λ)−1

)
+

1

2i(λ+ i)

(
γ(i)M(i)−1 − γ(−i)M(−i)−1

)
and for φ ∈ ranΓ1 = domM(µ)−1, µ ∈ ρ(A) ∩ ρ(B), we then conclude from (4.9)

Q∗(B − λ)−1Qφ = Γ0

(
Γ0(B + i)−1(B − λ)−1(B − i)−1

)∗
φ

=
1

1 + λ2
Γ0

(
γ(i)M(i)−1 − γ(λ)M(λ)−1

)
φ

+
1

2i(λ+ i)
Γ0

(
γ(i)M(i)−1 − γ(−i)M(−i)−1

)
φ

=
1

1 + λ2
(
M(i)−1 −M(λ)−1

)
φ

+
1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)
φ,

which extends by continuity from the dense set ranΓ1 onto G and takes the form

Q∗(B − λ)−1Q =
1

1 + λ2
(
M(i)−1 −M(λ)−1

)
+

1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)
.

This leads to

lim
ε→0+

Q∗(B − (λ+ iε)
)−1

Q =
1

1 + λ2
(
M(i)−1 −M(λ+ i0)−1

)
+

1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)
for a.e. λ ∈ R. Note also that by Lemma 4.2 the limit M(λ+ i0)−1 exists for a.e.
λ ∈ R in the operator norm.
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Moreover, for φ ∈ ranΓ1 = domM(µ)−1, µ ∈ ρ(A) ∩ ρ(B), we have

Q∗Qφ =
(
γ(i)M(i)−1

)∗
γ(i)M(i)−1φ

=M(−i)−1γ(i)∗γ(i)M(i)−1φ

=
1

2i
M(−i)−1

(
M(i)−M(−i)

)
M(i)−1φ

=
1

2i

(
M(−i)−1 −M(i)−1

)
φ.

Hence we obtain for φ ∈ ranΓ1 and a.e. λ ∈ R that

Z(λ)φ =
1

λ+ i
Q∗Qφ+

1

(λ+ i)2
ϕ(λ)Gφ+Q∗(B − (λ+ i0)

)−1
Qφ

=
1

2i(λ+ i)

(
M(−i)−1 −M(i)−1

)
φ− 1

1 + λ2
M(i)−1φ

+
1

1 + λ2
(
M(i)−1 −M(λ+ i0)−1

)
φ+

1

2i(λ+ i)

(
M(i)−1 −M(−i)−1

)
φ

= − 1

1 + λ2
M(λ+ i0)−1φ

and since M(λ+ i0)−1 ∈ L(G) we conclude (4.8). This completes the proof of
Theorem 3.1. �

5. An example
In this section we discuss a scattering system consisting of the one-dimensional
Schrödinger operators {A,B}, where

Af = −f ′′, Bf = −f ′′ + V f, domA = domB = H2(R). (5.1)

Our aim is to show in a particularly simple situation how quasi boundary triples for
the adjoints of non-densely defined symmetric operators appear and can be applied
to obtain a formula for the scattering matrix via Theorem 3.1. To avoid technical
difficulties we will assume that the real-valued potential V in (5.1) satisfies the
condition

V ∈ L∞(R). (5.2)
It is well known that the operators A and B in (5.1) are self-adjoint in L2(R).
Later, in Lemma 5.2, it will also be assumed that V ∈ L1(R). In the present
situation the symmetric operator S = A ∩B has the form

Sf = −f ′′ = −f ′′ + V f, domS =
{
f ∈ H2(R) : V f = 0

}
, (5.3)

and, in general, S is not densely defined. In particular, it may happen that domS =
{0}. In the following we use the factorization

V =
√

|V | sgn(V )
√
|V | = D∗UD, (5.4)
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where D : L2(R) → G, f 7→
√
|V |f, G := ran

√
|V |, and U : G → G, φ 7→ sgn(V )φ.

Observe that ranD is dense in G and that U is a unitary operator in G. In the
next proposition we shall construct a suitable quasi boundary triple for the adjoint
relation S∗. For our purposes it is convenient to introduce the linear relation

T =
{
{f,−f ′′ + V h} : f, h ∈ H2(R)

}
in L2(R) × L2(R). It is not difficult to see that T = A +̂B holds. We emphasize
that the quasi boundary triple Π = {G,Γ0,Γ1} below is not a generalized boundary
triple in the sense of [23, Definition 6.1] whenever ranD is not closed.

Proposition 5.1. Let A,B and S, T be as above. Then Π = {G,Γ0,Γ1}, where

G = ran
√

|V |, Γ0f̂ = Dh and Γ1f̂ = UDh− UDf,

f̂ = {f,−f ′′+V h} ∈ T , is a quasi boundary triple for T = S∗ such that A = ker Γ0

and B = ker Γ1. The corresponding γ-field and Weyl function are given by

γ(λ)φ = −(A− λ)−1D∗φ, φ ∈ ranΓ0,

and
M(λ)φ = Uφ+ UD(A− λ)−1D∗Uφ, φ ∈ ranΓ0.

Proof. Consider two elements f̂ = {f,−f ′′ + V h}, ĝ = {g,−g′′ + V k} ∈ T and
note that (−f ′′, g)L2(R) − (f,−g′′)L2(R) = 0 as f, g ∈ H2(R) = domA and A is a
self-adjoint operator. A straightforward computation shows(

−f ′′ + V h, g
)
L2(R) −

(
f,−g′′ + V k

)
L2(R)

= (V h, g)L2(R) − (f, V k)L2(R)

= (h, V g)L2(R) − (V f, k)L2(ι) + (V h, k)L2(R) − (h, V k)L2(R)

=
(
V h− V f, k

)
L2(R) −

(
h, V k − V g

)
L2(R)

=
(
UDh− UDf,Dk

)
G −

(
Dh,UDk − UDg

)
G

= (Γ1f̂ ,Γ0ĝ)G − (Γ0f̂ ,Γ1ĝ)G

and hence the abstract Green’s identity in Definition 2.1 is satisfied. Next we check
that ran(Γ0,Γ1)

⊤ is dense in G × G. Assume that for some ζ, ξ ∈ G we have

0 = (ζ,Γ0f̂)G + (ξ,Γ1f̂)G = (ζ,Dh)G + (ξ, UDh− UDf)G (5.5)

for all f̂ = {f,−f ′′ + V h} ∈ T . In particular, if h = 0 then

0 = (ξ, UDf)G = (D∗U∗ξ, f)L2(R)

for all f ∈ H2(R). Hence D∗U∗ξ = 0 and kerD∗ = (ranD)⊥ = {0} yields U∗ξ = 0.
But U is unitary and thus we conclude ξ = 0. Now (5.5) reduces to 0 = (ζ,Dh)G =
(D∗ζ, h)L2(R) for all h ∈ H2(R). As above kerD∗ = {0} implies ζ = 0. We have
shown that ran(Γ0,Γ1)

⊤ is dense in G × G.
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Furthermore, if f̂ ∈ ker Γ0 then Dh = 0 for all h ∈ H2(R), and hence V h = 0
for all h ∈ H2(R) by (5.4). Therefore

ker Γ0 =
{
{f,−f ′′} : f ∈ H2(R)

}
= A

and it follows that Π = {G,Γ0,Γ1} is a quasi boundary triple for T = S∗. Moreover,
if f̂ ∈ ker Γ1 then Dh = Df and hence V h = V f by (5.4). This implies

ker Γ1 =
{
{f,−f ′′ + V f} : f ∈ H2(R)

}
= B.

It remains to verify the assertions on the form of the γ-field and Weyl function
corresponding to the quasi boundary triple Π = {G,Γ0,Γ1}. Note first that in the
present situation for λ ∈ ρ(A) we have

N̂λ(T ) =
{
{fλ, λfλ} : fλ = −(A− λ)−1V h, h ∈ H2(R)

}
.

As
λfλ = −λ(A− λ)−1V h = −A(A− λ)−1V h+ V h = Afλ + V h,

it follows that the elements f̂λ ∈ N̂λ(T ) have the form

f̂λ =
{
fλ,−f ′′λ + V h

}
, fλ = −(A− λ)−1V h.

Using (5.4) we find

f̂λ =
{
fλ,−f ′′λ +D∗UDh

}
, fλ = −(A− λ)−1D∗UDh. (5.6)

Setting φ = Dh ∈ ranΓ0, h ∈ H2(R), we get

f̂λ =
{
fλ,−f ′′λ +D∗Uφ

}
, fλ = −(A− λ)−1D∗Uφ.

By definition one has Γ0f̂λ = Dh = φ which yields

γ(λ)φ = fλ = −(A− λ)−1D∗Uφ.

Hence the assertion on the γ-field is proven. Furthermore, applying Γ1 to the same
element in (5.6) gives Γ1f̂λ = UDh − UDfλ = Uφ + UD(A − λ)−1D∗Uφ, which
implies the assertion on the Weyl function. �

In the next lemma we shall strengthen the condition (5.2) on V such that
the assumptions on γ and M in Theorem 3.1 are satisfied.

Lemma 5.2. Assume that the real-valued potential V in (5.1) satisfies

V ∈ L∞(R) ∩ L1(R) (5.7)

and let γ and M be the γ-field and Weyl function corresponding to the quasi
boundary triple Π = {G,Γ0,Γ1} in Proposition 5.1. Then

γ(λ0) ∈ S2

(
G, L2(R)

)
(5.8)

for some λ0 ∈ ρ(A) and M(λ1) is boundedly invertible for some λ1 ∈ ρ(A)∩ ρ(B).
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Proof. The assumption (5.7) yields that D(A−λ)−1 is a Hilbert–Schmidt operator
for all λ ∈ ρ(A). Hence (A−λ)−1D∗U is also a Hilbert–Schmidt operator and (5.8)
follows for all λ0 ∈ ρ(A). Moreover, one has

M(λ) = U + UD(A− λ)−1D∗U, λ ∈ ρ(A).

For Im(λ) sufficiently large the operator norm UD(A− λ)−1D∗U∗ becomes small
and hence M(λ1) is boundedly invertible for some λ1 ∈ ρ(A) ∩ ρ(B). �

Finally, we summarize the conclusion for the scattering matrix of the scat-
tering system {A,B}. Here it is clear that the resolvent difference of A and B
is a trace class operator (see, e.g., [47, Lemma 9.34]) and this also follows from
Theorem 3.1. Furthermore, the symmetric operator S in (5.3) is simple and the
absolutely continuous part Aac of A coincides with A. Hence by Theorem 3.1
the scattering matrix {SAB(λ)}λ∈R of the scattering system {A,B} admits the
representation

SAB(λ) = IGλ
− 2i

√
ImM(λ+ i0)

(
M(λ+ i0)

)−1
√

ImM(λ+ i0) (5.9)

for a.e. λ ∈ R, and L2(R, dλ,Gλ), where

Gλ := ran
(
ImM(λ+ i0)

)
(5.10)

for a.e. λ ∈ R, is a spectral representation of A. It will turn out next that the limit
ImM(λ + i0) is zero for a.e. λ < 0 and a rank two operator for a.e. λ > 0 and
hence (5.10) simplifies to Gλ = ran

(
ImM(λ + i0)

)
and for the scattering matrix

we get

SAB(λ) = IGλ
− 2i

√
ImM(λ+ i0)

(
M(λ+ i0)

)−1√
ImM(λ+ i0).

In fact, for φ ∈ H2(R) we first compute ImM(λ + i0)φ for λ ∈ R. Observe
that for λ ∈ C \ R we have

((A− λ)−1f)(x) =

∫
R

i

2
√
λ
ei

√
λ|x−y|f(y)dy, f ∈ L2(R),

where the square root
√
· is defined for all λ ∈ C \ [0,∞) such that Im

√
λ > 0 and√

λ ≥ 0 for λ ∈ [0,∞). Making use of
√
λ = −

√
λ for λ ∈ C \ [0,∞) we find

(ImM(λ)φ)(x) =
1

2
sgn(V (x))

√
|V (x)|

×
∫
R

[
1

2
√
λ
ei

√
λ|x−y| +

1

2
√
λ
e−i

√
λ|x−y|

]√
|V (y)| sgn(V (y))φ(y)dy
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for λ ∈ C \ R and for λ+ i0 = λ > 0 this implies

( ImM(λ+ i0)φ)(x)

=
1

2
√
λ
sgn(V (x))

√
|V (x)|

∫
R
cos
(√
λ|x− y|

)√
|V (y)| sgn(V (y))φ(y)dy

=
1

2
√
λ
sgn(V (x))

√
|V (x)| cos(

√
λx)

∫
R
cos(

√
λy)
√

|V (y)| sgn(V (y))φ(y)dy

+
1

2
√
λ
sgn(V (x))

√
|V (x)| sin(

√
λx)

∫
R
sin(

√
λy)
√

|V (y)| sgn(V (y))φ(y)dy;

in particular, ImM(λ + i0) is a rank two operator for λ > 0 and the spaces Gλ,
λ > 0, in the spectral representation L2(R, dλ,Gλ) of Aac are given by

Gλ = span
{
sgn(V )

√
|V | cos(

√
λ·), sgn(V )

√
|V | sin(

√
λ·)
}
.

Note that ImM(λ+ i0) = 0 for a.e. λ < 0 as (−∞, 0) ⊂ ρ(A), and hence Gλ = {0}
for a.e. λ < 0.

Remark 5.3. (i) The representation (5.9) of the scattering matrix coincides
with the one obtained in a different way in [9, Sect. 18.2.2].

(ii) Proposition 5.1 admits a straight forward generalization to higher dimen-
sions. However, under the assumption (5.7) the condition (5.8) in Lemma 5.2
remains valid only for space dimensions n = 2, 3.

(iii) If ranD is not closed then the quasi boundary triple in Proposition 5.1 is not
a generalized boundary triple and hence our extension of [17, Theorem 3.1]
for quasi boundary triples is necessary here.

(iv) If for some C > 0 the condition

|V (x)| 6 C
1

(1 + |x|)1+ε
, ε > 0,

is satisfied for a.e. x ∈ Rn it was shown by Kato in [30] (see also [31]) that
the wave operators W±(B,A) exist and are complete. In this proof it also
turns out that the limit M(λ+ i0) of the function M exists for a.e. λ ∈ R in
the operator norm.
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On the spectrum of the quantumRabi model

Anne Boutet de Monvel and Lech Zielinski

Dedicated to the memory of Boris Pavlov

Abstract. We investigate the behavior of large eigenvalues for the quantum
Rabi Hamiltonian, i.e., for the Jaynes–Cummings model without the rotating
wave approximation. The three-term asymptotics we obtain involves all the
parameters of the model so that we can recover them from the behavior of its
large eigenvalues.

1. Introduction
1.1. Preliminaries
The simplest interaction between a two-level atom and a classical light field is
described by the Rabi model [15, 16]. In [12] the fully quantized version with the
rotating-wave approximation (RWA) was considered by E.T. Jaynes and F.W. Cum-
mings. In this paper we consider the quantum Rabi model [7] which is also called
the Jaynes–Cummings model without the rotating-wave approximation. The model
couples a quantized single-mode radiation and a two-level quantum system accord-
ing to the idea that each photon creation accompanies atomic de-excitation, and
each photon annihilation accompanies atomic excitation (see [18]). It is the sim-
plest physical example of the interaction between radiation and matter which is a
central problem in quantum optics. We refer to [18] for the microscopic derivation
of the quantum Rabi model in Cavity Quantum Electrodynamics and to [14] for
a list of recent works on the quantum Rabi model.

In the following, ω denotes the frequency of the quantized one-mode elec-
tromagnetic field. Then the corresponding Hamiltonian is a quantum quadratic
oscillator and its eigenvalues are ~ω

(
n+ 1

2

)
, n = 0, 1, . . . (see Sect. 1.2). The single

two-level system is defined by a self-adjoint operator acting in a two-dimensional
complex Hilbert space and we denote by Eg and Ee its eigenvalues. We assume
that the energy of the ground state Eg is less than the energy of the excited state
Ee. The definition of the quantum Rabi Hamiltonian ĤRabi uses the parameters
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ω, Eg, Ee and the coupling constant g > 0 present in the interaction term (see
Sect. 1.4).

The main purpose of this paper is to describe a relation between the spectrum
of the Hamiltonian ĤRabi and the parameters used in its definition. It is well
known that the spectrum of the quantum Rabi Hamiltonian is discrete and our
main result is a three-term asymptotic formula describing the behavior of large
eigenvalues. This formula involves all parameters of the model and allows us to
determine the values of ω, Eg, Ee, g from the spectrum of ĤRabi.

The plan of the paper is the following. In Sect. 2 we state Theorem 2.1
describing our asymptotic formula. We also give references about related results.
In Sect. 3 we give the main ideas of the proof of Theorem 2.1. Finally, in Sect. 4
we explain how to recover the values of all parameters, ω, Eg, Ee, and g from the
asymptotic behavior of large eigenvalues of the quantum Rabi Hamiltonian.

1.2. The Hamiltonian of a single-mode quantized field
We fix ω > 0 and a complex Hilbert space Hfield equipped with an orthonormal
basis {en}∞0 . We denote by Ĥfield the self-adjoint operator in Hfield given by

Ĥfield en = ~ω
(
n+ 1

2

)
en, n = 0, 1, 2, . . . (1.1)

1.3. The Hamiltonian of a two level quantum system
We introduce the level separation energy E = Ee−Eg ≥ 0 and simplify the model
choosing the zero energy so that the eigenvalues of the system are ± 1

2E. Taking
Hatom = C2 and identifying ee, eg with the canonical basis of C2 we have

Ĥatom =
1

2
E

(
1 0
0 −1

)
. (1.2)

1.4. The quantum Rabi Hamiltonian
We define ĤRabi as the self-adjoint operator in C2 ⊗Hfield given by the formula

ĤRabi = Ĥatom ⊗ IHfield
+ IC2 ⊗ Ĥfield + Ĥint, (1.3)

where Ĥint is an interaction term defined by

Ĥint = ~g
(
0 1
1 0

)
⊗ (â+ â†), (1.4)

where g > 0 is the coupling constant, and â and â† are the photon annihilation
and creation operators defined in Hfield by

â en =
√
n en−1, n = 0, 1, 2, . . . ,

â†en =
√
n+ 1 en+1, n = 0, 1, 2, . . .

(with e−1 := 0). Let us note the relations [â, â†] = I and â†â = N̂ , where N̂ is the
photon number operator charaterized by N̂en = n en.
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2. Asymptotic behavior of large eigenvalues of ĤRabi

2.1. Main result
We assume that ω > 0, E ≥ 0, g > 0 are fixed and denote

rn := (−1)n
E cos

(
4g
ω

√
n− π

4

)
2
√

2πg/ω
n−

1
4 . (2.1)

If ĤRabi is given by (1.3), then its spectrum σ(ĤRabi) is discrete. Moreover, there
is a canonical splitting C2 ⊗ Hfield = H+ ⊕ H− which is ĤRabi-invariant (see
Section 3.1) and we denote by

E+
0 ≤ · · · ≤ E+

n ≤ E+
n+1 ≤ · · · and E−

0 ≤ · · · ≤ E−
n ≤ E−

n+1 ≤ · · ·

the eigenvalues of the restrictions of ĤRabi toH+ andH−, respectively, enumerated
in nondecreasing order, counting multiplicities.

Theorem 2.1 (behavior of large eigenvalues of ĤRabi). Let ĤRabi be the
quantum Rabi Hamiltonian given by (1.3), with parameters ω > 0, E ≥ 0, and
g > 0. Then ĤRabi has discrete spectrum and its eigenvalues can be enumerated
by couples (E+

n , E
−
n ) as specified above:

σ(ĤRabi) = {E+
n }∞0 ∪ {E−

n }∞0 .
Moreover, for any ε > 0, the large n behavior of these eigenvalues is given by

E±
n = ~ω

(
n+

1

2

)
− ~g2

ω
± rn +O(n−

1
2+ε), (2.2)

where rn is defined by (2.1) and O = Oε.

2.2. Comments
The large n behavior of the eigenvalues E±

n of ĤRabi was already investigated by
Schmutz [17] by means of the Bogoliubov transformation (see Sect. 3.2). In the
special case E = 0 the Bogoliubov transformation allows one to diagonalize ĤRabi

and to express explicitly its eigenvalues:

E+
n = E−

n = ~ω
(
n+

1

2

)
− ~g2

ω
.

For arbitrary E the first proof of the two-term asymptotic formula was given by
E.A. Tur [20] and the following improved estimate

E±
n = ~ω

(
n+

1

2

)
− ~g2

ω
+O(n−

1
16 )

was then proved by E.A. Yanovich [21]. The approximation

E±
n ≈ ~ω

(
n+

1

2

)
− ~g2

ω
± rn

with rn given by (2.1) was proposed on the basis of the 0th order approximation
theory described by I.D. Feranchuk, L.I. Komarov, and A.P. Ulyanenkov in [8].
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The same approximation was discovered independently by Irish [10]. Following
Irish, it is called the Generalized Rotating Wave Approximation (GRWA) in the
physical literature (see Sect. 3.2).

In Theorem 2.1 the remainder estimate O(n−
1
2+ε) is uniform with respect to

the coupling constant g ∈ [C−1, C] for any constant C > 1. On the other hand, for
small values of g, perturbation theory gives expansions of E±

n in powers of g that
provide information of a different nature, applicable only if ng2 is small (see [9]).

We also mention that the method of successive diagonalizations was used in
[1–3,11,13] to obtain the asymptotic behavior of large eigenvalues for similar mod-
els of infinite Jacobi matrices, but this approach does not apply to the quantum
Rabi model (see also [4]).

Finally, we remark that the Rotating Wave Approximation (RWA) of the
Jaynes–Cummings model gives an explicit expression for all eigenvalues that leads
to an asymptotic behavior completely different from (2.2).

3. Main ingredients of the proof of Theorem 2.1
3.1. Reduction to Jacobi matrices
The first step of the proof consists in reducing the original problem to the analysis
of Jacobi matrices Jβα where α and β > 0 are real constants and

Jβα :=



α β
√
1 0 0 0 . . .

β
√
1 1− α β

√
2 0 0 . . .

0 β
√
2 2 + α β

√
3 0 . . .

0 0 β
√
3 3− α β

√
4 . . .

0 0 0 β
√
4 4 + α . . .

...
...

...
...

...
. . .


(3.1)

To describe this reduction we introduce {f±n }∞0 by

f+2k = ee ⊗ e2k, f+2k+1 = eg ⊗ e2k+1, f−2k = eg ⊗ e2k, f−2k+1 = ee ⊗ e2k+1,

where {ee, eg} and {en}∞0 are the canonical basis of Hatom = C2 and Hfield, respec-
tively. Denoting by H+ and H− the closed subspaces generated by {f+n }∞0 and
{f−n }∞0 , respectively, we obtain

C2 ⊗Hfield = H+ ⊕H−

and it can be easily checked (see, e.g., [19]) that the subspaces H± are ĤRabi-
invariant. Let Ĥ±

Rabi denote the restrictions of ĤRabi to the subspaces H±. We
then have the decomposition

σ(ĤRabi) = σ(Ĥ+
Rabi) ∪ σ(Ĥ

−
Rabi),
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and thus it remains to investigate the eigenvalues {E±
n }∞0 of both operators Ĥ±

Rabi.
Finally, we consider the operators Ĥ± defined by

Ĥ±
Rabi =

1
2~ω + ~ωĤ±. (3.2)

Their matrix elements in the basis {f±n }∞0 form two Jacobi matrices Jβα with
α = ± E

2~ω and β = g
ω , i.e.,(

⟨f±j |Ĥ±|f±k ⟩
)∞

j,k=0
= J

g/ω
±E/(2~ω). (3.3)

Let Ĵβα denote the self-adjoint operator defined by the matrix Jβα in a complex
Hilbert space H equipped with an orthonormal basis {en}∞0 , i.e.,(

⟨ej |Ĵβα |ek⟩
)∞
j,k=0

= Jβα ,

and let {λα,βn }∞n=0 denote the sequence of eigenvalues of Ĵβα , enumerated in non-
decreasing order, counting multiplicities. Then Ĥ± = Ĵ

g/ω
±E/(2~ω), and (2.2) follows

from (3.2) and from

λα,βn = n− β2 + α(−1)n
cos

(
4β

√
n− π

4

)√
2πβ

√
n

+O(n−
1
2+ε). (3.4)

By (3.4) we indeed have

λ
± E

2~ω ,
g
ω

n = n− g2

ω2
± (−1)n

E

2~ω
cos(4 gω

√
n− π

4 )√
2πg/ω

n−1/4 +O(n−
1
2+ε)

= n− g2

ω2
± rn

~ω
+O(n−

1
2+ε),

hence, using (3.2),

E±
n =

1

2
~ω + ~ωλ±

E
2~ω ,

g
ω

n = ~ω
(
n+

1

2

)
− ~g2

ω
± rn +O(n−

1
2+ε).

It remains to prove (3.4).

3.2. Bogoliubov transformation and GRWA
Using N̂ = â†â (see Sect. 1.4), we can express Ĵβα as follows:

Ĵβα = N̂ + αeiπN̂ + β(â+ â†).

Moreover the spectrum of Ĵβα is the same as that of its Bogoliubov transform

Ĝβα := eβ(â
†−â) Ĵβα e−β(â

†−â).

For α = 0 using that [â, â†] = I we easily express the commutator [â− â†, Ĵβ0 ]
as follows:

[â− â†, Ĵβ0 ] = â+ â† + 2βI. (3.5)
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This relation (3.5) allows us to get a simple expression of the derivative of Ĝβ0
w.r.t. β:

∂βĜ
β
0 = eβ(â

†−â)
(
∂β Ĵ

β
0 + [â† − â, Ĵβ0 ]

)
e−β(â

†−â) = −2βI.

Thus,
Ĝβ0 = Ĝ0

0 − β2I = N̂ − β2I, (3.6)
which implies that {n− β2}∞n=0 is the sequence of eigenvalues of Ĵβ0 .

Using (3.6) we then express Ĝβα as follows:

Ĝβα = N̂ − β2I + αV̂β , (3.7)
where

V̂β := eβ(â
†−â) eiπN̂ e−β(â

†−â). (3.8)
According to Irish [10], the Generalized Rotating Wave Approximation consists in
the approximation of λα,βn by the diagonal entries of Ĝβα. We claim (see Sect. 3.5)
that this approximation holds modulo an error term O(n−1/2+ε), i.e., one has the
large n estimate

λα,βn = ⟨en|Ĝβα|en⟩+O(n−1/2+ε). (GRWA)
In view of (3.7) we can write

⟨en|Ĝβα|en⟩ = n− β2 + αrβ(n) (3.9)

where rβ(n) denotes the nth diagonal element of V̂β , i.e., rβ(n) := ⟨en|V̂β |en⟩. Then
(3.4) follows from (GRWA) and from the estimate

rβ(n) = (−1)n
cos

(
4β

√
n− π

4

)√
2πβ

√
n

+O(n−
1
2 lnn). (3.10)

Thus it remains to prove (3.10) and (GRWA). The idea of the proof of (3.10) is
given in Sect. 3.4 and a sketch of the proof of (GRWA) is given in Sect. 3.5.

3.3. Approximation of et(â† â)

We introduce the function
ψ(t, j, eiξ) = 2t

√
j sin ξ − t2 sin ξ cos ξ, (3.11)

where j is a nonnegative integer, t and ξ are real numbers. This function satisfies
the large j estimate

∂tψ(t, j, e
iξ) +

√
j Im

(
2ei(ψ(t,j+1,eiξ)−ψ(t,j,eiξ)−ξ)

)
= O(j−

1
2 ). (3.12)

Following [5] we consider (3.12) as an approximative eiconal equation and prove
that the operator Q̂t defined by the relations

⟨ej |Q̂t|ek⟩ =
∫ 2π

0

ei(k−j)ξ+iψ(t,j,eiξ) dξ

2π

satisfies the large n estimate

∥Π2n
n/2

(
et(â

†−â) − Q̂t

)
Π2n
n/2∥ = O(n−

1
2 lnn), (3.13)
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whereΠ2n
n/2 denotes the orthogonal projection on the subspace spanned by {ek}2nn/2.

3.4. Proof of (3.10)
We first observe that

(â† − â)eiπN̂en = (−1)n(â† − â)en = −eiπN̂ (â† − â)en,

so â† − â = e−iπN̂ (â − â†)eiπN̂ and e−β(â
†−â) = e−iπN̂eβ(â

†−â)eiπN̂ . Thus, (3.8)
gives

V̂β = eiπN̂e−2β(â†−â),

which yields rβ(n) = (−1)n⟨en|e−2β(â†−â)|en⟩. By approximating e−2β(â†−â) with
Q̂−2β and using the large n estimate (3.13), we obtain

rβ(n) = (−1)n⟨en|Q̂−2β |en⟩+O(n−
1
2 lnn).

It remains to analyze the large n behavior of

⟨en|Q̂−2β |en⟩ =
∫ 2π

0

e−4iβ
√
n sin ξ b(−2β, eiξ)

dξ

2π
, (3.14)

where b(−2β, eiξ) = e−2iβ2 sin 2ξ.
The phase function ξ → sin ξ has two critical points ξ = ±π/2. Since they

are non-degenerated and b(−2β, e±iπ/2) = 1, the stationary phase formula yields
the estimate

⟨en|Q̂−2β |en⟩ =
∑
κ=±1

eiκ(4β
√
n−π/4)

2
√

2πβ
√
n

+O(n−
1
2 ), (3.15)

which gives (3.10).

3.5. Sketch of the proof of (GRWA)
We want to prove that the eigenvalues of Ĵβα have, for any ε > 0, the asymptotic
behavior

λα,βn = n− β2 + αrβ(n) + O(n−
1
2+ε), n→ ∞. (3.16)

Using the Tauberian approach from [5, Sect. 11], we deduce this asymptotic esti-
mate from estimates

∞∑
m=0

(
χ(λα,βm − n)− χ(m− β2 + αrβ(m)− n)

)
= O(n−

1
2+ε), (3.17)

where χ : R → C is an arbitrary fast decaying function whose Fourier transform

F(χ)(t) :=

∫
R
χ(λ)e−itλ dλ

has compact support. We then observe that (3.17) can be viewed as a trace esti-
mate. It may indeed be written as follows:

∞∑
k=0

⟨ek|K̂β,χ
α,n |ek⟩ = O(n−

1
2+ε), (3.18)
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where K̂β,χ
α,n := χ(Ĝβα−n)−χ(N̂−β2+αrβ(N̂)−n). The proof of the trace estimate

(3.18) follows the idea of [5], which is based on the fact that the inverse Fourier
transform allows us to express

K̂β,χ
α,n =

∫
R
F(χ)(t)

(
eitĜ

β
α − eit(N̂−β2+αrβ(N̂))

)
e−itn dt

2π
. (3.19)

We then consider the time-dependent Hamiltonian

Ĥβ
α(t) := αe−itN̂ V̂βe

itN̂

and the associated evolution t→ Ûβα (t) characterized by

−i∂tÛ
β
α (t) = Ĥβ

α(t)Û
β
α (t), Ûβα (0) = I. (3.20)

It then follows from (3.7) and (3.20) that eitĜ
β
α = eit(N̂−β2)Uβα (t). Using this ex-

pression in (3.19), we get

⟨ek|K̂β,χ
α,n |ek⟩ =

∫
R
F(χ)(t)

(
uα,βk (t)− eitαrβ(k))

)
eit(k−β

2−n) dt

2π
,

where uα,βk (t) := ⟨ek|Ûβα (t)|ek⟩.
Let now t0 > 0 be such that suppF(χ) ⊂ [−t0, t0]. Reasoning as in [5, Sect.

6], we can deduce the trace estimate (3.18) from

sup
−t0≤t≤t0

sup
|k−n|≤

√
n

∣∣∣∂tuα,βk (t)− iαrβ(k)
∣∣∣ = O(n−

1−ε
2 ). (3.21)

To prove (3.21) we consider the Dyson expansion

Ûβα (t)− I = i

∫ t

0

Ĥβ
α(t1)dt1 +

∞∑
ν=2

iν
∫ t

0

dt1· · ·
∫ tν−1

0

Ĥβ
α(t1) · · · Ĥβ

α(tν)dtν . (3.22)

Since ⟨ek|Ĥβ
α(t1)|ek⟩ = α⟨ek|V̂β |ek⟩ = αrβ(k), the kth diagonal element of the first

term in the right hand side of (3.22) is equal to itαrβ(k). It remains to prove that
the diagonal elements of the other terms in the right hand side of (3.22) give a
contribution of order O(n−

1
2+

ε
2 ). These estimates are proven using approximations

of these terms by oscillatory integrals of a form similar as the right-hand side of
(3.14). Full details are given in [6, Sects. 4 and 7].

4. How the parameters can be recovered from the spectrum
The spectrum of ĤRabi consists of couples (E+

n , E
−
n ), n = 0, 1, . . . satisfying the

asymptotic formula (2.2). It is clear that the first parameter can be recovered by

ω = lim
n→∞

E±
n

~n
. (4.1)

Next we introduce the spacing

δn := |E+
n − E−

n | (4.2)
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and we are going to describe how the remaining parameters of the quantum Rabi
model, i.e., g and E can be recovered from the asymptotic behavior of the sequence
{δn}∞0 .

We first observe that, for any ε > 0, the large n asymptotics (2.2) ensures

n1/4δn = α̃|pβ(n)|+O(n−
1
4+ε), n→ ∞, (4.3)

where

β :=
g

ω
, (4.4)

α̃ :=
E

2
√
2πβ

, (4.5)

pβ(n) := cos
(
4β

√
n− π

4

)
. (4.6)

The sequence {4β
√
n}∞1 is dense in R/2πZ (β ̸= 0). Then lim sup

n→∞
pβ(n) = 1, and

hence
α̃ = lim sup

n→∞
n

1
4 δn. (4.7)

To get g and E, it remains to recover β from the sequence {δn}∞0 . For this purpose,
we first introduce

N := {n ∈ N : 2n1/4δn ≥ α̃}. (4.8)
It follows from (4.3) that N is infinite and that for some integer n0,

|pβ(n)| ≥
1

3
for any n ∈ N , n ≥ n0. (4.9)

In what follows we fix a real constant 3
8 < γ < 1

2 and an auxiliary sequence of
integers {kn}∞0 , e.g., kn = ⌊nγ⌋ such that

kn = nγ +O(1), n→ ∞. (4.10)

If we consider

µn :=
(n+ kn)

1/4δn+kn + (n− kn)
1/4δn−kn

2n1/4δn
, (4.11)

then, due to (4.3), (4.8), and (4.9), we have

µn =
|pβ(n+ kn)|+ |pβ(n− kn)|

2|pβ(n)|
+O(n−

1
4+ε) for n ∈ N , n→ ∞. (4.12)

Using now s = ±kn in
√
n+ s =

√
n
(
1 +

s

2n

)
+O(n−

3
2 s2), n, s→ ∞, (4.13)

and the assumption γ < 1/2, we find that pβ(n ± kn) − pβ(n) → 0 as n → ∞,
hence pβ(n ± kn) and pβ(n) have the same sign for n ∈ N large enough. Thus
(4.12) can also be written

µn =
pβ(n+ kn) + pβ(n− kn)

2pβ(n)
+ O(n−

1
4+ε) for n ∈ N , n→ ∞. (4.14)
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Observe now that pβ(n+ kn) + pβ(n− kn) can be written as

2 cos
(
2β(

√
n+ kn +

√
n− kn)−

π

4

)
cos

(
2β(

√
n+ kn −

√
n− kn)

)
. (4.15)

Using again (4.13) with s = ±kn and the asymptotics n− 3
2 k2n ∼ n−

3
2+2γ , we can

rewrite (4.15) as

2
(
pβ(n) + O(n− 3

2+2γ)
)(

cos(2βn−1/2kn) + O(n− 3
2+2γ)

)
, n→ ∞. (4.16)

Writing cos s = 1− 1
2s

2 +O(s4) in (4.16), as n→ ∞, we get

pβ(n+ kn) + pβ(n− kn) = 2pβ(n)
(
1− 2β2n−1k2n +O(n−2k4n)

)
+O(n− 3

2+2γ).
(4.17)

Combining (4.17) with (4.14), and using (4.9), we then obtain

µn = 1− 2β2n−1k2n +O(n−2k4n) + O(n− 3
2+2γ) + O(n− 1

4+ε) for n ∈ N , n→ ∞.

Since γ < 1
2 , we have − 3

2 + 2γ < − 1
4 + ε and the error term O(n−

3
2+2γ) can be

forgotten. Moreover, nk−2
n n−

1
4+ε ∼ n

3
4−2γ+ε, and we finally get

2β2 = nk−2
n (1− µn) + O(n−1k2n) + O(n

3
4−2γ+ε) for n ∈ N , n→ ∞.

The first error term is o(1) since n−1k2n ∼ n−1+2γ with γ < 1
2 . The last error term

is also o(1) provided ε > 0 is small enough to have 3
4 −2γ+ε < 0, which is possible

by the hypothesis γ > 3/8. We thus recover β from the spectrum by
2β2 = lim

n∈N
n→∞

nk−2
n (1− µn), (4.18)

where N is given by (4.8), kn by (4.10), and µn by (4.11). Due to (4.4) and (4.5),
we can now recover the parameters g and E by using (4.18) with (4.1) and (4.7),
respectively.

References
[1] A. Boutet de Monvel, S. Naboko, and L.O. Silva, The asymptotic behavior of eigenvalues

of a modified Jaynes–Cummings model, Asymptot. Anal. 47 (2006), no. 3–4, 291–315.
[2] A. Boutet de Monvel and L. Zielinski, Eigenvalue asymptotics for Jaynes–Cummings type

models without modulations, BiBoS preprint 08-03-278 (2008), available at http://www.
physik.uni-bielefeld.de/bibos/.

[3] A. Boutet de Monvel and L. Zielinski, Explicit error estimates for eigenvalues of some un-
bounded Jacobi matrices, Spectral Theory, Mathematical System Theory, Evolution Equa-
tions, Differential and Difference Equations: IWOTA10, Oper. Theory Adv. Appl., vol. 221,
Birkhäuser Verlag, Basel, 2012, pp. 187–215.

[4] A. Boutet de Monvel and L. Zielinski, Asymptotic behavior of large eigenvalues of a modified
Jaynes–Cummings model, Spectral Theory and Differential Equations, Amer. Math. Soc.
Transl. Ser. 2, vol. 233, Amer. Math. Soc., Providence, RI, 2014, pp. 77–93.

[5] A. Boutet de Monvel and L. Zielinski, Asymptotic behavior of large eigenvalues for Jaynes–
Cummings type models, J. Spectr. Theory 7 (2017), no. 2, 559–631.

[6] A. Boutet de Monvel and L. Zielinski, Oscillatory behavior of large eigenvalues in quantum
Rabi models, International Mathematics Research Notes 2020 (2020), 59 pp., to appear.

http://www.physik.uni-bielefeld.de/bibos/
http://www.physik.uni-bielefeld.de/bibos/


REFERENCES 193

[7] D. Braak, Q.-H. Chen, M.T. Batchelor, and E. Solano, Semi-classical and quantum Rabi
models: in celebration of 80 years, J. Phys. A: Math. Theor. 49 (2016), no. 30, 300301.

[8] I.D. Feranchuk, L.I. Komarov, and A.P. Ulyanenkov, Two-level system in a one-mode quan-
tum field: numerical solution on the basis of the operator method, J. Phys. A: Math. Gen.
29 (1996), no. 14, 4035–4047.

[9] S. He, C. Wang, Q.-H. Chen, X.-Z. Ren, T. Liu, and K.-L. Wang, First-order corrections to
the rotating-wave approximation in the Jaynes–Cummings model, Phys. Rev. A 86 (2012),
no. 3, 033837.

[10] E.K. Irish, Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling, Phys.
Rev. Lett. 99 (2007), no. 17, 173601.

[11] J. Janas and S. Naboko, Infinite Jacobi matrices with unbounded entries: asymptotics of
eigenvalues and the transformation operator approach, SIAM J. Math. Anal. 36 (2004),
no. 2, 643–658.

[12] E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassical radiation
theories with application to the beam maser, Proc. IEEE 51 (1963), no. 1, 89–109.

[13] M. Malejki, Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices,
Linear Algebra Appl. 431 (2009), no. 10, 1952–1970.

[14] X. Qiongtao, Z. Honghua, T.B. Murray, and L. Chaohong, The quantum Rabi model: solu-
tion and dynamics, J. Phys. A: Math. Theor. 50 (2017), no. 4, 113001.

[15] I.I. Rabi, On the process of space quantization, Phys. Rev. 49 (1936), no. 4, 324.
[16] I.I. Rabi, Space quantization in a gyrating magnetic field, Phys. Rev. 51 (1937), no. 8, 652.
[17] M. Schmutz, Two-level system coupled to a boson mode: the large n limit, J. Phys. A: Math.

Gen. 19 (1986), no. 17, 3565–3577.
[18] M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge,

1997.
[19] È.A. Tur, Jaynes–Cummings model: solution without rotating wave approximation, Optics

and Spectroscopy 89 (2000), no. 4, 574–588.
[20] É.A. Tur, Jaynes–Cummings model without rotating wave approximation. Asymptotics of

eigenvalues (2002), 12 pp., available at https://arXiv.org/abs/math-ph/0211055.
[21] E.A. Yanovich, Asymptotics of eigenvalues of an energy operator in a problem of quantum

physics, Operator Methods in Mathematical Physics, Oper. Theory Adv. Appl., vol. 227,
Birkhäuser/Springer Basel AG, Basel, 2013, pp. 165–177.

Anne Boutet de Monvel
Institut de Mathématiques de Jussieu-PRG, Université Paris Diderot
bâtiment Sophie Germain, case 7012, 75205 Paris Cedex 13, France
e-mail: anne.boutet-de-monvel@imj-prg.fr

Lech Zielinski
Université du Littoral
Calais, France
e-mail: Lech.Zielinski@lmpa.univ-littoral.fr

https://arXiv.org/abs/math-ph/0211055
mailto:anne.boutet-de-monvel@imj-prg.fr
mailto:Lech.Zielinski@lmpa.univ-littoral.fr


Scattering theory for a class of non-selfadjoint
extensions of symmetric operators
Kirill D. Cherednichenko, Alexander V. Kiselev and Luis O. Silva

To the fond memory of Professor Boris Pavlov

Abstract. This work deals with the functional model for a class of extensions
of symmetric operators and its applications to the theory of wave scattering. In
terms of Boris Pavlov’s spectral form of this model, we find explicit formulae
for the action of the unitary group of exponentials corresponding to almost
solvable extensions of a given closed symmetric operator with equal deficiency
indices. On the basis of these formulae, we are able to construct wave operators
and derive a new representation for the scattering matrix for pairs of such
extensions in both self-adjoint and non-self-adjoint situations.
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1. Introduction
Over the last 80 years or so, the subject of the mathematical analysis of waves
interacting with obstacles and structures (‘scattering theory’) has served as one of
the most impressive examples of bridging abstract mathematics and applications to
physics, which in turn motivated the development of new mathematical techniques.
The pioneering works of von Neumann [69, 70] and his contemporaries during
1930–1950, on the mathematical foundations of quantum mechanics, fuelled the
interest of mathematical analysts to formulating and addressing the problems of
direct and inverse wave scattering in a rigorous way.

The foundations of the modern mathematical scattering theory were laid by
Friedrichs, Kato and Rosenblum [29, 71, 22] and subsequently by Birman and Kreĭn
[5], Birman [4], Kato and Kuroda [30] and Pearson [54]. For a detailed exposition
of this subject, see [55, 73].
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The direct and inverse scattering on the infinite and semi-infinite line was
extensively studied using the classical integral-operator techniques by Borg [7,
8], Levinson [41], Krein [36, 37, 38], Gel’fand and Levitan [23], Marchenko [45],
Faddeev [20, 21], Deift and Trubowitz [15]. In this body of work, the crucial role
is played by the classical Weyl–Titchmarsh m-coefficient.

In the general operator-theoretic context, the m-coefficient is generalised to
both the classical Dirichlet-to-Neumann map (in the PDE setting; cf. also [3]),
and to the so-called M -operator, which takes the form of the Weyl–Titchmarsh
M -matrix in the case of symmetric operators with equal deficiency indices. This
has been exploited extensively in the study of operators, self-adjoint and non-
selfadjoint alike, through the works in Ukraine (brought about by the influence
of M. Kreĭn) on the theory of boundary triples and the associated M -operators
(Gorbachuk and Gorbachuk [25], Kočubeĭ [32, 33], Derkach and Malamud [17]
and further developments) and of the students of Pavlov in St. Petersburg (see e.g.
[60, 31, 10]).

A parallel approach, which provides a connection to the theory of dissipative
operators, was developed by Lax and Phillips [40], who analysed the direct scat-
tering problem for a wide class of linear operators in the Hilbert space, including
those associated with the multi-dimensional acoustic problem outside an obstacle,
using the language of group theory (and, indeed, thereby developing the semi-
group methods in operator theory). The associated techniques were also termed
‘resonance scattering’ by Lax and Phillips.

By virtue of the underlying dissipative framework, the above activity set the
stage for the applications of non-selfadjoint techniques, in particular for the func-
tional model for contractions and dissipative operators by Szökefalvi-Nagy and
Foiaş [67], which has shown the special rôle in it of the characteristic function of
Livšic [43] and allowed Pavlov [53] to construct a spectral form of the functional
model for dissipative operators. The connection between this work and the con-
cepts of scattering theory was uncovered by the famous theorem of Adamyan and
Arov [1]. In a closely related development, Adamyan and Pavlov [2] established
a description for the scattering matrix of a pair of self-adjoint extensions of a
symmetric operator (densely or non-densely defined) with finite equal deficiency
indices.

Further, Naboko [48] advanced the research initiated by Pavlov, Adamyan
and Arov in two directions. Firstly, he generalised Pavlov’s construction to the
case of non-dissipative operators, and secondly, he provided explicit formulae for
the wave operators and scattering matrices of a pair of (in general, non-selfadjoint)
operators in the functional model setting. It is remarkable that in this work of
Naboko the difference between the so-called stationary and non-stationary scat-
tering approaches disappears.

There exists a wide body of work, carried out in the last 30 years or so,
dedicated to the analysis of the scattering theory for general non-selfadjoint op-
erators [44, 66, 68, 59, 63, 61]. These works make a substantial use of functional
model techniques in the non-selfadjoint case and provide the most general results,
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without taking into account the specific features of any particular subclass of op-
erators under consideration. In particular, the paper [63] essentially generalises
to the non-selfadjoint case the classical stationary approach to the construction
of wave operators [73]. On the other hand, as pointed out above, the study of
non-selfadjoint extensions of symmetric operators naturally lends itself to the use
of the theory of boundary triples and associated M -operators, thus taking advan-
tage of the concrete properties of this subclass. This has been exploited in [60],
where a functional model for dissipative and non-dissipative almost solvable ex-
tensions of symmetric operators was developed in terms of the theory of boundary
triples. This work, however, stops short of the characterisation of the absolutely
continuous subspace of the operator considered in the ‘natural’ terms associated
with boundary triples and M -operators (cf. [59, 56], where the concept of the ab-
solutely continuous subspace of a self-adjoint operator is discussed in the most
general case). If one bridges this (in fact, very narrow) gap, as we do in Sections 3,
4, this opens up a possibility to directly apply Naboko’s argument [48], which then
yields both the explicit expression for wave operators and concise, easily checked
sufficient conditions for the existence and completeness of wave operators, for-
mulated in natural terms. What is more, it also yields an explicit expression for
the scattering matrix of the problem, formulated in terms of the M -operator and
parameters fixing the extension.

Our aim in the present work is therefore twofold: first, it is to expose the
methodology of functional model in application to the development of scattering
theory for non-selfadjoint operators and, second, to apply this methodology to the
case of almost solvable extensions of symmetric operators, yielding new, concise
and explicit, results in the special and important in applications case. With this
aim in mind, we endeavour to extend the approach of Naboko [48], which was
formulated for additive perturbations of self-adjoint operators, to the case of both
self-adjoint and non-self-adjoint extensions of symmetric operators, under the only
additional assumption that this extension is almost solvable, see Sect. 2 below
for precise definitions. Unfortunately, the named assumption is rather restrictive
in nature, see Remark 2 below. Still, already the framework of almost solvable
extensions allows us to consider direct and inverse scattering problems on quantum
graphs, see [14] for an application of abstract results of this paper in the mentioned
setting. We also point out that the case we consider proves to be sufficiently generic
to allow for a treatment of the scattering problem for models of double porosity
in homogenisation, see [12, 13].

The paper is organised as follows. In Sect. 2 we recall the key points of the
theory of boundary triples for extensions of symmetric operators with equal de-
ficiency indices and introduce the associated M -operators, following mainly [17]
and [60]. In Sect. 3 we derive formulae for the resolvents of the family of extensions
Aκ parametrised by operators κ in the boundary space, in terms of the so-called
characteristic function of a fixed element of the family. These formulae are then
employed in Sect. 4 to derive the functional model for the above family of exten-
sions. The material of Sects. 3 and 4 closely follows the approach of [60] and is
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based on the much more general facts of e.g. [48, 44, 59, 61], and references therein.
Moreover, although this functional model can be seen as a particular case of more
general results of the above papers, it proves however much more convenient for
our purposes, due to the fact that it is explicitly formulated in the natural, from
the point of view of the operator considered, terms. In Sect. 5 we characterise the
absolutely continuous subspace of Aκ as the closure of the set of ‘smooth’ vectors
in the model Hilbert space introduced in Sect. 4. In doing so, we follow the general
framework of [59], but, again, the fact that we use the specifics of a particular class
of non-selfadjoint operators allows us to obtain this characterisation in a concise,
easily usable form. On this basis, in Sect. 6 we define the wave operators for a pair
from the family {Aκ} and demonstrate their completeness property under natu-
ral, easily verifiable assumptions. This, in combination with the functional model,
allows us to obtain formulae for the scattering operator of the pair. In Sect. 7
we describe the representation of the scattering operator as the scattering matrix,
which is explicitly written in terms of the M -operator.

2. Extension theory and boundary triples
Let H be a separable Hilbert space and denote by 〈·, ·〉 the inner product in this
space.

Let A be a closed symmetric operator densely defined in H, i.e. A ⊂ A∗, with
domain dom(A) ⊂ H. The deficiency indices n+(A), n−(A) are defined as follows:

n±(A) := dim(H	 ran(A− zI)) = dim(ker(A∗ − zI)) , z ∈ C± .

A closed operator L is said to be completely non-selfadjoint if there is no subspace
reducing L such that the part of L in this subspace is self-adjoint. A completely
non-selfadjoint symmetric operator is often referred to as simple.

As shown in [39, Sect. 1.3] (see also [26, Theorem 1.2.1]), the maximal in-
variant subspace for the closed symmetric operator A in which it is self-adjoint
is
⋂

z∈C\R ran(A − zI) . Thus, a necessary and sufficient condition for the closed
symmetric operator A to be completely non-selfadjoint (or simple) is that⋂

z∈C\R

ran(A− zI) = {0} . (1)

In this work we consider extensions of a given closed symmetric operator A
with equal deficiency indices, i.e. n−(A) = n+(A), and use the theory of boundary
triples. In order to deal with the family of extensions {Aκ} of the symmetric
operator A (where the parameter κ is itself an operator, see notation immediately
following Proposition 2.2), we first construct a functional model of its particular
dissipative extension. This is done following the Pavlov–Naboko procedure, which
in turn stems from the functional model of Szökefalvi-Nagy and Foiaş. This allows
us to obtain a simple model for the whole family {Aκ}, in particular yielding a
possibility to apply it to the scattering theory for certain pairs of operators in
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{Aκ}, for both cases when these operators are self-adjoint and non-selfadjoint,
including the possibility that both operators of the pair are non-selfadjoint.

Taking into account the importance of dissipative operators in our work, we
briefly recall that a densely defined operator L in H is called dissipative if

Im 〈Lf, f〉 ≥ 0 ∀f ∈ dom(L). (2)

A dissipative operator L is called maximal if C− is contained in its resolvent set
ρ(L) := {z ∈ C : (L − zI)−1 ∈ B(H)} (B(H) denotes the space of bounded
operators defined on the whole Hilbert space H). Clearly, a maximal dissipative
operator is closed; any dissipative operator admits a maximal extension.

We next describe the boundary triple approach to the extension theory of
symmetric operators with equal deficiency indices (see [16] for a review of the
subject). This approach has proven to be particularly useful in the study of self-
adjoint extensions of ordinary differential operators of second order.

Definition 1. For a closed symmetric operator A with equal deficiency indices,
consider the linear mappings

Γ1 : dom(A∗) → K, Γ0 : dom(A∗) → K ,

where K is an auxiliary separable Hilbert space such that

(1) 〈A∗f, g〉H − 〈f,A∗g〉H = 〈Γ1f,Γ0g〉K − 〈Γ0f,Γ1g〉K ; (3)

(2) The mapping dom(A∗) 3 f 7→
(
Γ1f

Γ0f

)
∈ K ⊕K is surjective.

Then the triple (K,Γ1,Γ0) is said to be a boundary triple for A∗.

Remark 1. There exist boundary triples for A∗ whenever A has equal deficiency
indices (the case of infinite indices is not excluded), see [32, Theorem 3].

In this work we consider proper extensions of A, i.e. extensions of A that are
restrictions of A∗. The extensions AB for which there exists a triple (K,Γ1,Γ0)
and B ∈ B(K) such that

f ∈ dom(AB) ⇐⇒ Γ1f = BΓ0f . (4)

are called almost solvable with respect to the triple (K,Γ1,Γ0).

Remark 2. Admittedly, the framework of almost solvable extensions is quite
restrictive. In particular, even the standard three-dimensional scattering problem
for PDEs in an exterior domain, with classical boundary condition (self-adjoint
and non-selfadjoint alike) cannot be treated using this approach, see the discussion
in [10] and also references therein. It would appear that one needs to employ the
more general setting of linear relations [27], in order to accommodate this problem.
However, the named setting is substantially more involved and complex than the
theory of almost solvable extensions, so that the blueprints of the Sz-Nagy–Foiaş
model of closed linear relations do not seem to be available as of today.
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On the other hand, there exist at least two recent developments suggesting
that the approach of the present paper can be extended beyond the natural lim-
itations of the theory of almost solvable extensions. These are, firstly, the work
[62], which offers a unified operator-theoretic approach to boundary-value prob-
lems and, in particular, an abstract definition of the M -operator suitable for the
construction of a functional model; and secondly, the recent paper [11], which
provides an explicit form of a functional model for PDE problems associated with
dissipative operators. We hope to pursue this rather intriguing subject elsewhere.

The following assertions, written in slightly different terms, can be found in
[32, Theorem 2] and [27, Chap. 3 Sect. 1.4] (see also [60, Theorem 1.1], and [64,
Sect. 14] for an alternative formulation). We compile them in the next proposition
for easy reference.
Proposition 2.1. Let A be a closed symmetric operator with equal deficiency
indices and let (K,Γ1,Γ0) be a the boundary triple for A∗. Assume that AB is an
almost solvable extension. Then the following statements hold:

1. f ∈ dom(A) if and only if Γ1f = Γ0f = 0.
2. AB is maximal, i.e. ρ(AB) 6= ∅.
3. A∗

B = AB∗ .
4. AB is dissipative if and only if B is dissipative.
5. AB is self-adjoint if and only if B is self-adjoint.

Definition 2. The function M : C− ∪ C+ → B(H) such that
M(z)Γ0f = Γ1f ∀f ∈ ker(A∗ − zI)

is the Weyl function of the boundary triple (K,Γ1,Γ0) for A∗, where A is assumed
to be as in Proposition 2.1.

The Weyl function defined above has the following properties [17].
Proposition 2.2. Let M be a Weyl function of the boundary triple (K,Γ1,Γ0) for
A∗, where A is a closed symmetric operator with equal deficiency indices. Then
the following statements hold:

1. M : C \ R → B(K) .
2. M is a B(K)-valued double-sided R-function [28], that is,

M(z)∗ = M(z) and Im(z) Im(M(z)) > 0 for z ∈ C \ R .

3. The spectrum of AB coincides with the set of points z0 ∈ C such that (M −
B)−1 does not admit analytic continuation into z0.

Let us lay out the notation for some of the main objects in this paper. In the
auxiliary Hilbert space K, choose a bounded nonnegative self-adjoint operator α
so that the operator

Bκ :=
ακα
2

(5)
belongs to B(K), where κ is a bounded operator in E := clos(ran(α)) ⊂ K. In what
follows, we deal with almost solvable extensions of a given symmetric operator A
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that are generated by Bκ via (4). We always assume that the deficiency indices of
A are equal and that some boundary triple (K,Γ1,Γ0) for A∗ is fixed. In order to
streamline the formulae, we write

Aκ := ABκ . (6)
Here κ should be understood as a parameter for a family of almost solvable ex-
tensions of A. Note that if κ is self-adjoint then so is Bκ and, hence by Proposi-
tion 2.1(5), Aκ is self-adjoint. Note also that AiI is maximal dissipative, again by
Proposition 2.1.

Definition 3. The characteristic function of the operator AiI is the operator-
valued function S on C+ given by

S(z) := I �E +iα
(
B∗

iI −M(z)
)−1

α �E , z ∈ C+. (7)

By [60, Eq. (1.16)], the above definition is a particular case of the so-called
Štraus characteristic function, see [60, Definition 1.7].

Remark 3. The function S is analytic in C+ and, for each z ∈ C+, the mapping
S(z) : E → E is a contraction. Therefore, S has nontangential limits almost
everywhere on the real line in the strong topology [67], which we will henceforth
denote by S(k), k ∈ R.

Remark 4. When α =
√
2I, an straightforward calculation yields that S(z) is

the Cayley transform of M(z), i.e.

S(z) = (M(z)− iI)(M(z) + iI)−1 .

3. Formulae for the resolvents of almost solvable extensions
In this section we establish some useful relations between the resolvents of the
operators Aκ for any κ ∈ B(E) and the resolvents of the maximal dissipative op-
erator AiI and its adjoint. These relations (cf. [63, 59, 61] and references therein,
for the corresponding results in the general setting of closed non-selfadjoint oper-
ators) are instrumental for the construction of the functional model in the next
section.

Notation 1. We abbreviate
Θκ(z) : = I − iα(BiI −M(z))−1αχ+

κ , z ∈ C− , (8)

Θ̂κ(z) : = I + iα(B∗
iI −M(z))−1αχ−

κ , z ∈ C+ , (9)

where
χ±
κ :=

I ± iκ
2

, (10)

and for simplicity we have written I instead of I �E . We use this convention
throughout the text.
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It follows from Definition 3 and Proposition 2.2(2) that the operator-valued
functions Θκ(z) and Θ̂κ(z) can be expressed in terms of the characteristic function
S, as follows:

Θκ(z) = I + (S∗(z)− I)χ+
κ ∀ z ∈ C− , (11)

Θ̂κ(z) = I + (S(z)− I)χ−
κ ∀ z ∈ C+ . (12)

The formulae in the next lemma are analogous to [60, Eqs. (2.18) and (2.22)].

Lemma 3.1. The following identities hold:
(i) αΓ0(AiI − zI)−1 = Θκ(z)αΓ0(Aκ − zI)−1 ∀ z ∈ C− ∩ ρ(Aκ);

(ii) αΓ0(Aκ − zI)−1 = Θκ(z)
−1αΓ0(AiI − zI)−1 ∀ z ∈ C− ∩ ρ(Aκ);

(iii) αΓ0(A
∗
iI − zI)−1 = Θ̂κ(z)αΓ0(Aκ − zI)−1 ∀ z ∈ C+ ∩ ρ(Aκ);

(iv) αΓ0(Aκ − zI)−1 = Θ̂κ(z)
−1αΓ0(A

∗
iI − zI)−1 ∀ z ∈ C+ ∩ ρ(Aκ) .

Proof. We start by proving (i). To this end, suppose that z ∈ C− ∩ ρ(Aκ) so
(AiI − zI)−1 and (Aκ − zI)−1 are defined on the whole space H. Fix an arbitrary
h ∈ H and define

φ := (AiI − zI)−1h, g := (Aκ − zI)−1h . (13)
Clearly, the vector

f := φ− g =
(
(AiI − zI)−1 − (Aκ − zI)−1

)
h

is in ker(A∗−zI) since A∗ is an extension of both operators AiI and Aκ. According
to (4), it follows from φ ∈ dom(AiI) and g ∈ dom(Aκ) that Γ1φ = BiIΓ0φ and
Γ1g = BκΓ0g. Thus, one has

0 = Γ1(f + g)−BiIΓ0(f + g)

= Γ1f −BiIΓ0f + Γ1g −BiIΓ0g

= M(z)Γ0f −BiIΓ0f +BκΓ0g −BiIΓ0g ,

where in the last equality we also use the fact that f ∈ ker(A∗−zI), together with
Definition 2. Hence one has

Γ0f = (BiI −M(z))−1(Bκ −BiI)Γ0g ,

which, in turn, implies that
Γ0φ = Γ0f + Γ0g =

[
I + (BiI −M(z))−1(Bκ −BiI)

]
Γ0g. (14)

Taking into account (13), using the fact that Bκ − BiI = −iαχ+
κα and applying

the operator α to both sides of (14), we obtain
αΓ0(AiI − zI)−1h =

[
I − iα(BiI −M(z))−1αχ+

κ
]
αΓ0(Aκ − zI)−1h,

which is the identity (i), in view of the definition (11).
Similar computations with the pairs Aκ , Bκ and AiI , BiI interchanged lead

to
αΓ0(Aκ − zI)−1h =

[
I + iα(Bκ −M(z))−1αχ+

κ
]
αΓ0(AiI − zI)−1h, (15)
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for z ∈ C− ∩ ρ(Aκ). Now, (ii) follows from (15) using the identity

Θκ(z)
−1 = I + iα

(
Bκ −M(z)

)−1
αχ+

κ ∀ z ∈ C− ∩ ρ(Aκ) , (16)

which is validated by multiplying together the right-hand sides of (16) and (8) and
employing a version of the second resolvent identity (cf. [72, Theorem 5.13]):

(Bκ −M(z))−1 − (BiI −M(z))−1 = (Bκ −M(z))−1(BiI −Bκ)(BiI −M(z))−1

which holds for all z ∈ C− ∩ ρ(Aκ).
We next proceed to the proof of (iii) and (iv). Fix an arbitrary z ∈ C+∩ρ(Aκ)

and an arbitrary h ∈ H and define

φ := (A∗
iI − zI)−1h , g := (Aκ − zI)−1h , (17)

then f := φ− g is in ker(A∗ − zI). Since φ ∈ dom(A∗
iI), one has that

0 = Γ1(f + g)−B∗
iIΓ0(f + g)

= M(z)Γ0f + Γ1g −B∗
iIΓ0f −BiIΓ0g ,

where in the second equality we use the fact that f ∈ ker(A∗ − zI). On the other
hand, in view of the inclusion g ∈ dom(Aκ), the formula (4) allows us to replace
the second term in the last expression by BκΓ0g, which yields

0 = (M(z)−B∗
iI)Γ0f + (Bκ −B∗

iI)Γ0g . (18)

Since Bκ −B∗
iI = iαχ−

κα, equality (18) is rewritten as

Γ0f = i(B∗
iI −M(z))−1αχ−

καΓ0g ,

which in turn implies that

Γ0φ =
[
I + i(B∗

iI −M(z))−1αχ−
κα
]
Γ0g .

Applying the operator α to both sides of the last equation and using (17), we
obtain

αΓ0(A
∗
iI − zI)−1h =

[
I + iα(B∗

iI −M(z))−1αχ−
κ
]
αΓ0(Aκ − zI)−1h,

which is (iii), in view of the definition (12).
Finally, we interchange the operators A∗

iI and Aκ in (17) and repeat the
computations, correspondingly interchanging BiI and Bκ . This yields the identity

αΓ0(A
∗
κ − zI)−1h =

[
I − iα(B∗

iI −M(z))−1αχ−
κ
]
αΓ0(A

∗
iI − zI)−1h, (19)

for all z ∈ C+ ∩ ρ(Aκ). In a similar way to (16), we verify that

Θ̂κ(z)
−1 = I − iα(B∗

iI −M(z))−1αχ−
κ ∀ z ∈ C+ ∩ ρ(Aκ)

and hence establish (iv). �
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4. Functional model and theorems about smooth vectors
Following [48], we introduce a Hilbert space serving as a functional model for the
family of operators Aκ. This functional model was constructed for completely non-
selfadjoint maximal dissipative operators in [53, 51, 52] and further developed in
[48, 61, 59, 68]. Next we recall some related necessary information. In what follows,
in various formulae, we use the subscript ‘±’ to indicate two different versions of
the same formula in which the subscripts ‘+’ and ‘−’ are taken individually.

A function f analytic on C± and taking values in E is said to be in the Hardy
class H2

±(E) when

sup
y>0

∫
R
‖f(x± iy)‖2E dx < +∞

(cf. [57, Sect. 4.8]). Whenever f ∈ H2
±(E), the left-hand side of the above inequality

defines ‖f‖2H2
±(E). We use the notation H2

+ and H2
− for the usual Hardy spaces of

C-valued functions.
The elements of the Hardy spaces H2

±(E) are identified with their boundary
values, which exist almost everywhere on the real line. We keep the same notation
H2

±(E) for the corresponding subspaces of L2(R, E) [57, Sect. 4.8, Theorem B]).
By the Paley–Wiener theorem [57, Sect. 4.8, Theorem E]), one verifies that these
subspaces are the orthogonal complements of each other.

Following the argument of [48, Theorem 1], it is shown in [60, Lemma 2.4]
that

αΓ0(AiI − ·I)−1h ∈ H2
−(E) and αΓ0(A

∗
iI − ·I)−1h ∈ H2

+(E) . (20)

As mentioned in Remark 3, the characteristic function S given in Definition 3
has nontangential limits almost everywhere on the real line in the strong topology.
Thus, for a two-component vector function

(
g̃
g

)
taking values in E ⊕ E, one can

consider the integral∫
R

〈(
I S∗(s)

S(s) I

)(
g̃(s)

g(s)

)
,

(
g̃(s)

g(s)

)〉
E⊕E

ds, (21)

which is always nonnegative, due to the contractive properties of S. The space

H := L2

(
E ⊕ E;

(
I S∗

S I

))
(22)

is the completion of the linear set of two-component vector functions
(
g̃
g

)
: R →

E ⊕E in the norm (21), factored with respect to vectors of zero norm. Naturally,
not every element of the set can be identified with a pair

(
g̃
g

)
of two independent

functions. Still, in what follows we keep the notation
(
g̃
g

)
for the elements of this

space.
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Another consequence of the contractive properties of the characteristic func-
tion S is that for g̃, g ∈ L2(R, E) one has∥∥∥∥(g̃g

)∥∥∥∥
H

≥

{
‖g̃ + S∗g‖L2(R,E) ,

‖Sg̃ + g‖L2(R,E) .

Thus, for every Cauchy sequence {
(
g̃n
gn

)
}∞n=1, with respect to the H-topology, such

that g̃n, gn ∈ L2(R, E) for all n ∈ N, the limits of g̃n + S∗gn and Sg̃n + gn exist in
L2(R, E), so that g̃+S∗g and Sg̃+ g can always be treated as L2(R, E) functions.

Consider the orthogonal subspaces of H

D− :=

(
0

H2
−(E)

)
, D+ :=

(
H2

+(E)
0

)
. (23)

We define the space
K := H	 (D− ⊕D+),

which is characterised as follows (see e.g. [51, 52]):

K =

{(
g̃
g

)
∈ H : g̃ + S∗g ∈ H2

−(E) , Sg̃ + g ∈ H2
+(E)

}
. (24)

The orthogonal projection PK onto the subspace K is given by (see e.g. [47])

PK

(
g̃
g

)
=

(
g̃ − P+(g̃ + S∗g)

g − P−(S g̃ + g)

)
, (25)

where P± are the orthogonal Riesz projections in L2(E) onto H2
±(E).

A completely non-selfadjoint dissipative operator admits [67] a self-adjoint
dilation. The dilation A = A∗ of the operator AiI is constructed following Pavlov’s
procedure [51, 53, 52]: it is defined in the Hilbert space

H = L2(R−,K)⊕H⊕ L2(R+,K), (26)
so that

PH(A− zI)−1 �H= (AiI − zI)−1 , z ∈ C−.

As in the case of additive non-selfadjoint perturbations [48], Ryzhov established
in [60, Theorem 2.3] that H serves as the functional model for the dilation A, i.e.
there exists an isometry Φ : H → H, which we will make explicit below in our
particular setting, such that A is transformed into the operator of multiplication
by the independent variable, Φ(A− zI)−1 = (· − z)−1Φ . Furthermore, under this
isometry

Φ �H H = K

unitarily, where H is understood as being embedded in H in the natural way, i.e.
H 3 h 7→ 0⊕ h⊕ 0 ∈ H.

In what follows we keep the label Φ for the restriction Φ �H, hoping that it does
not lead to confusion.
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The next theorem generalises [60, Theorem 2.5], and its form is similar to [48,
Theorem 3], which treats the case of additive perturbations, see also [44, 60, 59, 61]
for the case of possibly non-additive perturbations. The proof blends together
the arguments of [60] and [48], taking advantage of the similarity between the
formulae (8)–(12) and those of [48, Sect. 2]. It is standard, see e.g. [44, 48, 61], and
is therefore included in the Appendix for the sake of completeness only.

Theorem 4.1. (i) If z ∈ C− ∩ ρ(Aκ) and
(
g̃
g

)
∈ K, then

Φ(Aκ − zI)−1Φ∗
(
g̃

g

)
= PK

1

· − z

(
g̃

g − χ+
κΘ

−1
κ (z)(g̃ + S∗g)(z)

)
. (27)

(ii) If z ∈ C+ ∩ ρ(Aκ) and
(
g̃
g

)
∈ K, then

Φ(Aκ − zI)−1Φ∗
(
g̃

g

)
= PK

1

· − z

(
g̃ − χ−

κ Θ̂
−1
κ (z)(Sg̃ + g)(z)

g

)
. (28)

Here, (g̃ + S∗g)(z) and (Sg̃ + g)(z) denote the values at z of the analytic
continuations of the functions g̃ + S∗g ∈ H2

−(E) and Sg̃ + g ∈ H2
+(E) into

the lower half-plane and upper half-plane, respectively.

Following the ideas of Naboko, in the functional model space H consider two
subspaces Nκ

± defined as follows:

Nκ
± :=

{(
g̃

g

)
∈ H : P±

(
χ+
κ (g̃ + S∗g) + χ−

κ (Sg̃ + g)
)
= 0

}
. (29)

These subspaces have a characterisation in terms of the resolvent of the operator
Aκ . This, again, can be seen as a consequence of a much more general argument
(see e.g. [61, 59]). The proof in our particular case is provided in Appendix and
follows the approach of [48, Theorem 4].

Theorem 4.2. Suppose that ker{α} = 0. The following characterisation holds:

Nκ
± =

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C±

}
.

(30)

Consider the counterparts of Nκ
± in the original Hilbert space H :

Ñκ
± := Φ∗PKNκ

± , (31)
which are linear sets albeit not necessarily subspaces. In a way similar to [48], we
introduce the set

Ñκ
e := Ñκ

+ ∩ Ñκ
−

of so-called smooth vectors and its closure Nκ
e := clos(Ñκ

e ). In Sect. 5 we prove
that Nκ

e coincides with the absolutely continuous subspace of the operator Aκ in
the case when Aκ = A∗

κ and under the additional assumption that ker(α) = {0},
as in Theorem 4.2.
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The next assertion (cf. e.g. [61, 59], for the case of general non-selfadjoint
operators), whose proof is found in Appendix, is an alternative non-model charac-
terisation of the linear sets Ñκ

± .

Theorem 4.3. The sets Ñκ
± are described as follows:

Ñκ
± =

{
u ∈ H : χ∓

καΓ0(Aκ − zI)−1u ∈ H2
±(E)

}
. (32)

Corollary 4.4. The right-hand side of (32) coincides with {u ∈ H : αΓ0(Aκ −
zI)−1u ∈ H2

±(E)}, and therefore equivalently one has

Ñκ
± = {u ∈ H : αΓ0(Aκ − zI)−1u ∈ H2

±(E)}. (33)

Proof. Indeed, if αΓ0(Aκ − zI)−1u ∈ H2
+(E) then clearly χ−

καΓ0(Aκ − zI)−1u ∈
H2

+(E). Conversely, we write

S(z)χ−
καΓ0(Aκ − zI)−1u

= (S(z)χ−
κ + χ+

κ )αΓ0(Aκ − zI)−1u− χ+
καΓ0(Aκ − zI)−1u (34)

= Θ̂κ(z)αΓ0(Aκ − zI)−1u− χ+
καΓ0(Aκ − zI)−1u (35)

= αΓ0(A
∗
iI − zI)−1u− χ+

καΓ0(Aκ − zI)−1u, (36)

where S(z)χ−
κ + χ+

κ = (S(z) − I)χ−
κ + I = Θ̂κ(z), see (12), and in (35)–(36) we

use the part (iii) of Lemma 3.1.
Further, as we noted in (20), one has αΓ0(A

∗
iI − zI)−1u ∈ H2

+(E), and since
S is an analytic contraction in C+ the function S(z)χ−

καΓ0(Aκ − zI)−1u, z ∈ C+,
is an element of H2

+(E) as long as χ−
καΓ0(Aκ − zI)−1u ∈ H2

+(E). Recalling (34),
(36), we conclude that χ+

καΓ0(Aκ − zI)−1u ∈ H2
+(E) and therefore

χ+
καΓ0(Aκ − zI)−1u+ χ−

καΓ0(Aκ − zI)−1u = αΓ0(Aκ − zI)−1u ∈ H2
+(E),

as required.
The equality{

u ∈ H : χ+
καΓ0(Aκ−zI)−1u ∈ H2

−(E)
}
=
{
u ∈ H : αΓ0(Aκ−zI)−1u ∈ H2

−(E)
}

is shown in a similar way. �

The above corollary together with Theorem 5.5 motivates generalising the
notion of the absolutely continuous subspace Hac(Aκ) to the case of non-selfadjoint
extensions Aκ of a symmetric operator A, by identifying it with the set Nκ

e . This
generalisation follows in the footsteps of the corresponding definition by Naboko
[48] in the case of additive perturbations (see also [61, 59] for the general case). In
particular, an argument similar to [48, Corollary 1] shows that for the functional
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model image of Ñκ
e the following representation holds:

ΦÑκ
e =

{
PK

(
g̃

g

)
∈ H :(

g̃

g

)
∈ H satisfies Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
∀ z ∈ C− ∪ C+

}
.

(37)

(Note that the inclusion of the right-hand side of (37) into ΦÑκ
e follows immedi-

ately from Theorem 4.2.) Further, we arrive at an equivalent description:

ΦÑκ
e =

{
PK

(
g̃

g

)
:

(
g̃

g

)
∈ H satisfies χ+

κ (g̃ + S∗g) + χ−
κ (Sg̃ + g) = 0

}
. (38)

Definition 4. For a symmetric operator A, in the case of a non-selfadjoint ex-
tension Aκ the absolutely continuous subspace Hac(Aκ) is defined by the formula
Hac(Aκ) = Nκ

e .

In the case of a self-adjoint extension Aκ, we understand Hac(Aκ) in the sense
of the classical definition of the absolutely continuous subspace of a self-adjoint
operator.

5. The relationship between the set of smooth vectors and
the absolutely continuous subspace in the self-adjoint
setting

The argument of this section is similar to that of [48], subject to appropriate modi-
fications in order to account for the fact that we deal with extensions of symmetric
operators rather than additive perturbations. The same strategy seems to be ap-
plicable in the ‘mixed’ case that incorporates both extensions and perturbations,
which has recently been studied in [10].

The following proposition is contained in the proof of [48, Lemma 5]. For the
reader’s convenience, we provide its proof in Appendix.

Proposition 5.1. If the Borel transform of a Borel measure µ∫
R

dµ(s)

s− z

is either an element of H2
+ when z ∈ C+ or an element of H2

− when z ∈ C−, then
µ is absolutely continuous with respect to the Lebesgue measure.

Lemma 5.2. Assume that κ = κ∗, ker(α) = {0} and let PS be the orthogonal
projection onto the singular subspace of Aκ. Then following inclusion holds:

PSÑ
κ
e ⊂

⋂
z∈C\R

ran(A− zI) .
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Proof. We first demonstrate the validity of the claim for κ = 0.

We decompose each smooth vector u (i.e. u ∈ Ñκ
e ) into its projections onto

the absolutely continuous and singular subspaces of A0, that is, u = uac + us,
where uac ∈ Hac(A0) and us ∈ Hs(A0), so uac ⊥ us and us ∈ PSÑ

κ
e .

Consider an arbitrary w ∈ K and note that, due to the surjectivity of Γ1,
there exists a vector v ∈ dom(A∗) such that αw = Γ1v, and therefore〈

Γ0(A0 − zI)−1u, αw
〉
K

=
〈
Γ0(A0 − zI)−1u,Γ1v

〉
K (39)

=
〈
Γ0(A0 − zI)−1u,Γ1v

〉
K −

〈
Γ1(A0 − zI)−1u,Γ0v

〉
K (40)

=
〈
(A0 − zI)−1u,A∗v

〉
H −

〈
A∗(A0 − zI)−1u, v

〉
H (41)

=

∫
R

1

t− z
dµu,A∗v(t)−

∫
R

t

t− z
dµu,v(t) =

∫
R

1

t− z
dµ̂(t). (42)

Here

µu,A∗v(δ) := 〈EA0
(δ)u,A∗v〉H , µu,v(δ) := 〈EA0

(δ)u, v〉H ∀Borel δ ⊂ R,

where EA0
is the spectral resolution of the identity for the operator A0, and µ̂(t) :=

µu,A∗v(t) − tµu,v(t). Furthermore, the measure µ̂ admits the decomposition into
its absolutely continuous and singular parts with respect to the Lebesgue measure.
Its singular part is equal to µus,A∗v(t)−tµus,v(t) =: µ̂s(t), see e.g. [6]. The equality
(39)–(40) is due to the observation that Γ1 vanishes on dom(A0), and the equality
(40)–(41) is a consequence of the ‘Green formula’ (3) and the fact that A ⊂ A0.

At the same time, it follows from Corollary 4.4 that the scalar analytic func-
tion

〈
Γ0(A0 − zI)−1u, αw

〉
K is an element of H2

+ for z ∈ C+ and also of H2
− for

z ∈ C−. Therefore, by Proposition 5.1 we infer from (39)–(42) that the measure
µ̂ is absolutely continuous, which implies that its singular part µ̂s is the zero
measure.

Finally, we invoke (39)–(42) once again, having replaced u by us and µ̂ by
µ̂s, and conclude that〈

Γ0(A0 − zI)−1us, αw
〉
K = 0 ∀ z ∈ C \ R. (43)

Now, by virtue of the facts that w ∈ K in (43) is arbitrary and ker(α) = {0},
it follows that Γ0(A0 − zI)−1us = 0, and since (A0 − zI)−1us ∈ dom(A0) and
therefore Γ1(A0− zI)−1us = 0 automatically, we obtain (A0− zI)−1us ∈ dom(A).
Finally, since A0 ⊃ A, we conclude that us ∈ ran(A − zI) for all z ∈ C \ R, as
claimed.

In order to treat the case of an arbitrary κ ∈ B(K) such that κ = κ∗, we
define ‘shifted’ boundary operators Γ̂0 := Γ0, Γ̂1 := Γ1 − BκΓ0. Notice that (cf.
(4))

dom(Aκ) = {u ∈ H : Γ1u = BκΓ0u} = {u ∈ H : Γ̂1u = 0},



Scattering theory for a class of non-selfadjoint extensions 209

i.e. the operator Aκ plays the rôle of the operator A0 in the triple (K, Γ̂0, Γ̂1).
Further, note that the change of the triple results in a change of the operator that
needs to play the rôle of AiI , the dissipative extension used to construct the func-
tional model, which in terms of the ‘old’ triple (K,Γ0,Γ1) should be the extension
AB with B = α(i+ κ)α/2. Repeating the above argument in this new functional
model and bearing in mind that the characterisation of Ñκ

e in Corollary 4.4 holds
for all κ, yields the stated result. �

An immediate consequence of this result and the criterion of complete non-
selfadjointness (1) is the following assertion.

Corollary 5.3. Let κ and α be as in the preceding lemma. If A is completely
non-selfadjoint, then

Ñκ
e ⊂ Hac(Aκ) .

We now proceed to the proof of the opposite inclusion.

Lemma 5.4 (Modified Rosenblum lemma, cf. [58]). Let β be a self-adjoint
operator in a Hilbert space H1. Suppose that the operator T , defined on dom(β) and
taking values in a Hilbert space H2, is such that T (β−z0I)

−1 is a Hilbert–Schmidt
operator for some z0 ∈ ρ(β). Then there exists a set D, dense in Hac(β), such that∫

R
‖T exp(−iβt)u‖2 dt < ∞

for all u ∈ D.

Proof. Let x ∈ R and ϵ > 0. By Hilbert’s first identity,

T (β− (x+ iϵ)I)−1 = ((x+ iϵ)− z0)T (β− z0I)
−1(β− (x+ iϵ)I)−1 + T (β− z0I)

−1.

Consider the first term on the right-hand side of this last equation. By [49], for
every f in H1 the limit

lim
ϵ→0

T (β − z0I)
−1(β − (x+ iϵ)I)−1f

exists for almost all x ∈ R (the convergence set actually depends on f). It follows
that the limit

lim
ϵ→0

T
(
(β − (x+ iϵ)I)−1 − (β − (x− iϵ)I)−1

)
f =: F (x)

exists for all f ∈ H1 and almost all x ∈ R.
Now, define the set

X (n) :=
{
x ∈ R : |x| < n, ‖F (x)‖ < n

}
If Eβ denotes the spectral measure of the operator β, then the set

D :=
⋃
n∈N

Eβ

(
X (n)

)
Hac(β)
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is dense in Hac(β). Consider an orthonormal basis {ϕk} in H2 and an arbitrary
element f ∈ D, then, for all k,

〈T exp(−iβt)f, ϕk〉 =
∫
X (n)

e−ixt d

dx
〈Eβ(x)f, T

∗ϕk〉 dx

=

∫
X (n)

e−ixt 〈F (x), T ∗ϕk〉 dx ,

where in the last equality we have used the fact that by the spectral theorem

lim
ϵ→0

〈(
(β − (x+ iϵ)I)−1 − (β − (x− iϵ)I)−1

)
f, ϕ
〉
=

d

dx
〈Eβ(x)f, ϕ〉

for all f ∈ Hac(β) and for all ϕ ∈ H1.
By the Parseval identity one has∫

R
|〈T exp(−iβt)f, ϕk〉|2 dt = 2π

∫
X (n)

|〈F (x), ϕk〉|2 dx

for all k, which immediately implies that∫
R
‖T exp(−iβt)u‖2 dt = 2π

∫
X (n)

‖F (x)‖2 dx ≤ 4πn3 < +∞ .

�

Combining the above statements yields the following result.

Theorem 5.5. Assume that κ = κ∗, ker(α) = {0} and let αΓ0(Aκ − zI)−1 be a
Hilbert–Schmidt operator for at least one point z ∈ ρ(Aκ). If A is completely non-
selfadjoint, then our definition of the absolutely continuous subspace is equivalent
to the classical definition of the absolutely continuous subspace of a self-adjoint
operator, i.e.

Nκ
e = Hac(Aκ) .

Proof. By applying the Fourier transform to the functions 1±(t)αΓ0e
iAκte∓ϵtu,

t ∈ R, where 1± is the characteristic function of R± and ϵ > 0 is arbitrarily small,
one obtains∥∥αΓ0(Aκ − zI)−1u

∥∥2
H2

−
+
∥∥αΓ0(Aκ − zI)−1u

∥∥2
H2

+

= 2π

∫
R
‖αΓ0 exp(iAκt)u‖2 dt

which by Lemma 5.4 is finite for all u in a dense subset of Hac(Aκ). Hence, in
view of Corollary 4.4 and performing closure, one has Hac(Aκ) ⊂ Nκ

e . Taking into
account Corollary 5.3 completes the proof. �

Remark 5. Alternative conditions, which are less restrictive in general, that guar-
antee the validity of the assertion of Theorem 5.5 can be obtained along the lines
of [50].
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6. Wave and scattering operators
The results of the preceding sections allow us to calculate the wave operators for
any pair Aκ1

, Aκ2
, where Aκ1

and Aκ2
are operators in the class introduced in

Sect. 2, under the additional assumption that the operator α (see (5)) has a trivial
kernel. For simplicity, in what follows we set κ2 = 0 and write κ instead of κ1. Note
that A0 is a self-adjoint operator, which is convenient for presentation purposes.

We begin by establishing the model representation for the function exp(iAκt),
t ∈ R, of the operator Aκ , evaluated on the set of smooth vectors Ñκ

e .

Proposition 6.1 ([48, Proposition 2]). For all t ∈ R and
(
g̃
g

)
such that Φ∗PK

(
g̃
g

)
∈

Ñκ
e , one has

Φexp(iAκt)Φ
∗PK

(
g̃

g

)
= PK exp(ikt)

(
g̃

g

)
.

Proof. We use the definition

exp(iAκt) := s-lim
n→+∞

(
I − iAκt

n

)−n

, t ∈ R,

giving in general an unbounded operator (see [29]). Due to Theorem 4.2, if
(
g̃
g

)
∈

Nκ
+ ∩Nκ

−, i.e. Φ∗PK

(
g̃
g

)
∈ Ñκ

e , then(
I − iAκt

n

)−n

Φ∗PK

(
g̃

g

)
= Φ∗PK

(
1− ikt

n

)−n(
g̃

g

)
, t ∈ R.

Thus, to complete the proof it remains to show that∥∥∥∥∥
(
exp(ikt)−

(
1− ikt

n

)−n
)(

g̃

g

)∥∥∥∥∥
H

−−−−→
n→∞

0, t ∈ R,

which follows directly from Lebesgue’s dominated convergence theorem. �

Proposition 6.2 ([48, Sect. 4]). If Φ∗PK

(
g̃
g

)
∈ Ñκ

e and Φ∗PK

(
ĝ
g

)
∈ Ñ0

e (with the
same element1 g), then∥∥∥∥exp(−iAκt)Φ

∗PK

(
g̃

g

)
− exp(−iA0t)Φ

∗PK

(
ĝ

g

)∥∥∥∥
H

−−−−→
t→−∞

0.

1Despite the fact that
(g̃
g

)
∈ H is nothing but a symbol, still g̃ and g can be identified with

vectors in certain L2(E) spaces with operators “weights”, see details below in Sect. 7. Further,
we recall that even then for

(g̃
g

)
∈ H, the components g̃ and g are not, in general, independent of

each other.
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Proof. Clearly, g̃ − ĝ ∈ L2(E) since
(
g̃−ĝ
0

)
∈ H. Therefore, for all t ∈ R, we obtain∥∥∥∥exp(−iAκt)Φ

∗PK

(
g̃

g

)
− exp(−iA0t)Φ

∗PK

(
ĝ

g

)∥∥∥∥
H

=

∥∥∥∥PKe−it·
(
g̃

g

)
− PKe−it·

(
ĝ

g

)∥∥∥∥
H

=

∥∥∥∥PK

(
e−it·(g̃ − ĝ)

0

)∥∥∥∥
H

≤
∥∥P−e

−it·(g̃ − ĝ)
∥∥
L2(E)

.

where in the inequality we use the fact that∥∥∥∥PK

(
ǧ

0

)∥∥∥∥2
H

=

∫
R

(∥∥P−ǧ(s)
∥∥2
E
−
∥∥P−S(s)ǧ(s)

∥∥2
E

)
ds ∀

(
ǧ

0

)
∈ H.

Finally, since exp(−it·) ∈ H∞
+ for t ≥ 0, the convergence (see e.g. [34])

∥∥P−e
−it·(g̃ − ĝ)

∥∥2
L2(E)

=

∫ t

−∞
‖F(g̃ − ĝ)(τ)‖2E dτ −−−−→

t→−∞
0

holds, where F(g̃ − ĝ) stands for the Fourier transform of the function g̃ − ĝ. �

It follows from Proposition 6.2 that whenever Φ∗PK

(
g̃
g

)
∈ Ñκ

e and Φ∗PK

(
ĝ
g

)
∈

Ñ0
e (with the same second component g), formally one has

lim
t→−∞

eiA0te−iAκtΦ∗PK

(
g̃

g

)
= Φ∗PK

(
ĝ

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
,

where in the last equality we use the inclusion Φ∗PK

(
ĝ
g

)
∈ Ñ0

e , which by (38) yields
ĝ + S∗g + Sĝ + g = 0. In view of the classical definition of the wave operator of a
pair of self-adjoint operators, see e.g. [29],

W±(A0, Aκ) := s-lim
t→±∞

eiA0te−iAκtPκ
ac,

where Pκ
ac is the projection onto the absolutely continuous subspace of Aκ , we

obtain that, at least formally, for Φ∗PK

(
g̃
g

)
∈ Ñκ

e one has

W−(A0, Aκ)Φ
∗PK

(
g̃

g

)
= Φ∗PK

(
−(I + S)−1(I + S∗)g

g

)
. (44)
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By an argument similar to that of Proposition 6.2 (i.e. considering the case
t → +∞), one also obtains

W+(A0, Aκ)Φ
∗PK

(
g̃

g

)
= lim

t→+∞
eiA0te−iAκtΦ∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−(I + S∗)−1(I + S)g̃

) (45)

again for Φ∗PK

(
g̃
g

)
∈ Ñκ

e .
Further, the definition of the wave operators W±(Aκ , A0)∥∥∥∥e−iAκtW±(Aκ , A0)Φ

∗PK

(
g̃

g

)
− e−iA0tΦ∗PK

(
g̃

g

)∥∥∥∥
H

−−−−→
t→±∞

0

yields, for all Φ∗PK

(
g̃
g

)
∈ Ñ0

e ,

W−(Aκ , A0)Φ
∗PK

(
g̃

g

)
= Φ∗PK

(
−(I + χ−

κ (S − I))−1(I + χ+
κ (S

∗ − I))g

g

)
(46)

and

W+(Aκ , A0)Φ
∗PK

(
g̃

g

)
= Φ∗PK

(
g̃

−(I + χ+
κ (S∗ − I))−1(I + χ−

κ (S − I))g̃

)
, (47)

where we have used the fact that Φ∗PK

(
g̃
g

)
∈ Ñκ

e and the corresponding criterion
provided by (38).

In order to rigorously justify the above formal argument, i.e. in order to prove
the existence and completeness of the wave operators, one needs to first show that
the right-hand sides of the formulae (44)–(47) make sense on dense subsets of the
corresponding absolutely continuous subspaces. Noting that (44)–(47) have the
form identical to the expressions for wave operators derived in [48, Sect. 4], [50],
the remaining part of this justification is a modification of the argument of [50],
as follows.

Let S(z)−I be of the class S∞(C+), i.e. a compact analytic operator function
in the upper half-plane up to the real line. Then so is (S(z) − I)/2, which is
also uniformly bounded in the upper half-plane along with S(z). We next use the
result of [50, Theorem 3] about the non-tangential boundedness of operators of the
form (I + T (z))−1 for T (z) compact up to the real line. We infer that, provided
(I + (S(z0) − I)/2)−1 exists for some z0 ∈ C+ (and hence, see [9], everywhere
in C+ except for a countable set of points accumulating only to the real line),
one has non-tangential boundedness of (I + (S(z)− I)/2)−1, and therefore also of
(I + S(z))−1, for almost all points of the real line.

On the other hand, the latter inverse can be computed in C+:(
I + S(z)

)−1
=

1

2

(
I + iαM(z)−1α/2

)
. (48)
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Indeed, one has(
I + iαM(z)−1α/2

)
(I + S(z))

= 2I+iαM(z)−1α+iα
(
B∗

iI−M(z)
)−1

α−iαM(z)−1B∗
iI

(
B∗

iI−M(z)
)−1

α = 2I

and the second similar identity for the multiplication in the reverse order proves
the claim.

It follows from (48) and the analytic properties of M(z) that the inverse
(I +S(z))−1 exists everywhere in the upper half-plane. Thus, Theorem 3 of [50] is
indeed applicable, which yields that (I+S(z))−1 is R-a.e. nontangentially bounded
and, by the operator generalisation of the Calderon theorem (see [65]), which was
extended to the operator context in [50, Theorem 1], it admits measurable non-
tangential limits in the strong operator topology almost everywhere on R. As it is
easily seen, these limits must then coincide with (I+S(k))−1 for almost all k ∈ R.

The same argument obviously applies to (I+S∗(z̄))−1 for z ∈ C−, where the
invertibility follows from the identity

(
I + S∗(z̄)

)−1
=

1

2

(
I − iαM(z)−1α/2

)
(49)

obtained exactly as (48), by taking into account analytic properties of M(z).
Finally, the identities

(I + χ−
κ (S(z)− I))−1 = I − iχ−

κα(Bκ −M(z))−1α (50)

for z ∈ C+ and

(I + χ+
κ (S

∗(z̄)− I))−1 = I + iχ+
κα(Bκ −M(z))−1α (51)

for z ∈ C− are used, again by an application of Theorem 3 of [50], to ascertain
the existence of bounded (I +χ−

κ (S(k)− I))−1 and (I +χ+
κ (S

∗(k)− I))−1 almost
everywhere on R, provided that the operator Aκ has at least one regular point in
each half-plane of the complex plane, see Proposition 2.2. Under the assumptions
on S specified above, this latter condition immediately implies that the non-real
spectrum of Aκ is countable and accumulates to R only. (Nevertheless, it could
still accumulate to all points of the real line simultaneously.)

The presented argument allows one to verify the correctness of the formulae
(44)–(47) for the wave operators. Indeed, for the first of them one considers 1n(k),
the indicator of the set {k ∈ R : ‖(I + S(k))−1‖ ≤ n}. Clearly, 1n(k) → 1 as
n → ∞ for almost all k ∈ R. Next, suppose that PK(g̃, g) ∈ Ñκ

e . Then PK1n(g̃, g)
is also a smooth vector and(

−(I + S)−1
1n(I + S∗)g

1ng

)
∈ H.
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Indeed, for any (g̃, g) ∈ H one has(
−1n(1 + S)−1(1 + S∗)g

1ng

)
−
(
1ng̃

1ng

)
=

(
−1n(1 + S)−1[(g̃ + S∗g) + (Sg̃ + g)]

0

)
∈
(
L2(E)

0

)
∈ H,

whereas the inclusion in the set of smooth vectors follows directly from (38). It
follows, by the Lebesgue dominated convergence theorem, that the set of vectors
PK1n(g̃, g) is dense in Nκ

e . The remaining three wave operators are treated in a
similar way. Finally, the density of the range of the four wave operators follows
from the density of their domains, by a standard inversion argument, see e.g. [73].

We have thus proved the following theorem.

Theorem 6.3. Let A be a closed, symmetric, completely non-selfadjoint opera-
tor with equal deficiency indices and consider its extension Aκ , as described in
Sect. 2, under the assumptions that ker(α) = {0} (see (5)) and that Aκ has at
least one regular point in C+ and in C−. If S − I ∈ S∞(C+), then the wave
operators W±(A0, Aκ) and W±(Aκ , A0) exist on dense sets in Nκ

e and Hac(A0),
respectively, and are given by the formulae (44)–(47). The ranges of W±(A0, Aκ)
and W±(Aκ , A0) are dense in Hac(A0) and Nκ

e , respectively.2

Remark 6. 1. The identities (48)–(49) can be used to replace the condition S(z)−
I ∈ S∞(C+) by the following equivalent condition: αM(z)−1α is nontangentially
bounded almost everywhere on the real line, and αM(z)−1α ∈ S∞(C+) for =z ≥
0. In order to do so, one notes that (I + T )−1 − I = −(I + T )−1T ∈ S∞(C+) as
long as T ∈ S∞(C+) and (I + T )−1 is bounded.

2. The latter condition is satisfied [24], if the scalar function ‖αM(z)−1α‖Sp

is nontangentially bounded almost everywhere on the real line for some p < ∞,
where Sp, p ∈ (0,∞], are the standard Schatten–von Neumann classes of compact
operators.

3. An alternative sufficient condition is the condition α ∈ S2 (and therefore
Bκ ∈ S1), or, more generally, αM(z)−1α ∈ S1, see [49] for details.

4. Following from the analysis above, the existence and completeness of the
wave operators for the par Aκ , A0 is closely linked to the condition of α hav-
ing a ‘relative Hilbert–Schmidt property’ with respect to M(z). Recalling that
Bκ = ακα/2, this is not always feasible to expect. Nevertheless, by appropriately
modifying the boundary triple, the situation can often be rectified. For example,
if Cκ = C0+ακα/2, where C0 and κ are bounded and α ∈ S2, replaces the oper-
ator Bκ in (5), then one ‘shifts’ the boundary triple (cf. the proof of Lemma 5.2):

2In the case when Aκ is self-adjoint, or, in general, the named wave operators are bounded,
the claims of the theorem are equivalent (by the classical Banach–Steinhaus theorem) to the
statement of the existence and completeness of the wave operators for the pair A0, Aκ . Sufficient
conditions of boundedness of these wave operators are contained in e.g. [48, Sect. 4], [50] and
references therein.
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Γ̂0 = Γ0, Γ̂1 = Γ1 − C0Γ0. One thus obtains that in the new triple (K, Γ̂0, Γ̂1) the
operator Aκ coincides with the extension corresponding to the boundary operator
Bκ = ακα/2, whereas the Weyl–Titchmarsh function M(z) undergoes a shift to
the function M(z) − C0. The proof of Theorem 6.1 remains intact, while Part 3
of this remark yields that the condition α(M(z) − C0)

−1α ∈ S1 guarantees the
existence and completeness of the wave operators for the pair AC0

, ACκ . The fact
that the operator A0 here is replaced by the operator AC0

reflects the standard
argument that the complete scattering theory for a pair of operators requires that
the operators forming this pair are ‘close enough’ to each other.

Finally, the scattering operator Σ for the pair Aκ , A0 is defined by
Σ = W−1

+ (Aκ , A0)W−(Aκ , A0).

The above formulae for the wave operators lead (cf. [48]) to the following formula
for the action of Σ in the model representation:

ΦΣΦ∗PK

(
g̃

g

)
= PK

(
−(I + χ−

κ (S − I))−1(I + χ+
κ (S

∗ − I))g

(I + S∗)−1(I + S)(I + χ−
κ (S − I))−1(I + χ+

κ (S∗ − I))g

)
,

(52)
whenever Φ∗PK

(
g̃
g

)
∈ Ñ0

e . In fact, as explained above, this representation holds on
a dense linear set in Ñ0

e within the conditions of Theorem 6.3, which guarantees
that all the objects on the right-hand side of the formula (52) are correctly defined.

7. Spectral representation for the absolutely continuous
part of the operator A0

The identity ∥∥∥∥PK

(
g̃

g

)∥∥∥∥2
H

=
〈
(I − S∗S)g̃, g̃

〉
which is derived in the same way as in [48, Sect. 7] for all PK

(
g̃
g

)
∈ Ñ0

e and is
equivalent to the condition (g̃+S∗g)+(Sg̃+g) = 0, see (38), allows us to consider
the isometry F : ΦÑ0

e 7→ L2(E; I − S∗S) defined by the formula

FPK

(
g̃

g

)
= g̃. (53)

Here L2(E; I − S∗S) is the Hilbert space of E-valued functions on R square sum-
mable with the matrix ‘weight’ I − S∗S, cf. (22). Similarly, the formula

F∗PK

(
g̃

g

)
= g

defines an isometry F∗ from ΦÑ0
e to L2(E; I − SS∗).

Lemma 7.1. Suppose that the assumptions of Theorem 6.3 hold. Then the ranges
of the operators F and F∗ are dense in the spaces L2(E; I − S∗S) and L2(E; I −
SS∗), respectively.
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Proof. Indeed, for all g̃ ∈ L2(E; I − S∗S) and g = −Sg̃ one has (g̃, g) ∈ H with
‖(g̃, g)‖H = ‖g̃‖L2(E;I−S∗S). By repeating the proof of Theorem 6.3, the operator
I + S∗ is boundedly invertible almost everywhere on R.

Now, consider 1n(k), the indicator of the set {k ∈ R : ‖(I + S∗(k))−1‖ ≤ n}.
For g̃ ∈ L2(E; I − S∗S) and, as above, g = −Sg̃, one has 1n(g̃,−(I + S∗)−1(I +
S)g̃) ∈ H, since

1n

(
g̃

−(I + S∗)−1(I + S)g̃

)
− 1n

(
g̃

g

)
=

(
0

−1n(I + S∗)−1
[
(Sg̃ + g) + (g̃ + S∗g)

]) ∈
(

0

L2(E)

)
.

Finally, the set {1ng̃} is dense in L2(E; I − S∗S) by the Lebesgue dominated
convergence theorem, whereas PK1n(g̃,−(I + S∗)−1(I + S)g̃) ∈ Ñ0

e by direct
calculation. �

Corollary 7.2. The operator F, respectively F∗, admits an extension to the unitary
mapping between ΦN0

e and L2(E; I − S∗S), respectively L2(E; I − SS∗).

It follows that the operator (A0 − z)−1 (see notation (6)) considered on Ñ0
e

acts as the multiplication by (k−z)−1, k ∈ R, both in L2(E; I−S∗S) and L2(E; I−
SS∗). In particular, if one considers the absolutely continuous ‘part’ of the operator
A0, namely the operator A

(e)
0 := A0|N0

e
, then FΦA

(e)
0 Φ∗F ∗ and F∗ΦA

(e)
0 Φ∗F ∗

∗ are
the operators of multiplication by the independent variable in the spaces L2(E; I−
S∗S) and L2(E; I − SS∗), respectively.

In order to obtain a spectral representation from the above result, it is nec-
essary to diagonalise the weights in the definitions of the above L2-spaces. The
corresponding transformation is straightforward when α =

√
2I. (This choice of

α satisfies the conditions of Theorem 6.3 e.g. when the boundary space K is
finite-dimensional. The corresponding diagonalisation in the general setting of
non-negative, bounded α will be treated elsewhere.) In this particular case one
has

S = (M − iI)(M + iI)−1, (54)
and consequently

I − S∗S = −2i(M∗ − iI)−1(M −M∗)(M + iI)−1 (55)
and

I − SS∗ = 2i(M + iI)−1(M∗ −M)(M∗ − iI)−1.

Introducing the unitary transformations
G : L2(E; I − S∗S) 7→ L2(E;−2i(M −M∗)), (56)
G∗ : L2(E; I − SS∗) 7→ L2(E;−2i(M −M∗)) (57)

by the formulae g 7→ (M + iI)−1g and g 7→ (M∗− iI)−1g, respectively, one arrives
at the fact that GFΦA

(e)
0 Φ∗F ∗G∗ and G∗F∗ΦA

(e)
0 Φ∗F ∗

∗G
∗
∗ are the operators of

multiplication by the independent variable in the space L2(E;−2i(M −M∗)).
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Remark 7. The weight M∗ − M can be assumed to be naturally diagonal in
the setting of quantum graphs, see [14] (cf. [18, 19]), including the situation of an
infinite number of semi-infinite edges.

The above result only pertains to the absolutely continuous part of the self-
adjoint operator A0, unlike e.g. the passage to the classical von Neumann direct
integral, under which the whole of the self-adjoint operator gets mapped to the
multiplication operator in a weighted L2-space (see e.g. [6, Chap. 7]). Nevertheless,
it proves useful in scattering theory, since it yields an explicit expression for the
scattering matrix Σ̂ for the pair Aκ , A0, which is the image of the scattering
operator Σ in the spectral representation of the operator A0. Namely, we prove
the following statement.
Theorem 7.3. The following formula holds:

Σ̂ = GFΣ(GF )∗ = (M − κ)−1(M∗ − κ)(M∗)−1M, (58)
where the right-hand side represents the operator of multiplication by the corre-
sponding function in the space L2(E;−2i(M −M∗)).
Proof. Using the definition (53) of the isometry F along with the relationship (38)
between g̃ and g whenever PK

(
g̃
g

)
∈ ΦÑκ

e with κ = 0, we obtain from (52)

FΣF ∗ =
(
I + χ−

κ (S − I)
)−1(

I + χ+
κ (S

∗ − I)
)
(I + S∗)−1(I + S), (59)

where the right-hand side represents the operator of multiplication by the corre-
sponding function.

Furthermore, substituting the expression (7) for S in terms of M implies that
FΣF ∗ is the operator of multiplication by

(M + iI)(M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)

in the space L2(K; I − S∗S). Using (55), we now obtain the following identity for
all f, g ∈ L2(K; I − S∗S):

〈FΣF ∗f, g〉L2(K;I−S∗S)

=
〈
(I − S∗S)(M + iI)(M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)f, g

〉
=
〈
−2i(M∗ − iI)−1(M −M∗)(M + iI)−1(M + iI)

· (M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)f, g
〉

=
〈
−2i(M −M∗)(M − κ)−1(M∗ − κ)(M∗)−1M(M + iI)f, (M + iI)g

〉
,

which is equivalent to (58), in view of the definition of the operator G. �
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Appendix
Proof of Theorem 4.1. We prove Theorem 4.1(i). The proof of Theorem 4.1(ii)
is carried out along the same lines.

For any (v−, u, v+) in the space H given in (26), consider the mappings F± :
H → L2(R, E) introduced in [60, Sect. 2.1] following the corresponding definitions
in [48] and given by

F+(v−, u, v+) = − 1√
2π

lim
ϵ↘0

αΓ0(AiI − (· − iϵ)I)−1u+ S∗v̂− + v̂+ (60)

F−(v−, u, v+) = − 1√
2π

lim
ϵ↘0

αΓ0(A
∗
iI − (·+ iϵ)I)−1u+ v̂− + Sv̂+ , (61)

where v̂± are the Fourier transforms of v± ∈ L2(R±, E) extended by zero to
L2(R, E). Note that the limits exist almost everywhere due to (20).

According to [60, Theorem 2.3], if
(
g̃
g

)
= Φh, then

F+h = g̃ + S∗g , F−h = Sg̃ + g . (62)

Therefore, for proving Theorem 4.1(i), one should establish the validity of the
identities:

F±(Aκ − zI)−1Φ−1

(
g̃

g

)
= F±Φ

−1PK
1

· − z

(
g̃

g − χ+
κΘ

−1
κ (z)(g̃ + S∗g)(z)

)
(63)

for z ∈ C− ∩ ρ(Aκ). First we compute the left-hand-side of (63). It follows from
Lemma 3.1(i)–(ii) that, for z, λ ∈ C− ∩ ρ(Aκ) and h ∈ H,

αΓ0(AiI − zI)−1(Aκ − λI)−1h

= Θκ(z)αΓ0(Aκ − zI)−1(Aκ − λI)−1h

=
1

z − λ
Θκ(z)αΓ0

[
(Aκ − zI)−1 − (Aκ − λI)−1

]
h

=
1

z − λ

[
αΓ0(AiI − zI)−1 −Θκ(z)αΓ0(Aκ − λI)−1

]
h

=
1

z − λ

[
αΓ0(AiI − zI)−1 −Θκ(z)Θ

−1
κ (λ)αΓ0(AiI − λI)−1

]
h .
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Let z = k − iϵ with k ∈ R, then it follows from the computation above that
lim
ϵ↘0

αΓ0(AiI − (k − iϵ)I)−1(Aκ − λI)−1h

= lim
ϵ↘0

[
αΓ0(AiI − (k − iϵ)I)−1 −Θκ(k − iϵ)Θ−1

κ (λ)αΓ0(AiI − λI)−1
]
h

(k − iϵ)− λ
.

Substituting (60) into the last equality, one has

F+(Aκ − λI)−1h =
1

· − λ

[
F+h−Θκ(·)Θ−1

κ (λ)F+h(λ)
]
.

Hence, in view of (62), one concludes

F+(Aκ − λI)−1Φ−1

(
g̃

g

)
=

1

· − λ

[
g̃ + S∗g −Θκ(·)Θ−1

κ (λ)(g̃ + S∗g)(λ)
]
. (64)

On the basis of Lemma 3.1(iii)–(iv) and reasoning in the same fashion as was
done to obtain (64), one verifies

F−(Aκ − λI)−1Φ−1

(
g̃

g

)
=

1

· − λ

[
Sg̃ + g − Θ̂κ(·)Θ−1

κ (λ)(g̃ + S∗g)(λ)
]
. (65)

Let us focus on the right hand side of (63). Note that

PK
1

· − z

(
g̃

g − χ+
κΘ

−1
κ (z)(g̃ + S∗g)(z)

)

=

( g̃
·−z − P+

1
·−z [g̃ + S∗g − S∗χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z)]

1
·−z (g − χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z))− P−

1
·−z [Sg̃ + g − χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z)]

)

=
1

· − z

(
g̃ − (g̃ + S∗g)(z) + S∗(z)χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z)

g − χ+
κΘ

−1
κ (z)(g̃ + S∗g)(z)

)
(66)

where (25) is used in the first equality and in the second the fact that if f is a
function in H2

−, then, for any z ∈ C−,

P+

(
f

· − z

)
= P+

(
f + f(z)− f(z)

· − z

)
= P+

(
f(z)

· − z

)
=

f(z)

· − z
. (67)

Now, apply F+Φ
−1 to (66) taking into account (62):

F+Φ
−1 1

· − z

(
g̃ − (g̃ + S∗g)(z) + S∗(z)χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z)

g − χ+
κΘ

−1
κ (z)(g̃ + S∗g)(z)

)
=

1

· − z
[g̃ + S∗g − (g̃ + S∗g)(z) + (S∗(z)− S∗)χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[g̃ + S∗g − (Θκ(z)− (S∗(z)− S∗)χ+

κ )Θ
−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[g̃ + S∗g −Θ(·)Θ−1

κ (z)(g̃ + S∗g)(z)].
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By combining the last equality with (64), we have established the first identity in
(63).

Now, if one applies F−Φ
−1 to (66), then, in view of (62), one has

F−Φ
−1 1

· − z

(
g̃ − (g̃ + S∗g)(z) + S∗(z)χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z)

g − χ+
κΘ

−1
κ (z)(g̃ + S∗g)(z)

)
=

1

· − z
[Sg̃ + g − S(g̃ + S∗g)(z)− (I − SS∗(z))χ+

κΘ
−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[Sg̃ + g − (SΘκ(z) + χ+

κ − SS∗(z)χ+
κ )Θ

−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[Sg̃ + g − (Sχ−

κ + χ−
κ )Θ

−1
κ (z)(g̃ + S∗g)(z)]

=
1

· − z
[Sg̃ + g − Θ̂κ(·)Θ−1

κ (z)(g̃ + S∗g)(z)]

Thus, after comparing this last equality with (65), we arrive at the second identity
in (63).

Proof of Theorem 4.2. Let us first show that the following inclusion holds

Nκ
± ⊂

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C±

}
Consider z ∈ C− ∩ ρ(Aκ). By (25) and Theorem 4.1, one has

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= Φ(Aκ − zI)−1Φ−1

(
g̃ − P+(g̃ + S∗g)

g − P−(S g̃ + g)

)
= PK

1

· − z

·
(

g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)− χ+
κΘ

−1
κ (z) [g̃ − P+(g̃ + S∗g) + S∗(g − P−(Sg̃ + g))] (z)

)
where

[g̃ − P+(g̃ + S∗g) + S∗(g − P−(Sg̃ + g))] (z)

is to be understood as the analytic continuation into the lower half-plane of the
function

g̃ − P+(g̃ + S∗g) + S∗(g − P−(Sg̃ + g)) = P−(g̃ + S∗g)− S∗P−(Sg̃ + g), (68)

which is clearly an element of H2
−(E). Thus,

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= PK

1

· − z

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)− γ(z)

)
(69)

where
γ(z) := χ+

κΘ
−1
κ (z)

(
P−(g̃ + S∗g)(z)− S∗P−(Sg̃ + g)(z)

)
. (70)

The following lemma is needed to simplify the form of γ(z).
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Lemma A.1. For all
(
g̃
g

)
∈ H the following identity holds:

γ(z) = −P−(Sg̃ + g)(z) ∀z ∈ C−.

Proof.

χ+
κΘ

−1
κ (z)

(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
= χ+

κ
(
I + iα(Bκ −M(z))−1αχ+

κ
)(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
=
(
I + iχ+

κα(Bκ −M(z))−1α
)
χ+
κ
(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
=
(
I + χ+

κ (S
∗(z)− I)

)−1(
χ+
κP−(g̃ + S∗g)(z)− χ+

κS
∗(z)P−(Sg̃ + g)(z)

)
=
(
I + χ+

κ (S
∗(z)− I)

)−1(−χ−
κP−(Sg̃ + g)(z)− χ+

κS
∗(z)P−(Sg̃ + g)(z)

)
=
(
I + χ+

κ (S
∗(z)− I)

)−1(−χ−
κ − χ+

κS
∗(z)

)
P−(Sg̃ + g)(z)

= −P−(Sg̃ + g)(z),

where we use the fact that

I + iχ+
κα(Bκ −M(z))−1α =

(
I + χ+

κ (S
∗(z)− I)

)−1
,

proved in a similar way to (16). �

Therefore, for
(
g̃
g

)
∈ Nκ

− the expression (69) can be rewritten as

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= PK

1

· − z

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g) + P−(Sg̃ + g)(z)

)
= PK

1

· − z

[(
g̃

g

)
−
(

P+(g̃ + S∗g)

P−(Sg̃ + g)− P−(Sg̃ + g)(z)

)]
.

One completes the proof by observing that

P+(g̃ + S∗g)

· − z
∈ H2

+(E),
P−(Sg̃ + g)− P−(Sg̃ + g)(z)

· − z
∈ H2

−(E).

We have thus shown that

Nκ
− ⊂

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C−

}
.

The inclusion

Nκ
+ ⊂

{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C+

}
is proved analogously.

To prove the converse inclusion, i.e.{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C±

}
⊂ Nκ

±
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one again follows the arguments of [48, Theorem 4]. According to (69), for all
z ∈ C− ∩ ρ(Aκ), one has

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
= PK

1

· − z

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)− γ(z)

)
,

where γ(z) is defined in (70). Denoting γ̂ := γ + P−(Sg̃ + g), it follows from (25)
that

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
− PK

1

· − z

(
g̃

g

)
= PK

(
0

−γ̂(z)(· − z)−1

)

=

(
P+(S

∗γ̂(z)(· − z)−1)

−γ̂(z)(· − z)−1 + P−(γ̂(z)(· − z)−1)

)
.

Furthermore, in view of (67), one has

P+

[
S∗γ̂(z)

· − z

]
=

S∗(z)γ̂(z)

· − z

and, clearly,

P−

[
γ̂(z)

· − z

]
= 0 .

Therefore

Φ(Aκ − zI)−1Φ−1PK

(
g̃

g

)
− PK

1

· − z

(
g̃

g

)
=

(
S∗(z)γ̂(z)(· − z)−1

−γ̂(z)(· − z)−1

)
.

Since
Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C− ,

one has (
S∗(z)γ̂(z)(· − z)−1

−γ̂(z)(· − z)−1

)
= 0,

which in its turn implies (
S∗ − S∗(z)

)
γ̂(z)(· − z)−1 = 0 .

From this equality, by virtue of the assumption that ker(α) = {0}, one obtains
that γ(z) = 0 for all z ∈ C− ∩ ρ(Aκ) (see details in the proof of [47, Lemma 4]).
Taking into account the definition of γ̂, one arrives at

χ−
κP±(S g̃ + g) + χ+

κP±(g̃ + S∗g) = 0 .

The inclusion{(
g̃

g

)
∈ H : Φ(Aκ − zI)−1Φ∗PK

(
g̃

g

)
= PK

1

· − z

(
g̃

g

)
for all z ∈ C+

}
⊂ Nκ

+

is proved in a similar way.

Proof of Theorem 4.3. To prove the inclusion
Ñκ

− ⊂
{
u ∈ H : χ+

καΓ0(Aκ − zI)−1u ∈ H2
−(E)

}
,
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one has to show that u ∈ Φ∗PKNκ
− implies χ+

καΓ0(Aκ − zI)−1u ∈ H2
−(E). By

(25), if u = Φ∗PK

(
g̃
g

)
, then

Φu =

(
g̃ − P+(g̃ + S∗g)
g − P−(S g̃ + g)

)
.

Thus, in view of the inclusion
(
g̃
g

)
∈ K, it follows from (62) that

F+u = g̃ − P+(g̃ + S∗g) + S∗g − S∗P−(Sg̃ + g)

= (I − P+)(g̃ + S∗g)− S∗P−(Sg̃ + g)

= P−(g̃ + S∗g)− S∗P−(Sg̃ + g) .

By analytic continuation of F+u into the lower half-plane, taking into account
(60), one arrives at

αΓ0(AiI − zI)−1u = −
√
2π
(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
∀z ∈ C−.

Combining this with Lemma 3.1(ii), we write

αΓ0(Aκ − zI)−1u = −
√
2πΘ−1

κ (z)
(
P−(g̃ + S∗g)(z)− S∗(z)P−(Sg̃ + g)(z)

)
.

Finally, using Lemma A.1 from the proof of Theorem 4.2 above, we obtain

χ+
καΓ0(Aκ − zI)−1u =

√
2πP−(Sg̃ + g)(z),

To demonstrate the converse inclusion{
u ∈ H : χ+

καΓ0(Aκ − zI)−1u ∈ H2
−(E)

}
⊂ Ñκ

− ,

we show that, whenever χ+
καΓ0(Aκ − zI)−1u ∈ H2

−(E), the vector(
g̃

g

)
= Φu− 1

2π

(
0

αΓ0(Aκ − zI)−1u

)
satisfies

P−
(
χ+
κ (g̃ + S∗g) + χ−

κ (Sg̃ + g)
)
= 0,

and hence u = Φ∗PK

(
g̃
g

)
∈ Φ∗PKNκ

− = Ñκ
− . Indeed, introducing the notation

Φu =:

(
g̃0
g0

)
, h− :=

1

2π
αΓ0(AiI − zI)−1u,

we have
P−
(
χ+
κ (g̃0 + S∗(g0 + h−)) + χ−

κ (Sg̃0 + g0 + h−)
)

= χ+
κ (g̃0 + S∗g0)− P+χ

+
κ (g̃0 + S∗g0)

+ P−χ
−
κ (Sg̃0 + g0) +

(
I + χ+

κ (S
∗ − I)

)
h−

= χ+
κF+u+

(
I + χ+

κ (S
∗ − I)

)
h−,

(71)
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By the analytic continuation into the lower half-plane and from Lemma 3.1(i),
it follows that (71) represents the boundary value on the real line of the function

− 1

2π
χ+
καΓ0(AiI − zI)−1u+

(
I + χ+

κ (S
∗(z)− I)

)
h−(z)

= − 1

2π
χ+
κΘκ(z)αΓ0(Aκ − zI)−1u+

(
I + χ+

κ (S
∗(z)− I)

)
h−(z) (72)

=
(
I + χ+

κ (S
∗(z)− I)

)(
h−(z)− 1

2π
χ+
καΓ0(Aκ − zI)−1u

)
= 0, (73)

where in order to pass from (72) to (73), we have used the fact that (see (8))

χ+
κΘκ(z) =

(
I − iχ+

κα(BiI −M(z))−1α
)
χ+
κ =

(
I + χ+

κ (S
∗(z)− I)

)
χ+
κ , z ∈ C−.

Hence, the expression (71) vanishes, which concludes the proof.
The property

Ñκ
+ =

{
u ∈ H : χ−

καΓ0(Aκ − zI)−1u ∈ H2
+(E)

}
is proved in a similar way.

Proof of Proposition 5.1. Suppose that z ∈ C+. If∫
R

dµ(s)

s− z
∈ H2

+ ,

then, by [58, Theorem 5.19], there exists a function f ∈ L2(R) such that∫
R

f(s)ds− dµ(s)

s− z
= 0 .

Fix a z0 ∈ C+, then

0 =

∫
R

f(s)ds− dµ(s)

s− z
−
∫
R

f(s)ds− dµ(s)

s− z0

=(z − z0)

∫
R

f(s)ds− dµ(s)

(s− z)(s− z0)
.

Thus, one has∫
R

1

s− z

f(s)ds− dµ(s)

s− z0
= 0 , for all z ∈ C+ \ {z0} ,

where now (s−z0)
−1(f(s)ds−dµ(s)) is a complex measure on R. Further, we invoke

to the upper half-plane counterpart of the theorem by F. and M. Riesz obtained
by applying the conformal mapping from the unit circle onto the upper half plane
[34, Chap. 2, Sect. A]. This theorem implies that (s − z0)

−1(f(s)dt − dµ(s)) is
absolutely continuous with respect to the Lebesgue measure and, therefore, the
same applies to dµ(s).

The case of H2
− is treated likewise.
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Asymptotics of Chebyshev Polynomials, III.
Sets Saturating Szegő, Schiefermayr,
and Totik–Widom Bounds
Jacob S. Christiansen, Barry Simon and Maxim Zinchenko

Abstract. We determine which sets saturate the Szegő and Schiefermayr
lower bounds on the norms of Chebyshev Polynomials. We also discuss sets
that saturate our optimal Totik–Widom upper bound.
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Keywords. Chebyshev polynomials, Szegő lower bound, Schiefermayr lower
bound, Totik–Widom upper bound.

1. Introduction
Let e ⊂ C be a compact, not finite set. For any continuous, complex-valued func-
tion, f , on e, let

‖f‖e = sup
z∈e

|f(z)|. (1.1)

The Chebyshev polynomial, Tn, of e is the (it turns out unique) degree n monic
polynomial that minimizes ‖P‖e over all degree n monic polynomials, P . We define

tn = ‖Tn‖e. (1.2)
This paper continues our study [3, 4] of tn and Tn, especially their asymptotics
as n → ∞. We let C(e) denote the logarithmic capacity of e (see [18, Sect. 3.6] or
[1, 7, 10, 11, 16] for the basics of potential theory).

Szegő [22] proved for all compact e ⊂ C and all n that
tn ≥ C(e)n, (1.3)

while Schiefermayr [17] proved if e ⊂ R, then
tn ≥ 2C(e)n. (1.4)

This paper had its genesis in a question asked us by J. P. Solovej about which
e have equality in (1.3) or (1.4). After we found the solution described below, we
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found that for e ⊂ R the question was answered by Totik [25] using, in part,
ideas of Peherstorfer [15] (related ideas appear earlier in Sodin–Yuditskii [20]).
Moreover, for a special set of domains in C, it was answered implicitly (without
proof) in Totik [26]. We feel it appropriate to publish our proofs because [26] is
neither explicit nor comprehensive and mainly because our proofs are different
and, we feel, illuminating. In addition, the sets fn which we introduce in Section
3 may be useful in the future. Here are our two main results:

Theorem 1.1 (Totik [25]). Let e ⊂ R. Fix n. Then tn = 2C(e)n if and only if
there is a polynomial, P, of degree n so that

e = P−1([−2, 2]). (1.5)

Remarks. 1. We emphasize that in (1.5), we mean that any z ∈ C with P (z) ∈
[−2, 2] has z ∈ e (as well as P (e) = [−2, 2]) not just for z ∈ R.

2. It is easy to see that Tn is then a multiple of P .
3. In particular, if t1 = 2C(e) and e ⊂ R, then e is an interval and equality

holds in (1.4) for all n. We note that Totik [27, Theorem 3] has a stronger related
result. He proves that if limn→∞‖Tn‖e/C(e)n = 2 for some e ⊂ R, then e is an
interval.

4. Totik mentions that the ideas in the result and proof are mainly in Pe-
herstorfer [15]. The sets for which equality holds in (1.4) are precisely the sets that
Peherstorfer called T -sets and which Sodin–Yuditskii [20] call n-regular sets. They
are precisely the spectra of the period n Jacobi matrices which we called period-n
sets in [3].

Theorem 1.2. Let e ⊂ C. Fix n. Then tn = C(e)n if and only if there is a
polynomial, P, of degree n with

O∂(e) = P−1(∂D) (1.6)
where O∂ is the outer boundary and D the open unit disk.

Remarks. 1. If e is compact, then C \ e has exactly one unbounded component,
e♯. Its boundary is O∂(e). We call C \ e♯ the interior of O∂(e) and e♯ the exterior
of O∂(e).

2. We’ll state several equivalent forms of this theorem in Sect. 3 below.
3. When e is a finite union of analytic Jordan curves lying exterior to each

other, this result is stated in passing and without proof in Totik [26]. In that case,
O∂(e) = e so Totik doesn’t mention outer boundaries.

4. Polynomial inverse images of ∂D are called lemniscates (see [21]). We’ll say
more about their structure in Section 3, but we note that generically they are a
union of at most deg(P ) disjoint mutually exterior analytic Jordan curves and in
general, a union of at most deg(P ) piecewise analytic Jordan curves with disjoint
interiors but with possible intersections at finitely many points.

5. It is easy to see that Tn is a multiple of P .
6. In particular, t1 = C(e) if and only if O∂(e) is a circle.
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It follows from these theorems that if tn has equality in (1.3) (resp. e ⊂ R
and tn has equality in (1.4)), then for any k = 1, 2, . . . , tnk also has equality in
(1.3) (resp. (1.4)) (by using a suitable scaling of P k). We want to note that this
can be proven directly:

Theorem 1.3. If tn has equality in (1.3), then so does tnk for k = 1, 2, . . .

Proof. Since (Tn)
k is monic, tnk = ‖Tnk‖e ≤ ‖(Tn)

k‖e = tkn = C(e)nk if tn has
equality in (1.3). By Szegő’s lower bound, we see that tnk = C(e)nk. �

Theorem 1.4. If e ⊂ R and tn has equality in (1.4), then so does tnk for k =
1, 2, . . .

Proof. We can’t use (Tn)
k since that only leads to tnk ≤ 2kC(e)nk. The key is

to realize that z 7→ zk is the kth Chebyshev polynomial for {z | |z| ≤ tn}, so we
replace z 7→ zk by the kth Chebyshev polynomial, Sk, for gn ≡ [−tn, tn]. Since
C([−tn, tn]) = tn/2 and equality in (1.4) holds for all n for intervals, we have that
‖Sk‖gn = 2(tn/2)

k. Since Sk ◦Tn is a monic polynomial of degree kn, we have that

tnk ≤ ‖Sk ◦ Tn‖e ≤ ‖Sk‖gn
= 2(2C(e)n/2)k = 2C(e)kn

so, as in the last proof, tnk = 2C(e)kn. �

We prove Theorem 1.1 in Sect. 2, Theorem 1.2 in Sect. 3, consider when the
upper bound we found in [3] is optimal in Sect. 4 and discuss related problems
in Sects. 5 and 6. JSC and MZ would like to thank Fiona Harrison and Elena
Mantovan for the hospitality of Caltech where much of this work was done. We
are delighted to dedicate this paper to the memory of Boris Pavlov. One of us (BS)
in particular owes Boris a tremendous debt for having sent him talented under-
graduates that Boris mentored in St. Petersburg (Kiselev) and Aukland (Killip)
who then did doctoral studies at Caltech.

2. The Real Case
In this section, we’ll prove Theorem 1.1. Both it and Theorem 1.2 rely on the
following simple fact.

Proposition 2.1. Let e ⊂ g be two compact subsets of C with positive capacity
and let ρg (resp. ρe) be the potential theoretic equilibrium measure for g (resp. e).
Then C(e) = C(g) if and only if supp(ρg) ⊂ e.

Remark. Section 4 has another proof of this; see Proposition 4.1.

Proof. Let E(µ) be the logarithmic potential energy of a finite positive measure,
i.e.,

E(µ) =
¨

log(|x− y|−1) dµ(x)dµ(y) (2.1)
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so that ρg is the unique probability measure minimizing E(µ) among all probability
measures with supp(µ) ⊂ g. Since C(e) = e−E(ρe), we have that

C(e) = C(g) ⇐⇒ E(ρe) = E(ρg) ⇐⇒ ρe = ρg (2.2)
for, since ρe is a trial measure for the g potential minimum problem and the
minimizer is unique, we have that E(ρe) ≥ E(ρg) with equality if and only if
ρe = ρg.

If ρe = ρg, since supp(ρe) ⊂ e, we see that supp(ρg) ⊂ e. Conversely, if
supp(ρg) ⊂ e, then ρg is a trial measure for the e potential problem and so the
minimizer since it is the minimizer for the larger minimization problem. It follows
that ρe = ρg so, by (2.2), C(e) = C(g). �

Recall that, given e ⊂ R, in [3], we defined
en = T−1

n ([−tn, tn]) (2.3)
and proved that

e ⊂ en ⊂ R (2.4)
and

tn = 2C(en)
n. (2.5)

It is also easy to see [3, (2.9)] that if

∆n(z) =
2Tn(z)

tn
(2.6)

then the potential theoretic Green’s function for en is given by

Gen(z) =
1

n
log

∣∣∣∣∣∣∆n(z)

2
+

√(
∆n(z)

2

)2

− 1

∣∣∣∣∣∣ . (2.7)

This can be shown to imply that the equilibrium measure for en is [3, Theorem 2.3]

dρen(x) =
|∆′

n(x)|
πn
√

4−∆n(x)2
χen(x) dx (2.8)

where χen is the characteristic function of en. Since ∆n is a polynomial, ∆′
n is

non-vanishing on en except for a possible finite set in en (which one can specify
precisely but we don’t need to). We have the following:

Lemma 2.2.
supp(ρen) = en. (2.9)

Proof of Theorem 1.1. Since e ⊂ en, by Proposition 2.1, we have that
C(e) = C(en) ⇐⇒ en = supp(ρen) ⊂ e ⇐⇒ e = en. (2.10)

On the one hand, by (2.5), tn = 2C(e)n ⇒ C(e) = C(en) ⇒ e = en ⇒ e =
∆−1

n ([−2, 2]) so (1.5) holds with P = ∆n. On the other hand, if (1.5) holds, it is
easy to see that Tn = cP and then that en = e, so by (2.5), we get equality in
(1.4). �
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The above proof is only a slight variant of the proof in Totik [25]. We include
it mainly to set the stage for the next section.

3. The Complex Case
In this section, we will prove Theorem 1.2. The key to the proof is to define
a complex analog of the sets en. We believe that these sets, fn, will be useful
elsewhere and are the most important idea in this paper. Given a compact set
e ⊂ C and its Chebyshev polynomial, Tn, we define

fn = {z | |Tn(z)| ≤ tn} = T−1
n

(
{z | |z| ≤ tn}

)
. (3.1)

Theorem 3.1. (a)
e ⊂ fn; (3.2)

(b)
‖Tn‖e = tn = C(fn)

n. (3.3)

Remarks. 1. These are analogs of (2.4) and (2.5).
2. They immediately imply (1.3) (not that Szegő’s proof [19, Theorem 4.3.7]

is very hard) since (3.2)⇒ C(fn) ≥ C(e).

Proof. (a) is trivial.
(b) Let h be defined on C by

h(z) =

{
0, if |Tn(z)| ≤ tn,
1
n log

(
|Tn(z)|

tn

)
, if |Tn(z)| ≥ tn.

(3.4)

Then h is continuous on C and harmonic on C \ fn and near infinity has the
asymptotics

h(z) = log |z| − 1
n log(tn) + o(1). (3.5)

From the first term and h(z) = 0 on fn, we see that h is the Green’s function,
Gfn , for fn. By the realization of the capacity in the asymptotics of the Green’s
function [18, (3.7.4) & (3.7.6)] and (3.5), we see that

C(fn) = t1/nn

which is (3.3). �

The proof of (b) just depended on the form of fn and not that, a priori, Tn

is a Chebyshev polynomial. We thus can prove (see also [16, Theorem 5.2.5]):

Theorem 3.2. Let P be a degree n polynomial with
P (z) = czn + · · · (3.6)

and let
Sα = {z | |P (z)| ≤ α} (3.7)

for some α > 0. Then
C(Sα) = (α/|c|)1/n (3.8)
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and for Sα, we have Tn = c−1P . In particular, Sα obeys
‖Tn‖Sα

= C(Sα)
n (3.9)

Proof. As in the proof of Theorem 3.1, outside of Sα, the Green’s function is
1
n log(|P (z)|/α), whose asymptotics at infinity is log(|z|) + 1

n log(|c|/α) + o(1) so
(3.8) holds.

Note that Q = c−1P is a monic polynomial with ‖Q‖Sα = C(Sα)
n. By

Szegő’s lower bound, ‖Q‖Sα ≤ tn which implies that Q = Tn by the minimum and
uniqueness properties of Tn. �

Clearly,
∂Sα = {z | |P (z)| = α} ≡ Lα. (3.10)

This is a lemniscate [21]; |P | is C1 away from the zeros of P and, using the
Cauchy–Riemann equations, it is easy to see that if P (z0) 6= 0 then ∇|P |(z0) =
0 ⇔ P ′(z0) = 0. Hence the critical values of |P | are precisely those α for which
there is a z0 with P ′(z0) = 0 and |P (z0)| = α. At non-critical values, Lα is thus
a union of disjoint, mutually exterior, analytic Jordan curves. For α small, the
number of curves is exactly the number of distinct zeros of P . As α increases,
the number of components changes exactly as α reaches a critical value, α0, at
which point the number of components decreases by the number of critical points
(counting multiplicity) on Lα0 . At such values, the closure of the components of
the non-critical points are piecewise analytic Jordan curves with disjoint interiors
and with corners at the critical points. For α large, Lα is a single analytic Jordan
curve.

We call Sα, which is the union of the insides of the Jordan curves in Lα, a
solid lemniscate. It is easy to describe the equilibrium measure of such sets.

Theorem 3.3. Fix a degree n polynomial P and α > 0. Then
(a)

dρ ≡ 1

2πin

P ′(z)

P (z)
dz � Lα (3.11)

is a probability measure;
(b) On Lα, we have that

P ′(z)

P (z)
dz =

∣∣∣∣P ′(z)

P (z)

∣∣∣∣ |dz|; (3.12)

(c)

dρ =
1

2πn

d

|dz|
Arg(P (z))|dz| � Lα; (3.13)

(d) The measure in (3.11) is the equilibrium measure of Sα;
(e) supp(dρ) = Lα.

Remarks. 1. The symbol dz on a curve needs an orientation. We’ll specify this
orientation in the proof. Basically, it is counter-clockwise around Sα.
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2. The proof shows that each Jordan curve in Lα has ρ measure k/n, where
k is the number of zeros of P (counting multiplicity) inside that curve.

3. One can also prove the critical (d) by using the formula for the Green’s
function and by evaluating the normal derivative of log(|P |) on Lα.

Proof. (a), (b), and (c). Since P has no zeros on Lα, we can locally define an
analytic function W (z) = log(P (z)) on each Jordan curve in Lα. Its derivative is
P ′(z)/P (z) irrespective of which branch of log that we take. Moreover, if locally
P (z) = αeiθ(z) on each such curve and if we parameterize the curve by arc length,
γ(s), with the curve oriented so that Sα is to the curve’s left, then, for z1 and z0
nearby points with zj = γ(sj) where s1 > s0, we have that θ1 ≡ θ(z1) > θ(z0) = θ0.
This is easy to see using the Cauchy–Riemann equations for log(P (z)) and the
fact that its real part increases in the direction outwards from Sα. Moreover, if
dθ(γ(s))/ds vanishes at s = s0, since ReW (z) is constant on γ we conclude that
W ′(z0) = 0 ⇒ P ′(z0) = 0. Thus dθ/ds is strictly positive except at the critical
points which implies that θ is strictly increasing on γ.

Clearly,
ˆ z1

z0

P ′(z)

P (z)
dz = log

(
P (z1)

P (z0)

)
= log

(
αeiθ1

αeiθ0

)
= i(θ1 − θ0),

proving that the measure in (3.11) is a positive measure. By the argument principle,
n times the integral over Lα is the number of zeros in Sα, so, the measure has
total mass 1. This proves (a) and the formula for P ′/P in terms of θ′ proves (c).
The positivity of the measure in (a) proves (b).

(d) Fix w ∈ C \ Sα. Let Γ be a single Jordan curve in Lα and R its interior.
Then log(z − w) is analytic in a neighborhood of R, so, by the residue calculus
and the definition of dρ, if

P (z) = c
n∏

j=1

(z − ζj) (3.14)

then ˆ
Γ

log(z − w)dρ(z) =
1

n

∑
ζj∈R

log(ζj − w).

Taking real parts and summing over the Jordan curves, we getˆ
log |z − w| dρ(z) = 1

n
log(|P (w)|/c), (3.15)

which we have seen is the Green’s function up to a constant. This implies that dρ
is the equilibrium measure.

(e) We’ve seen that θ′ is positive except on the finite set of critical points so
the support is all of Lα. �

The last preliminary we need is
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Lemma 3.4. Fix α > 0 and let e ⊂ Sα. Then
C(e) = C(Sα) ⇐⇒ Lα ⊂ e. (3.16)

Proof. Immediate from Proposition 2.1 and the last theorem. �
Proof of Theorem 1.2. Suppose equality holds in (1.3). Then C(e) = C(fn). Let
P = Tn/tn so that fn = Sα=1. By (3.16), P−1(∂D) ⊂ e ⊂ P−1(D). By the second
inclusion, C \ P−1(D) is contained in the unbounded component of C \ e. By the
first inclusion, we conclude that O∂(e) = P−1(∂D).

Conversely, by Theorem 3.2, if (1.6) holds, let S1 be the solid lemniscate
associated to P . By (1.6) and the lemma, C(e) = C(S1). By Theorem 3.2, the
monic multiple, Q, of P is the Chebyshev polynomial for S1 and ‖Q‖S1 = C(S1)

n.
Since C \ S1 ⊂ C \ O∂(e), we have that e ⊂ S1 and thus ‖Q‖e ≤ ‖Q‖S1

= C(e)n.
This implies that Q is the Chebyshev polynomial of e and that equality holds in
(1.3). �

We end this section by exploring some alternate forms and consequences of
Theorem 1.2.

Corollary 3.5. Let e be a compact subset of C so that C \ e is connected. Fix n.
Then tn = C(e)n if and only if e is a solid lemniscate.

Remark. It is fairly easy to prove Theorem 1.2 from this result.

Proof. By Theorem 1.2, this is equivalent to showing that if C\ e is connected and
O∂(e) = Lα, then e = Sα. To say that O∂(e) = Lα means that the unbounded
component of C \ e is C \ Sα. If that is so and there is only one component, then
C \ Sα = C \ e so e = Sα. �

Here are other equivalences that are easy to check given our earlier arguments.

Theorem 3.6. tn = C(e)n ⇐⇒ ∂fn ⊂ e.

Theorem 3.7. tn = C(e)n if and only if there is a polynomial, P , and α > 0 so
that Lα ⊂ e ⊂ Sα.

4. Equality in a Totik–Widom Upper Bound
In [3], we dubbed an upper bound of the form ‖Tn‖e ≤ QC(e)n a Totik–Widom
bound after Widom [28] and Totik [23] who proved it when e ⊂ R is a finite gap
set. In that paper, we proved that

‖Tn‖e ≤ 2 exp(PW (e))C(e)n (4.1)
where PW (e) =

∑
w∈C Ge(w) with C the set of critical points (in C) of Ge (when

e ⊂ R, they lie in R). PW stands for Parreau–Widom who singled out sets with
PW (e) < ∞ in [14, 29]. We’ll call sets that are regular for potential theory and
obey this condition, PW sets. Our main goal in this section is to discuss when one
has equality in this bound.
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Since we want to say something about a formula for fn, we recall the proof
in a more general context, beginning with

Proposition 4.1. Let e ⊂ g be two compact subsets of C with positive capacity
and let ρg (resp. ρe) be the potential theoretic equilibrium measure for g (resp. e).
Then

log

(
C(g)

C(e)

)
=

ˆ
Ge(z)dρg(z). (4.2)

Remark. Since Ge(z) ≥ 0, this implies that C(g) = C(e) if and only if Ge(z) = 0
for ρg-a.e. z in supp(ρg). Since Ge(z) = 0 ⇒ z ∈ e and Ge(z) = 0 for q.e. z ∈ e, this
happens if and only if supp(ρg) ⊂ e. This gives an alternate proof of Proposition
2.1

Proof. It is well-known [18, Theorem 3.6.8] that near z = ∞, we have that Gf(z) =
log |z| − log(C(f)) + O(1/z). Let h(z) ≡ Ge(z)−Gg(z) and note that

h(z) = log

(
C(g)

C(e)

)
+ O(1/z) (4.3)

near ∞. Thus h is harmonic on C\g and bounded near infinity, so harmonic there.
It is known [18, Corollary 3.6.28] that dρg is not just the equilibrium measure but
it is harmonic measure at ∞ in the sense that if H(z) is harmonic and bounded
on (C ∪ {∞}) \ g with q.e. boundary values on ∂g, then

H(∞) =

ˆ
H(z)dρg(z). (4.4)

Taking H = h and noting that q.e., h � g = Ge, we get (4.2) from (4.3). �

Theorem 4.2. (a) For any compact e ⊂ R,

‖Tn‖e = 2C(e)n exp

(
n

ˆ
Ge(x) dρen(x)

)
. (4.5)

(b) For any compact f ⊂ C,

‖Tn‖f = C(f)n exp

(
n

ˆ
Gf(z) dρfn(z)

)
. (4.6)

Remark. (a) is from [3]; (b) is new although the proof closely follows the proof
of (a) in [3].

Proof. Immediate from (2.5), (3.3) and (4.2). �

The following restates the proof of (4.1) from [3] and answers the question
of when equality holds.

Theorem 4.3. (4.1) holds and if for some e ⊂ R and n, we have equality in (4.1),
then e is an interval.
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Proof. The set en \ e consists of some number of intervals in the gaps of e, at most
one per gap [3, Theorem 2.4] and ρen is a purely a.c. measure [3, Theorem 2.3]. In
each gap, K, there is a single critical point, wK of Ge and these are all the critical
points. Moreover, in each gap, Ge is strictly concave so Ge takes its maximum
value for the gap exactly at the single point wK . Moreover, ρen(en ∩K) ≤ 1/n [3,
Theorem 2.4], so

´
K
Ge(x) dρen < Ge(wK)/n since dρen is absolutely continuous.

(4.1) follows by summing over gaps and we only get equality in (4.1) if there are
no gaps in e, i.e., if e is a closed interval. �

We can also answer when equality in the upper or lower bound occurs asymp-
totically along a subsequence. In our paper with Yuditskii [4], we focused on sub-
sequences {nj}∞j=1 where the zeros of Tnj in gaps had limits. There is at most one
zero in each gap, K [3, Theorem 2.3]. Let G denote the set of all gaps of e, i.e.,
bounded components of R \ e. In [4], we defined what we called a gap collection, a
subset G0 ⊂ G and for each K ∈ G0, a point xK ∈ K. We considered subsequences,
Tnj , so that for K ∈ G \ G0, as nj → ∞, either Tnj has no zero in K or the zero
goes to the one of the two edges of K and so that for K ∈ G0, there is a zero for
large nj which goes to xK as nj → ∞. This describes all possible limit points of
the set of zeros.

Theorem 4.4. Fix e ⊂ R, a compact set obeying the PW condition, and a subse-
quence with an associated limiting zero gap collection, G0 and {xK}K∈G0

. Then

lim
j→∞

‖Tnj
‖e/C(e)nj = 2 exp

( ∑
K∈G0

Ge(xK)

)
. (4.7)

Proof. For any K ∈ G and any j, define

vj(K) = nj

ˆ
K

Ge(x) dρenj
(x) (4.8)

and
V (K) = sup

x∈K
Ge(x) = Ge(wK). (4.9)

Since, by the PW hypothesis, V (K) is summable and vj(K) ≤ V (K), the
dominated convergence theorem implies that

lim
j→∞

∑
K∈G

vj(K) =
∑
K∈G

lim
j→∞

vj(K). (4.10)

If K ∈ G \ G0, since ρenj
(K) ≤ 1/nj [3, Theorem 2.4] and Ge → 0 at the

edges, vj(K) → 0.
If K ∈ G0, by [3, Theorem 5.1], there is for j large a single, exponentially

small band of enj
entirely in K with xK in the band and ρenj

(K) = 1/nj . It
follows that vj(K) → Ge(xK). Thus, by (4.10),

∑
K∈G vj(K) →

∑
K∈G0

Ge(xK).
By (4.5), we get (4.7). �
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Corollary 4.5. Fix e ⊂ R, a compact set obeying the PW condition, and a
subsequence with an associated limiting zero gap collection, G0 and {xK}K∈G0 .
Then

(a) If G0 is empty, we have
lim
j→∞

‖Tnj‖e/C(e)nj = 2. (4.11)

(b) If G0 = G and, for each K, xK = wK , the critical point in the gap, we
have

lim
j→∞

‖Tnj
‖e/C(e)nj = 2 exp(PW (e)). (4.12)

In general, we cannot say when there exist any subsequences of the type in
the Corollary but can with a few extra assumptions (see the discussion after the
example). We can analyze an especially simple case completely.

Example 4.6. Fix 0 < a < b and let e = [−b,−a]∪[a, b], a two band set symmetric
about 0. Then for n odd, Tn is odd (by uniqueness of the Chebyshev polynomial),
so the unique zero in the gap (−a, a) is at x = 0 which, by symmetry, is the critical
point of Ge in the gap. Thus the ratio along the odds is given by (4.12).

On the other hand, for n even, Tn is even, so by simplicity of zeros, non-
vanishing at 0. Since there is at most one zero in (−a, a), there cannot be any, so
G0 is empty and thus, the ratio along the evens is given by (4.11). In fact, more is
true. If

P (x) = 2− 4(x− b)2

(a− b)2

then e = P−1([−2, 2]), so ‖T2k‖e = 2C(e)2k for all k and the lower bound is an
equality for all even numbers. �

In [4], we discussed limits of Tn/‖Tn‖e for e ⊂ R under a stronger condition
than PW called DCT. If e has what we called a canonical generator, which holds
in a generic sense, then [4, Theorem 5.1] every Blaschke product occurs as a limit
point of the normalized Chebyshev polynomials which means one has a limit with
any set of simple zeros in any set of gaps. It follows that in this generic DCT case,
the set of limit points of ‖Tn‖e/C(e)n is exactly the interval [2, 2 exp(PW (e))].

Finite gap sets are always DCT and it is not hard to see that they have a
canonical generator in the sense of [4] if and only if the harmonic measures of the
bands are rationally independent (except for the trivial relation that they sum to
1). Moreover, it is known (Totik [24]) that for sets with q gaps (which is a 2q + 2
dimensional space described by a1 < b1 < · · · < aq+1 < bq+1) the condition of
rationally independent harmonic measures is satisfied on the compliment of a set
of dimension q + 2 so this rational independence condition is highly generic. We
thus have

Theorem 4.7. Let e ⊂ R be a set with q gaps so that the harmonic measures of
any q of the q + 1 bands are rationally independent. Then the set of limit points
of ‖Tn‖e/C(e)n is exactly the interval [2, 2 exp(PW (e))].
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5. On a Theorem of Erdős
For this section, it is useful to define dual Chebyshev polynomials as Dn ≡
Tn/‖Tn‖e. They are related to Chebyshev polynomials as dual Widom maximizers
are related to Widom minimizers, namely among all polynomials, p, of degree n
with positive leading coefficient and ‖p‖e ≤ 1, they are the one with largest leading
coefficient. As such, for any such polynomial, p, one has that |p(z)| ≤ |Dn(z)| for
|z| large. The question is how large.

In [5], Erdős proved

Theorem 5.1. Let e = [−1, 1]. Let p be a degree at most n polynomial with real
coefficients and ‖p‖e ≤ 1. Then for all |z| ≥ 1, one has that

|p(z)| ≤ |Dn(z)|. (5.1)

Our goal in this section is first of all to advertise this result but also to
note two results related to this. First of all, we want to note that Erdős’ method
immediately implies

Theorem 5.2. Let e ⊂ R be compact. Let D be the minimum diameter disk
containing e. Let p be a degree at most n polynomial with real coefficients. Then
for z ∈ C \D, one has that

|p(z)| ≤ ‖p‖e|Dn(z)|. (5.2)

Remark. If α = minx∈e x and β = maxx∈e x, then D has center 1
2 (α + β) and

diameter β − α.

Theorem 5.3. Let e ⊂ C be a solid, degree n, lemniscate. Then (5.2) holds for
all polynomials p of degree at most n and all z ∈ C \ e.

Remark. This implies that for general compact e ⊂ C, we have
|p(z)| ≤ ‖p‖e|Dn(z)| (5.3)

for z ∈ C \ fn. Note that in general one cannot replace z ∈ C \ fn by z ∈ C \ e.

Proof of Theorem 5.3. Without loss, we can suppose that ‖p‖e = 1. From The-
orem 3.2 we know that e = {z | |Dn(z)| ≤ 1}. Thus all zeros of Dn lie in e, so
f(z) ≡ p(z)/Dn(z) is analytic in C \ e. It is bounded at ∞, so ∞ is a removable
potential singularity. Since |Dn(z)| = 1 on ∂e, we have that |f(z)| ≤ 1 on ∂e. By
the maximum principle, |f(z)| ≤ 1 on C ∪ {∞} \ e. �

As for Theorem 5.2, the only difference from Erdős’ proof is that he considers
the set of zeros of D′

n and ±1. This is the unique alternating set for Dn when
e = [−1, 1]. In general, the alternating set is not unique but there does exist (see
[2, 12, 3]) a set x0 < x1 < · · · < xn of n+ 1 distinct points in e with

Dn(xj) = (−1)n−j ; j = 0, 1, . . . , n. (5.4)
The key fact is geometric:
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Lemma 5.4. Let w1 6= w2 both in C. Let D be the open disk with {(1 − θ)w1 +
θw2 | 0 ≤ θ ≤ 1} as diameter. Let z /∈ D. Then

Re[(z − w1)(z − w2)] ≥ 0. (5.5)

Proof. (ζ, ξ) 7→ Re(ζξ) is the Euclidean inner product on C viewed as R2. Thus
(5.5) says the angle between z − w1 and z − w2 is acute or right. It is well known
that the set of z where the angle is right is exactly ∂D and that inside D the angle
is obtuse and outside acute. �

Proof of Theorem 5.2. (following Erdős [5]) Without loss, we can suppose that
‖p‖e = 1. Let {xj}nj=0 be an alternating set for Dn. For j = 0, 1, . . . , n, let

ℓj(z) =
∏
k ̸=j

z − xk

xj − xk
(5.6)

be the Lagrange interpolation polynomials so that ℓj(xk) = δjk and thus

Dn(z) =
n∑

j=0

(−1)n−jℓj(z); p(z) =
n∑

j=0

p(xj)ℓj(z). (5.7)

Let cj =
∏

k ̸=j(xj −xk) so (−1)n−jcj > 0 since n− j of the {xj −xk}k ̸=j are
negative. Then

Re[(−1)n−iℓi(z)(−1)n−jℓj(z)] =

∏
k ̸=i,j |z − xk|2

(−1)n−ici(−1)n−jcj
Re[(z − xj)(z − xi)] ≥ 0,

by Lemma 5.4. Thus, since |p(xj)| ≤ 1 and p(xj) is real,

|p(z)|2 = Re
[∑

i,j

ℓi(z)ℓj(z)p(xi)p(xj)
]
≤
∑
i,j

∣∣Re[ℓi(z)ℓj(z)]∣∣
=
∑
i,j

Re[(−1)n−iℓi(z)(−1)n−jℓj(z)] = |Dn(z)|2. �

6. Invariance of Widom Factors Under Polynomial
Preimages

This final section is connected to the earlier ones, in that it involves polynomial
inverse images, but is otherwise unrelated. In the work of Widom [28] on asymp-
totics of Chebyshev polynomials, a key object is ‖Tn‖e/C(e)n, which we, following
Goncharov–Hatinoǧlu [6], call Widom factors. We want to prove:

Theorem 6.1. Let e ⊂ C be a compact set, P (z) a monic polynomial of degree k ≥
1, and eP = P−1(e) = {z ∈ C |P (z) ∈ e}. Then for every Chebyshev polynomial
Tn of e, the polynomial Tn ◦ P is a Chebyshev polynomial of eP and

‖Tn‖e
C(e)n

=
‖Tn ◦ P‖eP
C(eP )nk

. (6.1)
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Remark. The first part of this result was also proved in [8] by use of the Kol-
mogorov criterion (see [9]). Our proof is different.

Lemma 6.2 ([16, Theorem 5.2.5]). Let e ⊂ C be a compact set, p a polynomial of
degree k ≥ 1 with leading coefficient 1/γ, and ep as above. Then C(ep)

k = |γ|C(e).

Proof. Let Ge and Gep be the Green’s functions for e and ep, respectively. Then
Gep = 1

k (Ge ◦ p) since both functions are harmonic on C \ ep, zero q.e. on ∂ep, and
asymptotically log |z| at infinity. Comparing the constant terms in the asymptotics
at infinity yields the claimed result. �

Suppose p(z), q(z) are two polynomials with k = deg(p) ≥ 1. The average of
q over p is defined by

σq|p(z) =
1

k

∑
{ζ | p(ζ)=p(z)}

q(ζ), (6.2)

where the values of ζ are repeated according to their multiplicity.

Lemma 6.3 ([13]). The average of q over p is a polynomial in p, in fact, σq|p = q̂◦p
for some polynomial q̂ of degree at most deg(q)/deg(p).

Proof. Fix z ∈ C. Then for all sufficiently large R > 0, by the residue calculus,

σq|p(z) =
1

2πi deg(p)

ffi
|ζ|=R

q(ζ)p′(ζ)

p(ζ)− p(z)
dζ =

∞∑
j=0

p(z)j

2πi deg(p)

ffi
|ζ|=R

q(ζ)p′(ζ)

p(ζ)j+1
dζ,

(6.3)
by picking R so large that |ζ| = R ⇒ |p(z)| < |p(ζ)|. Since, for j > deg(q)/ deg(p),
the integrals are zero (by taking R to ∞), we conclude that σq|p = q̂ ◦ p with
deg(q̂) ≤ deg(q)/deg(p). �

Proof of Theorem 6.1. Let Q be a monic polynomial of degree nk. By Lemma 6.3,
σQ|P (z) = Q̂ ◦ P where deg(Q̂) ≤ n. In fact, since P is monic of degree k and
Q is monic of degree nk it follows from (6.3) that Q̂ is monic of degree n. In
addition, it follows from the definition of the average that ‖σQ|P ‖eP ≤ ‖Q‖eP .
Thus, ‖Tn ◦ P‖eP = ‖Tn‖e ≤ ‖Q̂‖e = ‖σQ|P ‖eP ≤ ‖Q‖eP so Tn ◦ P is the (nk)th
Chebyshev polynomial of ep.

To get the equality of Widom factors note that ‖Tn‖e = ‖Tn ◦ P‖eP and
C(eP )

k = C(e) by Lemma 6.2. �
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Solvability and complex limit bicharacter-
istics

Nils Dencker

To the memory of Boris Pavlov

Abstract. We shall study the solvability of pseudodifferential operators which
are not of principal type. The operator will have complex principal symbol
satisfying condition (Ψ) and we shall consider the limits of semibicharacter-
istics at the set where the principal symbol vanishes of at least second order.
The convergence shall be as smooth curves, and we shall assume that the
normalized complex Hamilton vector field of the principal symbol over the
semicharacteristics converges to a real vector field. Also, we shall assume that
the linearization of the real part of the normalized Hamilton vector field at
the semibicharacteristic is tangent to and bounded on the tangent space of
a Lagrangean submanifold at the semibicharacteristics, which we call a graz-
ing Lagrangean space. Under these conditions one can invariantly define the
imaginary part of the subprincipal symbol. If the quotient of the imaginary
part of the subprincipal symbol with the norm of the Hamilton vector field
switches sign from to + on the bicharacteristics and becomes unbounded
as they converge to the limit, then the operator is not solvable at the limit
bicharacteristic.

Mathematics Subject Classification (2010). 35S05 (primary) 35A01,
58J40, 47G30 (secondary).

1. Introduction
We shall consider the solvability for a classical pseudodifferential operator P on
a C∞ manifold X which is not of principal type. P is solvable at a compact set
K ⊆ X if the equation

Pu = v (1.1)
has a local solution u ∈ D′(X) in a neighborhood of K for any v ∈ C∞(X) in a
set of finite codimension.
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The pseudodifferential operator P is classical if it has an asymptotic expan-
sion pm + pm−1 + · · · where pk is homogeneous of degree k in ξ and pm = σ(P ) is
the principal symbol of the operator. P is of principal type if the Hamilton vector
field

Hp =
n∑

j=1

∂ξjp∂xj
− ∂xj

p∂ξj (1.2)

of the principal symbol p = pm does not have the radial direction 〈ξ, ∂ξ〉 at p−1(0),
in particular Hp 6= 0 then. By homogeneity Hp is well defined on the cosphere
bundle S∗X = { (x, ξ) ∈ T ∗X : |ξ| = 1 }, defined by some choice of Riemannean
metric, and the principal type condition means that Hp is not degenerate on S∗X.
For pseudodifferential operators of principal type, it is known from [1] and [4] that
local solvability is equivalent to condition (Ψ):

Im(ap) does not change sign from − to +

along the oriented bicharacteristics of Re(ap)
(1.3)

for any 0 6= a ∈ C∞(T ∗M). This condition is of course trivial if the principal
symbol is real valued. The oriented bicharacteristics are the positive flow-outs
of the Hamilton vector field HRe(ap) 6= 0 on Re(ap) = 0, and these are called
semibicharacteristics of p.

We shall consider the case when P is not of principal type, instead the com-
plex valued principal symbol vanishes of at least second order at the double char-
acteristics Σ2. We shall study necessary conditions for solvability when Σ2 is an
involutive manifold, and since solvability is an open condition we shall assume
that P satisfies condition (Ψ) in the complement of Σ2 where it is of principal
type. Naturally, condition (Ψ) is empty on Σ2, where instead we shall have neces-
sary conditions on the next lower term pm−1, called the subprincipal symbol. The
sum of the principal symbol and subprincipal symbol is called the refined principal
symbol.

Mendoza and Uhlman [6] studied the case when principal symbol p is a prod-
uct of two real symbols having transversal Hamilton vector fields at the involutive
intersection Σ2 of the characteristics. They proved that P is not solvable if the
subprincipal symbol changes sign on the integral curves of these Hamilton vec-
tor fields on Σ2, which are the limits of the bicharacteristics at Σ2. Mendoza [7]
generalized this to the case when the principal symbol is real and vanishes of sec-
ond order at an involutive manifold Σ2 having an indefinite Hessian with rank
equal to the codimension of the manifold. The Hessian then gives well-defined
limit bicharacteristics over Σ2, and P is not solvable if the subprincipal symbol
changes sign on any of these limit bicharacteristics. Since Σ2 is involutive, the
limits of the bicharacteristics are tangent to the symplectic foliation of Σ2, see Ex-
ample 2.6. Thus, both [6] and [7] have constant sign of the subprincipal symbol on
the limit characteristics as a necessary condition for solvability, which corresponds
to condition (P ) on the refined principal symbol. This is natural since when the
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principal symbol vanishes of exactly second order one gets both directions on the
limit bicharacteristics.

These results were generalized in [2] to pseudodifferential operators with real
principal symbol for which the linearization of the Hamilton vector field is tangent
to and has uniform bounds on the tangent spaces of some Lagrangean manifolds
at the bicharacteristics. Then P is not solvable if condition (Ψ) is not satisfied on
the limit bicharacteristics, in the sense that the imaginary part of the subprincipal
symbol switches sign from − to + on the semibicharacteristics when converging
to the limit semibicharacteristic. The paper [3] studied operators of subprincipal
type, where the principal symbol vanishes of at least second order at a nonra-
dial involutive manifold Σ2 and the subprincipal symbol is of principal type with
Hamilton vector field tangent to Σ2 at the characteristics, but transversal to the
symplectic foliation of Σ2. Then the operator was not solvable if the subprincipal
symbol is constant on the symplectic leaves of Σ2 after multiplication with a non-
vanishing factor and does not satisfy condition (Ψ) on Σ2. In fact, if the principal
symbol is proportional to a real symbol, then the result of [2] gives nonsolvability
in general when the subprincipal symbol is not constant on the leaves.

In this paper, we shall extend the results of [2] to pseudodifferential operators
with complex principal symbols. We shall consider the limits of semibicharacter-
istics at the set Σ2 where the principal symbol vanishes of at least second order.
The convergence shall be as smooth curves, then the limit semibicharacteristic
also is a smooth curve. We shall assume that the normalized complex Hamilton
vector field of the principal symbol on the semicharacteristics converges to a real
vector field on Σ2. Then the limit semibicharacteristic are uniquely defined, and
one can invariantly define the imaginary part of the subprincipal symbol. Also,
we shall assume that the linearization of the real part of the normalized Hamil-
ton vector field is tangent to and uniformly bounded on the tangent space of a
Lagrangean submanifold at the semibicharacteristics, which we call a grazing La-
grangean space, see (2.8). We shall also assume uniform bounds on linearization of
the imaginary part of the Hamilton vector field on the grazing Lagrangean space,
see (2.11), (2.13) and Definition 2.3.

Our main result is Theorem 2.11, which essentially says that under these con-
ditions the operator is not solvable at the limit semibicharacteristic if the quotient
of the imaginary part of the subprincipal symbol with the norm of the Hamilton
vector field switches sign from − to + on the semibicharacteristics and becomes
unbounded as they converge to the limit semibicharacteristic, see (2.20). Thus a
non-homogeneous version of condition (Ψ) on the refined principal symbol does not
hold on the limit characteristics. This result implies the results of [2], [6] and [7].

2. Statement of results
Let p be the principal symbol, Σ = p−1(0) be the characteristics, and Σ2 be
the set of double characteristics, i.e., the points on Σ where dp = 0. Since we
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are going to study necessary conditions for solvability, we shall assume that P
satisfies condition (Ψ) given by (1.3) on Σ1 = Σ \Σ2. We shall study limits at Σ2

of semibicharacteristics, and we shall assume that the normalized limit of Hp is
proportional to a real vector field, in the sense that

|dp ∧ dp| � |dp| on Γj as j → ∞. (2.1)
We shall only use semibicharacteristics given byHRe ap such that |Re a∇p| ≥ c|∇p|
at Γj for some c > 0, where ∇p is the gradient of p. Let {Γj }∞j=1 be a set of
semibicharacteristics of p on S∗X ∩ Σ1 so that Γj are bicharacteristics of Re ajp
where 0 6= aj ∈ C∞ uniformly at Γj and

|Re aj∇p| ≥ c|∇p| at Γj (2.2)
for some fixed c > 0, observe that p = 0 on Γj . We shall assume that Γj are
uniformly bounded in C∞ when parametrized on a uniformly bounded interval
(for example, with respect to the arc length). The bounds are defined with respect
to some choice of Riemannean metric on S∗X, but different choices of metric will
only change the constants. In particular, we have a uniform bound on the arc
lengths:

|Γj | ≤ C ∀ j. (2.3)
In fact, we have that Γj = { γj(t) : t ∈ Ij } with |γ′j(t)| ≡ 1 and |Ij | ≤ C, then
|γ(k)j (t)| ≤ Ck for t ∈ Ij and ∀ j, k ≥ 1. Let the normalized gradient p̃ = p/|∇p|
and the normalized Hamilton vector field

Hp̃ = |Hp|−1Hp on p−1(0) \ Σ2.

Then Γj is uniformly bounded in C∞ if there exists positive constants c and Ck

such that
|Hk

Re aj p̃
∇Re aj p̃| ≤ Ck and |HRe aj p̃| ≥ c at Γj ∀ j, k, (2.4)

which implies that |aj | ≥ c > 0 at Γj . This means that the normalized Hamilton
vector field HRe aj p̃ is uniformly bounded in C∞ as a non-degenerate vector field
over Γ, and this only depends on aj

∣∣
Γj
. Observe that the semibicharacteristics have

a natural orientation given by the Hamilton vector field. Now the set of semibichar-
acteristic curves {Γj }∞j=1 is uniformly bounded in C∞ when parametrized with
respect to the arc length, and therefore it is a precompact set. Thus there exists
a subsequence Γjk , k → ∞, that converge to a smooth curve Γ (possibly a point),
called a limit semibicharacteristic by the following definition, which generalizes
the definition in [2].

Definition 2.1. We say that a sequence of smooth curves Γj on a smooth manifold
converges to a smooth limit curve Γ (possibly a point) if there exist parametrizations
on uniformly bounded intervals that converge in C∞. If p ∈ C∞(T ∗X), then we say
that {Γj }∞j=1 are a uniform family of semibicharacteristics of p if (2.3) and (2.4)
hold. A smooth curve Γ ⊂ Σ2 ∩ S∗X is a limit semibicharacteristic of p if there
exists a uniform family of semibicharacteristics of p that converge to it.
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Naturally, this definition is invariant under symplectic changes of coordinates,
and the set {Γj }∞j=1 may have subsequences converging to several different limit
semibicharacteristics, which could be points. For example, if Γj is parametrized
with respect to the arc length on intervals Ij such that |Ij | → 0, then we find that
Γj converges to a limit curve which is a point. Observe that if Γj converge to a
limit semibicharacteristic Γ, then (2.3) and (2.4) must hold for Γj .

Example 2.2. Let Γj be the curve parametrized by

[0, 1] 3 t 7→ γj(t) = (t, cos(jt)/j, sin(jt)/j)/
√
2.

Since |γ′j(t)| = 1, the curves are parametrized with respect to arc length, and
we have that Γj → Γ =

{
(t, 0, 0) : t ∈

[
0, 2−1/2

] }
in C0, but not in C∞ since

|γ′′j (t)| = j/
√
2. If we parametrize Γj with x = jt ∈ [0, j] we find that Γj converge

to Γ in C∞ but not on uniformly bounded intervals.

But we shall also need a condition on the differential of the Hamilton vec-
tor field Hp at the semibicharacteristic Γ along a Lagrangean space, which will
give bounds on the curvature of the semicharacteristics in these directions. If
the semicharacteristics is the bicharacteristic of Re ap then we shall denote Σ =
(Re ap)−1(0) and TwΣ = Ker dRe ap(w) ⊂ T (T ∗X), where dRe ap(w) 6= 0 for
w ∈ Γ. A section of Lagrangean spaces L over a bicharacteristic Γ is a map

Γ 3 w 7→ L(w) ⊂ Tw(T
∗X)

such that L(w) is a Lagrangean space in TwΣ, ∀w ∈ Γ. If the section L is C1

then it has tangent space TL ⊂ TL(TΓ(T
∗X)). Observe that since L(w) ⊂ TwΣ is

Lagrangean we find dRe ap(w)
∣∣
L(w)

= 0 and HRe ap(w) ∈ L(w) when w ∈ Γ. Now
we shall also have the condition that the linearization of HRe ap at Γ is tangent to
the Lagrangean space L.

Definition 2.3. Let Γ be a semibicharacteristic of p, i.e., a bicharacteristic of
Re(ap) for some 0 6= a ∈ C∞. We say that a C1 section of Lagrangean spaces L
over Γ is a section of grazing Lagrangean spaces of Γ if

L ⊂ TΓΣ = Ker dRe ap
∣∣
Γ
⊂ TΓ(T

∗X),

and the linearization (or first order jet) of HRe ap ⊂ TΓL, the tangent space of L
at Γ.

The linearization of HRe ap(w) is given by the second order Taylor expansion
of Re ap at w and since L(w) is Lagrangean we find that terms in that expansion
that vanish on L(w) have Hamilton field parallel to L. Thus, the condition that
the linearization of HRe ap(w) is in TL(w) only depends on the restriction to L(w)
of the second order Taylor expansion of Re ap at w. We find that Definition 2.3
is invariant under multiplication of Re ap by nonvanishing real factors because
Re ap(w) = 0 and dRe ap(w)

∣∣
L(w)

= 0 since L ⊂ TΓΣ. Thus the linearization
of HRe cap is determined by HessRe cap(w)

∣∣
L(w)

= cHessRe ap(w)
∣∣
L(w)

when c is
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real. Thus the linearization only depends on the argument of aj at Γj so we can
replace HRe ap(w) by HRe ap̃ in the definition.

By Definition 2.3 we find that the linearization of HRe ap gives an evolution
equation for the section L, see Example 2.4. Choosing a Lagrangean subspace of
Tw0

Σ at w0 ∈ Γ then determines L along Γ, so L must be smooth. Actually, L
is the tangent space at Γ of a smooth Lagrangean submanifold of (Re ap)−1(0),
see (3.30).

Example 2.4. Let
p = τ+ia(t, x)ξ1−(〈A(t, x)x, x〉+ 2〈B(t, x)x, ξ〉+ 〈C(t, x)ξ, ξ〉) /2, (x, ξ) ∈ T ∗Rn,

where a(t, x) ∈ C∞ is real valued, A(t, x), B(t, x) and C(t, x) ∈ C∞ are n × n
matrices such that A(t, x) = At(t, x) and C(t) = Ct(t, x) are symmetric, and let
Γ = { (t, 0, 0, ξ0) : t ∈ I }. Then HRe p = ∂t at Γ and

(Re p)−1(0) = { τ = 〈ReA(t, x)x, x〉/2 + 〈ReB(t, x)x, ξ〉+ 〈ReC(t, x)ξ, ξ〉/2 }
where ReF is the given by the real part of the elements of F . The linearization of
the Hamilton field Hp at (t, 0, 0, ξ0) is

∂t + ia(t, 0)∂x1
+ 〈A(t, 0)y +Bt(t, 0)η, ∂η〉 − 〈B(t, 0)y + C(t, 0)η, ∂y〉 (2.5)

with (y, η) ∈ T (T ∗Rn). Since dRe p = dτ at Γ, a C1 section of Lagrangean spaces
L(t) ⊂ TΓΣ must be tangent to Γ. Thus, by choosing linear symplectic coordinates
(y, η) we may obtain that

L(t) = { (s, y, 0, E(t)y) : (s, y) ∈ Rn }
where E(t) ∈ C1 is real and symmetric with E(0) = 0. By applying (2.5) on
η − E(t)y, which vanishes on L(t), we obtain that L(t) is a grazing Lagrangean
space if
∂tE(t) = ReA(t, 0) + ReB(t, 0)E(t) + E(t)ReBt(t) + E(t)ReC(t, 0)E(t). (2.6)

Then by uniqueness we find that L(t) is constant in t if and only if ReA(t, 0) ≡ 0,
and then A(t, 0) = Hess p

∣∣
L(t)

. In general, the real part of Hess p
∣∣
L(t)

is given by
the right hand side of (2.6).

Example 2.5. If p is of principal type, then one can choose a 6= 0 and symplectic
coordinates so that Re ap = τ near Γ = { (t, 0, 0, ξ0) : t ∈ I }. Then one can take
any Lagrangean plane in Ker dτ

∣∣
Γ
= TΓΣ which is tangent to Γ.

Observe that we may choose symplectic coordinates (t, x; τ, ξ) so that τ =
Re ap and the fiber of L(w) is equal to { (s, y, 0, 0) : (s, y) ∈ Rn } at w ∈ Γ =
{ (t, 0; 0, ξ0) : t ∈ I }. But it is not clear that we can do that uniformly for a family
of semibicharacteristics {Γj }, for that we need additional conditions. We shall
assume that there exists a grazing Lagrangean space Lj of Γj , ∀ j, such that the
normalized Hamilton vector field Hp̃ satisfies∣∣∣dHp̃(w)

∣∣
Lj(w)

∣∣∣ ≤ C for w ∈ Γj ∀ j. (2.7)
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This is equivalent to ∣∣∣dHp(w)
∣∣
Lj(w)

∣∣∣ ≤ C|Hp| (2.8)
for w ∈ Γj since L ⊂ TΓΣ. In fact, we have that dHbp = dbHp+bdHp+dpHb on Σ.
Since the mapping Γj 3 w 7→ Lj(w) is determined by the linearization of HRe aj p̃

on Lj , thus by dHRe aj p̃(w)
∣∣
Lj(w)

, condition (2.7) implies that Γj 3 w 7→ Lj(w)

is uniformly in C1, see Example 2.4. Observe that condition (2.4) gives (2.7) in
the direction of TwΓj ⊂ Lj(w). Clearly condition (2.7) is invariant under changes
of symplectic coordinates and multiplications with non-vanishing real factors. In
general, we only have dHp̃ = O(|Hp|−1) since dHp = O(1), and by induction we
find ∂αHp̃ = O(|Hp|−|α|), see Proposition 3.1.

Observe that condition (2.7) gives∣∣∣d∇Re aj p̃(w)
∣∣
Lj(w)

∣∣∣ ≤ C for w ∈ Γj ∀ j. (2.9)

Since ∇Re aj p̃ is uniformly proportional to the normal of the level surface
(Re ajp)

−1(0),

condition (2.9) gives a uniform bound on the curvature of this surface in the
directions given by Lj over Γj .

Example 2.6. Assume that p(x, ξ) is vanishing of exactly order k ≥ 2 at the
involutive submanifold Σ2 = { ξ′ = 0 }, ξ = (ξ′, ξ′′) ∈ Rm ×Rn−m such that the
localization

η 7→
∑
|α|=k

∂αξ′p(x, 0, ξ
′′)ηα

is of principal type if η 6= 0. Then the semibicharacteristics of p with |Re aj∇p̃| ∼= 1
satisfies (2.4) and (2.7) with Lj = { ξ = 0 } at any point. In fact, |∂ξ′p(x, ξ)| ∼=
|ξ′|k−1 and ∂x,ξ′′p(x, ξ) = O(|ξ′|k) so

Hp̃ = ∂ξ′ p̃∂x′ +O(|ξ′|) and ∂αx∇p = O(|ξ′|k−1) ∀α,
when |ξ′| � 1 and |ξ| ∼= 1.

Now for a uniform family of semibicharacteristics {Γj } we shall denote
0 < min

Γj

|Hp| = κj → 0 as j → ∞, (2.10)

and we shall assume that
|dp ∧ dp | ≤ Cκ

14/3
j |Hp|2 at Γj , (2.11)

which by Leibniz’ rule means that |dRe p̃ ∧ d Im p̃| ≤ Cκ
14/3
j on Γj . In fact, we

have
d(ap) ∧ d(ap) = |a|2dp ∧ dp+ 2i Im(ap dp ∧ da) + |p|2da ∧ da (2.12)

where the two last terms vanish on Σ. This gives a measure on the complex part
of Hp and gives that Hp̃ is proportional to a real vector field on Γj modulo terms
that are O(κ

14/3
j ).
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With Lj as in (2.7) we shall assume the following condition∣∣∣d∣∣
Lj
(dp ∧ dp)(w)

∣∣∣ ≤ Cκ
4/3
j |Hp|2 for w ∈ Γj ∀ j, (2.13)

where the outer differential is restricted to Lj on Γj . Observe that condition (2.13)
gives an estimate on the variation of the complex part of the Hamilton vector field
along L, whereas condition (2.7) gives an estimate on the variation of the Hamilton
vector field. Using (2.8), (2.11) and (2.12) we find that (2.13) is equivalent to∣∣∣d∣∣

Lj
(dRe p̃ ∧ d Im p̃)(w)

∣∣∣ ≤ Cκ
4/3
j for w ∈ Γj ∀ j. (2.14)

In fact, the differential of the two last terms in (2.12) vanish since p = 0 on Γj

and if a = |∇p|−1 then da
∣∣
Lj

= O(a) by (2.8).
If |∇Re p̃ | ∼= |∇p̃ | = 1, then we find from (2.11) that

|d Im p̃(w)| ≤ Cκ
14/3
j on Ker dRe p̃(w) (2.15)

for w ∈ Γj . Since d
∣∣
Lj
dRe p̃(w) = O(1) by (2.7), we find from (2.14) that

d
∣∣
Lj
d Im p̃(w) = O(κ

4/3
j ) on Ker dRe p̃(w) (2.16)

when w ∈ Γj . The estimates (2.15) and (2.16) will be needed in order to handle the
imaginary part of the principal symbol as a perturbation, see Lemmas 5.1 and 5.2.

Now, since the semibicharacteristics Γj are uniform we have |HRe aj p̃| ≥ c,
which by (2.11) gives

Im(aj∇p̃) = βj Re(aj∇p̃) + Vj at γj (2.17)

where βj = O(1) and |Vj | ≤ Cκ
14/3
j . The first part of the right hand side will not

change the direction of Γj . Thus multiplying p̃ with the complex factor 1 − iβj
only changes the direction of the real part of the Hamilton vector field by terms
that are O

(
κ
14/3
j

)
. This only perturbs Γj so that the distance to the original

semibicharacteristic is O(κ
14/3
j ). Now the derivative of the linearization of the

Hamilton vector field is O
(
|Hp|−1

)
= O

(
κ−1
j

)
, see Proposition 3.1. Thus, the

linearization is changed with a bounded factor and terms that are O
(
κ
8/3
j

)
. Thus,

we find from (2.6) that the grazing Lagrangean spaces Lj are only changed by
terms that are O

(
κ
8/3
j

)
. Since κj ≤ |Hp| on Γj we find that conditions (2.8), (2.11)

and (2.13) are not changed. Observe that aj is only defined on Γj , but since Γj

is a uniformly bounded smooth curve, aj can easily be uniformly extended to a
neighborhood of Γj .

Remark 2.7. The family of uniform semibicharacteristics {Γj }j satisfying con-
dition (2.11) and the grazing Lagrangean spaces Lj of Γj are invariant mod-
ulo perturbations of O(κ

14/3
j ) under different choices of aj in (2.4). Thus condi-

tions (2.8), (2.11) and (2.13) are well defined.
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Thus, the choice of aj will be irrelevant when taking the limit. Now, we shall
only consider semibicharacteristics Γj with tangent vectors HRe aj p̃ so that

|HIm aj p̃| ≤ Cκ
14/3
j and |aj | > 1/C on Γj (2.18)

which implies that |Re∇aj p̃| ≥ c > 0 when κj � 1. Then the multipliers aj are
well defined on Γj modulo uniformly bounded factors which have argument that
are O(κ

14/3
j ).

The invariant subprincipal symbol ps will be important for the solvability of
the operator near Σ2. For the usual Kohn–Nirenberg quantization of pseudodiffer-
ential operators, the next lower order term is equal to

ps = pm−1 −
1

2i

∑
j

∂ξj∂xj
p (2.19)

and for the Weyl quantization it is pm−1. Both of these are equal to pm−1 at the
involutive manifold Σ2 = { ξ′ = 0 } since then ∂ξp ≡ 0 at Σ2.

For the subprincipal symbol ps we shall have a condition that essentially
means that condition (Ψ) does not hold for the subprincipal symbol. Observe that
if (2.18) holds then the imaginary part of ajps is well defined modulo terms that
are O(κ

14/3
j ). Assuming (2.18) we shall as in [2] assume that

min
∂Γj

∫
Im ajps|Hp|−1 ds/| log κj | → ∞ as j → ∞, (2.20)

where the integration is along the natural orientation given by HRe ajp on Γj

starting at wj ∈
◦
Γj . (Actually, it suffices that the minimum in (2.20) is sufficiently

large, depending on the norms of the symbol of the operator.) Since |Hp| ≥ κj → 0
on Γj , we find that condition (2.20) is well defined independently of the choice of
multiplier aj satisfying (2.18).

Observe that if (2.20) holds then there must be a change of sign of Im ajps
from − to + on Γj , and

max
Γj

(−1)±1 Im ajps/|Hp|| log κj | → ∞ j → ∞ (2.21)

for both signs. Observe that condition (2.20) for aj satisfying (2.18) is invariant
under symplectic changes of coordinates and multiplication with elliptic pseudo-
differential operators, thus under conjugation with elliptic Fourier integral oper-
ators. In fact, multiplication only changes the subprincipal symbol with uniform
non-vanishing factors and terms proportional to |∇p | = |Hp|. By multiplying
with aj we may for simplicity assume that aj ≡ 1. Then by choosing symplec-
tic coordinates (t, x; τ, ξ) near a given point w0 ∈ Γj so that Re p = ατ near
w0 with α = |Re∇p| 6= 0, we obtain that ∂xk

∂ξk Re p = 0 at Γj , ∀ k, and
∂t∂τ Re p = ∂tα = ∂t|Re∇p | at Γj near w0. Thus, the second term in (2.19)
only gives terms which are either real or gives terms in condition (2.20) which are
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bounded by∣∣∣∣∫ ∂t|Re∇p|/|∇Re p| ds/| log(κj)|
∣∣∣∣ = O(| log(|∇Re p|)|/| log(κj)|) = O(1)

(2.22)
when j � 1 since |Re∇p| ∼= |∇p| ≥ κj → 0 on Γj by (2.18). Thus we obtain the
following result.
Remark 2.8. We may replace the subprincipal symbol ps by pm−1 in (2.20), since
the difference is bounded as j → ∞.

One can define the reduced principal symbol as p+ ps, see Definition 18.1.33
in [5]. Then (2.20) means that a non-homogeneous version of condition (Ψ) does
not hold for the reduced principal symbol.
Example 2.9. If p is real and vanishes of exactly order k ≥ 2 at an involutive
manifold Σ2, then we find that |Hp| ∼= dk−1 on S∗X where d is the homogeneous
distance to Σ2. If Im ps changes sign from − to + on the semibicharacteristics and
vanishes of order ℓ at Σ2, then (2.20) holds if and only if ℓ < k − 1. When k = 2,
this means that Im ps changes sign from − to + on the limit bicharacteristic, as
in the results of [6] and [7].

We shall study the microlocal solvability, which is given by the following
definition. Recall that H loc

(s) (X) is the set of distributions that are locally in the L2

Sobolev space H(s)(X).
Definition 2.10. If K ⊂ S∗X is a compact set, then we say that P is microlocally
solvable at K if there exists an integer N so that for every f ∈ H loc

(N)(X) there exists
u ∈ D′(X) such that K ∩WF(Pu− f) = ∅.

Observe that solvability at a compact set M ⊂ X is equivalent to solvability
at S∗X

∣∣
M

by [5, Theorem 26.4.2], and that solvability at a set implies solvability
at a subset. Also, by Proposition 26.4.4 in [5] the microlocal solvability is invari-
ant under conjugation by elliptic Fourier integral operators and multiplication by
elliptic pseudodifferential operators. The following is the main result of the paper.
Theorem 2.11. Let P ∈ Ψm

cl (X) have principal symbol σ(P ) = p satisfying con-
dition (Ψ), and subprincipal symbol ps. Let Γj ⊂ S∗X, j = 1, . . . be a uniform
family of semibicharacteristics of p so that (2.8), (2.11), (2.13) and (2.20) hold for
some aj satisfying (2.18) and grazing Lagrangean spaces Lj of Γ. Then P is not
microlocally solvable at any limit semibicharacteristics of {Γj }j.

In fact, if there exists a limit semibicharacteristic, then we can choose a sub-
sequence of semibicharacteristics Γj converging to it, which gives conditions (2.3)
and (2.4) for these Γj , ∀ j. Observe that if the principal symbol is real, then con-
ditions (Ψ), (2.11) and (2.13) are trivially satified, and we obtain Theorem 2.9
in [2].

To prove Theorem 2.11 we shall use the following result. Let ‖u‖(k) be the
L2 Sobolev norm of order k for u ∈ C∞

0 and P ∗ the L2 adjoint of P .
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Remark 2.12. If P is microlocally solvable at Γ ⊂ S∗X, then Lemma 26.4.5
in [5] gives that for any Y b X such that Γ ⊂ S∗Y there exists an integer ν and
a pseudodifferential operator A so that WF(A) ∩ Γ = ∅ and

‖u‖(−N) ≤ C(‖P ∗u‖(ν) + ‖u‖(−N−n) + ‖Au‖(0)) u ∈ C∞
0 (Y ) (2.23)

where N is given by Definition 2.10.

We shall use Remark 2.12 to prove Theorem 2.11 in Section 6 by constructing
approximate local solutions to P ∗u = 0. We shall first prepare and get a microlocal
normal form for the adjoint operator, which will be done in Section 3. We shall then
apply P ∗ to an oscillatory solution, for which we shall solve the eikonal equation
in Section 4 and the transport equations in Section 5.

3. The normal form
In the following we assume that the conditions in Theorem 2.11 holds with some
limit semibicharacteristic, observe that then (2.3) and (2.4) hold for Γj . We shall
prepare the operator to a normal form as in [2], but since the principal symbol
now is complex valued the preparation will be slightly different. First we shall
put the adjoint operator P ∗ on a normal form uniformly and microlocally near the
semibicharacteristics Γj ⊂ Σ∩S∗X converging in C∞ to Γ ⊂ Σ2. This will present
some difficulties since we only have conditions at the semibicharacteristics. By the
invariance, we may multiply with an elliptic operator so that the order of P ∗ is
m = 1 and P ∗ has the symbol expansion p + p0 + · · · , where p is the principal
symbol. By Remark 2.8 we may assume that p0 is the subprincipal symbol, and
as before we shall assume (2.18) so that |Re∇p| ∼= |∇p|. Observe that p = 0 on
Γj and for the adjoint the signs in (2.20) are reversed, changing it to

max
∂Γj

∫
Im ajp0|Hp|−1 ds/| log κj | → −∞ as j → ∞, (3.1)

where κj given by (2.10). Changing the starting point wj of the integration to the
maximum of the integral in (3.1) only improves the estimate so we may assume
that ∫

Im ajp0/|Hp| ds ≤ 0 on Γj (3.2)

with equality at wj ∈ Γj . Since ∇p0 and ∇Hp are bounded on S∗X and |Hp| ≥
κj on Γj , we find that |Hp| and p0/|Hp| only change with a fixed factor and a
bounded term on an interval of length . κj on Γj . Thus, we find that integrating
Im ajp0/|Hp| over such intervals only gives bounded terms. Therefore, by (2.21)
we may assume that

|Γj | � κj (3.3)
and that condition (3.1) holds on some intervals of length ∼= κj at the endpoints
of Γj .

Now we choose
1 ≤ λj = κ

−1/ε
j ⇐⇒ κj = λ−ε

j (3.4)
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for some 0 < ε ≤ 1 to be determined later. Then we may replace | log κj | with log λj
in (3.1). By choosing a subsequence and renumbering, we may assume by (2.20)
that

max
∂Γj

∫
Im ajp0/|Hp| ds ≤ −j log λj (3.5)

and that this also holds on some intervals of length ∼= κj at the endpoints of Γj .
Next, we introduce the normalized principal and subprincipal symbols

p̃ = p/|Hp| and p̃0 = p0/|Hp|. (3.6)

Then we have that Hp̃

∣∣
Γj

∈ C∞ uniformly for the grazing Lagrangean space Lj of
Γj , |Hp̃| = 1 on Γj and dHp̃

∣∣
Lj

is uniformly bounded at Γj by (2.4) and (2.7). We
find that condition (3.5) becomes

max
∂Γj

∫
Im aj p̃0 ds ≤ −j log λj . (3.7)

Observe that because of condition (2.21) we have that ∂Γj has two components
since Im aj p̃0 has opposite sign there, thus Γj is a uniformly embedded curve.

In the following we shall consider a fixed semibicharacteristic Γj ⊂ Σ ∩ S∗X
and suppress the index j, so that a = aj , Γ = Γj , L = Lj and κ = λ−ε = κj
for some ε > 0 to be determined later. Observe that the preparation will be
uniform in j with λ as parameter, assuming the conditions in Theorem 2.11. Now
HRe ap̃ ∈ C∞ uniformly on Γ but not in a neighborhood. By (2.4) we may define
the first order Taylor expansion of Re ap̃ at Γ uniformly. Since Γ ∈ C∞ uniformly,
we can choose local uniform coordinates so that Γ = { (t, 0)) : t ∈ I ⊂ R } locally.
In fact, we can take a local parametrization γ(t) of Γ with respect to the arc length
and choose the orthogonal space M ⊂ Rn−1 to the tangent vector of Γ at a point
w0 with respect to some local Riemannean metric. Then R×M 3 (t, w) 7→ γ(t)+w
is uniformly bounded in C∞ with a uniformly bounded inverse near (t0, 0) giving
local coordinates near Γ = { (t, 0) : t ∈ I }. We may then complete t to a uniform
symplectic coordinate system. Multiplying with the uniformly bounded function
a(t, 0) we may assume that a(t, 0) ≡ 1. We can define the first order Taylor term
of Re p̃ at Γ by

ϱ(t, w) = ∂w Re p̃(t, 0) · w, w = (x, τ, ξ), (3.8)

which is uniformly bounded. This can be done locally, and by using a uniformly
bounded partition of unity we obtain this in a fixed neighborhood of Γ. Going back
to the original coordinates, we find that ϱ ∈ C∞ uniformly near Γ and Re p̃− ϱ =
O(d2), but the error is not uniformly bounded. Here d is the homogeneous distance
to Γ, i.e., the distance with respect to the homogeneous metric

dt2 + |dx|2 + (dτ2 + |dξ|2)/〈(τ, ξ)〉2. (3.9)
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But by condition (2.7) we find that the second order derivatives of p̃ along the La-
grangean space L at Γ are uniformly bounded. We shall use homogeneous coordi-
nates, i.e., local coordinates which are normalized with respect to the homogeneous
metric (3.9).

By completing τ = ϱ in (3.8) to a uniformly bounded homogeneous sym-
plectic coordinate system (τ, w) = (τ, x, τ, ξ) near Γ and conjugating with the
corresponding uniformly bounded Fourier integral operator we may assume that

Γ = { (t, 0; 0, ξ0) : t ∈ I } ⊂ S∗Rn (3.10)

for |ξ0| = 1 and some bounded interval I 3 0, and that Re p̃ ∼= τ modulo second
order terms at Γ. The second order terms are not uniformly bounded, but d∇p̃

∣∣
L
is

uniformly bounded at Γ by (2.7). Since dRe p̃ = dτ on Γ we find that HRe p̃

∣∣
Γ
= Dt

and since L ⊂ (dp)−1(0) we may obtain that L = { (t, x; 0, 0) } at any given point
at Γ by choosing suitable linear symplectic coordinates (x, ξ). We find from (2.7)
that ∣∣d∇p̃(t, 0; 0, ξ0)∣∣L∣∣ . 1, t ∈ I. (3.11)
Condition (2.15) gives

|∂t,x,ξ Im p̃(t, 0; 0, ξ0)| . κ14/3 = λ−14ε/3, t ∈ I, (3.12)

and condition (2.16) gives∣∣d ∂t,x,ξ Im p̃(t, 0; 0, ξ0)
∣∣
L

∣∣ . λ−4ε/3, t ∈ I. (3.13)

Here a . b (and b & a) means that a ≤ Cb for some C > 0.
Let

q(t, w) = |∇p(t, w)| ≥ λ−ε at Γ (3.14)
and extend q so that it is homogeneous of degree 0, then q is the norm of the
homogeneous gradient of p. Recall that λ � 1 is a parameter that depends on
the bicharacteristic Γ. Since the symbols are homogeneous, we shall restrict them
to S∗Rn. There we shall choose coordinates (t, w) so that w = 0 on Γ, and then
localize in conical neighborhoods depending on the parameter λ. We have |∇p̃| ≡ 1
at Γ, higher derivatives are not uniformly bounded but can be handled by the using
the metric

gε = (dt2 + |dw|2)λ2ε, w = (x, τ, ξ), (3.15)
and the symbol classes f ∈ S(m, gε) defined by ∂αf = O(mλ|α|ε), ∀α.

Proposition 3.1. If (3.10) and (3.14) hold then q is a weight for gε, q ∈ S(q, gε)
and p̃(t, w) ∈ S(λ−ε, gε) when |w| ≤ cλ−ε for some c > 0 on S∗Rn when t ∈ I.

This gives p = qp̃ ∈ S(qλ−ε, gε) when |w| ≤ cλ−ε. Observe that b ∈ Sµ
1−ε,ε

if and only if b ∈ S(λµ, gε) in homogeneous coordinates when |ξ| ∼= λ & 1. In
fact, in homogeneous coordinates z this means that ∂αz b = O(|ξ|µ+|α|ε). Therefore,
we obtain by homogeneity that p̃ ∈ S1−ε

1−ε,ε and q−1 ∈ Sε
1−ε,ε when |w| . λ−ε ∼=

|ξ|−ε . 1.
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Proof. We are going to use the previously chosen coordinates (t, w) on S∗Rn so
that Γ = { (t, 0) : t ∈ I }. Now ∂2p = O(1), q ≥ λ−ε at Γ by (3.14) and

∂q = Re∇p · (∂∇p)/q when q 6= 0, (3.16)
which is uniformly bounded. We find that q(s, w) ∼= q(t, 0) when |s−t|+|w| ≤ cλ−ε

for small enough c > 0, so q is a weight for gε there. This gives that |p(t, w)| .
q(t, w)λ−ε, |∇p(t, w)| = q(t, w) and |∂αp| . 1 . qλε . qλ(|α|−1)ε for |α| ≥ 2,
which gives p ∈ S(qλ−ε, gε) when |w| ≤ cλ−ε and t ∈ I.

We find from (3.16) that ∂q = α/q where α ∈ S(q2λε, gε) when |w| ≤ cλ−ε

since ∇p ∈ S(q, gε) in this domain. By induction over the order of differentiation
of q we obtain from (3.16) that q ∈ S(q, gε) when |w| ≤ cλ−ε, which gives the
result. �

As before, we take the restriction of p̃ to |ξ| = 1, use local coordinates (t, w)
on S∗Rn so that (3.10) holds with ξ0 = 0 and put Q(t, w) = λεp̃(tλ−ε, wλ−ε)
when t ∈ Iε = { tλε : t ∈ I }. Recall that λ � 1 is fixed, depending on Γ. Then
by Proposition 3.1 we find that Q ∈ C∞ uniformly when |w| . 1 and t ∈ Iε,
∂τ ReQ ≡ 1 and |∂t,x,ξ ReQ| ≡ 0 when w = 0 and t ∈ Iε. Thus we find |∂τQ| 6= 0
for |w| . 1 and t ∈ Iε. By using Taylor’s formula at Γ we can write Q(t, x; τ, ξ) =
τ + h(t, x; τ, ξ) when |w| . 1 and t ∈ Iε, where h = |∇Reh| = 0 at w = 0. By
using the Malgrange preparation theorem, we obtain

τ = a(t, w)(τ + h(t, w)) + s(t, x, ξ), |w| . 1, t ∈ Iε,

where a and s ∈ C∞ uniformly, a 6= 0, and on Γ we have a = 1 and s = |∇Re s| =
0. In fact, this can be done uniformly, first locally in t and then by a uniform
partition of unity for t ∈ Iε. This gives

a(t, w)Q(t, w) = τ − s(t, x, ξ), |w| . 1, t ∈ Iε. (3.17)
In the original coordinates, we find that

λεp̃(t, w) = a−1(tλε, wλε)(τλε − s(tλε, xλε, ξλε))

and thus
p̃(t, w) = b(t, w)(τ − r(t, x, ξ)), |w| . λ−ε, t ∈ I, (3.18)

where 0 6= b ∈ S(1, gε), r(t, x, ξ) = λ−εs(tλε, xλε, ξλε) ∈ S(λ−ε, gε) when |w| .
λ−ε, and t ∈ I, b = 1 and r = |∇Re r| = 0 on Γ. By condition (3.11) we find that∣∣d∇r∣∣

L

∣∣ ≤ C at Γ (3.19)

since r is constant in τ . Similarly, by conditions (3.12) and (3.13) we find that

|∇ Im r| . λ−14ε/3 at Γ (3.20)
and ∣∣d∇ Im r

∣∣
L

∣∣ ≤ Cλ−4ε/3 at Γ. (3.21)
Extending by homogeneity, we obtain this preparation where the homoge-

neous distance in (x, ξ) to Γ is . λ−ε, then (3.19)–(3.21) hold with the homoge-
neous gradient. Now, the symbol b is homogeneous but it is not in S0

1,0 uniformly,
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instead it will have uniform bounds in a larger symbol class. In the following, we
shall denote by Γ the rays in T ∗Rn that goes through the semibicharacteristic.
Recall that p̃ = p/q, where q ∈ S(q, gε) when |w| . λ−ε and is homogeneous of
degree 0. By homogeneity we obtain from (3.18) that

b−1q−1p(t, x; τ, ξ) = τ − r(t, x, ξ)

where b−1 ∈ S0
1−ε,ε, q−1 ∈ Sε

1−ε,ε and τ − r ∈ S1−ε
1−ε,ε when |ξ| & λ and the

homogeneous distance d(x, ξ) to (0, ξ0) is less than c|ξ|−ε . λ−ε, c > 0. In fact,
in homogeneous coordinates this means that b−1 ∈ S(1, gε), q−1 ∈ S(λε, gε) and
r ∈ S(λ1−ε, gε) when |ξ| ∼= λ.

Take a homogeneous cut-off function χ(x, ξ) ∈ S0
1,0 supported where d(x, ξ) .

λ−ε so that b ≥ c0 > 0 in suppχ and χ = 1 when d ≤ cλ−ε for some c > 0, then
we have χ ∈ S0

1−ε,ε uniformly when |ξ| & λ. We take the homogeneous symbol
B = χb−1q−1 ∈ Sε

1−ε,ε uniformly when |ξ| & λ and we compose the corresponding
pseudodifferential operator B ∈ Ψε

1−ε,ε with P ∗. Since P ∗ ∈ Ψ1
1,0 we obtain an

asymptotic expansion of BP ∗ in S1+ε−j(1−ε)
1−ε,ε for j = 0, 1, 2, . . . when |ξ| & λ. But

actually the symbol is in a better class. The principal symbol is

(τ − r(t, x, ξ))χ ∈ S1−ε
1−ε,ε for |ξ| & λ,

and the calculus gives that the homogeneous term is equal to
i

2
Hp(χb

−1q−1) + χb−1q−1p0 (3.22)

where p0 is the homogeneous term of the expansion of P ∗. As before, we shall use
homogeneous coordinates. Then Proposition 3.1 gives p = qp̃ ∈ S(qλ−ε, gε) when
|ξ| ∼= λ and since χb−1q−1 ∈ S(q−1, gε) ⊂ S(λε, gε) when |ξ| ∼= λ, we find that
the terms in (3.22) are in S(λε, gε) when d . λ−ε and by homogeneity in Sε

1−ε,ε

when d . |ξ|−ε . λ−ε. The value of Hp at Γ is equal to q∂t modulo terms with
coefficients that are O(λ−14ε/3) by (3.20) so the value of (3.22) is equal to

1

2i
∂tq/q + p0/q =

Dt|∇p|
2|∇p|

+
p0
|∇p|

at Γ (3.23)

modulo O(λ−8ε/3). Here |∇p| =
√

|∂xp|2/|ξ|2 + |∂ξp|2 is the homogeneous gradi-
ent, and the error of this approximation is bounded by λ2ε times the homogeneous
distance d to Γ, since (3.22) is in S(λε, gε). Observe that p0/|∇p| is equal to the
normalized subprincipal symbol of P ∗ on S∗Rn given by (3.6). But we have to
estimate the error terms in this preparation.

Definition 3.2. For 0 < ε < 1/2 and R ∈ Sµ
ϱ,δ where ϱ + δ ≥ 1, ϱ > ε and

δ < 1− ε, we say that S∗X 3 (x0, ξ0) /∈ WFε(R) if for any N there exists cN > 0

so that R ∈ S−N
ϱ,δ when the homogeneous distance to the ray { (x0, ϱ ξ0) : ϱ ∈ R+ }

is less than cN |ξ|−ε.
For a family of operators Rj ∈ Ψµ

ϱ,δ, j = 1, . . . , we say that S∗X 3 (xj , ξj) /∈
WFε(Rj) uniformly with respect to λj ≥ 1, if for any N there exists CN > 0
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so that Rj ∈ S−N
ϱ,δ uniformly in j when the homogeneous distance to the ray

{ (xj , ϱ ξj) : ϱ ∈ R+ } is less than CN |ξ|−ε ≤ CCNλ
−ε
j for some C > 0.

By the calculus, this means that there exist Aj ∈ Ψ0
1−ε,ε so that Aj ≥ c > 0

when the distance to the ray through (xj , ξj) is less than CN |ξ|−ε . λ−ε
j such

that AjRj ∈ Ψ−N uniformly. This neighborhood is in fact the points with fixed gε
distance to the ray through (xj , ξj) when |ξ| & λj . For example, if the homogeneous
cut-off functions χj is equal to 1 where the homogeneous distance to the ray
{ (xj , ϱ ξj) : ϱ ∈ R+ } is less than CNλ

−ε
j then (xj , ξj) /∈ WFε(1 − χj) uniformly

with respect to λj . It follows from the calculus that Definition 3.2 is invariant
under composition with classical elliptic pseudodifferential operators and under
conjugation with elliptic homogeneous Fourier integral operators preserving the
fiber, by the conditions on ϱ and δ. We also have that WFε(R) grows when ε
shrinks and WFε(R) ⊂ WF(R).

Now we can use the Malgrange division theorem in order to make the lower
order terms independent on τ when d . λ−ε, starting with the subprincipal symbol
p̃0 ∈ Sε

1−ε,ε of BP ∗ given by (3.22). Then restricting to |ξ| = 1 and rescaling as
before so that Q0(t, w) = λ−εp̃0(tλ

−ε, wλ−ε) ∈ C∞ uniformly, we obtain that
Q0(t, w) = c̃(t, w)(τ − s(t, x, ξ)) + q̃0(t, x, ξ), |w| . 1, t ∈ Iε,

where s is given by (3.17), and c̃ and q̃0 are uniformly in C∞. This can be done
uniformly, first locally and then by a partition of unity for t ∈ Iε. We find in the
original coordinates that

p̃0(t, w) = c(t, w)(τ − r(t, x, ξ)) + q0(t, x, ξ), d . λ−ε, t ∈ I, (3.24)
where
q0(t, w) = λεq̃0(tλ

ε, wλε) ∈ S(λε, gε) and c(t, w) = λ2εc̃(tλε, wλε) ∈ S(λ2ε, gε).

By using a partition of unity, we obtain (3.24) uniformly when the homogeneous
distance to Γ is . λ−ε. By homogeneity we find as before that c is homogeneous
of degree −1 and q0 is homogeneous of degree 0, which gives c ∈ S2ε−1

1−ε,ε and
q0 ∈ Sε

1−ε,ε when |ξ| & λ. Now the composition of the operators having sym-
bols c and τ − r gives error terms that are homogeneous of degree −1 and are
uniformly in S3ε−1

1−ε,ε when |ξ| & λ. Thus if ε < 1/3 then by multiplication with
an pseudodifferential operator with symbol 1 − c we can make the subprincipal
symbol independent of τ . By iterating this procedure we can successively make
any lower order terms independent of τ when the homogeneous distance d to Γ is
less than cλ−ε. By applying a homogeneous cut-off function χ as before we obtain
the following result.

Proposition 3.3. Assume that (2.3), (2.4), (2.8), (2.11), (2.13), and (2.20) hold
uniformly for Γj, Lj and λj satisfying (3.4) for some ε > 0. By conjugating with
uniformly bounded elliptic homogeneous Fourier integral operators and multiplying
with uniformly bounded homogeneous elliptic operators we may assume that m = 1,
aj ≡ 1 and Γj is given by (3.10). If 0 < ε < 1/3 then for any c > 0 we can obtain
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that BjP
∗ = Qj + Rj ∈ Ψ1−ε

1−ε,ε where Bj ∈ Ψε
1−ε,ε uniformly, Γj ∩WFε(Rj) = ∅

uniformly, and the symbol of Qj is equal to

τ − r(t, x, ξ) + q0(t, x, ξ) + r0(t, x, ξ) when dj(x, ξ) ≤ c|ξ|−ε . λ−ε
j and t ∈ I,

(3.25)
where dj is the homogeneous distance to Γj. Here r is homogeneous of degree 1 and
q0 is homogenous of degree 0, r ∈ S1−ε

1−ε,ε, q0 ∈ Sε
1−ε,ε and r0 ∈ S3ε−1

1−ε,ε uniformly.
We also have r = |∇Re r| = 0, ∇ Im r = O

(
λ
−14ε/3
j

)
, d∇Re r

∣∣
L

= O(1) and
d∇ Im r

∣∣
L
= O

(
λ
−4ε/3
j

)
on Γj. We find that q0 is equal to

Dt|∇p(t, 0)|
2|∇p(t, 0)|

+
p0(t, 0)

|∇p(t, 0)|
when dj(x, ξ) ≤ c|ξ|−ε . λ−ε

j and t ∈ I, (3.26)

modulo terms that are O
(
λ−8ε/3 + λ2εdj

)
where |∇p| =

√
|∂xp|2/|ξ|2 + |∂ξp|2 is

the homogeneous gradient of p.

We shall apply the operator in Proposition 3.3 on oscillatory solutions having
frequencies ξ of size λ, see Proposition 3.5. Observe also that the integration of
the term Dt|∇p(t, 0)|/2|∇p(t, 0)| in (3.26) will give terms that are

O(log(|∇p(t, 0)|)) = O(| log(λ)|+ 1)

which do not affect condition (2.20).
Recall that L is a smooth section of Lagrangean spaces L(w) ⊂ TwΣ ⊂

Tw(T
∗Rn), w ∈ Γ, such that the linearization of the Hamilton vector field HRe p is

in TL at Γ. Here Σ = (Re p)−1(0) and TwΣ = Ker dRe p(w) where dRe p(w) 6= 0
for w ∈ Γ. By Proposition 3.3 we may assume that Γ = { (t, 0; 0, ξ0) : t ∈ I }, 0 ∈ I,
and we may parametrize L(t) = L(w) where w = (t, 0, ξ0) for t ∈ I. Now since
T ∗Rn is a linear space, we may identify the fiber of Tw(T ∗Rn) with T ∗Rn. Since
L(w) ⊂ TwΣ and w ∈ Γ we find that dτ = 0 in L(w). Since L(w) is Lagrangean, we
find that t lines are parallel to L(w). By choosing linear symplectic coordinates in
(x, ξ) we obtain that L(0) = { (s, y; 0, 0) : (s, y) ∈ Rn }, then by condition (3.19)
we find that ∂x∇r(0, 0, ξ0) is uniformly bounded. Since dτ = 0 on L(t) and L(t)
is Lagrangean we find by continuity for small t that

L(t) = { (s, y; 0, A(t)y) : (s, y) ∈ Rn } (3.27)

where A(t) is real, continuous and symmetric for t ∈ I and A(0) = 0. Since the
linearization of the Hamilton vector field HRe p at Γ is tangent to L, we find that
L is parallel under the flow of that linearization. Since L(t) is Lagrangean, the
evolution of t 7→ L(t) is determined by the restriction of the second order Taylor
expansion of r(t, w) to L(t). For (3.27) this restriction is given by the second order
Taylor expansion of

R(t, x) = Re r(t, x, ξ0 +A(t)x)
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thus ∂2xR(t, 0) is uniformly bounded by condition (2.7). The linearized Hamilton
vector field is

∂t + 〈∂2xR(t, 0)x, ∂ξ〉 = ∂t + 〈
(
∂2x Re r(t, 0, ξ0) + ∂x∂ξ Re r(t, 0, ξ0)A

+A∂ξ∂x Re r(t, 0, ξ0) +A∂2ξ Re r(t, 0, ξ0)A
)
x, ∂ξ〉.

Applying this on ξ−A(t)x, which vanishes identically on L(t) for t ∈ I, we obtain
that the evolution of L(t) is given by
A′(t) = ∂2x Re r(t, 0, ξ0) + ∂x∂ξ Re r(t, 0, ξ0)A(t)

+A(t)∂ξ∂x Re r(t, 0, ξ0) +A(t)∂2ξ Re r(t, 0, ξ0)A(t)
(3.28)

with A(0) = 0. This is locally uniquely solvable and the right-hand side is uniformly
bounded as long as A is bounded. Observe that by uniqueness, A(t) ≡ 0 if and only
if ∂2x Re r(t, 0, ξ0) ≡ 0, ∀ t. But since (3.28) is non-linear, the solution could become
unbounded if ∂2x Re r 6= 0 and ∂2ξ Re r 6= 0 so that ‖A(s)‖ → ∞ as s → t1 ∈ I.
This means that the angle between L(t) = { (s, y; 0, A(t)y) : (s, y) ∈ Rn } and the
vertical space { (s, 0; 0, η) : (s, η) ∈ Rn } goes to zero, but that is only a coordinate
singularity.

In general, since we identify the fiber of Tw(T ∗Rn) with T ∗Rn we may define
R(t, x, ξ) for each t so that

R(t, x, ξ) = Re r(t, x, ξ0 + ξ) when (0, x; 0, ξ) ∈ L(t). (3.29)
Then R = Re r on L and we find that

τ − 〈R(t)z, z〉/2 ∈ C∞ (3.30)
if z = (x, ξ) and R(t) = ∂2zR(t, 0, 0)

∣∣
L
(t). Observe that we find from (3.19)

that (3.30) is uniformly in C∞ in z and uniformly continuous in t. We find
that R(0) = ∂2x Re r(t, 0, ξ0) and in general R(t) is given by the right hand side
of (3.28). Now we can complete t, τ − 〈R(t)z, z〉/2 and (x, ξ)

∣∣
t=0

to a uniform
homogeneous symplectic coordinates system so that Γ = { (t, 0, ξ0) : t ∈ I } and
L(0) = { (s, y; 0, 0) : (s, y) ∈ Rn }. In fact, (x, ξ) satisfies a linear evolution equa-
tion Hτ (x, ξ) = 0 and has the same value when t = 0, so (x, ξ) = 0 and Hτ = ∂t
on Γ. Since this is done by integration in t, it gives a uniformly bounded linear
symplectic transformation in (x, ξ) which is uniformly C1 in t. It is given by a uni-
formly bounded elliptic Fourier integral operator F (t) on Rn−1 which is uniformly
C1 in t. We will call this type of Fourier integral operator a C1-section of Fourier
integral operators on Rn−1. This will give uniformly bounded terms when we con-
jugate F (t) with a first order differential operator in t, for example the normal
form of P ∗ given by (3.25). For t close to 0 the section F (t) is given by multipli-
cation with ei⟨A(t)x,x⟩, where A(t) solves (3.28). For general t we can put F (t) on
this form after a linear symplectic transformation in (x, ξ). Observe that F (t) is
continuous on local L2 Sobolev spaces in x, uniformly in t, since it is continuous
with respect to the norm ‖(1 + |x|2 + |Dx|2)ku‖, ∀ k. In fact, it suffices to check
this for the generators of the group of Fourier integral operators corresponding to
linear symplectic transformations of (x, ξ), which are given by the partial Fourier
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transforms, linear transformations in x and multiplication with ei⟨Ax,x⟩ where A
is real and symmetric.

We find in the new coordinates that p = τ−r1, where r1(t, x, ξ) is independent
of τ and satisfies ∂2z Re r1(t, 0, 0)

∣∣
L
(t) ≡ 0. This follows since

p(t, x; τ, ξ) = τ − 〈R(t)z, z〉/2− r1(t, x, τ, ξ), z = (x, ξ),

where ∂2z Re r1(t, 0, 0)
∣∣
L
(t) ≡ 0. We also have that ∂τr1 = −{ t, r1 } = −{ t, r } ≡

0, which is invariant under the change of symplectic coordinates. Similarly we find
that the lower order terms pj(t, x, ξ) remain independent of τ for j ≤ 0. Since the
evolution of L is determined by the second order derivatives of the principal symbol
along L by Example 2.4, we find that L(t) ≡ { (t, x; 0, 0) : (t, x) ∈ Rn } after the
change of coordinates. Since L is a grazing Lagrangean space, the linearization of
HRe p at Γ is tangent to L. Thus ∂x Re r1 = ∂2x Re r1 = 0, ∇ Im r1 = O

(
λ
−14ε/3
j

)
and condition (3.21) gives that ∂t,x∇ Im r1 = O

(
λ
−4ε/3
j

)
at Γj . Changing notation

so that r = r1 and p(t, x; τ, ξ) = τ − r(t, x, ξ) we obtain the following result.

Proposition 3.4. By conjugating with a uniformly bounded C1 section of Fourier
integral operators on Rn−1, we may assume that the symplectic coordinates in
Proposition 3.3 are chosen so that the grazing Lagrangean space

L(w) ≡ { (t, x, 0, 0) : (t, x) ∈ Rn } , ∀w ∈ Γ,

which gives that ∂x Re r = ∂2x Re r = 0, ∂t,x∇Re r = O(1), ∇ Im r1 = O
(
λ
−14ε/3
j

)
and ∂t,x∇ Im r = O

(
λ
−4ε/3
j

)
at Γj.

We shall apply the adjoint P ∗ of the operator on the form in Proposition 3.3
on approximate solutions on the form

uλ(t, x) = exp(iλ(〈x, ξ0〉+ ω(t, x)))
M∑
j=0

φj(t, x)λ
−jϱ (3.31)

where |ξ0| = 1, the phase function ω(t, x) ∈ S(λ−7ε, g3ε) is real valued and the
amplitudes φj(t, x) ∈ S(1, gδ) have support where |x| . λ−δ. Here δ ≥ ε and ϱ
are positive constants to be determined later. The phase function ω(t, x) will be
constructed in Section 4, see Proposition 4.2. Observe that we have assumed that
ε < 1/3 in Proposition 3.3, but we shall impose further restrictions on ε later on.
We shall assume that ε+ δ < 1, then if p(t, x, ξ) ∈ S1−ε

1−ε,ε when |ξ| ∼= λ we obtain
the asymptotic expansion

p(t, x,Dx)(exp(iλ(〈x, ξ0〉+ ω(t, x)))φ(t, x))

∼ exp(iλ(〈x, ξ0〉+ω(t, x)))
∑
α

∂αξ p(t, x, λ(ξ0+∂xω(t, x)))Rα(ω, λ,D)φ(t, x)/α!

(3.32)

where Rα(ω, λ,D)φ(t, x) = Dα
y (exp(iλω̃(t, x, y))φ(t, y))

∣∣
y=x

with

ω̃(t, x, y) = ω(t, y)− ω(t, x) + (x− y)∂xω(t, x)
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and the error term is of the same size as the next term in the expansion. See
for example Theorem 3.1 in [8, Chap. VI], which is for classical pseudodifferential
operators, phase functions and amplitudes, but the proof is easily adapted to the
case when these depend uniformly on parameters. Observe that since |∂xω| ∼=
λ−4ε � 1 the expansion only involves the values of p(t, x, ξ) where |ξ| ∼= λ � 1.
Using this expansion we find that if p is given by (3.25) then

e−iλ(⟨x,ξ0⟩+ω(t,x))p(t, x,Dt,x)e
iλ(⟨x,ξ0⟩+ω(t,x))φ(t, x)

∼ λ
(
∂tω(t, x)− r(t, x, ξ0 + ∂xω)

)
φ(t, x)

+Dtφ(t, x)−
∑
j

∂ξjr(t, x, ξ0 + ∂xω)Dxj
φ(t, x) + q0(t, x, ξ0 + ∂xω)φ(t, x)

+
∑
jk

∂ξj∂ξkr(t, x, ξ0 + ∂xω)(λ
−1Dxj

Dxk
φ(t, x) + iφ(t, x)Dxj

Dxk
ω(t, x))/2

+ · · · ,
(3.33)

which gives an expansion in S(λ1−ε−j(1−δ−ε), gδ), j ≥ 0, if δ + ε < 1 and ε < 1/4.
In fact, since |ξ| ∼= λ every ξ derivative on terms in S1−ε

1−ε,ε gives a factor that is
O(λε−1) and every x derivative of φ gives a factor that is O(λδ). A factor λDα

xω
requires |α| ≥ 2 number of ξ derivatives of a term in the expansion of P ∗, which
gives a factor that is O(λ1+(−7+3|α|)ε−|α|(1−ε)) = O(λ1−7ε−|α|(1−4ε)) = O(λ−1+ε).
Similarly, the expansion coming from terms in P ∗ that have symbols in Sε

1−ε,ε

gives an expansion in Sε−j(1−δ−ε)
1−ε,ε , j ≥ 0. Thus, if δ + ε < 2/3 and ε < 1/4 then

the terms in the expansion are O(λδ+2ε−1) except the terms in (3.33), and for the
last ones we find that∑

jk

∂ξj∂ξkr(t, x, ξ0 + ∂xω)(λ
−1DxjDxk

φ+ iφDxjDxk
ω) = O(λ2δ+ε−1 + λ3ε−δ).

(3.34)
In fact, ∂ξj∂ξkr(t, x, ξ0 + ∂xω) = O(λε) and Dxj

Dxk
ω = O(λ2εd) when φ 6= 0,

since we have Dxj
Dxk

ω = 0 when x = 0, and d = O(λ−δ) in suppφ.
The error terms in (3.34) are of equal size if 2δ + ε − 1 = 3ε − δ, thus

δ = (1 + 2ε)/3 ≥ ε since ε ≤ 1. Since δ + ε < 1 we obtain that 4ε− 1 < 3ε− δ =
(7ε − 1)/3 < 0 if ε < 1/7 and 1 − δ − ε = (2 − 5ε)/3 > 1/3 if ε < 1/5. Thus we
obtain the following result.

Proposition 3.5. Assume that p is given by (3.25), ω(t, x) ∈ S(λ−7ε, g3ε) is real
valued with ∂xω(t, 0) ≡ ∂2xω(t, 0) ≡ 0, and φj(t, x) ∈ S(1, gδ) has support where
|x| . λ−δ with positive δ and ε. If δ = (1+ 2ε)/3 and ε < 1/7, then (3.33) has an
expansion in S(λ1−ε−j(2−5ε)/3, gδ), j ≥ 0, and is equal to

λ
(
∂tω(t, x)− r(t, x, ξ0 + ∂xω)

)
φ(t, x) +Dtφ(t, x)

−
∑
j

∂ξjr(t, x, ξ0 + ∂xω)Dxj
φ(t, x) + q0(t, x, ξ0 + ∂xω)φ(t, x)

(3.35)
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modulo terms that are O(λ(7ε−1)/3) = O(λ2δ+ε−1).

In Sect. 5 we shall choose ε = 1/8 which gives δ = 5/12, (2− 5ε)/3 = 11/24
and (7ε− 1)/3 = −1/24, so we may take ϱ = 1/24 in (3.31).

4. The eikonal equation
Making the real part of the first term in the expansion (3.33) equal to zero gives
the eikonal equation

∂tω − Re s(t, x, ∂xω) = 0, ω(0, x) ≡ 0, (4.1)
where s(t, x, ξ) = r(t, x, ξ0 + ξ). The imaginary part of the first term will be
treated as a perturbation. We shall solve the eikonal equation approximatively
after scaling, since we solve the real part it will be similar to the argument in [2].
We choose coordinates (t, x, ξ) on S∗Rn so that Γ is given by (3.10). We find that
s ∈ S(λ−ε, gε) when |x|+ |ξ| . λ−ε by Proposition 3.3, and we may assume that
L(t) ≡ { (t, x, 0, 0) }, ∀ t, by Proposition 3.4. But s is also in another symbol class
by the following refinement of Proposition 3.3.

Proposition 4.1. Assuming Propositions 3.3 and 3.4 we have
s ∈ S(λ−7ε, λ6ε(dt2 + |dx|2) + λ8ε|dξ|2)

when |x| . λ−3ε, |ξ| . λ−4ε and t ∈ I.

Proof. Since s ∈ S(λ−ε, gε) when |x|+ |ξ| . λ−ε by Proposition 3.3, we find that

|∂αt,x∂
β
ξ s| . λ(|α|+|β|−1)ε . λ(3|α|+4|β|−7)ε (4.2)

when |x|+ |ξ| . λ−ε, if and only |α|+ |β| − 1 ≤ 3|α|+ 4|β| − 7, i.e.,
2|α|+ 3|β| > 5.

Thus, we only have to check the cases |α|+ |β| ≤ 2 and |β| ≤ 1. Since the Lagrange
remainder term is in the symbol class, we only have to check the derivatives at x =

ξ = 0. Then we obtain (4.2) since s(t, 0, 0) = 0, ∂s(t, 0, 0) = O(λ
−14ε/3

) by (3.20),
∂t,x∂ξs(t, 0, ξ0) = O(1) and ∂2t,xs(t, 0, 0) = O(λ−4ε/3) by (3.19) and (3.21). �

Observe that the estimates for ∂ Im s and ∂t,x∂ Im s at Γ are better than the
symbol estimates, which will be important in the proof of Lemma 5.2. Next, we
scale and put (x, ξ) = (λ−3εy, λ−4εη). When |y|+ |η| ≤ c we find

(y, η) 7→ f(t, y, η) = λ7εs(t, λ−3εy, λ−4εη) ∈ C∞ (4.3)
and y 7→ ω0(t, y) = λ7εω(t, λ−3εy) ∈ C∞ uniformly. Then the eikonal equa-
tion (4.1) is

∂tω0 − Re f(t, y, ∂yω0) ≡ 0, ω0(0, y) = 0, (4.4)
when |y| ≤ c. We can solve (4.4) by solving the Hamilton–Jacobi equations:{

∂ty = −∂η Re f(t, y, η),
∂tη = ∂y Re f(t, y, η),

(4.5)
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with initial values (y(0), η(0)) = (z, 0). Since we have uniform bounds on (y, η) 7→
f(t, y, η), we find that (4.5) has a uniformly bounded C∞ solution (y(t), η(t))
if (z, 0) is uniformly bounded. By taking z derivatives of the equations, we find
that z 7→ (y(t, z), η(t, z)) ∈ C∞ uniformly. By (4.5) we find that (∂ty, ∂tη) is
uniformly bounded, and by taking repeated t, z derivatives of (4.5) we find that(
∂kt ∂

α
z y, ∂

k
t ∂

α
z η

)
= O(λ3(k−1)ε).

Letting ∂yω0(t, y(t, z)) = η(t, z) and

∂tω0(t, y(t, z)) = Re f(t, y(t, z), η(t, z)) = O(1)

when |y| ≤ c, we obtain the solution ω0(t, y) ∈ S(1, λ6εdt2+ |dy|2) to (4.4). (Actu-
ally, we have ∂tω0 ∈ S(1, λ6εdt2+|dy|2).) Since ∇Re f = 0 on Γ we find by unique-
ness that y = η = 0 when z = 0 which gives ω0(t, 0) ≡ ∂tω0(t, 0) ≡ ∂yω0(t, 0) ≡ 0.
Since ∂y,η Re f(t, 0, 0) = ∂2y Re f(t, 0, 0) = 0 we find by differentiating (4.4) twice
that
∂t∂

2
yω0(t, 0) = ∂y∂η Re f(t, 0, 0)∂

2
yω0(t, 0) + ∂2yω0(t, 0)∂η∂y Re f(t, 0, 0)

+ ∂2yω0(t, 0)∂
2
η Re f(t, 0, 0)∂

2
yω0(t, 0)

Since ∂2xω(0, x) ≡ 0 we find by uniqueness that ∂2xω(t, 0) ≡ 0.
In the original coordinates we find that that if x(0) = O(λ−3ε) and ξ(0) = 0

then x(t, x0) = O(λ−3ε) and ξ(t, x0) = O(λ−4ε) for any t ∈ I. The scaling also
gives that

ω(t, x) = λ−7εω0(t, λ
3εx) ∈ S(λ−7ε, g3ε), |x| . λ−3ε, (4.6)

and we have ω(t, 0) ≡ ∂xω(t, 0) ≡ ∂2xω(t, 0) ≡ 0. (Actually, ∂tω(t, x) ∈ S(λ−7ε, g3ε)
when |x| . λ−3ε.) By the symbol estimates, we find ∂ω(t, x) = O(λ−4ε) when
|x| . λ−3ε. Thus, we obtain the following result.

Proposition 4.2. Let 0 < ε < 1/3, and assume that Propositions 3.3 and 3.4 hold.
Then there exists a real ω(t, x) ∈ S(λ−7ε, g3ε) satisfying ∂tω = Re r(t, x, ξ0 + ∂xω)
when |x| . λ−3ε and t ∈ I so that ω(t, 0) ≡ ∂xω(t, 0) ≡ ∂2xω(t, 0) ≡ 0. If 3ε ≤ δ ≤
4ε, we find that the values of (t, x;λ∂tω(t, x), λ(ξ0+∂xω(t, x))) have homogeneous
distance . λ−δ to the rays through Γ when |x| . λ−δ and t ∈ I.

5. The transport equations
The next term in (3.33) is the transport equation, which by homogeneity is equal
to

Dpφ+ q0φ+ ir0φ = 0 at Γ = { (t, 0; 0, ξ0) : t ∈ I } (5.1)
where Dp = Dt −

∑
j ∂ξjr(t, x, ξ0 + ∂xω(t, x))Dxj

r0(t, x) = λ Im r(t, x, ξ0 + ∂xω(t, x)) (5.2)

and

q0(t) ∼= Dt|∇p(t, 0, ξ0)|/2|∇p(t, 0, ξ0)|+ p0(t, 0, ξ0)/|∇p(t, 0, ξ0)| = O(λε) (5.3)
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modulo O(λ−8ε/3+λ2ε|x|) when |x| . λ−ε by (3.26). Here the real valued ω(t, x) ∈
S(λ−7ε, g3ε) is given by Proposition 4.2. Since the transport equation is given by
a complex vector field, the treatment is different to the one in [2]. But essentially
we shall treat the complex part of the transport equation as a perturbation.

Lemma 5.1. If 3ε ≤ δ ≤ 7ε/2 then we have that

Dp = Dt +
∑
j

〈aj(t) · x〉Dxj
+R(t, x,D)

where aj(t) ∈ C∞(R,Rn−1) uniformly ∀ j, and R(t, x,D) is a first-order differen-
tial operator in x with coefficients that are O(λ3ε−2δ) when |x| . λ−δ.

Proof. As before we shall use the translation s(t, x, ξ) = r(t, x, ξ0 + ξ), then

s(t, x, ξ) ∈ S(λ−ε, gε) ∩ S(λ−7ε, λ6ε(dt2 + |dx|2) + λ8ε|dξ|2) (5.4)

when |x| . λ−3ε, |ξ| . λ−4ε and t ∈ I by Proposition 4.2. Since ∂2xω(t, 0) ≡ 0
we find from Taylor’s formula that aj(t) = −∂x∂ξj Re s(t, 0, 0) which is uniformly
bounded by (3.19). The coefficients of the error term R are given by ∂ξ Im s and
the second order Lagrange remainder term of the coefficients of ∂ξ Re s. By Propo-
sitions 3.3, 3.4 and 4.2 we find from Taylor’s formula that

∂ξ Im s(t, x, ∂xω(t, x)) = ∂ξ Im s(t, 0, 0) + ∂x∂ξ Im s(t, 0, 0)x

+ ∂2ξ Im s(t, 0, 0)∂xω(t, x) +O
(
λ2ε(|x|2 + λ4ε|x|4)

)
= O

(
λ−4ε + λ−ε|x|+ λ3ε|x|2 + λ−6ε

)
= O(λ3ε−2δ)

when |x| . λ−δ since 3ε ≤ δ ≤ 7ε/2. In fact, ∂ξ Im s = O(λ−14ε/3) and ∂x∂ξ Im s =

O(λ−4ε/3) at Γ, ∂2ξs = O(λε), ∂3s = O(λ2ε) and ∂xω(t, x) = O(λ2ε|x|2) = O(λ−4ε)

when |x| . λ−δ since δ ≥ 3ε. Similarly we find that the second order Lagrange
remainder term of the coefficients of ∂ξ Re s are O(λ2ε(|x|2+λ4ε|x|4)) = O(λ2ε−2δ)
when |x| . λ−δ � λ−ε, which proves the result. �

We also have to estimate the term r0(t, x) = λ Im r(t, x, ∂xω(t, x)) which in
fact is bounded according to the following lemma.

Lemma 5.2. If ε = 1/8 and δ = (1 + 2ε)/3 = 5/12 then r0(t, x) ∈ S(1, gδ) for
|x| . λ−δ and t ∈ I.

Observe that we need that ε < 1/7 and δ = (1 + 2ε)/3 in order to use the
expansion of Proposition 3.5, and when ε = 1/8 we get δ = 5/12 = 10ε/3 < 7ε/2.

Proof. As before we shall use scaling (t, x, ξ) = (λ−3εs, λ−3εy, λ−4εη), and write
f(s, y, η) = λ7εr(t, x, ξ0 + ξ) ∈ C∞ and ω0(s, y) = λ7εω(t, x) ∈ C∞ uniformly so
that ∂yω0(s, y) = λ4ε∂xω(t, x) when |x| ≤ cλ−3ε and t ∈ I, which we shall assume
in the following.

This gives
r0(t, x) = λ1−7ε Im f(s, y, ∂yω0(t, y)), (5.5)
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and we shall show that

F (s, y) = Im f(s, y, ∂yω0(t, y)) ∈ S(λ−ε, gϱ) when |y| ≤ cλ−ϱ,

where ϱ = δ − 3ε = ε/3. Since ε = 1/8, this will give the result. Taylor’s formula
gives for |y| ≤ cλ−ϱ,

F (s, y) = ∂y Im f(s, 0, 0)y + 〈∂2y Im f(s, 0, 0)y, y〉/2
+ ∂η Im f(s, 0, 0)〈∂3yω0(s, 0)y, y〉/2 +R(s, y),

(5.6)

where R(s, y) ∈ C∞ uniformly and is vanishing of order 3 at y = 0 since f(s, 0, 0) =
∂yω0(s, 0) = ∂2yω0(s, 0) = 0 when t ∈ I by Propositions 3.4 and 4.2. Thus

R(s, y) = O(|y|3) = O(λ−3ϱ) = O(λ−ε) when |y| ≤ cλ−ϱ,

since ϱ = ε/3. Now one loses at most a factor y = O(λ−ϱ) = O(λ−ε/3) when
taking a derivative of R(s, y), giving a factor O(λϱ), so R(s, y) ∈ S(λ−ε, gϱ).

It remains to consider the first three terms in (5.6) and as before it suffices to
consider derivatives of order less than 3 at y = 0. Since ∂3yω0(s, 0) ∈ C∞ uniformly
we only have to estimate ∂η Im f(s, 0, 0) and ∂ks,y Im f(s, 0, 0) when k ≤ 2. We
obtain from (3.20) that

∂η Im f(s, 0, 0) = λ3ε∂ξ Im r(t, 0, ξ0) = O(λ−5ε/3) = O(λ−ε+2ϱ)

Similarly, (3.20) gives

∂s,y Im f(s, 0, 0) = λ4ε∂t,x Im r(t, 0, ξ0) = O(λ−2ε/3) = O(λ−ε+ϱ),

and (3.21) gives

∂2s,y Im f(s, 0, 0) = λε∂2t,x Im r(t, 0, ξ0) = O(λ−ε/3) = O(λ−ε+2ϱ). �

By a change of t variable we may assume that (3.2) and (3.5) hold with the
integration starting at t = 0. We obtain new variables z in Rn−1 by solving

∂tzj = 〈aj(t), z〉, zj(0) = xj ∀ j.

Then Dt +
∑

j〈aj(t), x〉Dxj is transformed into Dt but Dxj = Dzj is unchanged,
and we will for simplicity keep the notation (t, x). The linear change of variables
is uniformly bounded since aj ∈ C∞, so it preserves the neighborhoods |x| . λ−ν

and the symbol classes S(λµ, gν), ∀µ, ν. We shall then solve the approximate
transport equation

Dtφ+ (q0(t) + ir0(t, x))φ = 0 (5.7)
where φ(0, x) ∈ S(1, gδ) is supported where |x| . λ−δ, q0(t) is given by (5.3) and
r0 by (5.2). If we assume 3ε ≤ δ ≤ 7ε/2 then by Lemma 5.1 the approximation
errors Rφ will be in S(λ3ε−δ, gδ). In fact, since ∂x maps S(1, gδ) into S(λδ, gδ) we
find R(t, x,Dx)φ0 ∈ S(λ3ε−δ, gδ) when |x| . λ−δ. We find from Proposition 3.1
that q0 ∈ S(λε, gε), and if ε = 1/8 and δ = (1+2ε)/3 then we find from Lemma 5.2
that r0 ∈ S(1, gδ) when |x| . λ−δ and t ∈ I.
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If we choose the initial data φ(0, x) = ϕ0(x) = ϕ(λδx), where ϕ ∈ C∞
0 satisfies

ϕ(0) = 1, we obtain the solution
φ(t, x) = ϕ0(x) exp(−iB(t, x)) (5.8)

where ∂tB(t, x) = q0(t) + ir0(t, x) and B(0, x) = 0. We find that exp(−iB(t, x)) ∈
S(1, gδ) uniformly since condition (3.2) holds with aj ≡ 1,

∂tB(t, x) = q0(t) + ir0(t, x) ∈ S(λε, gε) + S(1, gδ) ⊂ S(λδ, gδ)

and
∂xB(t, x) = i

∫ t

0

∂xr0(s, x) ds ∈ S(λδ, gδ)

by Proposition 3.1 and Lemma 5.2. Thus φ ∈ S(1, gδ) uniformly and we find
by (5.8) that |φ(t, x)| ≤ C|ϕ(λδx)| so |x| . λ−δ in suppφ, which also holds in the
original x coordinates.

After solving the eikonal equation and the approximate transport equation,
we find from Proposition 3.5 that the terms in the expansion (3.33) are O(λ3ε−δ) if
ε < 1/7 and δ = (1+2ε)/3, and all the terms contain the factor exp(−iB(t, x)). We
take ε = 1/8 and δ = 5/12 which gives 3ε− δ = −1/24 > −ε/2 so 3ε < δ < 7ε/2.
Then the expansion in Proposition 3.5 is in multiples of λ−1/24, and since the error
terms of (3.35) are O(λ−1/24) we will take ϱ = 1/24 and φ0 = φ in the definition
of uλ given by (3.31).

The approximate transport equation for φk in (3.31), k > 0, is

Dtφk + (q0(t) + ir0(t, x))φk = λk/24Rk exp(iB(t, x)), k ≥ 1, (5.9)
with Rk is uniformly bounded in the symbol class S(λ−k/24, g5/12) and is sup-
ported where |x| . λ−5/12. In fact, Rk contains the error terms from the transport
equation (5.1) and also the terms that are O(λ−k/24) in (3.33) depending on φj

for j < k. Taking φk = exp(−iB(t, x))ϕk we obtain the equation

Dtϕk = λk/24Rk ∈ S(1, g5/12) (5.10)
with initial values ϕk(0, x) = 0, which can be solved with ϕk ∈ S(1, g5/12) uni-
formly having support where |x| . λ−5/12. Since exp(−iB(t, x)) ∈ S(1, g5/12) uni-
formly we find that φk ∈ S(1, g5/12) uniformly having support where |x| . λ−5/12.
Proceeding by induction we obtain a solution to (3.33) modulo O(λ−N/24) for
any N .

Proposition 5.3. Assuming Propositions 3.3 and 3.4 and choosing ε = 1/8, δ =
5/12 and ϱ = 1/24 we can solve the transport equations (5.7) and (5.9) with
φk ∈ S(1, g5/12) having support where |x| . λ−5/12, such that φ0(0, 0) = 1 and
φk(0, x) ≡ 0, k ≥ 1.

Now, we get localization in x from the initial values and the transport equa-
tion. To get localization in t we use that ImB(t) ≤ C so that Re(−iB) ≤ C. Near
∂Γ we may assume that Re(−iB(t)) � − log λ in an interval of length O(λ−ε) =
O(λ−1/8) by (3.5). Thus by applying a cut-off function χ(t) ∈ S(1, λ1/4dt2) ⊂
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S(1, g5/12) such that χ(0) = 1 and χ′(t) is supported where (3.5) holds, i.e., where
φk = O(λ−N ), ∀ k, we obtain a solution modulo O(λ−N ) for any N . In fact, if
uλ is defined by (3.31) and Q by Proposition 3.3 then Qχuλ = χQuλ + [Q,χ]uλ
where [Q,χ] = Dtχ is supported where uλ = O(λ−N ) which gives terms that are
O(λ−N ), ∀N . Thus, by solving the eikonal equation (4.1) for ω and the transport
equations (5.9) for φk for k ≤ 24N , we obtain that Qχuλ = O(λ−N ) for any N
and we get the following remark.

Remark 5.4. In Proposition 5.3 we may assume that

φk(t, x) = ϕk(λ
5/12t, λ5/12x) ∈ S(1, g5/12), k ≥ 0,

with ϕk ∈ C∞
0 having support where |x| . 1 and |t| . λ5/12, k ≥ 0.

6. The proof of Theorem 2.11
For the proof we will need the following modification of [5, Lemma 26.4.14] which
is Lemma 7.1 in [2]. Recall that D′

Γ = {u ∈ D′ : WF(u) ⊂ Γ } for Γ ⊂ T ∗Rn, and
that ‖u‖(k) is the L2 Sobolev norm of order k of u ∈ C∞

0 .

Lemma 6.1. Let

uλ(x) = λ(n−1)δ/2 exp(iλϱω(λεx))

M∑
j=0

φj(λ
δx)λ−jκ (6.1)

with ω ∈ C∞(Rn) satisfying Imω ≥ 0 and |dω| ≥ c > 0, φj ∈ C∞
0 (Rn), λ ≥ 1, ε,

δ, κ, and ϱ are positive such that ε < δ < ε + ϱ. Here ω and φj may depend on
λ but uniformly, and φj has fixed compact support in all but one of the variables,
for which the support is bounded by Cλδ. Then for any integer N we have

‖uλ‖(−N) ≤ Cλ−N(ε+ϱ). (6.2)

If φ0(x0) 6= 0 and Imω(x0) = 0 for some x0 then there exists c > 0 and λ0 ≥ 1 so
that

‖uλ‖(−N) ≥ cλ−(N+n
2 )(ε+ϱ)+(n−1)δ/2, λ ≥ λ0. (6.3)

Let Σ =
⋂

λ≥1

⋃
j suppφj(λ ·) and let Γ be the cone generated by

{ (x, ∂ω(x)), x ∈ Σ, Imω(x) = 0 } , (6.4)

then for any real m we find λmuλ → 0 in D′
Γ so λmAuλ → 0 in C∞ if A is a

pseudodifferential operator such that WF(A) ∩ Γ = ∅. The estimates are uniform
if ω ∈ C∞ uniformly with fixed lower bound on |dReω|, and φj ∈ C∞ uniformly.

We shall use Lemma 6.1 for uλ in (3.31), then ω will be real valued and Γ
in (6.4) will be the bicharacteristic Γj converging to a limit bicharacteristic.
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Proof of Lemma 6.1. We shall adapt the proof of [5, Lemma 26.4.14] to this case.
By making the change of variables y = λεx we find that

ûλ(ξ) = λ(n−1)δ/2−nε
M∑
j=0

λ−jκ

∫
ei(λ

ϱω(y)−⟨y,ξ/λε⟩)φj(λ
δ−εy) dy. (6.5)

Let U be a neighborhood of the projection on the second component of the set
in (6.4). When ξ/λε+ϱ /∈ U, then for λ� 1 we have that⋃

j

suppφj(λ
δ−ε·) 3 y 7→ (λϱω(y)− 〈y, ξ/λε〉)/(λϱ + |ξ|/λε)

= (ω(y)− 〈y, ξ/λε+ϱ〉)/(1 + |ξ|/λε+ϱ)

is in a compact set of functions with non-negative imaginary part with a fixed
lower bound on the gradient of the real part. Thus, by integrating by part in (6.5)
we find for any positive integer m that

|ûλ(ξ)| ≤ Cmλ
−(n−1)δ/2+m(δ−ε)(λϱ + |ξ|/λε)−m, ξ/λε+ϱ /∈ U, λ� 1. (6.6)

This gives any negative power of λ for m large enough since δ < ε + ϱ. If V is
bounded and 0 /∈ V then since uλ is uniformly bounded in L2 we find∫

τV

|ûλ(ξ)|2(1 + |ξ|2)−N dξ ≤ CV τ
−2N , τ ≥ 1.

Using this estimate with τ = λε+ϱ together with the estimate (6.6) we obtain (6.2).
If χ ∈ C∞

0 then we may apply (6.6) to χuλ, thus we find for any positive integer
j that

|χ̂uλ(ξ)| ≤ Cjλ
−(n−1)δ/2+j(δ−ε)(λϱ + |ξ|/λε)−j , ξ ∈W, λ� 1,

ifW is any closed cone with Γ∩(suppχ×W ) = ∅. Thus we find that λmuλ → 0 in
D′

Γ for every m. To prove (6.3) we assume x0 = 0 and take ψ ∈ C∞
0 . If Imω(0) = 0

and φ(0) 6= 0 we find

λn(ε+ϱ)−(n−1)δ/2e−iλϱ Reω(0)〈uλ, ψ(λε+ϱ·)〉

=

∫
eiλ

ϱ(ω(x/λϱ)−ω(0))ψ(x)
∑
j

φj(x/λ
ε+ϱ−δ)λ−jκ dx

→
∫
ei⟨Re ∂xω(0),x⟩ψ(x)φ0(0) dx, as λ→ +∞,

which is not equal to zero for some suitable ψ ∈ C∞
0 . In fact, we have

φj(x/λ
ε+ϱ−δ) = φj(0) +O(λδ−ε−ϱ) → φj(0)

when λ→ ∞, because δ < ε+ ϱ. Since

‖ψ(λε+ϱ·)‖(N) ≤ Cλ(N−n/2)(ε+ϱ),

we obtain that 0 < c ≤ λ(N+n
2 )(ε+ϱ)−(n−1)δ/2‖u‖(−N) which gives (6.3) and the

lemma. �
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Proof of Theorem 2.11. Assume that Γ is a limit bicharacteristic of P . We are
going to show that (2.23) does not hold for any ν, N and any pseudodifferential
operator A such that Γ ∩WF(A) = ∅. This means that there exists 0 6= uj ∈ C∞

0

such that

‖uj‖(−N)/(‖P ∗uj‖(ν) + ‖uj‖(−N−n) + ‖Auj‖(0)) → ∞ when j → ∞, (6.7)

which will contradict the local solvability of P at Γ by Remark 2.12.
Let Γj ⊂ Σ∩ S∗X be a sequence of semibicharacteristics of p that converges

to the limit bicharacteristic Γ ⊂ Σ2 and let λj be given by (2.10) and (3.4) with
ε > 0 which will be chosen later. Now the conditions and conclusions are in-
variant under symplectic changes of homogeneous coordinates and multiplication
by elliptic pseudodifferential operators. By Proposition 3.3 we may assume that
the coordinates are chosen so that Γj = I × (0, 0, ξj) with |ξj | = 1, and for any
0 < ε < 1/3 and c > 0 we can write BjP

∗ = Qj +Rj ∈ Ψ1−ε
1−ε,ε where Bj ∈ Ψε

1−ε,ε

uniformly, Γj ∩WFε(R) = ∅ uniformly and Qj has symbol

τ − r(t, x, ξ) + q0(t, x, ξ) + r0(t, x, ξ) (6.8)

when the homogeneous distance to Γj is less than c|ξ|−ε . λ−ε
j . We have that

r0 ∈ S3ε−1
1−ε,ε, q0 ∈ Sε

1−ε,ε is given by (3.26), and r ∈ S1−ε
1−ε,ε with real part vanishing

of second order at Γj , and the bounds are uniform in the symbol classes.
Now, we may replace the norms ‖u‖(s) in (6.7) by the norms

‖u‖2s = ‖〈Dx〉su‖2 =

∫
〈ξ〉2s|û(τ, ξ)|2 dτdξ

and the corresponding spaces Hs. In fact, the quotient 〈ξ〉/〈(τ, ξ)〉 ∼= 1 when
|τ | . |ξ|, thus in a conical neighborhood of Γ. So replacing the norms in the esti-
mate (6.7) only changes the constant and the operator A in the estimate (2.23).
By using Proposition 3.4 we may assume that the grazing Lagrangean space
Lj(w) ≡ { (s, y; 0, 0) : (s, y) ∈ Rn }, ∀w ∈ Γj , after conjugation with a uni-
formly bounded C1-section F (t) of homogeneous Fourier integral operators, then
∂2x Re r = 0 at Γj . Observe that for each t we find that F (t) is uniformly contin-
uous in local Hs spaces, which we may use in (6.7) after changing A. Also the
conjugation of F (t) with the operator with symbol (6.8) has a uniformly bounded
expansion. In fact, this follows since t 7→ F (t) ∈ C1 are homogeneous Fourier
integral operators in the x variables and these preserve the symbol classes. By
changing A again, we may then replace the local ‖u‖s norms by the norms ‖u‖(s)
in (6.7) so that we can use Lemma 6.1.

Now, by choosing δ = 5/12, ε = 1/8 and ϱ = 1/24 and using Propositions 3.5,
4.2, 5.3 and Remark 5.4, we can for each Γj construct approximate solution uλj

on
the form (3.31) so that Quλj

= O(λ−k
j ), for any k. The real valued phase function

is equal to 〈x, ξj〉+ ωj(t, x) where |ξj | = 1 and ωj(t, x) ∈ S(λj
−7/8, g3/8) and the

values of
(t, x;λj∂tωj(t, x), λj(ξj + ∂xωj(t, x)))
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have homogeneous distance . λ
−5/12
j to the rays through Γj when |x| . λj

−5/12,
thus on suppuλj

. Observe that if λj � 1 then we have that |ξ0 + ∂xωj(t, x)| ∼= 1
in suppuλj . In fact, we have

ωj(t, x) = λj
−7/8ω̃j(λj

3/8t, λj
3/8x)

where ω̃j ∈ C∞ uniformly so ∂xωj = O(λ
−1/2
j ). Now

λj(〈x, ξj〉+ ωj(t, x)) = λj
5/8〈λj3/8x, ξj〉+ λj

1/8ω̃j(λj
3/8t, λj

3/8x)

when |x| . λ
−5/12
j , thus δ = 5/12, ϱ = 5/8, ε = 3/8 and κ = 1/24 in (6.1) so

ε+ ϱ = 1 > δ > ε.
The amplitude functions for uλj

are φk,j(t, x) = ϕk,j(λj
5/12t, λj

5/12x) where
ϕk,j ∈ C∞

0 uniformly in j with fixed compact support in x, but in t the support is
bounded by Cλj5/12. Thus uλj will satisfy the conditions in Lemma 6.1 uniformly.
Clearly differentiation of Quλj can at most give a factor λj since δ < ε + ϱ = 1.
Because of the bound on the support of uλj

we may obtain that

‖Quλj‖(ν) = O(λ−N−n
j ) (6.9)

for any given ν.
If WF(A) ∩ Γ = ∅, then we find WF(A) ∩ Γj = ∅ for large j, so Lemma 6.1

gives ‖Auλj‖(0) = O(λ−N−n
j ) when j → ∞. On suppuλj we have x = O(λ

−5/12
j )

so the values of (t, x;λj∂tωj(t, x), λj(ξj + ∂xωj(t, x))) have homogeneous distance
. λ

−5/12
j to the rays through Γj . Thus, if Rj ∈ S

9/8
7/8,1/8 such thatWF1/8(Rj)∪Γj =

∅ uniformly then we find from the expansion (3.32) that all the terms of Rjuλj

vanish for large enough λj . In fact, since λ−5/12
j � λ

−1/8
j for j � 1, we find for

any α and K that

∂αRj(t, x;λj((0, ξj) + ∂t,xωj(t, x))) = O(λ−K
j )

in
⋃

k suppφk,j . As before, we find that ‖Rjuλj
‖(ν) = O(λ−N−n

j ) by the bound on
the support of uλj

, so we obtain from (6.9) that

‖P ∗uλj
‖(ν) = O(λ−N−n

j ) (6.10)

for any given ν.
Since ε+ ϱ = 1 and δ > 0 we also find from Lemma 6.1 that

λ−N
j = λ

−N(ε+ϱ)
j & ‖uλj‖(−N) & λ

−(N+n
2 )(ε+ϱ)+(n−1)δ/2

j ≥ λ
−N−n/2
j

when λj ≥ 1. We obtain that (6.7) holds for uj = uλj
when j → ∞, so Remark 2.12

gives that P is not solvable at the limit bicharacteristic Γ. �
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Quantization of Gaussians

Jan Dereziński and Maciej Karczmarczyk

Dedicated to the memory of Boris Pavlov.

Abstract. Our paper is devoted to the oscillator semigroup, which can be
defined as the set of operators whose kernels are centered Gaussian. Equiva-
lently, they can be defined as the Weyl quantization of centered Gaussians.
We use the Weyl symbol as the main parametrization of this semigroup. We
derive formulas for the tracial and operator norm of the Weyl quantization
of Gaussians. We identify the subset of Gaussians, which we call quantum
degenerate, where these norms have a singularity.

1. Introduction
Throughout our paper we will use the Weyl quantization, which is the most natural
correspondence between quantum and classical states. For a function k = k(x, p),
with x, p ∈ Rd, we will denote by Op(k) its Weyl quantization. Then function k is
called the Weyl symbol (or the Wigner function) of the operator Op(k).

The Heisenberg uncertainty relation says that one cannot compress a state
both in position and momentum without any limits. This is different than in
classical mechanics, where in principle a state can have no dispersion both in
position and momentum.

One can ask what happens to a quantum state when we compress its Weyl
symbol. To be more precise, consider the Gaussian function e−λ(x

2+p2), where
λ > 0 is an arbitrary parameter that controls the “compression”. It is easy to com-
pute the Weyl quantization of e−λ(x2+p2) and express it in terms of the quantum
harmonic oscillator

H = x̂2 + p̂2 =
d∑
j=1

(x̂2j + p̂2j ). (1.1)
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There are 3 distinct regimes of the parameter λ:

Op
(
e−λ(x

2+p2)
)
=


(1− λ2)−d/2 exp

[
− 1

2 log
(1+λ)
(1−λ)H

]
, 0 < λ < 1,

2−d1l{d}(H), λ = 1,

(λ2 − 1)−d/2(−1)(H−d)/2 exp
[
− 1

2 log
(1+λ)
(λ−1)H

]
, 1 < λ.

(1.2)
Thus, for 0 < λ < 1, the quantization of the Gaussian is proportional to a ther-
mal state of H. As λ increases to 1, it becomes “less mixed”–its “temperature”
decreases. At λ = 1 it becomes pure—its “temperature” becomes zero and it is
the ground state of H. For 1 < λ < ∞, when we compress the Gaussian, it is no
longer positive—due to the factor (−1)(H−d)/2 it has eigenvalues with alternating
signs. Besides, it becomes “more and more mixed”, contrary to the naive classical
picture.

Thus, at λ = 1 we observe a kind of a “phase transition”: For 0 ≤ λ < 1 the
quantization of a Gaussian behaves more or less according to the classical intuition.
For 1 < λ the classical intuition stops to work—compressing the classical symbol
makes its quantization more “diffuse”.

It is easy to compute the trace of (1.2):

TrOp
(
e−λ(x

2+p2)
)
=

1

2dλd
. (1.3)

Evidently, (1.3) does not see the “phase transition” at λ = 1. However, if we
consider the trace norm, this phase transition appears—the trace norm of (1.2) is
differentiable except at λ = 1:

Tr
∣∣∣Op

(
e−λ(x

2+p2)
)∣∣∣ =


1

2dλd
λ ≤ 1,

1

2d
, 1 ≤ λ.

(1.4)

Note that (1.4) can be viewed as a kind of quantitative “uncertainty principle”.
Our paper is devoted to operators that can be written as the Weyl quanti-

zation of a (centered) Gaussian, more precisely, operators of the form aOp
(
e−A

)
,

whereA is a quadratic form with a strictly positive real part and a ∈ C. Such opera-
tors form a semigroup called the oscillator semigroup. We denote it by Osc++

(
C2d

)
.

We also considered its subsemigroup, called the normalized oscillator semigroup
and denoted Oscnor++

(
C2d

)
, which consists of operators

±
√

det(1l +Aθ)Op
(
e−A

)
,

where θ is −i times the symplectic form ω.
The oscillator semigroup is closely related to the complex symplectic group

Sp
(
C2d

)
. In particular, there exists a natural 2–1 epimorphism from Oscnor++

(
C2d

)
onto Sp++

(
C2d

)
, which is a certain natural subsemigroup of Sp

(
C2d

)
.

The oscillator semigroup is also closely related to the better known meta-
plectic group, denoted Mp

(
R2d

)
. The metaplectic group is generated by operators
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of the form ±
√
det(1l +Bω)Op

(
eiB
)
, where B is a real symmetric matrix. There

exists a natural 2–1 epimorphism from Mp
(
R2d

)
to the real symplectic group

Sp
(
R2d

)
. Not all elements of the metaplectic group can be written as Weyl quan-

tizations of a Gaussian.
The situation with the oscillator semigroup is somewhat different than with

the metaplectic group. All elements of the oscillator semigroup are quantizations
of a Gaussian, however, not all of them correspond to a (complex) symplectic
transformation. Those that do not correspond to quadratic forms A satisfying
det(1l +Aθ) = 0. We call such quadratic forms “quantum degenerate”. Classically,
they are of course nondegenerate. Only their quantization is degenerate. In partic-
ular, for a quantum degenerate A, the operator Op

(
e−A

)
is not proportional to an

element of Oscnor++

(
C2d

)
. The set of quantum degenerate matrices can be viewed

as a place where some kind of a phase transition takes place in the oscillator semi-
group. For instance, as we show in our paper, the trace norm of Op

(
e−A

)
depends

smoothly on quantum nondegenerate A’s, however, its smoothness typically breaks
down at quantum degenerate A’s.

It is also natural to mention another type of an oscillator semigroup, which
we denote Osc+

(
C2d

)
. It is the semigroup generated by the operators of the form

aOp
(
e−A

)
, where A ≥ 0. Osc+

(
C2d

)
contains both Osc++

(
C2d

)
and Mp

(
R2d

)
. It

is in some sense the closure of Osc++

(
C2d

)
. We mention this semigroup only in

passing, concentrating on Osc++

(
C2d

)
, which is easier, because, as we mentioned

above, all elements of Osc++

(
C2d

)
have Gaussian symbols. Note that the conve-

nient notation ++ for > 0 and + for ≥ 0, which we use, is borrowed from Howe
[16].

Most of the time our discussion of the oscillator semigroup is representa-
tion independent (without invoking a concrete Hilbert space on which Op

(
e−A

)
acts). Perhaps the most obvious representation is the so-called Schrödinger rep-
resentation, where the Hilbert space is L2

(
Rd
)
, x̂ is identified with the operator

of multiplication by x and p̂ is 1
i ∂x. Another possible representation is the Fock

representation (or, which is essentially equivalent, the Bargmann–Fock represen-
tation, see, e.g., [11]). In both Schrödinger and Bargmann–Fock representations
the oscillator semigroup consists of operators with centered Gaussian kernels.

Let us now discuss the literature on operators with Gaussian kernels, or
equivalently, on quantizations of Gaussians. Probably, the best known reference
on this subject is a paper [16] by Howe. In fact, we follow to some extent the
terminology from [16]. His paper contains, for instance, a formula of composition
of operators with Gaussian kernels, a criterion for positivity of such operators
and the proof that there exists a 2–1 epimorphism from the normalized oscillator
semigroup to a subsemigroup of Sp

(
C2d

)
. Howe works mostly in the Schrödinger

representation. Instead of the Weyl symbol, he occasionally considers the so-called
Weyl transform, which is essentially the Fourier transform of the Weyl symbol.

Another important work on the subject is a paper [15] by Hilgert, who realized
that the oscillator semigroup is isomorphic to a semigroup described by Bargmann,
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Brunet and Kramer (see [2], [6], and [7]). Hilgert uses mostly the Fock–Bargmann
representation.

The book of Folland [14] contains a chapter on the oscillator semigroup, which
sums up the main points of [15] and [16].

The existence of the “phase transition” at quantum degenerate positive Gaus-
sians has been known for quite a long time, where the earliest reference we could
find is the paper [20] by Unterberger.

Our paper differs from [14, 15, 16] by using the Weyl quantization as the
basic tool for the description of the oscillator semigroup. It is in some sense paral-
lel to the presentation of the metaplectic group contained in [11, Sect. 10.3]. The
Weyl quantization is in our opinion a natural tool in this context. First of all, it is
symplectically invariant (unlike the Fock–Bargmann transform or the Schrödinger
representation). Because of that, the analysis based on the Weyl quantization is
particularly convenient and yields simple formulas. Secondly, the Weyl quantiza-
tion allows us to make a direct contact with the quantum–classical correspondence
principle. This semiclassical aspect is hidden when one uses the Weyl transform,
which is also symplectically invariant.

An operation, that we introduce, which we find interesting is the prod-
uct # in the set of symmetric matrices. More precisely, it is defined so that
Op
(
e−A

)
Op
(
e−B

)
is proportional to Op

(
− eA#B

)
. Whenever defined, # is as-

sociative, however it is not always well defined. # can be viewed as a semiclassi-
cal noncommutative distortion of the usual sum of square matrices. As we show,
quantum nondegenerate matrices with a positive part form a semigroup, which is
essentially isomorphic to the oscillator semigroup.

Among new results obtained in our paper, there is a formula for the absolute
value of an operator Op

(
e−A

)
, its trace norm and its operator norm.

There exists a close relationship between the set of complex matrices equipped
with # and the complex symplectic group. This relationship is quite intricate–it
is almost a bijection, after removing some exceptional elements in both sets. One
of new results of our paper is a detailed description of this relationship, see in
particular Theorem 18.

An interesting recent paper of Viola [21] gives a formula for the norm of an
element of the oscillator semigroup. Our formula for

∥∥Op
(
e−A

)∥∥ is in our opinion
simpler than Viola’s.

As an application of the formula for the trace norm of Op
(
e−A

)
we give a

proof of the boundedness of the Weyl quantization with an explicit estimate of the
of the operator norm. This result, which is a version of the so-called Calderon–
Vaillancourt Theorem for the Weyl quantization, follows the ideas of Cordes [10]
and Kato [18], however, the estimate of the norm seems to be new.

Elements of the oscillator semigroup can be viewed as exponentials of quan-
tum quadratic Hamiltonians, that is e−Op(H), where H is a classical quadratic
Hamiltonian with a positive real part. One example of such a Hamiltonian is
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Ĥψ := eiψp̂2+e−iψx̂2 for |ψ| < π
2 , which is often called the Davies harmonic oscil-

lator. It has been noted by a number of authors that this operator has interesting,
often counterintuitive properties. In particular, [1] and [21] point out that e−zĤψ

can be defined as a bounded operator only for z that belong to a subset of the
complex plane of a rather curious shape. We reproduce this result using methods
developed in this article.

The oscillator semigroup provides a natural framework for a discussion of
holomorphic semigroups z 7→ e−zOp(H) associated with accretive quadratic Hamil-
tonians Op(H). We briefly discuss this issue at the end of our paper.

Finally, let us mention that one can explicitly compute the Weyl symbol of
various functions of the harmonic oscillator, not only of its exponential. In partic-
ular, formulas in terms of special functions for the Weyl symbol of the resolvent
of the harmonic oscillator can be found in [12]; see also [8], where the inverse of
the harmonic oscillator is considered.

2. Notation
Let L(Cn) denote the set of n× n matrices. For R ∈ L(Cn) we will write R, R#,
resp. R∗ for its complex conjugate, transpose, resp. Hermitian adjoint. Elements
of Cn are represented by column matrices, so that for v, w ∈ Cn the (sesquilinear)
scalar product of v and w can be denoted by v∗w.

By σ(R) we will denote the spectrum of R.
We set

Lreg(Cn) := {R ∈ L(Cn) | R+ 1l is invertible}. (2.1)
For R ∈ Lreg(Cn), its Cayley transform is defined by

c(R) := (1l−R)(1l +R)−1.

The Cayley transform is a bijection on Lreg(Cn) and it is involutive, i.e.,
c(c(R)) = R. (2.2)

For A ∈ L(Cn), we write A > 0, resp. A ≥ 0 if
v∗Av > 0, v ∈ Cn, v 6= 0,

resp. v∗Av ≥ 0, v ∈ Cn.
(2.3)

Sym(Rn), resp. Sym(Cn) denotes the set of symmetric real, resp. complex
n× n matrices. We also set

Sym+(Rn) := {A ∈ Sym(Rn) | A ≥ 0}, (2.4)
Sym++(Rn) := {A ∈ Sym(Rn) | A > 0}, (2.5)
Sym+(Cn) := {A ∈ Sym(Cn) | ReA ≥ 0}, (2.6)

Sym++(Cn) := {A ∈ Sym(Cn) | ReA > 0}. (2.7)
Note that Sym++(Cn) is sometimes called the (generalized) Siegel upper half-plane.
It is sometimes denoted Sn or Sn [16].
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The following proposition can be found in [16]:

Proposition 1. If A ∈ Sym++(Cn), then A−1 exists and belongs to Sym++(Cn).

Proof. Let A = Ar + iAi with Ar ∈ Sym++(Rn), Ai ∈ Sym(Rn). Let B :=
√
Ar,

C := B−1AiB
−1. Then A = B(1l + iC)B and A−1 = B−1(1l + iC)−1B−1. Clearly,

(1l + iC)−1 ∈ Sym++(Cn). Hence A−1 ∈ Sym++(Cn). �

Every n× n symmetric matrix A defines a quadratic form on Rn by
Rn 3 y 7→ y#Ay ∈ C. (2.8)

We will often write A for the function (2.8). Thus, in particular,

e−A(y) = e−y
#Ay.

We will often need to use the square root of a complex number a. If it is
clear from the context that a is positive and real, then

√
a will always denote the

positive square root. If a is a priori arbitrary, then ±
√
a will denote both values

of the square root. If a given formula involves only one of possible values of the
square root, then we will write ϵ

√
a where ϵ = 1 or ϵ = −1.

3. The Weyl quantization
Recall that for any k ∈ S ′(Rd × Rd

)
Op(k)(x, y) = (2π)−d

∫
k
(x+ y

2
, p
)
eip(x−y) dp (3.1)

is called the Weyl–Wigner quantization of the symbol k, see, e.g., [17, Sect. 18.5]
or [11]. We can recover the symbol of a quantization from its distributional kernel
by

k(x, p) =

∫
Op(k)

(
x+

z

2
, x− z

2

)
e−izp dz. (3.2)

For sufficiently nice functions k,m we can define the star product ∗ (sometimes
called the Moyal star) such that Op(k)Op(m) = Op(k ∗m) holds. On the level of
symbols we have

(k ∗m)(x, p) := e
i
2 (∂x1∂p2−∂p1∂x2 )k(x1, p1)m(x2, p2)

∣∣∣x:=x1=x2
p:=p1=p2

. (3.3)

Write y =

[
x
p

]
, ω :=

[
0 1ld

−1ld 0

]
, and θ :=

[
0 −i1ld
i1ld 0

]
= −iω. One can rewrite

(3.3) in a more compact form:

(k ∗m)(y) = e−
1
2∂y1θ∂y2k(y1)m(y2)

∣∣∣
y:=y1=y2

. (3.4)

Here is an integral form of (3.4):

(k ∗m)(y) = π−2d

∫
dy1

∫
dy2 e

2(y−y1)θ(y−y2)k(y1)m(y2), (3.5)
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(see, e.g., [11, Theorem 8.70(4)]). For the product of three symbols, we have
(k ∗m ∗ n)(y)

= e−
1
2∂y1θ∂y2−

1
2∂y1θ∂y3−

1
2∂y2θ∂y3k(y1)m(y2)n(y3)

∣∣∣
y:=y1=y2=y3

= π−3d

∫
dy1

∫
dy2

∫
dy3 e

(y−y1)θ(y−y2)+(y−y2)θ(y−y3)+(y−y1)θ(y−y3) (3.6)

× e−
1
2 (y−y1)θ(y−y1)−

1
2 (y−y2)θ(y−y2)−

1
2 (y−y3)θ(y−y3)k(y1)m(y2)n(y3)

∣∣∣
y=y1=y2=y3

.

4. Product #

Let A,B ∈ Sym
(
C2d

)
. Suppose that

the matrix
[
θAθ −θ
θ θBθ

]
is invertible. (4.1)

We then define A#B ∈ Sym
(
C2d

)
by

A#B :=

[
−1l
1l

]# [
θAθ −θ
θ θBθ

]−1 [−1l
1l

]
. (4.2)

For the time being, the definition of the product # may seem strange. As we
will soon see in Sect. 6, it is motivated by the product of operators with Gaussian
symbols.

The following proposition gives a condition which guarantees that A#B is
well defined.

Proposition 2. Condition (4.1) holds iff the inverse of (1l + AθBθ) exists. We
then have[

θAθ −θ
θ θBθ

]−1

=

[
(θAθ +B−1)−1 (θ + θBθAθ)−1

−(θ + θAθBθ)−1 (θBθ +A−1)−1

]
=

[
Bθ(1l +AθBθ)−1θ (1l +BθAθ)−1θ
−(1l +AθBθ)−1θ Aθ(1l +BθAθ)−1θ

]
, (4.3)

A#B = (θAθ +B−1)−1 + (θBθ +A−1)−1

+(θ + θAθBθ)−1 − (θ + θBθAθ)−1. (4.4)

Proof. It is well known how to compute an inverse of a 2 × 2 block matrix. This
yields (4.3), which implies (4.4).

Clearly,
θ(1l +AθBθ)#θ = (1l +BθAθ). (4.5)

Therefore, the inverse of (1l +AθBθ) exists iff the inverse of (1l +BθAθ) exists. If
this is the case, then all terms in (4.3) and (4.4) are well defined. �



284 J. Dereziński and M. Karczmarczyk

Proposition 3. The product # is associative, i.e., if A,B,C ∈ Sym
(
C2d

)
and

A#B, B#C, (A#B)#C and A#(B#C) are well defined, then
(A#B)#C = A#(B#C). (4.6)

Besides,
A#0 = 0#A = A, A#(−A) = 0,

A#B = B#A, (−A)#(−B) = −B#A.

Proof. We check that
(A#B)#C = A#(B#C)

=

−1l
0
1l

# θAθ + 1
2θ − 1

2θ − 1
2θ

1
2θ θBθ + 1

2θ − 1
2θ

1
2θ

1
2θ θCθ + 1

2θ

−1 −1l
0
1l

 . (4.7)

(Compare with (3.6)). This yields (4.6). The remaining statements are straight-
forward. �

Note that it is useful to think of # as a noncommutative deformation of the
addition. In fact, we have

A#B = A+B +O(A2 +B2). (4.8)

5. Quantum non-degenerate matrices
Define

Symqnd
(
C2d

)
:=
{
A ∈ Sym

(
C2d

)
: det(1l +Aθ) 6= 0

}
, (5.1)

Symqnd
++

(
C2d

)
:=
{
A ∈ Sym++

(
C2d

)
: det(1l +Aθ) 6= 0

}
, (5.2)

Symqnd
(
R2d

)
:=
{
A ∈ Sym

(
R2d

)
: det(1l +Aθ) 6= 0

}
, (5.3)

Symqnd
++

(
R2d

)
:=
{
A ∈ Sym++

(
R2d

)
: det(1l +Aθ) 6= 0

}
. (5.4)

(“qnd” stands for quantum non-degenerate).
There are several equivalent formulas for the product (4.2). It is actually not

so obvious to pass from one of them to another. In the following proposition we
give a few of them.

Proposition 4. Let A,B ∈ Symqnd
(
C2d

)
such that (1l +AθBθ)−1 exists. Then

A#B = c
(
c(Aθ)c(Bθ)

)
θ (5.5)

= (1l +Aθ)−1(Aθ +Bθ)(1l +AθBθ)−1(1l +Aθ)θ (5.6)
= (1l +Bθ)(1l +AθBθ)−1(Aθ +Bθ)(1l +Bθ)−1θ (5.7)
= (1l−Aθ)(1l +BθAθ)−1(Aθ +Bθ)(1l−Aθ)−1θ (5.8)
= (1l−Bθ)−1(Aθ +Bθ)(1l +BθAθ)−1(1l−Bθ)θ. (5.9)
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We have
1l +AθBθ = (1l +Aθ)(1l +A#Bθ)−1(1l +Bθ), (5.10)

and A#B ∈ Symqnd
(
C2d

)
.

Proof. To see (5.5), it is enough to show that
c(A#Bθ) = c(Aθ)c(Bθ). (5.11)

Equation (4.4) can be rewritten as
A#B = Bθ(1l +AθBθ)−1θ +Aθ(1l +BθAθ)−1θ

+ (1l +AθBθ)−1θ − (1l +BθAθ)−1θ

= (1l +Bθ)(1l +AθBθ)−1θ − (1l−Aθ)(1l +BθAθ)−1θ.

Therefore,
1l−A#Bθ = (Aθ − 1l)Bθ(1l +AθBθ)−1 + (1l−Aθ)(1l +BθAθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ); (5.12)
1l +A#Bθ = (1l +Bθ)Aθ(1l +BθAθ)−1 + (1l +Bθ)(1l +AθBθ)−1

= (1l +Bθ)(1l +AθBθ)−1(1l +Aθ). (5.13)
Hence,

c(A#Bθ)

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ)(1l +Aθ)−1(AθBθ + 1l)(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l−Bθ)
(
Bθ + (1l +Aθ)−1(1l−Bθ)

)
(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1
(
Bθ + (1l−Bθ)(1l +Aθ)−1

)
(1l−Bθ)(1l +Bθ)−1

= (1l−Aθ)(1l +BθAθ)−1(1l +BθAθ)(1l +Aθ)−1(1l−Bθ)(1l +Bθ)−1

= c(Aθ)c(Bθ).

Thus (5.5) is proven.
Next note that
c(Aθ)c(Bθ) = (1l +Aθ)−1(1l−Aθ)(1l−Bθ)(1l +Bθ)−1

= (1l +Aθ)−1(1l−Aθ −Bθ +AθBθ)(1l +Bθ)−1.
(5.14)

Therefore,
1l− c(Aθ)c(Bθ) = 2(1l +Aθ)−1(Aθ +Bθ)(1l +Bθ)−1 (5.15)
1l + c(Aθ)c(Bθ) = 2(1l +Aθ)−1(1l +AθBθ)(1l +Bθ)−1. (5.16)

Next we insert (5.15) and (5.16) into
A#B = c

(
c(Aθ)c(Bθ)

)
θ (5.17)

=
(
1l− c(Aθ)c(Bθ)

)(
1l + c(Aθ)c(Bθ)

)−1
θ (5.18)

=
(
1l + c(Aθ)c(Bθ)

)−1(
1l− c(Aθ)c(Bθ)

)
θ, (5.19)
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obtaining (5.6), resp. (5.7).
We know that A#B is symmetric. Applying the transposition to (5.6), resp.

(5.7), we obtain (5.8), resp. (5.9), where we use θ# = −θ, A# = A, B# = B.
Equation (5.10) is proven in (5.13). This implies that 1l+A#Bθ is invertible.

Hence A#B ∈ Symqnd
(
C2d

)
. �

The set Symqnd
(
C2d

)
equipped with (4.2) is not a semigroup. It is enough to

see that for A = B =

[
i 0
0 i

]
we have 1l +AθBθ = 0, so A#B is not defined.

Proposition 5. Sym++

(
C2d

)
is a semigroup.

Proof. Let A and B belong to Sym++

(
C2d

)
. The matrix

[
θAθ −θ
θ θBθ

]
belongs to

Sym++

(
C2d

)
. Hence, so does its inverse. Thus, (4.2) also belongs to Sym++

(
C2d

)
.

This shows that A#B is well defined and belongs to Sym++

(
C2d

)
. �

Proposition 6. Symqnd
++

(
C2d

)
is also a semigroup.

Proof. Let A and B belong to Symqnd
++

(
C2d

)
. We already know that A#B is well

defined, and hence 1l + AθBθ is invertible (see Proposition 2). Using (5.10) and
the invertibility of 1l +Aθ, 1l +Bθ, we can conclude that 1l +A#Bθ is invertible.
Hence A#B ∈ Symqnd

++

(
C2d

)
. �

6. Oscillator semigroup
Following [16, 14], the oscillator semigroup Osc++

(
C2d

)
is defined as the set of

operators on L2
(
Rd
)

whose Weyl symbols are centered Gaussian, that is operators

of the form aOp
(
e−A

)
, where a ∈ C, A ∈ Sym++

(
C2d

)
and A(x, p) =

[
x
p

]#
A

[
x
p

]
.

(In [16], this semigroup is denoted by Ω).
There are several equivalent characterizations of Osc++

(
C2d

)
. Here is one of

them:

Proposition 7. Osc++

(
C2d

)
equals the set of operators on L2

(
Rd
)

with cen-
tered Gaussian kernels. More precisely, the integral kernel of aOp

(
e−A

)
for A =[

B D
D# F

]
is ce−C(x,y), where

c =
2−da√
det(F )

, (6.1)
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C(x, y) = −1

4

[
x
y

]# [
1 1
1 −1

] [
B −DF−1D# −iDF−1

−iF−1D# F−1

] [
1 1
1 −1

] [
x
y

]
= −1

4

[
x
y

]# [
c11 c12
c21 c22

] [
x
y

]
,

and

c11 = B −DF−1D# − iDF−1 − iF−1D# + F−1,

c12 = B −DF−1D# + iDF−1 − iF−1D# − F−1,

c21 = B −DF−1D# − iDF−1 + iF−1D# − F−1,

c22 = B −DF−1D# + iDF−1 + iF−1D# + F−1.

Proof. The formula follows by elementary Gaussian integration. The detailed com-
putations can be found in [14]. �

Proposition 8. Let A and B belong to Sym++

(
C2d

)
. Then the following product

formula holds:

Op
(
e−A

)
Op
(
e−B

)
=

ϵ√
det(AθBθ + 1l)

Op
(
e−A#B

)
, (6.2)

where ϵ = 1 or ϵ = −1. Consequently, Osc++

(
C2d

)
is a semigroup and

Osc++

(
C2d

)
3 cOp

(
e−A

)
7→ A ∈ Sym++

(
C2d

)
(6.3)

is an epimorphism.

Proof. Formula (3.5) assures us that

(e−y
#Ay ∗ e−y

#By)(y)

= π−2d

∫
dy1

∫
dy2 exp

(
− 2(y − y2)θ(y − y1)− y#1 Ay1 − y#2 By2

)
= π−2d

∫
dy1

∫
dy2 exp

(
−
[
y1
y2

]# [
A −θ
θ B

] [
y1
y2

]
− 2

[
y1
y2

]# [−θy
θy

])

= det

[
A −θ
θ B

]−1/2

exp

([
−θy
θy

]# [
A −θ
θ B

]−1 [−θy
θy

])
.

(6.4)

Then we check that

det

[
A −θ
θ B

]
= det(1l +AθBθ), (6.5)[

−θy
θy

]# [
A −θ
θ B

]−1 [−θy
θy

]
= −

[
−y
y

]# [
θAθ −θ
θ θBθ

]−1 [−y
y

]
. (6.6)

�
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Again, following [16, 14], we introduce the normalized oscillator semigroup,
denoted Oscnor++

(
C2d

)
, as{

±
√

det(1l +Aθ)Op
(
e−A

)
|A ∈ Symqnd

++

(
C2d

)}
.

(In [16], this semigroup is denoted by Ω0).

Proposition 9. Oscnor++

(
C2d

)
is a subsemigroup of Osc++

(
C2d

)
and

Oscnor++

(
C2d

)
3 ±

√
det(1l +Aθ)Op

(
e−A

)
7→ A ∈ Symqnd

++

(
C2d

)
(6.7)

is a 2–1 epimorphism of semigroups.

Proof. It is enough to check that√
det(1l +Aθ)Op

(
e−A

)√
det(1l +Bθ)Op

(
e−B

)
= ϵ
√

det(1l +A#Bθ)Op
(
e−A#B

)
,

(6.8)

where ϵ = 1 or ϵ = −1. Indeed, (5.10) implies
det(1l +AθBθ) = det(1l +Aθ) det(1l +A#Bθ)−1 det(1l +Bθ). (6.9)

Now we need to use (6.2). �

7. Positive elements of the oscillator semigroup
We define

Symp

(
R2d

)
:=
{
A ∈ Sym++

(
R2d

)
| σ(Aθ) ⊂ [−1, 1]

}
, (7.1)

Symqnd
p

(
R2d

)
:=
{
A ∈ Symp

(
R2d

)
| det(Aθ + 1l) 6= 0

}
. (7.2)

Proposition 10. Let a ∈ C and A ∈ Sym++

(
C2d

)
. Then

(1)
(
aOp

(
e−A

))∗
= aOp

(
e−A

)
.

(2) aOp
(
e−A

)
is Hermitian iff a ∈ R and A ∈ Sym++

(
R2d

)
.

(3) aOp
(
e−A

)
is positive iff a > 0, A ∈ Symp

(
R2d

)
.

Proof. Claims (1) and (2) follow from the obvious identity Op(a)∗ = Op(a).
Let us prove (3). A is a positive definite real matrix and ω is a symplectic

matrix. It is well known, that they can be simultaneously diagonalized, that is,
one can find a basis of R2d such that if we write R2d =

d
⊕
i=1

R2, then ω is the

direct sum of
[
0 1
−1 0

]
and A is the direct sum of

[
λi 0
0 λi

]
with λi > 0. After

an appropriate metaplectic transformation, we can represent the Hilbert space
L2
(
Rd
)

as
d
⊗
i=1

L2(R) and Op
(
e−A

)
can be represented as

d
⊗
i=1

Op
(
e−λi(x

2
i+p

2
i )
)

.
Next we use (1.2) to see that the positivity of Op

(
e−A

)
is equivalent to λi ≤ 1,

i = 1, . . . , d, which in turn is equivalent to σ(Aθ) ⊂ [−1, 1] (the eigenvalues of Aθ
are of the form ±λi). �
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Proposition 11. Symqnd
p

(
R2d

)
=
{
A ∈ Sym++

(
R2d

)
| σ(Aθ) ⊂ ]− 1, 1[

}
.

Proof. We use the basis mentioned at the end of the proof of Proposition 10. �

Proposition 12. det(1l +Aθ) = det(1l +Aθ). Consequently,

Symqnd
(
C2d

)
and Symqnd

++

(
C2d

)
are invariant with respect to complex conjugation.

Proof. We use
θ(1l +Aθ)θ = 1l + θA, (7.3)
(1l + θA)# = 1l−Aθ, (7.4)

1l−Aθ = 1l +Aθ. (7.5)
�

Theorem 13. (1) If A ∈ Sym++

(
C2d

)
, then A#A ∈ Symp

(
R2d

)
.

(2) If A ∈ Symqnd
++

(
C2d

)
, then A#A ∈ Symqnd

p

(
R2d

)
.

Proof. (1) Let A ∈ Sym++

(
C2d

)
. Then

Op
(
e−A

)∗
Op
(
e−A

)
=

1√
det(1l +AθAθ)

e−A#A (7.6)

is a positive operator. Therefore, by Proposition 10(3), A#A ∈ Symp

(
R2d

)
.

(2) Symqnd
++

(
C2d

)
is a semigroup, invariant with respect to the conjugation,

and hence A#A ∈ Symqnd
++

(
C2d

)
. By (1), A#A ∈ Symp

(
R2d

)
. But by definition

Symqnd
p

(
R2d

)
= Symp

(
R2d

)
∩ Symqnd

++

(
C2d

)
. �

8. Complex symplectic group
A linear operator R on R2d is called symplectic if

R#ωR = ω. (8.1)
The set of symplectic operators on R2d will be denoted Sp

(
R2d

)
. It is the well

known symplectic group in dimension 2d.
In our paper a more important role is played by the complex version of the

symplectic group. More precisely, we will say that a complex linear operator R on
C2d is symplectic if (8.1) holds. (Of course, we can replace ω in (8.1) with θ). The
set of complex symplectic operators on C2d will be denoted Sp

(
C2d

)
. It is also a

group, called the complex symplectic group in dimension 2d.
We define

Sp+
(
C2d

)
:=
{
R ∈ Sp

(
C2d

)
| R∗θR ≤ θ

}
, (8.2)

Sp++

(
C2d

)
:=
{
R ∈ Sp

(
C2d

)
| R∗θR < θ

}
. (8.3)
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Both Sp+
(
C2d

)
and Sp++

(
C2d

)
are semigroups satisfying

Sp
(
R2d

)
∩ Sp++

(
C2d

)
= ∅, (8.4)

Sp++

(
C2d

)
⊂ Sp+

(
C2d

)
, (8.5)

Sp
(
R2d

)
⊂ Sp+

(
C2d

)
. (8.6)

We also set
Sph

(
C2d

)
:=
{
R ∈ Sp

(
C2d

)
: R = R−1

}
(8.7)

=
{
R ∈ Sp

(
C2d

)
: R∗θ = θR

}
, (8.8)

Spp
(
C2d

)
:=
{
R ∈ Sph

(
C2d

)
: σ(R) ⊂ ]0,∞[

}
. (8.9)

Below we state a few properties of Sp++

(
C2d

)
and Spp

(
C2d

)
. It will be

convenient to defer their proofs to the next section.

Proposition 14. Spp
(
C2d

)
⊂ Sp++

(
C2d

)
.

Let t > 0. Note that C\ ]−∞, 0] 3 z 7→ zt ∈ C is a well defined holomorphic
function. In the proposition below σ(R) ⊂ ]0,∞[, therefore Rt is well defined.

Proposition 15. Let R ∈ Spp
(
C2d

)
. Then Rt ∈ Spp

(
C2d

)
.

Proposition 16. Let R ∈ Sp++

(
C2d

)
. Then R

−1
R ∈ Spp

(
C2d

)
.

The next result, which is an analog of the polar decomposition, was noted by
Howe (see [16, Proposition (23.7.2)]):

Proposition 17. Every R ∈ Sp++

(
C2d

)
may be decomposed in the following way:

R = TS, (8.10)

where T := R
√
R

−1
R ∈ Sp

(
R2d

)
and S :=

√
R

−1
R ∈ Spp

(
C2d

)
.

9. Relationship between Sym and symplectic group
Let us define

Spreg
(
C2d

)
=
{
R ∈ Sp

(
C2d

)
| R+ 1l is invertible

}
, (9.1)

Spregh

(
C2d

)
=
{
R ∈ Sph

(
C2d

)
| R+ 1l is invertible

}
. (9.2)

Theorem 18. (1) Symqnd
(
C2d

)
3 A 7→ c(Aθ) ∈ Spreg

(
C2d

)
is a bijection. Its

inverse is
Spreg

(
C2d

)
3 R 7→ c(R)θ ∈ Symqnd

(
C2d

)
. (9.3)

Besides, if A,B ∈ Symqnd
(
C2d

)
and A#B ∈ Symqnd

(
C2d

)
is well defined,

then
c(A#Bθ) = c(Aθ)c(Bθ). (9.4)

(2) Symqnd
++

(
C2d

)
3 A 7→ c(Aθ) ∈ Sp++

(
C2d

)
is an isomorphism of semigroups.

(3) Symqnd
(
R2d

)
3 A 7→ c(Aθ) ∈ Spregh

(
C2d

)
is a bijection.
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(4) Symqnd
p

(
R2d

)
3 A 7→ c(Aθ) ∈ Spp

(
C2d

)
is a bijection.

Proof. (1) Let A ∈ Symqnd
(
C2d

)
. Then,

c(Aθ)#θc(Aθ) = (1l− θA)−1(1l + θA)θ(1l−Aθ)(1l +Aθ)−1

= (1l− θA)−1(1l− θAθAθ)(1l +Aθ)−1

= (1l− θA)−1(1l− θA)θ(1l +Aθ)(1l +Aθ)−1 = θ.

Hence, c(Aθ) ∈ Sp
(
C2d

)
.

Conversely, let R ∈ Spreg
(
C2d

)
. Then(

(1l−R)(1l +R)−1θ
)#

= −θ(1l +R#)−1(1l−R#)

= −(θ +R#θ)−1(1l−R#) = −
(
θ(1l +R−1)

)−1
(1l−R#)

= −(1l +R−1)−1(θ − θR#) = −(1l +R−1)−1(1l−R−1)θ

= (1l +R)−1(1l−R)θ.

Hence, c(R)θ ∈ Sym
(
C2d

)
.

Clearly, Aθ + 1l is invertible iff c(Aθ) ∈ Lreg
(
C2d

)
. Thus

Symqnd
(
C2d

)
3 A 7→ c(Aθ) ∈ Spreg

(
C2d

)
is a bijection.

To see (9.4) it is enough to use (5.5).
(2) We have

c(Aθ)∗θc(Aθ) = (1l + θA)−1(1l− θA)θ(1l−Aθ)(1l +Aθ)−1

= (1l + θA)−1(1l− θAθ − θAθ + θAθAθ)(1l +Aθ)−1

= θ − 2(1l + θA)−1θ(A+A)θ(1l +Aθ)−1.

Thus,
c(Aθ)∗θc(Aθ) < θ (9.5)

iff A+A > 0. Hence Symqnd
++

(
C2d

)
3 A 7→ c(Aθ) ∈ Sp++

(
C2d

)
is a bijection. It is

a homomorphism because of (9.4).
(3) Let A ∈ Symqnd

(
R2d

)
. Then

c(Aθ) =
1l +Aθ

1l−Aθ
= c(Aθ)−1. (9.6)

Hence, c(Aθ) ∈ Sph
(
C2d

)
.

Conversely, let R ∈ Spregh

(
C2d

)
. Then

(1l−R)(1l +R)−1θ = −(1l−R)(1l +R)−1θ (9.7)
= −(1l−R−1)(1l +R−1)−1θ = (1l−R)(1l +R)−1θ. (9.8)

Hence, c(R)θ ∈ Sym
(
R2d

)
.
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(4) Clearly,

λ ∈ ]− 1, 1[ iff 1− λ

1 + λ
∈ ]0,∞[.

Therefore,
σ(Aθ) ⊂ ]− 1, 1[ iff σ

(
c(Aθ)

)
⊂ ]0,∞[.

Then we use the characterization of Symqnd
p

(
R2d

)
given in Proposition 11. �

Proof of Proposition 14. Let R ∈ Spp
(
C2d

)
. By Theorem 18(4),

c(R)θ ∈ Symqnd
p

(
R2d

)
.

Proposition 11 implies that c(R)θ ∈ Symqnd
++

(
R2d

)
. Now Theorem 18(2) shows that

R = c
(
(c(R)θ)θ

)
∈ Sp++

(
C2d

)
. �

Proof of Proposition 15. Let R ∈ Spp
(
C2d

)
.

Functional calculus of operators is invariant with respect to similarity trans-
formations. Therefore, R#(−1) = θRθ−1 implies R#(−t) = θRtθ−1. Hence Rt ∈
Sp
(
C2d

)
.

R = R−1 implies Rt = (Rt)−1. Hence, Rt ∈ Sph
(
C2d

)
.

σ(R) ⊂ ]0,∞[ implies σ(Rt) ⊂ ]0,∞[. Hence Rt ∈ Spp
(
C2d

)
. �

Proof of Proposition 16. Theorem 18(2) assures us that we can find a matrix A ∈
Symqnd

++

(
R2d

)
, such that c(Aθ) = R. By Theorem 13(2), A#A ∈ Symqnd

p

(
R2d

)
.

Now we may use Theorem 18(4) to see that c(A#Aθ) ∈ Spp
(
C2d

)
.

It is easy to check that R−1
= c(Aθ). Moreover, by (9.4),

R
−1
R = c

(
Aθ
)
c(Aθ) = c

(
A#Aθ

)
. (9.9)

Therefore, R−1
R ∈ Spp

(
C2d

)
. �

Proof of Proposition 17. By Proposition 16, we have R
−1
R ∈ Spp

(
C2d

)
, while

Proposition 15 yields S :=
√
R

−1
R ∈ Spp

(
C2d

)
. Clearly, R ∈ Sp

(
C2d

)
. Hence,

T := RS ∈ Sp
(
C2d

)
.

T = RS = RS−1 = RS−2S = RR−1RS = T. (9.10)

Therefore, T := RS ∈ Sp
(
R2d

)
. �

Theorem 19. The map

Oscnor++

(
C2d

)
3 ±

√
det(1l +Aθ)Op

(
e−A

)
7→ c(Aθ) ∈ Sp++

(
C2d

)
is a 2–1 epimorphism of semigroups.

Proof. We use Proposition 9 and Theorem 18(2). �
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10. Metaplectic group
It is easy to see that if C ∈ Sym

(
R2d

)
, then c(Cω) ∈ Sp

(
R2d

)
. In fact, elements

of this form constitute an open dense subset of Sp
(
R2d

)
.

We define Mp(R2d), called the metaplectic group in dimension 2d, to be the
group generated by operators of the form

±
√

det(1l + Cω)Op
(
e−iC

)
, C ∈ Sym

(
R2d

)
. (10.1)

The theory of the metaplectic group is well known, see, e.g., [11, Sect. 10.3.1].
We assume that the reader is familiar with its basic elements. Actually, we have
already used it in our proof of Proposition 10(3).

The theory of the metaplectic group can be summed up by the following
theorem:

Theorem 20. The metaplectic group consists of unitary operators. Operators of
the form (10.1) constitute an open and dense subset of Mp(R2d). The map

±
√

det(1l + Cω)Op
(
e−iC

)
7→ c(Cω) (10.2)

extends by continuity to a 2–1 epimorphism Mp
(
R2d

)
→ Sp

(
R2d

)
Remark 1. For completeness, one should mention some other natural semigroups
closely related to Osc++

(
C2d

)
:

1. Osc+
(
C2d

)
generated by operators aOp(e−A) with A ∈ Sym+

(
C2d

)
, a ∈ C;

2. Oscnor+

(
C2d

)
generated by operators of the form ±

√
det(1l +Aθ)Op

(
e−A

)
with A ∈ Sym+

(
C2d

)
.

11. Polar decomposition
For an operator V , its absolute value is defined as

|V | :=
√
V ∗V . (11.1)

The following theorem provides a formula for the absolute value of elements of the
oscillator semigroup.

Theorem 21. Let A ∈ Symqnd
++

(
C2d

)
. Then

∣∣Op(e−A)
∣∣ = 4

√
det
(
1l + (Bθ)2

)
4

√
det(1l +AθAθ)

Op
(
e−B

)
, (11.2)

where
B = c

(√
c(Aθ)c(Aθ)

)
θ. (11.3)

Besides, the function
Symqnd

++

(
C2d

)
3 A 7→

∣∣Op
(
e−A

)∣∣
is smooth.
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Proof. By Proposition 16, c(Aθ)c(Aθ) = c(Aθ)
−1
c(Aθ) ∈ Spp

(
C2d

)
. Hence, by

Proposition 15, we can define
√
c(Aθ)c(Aθ) ∈ Spp

(
C2d

)
. Therefore, B defined in

(11.3) belongs to Symqnd
p

(
R2d

)
and satisfies A#A = B#B.

We have
Op
(
e−B

)2
=

1√
det(1l + (Bθ)2

Op
(
e−B#B

)
. (11.4)

Hence,

Op
(
e−A

)∗
Op
(
e−A

)
=

√
det
(
1l + (Bθ)2

)√
det(1l +AθAθ)

Op
(
e−B

)2
. (11.5)

Besides, Op
(
e−B

)
≥ 0. Therefore,

∣∣Op
(
e−A

)∣∣ is given by (11.2).
Now the square root is a smooth function on the set of invertible matrices

(and obviously on the set of nonzero numbers). In the formula (11.3) for A ∈
Symqnd

++

(
C2d

)
, we never need to take roots of zero or of non-invertible matrices,

because 1l±Aθ and 1l±Aθ are invertible. Therefore,

Symqnd
++

(
C2d

)
3 A 7→

√
c(Aθ)c(Aθ) (11.6)

is smooth. Therefore, the map A 7→ B is smooth
For A ∈ Symqnd

++

(
C2d

)
, A,B ∈ Symqnd

++

(
C2d

)
. Therefore, by Proposition 5.10,

1l+AθAθ and 1l+(Bθ)2 are invertible. Hence, the prefactors of (11.2) are smooth.
This ends the proof of the smoothness of (11.2). �

Let V be a closed operator such that KerV = KerV ∗ = {0}. Then it is well
known that there exists a unique unitary operator U such that we have the identity

V = U |V |. (11.7)
called the polar decomposition.

Theorem 22. Let A ∈ Symqnd
++

(
C2d

)
. Let B ∈ Symqnd

p

(
C2d

)
be defined as in

(11.3). Then ∣∣∣√det(1l +Aθ)Op
(
e−A

)∣∣∣ =√det(1l +Bθ)Op
(
e−B

)
, (11.8)

and the unitary operator U that appears in the polar decomposition√
det(1l +Aθ)Op

(
e−A

)
= U

√
det(1l +Bθ)Op

(
e−B

)
(11.9)

belongs to Mp
(
R2d

)
. Besides, if

iC := A#(−B) (11.10)
is well defined, then

U = ϵ
√
det(1l + Cω)Op

(
e−iC

)
, (11.11)

where ϵ = 1 or ϵ = −1.
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Proof. By (5.10),

1l +AθAθ = (1l +Aθ)(1l +A#Aθ)−1(1l +Aθ), (11.12)
1l +BθBθ = (1l +Bθ)(1l +B#Bθ)−1(1l +Bθ), (11.13)

Besides, A#A = B#B. This together with (11.2) implies (11.8).
Assume now that iC := A#(−B) is well defined. Then clearly√

det(1l +Aθ)Op
(
e−A

)
= ϵ
√

det(1l +Bθ)Op
(
e−B

)√
det(1l + iCθ)Op

(
e−iC

)
.

(11.14)

It remains to show that iC is purely imaginary.

A#(−B) = (−B)#A = (−B)#A#A(−A) (11.15)
= (−B)#B#B#(−A) (11.16)
= B#(−A) = −A#(−B). (11.17)

�

12. Trace and the trace norm
Suppose we have an operator K on L2

(
Rd
)
. As proven in [13] (for a more general

setting, see [4, 5]), if K has a continuous kernel K(x, y) belonging to L2
(
Rd×Rd

)
and x 7→ K(x, x) is in L1

(
Rd
)
, then

TrK =

∫
K(x, x) dx. (12.1)

In the case of Weyl–Wigner quantization, for a symbol k we get

TrOp(k) =

∫
Op(k)(x, x) dx = (2π)−d

∫
k(x, ξ) dxdξ. (12.2)

This easily implies the following proposition:

Proposition 23. The trace of operator Op
(
e−A

)
with A ∈ Sym++

(
C2d

)
is

TrOp
(
e−A

)
=

1

2d
√
detA

=
1

2d
√
detAθ

. (12.3)

(Note that det θ = 1, hence we could insert θ in (12.3)).
One can also compute the trace of the absolute value of elements of the

oscillator semigroup, the so-called trace norm.

Theorem 24. The trace norm of Op
(
e−A

)
, where A ∈ Sym++

(
C2d

)
, is

Tr
∣∣Op

(
e−A

)∣∣ = √
2

2d
√

det |(1l +Aθ)(1l−
√
c(A∗θ)c(Aθ))|

. (12.4)
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Proof. Equations (12.3) and (11.2) imply

Tr
∣∣Op

(
e−A

)∣∣ = 4

√
det
(
1l + (Bθ)2

)
2d 4

√
det(1l +AθAθ)(Bθ)2

. (12.5)

Now, easy algebra shows that
det
(
1l + (Bθ)2

)
det(1l +AθAθ)(Bθ)2

=
2det

(
1l + c(Aθ)c(Aθ)

)
det(1l +AθAθ)

(
1l−

√
c(Aθ)c(Aθ)

)2
=

4

det(1l +Aθ)(1l +Aθ)
(
1l−

√
c(Aθ)c(Aθ)

)2
=

22(
det
∣∣∣(1l +Aθ)

(
1l−

√
c(Aθ)c(Aθ)

)∣∣∣)2 . �

Corollary 25. The trace norm of Op
(
e−B

)
, where B ∈ Sym++

(
R2d

)
, is

Tr
∣∣Op

(
e−B

)∣∣ = √
2

2d
√

det
∣∣|1l +Bθ| − |1l−Bθ|

∣∣ . (12.6)

Thus, if we diagonalize simultaneously B and ω, as in the proof of Proposi-
tion 10, then

Tr
∣∣Op

(
e−B

)∣∣ = √
2

4d
∏
λi<1

λi
. (12.7)

13. Operator norm
Proposition 26. Let B ∈ Sym++

(
R2d

)
. Then∥∥Op

(
e−B

)∥∥ =
1√

det(1l +
√
BθBθ)

. (13.1)

Proof. First, using (1.2), we check that in the case of one degree of freedom we
have ∥∥∥Op

(
e−λ(x

2+p2)
)∥∥∥ =

1

1 + λ
. (13.2)

An arbitrary B we can diagonalize together with θ, as in the proof of Proposi-
tion 10(3), and then we obtain∥∥Op

(
e−B

)∥∥ =
d∏
i=1

1

1 + λi
. (13.3)

Now the right-hand side of (13.3) can be rewritten as the right-hand side of (13.1).
�
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Using (11.8), we obtain an identity for an arbitrary element of the oscillator
semigroup. A closely related result is described in [21, Theorem 5.2].

Theorem 27. Let A ∈ Sym++

(
C2d

)
. Then∥∥√det(1l +Aθ)Op

(
e−A

)∥∥
=

√
det
(
1l + c

(√
c(Aθ)c(Aθ)

))
√

det
(
1l +

√
c
(√

c(Aθ)c(Aθ)
)
c
(√

c(Aθ)c(Aθ)
)) . (13.4)

14. One degree of freedom
In the case of one degree of freedom we have a complete characterization of quan-
tum nondegenerate symmetric matrices.

Theorem 28. Let A ∈ Sym
(
C2
)
. Then A ∈ Symqnd

(
C2
)

iff detA 6= 1.

Proof. We easily compute that for A ∈ Sym
(
C2
)
,

det(1l +Aθ) = 1− detA. �

Next we describe the quantum degenerate case for one degree of freedom on
the level of the oscillator group.

Theorem 29. Elements of Osc++

(
C2
)

that are not proportional to an element of
Oscnor++

(
C2
)

are proportional to a projection. They have the integral kernel of the
form

ce−(ax2+by2), (14.1)

where a, b, c ∈ C, Re a,Re b > 0. The Weyl symbol of the operator with the kernel
(14.1) is

c
2
√
π√

a+ b
e−A, (14.2)

where

A =
1

(a+ b)

[
4ab i(−a+ b)

i(−a+ b) 1

]
. (14.3)

Matrices of the form (14.3) with Re a,Re b > 0 are precisely all matrices in

Sym++

(
C2
)
\Symqnd

++

(
C2
)
. (14.4)
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15. Application to the boundedness of pseudo-differential
operators

Cordes proved the following result [10]:

Theorem 30. Suppose k ∈ S ′(Rd×Rd
)

and s > d
2 . Then there exists a constant

cd,s such that
‖Op(k)‖ 6 cd,s‖(1−∆x)

s(1−∆p)
sk‖∞. (15.1)

The above result can be called the Calderón and Vaillancourt Theorem for
the Weyl quantization. (The original result of Calderón and Vaillancourt [9] con-
cerned the x − p quantization, known also as the standard or Kohn–Nirenberg
quantization).

Note that Theorem 30 is not optimal with respect to the number of deriva-
tives. The optimal bound on the number of derivatives for the Weyl quantization
is s > d

4 . It was discovered by A. Boulkhemair [3] and it requires a different proof
than the one developed by Cordes.

In what follows we will describe a proof of Theorem 30 which gives an estimate
of cd,s. We will follow the ideas of Cordes and Kato ([10] and [18]), who however
do not give an explicit bound on the constant cd,s. The estimate (1.4) for the trace
norm of operators with Gaussian symbols plays an important role in our proof.

We start with the following proposition.

Proposition 31. For s > d
2 , define the functions

ψs(ξ) := (2π)−d
∫

dζ (1 + ζ2)−seiζξ, (15.2)

Ps(x, p) := ψs(x)ψs(p). (15.3)

Then Op(Ps) is of trace class and

Tr
∣∣∣Op(Ps)

∣∣∣ ≤ Γ(s)2 + Γ(s− d
2 )

2

(2π)dΓ(s)2
. (15.4)

Proof. Let us use the so-called Schwinger parametrization

X−s =
1

Γ(s)

∫ ∞

0

e−tXts−1 dt (15.5)

to get

ψs(ξ) =
1

Γ(s)(2π)d

∫ ∞

0

dt

∫
dζ e−t(1+ζ

2)ts−1eiζξ

=
1

π
d
2 2dΓ(s)

∫ ∞

0

dt ts−
d
2−1e−t−

ξ2

4t .

(15.6)
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Now

Ps(x, p) =
1

πd22dΓ2(s)

∫ ∞

0

du

∫ ∞

0

dve−u−v−
x2

4u− p2

4v (uv)s−
d
2−1. (15.7)

By (1.4), we have

Tr
∣∣∣Op

(
e−αx

2−βp2))∣∣∣ = { 1
(2

√
αβ)d

, αβ ≤ 1,
1
2d
, 1 ≤ αβ.

(15.8)

Hence,

Tr
∣∣∣Op(Ps)

∣∣∣
≤ 1

22dπdΓ2(s)

∫ ∞

0

du

∫ ∞

0

dve−u−vTr
∣∣∣Op

(
e−

x2

4u− p2

4v

)∣∣∣(uv)s− d
2−1

≤ 1

2dπdΓ2(s)

( ∫
du

∫
dv

4≤uv, u,v>0

e−u−v(uv)s−1 +

∫
du

∫
dv

uv≤4, u,v>0

e−u−v(uv)s−
d
2−1

)

≤
Γ(s)2 + Γ(s− d

2 )
2

2dπdΓ2(s)
.

(15.9)

�

Proposition 32. Let B be a self-adjoint trace class operator and h ∈ L∞(R2d).
Then

C :=
1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂Beiyp̂−iwx̂ (15.10)

is bounded and
‖C‖ ≤ Tr |B| ‖h‖∞. (15.11)

Proof. For Φ ∈ L2
(
Rd
)
, ‖Φ‖ = 1, define TΦ : L2

(
Rd
)
→ L2

(
R2d

)
by

TΦΘ(y, w) := (2π)−
d
2

(
Φ|eiyp̂−iwx̂Θ

)
, Θ ∈ L2

(
R2d

)
. (15.12)

We check that TΦ is an isometry. This implies that for Φ,Ψ ∈ L2
(
Rd
)

of norm one
1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂|Φ)(Ψ|eiyp̂−iwx̂ (15.13)

is bounded and its norm is less than ‖h‖∞. Indeed, (15.13) can be written as the
product of three operators

T ∗
ΦhTΨ, (15.14)

where h is meant to be the operator of the multiplication by the function h on the
space L2(R2d). Now it suffices to write

B =
∞∑
i=1

λi|Φi)(Ψi|, (15.15)
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where Φi,Ψi are normalized, λi ≥ 0 and Tr |B| =
∞∑
i=1

λi. �

Proof of Theorem 30. Set
h := (1−∆x)

s(1−∆p)
sk. (15.16)

Then
k(x, p) = (1−∆x)

−s(1−∆p)
−sh(x, p)

=

∫
dy

∫
dwPs(x− y, p− w)h(y, w).

(15.17)

Hence

Op(k) =

∫
dy

∫
dwOp

(
Ps(x− y, p− w)

)
h(y, w)

=
1

(2π)d

∫
dy

∫
dwh(y, w)e−iyp̂+iwx̂Op(Ps)e

iyp̂−iwx̂.

(15.18)

Therefore, by Proposition 32,
‖Op(k)‖ ≤ Tr

∣∣Op(Ps)
∣∣‖h‖∞. (15.19)

Thus we can set
cd,s = Tr

∣∣Op(Ps)
∣∣, (15.20)

which is finite by Proposition 31. �
Proposition 31 yields an explicit estimate for cd,s given by the right-hand

side of (15.4). Actually, in the proof of Proposition 31 we have an even better,
although more complicated explicit estimate given by (15.9).

16. Complex symplectic Lie algebra
The well known symplectic Lie algebra in dimension 2d is defined as the set of
R ∈ L(R2d) satisfying

R#ω + ωR = 0. (16.1)
Similarly, the set of R ∈ L(C2d) satisfying (16.1) is called the complex symplectic
Lie algebra in dimension 2d and denoted sp(C2d). As usual in the complex case,
we usually prefer to replace ω in (16.1) with θ.

We define
sp+(C2d) := {D ∈ sp(C2d) | D∗θ + θD ≥ 0}, (16.2)
sp++(C2d) := {D ∈ sp(C2d) | D∗θ + θD > 0}. (16.3)

We also introduce
sph(C2d) := {D ∈ sp(C2d) | D = −D}, (16.4)
spp(C2d) := {D ∈ sph(C2d) | θD > 0}. (16.5)

Proposition 33. (1) Let D ∈ sp(C2d). Then e−D ∈ Sp(C2d).
(2) Let D ∈ sp++(C2d). Then e−D ∈ Sp++(C2d).
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(3) Let D ∈ sph(C2d). Then e−D ∈ Sph(C2d).
(4) Let D ∈ spp(C2d). Then e−D ∈ Spp(C2d).

Proof. Claims (1) and (3) are obvious corollaries from the definitions.
(2) Integrating

d

dt
(e−tD)∗θe−tD = −(e−tD)∗(D∗θ + θD)e−tD < 0, (16.6)

we obtain (e−D)∗θe−D < θ.
(4) We can write

e−D = e−θ(θD).

We diagonalize simultaneously the positive form θD and θ. In the diagonalizing
basis, the matrices θ and θD commute, the former has eigenvalues ±1, the latter
has positive eigenvalues. Hence e−D has positive eigenvalues. �

17. Hamiltonians
Let H ∈ Sym(C2d). As usual, the quadratic form R2d 3 y 7→ y#Hy ∈ C will
be also denoted by H. Let us briefly recall the properties of quantum quadratic
Hamiltonians Op(H) and their relationship to the metaplectic group. We will use
[11] as the basic reference, although most of these facts are well known.

Set
D := 2Hω−1. (17.1)

Clearly, D ∈ sp(C2d). We will say that D is the symplectic generator associated
with the Hamiltonian H.

First assume that H ∈ Sym(R2d). It is well known that then Op(H) is essen-
tially self-adjoint on S(Rd) (see, e.g., [11, Theorem 10.21]). Moreover, eitOp(H) ∈
Mp(R2d) (see, e.g., [11, Theorem 10.36]). Under the epimorphism 10.2, eitOp(H)

is mapped onto etD, where D ∈ sp(R2d) is defined by (17.1) (see, e.g., [11, Theo-
rem 10.22]). Finally, if etD ∈ Spreg(R) and Ct := c(etD)ω−1,

eitOp(H) =
√
det(1 + Ctω)Op(e−iCt), (17.2)

see, e.g., [11, Theorem 10.35].
Next consider H ∈ Sym++(C2d). It is easy to show that Op(H) extends

from S(Rd) to a maximal accretive operator (see, e.g., [11, Theorem 10.21]).
Moreover, e−tOp(H) ∈ Oscnor++(C2d). In fact, if D is defined as in (17.1), then
−iD ∈ sp++(C2d), and hence by Proposition 33(2), eitD ∈ Sp++(C2d). More-
over, under the epimorphism (6.7), e−tOp(H) is mapped onto eitD. Finally, if we
set At := c(eitD)θ, then

e−tOp(H) =
√
det(1l +Atθ)Op(e−At), (17.3)

see, e.g., in [11, Theorem 10.35].
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18. Holomorphic 1-parameter subsemigroups
Let H ∈ Sym++(C2d). As we recalled above, Op(H) is maximally accretive, and
hence

[0,∞[3 t 7→ e−tOp(H) (18.1)
is a well defined subsemigroup of Osc++(C2d). One can ask whether it can be
extended to a larger subsemigroup if we replace real t with a complex parameter.

If H is real, then the answer is obvious and simple. Then Op(H) is a positive
self-adjoint operator and we have a well defined semigroup

{z ∈ C | Re z ≥ 0} 3 z 7→ e−zOp(H) (18.2)

inside Osc+
(
C2d

)
. For Re z > 0, (18.2) is in Osc++

(
C2d

)
.

If H is not real, then the answer can be more complicated.
Let D ∈ sp++(C2d) correspond to H as in (17.1). Clearly

C 3 z 7→ eizD ∈ Sp
(
C2d

)
(18.3)

is a holomorphic subgroup of Sp(C2d). However, not all elements of the complex
symplectic group correspond to (bounded) operators on the Hilbert space. Moti-
vated by this, we define

A+(H) := {z ∈ C | eizD ∈ Sp+
(
C2d

)
}, (18.4)

A++(H) := {z ∈ C | eizD ∈ Sp++

(
C2d

)
}. (18.5)

From the definition it is obvious that A+(H) is a closed subsemigroup of C and
A++(H) is an open subsemigroup of A+(H).

If z ∈ A++(H), then we define

Az := c(eizD)θ ∈ Sym++

(
C2d

)
, (18.6)

e−zOp(H) :=
√
det(1l +Azθ)Op

(
e−Az

)
. (18.7)

(The definition of (18.7) is consistent with the usual definition of e−zOp(H) for real
positive z).

The shapes of A+(H) and A++(H) can be quite curious. This is already seen
in the simplest nontrivial example, known under the name of the Davies harmonic
oscillator, as shown in [1], see also [21]. In this example, ψ ∈ ]− π

2 ,
π
2 [ is a parameter,

the classical and quantum Hamiltonians and the generator are

Hψ := eiψx2 + e−iψp2, (18.8)
Ĥψ := Op(Hψ) = eiψx̂2 + e−iψp̂2, (18.9)

Dψ := 2

[
0 −eiψ

e−iψ 0

]
. (18.10)

The proposition below reproduces the result of Aleman and Viola (see (1.2) of [1]).
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Proposition 34. Let Hψ be the Davies’ harmonic oscillator, as above. Then

A+(Hψ) =
{
z ∈ C | Re (z) ≥ 0 and | arg tanh z|+ |ψ| 6 π

2

}
, (18.11)

A++(Hψ) =
{
z ∈ C | Re (z) > 0 and | arg tanh z|+ |ψ| < π

2

}
. (18.12)

Proof. iDψ generates a holomorphic group in Sp
(
C2d

)
, which can be computed

using D2
ψ = −41l as

eizDψ =

[
cosh 2z ieiψ sinh 2z

−ie−iψ sinh 2z cosh 2z

]
. (18.13)

Now
Aψ,z = c(eizDψ )θ = 2 tanh z

[
e−iψ 0
0 eiψ

]
. (18.14)

Let us denote t := arg tanh z. Aψ,z belongs to Sym++

(
C2d

)
iff Re (z) > 0

and {
|t+ ψ| < π

2 ,

|t− ψ| < π
2 .

(18.15)

The above pair of inequalities is equivalent to

|t|+ |ψ| < π

2
. (18.16)

By Theorem 18(2), Aψ,z ∈ Sym++

(
C2d

)
iff eizDψ ∈ Sp++

(
C2d

)
.

The proof for A+

(
Hψ

)
is analogous. �
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A resonance interaction of seismogravitational
modes on tectonic plates
Victor Flambaum, Gaven Martin and Boris Pavlov

In memory of our colleague and friend Boris Sergeevich Pavlov

Abstract. This paper discusses resonance effects to advance a classical earth-
quake model, namely the celebrated M8 global test algorithm. This algorithm
gives high confidence levels for prediction of Time Intervals of Increased Prob-
ability (TIP) of an earthquake. It is based on observation that almost 80% of
earthquakes occur due to the stress accumulated from previous earthquakes
at the location and stored in form of displacements against gravity and static
elastic deformations of the plates. Nevertheless the M8 global test algorithm
fails to predict some powerful earthquakes. In this paper we suggest the addi-
tional possibility of considering the dynamical storage of the elastic energy on
the tectonic plates due to resonance beats of seismogravitational oscillations
(SGO) modes of the plates. We make sure that the tangential compression
in the middle plane of an “active zone” of a tectonic plate may tune its SGO
modes to the resonance condition of coincidence the frequencies of the corre-
sponding localized modes with the delocalized SGO modes of the complement.
We also consider the beats arising between the modes under a small perturba-
tions of the plates, and, assuming that the discord between the perturbed and
unperturbed resonance modes is strongly dominated by the discord between
the non-resonance modes estimate the energy transfer coefficient.

1. Exterior and interior dynamics of tectonic plates
The “M8 Global test algorithm” (see [12] and references) for earthquake prediction
was designed in 1984 at the International Institute of Earthquake Prediction and
Mathematical Geophysics (Moscow) based on the observation that almost 80% of
actual events at the selected location arise due to the stress built up thanks to
previous events at the corresponding earthquake-prone (active) zone. J.K. Gardner
and L. Knopoff observed that a sequence of earthquakes in Southern California,
with aftershocks removed, was Poissonian [7]. Since then a mix of statistical and
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analytical techniques through the results of a global 20-year long experiment gave
indirect confirmation of common features of both the predictability and the diverse
behaviour of the Earth’s naturally fractal lithosphere. The statistics achieved to
date prove (remarkably with confidence above 99%) the rather high efficiency of
the M8 and M8-MSc predictions limited to intermediate-term middle- and narrow-
range accuracy. These models also adaptable, see e.g. [25]. There are other models,
we note those found in the works Turcotte and Schubert [35] and Dahlen and
Tromp [5], and our ideas may have implications for these as well, though we do
not give specific details here.

The analytical and mechanical arguments used to derive the various models
are based on the assumption, that for the most part, the energy at the active zone
is stored in the form of static elastic deformation and the displacement of tectonic
plates in the gravitational field.

Though both M8 and the improved MSc algorithms are extremely efficient
for prediction of the Time intervals of Increased Probability (TIP) of earthquakes,
some highly dangerous events, such as the recent Tohoku earthquake (Japan,March
11, 2011) were not predicted. In Tohoku the “black box” constructed based on the
above algorithms, removed the TIP warning from the list of expected earthquakes
at the Tohoku location 70 days before the earthquake, see the retrospective analysis
of the Global Test effectiveness given by Kossobokov in [14].

The mechanical arguments for these algorithms are derived from the idea of
quasi-statical (adiabatic) variation of the potential energy of the plates during the
periods between earthquakes while the tectonic plates participate in the “exterior”
dynamics, such as floating of (fragments of) the plates down the slopes formed
by previous earthquakes, or responding to the hydrodynamical oscillations in the
resonance cavities at the earthquake-prone (active) zones filled with magma, see
for instance, [31].

On the other hand, earthquakes do arise within a background formed by
oscillations of the planet. Many seismologists study these typical oscillations with
amplitudes within ∼ 0.2–0.5 cm, and periods of circa a few minutes. However
interesting anomalies with periods of circa 10 minutes were noticed by G.A.Sobolev
and A.A. Lyubushkin, see [32], in the course of their analysis of seismological data
preceding the Sumatra earthquake on December 26, 2004, recorded in the remote
zone of the earthquake. Moreover, some decaying periodic patterns, see Fig. 4
in [32], were noticed on the relevant spectral-temporal (time-spectral) cards, see
below, with the periods ∼ 100 min. On diagram 7 of the same paper one can see
decaying patterns with even greater periods ∼ 2400 min arising prior the major
earthquake. Unfortunately the authors of [32] did not consider these as important
details and did not develop any extended analysis of them in their paper.

Approximately a decade before this, see [18], long periodic oscillation pat-
terns, with periods ∼ 40–70 minutes, were registered by E. M. Linkov using a
“vertical pendulum”, constructed especially for studying Seismogravitational Os-
cillations (SGO) of the Earth. These oscillations have been intensely monitored
during the last decade, see, for instance, [27, 28], as an important component of
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the “interior dynamic” of the plates. They form a natural dynamical background
of catastrophic events such as earthquakes, tsunami and volcanic eruptions. Moni-
toring of SGO confirmed the hypothesis [26, 29] of their spectral nature. According
to [29], the SGO should be interpreted as decaying flexural (vertical) eigenmodes
of large tectonic plates with linear size up to few thousands kilometers.

The typical energy of the mode may be estimated based on spectral (fre-
quency), physical properties such as density and Young’s modulus and geometric
characteristics of the plate. For instance, the elastic energy stored in a single SGO
mode with frequency 200 µHz and amplitude 2× 10−3 m on a tectonic plate with
area circa 1014 m2, thickness 105 m, and density 3380 kg m−3 is estimated as
54× 109 J. This is almost equivalent to the seismic moment (“full energy”) of the
4M earthquake in Johannesburg (South Africa) of November 18, 2013.

While discussing the inner dynamics of tectonic plates in our recent publi-
cations, see [21, 6] and similarly [10], we proposed to take into account the mi-
gration of elastic energy between regions of tectonic plates, caused by beating of
the resonance spectral modes localized on the regions. For an active zone, already
unstable under statical stress, the migration of energy defined by the resonance
beating might be sufficient to trigger an earthquake.

We therefore suggest that the modelling of tectonic processes with regard
of resonance migration of energy would probably help in developing more realis-
tic theoretical scenarios for an earthquake. In the simplest case of two resonance
SGO modes, localized on neighbouring regions Ωε, Ωc, the beating pattern is pe-
riodic and the amount of elastic energy transferred from one location to another
on each period is defined by the corresponding transfer coefficient. The trans-
fer coefficient may be large for exact tuning of the corresponding frequencies
|νε − νc| ≪ ν̄ ≡ |νε + νc|/2. Thus we study the influence of resonance effects
for this geophysical phenomenon and how t can be used to inform advances in
the classical model and give examples which demonstrate that resonances can be
a reason for earthquake. However we are not able to present a full model for the
phenomenon. Some discussions pertain to one-dimensional systems and cannot
present a completely realistic model, but they demonstrate the possibility of such
mechanism in seismic phenomena as quite natural values of parameters are used.
We hope the interested reader can follow the construction of the model and come
to understanding of how full implementation might be realised. The examples we
offer can be considered as benchmarks for future, more realistic models, based on
these suggested ideas.

In this paper we aim at estimating the transfer coefficient, while considering
the problem in frames of perturbation analysis, depending on the spectral charac-
teristics of the unperturbed modes on disjoint regions and the type of interaction
imposed. Usually the SGO modes are presented on time-spectral cards obtained
from the corresponding seismograms via averaging of the SGO amplitudes, with
certain frequency, on a step-wise system of time - windows, obtained by shifting
an initial window by certain interval of time on each step. The boundaries of the
spectral–time domains on the cards, where the averaged amplitude of the SGO
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mode exceeds the given value A, form a system of isolines in the frequency/time
coordinates ν, T . The horizontal axis for time, is graded in hours, the vertical axis,
for the frequencies, is graded in µHz. Doctor L. Petrova provided us with some
time-spectral cards from her private collection and shared with us some useful and
interesting comments concerning the interpretation of the cards in terms of SGO
dynamics, which we referred in our previous publication [6]. Find below one of
her cards which was obtained by her from seismograms recorded on SSB station,
France, during the period preceding the powerful earthquake on 26 September,
2004 in Peru. The averaging of the amplitudes of the seismogravitational oscilla-
tions, with certain frequency, was done, after appropriate filtration, on a system
of 20 hour time-windows, obtained by shifting an initial window by 30 minutes
in each step. The relief of the window-averaged squared amplitude on the cards
is graded by the isolines, with the step δA2 = 1

10

[
A2

max −A2
min

]
, and is painted

accordingly between the isolines with shades depending on the square amplitude
A2 : dull grey for the background value A2

min and white for the maximal value
A2

max. See more comments in [6].
The most interesting kind of SGO was represented by pulsations, which were

observed by Linkov’s team as intense short (4–6 hours) and sometimes repeated in
30–100 hours, pulses of SGO with large amplitudes. Pulsations have been registered
before 95% of powerful earthquakes and may be considered as natural precursors of
them, see [18]. One may hope that a deeper analysis of the microseismic data in [32]
would reveal a connection between the above “anomalies” with SGO and pulsation
patterns studied by Linkov et al. Petrova pointed out to us a peculiar detail on the
above SSB card above, consisting of two groups of stationary modes with almost
equal frequencies and visually similar relief in ∆SSB

2 = (190, 200) × (55, 65) and
in ∆SSB

3 = (200, 210) × (145, 165). The pair was interpreted by her as a typical
“seismogravitational pulsation”.

In [6] pulsations are interpreted as beatings of spectral modes on the tec-
tonic plates, arising due to resonance interaction of the SGO modes, with close
frequencies, while some of them are localized on active zone Ωε and others on the
complement Ωc. According to classical mechanics [15], the resonance between two
“oscillators” Ωε,Ωc

with close frequencies ωε, ωc and precise tuning, the beating of
a pair of modes defines the periodic energy migration between the regions Ωε,Ωc

:
Eε(t) = Ēε+δE(t), Ec(t) = Ēc+δE(t). Here the migrating part δE(t) of the total
energy arises, with opposite phases, in both locations, with total energy conserved
E = Ēε + Ēc.

While two weakly connected oscillators in resonance yield a periodic beating,
a larger group of oscillators, under resonance conditions |ωi − ωk| ≡ δik ≪ Ω with
respect to the average frequency ω̄ ≡ 1

N

∑N
k=1 ωk reveal a quasi-chaotic beating

phenomenon, if the difference frequencies δik are non-co-measurable.
The problem of estimation of the energy transfer associated with beats in the

system of several connected oscillators can be reduced to the similar problem for a
single oscillator under almost periodic resonance force. This is treated in Landau’s
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Figure 1. A time-spectral card

book [15, Sect. 22]. Indeed, we will consider two 1D oscillators, with masses m,M
attached to springs v, V and connected by an hermitian pair of elastic bonds γ,Γ
constrained by the Hermitian requirement γ m−1 = Γ M−1 = ε. For instance, a
pair of oscillators the dynamics is described by the equations:

x
′′
+
v

m
x+ γ m−1X = 0,

X
′′
+
V

M
X + Γ M−1x = 0. (1.1)

While the elastic bonds are neglected, the eigenfrequencies of the oscillators can be
calculated to be ωm =

√
vm−1 ≡

√
λm, ωM =

√
V M−1 ≡

√
λM , but with regard
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of the bonds, they are found from the quadratic equation for λ = ω2, namely

λ± =
λm + λM

2
±
√
[
λm + λM

2
]2 − λmλM + ε2 =

λm + λM
2

±
√

[
λm − λM

2
]2 + ε2.

(1.2)
Hereafter we will assume that the bonds are relatively weak so that we may calculate
the frequencies ω± ≡

√
λ± of the normal modes of the pair approximately based

on ε≪ [λm−λM

2 ] ≡ δ > 0, at least up to second order with respect to ε2[2δ]−1:

λ± =
λm + λM

2
± λm − λM

2
± ε2

2δ
. (1.3)

This implies, up to second order with respect to ε2[2δ]−1:

λ+ ≈ ω2
m + ε2 [2δ]−1, λ− = ω2

M − ε2[2δ]−1

and allows us to calculate the complex normal modes with ω± =
√
λ± as(

e+
E+

)
e±iω+t,

(
e−
E−

)
e±iω−t. (1.4)

The eigenvectors
(

e+
E+

)
and

(
e−
E−

)
are found from the homogeneous equa-

tions(
− ε2

2δ ε

ε −δ − ε2

2δ

) (
e+
E+

)
= 0,

(
δ + ε2

2δ ε

ε ε2

2δ

) (
e−
E−

)
= 0, (1.5)

which yield for the normalized eigenvectors, up to O(ε2 /δ2):(
e+
E+

)
=

(
1
ε
2δ

)
,

(
e−
E−

)
=

(
− ε

2δ
1

)
. (1.6)

In [15] the beats phenomenon is considered for a harmonic external force.
Hereafter we consider above system of two oscillators x,X, governed by the equa-
tions (1.1), under initial condition x(0) = 1, x′(0) = 0, X(0) = ε

2δ , X
′(0) = 0.

These initial conditions correspond to an excitation of the normal mode of above
the pair oscillators, with second order terms ε2δ−2 neglected:(

x+(t)
X+(t)

)
=

(
1
ε
2δ

)
cosω+t. (1.7)

Then the dynamics if the first oscillators may be considered under an exterior
force:

x
′′
+ ω2

mx+
ε2

2δ
cosω+ t = 0, with ω+ = ωm +

ε2

2δ
, (1.8)

under the initial conditions x(0) = 1, x′(0) = 0. Following [15], for the real solution
of the above equation (1.7) we introduce a complex characteristic

ξ = x′ + iωmx, (1.9)
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and rewrite the above equation (1.8) for ξ as
dξ

dt
− iωm +

ε2

2δ
cosω+ t, (1.10)

and obtain the solution ξ(t) as in [15]:

ξ(t) = eiωmt

[∫ t

0

ε2

2δ
cosω+ τ eiωmτdτ + iωm

]
. (1.11)

The energy E(x) of the oscillator x is can be calculated as per [15] again, in terms
of this characteristic as

m

2
|ξ(t)|2 =

m

2

[
|x′|2 + ω2

m|x|2
]
= E(x). (1.12)

For two connected oscillators δE(t), the migrating part of the total energy, is
close to zero if the difference in frequency is relatively large. Vice versa, it may
be close to the full energy if the tuning is very sharp, that is difference frequency
is relatively small, |ωi − ωk| ≡ δik ≪ ω. An example of this is the celebrated
Wilberforce pendulum [36, 37, 2]. We posit that, in the case of tectonic plates,
beating of the resonance SGO modes implies (depending on conditions) migration
of an essential part max δE(t) = k E of the total energy E, with the transfer
coefficient k = k(δω/ω), depending on the relative variation of the frequencies.
Then the total energy of the active zone Ωε at some moment T0 in time may
exceed the destruction limit Eε(T ) = Ēε + δE(T0) > Ed

ε , causing the destruction
of some structure in the active zone and thus triggering an earthquake.

Exactly this scenario was considered in [6] as a resonance mechanism for
an earthquake. Comparison of the full energy of a single SGO mode with the
seismic moment requires an estimation of the transfer coefficient k. This becomes
an important question in analytic modelling of the resonance mechanism for an
earthquake.

To obtain this estimation of the transfer coefficient k, in the next Sect. 2 we
sketch the basics of the Kirchhoff model of the thin plate, which is used hereafter
as the tectonic plate. We leave the matter of the hydrodynamical component of
the dynamics and the dissipation to future work, and concentrate our attention
here on the effect of the compressing (tangential) tension in the middle plane of
the plate Ωε, causing a lowering of the eigenfrequencies of the active zone to the
resonances with the SGO modes of the complement. Then in Section 3 we consider
the resonance condition for the circular active zone, with the prescribed frequency
200 µHz, choosing typical physical and geometrical parameters of a pair Ωε, Ωc

of the disjoint plates. We consider the simplest explicitly solvable example of two
unperturbed circular disjoint plates, and make sure that the resonance condition is
fulfilled for the active zone Ωε, under the compressing tension, with the parameters
properly chosen, and a circular plate Ω′

c, while the tangential compression on the
large plate is neglected in the resonance interval of frequencies. The circular large
plate Ω′

c in Sect. 3 will differ from the actual complement Ωc of the circular active
zone Ωε in minor ways, dominated by the typical wavelengths of lower SGO modes
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on the plate. Hence so are the resonance conditions ω′
c ≈ 200 µHz ≈ ωc. A more

accurate analysis of the ring-like complement will be postponed to an appendix,
where the Neumann-to-Dirichlet map of the ring is calculated in terms of Bessel
functions. Similar arguments will work for the sectorial boundary active zone.

2. Modelling the resonance interaction between SGO and beating
phenomena

This article investigates theoretical aspects of the resonance interaction of SGO
modes based on the Kirchhoff model for a thin tectonic plate Ω, see [30], and
the dynamics of the plate described by a perturbed biharmonic wave equation for
vertical displacement u(x, t):

Hρutt +D∆2u+∇Q∇u = 0. (2.1)

We formulate the appropriate boundary conditions on ∂Ω ≡ Γ which are derived
from the corresponding Hamiltonian.

In (2.1) the flexural rigidity is

D =
H3E

12(1− σ2)
≡ DH = D1 ×H3 = 1.56×H3 × 1010

kg m2

s2

is defined via
• Young modulus E = 17.28× 1010 kg

m s2 ,
• Poisson coefficient σ = 0.28,
• thickness H ∼ 3× 104–105 m, and
• density ρ = 3380 kg

m3 of the plate.
The tangential tension in the middle plane of the plate is modelled by the

symmetric elliptic operator

∇Q∇u ≡ HTu ≡ ∇QH∇u = H [Txuxx + 2Txyuxy + Tyuyy] ≡ H∇Q1∇u,

as in [23, Chap. 4], and constrained in our case by the maximal non-destructing
estimate from above Q1 ≤ 0.3× 1010, see [6].

The boundary conditions for the biharmonic wave equation (2.1) are derived
based on the Hamiltonian

E(u) =
1

2

∫
ω

[
Hρu2t +D|∆u|2 + 2D(1− σ)[|uxy|2 − uxxuyy] + ⟨∇u,Q∇u⟩

]
dΩ

+
1

2

∫
Γ

β

∣∣∣∣∂u∂n
∣∣∣∣2dΓ,

see our Appendix 1, and a more detailed discussion in [23, Chaps. 4, 8], as well as
[3], with regard to the boundary bending defined by an elastic bond β kg m

s2 .
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The expression (2.2) can be transformed, under the Dirichlet boundary con-
dition u

∣∣
Γ
= 0 into the following equation:

ED(u) =
1

2

∫
ω

[
Hρu2t +D|∆u|2 + ⟨∇u,Q∇u⟩

]
dΩ+

1

2

∫
Γ

[
β −D

1− σ

r

]∣∣∣∣∂u∂n
∣∣∣∣2dΓ,
(2.2)

where r is the curvature radius of the boundary (positive or negative depending
on the position of the center of the curvature); see, for instance, [3].

Minimizing of the spacial part of the Hamiltonian (2.2) leads to the corre-
sponding “natural” boundary conditions:[

β −D
1− σ

r

]∂u
∂n

+D∆u
∣∣
Γ
= 0. (2.3)

Mikhlin proved, see [23], that the thin Kirchhoff plate is stable if [β −D 1−σ
r ] ≥ 0

and Q ≥ 0, corresponding to stretching in the middle plane. He also considered
the contracting tension of the middle plane and found sufficient conditions for
stability, see [23, Chaps. 5, 8]. Later Heisin [9] actually noticed in an experiment
that that plates of ice are unstable with respect to certain contracting tension in
the middle plane. In Sect. 3 we shall consider an example of a circular plates with
centrally symmetric boundary conditions. The corresponding wave equations in
the active zone Ωε are

Hερwtt +Dε∆
2w +Qε∆w = 0, (2.4)

and on the complement Ωc. Here the tangent contraction in the middle plane is
neglected (Qc = 0), so that

Hcρwtt +Dc∆
2w +Qc∆w = 0. (2.5)

With properly selected parameters Hε = 3 × 104 m, Hc = 105 m, Dε = D1 ×
H3

ε , Dc = D1 ×H3
c …, solutions admit a spectral representation constructed with

the use of Bessel functions.
In next section we ensure that the resonance condition λε = λc is satisfied for

a pair of circular tectonic plates. In Sect. 4 we impose a weak bond onto a family
of oscillators with a multiple eigenvalue and observe the dynamics of the corre-
sponding perturbed system. It is this that exposes the beat phenomena involving
the energy transfer between oscillators originally constrained by the resonance
condition.

Ultimately we will estimate the transition coefficient for the energy transfer
for the simplest solvable model of disjoint oscillators with relatively small masses
and close frequencies [ω], perturbed by imposing a bond of them with an oscillator
with larger mass M and frequency Ω ≈ ω.

This leaves the challenging problem of realising this program for the calcula-
tion the energy transfer coefficient for oscillator’s to the more interesting system of
tectonic plates, based on fitted zero-range model. We may discuss this elsewhere.
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3. Example: A circular active zone
Consider a thin circular plate Ω divided by a crack Γε into two complementary
parts: the circular active zone Ωε and the ring-like complement Ωc, centred at Ωε.

Figure 2. The small circular tectonic plate Ωε (the active zone)
contacts the complementary large circular tectonic plate Ωc along
the boundary Γε, while the large plate is loaded and covers the
small plate on the contact line Γε. Because of the load and the
special geometry of the contact, the large plate develops a normal
stress (vertical arrow) resulting in bending of the plate and a
corresponding storage of elastic energy.

We begin with the case of disconnected parts, imposing on both sides of Γε

the kinematic boundary condition wε

∣∣
Γ
= wc

∣∣
Γ
= 0 and independent free-reclining

boundary conditions (see Appendix 1), or Neumann boundary conditions imposed
on elements of the domain of the generators Lε, Lc for the relevant biharmonic
wave equations:

Hρwtt +Dε∆
2w +Qε∆w = Hρwtt + Lεw = 0, (3.1)

with tangential compression Qε∆ ≡ T, Qε > 0, characterized by the positive
scalar Qε and an elastic bond β applied on the boundary, as in (2.3):

w
∣∣
Γε

= 0, βε
∂w

∂n
+Dε∆w

∣∣
Γε

− Dε(1− σ)

ε

∂w

∂n

∣∣∣
Γε

= 0. (3.2)

On the complement Ωc we neglect the tangential compression, Qc = 0, but
do keep the bending and the elastic bond

ρHwtt +Dc∆
2w = ρHwtt + Lcw = 0, (3.3)

for the boundary condition on the outer side of the crack Γε

w
∣∣
Γε

= 0, βc
∂w

∂n
+Dc∆w

∣∣
Γε

− Dc(1− σ)

ε

∂w

∂n

∣∣∣
Γε

= 0, (3.4)
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and for the boundary condition on the remote part Γa of the boundary of ring-like
complement Ωc we have

Ψc

∣∣
Γa

= 0,

[
Dc

1− σ

r
− βc

]
∂Ψc

∂n
−Dc∆Ψc

∣∣∣
Γa

= 0. (3.5)

The spectral characteristics of the generators Lε and Lc of the wave dynamics on
both Ωε,Ωc, for given geometrical and physical parameters can be recovered by
separation of variables.

We attempt to select the parameters Dε = H3
ε×D1

, ε,Qε = Hε × Q1 with
regard of the resonance frequency ν0 = 2 × 10−4 Hz and later choose the outer
radius a of the complement Ωc such that one of ground frequencies of the bihar-
monic generator Lc also coincides with ν0 = 2×10−4 Hz. Then the so constructed
pair of operators Lε, Lc can be perturbed by the connecting boundary condition
on the crack, such that the multiple eigenvalue ω2

0 = 4π2 ν20 would split into a
starlet ω2

0 −→ ω2
0 (1 + δ[α]) , [α] = [α1, α2] as described below, implementing the

beating of corresponding spectral modes on Qε, Qc.
All data, except the radius ε of the active zone and the outer radius of

the complement, are selected as in the previous section, but we may assume the
freedom of an adiabatic change, with time, of the tangent tension in the middle
plane as Q1 = qH × 109, 1 ≤ q < 3 below the destruction limit of the active zone
Ωε, implying the change of eigenfrequencies ωε(q) of the active zone depending on
the compressing tension.

Removing the common factor Hε from the coefficients of the wave equation
on the active zone Qε and from the boundary conditions we obtain an equivalent
form of (3.1) and the spectral problem on Ωε with H = Hε:

D1H
2∆2w +Q1∆w = ω2ρw,

∂w

∂n

∣∣∣
Γε

= u
∣∣
Γε

= 0. (3.6)

In our earlier work [6] we estimated the small eigenvalues of the above equations
neglecting the boundary effects. This is acceptable for large plates, see [6], but we
notice that improved results can be obtained based on a more accurate spectral
analysis of the biharmonic generator Lε, using a factorization of the above equation
with Dirichlet–Neumann boundary conditions at the crack:

0 =

−√D1H∆− Q1

2
√
D1H

−

√
Ω2ρ+

Q2
1

4D1H2


×

−√D1H∆− Q1

2
√
D1H

+

√
Ω2ρ+

Q2
1

4D1H2

 (3.7)

For the circular active zone Ωε and centrally symmetric w = Ψε, ∆ ≡ ∆0 is
the corresponding radial Laplacian, hence the above equation (3.7) has a solution
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vanishing on Γε : r = ε presented as a linear combinations of Bessel functions and
modified Bessel functions with appropriate arguments:

Ψε(r) =

J0

([
ω2ρ

H2D1
e2Θ
]1/4

r

)
J0

([
ω2ρ

H2D1
e2Θ
]1/4

ε

) −
I0

([
ω2ρ

H2D1
e−2Θ

]1/4
r

)
I0

([
ω2ρ

H2D1
e−2Θ

]1/4
ε

) . (3.8)

Here sinhΘ = Q1

2ωH
√
D1ρ

reveals the dependence of the resonance on the
tangential tension Q. Besides

−∆J0

([
ω2ρ

D
e2Θ
]1/4

r

)
=

[
ω2ρ

D1H2
e2Θ
]1/2

J0

([
ω2ρ

D
e2Θ
]1/4

r

)
,

∆I0

([
ω2ρ

D
e−2Θ

]1/4
r

)
=

[
ω2ρ

D1H
e−2Θ

]1/2
I0

([
ω2ρ

D1H2
e−2Θ

]1/4
r

)
.

We are interested in small positive eigenvalues ω2 of the equation (3.6) which
may be in resonance with the lower eigenmodes of the complementary part Ωc of
the plate. To recover an algebraic equation for the eigenfrequencies we substitute
the spectral parameter ω by a new spectral parameter Θ connected to ω by the
equation

sinhΘ =
Q

2ω
√
Dρ

,

or
ω ≡ Q

2 sinhΘ
√
Dρ

=
Q

[eΘ − e−Θ]
√
Dρ

, Θ > 0.

The unperturbed spectral problem with the new spectral parameter is defined by
the Dirichlet–Neumann boundary condition while constructed of Bessel functions
as

Ψε(r) =
J0

(
eΘ/2

√
Q√

D
√
eΘ−e−Θ

r
)

J0

(
eΘ/2

√
Q√

D
√
eΘ−e−Θ

ε
) −

I0

(
e−Θ/2

√
Q√

D
√
eΘ−e−Θ

r
)

I0

(
e−Θ/2

√
Q√

D
√
eΘ−e−Θ

ε
) , (3.9)

and satisfies zero boundary condition identically on the inner side of the crack Γε.
The Neumann boundary condition on the inner side of the crack is

∂Ψε

∂n
(ε) = eΘ/2

√
Q1√

D1H2
√
eΘ − e−Θ

J ′
0

(
eΘ/2

√
Q1√

D1H2
√
eΘ−e−Θ

ε
)

J0

(
eΘ/2

√
Q1√

D1H2
√
eΘ−e−Θ

ε
)

− e−Θ/2

√
Q1√

D1H2
√
eΘ − e−Θ

I0

(
e−Θ/2

√
Q1√

D1H2
√
eΘ−e−Θ

ε
)

I0

(
e−Θ/2

√
Q1√

D1H2
√
eΘ−e−Θ

ε
) = 0

(3.10)

and defines the spectrum of the unperturbed Dirichlet–Neumann problem for se-
lected values of the parameters involved.
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We select the typical geometrical and physical parameters of the active zone
Ωε as

• D1 ×H2 = 1.56× 1010 ×H2 kg m
s2 ,

• H = Hε ∼ 3× 104 m,
• ρ = 3380 kg

m3 , σ = 0.28, Q ≈ 3× 109 kg
m s , and

• ε = radius · Ωε ∼ 2.6× 105 m
(with a little bit of accurate tuning). Then we are able to substitute the Bessel
functions J0 and the corresponding derivatives by the asymptotics for “large” val-
ues of the argument, and I0 and the corresponding derivatives by the asymptotics
for small ones, with regard of the factor e−Θ, calculated for the selected resonance
frequency ν = 2× 10−4 Hz of the lower eigenmodes of large tectonic plates.

sinhΘ =
Q

4πν
√
ρD

=
3× 109

12.56× 2× 10−4 × 3× 104 × 1.26× 105
= 5.5,

and eΘ = 11. Then the arguments of the Bessel functions and their derivatives can
be calculated to be

J0

(
ω1/2

( ρ
D

)1/4
eΘ/2ε

)
= J0

([
12.6× 10−4 × 58× 11× 6.76× 1010

1.26× 105 × 3× 104

]1/2)

≈ J0

(√
1505

10

)
= J0(3.9), (3.11)

I ′0

(
ω1/2

( ρ
D

)1/4
eΘ/2ε

)
= I0

([
12.6× 10−4 × 58× 6.76× 1010

1.26× 105 × 11× 3× 104

]1/2)

≈ I0

(√
61

10

)
≈ I0(0.8). (3.12)

Hereafter we use standard Taylor asymptotics of the modified Bessel function
I0 for small values of argument (< 1) and the exponential asymptotics for “large”
arguments (≥ 3.9) in J0,

J0(z) ≈
cos(z − π/4) +O(1/z)√

πz
2

, J ′
0(z) ≈

− sin(z − π/4) +O(1/z)√
πz
2

,

I0(z) ≈
cosh z +O(1/z)√

πz
2

, I ′0(z) ≈
sinh z +O(1/z)√

πz
2 ,

. (3.13)

Then we notice that the equation (3.10) is satisfied, with data, selected above,
up to an error ∼ 0.1. This means that our guess concerning the magnitude of the
frequency was reasonably accurate for an active zone with radius 2.6 × 105 with
standard physical characteristics and circular shape.

A more profound correspondence between the interval 150–250 µHz of typical
frequencies and various shapes of the active zone requires a further analysis of the
corresponding dispersion equation (analogue of 3.10) and is postponed.
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4. Resonance conditions for circular plates

To reveal the resonance condition for the circular plate divided into two parts: the
circular active zone Ωε and the ring-like complement Ωc = {ε < r < a}, which is
centered at Ωε and elastically disconnected from the active zone due to independent
Dirichlet–Neumann conditions on both sides of the common boundary Γε we must
select the geometrical parameters of the complement such that the disconnected
spectral problem has a multiple eigenvalue ω2

0 = 4π2ν062. Then the perturbation of
the disconnected spectral problem defined by replacing the disconnecting bound-
ary conditions by an interactive condition would reveal a splitting of the multiple
eigenvalue, and, eventually, the the resonance beating of SGO modes, localized on
Ωε,Ωc. This would imply migration of energy between the locations. It is techni-
cally convenient to consider a circular pate Ω′

c with the same outer radius a, but
without a hole reserved for Ωε at the center. The perturbation obtained by replace-
ment Ωc → Ω′

c should not affect the part of spectrum corresponding to the stand-
ing waves in which lengths exceed the geometric size of the details affected by the
change, in our case the radius 2.6×105 m of the hole Ωε (the active zone). This con-
dition is obviously satisfied for ground SGO modes on the disc Ω′

c with R ≈ 5000
m. Now estimation of the eigenfrequencies of the complement for an equivalent
circular plate Ω′

c, with radius a ≈ 5 × 106 m, neglecting relatively small terms,
compared with the typical ground flexural wavelengths 2a ≈ 5 × 106 m, the hole
radius ε. We assume for Ωc,Ω

′
c : Da = 1.56× 1010 ×H2

a
kg m

s2 , Ha = Hc ∼ 105 m,
Qc ≈ 0 and ρ = 3380 kg

m3 . We also use of the asymptotics of the derivatives of the
Bessel functions for the solutions Ψa of the spectral problem

Da∆
2w = ω2ρw (4.1)

on the complement, with Qc = 0, Θc = 0:

Ψa(r) =

J0

([
ω2ρ

D1H2
a

]1/4
r

)
J0

([
ω2ρ

D1H2
a

]1/4
a

) −
I0

([
ω2ρ

D1H2
a

]1/4
r

)
I0

([
ω2ρ

D1H2
a

]1/4
a

) . (4.2)

For the Neumann dispersion equation on the remote part Γa of the boundary,

∂Ψa

∂n
(ε)×

√
πz

2
=
J ′
0

(√
ω
(

ρ
D1H2

a

)
a
)

J0

(√
ω
(

ρ
D1H2

a

)
a
) −

I ′0

(√
ω
(

ρ
D1H2

a

)
a
)

I0

(√
ω
(

ρ
D1H2

a

)
a
) = 0. (4.3)



A resonance interaction of seismogravitational modes on tectonic plates 319

Using the asymptotics of Bessel functions for large arguments on the remote
part of the boundary r = a we find that

I ′0

(√
ω
(

ρ
D1H2

a

)
a
)

I0

(√
ω
(

ρ
D1H2

a

)
a
) ≈ 1 = − tanπ

(
l − 1

4

)
,

J ′
0

(
√
ω
(

ρ
D1H2

a

)1/4
a

)
J0

(
√
ω
(

ρ
D1H2

a

)1/4
a

) ≈ − tan
(
0.6a× 10−7 − π

4

)
.

This results in 0.6a × 10−7 − π/4 = πl − π/4 and hence a ≈ 5 × 106 m, for
l = 1 in agreement with our preliminary guess.

More detailed estimation of the radius of the ring-like complement Ωc ≡
(ε < r < a), centered at the active zone Ωε may be derived from an explicit con-
struction of the basic Bessel solutions and the Neumann-to-Dirichlet map of the
biharmonic d’Alambert equation (4.1) on the ring with and appropriate symmetry,
compatible with typical standing waves on the complement.

Jp(z) ≈
cos(z − pπ/2− π/4)√

πz/2
+O

(
|1/z|

)
e|ℑz|,

J ′
p(z) ≈

− sin(z − pπ/2− π/4)√
πz/2

+O
(
|1/z|

)
e|ℑz|,

Ip(z) ≈
ez√
πz/2

+O
(
e|ℑz|), (4.4)

I ′p(z) ≈
ez√
πz/2

+O
(
e|ℑz|). (4.5)

One can also consider a circular active zone on an arbitrary plate with smooth
boundary, see [33], or derive the formulae for the ND-map based on integral equa-
tion techniques, see [3].

Henceforth we wish to consider sectorial circular active zones which admit a
separation of variable along with solutions of the relevant perturbed biharmonic
equation

D∆2u+Q∆u = ω2ρu (4.6)
combined on the sector Ωp

ε : 0 ≤ r < ε, 0 < φ < π/p of above Bessel functions
with index p and the corresponding circular harmonics cos pϕ, sin pϕ on the sector,
as above.

The roles of basic regular solutions of the biharmonic d’Alambert equation
play the products of circular harmonics sin pϕ, cos pϕ, with relevant Bessel func-
tions Jp

(
r
√
ω
(

ρ
D

)−1/4
eΘ/2

)
, and the modified Bessel functions

Ip
(
r
√
ω
( ρ
D

)−1/4

e−Θ/2

)
.
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The parameter Θ is derived from the factorization of the d’Alambert equation as at
(3.7). Then, for p ≥ 1 the only continuous at r = 0 solution are square integrable.
Hence continuous solutions of the d’Alambert equation, vanishing on the circular
part Γε of the boundary can b obtained as linear combinations.

Ψs(r) = sin pϕ

Jp
([

ω2ρ
D e2Θ

]1/4
r

)
Jp

([
ω2ρ
D e2Θ

]1/4
ε

) −
Ip

([
ω2ρ
D e−2Θ

]1/4
r

)
Ip

([
ω2ρ
D e−2Θ

]1/4
ε

)
 , (4.7)

Ψc(r) = cos pϕ

Jγ
([

ω2ρ
D e2Θ

]1/4
r

)
Jp

([
ω2ρ
D e2Θ

]1/4
ε

) −
Ip

([
ω2ρ
D e−2Θ

]1/4
r

)
Ip

([
ω2ρ
D e−2Θ

]1/4
ε

)
 . (4.8)

They satisfy the Dirichlet boundary conditions u
∣∣
Γ
= ∆u

∣∣
Γ
= 0 for Ψs and the

Neumann boundary condition ∂u
∂n

∣∣∣
Γ
= ∂∆u

∂n

∣∣∣
Γ
= 0, respectively.

The spectral problem with Dirichlet–Neumann boundary condition u
∣∣
Γε

=

∂u
∂n

∣∣∣
Γε

on the circular part of the boundary is given by linear combinations (4.7),
(4.8), and which satisfy the corresponding dispersion equations:

0 =
∂Ψs

∂n
(ε) sin γϕ

eΘ/2

√
Q√

D
√
eΘ − e−Θ

J ′
γ

(
eΘ/2

√
Q√

D
√
eΘ−e−Θ

ε
)

Jγ

(
eΘ/2

√
Q√

D
√
eΘ−e−Θ

ε
)

−e−Θ/2

√
Q√

D
√
eΘ − e−Θ

I ′γ

(
e−Θ/2

√
Q√

D
√
eΘ−e−Θ

ε
)

Iγ

(
e−Θ/2

√
Q√

D
√
eΘ−e−Θ

ε
)
 ,

(4.9)

or a similar equation for Ψc.
For sectors characterized by p ∈ (0, 1) there are singular square-integrable

solutions J−p(z), I−p(z) of the biharmonic d’Alambert equation, see [4]. Then we
are able to consider the singular (discontinuous) square integrable solutions of
the biharmonic d’Alambert equation, considering them as elements of the corre-
sponding defect, see [4], and construct self-adjoint extensions of the corresponding
biharmonic operator in the space of square-integrable functions in an sectorial ac-
tive zone on the boundary. The corresponding operator extension machinery can
be developed with use of extension procedure, similar to one developed above for
the inner zero-range active zone.

When varying the tension parameter Q, we will come to the moment when the
tangent compression in the middle plane is large enough for the minimal eigenvalue
on the active zone of an unperturbed problem to coincide with an eigenvalue
of the biharmonic spectral problem (Q = 0) on the complement. At this point
substituting the asymptotics of the Bessel functions Jp, Ip for large and small
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values of the arguments, one can obtain an estimation for the contracting tension
Q, this leads to the resonance conditions for the operators Lε, Lc on Ωε,Ωc, without
an interaction between them. We now explore this in the simplest case.

5. A simple model of alternation
Now we consider a simple universal interaction depending on a small parameter
between similar operators constructed for the zero-range active zone. Based on
this construction, we observe the relevant beating phenomenon and estimate the
transfer coefficient.

The system of two tectonic plates considered in the previous section is a
special case of a decoupled oscillator’s system under the resonance conditions.
The interaction between the plates could be introduced by imposing free reclining
or natural boundary conditions.

We now make some simplifying assumptions: we consider a weakly coupled os-
cillatory system obtained by attaching one (supposedly “large”) multi-dimensional
oscillator X = (X1, X2, X3, . . . , Xµ) ∈ Cµ to a 1D (supposedly “small”) oscillator
characterized by the coordinate x = x1 ∈ C1.

The dynamics of the resulting system is defined by the system of linear equa-
tions

mxtt + vx+ b+X = 0,

MXtt + V X + bx = 0.
(5.1)

Here m = m1, v = v1,M = [M1,M2,M3 . . .Mµ], V = [V1, V2, V3, . . . , Vµ], are
positive diagonal matrices acting in the Hilbert spaces C1, Cµ, C1

b−→ Cµ, Cµ
b+−→

C1. Interaction of the oscillators is introduced by the Hermitian matrix B : C1 ⊕
Cµ −→ C1 ⊕ Cµ ≡ K

B =

(
0 b+

b 0

)
≡ antidiag

(
b+, b

)
, (5.2)

which plays the role of bonds imposed on the boundary data of solutions of the
biharmonic equation on the border of the tectonic plate. Separating time, we obtain
the spectral problem corresponding to the above wave equation (5.1), namely

vx+ b+X = mλx

V X + bx =MλX.
(5.3)

To make this consistent with the above model of tectonic plates supplied with nat-
ural structure of active zones we assume that the unperturbed multidimensional
oscillator has a family of unperturbed eigenvalues (square frequencies) [ω0]2 =
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v/m,
[
Ω0

s

]2
= Vs/Ms, s = 1, 2, . . . , µ. For non-zero interaction B ̸= 0 the eigenval-

ues λbr = (ωb
r)

2 (and the corresponding eigenfrequencies) of the perturbed selfad-
joint spectral problem are found from the algebraic equation

[λm− v] a+ b+
I

V −Mλ
ba ≡ M(λ)a = 0, (5.4)

obtained via the elimination of X from the second equation in (5.3). In particular,
for the 1D case, µ = 1, we have two unperturbed frequencies

v/m = ω0 ≡ (ω0
1)

2, V/M = Ω0 ≡ (ω0
2)

2

and a quadratic equation for the perturbed eigenvalues
λbr = (ωb

r)
2, r = 1, 2,

while the unperturbed are λ01 = (ω0)2, λ02 = (Ω0)2. Denoting

λ̄0 =
(ω0)2 + (Ω0)2

2
, δλ0 =

∣∣∣∣ (ω0)2 − (Ω0)2

2

∣∣∣∣,
we find the perturbed frequencies/eigenvalues λbr ≡ (ωb

r)
2 from the quadratic equa-

tion
λ2 − 2λ δλ0 + λ01 λ

0
2 =

b2

mM
.

This gives

λbr = λ̄0 ± h, with h2 = (δλ)2 +
b2

mM
,

with m1 = m, m2 = M . We further assume that b2

m1m2
≪ δ2λ. This assumption

allows us to calculate the perturbed eigenvalues λb1,2 with h = δλ + b2

2m1 m2 δλ

approximately. These turn out to be

λb1,2 = λ01,2 ±
b2

2m1m2 δλ
,

ωb
1,2 = ω0

1,2 ±
b2

4m1m2 δλω0
1,2

= ω0
1,2

[
1± b2

4m1m2 δλ2

]
δλ

λ01,2
≈ ω0

1,2

δλ

λ01,2
. (5.5)

Generally, for µ ≥ 1, the eigenvalues of the ultimate spectral problem λ =
λb1, λ

b
2, . . . , λ

b
s, . . . , λ

b
1+µ may be found from the corresponding determinant condi-

tion. The components of the corresponding eigenvectors
{
a,Ψb

s

}
≡ Ψb

s in K,Cµ

are calculated from the equation

Ψb
s =

(
V −Mλbs

)−1
ba, (5.6)

with an appropriate normalization m|a|2
[
1 + ⟨M I

V−Mλb,
I

V−Mλb⟩
]
= 1. If the

interaction b is real and the initial data of the relevant Cauchy problem, see below
(5.9), are real, then the corresponding solution is real, too. Similarly the solution
of the corresponding inhomogeneous equation, with a real function in the right
side, is real as well.
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Figure 3. In the more general case where K = C1 ⊕ Cµ, µ ≥ 1,
the eigenvalues λbs = (ωb

s)
2 are found as graphical solutions based

on the diagram, corresponding to the algebraic equation (5.4), see
[13].

In the simplest situation where µ = 1,K = C1 ⊕ C1, equation (5.3) for
(u,U) = (u1, u2) and the unperturbed frequencies ω0 ≡ ω0

1 ,Ω
0 = ω0

2 and

λ̄ =
λ01 + λ02

2
, δλ =

λ01 − λ02
2

can be represented as(
m1λ

0
1 b+

b m2λ
0
2

)(
u1
u2

)
= λ

(
m1 0
0 m2

)(
u1
u2

)
, (5.7)

and the eigenvectors

Ψb
1 =

(
a1

a1bm
−1
2

−δλ−h

)
, Ψb

2 =

(
a2

a2bm
−1
2

−δλ+h

)
(5.8)

are orthogonal with respect to diag (m1,m2) and normalized in l2(m1,m2) with
a1,2 =

√
h±δλ
2h . When discussing the general case µ ≥ 1 we may assume that the

eigenfunctions Ψb
s =

(
ψb
s, Ψ

b
s

)
of the perturbed spectral problem (5.3) correspond

to simple eigenvalues and are orthogonal and normalized. Using the eigenvectors,
the normal modes of the wave equation

mutt + vu+ b+U = 0,

MUtt + V U + bu = 0,

(u,U) ≡ U, U(0) = U0,
dU

dt
(0) = U′

0.

(5.9)
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can be constructed, and subsequently the solutions of this Cauchy problem (5.9)
are obtained as linear combinations

U(t) =
∑
s

UsΨs cos(ω
b
st+ φs) = ℜ

∑
s

UsΨse
i(ωb

st+φs)

of the eigenmodes. But we also can reduce the above homogeneous equation (5.9)
to a pair of unperturbed formally inhomogeneous equations,

mutt + vu+
∑
s

Us b+Ψs cos(ωb
st+ φs) ≡ mutt + vu+ f, (5.10)

M Utt + V U +
∑
s

Us b ψb
s cos(ωb

st+ φs) ≡M Utt + V U + F = 0, (5.11)

or a similar complex equation

mu⃗tt + vu⃗+
∑
s

Us b+Ψs e
i(ωb

st+φs) ≡ mu⃗tt + vu⃗+ f⃗ , (5.12)

M U⃗tt + V U⃗ +
∑
s

Us b ψb
s e

i(ωb
st+φs) ≡M U⃗tt + V U⃗ + F⃗ = 0, (5.13)

with inhomogeneities f⃗ = b+U, F⃗ = bu⃗ obtained via substitution, for u,U , the cor-
responding components of the solution U(t) = (u,U) of the Cauchy problem (5.9)
for the original oscillators system:

uf⃗ (t) =
∑
s

b+ Ψs U
s

[
ei(ω

b
st+φs)

mλbs − v

]
, uf (t) =

∑
s

b+ Ψs U
s

[
cos(ωb

st+ φs)

mλbs − v

]
,

(5.14)

UF⃗ (t) =
∑
s

b ψs U
s

[
ei(ω

b
st+φs)

Mλbs − V

]
, UF (t) =

∑
s

b ψs U
s

[
cos(ωb

st+ φs)

Mλbs − V

]
. (5.15)

General solutions of the equations (5.10)–(5.13) are obtained by adding gen-
eral solutions of the corresponding homogeneous equations

mutt + vu = 0, M Utt + V U = 0,

to the solutions of the inhomogeneous equations.
The last formulas allow us to calculate partial values of energy of the “small”

and “large” oscillators depending on time, for instance,

Ef (U) =
m|u′f |2 + v|uf |2

2
, EF (U) =

M |U ′
F |2 + V |UF |2

2
(5.16)

under formally “exterior” forces f, F , defined by a linear combination of the per-
turbed normal modes U of the perturbed oscillator’s system.

The partial values of energy of each oscillator uf , UF do not remain constant
in the course of evolution, but depend on time, exposing beats while the oscillators
exchange energy due to the bond B = antidiag(b+, b). Beats are calculated using
the 1D theory developed for a periodic exterior force as in [15, Sect. 22]. To study
the above (formally) complex version of the inhomogeneous equation (5.13) we
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follow Landau [15], and introduce the data ξ⃗f =
√
m u′

f⃗
+ i

√
v uf⃗ , ξf =

√
m u′f +

i
√
v uf and rewrite the last equation (5.12) as

√
m ξ⃗′ − i

√
v ξ⃗ = f⃗(t),

√
m ξ′ − i

√
v ξ = f(t),

√
v = ω0

√
m. (5.17)

If the Cauchy problem is solved, with an initial condition ξ(0) = ξ0, then the
energy (5.16) of the small oscillator for the real solution U of the total problem,
is calculated as

ξ̄f (t) ξf (t) = [
√
mu′ + i

√
vu] [

√
mu′ + i

√
vu] = 2Ef (u). (5.18)

The last formula allows us to estimate the energy transfer “between the modes of
unperturbed oscillators”. It is sufficient to be able to monitor the time-depndent
energy of the small oscillator.

We now suggest a 1D version of the corresponding analysis, assuming that
µ = 1, K = C1⊕C1. Back to discussion of the 1D oscillators, with λb1,2 = λ̄±h ≡
λb±, assume, that an approximate resonance condition is satisfied,

ωb
1,2 = ω0

1,2 +
b2

4m1m2 δλω0
1,2

,

and assume that the solution of the original Cauchy problem (5.9) is given as a
linear combination of the perturbed modes

U =

(
u
U

)
=

2∑
s=1

Ψb
sU

s cos(ωb
st+ φs).

Then the above inhomogeneous evolution equation for the small oscillator is either

m1u
′′

1 +m(ω0)2u1 +
2∑

s=1

b+Ψb
sU

s cos(ωb
st+ φs) = 0,

or
√
m
[
ξ′ − iω0

1ξ
]
+

2∑
s=1

b+Ψb
sU

s cos(ωb
st+ φs) = 0,

and has a partial solution

u1 =
2∑

s=1

b+Ψb
sU

s cos(ωb
st+ φs)

m1 [(ωb
s)

2 − (ω0
1)

2]
.

The corresponding ξ-function is calculated from the equation

√
m
[
ξ′1 − iξ1ω

0
1

]
+

2∑
s=1

b+Ψb
sU

s cos(ωb
st+ φs) = 0,
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as

ξ1(t) = eiω
0
1 t

[
ξ1(0)−

1
√
m1

∫ t

0

e−iω0
1 τ

2∑
s=1

b+Ψb
sU

s cos(ωb
sτ + φs)dτ

]
≡ eiω

0
1 t
[
ξ1(0) + ξ̂1(t)

]
,

(5.19)

with
ξ1(0) =

√
m1

[
u′1(0) + iω0

1u
0
1(0)

]
=

1
√
m1

2∑
s=1

b+Ψb
sU

s

[
−ωb

s sinφs + iω0
1 cosφs

]
[(ωb

s)
2 − (ω0

1)
2]

=
1

√
m1

2∑
s=1

b+Ψb
sU

s

[
sinφs

ωb
1 + ω0

1

+
iω0

1e
iφs

(ωb
s + ω0

1)(ω
b
s − ω0

1)

]
and the integral ξ̂1(t) in (5.19) is calculated as

ξ̂1(t) = − 1
√
m1

∫ t

0

e−iω0
1 τ

2∑
s=1

b+Ψb
sU

s cos(ωb
sτ + φs)dτ

= − 1
√
m1

2∑
s=1

b+Ψb
sU

s

·
[

eiφs

2i(ωb
s − ω0

1)

(
ei(ω

b
s−ω0

1)t − 1
)
− e−iφs

2i(ωb
s + ω0

1)

(
ei(−ωb

s−ω0
1)t − 1

)]
= − 1

√
m1

2∑
s=1

b+Ψb
sU

s

·

[
eiφs ei(ω

b
s−ω0

1)
t
2
sin(ωb

s − ω0
1)

t
2

ωb
s − ω0

1

+ e−iφs e−i(ωb
s+ω0

1)
t
2
sin(ωb

s + ω0
1)

t
2

ωb
s + ω0

1

]
.

To compare the above theoretical estimation of time dependence of the energy
of the “small” oscillator of time, we should consider the averaged energy over a
stepwise system of windows, such as used for manufacturing the time-spectral
cards discussed in Sect. 1. Set

|ξ|2(T ) = 1

∆

∫ T+∆/2

T−∆/2

|ξ(t)|2dt, (5.20)

with an appropriate choice of parameters for the averaging depending on the basic
characteristics of λ1,2 or λ̄, δλ.

Let us first examine the time-dependence of energy of the “small”oscillator in
the simplest case of two 1D oscillators, we assume, that there exists only one res-
onance eigenvalue of the perturbed system, closest to the unperturbed eigenvalue
of the “small” oscillator. Further assuming that b2

m1 m2
≪ (δλ)2, we may estimate
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the perturbed eigenvalues and eigenfrequencies of the system as

(ωb
1)

2 − (ω0
1)

2 ≈ λ̄+

√
(δλ)2 +

b2

m1m2
− λ01 =

b2

2m1m2 δλ λ01
,

(ωb
2)

2 − (ω0
1)

2 ≈ λ̄−

√
(δλ)2 +

b2

m1m2
− λ01 = −δλ− b2

2m1m2 δλ λ02
, (5.21)

ωb
1 − ω0

1 ≈ b2

4m1m2 δλω0
1

, ωb
1 + ω0

1 ≈ 2ω0
1 +

b2

4m1m2 δλω0
1

,

ωb
2 − ω0

1 ≈ ω0
2 − ω0

1 −
b2

4m1m2 δλω0
2

≡ δω −− b2

4m1m2 δλω0
2

. (5.22)

Notice the resonance terms with small denominators or/and with slowly os-
cillating exponents on the window give the crucial contribution to the average
(5.20) while the rapidly oscillating and smooth terms may be neglected while in-
tegrating over the window. Using the above representation for ξ1(t) = ξ1(0)+ ξ̂(t)

we estimate the averaged ξ-function |ξ|2(T )

|ξ|2(T ) = 1

∆

∫ T+∆/2

T−∆/2

|ξ(t)|2dt

=
1

m1

2∑
r,s=1

b+Ψb
rU

r b+Ψb
sU

s 1

∆

∫ T+∆/2

T−∆/2

AB,

(5.23)

where

A =
sinφs

ωb
s + ω0

1

+
iω0

1e
iφs

λbs − λ01
+
[
eiφsei(ω

b
s−ω0

1)
t
2 + e−iφse−i(ωb

s+ω0
1)

t
2

] sin(ωb
s + ω0

1)
t
2

ωb
s + ω0

1

,

B =
sinφr

ωb
r + ω0

1

+
iω0

1e
iφr

λbr − λ01
+
[
eiφrei(ω

b
r−ω0

1)
t
2 + e−iφre−i(ωb

r+ω0
1)

t
2

] sin(ωb
r + ω0

1)
t
2

ωb
r + ω0

1

,

choosing the window such that the leading resonance term sin(ωb
r−ω0

1)
t
2

ωb
r−ω0

1
only slightly

deviates from a constant on the window |t− τ | < ∆:∣∣∣∣ sin(ωb
r − ω0

1)
t

2
− sin(ωb

r − ω0
1)τ/2

∣∣∣∣ ≤ ∆(ωb
r − ω0

1) ≈
b2 ∆

4m1m− 2δλω0
1

.

On another hand, the slowest oscillation of non-resonance exponentials in the
integrand is defined by the exponent

1

∆

∫ T−∆/2

T−∆/2

cos(ωb
s − ω0

1)tdt ≈
1

∆ δω

and this should be small too:
b2 ∆

4m1m2δλω0
1

≈ 1

∆ δω
.
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This now defines the width of the optimal window giving the dependence on λ01, λ02
and the other parameters.

Then, selecting this optimal window and taking into account only leading
terms of the integrand, we obtain an approximate estimation for the averaged
energy of the “small” oscillator in dependence on time:

¯|ξ|(T ) = 1

∆

∫ T+∆/2

T−∆/2

|ξ|2(t)dt

≈ |b+ΨsUs|2dt

[
|ω0

1 |2

λb1 − λ01
+

sin2(ωb
1 − ω0

1)
t
2

(ωb
1 − ω0

1)
2

]

≈ |b+ΨsUs|2
2m2δλλ

0
1

b2
+

sin2( b2

4m1 m2δλω0
1
)

( b2

4m1 m2δλω0
1
)2

 .
(5.24)

Figure 4. Symbolic diagram of the energy content Eε(T ), Ec(T )
of the components u

ε,c
of the perturbed dynamics u with respect

to the de-localized mode Ψ0
c on the complement Ωc and one of

the localized mode on the active zone Ωε. Positions Oε, Oc of the
minima (and maxima) of the energy content of the localized and
the delocalized modes alternate with opposite phases. The dan-
gerous intervals of time at the minima Oc, when the destruction
of Ωε is expected, are marked with thin rectangles.

6. Appendix 1: Natural boundary conditions and the perturbed
biharmonic wave equation

In our Sect. 2 we considered a perturbed biharmonic equation (2.1), borrowed from
[9, 23], and modelled the normal stress by the boundary condition. Here we give
more details describing the “bridge” connecting the model dynamics presented in
by us with the corresponding chapter of classical mechanics of the plates and shells,
see [33, 34, 23] and also [8, 11]. We keep in mind, that the linear theory of small
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oscillations of tectonic plates will only shed light on an initial phase of the process
which may lead to the catastrophic results. But we hope that the the mechanical
realization of the preliminary small oscillation model of the resonance process may
be able to preview some initial features of the catastrophic phase of the process.
In reality, constructing the mechanical model of the resonance interaction of the
SGO modes of tectonic plates is a problem to resolve based on experiment, with
use of far more detailed mechanical details, see for instance [34, 30, 22]. We only
attempt here a first step in this direction, by considering two thin tectonic plates
developing typical kinds of stresses when colliding under fluctuation of the rotation
speed of Earth an/or the convection flow in the liquid underlay (astenosphere). To
further simplify our analysis, we assume that both Ωε,Ωc are Kirchhoff plates, see
[34], and endure different kinds of stresses. We assume that the normal pressure
and the corresponding bending dominate the potential energy of the large plate
Ωε and the tangential (shearing) component of the stress dominates the potential
energy of the small plate. The shearing part of the stress is defined by the tension T
in the middle plane of with the components Tx, Ty, Txy, satisfying the equilibrium
conditions, see Mikhlin’s book [23, Chap. 4, Sect. 28] which we use as a basic
reference in what comes. The equilibrium conditions are

∂Tx
∂x

+
∂Txy
∂y

= 0,
∂Ty
∂y

+
∂Txy
∂x

= 0, (6.1)

and the corresponding quadratic form

⟨w, Tw⟩ =
∫
Ωε

[wxTxwx + 2wxTxywy + wyTywy] dΩ

defines, with the kinematic boundary condition w
∣∣
Γ
= 0, a symmetric operator

T of second order on smooth functions w. Operator T is positive for stretching
tension and negative for compressing tension, see [9].

This may cause an instability of the tectonic plate, see for instance the anal-
ysis of a numerical example for an elliptic plate under a compressive tension in
[23, Chap. 8, Sect. 72]. The materials composing tectonic plates can’t resist the
stretching tension, so hereafter we assume that the tension T is compressing, and
the corresponding second order operator T is negative.

We begin with considering of the non-interacting plates Ωε,Ωc under normal
bending stress F , and the compressing stress T , assuming that each of them is elas-
tically fixed at the common boundary Γε, see below. The zero boundary condition
is applied on all boundaries, free reclining conditions are applied on the remote
part of boundary of Ωc, and the elastic fixture on both sides Γε,c of the common

boundary Γ is modeled by the corresponding functionals
∫
Γ

βε,c

(
∂wε,c

∂n

)2

dΓ.

The equilibrium deformations wε, wc are found by minimizing of the corre-
sponding quadratic functionals on the subspace of the virtual strains, subject to
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the kinematic boundary condition w
∣∣
Γε

= 0,

W (u) = D

∫
Ω

|∆w|2dΩ− 2(1− σ)D

∫
Ω

(
wxxwyy − |uxy|2

)
dΩ

+

∫
Γ

β

(
∂w

∂n

)2

dΓ +H⟨w, Tw⟩ − 2

∫
Ω

wFdΩ.

(6.2)

Here σ is the Poisson coefficient 0 < σ < 1, D is the flexural ridigity, D =
H2E

12(1−σ2) , E is the Young modulus, H is the thickness of the plate, and β > 0 is the
parameter defining the elastic contact of the plate with environment. The second
integral of the Monge–Ampere form (the curvature of the surface z = w(x, y))
can be presented as an integral on the boundary, see [3], with regard of the above
kinematic boundary condition w

∣∣
Γ
= 0:

2

∫
Ω

(
wxxwyy − |wxy|2

)
dΩ =

∫
Γ

(
∂w
∂n

)2
r(γ)

dΓ

For the circular Γε we assume r(γ) = ε and H⟨w, Tw⟩ = H−2D∆w. Calcu-
lation of the first variation of the energy functional yields the Euler equation

D∆2w + Tw = F (6.3)
with the kinematic and the natural (under the above elastic β-bound) condition
on the each side of the common boundary, e.g.,

D∆w + β
∂w

∂n
−D

1− σ

r

∂w

∂n

∣∣∣∣
Γε

= 0. (6.4)

To derive an equation for the small oscillation we consider, for each plate, the
Lagrangian associated with the thin plate Ω, subject to the above elastic bound
and the kinematic boundary conditions u

∣∣
Γ
= 0,

L =

∫ t

0

∫
Ω

D|∆w|2dΩ dt−
∫ t

0

∫
Ω

[
2D(1− σ)

(
wxxwyy − w2

xy

)
− ρHw2

t

]
dΩ dt

+ 2

∫ t

0

∫
Γ

β

(
∂w

∂n

)2

dΓdt+

∫ T

0

⟨w, Tw⟩dt,

(6.5)
we obtain the perturbed biharmonic wave equation as the Euler equation for the
critical points of the Lagrangian:

ρHwtt +D∆2w + Tw = 0, (6.6)
with the “β-natural” free reclining boundary conditions on both sides of the com-
mon boundary

w
∣∣
Γ
= 0, D∆w + β

∂w

∂n
− D(1− σ)

r

∂w

∂n

∣∣∣
Γ
= 0, (6.7)

and free reclining boundary condition on the complementary part of the boundary
of Ωc.
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While considering a circular plate Ω : 0 < r < a, assume that the active zone
Ωε is centered in Ω, so that the complement Ωc is a ring 0 < r < a, as described
earlier. Generally we have the Lagrangian

L =

∫ t

0

∫
Ω

D|∆w|2dΩ dt+
∫ t

0

∫
Γε

β

(
∂w

∂n

)2

dΓεdt−
∫ t

0

∫
Ω

ρH

(
∂w

∂t

)2

dΩ dt

− 2D(1− σ)

∫ t

0

(
wxxwyy − w2

xy

)
dΩdt+

∫ t

0

⟨w, Tw⟩dt,

(6.8)
This gives the perturbed biharmonic wave equation as the Euler equation for the
critical points of the Lagrangian on Ωc:

ρHwtt +D∆2w + Tw = 0, (6.9)
and

ρHwtt +D∆2w + Tw = 0, (6.10)
on Ωε, with T < 0 and the boundary condition with regard of the elastic bond:

w
∣∣
Γε

= 0, β
∂w

∂n
D∆w

∣∣
Γε

− D(1− σ)

ε

∂w

∂n

∣∣∣
Γε

= 0.

For the complement we neglect the tangential compression, but keep the bending
and the elastic bond, so that the Lagrangian is reduced to

Lc =

∫ T

0

∫
Ω

D|∆w|2dΩ dt+
∫ T

0

∫
Γε

β

(
∂w

∂n

)2

dΓεdt−
∫ T

0

∫
Ω

ρH

(
∂w

∂t

)2

dΩ dt,

(6.11)
we obtain the perturbed biharmonic wave equation as Euler equation for the crit-
ical points of the Lagrangian Lc:

ρHwtt +D∆2w = 0, (6.12)
with the boundary condition

w
∣∣
Γc

= 0, β
∂w

∂n
−D

1− σ

r

∂w

∂n
+D∆w

∣∣
Γε

= 0.

We make now one more simplifying assumption, assuming that the operator
Lε on the active zone is defined on circular harmonics of zero order n = 0 (inde-
pendent of the angular variable), and the operator Lc on the complement is defined
on the linear span of circular harmonics of the first order, ec1 = π−1 cosφ, es1 =
π−1 sinφ, so that the corresponding eigenfunctions are spanned by the circular
harmonics.

The unperturbed spectral problems, associated with the 1D differential equa-
tions

Lc,s
c w = Dc∆

2w + Tw = ω2Hcρw

have 4 linearly independent solutions J1,H1
1 ≡ H1, I1,K1 with factors sinφ, cosφ.

We denote them by Jc,s
1 ,Hc,s

1 , Ic,s1 ,Kc,s
1 .
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Selecting appropriate elastic bonds, we may set the parameters β0, βc
1, β

s
1 so

that the unperturbed spectral problems for Lε ⊕ Lc
c ⊕ Ls

c has a multiple eigenfre-
quency ν = (2π)−1ω for δ = 0. Then the perturbed spectral problems, associated
with the unperturbed operator D∆2

0 +Q∆ 0 0
0 D∆2

1 0
0 0 D∆2

1

 ≡ L0
ε ⊕ Lc

1 ⊕ Ls
1

and separate β-natural boundary conditions on the common part of the boundary.
For the perturbed problem, defined by the same differential expression β0 −Dε

1−σ
rε

κce0⟩⟨ec1 κse0⟩⟨es1
κcec1⟩⟨e0 βc

1 −Dc
1−σ
rε

0

κses1⟩⟨e0 0 βs
1 −Dc

1−σ
rε




∂Ψ0

∂n
∂Ψc

1

∂n
∂Ψs

1

∂n

 = ∆

 Ψ0

Ψc
1

Ψs
1

 . (6.13)

Here κc,s are small real parameters. The multiple eigenfrequency is split into
the starlet of simple perturbed eigenfrequencies with eigenfunctions constructed as
linear combinations Ψ0 of J0, I0 on Ωε, see Sect. 4, and a linear combination Ψc,s

c

of the Jc,s
1 ,Hc,s

1 , Ic,s1 ,Kc,s
1 with coefficients found from the above analog (6.13) of

the free reclining boundary conditions and the unperturbed boundary condition
on the complementary part of the boundary.
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1. Introduction
This note should be viewed as an addendum to our paper [13], which was devoted
to (conditional) positive semidefiniteness of matrix-valued functions and positivity
preserving operators on spaces of matrix-valued functions. In the present note we
consider the case of vector-valued functions.

More precisely, the scalar (i.e., m = 1) version of Corollary 3.3 in the present
paper is presented in [21, Theorem XIII.52]. There are two intuitive ways to extend
this classical result in [21] to matrix-valued functions F . One way is to consider
F (−i∇) and expH(tF )(−i∇) as multiplier operators on the matrix-valued L2-
space. This is what we have done in Theorem 4.11 of our earlier paper [13]. The
second way is to consider F (−i∇) and expH(tF )(−i∇) as multiplier operators on
the vector-valued L2 (and Lp) space. This is what we now have done in Corol-
lary 3.3 in the present paper.

The prime motivation for us to study matrix-valued extensions of [21, The-
orem XIII.52], and to write [13] and now the present paper, was to find a matrix-
valued analog of the the Levy–Khintchine formula (cf. Theorem 2.2 (iv)). While
this issue remains work in progress, we refer to the extensive literature devoted
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to matrix-valued Schrödinger operators cited, for instance, in [8, 9, 12], which
underscores the interest in this subject.

To make this note somewhat self-contained, we summarize in Sect. 2 the
necessary background material on (conditionally) positive semidefinite functions
F : Rn → C (hinting briefly at some matrix-valued generalizations), and on Fourier
multipliers in L1(Rn) and L2(Rn). Our principal result on positivity preserving,
translation invariant, linear operators in Lp(Rn)m, p ∈ [1,∞), m,n ∈ N, Theo-
rem 3.2, and several corollaries are then treated in Sect. 3.

2. Some Background Material
In this preparatory section we briefly recall the basic definitions of (conditionally)
positive semidefinite functions F : Rn → C, and state two classical results in this
context; we also briefly hint at a matrix-valued extension of Bochner’s theorem
(for details we refer to [13] and the extensive literature cited therein). Finally, we
recall some results on Fourier multipliers in L1(Rn) and L2(Rn) (see [14, Sect. 2.5]
for a detailed exposition).

However, before getting started, we briefly summarize the basic notation em-
ployed in this paper: The Banach space of bounded linear operators on a complex
Banach space X is denoted by B(X).

For Y a set, Y m, m ∈ N, represents the set of m× 1 matrices with entries in
Y ; similarly, Y m×n, m,n ∈ N, represents the set of m×n matrices with entries in
Y .

Unless explicitly stated otherwise, Cm is always equipped with the Euclidean
scalar product ( · , · )Cm and associated norm ‖ · ‖Cm .

The symbol S(Rn) denotes the standard Schwartz space of all complex-valued
rapidly decreasing functions on Rn . In addition, we employ the spaces,

C∞
0 (Rn) = {f ∈ C∞(Rn) | supp (f) compact}, (2.1)

C∞(Rn) =
{
f ∈ C(Rn) | lim

|x|→∞
f(x) = 0

}
. (2.2)

Unless explicitly stated otherwise, the spaces (2.1)–(2.2) are always equipped with
the norm ‖f‖∞ = ess.supx∈Rn |f(x)|.

For brevity, we will omit displaying the Lebesgue measure dnx in Lp(Rn), p ∈
[1,∞)∪{∞}, whenever the latter is understood. The norm for f = (f1, . . . , fm)⊤ ∈
Lp(Rn)m, p ∈ [1,∞), m ∈ N, is defined by

‖f‖Lp(Rn)m =

m∑
j=1

‖fj‖Lp(Rn), f = (f1, . . . , fm)⊤ ∈ Lp(Rn)m. (2.3)

The symbols Lp(Rn)m+
(
resp., C∞

0 (Rn)m+
)

represent elements of Lp(Rn)m
(
resp.,

C∞
0 (Rn)m

)
with all entries nonnegative (Lebesgue) a.e.
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The Fourier and inverse Fourier transforms on S(Rn) are denoted by the pair
of formulas,

(Ff)(y) = f∧(y) = (2π)−n/2

ˆ
Rn

e−i(y·x)f(x) dnx, (2.4)

(F−1g)(x) = g∨(x) = (2π)−n/2

ˆ
Rn

ei(x·y)g(y) dny, (2.5)

f, g ∈ S(Rn),

and we use the same notation for the appropriate extensions, where S(Rn) is
replaced by Lp(Rn), p ∈ [1,∞).

The open ball in Rn with center x0 ∈ Rn and radius r0 > 0 is denoted by
the symbol Bn(x0, r0), the norm of vectors x ∈ Rn is denoted by ‖x‖Rn , the scalar
product of x, y ∈ Rn, is abbreviated by (x, y)Rn .

With Mn the σ-algebra of all Lebesgue measurable subsets of Rn and for
E ∈ Mn, the n-dimensional Lebesgues measure of E is abbreviated by |E|.

With the basic notation used in this paper now out of the way, we start
our brief summary of the necessary background material and some of the results
presented in [13].

Definition 2.1. Let m ∈ N, and A ∈ Cm×m, and suppose that F : Rn → C,
n ∈ N.
(i) A is called positive semidefinite, also denoted by A > 0, if

(c, Ac)Cm =
m∑

j,k=1

cj Aj,kck > 0 for all c = (c1, . . . , cm)⊤ ∈ Cm. (2.6)

(ii) A = (Aj,k)16j,k6m = A∗ ∈ Cm×m is said to be conditionally positive semidef-
inite if

(c, Ac)Cm > 0 for all c = (c1, . . . , cm)⊤ ∈ Cm with
m∑
j=1

cj = 0. (2.7)

(iii) F is called positive semidefinite if for all N ∈ N, xp ∈ Rn, 1 6 p 6 N , the
matrix (F (xp − xq))16p,q6N ∈ CN×N is positive semidefinite.
(iv) F is called conditionally positive semidefinite if for all N ∈ N, xp ∈ Rn,
1 6 p 6 N , the matrix (F (xp − xq))16p,q6N ∈ CN×N is conditionally positive
semidefinite.
(v) Let T ∈ B

(
L2(Rn)

)
. Then T is called positivity preserving (in L2(Rn)) if for

any 0 6 f ∈ L2(Rn) also Tf > 0.

In connection with Definition 2.1 (iv) one can show that if F is conditionally
positive semidefinite, then (cf. [13, Lemma 2.5 (iii)], [20, p. 12])

F (−x) = F (x), x ∈ Rn. (2.8)
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In addition, one observes that for T to be positivity preserving it suffices to take
0 6 f ∈ C∞

0 (Rn) in Definition 2.1 (v).
Given F ∈ C(Rn) and F polynomially bounded, one can define

F (−i∇) :

{
C∞

0 (Rn) → L2(Rn),

f 7→ F (−i∇)f =
(
f∧F

)∨
.

(2.9)

More generally, if F ∈ L1
loc(Rn), one introduces the maximally defined operator of

multiplication by F in L2(Rn), denoted by MF , by
(MF f)(x) = F (x)f(x), f ∈ dom(MF ) =

{
g ∈ L2(Rn)

∣∣Fg ∈ L2(Rn)
}
, (2.10)

and then defines F (−i∇) as a normal operator in L2(Rn) via
F (−i∇) = F−1MFF (2.11)

(cf. (2.4), (2.5) and their unitary extensions to L2(Rn)).

Theorem 2.2 (cf., e.g., [15], [18], [21, Theorems XIII.52 and XIII.53], [23]).
Assume that F ∈ C(Rn) and there exists c ∈ R such that Re(F (x)) 6 c. Then the
following items (i)–(iv) are equivalent:
(i) For all t > 0, exp(tF (−i∇)) is positivity preserving in L2(Rn).
(ii) For each t > 0, etF is a positive semidefinite function.
(iii) F is conditionally positive semidefinite.
(iv) (The Levy–Khintchine formula ). There exist α ∈ R, β ∈ Rn, 0 6 A ∈ Cn×n,
and a nonnegative finite measure ν on Rn, with ν({0}) = 0, such that

F (x) = α+ i(β, x)Rn − (x,Ax)Cn

+

ˆ
Rn

[
exp(i(x, y)Rn)− 1− i(x, y)Rn

1 + ‖y‖2Rn

]
1 + ‖y‖2Rn

‖y‖2Rn

dν(y), x ∈ Rn.

(2.12)

Just for completeness (as it is used repeatedly in the bulk of this paper),
we recall that item (ii) above implies item (iii) by differentiating expH

(
t(F (xp −

xq))16p,q6N

)
, xp ∈ Rn, 1 6 p 6 N , N ∈ N, at t = 0. Conversely, that item (iii)

implies item (ii) is a consequence of [16, Theorem 6.3.6].
We continue by recalling Bochner’s classical theorem [7]:

Theorem 2.3 (Bochner’s Theorem, cf., e.g., [2, Sect. 5.4], [18, Theorem 2.7],
[20, p. 13], [22, p. 46]).
Assume that F ∈ C(Rn). Then the following items (i) and (ii) are equivalent:
(i) F is positive semidefinite.
(ii) There exists a nonnegative finite measure µ on Rn such that

F (x) = µ∧(x), x ∈ Rn. (2.13)
In addition, if one of conditions (i) or (ii) holds, then

F (−x) = F (x), |F (x)| 6 |F (0)|, x ∈ Rn, (2.14)
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in particular, F is bounded on Rn.

Next, we turn to the finite-dimensional special case of an infinite-dimensional
extension of Bochner’s theorem in connection with locally compact Abelian groups
due to Berberian [3] (see also [10, 11, 19, 24]):

Definition 2.4. Let F : Rn → Cm×m, m,n ∈ N. Then F is called positive semidef-
inite if for all N ∈ N, xp ∈ Rn, 1 6 p 6 N , the block matrix (F (xp−xq))16p,q6N ∈
CmN×mN is nonnegative.

Remark 2.5. By [13, Lemma 2.5 (i)], F : Rn → Cm×m is positive semidefinite if
and only if for all N ∈ N, xp ∈ Rn, cp ∈ Cm, 16 p 6 N , one has

N∑
p,q=1

(cp, F (xp − xq)cq)Cm > 0. (2.15)

Theorem 2.6 ([3, p 178, Theorem 3 and Corollary on p. 177]).
Assume that F ∈ C(Rn,Cm×m) ∩ L∞(Rn,Cm×m), m ∈ N. Then the following
items (i) and (ii) are equivalent:
(i) F is positive semidefinite.
(ii) There exists a nonnegative measure µ ∈ M(Rn,Cm×m) such that

F (x) = µ∧(x), x ∈ Rn. (2.16)
In addition, if one of conditions (i) or (ii) holds, then

F (−x) = F (x)∗, ‖F (x)‖B(Cm) 6 ‖F (0)‖B(Cm), x ∈ Rn. (2.17)

Finally, we briefly turn to Fourier multipliers.

Definition 2.7. Let p, q ∈ [1,∞) ∪ {∞}. The set Mp,q(Rn) denotes the Banach
space of all bounded linear operators from Lp(Rn) to Lq(Rn) that commute with
translations. The norm of T ∈ Mp,q(Rn) is given by the operator norm,

‖T‖p,q := ‖T‖B(Lp(Rn),Lq(Rn)). (2.18)

We note that bounded convolution operators from Lp(Rn) to Lq(Rn) clearly
are commuting with translations (i.e., are translation invariant); that the converse
is valid as well is proved in [14, Theorem 2.5.2].

Given a complex measure µ on Rn, the total variation of µ is defined by
|µ|(Rn) and the norm of µ is introduced as ‖µ‖ = |µ|(Rn). Given a µ-integrable
f : Rn → C, one defines the convolution of f and µ by

f ∗ µ :

{
Rn → C,
x 7→ (f ∗ µ)(x) =

´
Rn f(x− y) dµ(y),

x ∈ Rn. (2.19)

Also, one can introduce the associated convolution operator Tµ ∈ B
(
Lp(Rn)

)
,

p ∈ [1,∞), by
Tµf = f ∗ µ, f ∈ Lp(Rn). (2.20)
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Similarly, if u ∈ S ′(Rn) is a tempered distribution, the associated convolution
operator Tu is defined via

Tuf = f ∗ u, f ∈ S(Rn). (2.21)
In the cases p = q = 1, 2 one has the following well-known results:

Theorem 2.8 (cf., e.g., [14, Theorems 2.5.8 and 2.5.10]).
(i) T ∈ M1,1(Rn) if and only if T = Tµ for some (finite) complex measure µ. In
this case

‖T‖1,1 = ‖Tµ‖B(L1(Rn)) = |µ|(Rn). (2.22)
(ii) T ∈ M2,2(Rn) if and only if T = Tu for some u ∈ S ′(Rn), whose Fourier
transform u∧ lies in L∞(Rn). In this case

‖T‖2,2 = ‖Tu‖B(L2(Rn)) =
∥∥u∧∥∥

L∞(Rn)
. (2.23)

3. On Positivity Preserving Linear Operators in Lp(Rn)m

In our principal section we now characterize linear, positivity preserving, transla-
tion invariant operators in Lp(Rn)m, p ∈ [1,∞), m,n ∈ N.

We start with the following result:

Lemma 3.1. Let n ∈ N, and suppose that Fℓ : Rn → C, ℓ = 1, 2, are positive
semidefinite. Then F1F2 : Rn → C is positive semidefinite.

Proof. Let N ∈ N, xp ∈ Rn, 1 6 p 6 N , then by hypothesis,
(Fℓ(xp − xq))16p,q6N > 0, ℓ = 1, 2,

and hence by Schur’s theorem (see, e.g., the Lemma in [21, p. 215]),
((F1F2)(xp − xq))16p,q6N = (F1(xp − xq))16p,q6N ◦H (F2(xp − xq))16p,q6N > 0.

(3.1)
Here A◦HB denotes the Hadamard product of two matrices A,B ∈ CN×N , defined
by

(A ◦H B)j,k = Aj,kBj,k, 1 6 j, k 6 N. (3.2)
�

The principal result on positivity preserving, translation invariant, linear op-
erators in Lp(Rn)m, p ∈ [1,∞), m,n ∈ N, proved in this note then reads as follows:

Theorem 3.2. Let m,n ∈ N, and G : Rn → Cm×m be bounded and continuous.
Then the following items (i)–(iv) are equivalent:
(i) For all 1 6 j, k 6 m, Gj,k : Rn → C is positive semidefinite.
(ii) The linear operator,

G(−i∇)
∣∣
C∞

0 (Rn)m
:

C∞
0 (Rn)m → C∞(Rn)m,

(f1, . . . , fm)⊤ 7→
(
G
(
f∧
1 , . . . , f

∧
m

)⊤)∨
,

(3.3)
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extends boundedly to G(−i∇) ∈ B
(
L1(Rn)m

)
satisfying

G(−i∇)
(
L1(Rn)m+

)
⊆ L1(Rn)m+ . (3.4)

(iii) There exists p ∈ (1,∞) such that the linear operator (3.3) extends boundedly
to G(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

G(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.5)

(iv) For all p ∈ (1,∞), the linear operator (3.3) extends boundedly to G(−i∇) ∈
B
(
Lp(Rn)m

)
satisfying

G(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.6)

Proof. We begin by proving the equivalence of items (i) and (ii).
First, suppose (i) holds. By Bochner’s theorem (cf. Theorem 2.3), there exist

finite, nonnegative Borel measures µj,k on Rn such that Gj,k = µ∧
j,k, 1 6 j, k 6

m. Thus, the classical L1(Rn)-multiplier theorem (cf. Theorem 2.8 (i)) implies
that Gj,k(−i∇) is an L1(Rn)-multiplier operator for all 1 6 j, k 6 m, that is,
Gj,k(−i∇) ∈ M1,1(Rn), 1 6 j, k 6 m. With ‖Gj,k(−i∇)‖1,1 denoting the operator
norm of Gj,k(−i∇) in L1(Rn), 1 6 j, k 6 m, we introduce

‖G(−i∇)‖1,1 := max
16j,k6m

{‖Gj,k(−i∇)‖1,1}. (3.7)

Then, for f = (f1, . . . , fm)⊤ ∈ C∞
0 (Rn)m,∥∥[G(−i∇)

∣∣
C∞

0 (Rn)m
f
]
j

∥∥
L1(Rn)

6 ‖G(−i∇)‖1,1‖f‖L1(Rn)m , 1 6 j 6 m, (3.8)

and hence, ∥∥G(−i∇)
∣∣
C∞

0 (Rn)m
f
∥∥
L1(Rn)m

6 m‖G(−i∇)‖1,1‖f‖L1(Rn)m . (3.9)

In other words, G(−i∇)
∣∣
C∞

0 (Rn)m
extends boundedly to an operator G(−i∇) ∈

B
(
L1(Rn)m

)
.

Since by [1, Theorem 2.29 (c)], C∞
0 (Rn)m+ is dense in L1(Rn)m+ , to show that

item (ii) holds, it suffices to prove that
G(−i∇)

(
C∞

0 (Rn)m+
)
⊆ L1(Rn)m+ . (3.10)

Let f = (f1, . . . , fm)⊤ ∈ C∞
0 (Rn)m+ . By Bochner’s theorem (cf. Theorem 2.3, with

measures of the form µj = fjd
nx, 1 6 j 6 m), f∧

k , 1 6 k 6 m, are positive
semidefinite, and thus an application of Lemma 3.1 yields that

∑m
k=1 Gj,kf

∧
k , 1 6

j 6 m, are positive semidefinite. Since

([G(−i∇)f ]j)
∧ =

m∑
k=1

Gj,kf
∧
k , 1 6 j 6 m, (3.11)

applying Bochner’s theorem once more implies that [G(−i∇)f ]j > 0, 1 6 j 6 m,
that is,

G(−i∇)f ∈ L1(Rn)m+ . (3.12)
Thus, item (ii) holds.
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Next, we assume that item (ii) holds. Let φ : [0,∞) → [0,∞) satisfy
(α) φ( · ) is decreasing on [0,∞),
(β) φ ∈ C∞([0,∞)), φ(k)(0) = 0, k ∈ N, supp(φ) = [0, 1], (3.13)

(γ)

ˆ
Rn

dnxϕ(x) = 1, ϕ(x) = φ(‖x‖Rn), x ∈ Rn,

and introduce
ϕε(x) = ε−nϕ(x/ε), ε ∈ (0, 1), x ∈ Rn, (3.14)

implying
lim
ε↓0

ϕ∧
ε (ξ) = 1, ξ ∈ Rn. (3.15)

Moreover we introduce

ϕε,k ∈ L1(Rn)m+ , [ϕε,k]j =

{
0, j 6= k,

ϕε, j = k,
1 6 j, k 6 m, ε ∈ (0, 1). (3.16)

Then by hypothesis,

G(−i∇)ϕε,k =
((

G1,kϕ
∧
ε

)∨
, . . . ,

(
Gm,kϕ

∧
ε

)∨)⊤
∈ L1(Rn)m+ , (3.17)

and hence, once more by Bochner’s theorem, Gj,kϕ
∧
ε , 1 6 j, k 6 m, are positive

semidefinite. Thus, for all xp ∈ Rn, 1 6 p 6 N , (3.15) implies
0 6 lim

ε↓0

(
Gj,k(xp − xq)ϕ

∧
ε (xp − xq)

)
16p,q6N

= (Gj,k(xp − xq))16p,q6N , (3.18)

that is, Gj,k, 1 6 j, k 6 m, are positive semidefinite, implying item (i).
Next we prove that item (ii) implies item (iv). Assuming item (ii) holds, then

by the equivalence of items (i) and (ii) just proved, Gj,k, 1 6 j, k 6 m, are positive
semidefinite and hence there exist finite, nonnegative Borel measures µj,k on Rn,
such that Gj,k = µ∧

j,k, 1 6 j, k 6 m. By the classical L1-multiplier theorem (cf.
Theorem 2.8 (i)), this implies that Gj,k(−i∇), 1 6 j, k 6 m, are L1(Rn)-multiplier
operators, and hence also Lp(Rn)-multipliers for all p ∈ [1,∞) according to [14,
p. 143, remarks after Definition 2.5.11]. We denote by ‖Gj,k(−i∇)‖p,p the norm
of Gj,k(−i∇) in Lp(Rn), 1 6 j, k 6 m, p ∈ (1,∞), and introduce

‖G(−i∇)‖p,p := max
16j,k6m

{‖Gj,k(−i∇)‖p,p}. (3.19)

Then for all f = (f1, . . . , fm)⊤ ∈ C∞
0 (Rn)m,∥∥G(−i∇)

∣∣
C∞

0 (Rn)m
f
∥∥
Lp(Rn)m

6 m‖G(−i∇)‖p,p‖f‖Lp(Rn)m , (3.20)

and thus G(−i∇)
∣∣
C∞

0 (Rn)m
can be extended to a bounded operator G(−i∇) ∈

B
(
Lp(Rn)m

)
.

Since once more by [1, Theorem 2.29 (c)], C∞
0 (Rn)m+ is dense in Lp(Rn)m+ ,

p ∈ [1,∞), to show that item (iv) is valid it suffices to prove that
[G(−i∇)f ]j > 0, 1 6 j 6 m, f = (f1, . . . , fm)⊤ ∈ C∞

0 (Rn)m+ , (3.21)
which is implied by item (ii).
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It is clear that item (iv) implies item (iii).
Next, we prove that item (iii) implies item (i). We start by proving that for

all f = (f1, . . . , fm)⊤ ∈ C∞
0 (Rn)m+ , and all 1 6 j 6 m,

∑m
k=1 Gj,kf

∧
k is positive

semidefinite. Since G( · ) is bounded, the map

f 7→ G(−i∇)f =
(
Gf∧)∨, f ∈ C∞

0 (Rn)m, (3.22)

extends to a bounded operator in B
(
L2(Rn)m

)
by the classical L2-multiplier the-

orem, Theorem 2.8 (ii). Thus, for all R > 0, f = (f1, . . . , fm)⊤ ∈ C∞
0 (Rn)m+ , and

for all 1 6 j 6 m, [G(−i∇)f ]jχBn(0,R) ∈ L1(Rn)+ ∩ L2(Rn)+. Thus, again by
Bochner’s theorem, ([G(−i∇)f ]jχBn(0,R))

∧, 1 6 j 6 m, are positive semidefinite.
Hence, taking limits in L2(Rn), one obtains,

m∑
k=1

Gj,kf
∧
k = ([G(−i∇)f ]j)

∧ = lim
R↑∞

([G(−i∇)f ]jχBn(0,R))
∧, (3.23)

and thus there exist a sequence of increasing positive numbers {Rℓ}ℓ∈N, with
limℓ→∞ Rℓ = ∞, and a set E ⊂ Rn of Lebesgue measure zero, |E| = 0, such that
for all x ∈ Rn\E,

lim
ℓ→∞

([G(−i∇)f ]jχBn(0,Rℓ))
∧(x) =

m∑
k=1

Gj,k(x)f
∧
k (x). (3.24)

Letting xp ∈ Rn, 1 6 p 6 N , for each 1 6 q 6 N , one can choose a sequence
{xq,r}r∈N ⊂ Rn\E such that limr→∞ xq,r = xq, 1 6 q 6 N , and that

(xp,r − xq,r) ∈ Rn\E, 1 6 p, q 6 N, r ∈ N. (3.25)
Hence, employing that

∑m
k=1 Gj,kf

∧
k , 1 6 j 6 m, is continuous, one concludes that( m∑

k=1

Gj,k(xp − xq)f
∧
k (xp − xq)

)
16p,q6N

= lim
r→∞

( m∑
k=1

Gj,k(xp,r − xq,r)f
∧
k (xp,r − xq,r)

)
16p,q6N

= lim
r→∞

lim
ℓ→∞

(
([G(−i∇)f ]jχBn(0,Rℓ

)∧(xp,r − xq,r)
)
16p,q6N

> 0, (3.26)

implying that
∑m

k=1 Gj,kf
∧
k , 1 6 j 6 m, are positive semidefinite. Next, introduce

ϕε,k ∈ C∞
0 (Rn)m+ , 1 6 k 6 m, ε ∈ (0, 1), as in (3.16). Then with f = ϕε,k,

1 6 k 6 m, ε ∈ (0, 1), in (3.26), one concludes that for all ε ∈ (0, 1), 1 6 j, k 6 m,
Gj,kϕ

∧
ε is positive semidefinite. Hence, again applying (3.15), one obtains that

Gj,k = limε↓0 Gj,kϕ
∧
ε is positive semidefinite, and thus item (i) holds. �

Given S ∈ Cm×m, m ∈ N, its Hadamard exponential, denoted by expH(S), is
defined by

expH(S) =
(
expH(S)j,k := exp(Sj,k)

)
16j,k6m

. (3.27)
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More generally, if S : Rn → Cm×m, m,n ∈ N, its Hadamard exponential, denoted
by expH(S( · )), is defined by

expH(S(x)) =
(
expH(S(x))j,k := exp(S(x)j,k)

)
16j,k6m

, x ∈ Rn. (3.28)

Corollary 3.3. Let m,n ∈ N, suppose that F : Rn → Cm×m is continuous, and
assume there exists c ∈ R such that

Re(Fj,k) 6 c, 1 6 j, k 6 m. (3.29)
Then the following items (i)–(vi) are equivalent:
(i) There exists p ∈ (1,∞) such that for all t > 0, the linear operator

(expH(tF ))(−i∇)
∣∣
C∞

0 (Rn)m
:

C∞
0 (Rn)m → C∞(Rn)m,

(f1, . . . , fm)⊤ 7→
(
expH(tF )

(
f∧
1 , . . . , f

∧
m

)⊤)∨
,

(3.30)
extends to a bounded operator (expH(tF ))(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

(expH(tF ))(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.31)

(ii) For all p ∈ (1,∞), and all t > 0, the linear operator (3.30) extends boundedly
to (expH(tF ))(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

(expH(tF ))(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.32)

(iii) For all t > 0, the linear operator (3.30) extends boundedly to (expH(tF ))(−i∇)
∈ B

(
L1(Rn)m

)
satisfying

(expH(tF ))(−i∇)
(
L1(Rn)m+

)
⊆ L1(Rn)m+ . (3.33)

(iv) For all 1 6 j, k 6 m, and all t > 0, exp(tFj,k) : Rn → C is positive semidefi-
nite.
(v) For all 1 6 j, k 6 m, Fj,k : Rn → C is conditionally positive semidefinite.
(vi) For all 1 6 j, k 6 m, there exist αj,k ∈ R, βj,k ∈ Rn, 0 6 A(j, k) ∈ Cn×n,
and a nonnegative, finite Borel measure νj,k on Rn, satisfying νj,k({0}) = 0, such
that
Fj,k(x) = αj,k + i(βj,k, x)Rn − (x,A(j, k)x))Cn (3.34)

+

ˆ
Rn

[
exp(i(x, y)Rn)− 1− i(x, y)Rn

1 + ‖y‖2Rn

]
1 + ‖y‖2Rn

‖y‖2Rn

dνj,k(y), x ∈ Rn.

Proof. The equivalence of items (iv), (v), and (vi) follows from classical results
(cf. [21, Theorems XIII.52 and XIII.53]). The equivalence of items (i), (ii), (iii),
and (iv) follows from Theorem 3.2, putting G = expH(tF ), t > 0. �

Corollary 3.4. Let m,n ∈ N, suppose that F : Rn → Cm×m is a continuous,
diagonal, matrix-valued function, and assume there exists c ∈ R such that

Re(Fj,j) 6 c, 1 6 j 6 m. (3.35)
Then the following items (i)–(iv) are equivalent:
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(i) For all 1 6 j 6 m, Fj,j is conditionally positive semidefinite.
(ii) For all t > 0, the linear operator

(exp(tF ))(−i∇)
∣∣
C∞

0 (Rn)m
:

C∞
0 (Rn)m → C∞(Rn)m,

(f1, . . . , fm)⊤ 7→
(
exp(tF )

(
f∧
1 , . . . , f

∧
m

)⊤)∨
,

(3.36)
extends boundedly to (exp(tF ))(−i∇) ∈ B

(
L1(Rn)m

)
satisfying

(exp(tF ))(−i∇)
(
L1(Rn)m+

)
⊆ L1(Rn)m+ . (3.37)

(iii) There exists p ∈ (1,∞) such that for all t > 0, the linear operator (3.36)
extends boundedly to (exp(tF ))(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

(exp(tF ))(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.38)

(iv) For all p ∈ (1,∞), and all t > 0, the linear operator (3.36) extends boundedly
to (exp(tF ))(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

(exp(tF ))(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.39)

Proof. By the assumptions on F , exp(tF ) : Rn → Cm×m is a bounded, continuous,
diagonal, matrix-valued function whose diagonal entries are

exp(tF )j,j = exp(tFj,j), t > 0, 1 6 j 6 m. (3.40)

By Theorem 3.2, with G = exp(tF ), t > 0, it suffices to prove that item (i) is
equivalent to
(i)(α) For all 1 6 j, k 6 m, and all t > 0, exp(tF )j,k : Rn → C is positive semidef-
inite.
Since exp(tF ) is a diagonal matrix, item (i)(α) is equivalent to
(i)(β) For all 1 6 j 6 m, and all t > 0, exp(tF )j,j = exp(tFj,j) is positive semi-
definite.
However, the equivalence of items (i) and (i)(β) follows from the equivalence of
items (ii) and (iii) in Theorem 2.2. �

Corollary 3.5. Let m,n ∈ N, and assume that F : Rn → Cm×m is bounded
and continuous. Suppose that for all 1 6 j, k 6 m, Fj,k : Rn → C is positive
semidefinite. Then for all p ∈ [1,∞), and all t > 0, the linear operator

(exp(tF ))(−i∇)
∣∣
C∞

0 (Rn)m
:

C∞
0 (Rn)m → C∞(Rn)m,

(f1, . . . , fm)⊤ 7→
(
exp(tF )

(
f∧
1 , . . . , f

∧
m

)⊤)∨
,

(3.41)
extends boundedly to (exp(tF ))(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

(exp(tF ))(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.42)
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Proof. By the hypotheses on F , exp(tF ) : Rn → Cm×m is bounded and continuous
for all t > 0. By Theorem 3.2, with G = exp(tF ), t > 0, it suffices to prove that
for all 1 6 j, k 6 m and all t > 0, exp(tF )j,k : Rn → C is positive semidefinite.
Combining Lemma 3.1 with an induction argument shows that

(
F ℓ

)
j,k

: Rn → C
is positive semidefinite for all ℓ ∈ N and all 1 6 j, k 6 m. Thus, also exp(tF )j,k =∑∞

ℓ=0
tℓ

ℓ! (F
ℓ)j,k is positive semidefinite for all t > 0 and all 1 6 j, k 6 m. �

We conclude with an explicit illustration:

Example 3.6. Let n ∈ N, assume that a : Rn → R is continuous and bounded
above, b > 0 is constant, and define F0 : Rn → C2×2 by

F0(x) =

(
a(x) b
b a(x)

)
, x ∈ Rn. (3.43)

Then the following items (i)–(iv) are equivalent:
(i) a is conditionally positive semidefinite.
(ii) F0 is conditionally positive semidefinite in the sense of Mlak [19], that is, for
all N ∈ N, all xp ∈ Rn, and all cp ∈ C2, 1 6 p 6 N , satisfying

∑N
p=1 cp = 0, one

has,
N∑

p,q=1

(cp, F0(xp − xq)cq)C2 > 0. (3.44)

(iii) For all t > 0, exp(tF0) : Rn → R2×2 is positive semidefinite in the sense of
[13, Definition 2.4] (cf. Definition 2.4).
(iv) For all t > 0, the linear operator

(exp(tF0))(−i∇)
∣∣
C∞

0 (Rn)m
:

C∞
0 (Rn)m → C∞(Rn)m,

(f1, . . . , fm)⊤ 7→
(
exp(tF0)

(
f∧
1 , . . . , f

∧
m

)⊤)∨
,

(3.45)
extends boundedly to (exp(tF0))(−i∇) ∈ B

(
L1(Rn)m

)
satisfying

(exp(tF0))(−i∇)
(
L1(Rn)m+

)
⊆ L1(Rn)m+ . (3.46)

(v) There exists p ∈ (1,∞) such that for all t > 0, the linear operator (3.45)
extends boundedly to (exp(tF0))(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

(exp(tF0))(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.47)

(vi) For all p ∈ (1,∞), and all t > 0, the linear operator (3.45) extends boundedly
to (exp(tF0))(−i∇) ∈ B

(
Lp(Rn)m

)
satisfying

(exp(tF0))(−i∇)
(
Lp(Rn)m+

)
⊆ Lp(Rn)m+ . (3.48)
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Proof. We start by proving the equivalence of items (i) and (ii). One notes that
for cp = (cp,1, cp,2)

⊤ ∈ C2, 1 6 p 6 N , N ∈ N,

N∑
p,q=1

(cp, F0(xp − xq)cq)C2 =
N∑

p,q=1

cp,1 a(xp − xq)cq,1 +
N∑

p,q=1

cp,2 a(xp − xq)cq,2

+ b

[( N∑
p=1

cp,1

)( N∑
q=1

cq,2

)
+

( N∑
p=1

cp,2

)( N∑
q=1

cq,1

)]
.

(3.49)

If item (i) holds, then for cp = (cp,1, cp,2)
⊤ ∈ C2, 1 6 p 6 N , with

∑N
p=1 cp = 0,

(3.49) implies

N∑
p,q=1

(cp, F0(xp − xq)cq)C2 =
N∑

p,q=1

cp,1 a(xp − xq)cq,1 +
N∑

p,q=1

cp,2 a(xp − xq)cq,2 > 0,

(3.50)
implying item (ii).

Next, suppose item (ii) holds. Choose dp ∈ C, 1 6 p 6 N , N ∈ N, with∑N
p=1 dp = 0. Let cp = (cp,1, cp,2)

⊤ ∈ C2, 1 6 p 6 N , be defined via

cp,1 = dp, cp,2 = 0, 1 6 p 6 N. (3.51)

Then
∑N

p=1 cp = 0 and (3.49) yields

0 6
N∑

p,q=1

(cp, F0(xp − xq)cq)C2 =

N∑
p,q=1

dp a(xp − xq)dq, (3.52)

implying item (i).
Next we employ the elementary matrix identity

exp

((
α β
β α

))
= eα

(
cosh(β) sinh(β)
sinh(β) cosh(β)

)
, α, β ∈ R. (3.53)

Then, if b = 0, the equivalence of items (i), (iv), (v), and (vi) follows from Corol-
lary 3.4.

Next, suppose item (i) holds and that b = 0. We will show that then also
item (iii) holds: Let xp ∈ Rn, and let cp = (cp,1, cp,2)

⊤ ∈ C2, 1 6 p 6 N , N ∈ N.
Then

exp(tF0)(x) =

(
eta(x) 0
0 eta(x)

)
, t > 0, x ∈ Rn, (3.54)
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and hence by the equivalence of items (ii) and (iii) in Theorem 2.2,
N∑

p,q=1

(cp, exp(tF0)(xp − xq)cq)C2

=
N∑

p,q=1

cp,1 e
ta(xp−xq)cq,1 +

N∑
p,q=1

cp,2 e
ta(xp−xq)cq,2 > 0.

(3.55)

Hence, item (iii) follows from [13, Lemma 2.5 (i)] (cf. Remark 2.5).
Now suppose item (iii) holds and that b = 0. We will show that then also item

(ii) holds: Let xp ∈ Rn, and let cp ∈ C2, 1 6 p 6 N , N ∈ N, with
∑N

p=1 cp = 0.
Then (with I2 the identity matrix in C2×2),

0 6 lim
t↓0

t−1
(
cp, exp(tF0)(xp − xq)cq

)
C2

= lim
t↓0

N∑
p,q=1

(
cp, t

−1
[
exp(tF0)(xp − xq)− I2

]
cq
)
C2

=

N∑
p,q=1

(cp, F0(xp − xq)cq)C2 , (3.56)

and hence items (i)–(vi) are equivalent if b = 0.
In the remainder of the proof we suppose that b 6= 0. We start by proving

that item (i) implies item (iii). By inspection, the following matrix is nonnegative,(
cosh(tb) sinh(tb)
sinh(tb) cosh(tb)

)
> 0, (3.57)

as its eigenvalues cosh(tb) ± sinh(tb) are nonnegative. By item (i) and the equiv-
alence of items (ii) and (iii) in Theorem 2.2, as well as Bochner’s theorem, The-
orem 2.3, for all t > 0, there exists a finite, nonnegative Borel measure νt on Rn

such that eta = ν∧t . Thus, (3.53) implies

exp(tF0(x)) = eta(x)
(
cosh(tb) sinh(tb)
sinh(tb) cosh(tb)

)
=

((
cosh(tb) sinh(tb)
sinh(tb) cosh(tb)

)
νt

)∧

,

(3.58)
that is, exp(tF0(x)) is the Fourier transform of a nonnegative, finite, C2×2-valued
measure, and hence item (iii) follows from Berberian’s matrix-valued extension of
Bochner’s theorem, Theorem 2.6.

To verify that item (iii) implies item (ii), one notes that (3.56) remains valid
if b 6= 0.

By equation (3.58), for all t > 0, the entries of exp(tF0) are either eta cosh(tb)
or eta sinh(tb), and hence for all 1 6 j, k 6 2, exp(tF0( · ))j,k is positive semidefinite
if and only if eta( · ) is, and thus, by the equivalence of items (ii) and (iii) in Theo-
rem 2.2, if and only if a( · ) is conditionally positive semidefinite. The equivalence
of items (i), (iv)–(vi) now follows from Theorem 3.2. �
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The Distribution of Path Lengths
On Directed Weighted Graphs

Avner Kiro, Yotam Smilansky and Uzy Smilansky

To the memory of Boris Pavlov, a teacher, colleague and friend

Abstract. We consider directed weighted graphs and define various families
of path counting functions. Our main results are explicit formulas for the main
term of the asymptotic growth rate of these counting functions, under some
irrationality assumptions on the lengths of all closed orbits on the graph.
In addition we assign transition probabilities to such graphs and compute
statistics of the corresponding random walks. Some examples and applications
are reviewed.

1. Introduction and Main Results
Questions regarding the distribution of path lengths on directed weighted graphs
are encountered in various fields of study of mathematics and physics. They arise
naturally in dynamics and the study of closed orbits of suspensions of shifts of
finite type, see among others [15, 16, 9, 4], and the more recent [12, 3].

Our motivations for counting paths on weighted graphs are diverse. The
second author’s motivation originates in the study of a model of mathematical
quasicrystals which we call multiscale substitution tilings, and in the study of
equidistribution of what is known as Kakutani’s partitions, first described in
[11]. The connection to problems concerning path counting on weighted graphs
is introduced in Sect. 5.2. The third author’s motivation is rooted in theoretical
physics, specifically in the spectral properties of the Schrödinger operator for
systems which are chaotic in the classical limit and for metric graphs [8]. Of
particular relevance are studies of the distribution of delay (transit) times through
chaotic scatterers such as, e.g., the scattering of ultra-short electromagnetic pulses
by complex molecules, or traversing networks of transmission lines [1, 20].
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1.1. Counting paths in graphs
Let G = (V, E , l) be a directed weighted metric graph with a set V = {1, . . . , n} of
vertices and a set E of edges. A positive weight is assigned to each edge α ∈ E , and
we think of this weight as the length of α. For a path γ connecting two vertices in
V, the path metric l is defined to be the sum of the weights of the edges in γ. When
considering paths which do not necessarily terminate at a vertex of G, the path
metric is defined by l (γ) = a if the path γ is isometric to [0, a] ⊂ R. Throughout
this paper G is assumed to be a strongly connected multigraph, that is, a graph
which admits a path from every vertex i ∈ V to every vertex j ∈ V, and loops and
multiple edges are allowed.

We say that G is a graph of incommensurable orbits, or incommensurable
for short, if there exist at least two closed paths in G of lengths a, b such that
a ̸∈ Qb. This irrationality condition on the lengths of the edges is equivalent to the
set of lengths of all closed orbits in G not being a uniformly discrete subset of R.
Indeed, if there exist two closed paths in G of lengths a, b such that a ̸∈ Qb, then
by Dirichlet’s approximation theorem for every ε > 0 there exist p, q ∈ N such
that |aq − pb| < ε, and so the set of lengths of closed orbits in G is not uniformly
discrete. Conversely, if the set of lengths of closed orbits is rationally dependent,
then the finiteness of the graph implies that there is a finite set L of lengths for
which the length of any closed orbit in G is a linear combination with integer
coefficients of elements in L. It follows that the set of lengths of closed orbits in G
is uniformly discrete.

Let i, j ∈ V be a pair of vertices in G, and assume that there are k ≥ 0 edges
α1, . . . , αk from i to j. The matrix valued function M : C → Mn (C), which we
call the graph matrix function of G, is defined by

Mij (s) = e−s·l(α1) + · · ·+ e−s·l(αk)

and Mij (s) = 0 if i is not connected to j by an edge. Note that the restriction of
M to R is real valued.

Theorem 1. Let G be a strongly connected incommensurable graph. There exist
a positive constant λ and a matrix Q ∈ Mn (R) with positive entries such that

(i) The number of paths from i ∈ V to j ∈ V of length at most x grows as
1

λ
Qije

λx + o
(
eλx
)
, x → ∞.

(ii) Let α ∈ E be an edge in G which originates in vertex j ∈ V. The number of
paths of length exactly x from some vertex i to a point on the edge α grows
as

1− e−l(α)λ

λ
Qije

λx + o
(
eλx
)
, x → ∞.

The constant λ is the maximal real value for which the spectral radius of M
is equal to 1, and

Q = Q (M (λ)) =
adj (I −M (λ))

−tr (adj (I −M (λ)) ·M ′ (λ))
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where M ′ is the entry-wise derivative of M , and adjA is the adjugate or
classical adjoint matrix of A, that is the transpose of its cofactor matrix.

Example. Let G be the directed weighted graph which appears in Fig. 1.

γ1

γ2

21α

β

Figure 1. Graph with two vertices V = {1, 2} and four edges E = {α, β, γ1, γ2}.

The graph matrix function of G is given by

M (s) =

(
e−l(α)s e−l(β)s

e−l(γ1)s + e−l(γ2)s 0

)
.

Putting, for example,

l (α) = log 2, l (γ1) = log
3

2
,

l (β) = log 2, l (γ2) = log 3,

we get λ = 1 and

Q =
6

log 432

(
1 1

2
1 1

2

)
,

and so by the second part of Theorem 1, the number of paths of length exactly x
from vertex 1 to a point on the edge γ2 grows as

1− e−l(γ2)λ

λ
Q12e

λx + o
(
eλx
)
=

ex

log
√
432

+ o (ex) , x → ∞.

1.2. Weighted random walks on graphs
Let α ∈ E be an edge which originates at i ∈ V. Denote by piα > 0 the probability
that a walker who is passing through vertex i chooses to continue his walk through
edge α, and assume that the sum of the probabilities over all edges originating at
a given vertex is less than or equal to 1, for all vertices in G. Let α1, . . . , αk be
the edges connecting vertex i to vertex j. The graph probability matrix function
N : C → Mn (C) is defined by

Nij (s) = piα
1
e−s·l(α1) + · · ·+ piαk

e−s·l(αk)

and Nij (s) = 0 if i is not connected to j by an edge. Note that the restriction of
N to R is real valued. If the sum of the probabilities over all edges originating at
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a given vertex is strictly less than 1, there is a positive probability that the walker
does not choose any of the edges and instead leaves the graph.
Theorem 2. Let G be a strongly connected incommensurable graph, and consider
a walker on G advancing at constant speed 1. There exist a non-positive constant
λ and a matrix Q ∈ Mn (R) with positive entries such that

(i) The probability that a walker leaving i ∈ V at time t = 0 is exactly at j ∈ V
at time t = T decays as

Qije
λT + o

(
eλT
)
, T → ∞

for values of T in the countable set of times for which this probability is
non-zero.

(ii) Let α ∈ E be an edge in G which originates in vertex j ∈ V. The probability
that a walker who has left some vertex i ∈ V at time t = 0 is on the edge
α ∈ E at time t = T , where α originates at j and has probability pjα, decays
as

pjα
1− e−l(α)λ

λ
Qije

λT + o
(
eλT
)
, T → ∞

whenever λ < 0. In the case λ = 0, the probability tends to
pjαl (α)Qij , T → ∞.

As in the previous theorem, the constant λ is the maximal real value for which
the spectral radius of N is equal to 1, and

Q = Q (N (λ)) =
adj (I −N (λ))

−tr (adj (I −N (λ)) ·N ′ (λ))
.

As a direct corollary we have
Corollary 1. In the settings of the previous theorem, denote by E (j) the set of
edges in G with origin at vertex j ∈ V. The probability that a walker who has left
vertex i ∈ V at time zero is still on the graph G at time T decays as∑

j∈V

∑
α∈E(j)

pjα
1− e−l(α)λ

λ
Qije

λT + o
(
eλT
)
, T → ∞

whenever λ < 0.
Remark 1. It will follow from Remark 4 that in the case λ = 0 the matrix N (0)
is right stochastic and that the probability described in the previous corollary is 1.

The random walk defined above can be generalized by considering a random
walk on the edges, and the transition probability pβ,α from an edge α to an edge
β vanishes unless β originates at the vertex where α terminates. Let d be the
number of directed edges on the graph. The graph probability matrix function
W : C → Md(C) is defined by

Wβ,α (s) = pβ,αe
−s·l(α).

The analogues of Theorem 2 and its Corollary 1 in the present case follow directly
from the discussion above.
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2. Matrices, Perron–Frobenius Theory and Graphs
A real valued matrix A ∈ Mn (R) is called positive if all entries of A are positive
and non-negative if all entries of A are non-negative. A is called primitive if
there exists k ∈ N for which Ak is positive and irreducible if for every pair of
indices i, j there exists k ∈ N for which

(
Ak
)
ij
> 0.

2.1. The Perron–Frobenius Theorem
The following results are due to Perron and Frobenius (full statements and proofs
can be found in [7, Chap. XIII]).

Theorem. Let A ∈ Mn (R) be a non-negative and irreducible matrix.
1. There exists µ > 0 which is a simple eigenvalue of A, and |µj | ≤ µ for any

other eigenvalue µj. We call µ the Perron–Frobenius eigenvalue.
2. There exist v, u ∈ Rn with positive entries such that Av = µv and uTA = µuT .

Moreover every right eigenvector with non-negative entries must be a positive
multiple of v (similarly for left eigenvectors and u).

Theorem. Let A ∈ Mn (R) be a primitive matrix.
1. There exists µ > 0 which is a simple eigenvalue of A, and |µj | < µ for any

other eigenvalue µj. We call µ the Perron–Frobenius eigenvalue.
2. There exist v, u ∈ Rn with positive entries such that Av = µv and uTA = µuT .

Moreover every right eigenvector with non-negative entries must be a positive
multiple of v (similarly for left eigenvectors and u).

3. The following limit holds

lim
k→∞

(
1

µ
A

)k

=
vuT

uT v
.

The limit matrix P = vuT

uT v
is called the Perron projection of A.

2.2. Perron’s projection
Given an irreducible matrix A, there are additional ways to represent its Perron
projection P , as shown bellow

Lemma 1. Let A be an irreducible matrix with Perron–Frobenius eigenvalue µ
and a Perron projection P . Then

P =
adj (µI −A)

tr (adj (µI −A))
.

Proof. Let v and u be eigenvectors as in the Perron–Frobenius theorem. The
columns of P are scalar multiples of v, and the rows of P are scalar multiples
of uT , and so the column space of P is spanned by v and the row space by u.
Denote by V the subspace of Mn (R) consisting of matrices with these row and
column spaces, and notice that dimV = 1. Since µ is an eigenvalue of A we have

(µI −A) · adj (µI −A) = det (µI −A) I = 0,
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and so every column of adj (µI −A) is an eigenvector of A corresponding to µ. By
the Perron–Frobenius theorem all columns of adj (µI −A) must be scalar multiples
of v and so the column space of adj (µI −A) is spanned by v. Similarly, using
adj (µI −A)·(µI −A) = 0 we deduce that the row space of adj (µI −A) is spanned
by u, and so adj (µI −A) ∈ V . Since V is one dimensional adj (µI −A) = αP for
some α ∈ R. Next, since Pv = v, and Pw = 0 for every w ∈ (span {u})⊥, the
Perron projection P is similar to the matrix diag (1, 0, . . . , 0). Therefore trP = 1,
and so

tr (adj (µI −A)) = tr (αP ) = αtrP = α,

finishing the proof. �

Corollary 2. Let pA be the characteristic polynomial of A, then

P =
adj (µI −A)
d
dxpA (x) |x=µ

.

Proof. Jacobi’s formula for the derivative of the determinant of a matrix is given
by

d

dx
detB (x) = tr (adj (B (x))B′ (x))

and so using this formula, the corollary follows from the previous lemma for
B (x) = xI −A. �

Remark 2. This result and others concerning the theory of Perron–Frobenius
may be found in [19]. Another proof for Corollary 2 can be derived by direct
computation using the following identity
adj (λI −A) = An−1 + (λ+ pn−1)A

n−2 + · · ·+
(
λn−1 + pn−1λ

n−2 + · · ·+ p1
)
I

where pA (x) = xn + pn−1x
n−1 + · · ·+ p0 and λ ∈ R (see [7] or [6]). Let µ be the

Perron–Frobenius eigenvalue and v a corresponding eigenvector, we compute

adj (µI −A) v

=
[
µn−1 + (µ+ pn−1)µ

n−2 + · · ·+
(
µn−1 + pn−1µ

n−2 + · · ·+ p1
)]

v

=
[
nµn−1 + (n− 1) pn−2µ

n−3 + · · ·+ p1
]
v

= p′A (µ) v.

(2.1)

Recall that adj (µI −A) = αP for some α ∈ R. Since
p′A (µ) v = adj (µI −A) v = αPv = αv,

it follows that α = tr (adj (µI −A)) = p′A (µ).

Corollary 3. Let (µ, µ2, . . . , µn) be the eigenvalues of A, perhaps with repetitions.
Then

P =

∏
(A− µiI)∏
(µ− µi)

.
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Proof. Using the representation of adj (µI −A) as a polynomial of degree n − 1,
it follows from Vieta’s polynomial formulas (see, for example, [25]) that

adj (µI −A) = (A− µ2I) · · · (A− µnI) .

Since p′A (µ) = (µ− µ2) · · · (µ− µn), this gives the desired result. �

2.3. Comparison between the non-weighted case and the weighted case
When considering path counting questions on a non-weighted graph G, it is often
convenient to define its adjacency matrix. This is the square matrix A ∈ Mn (R)
indexed by the vertices of G, where Aij is set as the number of edges from vertex
i to vertex j. Note that an adjacency matrix of a strongly connected graph is
irreducible, but not necessarily primitive. For primitivity of the adjacency matrix
we must also assume that G is aperiodic, which means that the greatest common
divisor of the set of lengths of all closed paths is 1.

Recall that the number of paths from vertex i to vertex j consisting of exactly
k edges is exactly

(
Ak
)
ij

. It follows that if the graph is strongly connected and
aperiodic, then A is primitive, and by the Perron–Frobenius theorem this number
can be approximated by Pijµ

k, where P is the Perron projection of A described
above and µ is the Perron–Frobenius eigenvalue.

It is interesting to compare the matrices P and Q, where Q is the matrix
defined in the statement of Theorem 1. Due to Jacobi’s formula, we can write

Q =
adj (I −M (λ))

−tr (adj (I −M (λ)) ·M ′ (λ))
=

adj (I −M (λ))
d
ds (det (I −M (s))) |s=λ

,

P =
adj
(
I − 1

µA
)

tr
(
adj
(
I − 1

µA
)) =

adj
(
I − 1

µA
)

d
dx det

(
I − 1

x
A
µ

)
|x=1

,

and the resemblance is clear.
Note that in the case of a non-weighted graph G we assume that G is

strongly connected and aperiodic in order to guarantee convergence of 1
µkA

k to
P , otherwise the corresponding adjacency matrix need not be primitive and the
Perron–Frobenius theorem may not be implied. In the case of weighted graphs we
change the assumption that G is aperiodic with that of incommensurability.

As an example we look at the following case: Assume all edges in G are
of equal length a > 0. So M (s) = e−asA where A is the adjacency matrix of
the underlying non-weighted graph. Obviously, G is not incommensurable and the
assumptions of Theorem 1 do not hold, but still we can calculate Q.
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Let µ be the Perron–Frobenius eigenvalue of A, then the matrix M
(

log µ
a

)
=

1
µA has Perron–Frobenius eigenvalue 1, and so λ = log µ

a . Since

−tr (adj (I −M (λ)) ·M ′ (λ)) = −tr

(
adj

(
I − 1

µ
A

)
· −a

µ
A

)
= a tr

(
adj

(
I − 1

µ
A

)
· 1
µ
A

)
= a tr

(
adj

(
I − 1

µ
A

))
,

we get

Q =
adj (I −M (λ))

−tr (adj (I −M) ·M ′ (λ))
=

adj
(
I − 1

µA
)

atr
(
adj
(
I − 1

µA
)) =

1

a
P,

and so if we think of a non-weighted graph as a weighted graph with edges all of
length a = 1, we get P = Q.

3. The Wiener–Ikehara Theorem and the Laplace
Transform

3.1. The Wiener–Ikehara Theorem
The proofs of our main results follow from this Tauberian theorem due to Wiener
and Ikehara (see [13, Chap. 8.3]).

Theorem. Let f(x) be a non-negative and monotone function on [0,∞). Suppose
that the Laplace transform of f (x), given by

F (s) := L{f (x)} (s) =
∫ ∞

0

f (x) e−xsdx,

converges for all s with Re(s) > λ, and that there exists c ∈ R for which the
function

F (s)− c

s− λ

extends to a continuous function in the closed half-plane Re(s) ≥ λ. Then

f (x) = ceλx + o
(
eλx
)
, x → ∞.

3.2. The Laplace Transform of the counting and probability functions
Denote by Γ (i, j) the set of paths originating at vertex i ∈ V and terminating at
vertex j ∈ V, and by p (γ) the product of probabilities of the edges which define
the path γ.
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Let Ai,j (x) denote the number of paths originating at vertex i and ending
at vertex j of length at most x. Then

Ai,j (x) =
∑

γ∈Γ(i,j)

χ[l(γ),∞) (x) =

∞∑
k=0

∑
γ∈Γ(i,j)

withk edges

χ[l(γ),∞) (x)

where χA is the characteristic function of the set A ⊂ R. The Laplace transform is

L{Ai,j (x)} (s) =
∞∑
k=0

∑
γ∈Γ(i,j)

withk edges

1

s
e−l(γ)s =

1

s

( ∞∑
k=0

Mk (s)

)
i,j

.

Let α be an edge originating at vertex j. Denote by Bi,α (x) the number of
paths of length exactly x from vertex i to a point on the edge α. Then

Bi,α (x) =
∑

γ∈Γ(i,j)

χ[l(γ),l(γ)+l(α)) (x) =
∞∑
k=0

∑
γ∈Γ(i,j)

with k edges

χ[l(γ),l(γ)+l(α)) (x) .

The Laplace transform is

L{Bi,α (x)} (s) =
∞∑
k=0

∑
γ∈Γ(i,j)

withk edges

1− e−l(α)s

s
e−l(γ)s =

1− e−l(α)s

s

( ∞∑
k=0

Mk (s)

)
i,j

.

Denote by Ci,j (T ) the probability that a walker leaving i at time zero and
moving along the the graph at speed 1, would at time T be exactly at vertex j.
Then

Ci,j (T ) =
∑

γ∈Γ(i,j)

p (γ) δ (T − l (γ)) =
∞∑
k=0

∑
γ∈Γ(i,j)

withk edges

p (γ) δ (T − l (γ))

where δ (x− a) is the delta function centered at a ∈ R. The Laplace transform is

L{Ci,j (T )} (s) =
∞∑
k=0

∑
γ∈Γ(i,j)

withk edges

p (γ) e−l(γ)s =

( ∞∑
k=0

Nk (s)

)
i,j

.

Denote by Di,α (T ) the probability that a walker leaving i at time zero and
moving along the graph at speed 1, would at time T be on the edge α which
originates at vertex j. Then

Di,α (T ) =
∑

γ∈Γ(i,j)

p (γ) pijχ[l(γ),l(γ)+l(α)) (T )

= pij

∞∑
k=0

∑
γ∈Γ(i,j)

withk edges

p (γ)χ[l(γ),l(γ)+l(α)) (T ) .
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The Laplace transform is

L{Di,α (T )} (s) =
∞∑
k=0

∑
γ∈Γ(i,j)

withk edges

pjα
1− e−l(α)s

s
p (γ) e−l(γ)s

= pjα
1− e−l(α)s

s

( ∞∑
k=0

Nk (s)

)
i,j

.

It will be shown that the sums
∑∞

k=0 M
k (s) and

∑∞
k=0 N

k (s) converge
absolutely for suitable values of s, and so we can change the order of summation
and integration as implied in the calculations above.

We will show that the constant λ as described in the statement of Theorems 1
and 2 exists, and that these Laplace transforms satisfy the conditions of the
Wiener–Ikehara theorem with a simple pole at s = λ.

4. Proof of main results
Although some of the following results can be found in the literature, we include
the full details for the sake of clarity.

Lemma 2. The matrix elements of powers of M (s) for s = σ + it (resp., N (s))
are bounded in absolute value by the corresponding matrix elements of powers of
M (σ) (resp., N (σ)).

Proof. Indeed for every k ∈ N∣∣∣(Mk (s)
)
ij

∣∣∣ =

∣∣∣∣∣∣
∑

i1,..,ik 1

Mi,i1 (s) · · ·Mik 1,j (s)

∣∣∣∣∣∣
≤

∑
i1,..,ik 1

|Mi,i1 (s)| · · ·
∣∣Mik 1,j (s)

∣∣
≤

∑
i1,..,ik 1

Mi,i1 (σ) · · ·Mik 1,j (σ) =
(
Mk (σ)

)
ij

and similarly for N , as required. �

Remark 3. This lemma is contained in a result due to Wielandt which can be
found in [7].

For σ ∈ R the matrices M (σ) and N (σ) are real, non-negative and irreducible
(because the graph G is strongly connected), and so by Perron–Frobenius there
exists a dominant real eigenvalue µ (σ) of multiplicity 1 corresponding to a positive
eigenvector v (σ).

Lemma 3. Let M (σ) be as above. Then there exists λ > 0 such that µ (λ) = 1
and for every σ > λ the corresponding dominant eigenvalue satisfies µ (σ) < 1.
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Proof. For all σ ∈ R there exists µ (σ) which by Perron–Frobenius is a simple
eigenvalue of M (σ). Let v (σ) and u (σ) be right and left positive eigenvectors, then
since M (σ) is differentiable, then by [10, Theorem 6.3.12], µ (σ) is differentiable
and the following formula holds

d

dσ
µ (σ) =

uT (σ)M ′ (σ) v (σ)

uT (σ) v (σ)
.

Since the eigenvectors are positive, and the entry-wise derivative of M is non-
positive, we deduce that

d

dσ
µ (σ) < 0 (4.1)

so in particular µ is monotone decreasing. Recall that µ (0) is the largest eigenvalue
of the adjacency matrix M (0) of the strongly connected and incommensurable
graph G and so µ (0) > 1. Moreover, since all elements of M (σ) tend to zero as σ
tends to infinity, so does the Perron–Frobenius eigenvalue. Therefore there exists
a finite λ > 0 for which µ (λ) = 1 and µ (σ) < 1 for all σ > λ. �
Lemma 4. Let N (σ) be as above. Then there exists λ ≤ 0 such that µ (λ) = 1
and for every σ > λ the corresponding dominant eigenvalue satisfies µ (σ) < 1.

Proof. The proof is similar to the discussion about M (σ), only here we must show
that µ (0) ≤ 1 to verify that the value of λ for which µ (λ) = 1 is negative. This
follows from our assumption that the sum of the probabilities of edges originating
at a given vertex is less or equal to 1, and so the sum of the entries of any row in
N (0) is bounded by 1, therefore µ (0) is bounded by 1 (see Wielandt’s proof of
Perron–Frobenius theorem which appears in [7]). �
Remark 4. Clearly, µ (0) = 1 if and only if the sum of all probabilities for edges
originating at vertex i is 1, for all i. In other words λ = 0 if and only if N (0) is a
right stochastic matrix, that is all its rows sum up to 1.

The following lemmas are stated for M , but analogous statements and their
proofs apply for N .

Lemma 5. Let λ ∈ R be as in Lemma 3. Then
∑∞

k=0 M
k (σ) converges for all

s = σ + it with σ > λ, and in this case
∞∑
k=0

Mk (s) = (I −M (s))
−1

=
adj (I −M (s))

det (I −M (s))
,

and so the Laplace transforms of the counting functions described above are analytic
in the half plane σ > λ.

Proof. The lemma follows because for σ > λ, as in Lemma 3, the geometric sum∑∞
k=0 M

k (σ) converges, and by Lemma 2 so does
∑∞

k=0 M
k (s) . �

Plugging the previous statement in the expressions derived in the previous
section for the Laplace transforms of the counting functions we study, we conclude
the following corollary.
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Corollary 4. Let Ai,j (x) , Bi,α (x) , Ci,j (T ) and Di,α (T ) be the counting functions
defined in Sect. 3.2. The associated Laplace transforms are given by

L{Ai,j (x)} (s) =
1

s
·
(adj (I −M (s)))ij
det (I −M (s))

,

L{Bi,α (x)} (s) = 1− e−l(α)s

s
·
(adj (I −M (s)))ij
det (I −M (s))

,

L{Ci,j (T )} (s) =
(adj (I −N (s)))ij
det (I −N (s))

,

L{Di,α (T )} (s) = pjα
1− e−l(α)s

s
·
(adj (I −N (s)))ij
det (I −N (s))

,

where 1−e l(α)s

s is an entire function with value l (α) at s = 0.

Lemma 6. The matrix adj (I −M (λ)) has positive entries.

Proof. Recall that µ (λ) = 1, and so by Lemma 1 there exist positive vectors v, u
such that

adj (I −M (λ))

tr (adj (I −M (λ)))
=

vuT

uT v
.

It follows that all the entries of adj (I −M (λ)) are non-zero and have the same
sign as tr (adj (I −M (λ))), which is d

dxpMG(λG) (x) |x=1 by Jacobi’s formula. But
1 is a simple root of the characteristic polynomial and is the largest one, and
therefore its derivative at x = 1 is positive. �
Lemma 7. The Laplace transforms of the graph counting functions Ai,j (x) and
Bi,α (x) have a simple pole at λ.

Proof. The point s = λ is a singular point of the Laplace transforms, because
by the previous lemma the numerator (adj (I −M (λ)))ij is non-zero while the
denominator has a zero at λ. So it is enough to show that the zero of det (I −M (s))
at λ is a simple one. For σ ∈ R, the characteristic polynomial of M (σ) is given by

pM(σ) (x) = det (xI −M (σ)) = (x− µ (σ)) (x− µ2 (σ)) · · · (x− µn (σ)) ,

where µ(σ) is the Perron–Frobenius eigenvalue of M (σ). Therefore µ (λ) = 1, and
µj (σ) ̸= 1 for j ≥ 2 in a small neighborhood of λ, and

det (I −M (σ)) = (1− µ (σ)) · · · (1− µn (σ)) .

It follows from equation (4.1) that the function (1− µ (σ)) has a simple zero at
λ, and the same holds for the function det (I −M (σ)) and therefore also for
det (I −M (s)). �
Lemma 8. For all t ̸= 0,

det (I −M (λ+ it)) ̸= 0,

that is, the Laplace transforms have no other poles on the line Re (s) = λ than at
s = λ itself.
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Proof. Say that G has the single-edge property if for every pair of vertices i, j
in G there is at most one edge from vertex i to vertex j. Given a graph G, we
define a graph G̃ by adding a new vertex in the middle of every edge in G. There is
a natural one to one map between paths in G and paths in G̃ which originate and
terminate in the original set of vertices, and clearly G̃ has the single-edge property.
Therefore, there is no loss of generality assuming that this property holds for G.

Put Mij = (M (λ))ij . Since G has the single-edge property, the entries of the
matrix M (λ) are either Mij = e−λ·l(α) if there is an edge α ∈ E connecting the
vertex i to the vertex j, or Mij = 0 if there is no such edge. Let v = (v1, ..., vn)
be a positive eigenvector of M (λ) corresponding to the eigenvalue µ (λ) = 1 and
define D to be the following invertible matrix

D = diag (v1, . . . , vn) , D−1 = diag

(
1

v1
, . . . ,

1

vn

)
.

The matrix given by S = D−1MD is a non-negative and right stochastic matrix.
Indeed, since Sij = Mijvj/vi, it is clear that Sij ≥ 0 and that the sum of the
elements of the ith row is

n∑
j=1

Sij =

n∑
j=1

Mij
vj
vi

=
1

vi

n∑
j=1

Mijvj =
vi
vi

= 1.

Let S (s) be the matrix with coefficients from S raised to the power of s,
that is,

(S (s))ij = (Sij)
s
= (Mij)

s

(
vj
vi

)s

.

Notice that
S (s) = (Ds)

−1
M (λs)Ds,

i.e., M (λs) and S (s) are similar, so in particular they have the same characteristic
polynomial pS(s) (x) = pM(λs) (x). Recalling the definition of the characteristic
polynomial and plugging x = 1, we see that

det (I −M (λs)) = det (I − S (s)) ,

and so it is enough to show that det (I − S (1 + it)) ≠ 0 for all t ̸= 0.
The following argument is due to Parry (see [14]). Assume that

det (I − S (1 + it)) = 0 for some t ̸= 0.

So there exists a non-zero vector u = (u1, . . . , un) for which

S (1 + it)u = u,

that is, for all i
n∑

j=1

S1+it
ij uj =

n∑
j=1

SijS
it
ijuj = ui.
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By the triangle inequality, for all i,

|ui| ≤
n∑

j=1

∣∣S1+it
ij uj

∣∣ = n∑
j=1

Sij

∣∣Sit
ij

∣∣ |uj | =
n∑

j=1

Sij |uj | ,

and, together with the equality
n∑

j=1

Sij = 1,

this implies that
|u1| = · · · = |un| .

Assume |uj | = r > 0 for all j, and notice that this means Sit
ijuj are points on

a circle of radius r. We have therefore that every ui, which is itself a point on
the circle of radius r, is a convex combination (that is, a linear combination with
positive coefficients all adding up to 1) of points on that same circle. This is only
possible, of course, if Sit

ijuj = ui for all j such that Sij ̸= 0.
Now, for any closed orbit on the graph, let α1 = (k1, k2) , . . . , αm = (km, k1)

denote the corresponding sequence of edges. We get(
Sit
k1k2

uk2

) (
Sit
k2k3

uk3

)
· · ·
(
Sit
km 1km

ukm

) (
Sit
kmk1

uk1

)
= uk1

uk2
· · ·ukm 1

ukm

and so
Sit
k1k2

· · ·Sit
kmk1

= (Sk1k2
· · ·Skmk1

)
it
= 1,

which gives
(Mk1k2

· · ·Mkmk1
)
it
= 1.

But
Mk1k2 · · ·Mkmk1 = e−(l(α1)+···+l(αm))

and so there exists some l ∈ Z for which

t =
2πl

l (α1) + · · ·+ l (αm)
.

This holds for every closed orbit on the graph, yielding a contradiction to our
irrationality assumptions on the lengths of the closed orbits on incommensurable
graph G. �

Remark 5. When proving the analogous lemma for the case of the matrix N ,
simply assign the probability 1 to all edges of G̃ originating at vertices of G̃ which
are not in G.

Remark 6. There is another construction of a graph Ĝ associated to G which
preserves its structure and has the single-edge property. Let i ∈ V be a vertex in
G and assume that there are ki distinct edges which terminate at i and li distinct
edges which originate at i as shown in Fig. 2.
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τi;1

τi;2

τi;ki

!i;1

!i;2

!i;lii

Figure 2. Vertex i ∈ V and the edges which terminate and
originate at i in G

Define ki · li associated vertices in Ĝ, indexed by

τi1 − i− ωi1, . . . τiki
− i− ωi1,

...
...

τi1 − i− ωili , . . . τiki
− i− ωili ,

and repeat this procedure for all vertices in G. Define Ĝ to contain a directed edge
from v̂1 = τis− i−ωit to v̂2 = τju− j−ωjv if and only if ωit = τju. If there is such
an edge, and if α is the edge in G for which α = ωit = τju, then the edge between
v̂1 and v̂2 is labeled by α.

It can be shown that for every path p in G which originates in vertex i and
terminates in vertex j, there are exactly ki · lj distinct paths in Ĝ which are copies
of p in the sense of the edges they consist of. It follows that functions counting
paths in G which concern vertices i and j differ by a multiplicative constant from
the associated functions on Ĝ, and the same holds for their Laplace transforms.
As a result, the position of the poles of the Laplace transforms is not changed.

Lemma 9. The residue of the function adj(I−M(s))ij
det(I−M(s)) at s = λ is

Qij =
(adj (I −M (λ)))ij

−tr (adj (I −M (λ)) ·M ′ (λ))
.

Proof. We have seen that the function has a simple pole at s = λ, and so the
residue at s = λ is

(adj (I −M (λ)))ij
d
ds (det (I −M (s))) |s=λ

.

Finally, use Jacobi’s formula to obtain
d

ds
(det (I −M (s))) = tr

(
adj (I −M (λ)) · (I −M (s))

′
(λ)
)

= −tr (adj (I −M (λ)) ·M ′ (λ)) .

Combining the above, we get the desired formula for the residue at hand. �
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4.1. Proof of Theorems 1 and 2
We show how to conclude the main statements of this paper from the lemmas
proven above.

Proof of Theorem 1. Let G be a strongly connected incommensurable graph and
let M be the graph matrix function of G. For σ ∈ R the matrix M (σ) is real
and due to Perron–Frobenius there exists a dominant real eigenvalue µ (σ) of
multiplicity 1. By Lemma 3 there exists λ > 0 such that µ (λ) = 1 and for every
σ > λ the corresponding dominant eigenvalue satisfies µ (σ) < 1. By Lemma 2 the
series

∑∞
k=0 M

k (s) converges for all s = σ + it with σ > λ to adj(I−M(s))
det(I−M(s)) and so

by Corollary 4,

L{Ai,j (x)} (s) =
1

s
·
(adj (I −M (s)))ij
det (I −M (s))

.

By Lemma 7, this L{Ai,j (x)} (s) has a simple pole at s = λ and by Lemma 8
there are no other poles on the line Re (s) = λ. By Lemma 9, the residue of
L{Ai,j (x)} (s) at s = λ is

1

λ

(adj (I −M (λ)))ij
−tr (adj (I −M (λ)) ·M ′ (λ))

=
1

λ
Qij .

Therefore applying the Wiener–Ikehara theorem yields statement (i), namely that
the number of paths from i ∈ V to j ∈ V of length at most x grows as

1

λ
Qije

λx + o
(
eλx
)
, x → ∞.

Replacing Ai,j (x)with Bi,j (x) and repeating these steps yields statement
(ii), namely that the number of paths of length exactly x from some vertex i to a
point on the edge α grows as

1− e−l(α)λ

λ
Qije

λx + o
(
eλx
)
, x → ∞.

�

The proof of Theorem 2 is analogous to the proof of Theorem 1 given above.
Lemma 3 is replaced by Lemma 4 and as mentioned above, lemmas analogous to
Lemmas 5–9 hold when replacing M with the graph probability matrix function N .

5. Applications
5.1. Summation over regions of Pascal triangle
The well known triangular array of binomial coefficients contains many patterns of
numbers and properties of combinatorial interest. It is straightforward to observe
that summation of the binomial coefficients in the triangle OBA of sides OA = x

a
and OB = x

b (see Fig. 3) is equivalent to counting paths of length at most x in a
graph with a single vertex and two loops of lengths a and b.
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1 164 4

1 13 3

21 1

1 1

1

a b

O

B

A

Figure 3. A region in Pascal’s triangle and the associated graph.

This easily generalizes to Pascal pyramids of higher dimension and weighted
graphs with a singe vertex and several loops, and it would be interesting to
understand the full correspondence between weighted graphs and regions in Pascal
pyramids.

5.2. Multiscale Substitution Schemes
A tile T in Rd is a Lebegue measurable bounded set with positive measure and
boundary of measure zero. Consider a finite set of tiles F = {T1, . . . , Tn} in Rd

which we call prototiles, and assume for simplicity vol Ti = 1. A tile T is said to
be of type i if it maps to Ti by a similarity map. A multiscale substitution scheme
on F is a set of substitution rules on elements of F prescribing a tiling of each
prototile by finitely many rescaled copies of tiles of types appearing in F .

A multiscale substitution scheme can be modeled using a directed weighted
graph G with a vertex set indexed by elements of F and an edge set defined by
the substitution rule: if the tiling of Ti includes a tile of type j, that is a copy
of αTj with 0 < α < 1, then G admits a directed edge of length a = − logα
connecting vertex i to j. A multiscale substitution scheme is called irreducible if G
is strongly connected, and incommensurable if G is incommensurable. An example
of an incommensurable multiscale substitution scheme on a single prototile with
scales α1 = 1

3 and α2 = 2
3 is shown in Fig. 4.

Observe that if G is a graph associated with a d dimensional multiscale
substitution scheme, then λ = d and the Perron–Frobenius eigenvector of M (d)
corresponding to µ = 1 can be chosen to be v = (1, . . . , 1). These properties enable
us to address questions concerning the geometrical objects described bellow.

Kakutani Splitting Procedure. Consider the unit interval I = [0, 1] and some
α ∈ (0, 1). Kakutani introduced the following splitting procedure which generates
a sequence of partitions of I which is known as the α-Kakutani’s sequence of
partitions (see [11]). Begin with π0 = I the trivial partition of I, and define π1 to
be the partition of I one gets after splitting I into two intervals of lengths α and
1−α. Assume that the partition πn is defined, then πn+1 is the partition of I one
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Figure 4. A multiscale substitution scheme and the associated graph.

gets from πn after splitting the interval of maximal length in πn into two parts,
proportional to α and 1− α.

For example, the first few α-Kakutani partitions of the unit interval with
α = 1

3 are shown in Fig. 5, together with the associated graph. The dashed lines
represent intervals of maximal length in each partition.
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Figure 5. The 1
3 -Kakutani sequence of partitions and the

associated graph.

We say that a sequence πn of partitions of I is uniformly distributed if for
any continuous function f on I we have

lim
n→∞

1

k (n)

k(n)∑
i=1

f
(
t
(n)
i

)
=

∫
I

f (t) dt

where k (n) is the number of intervals in the partition πn, and t
(n)
i is the right

endpoint of the ith interval in the partition πn. The following result is due to
Kakutani.
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Theorem. For any α ∈ (0, 1), the α-Kakutani sequence of partitions of I is
uniformly distributed.

Kakutani’s splitting procedure is generalized in various ways, see, for example,
[5, 26]. An additional generalization comes from multiscale substitution schemes,
where we begin with an initial tile T1, and define a sequence of partitions of T1
using the substitution rule applied at each stage to tiles of maximal volume. In
fact, the example given above of Kakutani’s original procedure, can be considered
as generated by a multiscale substitution scheme in R1 with F = {I} the unit
interval and α1 = 1

3 and α2 = 2
3 . Theorem 1 is used in [21] to show that such

sequences of partitions are uniformly distributed.

Multiscale Substitution Tilings of Euclidean Spaces. A multiscale substi-
tution scheme in Rd can be used to generate a tiling of the entire space. We define
a sequence of tilings of finite regions of Rd which depends on a continuous time
parameter t in the following way: At t = 0 apply the substitution rule on an initial
tile T1, and inflate the resulting patch of tiles at a constant speed. Any tile which
reaches volume 1 is then substituted as dictated by the multiscale substitution
rule, and so on. An appropriate compact topology defined on closed subsets of the
space allows us to take limits of sequences of these partial tilings, and these limits
define tilings of Rd. The generalization of the pinwheel tiling which is presented in
[17] can be regarded as a multiscale substitution tiling.

Although there is no uniqueness in the construction of tilings using multiscale
substitutions, all tilings defined this way share various properties which can be
analyzed employing the multiscale substitution scheme itself and the underlying
weighted graph. For example, tilings which are associated with incommensurable
multiscale substitution schemes are of infinite local complexity, unlike classical
substitution tilings or tilings defined using cut-and-project constructions (for more
on tilings and mathematical models of quasicrystals see [2]). Our Theorem 1 may
be used to study various statistics of these tilings, see [22] for more details, and
[23] and [24] for relevant results concerning classical substitution tilings.

5.3. Physics Applications
The propagation of radiation pulses through networks of wave-guides requires for
its study the full theory of wave dynamics, where interference effects play an
important role (see [18] and references therein). However, under certain conditions
the interference effects can be neglected, which opens the possibility to study this
system within a classical dynamics setting: The network is modeled by a metric,
directed graph G, where for any directed edge α connecting vertex u to vertex
v, there exists a "reverse" edge α̂ from v to u of the same length. The vertices
correspond to the junctions in the network where wave-guides are connected. In
the classical model, one considers a point mass moving at a unit speed along a
directed edge α, towards the vertex v. Reaching v, the point mass is scattered into
any of the edges α′ which emanate from v where it continues to move with unit
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speed. The probabilities to make the transitions from α to α′ are prescribed by
the properties of the connectors in the wave-guide network.

The network is connected to the outside world through leads which are
coupled to a subset of vertices H. One of the vertices s ∈ H is connected to
a radiation source which sends short pulses to the network at specified times.
Another vertex t ∈ H is connected to a lead which ends with a detector where the
time of arrival is measured. The radiation which is scattered to the leads escapes
from the network. In the classical model, a particle is injected to the vertex s at a
given time, and once it scattered from t to the lead, its arrival time is measured.
Repeating the process one can obtain the probability distribution of the transition
times. This model can be analyzed within the formalism provided by Theorem 2.

The complete wave theory and the derivation of the corresponding classical
model are provided in [18]. This paper also includes an analysis of a simple network
(similar to the one shown here in Fig. 3, with the lead connected at the single
vertex) and the transition time distributions computed both in the wave and the
classical descriptions are compared.
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Diagonalization of indefinite saddle point
forms

Luka Grubišić, Vadim Kostrykin, Konstantin A. Makarov, Stephan
Schmitz and Krešimir Veselić

To the memory of Boris Sergeevich Pavlov

Abstract. We obtain sufficient conditions that ensure block diagonalization
(by a direct rotation) of sign-indefinite symmetric sesquilinear forms as well
as the associated operators that are semi-bounded neither from below nor
from above. In the semi-bounded case, we refine the obtained results and, as
an example, revisit the block Stokes operator from fluid dynamics.

Mathematics Subject Classification (2010). Primary 47A55, 47A62; Sec-
ondary 47F05, 35M10.
Keywords. Perturbation theory, quadratic forms, operator Riccati equation,
invariant subspaces, the Stokes operator.

1. Introduction
Diagonalizing a quadratic form, which is a classic problem of linear algebra and
operator theory, is closely related to the search for invariant subspaces for the
(bounded) operator associated with the form. In the Hilbert space setting, a partic-
ular case where an invariant subspace can be represented as the graph of a bounded
operator acting from a given subspace of the Hilbert space to its orthogonal com-
plement, is of special interest. This situation is quite common while studying block
operator matrices, where an orthogonal decomposition of the Hilbert space is avail-
able by default. In particular, solving the corresponding invariant graph-subspace
problem for bounded self-adjoint block operator matrices automatically yields a
block diagonalization of the matrix by a unitary transformation. It is important to
note that solving the problem is completely nontrivial even in the bounded case: a
self-adjoint operator matrix may have no invariant graph subspace (with respect to
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a given orthogonal decomposition) and, therefore, may not be block diagonalized
in this sense, see, e.g., [23, Lemma 4.2].

To describe the block diagonalization procedure in the self-adjoint bounded
case in more detail, assume that the Hilbert space H splits into a direct sum of its
subspaces, H = H+ ⊕H−, and suppose that B is a 2× 2 self-adjoint block oper-
ator matrix with respect to this decomposition. In the framework of off-diagonal
perturbation theory, we also assume that B = A+ V , with A and V the diagonal
and off-diagonal parts of B, respectively.

We briefly recall that the search for an invariant subspace of B that can be
represented as the graph of a bounded (angular) operator X acting from H+ to
H− is known to be equivalent to finding the skew-self-adjoint “roots”

Y :=

(
0 −X∗

X 0

)
of the (algebraic) Riccati equation (see, e.g., [3, 30])

AY − Y A− Y V Y + V = 0.

Given such a solution Y , one observes that the Riccati equation can be rewrit-
ten as the following operator equalities
(A+V )(IH+Y ) = (IH+Y )(A+V Y ) and (IH−Y )(A+V ) = (A−Y V )(IH−Y ),

with A+ V Y = (A− Y V )∗ block diagonal operators.
In turn, those operator equalities ensure a block diagonalization of B by the

similarity transformation I ± Y , and, as the next step, by the direct rotation U
from the subspace H+ to the invariant graph subspace G+ = Graph(H+, X) :=
{x + Xx | x ∈ H+} (see [7, 8] for the concept of a direct rotation). Apparently,
the direct rotation is given by the unitary operator from the polar decomposition

(I + Y ) = U |I + Y |.
Solving the Riccati equation, the main step of the diagonalization procedure

described above, attracted a lot of attention from several groups of researchers.
Different ideas and methods have been used to solve the Riccati equation

under various assumptions on the (unbounded) operator B. For an extensive list
of references we refer to [3] and [40] (for matrix polynomial and Riccati equations
in finite dimension see [9, 13, 14, 15, 16, 28, 34]). For more recent results, in par-
ticular on Dirac operators with Coulomb potential, dichtonomous Hamiltonians,
and bisectorial operators, we refer to [6, 41, 43, 44].

The most comprehensive results regarding the solvability of the Riccati equa-
tion can be obtained under the hypothesis that the spectra of the diagonal part of
the operator B restricted to its reducing subspaces H± are subordinated. For in-
stance, in the presence of a gap separating the spectrum, the Davis-Kahan tan 2Θ-
Theorem [8] can be used to ensure the existence of contractive solutions to the
corresponding Riccati equation. In this case, efficient norm bounds for the angular
operator can be obtained. The case where there is no spectral gap but the spectra
of the diagonal entries have only one-point intersection λ has also been treated,
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see, e.g., [2, 24], [37, Theorem 2.13], [40, Proposition 2.7.13]. Also, see the recent
work [30], where, in particular, the decisive role of establishing the kernel splitting
property

Ker(B − λ) = (Ker(B − λ) ∩H+)⊕ (Ker(B − λ) ∩H−)

in the diagonalization process is discussed, cf. [40, Sect. 2.7].
In the present paper, we extend the diagonalization scheme to the case of

indefinite saddle point forms. Recall that a symmetric saddle point form b with
respect to the decomposition H = H+ ⊕H− is a form sum b = a + v, where the
diagonal part of the form a splits into the difference of two non-negative closed
forms in the spaces H+ and H−, respectively, and the off-diagonal part v is a
symmetric form-bounded perturbation of a.

First, we treat the case where the domain of the form Dom[b] and the form
domain Dom(|B|1/2) of the associated operator B defined via the First Represen-
tation Theorem for saddle point forms coincide. Putting it differently, we assume
that the corresponding Kato square-root problem has an affirmative answer. In
this case, we show that on the one hand the semi-definite subspaces

L± = Ran (EB(R± \ {0}))⊕
(
Ker(B) ∩H±

)
(1.1)

reduce both the operator B and the form b. On the other hand, the semi-positive
subspace L+ is a graph subspace with respect to the decomposition H = H+ ⊕
H−, see Theorem 3.3. Under some additional regularity assumptions, we block
diagonalize both the form and the associated operator by the direct rotation from
the subspace H+ to the subspace L+.

More generally, we introduce the concept of a block form Riccati equation
associated with a given saddle point form and relate its solvability to the existence
of graph subspaces that reduce the form. Based on these considerations, we block
diagonalize the form by a unitary transformation, provided that some regularity
requirements are met as well, see Theorem 6.5.

As an application, we revisit the spectral theory for the Dirichlet Stokes block
operator (that describes stationary motion of a viscous fluid in a bounded domain
Ω ⊂ Rd) (see [20], cf. [10]). (

−ν∆ v∗ grad
−v∗div 0

)
in the direct sum of Hilbert spaces H = H+ ⊕H− = L2(Ω)d ⊕ L2(Ω).

The paper is organized as follows:
In Sect. 2, we introduce the class of saddle point forms and recall the corre-

sponding Representation Theorems for the associated operators.
In Sect.3, we discuss reducing subspaces for saddle point forms that are the

graph of a bounded operator.
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In Sect. 4, we recall the concept of a direct rotation and define the class of
regular graph decompositions.

In Sect. 5, we block diagonalize the associated operator by a unitary trans-
formation provided that the domain stability condition holds and that the graph
decomposition H = L+ ⊕L− into the sum of semi-definite subspaces L± given by
(1.1) is regular, see Theorem 5.1.

In Sect. 6, we introduce the concept of a block form Riccati equation and
provide sufficient conditions for the block diagonalizability of a saddle point form
by a unitary transformation, see Theorem 6.5.

In Sect. 7, we discuss semi-bounded saddle point forms and illustrate our
approach on an example from fluid dynamics.

We adopt the following notation. In the Hilbert space H we use the scalar
product ⟨ · , · ⟩ semi-linear the first and linear in the second component. Various
auxiliary quadratic forms will be denoted by t. We write t[x] instead of t[x, x]. IK
denotes the identity operator on a Hilbert space K, where we frequently omit the
subscript. If t is a quadratic form and S is a bounded operator we define the sum
t+S as the form sum t+⟨·, S ·⟩ on the natural domain Dom[t]. For operators S and
Borel sets M the corresponding spectral projection is denoted by ES(M). Given
an orthogonal decomposition K0 ⊕ K1 of the Hilbert space K and dense subsets
Ki ⊆ Ki, i = 0, 1, by K0⊕K1 we denote a subset of K formed by the vectors

(
x0

x1

)
with xi ∈ Ki, i = 0, 1. For a self-adjoint operator T we introduce the (Sobolev)
space H1

T as the set Dom(|T |1/2) equipped with the graph norm.

2. Saddle point forms
To introduce the concept of a saddle point form in a Hilbert space H, we pick up
a self-adjoint involution J given by the operator matrix [18],

J =

(
IH+

0
0 −IH−

)
H+⊕H−

(2.1)

with respect to a given decomposition of the Hilbert space H into the orthogonal
sum of its closed subspaces

H = H+ ⊕H−. (2.2)
A sesquilinear form a is called diagonal (with respect to the decomposition

(2.2) if the domain Dom[a] is J-invariant and the form a “commutes” with the
involution J ,

a[x, Jy] = a[Jx, y] for x, y ∈ Dom[a],

and the form
aJ [x, y] = a[x, Jy] on Dom[aJ ] = Dom[a] (2.3)

is a closed non-negative form. In particular, the form a splits into the difference of
closed non-negative forms

a = a+ ⊕ (−a−) (2.4)
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with respect to the decomposition H = H+ ⊕H−.
Correspondingly, a sesquilinear form v is called off-diagonal if the “anti-

commutation relation”

v[x, Jy] = −v[Jx, y] for x, y ∈ Dom[v]

holds.
We say that a form b is a saddle point form with respect to the decomposition

(2.2) if it admits the representation

b[x, y] = a[x, y] + v[x, y], x, y ∈ Dom[b] = Dom[a],

where a is a diagonal form, v is a symmetric off-diagonal form and relatively
bounded with respect to aJ ,

|v[x]| ≤ β(aJ [x] + ∥x∥2), x ∈ Dom[v],

for some β ≥ 0. In this case, let H1
A denote the set Dom[b] with the graph norm

of |A|1/2, where

A =

(
A+ 0
0 −A−

)
(2.5)

is a diagonal operator with respect to the decomposition H = H+ ⊕H− and A±
are the non-negative self-adjoint operators associated with the closed forms a±
given by (2.4).

We start by recalling the First and Second Representation Theorem adapted
here to the case of saddle point forms (see [37, Theorem 2.7], [18], [19], see also
[32]).

Theorem 2.1 (The First Representation Theorem). Let b be a saddle point
form with respect to the decomposition H = H+ ⊕H−.

Then there exists a unique self-adjoint operator B such that

Dom(B) ⊆ Dom[b]

and
b[x, y] = ⟨x,By⟩ for all x ∈ Dom[b] and y ∈ Dom(B).

We say that the operator B associated with the saddle point form b via
Theorem 2.1 satisfies the domain stability condition if the Kato square root problem
has an affirmative answer. That is,

Dom[b] = Dom(|B|1/2). (2.6)

We note that the domain stability condition may fail to hold for form-
bounded but not necessarily off-diagonal perturbations of a diagonal form, see
[18, Example 2.11] and [12] for counterexamples.

The corresponding Second Representation Theorem can be stated as follows.
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Theorem 2.2 (The Second Representation Theorem). Let b be a saddle
point form with respect to the decomposition H = H+ ⊕H− and B the associated
operator.

If the domain stability condition (2.6) holds, then the operator B represents
this form in the sense that

b[x, y] = ⟨|B|1/2x, sign(B)|B|1/2y⟩ for all x, y ∈ Dom[b] = Dom(|B|1/2).

Remark 2.3. Let a be a diagonal form and A = JAJ , where AJ is a self-adjoint
operator associated with the closed non-negative form aJ in (2.3). Clearly, the
operator A is associated with the form a and the form a is represented by A
as well. Notice that aJ is associated in the standard sense with the self-adjoint
operator |A|.

Next, we present an example of a saddle point form “generated” by an oper-
ator.

Example 2.4. Given the decomposition (2.2), suppose that A± ≥ 0 are self-
adjoint operators in H±. Also suppose that

W : Dom(W ) ⊆ H+ → H−

is a densely defined closable linear operator such that

Dom(A
1/2
+ ) ⊆ Dom(W ). (2.7)

Let a be the diagonal saddle point form associated with the diagonal operator

A =

(
A+ 0
0 −A−

)
.

On
Dom[b] = Dom[a] = Dom(|A|1/2)

consider the form sum
b = a+ v, (2.8)

where the off-diagonal symmetric perturbation is given by

v[x, y] = ⟨Wx+, y−⟩+ ⟨x−,Wy+⟩,

x = x+ ⊕ x−, y = y+ ⊕ y−, x±, y± ∈ Dom(|A±|1/2) ⊆ H±.

Lemma 2.5. The form b defined by (2.8) in Example 2.4 is a saddle point form.
Moreover, the off-diagonal part v of the form b is infinitesimally form-bounded
with respect to the non-negative closed form aJ given by

aJ [x, y] = ⟨|A|1/2x, |A|1/2y⟩

on Dom[aJ ] = Dom(|A|1/2).
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Proof. From (2.7) it follows that the operator W is A1/2
+ -bounded (see [21, Remark

IV.1.5]) and therefore

∥Wx+∥ ≤ a∥x+∥+ b∥A1/2
+ x+∥, x+ ∈ Dom(A

1/2
+ ),

for some constants a and b. This shows the off-diagonal part v of the form b is
relatively bounded with respect to the diagonal form aJ and hence b is a saddle
point form.

The last assertion follows from the series of inequalities

|v[x]| ≤ 2|⟨Wx+, x−⟩| ≤ 2∥Wx+∥ · ∥x−∥ ≤ 2
(
a∥x+∥+ b∥A1/2

+ x+∥
)
∥x−∥

= 2a∥x+∥ · ∥x−∥+ 2b
√
a+[x+]∥x−∥

≤ (a2 + 1)∥x∥2 + εb2a+[x+] +
∥x∥2

ε
,

x = x+ ⊕ x−, x± ∈ Dom[a] ∩H±

valid for all ε > 0. �

Remark 2.6. The operator B associated with the saddle point form b from Ex-
ample 2.4 can be considered a self-adjoint realization of the “ill-defined“ Hermitian
operator matrix

Ḃ =

(
A+ W ∗

W −A−

)
. (2.9)

Note that in this case we do not impose any condition on Dom(A−) ∩Dom(W ∗),
so that the “initial” operator Ḃ is not necessarily densely defined on its natural
domain Dom(Ḃ) = Dom(A+)⊕ (Dom(A−) ∩Dom(W ∗)). In particular, we neither
require that Dom(A−) ⊇ Dom(W ∗), cf. [4], nor that Ḃ is essentially self-adjoint,
cf. [40, Theorem 2.8.1].

We close this section by the observation that semi-bounded saddle point
forms are automatically closed is the standard sense.

Recall that a linear set D ⊆ H is called a core for the semi-bounded from
below form b ≥ cIH if D ⊆ Dom[b] is dense in Dom[b] with respect to the norm
||f ||b =

√
b[f ] + (1− c)||f ||2, see, e.g., [35, Sect. VIII.6].

Lemma 2.7. Suppose that b is a semi-bounded saddle point form with respect
to the decomposition H = H+ ⊕ H−. Then b is closed in the standard sense. In
particular, the domain stability condition (2.6) automatically holds.

Moreover, if D is a core for the diagonal part a of the form b, then D is also
a core for b.

Proof. Assume for definiteness that b is semibounded from below. Let a and v be
the diagonal and off-diagonal parts of the form b, respectively.

Since the off-diagonal part v is relatively bounded with respect to aJ , that
is,

|v[x]| ≤ β(a+ + a− + I)[x] = β⟨(|A|+ I)1/2x, (|A|+ I)1/2x⟩, x ∈ Dom[a],
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for some β < ∞, applying [21, Lemma VI.3.1] shows that v admits the represen-
tation

v[x, y] = ⟨(|A|+ I)1/2x,R(|A|+ I)1/2y⟩, x, y ∈ Dom[a],

with a bounded operator R.
Since v is off-diagonal, the operator R is off-diagonal as well, so that

JR = −RJ.

Introducing the form

b̃[x, y] = b[x, y] + ⟨x, Jy⟩, x, y ∈ Dom[a],

one observes that

b̃[x, y] = ⟨(|A|+ I)1/2x, (J +R)(|A|+ I)1/2y⟩, x, y ∈ Dom[a].

Here we used that

a[x, y] + ⟨x, Jy⟩ = ⟨|A|1/2x, J |A|1/2y⟩+ ⟨x, Jy⟩ = ⟨(|A|+ I)1/2x, J(|A|+ I)1/2y⟩

for x, y ∈ Dom[a].
Since the spectrum of J consists of no more than two points ±1 and the

operator R is off-diagonal, the interval (−1, 1) belongs to the resolvent set of the
bounded operator J+R. In particular, J+R has a bounded inverse, see [24, Remark
2.8]. Since |A|+ I is strictly positive, applying the First Representation Theorem
[18, Theorem 2.3] shows that the self-adjoint operator B̃ = (|A|+I)1/2(J+R)(|A|+
I)1/2 is associated with the semi-bounded form b̃ and is semi-bounded as well.
Taking into account the one-to-one correspondence between closed semi-bounded
forms and semi-bounded self-adjoint operators proves that the form b̃ is closed, so
is b as a bounded perturbation of a closed form.

To show that any core for the diagonal part a is also a core for b, we remark
first that since b is semi-bounded from below, the diagonal part a of the form b is
semi-bounded from below as well. Indeed, otherwise, the form a− is not bounded
and therefore there is a sequence xn ∈ Dom[a−], ∥xn∥ = 1, such that a−[xn] → ∞.
In this case,

b[0⊕ xn] = −a−[xn] → −∞,

which contradicts the assumption that b is a semi-bounded from below form.
Now, since b is closed, by [21, Theorem VI.2.23], the domain stability con-

dition (2.6) holds. This means that the spaces H1
A and H1

B associated with the
operators A and B coincide. Hence D is dense in H1

A if and only if it is dense in
H1

B (w.r.t. the natural topology on the form domain). In other words, D is a core
for the form b whenever it is a core for the form a. �
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3. Reducing subspaces
Recall that a closed subspace K reduces a self-adjoint operator T if

QT ⊆ TQ,

where Q is the orthogonal projection in H onto K (see [21, Sect. V.3.9]).
This notion of a reducing subspace K means that K and its orthogonal com-

plement K⊥ are invariant for T and the domain of the operator T splits as
Dom(T ) =

(
Dom(T ) ∩ K

)
⊕
(
Dom(T ) ∩ K⊥).

Next, we introduce the corresponding notion for sesquilinear forms.

Definition 3.1. We say that a closed subspace K of a Hilbert space H reduces a
symmetric densely defined quadratic form t with domain Dom[t] ⊆ H if

(i) Q (Dom[t]) ⊆ Dom[t]
and

(ii) t[Qu, v] = t[u,Qv] for all u, v ∈ Dom[t],
where Q is the orthogonal projection onto K.

A short computation shows that a closed subspace K reduces a symmetric
densely defined quadratic form t if and only if

Q (Dom[t]) ⊆ Dom[t] and t[Q⊥u,Qv] = 0 for all u, v ∈ Dom[t]. (3.1)
In particular, K reduces the form b if and only if the orthogonal complement K⊥

does.
Taking this into account, along with saying that a closed subspace K reduces

a form, we also occasionally say that the orthogonal decomposition H = K ⊕ K⊥

reduces the form.
The following lemma shows that under the domain stability condition, the

concepts of reducibility for the form and the associated (representing) self-adjoint
operator coincide.

Lemma 3.2. Assume that b is a saddle point form with respect to the decomposi-
tion H = H+ ⊕H− and let B be the associated operator. Suppose that the domain
stability condition (2.6) holds.

Then a closed subspace K reduces the form b if and only if K reduces the
operator B.

Proof. Assume that K reduces the form b. Denote by Q the orthogonal projector
onto K. In this case,

Dom[b] = Dom[a] = Dom(|B|1/2)
and

Q
(
Dom(|B|1/2)

)
⊆ Dom(|B|1/2).

Moreover,
b[Qx, y] = b[x,Qy] for all x, y ∈ Dom[b].
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Since the form b is represented by B, we have for all x, y ∈ Dom(|B|1/2) that
⟨|B|1/2Qx, sign(B)|B|1/2y⟩ = ⟨|B|1/2x, sign(B)|B|1/2Qy⟩.

In particular,
⟨Qx,By⟩ = ⟨Bx,Qy⟩ for all x, y ∈ Dom(B).

Since B is self-adjoint, this means that Qy ∈ Dom(B) and that
QBy = BQy for all x ∈ Dom(B),

which shows that K reduces the self-adjoint operator B.
To prove the converse, suppose that K reduces the operator B. By [42, Satz

8.23], the decomposition also reduces both operators |B|1/2 and sign(B). Together
with

Dom[b] = Dom[a] = Dom(|B|1/2)
this means that

Q (Dom[b]) ⊆ Dom[b]

and that Q commutes with sign(B) and |B|1/2. Thus,
b[Qu, v] = ⟨|B|1/2Qu, sign(B)|B|1/2v⟩ = ⟨|B|1/2u, sign(B)|B|1/2Qv⟩ = b[u,Qv],

which shows that K reduces the form b. �

The theorem below generalizes of a series of results of [1, 2, 24, 37], cf. [40,
Sect. 2.7], and provides a canonical example of a semi-definite reducing subspace
for a saddle point form.

Theorem 3.3. Let b be a saddle point form with respect to the orthogonal decom-
position H = H+ ⊕ H− and B the associated operator. Assume that the form b
satisfies the domain stability condition (2.6).

Then the subspace Ker(B)∩H+ reduces both the form b and the operator B.
In particular, the kernel of B splits as

Ker(B) = (Ker(B) ∩H+)⊕ (Ker(B) ∩H−) ,

the semi-definite subspaces
L± = (RanEB((R±) \ {0}))⊕

(
Ker(B) ∩H±

)
are complimentary, and the orthogonal decomposition

H = L+ ⊕ L−

reduces both the form b and the associated operator B.
Moreover, the subspace L+ is a graph of a linear contraction X : H+ → H−.

Proof. Assume temporarily that Ker(B) = {0}. Then L+ and L− are spectral
subspaces and reduce the operator B and, by the domain stability condition and
Lemma 3.2, the form b as well.

To complete the proof under the assumption Ker(B) = {0}, we check that
L± are graph subspaces. Denote by P the orthogonal projection onto H+ and let
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Q = EB(R+) be the spectral projection of B onto its positive subspace. Introducing
the sequence of self-adjoint operators

Bn = B +
1

n
J, J =

(
IH+ 0
0 −IH−

)
, n ∈ N,

one observes that
lim
n→∞

Bnϕ = Bϕ, ϕ ∈ Dom(B).

By [35, Theorem VIII.25], the sequence of operators Bn converges to B in
the strong resolvent sense, and therefore, by [35, Theorem VIII.24],

s-lim
n→∞

EBn
(R+) = EB(R+), (3.2)

since 0 is not an eigenvalue of B.
Taking into account that the operator Bn is associated with the form bn

given by
bn[x, y] := b[x, y] +

1

n
⟨x, Jy⟩

and that the interval (−1/n, 1/n) belongs to its resolvent set, one applies the Tan
2Θ-Theorem [19, Theorem 3.1] to conclude that

∥Q− EBn(R+)∥ <

√
2

2
. (3.3)

Since (3.2) holds, one also gets the weak limit
w-lim
n→∞

(Q− EBn
(R+)) = Q− EB(R+). (3.4)

Using the principle of uniform boundedness, see [21, Eq. (3.2), Chap. III], from
(3.3) and (3.4) one obtains the bound

∥Q− EB(R+)∥ ≤ lim inf
n→∞

∥Q− EBn
(R+)∥ ≤

√
2

2
.

Hence, L+ is the graph subspace Graph(H+, X) with X being a contraction, see
[22, Corollary 3.4]. The orthogonal complement L− is then the graph subspace
Graph(H−,−X∗).

We now treat the general case (of a non-trivial kernel).

First, we check that the semi-positive subspaces L± reduce the operator B,
and thus also the form b.

It is clear that both L± are invariant for B. It is also clear that the subspaces
L± are complimentary if and only if the kernel splits as

Ker(B) = (Ker(B) ∩H+)⊕ (Ker(B) ∩H−). (3.5)

To prove (3.5), recall (see [37, Theorem 2.13]) that the kernel of B can be
represented as

Ker(B) = (Ker(A+) ∩ K+)⊕ (Ker(A−) ∩ K−), (3.6)
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where A± are self-adjoint non-negative operators associated with the forms a±
and the subspaces K+ and K− are given by

K± :=
{
x± ∈ Dom[a±] | v[x+, x−] = 0 for all x∓ ∈ Dom[a∓]

}
⊆ H±.

Hence Ker(B) ∩H± = Ker(A±) ∩ K± and (3.5) follows.
Next, in view of (3.5), since H naturally splits as

H = RanEB(R+)⊕Ker(B)⊕ RanEB(R−),

one gets
Dom(B) =

(
Dom(B) ∩ RanEB(R+)

)
⊕ (Ker(B) ∩H+)

⊕ (Ker(B) ∩H−)⊕
(
Dom(B) ∩ RanEB(R+)

)
.

This representation shows that the domain Dom(B) splits as
Dom(B) =

(
Dom(B) ∩ L+

)
⊕
(
Dom(B) ∩ L−

)
. (3.7)

Summing up, we have shown that L± are B-invariant mutually orthogonal
subspaces such that (3.7) holds. That is, the subspaces L± reduce the operator B
and therefore the form b.

To complete the proof, we now need to check that L+ (and thus also L−) is
a graph subspace with a contractive angular operator.

By [22, Corollary 3.4], it it sufficient to show that

∥Q− P∥ ≤
√
2

2
, (3.8)

where Q and P are the orthogonal projection onto H+ and L+, respectively.
We will prove (3.8) by reducing the problem to the one where the kernel is

trivial.
First we show that Ker(B) reduces the operator A. Indeed, by (3.6) we have

Ker(B) ⊆ Ker(A), so that Ker(B) is invariant for A. Hence, Ker(B)⊥ is invariant
for A as well. It remains to check that Dom(A) splits as

Dom(A) = (Dom(A) ∩Ker(B))⊕ (Dom(A) ∩Ker(B)⊥). (3.9)
Indeed, since Ker(B) reduces B, by [42, Satz 8.23], the subspace Ker(B) also re-
duces |B|1/2. By the required domain stability condition, this implies that Ker(B)
reduces |A|1/2 and, by [42, Satz 8.23] again, also |A|. Thus (3.9) holds by observing
that Dom(A) = Dom(|A|).

We now complete the proof that L+ = Graph(H+, X) is a graph subspace
for a contraction X.

Taking into account that the subspace H̃ := Ker(B)⊥ reduces both A and
B, denote by Ã := A|H̃ and B̃ := (B)|H̃ the corresponding parts of A and B,
respectively. In particular, Ã and B̃ are self-adjoint operators and Ker(B̃) = {0}.

In view of the kernel splitting (3.6), a simple reasoning shows that H̃ splits
as

H̃ = H̃+ ⊕ H̃− with H̃+ := H+ ∩ H̃ and H̃− := H− ∩ H̃ ,
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and that the operator Ã is represented as the diagonal block matrix

Ã =

(
Ã+ 0

0 −Ã−

)
H̃+⊕H̃−

with
sup spec(−Ã−) ≤ 0 ≤ inf spec(Ã+) .

In this case the corresponding sesquilinear symmetric form ã also splits into the
difference of two non-negative forms. The restriction b̃ = b|H̃ is clearly seen to be a
saddle point form associated with the self-adjoint operator B̃. Since Ker(B̃) = {0},
by the above reasoning, we get the inequality

∥Q̃− EB̃

(
R+

)
∥ ≤

√
2

2
,

where Q̃ is the orthogonal projection onto H̃+ and EB̃

(
R+

)
is the spectral projec-

tion of B̃ for the positive part. In particular, as in the previous case, RanEB̃

(
R+

)
=

Graph(H̃+, X̃) is the graph of a linear contraction X̃ : H̃+ → H̃−.
Denoting by X the extension of the operator X̃ by zero on Ker(B)∩H+ and

taking into account that by (3.6)

A|Ker(B)∩H+
= B|Ker(B)∩H+

= 0,

we obviously get that L+ = Graph(H+, X). Observing that the extended operator
X is also a contraction completes the proof. �

4. Regular embeddings and direct rotations
Given the orthogonal decomposition

H = H+ ⊕H−,

suppose that Hilbert spaces Ḣ± are continuously embedded in H±,

Ḣ± ↪→ H±, (4.1)

so that their direct sum Ḣ = Ḣ+ ⊕ Ḣ− is also continuously embedded in H =
H+ ⊕H−.

Suppose that a subspace G+ can be represented as a graph of a bounded
operator X from H+ to H− and let

H = G+ ⊕ G− (4.2)

be the corresponding decomposition with G− = (G+)
⊥, the graph of the bounded

operator −X∗ : H− → H+.
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Definition 4.1. We say that the graph decomposition (4.2) is Ḣ-regular (with
respect to the embedding) if the linear sets

Ġ± = G± ∩ Ḣ
naturally embedded in Ḣ are closed complimentary graph subspaces in the Hilbert
space Ḣ with respect to the decomposition Ḣ = Ḣ+ ⊕ Ḣ−.

Denote by  P and Q the orthogonal projections onto the subspaces H+ and
G+, respectively.

Recall that as long as it is known that G+ is a graph subspace, there exists a
unique unitary operator U on H that maps H+ to G+, such that 

UP = QU,

the diagonal entries of which (in its block matrix representation with respect to
the decomposition H = H+⊕H−) are non-negative operators, see [8]. In this case
the operator U is called the direct rotation from the subspace H+ = Ran(P ) to
the subspace G+ = Ran(Q).

Lemma 4.2. Suppose that the graph decomposition (4.2) is Ḣ-regular with respect
to the embedding (4.1). Let U and U̇ be the direct rotation from H+ to G+ in the
space H and from Ḣ+ to Ġ+ in Ḣ, respectively. Then

U̇ = U |Ḣ .

Proof. Since the graph decomposition (4.2) is Ḣ-regular, it follows that G+ ∩ Ḣ is
the graph of a bounded operator Ẋ : Ḣ+ → Ḣ−. Therefore, G+ ∩ Ḣ is the graph
of −Ẋ∗. Clearly,

Ẋ = X|Ḣ+
and (−Ẋ∗) = (−X∗)|Ḣ−

.

In particular,
X∗X|H+

= Ẋ∗Ẋ and XX∗|H− = ẊẊ∗.

A classic Neumann series argument shows that
(tI +X∗X)−1|H+ = (tI + Ẋ∗Ẋ)−1 (4.3)

for |t| is large enough. Taking into account the continuity of the embedding, one
extends (4.3) for all t > 0 by analytic continuation. Next, using the formula for
the fractional power (see, e.g., [21, Ch. V, eq. (3.53)])

T−1/2 =
1

π

ˆ ∞

0

t−1/2(T + tI)−1dt

valid for any positive self-adjoint operator T and taking T = (I +X∗X)|H+ first
and then T = I + Ẋ∗Ẋ in the Hilbert spaces H+ and H, respectively, from (4.3)
one deduces that

(I + Ẋ∗Ẋ)−1/2|H+
= (I + Ẋ∗Ẋ)−1/2. (4.4)

Analogously,
(I +XX∗)−1/2|H− = (I + ẊẊ∗)−1/2. (4.5)
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Since the direct rotation U admits the representation 

U =

(
(I +X∗X)−1/2 −X∗(I +XX∗)−1/2

X(I +X∗X)−1/2 (I +XX∗)−1/2

)
,

cf. [3, 8, 22], see also [39, Proof of Proposition 3.3], and analogously

U̇ =

(
(I + Ẋ∗Ẋ)−1/2 −Ẋ∗(I + ẊẊ∗)−1/2

Ẋ(I + Ẋ∗Ẋ)−1/2 (I + ẊẊ∗)−1/2

)
,

the assertion follows from (4.4) and (4.5). �

Remark 4.3. If G+ is the graph of a bounded operator X from H+ to H−,
introduce

Y =

(
0 −X∗

X 0

)
H+⊕H−

.

Then the direct rotation U is just the unitary operator from  the polar decompo-
sition of the operator I + Y ,

(I + Y ) = U |I + Y |.

Observe that the Ḣ-regularity of the decomposition

H = Graph(H+, X)⊕Graph(H−,−X∗)

can equivalently be reformulated in purely algebraic terms that invoke mapping
properties of the operators I ± Y only. That is, the graph space decomposition
(4.2) is Ḣ-regular if and only if the operators I ± Y are algebraic/ topologic
automorphisms of Ḣ, see [30, Lemma 3.1, Remark 3.2].

5. Block-diagonalization of associated operators by a direct
rotation

From now and later on, given a saddle point form b, denote by H1
A the space

Dom[b] equipped with the graph norm of the operator |A|1/2, where A is the
diagonal self-adjoint operator associated with the diagonal part a of the form b
(see eq. (2.4)).

One of the main results of the current paper is as follows.

Theorem 5.1. Let b be a saddle point form with respect to the orthogonal decom-
position H = H+ ⊕ H− and B the associated operator. Assume that the form b
satisfies the domain stability condition (2.6).

Suppose that the decomposition

H = L+ ⊕ L− (5.1)

referred to in Theorem 3.3 is H1
A-regular, where A is the diagonal self-adjoint

operator given by (2.4) and associated with the diagonal part a of the form b.
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Then the form b and the associated operator B can be block diagonalized by
the direct rotation U from the subspace H+ to the reducing graph subspace L+.
That is,

(i) the form

b̂[f, g] = b[Uf,Ug], f, g ∈ Dom[b̂] = Dom[b]

is a diagonal saddle point form with respect to the decomposition H = H+ ⊕
H−,

b̂ = b̂+ ⊕ (−b̂−),

with b̂± = ±b̂|H± . In particular, the non-negative forms b̂± are closed;
(ii) the associated operator B̂ can be represented as the diagonal operator matrix,

B̂ = U∗BU =

(
B̂+ 0

0 −B̂−

)
H+⊕H−

;

(iii) the non-negative closed forms b̂± are in one-to-one correspondence to the
non-negative self-adjoint operators B̂±.
If, in addition, the form b is semi-bounded, then the hypotheses that b satisfies

the domain stability condition and that the decomposition (5.1) is regular are
redundant.

Proof. Since the domain stability condition (2.6) implies that the Hilbert spaces
H1

A and H1
B coincide as the sets and therefore have the same topology, the form b

can be represented by a bounded operator B as
b[x, y] = ⟨x,By⟩H1

A
, x, y ∈ Dom[b]. (5.2)

Let U̇ denote the direct rotation from H+∩H1
A to L+∩H1

A in H1
A. By Lemma

4.2 one has U̇ = U |H1
A

and therefore

b[Ux,Uy] = ⟨U̇x,BU̇y⟩H1
A
= ⟨x, (U̇)∗BU̇y⟩H1

A
.

Since the decomposition (5.1) reduces b, it follows that (U̇)∗BU̇ is a diagonal
operator matrix in H1

A with respect to the decomposition H1
A =

(
H+ ∩H1

A

)
⊕(

H− ∩H1
A

)
. The corresponding subspaces L± are non-negative subspaces for the

operator B, so that

(U̇)∗BU̇ =

(
B+ 0
0 −B−

)
(H+∩H1

A)⊕(H−∩H1
A)

,

where B± are non-negative bounded operators in H± ∩H1
A. Since

b[Ux±, Uy±] = ±⟨x±,B±y±⟩H1
A∩H± ,

one observes that b[Ux±, Uy±], x±, y± ∈ H± ∩ H1
A defines a sign-definite closed

form on H± ∩H1
A. This proves (i).
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On the other hand,

b[Ux,Uy] = ⟨x,U∗BUy⟩H, x ∈ Dom[b], y ∈ U−1(Dom(B)).

In particular, one has

b[Ux±, Uy±] = ⟨x±,±B̂±y±⟩H, x± ∈ Dom[a±], y± ∈ U−1(Dom(B)) ∩H±,
(5.3)

which shows (ii).
The assertion (iii) now follows from (i) and (5.3).
Next, we prove the last assertion of the theorem.
Denote by Q the orthogonal projection onto the subspace L+. Then

Q =

(
(IH+

+X∗X)−1 (IH+
+X∗X)−1X∗

X(IH+ +X∗X)−1 X(IH+ +X∗X)−1X∗

)
(5.4)

and

Q⊥ =

(
X∗(IH− +XX∗)−1X −X∗(IH− +XX∗)−1

−(IH− +XX∗)−1X (IH− +XX∗)−1

)
. (5.5)

Note that since the subspace L+ reduces the form b, both Q and Q⊥ map
Dom[b] into itself. In particular, (IH+

+X∗X)−1 maps H− ∩Dom[b] into itself.
Now, since the form b is semibounded from below, the operator I +XX∗ is

bijective on H− ∩Dom[b]. Therefore, the operator

(I − Y 2)−1 =

(
(IH+

+X∗X)−1 0
0 (IH− +XX∗)−1

)
maps Dom[b] into itself.

Again, since I+XX∗ is bijective on H− = Dom[b]∩H− and Q⊥ maps Dom[b]
into itself, it follows from (5.5) that X maps Dom[b] ∩H+ into Dom[b] ∩H− and
that X∗ maps Dom[b] ∩ H− into Dom[b] ∩ H+. Thus, Y leaves the form domain
Dom[b] invariant and so do the operators I + Y , I − Y and I − Y 2.

Summing up, both (I − Y 2) and (I − Y 2)−1 map Dom[b] into itself. That is,
the restriction of the map

I − Y 2 = (I − Y )(I + Y )

on Dom[b] is bijective on Dom[b]. In particular I + Y is bijective on Dom[b] and
by Remark 4.3 the decomposition H = L+ ⊕ L− is H1

A-regular, which completes
the proof. �

6. The Riccati equation
The existence of a reducing graph subspace for a saddle point form, as, e.g., in
Theorem 5.1, is closely related to the solvability of the associated block form
Riccati equation.
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Hypothesis 6.1. Suppose that b is a saddle point form with respect to the de-
composition H = H+⊕H−. Assume that a subspace G+ is the graph of a bounded
operator X : H+ → H− and that Y is the skew-symmetric off-diagonal operator
Y

Y =

(
0 −X∗

X 0

)
H+⊕H−

.

Theorem 6.2. Assume Hypothesis 6.1. Assume, in addition, that the orthogonal
decomposition H = G+ ⊕ G−, with G− = G⊥

+ , is H1
A-regular.

Then the decomposition H = G+ ⊕ G− reduces the form b if and only if the
skew-symmetric off-diagonal operator Y is a solution to the block form Riccati
equation

a[f, Y g] + a[Y f, g] + v[Y f, Y g] + v[f, g] = 0, f, g ∈ Dom[a], (6.1)

Ran(Y |Dom[a]) ⊆ Dom[a].

Proof. The proof of this theorem is a direct combination of the following two
lemmas. �

Lemma 6.3. Assume Hypothesis 6.1. Suppose that the orthogonal decomposition
H = G+ ⊕ G−, with G− = G⊥

+ , reduces b.
If the space H1

A is Y -invariant, then Y is a solution to the block-form Riccati
equation (6.1).

Proof. Assume that the decomposition reduces b. Since Dom[b] = Dom[a] = H1
A

(as a set), the Y -invariance of H1
A implies that X and X∗ map Dom[a+] =

Dom(A
1/2
+ ) into Dom[a−] = Dom(A

1/2
− ), and vice versa, respectively. Denote by

Q the orthogonal projection onto G(H+, X). By (3.1), we have

0 = b[Q⊥(−X∗y ⊕ y), Q(x⊕Xx)] = b[−X∗y ⊕ y, x⊕Xx], (6.2)

x ∈ Dom[a+], y ∈ Dom[a−].

Taking into account that b = a + v, where a and v are the diagonal and
off-diagonal parts, respectively, and that a = a+⊕ (−a−), the equality (6.2) shows
that X is a solution to the Riccati equation

a+[−X∗y, x]− a−[y,Xx] + v[−X∗y,Xx] + v[y, x] = 0, (6.3)

x ∈ Dom[a+], y ∈ Dom[a−].

Set
f = x+ ⊕ x−, g = y+ ⊕ y−, x±, y± ∈ Dom[a±],
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combine the Riccati equation (6.3) with x = y+, y = x− plugged in, and the
complex conjugate of (6.3) with x = x+, y = y− plugged in, to get

a[f, Y g] + a[Y f, g] + v[Y f, Y g] + v[f, g]

= a

[(
x+

x−

)
,

(
0 −X∗

X 0

)(
y+
y−

)]
+ a

[(
0 −X∗

X 0

)(
x+

x−

)
,

(
y+
y−

)]
+ v

[(
0 −X∗

X 0

)(
x+

x−

)
,

(
0 −X∗

X 0

)(
y+
y−

)]
+ v

[(
x+

x−

)
,

(
y+
y−

)]
= a+[x+,−X∗y−]− a−[x−, Xy+] + a+[−X∗x−, y+]− a−[Xx+, y−]

+ v[−X∗x−, Xy+] + v[Xx+,−X∗y−] + v[x+, y−] + v[x−, y+]

= a+[−X∗y−, x+]− a−[y−, Xx+] + v[−X∗y−, Xx+] + v[y−, x+]

+ a+[−X∗x−, y+]− a−[x−, Xy+] + v[−X∗x−, Xy+] + v[x+, y−]

= 0,

which shows that Y is a solution of the block Riccati equation (6.1). �

Lemma 6.4. Assume Hypothesis 6.1. Suppose that Y solves the block form Riccati
equation (6.1) and assume that H1

A ⊆ Ran(I − Y )|H1
A
.

Then the orthogonal decomposition H = G+⊕G−, with G− = G⊥
+ , reduces the

form b.

Proof. Let Q denote the orthogonal projection onto G(H+, X). Recall that Q is
given by the block matrix (5.4)

Q =

(
(IH+

+X∗X)−1 (IH+
+X∗X)−1X∗

X(IH+
+X∗X)−1 X(IH+

+X∗X)−1X∗

)
H+⊕H−

. (6.4)

By hypothesis, one has that (I − Y )Dom[a] ⊇ Dom[a]. Since Y is a solution
of the Riccati equation (6.1), then necessarily (I − Y )Dom[a] ⊆ Dom[a]. Thus,
I − Y is bijective on Dom[a]. So is the operator

I − Y 2 = (I − Y )J(I − Y )J =

(
IH+

+X∗X 0
0 IH− +XX∗

)
,

where the involution J is given by (2.1).
In particular, the operators IH+

+ X∗X and IH− + XX∗ are bijective on
Dom[a+] and Dom[a−], respectively. Since I − Y is bijective on Dom[a], one also
observes that X maps Dom[a+] into Dom[a−] and that X∗ maps Dom[a−] into
Dom[a+]. Taking into account the explicit representation (6.4), one concludes that
the operator Q maps Dom[b] = Dom[a] into itself.

Therefore, for any ỹ ∈ Dom[b], there exists an x ∈ Dom[a+] such that
Qỹ = x⊕Xx.

Similarly, for any x̃ ∈ Dom[b] there exists a y ∈ Dom[a−] such that
Q⊥x̃ = −X∗y ⊕ y.
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Assuming that x ∈ Dom[a+] and y ∈ Dom[a−], we have
b[Q⊥x̃, Qỹ] = b[−X∗y ⊕ y, x⊕Xx]

= a[−X∗y ⊕ y, x⊕Xx] + v[−X∗y ⊕ y, x⊕Xx]

= a+[−X∗y, x]− a−[y,Xx] + v[−X∗y,Xx] + v[y, x]

= a

[(
x
0

)
,

(
0 −X∗

X 0

)(
0
y

)]
+ a

[(
0 −X∗

X 0

)(
x
0

)
,

(
0
y

)]
+ v

[(
0 −X∗

X 0

)(
x
0

)
,

(
0 −X∗

X 0

)(
0
y

)]
+ v

[(
x
0

)
,

(
0
y

)]
= a[f, Y g] + a[Y f, g] + v[Y f, Y g] + v[f, g]

= 0,

where we have used the block Riccati equation (6.1) for f = x⊕ 0 and g = 0⊕ y
on the last step. This implies that

b[Q⊥x̃, Qỹ] = 0 for all x̃, ỹ ∈ Dom[b],

and therefore, the graph subspace G+ = G(H+, X) reduces the form b (see (3.1)).
�

Now we are ready to present a generalization of assertion (i) from Theorem
5.1 that yields the block diagonalization of a saddle point form, provided that the
latter has a reducing subspace.

Theorem 6.5. Assume Hypothesis 6.1. Suppose that the graph decomposition
H = G+⊕G− reduces the form b and let U be the direct rotation from the subspace
H+ to the reducing subspace G+. Also assume that the decomposition H = G+⊕G−
is H1

A-regular, where A is the diagonal self-adjoint operator given by (2.4).
Then

b̂[f, g] = b[Uf,Ug], f, g ∈ Dom[b̂] = Dom[b],

is a diagonal form with respect to the decomposition H = H+ ⊕H−.

Proof. Due to Theorem 6.2, the Riccati equation (6.1) holds if and only if the
decomposition H = G+⊕G− reduces the form. Then a straightforward computation
shows that

b[(I + Y )f, h] = a[f, (I − Y )h] + v[Y f, (I − Y )h], f, h ∈ Dom[a].

Then, taking h = (I − Y )−1g with g ∈ Dom[a], one obtains that
b[(I + Y )f, (I − Y )−1g] = a[f, g] + v[Y f, g], f, g ∈ Dom[a]. (6.5)

Since the form a is diagonal, and both the form v and the operator Y are off-
diagonal, it follows that the form d[f, g] = b[(I + Y )f, (I − Y )−1g] on Dom[d] =
Dom[a], is a diagonal form.

Since U = (I + Y )|I + Y |−1 = (I − Y )−1|I − Y | and |I − Y | = |I + Y | is a
diagonal operator, the equation (6.5) yields
b[Uf,Ug] = a[|I + Y |−1f, |I − Y |g] + v[Y |I + Y |−1f, |I − Y |g], f, g ∈ Dom[a],
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provided that |I + Y | = (I − Y 2)1/2 is bijective on Dom[a], which, in turn, follows
along similar lines as in the proof of Lemma 4.2. �

It should be noted that the proof of Theorem 6.5, compared to the one of
Theorem 5.1 (i), neither requires the domain stability condition to hold nor the
semi-definiteness of the corresponding reducing graph subspaces G±. If, however,
the domain stability condition holds, the proof of Theorem 5.1 (i) shows that the
diagonalization procedure for the unbounded form b in H can be reduced to the
one of the corresponding bounded self-adjoint operator B in the space H1

A (see
(5.2)). The form b̂ then splits into the sum of two diagonal forms ±b̂±,

b̂ = b̂+ ⊕ (−b̂−),

that are not necessarily semi-bounded. However, if the saddle point form b is a
priori semi-bounded, the domain stability condition holds automatically and the
corresponding diagonal forms ±b̂± are semi-bounded and closed. In other words,
in this case the statement of Theorem 6.5 can naturally be extended to the format
of the one in Theorem 5.1.

7. Some applications
In this section, having in mind applications of the developed formalism to the
study of the block Stokes operator from fluid dynamics, cf. [10, 17, 20], we focus
on the class of saddle point forms provided by Example 2.4 in the semi-bounded
situation.

We start by the following compactness result that may be of independent
interest.

Lemma 7.1. Let b be the saddle point form from Example 2.4 and B the associated
operator. Assume that A+ > 0 and that the operator A− is bounded and has compact
resolvent. Then the positive spectral subspace of the operator B is a graph subspace,

Ran (EB((0,∞))) = Graph(H+, X)

with X : H+ → H− a compact contraction.
If, in addition, A−1

+ is in the Schatten–von Neumann ideal Sp, then X belongs
to S2p.

Proof. By Theorem 3.3,
Ran(EB((0,∞)))⊕ (Ker(B) ∩H+) = G(H+, X),

with X a contraction.
By [37, Theorem 1.3], we have that

Ker(B) = (Ker(A+) ∩ K+)⊕ (Ker(A−) ∩ K−),

where
K± =

{
x± ∈ H± | v[x+, x−] = 0 for all x∓ ∈ Dom[a∓]

}
.
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Therefore, if A+ > 0, then Ker(B) ∩H+ = {0}, which proves that
Ran(EB((0,∞)) = Graph(H+, X).

Since the reducing subspace Ran(EB(0,∞)) is a graph subspace, the form
Riccati equation (6.1) holds. Notice that the Riccati equation (6.1) can also be
rewritten as the following quadratic equation

a+[−X∗y, x]− a−[y,Xx] + v[−X∗y,Xx] + v[y, x] = 0, (7.1)

x ∈ Dom[a+] ⊆ H+, y ∈ Dom[a−] ⊆ H−,

for a “weak solution” X.
First, we claim that

(I +A
−1/2
+ X∗WA

−1/2
+ )A

1/2
+ X∗ = ((W +A−X)A

−1/2
+ )∗. (7.2)

Indeed, since

a+[−X∗y, x] = −
〈
A

1/2
+ X∗y,A

1/2
+ x

〉
,

a−[y,Xx] = ⟨y,A−Xx⟩,

and
v[−X∗y,Xx] + v[y, x] = −⟨WX∗y,Xx⟩+ ⟨y,Wx⟩,

x ∈ Dom[a+], y ∈ Dom[a−] = H−,

equation (7.1) can be rewritten as

⟨(A1/2
+ +A

−1/2
+ X∗W )X∗y,A

1/2
+ x

〉
= ⟨((W +A−X)A

−1/2
+ )∗y,A

1/2
+ x⟩,

x ∈ Dom[a+], y ∈ Dom[a−] = H−.

Taking into account that A
1/2
+ is a surjective map from Dom[a+] onto H+,

we have
(I +A

−1/2
+ X∗WA

−1/2
+ )A

1/2
+ X∗ = (A

1/2
+ +A

−1/2
+ X∗W )X∗.

Since Dom((A+)
1/2) ⊆ Dom(W ) and W is a closable operator by hypothesis,

the operator WA
−1/2
+ is bounded in H+ (see, e.g., [21, Problem 5.22]). In partic-

ular, (W + A−X)A
−1/2
+ is bounded and the claim follows by taking into account

that
(A

1/2
+ +A

−1/2
+ X∗W )X∗ = ((W +A−X)A

−1/2
+ )∗.

To complete the proof of the lemma, one observes that A+ +X∗W is similar
to B̂+ and since the kernel of B is trivial, the kernel of the operator A+ +X∗W
is trivial as well. Hence, the kernel of the Fredholm operator

F = I +A
−1/2
+ X∗WA

−1/2
+

is also trivial (here we used that the operator WA
−1/2
+ is bounded and that A−1/2

+

is compact). Hence F has a bounded inverse and then, from (7.2), we get that

X∗ = A
−1/2
+ [F−1((W +A−X)A

−1/2
+ )∗]. (7.3)
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Since A
−1/2
+ is compact, it follows that X∗ is compact, so is X. From this repre-

sentation it also follows that A−1/2
+ and X share the same Schatten class member-

ship. �

Remark 7.2. Note that in the situation of Lemma 7.1, in the particular case
where the off-diagonal part W of the operator matrix (2.9) is a bounded operator,
from (7.3) it also follows (see, e.g., [42, Satz 3.23]) that X belongs to the same
Schatten–von Neumann ideal Sp as A−1

+ does, cf. [40, Corollary 2.9.2].

As an illustration consider the following example.

Example 7.3 (The Stokes operator revisited). Assume that Ω is a bounded
C2-domain in Rd, d ≥ 2. In the direct sum of Hilbert spaces

H = H+ ⊕H−,

where H+ = L2(Ω)d is the “velocity space” and H− = L2(Ω) the “pressure space”,
introduce the block Stokes operator S via the symmetric sesquilinear form

s[v ⊕ p, u⊕ q] = ν⟨grad v,grad u⟩ − v∗⟨div v, q⟩ − v∗⟨p, div u⟩ (7.4)
=: a+[v, u] + v[v ⊕ p, u⊕ q],

Dom[s] = {v ⊕ p | v ∈ H1
0 (Ω)

d, p ∈ L2(Ω)}.
Here grad denotes the component-wise application of the standard gradient oper-
ator defined on the Sobolev space H1

0 (Ω), with ν > 0 and v∗ ≥ 0 parameters.

It is easy to see that the Stokes operator S defined as the self-adjoint operator
associated with the saddle point form s, is the Friedrichs extension of the operator
matrix

Ṡ =

(
−ν∆ v∗ grad
−v∗div 0

)
H+⊕H−

(7.5)

defined on
Dom(Ṡ) = ((H2(Ω) ∩H1

0 (Ω))
d ⊕H1

0 (Ω).

Here ∆ = ∆ · Id is the vector-valued Dirichlet Laplacian, with Id the identity
operator in Cd, div is the maximal divergence operator from H+ to H− on

Dom(div ) = {v ∈ L2(Ω)d | div v ∈ L2(Ω)},
and (− grad) is its adjoint.

It is also known that the closure of the operator matrix

S =

(
−ν∆ v∗ grad
−v∗div 0

)
H+⊕H−

naturally defined on a slightly different domain
Dom(S) = (H2(Ω) ∩H1

0 (Ω))
d ⊕H1(Ω) ⊃ Dom(Ṡ)

is self-adjoint (see [10]), which yields another characterization for the operator
S = S(ν, v∗).
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Clearly the set C∞
0 (Ω)d⊕C∞

0 (Ω) is a core for the form s and the operator S,
so the form s and the Friedrichs extension of the operator matrices Ṡ or S define
the same operator.

We also remark that the Stokes operator is not an off-diagonal operator
perturbation of the diagonal (unperturbed) operator S(ν, 0) defined on

Dom(S(ν, 0)) = (H2(Ω) ∩H1
0 (Ω))

d ⊕ L2(Ω)

for the operator matrix (7.5) is not a closed operator.
The following proposition can be considered a natural addendum to the

known results for the Stokes operator [4, 10, 17, 20, 29, 33], see also [40, Example
2.4.11].

Proposition 7.4. Let λ1(Ω) be the first eigenvalue of the Dirichlet Laplacian on
the bounded domain Ω ⊂ Rd, d ≥ 2. Then

(i) The positive spectral subspace of the Stokes operator S can be represented as
the graph of a contractive operator X : L2(Ω)d → L2(Ω) with

∥X∥ ≤ tan

(
1

2
arctanRe∗

)
< 1, (7.6)

where
Re∗ =

2v∗

ν
√

λ1(Ω)
; (7.7)

(ii) The operator X belongs to the Schatten–von Neumann ideal Sp for any p > d;
(iii) The corresponding direct rotation U from the “velocity subspace” L2(Ω)d to

the positive spectral subspace of the Stokes operator S maps the domain of
the form onto itself. That is,

U
(
H1

0 (Ω)
d ⊕ L2(Ω)

)
= H1

0 (Ω)
d ⊕ L2(Ω). (7.8)

In particular, the form (7.4) and the Stokes operator S can be block diago-
nalized by the unitary transformation U .

Proof. (i). Due to the embedding
Dom((−∆)1/2) = H1

0 (Ω)
d ⊂ {v ∈ L2(Ω)d | div v ∈ L2(Ω)} = Dom(div ),

the entries of the operator matrix Ṡ satisfy the hypothesis of Example 2.4, so that
the sesquilinear form s is a saddle point form by Lemma 2.5. The first part of the
assertion (i) then follows from Lemma 7.1.

To complete the proof of (i) it remains to check the estimate (7.6).
Recall that if P and Q are orthogonal projections and Ran(Q) is the graph

of a bounded operator X from Ran(P ) to Ran(P⊥), then the operator angle Θ
between the subspaces Ran(P ) and Ran(Q) is a unique self-adjoint operator in
the Hilbert space H with the spectrum in [0, π/2] such that

sin2 Θ = PQ⊥|Ran(P ).

In this case,
∥X∥ = tan ∥Θ∥ (7.9)
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(see, e.g., [22, Eq. (3.12)]).
Using the estimate [20]

tan 2 ∥Θ∥ ≤ 2v∗

ν
√

λ1((Ω)

for the operator angle Θ between the “velocity subspace” H+ = L2(Ω)d and the
positive spectral subspace L+ = Ran(ES((0,∞)) of the Stokes operator, one gets
the bound (7.6) as a consequence of (7.9).

(ii). Denote by λk(Ω) the kth-eigenvalue counting multiplicity of the Dirich-
let Laplacian on the domain Ω ⊂ Rd, d ≥ 2. By the Weyl’s law, the following
asymptotics

λk(Ω) ∼
4π2k2/d

(|Bd||Ω|)2/d
(as k → ∞)

holds, see, e.g., [5, Theorem 5.1] (here |Bd| is the volume of the unit ball in Rd

and |Ω| is the volume of the domain Ω). Hence, the resolvent of the vector-valued
Dirichlet Laplacian ∆ belongs to the ideal Sp for any p > d/2. Then, by Lemma
7.1, we have that

X ∈ Sp, for any p > d,

which completes the proof of (ii).
(iii). Since s is a semi-bounded saddle point form, one can apply Theorem

5.1 to justify (7.8) as well as the remaining statements of the proposition. �

Remark 7.5. The first part of the assertion (i) is known. It can be verified, for
instance, by combing Theorem 2.7.7, Remark 2.7.12 and Proposition 2.7.13 in [40].

The generalized Reynolds number Re∗ = 2v∗

ν
√

λ1(Ω)
given by (7.7) has been

introduced by Ladyzhenskaya in connection with her analysis of stability of solu-
tions of the 2D-Navier–Stokes equations in bounded domains [27]. To the best of
our knowledge, the estimate (7.6), the Schatten class membership X ∈ Sp, p > d,
as well as the mapping property (7.8) of the direct rotation U are new. We also
note that the diagonalization of S by a similarity transformation has already been
discussed and the one by a unitary operator has been indicated, see [40, Theorem
2.8.1].
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Solutions of Gross–Pitaevskii Equation
with Periodic Potential in Dimension Two
Yulia Karpeshina, Seonguk Kim and Roman Shterenberg

Dedicated to the Memory of Boris Pavlov

Abstract. Quasi-periodic solutions of a nonlinear polyharmonic equation for
the case 4l > n+ 1 in Rn, n > 1, are studied. This includes Gross–Pitaevskii
equation in dimension two (l = 1, n = 2). It is proven that there is an ex-
tensive “non-resonant” set G ⊂ Rn such that for every k⃗ ∈ G there is a
solution asymptotically close to a plane wave Aei⟨k⃗,x⃗⟩ as

∣∣⃗k∣∣ → ∞, given A is
sufficiently small.

1. Introduction
Let us consider a nonlinear polyharmonic equation with a periodic potential V (x⃗ )
and quasi-periodic boundary condition:

(−∆)lu(x⃗ ) + V (x⃗ )u(x⃗ ) + σ|u(x⃗ )|2u(x⃗ ) = λu(x⃗ ), x⃗ ∈ [0, 2π]n, (1)

u(x1, . . . , 2π︸︷︷︸
s-th

, . . . , xn) = e2πitsu(x1, . . . , 0︸︷︷︸
s-th

, . . . , xn),

∂
∂xs

u(x1, . . . , 2π︸︷︷︸
s-th

, . . . , xn) = e2πits ∂
∂xs

u(x1, . . . , 0︸︷︷︸
s-th

, . . . , xn),

...
∂2l 1

∂x2l 1
s

u(x1, . . . , 2π︸︷︷︸
s-th

, . . . , xn) = e2πits ∂2l 1

∂x2l 1
s

u(x1, . . . , 0︸︷︷︸
s-th

, . . . , xn),

s = 1, . . . , n.

(2)

where l is an integer, 4l > n+1, t⃗ = (t1, . . . , tn) ∈ K = [0, 1]n, σ is a real number,
V (x⃗ ) is a trigonometric polynomial, and∫

Q

V (x⃗ )dx⃗ = 0,

© Springer Nature Switzerland AG 2020 
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with Q = [0, 2π]n being the elementary cell of period 2π. More precisely,

V (x⃗ ) =
∑

q ̸=0,|q|≤R0

vqe
i⟨q,x⃗⟩, (3)

vq being Fourier coefficients.
When l = 1, n = 1, 2, 3, equation (1) is a famous Gross–Pitaevskii equation

for Bose–Einstein condensate, see, e.g., [5]. In physics papers, e.g., [3, 4, 6, 7],
a big variety of numerical computations for Gross–Pitaevskii equation is made.
However, they are restricted to the one dimensional case and there is a lack of
theoretical considerations even for the case n = 1. In this paper we study the case
4l > n+ 1 which includes l = 1, n = 2.

The goal of this paper is to construct asymptotic formulas for u(x⃗ ) as λ→ ∞.
We show that there is an extensive “non-resonant” set G ⊂ Rn such that for every
k⃗ ∈ G there is a quasi-periodic solution of (1) close to a plane wave Aei⟨k⃗,x⃗⟩ with
λ = λ(k⃗, A) close to

∣∣⃗k∣∣2l + σ|A|2 as
∣∣⃗k∣∣→ ∞ (Theorem 3.11). We assume A ∈ C

and |A| is sufficiently small:
|σ||A|2 < λγ , γ < 2l − n. (4)

Note that γ is any negative number for the Gross–Pitaevskii equation l = 1, n = 2.
The quasi-momentum t⃗ in (1) is defined by the formula: k⃗ = t⃗+ 2πj, j ∈ Zn.

We show that the non-resonant set G has an asymptotically full measure
in Rn:

lim
R→∞

|G ∩BR|n
|BR|n

= 1, (5)

where BR is a ball of radius R in Rn and | · |n is Lebesgue measure in Rn.
Moreover, we investigate a set D(λ,A) of vectors k⃗ ∈ G, corresponding to

a fixed sufficiently large λ and a fixed A. The set D(λ,A), defined as a level
(isoenergetic) set for λ(k⃗, A),

D(λ,A) =
{
k⃗ ∈ G : λ(k⃗, A) = λ

}
, (6)

is proven to be a slightly distorted n-dimensional sphere with a finite number
of holes (Theorem 3.13). For any sufficiently large λ, it can be described by the
formula:

D(λ,A) =
{
k⃗ : k⃗ = κ(λ,A, ν⃗)ν⃗, ν⃗ ∈ B(λ)

}
, (7)

where B(λ) is a subset of the unit sphere Sn−1. The set B(λ) can be interpreted
as a set of possible directions of propagation for almost plane waves. Set B(λ) has
an asymptotically full measure on Sn−1 as λ→ ∞:

|B(λ)| =λ→∞ ωn−1 +O
(
λ−δ

)
, δ > 0, (8)

here | · | is the standard surface measure on Sn−1, ωn−1 = |Sn−1|. The value
κ(λ,A, ν⃗) in (7) is the “radius” of D(λ,A) in a direction ν⃗. The function

κ(λ,A, ν⃗)−
(
λ− σ|A|2

)1/2l
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describes the deviation of D(λ,A) from the perfect sphere (circle) of the radius
(λ− σ|A|2)1/2l in Rn. It is proven that the deviation is asymptotically small:

κ(λ,A, ν⃗) =λ→∞
(
λ− σ|A|2

)1/2l
+O

(
λ−γ1

)
, γ1 > 0. (9)

To prove the results above, we consider the term V +σ|u|2 in equation (1) as a
periodic potential and formally change the nonlinear equation to a linear equation
with an unknown potential V (x⃗ ) + σ|u(x⃗ )|2:

(−∆)lu(x⃗ ) +
(
V (x⃗ ) + σ|u(x⃗ )|2

)
u(x⃗ ) = λu(x⃗ ).

Further, we use known results for linear polyharmonic equations with periodic
potentials. To start with, we consider a linear operator in L2(Q) described by the
formula:

H
(
t⃗
)
= (−∆)l + V, (10)

and quasi-periodic boundary condition (2). The free operator H0

(
t⃗
)
, correspond-

ing to V = 0, has eigenfunctions given by:

ψj(x⃗ ) = ei⟨p⃗j(t⃗ ),x⃗⟩, p⃗j
(
t⃗
)
:= t⃗+ 2πj, j ∈ Zn, t⃗ ∈ K, (11)

and the corresponding eigenvalues p2lj
(
t⃗
)
:=
∣∣p⃗j(t⃗ )∣∣2l. Perturbation theory for a

linear operator H
(
t⃗
)

with a periodic potential V is developed in [1]. It is shown
that at high energies, there is an extensive set of generalized eigenfunctions being
close to plane waves. Below (see Theorem 2.2) we describe this result in details.
Now, we define a map M : L∞(Q) → L∞(Q) by the formula:

MW (x⃗ ) = V (x⃗ ) + σ
∣∣u

W̃
(x⃗ )
∣∣2. (12)

Here, W̃ is a shift of W by a constant such that
∫
Q
W̃ (x⃗ )dx⃗ = 0,

W̃ (x⃗ ) =W (x⃗ )− 1

(2π)n

∫
Q

W (x⃗ )dx⃗, (13)

and u
W̃

is an eigenfunction of the linear operator (−∆)l + W̃ with the boundary
condition (2). Next, we consider a sequence {Wm}∞m=0:

W0 = V + σ|A|2, MWm =Wm+1. (14)

Note that the sequence is well-defined by induction, since for each m = 1, 2, 3, . . .
and t⃗ in a non-resonant set G described in Sect. 2, there is an eigenfunction um(x⃗ )

corresponding to the potential W̃m:

Hm

(
t⃗
)
um = λmum,

Hm

(
t⃗
)
um := (−∆)lum + W̃mum,

with λm, um being defined by formal series of the form (22)–(25), (33) with W̃m

instead of V . Those series are proven to be convergent, thus justifying our con-
struction. Next, we prove that the sequence {Wm}∞m=0 is a Cauchy sequence of
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periodic functions in Q with respect to a norm

∥W∥∗ =
∑
q∈Zn

|wq|, (15)

wq being Fourier coefficients of W . This implies that
Wm →W with respect to the norm ∥ · ∥∗, W is a periodic function.

Further, we show that
um → u

W̃
in L∞(Q), λm → λ

W̃
in R,

where u
W̃

, λ
W̃

correspond to the potential W̃ (via (22)–(25), (33) with W̃ instead
of V ). It follows from (12) and (14) that MW = W and, hence, u := u

W̃
solves

the nonlinear equation (1) with quasi-periodic boundary condition (2).
Note that the results of the paper can be easily generalized for the case of a

sufficiently smooth potential V (x). Generalization for the case l = 1, n = 3 (Gross–
Pitaevskii equation in dimension three) is also possible. However, it requires more
subtle considerations than here and will be done in a forthcoming paper.

The paper is organized as follows. In Sect. 2, we introduce results for the linear
operator (−∆)l+V which include the perturbation formulas for an eigenvalue and
its spectral projection. In Sect. 3, we prove existence of solutions of the equation (1)
with boundary condition (2) and investigate their properties. Isoenergetic surfaces
are also introduced and described there.

2. Linear Operator
Let us consider an operator

H = (−∆)l + V, (16)
in L2(Rn), 4l > n+ 1 and n ≥ 2 where l is an integer and V (x⃗ ) is defined by (3).
Since V (x⃗) is periodic with an elementary cell Q, the spectral study of (16) can be
reduced to that of a family of Bloch operators H

(
t⃗
)

in L2(Q), t⃗ ∈ K (see formula
(10) and quasi-periodic conditions (2)).

The free operator H0

(
t⃗
)
, corresponding to V = 0, has eigenfunctions given

by (11) and the corresponding eigenvalue is p2lj
(
t⃗
)
:= |p⃗j

(
t⃗
)
|2l. Next, we describe

an isoenergetic surface of H0

(
t⃗
)

in K. To start with, we consider the sphere S(k) of
radius k centered at the origin in Rn. For each j ∈ Zn such that (j+K)∩S(k) ̸= ∅,
K := [0, 1]n, we translate the corresponding piece of S(k) into K, thus obtaining
the sphere of radius k “packed” into K. We denote it by S0(k). Namely,

S0(k) =
{
t⃗ ∈ K : there is a j ∈ Zn such that p2lj

(
t⃗
)
= k2l

}
.

Obviously, operator H0

(
t⃗
)

has an eigenvalue equal to k2l if and only if t⃗ ∈ S0(k).
For this reason, S0(k) is called an isoenergetic surface of H0

(
t⃗
)
. When t⃗ is a point

of self-intersection of S0(k), there exists q ̸= j such that
p2lq
(
t⃗
)
= p2lj

(
t⃗
)
. (17)
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In other words, there is a non-simple eigenvalue of H0

(
t⃗
)
. We remove from the

set S0(k) the (k−n+1−δ)-neighborhoods of all self-intersections (17). We call the
remaining set a non-resonant set and denote is by χ0(k, δ), The removed neigh-
borhood of self-intersections is relatively small and, therefore, χ0(k, δ) has asymp-
totically full measure with respect to S0(k):

|χ0(k, δ)|
|S0(k)|

= 1 +O
(
k−δ/8

)
,

here and below | · | is Lebesgue measure of a surface in Rn. It can be easily shown
that for any t⃗ ∈ χ0(k, δ), there is a unique j ∈ Zn such that p2lj

(
t⃗
)
= k2l and

min
q ̸=j

∣∣p2lq (t⃗ )− p2lj
(
t⃗
)∣∣ > k2l−n−δ. (18)

This means that the distance from p2lj
(
t⃗
)

to the nearest eigenvalue p2lq
(
t⃗
)
,

q ̸= j is greater than k2l−n−δ. If 2l > n, then this distance is large and standard
perturbation series can be constructed for p2lj

(
t⃗
)
, t ∈ χ0(k, δ). However, the

denseness of the eigenvalues increases infinitely when k → ∞ and 2l < n. Hence,
eigenvalues of the free operator H0

(
t⃗
)

strongly interact with each other when
2l < n, the case 2l = n being intermediate. Nevertheless, the perturbation series
for eigenvalues and their spectral projections were constructed in [1] for 4l > n+1
when t⃗ belongs to a non-resonant set χ1.

Lemma 2.1. For any 0 < β < (4l−n−1)/(n−1), 0 < 2δ < 4l−n−1−β(n−1)
and sufficiently large k > k0(β, δ), there is a non-resonant set χ1(k, β, δ) such
that for any t ∈ χ1(k, β, δ) there is a unique j ∈ Zn: p2lj

(
t⃗
)
= k2l and if t⃗ is

in the (k−n+1−2δ)-neighborhood of χ1(k, β, δ) in K, then for z ∈ C0 =
{
z ∈ C :∣∣z − k2l

∣∣ = k2l−n−δ
}

we have

min
i∈Zn

∣∣p2li (t⃗ )− z
∣∣ > k2l−n−δ, (19)

200
∣∣p2li (t⃗ )− z

∣∣∣∣p2li+q

(
t⃗
)
− z
∣∣ > k2γ2 , i ∈ Zn, |q| < kβ , q ̸= 0, (20)

here and below:

2γ2 = 4l − n− 1− β(n− 1)− 2δ > 0. (21)

The non-resonant set χ1(k, β, δ) has an asymptotically full measure on S0(k):

s
(
S0(k) \ χ1(k, β, δ)

)
s
(
S0(k)

) = O
(
k−δ/8

)
.

Theorem 2.2. Under the conditions of Lemma 2.1, there exists a single eigenvalue
of the operator H

(
t⃗
)

in the interval ε(k, δ) ≡
(
k2l − k2l−n−δ, k2l + k2l−n−δ

)
. It is

given by the series

λ
(
t⃗
)
= p2lj

(
t⃗
)
+

∞∑
r=2

gr(k, t), (22)
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converging absolutely, where the index j is uniquely determined from the relation
p2lj
(
t⃗
)
∈ ε(k, δ) and

gr(k, t⃗ ) =
(−1)r

2πir
Tr

∮
C0

((
H0

(
t⃗
)
− z
)−1

V
)r
dz. (23)

The spectral projection, corresponding to λ
(
t⃗
)

is given by the series

E(t) = Ej +
∞∑
r=1

Gr(k, t), (24)

which converges in the trace class S1 uniformly, where

Gr(k, t⃗ ) =
(−1)r+1

2πi

∮
C0

((
H0

(
t⃗
)
− z
)−1

V
)r (

H0

(
t⃗
)
− z
)−1

dz. (25)

Moreover, for coefficients gr(k, t⃗ ), Gr(k, t⃗ ), the following estimates hold:
|gr(k, t⃗ )| < k2l−n−δk−γ2r, (26)

∥Gr(k, t⃗ )∥S1 ≤ v̂k−γ2r, v̂ = cRn
0 max

m∈Zn
|vm|. (27)

Remark 2.3. We use the following norm ∥T∥1 of an operator T in l2(Z2):

∥T∥1 = max
i

∑
p

|Tpi|.

It can be easily seen from construction in [1] that estimates (27) hold with respect
to this norm, too.

Let us introduce the notations:

T (m) ≡ ∂|m|

∂tm1
1 ∂tm2

2 · · · ∂tmn
n

, (28)

|m| ≡ m1 +m2 + · · ·+mn, m! ≡ m1!m2! · · ·mn!,

0 ≤ |m| <∞, T (0)f ≡ f.

The following theorem and corollary are proven in [1].

Theorem 2.4. Under the conditions of Theorem 2.2, the series (22), (24) can be
differentiated with respect to t⃗ any number of times, and they retain their asymptotic
character. Coefficients gr(k, t⃗ ) and Gr(k, t⃗ ) satisfy the following estimates in the
(k−n+1−2δ)-neighborhood in Cn of the nonsingular set χ1(k, β, δ):∣∣T (m)gr(k, t⃗ )

∣∣ < m! k2l−n−δ(v̂k−γ2)rk|m|(n−1+2δ), (29)∥∥T (m)Gr(k, t⃗ )
∥∥
1
< m!(v̂k−γ2)rk|m|(n−1+2δ). (30)

Corollary 2.5. There are the estimates for the perturbed eigenvalue and its spec-
tral projection:∣∣T (m)

(
λ
(
t⃗
)
− p2lj

(
t⃗
))∣∣ < cm! k(n−1+2δ)|m|k2l−n−δ−2γ2 , (31)∥∥T (m)

(
E
(
t⃗
)
− Ej)

∥∥
1
< cm! k(n−1+2δ)|m|k−γ2 . (32)
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Corollary 2.6. There is a one-dimensional space of Bloch eigenfunctions u0 cor-
responding to the projection E(t) given by (24). They are given by the formula:

u0(x⃗ ) = AE
(
t⃗
)
ei⟨p⃗j(t⃗ ),x⃗⟩ = A

∑
m∈Zn

E
(
t⃗
)
mj
ei⟨p⃗m(t⃗ ),x⃗⟩

= Aei⟨p⃗j(t⃗ ),x⃗⟩

(
1 +

∑
q ̸=0

vq

p2lj
(
t⃗
)
− p2lj+q

(
t⃗
)ei⟨p⃗q (⃗0),x⃗⟩ + · · ·

)
,

for j, q ∈ Zn, A ∈ C.

Let χ̃1(k, β, δ) ⊂ S(k) be the image of χ1(k, β, δ) ⊂ S0(k) on the sphere S(k):

χ̃1(k, β, δ) =
{
p⃗j
(
t⃗
)
∈ S(k) : t⃗ ∈ χ1(k, β, δ)

}
. (33)

Note that χ̃1(k, β, δ) is well-defined, since χ1(k, β, δ) does not contain self inter-
sections of S0(k). Let B(λ) ⊂ Sn−1 be the set of directions corresponding to the
nonsingular set χ̃1(k, β, δ):

B(λ) =
{
ν⃗ ∈ Sn−1 : kν⃗ ∈ χ̃1(k, β, δ)

}
, k2l = λ. (34)

The set B(λ) can be interpreted as a set of possible directions of propagation for
almost plane waves (33). We define the non-resonance set G ⊂ Rn as the union of
all χ̃1(k, β, δ):

G =
⋃

k>k0(β,δ)

χ̃1(k, β, δ) (35)

Further we denote vectors of G by k⃗. Formulas (34), (35) yield

G =
{
k⃗ = kν⃗ : ν⃗ ∈ B

(
k2l
)
, k > k0(β, δ)

}
. (36)

Since any vector k⃗ can be written as k⃗ = p⃗j(t) in a unique way, formula (35) yields:

G =
{
p⃗j
(
t⃗
)
: t⃗ ∈ χ1(k, β, δ), where k = pj

(
t⃗
)
, k > k0(β, δ)

}
. (37)

Let λ(k⃗) be defined by (22), where k⃗ = p⃗j
(
t⃗
)
.

Next, we describe isoenergetic surfaces for the operator (16). The set D(λ),
defined as a level (isoenergetic) set for λ(k⃗),

D(λ) =
{
k⃗ ∈ G : λ(k⃗) = λ

}
. (38)

Lemma 2.7. For any sufficiently large λ, λ > k0(β, δ)
2l, and for every ν⃗ ∈ B(λ),

there is a unique κ = κ(λ, ν⃗) in the interval

I :=
[
k − k−n+1−2δ, k + k−n+1−2δ

]
, k2l = λ,

such that
λ(κν⃗) = λ. (39)

Furthermore, |κ−k| ≤ ck2l−n−δ−2γ2−2l+1 = ck−γ1 , γ1 = 4l−2−β(n−1)− δ > 0.

The lemma easily follows from (31) for |m| = 1.
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Lemma 2.8. 1. For any sufficiently large λ, λ > k0(β, δ)
2l, the set D(λ), de-

fined by (38) is a distorted sphere with holes; it is described by the formula:

D(λ) =
{
k⃗ : k⃗ = κ(λ, ν⃗)ν⃗, ν⃗ ∈ B(λ)

}
, (40)

where κ(λ, ν⃗) = k + h(λ, ν⃗) and h(λ, ν⃗) obeys the inequalities:

|h| < ck−γ1 , |∇ν⃗h| < ck−γ1+n−1+2δ = ck−2γ2+δ. (41)

2. The measure of B(λ) ⊂ Sn−1 satisfies the estimate (8).
3. The surface D(λ) has the measure that is asymptotically close to that of the

whole sphere of the radius k in the sense that∣∣D(λ)
∣∣ =
λ→∞

ωn−1k
n−1
(
1 +O(k−δ)

)
, λ = k2l. (42)

The proof is based on Implicit Function Theorem.

3. Proof of The Main Result
First, we prove that {Wm}∞m=0 in (14) is a Cauchy sequence with respect to the
norm defined by (15). Further we need the following obvious properties of norm
∥ · ∥∗:

∥f∥∗ = ∥f∥∗, ∥ℜ(f)∥∗ ≤ ∥f∥∗, ∥ℑ(f)∥∗ ≤ ∥f∥∗, ∥fg∥∗ ≤ ∥f∥∗∥g∥∗. (43)

where ℜ(f) and ℑ(f) are real and imaginary part for f , respectively.
We define the value k1 = k1(∥V ∥∗, δ, β) as

k1(∥V ∥∗, δ, β) = max
{
(16∥V ∥∗)1/γ2 , k0(β, δ)

}
, (44)

with γ2 > 0 being defined by (21) and k0(β, δ) as in Corollary 2.1.

Lemma 3.1. The following inequalities hold for any m = 1, 2, . . . :

∥W̃m − V ∥∗ ≤ 8|σ||A|2∥V ∥∗k−γ2 , (45)
∥Wm −Wm−1∥∗ ≤ 4|σ||A|2∥V ∥∗k−γ2(|σ||A|2k−γ0)m−1, (46)

∥Em

(
t⃗
)
− Em−1

(
t⃗
)
∥1 ≤ 8|σ||A|2∥V ∥∗k−(2l−n−δ)−γ2(|σ||A|2k−γ0)m−1, (47)

where γ0 = 2l − n − 2δ, δ > 0, and |σ||A|2 < kγ0−δ, k being sufficiently large
k > k1(∥V ∥∗, δ, β).

Corollary 3.2. There is a periodic function W such that Wm converges to W
with respect to the norm ∥ · ∥∗:

∥W −Wm∥∗ ≤ 8|σ||A|2∥V ∥∗k−γ2(|σ||A|2k−γ0)m. (48)

Proof of Lemma 3.1. Let us consider the function (33) written in the form

u0(x⃗ ) = ψ0(x⃗ )e
i⟨p⃗j(t⃗ ),x⃗⟩, (49)
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where
ψ0(x⃗ ) = A

∑
q∈Zn

E
(
t⃗
)
j+q,j

ei⟨p⃗q (⃗0),x⃗⟩, (50)

is called the periodic part of u0.
First, we prove (46) for m = 1. It follows from (12), (14) and (43) that∥∥W1 −W0

∥∥
∗ = |σ|

∥∥|u0|2 − |A|2
∥∥
∗ = |σ|

∥∥|ψ0|2 − |A|2
∥∥
∗

≤ |σ|
∥∥|ψ0|2 − |A|2 + 2iℑ(Āψ0)

∥∥
∗ = |σ|

∥∥(ψ0 −A)(ψ0 + Ā)
∥∥
∗

≤ |σ|
∥∥ψ0 −A

∥∥
∗

∥∥ψ0 + Ā
∥∥
∗. (51)

Let us consider
B0(z) = (H0

(
t⃗
)
− z)−

1
2V (H0

(
t⃗
)
− z)−

1
2 . (52)

Then it follows from Lemma 2.1 that
max
z∈C0

∥∥∥(H0

(
t⃗
)
− z)−1

∥∥∥
1
< k−2l+n+δ, (53)

max
z∈C0

∥B0(z)∥1 < ∥V ∥∗k−γ2 , (54)

with γ2 being defined by (21). By (25) and (52),

Gr(k, t⃗ ) =
(−1)r+1

2πi

∮
C0

(
H0

(
t⃗
)
− z
)− 1

2B0(z)
r
(
H0

(
t⃗
)
− z
)− 1

2 dz. (55)

It is easy to see that ∥∥Gr(k, t⃗ )
∥∥
1
< ∥V ∥r∗k−γ2r. (56)

Next, by (50), (25) and (27),

∥ψ0 −A∥∗ ≤
∣∣∣AE(t⃗ )

jj
−A

∣∣∣+ |A|
∑

q∈Zn\{0}

∣∣∣E(t⃗ )
j+q,j

∣∣∣
≤ |A|

∞∑
r=1

∥Gr(k, t⃗ )∥1 ≤ ∥V ∥∗|A|k−γ2(1 + o(1)). (57)

It follows that
∥ψ0∥∗ = ∥ψ0∥∗ ≤ |A|+O

(
|A|k−γ2

)
. (58)

Using (51), (57) and (58), we get
∥W1 −W0∥∗ ≤ 4|σ||A|2∥V ∥∗k−γ2 .

Since ∥W̃1 − V ∥∗ = ∥W̃1 − W̃0∥∗ ≤ ∥W1 −W0∥∗, we have

∥W̃1 − V ∥∗ ≤ 4|σ||A|2∥V ∥∗k−γ2 . (59)
Now, we use mathematical induction to show simultaneously:∥∥W̃m − V

∥∥
∗ ≤ 8|σ||A|2∥V ∥∗k−γ2 , (60)

∥Wm −Wm−1∥∗ ≤ 4|σ||A|2∥V ∥∗k−γ2
(
|σ||A|2k−γ0

)m−1
. (61)
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Suppose that for all 1 ≤ s ≤ m− 1,

∥W̃s − V ∥∗ ≤ 8|σ||A|2∥V ∥∗k−γ2 , (62)
∥Ws −Ws−1∥∗ ≤ 4|σ||A|2∥V ∥∗k−γ2(|σ||A|2k−γ0)s−1. (63)

Let, by analogy with (33),

us(x⃗ ) := A
∑

m∈Zn

Es

(
t⃗
)
m,j

ei⟨p⃗m(t⃗ ),x⃗⟩, (64)

where Es

(
t⃗
)

is the spectral projection (24) with the potential W̃s. Obviously,

us(x⃗ ) = ψs(x⃗ )e
i⟨p⃗j(t⃗ ),x⃗⟩, (65)

where the function
ψs(x⃗ ) = A

∑
q∈Zn

Es

(
t⃗
)
j+q,j

ei⟨p⃗q (⃗0 ),x⃗⟩ (66)

is the periodic part of us. Clearly,
∥ψs∥∗ ≤ |A|

∥∥Es

(
t⃗
)∥∥

1
. (67)

Let
Bs(z) =

(
H0

(
t⃗
)
− z
)− 1

2 W̃s

(
H0

(
t⃗
)
− z
)− 1

2 . (68)
Using (62), (54) and (19), we easily obtain

∥Bs(z)∥1 ≤ 8|σ||A|2∥V ∥∗k−2l+n+δ−γ2 + ∥V ∥∗k−γ2 ≤ 2∥V ∥∗k−γ2 , z ∈ C0, (69)
for any 1 ≤ s ≤ m− 1. It is easy to see now that

∥Gs,r(k, t⃗ )∥1 ≤
(
4∥V ∥∗k−γ2

)r
, 1 ≤ s ≤ m− 1, (70)

here Gs,r(k, t⃗ ) is given by (25) with W̃s instead of V . It follows that

∥Es

(
t⃗
)
∥1 ≤ 1 +

∞∑
r=1

∥∥Gs,r

(
k, t⃗

)∥∥
1

≤ 1 + 8∥V ∥∗k−γ2 ≤ 2, 1 ≤ s ≤ m− 1. (71)
Next, we note that

max
z∈C0

∥Br
m−1(z)−Br

m−2(z)∥1

≤ max
z∈C0

∥Bm−1(z)−Bm−2(z)∥1 (∥Bm−1(z)∥1 + ∥Bm−2(z)∥1)r−1

≤ k−(2l−n−δ)
∥∥W̃m−1 − W̃m−2

∥∥
∗

(
4∥V ∥∗k−γ2

)r−1

. (72)

Hence,
∥Gm−1,r(k, t⃗ )−Gm−2,r(k, t⃗ )∥1

≤ k−(2l−n−δ)
∥∥W̃m−1 − W̃m−2

∥∥
∗

(
4∥V ∥∗k−γ2

)r−1

.
(73)
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Estimate (73) yields∥∥Em−1

(
t⃗
)
− Em−2

(
t⃗
)∥∥

1
≤

∞∑
r=1

∥∥Gm−1,r(k, t⃗ )−Gm−2,r(k, t⃗ )
∥∥
1

≤ 2k−(2l−n−δ)
∥∥W̃m−1 − W̃m−2

∥∥
∗. (74)

Next, considering as in (51), we obtain:∥∥Wm −Wm−1

∥∥
∗ ≤ |σ|

∥∥ψm−1 − ψm−2

∥∥
∗

∥∥ψm−1 + ψm−2

∥∥
∗, (75)

and, hence, by (66),

∥Wm−Wm−1∥∗ ≤ |σ||A|2
∥∥Em−1

(
t⃗
)
−Em−2

(
t⃗
)∥∥

1

(
∥Em−1

(
t⃗
)
∥1 +

∥∥Em−2

(
t⃗
)∥∥

1

)
.

(76)
Using (71) and (74), we obtain

∥Wm −Wm−1∥∗ ≤ 8|σ||A|2k−(2l−n−δ)∥W̃m−1 − W̃m−2∥∗. (77)

Considering
∥∥W̃m−1−W̃m−2

∥∥
∗ ≤ ∥Wm−1−Wm−2∥∗ and using (63) for s = m−1,

we arrive at the estimate:
∥Wm −Wm−1∥∗ ≤ 8|σ||A|2k−(2l−n−δ)4|σ||A|2∥V ∥∗k−γ2

(
|σ||A|2k−γ0

)m−2 (78)

≤ 4|σ||A|2∥V ∥∗k−γ2
(
|σ||A|2k−γ0

)m−1
,

when k > k1(∥V ∥∗, δ, β). Further, (78) and (59) enable the estimate∥∥W̃m − V
∥∥
∗ ≤

∥∥W̃m − W̃m−1

∥∥
∗ +

∥∥W̃m−1 − W̃m−2

∥∥
∗ + · · ·+

∥∥W̃1 − V
∥∥
∗

≤ 8|σ||A|2∥V ∥∗k−γ2 ,

which completes the proof of (45) and (46). Using (74), we obtain (47). �

Lemma 3.3. Suppose t⃗ belongs to the (k−n+1−2δ)-neighborhood in K of the non-
resonant set χ1(k, β, δ). Then for every sufficiently large k > k1(∥V ∥∗, δ, β) and
every A ∈ C : |σ||A|2 < kγ0−δ, the sequence Em

(
t⃗
)

converges with respect to ∥ · ∥1
to a one-dimensional spectral projection E

W̃

(
t⃗
)

of H0(t) + W̃ :∥∥Em

(
t⃗
)
− E

W̃

(
t⃗
)∥∥

1
≤ 8∥V ∥∗k−γ2

(
|σ||A|2k−γ0

)m+1
. (79)

The projection E
W̃

(
t⃗
)

is given by the series (24), (25) with W̃ instead of V . The
series converges with respect to ∥ · ∥1:∥∥Gr(k, t⃗ )

∥∥
1
≤
(
2∥V ∥∗k−γ2

)r (80)

Proof. Let B(z) be given by (68) with W̃ instead of W̃s. Obviously, B(z) is the
limit of Bm(z) in ∥ · ∥1-norm. The estimate (69) yields:

∥B(z)∥1 ≤ 2∥V ∥∗k−γ2 , z ∈ C0. (81)

It follows that the perturbation series for the resolvent of H0

(
t⃗
)
+W converges

with respect to ∥ · ∥1 norm on C0. Integrating the series of z we obtain that E(t)
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admits the expansion (24), (25) and (80) holds. Obviously, Gr corresponding to
W̃ is the limit of Gm,r in ∥ · ∥1 norm. Summing the estimates (74), we obtain (79).

�

Definition 3.4. Let u(x⃗) be defined as in Corollary 2.6 for the potential W̃ (x⃗).
Let ψ(x⃗) be the periodic part of u(x⃗).

The next lemma follows from the estimate (79).

Lemma 3.5. Suppose t⃗ belongs to the (k−n+1−2δ)-neighborhood in K of the non-
resonant set χ1(k, β, δ). Then for every sufficiently large k > k1(∥V ∥∗, δ, β) and
every A ∈ C : |σ||A|2 < kγ0−δ, the sequence ψm(x⃗) converges to the function ψ(x⃗)
with respect to ∥ · ∥∗:

∥ψm − ψ∥∗ ≤ 8|A|∥V ∥∗k−γ2(|σ||A|2k−γ0)m+1. (82)

Corollary 3.6. The sequence um converges to u in L∞(Q).

Corollary 3.7.
MW =W.

Proof of Corollary 3.7. Considering as in (75), we obtain:∥∥MWm −MW
∥∥
∗ ≤ |σ|

∥∥ψm − ψ
∥∥
∗

∥∥ψm + ψ
∥∥
∗, (83)

It immediately follows from Lemma 3.3 that MWm → MW with respect to ∥ ·∥∗.
Now, by (14) and (83), we have MW =W . �

Let λm
(
t⃗
)
, λ

W̃

(
t⃗
)

be the eigenvalues (22) corresponding to W̃m and W̃ ,
respectively.

Lemma 3.8. Under conditions of Lemma 3.3 the sequence λm
(
t⃗
)

converges to
λ
W̃

(
t⃗
)

being given by (22) and

|gr(k, t⃗ )| < r−1k2l−n−δ
(
4∥V ∥∗k−γ2

)r
, (84)

where gr is given by (23) with W̃ instead of V .

Proof. By perturbation theory, λ
W̃

(
t⃗
)

is the limit of λm
(
t⃗
)

as m → ∞. Let
us show that the series (22) converges. Let us consider two projections E0 = Ej ,
E1 = I − Ej , here Ej is the spectral projection of H0, see (25). Note that∮

C0

(E1B(z)E1)
r
dz = 0, r = 1, 2, . . . ,

since the integrand is holomorphic inside C0. Hence,∮
C0

B(z)rdz =

∮
C0

(
B(z)r − (E1B(z)E1)

r )
dz

=
∑

i1,...,ir+1=0,1,∃s:is=0

∮
C0

Ei1B(z)Ei2B(z) · · ·EirB(z)Eir+1dz.
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Obviously, Ei1B(z)i2B(z) · · ·EirB(z)Eir+1
is in the trace class S1 if at least

one index is, 1 ≤ s ≤ r + 1 is zero, since E0 ∈ S1. Notice that for the adjoint
operator B∗ we have B∗(z) = B(z̄). It follows:

∥Ei1B(z)Ei2B(z) · · ·EirB(z)Eir+1
∥S1

≤ ∥B∥r

≤ ∥B∗∥r/21 ∥B∥r/21 <
(
2∥V ∥∗k−γ2

)r
.

Now, we easily obtain (84). �

Considering as in the proof of Theorem 2.4, one can prove an analogous
theorem:

Theorem 3.9. Under the conditions of Lemma 3.3 the series (22), (24) for the
potential W̃ can be differentiated with respect to t⃗ any number of times, and they
retain their asymptotic character. Coefficients gr(k, t⃗ ) and Gr(k, t⃗ ) satisfy the
following estimates in the (k−n+1−2δ)-neighborhood in Cn of the nonsingular set
χ1(k, β, δ): ∣∣T (m)gr(k, t⃗ )

∣∣ < m!k2l−n−δ
(
4∥V ∥∗k−γ2

)r
k|m|(n−1+2δ), (85)∥∥T (m)Gr(k, t⃗ )

∥∥
1
< m!(2∥V ∥∗k−γ2)rk|m|(n−1+2δ). (86)

Corollary 3.10. There are the estimates for the perturbed eigenvalue and its
spectral projection:∣∣T (m)

(
λ
W̃

(
t⃗
)
− p2lj

(
t⃗
))∣∣ < C(∥V ∥∗)m!k(n−1+2δ)|m|k2l−n−δ−2γ2 , (87)∥∥T (m)

(
E

W̃

(
t⃗
)
− Ej

)∥∥
1
< C(∥V ∥∗)m!k(n−1+2δ)|m|k−γ2 . (88)

In particular, ∣∣λ
W̃

(
t⃗
)
− p2lj

(
t⃗
)∣∣ < C(∥V ∥∗)k2l−n−δ−2γ2 , (89)∥∥E

W̃

(
t⃗
)
− Ej

∥∥
1
< C(∥V ∥∗)k−γ2 , (90)∣∣∇λ

W̃

(
t⃗
)
− 2lp⃗j

(
t⃗
)
p2l−2
j

(
t⃗
)∣∣ < C(∥V ∥∗)k2l−1−2γ2+δ. (91)

We have the following main result for the nonlinear polyharmonic equation
with quasi-periodic condition.

Theorem 3.11. Suppose t⃗ belongs to the (k−n+1−2δ)-neighborhood in K of the
non-resonant set χ1(k, β, δ), k > k1(∥V ∥∗, δ, β) and A ∈ C : |σ||A|2 < kγ0−δ.
Then, there is a function u(x⃗ ), depending on t⃗ as a parameter, and a real value
λ
(
t⃗
)
, satisfying the equation

(−∆)lu(x⃗ ) + V (x⃗ )u(x⃗ ) + σ|u(x⃗ )|2u(x⃗ ) = λu(x⃗ ), x⃗ ∈ Q, (92)

and the quasi-periodic boundary condition (2). The following formulas hold:

u(x⃗ ) = Aei⟨p⃗j(t⃗ ),x⃗ ⟩ (1 + ũ(x⃗ )) , (93)
λ(⃗t ) = p2lj

(
t⃗
)
+ σ|A|2 +O

((
k2l−n−δ + σ|A|2

)
k−2γ2

)
, (94)
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where ũ(x⃗ ) is periodic and

∥ũ∥∗ ≤ k−γ2 , γ2 > 0 is defined by (21). (95)

Proof. Let us consider the function u given by Definition 3.4 and the value λ
W̃

(
t⃗
)
.

They solve the equation

(−∆)lu(x⃗ ) + W̃ (x⃗ )u(x⃗ ) = λ
W̃

(
t⃗
)
u(x⃗ ), x⃗ ∈ Q, (96)

and u satisfies the quasi-boundary condition (2). By Corollary 3.7, we have

W (x⃗ ) = MW (x⃗ ) = V (x⃗ ) + σ|u(x⃗ )|2.

Hence,

W̃ (x⃗ ) =W (x⃗ )− 1

(2π)n

∫
Q

W (x⃗ )dx⃗ = V (x⃗ ) + σ|u(x⃗ )|2 − σ∥u∥2L2(Q).

Substituting the last expression into (96), we obtain that u(x⃗ ) satisfies (92) with

λ
(
t⃗
)
= λ

W̃

(
t⃗
)
+ σ∥u∥2L2(Q)

= λ
W̃

(
t⃗
)
+ σ|A|2

∑
q∈Zn

∣∣ (E
W̃

)
qj

∣∣2
= λ

W̃

(
t⃗
)
+ σ|A|2

(
E

W̃

)
jj
.

(97)

Note that (G1)jj = 0 and, therefore,
(
E

W̃

)
jj

= 1 + O(k−2γ2). Further, by the
definition of u(x⃗ ), we have

u(x⃗ ) := Aei⟨p⃗j(t⃗ ),x⃗⟩
∑
q∈Zn

(
E

W̃

)
q+j,j

ei⟨pq(0),x⃗⟩. (98)

Using formulas (97) and (98) and estimates (89) and (90), we obtain (93) and
(95), respectively. �

Lemma 3.12. For any sufficiently large λ, every A ∈ C : |σ||A|2 < kγ0−δ, λ = k2l

and for every ν⃗ ∈ B(λ), there is a unique κ = κ(λ,A, ν⃗) in the interval

I :=
[
k − k−n+1−2δ, k + k−n+1+2δ

]
,

such that
λ(κν⃗, A) = λ. (99)

Furthermore,

|κ(λ,A, ν⃗)− k̃| ≤ C(||V ||∗)
(
k2l−n−δ + |σ||A|2

)
k−2l+1−2γ2 ,

k̃ = (λ− σ|A|2)1/2l.
(100)

Proof. Taking into account (34) and using formulas (87), (91) and Implicit Func-
tion Theorem, we prove the lemma. The proof is completely analogous to that for
the linear case. �
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Theorem 3.13. 1. For any sufficiently large λ and every A ∈ C : |σ||A|2 <
kγ0−δ, the set D(λ,A), defined by (6) is a distorted sphere with holes; it can
be described by the formula

D(λ,A) =
{
k⃗ : k⃗ = κ(λ,A, ν⃗)ν⃗, ν⃗ ∈ B(λ)

}
, (101)

where κ(λ,A, ν⃗ ) = k̃ + h(λ,A, ν⃗ ) and h(λ,A, ν⃗ ) obeys the inequalities
|h| < C(||V ||∗)

(
k2l−n−δ + |σ||A|2

)
k−2l+1−2γ2 < C(||V ||∗)k−γ1 , (102)

with γ1 = n− 1 + δ + 2γ2 > n− 1,∣∣∇ν⃗h
∣∣ < C(||V ||∗)k−γ1+n−1+2δ = C(||V ||∗)k−2γ2+δ. (103)

2. The measure of B(λ) ⊂ Sn−1 satisfies the estimate
L (B) = ωn−1

(
1 +O

(
k−δ

))
. (104)

3. The surface D(λ,A) has the measure that is asymptotically close to that of
the whole sphere of the radius k in the sense that∣∣D(λ,A)

∣∣ =
λ→∞

ωn−1k
n−1
(
1 +O

(
k−δ

))
. (105)

Proof. The proof is based on Implicit Function Theorem. It is completely analo-
gous to Lemma 2.11 in [1]. �
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The Integral Transform of N.I. Akhiezer

Victor Katsnelson

This paper is dedicated to Boris Pavlov, a great man and outstanding mathematician.

Abstract. We study the integral transform which appeared in a different
form in Akhiezer’s textbook “Lectures on Integral Transforms”.
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1. The Akhiezer Integral Transforms: a formal definition
In the present paper we consider the one-parametric family of pairs Φω,Ψω of
linear integral operators. The parameter ω which enumerates the family can be an
arbitrary positive number and is fixed in the course of our consideration. Formally
the operators Φω,Ψω are defined as convolution operators according the formulas

(Φωx)(t) =

∫
R

Φω(t− τ)x(τ)dτ, t ∈ R, (1.1a)

(Ψωx)(t) =

∫
R

Ψω(t− τ)x(τ)dτ, t ∈ R. (1.1b)

In (1.1), x(τ) is 2× 1 vector-column,

x(τ) =

[
x1(τ)
x2(τ)

]
, (1.2)
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which entries x1(τ), x2(τ) are measurable functions, and Φω, Ψω are 2×2 matrices,

Φω(t) =

[
Cω(t) Sω(t)

Sω(t) Cω(t)

]
, (1.3a)

Ψω(t) =

[
Cω(t) −Sω(t)

−Sω(t) Cω(t)

]
, (1.3b)

where
Cω(t) =

ω

π
· 1

cosh ωt
, Sω(t) =

ω

π
· 1

sinh ωt
· (1.4)

Here and in what follows, sinh, cosh, tanh, sech are hyperbolic functions.
For z ∈ C,

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
, tanh z =

ez − e−z

ez + e−z
, sech z =

2

ez + e−z
·

The operators Φω, Ψω are naturally decomposed into blocks:

Φω =

[
Cω Sω

Sω Cω

]
, Ψω =

[
Cω −Sω

−Sω Cω

]
, (1.5)

where Cω and Sω are convolution operators:

(Cωx)(t) =

∫
R

Cω(t− τ)x(τ)dτ, (1.6a)

(Sωx)(t) =

∫
R

Sω(t− τ)x(τ)dτ. (1.6b)

In (1.6), x is a C-valued function.
The function Cω(ξ) is continuous and positive on R. It decays exponentially

as |ξ| → ∞:
ω

π
e−ω|ξ| ≤ C(ξ) <

2ω

π
e−ω|ξ|, ∀ ξ ∈ R. (1.7)

Since
|τ | − |t| ≤ |t− τ | ≤ |τ |+ |t|,

the convolution kernel C(t− τ) admits the estimate
ω

π
e−ω|t|e−ω|τ | ≤ C(t− τ) <

2ω

π
eω|t|e−ω|τ |, ∀ t ∈ R, ∀ τ ∈ R. (1.8)

Definition 1.1. The set L1
ω as the set of all complex valued functions x(t) which

are measurable, defined almost everywhere with respect to the Lebesgue measure
on R and satisfy the condition∫

R

|x(ξ)|e−ω|ξ|dξ < ∞. (1.9)
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The set L1
ωuL1

ω is the set of all 2×1 columns x(t) =
[
x1(t)
x2(t)

]
such that x1(t) ∈ L1

ω

and x2(t) ∈ L1
ω.

Lemma 1.2. Let x(τ) be a C-valued function which belongs to the space L1
ω. Then

the integral in the right hand side of (1.6a) exists1 for every t ∈ R.
We define the function (Cωx)(t) by means of the equality (1.6a).

Remark 1.3. For x(τ) ∈ L1
ω, the function (Cωx)(t) is a continuous function well

defined on the whole R. Nevertheless the function (Cωx)(t) may not belong to
the space L1

ω. The operator Cω does not map the space L1
ω into itself. (In other

words, the operator Cω considered as an operator in L1
ω is unbounded.)

The situation with the integral in the right hand side of (1.6b) is more com-
plicated. The function Sω(ξ) also decays exponentially as |ξ| → ∞:

|S(ξ)| < 2ω

π(1− e−2ω|ξ|)
e−ω|ξ|, ∀ ξ ∈ R. (1.10)

However the function Sω has the singularity at the point ξ = 0:

Sω(ξ) =
1

πξ
+ r(ξ), (1.11)

where r(ξ) is a function which is continuous and bounded for ξ ∈ R. Thus the
convolution kernel Sω(t−τ) has a non-integrable singularity on the diagonal t = τ :∫

(t−ε,t+ε)

|Sω(t− τ)|dτ = ∞, ∀ t ∈ R, ∀ ε > 0.

Therefore the integral in the right hand side of (1.6b) may not exist as a Lebesgue
integral. Given a function x(τ), the equality∫

R

|Sω(t− τ)x(τ)|dτ = ∞ (1.12)

holds at every point t ∈ R which is a Lebesgue point of the function x and x(t) ̸= 0.
Nevertheless, under the condition (1.9) we can attach a meaning to the integral∫
R
Sω(t− τ)x(τ)dτ for almost every t ∈ R.

Lemma 1.4. Let x(τ) be a C-valued function which belongs to the space L1
ω. Then

the principal value integral

p.v.

∫
R

Sω(t− τ)x(τ)dτ
def
= lim

ε→+0

∫
R\(t−ε,t+ε)

Sω(t− τ)x(τ)dτ (1.13)

exists for almost every t ∈ R.
We define the function (Sωx)(t) by means of the equality (1.6b), where the

integral in the right hand side of (1.6b) is interpreted as a principal value integral.

1That is, the value of this integral is a finite complex number for every t ∈ R.
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Under the condition (1.9), the integral
∫

R\(t−ε,t+ε)

Sω(t− τ)x(τ)dτ exists as a

Lebesgue integral for every ε > 0:∫
R\(t−ε,t+ε)

|Sω(t− τ)x(τ)|dτ < ∞, ∀ t ∈ R, ∀ ε > 0.

This follows from the estimate (1.10). The assertion that the limit in (1.13) exists
for almost every t ∈ R will be proved in Sect. 4 using the Hilbert transform theory.

Remark 1.5. Under the assumption (1.9), the function

y(t) = p.v.
∫
R

Sω(t− τ)x(τ)dτ,

which is defined for almost every t, is not necessary locally summable. It may
happen that

∫
[a,b]

|y(t)|dt = ∞ for every finite interval [a, b], −∞ < a < b < ∞.

Let us define the transforms Φω and Ψω formally.

Definition 1.6. For x(τ) =

[
x1(τ)
x2(τ)

]
∈ L1

ω u L1
ω, we put

(Φωx)(t) = y(t), (Ψωx)(t) = z(t), (1.14)

where y(t) and z(t) are 2× 1 columns:

y(t) =

[
y1(t)
y2(t)

]
, z(t) =

[
z1(t)
z2(t)

]
, (1.15)

with the entries

y1(t) = (Cωx1)(t) + (Sωx2)(t), z1(t) = (Cωx1)(t)− (Sωx2)(t), (1.16a)
y2(t) = (Sωx1)(t) + (Cωx2)(t), z2(t) = −(Sωx1)(t) + (Cωx2)(t). (1.16b)

The operators Cω and Sω are the same that appeared in Lemmas 1.2 and 1.4,
respectively.

According to Lemmas 1.2 and 1.4, the values y(t) and z(t) are well defined
for almost every t ∈ R.

The integral transforms (1.1)–(1.3) are said to be the Akhiezer integral trans-
forms.

In another form, these transforms appear in [1, Chap. 15]. (See Problems 3
and 4 in Chap. 15.) The matrix nature of the Akhiezer transforms was camouflaged
there.

In what follows, we consider the Akhiezer transform in various functional
spaces. We show that the operators Φω and Ψω are mutually inverse in spaces of
functions growing slower than eω|t|.
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2. The operators Cω and Sω in L2

The Fourier transform machinery is an adequate tool for study convolution oper-
ators.

1. Studying the operators Cω and Sω by means of the Fourier transform tech-
nique, we deal with the spaces L1 and L2. Both these spaces consist of mea-
surable functions defined almost everywhere on the real axis R with respect
to the Lebesgue measure. The spaces are equipped by the standard linear
operations and the standard norms. If u ∈ L1, then

∥u∥L1 =

∫
R

|u(t)|dt. (2.1)

The space L1 consists of all u such that ∥u∥L1 < ∞. If u ∈ L2, then

∥u∥L2 =
{∫

R

|u(ξ)|2dξ
}1/2

. (2.2)

The space L2 consists of all u such that ∥u∥L2 < ∞. This space is equipped
by inner product ⟨ · , · ⟩L2 . If u′ ∈ L2, u′′ ∈ L2, then

⟨u′, u′′⟩L2 =

∫
R

u′(t)u′′(t)dt. (2.3)

2. The Fourier–Plancherel operator F:
Fu = û (2.4)

where
û(λ) =

∫
R

u(t)eitλdt, (2.5)

maps the space L2 onto itself isometrically:
∥û∥2L2 = 2π ∥u∥2L2 , ∀u ∈ L2. (2.6)

The inverse operator F−1 is of the form
F−1v = v̌, (2.7)

where
v̌(t) =

1

2π

∫
R

v(λ)e−itλdλ. (2.8)

Lemma 2.1. Let f ∈ L2 and k ∈ L1. Then
1. The integral

g(t) =

∫
R

k(t− τ)f(τ)dτ (2.9)

exists as a Lebesgue integral (i.e.,
∫
R
|k(t − τ)g(τ)|dτ < ∞) for almost every

t ∈ R.
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2. The function g belongs to L2, and the inequality
∥g∥L2 ≤ ∥k∥L1∥f∥L2 (2.10)

holds.
3. The Fourier–Plancherel transforms f̂ and ĝ are related by the equality

ĝ(λ) = k̂(λ) · f̂(λ), for a.e. λ ∈ R, (2.11)
where

k̂(λ) =

∫
R

k(t)eitλdt, ∀λ ∈ R. (2.12)

This lemma can be found in [2, Theorem 65]. See also [3, Theorem 3.9.4].
3. Let us calculate the Fourier transforms of the functions Cω and Sω. The

function Cω belongs to L1. So its Fourier transform

Ĉω(λ) =

∫
R

Cω(t)e
itλdt (2.13)

is well defined for every λ ∈ R.

Lemma 2.2. The Fourier transforms Ĉω(λ) of the function Cω(t) is:

Ĉω(λ) = sech
πλ

2ω
, ∀λ ∈ R. (2.14)

The formula (2.14) can be found in [2], where it appears as (7.1.6).
4. The function Sω(t) does not belong to L1. This function has non-integrable

singularity at the point t = 0. Therefore the integral
∫
R
Sω(t)e

2πitλdt does not

exist as a Lebesgue integral. However,
∫

R\(−ε,ε)

|Sω(t)|dt < ∞, ∀ ε > 0. So the

integral
Ŝω,ε(λ) =

∫
R\(−ε,ε)

Sω(t)e
itλdt (2.15)

exists as a Lebesgue integral for every ε > 0. We define the Fourier transform
Ŝω(λ) as a principle value integral:

Ŝω(λ) = lim
ε→+0

∫
R\(−ϵ,ϵ)

Sω(t)e
itλdt. (2.16)

Lemma 2.3. The limit in (2.16) exists for every λ ∈ R. The Fourier transforms
Ŝω(λ) of the function Sω(t) is:

Ŝω(λ) = i · tanh πλ

2ω
, ∀λ ∈ R. (2.17)

The difference
ϱω(λ, ε) = Ŝω(λ)− Ŝω,ε(λ), ∀λ ∈ R, ε > 0. (2.18)
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satisfies the conditions

lim
ε→+0

ϱω(λ, ε) = 0, ∀λ ∈ R, (2.19)

and

sup
λ∈R,

0<ε≤ π
4ω

∣∣ϱω(λ, ε)
∣∣ < ∞. (2.20)

The formula (2.17) can be found in [2], where it appears as (7.2.3).

5. In Sect. 1 we already have defined the functions Cωx and Sωx for x from
the space L1

ω. The space L2 is contained in L1
ω. If x ∈ L2, then∫

R

|x(t)|e−ω|t|dt ≤
{∫

R

|x(t)|2dt
}1/2{∫

R

e−2ω|t|dt
}1/2

< ∞. (2.21)

According to Lemmas 1.2 and 1.4, if f ∈ L1
ω, then the function (Cωf)(t) is

defined for every t ∈ R and the function (Sωf)(t) is defined for almost every
t ∈ R. However, for f ∈ L2(R), we can obtain much more accurate results.

Lemma 2.4. Let f ∈ L2 and g = Cωf , i.e.

g(t) =

∫
R

Cω(t− τ)f(τ)dτ. (2.22)

Then g ∈ L2, and the Fourier–Plancherel transforms f̂ , ĝ of functions f and g are
related by the equality

ĝ(λ) = Ĉω(λ) · f̂(λ), a.e. on R, (2.23)

where Ĉω(λ) is determined by the equality (2.14).

Proof. Lemma 2.4 is a direct consequence of Lemma 2.1. �

Lemma 2.5. Let f ∈ L2 and g = Sωf , i.e.,

g(t) = p.v.

∫
R

Sω(t− τ)f(τ)dτ. (2.24)

Then g ∈ L2, and the Fourier–Plancherel transforms f̂ , ĝ of functions f and g are
related by the equality

ĝ(λ) = Ŝω(λ) · f̂(λ), a.e. on R, (2.25)

where Ŝω(λ) is determined by the equality (2.17).
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Proof. Since Sω ̸∈ L1, Lemma 2.5 does not follow from Lemma 2.1 directly. Let

Sω,ε(t) =

{
Sω(t), if t ∈ R \ (−ε, ε),

0 , if t ∈ (−ε, ε).
(2.26)

The function Sω,ε belongs to L1 for every ε > 0. Let

gε(t) =

∫
R

Sω,ε(t− τ)f(τ)dτ. (2.27)

Applying Lemma 2.1 to k = Sω,ε, we conclude that gε ∈ L2 for every ε > 0 and
that the Fourier–Plancherel transforms ĝε, f̂ of the functions gε, f are related by
the equality

ĝε(λ) = Ŝω,ε(λ) · f̂(λ), (2.28)

where Ŝω,ε(λ) is defined by (2.15). According to Lemma 2.3,

ĝε(λ) = Ŝω(λ) · f̂(λ)− hε(λ), (2.29)

where
hε(λ) = ϱω(λ, ε)f̂(λ), (2.30)

and the family {ϱω(λ, ε)}0<ε<∞ satisfies the conditions (2.19) and (2.20). From
(2.19), (2.20), (2.30) and the Lebesgue Dominated Convergence Theorem, it follows
that

lim
ε→+0

∫
R

|hε(λ)|2dλ = 0.

In other words,
∥ĝε(λ)− ĝ∥L2 = 0, (2.31)

where
ĝ

def
= Ŝω(λ) · f̂(λ). (2.32)

From (2.31) it follows that ∥gε − ǧ∥L2 → 0 as ε → +0, i.e.,

∥Sω,εf − ǧ∥L2 → 0 as ε → +0, (2.33)

where ǧ = F−1ĝ ∈ L2. From the other side, (Sω,εf)(t) → g(t) for a.e. t ∈ R by
Lemma 1.4. Hence g = ǧ, and ĝ = Ŝω f̂ . �

6. The equality ∣∣Ĉω(λ)
∣∣2 + ∣∣Ŝω(λ)

∣∣2 = 1, ∀λ ∈ R, (2.34)
plays a crucial role in this paper. This equation is a direct consequence of the
explicit expressions (2.14) and (2.17) for Ĉω and Ŝω and the identity

(cosh ζ)2 − (sinh ζ)2 = 1, ∀ζ ∈ C. (2.35)
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Lemma 2.6. The operators Cω and Sω are contractive in the space L2(R). More-
over, the equality

∥Cωf∥2L2 + ∥Sωf∥2L2 = ∥f∥2L2 , ∀ f ∈ L2, (2.36)

holds.

Proof. Let gc = Cωf , gs = Sωf and let f̂ , ĝc, ĝs be the Fourier–Plancherel trans-
forms of the functions f, gc, gs. According to Lemmas 2.4 and 2.5, the equalities

ĝc(λ) = Ĉω(λ)f̂(λ), ĝs(λ) = Ŝω(λ)f̂(λ), for a.e. λ ∈ R

hold. From (2.34) it follows that

|ĝc(λ)|2 + |ĝs(λ)|2 = |f̂(λ)|2, for a.e. λ ∈ R.

Integrating with respect to λ, we obtain the equality ∥ĝc∥2L2 + ∥ĝs∥2L2 = ∥f̂∥2L2 . In
view of (2.6), the last equality is equivalent to the equality (2.36). �

3. The Akhiezer operators Φω and Ψω in L2 ⊕ L2

Definition 3.1. The space L2 ⊕ L2 is the set of all 2 × 1 columns x =

[
x1

x2

]
such that x1(t) ∈ L2 and x2(t) ∈ L2. The set L2 ⊕ L2 is equipped by the natural

linear operations and by the inner product ⟨ , ⟩L2⊕L2 . If x′(t) =

[
x′
1(t)

x′
2(t)

]
and

x′′(t) =

[
x′′
1(t)

x′′
2(t)

]
belong to L2 ⊕ L2, then

⟨x′,x′′⟩L2⊕L2
def
= ⟨x′

1, x
′′
1⟩L2 + ⟨x′

2, x
′′
2⟩L2 . (3.1)

The inner product (3.1) generates the norm

∥x∥L2⊕L2 =
√

∥x1∥2L2 + ∥x2∥2L2 for x =

[
x1

x2

]
∈ L2 ⊕ L2. (3.2)

Since2 L2 ⊂ L1
ω, also L2 ⊕ L2 ⊂ L1

ω u L1
ω. Thus if x ∈ L2 ⊕ L2, then the values

y(t) = (Φωx)(t) and z(t) = (Ψωx)(t) are defined by (1.16) for almost every t ∈ R.
Using Lemmas 2.4 and 2.5, we conclude from (1.16) that the operators Φω and
Ψω are bounded operators in the space L2⊕L2. In particular, the values y(t) and
z(t) belong to L2 ⊕ L2.

Theorem 3.2. Each of the operators Φω and Ψω is an isometric operator in the
space L2 ⊕ L2:

∥Φωx∥L2⊕L2 = ∥x∥L2⊕L2 , ∥Ψωx∥L2⊕L2 = ∥x∥L2⊕L2 , ∀x ∈ L2 ⊕ L2. (3.3)

2See (2.21).
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Theorem 3.3. The operators Φω and Ψω are mutually inverse in the space
L2 ⊕ L2:

ΨωΦωx = x, ∀x ∈ L2 ⊕ L2, (3.4)
ΦωΨωx = x, ∀x ∈ L2 ⊕ L2. (3.5)

Proofs of Theorem 3.2. Let us associate the 2 × 2 matrix functions Φ̂ω(λ) and
Ψ̂ω(λ) with the operators Φω and Ψω:

Φ̂ω(λ) =

[
Ĉω(λ) Ŝω(λ)

Ŝω(λ) Ĉω(λ)

]
, λ ∈ R, (3.6a)

Ψ̂ω(λ) =

 Ĉω(λ) −Ŝω(λ)

−Ŝω(λ) Ĉω(λ)

 , λ ∈ R, (3.6b)

where Ĉω(λ) and Ŝω(λ) are the same that in (2.14) and (2.17). Let

x =

[
x1

x2

]
∈ L2 ⊕ L2, y =

[
y1
y2

]
= Φωx,

and let x̂ =

[
x̂1

x̂2

]
, ŷ =

[
ŷ1
ŷ2

]
, where x̂1, x̂2, ŷ1, ŷ2 are the Fourier–Plancherel trans-

forms of the functions x1, x2, y1, y2, respectively. According to the equality (1.16)
and to Lemmas 2.4 and 2.5, the equality

ŷ(λ) = Φ̂ω(λ)x̂(λ) (3.7)
holds for almost every λ ∈ R.

From the equality (2.34) it follows that the matrix Φ̂ω(λ) is unitary for each
λ ∈ R: (

Φ̂ω(λ)
)∗
Φ̂ω(λ) = I, ∀λ ∈ R, (3.8)

where I is 2× 2 identity matrix. From (3.7) and (3.8) it follows that(
ŷ(λ)

)∗
ŷ(λ) =

(
x̂(λ)

)∗
x̂(λ), for a.e. λ ∈ R,

i.e.,
|ŷ1(λ)|2 + |ŷ2(λ)|2 = |x̂1(λ)|2 + |x̂2(λ)|2, for a.e. λ ∈ R.

Integrating with respect to λ over R and using the Parseval identity (2.6), we
conclude that

∥y1∥2L2 + ∥y2∥2L2 = ∥x1∥2L2 + ∥x2∥2L2 ,

that is, ∥Φωx∥L2⊕L2 = ∥x∥L2⊕L2 . The equality ∥Ψωx∥L2⊕L2 = ∥x∥L2⊕L2 can be
obtained analogously. �

Proof of Theorem 3.3. Let

x =

[
x1

x2

]
∈ L2 ⊕ L2, y =

[
y1
y2

]
= Φωx, z =

[
z1
z2

]
= Ψωy.
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Let x̂ =

[
x̂1

x̂2

]
, ŷ =

[
ŷ1
ŷ2

]
, ẑ =

[
ẑ1
ẑ2

]
, where x̂1, x̂2, ŷ1, ŷ2, ẑ1, ẑ2 are the Fourier–

Plancherel transforms of the functions x1, x2, y1, y2, z1, z2, respectively. We already
proved the equality (3.7). In the same way the equality

ẑ(λ) = Ψ̂ω(λ)ŷ(λ), for a.e. λ ∈ R, (3.9)
can be established. From (3.7) and (3.9) it follows that

ẑ(λ) = Ψ̂ω(λ)Φ̂ω(λ)x̂(λ), for a.e. λ ∈ R. (3.10)
From the equality (2.34) it follows that the matrices Φω(λ) and Ψω(λ) are mutually
inverse:

Φω(λ)Ψω(λ) = I, ∀λ ∈ R, (3.11)
where I is 2× 2 identity matrix. From (3.10) and (3.11) we conclude that

ẑ(λ) = x̂(λ), for a.e. λ ∈ R.
Finally, z = x.

Equality (3.4) is proved. Equality (3.5) can be proved in the same way. �

4. The Hilbert transform
Definition 4.1. Let u(τ) be a complex-valued function which is defined for almost
every τ ∈ R. We assume that the function u satisfies the condition∫

R

|u(τ)|
1 + |τ |

dτ < ∞. (4.1)

Then the integral
Hεu(t) =

1

π

∫
R\(t−ε,t+ε)

u(τ)

t− τ
dτ (4.2)

exists for every t ∈ R and ε > 0. For each ε > 0, the function Hεu(t) is a continuous
function of t for t ∈ R. The function Hu(t) is defined for those t ∈ R for which the
value Hεu(t) tends to a finite limit as ε → +0:

Hu(t)
def
= lim

ε→+0

1

π

∫
R\(t−ε,t+ε)

u(τ)

t− τ
dτ. (4.3)

The function Hu is said to be the Hilbert transform of the function u.

Theorem 4.2 (A. I. Plessner). Let u(τ) be a function which is defined for
almost every τ ∈ R. If the function u(τ) satisfies the condition (4.1), then its
Hilbert transform Hu(t) exists for almost every t ∈ R.

Proof. Proof of this Plessner’s theorem can be found in [2, Theorem 100]. �

If u is a function from L2, then u satisfies the condition (4.1). By Plessner’s
theorem, the Hilbert transform v(t) = (Hu)(t) exists for almost every t ∈ R.
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Theorem 4.3 (E. C. Titchmarch). Let u be a function from L2. Then:
1. Its Hilbert transform v = Hu also belongs to L2, and the equality

∥v∥L2 = ∥u∥L2 (4.4)
holds.

2. The equality
(Hv)(t) = −u(t) (4.5)

holds for almost every t ∈ R.

This theorem means that the Hilbert transform, considered as an operator
in L2, is an unitary operator which satisfies the equality

H2 = −I, (4.6)
where I is the identity operator in L2.

Proof of Lemma 1.4. We use the decomposition (1.11) of the kernel S(t− τ) into
the sum of the Hilbert kernel 1

π(t− τ)
and the “regular” kernel r(t − τ). Let

(a, b) ⊂ R be an arbitrary finite interval of the real axis. We split the function f(τ)
into the sum of two summands.

f(τ) = g(τ) + h(τ), (4.7)

where

g(τ) =

{
f(τ), if τ ∈ (a, b),

0 , if τ ∈ R \ (a, b).
(4.8)

So
h(τ) = 0, if τ ∈ (a, b). (4.9)

According to (1.11) and (4.7), the equality∫
R\(t−ε,t+ε)

Sω(t− τ)f(τ)dτ = I1,ε(t) + I2,ε(t) + I3,ε(t) (4.10)

holds, where

I1,ε(t) =

∫
R\(t−ε,t+ε)

1

π(t− τ)
g(τ)dτ, (4.11)

I2,ε(t) =

∫
R\(t−ε,t+ε)

r(t− τ)g(τ)dτ, (4.12)

I3,ε(t) =

∫
R\(t−ε,t+ε)

Sω(t− τ)h(τ)dτ. (4.13)
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Function g satisfies the condition (4.1). According Plessner’s Theorem, lim
ε→+0

I1,ε(t)

exists for almost every t ∈ R. Since the function g is finitely supported and the
kernel r(t− τ) is continuous, lim

ε→+0
I2,ε(t) exists for every t ∈ R. Since the function

h(τ) vanishes for τ ∈ (a, b) and
∫
R

|h(τ)|
coshωτ dτ < ∞, lim

ε→+0
I3,ε(t) exists for every

t ∈ (a, b). In view of (4.10), the limit in (1.13) exists for almost every t ∈ (a, b).
Since (a, b) is an arbitrary finite interval, the limit in (1.13) exists for almost every
t ∈ R. �

5. The operators Cω and Sω in L2
σ

In this section we consider the operators Cω and Sω acting in spaces of functions
growing slower than eω|t| as t → ±∞.

Definition 5.1. For σ ∈ R, the space L2
σ is the space of all functions x which are

measurable, defined almost everywhere with respect to the Lebesgue measure and
satisfy the condition ∥x∥L2

σ
< ∞, where

∥x∥L2
σ
=

{∫
R

|x(τ)|2e−2σ|τ |dτ

}1/2

. (5.1)

The space L2
σ is equipped by the standard linear operations and by the norm (5.1).

It is clear that the space L2 which appeared in Sect. 2 is the space L2
0
, that

is, L2
σ with σ = 0.
In Sect. 1 we already have defined the functions Cωx and Sωx for x from

the space L1
ω. For σ < ω, the space L2

σ is contained in L1
ω. If x ∈ L2

σ, then∫
R

|x(t)|e−ω|t|dt ≤
{∫

R

|x(t)|2e−2σ|t|dt
}1/2{∫

R

e−2(ω−σ)|t|dt
}1/2

< ∞. (5.2)

According to Lemmas 1.2 and 1.4, if f ∈ L1
ω, then the function (Cωf)(t) is defined

for every t ∈ R and the function (Sωf)(t) is defined for almost every t ∈ R.
In Sect. 2 we obtained that if f ∈ L2, than Cωf ∈ L2 and Sωf ∈ L2.

Moreover, we proved that the operators Cω and Sω are contractive in L2; see
Corollary 2.6. In this section we show that if 0 < σ < ω and f ∈ L2

σ, than
Cωf ∈ L2

σ and Sωf ∈ L2
σ. Moreover, we show that the operators Cω and Sω are

bounded in the space L2
σ.

Lemma 5.2. Assume that 0 ≤ σ < ω. Let f ∈ L2
σ, and g is related to f by means

of the formula (2.22), i.e., g = Cωf . Then g ∈ L2
σ, and

∥g∥L2
σ
≤ Mc

1− σ/ω
∥f∥L2

σ
, (5.3)

where Mc < ∞ is a value which does not depend on ω and σ.
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Proof. Let
u(τ) = f(τ)e−σ|τ |, v(t) = g(t)e−σ|t|. (5.4)

Since f ∈ L2
σ, u ∈ L2. Equality (2.22) can be rewritten as

v(t) =

∫
R

e−σ|t|+σ|τ |Cω(t− τ)u(τ)dτ. (5.5)

Let us estimate the kernel
Kc(t, τ) = e−σ|t|+σ|τ | Cω(t− τ). (5.6)

For σ ≥ 0 the inequality∣∣− σ|t|+ σ|τ |
∣∣ ≤ σ|t− τ

∣∣, ∀ t ∈ R, τ ∈ R, (5.7)
holds. Hence

e−σ|t|+σ|τ | ≤ eσ|t−τ |, ∀ t ∈ R, τ ∈ R. (5.8)
From this inequality and from the expression (1.4) for Cω we conclude that

|Kc(t, τ) ≤ kcσ,ω(t− τ), ∀ t ∈ R, τ ∈ R, (5.9)
where

kcσ,ω(ξ) =
ω

π

eσ|ξ|

coshωξ
, ξ ∈ R. (5.10)

For 0 ≤ σ < ω, the function kcσ,ω belongs to L1 and

∥kcσ,ω∥L1
<

4

π

∞∫
0

cosh aξ

cosh ξ
dξ , (5.11)

where
a =

σ

ω
· (5.12)

The integral in (5.11) can be calculated explicitly:
∞∫
0

cosh aξ

cosh ξ
dξ =

π

2 cos π
2 a

· (5.13)

Thus
∥kcσ,ω∥L1 <

2

sin π
2 (1− a)

· (5.14)

Since sin π
2 η ≥ η for 0 ≤ η ≤ 1, inequality (5.14) implies the inequality

∥kcσ,ω∥L1 <
2

1− σ/ω
. (5.15)

From (5.5) and (5.9) we obtain the inequality |v(t)| ≤ w(t), ∀ t ∈ R, and
∥v∥L2 ≤ ∥w∥L2 , (5.16)

where
w(t) =

∫
R

kcσ,ω(t− τ)|u(τ)|dτ. (5.17)
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According to Lemma 2.1, w ∈ L2, and the inequality
∥w∥L2 ≤ ∥kcσ,ω∥L1 · ∥u∥L2 (5.18)

holds. The inequality
∥v∥L2 ≤ 2

1− σ/ω
∥u∥L2

is a consequence of the equalities (5.16), (5.18), and (5.15). According to (5.4),
∥u∥L2 = ∥f∥L2

σ
, ∥v∥L2 = ∥g∥L2

σ
. So the inequality (5.3) holds with Mc = 2. �

Lemma 5.3. Assume that 0 ≤ σ < ω. Let f ∈ L2
σ, and g is related to f by means

of the formula (2.24), i.e., g = Sωf . Then g ∈ L2
σ, and

∥g∥L2
σ
≤ Ms

(1− σ/ω)2
∥f∥L2

σ
, (5.19)

where Ms < ∞ is a value which does not depend on ω and σ.

Proof. Let u(τ), v(t) be defined according to (5.4). Since f ∈ L2
σ, u ∈ L2. The

equality (2.24) can be rewritten as

v(t) = p.v.

∫
R

e−σ|t|+σ|τ |Sω(t− τ)u(τ)dτ. (5.20)

We present v(t) as
v(t) = v1(t) + v2(t), (5.21)

where
v1(t) = p.v.

∫
R

Sω(t− τ)u(τ)dτ, (5.22)

v2(t) =

∫
R

(e−σ|t|+σ|τ | − 1)Sω(t− τ)u(τ)dτ, (5.23)

Let us estimate the kernel
Ks(t, τ) = (e−σ|t|+σ|τ | − 1)Sω(t− τ). (5.24)

From the inequalities |eξ − 1| ≤ |ξ|e|ξ|, from (5.7) and from the expression (1.4)
for Sω we conclude that

|Ks(t, τ)| ≤ ksσ,ωs(t− τ), (5.25)
where

ksσ,ω(ξ) =
ω

π
· σ|ξ| e

σ|ξ|

sinhω|ξ|
· (5.26)

The function ksσ,ω belongs to L1, and

∥ksσ,ω∥L1
<

4a

π

∞∫
0

ξ cosh aξ

sinh ξ
, (5.27)
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where a is the same that in (5.12). The integral in (5.27) can be calculated explic-
itly:

∞∫
0

ξ cosh aξ

sinh ξ
dξ =

π2

4 sin2 π
2 (1− a)

· (5.28)

Thus the inequality
∥ksσ,ω∥L1 <

π

(1− σ/ω)2
(5.29)

holds. From (5.23), (5.24), and (5.25) it follows that
∥v2∥L2 ≤ ∥w∥L2 , (5.30)

where
w(t) =

∫
R

ksσ,ω(t− τ)|u(τ)|dτ. (5.31)

According to Lemma 2.1, w ∈ L2, and the inequality
∥w∥L2 ≤ ∥ksσ,ω∥L1 · ∥u∥L2 (5.32)

holds. From (5.29), (5.32), and (5.30) we conclude that

∥v2∥L2 ≤ π

(1− σ/ω)2
∥u∥L2 . (5.33)

According to Lemma 2.6, the inequality
∥v1∥L2 ≤ ∥u∥L2 (5.34)

holds. From (5.21), (5.34), and (5.33) we derive the inequality

∥v∥L2 ≤ Ms

(1− σ/ω)2
∥u∥L2 (5.35)

with Ms = π + 1. �

6. The Akhiezer operators Φω and Ψω in L2
σ ⊕ L2

σ

Definition 6.1. The space L2
σ ⊕L2

σ is the set of all 2× 1 columns x =

[
x1

x2

]
such

that x1(t) ∈ L2
σ and x2(t) ∈ L2

σ, where L2
σ was defined in Definition 5.1. The set

L2
σ ⊕ L2

σ is equipped by the natural linear operations and by the norm

∥x∥L2
σ⊕L2

σ
=

√
∥x1∥2L2

σ
+ ∥x2∥2L2

σ
. (6.1)

Since3 L2
σ ⊂ L1

ω, also L2
σ ⊕ L2

σ ⊂ L1
ω u L1

ω. Thus if x ∈ L2
σ ⊕ L2

σ, then the
values y(t) = (Φωx)(t) and z(t) = (Ψωx)(t) are defined by (1.16) for almost every
t ∈ R. From Lemmas 5.2 and 5.3 we derive

3See (5.2).
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Lemma 6.2. We assume that 0 ≤ σ < ω. Let x ∈ L2
σ ⊕ L2

σ and let y = Φωx,
z = Ψωx be defined by (1.16). Then y ∈ L2

σ ⊕L2
σ, z ∈ L2

σ ⊕L2
σ, and the estimates

hold
∥Φωx∥L2

σ⊕L2
σ
≤ M

1−σ/ω ∥x∥L2
σ⊕L2

σ
, (6.2)

∥Ψωx∥L2
σ⊕L2

σ
≤ M

1−σ/ω ∥x∥L2
σ⊕L2

σ
, (6.3)

where M < ∞ is a value which does not depend on σ, ω, x.

The following theorem is the main result of this paper.

Theorem 6.3. We assume that 0 ≤ σ < ω. Then for every x ∈ L2
σ ⊕ L2

σ the
equalities

ΨωΦωx = x, ΦωΨωx = x (6.4)
hold.

Proof. From Lemma 6.2 it follows that operators ΨωΦω and ΦωΨω are bounded
linear operators in the space L2

σ ⊕ L2
σ. The set L2 ⊕ L2 is a dense subset of the

space L2
σ ⊕ L2

σ. By Theorem 3.3, equalities (6.4) hold for every x ∈ L2 ⊕ L2. By
continuity, equalities (6.4) can be extended from L2 ⊕ L2 to L2

σ ⊕ L2
σ. �
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On Gaussian random matrices
coupled to the discrete Laplacian

Rostyslav Kozhan

Abstract. We study operators obtained by coupling an n×n random matrix
from one of the Gaussian ensembles to the discrete Laplacian. We find the
joint distribution of the eigenvalues and resonances of such operators. This is
one of the possible mathematical models for quantum scattering in a complex
physical system with one semi-infinite lead attached.

1. Introduction

Given a random Hermitian n × n matrix H from one of the classical Gaussian
ensembles, we consider the operator on `2(Z+) obtained from H by coupling it to
the discrete Laplacian as follows:

H̃ =



γH
κ

κ 0 1

1 0
. . .

. . .
. . .


. (1.1)

Here γ is any deterministic constant, and κ is either a random variable (indepen-
dent of H) with a given distribution or deterministic κ = 1.

Such an operator is natural from the point of view of physics: the random
matrix part corresponds to a complex physical system of particles whose interac-
tions are unknown, and the discrete Laplacian part corresponds to a lead attached
via some coupling of strength κ.

We are interested in the spectral properties of the operator H̃, namely in the
locations of its eigenvalues and resonances (see Sect. 2.1 below). In Theorem 3.1,
which is our main result, we compute the joint distribution of eigenvalues and
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resonances of H̃ for the case of random κ. See remarks after the theorem for the
case of deterministic κ = 1.

The proof involves two main steps: first, we apply the Dumitriu–Edelman [4,

24] tridiagonalization procedure to reduce H̃ to a Jacobi operator on `2(Z+); sec-
ond, we employ the (suitably modified) Geronimo–Case equations [9] (see also
Damanik–Simon [3, Appendix A]) to access the Jost function whose zeros deter-
mine the locations of eigenvalues and resonances.

Aside from the physical importance, interest to the resonances comes from
the fact that the locations of eigenvalues and resonances allow to fully recover

the spectral measure of our operator H̃. For the background on spectral theory
of Jacobi operators we refer the reader to the monographs of Simon [22] and
Teschl [23]. The resonance problem for Jacobi operators was the topic of [2, 3,
8, 9, 10, 11, 12, 16, 17, 19, 20], among many others. A closely related scattering
theory for Jacobi operators is discussed in [23].

An operator-based approach to the asymptotics of the Dumitriu–Edelman
Jacobi matrices was studied by Ramı́rez–Rider–Virág [21] and Valkó–Virág [25],
see also subsequent papers by the same authors. There is also a vast literature
on the Jacobi (or discrete Schrödinger) operators with random coefficients, in
particular in connection to the Anderson model, which we will not attempt to
review here.

Random matrix approach to open quantum systems has two other alterna-

tives to H̃: through non-Hermitian perturbations of Hermitian random matrices
and through non-unitary perturbations of unitary random matrices – see [5, 6, 7,
13] and references therein. Theory of orthogonal polynomials is applicable in both
of these scenarios as well; see [14, 18].

The organization of the paper is as follows. In Sects. 2.1–2.3 we provide the
background from the theory of Jacobi operators, including properties of resonances,
the Jost function (perturbation determinant), and the Geronimo–Case equations.
In Sect. 3 we state our main result and provide the proof.

2. Jacobi operators

2.1. Finite range operators and perturbation determinants

By a Jacobi operator we call a tridiagonal operator acting on `2(Z+) of the form

J (a,b) =


b1 a1 0

a1 b2 a2
. . .

0 a2 b3
. . .

. . .
. . .

. . .

 , (2.1)

where a = {aj}∞j=1, b = {bj}∞j=1 have aj > 0 and bj ∈ R.
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The case a = {1}∞j=1, b = {0}∞j=1 corresponds to J0, the discrete Laplacian
on Z+, and will be referred to as the free Jacobi operator.

For s ≥ 0, we denote by T [2s] the set of all Jacobi operators that have aj = 1,

bj = 0 for j > s and as 6= 1. We denote by T [2s+1] the set of all Jacobi operators

that have aj = 1, bj = 0 for j > s+ 1, and as = 1, but bs 6= 0. We denote T [k≥0]

to be the set of all Jacobi operators that are finite rank perturbations of the free
one. It is the disjoint union of all T [k], k ≥ 0.

The spectral measure µ (with respect to the vector e1 = (1, 0, 0, . . .)T ) of
an operator J (with bounded sequences a and b) is defined to be the unique
probability measure on R satisfying

〈e1,J ke1〉 =

∫
R
xk dµ(x), for all k ∈ Z+

(here 〈·, ·〉 denotes the standard inner product in `2(Z+)). If J ∈ T [k≥0] then its
spectral measure is of the form (see [8, 3, 17])

dµ(x) =

√
4− x2
a(x)

1[−2,2](x) dx+ dµp.p. (2.2)

where a(x) is a polynomial and µp.p. contains finitely many pure points in R\[−2, 2]
whose locations form a subset of the set of zeros of a(x).

The m-function of J ,

m(z) =

∫
R

dµ(x)

x− z
,

is meromorphic in C \ [−2, 2] with poles at the pure points of µ (eigenvalues of
J ). By (2.2), m has a meromorphic continuation through [−2, 2] to a second copy
of C \ [−2, 2]. Poles of m on this second sheet are typically referred to as the
resonances of J .

Let D = {z : |z| < 1}. For z ∈ C \ D, we define

M∗(z) = −m(z + z−1).

From the arguments in the previous paragraph, M∗ can be meromorphically con-
tinued from C \ D to C. If J ∈ T [k] then M∗ has precisely k poles in C \ {0}
counted with multiplicity. Note that our M∗(z) function is M(1/z) in the nota-
tion of [3, 22].

For J ∈ T [k] let us define the perturbation determinant

L(z) = det
[
(J − z − z−1))(J0 − z − z−1))−1

]
, z ∈ D.

(up to a normalization constant, L(z) is equal to the Jost function of J ) Then
L(z) is a polynomial of degree k with L(0) = 1 (see, e.g., [15, Sect. 2] and [3,
Appendix A]). It will be convenient to work with the following polynomial instead:

L∗(z) = zkL(1/z).

Then for J ∈ T [k], L∗(z) is a monic polynomial of degree k. It has zeros at the
poles of M∗ in C \ {0} counted with multiplicity.



On Gaussian random matrices coupled to the discrete Laplacian 437

Zeros zj of L∗ in C\D are in one-to-one correspondence with the eigenvalues

zj + z−1j of J , and zeros zj of L∗ in D \ {0} are in one-to-one correspondence

with the resonances zj +z−1j of J (counted with multiplicity). In order to simplify
presentation, we will therefore refer to zeros of L∗ themselves as the eigenvalues,
resp. resonances, of J , with the post-application of the Joukowsky map z 7→ z+z−1

being implicitly understood.

2.2. Geronimo–Case equations

Let J ∈ T [k], µ be its spectral measure, and Pn(z) (n ≥ 0) be the degree n monic
orthogonal polynomial associated with µ. It is the characteristic polynomial of the
top-left n× n corner of J . For each j ≥ 0 we define

K2j(z) = K2j+1(z) = zjPj(z + z−1). (2.3)

Note that K2j = K2j+1 is a monic polynomial of degree 2j.

For each 0 ≤ j ≤ k, let Ĵj be the unique Jacobi operator that maximizes the

number of zero entries in J −Ĵj under the restriction that Ĵj ∈ T [j]. In particular,

Ĵ0 is the free Jacobi operator, and Ĵk = J . Let L∗j (z) be the polynomial L∗(z)

(see the previous subsection) for the Jacobi operator Ĵj :

L∗j (z) := L∗(z; Ĵj).
Recall that each L∗j is monic and of degree j.

Then the system of polynomials {Kj , L
∗
j} satisfies the recurrence relation be-

low, which we call the Geronimo–Case equations. They have been modified com-
pared with [9, 3]: e.g., in the notation of [3], their Cn(z) and Gn(z) are ours K2n(z)
and z2nL∗2n(1/z), respectively. Taking this change into account, the Geronimo–
Case equations [3, (A.19)] take the form(

L∗2k+2(z)
K2k+2(z)

)
=

(
z −(a2k+1 − 1)
z 1

)(
L∗2k+1(z)
K2k+1(z)

)
(2.4)

and (
L∗2k+1(z)
K2k+1(z)

)
=

(
z −bk+1

0 1

)(
L∗2k(z)
K2k(z)

)
(2.5)

with the initial conditions L∗0(z) = K0(z) = 1.
In the next lemma we collect some of the properties of polynomials L∗j ,Kj

that we will need in Sect. 3 below.

Lemma 2.1. For a given m, let

L∗m(z) = zm + um−1z
m−1 + um−2z

m−2 + · · ·+ u1z + u0 =
m∏
j=1

(z − zj).

Then

(i)

(−1)m
m∏
j=1

zj = u0 =

{
1− a2m/2 if m mod 2 = 0,

−b(m+1)/2 if m mod 2 = 1.
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(ii)

−
m∑
j=1

zj = −

⌊
m+1
2

⌋∑
j=1

bj = um−1.

(iii)

m∑
j,k=1
j<k

zjzk =

⌊
m+1
2

⌋∑
j,k=1
j<k

bjbk −

⌊
m
2

⌋∑
j=1

(
a2j − 1

)
= um−2.

(iv)

m∑
j=1

z2j =

⌊
m+1
2

⌋∑
j=1

b2j + 2

⌊
m
2

⌋∑
j=1

(
a2j − 1

)
= u2m−1 − 2um−2.

(v)

m∏
j,k=1
j<k

(1− zj z̄k)
m∏
j=1

1

1− z2j
=

⌊
m
2

⌋∏
j=1

a4jj . (2.6)

Proof. (i) Note that Kj(0) = 1, so this part follows immediately from (2.4)
and (2.5) by plugging in z = 0.

(ii) Since K2k+1 is of degree 2k, (2.4) shows that z2k+1-coefficient of L∗2k+2

is equal to the z2k-coefficient of L∗2k+1. Equation (2.5) shows that z2k-coefficient

of L∗2k+1 is equal to the z2k−1-coefficient of L∗2k minus bk+1. An induction on m
then completes the proof.

Claim (iii) can be shown in the exact same way by considering the terms one
degree lower.

Claim (iv) is immediate from (ii) and (iii) and
∑
z2j = (

∑
zj)

2−2
∑
j<k zjzk.

(v) For a polynomial p with real coefficients of degree j we define the operation
p∗(z) := zjp(1/z). Then (p∗)∗ = p, so we define Lj(z) = (L∗j )

∗. Using K∗j = Kj

and the recurrences (2.4) and (2.5), we deduce

K2k(z) = K2k+1(z) =
L2k(z)− z2L∗2k(z)

1− z2
(2.7)

and

K2k(z) = K2k+1(z) =
L2k+1(z)− zL∗2k+1(z)

1− z2
. (2.8)

Let {z(k)j } be the zeros of L∗k and let {λ(k)j } be the zeros of Kk. Denote the

left-hand side of (2.6) by Rm. Then for m = 2k even, we get

R2k =

2k∏
j=1

L2k

(
z
(2k)
j

)
1−

(
z
(2k)
j

)2 =

2k∏
j=1

K2k

(
z
(2k)
j

)
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by (2.7). This can be further rewritten as

R2k =
2k∏

j,s=1

(
z
(2k)
j − λ(2k)s

)
=

2k∏
j=1

L∗2k
(
λ
(2k)
j

)
=

2k∏
j=1

1

λ
(2k)
j

L∗2k+1

(
λ
(2k)
j

)
,

where we used (2.5). Note that
∏(2k)
j λ

(2k)
j is equal to the last coefficient of K2j

which is 1. So we get

R2k =
2k∏
j=1

L∗2k+1

(
λ
(2k)
j

)
=

2k+1∏
j=1

K2k

(
z
(2k+1)
j

)
=

2k+1∏
j=1

L2k+1

(
z
(2k+1)
j

)
1−

(
z
(2k+1)
j

)2 = R2k+1,

where we used (2.8).
For m = 2k + 1, following analogous steps, we get:

R2k+1 =
2k+1∏
j=1

L2k+1

(
z
(2k+1)
j

)
1−

(
z
(2k+1)
j

)2 =
2k+1∏
j=1

K2k+1

(
z
(2k+1)
j

)
=

2k+1∏
j=1

2k∏
s=1

(
z
(2k+1)
j − λ(2k+1)

s

)
=

2k∏
j=1

L∗2k+1

(
λ
(2k+1)
j

)
=

2k∏
j=1

1

λ
(2k+1)
j

L∗2k+2

(
λ
(2k+1)
j

)
=

2k+2∏
j=1

K2k+1

(
z
(2k+2)
j

)
=

2k+2∏
j=1

1

a2k+1

K2k+2

(
z
(2k+2)
j

)
=

1

a
4(k+1)
k+1

2k+2∏
j=1

L2k+2

(
z
(2k+2)
j

)
1−

(
z
(2k+2)
j

)2
=

1

a
4(k+1)
k+1

R2k+2,

where in the second to last line we used a2k+1K2k+1 = K2k+2 − L∗2k+2 which is a
consequence of (2.4). Combining our recurrences for Rj ’s, we obtain (2.6). �

2.3. Locations of resonances and eigenvalues

It was shown in [3] that the set of resonances and eigenvalues of J ∈ T [k≥0]

uniquely determines J . In fact (see [17, Theorem 5.1]), the following sets S(k)
classify all possible configurations of resonances and eigenvalues of J ∈ T [k],
k ≥ 0.

Definition 2.2. Denote by S(k) the set of all possible {zj}kj=1 in (C \ {0})k that
satisfy the following conditions:

(i) zj’s are real or come in complex-conjugate pairs, counted with multiplicity.
(ii) zj’s that lie in C \ D are real and of multiplicity 1.

(iii) Let 1 < x1 < x2 < · · · be the positive zj’s on C \ D. Then

(a) There is an even number of zj’s (counted with multiplicity) on (x−11 , 1];

(b) There is an odd number of zj’s (counted with multiplicity) on (x−1m+1, x
−1
m )

(m ≥ 1);
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(c) None of zj’s is equal to x−1m (m ≥ 1);

(iv) Let · · · < y2 < y1 < −1 be the negative zj’s on C \ D. Then

(a) There is an even number of zj’s (counted with multiplicity) on [−1, y−11 );

(b) There is an odd number of zj’s (counted with multiplicity) on (y−1m , y−1m+1)
(m ≥ 1);

(c) None of zj’s is equal to y−1m (m ≥ 1).

3. Random matrices coupled to the Laplacian

Let N(0, 1) be the real normal random variable with mean 0 and variance 1. Let
Y be an n× n matrix with independent identically distributed real entries chosen

from N(0, 1). Then we say that the random matrix X = 1
2 (Y + Y ∗)

√
2√
βn

(where

β = 1) belongs to the Gaussian orthogonal ensemble.

Similarly, let Y be an n× n matrix with independent identically distributed
complex entries chosen from N(0, 1) + N(0, 1)i. Then we say that the random

matrix X = 1
2 (Y + Y ∗)

√
2√
βn

(where β = 2) belongs to the Gaussian unitary

ensemble.

Finally, let Y be an n × n matrix with independent identically distributed
quternionic entries chosen from N(0, 1) +N(0, 1)i +N(0, 1)j +N(0, 1)k. Then we

say that the random matrix X = 1
2 (Y + Y R)

√
2√
βn

(where β = 4) belongs to the

Gaussian symplectic ensemble.

We denote these ensembles by GOEn, GUEn, GSEn, respectively.

Note that we chose the extra scaling factor
√
2√
βn

. This is chosen so that

the empirical density of states of each of these ensembles converges to semicircle
distribution 1

2π

√
4− x2 dx on [−2, 2]. With such normalization, the joint eigenvalue

density of GOEn, GUEn, GSEn is proportional to

n∏
j,k=1
j<k

|λj − λk|β
n∏
j=1

e−
βn
4 λ

2
jdλj , (3.1)

(β = 1, 2, 4, respectively).

Now let us state the main result of the paper. Recall that by “eigenvalues”
and “resonances” we call the zeros of the polynomial L∗ in C \ D and D \ {0},
respectively, see the discussion in Sect. 2.1.

Theorem 3.1. Let H̃ be given by (1.1) where H is from GOEn, GUEn or GSEn;
γ 6= 0 is a given constant; and κ is a random variable distributed on (0,∞) ac-
cording to F (κ)dκ, independently of H. Then resonances and eigenvalues {zj}2nj=1
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of H̃ are jointly distributed on the set S(2n) according to

1

d2n,β

2n∏
j,k=1
j<k

|zj − zk|
2n∏

j,k=1
j<k

|1− zj z̄k|
β 2
2

2n∏
j=1

e
− βn

4γ2
z2j
∣∣∣1− |zj |2

1− z2j

∣∣∣ β 2
4

× e
βnκ2

2γ2
F (κ)

κβn−1

∣∣∣ 2n∧
j=1

dzj

∣∣∣,
(3.2)

where κ =
√

1−
∏2n
j=1 zj and

d2n,β = πn/22n/2+1e
βn2

2γ2

(
2γ2

βn

)n
2 +

βn(n−1)
4

n−1∏
j=1

Γ(βj2 ).

Remarks. 1. The wedge notation we use above is defined as follows. Let {zj}mj=1

(in the theorem above, m = 2n) be a random point process that consists of M
complex-conjugate (non-real) points and L real points. M and L are random but
satisfy 0 ≤ M ≤ bm2 c, 0 ≤ L ≤ m, L+ 2M = m. Then for functions f : Cm → C
invariant under permutation of its variables, we define∫

X

f(z1, . . . , zm)
∣∣∣ m∧
j=1

dzj

∣∣∣ :=

bm2 c∑
M=0

2M
1

M !L!2M

×
∫
X∩XL,M

f(x1 + iy1, x1 − iy1, . . . , xM + iyM , xM − iyM , r1, . . . , rL)

× dx1dy1 · · · dxMdyM dr1 · · · drL,

(3.3)

where

XL,M = {(x1 + iy1, x1 − iy1, . . . , xM + iyM , xM − iyM , r1, . . . , rL) ∈ X :

xj + iyj ∈ C \ R for 1 ≤ j ≤M ; rj ∈ R for 1 ≤ j ≤ L} .

Note that 2M here comes from |d(x+ iy)∧d(x− iy)| = 2 dx dy and M !L!2M comes
from counting vectors in XL,M that represent the same configuration {zj}mj=1.
See [1, Sect. 2–3] for a more careful and rigorous discussion of these types of
measures.

2. When κ is deterministic and equal to 1, then there are 2n − 1 reso-
nances/eigenvalues. They belong to S(2n − 1) and following the same arguments
as in the proof below, one can show that their joint distribution is

1

d2n−1,β

2n−1∏
j,k=1
j<k

|zj − zk|
2n−1∏
j,k=1
j<k

|1− zj z̄k|
β 2
2

2n−1∏
j=1

e
− βn

4γ2
z2j
∣∣∣1− |zj |2

1− z2j

∣∣∣ β 2
4
∣∣∣ 2n∧
j=1

dzj

∣∣∣,
(3.4)
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where

d2n−1,β = πn/22n/2e
βn(n−1)

2γ2

(
2γ2

βn

)n
2 +

βn(n−1)
4

n−1∏
j=1

Γ(βj2 ).

3. One can also work out the case when κ is deterministic but not 1. Note
that in that case the eigenvalues/resonances belong to the subset of S(2n) given

by
∏2n
j=1 zj = 1 − κ2 (see Lemma 2.1(i)). See [18] for an analogue of this for

non-Hermitian perturbations of finite matrices.

4. Compare (3.2) and (3.4) with (3.1). Their zeros are precisely the reso-

nances/eigenvalues of H̃ and eigenvalues of H (after the inverse of z + z−1 map
— see (2.3)), respectively. Observe the following heuristics for the intuition. If the
coupling κ is small, then by (2.4), L∗2n is a small perturbation of K2n. Therefore
each eigenvalue of γH on (−2, 2) will produce two complex-conjugate zeros of K2n

on ∂D \ {±1}, and so (see Sect. 2.3) two complex-conjugate zeros of L∗2n (reso-

nances of H̃) in D\R (provided κ is sufficiently small). Similarly, each eigenvalue of
γH on R\ [−2, 2] will produce two real zeros of K2n, one in D∩R and one in R\D,
and so two real zeros of L∗2n, also one in D∩R and one in R\D (i.e., one eigenvalue

and one resonance of H̃). In particular, if all the zeros of γH are concentrated in

(−2, 2), then H̃ will have only resonances without eigenvalues, provided κ is small.

5. When H is from the GUEn ensemble, i.e., when β = 2, then the distribu-
tion (3.2) simplifies to

1

d2n,2

2n∏
j,k=1
j<k

|zj − zk|
2n∏
j=1

e
− n

2γ2
z2j

(
e
nκ2

γ2
F (κ)

κ2n−1

) ∣∣∣ 2n∧
j=1

dzj

∣∣∣.
Similarly for (3.4).

Proof. Every n × n matrix can be tridiagonalized via the repeated application
of the Householder transformations. Applying this to a random matrix Hn taken
from one of the GOEn, GUEn, GSEn ensembles, Dumitriu–Edelman showed that
there exists a unitary matrix Un such that

Jn = U∗nHnUn =



s1 t1 0

t1 s2 t2
. . .

0 t2 s3
. . . 0

. . .
. . .

. . . tn−1
0 tn−1 sn


. (3.5)

Moreover, Un is independent of Jn, satisfies

Une1 = U∗ne1 = e1, (3.6)
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and the joint distribution of the coefficients {sj}nj=1 and {tj}n−1j=1 is

1

cn,β

n−1∏
j=1

t
β(n−j)−1
j e−βnt

2
j/2 dtj

n∏
j=1

e−βns
2
j/4 dsj , (3.7)

where

cn,β =
πn/2

2n/2−1

(
2

βn

)n
2 +

βn(n−1)
4

n−1∏
j=1

Γ(βj2 ) (3.8)

(this follows from Dumitriu–Edelmam [4] after rescaling). Here β = 1, 2, 4 for
GOEn, GUEn, GSEn, respectively. In fact, for any 0 < β < ∞, Jn in (3.5)
with (3.7), (3.8) is a well-defined random matrix, whose eigenvalue distribution is
(proportional to) (3.1).

Now let H̃ be given by (1.1) where H = Hn is from GOEn, GUEn or GSEn;
γ 6= 0 is a given constant; and κ is a random variable distributed on (0,∞) and
independent fromH. Let R be an n×n matrix with 1’s on the anti-diagonal and 0’s
everywhere else. By the invariance of the Gaussian ensembles, R∗HnR∗ belongs to
the same random matrix ensemble as Hn. Now define Un as above but applied to
random matrix R∗HnR instead of Hn. Then U∗nR

∗HnRUn = Jn and (3.6) holds.

Define Ũ = (R∗UnR)⊕ I on `2(Z+). Then (3.6) implies RUnR
∗en = RU∗nR

∗en =
en, so that we get

Ũ∗H̃Ũ =



γRJnR∗
κ

κ 0 1

1 0
. . .

. . .
. . .


.

This means that H̃ is unitarily equivalent to a Jacobi operator J (a,b) (see (2.1))
with a = {γtn−1, γtn−2, . . . , γt1, κ, 1, 1, . . .} and b = {γsn, γsn−1, . . . , γs1, 0, 0, . . .}
(in other words, the Dumitriu–Edelman coefficients are order-reversed, scaled by
γ and then coupled to the free Jacobi operator with coupling κ).

As stated in Sect. 2.3, there is a one-to-one correspondence between the 2n
Jacobi coefficients a,b ∈ Rn+ ×Rn and 2n zeros in S(2n) of the (reversed) pertur-
bation determinant L∗2n. We will compute the Jacobian of this transformation by
computing one step at a time:

Lemma 3.2. Let

L∗j (z) = zj + u
(j)
j−1z

j−1 + u
(j)
j−2z

j−2 + · · ·+ u
(j)
1 z + u

(j)
0 .
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Then (2.4) and (2.5) imply

det
∂
(
u
(2k+1)
2k , u

(2k+1)
2k−1 , . . . , u

(2k+1)
0

)
∂
(
u
(2k)
2k−1, u

(2k)
2k−2, . . . , u

(2k)
0 , bk+1

) = −1 (3.9)

and

det
∂
(
u
(2k+2)
2k+1 , u

(2k+2)
2k , . . . , u

(2k+2)
0

)
∂
(
u
(2k+1)
2k , u

(2k+1)
2k−1 , . . . , u

(2k+1)
0 , ak+1

) = −2a2k+1
k+1 . (3.10)

Proof. Let K2k(z) = K2k+1(z) = z2k + c2k−1z
2k−1 + · · · + c1z + 1. We will also

put c2k = c0 = 1 and cj = 0 for j < 0 or j > 2k. Note that cj = c2k−j for all j
since K2k = K∗2k.

Equality (2.7) implies that for each j ≤ k, cj − cj−2 = u
(2k)
2k−j − u

(2k)
j−2 , which

shows that cj (for j ≤ k) does not depend on the coefficients u
(2k)
l with j − 1 ≤

l ≤ 2k − j − 1.

Now, (2.5) implies u
(2k+1)
j = u

(2k)
j−1 − bk+1cj . Using this, we can show that the

Jacobian matrix

∂
(
u
(2k+1)
0 , u

(2k+1)
2k , u

(2k+1)
1 , u

(2k+1)
2k−1 , . . . , u

(2k+1)
k−1 , u

(2k+1)
k+1 , u

(2k+1)
k

)
∂
(
bk+1, u

(2k)
2k−1, u

(2k)
0 , u

(2k)
2k−2, . . . , u

(2k)
k−2, u

(2k)
k , u

(2k)
k−1

) (3.11)

has a triangular structure. Indeed, u
(2k+1)
0 = −bk+1, u

(2k+1)
2k = u

(2k)
2k−1 − bk+1.

Furthermore, u
(2k+1)
1 = u

(2k)
0 − bk+1c1, u

(2k+1)
2k−1 = u

(2k)
2k−2 − bk+1c1; and as we saw

earlier c1 is a independent of u
(2k)
l with 0 ≤ l ≤ 2k − 2. This can be continued by

induction. The determinant of the triangular matrix (3.11) is equal to the product
of the diagonal entries, which equals to −1. This proves (3.9).

Similar arguments prove (3.10), with just one extra wrinkle. Equality (2.8)

shows that for each j ≤ k, cj − cj−2 = u
(2k+1)
2k−j+1 − u

(2k+1)
j−1 , which shows that cj

(for j ≤ k) is equal to −u(2k+1)
j−1 + dj , where dj does not depend on the coefficients

u
(2k+1)
l with j − 1 ≤ l ≤ 2k − j. Then we show that the Jacobian matrix

∂
(
u
(2k+2)
2k+1 , u

(2k+2)
0 , u

(2k+2)
2k , . . . , u

(2k+2)
k−1 , u

(2k+2)
k+1 , u

(2k+2)
k

)
∂
(
u
(2k+1)
2k , ak+1, u

(2k+1)
2k−1 , u

(2k+1)
0 , . . . , u

(2k+1)
k−2 , u

(2k+1)
k , u

(2k+1)
k−1

) (3.12)

has a triangular structure. Indeed, using (2.4), we get u
(2k+2)
j = u

(2k+1)
j−1 + (1 −

a2k+1)cj . This implies u
(2k+2)
2k+1 = u

(2k+1)
2k ; u

(2k+2)
0 = 1−a2k+1, u

(2k+2)
2k = u

(2k+1)
2k−1 +(1−

a2k+1). Furthermore, u
(2k+2)
1 = u

(2k+1)
0 +(1−a2k+1)c1 = a2k+1u

(2k+1)
0 +(1−a2k+1)d1;

u
(2k+2)
2k−1 = u

(2k+1)
2k−2 +(1−a2k+1)c1; and as we saw earlier d1 depends only on u

(2k+1)
2k ,

while c1 depends only on u
(2k+1)
2k and u

(2k+1)
0 . This together with an induction

shows the triangular structure. The determinant of (3.12) is then equal to the



On Gaussian random matrices coupled to the discrete Laplacian 445

product of the diagonal entries, which equals to 1× (−2ak+1)× 1× (a2k+1)k. This
proves (3.10). �

Now we are ready to compute the main Jacobian.

Lemma 3.3. Let {aj , bj}nj=1 ∈ Rn+ ×Rn be the first Jacobi coefficients of J , and

let {zj}2nj=1 ∈ S(2n) be the zeros of L∗2n. Then the following change of variables
holds true:

n∏
j=1

daj dbj =

∏
j<k |zj − zk|

2n
∏n
j=1 a

2j−1
j

∣∣∣ 2n∧
j=1

dzj

∣∣∣. (3.13)

Proof. Applying the previous lemma recursively, we obtain

det
∂
(
u
(2n)
2n−1, u

(2n)
2n−2, . . . u

(2n)
0

)
∂ (b1, a1 . . . , bk−1, ak−1, bk, ak)

= 2n
n∏
j=1

a2j−1j .

Finally, the change of variables

2n−1∏
j=0

du
(2n)
j =

∏
j<k

|zj − zk|
∣∣∣ 2n∧
j=1

dzj

∣∣∣
follows from the arguments in [14, Lemma 6.5] (we warn the reader of the missing
factor 1/(M !L!2M ) that is needed in [14, Eq. (3.3)]). Combining the last two
formulas, we obtain (3.13). �

Now recall that we are computing zeros of L∗2n for the Jacobi matrix J (a,b)
with a = {γtn−1, γtn−2, . . . , γt1, κ, 1, 1, . . .} and b = {γsn, γsn−1, . . . , γs1, 0, 0, . . .},
where the distribution of {tj , sj} is given in (3.7). Performing the order-reversal
and scaling, we obtain that the joint distribution of {aj , bj}nj=1 is

1

c̃n,β

n−1∏
j=1

aβj−1j e−βna
2
j/(2γ

2) daj

n∏
j=1

e−βnb
2
j/(4γ

2) dbjF (an) dan,

where

c̃n,β =
πn/2

2n/2−1

(
2γ2

βn

)n
2 +

βn(n−1)
4

n−1∏
j=1

Γ(βj2 ).

Applying Lemma 3.3, we obtain that this is equal to

1

2nc̃n,β

n−1∏
j=1

a
(β−2)j
j e−βna

2
j/(2γ

2)
n∏
j=1

e−βnb
2
j/(4γ

2)F (an)

a2n−1n

∏
j<k

|zj − zk|
∣∣∣ 2n∧
j=1

dzj

∣∣∣.
Now applying parts (i), (iv), and (v) of Lemma 2.1 easily leads to the distribu-
tion (3.2). �
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tering theory. Trans. Amer. Math. Soc., 369:5581–5600, 2017.

[11] L. Golinskii. Spectra of infinite graphs with tails. Linear and Multilinear Algebra,
64(11):2270–2296, 2016.

[12] A. Iantchenko and E. Korotyaev. Periodic Jacobi operator with finitely supported
perturbation on the half-lattice. Inverse Problems, 27(11):115003, 26, 2011.

[13] B.A. Khoruzhenko and H.-J. Sommers. Non-Hermitian ensembles. In The Oxford
handbook of random matrix theory, pages 376–397. Oxford Univ. Press, Oxford, 2011.

[14] R. Killip and R. Kozhan. Matrix models and eigenvalue statistics for truncations of
classical ensembles of random unitary matrices. Comm. Math. Phys., 349:991–1027,
2017.

[15] R. Killip and B. Simon. Sum rules for Jacobi matrices and their applications to
spectral theory. Ann. of Math. (2), 158(1):253–321, 2003.

[16] R. Kozhan. Spectral and resonance problem for perturbations of periodic Jacobi
operators. preprint (arXiv:1211.4274).

[17] R. Kozhan. Finite range perturbations of finite gap Jacobi and CMV operators.
Advances in Mathematics, 301:204–226, 2016.

[18] R. Kozhan. Rank one non-Hermitian perturbations of Hermitian beta-ensembles of
random matrices. J Stat Phys, 168:92–108, 2017.

[19] M. Marletta, S. Naboko, R. Shterenberg, and R. Weikard. On the inverse resonance
problem for Jacobi operators—uniqueness and stability. J. Anal. Math., 117:221–247,
2012.



On Gaussian random matrices coupled to the discrete Laplacian 447

[20] M. Marletta and R. Weikard. Stability for the inverse resonance problem for a Jacobi
operator with complex potential. Inverse Problems, 23(4):1677–1688, 2007.

[21] J.A. Ramı́rez, B. Rider, and B. Virág. Beta ensembles, stochastic Airy spectrum,
and a diffusion. Journal of the American Mathematical Society, 24(4):919–944, 2011.
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Modern results in the spectral analysis
for a class of integral-difference operators
and application to physical processes

Yuri B. Melnikov and Irina V. Turuntaeva

Devoted to the memory of Prof. B.S. Pavlov

Abstract. The review of the results obtained in the spectral analysis for a
class of integral-difference operators and their application to physical pro-
cesses, obtained since late 1990s until now, is provided. Some fresh not yet
published results in the field are also presented. We demonstrate the phys-
ical background and the logical structure of the corresponding studies. The
discussion includes both the 1D case and the recent generalization to higher
dimensions. We trace the links with different fields of mathematics. In par-
ticular, a new class of special functions that naturally appear as the kernels
of the mentioned operators, is discussed. The open problems are highlighted
and further possible encouraging investigations are proposed.

Keywords. Integral-difference operators; spectral estimations; special func-
tions; inverse problems.

1. Introduction and physical background
In the present paper we provide a summary of the results in the spectral analysis
for a class of integral-difference operators Kφ defined as

Kφ : u(x) 7→
∫
RM

u(x)φ(s)− u(s)φ(x)

|x− s|
dMs (1)

on the Hilbert space L2(RM ). Operator Kφ is the Friedrichs extension [1, 2] of the
core operator defined in a domain D = C1(RM ) ∩ L1(RM ) ∩ L2(RM ). Function
φ(x) is the functional parameter, which properties and the physical meaning are
discussed below.
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Originally, the operatorsKφ in the 1D caseM = 1 were introduced as collision
operators [3] in a non-equilibrium statistical physics [4, 5] model of 1D gas. In
this model the functional parameter φ(x) ≥ 0 plays the role of the equilibrium
distribution. The discrete spectrum of the operator Kφ generates the Lyapunov
exponentials, determining the rates with which the system goes to the equilibrium
state [4]. Physicists have been interested in the dynamics of the relaxation of the
system to equilibrium determined by the equilibrium distribution function φ(x).
There were introduced functions U(x, t) considered as the probability densities for
a 1D gas. In the first order approximation, the relaxation process is described by
the following dynamical equation:

∂

∂ t
U(x, t) = −Kφ U(x, t) (2)

Thus, the spectrum σ(Kφ) of the operator Kφ determines the relaxation speeds of
the different modes. In particular, for the discrete modes τφn ∈ σd(Kφ), Kφu

φ
n =

τφn u
φ
n,

U(x, t) =
∑
n

uφ
n(x) e

−τφ
n t , whereU(x, 0) =

∑
n

uφ
n(x) .

and τφn are the Lyapunov coefficients of relaxation [4, 5, 3] (the eigenvalues of the
operator Kφ).

However, the empiric approach to the spectral analysis of the correspond-
ing operators [3] did not allow for the trustworthy results, which demanded the
rigorous mathematical study. Such study started in late 1990s [6] and has been
continued in the next years [7]–[10]. The review of the first group of the results can
be find in [10]. By 2004 further success of these studies was temporary blocked by
the absence of the clear ways to weaken the demands to the functional parameter
φ(x) and to extend the investigation to the higher dimensions M ≥ 2. Later some
results on analytical solution of an integro-differential equation arising from a col-
lision operator were obtained in [11]. At the same time the traced interesting links
of the problem under investigation with various fields of mathematics remained
an encouraging factor for the continuation of the studies. The details are provided
below in Section 3 of the present paper.

Other encouraging factors have come from the interest of physicists. Simi-
lar problems appeared for different physical systems and processes. They include
processes in nanostructures due to the necessity to model electrolyte relaxation in
thin films [12]. Application of operators Kφ in the 2D and 3D spaces to the dy-
namics of the matter relaxation processes in the external attractive fields φ(x) ≥ 0
was developed. [13]. Namely, in the proposed model the dynamics of the matter
density U(x, t) is determined by the field φ(x) in the following way. There are two
competing processes P+ and P−. In a vicinity of a point x ∈ RM during the time
interval δt the portion of the matter (attracted by the field φ(x)) is increased by
incoming portions from vicinities of all points s ∈ RM . If the speed of interaction is
homogeneous, the overall increase of the matter density U(x, t) in point x during
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the time interval δt due to the process P+ is

(P+) δU+(x, t) = δt φ(x)

∫
RM

U(s, t)

|x− s|
dMs .

Similarly, the inverse process (moving of the matter from a vicinity of point x to
vicinities of all other points s ∈ RM is described by

(P−) δU−(x, t) = − δt U(x, t)

∫
RM

φ(s)

|x− s|
dMs .

Combining these two processes P+ and P− and taking the limit δt → 0 we get
the dynamical equation

∂

∂ t
U(x, t) = −Kφ U(x, t) (3)

similar to Eq. (2), but for RM of any dimension M . Let us note, that if Kφ are
treated as the operators underlying the processes of the matter relaxation in the
attractive field φ(x) and the functions U(x, t) are considered to be the matter
densities, the matter could be either an ionised gas, or a liquid containing charged
particles (in this case U(x, t) is the density of charged particles in electrolyte).
For dimension M = 1, the corresponding system may be a thin tube, where the
field is parallel to the tube axis. For dimension M = 2, the system may be a
monomolecular layer of electrolyte on a surface. Alternatively, in 2-dimensional
case U(x, t) can be treated as the thickness of the electrolyte layer on a surface.
In dimension M = 3, the physical interpretation is obvious. Higher dimensions
M ≥ 4 may appear in some service structures for certain systems. Of course, some
modifications may be needed for practical applications to specific physical systems.

The corresponding spectral estimates were obtained for specific fields [14, 15].
The necessary generalization of the developed technique to the higher-dimensional
spaces M ≥ 2 became possible due to the quadratic forms approach [1, 2] explored
for the problems under investigation in [13]. The details are provided below in
Sect. 4 of the present paper.

Similar spectral problems appear also in the models of several physical pro-
cesses. Carrier scattering in metals and semiconductors was considered in [16].
It elucidates the state of the art in the research on the scattering mechanisms
for current carriers in metals and semiconductors and describes experiments in
which these mechanisms are most dramatically manifested. The subjects dealt
with include: electronic transport theory based on the test-particle and correlation-
function concepts; scattering by phonons, impurities, surfaces, magnons, disloca-
tions, electron-electron scattering and electron temperature; two-phonon scatter-
ing, spin-flip scattering, scattering in degenerate and many-band models.

In [17] the subband structure in a smooth film where isotropic volume scatter-
ing gives rise to a finite mean free path was studied. The intersubband transitions
into both the propagating and evanescent modes were described by an infinite sys-
tem of equations. Its solution determines self-consistently the scattering-induced
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level broadening. The thickness dependence of the density of states and the con-
ductivity are discussed in detail and compared with results which follow from the
neglect of level broadening. For typical mean free paths, level broadening strongly
smears out the steps of the density of states and suppresses size-induced oscilla-
tions of the conductivity.

In [18] the additional resistivity of a quantum film due to an obstacle was
investigated. The film was treated by a semi-classical formalism whilst the obsta-
cle is characterized by its quantum mechanical scattering cross-section. The film
intrinsic scattering mechanism allows for the adaptation of an arbitrary density
distribution to a characteristic “ideal” distribution over the channels. Special at-
tention was paid to the multiple-scattering cycles between the obstacle and its
surroundings, i.e., the scattering background of the film. The analysis of these
backscattering processes has lead to a self-consistent equation for the current den-
sity incident on the scatterer. For the general case of an arbitrarily strong obstacle
and many conducting channels, this equation system can be solved only numeri-
cally. However, the formalism becomes handy if the obstacle scatters only weakly.
A condition is found for the obstacle to be considered as weak. On the other hand,
if one considers only one conducting channel it is possible to solve the transport
problem analytically even for a strong obstacle.

In [19] the problem of the residual resistivity dipole (formulated by Landauer
in 1957, see, e.g., [20]) was reconsidered for a spherically symmetric obstacle which
is small compared to the bulk mean free path but otherwise arbitrary. A classical
formalism was developed which rests on a local kinetic equation. The current
density incident on the obstacle is the central quantity that allowed to calculate
all relevant quantities.

In [21] the extra resistivity due to a planar perturbation in an otherwise
homogeneous bulk medium was considered. The current density incident on the
barrier and the density distribution in the bulk were calculated self-consistently
as a solution of a classical diffusion problem. Numerical calculations have shown
fluctuations of the density within a few bulk mean free paths in the vicinity of the
barrier. They depend sensitively on the transmission and reflection coefficients.
The occurrence of the density fluctuations generally prevents the derivation of a
simple generalization of the one-dimensional Landauer formula. Instead, a more
involved expression for the extra resistivity was found in a simplified model of
discrete angles of carrier motion.

In [22], similar to the Landauer–Büttiker approach to transport [23], a resistor
was characterized by its reflection and transmission coefficients. Such a transmit-
ter is coupled incoherently to two resistive quantum wires. These leads define an
asymptotic current-distribution over the different channels and allowed to adapt
the current distribution to the transmitter. For carriers at fixed energy, the resis-
tance was defined via asymptotic density differences of the diffusing carriers. This
resistance, and the corresponding current distribution, were found by minimizing
a variational functional that is additively composed of lead and transmitter terms.
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The resistance functional was defined for the transmitter alone, coupled incoher-
ently to leads with unspecified properties, especially to ideal leads and reservoirs.
The said functional is additive for transmitters in series if interference effects be-
tween them are excluded. The contacts between ideal leads and reservoirs can
be modeled as special transmitters, reproducing thus the standard results for the
total resistance.

In [24] for a non-interacting quantum-particle gas in a near-equilibrium steady
state a general expression for the entropy production was given. The particles are
scattered by a cluster of scatterers that are coupled incoherently via connecting
ideal leads. The internal current and/or density distribution were determined by
minimizing the entropy production. This quantity is invariant under a transfor-
mation where differences in particle density are replaced by those in electrostatic
potential.

In [23] electronic transport in mesoscopic systems has been considered.
The historically formed logical structure of the investigations in the field un-

der consideration is the following. The consideration of various physical systems
[3], [12]–[19], [21, 22, 24] has led to the dynamical equations referring to the opera-
tors similar to Kφ. As the empiric approach to the spectral analysis sometimes fails
(e.g., for the model of non-equilibrium 1D gas [3]), the development of the rigorous
mathematical approach has been required. Such approach has been developed in
[6] - [15] later on. The review of the results in the 1D case can be find in [10]. Next,
the application of the quadratic form approach has allowed for the generalization
to the higher dimensions [13] and the investigation of matter relaxation processes
in attractive fields for specific 2D [14] and 3D [15] systems.

The problems under investigation have demanded the exploitation of the
techniques coming from numerous fields of mathematics, like various methods of
the linear operator analysis [1, 2], including the quadratic form approach; asymp-
totic analysis [27]; theory of orthogonal polynomials and special functions [31]–
[40]. Links with other fields of mathematics, like Jacobi matrices with unbounded
entries [25, 26] and weighted mean-square deviation functionals have also been
traced [13]. The discussed investigation have contributed to these fields through
side results, like a new property of the Legendre polynomials [13]. In particular, it
was shown that the operators Kφ under consideration in the higher-dimensional
cases x ∈ RM , M ≥ 2 naturally generates a new class of special functions Ξ

[k]
N ,

N = M − 1 = 1, 2, 3, . . . ; k ∈ ZN . These functions were introduced in [13] and
investigated in [14] for N = 1 and in [15] for N = 2 (see also Sect. 5 of the present
paper).

The present paper is organized as follows. In Sect. 2 we give the necessary
definitions and discuss the general spectral structure of the operators Kφ. Sec-
tions 3 and 4 are devoted to the detailed results in the spectral analysis of these
operators in dimensions M = 1 and M ≥ 2 correspondingly. Section 5 provides
the results for the class of special functions generated by the operators Kφ for
M ≥ 2. In Sect. 6 the links with other fields of mathematics are traced. In Sect. 7
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we consider the inverse problem for operators Kφ Finally, in Sect. 8 we summarize
the modern results in the field and outline further tasks and open problems.

For previously published results we do not repeat in the present paper the
technical proofs, but just highlight the key points and trace the general underlying
methods used.

2. Acceptable functional parameters φ(x) and the general
spectral structure of the corresponding operators Kφ

In order to be able using the resolvent comparison approach [6, 10] (see also Sect. 3
below) underlying the spectral analysis of the operator Kφ introduced in [6] and
further discussed in [10] (for M = 1) and [13] (for M ≥ 2), we restrict our consid-
eration to the so called acceptable functions φ(x).

Definition 1. Function φ(x) in RM is called as acceptable function if it is non-
negative, summable, of Lipshitz-1 class on its support and is uniformly separated
from zero in its support suppφ = Ω ⊂ RM . Namely, this means that φ(x) satisfies
the following conditions:

0 ≤ φ(x) ∈ L1(RM ) ; (4)
∃Aφ ≥ 0 : |φ(x)− φ(s)| ≤ Aφ |x− s| , ∀x, s ∈ Ω = suppφ ; (5)

∃ εφ > 0 : |φ(x)| ≥ εφ , ∀x ∈ Ω . (6)

Note, that the conditions (4) and (6) can be satisfied simultaneously only if
the domain Ω ⊂ RM has a finite volume Vol(Ω) < ∞.

Later we will restrict our consideration to the so called admissible domains
Ω. They are defined as follows.

Definition 2. In 1D case (M = 1) the domain Ω ⊂ R is called as admissible
domain if it is a union of a countable set of finite intervals

Ω =
⋃
j

(aj , bj)

with finite total volume

VΩ := Vol (Ω) =
∑
j

|bj − aj | < ∞ .

Definition 3. For higher dimensions (M ≥ 2) the domain Ω ⊂ RM is called as
admissible domain if it is a compact convex domain.

In Sect. 4 below some more strong demands to the domain Ω ⊂ RM will be
introduced in order to get specific results in spectral estimations for the corre-
sponding operators Kφ.

As mentioned above in Sect. 1, for the collision operators the function φ(x)
plays the role of the equilibrium distribution function [6, 7, 9, 10] and has the
physical meaning of probability density. For the matter relaxation processes [13,
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14, 15] the function φ(x) plays the role of an external attractive field. This makes
the conditions (4) and (5) very natural from the physical point of view. At the
same time the requirement (6) originally appeared by mathematical reasons (as
its violation in dimension 1 prevents obtaining important spectral estimations
[10, 13]). However, it also has a physical background: if we consider a conductor
with an induced field, generally, the field vanishes outside the body of the conductor
(the remark by P. Avtonomov).

Let us note the following:

Remark 1. (Equilibrium spectral point)
From formula (1) it obviously follows that for any φ(x) ∈ D point λ = 0

belongs to the spectrum of the operator Kφ and corresponds to the equilibrium
function u0(x) ≡ φ(x). Physically it means that the system in the state of the
equilibrium does not evolve in time.

One can decompose the original Hilbert space H = L2(RM ) into orthogonal
sum H = Hi⊕He, where we use the notations Hi := L2(Ω) and He := L2(RM\Ω).
This allows for the corresponding decomposition of the operator Kφ, i.e., for its
representation in the following matrix form [6, 7, 10, 13]:

Kφ =

(
Kii

φ Kie
φ

Kei
φ Kee

φ

)
, (7)

where Kpq
φ : Hq → Hp, i.e., in formula (1) s ∈ Ω for q = i, s ∈ RM\Ω for q = e,

x ∈ Ω for p = i and x ∈ RM\Ω for p = e. Introducing the orthogonal projection
operators Pp on the subspaces Hp in H = L2(RM ), one can write Kpq

φ = Pp Kφ Pq.
In the representation (7) the spectral problem

Kφ u = λu (8)
turns into (

Kii
φ Kie

φ

Kei
φ Kee

φ

)(
ui

ue

)
= λ

(
ui

ue

)
, (9)

where up := Ppu, p ∈ {i, e}.
Direct calculations [6, 10, 13] lead to the following results.

Lemma 1. If φ(x) is an acceptable function in the sense of Definition 1, then the
operators Kpq

φ in the representation (7) are

Kii
φ := Kφ : u(x) 7→

∫
Ω

u(x)φ(s)− u(s)φ(x)

|x− s|
dMs, x ∈ Ω ; (10)

Kie
φ : u(x) 7→

∫
RM\Ω

u(s)

|x− s|
dMs, x ∈ Ω ; (11)

Kei
φ ≡ 0 ; (12)

Kee
φ : u(x) 7→ qφ(x)u(x), qφ(x) :=

∫
RM\Ω

φ(s)

|x− s|
dMs , x ∈ RM\Ω . (13)
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Proof. of this lemma comes from simple straightforward calculations based on the
expression (1). �

The operator Kφ defined by the expression (10) and acting in the Hilbert
space L2(Ω) is called as the restricted operator.

Remark 2. (Physical meaning of representation (7))
The restricted operator Kφ acts in the Hilbert space L2(Ω) and would de-

scribe the dynamics of the system in Ω if the boundary ∂Ω is impenetrable. In
higher dimensions M ≥ 2 (see Sect. 4 below), being the sum of a compact integral
operator and of an operator of the multiplication by the function qφ(x), it has
a rich spectral structure. Its spectrum, as shown below, is non-negative. We are
specially interested in its eigenvalues, which are the Lyapunov coefficients of re-
laxation of the corresponding modes. It was also shown [13] that the spectrum of
the restricted operator Kφ is a subset of the spectrum of the original operator Kφ.
The operator Kie

φ describes mutual influence of the matter inside and outside any
bounded convex domain Ω, while the operator qφ is responsible for the “external”
dynamics in RM\Ω. Equality (12), Kei

φ ≡ 0, corresponds to physically clear fact
of the absence of the matter flow from Ω (where the attractive field φ(x) ≥ 0) to
RM\Ω (where φ(x) ≡ 0).

Lemma 1 allows for the general description of the spectrum of the operator
Kφ. Namely, the following statement is true.

Theorem 1. If φ(x) is an acceptable function in the sense of Definition 1, then
the spectrum of the operator Kφ is the union of the spectra of restricted operator
Kφ and the image of the function qφ(x), i.e.,

σ(Kφ) = σ(Kφ) ∪R(qφ) . (14)

Proof. We follow the technique introduced in [6]. Decomposition H = Hi ⊕He al-
lows for the representation of any function u ∈ H as the two-component function
u = (ui, ue)T , where up ∈ Hp. If the point λ ∈ σ(Kφ) corresponds to the (gen-
eralized) eigenfunction ui

λ of the restricted operator Kφ, we see that according
to Lemma 1 uλ = (ui, ue)T is the (generalized) eigenfunction of the operator Kφ

corresponding to the spectral point λ. Therefore, σ(Kφ) ⊂ σ(Kφ).
On the other hand, if λ ∈ R(qφ) the delta-function(s) δ(x − xλ) are the

generalized eigenfunction(s) of the operator Kee
φ given by formula (13) if xλ are

the inverse images of the function qφ(x) in the point λ, i.e., qφ(xλ) = λ. We take
ue(x) = δ(x−xλ). If λ /∈ σ(Kφ), there exists the inverse operator (Kφ−λ)−1. Due
to the representation (7) we see that

(
(Kφ−λ)−1[|x−xλ|−1] , δ(x−xλ)

)T are the
generalized eigenfunction of the operator Kφ corresponding to the spectral point
λ ∈ R(qφ)\σ(Kφ). Therefore, R(qφ)\σ(Kφ) ⊂ σ(Kφ). Hence σ(Kφ) ∪ R(qφ) ⊆
σ(Kφ).

Now let us assume that λ /∈ σ(Kφ) ∪ R(qφ). As λ /∈ R(qφ), the component
ue
λ = Peuλ of the corespondent solution uλ of the spectral problem (8) is trivial,

ue
λ(x) ≡ 0. Then due to Lemma 1, Kφu

i
λ = λui

λ. As λ /∈ σ(Kφ) it means that
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ui
λ(x) ≡ 0. Thus uλ(x) ≡ 0, so λ /∈ σ(Kφ). Therefore, σ(Kφ) = σ(Kφ) ∪ R(qφ).

The theorem is proved. �

3. Spectral analysis of the operators Kφ in dimension 1
This section is devoted to the 1D case, where the most advanced results have
been obtained [10]. These results are also important for higher dimensional cases
discussed below in Sect. 4. The reason is that the spectral estimations in higher
dimensions have been obtained [13] through the reduction of the M -dimensional
problem (under the specific extra conditions for the domain Ω ⊂ RM and the
functional parameter φ(x)) to a countable set of 1D problems.

For the readers’ convenience, this section is structured into several subsec-
tions. In Sect. 3.1 we discuss the Fourier transform, the adjoint operator, and the
selfadjointness in the weighted space. Next, we turn to the study of the opera-
tors Kφ with acceptable equilibrium distribution functions φ(x) having compact
support Ω = (a, b). In Sect. 3.2 we introduce the appropriate reference opera-
tor K0 and develop its complete spectral analysis. In Sect. 3.3 we provide the
results for Kφ corresponding to an acceptable equilibrium distribution function
φ(x) having the admissible support suppφ = Ω, using the resolvent comparison
approach. Spectral estimations for the eigenvalues of Kφ are presented. We also
discuss there the contribution of the complement to the support R\Ω to the spec-
trum of Kφ in the specific examples. In Subsection 3.4 we discuss one of the most
physically interesting cases of the Gaussian equilibrium distribution function φ(x)
(which support is not compact, so it is not an acceptable function in the sense of
Definition 1) and demonstrate that the spectral properties of the corresponding
collision operator Kφ differ drastically from the case of the acceptable equilibrium
distribution functions. Section 3.5 is devoted to the discussion on other spectral
estimations for the operator Kφ, obtained through the quadratic form approach.
We also demonstrate there the non-negativity of the operators Kφ for a broad class
of the equilibrium distribution functions φ(x), establish links between the modified
integral-difference operators and the weighted mean-square deviation functionals,
and demonstrate a new property of the Legendre polynomials.

3.1. Dimension 1: Fourier transform, the adjoint operator,
and the selfadjointness in the weighted space

Let us note [6, 10] that in the 1D case one cannot represent Kφ as a difference
of two operators corresponding to two terms in the nominator, as the two corre-
sponding integrals do not converge. Another important point is that Kφ is not an
integral operator, as it is impossible to construct the corresponding integral ker-
nel. However, it happens that under some simple conditions on φ(x), the Fourier
transform of Kφ is an integral operator [6, 10]. We use the Fourier representation
in order to prove some important properties of the operators Kφ. The following
lemma is valid (see [10], Lemma 2.1).
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Lemma 2. For any real-valued function φ(x) ∈ L1(R)
⋂
L2(R), the operator Kφ

acting in the space L2(R) obeys the relation

Kφ ◦ φ = φ ◦ K∗
φ , (15)

where K∗
φ is the adjoint operator with respect to the standard inner product in

L2(R) and φ stands for the operator of multiplication by the function φ(x).

Proof. is obtained [10] through the Fourier transform

K̂φ := F Kφ F−1 ,

F (u) := û(k) =
1√
2π

∫ ∞

−∞
e−ikx u(x) dx .

One can calculate [6, 10] that K̂φ is the integral operator with the weakly singular
kernel

K̂φ(k, k
′) =

√
2

π
φ̂(k − k′)

∣∣∣ln∣∣∣ k

k − k′

∣∣∣∣∣∣ ,
where φ̂(k) := F (φ). The kernel of the adjoint operator K∗

φ can be obtained from
the latter expression by the interchange of the arguments k, k′ and the complex
conjugation. As φ(x) ∈ R, this results is

K̂∗
φ(k, k

′) =

√
2

π
φ̂(k − k′)

∣∣∣ln∣∣∣k − k′

k

∣∣∣∣∣∣ .
The kernel of the operator F (Kφ ◦ φ) is given by the convolution and can be
calculated as

F (Kφ ◦ φ)(k, k′) =
∫ ∞

−∞
K̂∗

φ(k, p) φ̂(p− k′) dp = F (φ ◦ K∗
φ)(k, k

′).

Consequently, Kφ ◦ φ = φ ◦ K∗
φ. The lemma is proved. �

From Lemma 2 we obviously have the following corollary.

Corollary 1. For any real-valued function φ(x) ∈ L2(R) ∩ L2(R), the operator
Kφ is selfadjoint in the weighted space L2(R, dx/φ(x)).

Corollary 1 and its generalization to higher dimensions will be used to apply
the quadratic forms approach (see Sect. 4 below).

3.2. Dimension 1: Reference operator
Now let us turn to the spectral analysis of the operators Kφ, starting with the
introduction and study of the reference operator. The reference operator K0 is
a prototype for operators Kφ corresponding to the function φ(x) with compact
support Ω = (a, b) ⊂ R. Without loss of generality one can take a = −1, b = 1
using a simple linear change of variables x → x′ = (2x− b− a)/(b− a) to get the
equivalent problem on the renormalized real line such that (a, b) → (−1, 1).



458 Yu.B. Melnikov and I.V. Turuntaeva

The operator K0 corresponds to the piecewise constant function

χ[−1,1](x) :=

{
1 , x ∈ (−1, 1) ,

0 , otherwise .
(16)

Obviously, χ[−1,1](x) is an acceptable function in the sense of Definition 1 and
(−1, 1) is an admissible domain in the sense of Definition 2.

Let us note, that for 1D gas models the function φ(x) plays the role of the
equilibrium distribution (the probability density), so its natural normalization is
||φ||L1(Ω) = 1. It means that we should take φ(x) = χ[−1,1](x)/2; however, it is
more convenient to omit the factor 1/2 and use the formula (16) for φ(x), which
does not affect any further proofs.

Applying Lemma 1 to the case under consideration and performing simple
calculations we get

Kii
0 := K0 : u(x) 7→

∫ 1

−1

u(x)χ[−1,1](s)− u(s)χ[−1,1](x)

|x− s|
d, x ∈ [−1, 1] ; (17)

Kie
0 : u(s) 7→

∫
R\[−1,1]

u(s)

|x− s|
ds, x ∈ [−1, 1] ; (18)

Kei
0 ≡ 0 ; (19)

Kee
0 : u(x) 7→ q0(x)u(x), q0(x) :=

∣∣∣ln∣∣∣x− 1

x+ 1

∣∣∣∣∣∣ . (20)

To apply Theorem 1, we start with the study of the restricted operator K0 given
by formula (17). We recall the following result first obtained in [6] (see also [10],
Theorem 3.2).

Theorem 2. The operator K0 in the Hilbert space L2[−1, 1] is selfadjoint, K∗
0 =

K0, and its spectrum σ(K0) is discrete and equals to the set of simple eigenvalues
µn,

σ(K0) = {µn}∞n=0 , (21)
where

µ0 = 0 , µn = 2

j∑
n=1

1

j
, n ≥ 1 . (22)

The corresponding eigenfunctions are the (normalized) Legendre polynomials:

p0(x) =
1

2
, pn(x) =

√
2n+ 1

2

1

2nn!

dn

dxn
(x2 + 1)n , n ≥ 1 . (23)

Proof. The proof is given in [6, 10]. Here we just outline its key points. The
selfadjointness of the operator K0 follows from Lemma 2. Indeed, in our case
φ(x) = χ[−1,1](x), and due to Lemma 2 we have K0 ◦ χ[−1,1] = χ[−1,1] ◦ K∗

0. The
operator of the multiplication by the indicator χ[−1,1](x) is the projection operator
Pi, therefore K0Pi = PiK∗

0, which implies
K0 = PiK0Pi = PiK∗

0Pi = K∗
0 . (24)
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Next, polynomials of the order n, p̃n(x) =
∑n

j=0 b
(n)
j xn are considered and it

is shown [6, 10] that one can uniquely choose the coefficients b(n)j such that b(n)n 6= 0

and K0p̃n = µnp̃n. Therefore, the set {µn}∞n=0 is in the discrete spectrum of the
operator K0 and the corresponding eigenfunctions are the polynomials p̃n(x). As
K0 = K∗

0 , the polynomials p̃n(x) are the Legendre polynomials p̃n(x) ≡ pn(x),
which completes the proof. �

Now we are ready to describe the spectrum of the reference operator K0

[6, 10] applying Theorem 1. The discrete spectrum generated by the restricted
operator K0 is given by Theorem 2. Image R(q0) of the function q0(x) given by
formula (20) fills the positive semiaxis R+ with double multiplicity, i.e. for any
λ > 0 there are two inverse images x±

λ : q0(x
±
λ ) = λ, where

x±
λ = ∓ 1 + eλ

1− eλ
, (25)

so x+
λ > 1 and x−

λ < −1.
Therefore, with Theorem 1 we get the following statement, first obtained in

[6] (see also [10, Theorem 3.3]).

Theorem 3. The spectrum σ(K0) of the operator K0 in the Hilbert space L2(R)
fills the positive semiaxis R+. It is the union of the discrete spectrum σd(K0) =
σ(K0) = {µn}∞n=0, where µn are the (simple) eigenvalues given by formula (22),
and the absolute-continuous spectrum of double multiplicity σac(K0) = R\σ(K0).
The eigenfunctions corresponding to the eigenvalues µn are

un(x) = χ[−1,1](x) pn(x) . (26)
The generalized eigenfunctions corresponding to points λ ∈ σac(K0) = R+\σ(K0)
are

u±
λ (x) = χ[−1,1](x)u

λ±
0 (x) + δ(x− x±

λ ) , (27)
where

uλ±
0 (x) := (K0 − λ)−1

(
|x− x±

λ |
−1
)
= −

∑
n≥0

pn(x
±
λ ) pn(x) ∈ L2[−1, 1] . (28)

Proof. It can be find in [6, 10]. Here we just note that the last equality in formula
(28) coming by the straightforward calculation follows from the fact that Legendre
polynomials pn(x) are the eigenfunctions of the restricted operator K0 = K∗

0 (see
Theorem 3), thus the resolvent of the operator K0 can be presented as

(K0 − z)−1 =
∑
n≥0

pn〈·, pn〉L2[−1,1]

µn − z
. (29)

We have shown that both the spectrum σ(K0) of the restricted operator K0 and
its complement R+\σ(K0) are the subsets of the spectrum σ(K0) of the reference
operator K0, which means that R+ ⊂ σ(K0). On the other hand, the spectrum
of the operator K0 is nonnegative. Therefore, if λ /∈ R+ and λ ∈ σ(K0), the
equation q0(x)uλ(x) = λuλ(x) should be satisfied with some nontrivial function
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uλ(x). However, that is impossible, because the image of the function q0(x) is
positive, R(q0) ⊂ R+. Therefore, σ(K0) ⊂ R+ and finally we have σ(K0) = R+.
The theorem is proved. �

Remark 3. (Link to the differential operator generating the Legendre polynomi-
als)

As mentioned in [7, 10], Theorem 3 implies that the operator K0 commutes
with the operator L = (x2 − 1)(d2/dx2)+ 2x(d/dx) generating the Legendre poly-
nomials, L ◦ K0 − K0 ◦ L = 0. This can be also checked by a straightforward
independent calculation for every monomial xn. The eigenvalues of the operator L
are n(n+1). Using the representation [34] for

∑n
j=1 1/j, one can get the following

relation between the operators K0 and L:

K0 = 2CI + 2 lnG+G−1 = 2
∞∑
k=2

AkG
−1(G+ I)−1 · · · (G+ (k − 1)I)−1

where G := (1/2)(I + 4L)1/2 − I, Ak := k−1
∫ 1

0
x(1− x)(2− x) · · · (k − 1− x)dx.

3.3. Dimension 1: Spectral structure and spectral estimations
for the operator Kφ corresponding to an acceptable equilibrium
distribution function φ(x)

Basing on the results described above (see Sects. 3.1 and 3.2) one can turn to the
spectral analysis of the operators Kφ in the 1D case. The following result was first
obtained in [6] (see also [10, Theorem 3.4]).

Theorem 4. If the function φ(x) is an acceptable function in the sense of Def-
inition 1 and its support is Ω = (a, b) ⊂ R, then the spectrum σ(Kφ) of the
corresponding operator Kφ in the Hilbert space L2(R, dx/φ(x)) fills the positive
semiaxis R+ being the union

σ(Kφ) = σac(Kφ) ∪ σd(Kφ) , (30)
where the discrete spectrum σd(Kφ) = σ(Kφ) = {τn}∞n=0 (τn → ∞ when n → ∞)
coincides with the spectrum of the restricted operator Kφ = PiiKφPii. Here Pii

is the projection on the subspace L2([a, b]; dx/φ(x)). If λ ∈ R+\σ(Kφ), then λ ∈
σac(Kφ) is a point of absolutely-continuous spectrum having double multiplicity
and the corresponding generalized eigenfunctions are

u±
φ,λ(x) = χ[a,b](x) (Kφ − λ)−1

(
φ(x)

|x− x±
φ,λ|

)
+ δ(x− x±

φ,λ) , (31)

where x±
φ,λ are the two inverse images of the function qφ(x) =

∫ b

a

φ(s)|x− s|−1 ds

in the point λ: qφ(x±
φ,λ) = λ, x−

φ,λ < a, x+
φ,λ > b.

Proof. The proof was first obtained in [6] (see also [10, Theorem 3.4]). Regarding
the absolute-continuous spectrum σac(Kφ) = R

(
qφ(x)

)
, it essentially repeats the

proof of Theorem 3 for the reference operator K0. In particular, the operator
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Kφ is selfadjoint in the space L2([a, b]; dx/φ(x)). Consequently, its spectrum is
real. Note, that the spaces L2([a, b]; dx/φ(x)) and L2[a, b] are isomorphic (see
Remark 4 below). As mentioned above, by linear change of variables, without
losing generality, we can assume that a = −1, b = 1. Hereafter in this proof, we
accept this assumption.

To deal with the discrete spectrum σd(Kφ) = σ(Kφ), by straightforward
calculation one can get

Kφ = φ ◦K0 − (K0φ) , (32)
where φ and (K0φ) stand for the operators of the multiplication by the functions
φ(x) and (K0φ)(x) respectively.

We denote by R0(z) := (K0 − z)−1 and Rφ(z) := (Kφ − z)−1 the resolvents
of the operators K0 and Kφ respectively. One can check that the following relation
is valid:

Rφ(z) = R0(z) ◦
1

φ
−Rφ(z) ◦

[
z(φ− I)φ− (K0φ)

]
◦R0(z) ◦

1

φ
. (33)

Therefore,

Rφ(z) = R0(z) ◦
1

φ
◦

[
I +

[
z(φ− I)φ− (K0φ)

]
◦R0(z) ◦

1

φ

]−1

(34)

if the inverse operator in the right-hand side of the formula (34) exists. The re-
solvent R0(z) of the reference operator has a discrete spectrum with the eigen-
values (µn − z)−1 and is a compact operator except for the countable discrete set
{z = µn}n≥0. Due to the conditions (5) and (6), the operators of the multiplication
by the functions φ(x), 1/φ(x) and (K0φ)(x) are bounded. Therefore, the operator[
z(φ− I)φ− (K0φ)

]
◦R0(z) ◦ 1

φ is compact except for the countable discrete set
{z = µn}n≥0 , because it is the product of a compact operator and bounded oper-
ators [1, 2] outside of this set. Hence, its spectrum cannot have an accumulation
point at λ = −1. Outside of the mentioned set, it is an analytic operator-valued
function of z. Consequently, the point λ = −1 can be an eigenvalue of this operator
only for a countable discrete set of z. Therefore, outside of this set, there exists a
bounded operator

[
I+
[
z(φ−I)φ−(K0φ)

]
◦R0(z)◦ 1

φ

]−1

. Then in the right-hand
side of the formula (34), we have the product of this bounded operator and the
compact operator R0(z) ◦ 1

φ . Hence, the resolvent Rφ(z) is a compact operator
except for a countable discrete set of z. This implies that the operator Kφ can
have only a discrete spectrum and its eigenvalues τn → ∞ when n → ∞. These
eigenvalues form the discrete spectrum σd(Kφ) of the operator Kφ. The theorem
is proved. �

Now, following [6, 10], under the conditions of Theorem 4 we can obtain the
spectral estimations for the operator Kφ. For the domain Ω := suppφ = (a, b)
the restricted operator Kφ = PiiKφPii generates the discrete spectrum σd(Kφ) =
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σ(Kφ) = {τn}∞n=0 of the operator Kφ. Again, without using generality, we can
assume that a = −1, b = 1.

Corollary 1 and Theorem 4 imply that the operators K0 and Kφ are self-
adjoint in the Hilbert spaces L2[−1, 1] and L2([−1, 1], dx/φ(x)), respectively. We
denote the inner products and the norms in these spaces respectively as

(u, v) :=

∫ 1

−1

u(x)v̄(x) dx ; ||u|| :=
√

(u, u) ; (35)

〈u, v〉φ :=

∫ 1

−1

u(x)v̄(x)
dx

φ(x)
; IuIφ :=

√
〈u, u〉φ . (36)

Let us make the following important remark.

Remark 4. (Isomorphism of spaces L2[a, b] and L2([a, b]; dx/φ(x)))
For any acceptable function φ(x) having an admissible (compact) support

Ω = (a, b) the restricted Hilbert spaces L2[a, b] and L2([a, b]; dx/φ(x) are isomor-
phic. Indeed, due to the conditions (5) and (6), for the norms ||u|| in L2[a, b] and
IuIφ in L2([a, b]; dx/φ(x) we have(

εφ + (b− a)Aφ

)
||u|| ≤ IuIφ ≤ ε−1

φ ||u|| .

We consider the spectral problem

un(x) = pn(x)− 2δ
∑
m ̸=n

((K0 − µn)h, pnpm)

µn − µm
pm(x) + o(δ) . (37)

Now let us consider the continuous spectrum of the operator Kφ, generated
by the complement to the support of the equilibrium distribution function φ(x).
As one can see from the previous discussion, the support of the equilibrium distri-
bution function suppφ is “responsible” for the discrete spectrum of the operator
Kφ (coinciding with the spectrum of the restricted operator Kφ), while the com-
plement to the support R\suppφ “generates” the branches of the continuous spec-
trum given by the image of the function qφ(x) when x /∈ suppφ. As shown in [10]
(see Sect. 3.6 there), every interval, where the equilibrium distribution function
φ(x) vanishes, generates a branch of continuous spectrum of the corresponding
operator Kφ. As shown above (see Theorem 4), the image R(qφ) of the function
qφ(x), x /∈ suppφ, generates the absolutely continuous spectrum σac(Kφ) of the
operator Kφ. Different cases were illustrated in [10] with several specific examples.
Briefly, the results are as follows.

Example 1. (Absolutely continuous spectrum of infinite multiplicity)
Let the equilibrium distribution function φ(x) be

φ(x) =


2−n−2 , x ∈ [2n, 2n+ 1] , n ≥ 1;

22n−2 , x ∈ [2n− 1, 2n] , n ≤ −1;

2−2 , x ∈ [−1, 1] ;

0 , otherwise .

(38)
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One can easily calculate
∫∞
−∞ φ(x) dx =

∑
n≥0 2

−n = 1. Note, that in this case the
function φ(x) does not have a compact support. As shown in [10], the correspond-
ing function

qφ(x) :=

∫
R\supp (φ)

φ(s) |x− s|−1 ds , x ∈ R\suppφ

maps the interval [2j − 1, 2j] into the semi-infinite interval [Mj ,∞), where 0 <
Mj = O

(
|j|−1

)
at j → ∞. The same is true for j < 0. It means that the open

semiaxis (0,∞) belongs to the absolute continuous spectrum of the operator Kφ

and has the infinite spectral multiplicity.

Example 2. (A branch of the absolutely continuous spectrum parametrically
shrinking)

Here we consider the equilibrium distribution function defined as

φ(x) =


[
ln a+1

a−1

]−1
1

x+a , x ∈ [−1, 1] ;

0 , otherwise .
(39)

If a > 1, then 0 < φ(x) ∈ L1(R) and ||φ(x)||L1
= 1. One can calculate [10]

qφ(x) =

∫ 1

−1

φ(x) |x− s| ds = − 1

x+ a
(40)

and see that in the image of the function qφ(x) is

R(qφ) =
(
− 1

a+ 1
,

1

a− 1

)
.

Therefore, at a → 1+0 and a → +∞ we have R(qφ) → (−1/2,+∞) and R(qφ) →
(−1/a, 1/a), respectively, i.e., the branch of the continuous spectrum shrinks as
a → +∞.

Example 3. (A finite branch of the absolutely continuous spectrum)
Here we consider the case of continuous equilibrium distribution function

φ(x) =


x+ 1 , x ∈ [−1, 0] ;

−x+ 1 , x ∈ [0, 1] ;

0 , otherwise .

(41)

One can calculate [10]

qφ(x) = |x| ln(1− 1/x2) +
∣∣∣ln∣∣∣x+ 1

x− 1

∣∣∣∣∣∣ . (42)

Therefore, the image of the function qφ(x) is the interval [0, 2 ln 2] and has in this
interval double multiplicity.

Remark 5. (Link to Jacobi matrices)
As mentioned in [10], for the specific choice of the functions φ(x) a link of

the spectral problem under investigation with Jacobi matrices having unbounded
entries [25, 26] can be traced. Namely, let us take as φ(x) the normalized Legendre
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polynomial φ(x) ≡ pk(x). Of course, it is not an acceptable function in the sense
of Definition 1, but that is not significant for tracing the mentioned link.

Decomposition of the function u(x) in the normalized Legendre polynomials
pk(x), u(x) =

∑∞
k=0 uk Pk(x), for φ(x) ≡ pk(x) turns the spectral problem Kφu =

τu in the Hilbert space L2[−1, 1] into the following spectral problem in the Hilbert
space l+2 :

J (l) û = τ û , (43)
where û := (u0, u1, . . . )

T and the entries of the matrix J (l) are

J
(l)
km = (µk − µl) γklm , (44)

where

γklm :=

∫ 1

−1

pk(x) pl(x) pm(x) dx .

Obviously γklm 6= 0 only if k+m ≤ l, k+ l ≤ m, l+m ≤ k simultaneously, which
means that −l ≤ m− k ≤ l and m+ k ≥ l. Hence, J (l) is a (2l+1)-diagonal semi-
infinite matrix. In the simplest case, l = 1 , J (1) is the 3-diagonal Jacobi matrix
having the entries

J
(1)
km = (µk − 2)

∫ 1

−1

pk(x) pm(x)x dx .

3.4. Dimension 1: the Gaussian equilibrium distributions
Contrary to most of the above-considered cases, physically important Gaussian
equilibrium distributions [3, 8, 9, 10] have infinite support. They are not accept-
able functions in the sense of Definition 1 due to the violation of the condition (6)
and the corresponding operators Kφ cannot be analyzed using the above described
technique. The main technical reason is that in this case the operator of the mul-
tiplication by the function 1/φ(x) is not bounded, so the resolvent comparison
approach used in Theorem 4 (see Sect. 3.3 above) fails.

It was shown that the violation of the condition (6) drastically changes
the spectral structure of the operator Kφ. First numerical [8] and later analyt-
ical [9, 10] studies have shown it for the Gaussian equilibrium distribution func-
tions. Namely, there was considered the family of the operators corresponding to
the truncated to the interval [−a, a] Gaussian equilibrium distribution function
φa,β(x) := Γa,β χ[−a,a](x) e

−β2x2 , where Γa,β is the normalizing coefficient,

Γ−1
a,β :=

∫ a

−a

e−β2x2

dx =
√
πβ−1erf(βa).

Without loss of generality, one can take β = 1, thus coming to the operators
K[a]

G := Kφa
corresponding to the truncated Gaussian equilibrium distribution

functions

φa(x) :=

{
Γa e

−x2

, Γ−1
a :=

√
π erf(a) , x ∈ (−a, a) ;

0 , otherwise .
(45)
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Infinite integration limits in the original operator (1), M = 1, are always
understood as the limit of the integral over the interval [−a, a] when a → ∞.
One can have an intuitive feeling [3] that, as truncated Gaussian functions are
“very similar” for different but large values of the truncation parameter a, and
the spectral properties of the corresponding operators K[a]

G will also be similar for
different large values of a. However, that is not true [9, 10]. Namely, there is no
regular limit of the operator K[a]

G at a → ∞. Therefore, there is no way to develop
a successful perturbation theory for the spectrum of the operator K[a]

G with respect
to the parameter 1/a, and the spectral properties of the corresponding operator
change drastically when a = ∞. That is related to the obvious fact that the spectral
problem K[a]

G u = λu is equivalent to the spectral problem K̃[a]
G u = λu, where the

operator K̃[a]
G P[−1,1] corresponds to the equilibrium distribution function

φ̃a(x) :=

{
Γa e

−a2x2

, x ∈ [−1, 1] ;

0 , otherwise ,
(46)

got by the change of variables x → x/a.
Next we consider the restricted operators K̃ [a]

G = P[−1,1]K̃
[a]
G P[−1,1]P[−1,1] and

K
[a]
G = P[−a,a]K

[a]
G P[−a,a] generating the discrete spectra of the operators K̃[a]

G and
K[a]

G , respectively. In the limit case a = ∞ we observe for the operator K
[∞]
G =

P[−a,a] K̃
[∞]
G P[−a,a] (and, consequently, for K

[∞]
G ) the spectral concentration in the

vicinity of zero. More specifically, let us denote by Ea[−S, S] the spectral operator-
valued measure [1, 2] of the operator K̃[a]

G on the interval [−S, S]. By Ha we denote
the Hilbert space Ha := L2([−1, 1], dx/φ̃a(x)) where the operator K̃[a]

G acts as a
selfadjoint operator. The main relevant result [9, 10] is the following theorem.

Theorem 5. For any S > 0,

dim(Ea[−S, S]Ha) → ∞ when a → ∞ . (47)

This theorem means that the number of the eigenvalues (counted with their
multiplicity) of the operator K̃[a]

G (and, consequently, of the operator K
[a]
G ) in an

arbitrary small vicinity of zero increases to infinity when the truncation parameter
a goes to infinity. Indeed, due to Theorem 4, the spectra of these operators are
purely discrete for all a < ∞. Hence, the increase of the spectral measure on the
interval [−S, S] can be caused only by the increase of the number of the eigenvalues
(counted with their multiplicity) on this interval. Therefore, λ = 0 is the point of
the spectral concentration for the limit operator K [∞]

G .

Proof. of this theorem is heavy and rather technical [9, 10] (see [10, Theorem 4.1]).
Here we just outline the key points of this proof. In order to prove the theorem
using the bilinear form approach it is enough [1, 2] to construct for all integers
N > 0 a linear set F a

N ⊂ Dφ̃a
, dim (F a

N ) = N such that for any S > 0 there exists
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the parameter a0(N,S) such that for all a > a0(N,S) the inequality∣∣〈K̃[a]
G u, u〉

∣∣ ≤ S |〈u, u〉φ̃a
| (48)

is true for all u ∈ F a
N . We construct F a

N as the linear span

F a
N =

N−1∨
k=0

u
[a]
k , u

[a]
k (x) := pk(x) φ̃

1/2
a (x) , (49)

where pk(x) are the Legendre polynomials normalized in the space L2[−1, 1] (the
eigenfunctions of the reference operator K0). The functions u[a]

k (x) are orthogonal
in the Hilbert space L2([−1, 1], dx/φ̃a(x)). Therefore, dimF a

N = N for all a and
any function u ∈ F a

N can be represented as u(x) =
∑N−1

k=0 αk u
[a]
k (x). Obviously,

∣∣〈u, u〉∣∣
φ̃a

=
N−1∑
k=0

|αk|2 . (50)

We use the representation (32) for the operator K̃[a]
G and get〈

K̃[a]
G u, u

〉
φ̃a

= (K0u, u)−
〈
(K0φ̃a(x))u, u

〉
φ̃a

. (51)

We estimate the two terms in the right-hand side of Eq. (51) separately. Following
[9, 10] (see [10, Theorem 4.1]), when estimating the term (K0u, u) we split the
domain of integration Ω = (−1, 1) 3 s in two parts: Ω[a]

1 (x) :=
{
s ∈ Ω : |x− s| <

a−1/2
}
and Ω

[a]
2 (x) :=

{
s ∈ Ω : |x − s| ≥ a−1/2

}
. For the estimation both terms

in the right-hand side of Eq. (51), we use the Laplace method [27] to calculate the
asymptotics of the integrals and get the following result for the first term:

|(K0u, u)| ≤ G1(N)a−1/2
N−1∑
k=0

|αk|2
(
1 +O(a−1)

)
, (52)

where the coefficient

G1(N) =
4N2(1 +

√
2e−1/2

erf(1)
max

0≤k≤N−1
max

x∈[−1,1]
|pk(x)|2

does not depend on a and is finite for any N < ∞. For the second term in the
right-hand side of Eq. (51) the result is:

∣∣〈(K0φ̃a(x))u, u〉
∣∣
φ̃a

≤ G2(N) a−1
N−1∑
k=0

|αk|2
(
1 +O(a−1)

)
, (53)

where the coefficient

G2(N) :=
4N2

√
π erf(1)

2N−2∑
m=0

µm|pm(0)| max
0≤k≤N−1

max
0≤l≤N−1

|γklm|
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does not depend on a and is finite for any N < ∞. Here

γklm :=

∫ 1

−1

pk(x)pl(x)pm(x) dx .

Formulae (50)–(53) imply that that for any N > 0, any S > 0, and any function
u ∈ F a

N , the inequality (48) is true for sufficiently large a > a0(N,S). Taking into
account the normalization of the Legendre polynomials pk(x) in the Hilbert space
L2[−1, 1], we get a very rough estimate

a0(N,S) ≤
(4(1 +√

2e−1/2)

erf(1)

N3

S

)2
. (54)

The theorem is proved. �

3.5. Dimension 1: Quadratic form approach, links to the mean-value
functionals and a new property of the Legendre polynomials

In this subsection we discuss the recent results [13] based on the application of the
quadratic form approach [1, 2] to the problems under consideration.

We focus in the discrete spectrum and thus consider the restricted operators
Kφ. We introduce the modified operators

Qφ :=
1

2
φ(x) ◦Kφ . (55)

Using the representation (32) the modified operators (55) can be represented as

Qφ =
1

2
K0 − Vφ , (56)

where Vφ stands for the operator of multiplication by the function

Vφ(x) =
(K0φ)(x)

2φ(x)
. (57)

The function Vφ(x) is called as the effective potential. We assume that φ(x) is an
acceptable function. To be specific, without losing generality, we also assume that
Ω = supp (φ) = (−1, 1).

Let us introduce the quadratic form

κφ[u] :=
1

2
〈Kφu, u〉φ = (Qφu, u) . (58)

Study of this quadratic form allows for important conclusions on the properties of
the modified operators Qφ [13]. In particular, the following statement is true (see
[13], Theorem 1):

Theorem 6. For any acceptable equilibrium distribution function φ(x), the qua-
dratic form κφ[u] is nonnegative, κφ[u] ≥ 0, with the sharp lower boundary m(κφ) =
0 achieved with u(x) ≡ φ(x): κφ[φ] = 0.
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Proof. The claim is proved in [13] using the representation (56). The terms (K0u, u)
and (Vφu, u) are estimated separately. For both terms, decomposing the domain of
integration (square {x, s : −1 ≤ x, s ≤ 1} ⊂ R2) in two triangles: ∆1 ⊂ R2 where
−1 ≤ s ≤ x ≤ 1 and ∆2 ⊂ R2 where = 1 ≤ x < s ≤ 1, and changing variables
x ↔ s in the integral over ∆2, one gets [13]

κφ[u] =
1

2

∫∫
∆1

dx ds

|x− s|
|u(x)φ(s)− u(s)φ(x)|2

φ(x)φ(s)
≥ 0 . (59)

Obviously, κ[φ] = 0, which finishes the proof of the theorem. �

Theorem 6 together with minimal principle for quadratic forms [1, 2] of op-
erators means the nonnegativity of the operators Qφ, i.e., σ(Qφ) ⊆ R+.

In [13] the following bilateral estimation for the quadratic form κφ[u] was
obtained:

1

2
(K0u, u)−

Aφ

4 εφ
||u||2 ≤ κφ[u] ≤

1

2
(K0u, u) +

Aφ

4 εφ
||u||2 . (60)

This implies the following bilateral estimations for the eigenvalues of the operator
Kφ (see [13], Theorem 2):

Theorem 7. For any acceptable function φ(x), the eigenvalues νφn of the corre-
sponding operator Qφ lie in the intervals

1

2
µn − Aφ

4 εφ
≤ νφn ≤ 1

2
µn +

Aφ

4 εφ
. (61)

The expression (59) for the quadratic form κφ[u] can be rewritten [13] in
terms of the function wφ(x) := u(x)/φ(x),

κ̃φ[w] := κφ[wφ] =
1

4

∫ 1

−1

∫ 1

−1

|w(x)− w(s)|2

|x− s|
dx ds . (62)

Due to the minimal principle [1, 2], this implies the following theorem (see [13,
Theorem 3]).

Theorem 8. For any acceptable function φ(x), the eigenfunctions ũn(x) and
eigenvalues νφn of the operator Qφ can be calculated through the minimization of
the weighted mean-square functional defined by formula (62), under the condition

wn(x) ⊥
n−1∨
l=0

wl , w0(x) ≡ 1 , (63)

where ũ(x) ≡ w(x)φ(x) and the orthogonality is with respect to the inner product

〈w, v〉φ−2 :=

∫ 1

−1

w(x) v̄(x) dx .

This leads to an interesting side result concerning Legendre polynomials
Pn(x). Namely, having in mind the results on the spectral analysis for the op-
erator K0 (see Sect. 3.2 above) and applying Theorem 8 for φ(x) ≡ 1, we get
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Corollary 2. The Legendre polynomials Pn(x) can be subsequently constructed as
the functions un(x), minimizing the functional

κ0[u] :=

∫ 1

−1

∫ 1

−1

|u(x)− u(s)|2

|x− s|
dx ds (64)

under the condition

un(x) ⊥
n−1∨
l=0

ul , u0(x) ≡ 1 , (65)

where the orthogonality is with respect to the standard inner product in L2[−1, 1].

We have completed the current discussion of 1D case and now turn to the
higher dimensions.

4. Spectral estimations for the operators Kφ in higher
dimensions

This section is devoted to the recently developed [13, 14, 15] generalization to the
higher dimensions M ≥ 2. Let us make the following important remark [13]:

Remark 6. (Representation of the operator Kφ in RM , M ≥ 2)
Contrary to the 1D case, for any M ≥ 2 the operator (1) can be represented

as the sum of the integral operator and the operator of the multiplication by
the function. Indeed, for M ≥ 2 the integrand contains the weak (integrable)
singularity |x− s|−1 at x = s, so one can rewrite the representation (1) as

Kφ : u(x) 7→ φ(x)

∫
RM

u(s)

|x− s|
dMs+W (x)u(x) , (66)

where
W (x) := −

∫
RM

φ(s)

|x− s|
dMs . (67)

Section 4 is organized as follows. In Sect. 4.1 we discuss the general issues for
the spaces RM , M ≥ 2, under some extra conditions for the functions φ(x) and
the domains suppφ = Ω ⊂ RM , and reduce the corresponding spectral problem
to a countable set of 1D problems. Sect. 4.2 is devoted to the results on the
spectral estimations obtained through the quadratic form approach. In Sects. 4.3
and 4.4 the specific systems in the most physically interesting cases R2 and R3

correspondingly are considered.

4.1. Dimensions M ≥ 2: General scheme, completely admissible domains
and reduction to a countable set of 1D problems

As described above in Sect. 1, the operatorsKφ allow for the physical interpretation
as the operators underlying the processes of the matter relaxation in the attractive
field φ(x) ≥ 0 [13]. We assume that φ(x) is an acceptable function in the sense
od Definition 1 and its support Ω ⊂ RM is an admissible domain in the sense of
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Definition 3. For the restricted to the subspace L2(Ω) operators Kφ, following the
representation (32) we have Kφ = φ ◦K0− (K0φ) and Qφ := 1

2φ ◦Kφ = K0−Vφ ,

where the reference operator K0 corresponds to the homogeneous function φ(x) ≡
1, x ∈ Ω, and Vφ(x) := (K0φ)(x)/(2φ(x)).

However, for M ≥ 2, in general case, complete results in the spectral analysis
of the generalized reference operators K0 are not known [13] (contrary to 1D case
– see Sect. 3.2 above), which prevents the application of the direct methods used
in Sect. 3.3 for the analysis of the operators Kφ. Moreover, the calculations similar
to ones shown under Sect. 3.5 for the quadratic form κφ[u] are not obvious.

Still, some results in this direction can be obtained under specific conditions
discussed below [13]. Namely, let us define the so-called completely admissible
domains:

Definition 4. Compact convex domain Ω ⊂ RM , M = N + 1 ≥ 2 , is called as
the completely admissible domain (or the pseudo-torus) if one can represent Ω as

Ω = T̂N := [0, R)×C1 ×C1 × · · · ×C1︸ ︷︷ ︸
N times

, (68)

where C1 denotes a 1D circle. This means that every point x ∈ Ω can be represented
as

x = {r,Θ} , (69)

where r ∈ [0, R) and Θ := (θ1, θ2, . . . , θN ), θk ∈ [0, 2π), are called as the pseudo-
toroidal coordinates.

Note that in dimension M = 2 (i.e., for N = 1) the pseudo-torus is a ring
T̂1 = {x : L0 < |x| < L}, r = R(L − L0)

−1(|x| − L0). In the degenerated case
L0 = 0 that is the disk T̂1

deg = {x : 0 ≤ |x| < R}, r = |x|. In dimension M = 3

(i.e., for N = 2) the pseudo-torus becomes the torus T̂2 = T2 with the big radius
L and the small radius R = L − L0. In the degenerated case L0 = 0 the pseudo-
torus T̂2

deg is topologically equivalent to a 3D ball. These cases are considered in
Sects. 4.2 and 4.3, respectively.

Further on in the present paper we restrict our consideration to the com-
pletely admissible domains in the sense of Definition 4, Ω = T̂N ⊂ RN+1. In the
pseudo-toroidal coordinates (69) the distance between two points x = {r,Θ}, s =
{ρ,Θ′} ∈ T̂N is

|x− s| =
[
N(r2 + ρ2)− 2 r ρ

N∑
l=1

cos(θ′l − θl)
]1/2

. (70)

The measure dN+1x in terms of the pseudo-toroidal coordinates x = {r,Θ} is

dN+1x = rN dr dθ1 dθ2 · · · dθN . (71)
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As the system of functions
{
eikθ

}
k∈Z forms an orthonormal basis in the space

L2(C
1), the system of functions

{
exp{ikΘ}

}
k∈ZN , where

exp{ikΘ} :=

N∏
l=1

eiklθl , (72)

forms an orthonormal basis in the space L2(C
1 ×C1 × · · · ×C1). Therefore any

function u(x) ∈ L2(T̂
N ), x = {r,Θ}, can be decomposed as

u(x) =
∑
k∈ZN

u[k](r) exp{ikΘ} . (73)

Let us assume that the field φ(x) is pseudo-toroidaly symmetric, i.e., φ(x) =
φ(r). Then the following statement is true (see [13], Theorem 4).

Theorem 9. For any acceptable (in the sense of Definition 1) pseudo-toroidal
symmetric function φ(x) = φ(r) having the completely admissible support (in the
sense of Definition 4) Ω ⊂ RM , M = N + 1 ≥ 2 , i.e., the pseudo torus Ω = T̂N ,
the subspaces

H[k] :=
{
u(x) ∈ L2(Ω) : u(x) = u[k](r) exp{ikΘ}

}
(74)

are invariant subspaces of the operator Kφ , i.e.,

Kφ : H[k] 7→ H[k] , (75)

for all k ∈ ZN .

Proof. The claim was obtained in [13, Theorem 4] by straightforward calculation.
In particular, it was shown in [13] that for any u(x) = u[k](r) exp{ikΘ} ∈ H[k],

(Kφu)(x) = exp{ikΘ}Y [k]
N,R,φ[u(r), r] ∈ H[k] , (76)

where

Y
[k]
N,R,φ[u(r), r] :=

∫ R

0

ρN
∫ 2π

0

· · ·
∫ 2π

0

×
u(r)φ(ρ)− u(ρ)φ(r)

∏N
l=1 cos klϑl[

N(r2 + ρ2)− 2rρ
∑N

m=1 cosϑm

]1/2 dρ dϑ1 · · · dϑN .

(77)

It is convenient to introduce functions

Z
[k]
N (r, ρ) :=

∫ 2π

0

. . .

∫ 2π

0

∏N
l=1 cos klϑl[

N(r2 + ρ2)− 2rρ
∑N

m=1 cosϑm

]1/2 dϑ1 · · · dϑN . (78)

Then the formula (77) can be written as

Y
[k]
N,R,φ[u(r), r] :=

∫ R

0

ρN
[
u(r)φ(ρ)Z

[0]
N (r, ρ)− u(ρ)φ(r)Z

[k]
N (r, ρ)

]
dρ . (79)
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In a sense, the functions Z [k]
N (r, ρ), having a weak (integrable) singularity at r = ρ

play for the operator Kφ in the (N + 1)-dimensional case the role similar to the
singular (but non-integrable) function |x− s|−1 in the 1D case. �

Theorem 9 implies the following

Corollary 3. Under the conditions of Theorem 9 the operators Kφ and Qφ can
be decomposed into the orthogonal sums of partial operators,

Kφ =
∑
k∈ZN

⊕K [k]
φ , Qφ =

∑
k∈ZN

⊕Q[k]
φ , (80)

where the partial operators K
[k]
φ and Q

[k]
φ act in the Hilbert space H[0] as

K [k]
φ : u(r) 7→ Y

[k]
N,R,φ[u(r), r] , Q[k]

φ : u(r) 7→ 1

2φ(r)
Y

[k]
N,R,φ[u(r), r] . (81)

Corollary 3 allows reducing the spectral problems for the operators Kφ and
Qφ to the countable sets of the 1D problems for the partial operators K

[k]
φ and

Q
[k]
φ . That is the subject of the next Subsection.

4.2. Spectral estimations for the operators Kφ and Qφ , corresponding
to an acceptable pseudo-toroidal symmetric functions φ(r) having
completely admissible support Ω = T̂N ⊂ RM

The results described in Sect. 4.1 above give a hint to obtain the spectral es-
timations for the operators Kφ and Qφ similarly to 1D case discussed above in
Sect. 3.5. To do it, we again use the quadratic form approach and further compari-
son with the generalized reference operator K0, corresponding to the homogeneous
field φ(x) ≡ 1 in the domain Ω = T̂N and φ(x) ≡ 0 outside the domain Ω.

Although the exact solution of the spectral problem for the restricted operator
K0 in the (N + 1)-dimensional case is not known, we can provide some spectral
estimations. Due to Corollary 4, the spectrum of the restricted reference operator
K0 is the union of the spectra of the partial operators,

σ(K0) =
⋃

k∈ZN

σ(K [k]
φ ) . (82)

Using the formulae (76), (78), (79) for φ(r) ≡ 1 at r ∈ [0, R), and the
obvious property Z

[k]
N (r, ρ) = Z

[k]
N (ρ, r), in [13] it was shown that the quadratic

form of the reference partial operator K
[k]
0 = 2Q

[k]
0 in the appropriate Hilbert
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space L2([0, R]; rNdr) is

κ[k]
0 [u] := 〈(K [k]

0 u), u〉L2([0,R]; rNdr)

=

∫∫
∆

dr dρ

{[
|u(r)|2 + |u(ρ)|2

]
Z

[0]
N (r, ρ)

−
[
u(ρ) ū(r) + u(r) ū(ρ)

]
Z

[k]
N (r, ρ)

}
= I1[u] + I2[u],

(83)

where we integrate over the triangle ∆ = {(r, ρ) : 0 ≤ ρ ≤ r ≤ R} ⊂ R2. Here

I0; [k]
1 [u] :=

∫∫
∆

dr dρ
[
|u(r)− u(ρ)|2

]
Z

[k]
N (r, ρ) (84)

and

I0; [k]
2 [u] :=

∫∫
∆

dr dρ
[
|u(r)|2 + |u(ρ)|2

](
Z

[0]
N (r, ρ)− Z

[k]
N (r, ρ)

)
. (85)

This allows for the following generalization of Theorem 6.

Theorem 10. For any acceptable function φ(x) = φ(r) with completely admis-
sible support suppφ = TN , the quadratic forms κ[k]

φ [u] of the operators Q
[k]
φ ,

k ∈ ZN are nonnegative, κ[k]
φ [u] ≥ 0, and has the sharp lower boundary m

[k]
φ :=

minu κ[k]
φ [u], achieved with u(x) ≡ φ(r) : κ[k]

φ [φ] = 0.

This theorem was proved in [13] (see Theorem 1 there) through the exploita-
tion of the results shown for the 1D case in Sect. 3.5.

Remark 7. (Attractive and repulsive external fields φ)
Proved non-negativity of the operators Q[k]

φ for non-negative (attractive) ac-
ceptable toroidal-symmetric fields φ(r) means the exponential extinction of the
upper modes (k 6= 0) in time with the Lyapunov coefficients ν[k]n . Physically, this
corresponds to the relaxation of the system to an equilibrium state. Contrary, if
the field φ(r) is repulsive (change φ(r) → −φ(r)), the eigenvalues ν[k]n also change
their sign, so the upper modes increase in time and one will observe a chaotic
evolution of the system. Mixed case (φ(r) is not of a certain sign) demands the
separate investigation.

Using the representation (83), one can consider the spectral estimation for
the operator Q[k]

φ from above. This was done in [13] through the linear change of
variables variables x = 2r/R− 1, which maps the interval [0, R] onto [−1, 1]. The
quadratic form κ[k]

0 [u] can be estimated [13] as

κ[k]
0 [u] = I0; [k]

1 [u] + I0; [k]
2 [u] ,
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where

I0; [k]
1 [u] ≤ (2π)N/2 R2N−1 κ[k]

0 [u] ; I0; [k]
2 [u] ≤ 2

√
2 (2π)N/2 B[k]

N R ||u||20 .

Here

||u||20 :=

∫ R

0

rN |u(r)|2 dr

and

B[k]
N :=

∫ π

0

. . .

∫
1−

∏N
l=1 cos klθl[

N−1
∑N

m=1(1 = cos θm

]1/2 dθ1 · · · dθN < ∞

for all k ∈ ZN . Therefore,

κ[k]
0 [u] ≤ A1(N,R)κ0[u] +A[k]

2 (N,R) ||u||20 , (86)

where

A1(N,R) := (2π)N/2 R2N , A2(N,R) := 4
√
2 (2π)N/2 B[k]

N R .

With the minimal principle for the quadratic forms [1] this estimation leads [13]
to

Lemma 3. The discrete spectrum of the reference operator K0 acting in the Hilbert
space L2(T

N ; rN dr) is formed by the countable set

σd(K0) =
{
µ[k]
n

}k∈ZN

n∈Z (87)

where µ
[k]
n are the eigenvalues of the partial operators K

[k]
0 and are estimated as

µ[k]
n ≤ A1(N,R)µn +A2(N,R) . (88)

In order to get similar spectral estimations for the operatorQφ, corresponding
to an arbitrary pseudo-toroidal symmetric acceptable function φ(x) = φ(r), in [13]
the following estimation was obtained for the effective potential Vφ(r):

|(Vφ u , u)| ≤ A3(N,R;φ) ||u||20 , (89)

where
A3(N,R;φ) := (2π)N/2 RN Aφ ε−2

φ .

Representation [13]

(Vφ u , u) =

∫∫
∆

(ρ r)N Z
[0]
N

[(
1−φ(ρ)/φ(r)

)
|u(r)|2+

(
1−φ(r)/φ(ρ)

)
|u(ρ)|2

]
dρ dr

(90)
together with Corollary 3, Lemma 3, estimate (90), and minimal principle for
quadratic forms [1] lead to the following statement (see [13], Theorem 6):

Theorem 11. For any acceptable pseudo-toroidal symmetric function φ(r), the
discrete spectrum of the corresponding operator Qφ is formed by the countable set

σd(Qφ) = {ν[k]φn }k∈ZN

n∈Z+
, (91)
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where ν
[k], φ
n are the eigenvalues of the partial operator Q

[k]
φ and are estimated as

1

2
µ[k]
n −A3(N,R;φ) ≤ ν[k]φn ≤ 1

2
µ[k]
n +A3(N,R;φ) , (92)

which implies their estimation from above as

ν[k]φn ≤ A1(N,R)µ[k]
n +A[k]

2 (N,R) +A3(N,R;φ) . (93)
Due to condition (5), we immediately have a similar spectral estimation for

the operators Kφ = 2φ ◦ Qφ:
Corollary 4. For any acceptable pseudo-toroidal symmetric function φ(r), the
discrete spectrum of the corresponding operator Kφ is formed by the countable set

σd(Kφ) =
{
τ [k], φn

}k∈ZN

n∈Z+
, (94)

where τ
[k], φ
n are the eigenvalues of the partial operator K

[k]
φ and are estimated as

RAφ µ[k]
n − 2RAφA3(N,R;φ) ≤ τ [k], φn ≤ RAφ µ[k]

n + 2RAφA3(N,R;φ)) , (95)
which implies their estimate from above as

τ [k], φn ≤ 2R
[
A1(N,R)µ[k]

n +A[k]
2 (N,R) +A3(N,R;φ)

]
. (96)

Corollary 4 means that under the conditions of Theorem 11, the discrete
spectrum σd(Kφ) is formed by infinite countable sets of the eigenvalues of the
partial operators K

[k]
φ . They are numerated by multi-index k ∈ ZN and index

n = 0, 1, 2, . . . The asymptotics of these eigenvalues with respect to the index
n → ∞ is determined by the corresponding asymptotics of µn = 2

∑n
j=1 1/j,

which is logarithmic [34]: µn = 2
[
C+lnn+(2n)−1

]
+o(n−1), where C = 0.577 . . .

is the Euler constant.
Using the results shown above, in [13] Theorem 8 was generalized to higher

dimensions as follows
Theorem 12. For any acceptable pseudo-toroidal symmetric function φ(r), the
eigenfunctions u

[k], φ
n (r) and the eigenvalues ν

[k], φ
n can be find through the mini-

mization of the functional

κφ[u] =

∫ R

0

∫ R

0

(r ρ)N

{
|u(r)− u(ρ)|2 Z [k]

N (r, ρ) +
[
|u(r|2 + |uρ)|2

] [
Z

[0]
N (r, ρ)

− Z
[k]
N (r, ρ)

]
− 2

φ(r)− φ(ρ)

φ(r)φ(ρ)

[
|u(r|2 − |uρ)|2

]}
dr dρ

(97)
under the condition

u[k], φ
n (r) ⊥

n−1∨
l=0

; u[k](r), φ
n ≡ δk10 δk20 · · · δkN0 φ(r) . (98)

Here the functions Z
[k]
N (r, ρ) are defined by formula (78).
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Remark 8. (Special functions generated by Z
[k]
N (r, ρ))

The kernels Z [k]
N (r, ρ) generate special functions Ξ[k]

N (z) defined as

Ξ
[k]
N (x) =

1

2πN/2
Z

[k]
N (r, r x) . (99)

The functions Ξ[k]
N (z) were introduced in [13] and further investigated in [28] (for

N = 1) and [30] (for N = 1 and N = 2). The key results are outlined below in
Sect. 5 of the present paper.

Now let us address the results obtained for the specific 2D and 3D domains
Ω in [14] and [15], respectively.

4.3. Planar case and application to the thin film relaxation processes
In [14] the above described technique was applied to the specific case of an accept-
able external field φ(x) having the completely accessible planar support ΩR :=

T̂2
deg ⊂ R2, which is the disc

ΩR = T̂2
deg = {x ∈ R2 : |x| < R}

of radius R. The operator Kφ determines the dynamics of the thin film relaxation
in the external attractive field φ(x) ≥ 0 through the dynamical equation (3).

We restrict our consideration here to the circular symmetric fields φ(x) =

φ(r), r := |x| ∈ [0, R). The function qφ(x) :=
∫ R

0
φ(x) |x− s|−1 d2s then equals

qφ(x) = qφ(r) =

∫ 2π

0

dϑ

∫ ρ

0

φ(ρ) dρ

[1 + y2 − 2y cosϑ]1/2
. (100)

One can see that qφ(r) → 0 at r → ∞ and

qφ(x) ≤ Mφ,R := max
ρ∈[0,R]

φ(ρ)

∫
ΩR

|x− s|−1 d2s ≤ εφ + 2RAφ . (101)

To estimate the upper boundary, let us consider a point x → ∂Ω. As φ(x) is
an acceptable function in the sense of Definition 1, obviously

max
ρ∈[0,R]

φ(ρ) ≤ εφ + 2RAφ .

We introduce a disc Cω(x) ⊂ R2 of radius ω with the center in the point x.
We decompose the domain of integration ΩR in formula (100) into two domains
Ωω

R,1 := ΩR ∩ Cω(x) and Ωω
R,2 := ΩR\Ωω

R,1. Estimating the integrals over Ωω
R,1

and Ωω
R,2 separately, one gets [28]

qφ(s) ≤ ω−1 + ω (εφ + 2RAφ) . (102)

As the parameter ω > 0 is a subject of our choice, in order to minimize the
right-hand side of the inequality (102), we take it as ω = (εφ+2RAφ)

−1/2 and get

qφ(s) ≤ 2 (εφ + 2RAφ)
1/2 . (103)
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Therefore, contrary to 1D case, here the absolute continuous spectrum of the
operator Kφ generated by the function qφ(x) is bounded from above,

σac(Kφ) ⊆ [0,Mφ,R] ; Mφ,R ≤ (εφ + 2RAφ)
1/2 . (104)

We can get the precise expression for the value Mφ,R. The equality (100) can be
written [28] terms of the complete elliptic integral of the first kind K(p) [34, 35, 36]
as

qφ(r) = 4 r2
∫ 1

0

y φ(ry)

[1 + y2]1/2
1− y

1 + y
K

(
2 y1/2

1 + y

)
dy , (105)

where r > R ≥ ρ. Hence

Mφ,R = lim
r→R+0

qφ(r) = 4R2

∫ 1

0

y φ(Ry)

[1 + y2]1/2
1− y

1 + y
K

(
2 y1/2

1 + y

)
dy < ∞ . (106)

The absolute continuous spectrum of the operator Kφ generated by the func-
tion qφ(x) has infinite countable multiplicity in the interval [0,Mφ,R] , as the sim-
ilar to formula (106) estimates are valid for all partial operators K[k]

φ , k ∈ Z.
Indeed, the system under discussion in this Subsection is a particular case of the
systems discussed above in Sect. 4.2. Therefore, the operator Kφ can be presented
as the orthogonal series of the partial operators, Kφ =

∑
k∈Z ⊕K[k]

φ . Note that the
operators K[k]

φ coincide for ±k. This implies

σ(Kφ) =
⋃

k∈Z+

σ(K[k]
φ ) . (107)

All the partial operators q[k]φ act as the operators of the multiplication by the same
function qφ(r) given by the formula (105).

Recalling the results of Sect. 4.2, for the planar system discussed here one gets
[28] the following spectral estimate for eigenvalues τ

[k], φ
n of the partial restricted

operators K [k]
φ :

µ̂
[k]
n − π R2 A2

φ ε−2
φ ≤ τ [k], φn ≤ µ̂[k]

n + π R2 A2
φ ε−2

φ , (108)

where n, k ∈ Z+ ;

0 ≤ µ̂[k]
n ≤ π R (Rµn + 4

√
2N [k]) ; (109)

N [k] :=

∫ π

0

1− cos kθ√
1− cos θ

dθ .

In particular, as N [0] = 0, one gets

−π R2 A2
φ ε−2

φ ≤ τ [0], φn ≤ π R2 µn +A2
φ ε−2

φ .

Let us show an example of the absolutely continuous spectrum similar to
Examples 1–3 above.
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Example 4. (A brunch of absolutely continuous spectrum parametrically going
to R+)

As discussed above, the absolutely continuous spectrum of the operator Kφ

is generated by the image of the function qφ(x) =
∫
RM φ(x)|x − s|−1dMs. There-

fore, one can design function qφ(x) with desirable properties and then reconstruct
function φ(x) inverting the Riesz potential. In case M = 2 the inversion looks like
(see, e.g., [42, 43]):

φ(x) =
1

π
lim
ϵ→0

ϵ−2

∫
R2

F (3/2, 2; 1;−|y|2) qφ(x− ϵy) d2y ,

where F stands for the Gauss hypergeometric function [33]. Taking, e.g., qφ(x) =
a e−ax we get its image equal (0, a) in R2, which generates the absolutely continu-
ous spectrum of infinite multiplicity coinciding with interval (0, a) and thus going
to R+ when a → +∞.

Now we consider a specific relaxation process.

Example 5. (Relaxation process in a plane for dotted-inserted matter)
Let us illustrate the above discussion with the most simple example of the

relaxation of dotted-inserted matter in the homogeneous center-symmetric field

φ(x) = χR(x) (110)

where χR(x) stands for the characteristic function of the disk ΩR, i.e. here the
dynamics is determined by the reference operator K0. We assume that in the past
(t < 0) there was no matter in the system, i.e., U(x; t) ≡ 0 at t < 0. Then, at the
time moment t = 0 one had perturbed the system by dotted adding a portion of
matter in a point p ∈ R2\ΩR, so

U(x; 0) = δ(x− p) . (111)

We consider the evolution of the system (i.e., the perturbation relaxation)
under the dynamical law (2) in the homogeneous field (110) with initial condition
(111). In this case, obviously ε0 = 1 and A0 = 0, so according to formula (104) we
have Mχ,R ≤ 1.

We use the basis formed by the (generalized) eigenfunctions of the opera-
tor K0 to decompose function U(x; 0) with its (generalized) eigenfunctions. This
decomposition looks like

U(x; 0) =
∑
k∈Z

(∑
n≥0

ζ [k]n u[k, 0]
n (x) +

∫ 1

0

ζ [k]ν u[k, 0]
ν (x) dν

)
, (112)

where u[k]
n (x) = ei;kθu

[k]
n (r) are the eigenfunctions and u

[k]
ν (x) = eikθu

[k]
ν (r) are the

generalized eigenfunctions of the partial operators K [k]
0 corresponding to the eigen-

values τ
[k 0]
n and the points of the absolutely continuous spectrum ν ∈ σac(K

[k]
0 )
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respectively. The decomposition coefficients are calculated as the inner products
in the Hilbert space L2(R2):

ζ [k]n =

∫
R2

U(s) ū[k, 0]
n (s) d2s =

1

q0(p)− τ
[k 0]
n

∫
R2

¯
u
[k, 0]
n (s)

|p− s|
d2s ; (113)

ζ [k]ν =

∫
R2

U(s; 0) ū[k, 0]
ν (s) d2s = δ(q0(p)− ν) . (114)

Therefore, the evolution in time of the system considered in this example is

U(x; t) =
∑
k∈Z

∑
n≥0

ζ [k]n u[k, 0]
ν (x) e−τ [k 0]

n t + δ(x− p) e−q0(p)t . (115)

Now let us turn to some specific 3D systems.

4.4. Application to the matter relaxation processes in cylindric
3D domains

We consider cylindric domain

ΩR,H = {x = (x1, x2, x3) ∈ R3 : x2
1 + x2

2 < R2,−H < x3 < H}

and introduce the cylindric coordinates

(r, θ, h) : x1 = r cos θ, x2 = r sin θ, −H ≤ h := x3 ≤ H,

where (x1, x2, x3) are Cartesian coordinates in R3. In this case the upper boundary
of the absolute continuous spectrum of the corresponding operator Kφ generated
by the image of the function qφ(x) for any acceptable function φ(x) with the
support suppφ = ΩR,H (compare to (104) is estimated as (see [15, Theorem 1])

mΩR,H
φ ≤ 3

2
(2π)1/3

(
εφ + 2Aφ

√
R2 +H2

)1/3
.

In particular, for φ(x) = χΩR,H
(x) , m

ΩR,H

0 ≤ 3
2 (2π)

1/3.
Despite ΩR,H is not a pseudo torus, for the functions φ(x) having the spe-

cific symmetry, the partial analysis of the operators Kφ is possible and the cor-
responding spectral estimates can be obtained [15]. We assume that φ(x) is an
axial-symmetric and homogeneous with respect to the coordinate h function, i.e.,
φ(x) = φ(r). In this case [15] the operator Kφ is decomposed as

Kφ =
∑
l,n∈Z

⊕K[l,k]
φ ,

where the partial operators K[l,k]
φ act from H[l,k] := {u(x) = eiπlh/H eikθ u(r)} into

H[l,k] as
K[l,k]

φ : eiπlh/H eikθ u(r) 7→

eiπlh/H eikθ r

∫∫ H

−H

dh

∫ 1

0

[
Φ

[0,0]
h/r (y)u(r)φ(rρ)− Φ

[l,k]
h/r (y)u(rρ)φ(r)

]
dy .
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Here

Φ[l,k]
g (y) :=

∫ 2π

0

cos(πlrg/H) cos(ikθ)

[1 + y2 − 2y cos θ + g2]1/2
dθ .

One can note that the partial operators K[l,k]
φ generate special functions

Ψ[k]
g (z) :=

∫ 2π

0

cos(ikθ)

[1 + z2 − 2z cos θ + g2]1/2
dθ .

These functions are related to the functions Ξ
[k]
1 (z) defined by formula (99) and

studied below in Sect. 5.2 as

Ψ
[k]
0 (z) = Ξ

[k]
1 (z) .

4.5. Application to the matter relaxation processes in and toroidal 3D
domains

Now we will briefly mention the results [15] for 3D toroidal domains Ω = TR,Y :=
{x = (r, ϕ, θ) : 0 ≤ r < R, 0 ≤ ϕ < 2π, 0 ≤ θ < 2π}, and Cartesian coordinates
are x1 = r cos θ + y cosϕ , x2 = r cos θ + y cosϕ , x3 = r sin θ ; 0 ≤ y < Y . We
assume that φ(x) is a so called biangular-symmetric function, i.e., symmetric with
respect to the angular coordinates ϕ and θ: φ(x) = φ(r). We also assume that the
matter flow cannot penetrate through the surface of domain Ω = TR,Y and that
L � R. In this case the physical distance |x− s| between points x = (r, ϕ, θ) and
s = (ρ, ϕ′, θ′) in Ω = TR,Y is naturally replaced by

∆(x, s) := κ(|θ − θ′|) +
[
r2 + ρ2 − 2 r ρ cos(ϕ− ϕ′)

]−1/2

, (116)

where

κ(α) :=

{
α , if 0 ≤ α ≤ π ;

2π − α , if π ≤ α ≤ 2π .

So, we consider the operator

K̃φ : u(x) 7→
∫
R3

(
u(xφ(s)− u(sφ(x) (x, s)

∆(x, s)
d3s . (117)

In this case the following statements are valid (see [15]: Theorem 3, Lemma 1,
Lemma 2 and Theorem 4).

Theorem 13. For any acceptable biangular-symmetric field φ(x) = φ(r) having
the toroidal support suppφ = TR,Y , the subspaces

H[l;m] :=
{
u(x) ∈ L2(R3 : u(x) := eilθ eimϕ u(r)

}
; l,m ∈ Z

are invariant subspaces of the operator K̃φ, i.e., K̃φ : H[l;m] 7→ H[l;m], so K̃φ =∑
l,m∈Z ⊕K̃[l;m]

φ and, consequently,

σ(K̃φ) =
⋃

l,m∈Z

σ
(
K̃[l;m]

φ

)
.
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The partial operators K̃[l;m]
φ act in L2[0, R] as

K̃[l;m]
φ : u(r) 7→

∫ R

0

(
u(r)φ(s) Λ0,0(r, ρ)− u(s)φ(x) Λl,m(r, ρ)

)
dρ , (118)

where the kernels Λl,m(r, ρ) are

Λl,m(r, ρ) = 4L

∫ π

0

dθ cos θ

∫ π

0

dϕ cosϕ
[
Lϕ+

(
r2+ρ2−2 r ρ cosϕ

)]−1/2

. (119)

Theorem 14 reduces the spectral problem for the operators K̃φ to the count-
able set of the spectral problem for the 1D partial operators K̃[l;m]

φ .

Theorem 14. For any acceptable biangular-symmetric field φ(x) = φ(r) having
the toroidal support suppφ = TR,Y , the spectrum of the corresponding operators
σ(K̃φ) is discrete and non-negative. Its discrete spectrum σd(K̃φ) is given by the
following countable set of eigenvalues:

σd(K̃φ) =
{
ν[l,m]
n, φ

}l,m∈Z
n∈Z+

, (120)

where ν
[l,m]
n, φ are the eigenvalues of the partial operators K̃[l;m]

φ and obey the follow-
ing estimates:

0 ≤ ν[l,m]
n, φ ≤

(
εφ + 2LRAφ

) [
LR5µn + Si(mπ/2) 8π2RAφε

−1
φ

]
. (121)

In particular, for the stepwise-homogeneous field φ(x) ≡ χTR,Y
(x), Theo-

rem 14 implies
0 ≤ ν

[l,m]
n, 0 ≤

[
LR5µn + Si(mπ/2)

]
.

5. New class of special functions generated by the operators
Kφ in higher dimensions

This section is devoted to the interesting side results manifesting deep links of
the problems under consideration with other fields of mathematics. Namely, we
address here the new class of special functions Ξ[k]

N (z), generated by the kernels of
the operators Kφ in higher dimensions M = N + 1 ≥ 2 [13, 28, 30] (see Remark 8
in Sect. 4.2).

This section is organized as follows. In Sect. 5.1 we provide some general
remarks on the functions Ξ

[k]
N . Sections 5.2 and 5.3 are devoted to the particu-

lar cases N = 1 and N = 2, respectively. We have expressed functions Ξ
[k]
1 and

Ξ
[k]
2 in terms of the Gauss hypergeometric functions 2F1 and Clausen’s general-

ized hypergeometric functions 3F2, respectively. We suspect that the higher rank
(N ≥ 3) functions Ξ[k]

N (z) could be expressed in terms of (probably multivariate)
hypergeometric functions. We also present the differential equations satisfied by
these Ξ-functions. A study of the higher rank Ξ-functions M ≥ 4 has a rather
mathematical interest and will be performed later.
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5.1. General remarks on the special functions Ξ
[k]
N (z))

We define [28]

Ξ
[k]
N (z) :=

∫ 2π

0

dθ1

∫ 2π

0

dθ2· · ·
∫ 2π

0

dθN cos(klθl)
[
1+ z2−2 z N−1

N∑
l=1

cos θl
]−1/2

,

(122)
where k := {k1, k2, . . . , kN} ∈ ZN

+ .
Let us note that [13] introducing function

FN (x, Θ) :=
[
1 + x2 − 2xN−1

N∑
l=1

cos θl
]−1/2

,

we have
FN (x, Θ) =

∑
k∈ZN

+

Ξ
[k]
N (x) cos klθl . (123)

Actually, functions Ξ
[k]
N (x) are the coefficients of the decomposition of FN (x, Θ)

in Fourier series with respect to variable Θ ∈ [0, π] × ZN
+ . Below we consider the

cases N = 1 and N = 2 (in Sects. 5.2 and 5.3, respectively).

5.2. Rank-1 special functions Ξ
[k]
1 (z)

In this subsection we discuss the simplest case of rank-1 functions Ξ[k]
1 (z), mostly

following the results of [13, 28, 30]. These functions are defined by formula (99)
with N = 1, where k ∈ Z.

In papers [13, 28] a simplified notation ξk(x) := Ξ
[k]
1 (x) was used for the case

N = 1. Here we follow [30] and keep the universal notation Ξ
[k]
N for all N ≥ 1 to

avoid inconveniences.
Representation (133) implies (taking θ = 0, θ = π and θ = π/2)

1

1∓ x
=

∞∑
k=0

(±1)k Ξ
[k]
1 (x) ;

1√
1 + x2

=
∞∑
k=0

(−1)k Ξ
[k]
1 (x) . (124)

For any function G(θ) decomposable as

G(θ) =
∞∑
k=0

G[k] cos k θ ; G[k] =
1

π

∫ π

0

G(θ) cos k θ dθ

(with obvious generalization for dimensions N ≥ 2) the following relation is valid:
∞∑
k=0

G[k] Ξ
[k]
1 (x) =

∫ π

0

F1(x, θ)G(θ) dθ . (125)

The inverse Fourier representation gives

Ξ
[k]
1 (x) =

∫ π

0

F1(x, θ) cos k θ dθ (126)
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For the case N = 1 the formulae (122) and (136) imply

1√
1 + x2 − 2x cos θ

=

∞∑
k=0

Ξ
[k]
1 (x) cos k θ . (127)

Comparing with the generating function for Legendre polynomials Pk(z) [31, 34]:

1√
1 + x2 − 2x z

=

∞∑
k=0

xk Pk(z)

we get the following decomposition of functions Ξ[k]
1 (x) into the power series:

Ξ
[k]
1 (x) =

∞∑
l=0

τ
[k]
l xl , (128)

where
τ
[k]
l :=

1

π

∫ π

0

Pl(cos θ) cos k θ dθ . (129)

Given representation [31, 34]

Pl(cos θ) =
(2l − 1)!!

2 l−1 l!

∞∑
m=0

αl,m cos(l − 2m) θ ,

αl,m :=
(2m− 1)!!

m!

l(l − 1)(l − 2) · · · (l −m+ 1)

(2l − 1)(2l − 3)(2l − 5) · · · (2l − 2m+ 1)
,

one can calculate [13]

τ
[k]
l =

{
0 , if l + k is odd,
(2l − 1)!!

2l l!

(
αl, l+k

2
+ α

l,
|l−k|

2

)
, if l + k is even .

(130)

Representations (138), (139) together with the well-known relation [31, 34]
for the Legendre polynomials

(l + 1)Pl+1(z) + l Pl−1(z) = (2l + 1) z Pl(z)

give the following formula:[
x

d

dx
+

1

2

](
Ξ
[k]
1 (x) + Ξ

[k+2]
1

)
=

[(
1 + x2

) d

dx
+ x

]
Ξ
[k+1]
1 (x) . (131)

The corresponding calculations are straightforward but boring, and will be pub-
lished elsewhere.

Choosing in Eq. (127) cos θ = x/2, we get a decomposition of unit:

1 =

∞∑
k=0

Ξ
[k]
1 (2 cos θ) cos k θ ; π/3 < θ ≤ π/2 . (132)

Similarly, choosing cos θ = (2x)−1, we get

2 cos θ =
∞∑
k=0

Ξ
[k]
1

( 1

2 cos θ

)
cos k θ ; 0 ≤ θ < π/3 . (133)
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For θ = 0, this implies another decomposition of unit:

1 =
1

2

∞∑
k=0

Ξ
[k]
1

(
1/2
)
. (134)

Note that [28]

Ξ
[0]
1 (x) =

1

1 + x
K (135)

and
Ξ
[1]
1 (x) =

1

1 + x
K

(
2
√
x

1 + x

)
− 1 + x

2x

dE(t)

dt

∣∣∣∣
t= 2

√
x

1+x

, (136)

where K(x) and E(x) stand for the complete elliptic integrals of the first and
second kind [34], respectively.

Writing Pn for the nth Legendre polynomial [31, 18.7.9], we have the following
generating function ([31, 18.12.11], [33, (2.5.42)]:

1√
1 + x2 − 2xz

=
∞∑

n=0

Pn(z)x
n. (137)

Substituting then leads to

Ξ
[k]
1 (x) =

∞∑
n=0

τ [k]n xn

with
τ [k]n =

1

π

∫ π

0

Pn(cos(θ)) cos(kθ)dθ.

(see [28] for details). On the other hand, according to λ = 1/2 case of [31, 18.5.11],

Pn(cos(θ)) =

n∑
j=0

(1/2)j(1/2)n−j

j!(n− j)!
cos((n− 2j)θ) ,

where (a)k = Γ(a+ k)/Γ(a) is the rising factorial. Hence, we have

τ [k]n =
1

π

∫ π

0

Pn(cos(θ)) cos(kθ)dθ

=
1

π

n∑
j=0

(1/2)j(1/2)n−j

j!(n− j)!

∫ π

0

cos((n− 2j)θ) cos(kθ)dθ.

In view of [31, 4.26.10-11]

∫ π

0

cos((n− 2j)θ) cos(kθ)dθ =


0, n− 2j 6= k,

π/2, n− 2j = k 6= 0,

π, n− 2j = k = 0.

(138)

After elementary calculation this amounts to

τ [k]n =
1

2

(1/2)(n−k)/2(1/2)(n+k)/2

((n− k)/)!((n+ k)/2)!
,
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where n ≥ k and n− k is even. If n− k is odd τ
[k]
n = 0. Hence, changing n− k to

2m we get:

Ξ
[k]
1 (x) =

1

2

∞∑
n=k

(1/2)(n−k)/2(1/2)(n+k)/2

((n− k)/2)!((n+ k)/2)!
xn

=
1

2

∞∑
m=0

(1/2)m(1/2)m+k

m!(m+ k)!
x2m+k

=
(1/2)kx

k

2k!

∞∑
m=0

(1/2)m(1/2 + k)m
(1 + k)mm!

x2m

=
(1/2)kx

k

2k!
2F1(1/2, 1/2 + k; k + 1;x2),

(139)

where 2F1 is the Gauss hypergeometric function whose main properties can be
found, e.g., in [31, Chap. 15] or [32, Chap. 8]. In the second equality we have used
the easily verifiable identity (a)m+k = (a)k(a+ k)m was used.

One can obtain the recurrent relation for the functions Ξ
[k]
1 [28]. The result

is

Theorem 15. The functions Ξ
[k]
1 (x) obey the functional relation[

x
d

dx
+

1

2

](
Ξ
[k]
1 (x) + Ξ

[k+2]
1 (x)

)
=

[(
1 + x2

) d

dx
+ x

]
Ξ
[k+1]
1 (x) . (140)

The functional relations (140) allow for another direct expression of the func-
tions Ξ[k+1]

1 (x) through Ξ
[k]
1 (x) and Ξ

[k+2]
1 (x). Namely [28]

Corollary 5. The functions Ξ
[k]
1 (x) obey the functional relation

Ξ
[k+1]
1 (x) =

Ξ
[k]
1 (x) + Ξ

[k+2]
1 (x)

1 + x2
− 1

2
√
1 + x2

−
∫ 1

−1

1− x′2

(1 + x′2)3/2

[
Ξ
[k]
1 (x′) + Ξ

[k+2]
1 (x′)

]
dx′ .

(141)

The following simple result [30] is valid.

Lemma 4. If a function G(z) obeys the second order differential equation

Q2(z)D
2G(z) +Q1(z)DG(z) +Q0(z)G(z) = 0, (142)

where D = d
dz and Qm(z) are functional parameters, then the function

H(z) := CzαG(z) , C = Const,

obeys the second order differential equation

P2(z)D
2H(z) + P1(z)DH(z) + P0(z)H(z) = 0, (143)
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with

P2(z) ≡ Q2(z) , P1(z) ≡ Q1(z)− 2αz−1Q2(z),

P0(z) ≡ Q0(z)− αz−1Q1(z) + α(α+ 1)z−2Q2(z).

Proof. The claim follows from substituting G(z) = C−1z−αH(z) into Eq. (142),
trivial calculations and multiplication of the result by zα [30]. �

Representation (139) expresses the functions Ξ
[k]
1 (x) in terms of the Gauss

hypergeometric function 2F1, which determines its analytic and asymptotic (in the
neighborhood of x = 1 in particular) properties. We take z = x2. The function
2F1 from (139) satisfies the hypergeometric differential equation (see [32, 8.23],
[31, 15.10.1], [39, 2.1(1)] or [33, (2.1.6)])[
z(1− z)D2 +

(
k+ 1− (k+ 2)z

)
D−

(
1/4 + k/2

)]
2F1 (1/2, 1/2 + k; k + 1; z) = 0 .

Now we use Lemma 4 with G(z) ≡ Ξ
[k]
1 (

√
z), C = (1/2)k/(2k!), Q2(z) ≡ z(1− z),

Q1(z) ≡ k + 1− (k + 2)z, Q0 ≡ 1/4 + k/2, α = k/2. As z = x2, D = d
dz = 1

2x
d
dx

and D2 = (4x2)−1 d2

dx2 − (4x3)−1 d
dx . This gives the following result [30]:

Theorem 16. Functions Ξ
[k]
1 (x) obey the second-order differential equation[

x2(1− x2)
d2

dx2
+ x(1− 3x)

d

dx
+ x2(k2 − 1)− k2

]
Ξ
[k]
1 (x) = 0. (144)

To continue the functions Ξ
[k]
1 (x) to the complex plane x → z ∈ C one

can use the representation (139) expressing these functions in terms of the Gauss
hypergeometric function 2F1.

Following Fuchs’ terminology [33, Sect. 1.1], the point x of equation (144) is
called singular if the functional coefficient at d2/dx2 vanishes at this point, and
(in our case) point x = ∞. Hence, for the functions Ξ

[k]
1 (z) there are three such

points: z = 0, z = 1 and z = ∞. According to [33, Chap. 2], all these singular
points are regular.

5.3. Rank-2 special functions Ξ
[k]
2 (z)

In this subsection we discuss the functions Ξ[k]
2 (z), mostly following the results of

[30]. These functions are defined by formula (99) with N = 2, where k = (k1, k2) ∈
Z2. The main result is the following theorem [30].
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Theorem 17. Suppose 0 ≤ k1 ≤ k2 are integers, k = (k1, k2). Put s = b(k2 −
k1)/2c. Then for x ∈ R

Ξ
[k]
2 (x) =

π2(1/2)k1+k2
(2x)k1+k2

4k1+k2+1k1!k2!

·
s∑

j=0

((k1 − k2)/2)j((k1 − k2 + 1)/2)j(k1 + k2 + 1/2)2jx
2j

(k1 + 1)j(k2 + 1)j(k1 + k2 + 1)jj!

· 3F2

(
1/2 + j, k1 + 1/2 + j, k1 + k2 + 1/2 + 2j
k2 + 1 + j, k1 + k2 + 1 + j

− x2

)
, (145)

where 3F2 denotes Clausen’s generalized hypergeometric function [31, Chap. 16].
Note that (0)0 = 1 in the above formula.

Corollary 6. Under the assumption of Theorem 17 suppose in addition that k2−
k1 ≤ 1. Then

Ξ
[k]
2 (x) =

π2(1/2)k1+k2(2x)
k1+k2

4k1+k2+1k1!k2!
3F2

(
1/2, k1 + 1/2, k1 + k2 + 1/2
k2 + 1, k1 + k2 + 1

− x2

)
.

(146)

The proof of Theorem 17 is rather technical and is based on the following
key lemma.

Lemma 5. For given non-negative integers l, k1, k2 define

Al(k1, k2) :=

∫∫
0≤θ1,θ2≤π

(cos(θ1) + cos(θ2))
l cos(k1θ1) cos(k2θ2)dθ1dθ2. (147)

Then

Al(k1, k2) =



0, l 6≡ k1 + k2 (mod 2) or l < k1 + k2,

π2

2l

(
k1 + k2

k1

)
(k1 + k2 + 1)22N

(k1 + 1)N (k2 + 1)N (k1 + k2 + 1)NN !
,

l ≡ k1 + k2 (mod 2) and l ≥ k1 + k2,

(148)

where N = (l − k1 − k2)/2.

Lemma 5 was proved in [30] through an application of Zeiberger’s algorithm
[38, section 3.11] (using, for instance, Fast Zeilberger Package by Peter Paule and
Markus Schorn [41]).

To continue the functions Ξ
[k]
2 (x) to the complex plane x → z ∈ C one can

use the representation (145) expressing these functions in terms of the Clausen’s
generalized hypergeometric function 3F2. Note, that contrary to the case N = 1,
where the singular points of the function Ξ

[k]
1 (z) are real (z = ±1, for N = 2 the

singular points of the function Ξ
[k]
2 (z) are z = ±i.

The following result, similar to Theorem 16, is valid [30]:
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Theorem 18. For k = (k1, k2) such that k2 − k1 ≤ 1, functions Ξ
[k]
2 (x) obey the

third-order differential equation[
x3(1− x2)

d3

dx3
+ x2

(
(k1 − k2 + 6)(x2 − 1) + 9

) d2

dx2

− x
(
(k1 + k2)

2(x2 + 1) + (k2 − k1 − 7/3)(3x2 − 1)− 10/3
) d

dx

+ x2
(
(k1 + k2)

2 − 1) + (k1 − k2)(k1 + k2)
2

]
Ξ
[k]
2 (x) = 0 .

(149)

Proof. The proof provided in [30] follows from the straightforward calculation and
is based on the equation [40][
T (T + b1 − 1)(T + b2 − 1)− z(T + a1)(T + a2)(T + a3)

]
3F2

(
a1, a2, a3
b1, b2

z

)
= 0 ,

where the operator T is defined by

T := z
d

dz
.

Let us note, that for the “lowest mode”, i.e., in case k1 = k2 = 0, Theorem
18 implies[

x3(1−x2)
d3

dx3
+x2

(
6(x2−1)+9

) d2

dx2
+
x

3

(
7(3x2−1)+10

) d

dx
+x2

]
Ξ
[0]
2 (x) = 0 . �

6. Links to other fields of mathematics
In this section we consider links of operators under investigation with some other
fields of mathematics (infinite Jacobi matrices with unbounded entries, maximin-
imal principle and spectral estimations, inverse problems).

6.1. Infinite Jacobi matrices with unbounded entries
In 1D case one can decompose solutions of the spectral problemKφu = λu through
Legendre polynomials

u(x) =
N∑

k=0

ukpk(x) (150)

and rewrite the spectral problem in lk, so that

uk ≡ Bkn =
k∑

m=0

uk
n; uk

n =
n∑

k=0

µk −
∫ 1

−1

pk(s)pn(s)

|x− s|
ds . (151)

Let us consider the simplest case φ(x) = α0p0(x) + α1p1(x). In this case

Bkk = α0µk ; Bk±1k = α1

∫ 1

−1

∫ 1

−1

pk(s)pn(s)

|x− s|
dsdx , (152)
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so diagµk − {Bkn} is a 3-diagonal Jacobi matrix with unbounded entries.

6.2. Maximinimal principle and spectral estimation
As shown above, under the conditions of Theorem 4 the operator Kφ is semi-
bounded from below, has purely discrete spectrum, and is selfadjoint in the Hilbert
space L2([−1, 1], dx/φ(x)). Due to the maximinimal principle [1, 2], the nth eigen-
value of the operator Kφ can be calculated as follows:

τφn = max
Φn⊂Dφ

inf
u∈Φn,IuIφ=1

〈Kφu, u〉φ , (153)

where dimΦn = n. The operator K0 is also semibounded from below, has purely
discrete spectrum, and is selfadjoint in the Hilbert space L2[−1, 1]. Thus, due to
the maximinimal principle its eigenvalues µn = 2

∑n
j=0 j

−1 are

µn = max
Φn⊂D0

inf
u∈Φn,IuIφ=1

(K0u, u) . (154)

Under the conditions of Theorem 4, the domains Dφ and D0 of the operators
K0 and Kφ, respectively, coincide: Dφ = D0. This allows us to get the following
estimate for for the eigenvalues of the operator Kφ (see [10], Sect. 3.5):

µn min
x∈[−1,1]

φ(x)− max
x∈[−1,1]

|(K0φ)(x)| ≤ τn ≤ µn max
x∈[−1,1]

φ(x) + max
x∈[−1,1]

|(K0φ)(x)|.

(155)
Due to the conditions (5), (6), the following estimate can be specified:

εφµn − 2Aφ ≤ τφn ≤ (εφ + 2Aφ)µn + 2Aφ . (156)

7. Inverse problems (reconstruction of the external field
φ(x) through the spectrum of the operator Kφ) in 1D case

In Sect. 4 above we considered the inverse problems on graphs. However, this
problem an be generalized for any admissible domains in R. Namely, the function
f(x) is expressed through the Riesz potential [76], so one an use the following
formula:

Iα = f ∗ Tα =
1

cα

∫
R

f(s)

|x− s|N−α
ds , (157)

where cα ≡ π1/22α Γ(α/2)
Γ(N−α)/2) .

Taking α = N − 1, one gets

IN−1 =
1

cN−1

∫
R

f(s)

|x− s|
ds . (158)

In the same manner one can reconstruct the external field φ(x) through the
spectrum of the operator Kφ. Indeed, given function qφ(x) from formula (158) one
gets

φ(x) =

∫
R

qφ(s)

|x− s|
ds . (159)
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As an example, let us consider the simplest case when

qφ(x) = qac(x) +
∑
n

γnδ(x− λn),

where qac(x) is an absolutely-continuous function and singularities at x = λn are
responsible for the discrete spectrum of the operator Kφ located in the points
x = λn. As an example,we consider φ(x) = e−βx. Using formula (159), we get the
representation

φ(x) =
1− x

β
e−βx +

∑
n

γn
x− λn

.

The operators Kφ in quasi-1D structures, i.e., graphs, were considered in
[29]. Quantum graphs have been the subject of numerous investigations address-
ing various aspects [50]–[72]. Mostly Schrödinger operators in the graphs have
been studied. There graphs were used as quasi-1D structures to investigate the
dynamics of the corresponding matter relaxation processes defined by the opera-
tor Kφ given by the representation (5) with the domain Ω being a (compact) graph
G. In [29] the operators Kφ were considered in the graphs G of specific type. A
set of consequent simplifications was introduced and the overview of the corre-
sponding spectral results was provided. Below we formulate the inverse problem
for integral-difference operators.

Let us formulate the inverse problem for integral-difference operators un-
derlying the matter relaxation processes in general. In quantum scattering this
problem reads as the reconstruction of the potential given the scattering data [73].
For integral-difference operators Kφ the inverse problem is to reconstruct the field
φ given the physically measurable data from the corresponding matter relaxation
processes.

Namely, let U(x, t) be the matter density in the spatial point x ∈ RN at the
time moment t ≥ 0. We formulate the inverse problem as follows.

Definition 5. The inverse problem for the operator Kφ is to find the field φ(x),
x ∈ Ω ⊂ RN given the matter density U(x, 0) and U(x, t0) at some time t0 > 0.

Actually, the problem goes to the inversion of the Riesz potential operator
(see, e.g., [74]). Namely, in formula (7.21) of [74] one can take α = N − 1 and thus
invert the operator

f(x) := Jφ(x) =

∫
RN

φ(s)

|x− s|
dNs (160)

as
φ(x) = J−1

φ (x)

=
Γ(1/2)

2N−1πN/2Γ((N − 1)/2)

· lim
ϵ→0

∫
RN

[
1

(|y|2 + ϵ2)N−1/2
− N + 1

N − 1

ϵ

(|y|2 + ϵ2)N+1/2

]
f(x− y) dNy .

(161)
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The latter formula is sufficient for any N ≥ 2, as due to Eq. (66) the inversion of
the operator Kφ looks like

φ(x) =
1

u(x)
J−1
φ

[
1−

∫
RN

u(x)

|x− s|
1

u(x)
dNs

]−1

J−1
φ Kφu . (162)

Therefore, if we know the distribution of the matter density U(x, t0) at the time
moment t0 ≥ 0, we can take u(x) = U(x, t0) = exp{−t0}U(x, 0) and apply the
previous formula.

Usually the inverse problems are considered for Schrödinger operators [50]–
[75]. Here we turn to the inverse problems for operator Kφ, i.e., to the recon-
struction of the external field φ(x) through some observable data, and apply it to
simple graphs [50]–[72]. In our previous paper we [29] we have considered compact
graphs G with finite number a of the brunches. Without loss of generality, using
a simple change of variables such graphs can be represented as

G =

a⋃
l=1

[−1, 1], l = 1, 2, 3, . . . , a, a ≥ 1 . (163)

The operators Kφ in the graph G are defined as

K ĝ
φ̂ =

a∑
k=1

a∑
l=1

⊕K [kl]
φl

, (164)

where φ̂ := {φl(xl)}al=1 and ĝ := {gkl}ak,l=1. Without loss of generality we can
assume that for all l = 1, 2, . . . , a the copies of the interval [−1, 1] 3 xl intersect in
one common point x1 = x2 = x3 = xl = · · · = xa = 0. In this point matter flows
from lth interval [−1, 1] 3 xl to kth interval [−1, 1] 3 xk and vice versa can take
place.

The trivial case a = 2 is just the situation of interval x ∈ [−1, 1]. As shown
in [6, 10], in this case the operator Kφ can be represented as

Kφ = φ ◦K0 − (K0φ) , (165)

where φ and (K0φ) stand for the operators of the multiplication by the corre-
sponding functions. The operator K0 is exactly solvable [6, 10]. Its eigenvalues
are

µ0 = 0, µn =
n∑

j=1

j−1 , n ≥ 1 ,

and the corresponding eigenfunctions are Legendre polynomials pn(x). Represen-
tation (165) allows for the following approach.

The transition intensity is determined by the matrix elements of a×a matrix
ĝ, such that gkl > 0 if k 6= l and gll = 0 ∀l = 1, 2, 3, . . . , a. This generates additional
matter incoming and outgoing processes. Namely, if a ≥ 2 for any l = 1, 2, 3, . . . , a



492 Yu.B. Melnikov and I.V. Turuntaeva

these leads to the additional term B[l] in the operator K [kl]
φl given by

B[l] : ul(xl) 7→
a∑

k=1

gkl
ul(xl)φl(0)− ul(0)φl(xl)

|xl|
, (166)

which leads to the representation

K [kl]
φl

= Kφl
+B[l] . (167)

For the domain under consideration ul(xl) ∈ C1[−1, 1] and acceptable func-
tions φl(xl) ∈ C1[−1, 1] every term in the right-hand side of the representation
(16) is obviously finite. Note, that if a = 1, i.e., the graph G = [−1, 1] is triv-
ial, the term B[1] disappears and one just gets the original operator K [11]

φl = Kφ1

introduced and considered in [6]–[10].
There are several possible steps to simplify the operators B[l] given by rep-

resentation (16). Namely,
(S1) All functions φl(xl) are assumed to be identical, i.e., φl(xl) ≡ φ(xl) ∀l =

1, 2, 3, . . . , a. Then for the operators B[l] we have

B[l] : ul(xl) 7→
a∑

k=1

gkl
ul(xl)φ(0)− ul(0)φ(xl)

|xl|
. (168)

(S2) All transition coefficients are similar, i.e., gkl = g > 0 ∀l 6= k, l, k = l =
1, 2, 3, . . . , a, and gll = 0 ∀l = 1, 2, 3, . . . , a. Then, assuming simultaneously
(S1) and (S2), we get

B[l] : ul(xl) 7→ g a
ul(xl)φ(0)− ul(0)φ(xl)

|xl|
. (169)

(S3) Functional parameter φ(s) ≡ 1 is trivial.
Assuming simultaneously (S1)–(S3), one gets

B[l] : ul(xl) 7→ g a
ul(xl)− ul(0)

|xl|
. (170)

Therefore, under the simplifying assumptions (S1)–(S3), the operator K [kl]
φl turns

into
K

[kl]
0 : u(x) 7→ (K0u)(x) + g a

u(x)− u(0)

|x|
, (171)

where (K0u)(x) =
∫ 1

−1
u(x)−u(s)

|x−s| ds.
Under the simplifying assumptions (S1)–(S3), let us consider the spectral

problem for the operator K [kl]
0 (

K
[kl]
0 f

)
(x) = λf(x) . (172)

Representing f(x) through the normalized Legendre polynomials pn(x)

f(x) =
∑
n≥0

fn pn(x) , (173)
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by straightforward calculation, one gets

µm fm + g a
∑
n≥0

γmn fn = λfm , (174)

where
γmn :=

∫ 1

−1

pn(s)− pn(0)

|s|
pm(s) ds . (175)

Using integral inequalities [42], we have

0 ≤ |γmn|2 ≤
∫ 1

−1

∣∣∣∣pn(s)− pn(0)

s

∣∣∣∣2 ds = 2

∣∣∣∣ ddx pn(x)

∣∣∣∣2
x=0

. (176)

As (see, e.g., [45]) ∣∣∣∣ dds pn(s)

∣∣∣∣2
s=0

=
1√
2
, (177)

we have −1 ≤ γmn ≤ 1.
Therefore, every eigenvalue µm of the operator K0 (see Theorem 1) generates

the interval [µm− 1, µm+1] where the eigenvalues λν of the operator K [kl]
0 can be

located, i.e., for any m ≥ 0 there can exist the eigenvalue

σd

(
K

[kl]
0

)
3 λν ∈ [−ga, ga]

∞⋃
m=2

[
2ga

m∑
j=2

1

j
, 2ga + 2ga

m∑
j=2

1

j

]
. (178)

The eigenfunctions fν(x) corresponding to the eigenvalues λν are given by
the Legendre functions of the first and the second kind [45],

fν(x) = ων Pν(x) + ω̃ν Qν(x) (179)
with arbitrary constants ων and ω̃ν ;

Pν(x) ≡ F
(
−ν, ν + 1; 1;

1− x

2

)
; (180)

Qν(x) ≡
Γ(ν + 1)Γ(1/2)

2ν + 1Γ(3/2)
x−ν−1 F

(
ν + 2

2
,
ν + 1

2
;
ν + 3

2
;
1

x2

)
, (181)

where

F
(
κ1,κ2;κ3; ξ

)
= 1 +

κ1 · κ2

κ3 · 1
ξ +

κ1 · (κ1 + 1) · κ2 · (κ2 + 1)

κ3 · (κ3 + 1) · 1 · 2
ξ2

+
κ1 · (κ1 + 1) · (κ1 + 2) · κ2 · (κ2 + 1) · (κ2 + 2

κ3 · (κ3 + 1) · (κ3 + 2) · 1 · 2 · 3
ξ3 + · · ·

stands for the Gauss hypergeometric function [45].
The above discussion can be formulated as

Theorem 19. Under the simplifying conditions (S1)–(S3) every eigenvalue µm of
the operator K0 generates the interval [µm−1, µm+1] where the eigenvalues λν of
the operator K [kl]

0 can be located, i.e., for any m ≥ 0 there can exist the eigenvalue
λν ∈ [µm − 1, µm + 1] . (182)
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The corresponding eigenfunctions fν(x) are given by formula (179).

8. Conclusions and further tasks
The present paper provides the mathematical results obtained since 1997 in the
spectral analysis of integral-difference operators defined by formula (1), and out-
lines their so far known physical applications. Additionally, links with various fields
of mathematics have been traced and some side results there (e.g., in the theory
of special functions) have been obtained.

However, there are still remain encouraging open problems (listed below),
determining the possible directions of further studies in the field. Namely,

PR 1. The spectral analysis of the operators Kφ has been reasonably developed
only for the acceptable (in the sense of Definition 1) functional parameters
φ(x), even in the 1D case M = 1. The most strong and not always physi-
cally natural demand in Definition 1 is due to the condition (6), requesting
the homogeneous separation of the function φ(x) from zero in its support
suppφ = Ω ⊂ RM . That means that for some physically important cases like
the Gaussian distributions (see Sect. 3.5) the developed technique is not ap-
plicable. The reason is that it is essentially based on the resolvent comparison
approach for the operators Kφ and the reference operator K0 (correspond-
ing to the step-constant function φ(x) ≡ 1 for x ∈ Ω and φ(x) ≡ 0 for
x ∈ RM\Ω). The reason is that if the condition (6) is violated, the restricted
to L2(Ω) operator of the multiplication by the function 1/φ(x) is not always
bounded, so the resolvent comparison approach fails. Moreover, although in
some other cases this operator of the multiplication is still bounded (e.g.,
for 1/φ(x) ∈ L2(Ω), due to Hölder inequality [42]), as the operators Kφ are
considered in the domains Dφ 3 u(x) such that u(x)|Ω ⊂ L2(Ω), important
estimates for minx∈Ω φ(x) do not exist. Thus, study of the operators Kφ

beyond the condition (6) is an open problem.
PR 2. Currently we know only one exactly solvable operator in the family Kφ.

That is the reference operator K0 i the 1D case, corresponding to the step-
constant function φ(x) ≡ 1 for x ∈ Ω = (a, b) ⊂ R and φ(x) ≡ 1 and
φ(x) ≡ 0 for x ∈ R\[a, b]). The eigenvalues µn, the absolutely continuous
spectrum σac(K0) = R+ and the corresponding (generalized) eigenfunctions
un(x) (n = 0, 1, 2, . . . ) and uλ(x) (λ ∈ R+\{µn}) are known exactly (see
Sect. 3.2) are known precisely. However, such results are so far not known for
any other function φ(x) in the 1D case and for any function φ(x) in higher
dimensions M ≥ 2.

PR 3. In the 1D case, for the restricted reference operator K0 it is shown (see
Sect. 3.2) that K0 commutes with the differential operator L generating the
Legendre polynomials. For any other functions φ in all dimensions M ≥ 1
such differential or pseudo-differential operators commuting with Kφ are not
known.
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PR 4. In higher dimensions M ≥ 2 the obtained results are valid for the admissible
domains Ω, i.e., for countable sets of finite intervals with finite total volume
in the 1D case M = 1 (see Definition 2) and for compact convex domains
Ω ⊂ RM in higher dimensions M ≥ 2 (see Definition 2). Moreover, the sound
results for M ≥ 2 are so far obtained if Ω is a completely admissible domain
(the pseudo-torus Ω = T̂M−1), see Definition 3). A generalization for the
domains Ω ⊂ RM would be interesting.

PR 5. Spectral estimations through the quadratic form approach in higher dimen-
sions M ≥ 2 (see Sect. 4.2) so far have been obtained for the functional
parameters φ(x) having specific symmetry in the specific domains Ω. That
are a disk or a ring in R2 (see Sect. 4.3) and a torus or a cylinder in R3 (see
Sect. 4.4). The corresponding results for other types of the functions φ(x)
and other domains are not known yet .

PR 6. The properties of the special functions Ξ
[k]
N have been investigated only for

the rank-1 (N = 1) and the rank-2 (N = 2) functions (see Sects. 5.2 and 5.3,
respectively). The properties of the higher rank N ≥ 3 special functions Ξ[k]

N

have not been studied yet. One may suspect that they can be expressed in
terms of the higher Clausen’s generalized hypergeometric functions pFq, but
that should be the subject of further investigations.

PR 7. The recurrent relation for Ξ[k]
2 (like (140) or (141) for Ξ[k]

1 , with more terms)
have not been obtained yet.

PR 8. For other domains the operators Kφ generate special functions differ from the
functions Ξ

[k]
N , which study may become an interesting problem. As shown

in [77], the integral-difference operators K
[kl]
φl in the physical space being

the graph G defined in (14) has similar to the original operator Kφ spectral
properties. The set of the consequent simplifications (S1)–(S3) allows for the
detailed spectral estimations for the operators. Above we have considered the
specific graphs G, which are the finite sets of the intervals [−1, 1] intersecting
in the common point x1, x2, x3, . . . , xa = 0, l = 1, 2, 3, . . . , a < ∞.

However, the situation an be generalized for other types of graphs G. Namely, one
can consider graphs G with richer structure and turn to the following tasks:

PR 9. Graph G is a finite set of intervals [−1, 1] intersecting in various points.
PR 10. Graph G contains a subset of semi-bounded intervals [0,∞).
PR 11. Graph G contains the infinite number of bounded and/or semi-bounded in-

tervals intersecting in various points.
PR 12. Graph G contains a finite or countable set of the loops.
PR 13. Condition of the compactness of the field φ(x) support Ω is not prescribed.
PR 14. Ω is not a quasi-1D structure (graph), but is a 2D or 3D domain.

All these situations can also be simplified in the manner similar to that used for
the considered graphs G and described at (S1)–(S3).

Other encouraging tasks are related to the inverse problems for the operators
Kφ. In the simplest case they can be formulated as follows:
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PR 15. To restore the field φ(x), x ∈ Ω ⊂ RN , given the geometric form of the
domain Ω and the spectral decomposition of the operator Kφ.

PR 16. To restore the field φ(x), x ∈ G the transition coefficients matrix ĝ, given
the geometric form of the graph G and the spectral decomposition of the
operator Kφ in G.

Another key task is
PR 17. To single out the physical meaning of the graphs G of various types, i.e., to

trace more specific relations between the scattering in quantum graphs and
the considered integral-difference operators in these graphs.

Currently, we stay with all these encouraging problems.
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Inverse problem for
integral-difference operators on graphs

Yuri B. Melnikov and Irina V. Turuntaeva

Abstract. We consider the inverse problem for integral-difference operators
underlying the dynamics of the matter relaxation in external attractive fields
for quasi-1-dim structures (graphs). Under specific simplifying conditions the
solution of this inverse problem is obtained. The further possible general-
ization for a broader set of graphs and other domains is discussed and the
corresponding encouraging investigations are proposed.

Keywords. Quantum graphs, integral-difference operators, inverse problem.

1. Introduction and background
Integral-difference operators in non-equilibrium statistical physics models [1, 2] ap-
peared in 1990s [3]. Originally they described the collision processes in 1D systems.
Their spectral properties describe the rates of the system to go to the equilibrium
(Lyapunov exponentials). At the same years a rigorous mathematical approach
for the spectral analysis for such operators was proposed [4]–[8]. Later on another
physical interpretation of such operators (matter relaxation in external attractive
fields) was introduced both in 1D and for higher dimensions N [9]–[12]. For higher
dimensionsN = 2, 3, it was based in the specific interest of physicists [14]–[24]. The
quadratic form approach has been used for the appropriate spectral estimations
both in 1D and in higher dimensions N = 2, 3 [9]. The general review was recently
published [12]. The corresponding operators for simple graphs were studied in [13].

Generally, the operators under the consideration look like

Kφ : u(x) 7→
∫
RN

u(x)φ(s)− u(s)φ(x)

|x− s|
dNs (1)

where function φ(x) is a functional parameter called as external field. Usually,
the so-called acceptable functions φ(x) [9, 12] are used, i.e., such that satisfy the
following conditions:
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P. Kurasov et al. (eds.), Analysis as a Tool in Mathematical Physics, Operator Theory: 
Advances and Applications 276, https://doi.org/10.1007/978-3-030-31531-3_  26

501

https://doi.org/10.1007/978-3-030-31531-3_26
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31531-3_26&domain=pdf


502 Yu.B. Melnikov and I.V. Turuntaeva

Definition 1. Function φ(x) in RN is called as acceptable function if it is non-
negative, summable, of Lipshitz-1 class and is uniformly separated from zero in its
support suppφ = Ω ⊂ RN [8, 9, 12]. Namely, this means that φ(x) satisfies the
following conditions:

0 ≤ φ(x) ∈ L1(RN ) ; (2)
∃Aφ ≥ 0 : |φ(x)− φ(s)| ≤ Aφ |x− s|, ∀x, s ∈ Ω ; (3)

∃ εφ > 0 : φ(x) ≥ εφ, ∀x ∈ Ω . (4)

Note that the conditions (2) and (4) can be satisfied simultaneously only if
the domain suppφ(x) := Ω ⊂ RN has a finite volume Vol(Ω) < ∞.

Operators Kφ are defined [12] as the operators given by (1) in

L2(RN ) ∩ L1(RN ) ∩ C1(RN ).

The physical meaning of the operators Kφ and the domain suppφ = Ω ⊂ RN

is discussed in [12]. The technique introduced in [4] and used in [5]–[12] makes it
important to consider the so-called restricted operators

Kφ : u(x) 7→
∫
Ω

u(x)φ(s)− u(s)φ(x)

|x− s|
dNs, x ∈ Ω . (5)

Actually, the operators Kφ determine the matter relaxation processes in external
fields φ(x) [9, 12].

Let us note that 1D case N = 1 brings a specific difficulty. Indeed, for any
N ≥ 2 the integrands in the representations (5) can be considered separately, as
they are summable, i.e.,

Kφ : u(x) 7→ u(x)

∫
Ω

φ(s)

|x− s|
dNs− φ(x)

∫
Ω

u(s)

|x− s|
dNs . (6)

Contrary, in 1D case N = 1 the representation (6) is not valid and one has to deal
with the representation

Kφ : u(x) 7→
∫ 1

−1

u(x)φ(s)− u(s)φ(x)

|x− s|
dNs , (7)

which is not an integral operator.
The exact results even in 1D case [4, 8, 12] were so far obtained only for the

so-called reference operator K0, which is corresponding to the trivial functional
parameter φ(x) ≡ 1 for x ∈ Ω = [−1, 1] and φ(x) ≡ 0 outside of the interval [−1, 1]
[4, 8, 12].

The operators Kφ in quasi-1D structures, i.e., graphs, were considered in
[13]. Quantum graphs have been the subject of numerous investigations address-
ing various aspects [28]–[54]. Mostly Schrödinger operators in the graphs have been
studied. There graphs were used as quasi-1D structures to investigate the dynam-
ics of the corresponding matter relaxation processes defined by the operator Kφ

given by the representation (5) with the domain Ω being a (compact) graph G.
In [13] the operators Kφ were considered in the graphs G of specific type. A set
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of consequent simplifications was introduced and the overview of the correspond-
ing spectral results was provided. In Sect. 2 we formulate the inverse problem for
integral-difference operators. Section 3 is devoted to this inverse problem in simple
graphs. In Sect. 4 we discuss further tasks.

2. Formulation of the inverse problem for integral-difference
operators

Let us formulate the inverse problem for integral-difference operators underlying
the matter relaxation processes in general. In quantum scattering this problem
reads as the reconstruction of the potential given the scattering data [55]. For
integral-difference operators Kφ the inverse problem is to reconstruct the field φ
given the physically measurable data from the corresponding matter relaxation
processes.

Namely, let U(x, t) be the matter density in the spatial point x ∈ RN at the
time moment t ≥ 0. We formulate the inverse problem as follows.

Definition 2. The inverse problem for the operator Kφ is to find the field φ(x),
x ∈ Ω ⊂ RN given the matter density U(x, 0) and U(x, t0) at some time t0 > 0.

Actually, the problem goes to the inversion of the Riesz potential operator
(see, e.g., [56]). Namely, in formula (7.21) of [56] one can take α = N − 1 and thus
invert the operator

f(x) := Jφ(x) =

∫
RN

φ(s)

|x− s|
dNs (8)

as
φ(x) = J−1

φ (x)

=
Γ(1/2)

2N−1πN/2Γ((N − 1)/2)

· lim
ϵ→0

∫
RN

[
1

(|y|2 + ϵ2)N−1/2
− N + 1

N − 1

ϵ

(|y|2 + ϵ2)N+1/2

]
f(x− y) dNy .

(9)

The latter formula is sufficient for any N ≥ 2, as due to Eq. (6) the inversion of
the operator Kφ looks like

φ(x) =
1

u(x)
J−1
φ

[
1−

∫
RN

u(x)

|x− s|
1

u(x)
dNs

]−1

J−1
φ Kφu . (10)

Therefore, if we know the distribution of the matter density U(x, t0) at the time
moment t0 ≥ 0, we can take u(x) = U(x, t0) = exp{−t0}U(x, 0) and apply the
previous formula.

In 1D and quasi-1D cases (graphs) the situation is different. As mentioned
above, the representation (6) is not valid in these cases, therefore one has to use
the representation (7). This problem is considered below in Sect. 3.
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3. The inverse problem for integral-difference operators in
simple graphs

In our previous paper we [13] we have considered compact graphs G with finite
number a of the branches. Without loss of generality, using a simple change of
variables [13] such graphs can be represented as

G =

a⋃
l=1

[−1, 1], l = 1, 2, 3, . . . , a; a ≥ 1 . (11)

The operators Kφ in the graph G are defined as

K ĝ
φ̂ =

a∑
k=1

a∑
l=1

⊕K [kl]
φl

, (12)

where φ̂ := {φl(xl)}al=1 and ĝ := {gkl}ak,l=1. Without loss of generality, we can
assume that for all l = 1, 2, . . . , a the copies of the interval [−1, 1] 3 xl intersect in
one common point x1 = x2 = x3 = xl = · · · = xa = 0. In this point matter flows
from the lth interval [−1, 1] 3 xl to the kth interval [−1, 1] 3 xk and vice versa
can take place.

The trivial case a = 2 is just the situation of interval x ∈ [−1, 1]. As shown
in [4, 8, 12], in this case the operator Kφ can be represented as

Kφ = φ ◦K0 − (K0φ) , (13)

where φ and (K0φ) stand for the operators of the multiplication by the corre-
sponding functions. The operator K0 is exactly solvable [4, 8, 12]. Its eigenvalues
are

µ0 = 0, µn =

n∑
j=1

j−1, n ≥ 1 ,

and the corresponding eigenfunctions are Legendre polynomials pn(x). Represen-
tation (13) allows for the following approach.

The transition intensity is determined by the matrix elements of a×a matrix
ĝ, such that gkl > 0 if k 6= l and gll = 0 ∀l = 1, 2, 3, . . . , a. This generates additional
matter incoming and outgoing processes. Namely, if a ≥ 2 for any l = 1, 2, 3, . . . , a

these leads to the additional term B[l] in the operator K [kl]
φl given by

B[l] : ul(xl) 7→
a∑

k=1

gkl
ul(xl)φl(0)− ul(0)φl(xl)

|xl|
, (14)

which leads to the representation

K [kl]
φl

= Kφl
+B[l] . (15)

For the domain under consideration ul(xl) ∈ C1[−1, 1] and acceptable func-
tions φl(xl) ∈ C1[−1, 1] every term in the right-hand side of the representation
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(16) is obviously finite. Note, that if a = 1, i.e., the graph G = [−1, 1] is triv-
ial, the term B[1] disappears and one just gets the original operator K [11]

φl = Kφ1

introduced and considered in [4]–[12].
There are several possible steps to simplify the operators B[l] given by rep-

resentation (16). Namely,
(S1) All functions φl(xl) are assumed to be identical, i.e., φl(xl) ≡ φ(xl) ∀l =

1, 2, 3, . . . , a. Then for the operators B[l] we have

B[l] : ul(xl) 7→
a∑

k=1

gkl
ul(xl)φ(0)− ul(0)φ(xl)

|xl|
. (16)

(S2) All transition coefficients are similar, i.e., gkl = g > 0 ∀l 6= k, l, k = l =
1, 2, 3, . . . , a, and gll = 0 ∀l = 1, 2, 3, . . . , a. Then, assuming simultaneously
(S1) and (S2), we get

B[l] : ul(xl) 7→ g a
ul(xl)φ(0)− ul(0)φ(xl)

|xl|
. (17)

(S3) Functional parameter φ(s) ≡ 1 is trivial.
Assuming simultaneously (S1)–(S3), one gets

B[l] : ul(xl) 7→ g a
ul(xl)− ul(0)

|xl|
. (18)

Therefore, under the simplifying assumptions (S1)–(S3), the operator K [kl]
φl turns

into

K
[kl]
0 : u(x) 7→ (K0u)(x) + g a

u(x)− u(0)

|x|
, (19)

where (K0u)(x) =
∫ 1

−1
u(x)−u(s)

|x−s| ds.
Under the simplifying assumptions (S1)–(S3), let us consider the spectral

problem for the operator K [kl]
0 (

K
[kl]
0 f

)
(x) = λf(x) . (20)

Representing f(x) through the normalized Legendre polynomials pn(x)

f(x) =
∑
n≥0

fn pn(x) , (21)

by straightforward calculation one gets

µm fm + g a
∑
n≥0

γmn fn = λfm , (22)

where

γmn :=

∫ 1

−1

pn(s)− pn(0)

|s|
pm(s) ds . (23)
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Using integral inequalities [57], we have

0 ≤ |γmn|2 ≤
∫ 1

−1

∣∣∣∣pn(s)− pn(0)

s

∣∣∣∣2 ds = 2

∣∣∣∣ ddx pn(x)

∣∣∣∣2
x=0

. (24)

As (see, e.g., [27]) ∣∣∣∣ dds pn(s)

∣∣∣∣2
s=0

=
1√
2
, (25)

we have −1 ≤ γmn ≤ 1.
Therefore, every eigenvalue µm of the operator K0 (see Theorem 1) generates

the interval [µm− 1, µm+1] where the eigenvalues λν of the operator K [kl]
0 can be

located, i.e., for any m ≥ 0 there can exist the eigenvalue

σd

(
K

[kl]
0

)
3 λν ∈ [−ga, ga]

∞⋃
m=2

[
2ga

m∑
j=2

1

j
, 2ga + 2ga

m∑
j=2

1

j

]
. (26)

The eigenfunctions fν(x) corresponding to the eigenvalues λν are given by
the Legendre functions of the first and the second kind [27],

fν(x) = ων Pν(x) + ω̃ν Qν(x) (27)

with arbitrary constants ων and ω̃ν as well as

Pν(x) ≡ F
(
−ν, ν + 1; 1;

1− x

2

)
; (28)

Qν(x) ≡
Γ(ν + 1)Γ(1/2)

2ν + 1Γ(3/2)
x−ν−1 F

(
ν + 2

2
,
ν + 1

2
;
ν + 3

2
;
1

x2

)
, (29)

where

F
(
κ1,κ2;κ3; ξ

)
= 1 +

κ1 · κ2

κ3 · 1
ξ +

κ1 · (κ1 + 1) · κ2 · (κ2 + 1)

κ3 · (κ3 + 1) · 1 · 2
ξ2

+
κ1 · (κ1 + 1) · (κ1 + 2) · κ2 · (κ2 + 1) · (κ2 + 2

κ3 · (κ3 + 1) · (κ3 + 2) · 1 · 2 · 3
ξ3 + · · ·

stands for the Gauss hypergeometric function [27].
The above discussion can be formulated as

Theorem 1. Under the simplifying conditions (S1)–(S3), every eigenvalue µm of
the operator K0 generates the interval [µm−1, µm+1] where the eigenvalues λν of
the operator K [kl]

0 can be located, i.e., for any m ≥ 0 there can exist the eigenvalue

λν ∈ [µm − 1, µm + 1] . (30)

The corresponding eigenfunctions fν(x) are given by formula (27).
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4. Conclusion and further tasks
As shown above in [13], the integral-difference operators K

[kl]
φl in the physical

space being the graph G defined in (14) has similar to the original operator Kφ

spectral properties. The set of the consequent simplifications (S1)–(S3) allows for
the detailed spectral estimations for the operators . Above we have considered the
specific graphs G, which are the finite sets of the intervals [−1, 1] intersecting in
the common point x1, x2, x3, . . . , xa = 0, l = 1, 2, 3, . . . , a < ∞.

However, the situation an be generalized for other types of graphs G. Namely,
one can consider graphs G with more reach structure and turn to the following
tasks:
(T1) Graph G is a finite set of intervals [−1, 1] intersecting in various points.
(T2) Graph G contains a subset of semi-bounded intervals [0,∞).
(T3) Graph G contains the infinite number of bounded and/or semi-bounded in-

tervals intersecting in various points.
(T4) Graph G contains a finite or countable set of the loops.
(T5) Condition of the compactness of the field φ(x) support Ω is not prescribed.
(T6) Ω is not a quasi 1D structure (graph), but is a 2D or 3D domain.
All these situations can also be simplified in the manner similar to that used for
the considered graphs G and described by (S1)–(S3).

Other encouraging tasks are related to the inverse problems for the operators
Kφ. In the simplest case they can be formulated as follows:
(T7) To restore the field φ(x), x ∈ Ω ⊂ RN , given the geometric form of the

domain Ω and the spectral decomposition of the operator Kφ.
(T8) To restore the field φ(x), x ∈ G the transition coefficients matrix ĝ, given

the geometric form of the graph G and the spectral decomposition of the
operator Kφ in G.

Another key task is
(T9) To single out the physical meaning of the graphs G of various types, i.e.

to trace more specific relations between the scattering in quantum graphs
[28]–[54] and the considered integral-difference operators in these graphs.

Tasks (T1)–(T9) are the subject of further investigations.
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Breeding of the running spin-waves with
standing spin-modes in a quantum well
Boris S. Pavlov and Adil M. Yafyasov

Abstract. Spin-depending scattering is studied on a two-dimensional quan-
tum network constructed of a quantum well with three semi-infinite quantum
wires (an input wire and two terminals ) attached to it. The spin-orbital inter-
action causing selective scattering in the network is described by the Rashba
Hamiltonian. The transmission of electrons across the well from the input
quantum wire to terminals is caused by the excitation of a resonance oscil-
latory spin-mode in the well. For thin quantum networks we suggest also an
approximate formula which defines the resonance transmission of electrons
across the quantum well, depending on the shape of the standing spin-mode
in the quantum well.

1. Introduction
During last decade the world-community of nano-electronics is engaged in a search
of new physical principles, materials and technologies on which the quantum spin-
transistor may be manufactured [1, 2, 4, 3, 5, 6, 7, 8, 9, 10]. This anticipated device
could become a base of the toolbox which can permit to verify the efficiency of
quantum computations and test the constructions of various quantum networks.

The basic principle of the spin-transistor was suggested by the authors of [1].
The leading idea of their proposal is the use of the spin-orbital interaction [11]
for creation of the spin-polarized current in the transistor channel. Actually, to
produce a real device based on the mentioned principle, one should solve at least
two basic problems:

1. The problem of selection of proper material with maximal spin-orbital in-
teraction, which may permit to achieve in a 2D system a considerable spin-
orbital splitting, at least for “nitrogen temperatures”; ideally, for room tem-
peratures.

2. The problem of the introduction and withdrawal of electrons with certain
value of spin polarization.

© Springer Nature Switzerland AG 2020 
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We assume that the spin-orbital interaction is defined by the phenomenolog-
ical Rashba Hamiltonian (2.2) with the parameter α, which defines numerically
the features of the corresponding interaction

E± =
~2k2

2m
± αk, (1.1)

and is connected directly with the spin-orbital splitting ∆R = E+−E−. Generally
for Kane-type materials not just the simplest formula (1.1), but another formula
is true:

E =
√
(si~k)2 + (miS2

i )
2±(2miS2

i )
2αik −miS

2
i . (1.2)

This formula contains the saturated splitting ∆max
R ≈ 2miS

2
i , and the number i

of the quantum band. Extended comparative analysis of the formulae (1.1), (1.2)
may be found in [14].

According to [12, 13, 14] both the theory and an experiment vote in favor of
materials CdxHg1−xTe (0 ≤ x ≤ 1), where ∆R circa 40–60 meV, and the magni-
tude of effective Rashba parameter is about (0.2–0.3)10−10 eV m. This is approx-
imately 10 times bigger, than the parameter α in other hetero-structures studied
before : ∆R ≈ (0.02 : 5) meV and α ≈ (10−12– 10−11) eV m. We guess that such
materials as Cd, Hg, Te are most prospective for the high-temperature spintron-
ics. Analysis done in [14, 15, 16] shows that large values of spin-orbital splitting is
achieved for InAs and HgTe. All these semiconductors are representatives of the
class of narrow-gap materials with the widest bands.

In semiconductors with a nearly parabolic dispersion curve E ≈ ~2p2

2m∗ the
magnitude of the expected splitting is at least 2 or 3 orders less than in narrow-
gap materials listed above. Nevertheless in actual paper we suggest a theoretical
analysis of scattering in a material with parabolic dispersion curve and the Rashba
Hamiltonian just included additively, because of the universal character of the
quadratic dispersion for small α. Our aim is revealing the effects of the shape of
the resonance standing spin-waves in Scattering processes on the quantum well in
presence of the spin-orbital interaction. Thus we make a step toward the solution of
the second of above problems – the problem of introducing and withdrawal of spin-
polarized electrons, – actually the problem of registration of the spin-polarization.
This problem, though very popular now, still is far from the solution. Our analysis
permits to connect directly the transmission coefficients across the quantum well
with the shape of the resonance eigenfunctions in the well, which can be computed,
for various geometry of the well, based on a standard software. This allows to
approach the solution of the second problem mentioned above: the withdrawal of
the spin-polarized electron current.

We develop analysis of the resonance transmission in spin-dependent scat-
tering based on our previous papers [19, 20, 21, 26], where different variants of
design of the Resonance Quantum Switch were proposed and analyzed. Similarly
to the construction in [26], we observe in this paper the selective transmission of
electrons across the quantum well, due to excitation of the resonance standing
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waves inside the well. In [26] we used the shape of the resonance eigenfunction to
optimize the switching effect. In actual paper we derive the explicit basic formulae
for the scattering matrix based on intermediate Hamiltonian. We construct the in-
termediate Hamiltonian, for given Fermi level, such that the discrete spectrum of
it lies above the Fermi level. This allows to avoid perturbations on the continuous
spectrum. In particular the resonances of the full Hamiltonian are connected, in
case of thin networks, with the eigenvalues of the intermediate Hamiltonian by an
algebraic equation. This allows to estimate the transmission coefficients across the
well based on spectral data of discrete spectrum of the intermediate Schrödinger
operator which can be obtained via straightforward computing.

An essential difference of the actual problem from [26] is the fact, that the
resonance eigenfunctions in actual problem are complex two-component spinors.
Hence we are unable optimize the filtering, as in [26], via appropriate localization
of lines of zeros of the resonance mode in the well. We will optimize the selectivity
of the filter depending on the shape of the well in a forthcoming paper, based on
our formula for approximate transmission coefficients, in terms of the shape of the
eigenfunctions of the intermediate operator in the well, for different shapes of the
well.

The structure of the paper is the following. In the following section we in-
troduce Schrödinger equations which serve the base of our analysis. In the next
Sect. 3 we derive the boundary conditions for the Schrödinger equation with with
spin-orbital interaction defined by the Rashba Hamiltonian (2.2). In Sect. 4 we
calculate the Scattering matrix based on the Dirichlet-to-Neumann map of an
intermediate Hamiltonian. Neglecting the non-resonance terms in the Dirichlet-
to-Neumann map we present the transmission of an electron across the well via
an excitation of the resonance oscillatory mode inside the well. Based on that we
calculate in Sect. 5 the scattering matrix and reveal the resonance character of
the transmission. In appendix basic properties of the intermediate hamiltonian
are discussed.

Our calculations in the paper are based on the simple formula (1.1) for the
spin-orbital splitting, which is valid for materials with the parabolic dispersion
curve, but we pay a special attention to the role of the shape of the resonance
eigenfunction in the transmission process. In the forthcoming paper we will ex-
tend our analysis of the shape-resonance transmission across the well to the most
prospective narrow-gap materials for which an analog of the formula (1.2) can be
derived.

2. Geometry of the filter: preliminaries
Consider a network Ω = Ωint ∪ Ω1 ∪ Ω2 ∪ Ω3 on the plane (x, z), combined of a
quantum well Ωint and three straight semi-infinite quantum wires Ωs, s = 1, 2, 3
of constant width δ attached to the well Ωint. The one-body Hamiltonian of an
electron on Ω is defined by the Schrödinger differential expressions (2.3) and (2.4),
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see below, with Dirichlet boundary conditions ∂Ω and appropriate boundary con-
ditions on the common boundary Γ of the well and the wires.

Introducing the coordinate xm along the wire, we may also assume, without
restriction of generality, that the normal bottom cross-section γoutm : xm = 0 is
selected strictly inside the wire Ωm, just cutting the wire into two parts: the semi-
infinite part ωm situated “above” the section γoutm , xm > 0, and the small trapezial
cut-off – the link – Ωm\ωm := Ωε

m“below” the section. Hereafter we call Ωm the
extended wire, to distinguish it from ωm. We include the links Ωε

m, ∪mΩε
m := Ωε,

into the extended quantum well Ωε
int = Ωint ∪ Ωε, but assume that the potential

of the Schrödinger equation on the links is constant and coincides with Vm, and
shrinks as prescribed in Sect. 5 below. Thus the wire ωm : 0 < xm <∞ is attached
to Ωint through the corresponding orthogonal cross-section γoutm : xm = 0, which
therefore is a part of the boundary of Ωε

int. The common boundary ∪mγ
out
m of

Ωout := ∪mωm and Ωε
int is denoted by Γout. We distinguish the outer Γout

+ and
the inner Γout

− sides of Γout. The extended quantum well Ωε
int also has a piecewise

smooth boundary and satisfies the bilateral cone condition but it is not assumed to
be simply-connected (e.g., Fig. 1 shows a detail of a multiply-connected domain).
In particular, one can imagine Ωint being a network of quantum wells connected
by wires of finite lengths.

The quantum network considered in this paper is a partial case of a “fattened
graphs” described for instance in [25], see Fig. 1. In Sects. 4 and 5 we consider
the shrinking of the network. In fact we consider shrinking of the wires only. To
avoid technical difficulties, we assume that the wires of the shrinking network are
attached to Ωint on flat pieces of its boundary γintm , ∪mγ

int
m = Γint ⊂ ∂Ωint. We

distinguish the outer and the inner sides Γint
± of Γint, with respect to Ωint. Each

link Ωε
m is a trapezoid of height δ, with two sides y = 0, δ parallel to the sides of the

wire ωm, and the middle line y = δ/2. The hight of the trapezoid coincides with
the width δ of the wire. The shape the link is defined by two additional parameters,
the minimal angle π/2−θ at the bottom and the length δε of the center line. Then
the upper and bottom sides of the trapezoid are equal to δ[ε∓ 2−1 tan θ].

We assume that the parameters of the links fulfill some geometrical condition
which is used in shrinking process. In simplest case, when the tensor of effective
mass is isotropic and constant, this condition means that the link is relatively
small, and the angle θ is small enough, so that the wires are attached to the
quantum well “almost orthogonally”, this condition says:

ε2 < 6−1. (2.1)
In course of shrinking each semi-infinite wire and each link shrinks self-similarly,
δ = δ1 × δ and ε, δ1 are constant, see Sect. 5. We supply details of the shrinking
network with the label δ, for instance, the links Ωε

m of the shrinking networks are
denoted by Ωδ

m, to emphasis the dependence of them from δ. Similarly, the wires
are denoted by ωδ

m, and the extended quantum well is denoted by Ωδ
int. Note that

the extended quantum well Ωδ
int contains the shrinking links, hence the shape of

it is also changing in the course of shrinking.
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The potential on the wires is constant, and on the well it is defined by the
horizontal component of the macroscopic electric field E parallel to the plane of the
device: V (x, z) = Ee (xνx + zνz)+V0, with ν ∥ (x, z)-plane. The normal component
of the electric field E = |E|ey is large on the quantum well, but is absent in the
extended wires. This field does not contribute to the potential on the well, but is
responsible for the spin-orbital interaction described by the Rashba Hamiltonian,
see below (2.2). The wave-function Ψ of the electron is presented by the spinor
(ψ1, ψ2), and the spin-orbital interaction is taken in form of Rashba Hamiltonian
[11]: as a cross-product of the vector σ of Pauli matrices σ = (σx, σy, σz) and the
vector p of momentum of the electron:

HR = α [σ, p] , (2.2)
here α is proper scalar factor defined by the properties of the material and by
the magnitude of the normal component of the electric field E . The one-body
Hamiltonian Lint of electron on the well, with Dirichlet boundary condition is
defined by the Schrödinger operator, with appropriate boundary conditions, see
the next section:

~2

2m0
Lu = − ~2

2m∗
△ u+ V (x, z)u+ α[σz px − σx pz]u, (2.3)

where α[σz px−σx pz] = (HR)y is the y-component (2.2). The Rashba Hamiltonian
is not self-adjoint in the space L2(Ω) but being added to the 2D Schrödinger oper-
ator, produces a self-adjoint operator in L2(Ωint). We assume that the Schrödinger
equation on the wires ωs contains an anisotropic tensor of effective mass:

~2

2m0
luout = − ~2

2m∥
d2uout
dx2

− ~2

2m⊥
d2uout
dy2

, 0 < y < δ, 0 < x <∞, (2.4)

and the width of the wires is constant and equal to δ. We neglect the spin-orbital
interaction in the wires. Imposing appropriate matching boundary conditions on
the sum Γout =

∑3
s=1 γ

out
s of the bottom sections of the wires ωm, and Dirichlet

boundary conditions on ∂Ω, we define the Hamiltonian ~2

2m0
L of an electron on the

network. The corresponding operator ~2

2m0
L∗ without any boundary conditions

on Γint is not symmetric and has a non-trivial boundary form, see next section.
Hereafter we distinguish the outer and the inner sides of the boundary, in particular
the outer and the inner sides Γint,out

± of Γint,out.
Considering shrinking networks we impose special assumptions onto the po-

tential in the wires such that the Fermi level remains, in course of shrinking, in
the middle of the conductivity band, see Sect. 5 below.

Following [26] we consider the scattering problem on the network Ω and
calculate the transmission coefficients from the input wire ω1 to the terminals
ω2, ω3 across the well. These coefficients depend on the spin and energy of elec-
trons, on the shape of the well, and on the positions of the contacts γ2,3 on the
boundary ∂Ωint and may be manipulated via the change of the direction and mag-
nitude of the horizontal component of the electric field. In Sect. 4 we calculate the
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scattering matrix, which defines the transmission coefficients. The corresponding
conductance for electrons with different spins may be obtained from our results
based on Landauer–Buttiker formulae, see [17, 18].

3. Boundary conditions
It is convenient to assume that the boundary data of the spinors u on the inner
and outer side of the boundary ∂Ωint are defined as:

u−,int(x) = lim
ε→0

u(x− εnx) = u(x), x ∈ ∂Ωint, u+,int|γint
m

= um, uout|∂Ωint\Γ = 0.

Then we are able to introduce the jumps and the mean values of the spinors on
the common boundary Γint of the quantum well Ωint and the extended quantum
wires Ωout = ∪mΩm, by the following expressions:

[u]
∣∣
γint = (uout − uint)

∣∣
γint
m

= (um − u),

{u}
∣∣
γint
m

=

(
uout + uint

2

)
=

(
um + u

2

)
γint
m

,

[u]∂Ωint\Γint = (uout − uint)
∣∣
∂Ωint\Γint = (0− u),

{u} |∂Ωint\Γint =

(
0 + uin

2

) ∣∣∣∣
∂Ωint\Γint

.

The boundary form of the operator ~2

2m0
L∗ = − ~2

2m∗ △ +V (x, z), without any
boundary conditions on Γint, on the network Ω = Ωint ∪ Ωout is calculated via
standard integration by parts. It is convenient to present the boundary form as a
function of the jumps [u] = (uout − uint) and the mean values {u} =

uout + uint
2

of the spinors and their weighted normal derivatives[
∂u

∂n

]
:=

1

m∥
∂uout
∂n

− 1

m∗
∂uint
∂n

,{
∂us
∂n

} ∣∣∣∣
γs

:=
1

2

{
1

m∥
∂uout
∂n

+
1

m∗
∂uint
∂n

}
.

In particular on ∂Ωint\Γint we just have [u] := −uint, {u} =
uint
2

and

[
∂u

∂n

] ∣∣∣∣
∂Ωint\Γint

:= − 1

m∗
∂uint
∂n

,

{
∂um
∂n

} ∣∣∣∣
∂Ωint\Γint

:= −1

2

1

m∗
∂uint
∂n

.
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Then

JL∗ =
~2

2m0
⟨L∗u, v⟩ − ~2

2m0
⟨u, L∗v⟩

= ~2
∫
∂Ωint

([
∂u

∂n

]
{v}+ − {u}

[
∂v

∂n

]+)
dγ

+ ~2
∫
∂Ωint

({
∂u

∂n

}
[v]

+ − [u]

{
∂v

∂n

}+
)
dγ.

(3.1)

We need also the boundary form of the Rashba Hamiltonian. We assume that
px, pz are just formal differentiations i ~ ∂

∂x , i ~
∂
∂z , respectively. Then on the pair

of smooth spinors u, v we have:

JR(u, v) = α

∫
Ωint

(
σzpxuv

+ − σxpzuv
+
)
dm− α

∫
Ωint

(
uσzpxv

+ − uσxpzv
+
)
dm

= i~α
∫
∂Ωint

[cosnx σz − cosnz σx]uv
+dγ

= i~α
∫
∂Ωint

[σ, n]y uv
+dγ.

(3.2)

The boundary form of the operator ~2

2m0
LR = ~2

2m0
L +HR on the whole network

without any conditions on the boundary and Γ is presented as a sum of forms
(3.2), (3.1):

JL∗(u, v)

=
~2

2m∗

∫
∂Ωint\Γ

[
u
∂v+

∂n
− ∂u

∂n
v+
]
dγ

=

∫
∂Ωin\Γ

u

(
~2

2m∗
∂v

∂n
− iα~

2
[σ, n]yv

)+

−
(

~2

2m∗
∂u

∂n
− iα~

2
[σ, n]yu

)
v+dγ

+

∫
Γ

u

(
~2

2m∗
∂v

∂n
− iα~

2
[σ, n]yv

)+

−
(

~2

2m∗
∂u

∂n
− iα~

2
[σ, n]yu

)
v+dγ

+ ~2
∫
Γ

([
∂u

∂n

]
{v}+ − {u}

[
∂v

∂n

]+)
dγ

+ ~2
∫
Γ

({
∂u

∂n

}[
v+
]
− [u]

{
∂v+

∂n

})
dγ.

(3.3)

We proceed assuming that the wave functions are continuous on the network and
fulfill Dirichlet boundary conditions on ∂Ω. Then [u]

∣∣
Γint = 0, {u}

∣∣
Γint
−

= uint,
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hence the sum of last two integrals in the previous formula is reduced via replace-
ment of {u} by u to the integral

~2
∫
Γint

([
∂u

∂n

]
v+ − u

[
∂v

∂n

]+)
dγ,

which can be joined with the boundary form of the Rashba Hamiltonian. Then one
can see that the boundary form JL∗

R
(u, v) vanishes if the Dirichlet boundary con-

ditions are imposed on u, v on ∂Ω and the Rashba matching boundary conditions
on Γint: (

~2
[
∂u

∂n

]
+
iα~
2

[σ, n]y uint

) ∣∣∣∣
Γint

=

(
~
m∥

∂uout
∂n

− ~
m∗

∂uin
∂n

+
iα

2
[σ, n]y uint

) ∣∣∣∣
Γint

= 0.

(3.4)

The Schrödinger operator L+HR, with Dirichlet boundary conditions on ∂Ω and
the matching boundary condition (3.4) on Γint, is self-adjoint in L2(Ω).

Definition 3.1. The operator LR := L+HR will play a role of full Hamiltonian
of an electron on the Quantum network Ω.

In line with LR we consider the operator LR defined in L2(Ωint) by the same
potential and Rashba Hamiltonian, with Dirichlet boundary condition on the whole
boundary ∂Ωint, including Γint. We use the geometrical scaling of the spectral
parameter E → 2m0E

~2 := λ and the corresponding scaling of the Schrödinger
operators:

~2

2m0
LRu = − ~2

2m∗
△ u+ V (x, z)u+ α[σz px − σx pz]u, u|∂Ωint

= 0. (3.5)

The operator ~2

2m0
LR will play the role of the Hamiltonian of an electron on the

quantum dot Ωint. Similar self-adjoint operator on the extended quantum well Ωε
int

will be denoted by Lε
int.

Both operators LR and Lε
int have discrete spectrum. The eigenvalues and

eigenvectors of LR can be easily computed with a help of standard programs
(MATLAB, FEMLAB), and then the eigenvalues of the corresponding operator
Lε
int on the extended quantum well can be obtained as small perturbations of them.

We are able to prove, that the solution u of the problem boundary problem
for the Schrödinger equation in Ωint with boundary data on Γint exists, is unique
and represented via Poisson map Pint of LR:

u = PintuΓint
−

(x) =

∫
Γint
−

[
− 1

µ∗
∂

∂nξ
+
iαm0

2~
[σ, n]y

]
GLR(x, ξ, λ) uΓ(ξ)dΓξ.

(3.6)
We also connect with the above Dirichlet problem the corresponding Dirichlet-to-
Robin map DR. Using the W 2

2 -smoothness of the solution of the problem with the
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boundary data uΓ ∈ W
3/2
2 we conclude that the normal current of it ∂u

∂n on the
inner side Γ− of the bottom sections exists for regular λ and belongs to W 1/2

2 (Γ).

Definition 3.2. For the boundary data uΓint on the inner side Γint
− of the bottom

sections we define the Dirichlet-to-Robin map DR of LR as the normal current in
the outward direction on Γint

− , with the Rashba term taken into account,

DR
n u =

[
− 1

µ∗
∂

∂nξ
+
iαm0

2~
[σ, n]y

]
u
∣∣∣
Γint
−

(3.7)

for the corresponding solution u of the above boundary problem with the boundary
data uint on the inner side Γint

− of Γint
− . Then we define the Dirichlet-to-Robin map

as

DR uΓ = P+

[
1

µ∗
∂

∂n
− iαm0

2~
[σ, n]y

]
u
∣∣∣
Γint
−

, uΓ ∈ E+. (3.8)

It is convenient to use a special notation for the differential operations on
Γ−, which appeared in (3.6), (3.7), (3.8)

D =

[
− 1

µ∗
∂

∂n
+
iαm0

2~
[σ, n]y

]
. (3.9)

Then we obtain the standard expressions for the kernels of the Poisson map and
Dirichlet-to-Robin map of LR in terms of D:

PR(x, γ) = DGLR(x, γ)P+

∣∣∣
Γint
−

,

DRint(γ, γ′) = −P+D
∣∣
γ
D
∣∣
γ′G

L(γ, γ′)P+

∣∣∣
γ∈Γint

−

∣∣∣
γ′∈Γint

−

.
(3.10)

The generalized kernel DRint(γ, γ′) is represented by the the spectral series

DRint(γ, γ′) =
∑
l

Dφl⟩ ⟨Dφl

λ− λl
. (3.11)

Note that due to Dirichlet boundary conditions for the eigenfunctions φl in (3.11)
the Rashba term in D does not contribute to the result on Γint:

Dφl

∣∣∣
Γint

= − 1

µ∗
∂φl

∂n
.

Though this series is divergent, it can be transformed, with use of Hilbert identity,
into an uniformly convergent series; see, for instance [30]. This series permits to
construct a rational approximation for DR-map and calculate the corresponding
approximation for the scattering matrix.

To calculate the scattering matrix in the next section, we need the Dirichlet-
to-Neumann of an intermediate Hamiltonian, see next section. It can’t be calcu-
lated based on standard programs, but can be also obtained from the spectral data
of LR and Lε

int based on an appropriate perturbation procedure, see Sect. 5.
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4. Scattering matrix via Intermediate Hamiltonian
The dynamics of an electron on the quantum network on the quantum dot and
extended quantum dot are defined by spectral properties of LR, Lint and Lε

int

respectively. In our situation the role of the unperturbed Hamiltonian plays the
orthogonal sum of the Schrödinger operator on the wires ωm(in local coordinates)

~2

2m0
Loutuout = − ~2

2m∥
d2us
dx2

− ~2

2m⊥
d2us
dy2

, uout = {us}
∣∣
s=1,2,3

, us
∣∣
∂ωs

= 0,

(4.1)
and Lε

int, and the role of the perturbed operator is played by LR. The operator
LR is obtained from Lε

int via attachment of the wires ωm, which is rather a strong
perturbation of the operator with continuous spectrum:

~2

2m0
Lε
int ⊕

~2

2m0
Lout −→

~2

2m0
LR

Though physically it is clear that this strong perturbation causes just transforma-
tion of the standing waves in the quantum dot into resonance states, due to irradi-
ation of energy into the open channels of the wires, the corresponding mathematics
is not yet properly developed. In particular, the analytic perturbation technique
for operators with continuous spectrum does not permit to compute the radius of
convergence of the perturbation series in spectral terms. Poincare anticipated in
[27] that in case of operators with continuous spectrum, the resonances ( instead
of eigenvalues) should play a role in analytic perturbation procedure. Prigogine
attempted to realize the hint by Poincaré, suggesting the idea of “intermediate
operator”, see [28, 29], and the two-steps analytic perturbation procedure:

Lε
int ⊕ Lout −→ Linterm −→ LR. (4.2)

Prigogine expected that the analytic perturbation procedure is convergent on the
second step and attempted to construct Linterm as a function of Lε

int⊕Lout. Even-
tually the idea was abandoned, because it became clear, that the intermediate
operator with expected properties does not exist.

In our paper [26] we suggested a modification of the idea of Prigogine, re-
placing Prigogine’s Intermediate Operator by a finite-dimensional perturbation of
the perturbed operator LR. This perturbation is introduced via construction a
semi-transparent wall on Γ which disrupts the connection between the quantum
dot and open channels in the wires, see Appendix below. After splitting off the
trivial part in open channels in the n wire we obtain the intermediate Hamilton-
ian Linterm with continuous spectrum beginning from the lowest threshold situated
above the Fermi level EF in the wires. The resonance eigenvalues λintermn ≈ 2m0

~2 EF

of Linterm can be calculated based on an analytic perturbation procedure for the
discrete spectrum of operators Lε

int, Linterm. On the second step of (4.2), we just
match the scattering Ansatz in the wires to the square-integrable solution of the
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homogeneous intermediate equation. This gives an explicit formula for the Scat-
tering matrix of LR in terms of the Dirichlet-to-Neumann map of the intermediate
Hamiltonian.

The role of a Hamiltonian of a single electron on the network Ω = Ωint∪Ω1∪
Ω2∪Ω3 plays the perturbed operator LR in L2(Ω) defined by the above Schrödinger
differential expressions on the extended wires Ωm and on the well Ωint, the Dirichlet
boundary condition ∂Ω and matching conditions on the boundary Γout = ∪mγ

out
m

of the wires and the well:

[uint − um]
∣∣∣
γint
m

= 0,
~2

2m∗
∂uint
∂n

− ~2

2m∥
∂um
∂n

− iα~
2

[σ, n]y uint
∣∣
γint
m

= 0, (4.3)

which take into account the spin-orbital interaction inside the well.
The Schrödinger operator L on the network with the above boundary con-

ditions (4.3) is self-adjoint. Our final aim is to calculate the Scattering matrix
of this operator with respect to the non-perturbed operator with zero boundary
conditions separating the wires from the well. We will fulfill this program based
on an intermediate Hamiltonian which may be defined in L2(Ω) by slightly altered
matching conditions imposed onto elements from the domain of LR on Γout.

Definition 4.1. Let us consider the cross-section eigenfunctions of the wires es,n =√
2
δ sin

πny
δ , n = 1, 2, 3, . . . , 0 < y < δ, s = 1, 2, 3 (in local coordinates). Assume

that the Fermi level EF in the wires lies on the first spectral band π2

δ2 < EF
2m⊥

~2 <

4 π2

δ2 , hereafter we may assume EF = 5
2

~2

2m⊥
π2

δ2 . Denote by E+ the linear hull in
L2(Γ

out) of all cross-section eigenvectors of open channels es,1 =
√

2
δ sin

πy
δ , 0 <

y < δ, s = 1, 2, 3. Similarly we introduce the linear hull E− of all cross-section
eigenfunctions es,n =

√
2
δ sin

πny
δ , 0 < y < δ, s = 1, 2, 3, n = 2, 3, . . . , of the closed

channels. Hereafter we call E± the entrance subspaces of the open and closed
channels respectively. Elements of the entrance subspaces we call entrance vectors.
We also introduce the corresponding projections P± in L2 (Γ) := E as orthogonal
sums of corresponding orthogonal projections P s

+ = e1,s⟩ ⟨e1,s , s = 1, 2, 3, . . . , onto
the orthogonal basis of the entrance vectors e1,s, s = 1, 2, 3 in E+, and by P− the
complementary projection in L2(Γ) : I = P++P−. We also introduce the channel
spaces E± × L2(R+) := H±.

The channel spaces H± reduce the operator Lout defined by (4.1). The role
of the unperturbed operator in the scattering problem on the first spectral band
∆F =

[
2m⊥

~2
π2

δ2 , 4 2m⊥

~2
π2

δ2

]
is played by

Lout

∣∣
H+

:=
~2

2m0
lF = − ~2

2m0
⊕

3∑
s=1

ls
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where each of operators ls = l×P s
+ is defined by the Dirichlet boundary condition

at xs = x = 0 and by the differential expression, in the first channel, n = 1:

ls,1 =
1

µ∥
d2

dx2
− 1

µ⊥
π2

δ2
, s = 1, 2, 3, (4.4)

with µ∥ = m∥m−1
0 , µ⊥ = m⊥ m−1

0 . The operator lF is obtained from LR via
submitting the elements of D(LR) to the additional boundary condition (4.6),
(4.7) on Γ = ∪3

s=1ωs in open and closed channels respectively. Note that the
boundary term iα

2 [σ, n]y arising from the Rashba Hamiltonian commutes with
projection onto the entrance vectors of the channels. We obtain a self-adjoint split
operator 2m0

~2 LF = LF ⊕ lF ,

LFuin := Lintuint = − 1

µ∗ △ uint +
iαm0

~
[σ,∇]y uint, uint ∈W 2

2 (Ωint),

LFuout := loutuout = − 1

µ∥
d2uout
dx2

+
1

µ⊥

∑
s,n,−

n2π2

δ2
Ps,nuout, uout ∈ H−,

(4.5)

where the summation in
∑

s,n,− is extended over all closed channels, and

lFuout := loutuout = − 1

µ∥
d2uout
dx2

+
1

µ⊥

∑
s,n,+

π2

δ2
Ps,n,+uout, uout ∈ H+,

where summation extended over the open channels n = 1, s = 1, 2, 3. We impose on
u = (uint, uout) from the domain of LF the partial Dirichlet boundary conditions
on Γout in open channels :

P+us
∣∣
Γ
= 0, P+uint

∣∣
Γout = 0, (4.6)

and partial matching conditions in closed channels:
P−[uint − uout]

∣∣
Γout = 0.

1

µ∗ P−
∂uint
∂n

− 1

µ∥ P−
∂uout
∂n

− iαm0

2~
[σ, n]y P−uint

∣∣
Γout = 0. (4.7)

Note that due to the above assumption, the Rashba term vanishes on the link,
hence it is absent on Γout in (4.7). Hence the above boundary condition is reduced
to

1

µ∗ P−
∂uint
∂n

− 1

µ∥ P−
∂uout
∂n

∣∣∣
Γout

= 0. (4.8)

Spectral properties of the operator 2m0

~2 L with respect to the scaled “geometrical”
spectral parameter λ = 2m0E~−2 are described in Sect. 6, see Theorem 6.1.

Definition 4.2. The operator LF is considered hereafter as an intermediate
Hamiltonian.

The intermediate Hamiltonian is self-adjoint in L2(Ω) ⊖ H+ := H⊥ on the
domain of elements {u} from W 1

2 (Ω) which are locally smooth, u ∈ W 2
2 (Ωint) ∩

W 2
2 (Ωout) and fulfill the partial Dirichlet boundary condition on the inner side
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of Γ in the open channel and the partial matching boundary condition in closed
channels. Denote by λmin the minimal threshold of closed channels

min
π2n2

δ2
>

2m0
~2 EF

π2n2

δ2
:= λmin

The absolutely continuous spectrum σa(LF ) fills the interval
[
λFmin, ∞

)
, with vary-

ing multiplicity. There may be only a finite number of eigenvalues of LF below
λFmin. Those of them which are situated on the conductivity band ∆F between
λmin and the maximal threshold of open channels

λmax := max
π2n2

δ2
<

2m0
~2 EF

π2n2

δ2

are called resonance eigenvalues of LF . In our case, according to above assumption
λmax = π2δ−2, λmin = 4π2δ−2. We assume that the resolvent of the intermediate
Hamiltonian [LF − λI]−1 is constructed. The restriction

PL2(Ω)⊖H+
[LF − λI]−1PL2(Ωint)

has a kernel GF which is obtained by a finite-dimensional perturbation of the
Green function GLR .

To construct the scattering matrix we have to solve the intermediate Dirichlet
problem:

Definition 4.3. Consider the solution u ∈ H⊥
+ of the Schrödinger equation with

the spectral parameter from the resolvent set of LF ,
Lε
int uint − λuint = 0, lout uout − λuout = 0,

with (uint, uout) := u ∈W 1
2 (Ω)∩W 2

2 (Ωint)∩W 2
2 (Ωout). If u satisfies the condition

u
∣∣
Γout
−

= uΓout ∈ E+ on the inner side Γout
− of Γout and the matching boundary

conditions (4.7) imposed on the jump of u, ∂u
∂n on Γout, then we call u the solution

of the intermediate boundary problem with the boundary data uΓout .

Due to vanishing of the Rashba term on Γout the formula (3.6) for the Poisson
map of the intermediate Hamiltonian is reduced for on Γout to

u = PFuΓ (x) =

∫
Γout

[
− 1

µ∗
∂

∂nξ

]
GLF (x, ξ, λ) uΓ(ξ)dΓξ. (4.9)

The corresponding DN-map is calculated as:

DNFu =
1

µ∗
∂PFuΓ
∂n

(x)
∣∣
Γout
−

=

∫
Γout

[
−
(

1

µ∗

)2
∂2

∂nx∂nξ

]
GLF (x, ξ, λ) uΓ(ξ)dΓξ

∣∣
Γout
−
.

(4.10)

Based on (4.10), we obtain first an exact explicit expression for the scattering
matrix:
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Theorem 4.4. Let K+ be the exponent of oscillating solutions of the Schrödinger
equation in the open channel which admit analytic bounded continuation onto the
physical sheet of the spectral variable: K+ =

√
µ∥
√
λ− π2

µ⊥δ2
> 0. Then

S(λ) =
iK+/µ

∥ +DNF

iK+/µ∥ −DNF
. (4.11)

Proof. Note that the matching conditions in closed channels are fulfilled for solu-
tion of their intermediate boundary problem. Hence we need to verify only match-
ing conditions in open channels. This gives, with the scattering Ansatz in open
channels Ψ+ = eiK+xν+ + e−iK+xSν+:

−DNF [ν+ + Sν+]
∣∣
Γ+

= − 1

µ∥
∂

∂n
Ψout

∣∣
Γ+

= −iK+/µ
∥ [ν+ − Sν+]

∣∣
Γ+
. (4.12)

Note that the matrix-functions DNF , |,K+ are Hermitian on real axis of the spec-
tral parameter λ, below λFmin. Then the scattering matrix can be obtained from
(4.12) in announced form (4.11). �

Unfortunately, DN-map of the intermediate Hamiltonian can’t be obtained
based on standard software. We will compute it via analytic perturbation pro-
cedure based on the DN-map of the Schrödinger operator LR on the extended
quantum well Ωδ

int, including small cut-offs of the wires, with Dirichlet condition
on the boundary.

5. Re-normalization of spectral data of the Schrödinger
operator on the quantum well

In this section we develop a two-steps analytic perturbation procedure aimed on
calculation of the transmission coefficient across the quantum well. Recall, that
the Rashba term is included into the Schrödinger operator on the well, but absent
on the wires. In this paper we just assume that the Rashba term vanishes abruptly,
by jump at the boundary of the quantum well Ωint. We include in our analysis
the case when the wires enter the well non-orthogonally. Our analysis of the zone
of contact permits to consider also models with strictly intrinsic Rashba terms,
fading at the boundary of the well.

The standard approach to the calculation of the scattering matrix is based
on matching the full scattering Ansatz in the wires

Ψout = eiK+xν+ + e−iK+xSν+ + e−K−xsν+

containing the exponentially decreasing component e−K−xsν+ in closed channels,
to the smooth solution of the corresponding homogeneous Schrödinger equation
on the extended quantum well.

Denote by Lε
int the restriction of the Schrödinger operator LR onto Ωε

int with
Dirichlet boundary conditions on ∂Ωε

int, and consider the corresponding bound-
ary problem with zero boundary condition on ∂Ωε

int\Γout
− and non-homogeneous
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Dirichlet boundary condition on the inner side Γout
− of the union of all bottom

sections:
u
∣∣
Γout
−

= uΓδ
∈W

3/2
2 (Γout

− ).

We consider the normal boundary current of the solution and introduce the cor-
responding DN-map

DN : uΓδ
→ 1

m∗
∂u

∂n

∣∣∣∣
Γout
−

.

Using DN we can obtain an explicit expression for the scattering matrix via match-
ing of the scattering Ansatz in the wires to the appropriate solution of the above
boundary problem on the extended quantum well. The matching boundary condi-
tion at bottom sections Γ with the scaled effective masses

[u0 − us]
∣∣
γout
s

= 0,
1

µ∗
∂u0
∂n

− 1

m∥
∂us
∂n

= 0, (5.1)

gives a linear system for the boundary values u, ∂u∂n of the scattered wave on the
inner part Γout

− of Γout:
u = ν + Sν + sν

DNu = i
1

µ∥K+(ν − Sν)− 1

µ∥K−sν.

The second equation of the system can be represented in terms of matrix elements
of the DN-map DN of the operator LD with respect to the orthogonal decompo-
sition E = E+ + E−

DN =

(
P+DNP+ P+DNP−
P−DNP+ P−DNP−

)
:=

(
DN++ DN+−
DN−+ DN−−

)
.

This implies the following equation for the components Sν, sν of the Scattering
Ansatz: (

DN++ DN+−
DN−+ DN−−

)(
ν + Sν
sν

)
=

(
i 1
µ∥K+(ν − Sν)

− 1
µ∥K−sν

)
.

Eliminating from this equation the component of the scattered wave in the closed
channels we obtain:(

DN++ −DN+−
I

DN−− + 1
µ∥K−

DN−+

)
(ν + Sν) = i

1

µ∥K+ (ν − Sν) . (5.2)

Comparing (5.2) with the above equation (4.11), we see that

DN++ −DN+−
I

DN−− + 1
µ∥K−

DN−+ = DNF (5.3)

everywhere on real axis where the matrix

I + S =
2i 1

µ∥K+

i 1
µ∥K+ −DRF
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is invertible. But
(I + S)−1 = I −

(
i
1

µ∥K+

)−1

DNF

exists on the complement of the spectrum of the intermediate operator. Thus, the
following statement is proven:
Theorem 5.1. The DN-map of the intermediate operator exists on the complement
of the spectrum of the intermediate hamiltonian and is represented in terms of the
DN-map of the Schrödinger operator LD on the well as

DNF = DN++ −DN+−
I

DN−− + 1
µ∥K−

DN−+. (5.4)

Note that the expression in the right side may have singularities at the spec-
trum of the Schrödinger operator on the quantum well-because of matrix elements
DN±,± and singularities caused by the zeros of the denominator DN−− + 1

µ∥K−.
We are able to show, that for shrinking or relatively thin quantum networks the
singularities of the expression in the right-hand side of (5.4) at the eigenvalues of
the Schrödinger operator on the quantum well cancel each other, and the singu-
larities at zeros of the denominator DN−− + 1

µ∥K− define the spectrum of the
intermediate Hamiltonian.
Definition 5.2. We will keep the quantum well unchanged, but consider a special
shrinking of the extended wires (the wires and the cut-offs), assuming that the
Fermi level Λ is constant, and the constant potential is added on the extended
wires Ωm shifting the thresholds of the conductivity band

λmin,max(δ) = δ−2λ1min,max + Vm(δ)

such that the Fermi-level Λ

Λ = Vm(δ) +
1

2δ2
[
λ1min + λ1max

]
(5.5)

remains constant and is situated in the middle of the conductivity band ∆F =
[λmax(δ), λmin(δ)] in the course of shrinking. All geometric details of shrinking
wires are supplied by the index δ, to emphasis the role of the shrinking parameter,
for instance, we replace now:

Ωε
int −→ Ωδ

int,

We assume that the width of the shrinking wires is defined by the parameter δ
as δ1 × δ, where δ1 is fixed (we may assume that δ1 = 1), λ1min,max are constant
in course of shrinking, and δ → 0. We assume that the potential on the links is
changing in course if shrinking the same way as the potential on the wires (5.5).
Lemma 5.3. The size |∆F | = λmin(δ)−λmax(δ) of the conductivity band increases
when shrinking, δ → 0, as

|∆F | =
1

δ2
[
λ1min − λ1max

]
→ ∞. (5.6)

Proof. Obvious. �
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Hereafter we assume that the conductivity band is just the first spectral
band

[
Vm + π2

µ⊥δ2
, Vm + 4 π2

µ⊥δ2

]
, and the Fermi level lies in the middle of it Λ =

Vm + 5
2

π2

δ2 . One can derive from (5.3) that the the spectrum of the Schrödinger
operator on the links, with the Neumann boundary condition on the side γδint
and the Dirichlet boundary condition on other sides, lies above the Fermi level, if
certain geometrical condition is satisfied, see the discussion below in this section.

We impose a special geometric conditions on the shape of the links. We
formulate this condition for a single wire. Recall, that we already denoted by γintm

the bottom section of the shrinking extended wires in Γint, and by γout ∈ Γout

the union of the orthogonal bottom section of the wires ωm. Consider spectral
problem for the Schrödinger operator LN

δ on the shrinking trapezial link Ωδ with
the Neumann boundary condition on the “skew” side γint and Dirichlet boundary
conditions on the other sides of Ωδ. Denote by λδ the minimal eigenvalue of LN

δ .

Lemma 5.4. If the condition
λδ > Λ (5.7)

is fulfilled then the restriction DN int,int(λ) of the DN-map of the link onto Γint is
an invertible operator when λ is in a small neighborhood of Λ.

Proof. Denote by GN
δ the Green function of the operator LN

δ . The inverse of the
restriction of the DN-map of Lδ on γint is defined by the integral operator, see
[30]:

Qv(x) =

∫
Γout

GN
δ (x, ξ, λ)v(ξ)dξ.

The integral in the right side exists if the λ is not an eigenvalue of LN
δ . �

If the condition (5.7) is fulfilled for the Fermi level, then it is fulfilled also
in some neighborhood of it. Hereafter we assume that it is fulfilled also for the
resonance eigenvalue λ0 of LD. In simplest case, when the tensor of effective mass
is isotropic, µ∥ = µ⊥ = µ∗, this condition can be replaced by stronger, but easily
verifiable condition for the minimal rectangle 2δ which contains the link Ωδ and it’s
reflection in γint, and is symmetric with respect to reflection in γδint. For instance, if
the Fermi level Λ lies in the middle of the first spectral band, Λ = 5π2 µ−1δ−2/2+
Vω this condition is

1

[tan θ + 2ε]2
+

1

[cos θ + 2−1 sin2 θ + ε sin θ]2
> 5/2.

Consider the Schrödinger operator Lδ on the link Ωδ with Dirichlet boundary
conditions. Denote by DN δ the restriction of the DN-map of Lδ onto the sides
γin, γout, and introduce the orthogonal decomposition of the restriction with re-
spect to the L2(γ

in)⊕ L2(γ
out)

DN δ =

(
DN δ

out,out DN δ
out,int

DN δ
int,out DN δ

int,int

)
.
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The following statement gives a link between the DN-map of the Schrödinger
operator LR on the quantum well Ωint and the DN-map of the operator Lδ

int on
the extended quantum well with shrinking links attached.

Theorem 5.5. The Dirichlet-to-Neumann map of the Schrödinger operator Lδ
int

in L2(Ω
δ
int) with Dirichlet boundary conditions is approximately calculated at the

Fermi level as
DN δ

int ≈ DN δ
out,out −DN δ

out,int[DN
δ
int,int]

−1DN δ
int,out

+
DN δ

out,in[DN
δ
int,int]

−1Dφ0⟩ ⟨DN δ
out,in[DN

δ
int,int]

−1Dφ0

λ− λ0 + ⟨Dφ0, [DN
δ
int,int]

−1Dφ0⟩
.

(5.8)

Proof. It is sufficient to prove the statement for a compact domain Ωint with a
single quantum wire ω width δ attached to it on a flat piece Γint ∈ ∂Ωint of the
boundary. The corresponding link Ωδ is included into the extended quantum well
Ωδ

int = Ωint ∪ Ωδ.
To calculate the restriction of the DN-map of the Schrödinger operator Lδ

int

on γδout we represent the restriction of the DN-map of the link onto γδint ∪ γδout in
terms of the orthogonal decomposition of L2(γ

δ
int ∪ γδout) = L2(γ

δ
int)⊕ L2(γ

δ
out) as

a matrix.
Denote by DRint the DR map of the operator LR on the well Ωint, and by

DN δ
int the DN-map of the operator Lδ

int,on the extended well, restricted onto γδout.
Consider the solution u of the boundary problem on the extended well,

Lδ
intu = λu, u

∣∣
Γ
= uΓ

and denote by uint and uout the data of u on γint and γout, respectively. These
data are connected by the equation(

DN δ
out,out DN δ

out,int

DN δ
int,out DN δ

int,int

)(
uout
uint

)
=

(
DN δ

intuout
−DRintuint

)
.

Solving this equation with respect to DN δ
intuout we obtain the explicit expression

for DN δ
int

DN δ
int = DN δ

out,out −DN δ
out,int

I

DN δ
int,int +DRint

DN δ
in,out. (5.9)

The singularities of the whole expression are defined by the zeros of the denomi-
nator

DN δ
int,int +DRint := Dδ (5.10)

and by singularities of the matrix elements of DN δ. Due to condition (5.7), we
see that DN δ

int,int(λ) is invertible at the Fermi level. The Schrödinger operator on
the cut-off is homogeneous of degree −2, hence the corresponding DN-map is also
homogeneous of degree −1. In particular this means that the inverse of it acts, at
regular values of the spectral parameter, from W

1/2
2 (∂Ωε) into W

3/2
2 (∂Ωε) with

the norm estimated by const·δ, with an absolute constant, which coincides with
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the norm of the inverse of the non-scaled cut-off width δ = 1 at the Fermi level Λ.
This allows us to represent the restriction onto γδout of the DN-map of Lδ

int as

DN δ
int = DN δ

out,out −DN δ
out,in

I

I + [DN δ
int,int]

−1DRint

[DN δ
out,out]

−1DN δ
in,out.

(5.11)
We calculate the inverse [I + [DN δ

out,out]
−1DRint]

−1 assuming that DN int is rep-
resented near Fermi level Λ ≈ λ0 in form of spectral series (3.11). Taking into
account only one resonance polar term Dφ0⟩ ⟨Dφ0

λ−λ0
and denoting the remainder by

K we obtain

[DN δ
int,int]

−1DRint =
[DN δ

int,int]
−1Dφ0⟩ ⟨Dφ0

λ− λ0
+ [DN δ

out,out]
−1K.

Both terms in the right side are bounded operators in W
3/2
2 (γδout), and can be

extended by continuity onto L2(γ
δ
out). The corresponding norm of the second term

can be estimated, due to homogeneity of DN δ
out,out, as

∥ [DN δ
int,int]

−1K ∥2≤ δ ∥ [DN1
int,int]

−1K ∥2,
hence it is small for small δ. Introducing the notations

[DN δ
int,int]

−1Dφ0 := δϕ′0, Dφ0 := ϕ0, [DN δ
out,out]

−1K := δK1,

we notice that construction of the inverse [I + [DN δ
out,out]

−1DN int]
−1 requires

solving the following equation in L2(γ
δ
out):(

I + δK1 + δ
ϕ′0⟩ ⟨ϕ0
λ− λ0

)
u = f,

u =

[
(I + δK1)

−1 ∗+(I + δK1)
−1δϕ′0⟩ ⟨ϕ0, (I + δK1)

−1∗
λ− λ0 + ⟨δϕ′0, (I + δK1)−1ϕ0⟩

]
f.

Hence the DN-map of Lδ
int, restricted onto γδout is represented near resonance as

DN δ
int = DN δ

out,out −DN δ
out,int(I + δK1)

−1[DN δ
int,int]

−1DN δ
int,out+

DN δ
out,in(I + δK1)

−1[DN δ
int,int]

−1Dφ0⟩ ⟨DN δ
out,in(I + δK1)

−1[DN δ
int,int]

−1Dφ0

λ− λ0 + ⟨Dφ0, (I + δK1)−1[DN δ
int,int]

−1Dφ0⟩
.

(5.12)
Due to presence of [DN δ

int,int]
−1 containing the factor δ in the second and third

terms in the right side we see that the magnitude of these terms is of the order δ
and δ2, respectively. Similarly, the quadratic form in the denominator of the third
term is estimated for small δ as ⟨Dφ0, [DN

δ
int,int]

−1Dφ0⟩ ≈ δ·const, so

DN δ
int ≈ DN δ

out,out −DN δ
out,int[DN

δ
int,int]

−1 DN δ
int,out

+
DN δ

out,in[DN
δ
int,int]

−1Dφ0⟩ ⟨DN δ
out,int[DN

δ
int,int]

−1Dφ0

λ− λ0 + ⟨Dφ0, [DN
δ
int,int]

−1Dφ0⟩
,

(5.13)

completing the proof. �
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Note that, due to Dirichlet boundary conditions the Rashba term in D does
not contribute to result, and D is reduced just to the differentiation D = − 1

m∗
∂
∂n .

The approximate expression for the restriction of the DN-map of Lδ
int onto

γδout will be used in course of calculation of the DN-map of the intermediate Hamil-
tonian.

Now, assuming that the network is thin and the Fermi level is situated in the
middle of the first spectral band we calculate approximately the DN-map of the
intermediate Hamiltonian LF , based on (5.4) and (5.11).

We will need more elaborated notations. Let ∆ be the sub-interval of the
conductivity band ∆F = (λmax, λmin), centered at the scaled Fermi-level Λ. We
assume that the above approximation (5.13) for DN δ

int is valid on ∆, and λ0 ∈ ∆
is the resonance eigenvalue of the Schrödinger operator LR in L2(Ωint), with zero
boundary conditions. According to (5.13) we obtain the resonance eigenvalue of
Lδ
int as a perturbation of λ0:

λδ0 ≈ λ0 − ⟨Dφ0, [DN
δ
int,int]

−1Dφ0⟩. (5.14)
The corresponding residue ϕ0⟩⟨ϕ0 is constructed based on the eigenvector φ0 of
the operator LR with Dirichlet boundary condition on ∂Ωint

ϕ0 = DN δ
out,in(I + δK1)

−1[DN δ
int,int]

−1Dφ0 ≈ DN δ
out,in[DN

δ
int,int]

−1Dφ0. (5.15)
Separate the resonance term of (5.13)

ϕ0⟩⟨ϕ0
λ− λδ0

:= DN∆,

and consider the remainder
DN∆′

= DN −DN∆ := K :W
3/2
2 (Γ) →W

1/2
2 .

We will use the decomposition of L2(γ
out) := E into the sum of entrance subspaces

of open and closed channels: E = E+ ⊕E−. Represent the DN-map DN of LD by
the 2× 2 matrix with respect to this decomposition

DN =

(
DN++ DN+−
DN−+ DN−−

)
.

The matrix elements can be presented as

DN++ = DN∆
++ +DN∆′

++ := DN∆
++ +K++,

DN+− = DN∆
+− +DN∆′

+− := DN∆
+− +K+−,

DN−+ = DN∆
−+ +DN∆′

−+ := DN∆
+−+ +K−+,

DN−− = DN∆
−− +DN∆′

−− := DN∆
−− +K−−.

Here K++, K+−, K−− are the matrix elements of the contribution K to the DN-
map from the non-resonance eigenvalues λl ∈ ∆′. The operators K++, K+− are
bounded in W

3/2
2 (Γ), K−+ = K+

+− for real L0- regular λ and K−− acts from
E− ⊂W

3/2
2 (γδout) intoW 1/2

2 (γδout) so that the productK−1
− K is a bounded operator
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which can be represented based on the regularized spectral series for the DN-map,
as in [30]. Then the expression (5.4) can be written as

DNF = DN∆
++ −K++ +

[
DN∆

+−K+−
] I

D−

[
DN∆

−+ +K−+

]
, (5.16)

where the denominator is represented as
D− = DN∆

−− +K−− +K−.

Due to special shrinking the positive operator K− = |K−| can be estimated from
below by the distance ρ−(λ) = λmin − λ:

⟨K−u, u⟩ ≥ ρ− ∥ u ∥2L2(Γ)
.

On the small interval ∆ near the Fermi level Λ = 2−1[λmin + λmax] this estimate
reduces to

⟨K−u, u⟩ ≥
λ1min − λ1max

2δ2
∥ u ∥2L2(Γ)

. (5.17)

Definition 5.6. Consider the sum of leading terms in the denominator D on ∆

DN∆
−− +K− := D0.

The pair (µ, eµ) is called the vector zero of D0, with root vector eµ, if
D0(µ)eµ = 0.

The vector zeros of D0 in a complex neighborhood of ∆ are situated on the
real axis and can be found from the finite-dimensional equation in E−:[

I +K−1
− D0

]
eµ = 0,

of from the corresponding scalar equation
det
[
I +K−1

− D0

]
(µ) = 0,

see below the calculation in case of a single resonance eigenvalue λ0, (5.8). For
small δ, a vector zero µ0 of D0 is localized, due to the operator-valued Rouche
theorem, [37], near the resonance eigenvalue λδ0 and the corresponding root vector
is close to the corresponding entrance vectors ϕ.

Definition 5.7. We say, that the network is thin on ∆ in closed channels, if the
sum of leading terms in the denominator D−

DN∆
−− +K− = D0 (5.18)

dominates the remainder
∥ [D0]

−1 K−− ∥< I

on a circle Σ0 centered at the real zero µ0 of D0 in a complex neighborhood of ∆.

If the network is thin on ∆ in closed channels, then the disc D0, ∂D0 =
Σ0 contains a simple real vector zero of the denominator D, D−(µ0)eµ0

= 0,
and the corresponding root-vector eµ0

lies in an appropriate neighborhood of the
corresponding root vector eµ0

of D0 (see [37]). In particular eµ0
→ λδ0 and µ0 → λδ0

when the network shrinks, δ → 0.
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Theorem 5.8. If the network is thin on the Fermi-level Λ in closed channels,
then the pole of the DN-map DN of the operator LD in L2(Ω

δ
int) at the simple

resonance eigenvalue λδ0 of LD in the first term in the formula (5.3) for DN-map
of the intermediate Hamiltonian

DNF = DN++ −DN+−
I

DN−− + 1
µ∥K−

DN−+

is compensated by the corresponding pole of the second addendum and disappears
as singularity of the whole function DNΛ, so that the whole expression (5.16) is
regular at the point λδ0. Generically, a new pole appears as a closest to λ0 zero
eigenvalue of the denominator D0.
Proof. If the network is thin on ∆ in closed channels, then the operator D0 is
invertible: [D0]

−1
= K

−1/2
−

(
I +K

−1/2
− K−−K

−1/2
−

)−1

K
−1/2
− . Then the middle

term of the above product (5.16) can be found as a solution of the equation[
ϕ−0 ⟩⟨ϕ

−
0

λ− λ0
+K−− +K−

]
v = f,

with ϕ−0 = P−ϕ0
∣∣
Γ
, v = D−1

0 f − 1
D D−1

0 ϕ−0 ⟩ ⟨ϕ
−
0 , D

−1
0 f⟩, where D = (λ− λ0)+

⟨ϕ−0 , D
−1
0 ϕ−0 ⟩. Vector-zeroes of the function[

ϕ−0 ⟩⟨ϕ
−
0

λ− λ0
+K−− +K−

]
:= D−(λ)

coincide with singularities of the middle factor of the second term in the above
formula (5.3) for DNF .

Make sure that substitution of that expression into (5.16) results in mutual
compensation of all polar terms containing the factors (λ− λ0)

−1, so that the
sum of them vanishes, and, generically, we obtain an expression regular at λ0.
Indeed, taking into account only the terms in (5.16) containing the singularities,
the powers of (λ− λ0)

−1 are:
ϕ+0 ⟩⟨ϕ

+
0

λ− λ0
− ϕ+0 ⟩⟨ϕ

−
0

λ− λ0

[
D−1

0 ∗ − 1

D
D−1

0 ϕ−0 ⟩ ⟨ D
−1
0 ϕ−0 , ∗⟩

] [
ϕ−0 ⟩⟨ϕ

+
0

λ− λ0

]
− ϕ+0 ⟩⟨ϕ

−
0

λ− λ0

[
D−1

0 ∗ − 1

D
D−1

0 ϕ−0 ⟩ ⟨D
−1
0 ϕ−0 , ∗⟩

]
K−+

−K+−

[
D−1

0 ∗ − 1

D
D−1

0 ϕ−0 ⟩ ⟨D
−1
0 ϕ−0 , ∗⟩

] [
ϕ−0 ⟩⟨ϕ

+
0

λ− λ00

]
+

K+−D−1
0 ϕ−⟩ ⟨K+−D−1

0 ϕ−

D
.

(5.19)

The sum of all terms containing (λ− λ0)
−2 can be reduced to:

ϕ+0 ⟩ ⟨ϕ
+
0

(λ− λ0)2

(λ− λ0)−
⟨ϕ−0 ,D

−1
0 ϕ−0

I +
⟨ϕ−

0 ,D−1
0 ϕ−

0

D

)

 =
ϕ+0 ⟩ ⟨ϕ

+
0

D
.
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The terms containing (λ− λ0)
−1 and K+−, K−+ as well as the square bracket[

D−1
0 ∗ − 1

D
D−1

0 ϕ−0 ⟩ ⟨ D
−1
0 ϕ−0 , ∗⟩

]
can be transformed for K+− as

−K+−D−1
0 ϕ−0 ⟩ ⟨ϕ

−
0

(λ− λ0)
+

K+− D−1
0 ϕ−0 ⟩ ⟨ϕ

−
0 ,D

−1
0 ϕ−0 ⟩ ⟨ϕ

+
0

D
(λ− λ0) =

−K+−D−1
0 ϕ−0 ⟩D−1 ⟨ϕ+0

and, similarly, for the sum of terms containing K−+ = K+
+− we have:

− ϕ+0 ⟩D−1 ⟨K+−D−1
0 ϕ−0 .

Collecting the transformed terms we obtain for thin network in closed channels at
λ0, we get

DNΛ =
ϕ+0 −K+−D−1

0 ϕ0
−⟩ ⟨ϕ0+ −K+−D−1

0 ϕ−0
D

+ · · · , (5.20)

where the dots represent the terms defining regular summands of DNΛ in a small
neighborhood of the resonance eigenvalue. Comparing the above expression (5.20)
with the spectral representation of DNF , we conclude that

ϕ+0 −K+−D−1
0 ϕ0

−⟩ ⟨ϕ0+ −K+−D−1
0 ϕ−0

D
= DNF

∆ (5.21)

coincides with the polar term of DNF at the resonance eigenvalue. Hence the zero
of the denominator D is the resonance eigenvalue of the intermediate Hamiltonian
LF and ϕ+0 −K+−D−1

0 ϕ0
− is the corresponding resonance entrance vector which

defines the resonance properties of the scattering matrix. �

Corollary 5.9. Inserting the resonance expression DNF
∆ for the polar term of

DNF we obtain a convenient rational approximation for the scattering matrix
near the resonance:

Sapprox(λ) =
iK+/µ

∥ +DNF
∆

iK+/µ∥ −DNF
∆

. (5.22)

Summarizing the formulae (5.14), (5.15), and (5.18)) for the approximate res-
onance eigenvalue λδ0 of LD, for the corresponding resonance entrance vector ϕ0,
and for leading terms of the denominator D0, we obtain an approximate expres-
sion for DNF

∆ and for the scattering matrix, based on (5.22). The non-diagonal
matrix elements of this formula define the transmission coefficients, similarly to
the corresponding formula in [26] and the corresponding formulae for the solvable
models in [19, 21].

Remark 5.10. In fact, based on (5.13) even better approximation of the scattering
matrix can be obtained. One can see that on the first step of the approximation
procedure we obtain the pole of DNF at the simple zero of the denominator bfD
with the same residue ϕ0+⟩ ⟨ϕ0+ as in DN , in full agreement with physical folklore.
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For thin network we obtain: [D0]
−1

= K−1
− − K−1

− K−K
−1
− + · · · . Substituting

this expression into the denominator D and into the resonance entrance vector
ϕ+0 − K+−k

−1 ϕ0
− we can obtain an approximate expressions for the resonance

eigenvalue of the intermediate Hamiltonian and for the leading term DNF
∆ of the

DN-map DNF of the intermediate Hamiltonian. This opens a way to calculation
of the spectral parameters of the intermediate Hamiltonian based on spectral data
of LD. These data can be obtained with use of standard software. We postpone to
forthcoming papers the derivation of the corresponding approximate formulae for
the scattering matrix and calculation of resonances based on [37].

6. Appendix: the intermediate Hamiltonian
The role of the single-electron Hamiltonian on the quantum network Ω is played
by the Schrödinger operator

2m0 ~−2LRu = −△µ u+ V (x)u+ hru (6.1)

with

hr =

{
2m0 ~−2HR if x, y ∈ Ωint,

0 if x, y ∈ Ωout = ∪mωm,

with appropriate boundary conditions (3.4) on Γ and Dirichlet boundary condi-
tions on ∂Ω. The kinetic term −△µ containing the tensor µ of scaled effective
masses is

−△µ =

{
−(µ∗)−1△ , if x, y ∈ Ωint,

− 1
µ∥

∂2

∂x2 − 1
µ⊥

∂2

∂y2 , if x, y ∈ ωm,

where x, y are the local coordinates. We impose Meixner conditions at the inner
corners of Ωint in form DL ⊂ W 1

2 (Ω), Dirichlet boundary conditions on ∂Ω and
appropriate matching conditions (3.4) on Γ. Formally full Hamiltonian on the
network is obtained as the Friedrichs extension of the symmetric operator defined
by the same differential expression and the matching condition (3.4) on smooth
functions vanishing near the boundary ∂Ω.

The intermediate Hamiltonian is defined by operator splitting procedure,
see [32] depending on the scaled Fermi-level ΛF . The non-perturbed Schrödinger
operator via separation of variables is reduced to the orthogonal sum Lout =
⊕
∑

s,n ls,n of one-dimensional Schrödinger operators in Hm,n = L2(0,∞)× es,n:

ls,n = − 1

µ∥
∂2

∂x2
− n2 π2

δ2µ⊥ Is,n, s = 1, 2, 3.

Here Is,n is the unit operator in the “channel space” Hs,n, es,n = sin nπ y
δ is

the cross-section eigenfunction on the wire ωs, with the eigenvalue λs,n = π2 n2

2δ2µ⊥ .
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Formal solutions of the equation ls,nΦ = λΦ are

Φs,n(x) = sinh
√
λs,n − λx, if λ < λs,n, and

Φs,n(x) = sin
√
λ− λs,nx, if λ > λs,n.

The operator Lout has absolutely-continuous spectrum consisting of a countable
system of branches σs,n := [λs,n,∞) with thresholds λs,n, which correspond to
the parts ls,n in the channels Hs,n; see [36]. For given Fermi level ΛF ̸= λs,n, we
call the channels with λs,n < ΛF open channels, and ones with λm,n > ΛF closed
channels. The corresponding thresholds λs,n are called upper and lower thresholds,
respectively. Denote by λFmin the minimal upper threshold in semi-infinite wires:

λFmin = min
s2π2

µ⊥δ2
>ΛF

{
s2π2

µ⊥δ2

}
:= min

closed

{
s2π2

µ⊥δ2

}
,

and by λFmax the maximal lower threshold (of open channels):

λFmax = max
n2π2

µ⊥δ2
<ΛF

{
n2π2

µ⊥δ2

}
:= max

open

{
s2π2

µ⊥δ2

}
,

The spectral band
[
λFmax, λ

F
min

]
:= ∆F contains the scaled Fermi level ΛF and

plays a role of the conductivity band. For λ ∈ ∆F the exponential solutions of the
Schrödinger equation in the wires are either

• exponentially growing/decreasing in “closed channels” n2π2

µ⊥δ2
> ΛF ,

(δ/2)−1/2 sin

(
nπ y

δm

)
e
±
√

µ∥
√[

n2π2

µ⊥δ2
−λ

]
:= es,n(y) e

±k−(λ,n)x = e±K−x es,n,

with a positive diagonal matrix K− =
⌈
kn−
⌋

acting in the entrance subspace
of closed channels E− =

∨
closed sin

nπ y
δ , or

• just oscillating in “open channels” s2π2

2µ⊥δ2
< ΛF ,

(δ/2)−1/2 sin
(nπ y

δ

)
e
±i

√
µ∥

√
λ−

[
s2π2

µ⊥δ2

]
:= es,n(y) e

±ik+(λ,n)x = e±iK+x es,n,

with a positive diagonal matrix K+ = ⌈k+(λ, n)⌋ acting in the entrance
subspace of the open channels, E+ =

∨
open sin

nπ y
δm

= L2(Γ)⊖E−, dimE+ <
∞, dimE− = ∞.

Elements from the domain D(L) of the Schrödinger operator L on the whole
network Ω belong locally (outside a small neighborhood of inner corners) to the
appropriate Sobolev class, D(L) ⊂W 2

2,loc(Ωt), see [31, 35].
For given scaled Fermi level ΛF > 0 we define in L2(Ω) the split Hamiltonian

via operator splitting, [32], following [26], based on the same differential expression
as original Schrödinger operator L but choose the domain depending on Fermi level
F . Denote by P± the orthogonal projections in L2(Γ) onto E±, respectively. Denote
by uout, uint vector-function u = {⊕

∑
m ⊕um, uin}, obtained via restriction of
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the function u defined on the whole network, onto Ωout and Ωint, respectively. The
domain of the split operator LF is described by the boundary condition:

P+uint
∣∣
Γ
= P+uout

∣∣
Γ
= 0, P− [uint − uout]

∣∣
Γ
= 0,

P−

[
− 1

µ∗
∂

∂nξ
+
iαm0

2~
[σ, n]y +

1

µ∥
∂uout
∂n

] ∣∣∣∣
Γ

= 0. (6.2)

The split operator is reduced by the orthogonal decomposition

H+ ⊕ [L2(Ω)⊖H+] .

The part lF of LF in open channels coincides with ⊕
∑

open ls,n, LF = LF ⊕ lF .

The part lF of LF in open channels coincides with ⊕
∑

open ls,n and has pure ab-
solutely continuous spectrum σ(lF ) = ∪openσm,n ⊃ ∆f . The part LF of LF in
L2(Ω) ⊖ H+ plays the role of an intermediate Hamiltonian. It is self-adjoint and
it’s absolutely-continuous spectrum coincides with the union of branches of the
absolutely- continuous spectrum of Lout in closed channels, σ(LF ) = ∪closedσm,n.
In particular, it does not contain the conductivity band ∆F . The following state-
ment contains complete description of spectral properties of the operators LR, LR:

Theorem 6.1. Consider the operators LF , lF , and LF = LF ⊕ lF , defined by
the differential expression (2.3), the above boundary conditions (3.4) and Meixner
condition at the inner corners on the boundary. The domain of the operator lF
consists of all locally W 2

2 -smooth functions from the direct sum of all open semi-
infinite channels H+ in the semi-infinite wires. The domain of the operator LF

consists of W 2
2 -smooth functions on the well and the joining wires which belong to

H− = L2(Ω)⊖H+ and satisfy the boundary conditions (3.4) on Γ. Both operators
LF , lF are self-adjoint. The absolutely-continuous spectra σa(lF ), σa(LF ) of lF , LF

coincide with the union of all lower and all upper branches in semi-infinite wires,
respectively:

σa(lF ) =
⋃

{
n2 π2

µ⊥δ2
<Λ

}
[
n2 π2

µ⊥δ2
, ∞

)
, σa(LF ) =

⋃
{

n2 π2

µ⊥δ2
>Λ

}
[
n2 π2

µ⊥δ2
, ∞

)
.

The absolutely-continuous spectrum σa(L) of the operator L coincides with the
absolutely-continuous spectrum of the split operator LF = LF ⊕ lF :

σa(L) = σa(LF ) = σa(lF ) ∪ σa(LF )

Besides absolutely continuous spectrum, the operators L and LF may have a finite
number of eigenvalues below the threshold of the absolutely-continuous spectrum
and a countable sequence of embedded eigenvalues accumulating at infinity. The
singular continuous spectrum of both L, LF is absent.

The original Hamiltonian L on the whole network is obtained from the split
operator LF = LF ⊕ lF via a finite-dimensional perturbation, replacing the first of
the boundary conditions by the corresponding matching boundary condition (3.4).
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Proof. for the Schrödinger operator without Rashba Hamiltonian may be found
in [34, 33]. In presence of Rashba Hamiltonian the proof follows the pattern of
[34, 33]. �

7. Conclusion
Based on above approximate formula for the scattering matrix one can optimize
the shape of the well to enhance the selectivity of the spin filter. We anticipate an
application of our formulae for the solution of the second problem formulated in the
introduction: withdrawal from the scattering system of electrons with the certain
value of the spin. We guess that the solution of the problem may be achieved
via using of specially shaped Quantum Networks constructed on the surface of a
narrow-gap semiconductor.
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Quantum graph in a magnetic field
and resonance states completeness
Igor Y. Popov and Irina V. Blinova

To the memory of Boris Pavlov

Abstract. Quantum graph with the Landau operator (Schrödinger operator
with a magnetic field) at the edges is considered. The Kirchhoff condition is
assumed at the internal vertices. We derive conditions for the graph struc-
ture ensuring the completeness of the resonance states on finite subgraphs
obtained by cutting all infinite leads of the initial graph. Due to the use of
a functional model, the problem reduces to factorization of the characteristic
matrix-function. The result is compared with the corresponding completeness
theorem for the Schrödinger quantum graph.

Mathematics Subject Classification (2010). Primary 81U20; Secondary
46N50.
Keywords. Spectrum, resonance, completeness.

1. Introduction
The oldest result concerning to resonances was obtained for the Helmholtz res-
onator by Rayleigh a century ago. There are many works describing resonances for
various physical problems (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]).
The completeness problem for the resonance states began to discuss essentially
later, in 70th [16], but answers were found for a few particular cases only (see,
e.g., [17, 18]).

There is an interesting relation between this problem and the Sz.-Nagy func-
tional model [19, 20, 21]. Starting with work [22], it is known that the scatter-
ing matrix is the same as the characteristic function from the functional model.
Moreover, root vectors in the functional model correspond to resonance states in
scattering theory. The problem of completeness of the system of root vectors is
related to the factorization problem for the characteristic function. It allows one to
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study the completeness using factorization. Particularly, for the finite-dimensional
case, this approach gives one an effective completeness criterion [20].

Recently, the completeness results were obtained for a few problems on quan-
tum graphs, namely, for the Schrödinger and Dirac operators on some graphs and
hybrid manifolds [24, 25, 26, 27]. In the present paper we consider the Schrödinger
operator with a magnetic field. The Kirchhoff condition is assumed at the internal
vertices of the graph. We obtain the condition for the graph structure which en-
sures the completeness of the resonance states on the subgraph obtained by cutting
infinite leads. The proof is based on results of [28, 29, 30].

2. Preliminaries
2.1. Quantum graph model
Let us first describe the structure of the quantum graph Γ under consideration. We
start with a finite compact metric graph Γ0 (with the set of edges Eint, named as
internal edges), choose some subset of vertices V ext, to be called external vertices,
and attach one or more copies of semi-axis [0;∞), to be called leads (Eext), to
each external vertex. We identify the point 0 in a lead with the relevant external
vertex. The thus extended graph is the graph Γ in question. Let V be the set of all
vertices of Γ. Correspondingly, V int = V \V ext; the elements of V int will be called
internal vertices. For convenience, we assume that Γ has no edge starts and ends
at the same vertex. If it is not so, one can introduce additional vertices, which do
not change the situation, really.

Definition 2.1. A vertex is named “external” if it has semi-infinite lead attached
and ”internal” in the opposite case.

Definition 2.2. An external vertex is named “balanced” if for this vertex the
numbers of attached leads equals to the number of attached edges. is not balanced,
we call it unbalanced.

As for the differential operator on the edges and leads, we consider two cases:
one-dimensional free Schrödinger operator (i.e., the second derivative: H = − d2

dx2 )
and the Landau operator (one-dimensional Schrödinger operator with a magnetic
field: H = −( d

dx + iAj , Aj is the tangent component of the vector potential cor-
responding to the magnetic field for edge Aj ; without loss of generality, we may
assume that it is zero on external leads because on an edge which is not a part
of a loop we can easily remove the vector potential by a gauge transformation).
We will assume that the metric graph belongs to a plane embedded in R3 and has
no “false” edge intersections, i.e., “intersections without vertices”. The magnetic
field is orthogonal to this plane. This assumption is not necessary but simplifies
the consideration. The domain of H consists of continuous functions on Γ, belong-
ing to W 2

2 on each lead and edge satisfying the boundary conditions at boundary
vertices (we assume the Dirichlet condition), coupling conditions at other vertices



542 I.Y. Popov and I.V. Blinova

(we assume the Kirchhoff condition):∑
e,v∈e

(−1)κ(e(v))
∂ψ

∂x
= 0, (2.1)

where κ(e(v)) = 0 for outgoing edge/lead e and κ(e(v)) = 1 for incoming edge e.
Note that all leads were chosen as outgoing.

The standard definition of resonance is as follows

Definition 2.3. We will say that k2 ∈ C, k ̸= 0, is a resonance of H (or, by a slight
abuse of terminology, a resonance of Γ) if there exists a resonance eigenfunction
(resonance state) f, f ∈ L2

locΓ, which satisfies the differential equation
Hf(x) = k2f(x), x ∈ Γ,

on each edge and lead of Γ, is continuous on Γ, satisfies the boundary conditions
at boundary vertices, coupling conditions at other vertices, and the radiation con-
dition f(x) = f(0)eikx on each lead.

We denote the set of resonances as Λ. One can give another, equivalent,
definition of resonances in the framework of the Lax–Phillips scattering theory
(see below).

We define the resonance counting function by
N(R) = ♯{k : k ∈ Λ, |k| ≤ R}, R > 0

(each resonance is counted with its algebraic multiplicity). Note that the set Λ of
resonances is invariant under the symmetry k → −k, so this method of counting
yields, roughly speaking, twice as many resonances as one would obtain if one
imposed an additional condition ℜ(k) ≥ 0. In particular, in the absence of leads,
N(R) equals twice the number of eigenvalues λ ̸= 0 of H (counting multiplicities)
with λ ≤ R2.

There are works concerning to asymptotics of resonances in the complex plane
[28, 30, 29]. If there are no leads then H has the pure point spectrum, there are
no resonances, but we can say that resonances are identified with eigenvalues of
H, and it is known that for these eigenvalues, one has Weyl’s law:

N(R) =
2

π
vol(Γ0)R+ o(R), as R→ ∞, (2.2)

where vol(Γ0) is the sum of the lengths of the edges of Γ0 which plays the role of
volume in general Weyl formula. We say that Γ (i.e., the corresponding graph with
leads) is a Weyl graph, if the asymptotics (2.2) takes place for resonances of Γ.

The following theorem was proved in [28].

Theorem 2.4. One has

N(R) =
2

π
WR+O(1), as R→ ∞, (2.3)

where the coefficient W satisfies 0 ≤ W ≤ vol(Γ0). One has W = vol(Γ0) if and
only if every external vertex of Γ is unbalanced.
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2.2. Scattering, functional model and completeness criterion
For our purposes, it is convenient to consider the scattering in the framework of the
Lax–Phillips approach [32]. Consider the Cauchy problem for the time-dependent
Schrödinger equation with a magnetic field on the graph Γ:{

i~u′t = Hu,

u(x, 0) = u0(x), x ∈ Γ.
(2.4)

Let U(t) be unitary operator in the state space E (of initial data) giving the solution
of the Cauchy problem (2.4): u(x, t) = U(t)u0(x); U(t)|t∈R forms a continuous, one
parameter, evolution unitary group of operators in E . There are two orthogonal
subspaces D− and D+ in E , correspondingly called the incoming and outgoing
subspaces.

Definition 2.5. The outgoing (incoming) subspace D+, D− is a subspace of E
having the following properties:
(a) U(t)D+ ⊂ D+ for t > 0; U(t)D− ⊂ D− for t < 0;
(b)

⋂
t>0 U(t)D+ = {0};

⋂
t<0 U(t)D− = {0};

(c)
⋃

t<0 U(t)D+ = E ,
⋃

t>0 U(t)D− = E .

For the graph Γ, the subspace D+ contains functions vanishing at Γ0 (e.g.,
on all edges of finite length) and satisfying the radiation condition on all leads.

Let P± be the orthogonal projection of E onto the orthogonal complement of
D±. Consider the semigroup {Z(t)}|t≥0 of operators on E defined by

Z(t) = P+U(t)P−, t ≥ 0.

Lax and Phillips proved the following theorem [32].

Theorem 2.6. The operators {Z(t)}|t≥0 annihilate D+ and D−, map the orthog-
onal complement subspace K = E ⊖ (D− ⊕ D+) into itself and form a strongly
continuous semigroup (i.e., Z(t1)Z(t2) = Z(t1 + t2) for t1, t2 ≥ 0) of contraction
operators on K. Furthermore, we have s-limt→∞ Z(t) = 0. The space E can be
represented isometrically as the Hilbert space of functions L2(R, N) for some aux-
iliary Hilbert space N in such a way that U(t) goes to translation to the right by t
units and D+ is mapped onto L2(R+, N). This representation is unique up to an
isomorphism of N .

Definition 2.7. Let B be the generator of the semigroup Z(t) : Z(t) = exp iBt, t >
0. The eigenvalues of B are called resonances and the corresponding eigenvectors
are the resonance states.

Such a representation is called an outgoing translation representation. Anal-
ogously, one can obtain an incoming translation representation, i.e., if D− is an
incoming subspace with respect to the group {U(t)}t∈R then there is a represen-
tation in which E is mapped isometrically onto L2(R, N), U(t) goes to translation
to the right by t units and D− is mapped onto L2(R−, N).
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The Lax–Phillips scattering operator S̃ is defined as follows (it was proved
that this definition is equivalent to the standard one). Suppose W+ : E → L2(R, N)
and W− : E → L2(R, N) are the mappings of E onto the outgoing and incoming
translation representations, respectively. The map S̃ : L2(R, N) → L2(R, N) is
defined by the formula

S̃ =W+(W−)
−1.

For most purposes it is more convenient to work with the incoming spectral rep-
resentation and the outgoing spectral representation which are the Fourier trans-
forms F , correspondingly, of the incoming and the outgoing translation repre-
sentations. Respectively, D−(+) transforms to H2

+(−)(R, N), i.e., to the space of
boundary values on R of functions in the Hardy space H2(C+(−), N) of vector-
valued functions (with values in N) defined in the upper (lower) half-plane C+(−).
Accordingly, the scattering operator S̃ in the spectral representation is given by
the following formula

S = FS̃F−1.

The operator S acts as the operator of multiplication by the operator-valued func-
tion S(·) on R. S(·) is called the Lax–Phillips S-matrix. The main properties of S
are presented in the following theorem [32].
Theorem 2.8. (a) S(·) is the boundary value on R of an analytic in C+ operator-

valued function,
(b) ∥S(z)∥ ≤ 1 for every z ∈ C+,
(c) S(E), E ∈ R, is, pointwise, a unitary operator on N .

The analytic continuation of S(·) from the upper to the lower half-plane is
obtained by a conventional procedure:

S(z) = (S∗(z))−1, ℑz < 0.

Finally, S(·) is a meromorphic operator-valued function on the whole complex
plane (we do not change the notation for the operator-function). There is a relation
between the eigenvalues of B and the poles of the S-matrix. It is described in the
following theorem from [32].
Theorem 2.9. If ℑk < 0, then k belongs to the point spectrum of B if and only
if S∗(k) has a non-trivial null space.
Remark 2.10. The theorem shows that a pole of the Lax–Phillips S-matrix at a
point k in the lower half-plane is associated with an eigenvalue k of the generator of
the Lax–Phillips semigroup. In other words, resonance poles of the Lax–Phillips S-
matrix correspond to eigenvalues of the Lax–Phillips semigroup with well defined
eigenvectors belonging to the subspace K = E ⊖ (D− ⊕D+), which is called the
resonance subspace.
Theorem 2.11. There is a pair of isometric maps T± : E → L2(R, N) (the
outgoing and incoming spectral representations) having the following properties:

T±U(t) = eiktT±, T±D± = H2
±(N), T−D+ = SH2

+(N),
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where H2
±(N) is the Hardy space of the upper (lower) half-plane, the matrix-

function S is an inner function in C+, and

K− = T−K = H2
+ ⊖ SH2

+, T−Z(t)|K = PK−e
iktT−|K− .

There is an interesting relation between the completeness of the system of
resonance states (i.e., root vectors of B) and the factorization of the scattering
matrix. Namely, as an inner function, S can be represented in the form S = ΠΘ,
where Π is a Blaschke–Potapov product (operator-function generalization of scalar
Blaschke product [23]) and Θ is a singular inner function [19, 20, 21]. The next
theorem shows this relation.

Theorem 2.12 (Completeness criterion [20]). The following statements are
equivalent:

1. The system of root vectors of the operator B is complete;
2. The system of root vectors of the operator B∗ is complete;
3. S is a Blaschke–Potapov product.

There is a simple criterion for the absence of the singular inner factor in the
case dimN <∞ (in the general operator case there is no such simple criterion).

Theorem 2.13 ([20]). Let dimN <∞. The following statements are equivalent:
1. S is a Blaschke–Potapov product;
2.

lim
r→1

2π∫
0

R(r) ln(s(R(r)eit + iC(r)))

(R(r)eit + iC(r) + i)2
dt = 0, (2.5)

where

s(k) = |detS(k)| , C(r) =
1 + r2

1− r2
, R(r) =

2r

1− r2
. (2.6)

Remark 2.14. The corresponding theorem in [20] was proved for unit disk. We
reformulate it for the upper half-plane. It should be noted that R → ∞ corresponds
to r → 1.

Our main theorem is as follows.

Theorem 2.15 (Main theorem). The system of resonance states of operator H
is complete on L2(Γ0) if and only if every external vertex of Γ is unbalanced.

3. Proof of the main theorem
To prove the completeness or incompleteness of resonance states, we follow the way
analogous to that used in [28] for investigation of resonance asymptotics. Namely,
the proof splits into two cases corresponding to presence or absence of balanced
vertices.
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3.1. Relation between magnetic and non-magnetic cases
It is well-known (see, e.g., [30, 33]) that using the local gauge transformation,
one can get rid of the explicit dependence of the magnetic field and arrive thus at
the free Hamiltonian with the transformed coupling conditions. Let us describe the
transformation. Let the graph be embedded in R3. Consider an edge e which is pa-
rameterized by a natural way r(x) = (r1(x), r2(x), r3(x)), r : [0, Le] → R3, |ṙ| ≡ 1
(here dot means the derivative in the parameter x). The magnetic field is intro-
duced using the vector potential A⃗ : R3 → R3. The Schrödinger operator with a
magnetic field in R3 has the form

Hψ(r) = −
(
∇− iA⃗

)2
ψ,

where we choose a system of units such that e = ~ = 1, m = 1/2. As in the
considered case the movement is confined by the curve, the magnetic momentum
operator is confined to the tangential direction to the curve e:

ṙ ·
(
∇− iA⃗

)
f = ṙ (∇f)− i

(
ṙA⃗
)
f =

∂

∂x
f(r(x))− iAe(x)f(r(x)),

where Ae(x) = ṙ(x) · A⃗(r(x)). Correspondingly, at the curve, one has

Hψ(x) = −
(
∂

∂x
− iAe

)
ψ(x).

Let us make a replacement

ψ(x) = g(x) exp

i x∫
0

Ae(τ)dτ

 .
Then, (

∂

∂x
−Aei

)
e
i

x∫
0

Ae(τ)dτ
g(x)

= −Aeiψ(x) + g′(x)e
i

x∫
0

Ae(τ)dτ
+ g(x)iAe(x)e

i
x∫
0

Ae(τ)dτ

= e
i

x∫
0

Ae(τ)dτ ∂

∂x
g(x).

Hence,

He
i

x∫
0

Ae(τ)dτ
= e

i
x∫
0

Ae(τ)dτ
(
− ∂2

∂x2

)
.

Correspondingly, the Schrödinger equation Hψ = Eψ is equivalent to the following
equation:

− ∂2

∂x2
g = Eg.
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That is, g satisfies the free Schrödinger equation. As for the boundary conditions,
note that the magnetic derivative is more natural from the physical point of view:
∂ =

∂

∂x
− ia. The corresponding Kirchhoff condition has the form:ψe(v) = ψe′(v) ∀e, e′ : v ∈ e, v ∈ e′;∑

e∼v

∂ψ(e(v) = 0.

As

∂ψe(x) = ∂

(
e
i

x∫
0

Ae(τ)dτ
g(x)

)
−Aeig(x)e

i
x∫
0

Ae(τ)dτ

= g′(x)e
i

x∫
0

Ae(τ)dτ
+ g(x)iAe(x)e

i
x∫
0

Ae(τ)dτ
−Aeig(x)e

i
x∫
0

Ae(τ)dτ

= g′(x)e
i

x∫
0

Ae(τ)dτ
,

one has 
∂ψe(0) = g′e(0);

∂ψe(l) = g′e(l)e
iΦ;

ψe(0) = ge(0);

ψe(l) = ge(l)e
iΦ.

Thus, the magnetic Kirchhoff conditions for g takes the forme
iΦe(v)ge(v) = ge′(v)e

iΦe′ (v);∑
e

g′e(v)e
iΦe(v) = 0,

where

Φe(v) =


0, if v is the beginning of edgee;
t∫
0

ae(τ)dτ, if v is the end of edge e.

The described relation ensures close similarity of the completeness proofs for the
cases of presence or absence of the magnetic field.

Remark 3.1. In the considered case, this transformation is not necessary because
due to absence of a potential, one constructs the explicit solutions at the graph
edges. But the transformation can be performed in a general case when a potential
is presented.

To construct the scattering matrix for the graph Γ we solve a series of scat-
tering problems each of them corresponds to wave coming from a selected lead.
We assume that all leads are straight and orthogonal to the magnetic field. Cor-
respondingly, we can deal with the free Schrödinger operator at these lines. If
we consider a wave coming from jth lead the solution on jth lead has the form
e−ikx + sjje

ikx and on pth lead, p ̸= j, has the form spje
ikx. Coefficients spj
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are entries of the scattering matrix. As for the curved edges, the magnetic field
leads to appearance of additional phase (see above) for exponential terms. But
this phase does not depend on the spectral parameter k. Correspondingly, the be-
havior of the determinant of the scattering matrix at infinity (which is important
for the completeness) does not change essentially, and the proof follow the same
way as for the Schrödinger operator without a magnetic field. The linear system
for determination of spj and coefficients of the solutions for edges is given by the
Dirichlet condition at boundary vertices, continuity at each non-boundary vertex,
the Kirchhoff condition (3.1) at each non-boundary vertex. For each jth incoming
wave, one obtains a linear algebraic system for the coefficients, i.e., the number of
systems coincides with the number of semi-infinite leads of Γ.

3.2. Graph containing balanced vertices
As has been described, the problem of scattering matrix construction reduces to
the inhomogeneous linear system for the coefficients, having units in the right hand
side of two equations and zeros at the right hand side of others. It is convenient to
reorder the equations in the system by the following way. Let us take an external
vertex v coupling m edges and m leads (balanced). Let the first m equations
correspond to continuity condition for leads, the next m equations to continuity
condition for edges, (2m+1)th equation to the Kirchhoff condition for the vertex.
As for internal vertices, the order of the corresponding equations can be arbitrary
because the scattering matrix includes the first m coefficients only. The term spj
of the scattering matrix is the pth coefficient of the jth system. Kramer’s formula
gives one the system solution as a ratio of two determinants. The system matrix
consists of 0, 1 and exponentials of type e±ikLs+iΦs where Ls is the length of the
sth edge and Φs is the additional phase due to the magnetic field. For the chosen
external balanced vertex, one has the matrix of the corresponding part of the
system in the following block form (due to the chosen ordering of the equations)

A =

(
B C
D E

)
where B is a (2m+ 1)× (2m+ 1) matrix. The determinant detA has the form of
exponential polynomial

n∑
r=1

are
ikσr (3.1)

where σr ∈ R, ar is a polynomial in k. We denote σ− = min{σ1, . . . , σn} and
σ+ = max{σ1, . . . , σn}. It is these coefficients that predetermine the behavior
(exponential in k or power in k) of the determinant for large |ℑk|. This, in its
turn, allows us to estimate the integral in the completeness criterion.

Let us consider the determinant at the denominator of the Kramer formula.
The determinant is the sum of the products of entries of A where every column
contributes one entry to each product. In order for the product to be of the type
a−eikσ− , each column corresponding to an “edge” es variable must contribute the
entry e−ikLs . We are interested in the term with the maximal exponential growth
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only. Correspondingly, other terms can be ignored. It will be made if we replace the
constant entries of the columns by zeros. This will not affect the value of a−(detA)
(recall that a− is the coefficient of the term with the maximal exponential growth).
However, the columns of D corresponding to the “leads” variables are all zeros.
Hence, we come to the conclusion that

a−(detA) = a−(detA0), A0 =

(
B C
0 E

)
.

Note that detA0 = detB detE. As for B, one can see that simple row reduction
shows that detB = 0 for a balanced vertex. It means that the coefficient a−(detA)
vanishes.

The determinant in the numerator of the Kramer formula differs from the
previous one in one column which is replaced by the column of the right hand side
terms of the system. Really, it means that we replace only one entry – unit in the
row corresponding to the Kirchhoff condition by zero. In this case, the same row
reduction as above shows that a−(detA) ̸= 0. As a result, the determinants ratio
contains an exponential factor. It concerns to the block related to vertex v. Other
entries of the columns of the scattering matrix related to these input-output leads
has the exponential factor too due to the same reasons as above. Hence, the deter-
minant of the scattering matrix has this exponential factor. It is a non-identical
singular inner factor for the scattering matrix factorization. Correspondingly, the
system of resonance states is not complete if the graph has balanced external ver-
tices in accordance with the completeness criterion (the scattering matrix is not a
Blaschke–Potapov product).

Remark 3.2. One can see that there is no need to consider the integral in the
completeness criterion in this case although it can be made simply. It is clear for
this case, that ln s(k) has linear growth in the upper half-plane due to the presence
of an exponential factor in s(k). Consequently, the corresponding integral does not
tend to zero for R → ∞.

3.3. Graph containing only unbalanced vertices
Consider the case when all external vertices are unbalanced. Let for jth external
vertex one have mj leads and pj edges (mj ̸= pj for any j). We can prove the
completeness using induction in number of external vertices. The system matrix
for the case of j leads has the form

Aj =

(
Bj Cj

Dj Ej

)
.

To organize the induction procedure, we take into account that the matrix Aj−1 is
obtained from corresponding matrix Aj by deleting the columns corresponding to
variables of jth lead, and rows corresponding to leads related to jth vertex. Anal-
ogously to the previous section, we find that the main term of the corresponding
block of the determinant from the denominator of the Kramer formula is as follows:

a−j = a−(detBj detEj)
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and
a−j−1 = a−(detBj−1 detEj−1).

Reduction of rows shows that
detBj = (mj−pj)e−ik(L1+L2+···+Lj), detBj−1 = −p(mj−pj)e−ik(L1+L2+···+Lj).

One can see that if a−j−1 ̸= 0 then a−j ̸= 0. Thus, by induction, one gets the
nonzero main term in the denominator. The determinant in the numerator has
the nonzero main term a−j ̸= 0. Hence, the numerator and denominator from the
Kramer formula have the same order in the upper half-plane (and in the lower
half-plane, too), hence, the determinant of the scattering matrix is of order 1 and
has no exponential factor. This means that the scattering matrix is the Blaschke–
Potapov product, correspondingly, the system of resonance states is complete in
L2(Γ0. The formal proof based on the criterion (2.5) is presented in Appendix.

Remark 3.3. Taking into account Theorem 2.4, one can simply obtain the fol-
lowing Corollary from the main Theorem 2.15: The system of resonance states is
complete on L2(Γ0) if and only if the resonances have the Weyl asymptotics, i.e.,
Γ is a Weyl graph. It is the same issue as for the Schrödinger operator without
a magnetic field. The reasons for the Weyl asymptotics and for the completeness
are, in principle, the same: sufficient number of resonance states. The idea that
resonances have the Weyl asymptotics if and only if the corresponding resonance
states form a complete set in a proper domain seems to be correct for wider class
of objects than quantum graphs.
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Appendix
Formal proof of completeness/incompleteness of the resonance states can be ob-
tained by using the criterion (2.5) which reduces the problem to estimation of the
following integral

2π∫
0

F (t)dt =

2π∫
0

R(r) ln(s(R(r)eit + iC(r)))

(R(r)eit + iC(r) + i)2
dt.

Here C,R are given by (2.6), s = |detS|. For balanced and unbalanced cases one
obtains different results. If all external vertices are unbalanced, one has complete-
ness of the resonance states, if there is a balanced vertex (or several balanced
vertices), one obtains the incompleteness. As for the last case, it has been consid-
ered above.

Let all external vertices be unbalanced. It has been proved in the previous
section that ln s(k) is of order O(1) for k → ∞, y = ℑk > 0, k = x+ iy.
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To estimate the integral, we make a partition of the integration curve. The
first part is that inside a strip 0 < y < δ. Taking into account that at the real
axis (y = 0) one has s(k) = 1, one obtains | ln s(Reit + Ci)| < δ. The length of the
corresponding part of the circle is of order

√
2Rδ. As a result, the integral over

this part of the curve is o(1/
√
R) and tends to zero if R → ∞.

The second part of the integral is related to the singularities of F , i.e.,
the roots of s(k) (resonances). In our case the determinant has a form of quasi-
polynomial (3.1). The distribution of roots of such quasi-polynomials were studied
in many works during a long time [34, 35, 36, 37]. The roots are posed along
logarithmic curves in the complex plane. We need only a small part of this infor-
mation. First, that these values are roots of an analytic function. Correspondingly,
the number of roots at the integration curve is finite. Moreover, we know [28] that
for such quantum graph, one has the Weyl asymptotics of the resonances, but at
this step we need not this detailed information. Let t0 be the value of a parameter
corresponding to a resonance. Let us take a vicinity (t0 − δ′1, t0 + δ1) such that
outside it we have

| ln s(Reit + Ci)| < c1. (3.2)
Inside the interval, we have

|F | ≤ c2R
−1 ln t.

The corresponding integral is estimated as

I2 =

∣∣∣∣∣
∫ t0+δ1

t0−δ′1

F (t)dt

∣∣∣∣∣ ≤ c2R
−1δ1 ln δ1.

On the remaining part of the integration curve we have |F | ≤ c1R
−1, and the

length of the integration interval is not greater than 2π.
Thus, the procedure of estimation is as follows. Choose δ′1, δ1 to separate the

root (or roots) of s(k). If t0 − δ1 > 0 then consider (0, t0 − δ1] separately (for the
second semi-circle π ≤ t < 2π the consideration is analogous). For this part of
the curve with small t (i.e. small y), the estimation of the integral is O(1/

√
R).

For the part of the curve outside these intervals, the estimation of the integral is
O(1/R). Consequently, the full integral is estimated as O(1/

√
R), i.e., the integral

tends to zero if R → ∞. In accordance with the completeness criterion we have
the completeness in this case.

Thus, the proof is complete.
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On Zd-symmetry of spectra
of some nuclear operators
Oleg Reinov

This paper is dedicated to the memory of one of the wonderful mathematicians and my best
teachers, Prof. Boris Pavlov.

Abstract. It was shown by M.I. Zelikin (2007) that the spectrum of a nu-
clear operator in a Hilbert space is central-symmetric iff the traces of all odd
powers of the operator equal zero. B. Mityagin (2016) generalized Zelikin’s
criterium to the case of compact operators (in Banach spaces) some of which
powers are nuclear, considering even a notion of so-called Zd-symmetry of
spectra introduced by him. We study α-nuclear operators generated by the
tensor elements of so-called α-projective tensor products of Banach spaces,
introduced in the paper (α is a quasi-norm). We give exact generalizations of
Zelikin’s theorem to the cases of Zd-symmetry of spectra of α-nuclear oper-
ators (in particular, for s-nuclear and for (r, p)-nuclear operators). We show
that the results are optimal.

Mathematics Subject Classification (2010). 47B06, 47B10, 46B28.
Keywords. Nuclear operator; tensor product; approximation property; eigen-
value.

1. Introduction
It is well known that every nuclear (= trace class) operator on a Hilbert space
has the absolutely summable sequence of eigenvalues [21]. Moreover, the famous
Lidskiǐ theorem [11] says that for such an operator its trace is equal to the sum of
all its eigenvalues (written in according to their algebraic multiplicities).

It is clear that if the spectrum of such an operator is central-symmetric,
then its trace equals zero. Moreover, since every power of a nuclear operator T is
nuclear too and has a central-symmetric spectrum if T has, we see that, for such
T, trace T k = 0 for every odd natural number k.
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M.I. Zelikin has noticed that for an finite dimensional spaces the converse is
also true (see [23, Theorem 1]), and then he proved the corresponding theorem for
any nuclear operator in a separable Hilbert space ([23, Theorem 2]). At the same
time, his proof was rather complicated. We are going to present, in particular, a
more simple proof below.

Recall that the spectrum of a compact operator is central-symmetric, if to-
gether with any eigenvalue λ ̸= 0 it has the eigenvalue −λ of the same multiplicity.
Thus, M.I. Zelikin has proved that the spectrum of a nuclear operator A acting
on a separable Hilbert space is central-symmetric iff trace A2n−1 = 0, ∀n ∈ N.

Let us mention that this theorem cannot be extended to the case of general
Banach spaces: it follows from Grothendieck–Enflo–Davie results [7, 4, 3] that
there exists a nuclear operator T in the space l1 of absolutely summable sequences
such that T 2 = 0 but trace T = 1 (the operator can be chosen even in such a way
that it is s-nuclear for every s ∈ (2/3, 1]; see Definition 1 below and [13, 10.4.5]).

A right generalization of Zelikin’s theorem was found by B. Mityagin [12]. He
introduced a notion of so-called Zd-symmetry of the spectra of compact operators
in Banach spaces and gave a criterium for the spectra of an operator (some of which
power is nuclear) to be Zd-symmetric. For d = 2, this gives a generalization of the
criterium of M.I. Zelikin. We will use this notion of the Zd-symmetry to formulate
and to prove an exact generalization of Zelikin’s theorem for the case of subspaces
of quotients of Lp-spaces (thus getting, in a simpler way, Zelikin’s result putting
p = 2 and d = 2). However, we will have to consider so-called s-nuclear operators
instead of nuclear ones in Zelikin’s theorem. To formulate our main result, let us
recall the definitions of s-nuclearity of operators and of Zd-symmetry of spectra.

Definition 1.1 (A. Grothendieck). An operator T : X → Y is s-nuclear
(0 < s ≤ 1) if

∃ (x′
k) ⊂ X∗, (yk) ⊂ Y :

∞∑
k=1

||x′
k||s ||yk||s < ∞, T (x) =

∞∑
k=1

x′
k(x)yk, ∀ x ∈ X.

For s = 1, we say that T is nuclear.

Let us note that A. Grothendieck in [7] called such operators “applications
de puissance p.éme sommable”.

Definition 1.2 (B. Mityagin). Let T be an operator in X, all non-zero spectral
values of which are eigenvalues of finite multiplicity and have no limit point except
possibly zero. For a fixed d = 2, 3, . . . and for the operator T, the spectrum of T is
called Zd-symmetric, if 0 ̸= λ ∈ sp (T ) implies tλ ∈ sp (T ) for every t ∈ d

√
1 and

of the same multiplicity.

Our generalization of the Zelikin’s theorem is:

Theorem 1.1. Let Y be a subspace of a quotient (or a quotient of a subspace)
of some Lp(µ)-space, 1 ≤ p ≤ ∞ and 1/r = 1 + |1/2 − 1/p|. If T : Y → Y is
r-nuclear, then trace T is well-defined. For a fixed d = 2, 3, . . . , the spectrum of T
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is Zd-symmetric iff trace T kd+j = 0 for all k = 0, 1, 2, . . . and j = 1, 2, . . . , d−1.
In particular, if trace T ̸= 0, then T 2 ̸= 0.

Note that if d = 2, we obtain an exact generalization of Zelikin’s theorem on
the central symmetry.

Also, we present some sharp (optimal in r, p) generalizations of Zelikin’s the-
orem to the case of so-called (r, p)-nuclear and dually (r, p)-nuclear operators (see
Theorem 4.2).

Theorems 1.1 and 4.2 are optimal with respect to p and r :

Theorem 1.2. Let p ∈ [1,∞], p ̸= 2, 1/r = 1+ |1/2− 1/p|. There exists a nuclear
operator V in lp (in c0 for p = ∞) such that
(1) V is s-nuclear for each s ∈ (r, 1];
(2) V is not r-nuclear;
(3) trace V = 1 and V 2 = 0.

Note that for p = ∞ or p = 1 we have r = 2/3 and for p = 2 we have r = 1.
The proofs will be given in Sects. 4.5 and 4.6

Let us note that some of the implications of our results on Z-symmetry of
spectra are the consequences of Mityagin’s theorem. But it seems that our proofs
are shorter. Besides, our aim was to obtain the exact generalizations of Zelikin’s
theorem in an independent way.

2. Content
In Sect. 3, we present the general notations concerning Banach spaces, spaces of
operators, tensor products, vector-valued sequence spaces.

In Sect 4.1, we give a definition of projective tensor quasi-norms α and intro-
duce the α-projective tensor products of Banach spaces. We show that these tensor
products are continuously imbedded in the projective products of A. Grothendieck.
For complete α-projective tensor products, we define α-nuclear operators in a nat-
ural way (as elements of corresponding factor spaces). Also in a natural way, we
define a notion of the approximation property APα, give a simple characterization
of Banach spaces with this property and present some main examples.

In Sect. 4.2, we consider some properties of the α-projective tensor products
of spectral type l1 (so that all α-nuclear operators have absolutely summable
sequences of their eigenvalues). In particular, we are interested in the question
of when the trace formulas are true. In the end, examples are given.

In Sect. 4.3, we introduce so-called α-extension and α-lifting properties for
a projective tensor quasi-norms α. We are interested here in connection between
the APα, trace formulas and the statements of type “trace T = 1 =⇒ T 2 ̸= 0”.

In Sect. 4.4, we prove one of the main theorems on Zd-symmetry of spec-
tra of α-nuclear operators. We apply the results to some concrete quasi-normed
tensor products, getting a generalization of Zelikin’s theorem to the case of (r, p, q)-
nuclear operators in general Banach spaces.
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In Sect. 4.5, a proof of Theorem 1.1 is given.
Finally, in Sect. 4.6, we show that the main results of the previous subsections

are sharp. Maybe, it worthwhile to mention a new result on the asymptotically
Hilbertian spaces (the last theorem in the paper).

3. Notation and preliminaries
Throughout, we denote by X,Y,E, F,W . . . Banach spaces over a field K (which
is either R or C); X∗, Y ∗, . . . are Banach dual to X,Y, . . . . By x, y, x′, . . . (maybe
with indices) we denote elements of X,Y,X∗ . . . , respectively; πY : Y → Y ∗∗ is a
natural isometric imbedding. By a subspace of a Banach space we mean a closed
linear subspace.

Notations lp, (0 < p ≤ ∞, n = 1, 2, . . . ), c0 are standard; ek (k = 1, 2, . . . )
is the kth unit vector in lp or c0 (when we consider the unit vectors as the linear
functionals, we use notation e′k). We use id X for the identity map in X.

It is denoted by F (X,Y ) a vector space of all linear continuous finite rank
mappings from X to Y. By X ⊗ Y we denote the algebraic tensor product of
the spaces X and Y ; X ⊗ Y can be considered as a subspace of the vector space
F (X∗, Y ) (namely, as a vector space of all linear weak∗-to-weak continuous finite
rank operators). We can identify also the tensor product (in a natural way) with
a corresponding subspace of F (Y ∗, X). If X = W ∗, then W ∗ ⊗ Y is identified
with F (W,Y ). If z ∈ X ⊗ Y, then z̃ is the corresponding finite rank operator. If
z ∈ X∗ ⊗X and, e.g., z =

∑n
k=1 x

′
k ⊗ xk, then trace z :=

∑n
k=1⟨x′

k, xk⟩ does not
depend on representation of z in X∗ ⊗X; L(X,Y ) is a Banach space of all linear
continuous mappings (“operators”) from X to Y equipped with the usual operator
norm.

If A ∈ L(X,W ) and B ∈ L(Y,G), then a linear map A⊗B : X⊗Y → W ⊗G
is defined by A ⊗ B(x ⊗ y) := Ax ⊗ By (and then extended by linearity). Since
˜A⊗B(z) = B z̃ A∗ for z ∈ X ⊗ Y, we will use notation B ◦ z ◦ A∗ ∈ W ⊗ G for

A ⊗ B(z). In the case where X is a dual space, say F ∗, and T ∈ L(W,F ) (so,
A = T ∗ : F ∗ → W ∗), one considers a composition B z̃ T ; in this case T ∗⊗B maps
F ∗ ⊗ Y into W ∗ ⊗ Y and we use notation B ◦ z ◦ T for T ∗ ⊗B(z).

A projective tensor product X⊗̂Y of Banach spaces X and Y is defined
as a completion of X ⊗ Y with respect to the norm || · ||∧ : if z ∈ X ⊗ Y, then
||z||∧ := inf

∑n
k=1 ||xk|| ||yk||, where infimum is taken over all representation of z as∑n

k=1 xk⊗yk. We can try to consider X⊗̂Y also as operators X∗ → Y or Y ∗ → X,
but this correspondence is, in general, not one-to-one. However, the natural map
(X ⊗ Y, || · ||∧) → L(X∗, Y ) is continuous and can be extended to the completion
X⊗̂Y ; for a tensor element z ∈ X⊗̂Y, we still denote by z̃ the corresponding
operator. Note that X⊗̂Y = Y ⊗̂X in a sense. If z ∈ X⊗̂Y, ε > 0, then one can
represent z as z =

∑∞
k=1 xk⊗yk with

∑∞
k=1 ||xk|| ||yk|| < ||z||∧+ε. For z ∈ X∗⊗̂X

with a “projective representation” z =
∑∞

k=1 x
′
k⊗xk, trace z :=

∑∞
k=1⟨xk, yk⟩ does
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not depend of representation of z. The Banach dual (X⊗̂Y )∗ equals L(Y,X∗) (with
duality ⟨T, z⟩ = trace T ◦ z.)

One more notation: If A is an operator ideal [13] then we often use the
notation A(X) for the space A(X,X).

Finally,

lp(X) :=

{
(xi) ⊂ X : ||(xi)||p :=

(∑
||xi||p

)1/p

< ∞
}
,

l∞(X) :=

{
(xi) ⊂ X : ||(xi)||∞ := sup

i
||xi|| < ∞

}
,

lwp (X) :=

{
(xi) ⊂ X : ||(xi)||w,p := sup

||x′||≤1

(∑
|⟨x′, xi⟩|p

)1/p

< ∞

}
,

lw∞(X) :=

{
(xi) ⊂ X : ||(xi)||w,∞ := sup

i
||xi|| < ∞

}
.

Note that if p ≤ q, then || · ||q ≤ || · ||p and || · ||w,q ≤ || · ||w,p. If 0 < p ≤ ∞, then
p′ is a conjugate exponent: 1/p+ 1/p′ = 1 if p ≥ 1 and p′ = ∞ if p ∈ (0, 1].

4. Quasi-normed tensor products and approximation
properties

4.1. Projective quasi-norms and approximation properties
Let α be a function on a vector space E, α : E → R̂. We say that α is a quasi-norm
on E if (1) α(E) ⊂ [0,+∞] and α(x) = 0 implies x = 0; (2) there exists a constant
C > 0 such that α(x+ y) ≤ C [α(x) + α(y)] for x, y ∈ E; (3) α(ax) = |a|α(x) for
a ∈ K, x ∈ E.

Definition 4.1. (i) Given a pair (E,α), where α is a quasi-norm on a vector
space E, a quasi-normed space associated with the pair (E,α) is the quasi-
normed vector space

Eα := {x ∈ E : α(x) < ∞} .

(ii) The quasi-normed space Eα is complete (= a quasi-Banach space), if every
Cauchy sequence in Eα α-converges to an element of Eα.

Note that Eα is a quasi-normed vector space in the sense of [9, p. 159] and
we may generate the corresponding topology (see [9, p. 159–160], [1, p. 445]).

Remark 4.1. (1) It may be that Eα = E.
(2) It is well known [1, p. 445] that if Eα is a quasi-normed space, then

there are a number β ∈ (0, 1] and a β-norm || · || on Eα which is equivalent to
the quasi-norm α. Recall that a β-norm on a vector space F is a quasi-norm
|| · || : F → R such that for all x, y ∈ F one has the following β-triangle inequality:
||x+ y||β ≤ ||x||β + ||y||β .



On Zd-symmetry of spectra of some nuclear operators 559

Now, let α be a quasi-norm on a projective tensor product X⊗̂Y such that
α(x⊗ y) = ||x|| ||y|| for x ∈ X, y ∈ Y. The associated quasi-normed tensor product
(which will be denoted by X⊗̂ αY and called “α-projective tensor product”) is the
α-closure of X ⊗ Y in (X⊗̂Y )α (in the concrete cases we will use some specific
notations). Thus,

X⊗̂ αY :=
{
u ∈ X⊗̂Y : α(u) < ∞ and ∃ (un) ⊂ X ⊗ Y : α(u− un) →

n→∞
0
}
.

More generally:

Definition 4.2. (i) Let ⊗̂ denotes the class of all tensor elements of the pro-
jective tensor products of arbitrary Banach spaces. A projective tensor quasi-
norm α is a map from ⊗̂ to R̂ such that α is a quasi-norm on each component
X⊗̂Y with the properties:
(Q1) α(x⊗ y) = ||x|| ||y|| for x ∈ X, y ∈ Y.
(Q2) There exists a constant C > 0 such that α(u1 + u2) ≤ C [α(u1)+α(u2)]

for all X,Y and u1, u2 ∈ X⊗̂Y.
(Q3) If u ∈ X⊗̂Y, A ∈ L(X,E) and B ∈ L(Y, F ), then α(A ⊗ B(u)) ≤

||A||α(u) ||B||.
(ii) A projective tensor quasi-norm α is said to be complete, if every α-projective

tensor product X⊗̂ αY is complete, that is quasi-Banach.

For every projective tensor quasi-norm α there exist β ∈ (0, 1] and an equiva-
lent β-norm ||·||β on ⊗̂ so that X⊗̂ αY = X⊗̂ ||·||βY (i.e., there exists a quasi-norm
|| · ||β with β-triangle inequality such that for some positive constants C1, C2 and
for all projective tensor elements u the inequalities C1α(u) ≤ ||u||β ≤ C2α(u)
hold). Thus, we may assume, if needed, that a priori α is a β-norm.

We are not going to consider here in detail the properties of just introduced
objects. But we need below the fact that the inclusions X⊗̂ αY ↪→ X⊗̂Y are
continuous for all Banach spaces X,Y (in the main Example 4.1 below this will
be automatically fulfilled).

Proposition 4.1. Let α be a complete projective tensor norm. The natural injec-
tions X⊗̂ αY → X⊗̂Y are continuous for all Banach spaces X and Y. Moreover,
there is a constant d = d(α) such that for all X, Y and u ∈ X⊗̂ αY we have:
||u||∧ ≤ dα(u).

Proof. Suppose the last assertion is not true and there exist sequences (Xn), (Yn)
and (un) with un ∈ Xn⊗̂ αYn so that α(un) ≤ 1/(2C)n and ||un||∧ ≥ n. Put
X :=

(∑
Xn

)
l2

and Y :=
(∑

Yn

)
l2
. Let in : Xn → X and jn : Yn → Y be the

natural injections. Consider the sequence (zN ) :=
(∑N

k=1(ik ⊗ jk)(uk)
)
. For any
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natural numbers K and m, we have:

α

( K+m∑
k=K+1

(ik ⊗ jk)(uk)

)
≤

m∑
k=1

Ck α
(
(iK+k ⊗ jK+k)(uK+k)

)
≤

∞∑
k=1

Ck

(2C)K+k
≤ 1

(2C)K
.

Hence, (zN ) is a Cauchy sequence in X⊗̂ αY and, by the completeness of α, con-
verges to an element u :=

∑∞
k=1(ik ⊗ jk)(uk) ∈ X⊗̂ αY. On the other hand, if

Pn : X → Xn and Qn : Y → Yn are the natural “projections”, then ||u||∧ ≥
||(Pn ⊗Qn)(u)||∧ = ||un||∧ ≥ n. �

Since X⊗̂ αY ia a linear subspace of X⊗̂Y, the space L(Y,X∗) separates
points of X⊗̂ αY. If u ∈ X⊗̂ αY, then u = 0 iff trace U ◦ u = 0 for every U ∈
L(Y,X∗). In particular, the dual space (X⊗̂ αY )∗ separates points of X⊗̂ αY.

It is clear that every tensor element u ∈ X⊗̂ αY generates a nuclear operator
ũ : X∗ → Y. If X is a dual space, say E∗, then we get a canonical mapping
jα : E∗⊗̂ αY → L(E, Y ). The image of jα is denoted here by Nα(E, Y ), and
we equip it with an “α-nuclear” quasi-norm να : This is a quasi-norm induced
from E∗⊗̂ αY via the quotient map E∗⊗̂ αY → Nα(E, Y ). If the projective tensor
quasi-norm α is complete, then Nα(E, Y ) is a quasi-Banach space.

Definition 4.3. Let α be a complete projective tensor quasi-norm. We say that a
Banach space X has the approximation property APα, if for every Banach space
E the canonical map E∗⊗̂ αX → Nα(E,X) is one-to-one (in other words, if
E∗⊗̂ αX = Nα(E,X)).

Note that if α = || · ||∧, then we get the classical approximation property
AP of A. Grothendieck [7]. It must be clear that the AP implies the APα, for any
projective tensor quasi-norm.

We will need below the following

Lemma 4.1. A Banach space X has the APα iff the canonical map X∗⊗̂ αX →
L(X) is one-to-one.

Proof. It is enough to repeat (word for word with same notations) the proof of
[20, Proposition 6.1]. �
Example 4.1. Let 0 < r, s ≤ 1, 0 < p, q ≤ ∞ and 1/r + 1/p + 1/q = 1/β ≥ 1.
We define a tensor product X⊗̂ r,p,qY as a linear subspace of the projective tensor
product X⊗̂Y, consisting of all tensor elements z which admit representations of
type

z =
∞∑
k=1

αkxk ⊗ yk, (αk) ∈ lr, (xk) ∈ lw,p(X), (yk) ∈ lw,q(Y ); (1)

we equip it with the quasi-norm ||z||r,p,q := inf ||(αk)||r ||(xk)||w,p ||(yk)||w,q, where
the infimum is taken over all representations of z in the above form (1). Note that
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this tensor product is β-normed (cf. [10], where it is considered a “finite-sums-
representation” version of the above tensor product). It is quasi-Banach (for the
completeness, see the author’s preprint “Approximation properties associated with
quasi-normed operator ideals of (r, p, q)-nuclear operators”1). The corresponding
quasi-normed operator ideal Nr,p,q is the quasi-Banach ideal of (r, p, q)-nuclear
operators (cf. [13, 10]). In particular cases where one or two of the exponents p, q
are ∞, we will use the notations close to those from [18, 20] (here we change p′, q′

to p, q) : We denote Nr,∞,∞ by Nr, Nr,∞,q by N[r,q], Nr,p,∞ by N [r,p], ⊗̂ r,∞,∞ by
⊗̂ r, ⊗̂ r,∞,q by ⊗̂ [r,q], ⊗̂ r,p,∞, by ⊗̂ [r,p].

The corresponding notations are used also for the APr,p,q:
(i) For p = q = ∞, we get the APr from [20].
(ii) For p = ∞, we get the AP[r,q] from [18, 20].
(iii) For q = ∞, we get the AP [r,p] from [18, 20].

We will need some known facts concerning the approximation properties from
Example 4.1. Let us collect them in
Lemma 4.2. (1) [16, Corollary 10] Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1 +

|1/p − 1/2|. If a Banach space Y is isomorphic to a subspace of a quotient
(or to a quotient of a subspace) of an Lp-space then it has the property APs.

(2) [18, Corollary 4.1], [20, Theorem 7.1] Let 1/r − 1/p = 1/2. Every Banach
space has the properties AP[r,p′] and AP [r,p′].

A proof of the assertion (2) can be found below (see Example 4.3). See also
[20] for some other results in this direction.
Remark 4.2. As a matter of fact, a proof of the assertion that every Banach
space has the AP [1,2] is contained implicitly in [13]. It was obtained also there
that this assertion (after applying some results of Complex Analysis) implies the
Grothendieck–Lidskiǐ type trace formulas for operators from N [1,2] [13, 27.4.11]
(and this implies the Lidskiǐ trace formula for trace-class operators in Hilbert
spaces and the Grothendieck trace formula for N2/3 as well). On the other hand,
there is a very simple way to get these results on AP [1,2] and N [1,2] from the Lidskiǐ
theorem (see the proofs of [20, Theorems 7.1–7.3] for p = 2).

4.2. Spectral type l1

Let T be an operator in X, all non-zero spectral values of which are eigenvalues
of finite multiplicity and have no limit point except possibly zero. Put λ(T ) =
{λ ∈ eigenvalues (T ) \ {0}} (the eigenvalues of T are taken in according to their
multiplicities). We say that an operator T ∈ L(X,X) is of spectral type l1, if the
sequence of all eigenvalues λ(T ) := (λk(T )) is absolutely summable. In this case,
we can define the spectral trace of T : sp tr (T ) :=

∑
λk(T ). We say that a subspace

L1(X,X) ⊂ L(X,X) is of spectral type l1, if every operator T ∈ L1(X,X) is of
spectral type l1. Recall that an operator ideal A is of spectral type l1, if every its
component A(X,X) is of spectral type l1.

1http://www.mathsoc.spb.ru/preprint/2017/index.html#08

http://www.mathsoc.spb.ru/preprint/2017/index.html#08
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Definition 4.4. Let α be a projective tensor quasi-norm. The tensor product
X⊗̂ αX is of spectral type l1, if the space Nα(X,Y ) is of spectral type l1. The
projective tensor quasi-norm α (or the tensor product ⊗̂ α) is of spectral type l1, if
the corresponding operator ideal Nα is of spectral type l1.

Example 4.2. N1(H) (= N[1,2](H) = N [1,2](H) = S1(H), trace class operators
in a Hilbert space) is of spectral type l1 [21]. ⊗̂ 2/3 and N1 ◦N1 are of spectral type
l1 [7]. N [1,2] is of spectral type l1 (see [13, see 27.4.9, end of the proof]). N[1,2] is of
spectral type l1 (see [20, Theorem 7.2 for p = 2]; it follows also from the previous
assertion). More general, if 1/r − 1/p = 1/2, then ⊗̂ [r,p] = N[r,p], ⊗̂ [r,p] = N [r,p]

and they are of spectral type l1 (see [20, Theorems 7.1–7.3]; a simple proof will be
given below in Example 4.3).

Let us note that in all cases in Example 4.2 the trace formula for correspond-
ing operators (say, T ) is valid: trace T = sp tr T. A general result in this direction
is

Proposition 4.2. Let α be a complete projective tensor quasi-norm of spectral
type l1. For every Banach space X with the APα and every T ∈ Nα(X), one has:
trace T = sp tr T. Conversely, if for a Banach space X and for every z ∈ X∗⊗̂ αX
the equality trace z = sp tr z̃ holds, then X possesses the APα.

Proof. Let X has the APα. Since the ideal Nα is quasi-Banach and of spectral
type l1, by White’s theorem [22, Theorem 2.2] the spectral trace is linear and
continuous on Nα. On the other hand, by Proposition 4.1 the usual (nuclear)
trace is continuous on X∗⊗̂ αX, which can be identified with Nα(X) by assumption
about X. Since the tensor product X∗ ⊗ X is dense in X∗⊗̂ αX, we obtain that
trace T = sp tr T.

Now, suppose that X does not have the APα. By Lemma 4.1, there exists
an element z ∈ X∗⊗̂ αX such that trace z = 1 and z̃ = 0. By assumptions,
sp tr z̃ = trace z = 1. Contradiction. �

Example 4.3. Let 0 < r ≤ 1, 1 ≤ p ≤ 2, 1/r = 1/2 + 1/p.

(1) If T ∈ N[r,p′](X) (see Example 4.1), then T admits a factorization

T = BA : X
A→ lp

B→ X, A ∈ Nr(X, lp), B ∈ L(lp, X).

The complete systems of eigenvalues of T = BA and AB are the same.
But AB ∈ Nr(lp, lp). Therefore, AB is of spectral type l1, as any r-nuclear
operator in lp [8, Theorem 7]. It follows from this that N[r,p′] is of spectral
type l1. It is easy to see that if z ∈ X∗⊗̂ [r,p′]X such that z̃ = T, then
trace z = trace AB (recall that lp has the AP ). But trace AB = sp tr AB (it
was shown, e.g., in [19, 20] and follows also from Proposition 4.2). Hence,
for each z ∈ X∗⊗̂ [r,p′]X we have: trace z = sp tr z̃. By the second part of
Proposition 4.2, every Banach space has the property AP[r,p′] (= APr,∞,p′ , see
Example 4.1; thus, we gave a proof of Lemma 4.2(2) for the case of AP[r,p′]).
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(2) If T ∈ N [r,p′](X) (see Example 4.1), then T admits a factorization

T = BA : X
A→ lp

B→ X, A ∈ L(X, lp), B ∈ Nr(lp, X).

As in (1), we see that for each z ∈ X∗⊗̂ [r,p′]X we have: trace z = sp tr z̃.
Furthermore, by the second part of Proposition 4.2, every Banach space has
the property AP [r,p] (= AP r,∞,p′

, see Example 4.1; thus, we have a proof of
Lemma 4.2(2) for the case of AP [r,p′]).

4.3. α-extension property and α-lifting property
We give now two definitions, which will be of use below. Let us note that these
definitions can be generalized in many different ways.

Definition 4.5. Let α be a complete projective tensor quasi-norm. A Banach
space X has the α-extension property, if for any subspace X0 ⊂ X and every
tensor element z0 ∈ X∗

0 ⊗̂ αX0 there exists an extension z ∈ X∗⊗̂ αX0 (so that
z ◦ i = z0 and trace i ◦ z = trace z0, where i : X0 → X is the natural injection).
A Banach space X has the α-lifting property, if for every subspace X0 and every
tensor element z0 ∈ (X/X0)

∗⊗̂ αX/X0 there exists a lifting z ∈ (X/X0)
∗⊗̂ αX (so

that Q ◦ z = z0, where Q is a quotient map from X onto X/X0, and trace z ◦Q =
trace z0).

Example 4.4. For instance, every Banach space has the || · ||r,∞,q-extension prop-
erty and || · ||r,p,∞-lifting property (see Example 4.1). For the tensor products
(⊗̂ s, || · ||s,∞,∞), s ∈ (0, 1], all Banach spaces have both the || · ||s,∞,∞-extension
and ||·||s,∞,∞-lifting properties. This follows from Hahn–Banach theorem and from
definition of Banach quotients.

Proposition 4.3. Let α be a complete projective tensor quasi-norm and X have
the α-extension property. Suppose that X possesses the APα, but there exists a
subspace X0 ⊂ X without the APα. There exists an operator S ∈ Nα(X) such that
trace S = 1 and S2 = 0.

Proof. Take z0 ∈ X0⊗̂ αX0 with trace z0 = 1 and z̃0 = 0 (we use Lemma 4.1). By
assumption, there exists z ∈ X∗⊗̂ αX0 such that z0 = z ◦ i and trace i ◦ z = 1,
where i : X0 → X is an inclusion. Here is a diagram for the operators:

X0
i→ X

z̃→ X0
i→ X. (2)

Now, X has the APα. Therefore, we can identify the operator S := ĩ ◦ z with the
tensor element i ◦ z. It is clear that trace S = 1 and S2 = 0. �

The following proposition is a strengthening of Proposition 4.2 in an impor-
tant case.

Proposition 4.4. Let α be a complete projective tensor quasi-norm of spectral
type l1 and X have the α-extension property. If for every z ∈ X∗⊗̂ αX the equality
trace z = sp tr z̃ holds, then every subspace X0 of X possesses the APα. Conse-
quently, for every T ∈ Nα(X0), one has: trace T = sp tr T.
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Proof. Firstly, note that by Proposition 4.2 X has the APα. Let X0 be a subspace
of X, i : X0 → X be an inclusion map and z0 ∈ X∗

0 ⊗̂ αX0 with trace z0 = 1.
Take an extension z ∈ X∗⊗̂ αX0 (as in Definition 4.5; hence, z̃

∣∣
X0

= z̃0 and
trace i ◦ z = trace z0) and consider the operators ĩ ◦ z : X → X and z̃ ◦ i :
X0 → X0 (see the diagram (2)). By the principle of related operators [13, 27.3.3],
sp tr ĩ ◦ z = sp tr z̃ ◦ i. By assumption, sp tr ĩ ◦ z = trace i ◦ z Now, since X has
the APα, it follows from the equality trace i ◦ z = trace z0 that

1 = trace z0 = sp tr ĩ ◦ z = sp tr z̃ ◦ i = sp tr z̃0.

Therefore, z̃0 ̸= 0. By Lemma 4.1, X0 has the APα. The last statement follows
from the first part of Proposition 4.2. �

The following propositions are in a sense dual the previous ones.

Proposition 4.5. Let α be a complete projective tensor quasi-norm and X have
the α-lifting property. Suppose that X possesses the APα, but there exists a factor
space X/X0 (X0 ⊂ X) without the APα. There exists an operator S ∈ Nα(X) such
that trace S = 1 and S2 = 0.

Proof. Take z0 ∈ X/X0⊗̂ αX/X0 with trace z0 = 1 and z̃0 = 0 By assumption,
there exists z ∈ (X/X0)

∗⊗̂ αX such that Q ◦ z = z0, where Q is a factor map from
X onto X/X0, and trace z ◦Q = trace z0 = 1. Here is a diagram for the operators:

X
Q→ X/X0

z̃→ X
Q→ X/X0

z̃→ X. (3)

Now, X has the APα. Therefore, we can identify the operator S := z̃ ◦Q with the
tensor element z ◦Q. It is clear that trace S = 1 and S2 = 0. �

Proposition 4.6. Let α be a complete projective tensor quasi-norm of spectral type
l1 and X have the α-lifting property. If for every z ∈ X∗⊗̂ αX the equality trace z =
sp tr z̃ holds, then every quotient X/X0 of X possesses the APα. Consequently,
for every T ∈ Nα(X/X0), one has: trace T = sp tr T.

Proof. By Proposition 4.2, X has the APα. Let X0 be a subspace of X, Q :
X → X/X0 be a factor map and z0 ∈ (X/X0)

∗⊗̂ αX/X0 with trace z0 = 1.
Take a lifting z ∈ (X/X0)

∗⊗̂ αX (as in Definition 4.5; hence, Q ◦ z = z0, and
trace z ◦ Q = trace z0) and consider the operators z̃ ◦Q : X → X and Q̃ ◦ z :
X/X0 → X/X0 (see the diagram (3)). By the principle of related operators [13,
27.3.3], sp tr z̃ ◦Q = sp tr Q̃ ◦ z. By assumption, sp tr z̃ ◦Q = trace z ◦Q. Now,
since X has the APα, it follows from the equality trace z ◦Q = trace z0 that

1 = trace z0 = sp tr z̃ ◦Q = sp tr Q̃ ◦ z = sp tr z̃0.

Therefore, z̃0 ̸= 0. By Lemma 4.1, X0 has the APα. The last statement follows
from the first part of Proposition 4.2. �

An immediate consequence of Propositions 4.4 and 4.6 is
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Proposition 4.7. Let α be a complete projective tensor quasi-norm of spectral
type l1 such that every Banach space has both the α-extension property and the
α-lifting property. If for every z ∈ X∗⊗̂ αX the equality trace z = sp tr z̃ holds,
then every quotient of any subspace of X (= every subspace of any quotient of X)
possesses the APα. Consequently, for X0 ⊂ X1 ⊂ X, Y = X1/X0 (or for X0 ⊂ X,
Y ⊂ X/X0) and for every T ∈ Nα(Y ) one has: trace T = sp tr T.

Proof. Apply in different orders Propositions 4.4 and 4.6. �

4.4. Applications. Zd-symmetry for N[r,p] and N [r,p]

One of our main result (in context of the Zd-symmetry of the spectra of nuclear
operators) is

Theorem 4.1. Let α be a complete projective tensor quasi-norm of spectral type l1
and let a Banach space X have the APα. For a fixed d = 2, 3, . . . , the spectrum of an
operator T ∈ Nα(X) is Zd-symmetric if and only if trace T kd+j = 0 for all k =
0, 1, 2, . . . and j = 1, 2, . . . , d− 1. In particular, if trace T ̸= 0, then T 2 ̸= 0.

Proof. Let the spectrum of an operator T ∈ Nα(X) be Zd-symmetric. The traces
trace Tn (n ∈ N) are well defined since Tn ∈ Nα(X) and X has the APα. Take an
integer l := kd + j with 0 < j < d. The eigenvalue sequences of T and T l can be
arranged in such a way that

{
λn(T )

l
}
=

{
λn(T

l)
}

(see [14, 3.2.24, p. 147]). Since
the spectrum of T l is absolutely summable, trace T l =

∑
λ∈sp (T l) λ,

∑
t∈ d√1 t = 0

and we may assume that
{
λm(T l)

}
=

{
λm(T )l

}
, we get that trace T kd+j = 0.

To prove the converse, we need some information from Fredholm Theory. Let
u be an element of the projective tensor product Y ∗⊗̂Y, where Y is an arbitrary
Banach space. Recall that the Fredholm determinant det (1 − wu) of u (see [7,
Chap. II, §1, n◦4, p. 13], [6], [13] or [14] is an entire function

det (1− wu) = 1− w trace u+ · · ·+ (−1)nwnαn(u) + · · · ,
all zeros of which are exactly (according to their multiplicities) the inverses of
nonzero eigenvalues of the operator ũ, associated with the tensor element u. By
[7, Chap. II, §1, n◦4, Corollaire 2, pp. 17–18], this entire function is of the form

det (1− wu) = e−w trace u
∞∏
i=1

(1− wwi) e
wwi ,

where {wi = λi(ũ)} is a complete sequence of all eigenvalues of the operator ũ.
Hence, there exists a δ > 0 such that for all w, |w| ≤ δ, we have

det (1− wu) = exp
( ∞∑
n=1

cn w
n trace un

)
(4)

(see [6, p. 350]; cf. [5, Theorem I.3.3, p. 10]).
Now, let trace T kd+r = 0 for all k = 0, 1, 2, . . . and r = 1, 2, . . . , d − 1. By

(4), det (1− wT ) = exp (
∑∞

m=1 cmd w
md trace Tmd) in a neighborhood V of zero.

Hence, for the analytic function f(w) := det (1−wT ), we have: there exists a δ > 0
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such that for all w, |w| ≤ δ, f(tw) = f(w) for every t ∈ d
√
1. By the uniqueness

theorem, the complete system of eigenvalues of T is Zd-symmetric. �

Applying Theorem 4.1 to the tensor products ⊗̂ [r,p′] and ⊗̂ [r,p′] and using
Example 4.3, we get the following generalizations of Zelikin’s theorem:

Theorem 4.2. Let 0 < r ≤ 1, 1 ≤ p ≤ 2, 1/r = 1/2 + 1/p and d = 2, 3, . . . For
any Banach space X and every operator T ∈ N[r,p′](X) (or T ∈ N [r,p′](Z)) we have
that the spectrum of the operator T is Zd-symmetric if and only if trace T kd+j =
0 for all k = 0, 1, 2, . . . and j = 1, 2, . . . , d−1. In particular, if trace T ̸= 0, then
T 2 ̸= 0.

We obtain Zelikin’s theorem, if we put d = 2, r = 1, p = 2 and X = H (a
Hilbert space), since N1(H) = S1(H) = N[1,2](H) = N [1,2](H).

4.5. Proof of Theorem 1.1
Here it is

Proof. Let T ∈ Nr(Y ). Under the conditions of the theorem we have: every quo-
tient of every subspace of an Lp-space has the APr, λ(T ) ∈ l1 and the trace of T
is well defined and equals the sum of the eigenvalues of T (written in according to
their multiplicities; see, e.e., [16, 20]).

Supposing that the spectrum of T is Zd-symmetric, we can proceed as in the
beginning of the proof of Theorem 4.1 to obtain that trace T kd+j = 0 for all k =
0, 1, 2, . . . and j = 1, 2, . . . , d− 1.

To proof the converse, we repeat word for word the second part of the proof
of Theorem 4.1. �

4.6. Sharpness of main results
We need the following auxiliary result:

Lemma 4.3. If r ∈ [2/3, 1), q ∈ (2,∞] and 1/r = 3/2 − 1/q, then there exist
a subspace Yq ⊂ lq (c0 for q = ∞) and a tensor element wq ∈ Y ∗

q ⊗̂Yq so that
wq ∈ Y ∗

q ⊗̂ [s,q]Yq for every s > r, trace wq = 1 and w̃q = 0. Moreover, wq can be
chosen in such a way that wq =

∑∞
k=1 e

′
k

∣∣
Yq

⊗ yk, where (e′k) is a sequence of the
linear functionals on lq generated by the unit vectors from lq′ and (yk) is in ls(Yq)
for all s > r.

Proof. Let us look at the proof from [17, Example 2] and take the space Yq and
the tensor element wq from that proof. We have: Yq is isometrically imbedded into
lq, wq =

∑∞
k=1 e

′
k

∣∣
Yq

⊗ yk, where (e′k) and (yk) are as above. �

The following two theorems show that Theorem 4.2 is optimal.

Theorem 4.3. Let r ∈ [2/3, 1), q ∈ (2,∞], 1/r = 3/2−1/q. There exists a nuclear
operator V in lq (in c0 for q = ∞) such that
(1) V ∈ N [s,q](lq) for each s ∈ (r, 1];
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(2) V is neither in N [r,q](lq) nor r-nuclear;
(3) trace V = 1 and V 2 = 0.

Proof. Take a pair (Yq, wq) from Lemma 4.3 and let i : Yq → lq be an isometric
imbedding. Define v ∈ l∗q⊗̂ lq by v =

∑∞
k=1 e

′
k⊗ iyk and put V := ṽ. This operator

possesses the properties (1)–(3) (we have to mention only that N [r,q](lq) ⊂ Nr(lq)
and that if T ∈ Nr(lq) with trace z = 1, then T 2 ̸= 0 by Theorem 1.1). �

Theorem 4.4. Let r ∈ [2/3, 1), p ∈ [1, 2), 1/r = 1/2+1/p. There exists a nuclear
operator U in lp such that
(1) U ∈ N[s,p′](lp) for each s ∈ (r, 1];
(2) U is neither in N[r,p′](lp) nor r-nuclear;
(3) trace V = 1 and V 2 = 0.

Proof. Consider U := V ∗, where V is from the previous theorem. �

Now, Theorem 1.2 follows from the above theorems, since, e.g., N [s,q] ⊂ Ns.
One more auxiliary fact:

Lemma 4.4. Let r ∈ (2/3, 1], q ∈ [2,∞), 1/r = 3/2 − 1/q. One can find the
number sequences (qk) and (nk) with qn > q, qn → q and kn → ∞ for which the
following statement is true: There exist a Banach space Y0 and a tensor element
w ∈ Y ∗

0 ⊗̂ rY0 so that Y0 ⊂ Y :=
(∑

k l
nk
qk

)
lq
, w ̸= 0, w̃ = 0, the space Y0 (as well as

Y ∗
0 ) has the APs for every s < r (but does not have the APr,q̄ for any q̄ ∈ (q,∞]).

Moreover, w can be chosen in such a way that w =
∑∞

k=1

∑nk

m=1 e
′
mk

∣∣
Y0

⊗ ymk,

where (e′mk) is a weakly q̄-summable (∀ q̄ > q) sequence of the linear functionals
on Y generated by the unit vectors from Y ∗ and (ymk) is in lr(Y0) \ ∪s<rls(Y0).

Proof. It is enough to take the space Y0 and the tensor element w from the proof
of [17, Example 1] and put nk := 3 · 2k in that proof. After this we get exactly
the desired Banach space and tensor element. We have also: Y0 ⊂ Y ⊂ lq̄ for every
q̄ > q. Hence, the sequence (e′mk

∣∣
Y0
) is weakly q̄-summable (∀ q̄ > q). �

Theorem 4.5. Let r ∈ (2/3, 1], q ∈ [2,∞), 1/r = 3/2 − 1/q. One can find the
number sequences (qk) and (nk) with qk > q, qk → q and nk → ∞ for which the
following statement is true:

There exists a nuclear operator U in Y :=
(∑

k l
nk
qk

)
lq

such that

(1) U ∈ N [r,q̄](Y ) for each q̄ > q;
(2) U is not in N [r,q](Y );
(3) trace U = 1 and U2 = 0.

Proof. Take a pair (Y0, w) from Lemma 4.4 and let j : Y0 → Y be an injection map.
Define u ∈ Y ∗⊗̂Y by u =

∑∞
k=1

∑nk

m=1 e
′
mk ⊗ jymk and put U := ũ. This operator

possesses the properties 1)–3) (we have to mention only that if T ∈ N[r,q](Y ) with
trace z = 1, then T 2 ̸= 0 by Theorem 4.2). �
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Theorem 4.6. Let r ∈ (2/3, 1], p ∈ (1, 2], 1/r = 1/2 + 1/p. One can find the
number sequences (pk) and (nk) with pk < p, pk → p and nk → ∞ for which the
following statement is true:

There exists a nuclear operator V in E :=
(∑

k l
nk
pk

)
lp

such that
(1) V ∈ N[r,q̄](E) for each q̄ > q;
(2) V is not in N[r,q](E);
(3) trace V = 1 and V 2 = 0.

Proof. Consider V := U∗, where U is from the previous theorem. �

Let us emphasize an important particular case of Theorems 4.5 and 4.6,
namely, the case of so-called “asymptotically Hilbertian spaces” (see, e.g., [2] for
a definition):

Theorem 4.7. There exist an asymptotically Hilbertian space Y2 :=
(∑

k l
nk
qk

)
l2

(qk → 2 and nk → ∞) and a nuclear operator U in this space so that
1) U ∈ N [1,2+ε](Y2) for each ε > 0.
2) U is not in N [1,2](Y2).
3) trace U = 1 and U2 = 0.

The corresponding statements hold for the adjoint operator U∗.

As we know, the last theorem is the best strengthening of related results from
[2], [15] and [17].
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A remark on the order of mixed
Dirichlet–Neumann eigenvalues
of polygons
Jonathan Rohleder

Abstract. Given the Laplacian on a planar, convex domain with piecewise
linear boundary subject to mixed Dirichlet–Neumann boundary conditions,
we provide a sufficient condition for its lowest eigenvalue to dominate the low-
est eigenvalue of the Laplacian with the complementary boundary conditions
(i.e., with Dirichlet replaced by Neumann and vice versa). The application
of this result to triangles gives an affirmative partial answer to a recent con-
jecture. Moreover, we prove a further observation of similar flavor for right
triangles.

1. Introduction
We consider the Laplacian −∆Γ on a bounded, convex polygon Ω ⊂ R2 subject
to a Dirichlet boundary condition on a part Γ of the boundary and a Neumann
boundary condition on the complement Γc. The operator −∆Γ is self-adjoint and
has a purely discrete spectrum, and its lowest eigenvalue λΓ

1 is positive, provided
Γ is nonempty. It is clear that enlarging Γ leads to an increase of λΓ

1 , but making
a different choice of Γ with the same or a larger length may in some cases lead to
a smaller value of λΓ

1 , that is, λΓ
1 does not depend monotonously on the size of Γ.

The present note provides two observations on monotonicity properties of
the lowest eigenvalue with respect to the choice of Γ, and it is inspired by recent
results for triangles and other special domains in [8], see also the survey [3]. In the
first result of this note, Theorem 3.1, we compare λΓ

1 to the lowest eigenvalue λΓc

1

of the mixed Laplacian −∆Γc satisfying the complementary boundary conditions,
i.e., a Dirichlet condition on Γc and a Neumann condition on Γ. We show that the
inequality

λΓc

1 ≤ λΓ
1
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holds if Γc consists of one single side of the polygon Ω and the two angles where
Γ and Γc meet are both strictly smaller than π/2; see Fig. 1 for examples. This

Γc

Ω

Γ
Γc = L

Ω

Γ

Figure 1. Two settings for which λΓc

1 ≤ λΓ
1 holds. In each case,

Γ and Γc are drawn in black and gray, respectively.

result can be used to affirm a part of a conjecture on the lowest eigenvalues of
triangles raised by Siudeja in [8, Conjecture 1.2]. In fact, for an arbitrary triangle
whose sides we denote by S,M and L, ordered nondecreasingly by their lengths,
it follows

λL
1 ≤ λM∪S

1 ,

which, to the best of our knowledge, was known before only for certain classes of
right triangles.

The second result of this note, Theorem 4.1, is more restrictive and applies
only to right triangles. It complements the recent results in [8] by stating that

max
{
λS
1 , λ

M
1

}
≤ λL

1

holds for any right triangle, i.e., imposing the Dirichlet condition on the hypotenuse
always leads to a larger (or equal) lowest eigenvalue than having the Dirichlet
condition on one of the catheti.

The proofs of Theorem 3.1 and Theorem 4.1 rely on plugging a certain partial
derivative of an eigenfunction into the Rayleigh quotient and using an integral
identity for the second partial derivatives of Sobolev functions on polygons. A
similar approach was used for the comparison of mixed and Dirichlet Laplacian
eigenvalues on polygons and polyhedra in [5], see also [4].

Let us finally mention that properties of eigenvalues of the Laplacian with
mixed boundary conditions on special polygons have played an important role
in various contexts. For instance, they were used in the famous construction of
isospectral domains in [1] and, more recently, in connection with the hot spots
conjecture in [7].

2. Preliminaries
Let us set the stage and collect a few ingredients for the proofs of our main results.
Recall first that for Γ being any choice of sides of the polygon Ω the (negative)
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Laplacian −∆Γ can be defined as the self-adjoint operator in L2(Ω) which corre-
sponds to the semibounded, closed quadratic form

H1
0,Γ(Ω) :=

{
u ∈ H1(Ω) : u

∣∣
Γ
= 0

}
3 u 7→

∫
Ω

|∇u|2dx.

The functions in the domain of −∆Γ satisfy a Dirichlet boundary condition on Γ
and a Neumann boundary condition (in a weak sense, see, e.g., [6, Lemma 4.3]
for a definition of the weak Neumann trace) on the complement Γc = ∂Ω \ Γ.
If u ∈ dom (−∆Γ) is sufficiently regular (see Proposition 2.1 below) then the
Neumann condition on Γc can be interpreted in the usual sense, requiring the
trace of ∇u · ν to vanish on Γc, where ν is the outer unit normal field on the
boundary.

The operator −∆Γ has a compact resolvent and its lowest eigenvalue λΓ
1 is

positive provided Γ is nonempty. It is nondegenerate and can be expressed by the
variational identity

λΓ
1 = min

u∈H1
0,Γ(Ω)

∫
Ω
|∇u|2dx∫

Ω
|u|2dx . (2.1)

Below we make use of the following regularity result which follows from [2,
Theorem 4.4.3.3 and Lemma 4.4.1.4].

Proposition 2.1. Assume that all angles at which Γ and Γc meet are strictly less
than π/2. Then dom (−∆Γ) ⊂ H2(Ω).

Moreover, we will significantly make use of the following identity, which is a
consequence of [2, Lemma 4.3.1.1–4.3.1.3].

Lemma 2.2. Let u ∈ H2(Ω) satisfy a Dirichlet boundary condition on Γ and a
Neumann boundary condition on its complement Γc. Then∫

Ω

(∂12u)
2dx =

∫
Ω

(∂11u)(∂22u)dx.

We emphasize that the latter statement is valid for polygons only and fails
for more general, curved domains.

3. An ordering result for the lowest mixed eigenvalues of
polygons

In this section we prove the following first result of this note.

Theorem 3.1. Let Ω ⊂ R2 be a polygon and suppose Γ ⊂ ∂Ω is such that
Γc = ∂Ω \Γ consists of one single line segment. Moreover, suppose that the angles
at both vertices where Γ and Γc meet are strictly less than π/2. Then

λΓc

1 ≤ λΓ
1 .
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Proof. Without loss of generality we assume that Γc is parallel to the x2-axis. Let
u be a real-valued eigenfunction of −∆Γ corresponding to the eigenvalue λΓ

1 , and
let v = ∂1u. It follows from Proposition 2.1 that v belongs to H1(Ω). Moreover,
since u satisfies a Neumann boundary condition on Γc and the first unit vector
(1, 0)⊤ is normal to Γc, it follows v

∣∣
Γc = 0, i.e., v is an admissible test function for

the Rayleigh quotient of −∆Γc . Note that v is nontrivial since ∂1u = 0 identically
on Ω together with u

∣∣
Γ
= 0 would imply u = 0 on Ω. We employ Lemma 2.2 to

obtain

0 =

∫
Ω

(
(∂11u)(∂22u)− (∂12u)

2
)
dx =

∫
Ω

(
(∂11u)∆u− (∂11u)

2 − (∂12u)
2
)
dx

= −λΓ
1

∫
Ω

div

(
∂1u

0

)
udx−

∫
Ω

(
(∂11u)

2 + (∂12u)
2
)
dx

= λΓ
1

(∫
Ω

(
∂1u

0

)
· ∇udx−

∫
∂Ω

u

(
∂1u

0

)
· νdσ

)
−

∫
Ω

|∇(∂1u)|2dx

= λΓ
1

∫
Ω

(∂1u)
2dx−

∫
Ω

|∇(∂1u)|2dx,
(3.1)

where in the last step we have used u|Γ = 0 and ∂1u
∣∣
Γc = 0. It follows∫

Ω

|∇v|2dx = λΓ
1

∫
Ω

v2dx, (3.2)

and the assertion of the theorem follows with the help of the identity (2.1) applied
to Γc instead of Γ. �

Remark 3.2. The idea of using derivatives of eigenfunctions as test functions
was used in [4] to establish eigenvalue inequalities between Dirichlet and Neumann
eigenvalues of the Laplacian on smooth domains. In [5] it was used to compare
mixed and Dirichlet eigenvalues on polygons and polyhedra. We remark that the
methods of [5] may be employed to extend Theorem 3.1 to higher dimensions.

Next we apply Theorem 3.1 to triangles and obtain the following three state-
ments. If Ω is a triangle we denote its sides by S, M and L, in nondecreasing order
of their lengths. We remark that the inequality (iii) in the following corollary is a
part of Conjecture 1.2 in [8].

Corollary 3.3. If Ω is any triangle then the following assertions hold:
(i) If both angles enclosing S are strictly less than π/2 then λS

1 ≤ λL∪M
1 .

(ii) If both angles enclosing M are strictly less than π/2 then λM
1 ≤ λL∪S

1 .
(iii) In any case, λL

1 ≤ λM∪S
1 .

Proof. The assertions (i) and (ii) are direct consequences of Theorem 3.1. For
item (iii) just note that the angles enclosing the longest edge of a triangle can
never be equal to or larger than π/2. �
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4. A remark on the lowest eigenvalues of right triangles
In this short section we restrict ourselves to the class of right triangles and compare
the lowest eigenvalue for a Dirichlet condition on a cathetus to the one for the
hypotenuse, see Fig. 2. This extends observations from [8, Theorem 1.1] (where
additional restrictions on the angles were required) to right triangles with arbitrary
angles.

D

Ω
N

N D
Ω

N

N
Figure 2. Two choices of mixed boundary conditions on the
same right triangle (D = Dirichlet, N = Neumann). By Theo-
rem 4.1 the lowest eigenvalue of the left configuration does not
exceed the lowest eigenvalue of the right one.

Theorem 4.1. Let Ω be a right triangle with sides S,M and L ordered nonde-
creasingly by their lengths. Then

max
{
λS
1 , λ

M
1

}
≤ λL

1 .

Proof. We show the inequality λS
1 ≤ λL

1 ; the inequality λM
1 ≤ λL

1 is analogous.
The proof is similar to the proof of Theorem 3.1. Let us assume w.l.o.g. that S is
parallel to the x2-axis. We take a nontrivial, real-valued u ∈ ker

(
−∆L −λL

1

)
and

set v = ∂1u. Then v is nontrivial and v|S = 0. Now we repeat the calculation (3.1)
with Γ = L and observe that the boundary integral is zero since u vanishes on L,
which is the hypotenuse, ∂1u vanishes on S, and for the other cathetus, M , the
normal vector ν is plus or minus the second unit vector (0, 1)⊤. Hence we arrive
at (3.2) with Γ = L, which completes the proof. �
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Linear Operators and
Operator Functions Associated with
Spectral Boundary Value Problems
Vladimir Ryzhov

Dedicated to the memory of Boris Pavlov (1936–2016)

Abstract. The paper develops a theory of spectral boundary value problems
from the perspective of general theory of linear operators in Hilbert spaces. An
abstract form of spectral boundary value problem with generalized boundary
conditions is suggested and results on its solvability complemented by repre-
sentations of weak and strong solutions are obtained. Existence of a closed
linear operator defined by a given boundary condition and description of its
domain are studied in detail. These questions are addressed on the basis of
Krein’s resolvent formula derived from the explicit representations of solu-
tions also obtained here. Usual resolvent identities for two operators associ-
ated with two different boundary conditions are written in terms of the so
called M-function. Abstract considerations are complemented by illustrative
examples taken from the theory of partial differential operators. Other appli-
cations to boundary value problems of analysis and mathematical physics are
outlined.
Keywords. Spectral boundary value problem, singular perturbations, Krein’s
resolvent formula, linear operators, M-function, open systems theory.

1. Introduction
Close relationships between studies of boundary value problems and the linear
operator theory are well known to specialists in both disciplines.

As an example, one can only mention numerous attempts to translate proper-
ties of solutions to boundary value problems into the operator-theoretic language
that culminated in the development of an important branch of contemporary math-
ematics, the interpolation theory of linear operators and scales of Banach and
Hilbert spaces [10, 45, 49]. Another achievement of the abstract operator theory
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in relation to boundary problems arising in applications is the extension theory
of symmetric operators. With its origin in quantum mechanics and operating in
the setting of Hilbert spaces, the extension theory suggests a convenient model of
boundary value problems rooted in Hilbert space operator theory [2]. Although
the abstract approach often turns out to be too generic and therefore additional
considerations are required to complete the study, the extension theory of sym-
metric operators continues to be an important and widely used tool in the studies
of boundary value problems in abstract settings. During past decades it was sub-
stantially enhanced and enriched by various applications to the operator theory
itself, to the classical and functional analysis, and to the mathematical physics.
The long list of publications [7, 9, 11, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 29, 30,
31, 35, 37, 38, 42, 43, 48, 52, 53, 54, 55, 64, 65, 66, 67, 68, 85] reflects only a small
portion of the sheer amount of ongoing studies in the field of extensions theory of
symmetric operators.

The present paper offers an operator-theoretic treatment of boundary value
problems. The main topic under discussion is the existence of Hilbert space oper-
ators corresponding to abstract linear boundary value problems defined by suit-
ably generalized boundary conditions. As is well known, many applications of the
partial differential equations theory entail problem statements characterized by
certain types of formally written boundary conditions. In the case of second order
partial differential equations on bounded or unbounded domains such conditions
are usually rendered in terms of linear combinations of boundary values of solu-
tions and traces of their derivatives evaluated on the domain boundary. Typical
examples include the Laplacian in a domain of Euclidian space with Dirichlet,
Neuman, or Robin boundary conditions. Depending on the nature of these condi-
tions, the resulting problem may or may not give rise to a closed linear operator
in a Hilbert or Banach space. If such an associated operator exists, then the study
is effectively reduced to the analysis of its properties. The paper describes a wide
class of boundary conditions that determine a closed linear operator in a Hilbert
space and studies its spectral characteristics in the general setting.

In a sense, the goal pursued here is opposite to the treatment by G. Grubb [35]
where the existence of boundary conditions corresponding to a given closed real-
ization of an elliptic operator is investigated.

An essential part of present research is the formulation of generic linear
boundary value problems in the language of Hilbert space operator theory. Within
this framework, boundary conditions are defined by two parameters, two closed
linear operators acting in the “boundary space.” Reiteration of the material devel-
oped earlier in [71, 73] is followed by a more detailed inquiry into the properties
of solutions, which in turn leads to Krein’s resolvent formula and usual resolvent
identities for closed operators acting on the “main space” corresponding to vari-
ous boundary conditions. Spectral properties of these operators are described in
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terms of the so called M-function.1 Several examples offered throughout the text
illustrate the main ideas.

The ongoing study of M-functions, also known as m-, Q-, Weyl–Titchmarsh
functions, Steklov–Poincaré operator, Dirichlet-to-Neumann maps, transfer func-
tions, etc., forms a significant part of the contemporary boundary value prob-
lems studies. The M-functions theory originates in the concept of the m-function
for singular Sturm–Liouville differential equations [83]. Since then the notion of
M-functions has been generalized to other settings and followed by deep results
on M-function properties and applications. We only mention a few relevant papers
concerning topics in scattering theory [63, 84], Schrödinger and Sturm–Liouville
operators theory [8], inverse problems [39, 80], the spectral asymptotic [27, 75],
extensions of symmetric operators and adjoint pairs [14, 15, 17, 21, 22, 23, 24,
25, 48, 53, 54, 55], numerous studies on partial differential operators including
operators in non-smooth domains [7, 28, 29, 30, 31, 32, 33], the numerical spec-
tral analysis [16, 56], singular perturbations [64, 65, 66], and the linear systems
theory [71, 73]. In the present paper’s context M-functions are realized as operator-
functions with values in the set of closed linear operators acting in the “boundary
space,” a Hilbert space associated with the “boundary.”

Operator theoretic parts of the present work have some overlaps with the
extensions theory of linear symmetric operators and relations in Hilbert and Krein
spaces based on the notion of so called boundary triplets [18, 42] and their gener-
alizations. This approach relies on the properties of the abstract Green’s formula
that involves a linear symmetric operator (a linear symmetric relation in gen-
eral case) and two linear boundary maps into the “boundary space.” The theory
of boundary triplets is one of the most generic treatments of general boundary
relations available today. The interested reader is referred to the original pa-
pers [21, 22, 23, 24, 25, 26, 52, 53, 54, 55] where further references can be found.
Another successful approach to the extension theory of symmetric operators was
elaborated by A. Posilicano in works [64, 65, 66, 67, 68]. It is rooted in a close
relationship between singular perturbations of elliptic differential operators and
the extensions theory [4, 5]. In comparison with these studies, the present study
follows the line of reasoning found in [71, 73]. The ideas expounded below are
inspired by the Birman–Krein–Vishik method of extensions of positive operators
in Hilbert space [11, 44, 85] (see also [35, 37, 6]), the Weyl decomposition [86],
the open systems theory [51], and the theory of linear systems with boundary con-
trol [77]. As a result, the framework in this paper is not centered around symmetric
operators and does not involve any notions specific to the extensions theory. It
is built from the first principles concerning linear operators and their domains,
as well as properties of linear sets in Hilbert spaces. The linear systems theory
conveniently provides an adequate language to communicate the underpinnings
1Values of all M-functions under consideration are closed linear operators acting in Hilbert spaces,
with one exception of the example given in Sect. 7 where M-function is a matrix function.
Sometimes the term “M-operators” is used in order to stress the operator theoretic nature of
M-function [8].
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of this approach. With some risk of oversimplification, the last part of Sect. 2
explains these ideas in more depth by connecting them to the objects of systems
theory. The paper’s treatment of boundary value problems from the abstract point
of view opens a possibility to consider classical and non-classical applications from
a uniform perspective. As an example, it turns out that obtained results offer a
straightforward interpretation of boundary value problems when the “boundary”
does not exist a priori and has to be constructed artificially. This type of prob-
lems has been well studied in the literature and is usually referred to as singular
perturbations of differential operators characterized by perturbations supported
on the sets of Lebesque measure zero (often called the null sets). The well known
quantum mechanical model of point interactions [4, 5] and the study of more gen-
eral Schrödinger operators with potentials supported by null sets [3] are typical
examples. This fact underlines close connections of the present material to the pa-
pers [64, 65, 66, 67, 68] devoted to the study of extensions of symmetric operators
and singular perturbations. In the field of linear systems theory singular perturba-
tions represent the procedure of “channels opening” connecting an initially closed
systems to its environment [51]. From this point of view, the M-function is natu-
rally identified with the transfer function of the resulting open system interacting
with its environment by means of these channels. Operator theoretic treatment
also illuminates ideas behind the so-called “Dirichlet decoupling” [20] also known
as “Glazman’s splitting procedure” [34] and establishes connections to the analog
of Weyl–Titchmarsh function of multidimensional Schrödinger operator [8, 73].
It appears relevant to other problems of mathematical physics, e.g., the exterior
complex scaling in the theory of resonances [76] and the R-matrix method well
known in nuclear physics [47]. Some of these applications are discussed in Sect. 7
and in the last part of Sect. 2 where relevant bibliographical references can be
found; these ideas are the topics of further research.

The approach to spectral boundary value problems adopted in the paper has
certain limitations. One of them is the assumption of selfadjointness and bounded
invertibility of the “main” operator (denoted A0 throughout) acting in the Hilbert
space H. The requirement of bounded invertibility of A0 can be weakened to the
condition Ker(A0 + cI) = {0} for some c ∈ R, but the selfadjointess is essential.
Nevertheless, the schema can be extended to the case A0 6= A∗

0, but only at the ex-
pense of introducing the so called dual pairs [53, 54, 55] (see also [14, 15, 17]), which
makes the study much more involved. Another limitation is the preference to work
with linear operators, rather than with linear relations (multivalued operators)
which appears to be the recent trend in the literature, see especially [22, 23]. The
language of single valued operators stands more in line with the classical approach
of operator theory and is preferred here. One more requirement is that the oper-
ator A0 must be unbounded so that the range of A−1

0 is dense in H. Fortunately,
all these restrictions do not impede the study of the main question addressed in
the paper, that is, the description of operators corresponding to boundary value
problems defined in terms of boundary conditions.
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Let us now briefly overview the paper’s structure. Section 2 offers an ac-
cessible introduction into the setting of boundary problems and M-functions. It
serves as a guideline for the topics discussed later and provides a concise expo-
sition of the operator theoretic framework of spectral boundary value problems
independent of the symmetric operators theory. The main example is the well
known spectral problem for Dirichlet Laplacian in a smooth domain in Rn, n ≥ 3.
An adequate language for study of this operator is the language of Green’s func-
tions, integral equations and layer potentials. When necessary, relevant results are
freely borrowed from the standard references [1, 57, 58]. By this example all es-
sential ingredients of the following exposition are explicitly formulated and finally
compiled in a short catalog. Relationships to the extension theory of symmetric
operators, Krein’s resolvent formula, and resolvent identities are also discussed.
Since the linear systems theory plays an important role for the approach employed
in this work, a brief explanation of the principal ideas of this theory is provided
for reader’s convenience. At the end of section other cases of partial differential
operators that can be treated in a similar fashion are mentioned.

Section 3 develops the machinery required for the purposes of the paper.
The main objective here is to formulate notions useful for the study of spectral
boundary value problems and associated M-functions given in terms of their basic
underlying objects. Such objects are two Hilbert spaces and three closed linear
operators satisfying certain compatibility conditions. The solvability theorem is
proven and ensuing definitions of weak and strong solutions are discussed. The
section concludes with alternative descriptions of M-functions and some comments
regarding their properties.

Spectral boundary value problems with general boundary conditions are in-
vestigated in Sect. 4. After the problem statement the solvability theorem is proven
and expressions for the solutions corresponding to various boundary conditions are
obtained. The last part of the section explores a general definition of M-functions
associated with two different boundary conditions.

Section 5 is the main contribution of the paper. We discuss the existence
of closed linear operators corresponding to spectral boundary value problems and
subsequent study of their properties. Formal expressions for the resolvents and
parameters of “boundary conditions” are derived from the general representation
of solutions obtained in the previous section. These expressions are rigorously jus-
tified alongside with the study of spectral properties of respective operators and
detailed descriptions of their domains. Relations to the extension theory of sym-
metric operators are also explained. The section closes with a brief digression into
the original Birman–Krein–Vishik theory [11, 44, 85] and remarks on its connec-
tions to the present study.

Section 6 offers a sketch of scattering theory for operators associated with
boundary value problems. Simultaneously, by virtue of the paper’s approach, all
arguments of this section remain valid for singular perturbations of partial dif-
ferential operators by “potentials” concentrated on null sets. Form the operator-
theoretic point of view, the primary interest here is the link between the boundary
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value problems theory and the functional model of nonselfadjoint operators es-
tablished by means of Cayley transform applied to the M-function. It is shown
that the ideas of papers [60, 61] devoted to the functional model based approach
to the scattering theory are easily adopted and are fully applicable for the com-
prehensive development of scattering theory of linear boundary value problems,
selfadjoint and nonselfadjoint alike. Section 6 can be seen as a groundwork for the
future study in this direction.

The last section is an illustration of the boundary value problem technique
discussed in the paper in application to singular perturbations of multidimensional
differential operators. A simple example of the quantum mechanical model for a
finite number of point interactions in L2(R3) (see [4, 5]) is studied. A familiar
interpretation in the form of Schrödinger operator with δ-potentials is given and
additional comments regarding singular perturbations concentrated on the null sets
are supplied. Reported results are by no means new; most of them can be easily
found in the relevant literature cited in the text. The objective of this section is to
demonstrate how the abstract schema presented in earlier chapters can be put to
practice for the study of particular cases of multidimensional differential operators.
Notation. Symbols R, C, Im (z) stand for the real axis, the complex plane, and
the imaginary part of a complex number z ∈ C, respectively. The upper and
lower half planes are the open sets C± := {z ∈ C | ± Im (z) > 0}. If A is
a linear operator on a separable Hilbert space H, the domain, range and null
set of A are denoted D(A), R(A), and Ker(A), respectively. For two separable
Hilbert spaces H1 and H2 the notation A : H1 → H2 is used for a bounded
linear operator A defined everywhere in H1 with the range in the space H2. The
symbol ρ(A) is used for the resolvent set of A. For a Hilbert space H the term
subspace always denotes a closed linear set in H. The closure of operators and sets
is denoted by the horizonal bar over the corresponding symbol. All Hilbert spaces
are assumed separable.

2. Boundary Value Problems by Example
In this introductory section we recall the classical example of the boundary value
problem and M-function associated with the Dirichlet Laplacian in a simply con-
nected bounded domain with smooth boundary in the Euclidian space. The pur-
pose of this exposition is twofold. First, it reminds the reader of the concept of
M-functions, and secondly it brings together facts that serve as a foundation for the
general approach developed further. The italic typeface is used to highlight those
observations which are essential for the investigations of the present paper. Results
cited below hold true under much weaker assumptions, e.g., for elliptic differential
operators on non-smooth domains including Lipschitz subdomains of Riemannian
manifolds, see [41, 58, 59] and references therein. For further details the reader is
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referred to many expositions of the boundary integral equations method in appli-
cation to boundary value problems for elliptic equations and systems, see [1, 57, 58]
for relevant references.
Dirichlet problem. Let Ω ⊂ Rn, n ≥ 3 be a bounded simply connected domain
with C1,1-boundary Γ. The Laplace differential expression ∆ =

∑
i

∂2

∂x2
i

defined on
smooth functions in Ω generates the Dirichlet Laplacian ∆D in L2(Ω). The domain
of A0 := −∆D consists of functions from the Sobolev class H2(Ω) with null traces
on Γ. The operator A0 is selfadjoint and boundedly invertible in L2(Ω).
Harmonic functions and operator of harmonic continuation. Let γ0 be
the trace operator that maps continuous functions u defined in the closure Ω of
Ω into their traces on the boundary, γ0 : u 7→ u|Γ. It follows from the definition
of −∆D that γ0A−1

0 = 0. For φ ∈ C(Γ) denote hφ the solution of the Dirichlet
problem in Ω:

∆u = 0, γ0u = φ, where φ ∈ C(Γ)

The operator Π : φ 7→ hφ is bounded as a mapping from L2(Γ) into L2(Ω) and
Ker(Π) = {0}, see [58]. It is readily seen that Π is the classical operator of harmonic
continuation from the boundary Γ into the domain Ω uniquely extended to the
bounded linear map defined on the space L2(Γ). The equality γ0Πφ = φ continues
to hold for φ ∈ L2(Γ) and moreover ∆hφ = 0 for hφ = Πφ in the sense of
distributions [58]. Observe that the (unbounded and not closed) operator A :
A−1

0 f+̇Πφ 7→ f , f ∈ L2(Ω) , φ ∈ L2(Γ) is well defined since the domain of
operator A0 and the set R(Π) do not have nontrivial common elements, otherwise
A0 would not be boundedly invertible:

∃A−1
0 =⇒ D(A0) ∩R(Π) = {0}.

The same argument shows that D(A0) does not contain any nontrivial functions
from H2(Ω) satisfying the homogenous equation (−∆ − zI)h = 0 under the as-
sumption z ∈ ρ(A0). Obviously, A0 is a restriction of A to D(A0). Notice also that
A does not coincide with the “maximal operator” defined as an adjoint to the map
u 7→ −∆u, where u ∈ L2(Ω) belongs to the class C∞

0 of infinitely differentiable
functions vanishing in the vicinity of boundary Γ.
Adjoint of the harmonic continuation operator. Let G(x, y) be the Green’s
function of A0 = −∆D, so that (A−1

0 f)(x) =
∫
Ω
G(x, y)f(y) dx for f ∈ L2(Ω),

see [58]. The kernel G(·, ·) is symmetric and real-valued: G(x, y) = G(y, x) and
G(x, y) = G(x, y). Denote by dσ the normalized Lebesgue surface measure on Γ.
Then the operator Π can be expressed as an integral operator with Poisson kernel

Π : φ 7→ −
∫
Γ

φ(y)
∂

∂νy
G(x, y) dσy

where ∂
∂ν is the derivative along the outside pointing normal at the boundary Γ.

For a smooth function f in Ω

(Πφ, f) = −
∫
Ω

(∫
Γ

φ(y)
∂

∂νy
G(x, y) dσy

)
f(x) dx,
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and due to Fubini’s theorem and properties of G(·, ·),

(Πφ, f) = −
∫
Γ

φ(y)
∂

∂νy

(∫
Ω

f(x) G(x, y) dx

)
dσy

= −
〈
φ,

∂

∂ν

(∫
Ω

G(x, ·) f(x) dx
)〉

where 〈·, ·〉 denotes the inner product in L2(Γ). Since G(x, y) = G(y, x) is the
integral kernel of A−1

0 , we obtain the representation for Π∗, the adjoint of Π,
Π∗ = γ1A

−1
0

where γ1 : u 7→ −γ0 ∂u
∂ν = − ∂u

∂ν

∣∣
Γ
. We will use the symbol ∂ν for the map u 7→ ∂u

∂ν

∣∣
Γ
,

so that γ1 = −∂ν .
The spectral problem. The spectral Dirichlet boundary value problem for the
differential expression ∆ =

∑
i

∂2

∂x2
i

in Ω is defined by the system of equations for
u ∈ D(A) := D(A0)+̇R(Π), namely{

(A− zI)u = 0,

γ0u = φ
(2.1)

where A : u 7→ −∆u, φ ∈ L2(Γ), and the number z ∈ C plays the role of spectral
parameter. For z ∈ ρ(A0) the distributional solution uφz can be obtained from
the harmonic function Πφ by the formula uφz = (I − zA−1

0 )−1Πφ. Indeed, since
(I − zA−1

0 )−1 = I + z(A0 − zI)−1 and AΠφ = 0 in the distributional sense, we
have

(A− zI)uφz = (A− zI)
(
Πφ+ z(A0 − zI)−1Πφ

)
= −zΠφ+ zΠφ = 0,

due to the identity (A− zI)(A0 − zI)−1 = I. Therefore the vector uφz is a solution
to the equation (A− zI)u = 0. Further, γ0uφz = γ0Πφ = φ. Hence the vector uφz =
(I − zA−1

0 )Πφ is a solution to the spectral problem (2.1) for φ ∈ L2(Γ) and
z ∈ ρ(A0).
Solution Operator and DN-Map. For the spectral problem (2.1) with φ ∈
L2(Γ) and z ∈ ρ(A0) introduce the solution operator

Sz : φ 7→ (I − zA−1
0 )−1Πφ (2.2)

Operator Sz is bounded as a mapping from L2(Γ) into L2(Ω). For φ ∈ C2(Γ) the
inclusion Szφ ∈ H2(Ω) holds and therefore the expression γ1Szφ is well defined.
The operator function M(z) defined by

M(z) : φ 7→ γ1Szφ, φ ∈ C2(Ω) (2.3)
is analytic in z ∈ ρ(A0). It is called the Dirichlet-to-Neumann map (DN-map) or,
more generally, the M-function of A = −∆ in the domain Ω. By construction,
−∂νu = M(z) (u|Γ) for u ∈ Ker(A − zI) as long as the function γ0u = u|Γ is
sufficiently smooth on Γ. In fact, it can be shown that values of so defined M(z),
z ∈ ρ(A0) are closed operators acting in L2(Γ) with the domain H1(Γ), see [81]
and references therein.
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The representation Sz = (I − zA−1
0 )−1Π and equality Π∗ = γ1A

−1
0 imply

(Sz)
∗ = γ1A

−1
0 (I − z̄A−1

0 )−1 = γ1(A0 − z̄I)−1. (2.4)

Therefore Sz = [γ1(A0 − z̄I)−1]∗ and the M-function M(z) can be rewritten as

M(z) = γ1[γ1(A0 − z̄I)−1]∗.

In particular, M(0) = γ1(γ1A
−1
0 )∗ = γ1Π. It can be shown (see [81]) that the

operator M(0) = γ1Π defined on the domain D(M(0)) = H1(Γ) is selfadjoint in
L2(Γ). Operator M(0) turns out to be a rather important object; it is convenient
to use a special notation for it:

Λ =M(0) = γ1Π, D(Λ) = H1(Γ).

Robin Boundary Conditions. Let β ∈ L∞(Γ) be a bounded function defined
almost everywhere on the boundary Γ. In what follows we also denote β the
bounded operator of multiplication φ 7→ βφ, φ ∈ L2(Γ) acting in the space L2(Γ).
Consider the boundary value problem{

(A− zI)u = 0,

−∂νu+ βu|Γ = φ
(2.5)

with φ ∈ L2(Γ). In particular, for β = 0 we recover the classical Neumann problem
for the Laplacian in Ω. For nontrivial β the system (2.5) is called the boundary
problem of third type, or Robin problem. Assume z ∈ ρ(A0) and let uφz be a smooth
solution to the first equation, that is (A− zI)uφz = 0. Because γ1uφz =M(z)γ0u

φ
z ,

the second equation for the trace ψ := γ0u
φ
z becomes (β +M(z))ψ = φ. Suppose

the map (β +M(z)) is boundedly invertible as an operator in L2(Γ). Then the
boundary equation for ψ can be solved explicitly: ψ = (β +M(z))−1φ. In turn,
the solution uφz is recovered from its trace ψ = γ0u

φ
z by the mapping Sz:

uφz = (I − zA−1
0 )−1Πγ0u

φ
z = (I − zA−1

0 )−1Π(β +M(z))−1φ, (2.6)

where z ∈ ρ(A0) is such that (β +M(z))−1 exists. Observe that application of γ1
to both sides of this equality yields the expression for the map φ 7→ γ1u

φ
z , which

by analogy with the DN-map can be called the Robin-to-Neumann map:

MRN (z) =M(z)(β +M(z))−1.

Similarly, application of γ0 yields an expression for the Robin-to-Dirichlet map:

MRD(z) = (β +M(z))−1. (2.7)

Krein’s resolvent formula and Hilbert resolvent identity. Equations (2.5)
give rise to another boundary problem, namely the problem for an unknown func-
tion u in Ω satisfying {

(A− zI)u = f,

γ1u+ βγ0u = 0
(2.8)
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with f ∈ L2(Ω), where γ1u = −∂νu = −∂u
∂ν |Γ and γ0u = u|Γ. It is customary to

look for a solution to (2.8) in the form

ufz = (A0 − zI)−1f + Szψ = (A0 − zI)−1f + (I − zA−1
0 )−1Πψ (2.9)

with z ∈ ρ(A0) and some ψ ∈ L2(Γ) to be determined. Since (A − zI)(A0 −
zI)−1f = f and (A − zI)Szψ = 0, the first equation (2.8) is satisfied by (2.9)
automatically; therefore we only need to find ψ ∈ L2(Γ) such that (2.9) obeys the
boundary condition in (2.8). Applying γ0 and γ1 to (2.9) we obtain

γ0u
f
z = γ0Szψ = ψ,

γ1u
f
z = γ1(A0 − zI)−1f + γ1Szψ = Π∗(I − zA−1

0 )−1f +M(z)ψ.

Now the relation Π∗ = γ1A
−1
0 , properties of solution operator Sz and the definition

of M(z), lead to the following equation for the unknown function ψ

0 = (γ1 + βγ0)u
f
z = Π∗(I − zA−1

0 )−1f + (β +M(z))ψ.

Again, assuming z ∈ ρ(A0) is such that (β +M(z)) is boundedly invertible, the
formula for ψ follows:

ψ = −(β +M(z))−1Π∗(I − zA−1
0 )−1f.

Substitution into (2.9) yields the result

ufz = (A0 − zI)−1f − (I − zA−1
0 )−1Π(β +M(z))−1Π∗(I − zA−1

0 )−1f. (2.10)
This expression certainly requires some justification as the second summand need
not be smooth and thereby the normal derivative −∂νufz that appears in the
boundary condition may be undefined for some f ∈ L2(Ω). But let us defer dis-
cussion of this difficulty to the main body of the paper and turn instead to the
operator-theoretic interpretation of the equations (2.8) and their solution (2.10).

The system (2.8) represents a problem of finding a vector u from the domain
of operator Aβ defined as a restriction of A to the set of functions u ∈ L2(Ω)
satisfying the boundary condition (γ1 + βγ0)u = 0 in some yet undefined sense.
It is clear that Aβ also can be treated as an extension of the so-called minimal
operator defined as A = −∆ restricted to the set C∞

0 (Ω) of infinitely differentiable
functions in Ω that vanish in some neighborhood of Γ along with all their partial
derivatives. Assuming for the sake of argument that each vector u ∈ D(Aβ) satis-
fies the condition (γ1+βγ0)u = 0 literally, that is the expression (γ1+βγ0)u makes
sense for each u ∈ D(Aβ), the problem (2.8) with f ∈ L2(Ω) is the familiar resol-
vent equation (Aβ − zI)u = f for the operator Aβ . Therefore the solution (2.10)
for z ∈ ρ(Aβ) coincides with (Aβ − zI)−1f . We see that the resolvents of A0 and
Aβ for z ∈ ρ(A0) ∩ ρ(Aβ) are related by the following identity commonly known
as Krein’s resolvent formula
(Aβ−zI)−1 = (A0−zI)−1−(I−zA−1

0 )−1Π(β+M(z))−1Π∗(I−zA−1
0 )−1. (2.11)

Notice that the right-hand side of (2.11), depends on (β+M(z))−1 which is exactly
the M-function (2.7). Under assumption of bounded invertibility of β +M(0) in
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L2(Γ) we have
A−1

β = A−1
0 −Π(β +M(0))−1Π∗. (2.12)

This expression shows in particular that while the difference of Aβ and A0 is only
defined a priori on the set of smooth functions u vanishing on the boundary Γ
along with their first derivatives where (Aβ − A0)u = 0, the difference of their
inverses A−1

β −A−1
0 is a nontrivial bounded operator in L2(Ω). As a consequence,

if β = β∗, then the operator Aβ is selfadjoint as an inverse of a sum of two
bounded selfadjoint operators. Moreover, the formula (2.12) can be successfully
employed for the investigation into spectral properties of Aβ , as it reduces the
boundary problem setting to the well-developed case of perturbation theory for
bounded operators (cf. [35]).

Krein’s formula (2.11) implies another useful identity relating resolvents of
A0 and Aβ to each other. According to the definition of solution operator Sz the
identity γ0(I − zA−1

0 )−1Π = I holds for any z ∈ ρ(A0). Hence, application of γ0
to both sides of (2.11) leads to

γ0(Aβ − zI)−1 = (β +M(z))−1Π∗(I − zA−1
0 )−1. (2.13)

Krein’s formula can now be rewritten in the form

(Aβ − zI)−1 − (A0 − zI)−1 = −(I − zA−1
0 )−1Πγ0(Aβ − zI)−1.

By substituting the adjoint of Sz = (I − zA−1
0 )−1Π from (2.4) we obtain the

following variant of Hilbert resolvent identity for A0 and Aβ (cf. [30, 31])

(A0−zI)−1− (Aβ −zI)−1 = [γ1(A0− z̄I)−1]∗γ0(Aβ −zI)−1, z ∈ ρ(A0)∩ρ(Aβ).
(2.14)

Finally, notice that all considerations above are valid at least formally if the
symbol β in the condition (2.8) represents a linear bounded operator acting on the
Hilbert space L2(Γ).
Summary. Observations of this section lay down a foundation for the study of
boundary value problems and M-functions presented in the paper. For further
convenience, this preliminary discussion concludes by summing up properties of
operators A0 and Π and their relationships to the boundary maps γ0, γ1 that are
relevant for our study.

• Operator A−1
0 is bounded, selfadjoint, and Ker(A−1

0 ) = {0}.
• Operator Π is bounded and Ker(Π) = {0}.
• The intersection D(A0) ∩R(Π) = R(A−1

0 ) ∩R(Π) is trivial.
• The left inverse of Π is the trace operator γ0 restricted to R(Π), that is
γ0Πφ = φ for φ ∈ L2(Γ).

• The set D(A0) = R(A−1
0 ) is included into the null space of γ0, so that

γ0A
−1
0 = 0.

• The adjoint operator of Π is expressed in terms of γ1 and A0 as Π∗ = γ1A
−1
0 .

• Operator Λ = γ1Π is selfadjoint (and unbounded) in L2(Γ).
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Further, the spectral boundary value problem (A− zI)u = 0, γ0u = φ, where A is
an extension of A0 to the set D(A0)+̇R(Π) defined as Ah = 0 for h ∈ R(Π), gives
rise to the solution operator Sz and to the M-function M(z), z ∈ ρ(A0).

• The solution operator has the form Sz = (I − zA−1
0 )−1Π, z ∈ ρ(A0).

• The M-function is formally defined by the equality M(z) = γ1Sz, z ∈ ρ(A0).

Finally, the boundary condition associated with the expression γ1 + βγ0 where β
is a linear operator in L2(Γ) defines the Robin boundary value problem and the
corresponding linear operator Aβ .

• The resolvents of Aβ of A0 are related by Krein’s formula (2.11) expressed
in terms of M-function (2.7).

• Hilbert resolvent identity (2.14) holds.
The linear systems theory perspective. As stated in Introduction, ideas un-
derlying the operator theoretic framework employed for the paper’s purpose are
partially inspired by the approach to boundary value problems found in the lin-
ear systems theory. These ideas are best illustrated by considering the following
variant of problem (2.1) {

Au = f,

γ0u = φ
(2.15)

where all participating objects are as in (2.1) and the vector f is an arbitrary
function from L2(Ω). From the point of view of linear systems theory, equa-
tions (2.15) describe a linear system with the state space H = L2(Ω), the input-
output space E = L2(Γ) and the main operator A. Solutions to (2.15) are called
“internal states” of the system and vectors φ ∈ L2(Γ) are interpreted as the sys-
tem’s input. The system’s output is defined by the operator γ1 that maps internal
states of the system to elements of the input-output space E.

When the input in (2.15) is absent (φ = 0), the corresponding internal state
is obviously uf = A−1

0 f . This situation corresponds to the closed system, that is,
the system that is isolated from the external influences modeled by inputs φ ∈ E.
The closed system still has a nontrivial output given by γ1 : uf 7→ γ1A

−1
0 f = Π∗f .

Introduction of the non-zero input φ ∈ E in (2.15) is a way to open the system
to external influences. As can be easily verified, the procedure of system opening
results in an additional term in the expression for the state vectors, uf,φ = A−1

0 f+
Πφ. The output of the system defined by the operator γ1 results in the mapping
from internal states to outputs in the form γ1 : uf,φ 7→ γ1A

−1
0 f + γ1Πφ. At this

point we need to take into consideration the unboundedness of the trace operator γ1
and only choose inputs resulting in the outputs that belong to E = L2(Γ). All
such inputs (admissible inputs) therefore are functions φ ∈ L2(Γ) for which the
harmonic continuations Πφ into the domain Ω possess normal derivatives with
traces on Γ from the space L2(Γ). With an appropriate choice of inputs φ ∈ L2(Γ),
the system’s output is determined by the map γ1 : uf,φ 7→ Π∗f + Λφ, where we
employed notation Λ = γ1Π introduced earlier and used the equality γ1A−1

0 = Π∗.
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The restriction of admissible inputs to a smaller set in this example is dictated
by the choice of output operator γ1 that cannot be defined on all attainable internal
states {uf,φ | f ∈ H,φ ∈ E} of the system. Such a restriction, however, does not
create any inconvenience. Quite the opposite, this feature can be perceived as an
advantage of the approach, because it allows for the definition of inputs according
to the particular problem at hand.2 Note also that an alternative approach consists
of suitable alterations of outputs that do not change essential properties of the
system under investigation, and at the same time widen the set of admissible
inputs (see [15, 17] in this regard for an example of “regularization procedure”
applied to the system’s output).

The internal states of the linear system described by equations (2.15) are
therefore represented as the sum of two components, uf,φ = A−1

0 f + Πφ. The
first term is always a function from the domain of Dirichlet Laplacian, and the
second term needs not be smooth and belong to the domain of A = −∆ at all.
It is a function from the range of the operator of harmonic continuation from the
boundary, Π : L2(Γ) → L2(Ω). These two components are linearly independent in
the sense of equivalence {uf,φ = 0} ⇐⇒ {A−1

0 f = 0,Πφ = 0}. In other words, the
internal states of the system are vectors from the direct sum D(A0)+̇R(Π). In the
language of linear systems theory the second summand is associated with the set
of controls imposed on the system. The equality Ker(Π) = {0} means that this set
stands in a one-to-one correspondence with the set of all inputs. Operator Π that
maps inputs into controls is often called the control operator.

For the “spectral” case of linear system described by equations (2.1) the
system’s input are again vectors φ ∈ L2(Γ) and the internal state is determined
by the solution operator φ 7→ Szφ for z ∈ ρ(A0), see (2.2). Following the systems
theory language, if the output is defined by means of operator γ1 as γ1Szφ, then
the M-function (2.3) is nothing but the transfer function of this system that maps
the input φ into the output γ1Szφ (for suitable φ ∈ E). The resolvent identity
and formula Π∗ = γ1A

−1
0 allow to rewrite (2.3) as

M(z) = Λ + zΠ∗(I − zA−1
0 )−1Π, z ∈ ρ(A0). (2.16)

This representation has important consequences.
First, the function (2.16) is expressed in terms of three linear operators, A−1

0 ,
Π, and Λ, playing very specific and well defined roles in the description of linear
system corresponding to (2.1). Namely, many applications of the systems theory
interpret the spectral parameter z ∈ C in (2.1) as the frequency of oscillations
taking place inside Ω. Typical and well known examples are classical acoustic and
electromagnetic waves existing in the domain Ω. The operator Λ =M(0) then has
the meaning of system’s response at zero frequency, and can be interpreted as the
operator of static reaction. Since its independence on the spectral parameter it
2This situation is common in practical applications of the systems theory where the set of inputs
is always subject to the real world limitations. For instance, it is clear that only smooth functions
from L2(Γ) can be realized in practice as the system’s inputs. Therefore the ability to choose
input vectors freely conforms to the standard assumptions of systems theory.
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maps inputs directly to the outputs without applying any z-dependent (therefore,
frequency dependent) transformations. In the systems theory terms the operator Λ
is usually called the feedthrough operator. Consequently, with a given input φ ∈ E
the second term in (2.16) describes oscillations of the system around its “static re-
action” Λφ. Notice that for z ∈ ρ(A0) the second term is a bounded operator in E.
Also of interest is the observation that the feedthrough operator Λ is independent
of operators A0 and Π describing oscillations, and therefore can be chosen to suit
specific requirements of the given application.3

Secondly, as described above, the operator of harmonic continuation Π :
L2(Γ) → L2(Ω) translates inputs into controls. Its adjoint Π∗ is called the ob-
servation operator because according to (2.16) it maps internal states Szφ =
(I − zA−1

0 )−1Πφ into the system’s output, thereby making internal states avail-
able to the external observer. The equality Π∗ = γ1A

−1
0 is crucial for the repre-

sentation (2.16) of M-operator initially defined as M(z) = γ1Sz. For the model
example of the Laplacian discussed above the identity Π∗ = γ1A

−1
0 is a conse-

quence of Fubini’s theorem and properties of Green’s function. To ensure validity
of the representation (2.16) within the general framework, the definition of abstract
counterpart of γ1 given below explicitly involves operator Π∗, see Definition 3.3.

Finally, from the theoretical point of view the system is considered a “black
box,” with the transfer function being the only source of information about its
internals available to the observer. It follows that the linear system defined by
equations (2.1) or (2.15) with the internal states-outputs map γ1 is completely
described by the operators A−1

0 , Π, and Λ participating in the representation (2.16)
of its transfer function. In other words, the study of (2.1) from the systems theory
perspective is equivalent to the study of the set {A−1

0 ,Π,Λ}.
The transition from the system defined in terms of {A, γ0, γ1} to the system

defined by {A−1
0 ,Π,Λ} is known in the systems theory as reciprocal transform,

see [19, 77, 73]. These two systems share the state and input–output spaces, their
transfer functions coincide, but their defining operators are different. One advan-
tage of the reciprocal transform is that it translates operators {A, γ0, γ1} that are
often difficult to describe in practical applications into the set of well defined and
closed operators {A−1

0 ,Π,Λ}, two of which are bounded. For instance, the Lapla-
cian A = −∆ in the domain Ω from the model example above, when defined in
its “natural domain,” that is, the Sobolev space H2(Ω), is not a closed operator in
L2(Ω). At the same time the mappings γ0 and γ1 are well defined on H2(Ω), al-
though they are not closed on their domains either. The procedure of operator the-
oretic closure of A = −∆ in the space L2(Ω) results in the operator A = clos(−∆)
with the domain that contains elements from L2(Ω) \ H2(Ω). Because the null
set of a closed operator is always closed, D(A) contains at least the L2-closure

3See publications [15, 17] as an example, where the authors modify the system’s output by
subtracting the static reaction, thereby working with the system with the output defined as
(γ1 −Λγ0)uφ and consequently with the null feedthrough operator. Here φ ∈ E is the input and
uφ ∈ H is the corresponding internal state.
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of all harmonic functions continuous in Ω. This set includes functions that need
not to possess boundary values on Γ, so that the boundary mappings γ0, γ1 can
not be defined on all elements from D(A). Therefore the choice of suitable domain
for A and subsequent expressions for boundary operators are not always obvious
(except for the simplest cases, involving a boundary space of finite dimensionality
as one example). In contrast, operators of the reciprocal system {A−1

0 ,Π,Λ} are
all well defined and always closed. They are the solution operator of the Dirichlet
problem in the domain Ω, the operator of harmonic continuation from the bound-
ary Γ into Ω, and the classical Dirichlet-to-Neumann map for the Laplacian in Ω,
respectively.

References to the reciprocal transform also help to clarify the relationship
between the paper’s framework and the mentioned earlier approach based on the
notion of boundary triples. The starting point for the latter is the set {A, γ0, γ1}
(where A is the operator-theoretic closure of A) that gives rise to an abstract
Green’s formula, as opposed to the discussion below carried out on the basis of
operators {A−1

0 ,Π,Λ} that define the “reciprocal” system. In order to circumvent
the described above difficulties with the operator domains the earlier versions of
boundary triples approach [24, 25, 26] severely limited its applicability by request-
ing the operator A to be closed, γ0, γ1 to be bounded in the graph norm of A,
and the ranges of γ0, γ1 to coincide with the boundary space E. The last as-
sumption is the most restrictive, as it automatically excludes from consideration
unbounded M-functions. These limitations were removed only recently, see pa-
pers [9, 22], opening further possibilities of non trivial applications to the partial
differential operators. In contrast, the approach based on the set {A−1

0 ,Π,Λ} offers
a framework free of these restrictions. It not only allows one to work with closed
and bounded operators, but also gives an option to selectively choose inputs from
the boundary space E, thus eliminating the concern of a suitable domain defi-
nition for boundary mappings and removing the assumption of closedness (and
even closability) of A. It is also worth mentioning that when operators {A, γ0, γ1}
form a “boundary triplet,” all three of them are mutually interdependent. Their
domains must be suitably chosen and their definitions must fit together in order
for the Green’s formula to hold. In the “reciprocal” approach, only two operators,
A0 and Π, are interdependent (the intersection of their ranges must be trivial),
whereas the operator Λ (both its action and its domain) can be selected arbitrar-
ily. Qualitatively speaking, one may say that the boundary triples method goes
“from the inside to the outside” relating elements of the state space H to elements
in the boundary space E by means of operators γ0 and γ1, whereas the approach
adopted in this paper goes in the opposite direction by introducing the control op-
erator Π that maps elements from the boundary space into elements of the state
space. Operator Λ then, as a feedthrough operator acting on the boundary space,
is an arbitrary parameter that does not have to be closed and even closable.
Applications. Translation of classic boundary value problems and their solution
procedures to the operator theoretic language suggests applicability of the obtained
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results in various settings. As one example, it seems rather natural to consider
a more general type of boundary conditions (2.8) written as (αγ1 + βγ0)u =
0 with some linear operators α, β acting on L2(Ω) (or even bounded operator
valued functions α(z), β(z) of the spectral parameter z ∈ C). If β = χE is the
characteristic function of a non empty measurable set E ⊂ Γ of positive Lebesgue
surface measure on Γ and α = 1 − χE , then the boundary condition above takes
the form (1 − χE)∂νu + χEu|Γ = 0. It describes the so called mixed boundary
value problem (Zaremba’s problem) with the Dirichlet boundary condition on E
and the Neumann condition on Γ \ E (cf. [58]).

The abstract operator theoretic technique elaborated in the paper can be
successfully applied to the study of boundary value problems of classic and modern
complex analysis. In particular, it is possible to reformulate within the abstract
framework classic problems of Poincaré, Hilbert, and Riemann for harmonic and
analytic functions in bounded simply connected and sufficiently smooth domains
of the complex plane, see [74]. The generic boundary conditions in the form (αγ1+
βγ0)u = 0 appear rather naturally in these cases.

One more example is based on the earlier study [73] and is discussed here at
some length. Using the above notation, it concerns the transmission type boundary
condition imposed on solutions to the equation (−∆− ζI)u = 0 inside and outside
of Ω. It is convenient to rewrite this equation as (A− zI)u = 0 with A = −∆+ I
and z = ζ + 1 for reasons that will be clarified shortly. Denote u±z its solutions in
the domains Ω± where Ω− = Ω and Ω+ = Rn \ Ω. Then the boundary condition
(∂νu

−
z )|Γ−(∂νu

+
z )|Γ = φ with φ ∈ L2(Γ) defines a variant of transmission problem.

Here (∂νu
±
z )|Γ are boundary values on Γ of the normal derivatives of functions u±z

in the direction of outer normal to the domain Ω. The solution to this problem is
given by the single layer potential

(Szφ)(x) :=

∫
Γ

G(x, y, z)φ(y)dσy, x ∈ Rn

where G(·, ·, z) is the standard Green’s function of the differential operator (−∆+
I − zI) and dσy is the Euclidian surface measure on Γ. In order to include this
problem into the paper’s framework, define operators γ0 and γ1 acting on linear
combinations of smooth functions v± ∈ L2(Ω±) with the property v−|Γ = v+|Γ =
v|Γ ∈ C(Γ) as maps

γ0 : v 7→ (∂νv
−)|Γ − (∂νv

+)|Γ, γ1 : v 7→ v|Γ
where we put v := v+ + v− ∈ L2(Rn). Properties of single layer potentials are
such that boundary values on Γ of the function Szφ taken from Ω+ and Ω−

coincide almost everywhere. Moreover, the difference of boundary values of normal
derivatives of Szφ from inside and outside of Ω are equal to φ almost everywhere.
In other words, γ0Szφ and γ1Szφ are well defined and γ0Szφ = φ. Now it is only a
matter of interpretation to treat this transmission problem as a spectral problem
in the form (2.1). The solution operator Sz obviously coincides with φ 7→ Szφ
and the choice of operator γ1 made above leads to the M-function being the single
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layer potential restricted to Γ, that is, M(z)φ = Szφ|Γ. Corresponding expressions
for Π and M(0) = γ1Π easily follow from their definitions. More precisely, since
Π = Sz|z=0 we have Πφ = S0φ and M(0)φ = S0φ|Γ.

The expression for A0 = A|Ker(γ0) deserves further discussion. Since A is
initially defined on the domain of all functions v ∈ L2(Rn), smooth in Ω± and
continuous in Rn, the condition γ0v = 0 makes A0 equal to −∆ + I defined on
the domain of standard Laplacian −∆ in L2(Rn) (after the conventional operator
closure procedure). This fact follows from the embedding theorems for Sobolev
classes H2, according to which the function v = v− + v+, where v± ∈ H2(Ω±)
belongs to H2(Rn) if v−|Γ = v+|Γ and (∂νv

−)|Γ = (∂νv
+)|Γ almost everywhere

on Γ. Also note that the addition of identity operator I to the Laplacian −∆
ensures bounded invertibility of A0. Operator defined by (2.8) with β = 0 (that
is, by the condition γ1u = 0) is the orthogonal sum of two Dirichlet Laplacians
acting in L2(Ω−)⊕ L2(Ω+). A more general transmission problem corresponding
to the boundary condition α(v|Γ) + β[(∂νv

−)|Γ − (∂νv
+)|Γ] = φ with φ ∈ L2(Γ)

and bounded operators α, β acting in E = L2(Γ) is a particular case of problems
investigated in the present paper.

It is also clear that the setting of transmission problem can be interpreted as
a case of singular perturbations of quantum mechanics [3, 4, 5], where the “free”
Laplacian defined initially in all space Rn is perturbed by the “potential” supported
by the surface Γ. Various boundary conditions in the form (αγ0 + βγ1)u = 0
with γ0, γ1 as above and suitable choice of linear operators α, β acting in L2(Γ)
reflect the variety of possible “parameterizations” available in this model. Another
illustration of the point of view based on the theory of singular perturbations is
given in the last section.

Naturally, the same considerations are applicable to more generic elliptic
differential operators in place of the Laplacian, as long as the single layer potential
constructed by the Green’s function of such operators possesses the same boundary
properties as the conventional “acoustic” potential Sz, see [1, 57, 58]. In particular,
the Schrödinger operator −∆+q(x) in L2(Rn) with sufficiently regular real valued
function q(x) satisfies this condition. It is a remarkable fact that when n = 3,
q ∈ L∞(R3) and Ω = {x ∈ R3 | |x| < 1} the M-function defined by the theory
elaborated in the paper coincides with the Weyl–Titchmarsh function of the three-
dimensional Schrödinger operator obtained in [8] by the multidimensional analogue
of the classical nesting procedure of the Sturm–Liouville theory [83] (see [73] for
the proof). Thus the single layer potential constructed by the Green’s function
of Schrödinger operator with the density supported by the unit sphere in R3 is a
direct multidimensional equivalent of the celebrated Weyl-Titchmarsh m-function.

A similarly developed theory for double layer potentials results in another
type of transmission boundary conditions; the M-function in this case coincides
with the (unbounded) hypersingular integral operator acting in L2(Γ). The “un-
perturbed” operator A0 then is the “free” Laplacian acting in L2(Rn), whereas the
operator defined by the condition γ1u = 0 is the orthogonal sum of two Neumann
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Laplacians acting in L2(Ω−) ⊕ L2(Ω+). The interested reader is referred to the
publication [73] for proofs and further details.

3. Spectral Boundary Value Problem and its M-function
This section is concerned with a framework used in the study of spectral bound-
ary value problems conducted in Sects. 5 and 6. A substantial part of the material
covered here is an exposition of certain facts that can be found in the literature.
For the most general perspective, the reader is referred to the works [21, 22, 23]
and references therein carried out in a very generic setting of abstract boundary
relations. In fact, principal results communicated here can be derived from the
exhaustive treatment of [22] as a particular case. Remark 3.6 at the end of sec-
tion outlines a possible approach for such a derivation and also clarifies existing
relationships between [22] and the setting of present paper. The main goal of this
section is to give a concise account of all relevant facts in the form convenient
for the present study alongside with adequate proofs. Topics covered include the
definition of spectral boundary value problem complemented by a discussion of
properties of its solutions and the definition of corresponding M-function. An ab-
stract analogue of the operator γ1 from Sect. 2 leading to the Green’s formula
and to the concept of weak solutions is elaborated in some depth. The study is
conducted under the following assumption.

Let H, E be two separable Hilbert spaces, A0 be a linear operator in H
defined on the dense domain D(A0) in H and let Π : E → H be a bounded linear
mapping.

Assumption 1. Suppose the following:
• Operator A0 is selfadjoint and boundedly invertible in H.
• Mapping Π possesses the left inverse Γ̃0 defined on R(Π) by Γ̃0 : Πφ 7→ φ,
φ ∈ E.

• The intersection of D(A0) and R(Π) is trivial, D(A0) ∩R(Π) = {0}.

Remark 3.1. As shown in [22], conditions of Assumption 1 can be substantially
weakened. In particular, boundary mappings Γ0 and Γ1 in the context of [22] are
multivalued operators ( linear relations) defined on the graph of operator A that
need not be single-valued, nor have a dense domain (compare with the definitions
of Γ0, Γ1, and A in our case below). In addition, bounded invertibility of A0 is
not required for validity of a number of statements found in this section.

Under Assumption 1 neither of sets D(A0) and R(Π) coincides with the whole
space H. In follows that A0 is necessarily unbounded. Furthermore, existence of
the left inverse of Π implies Ker(Π) = {0}. The condition D(A0) ∩ R(Π) = {0}
is essential. It guarantees existence of (unbounded) projections from the direct
sum D(A0)+̇R(Π) into the each component parallel to another. In turn, it ensures
correctness of definitions of operators A and Γ0 in the next paragraph. Finally,
note that for a non-invertible selfadjoint operator A0 with a real regular point c ∈
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ρ(A0) ∩ R the invertibility condition can be easily satisfied by considering the
operator A0 − cI in place of A0.

Introduce two linear operators A and Γ0 on the domain D(A) = D(Γ0) ⊂ H
by

D(A) := D(A0)+̇R(Π) = {A−1
0 f +Πφ | f ∈ H,φ ∈ E}, (3.1)

A : A−1
0 f +Πφ 7→ f, Γ0 : A−1

0 f +Πφ 7→ φ, f ∈ H,φ ∈ E. (3.2)

Operators A and Γ0 are extensions of A0 and Γ̃0 to D(A) defined to be the null
mapping on the complementary subsets R(Π) and D(A0), respectively. Observe
that Ker(A) = R(Π) and Ker(Γ0) = R(A−1

0 ) (= D(A0)) since Ker(A|D(A0)) and
Ker(Γ0|R(Π)) are trivial by construction.

Definition 3.1. Spectral boundary problem associated with the pair A0, Γ̃0 sat-
isfying Assumption 1 consists of the system of linear equations for an unknown
element u ∈ D(A) {

(A− zI)u = f,

Γ0u = φ,
f ∈ H,φ ∈ E, (3.3)

where z ∈ C is the spectral parameter.

Theorem 3.1. For z ∈ ρ(A0) and any f ∈ H, φ ∈ E there exists a unique
solution uf,φz to the problem (3.3) given by the formula

uf,φz = (A0 − zI)−1f + (I − zA−1
0 )−1Πφ. (3.4)

Moreover, if for some f ∈ H and φ ∈ E the vector defined by the right-hand side
of (3.4) is null, then f = 0 and φ = 0.

Proof. We will show that the first term in (3.4) is a solution to the system (3.3)
with φ = 0, f 6= 0 and the second one solves the system (3.3) for f = 0, φ 6= 0. To
that end let us verify first that (I − zA−1

0 )−1Πφ belongs to Ker(A− zI). We have
(A− zI)(I − zA−1

0 )−1Πφ = (A− zI)
(
I + z(A0 − zI)−1

)
Πφ

=
(
A− zI + z(A− zI)(A0 − zI)−1

)
Πφ

= (A− zI + zI)Πφ = AΠφ

= 0

since A0 ⊂ A and Ker(A) = R(Π). Therefore
(A− zI)uf,φz = (A− zI)(A0 − zI)−1f = f.

For the second equation (3.3) and uf,φz as in (3.4) ,
Γ0u

f,φ
z = Γ0(I − zA−1

0 )−1Πφ = Γ0(I + z(A0 − zI)−1)Πφ = Γ0Πφ = φ

because Ker(Γ0) = D(A0) = R((A0 − zI)−1). Both equations (3.3) are therefore
satisfied.

Uniqueness of the solution (3.4) is a direct consequence of assumption z ∈
ρ(A0). For z = 0 the implication uf,φ0 = 0 =⇒ f = 0, φ = 0 trivially holds due
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to uniqueness of the decomposition uf,φ0 = A−1
0 f +Πφ into the sum of two terms

from disjoint sets and equalities Ker(A−1
0 ) = {0}, Ker(Π) = {0}. For z ∈ ρ(A0)

with the help of identity (I−zA−1
0 )−1 = I+z(A0−zI)−1 the representation (3.4)

can be rewritten as
uf,φz = (A0 − zI)−1(f + zΠφ) + Πφ.

The first summand here belongs to D(A0) and the second to R(Π). Since the
intersection of these two sets is trivial, the equality uf,φz = 0 implies Πφ = 0 and
thus φ = 0. Then (A0 − zI)−1f = 0 and therefore f = 0. �
Definition 3.2. Assuming z ∈ ρ(A0) denote Rz = (A0−zI)−1 the resolvent of A0

and introduce the solution operator Sz : E → E

Sz : φ 7→ (I − zA−1
0 )−1Πφ = (I + zRz)Πφ, φ ∈ E, z ∈ ρ(A0).

Remark 3.2. An alternative name for the solution operator commonly accepted in
the theory of linear symmetric operators and relations is γ-field, see [21, 22, 23] and
references therein. The present paper follows the terminology inherited from the
theory of boundary value problems [37] in order to stress out the role mapping Sz

plays in the considerations below.

Remark 3.3. Important properties of the solution operator follow from its defi-
nition and the resolvent identity (see [22, Proposition 4.11] for the general case).
Suppose z ∈ ρ(A0). Then Γ0Sz = I and R(Sz) = Ker(A− zI). Moreover,

Sz − Sζ = (z − ζ)RzSζ , z, ζ ∈ ρ(A0). (3.5)

Proof. The first claim follows from Theorem 3.1. The same theorem shows that
the range of Sz is included into Ker(A− zI). To show that R(Sz) = Ker(A− zI)
assume u = A−1

0 f +Πφ with f ∈ H, φ ∈ E is such that u ∈ Ker(A− zI). Then
0 = (A− zI)u = (A− zI)(A−1

0 f +Πφ) = (I − zA−1
0 )f − zΠφ

so that f = z(I − zA−1
0 )−1Πφ. Substitution into u = A−1

0 f +Πφ gives
u = A−1

0 f +Πφ =
[
zA−1

0 (I − zA−1
0 )−1 + I

]
Πφ = (I − zA−1

0 )−1Πφ = Szφ.

The last statement is easily verified by the direct calculation based on the resolvent
identity

(I − zA−1
0 )−1 − (I − ζA−1

0 )−1

= z(A0 − zI)−1 − ζ(A0 − ζI)−1

= (A0 − zI)−1
(
zI − ζ(I − zA−1

0 )(I − ζA−1
0 )−1

)
= (A0 − zI)−1

(
z(I − ζA−1

0 )− ζ(I − zA−1
0 )

)
(I − ζA−1

0 )−1

= (z − ζ)(A0 − zI)−1(I − ζA−1
0 )−1.

Multiplication by Π from the right concludes the proof. �
Now an analogue of the “second boundary operator” γ1 described in Sect. 1

can be introduced.
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Definition 3.3. Let Λ be a linear operator in E with the domain D(Λ) ⊂ E.
Define the linear mapping Γ1 on the subset D := D(A0)+̇ΠD(Λ) by

Γ1 : A−1
0 f +Πφ 7→ Π∗f + Λφ, f ∈ H,φ ∈ D(Λ). (3.6)

Note that according to this definition Λ = Γ1Π and Π = (Γ1A
−1
0 )∗. In par-

ticular, for the solution operator Sz = (I − zA−1
0 )−1Π = A0(A0 − zI)−1Π we

obtain
(Sz̄)

∗ = Γ1(A0 − zI)−1 = Γ1Rz, z ∈ ρ(A0). (3.7)

Assumption 2. Operator Λ = Γ1Π is selfadjoint (and thereby densely defined).

Remark 3.4. In the sequel it is always assumed that the set {A−1
0 ,Π,Λ} satisfies

both Assumptions 1 and 2.

Theorem 3.2 (Green’s Formula).

(Au, v)H − (u,Av)H = (Γ1u,Γ0v)E − (Γ0u,Γ1v)E , u, v ∈ D .

Proof. Let u = A−1
0 f +Πφ, v = A−1

0 g+Πψ with f, g ∈ H, φ,ψ ∈ D(Λ). We have
Au = f , Av = g, and due to selfadjointness of A−1

0 and Λ,

(Au, v)H − (u,Av)H = (f,A−1
0 g +Πψ)− (A−1

0 f +Πφ, g)

= (f,Πψ)− (Πφ, g)

= (Π∗f, ψ)− (φ,Π∗g)

= (Π∗f + Λφ,ψ)− (φ,Π∗g + Λψ)

= (Γ1u,Γ0v)− (Γ0φ,Γ1v)

since both Assumptions 1 and 2 are valid. �

Introduction of the second boundary operator Γ1 and Theorem 3.2 lead to
the concept of weak solutions to the problem (3.3) defined as solutions to a certain
“variational” problem.

Definition 3.4. The weak solution of the problem (3.3) is an element wf,φ
z ∈ H

satisfying

(wf,φ
z , (A0 − z̄I)v) = (f, v) + (φ,Γ1v) for any v ∈ D(A0). (3.8)

Let us verify that this definition is consistent with the solvability statement
of Theorem 3.1. In other words, we need to show that for z ∈ ρ(A0) the vector uf,φz

from (3.4) solves the variational problem (3.8). Indeed, for uf,φz = Rzf + Szφ and
any v ∈ D(A0) we have

(uf,φz , (A0 − z̄I)v) = (Rzf, (A0 − z̄I)v) + (Szφ, (A0 − z̄I)v)

= (f, v) + (φ, (Sz)
∗(A0 − z̄I)v = (f, v) + (φ,Γ1v),

according to (3.7), and the claim is proved.
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Remark 3.5. The notion of weak solution suggests that the applicability of rep-
resentation (3.4) is wider than that described in Theorem 3.1. Firstly, rewrite the
right-hand side of 3.8 as

(f, v)H + (φ,Γ1v)E = (A−1
0 f,A0v) + (φ,Π∗A0v) = (A−1

0 f +Πφ,A0v). (3.9)
Recall now that R(A0) = H. Therefore the concept of weak solutions can be
extended to the case when f and φ are chosen from spaces wider than H and E
as long as the sum A−1

0 f +Πφ belongs to H. As an illustration consider a simple
example when f and φ are such that both summands on the left side of (3.9) are
finite. Let H− ⊃ H and E− ⊃ E be Hilbert spaces obtained by completion of
H and E with respect to norms ‖f‖− = ‖A−1

0 f‖H and ‖φ‖− = ‖Πφ‖H , where
f ∈ H, φ ∈ E, correspondingly. Since both Ker(A−1

0 ) and Ker(Π) are trivial, these
norms are non-degenerate. For each v ∈ D(A0) the usual estimates hold

|(f, v)| ≤ ‖A−1
0 f‖ · ‖A0v‖ = ‖f‖− · ‖A0v‖

|(φ,Γ1v)| = |(φ,Γ1A−1
0 A0v)| = |(Πφ,A0v)| ≤ ‖Πφ‖ · ‖A0v‖ = ‖φ‖− · ‖A0v‖.

Thus the right-hand side of (3.9) is finite for any v ∈ D(A0) so that A−1
0 f+Πφ ∈ H

as long as f ∈ H− and φ ∈ E−. It follows that the vector uf,φz = Rzf+Szφ defined
for z ∈ ρ(A0) by the formula (3.4) is the weak solution of (3.3) with f ∈ H−,
φ ∈ E−.

Introduce the notion of M-function (M-operator) as follows.

Definition 3.5. Operator-valued function M(z) defined on the domain D(Λ) for
z ∈ ρ(A0) by the formula

M(z)φ = Γ1Szφ = Γ1(I − zA−1
0 )−1Πφ

is called the M-function of the problem (3.3).

Theorem 3.3. 1. The representation is valid
M(z) = Λ + zΠ∗(I − zA−1

0 )−1Π, z ∈ ρ(A0). (3.10)
2. For each φ ∈ D(Λ) the vector function M(z)φ, z ∈ ρ(A0) with values in E

is analytic for.
3. For z, ζ ∈ ρ(A0) the operator M(z)−M(ζ) is bounded and

M(z)−M(ζ) = (z − ζ)(Sz̄)
∗Sζ .

In particular, ImM(z) = (Im z)(Sz̄)
∗Sz and (M(z))∗ =M(z̄) where ImM(·)

denotes the imaginary part of operator M(·).
4. For uz ∈ Ker(A− zI) ∩ D = Ker(A− zI) ∩ { D(A0)+̇ΠD(Λ)} the following

formula holds:
M(z)Γ0uz = Γ1uz. (3.11)

Proof. (1) The claim follows from the identities Λ = Γ1Π, Π∗ = Γ1A
−1
0 , the ele-

mentary computation
(I − zA−1

0 )−1 = I + z(A0 − zI)−1 = I + zA−1
0 (I − zA−1

0 )−1, z ∈ ρ(A0)
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and the definition M(z) = Γ1(I − zA−1
0 )−1Π.

(2) As the term zΠ∗(I − zA−1
0 )−1Π is a bounded analytic operator-function

of z ∈ ρ(A0) the statement is a consequence of the representation obtained in (1).
(3) We have

M(z)−M(ζ) = Π∗ [z(I − zA−1
0 )−1 − ζ(I − ζA−1

0 )−1
]
Π

= Π∗(I − zA−1
0 )−1

[
z(I − ζA−1

0 )− ζ(I − zA−1
0 )

]
(I − ζA−1

0 )−1Π

= (z − ζ)Π∗(I − zA−1
0 )−1(I − ζA−1

0 )−1Π = (z − ζ) (Sz̄)
∗
Sζ .

The equality (M(z))∗ =M(z̄) is valid due to selfadjointness of Λ.
(4) Any vector uz ∈ Ker(A − zI) is uniquely represented in the form uz =

SzΓ0uz. In the case uz ∈ D either side belongs to D(Γ1). Therefore, Γ1uz =
Γ1SzΓ0uz =M(z)Γ0uz. �

Remark 3.6. Results of [22] suggest an alternative approach to build the frame-
work described in this section. As an illustration of this possibility, and in order
to explain relationships between [22] and the present paper, let us derive the
representation (3.10) for Weyl function M(z) within the scope of [22]. The key
component here is the Example 6.6 of [22]. Using notations of this example, sub-
stitution of D = A−1

0 , B = Π, and E = −Λ yields the following form of boundary
relation Γ : H ⊕H → E ⊕ E

Γ =

{(
f

A−1
0 f +Πφ

)
,

(
φ

−Λφ−Π∗f

)}
, f ∈ H, φ ∈ D(Λ).

Formula (3.6) of [22] splits Γ into two boundary mappings, Γ̂0 and Γ̂1

Γ̂0 =

{(
f

A−1
0 f +Πφ

)
,

(
φ

0

)}
, Γ̂1 =

{(
f

A−1
0 f +Πφ

)
,

(
0

−Λφ−Π∗f

)}
where f ∈ H, φ ∈ D(Λ). Note that the mapping Γ̂0 can be extended to the subset
{f,A−1

0 f + Πφ} with f ∈ H, φ ∈ E. Comparison to expressions (3.2) and (3.6)
for operators Γ0 and Γ1 clarifies relationships between {Γ̂0, Γ̂1} and {Γ0,Γ1}. More
precisely, for f ∈ H, φ ∈ D(Λ)

Γ̂0 =

{(
f

A−1
0 f +Πφ

)
,

(
Γ0

(
A−1

0 f +Πφ
)

0

)}
,

Γ̂1 =

{(
f

A−1
0 f +Πφ

)
,

(
0

−Γ1
(
A−1

0 f +Πφ
))} .

Weyl family M̂(z) corresponding to Γ is the relation

M̂(λ) =
{
φ̂ ∈ E ⊕ E | {f̂λ, φ̂} ∈ Γ for some f̂λ = {f, λf} ∈ H ⊕H

}
(see [22, Definition 3.3]). For any element f̂λ = {f, λf} ∈ H ⊕ H the condi-
tion {f̂λ, φ̂} ∈ Γ implies f̂λ ∈ D(Γ), which leads to the equation λf = A−1

0 f +Πφ
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for vectors f and φ. It follows that f = (λI − A−1
0 )−1Πφ at least for Im (λ) 6= 0.

If this equality holds, then the relation Γ takes the form

Γ =

{(
f

λf

)
,

(
φ

−Λφ−Π∗(λI −A−1
0 )−1Πφ

)}
, f ∈ H, φ ∈ D(Λ),

and therefore the Weyl family is the relation defined for φ ∈ D(Λ) as

M̂(λ) =
{
φ,−(Λ + Π∗(λI −A−1

0 )−1Π)φ
}
.

Additionally, decomposition of Γ into two boundary mappings Γ̂0 and Γ̂1 yields

Γ̂0 =

{(
f

λf

)
,

(
φ

0

)}
, Γ̂1 =

{(
f

λf

)
,

(
0

−(Λ + Π∗(λI −A−1
0 )−1Π)φ

)}
,

and therefore Γ̂1f̂λ = M̂(λ)Γ̂0f̂λ for any f̂λ = {f, λf} ∈ D(Γ) (cf. [22, Eq. (3.7)]
and (3.11) above).

Finally, the relation M̂(λ) is the graph of a linear operator in E (also denoted
M̂(λ)) with the domain D(Λ) and M(z) = −M̂(1/z), Im (z) 6= 0 where M(z) is
the M-function (3.10) of boundary value problem (3.3).

4. Boundary Conditions
This section explores other types of boundary value problems for the operator A
and boundary mappings Γ0, Γ1 introduced in Sect. 3. The problems under consider-
ation are defined in terms of certain linear “boundary conditions.” More precisely,
given two linear operators β0, β1 acting in the space E we are formally looking for
solutions to the equation (A − zI)u = f satisfying condition (β0Γ0 + β1Γ1)u = φ
where f ∈ H, φ ∈ E, and z ∈ C. The exact meaning of this problem statement
and the solvability theorem are the main results of this section. Definitions and
some properties of associated M -functions are also briefly reviewed.

Everywhere below β0, β1 are two linear operators in E such that β0 is defined
on the domain D(β0) ⊃ D(Λ) and β1 is defined everywhere on E and bounded.
Consider the following spectral boundary value problem for w ∈ H associated with
the set {A−1

0 ,Π,Λ} and the pair (β0, β1){
(A− zI)w = f,

(β0Γ0 + β1Γ1)w = φ,
f ∈ H,φ ∈ E, (4.1)

where z ∈ C plays the role of a spectral parameter.
The first goal in the study of (4.1) is clarification of the equality (β0Γ0 +

β1Γ1)w = φ. Having this objective in mind, observe that the sum β0Γ0 + β1Γ1 is
defined at least on SzD(Λ) for z ∈ ρ(A0) and

(β0Γ0 + β1Γ1)Szφ = (β0 + β1M(z))φ, φ ∈ D(Λ), (4.2)
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according to the properties of Sz and definition of M(z). Rewrite the right-hand
side using the representation M(z) = Λ + zΠ∗(I − zA−1

0 )−1Π in the form
(β0Γ0 + β1Γ1)Szφ = (β0 + β1Λ)φ+ zΠ∗(I − zA−1

0 )−1Πφ, φ ∈ D(Λ). (4.3)
The second term on the right is bounded for z ∈ ρ(A0), thus the mapping prop-
erties of the sum β0Γ0 + β1Γ1 as an operator from H into E are fully determined
by the map β0 + β1Λ. The following closability condition is assumed to be always
satisfied.

Assumption 3. The operator β0 + β1Λ defined on D(Λ) is closable in E. Let
B = β0 + β1Λ be its closure.

Remark 4.1. It follows from (4.2) and (4.3) that under this assumption all op-
erators β0 + β1M(z) are also closable for z ∈ ρ(A0) and the domain of their
closures coincides with D(B). Equality (4.3) therefore can be extended to the set
φ ∈ D(B). However, the operator sum β0Γ0 + β1Γ1 needs not be closed on the
linear set {Szφ | φ ∈ D(B)} and in general cannot be treated as a sum of two
separate operators, β0Γ0 and β1Γ1.

Definition 4.1. Let HB be the linear set of elements
HB =

{
A−1

0 f +Πφ | f ∈ H,φ ∈ D(B)
}
.

Notice that since D(Λ) ⊆ D(B) ⊆ E, the inclusions D ⊆ HB ⊆ D(A) hold,
where D = {A−1

0 f +Πφ | f ∈ H,φ ∈ D(Λ)}, as defined in Sect. 3.
The set HB can be turned into a (closed) Hilbert space by introducing a

certain non-degenerate metric. Then the map β0Γ0+β1Γ1 is bounded as an operator
from HB into E. More precise result is given by the following Lemma.

Lemma 4.1. The set HB is a Hilbert space with the norm

‖u‖B =
(
‖f‖2H + ‖φ‖2E + ‖Bφ‖2

)1/2
.

The operator β0Γ0 + β1Γ1 : HB → E is bounded.

Proof. The proof is based on the density of D(Λ) in the domain D(B) equipped
with the graph norm of operator B, which in turn implies density of D in HB in
the norm ‖ · ‖B.

Let {un}∞n=1 ⊂ D be a Cauchy sequence in the norm of HB, that is ‖un −
um‖B → 0 as n,m→ ∞. Each vector un is represented as the sum un = A−1

0 fn +
Πφn with uniquely defined fn ∈ H, φn ∈ D(Λ). We have
‖un − um‖2B = ‖fn − fm‖2 + ‖φn − φm‖2 + ‖B(φn − φm)‖2 → 0 as n,m→ ∞.

The first summand here tends to zero, and therefore fn → f0 ∈ H for some
f0 ∈ H as n → ∞. The sum of second and third terms is the norm of φn − φm

in the graph norm of B. Because operator B defined on D(Λ) is closable, there
exists a vector φ0 ∈ D(B) such that φn → φ0 as n → ∞. The limit of the
sequence {un}∞n=1 therefore is represented in the form A−1

0 f0+Πφ0 where f0 ∈ H
and φ0 ∈ D(B). Hence HB is closed in the norm ‖ · ‖B.
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The second statement follows directly from the norm estimate for elements
of D . When f ∈ H and φ ∈ D(Λ), the sum u = A−1

0 f + Πφ belongs to the
set D(Γ0) ∩ D(Γ1) and

(β0Γ0 + β1Γ1)u = β1Γ1A
−1
0 f + (β0Γ0 + β1Γ1)Πφ

= β1Π
∗f + (β0 + β1Λ)φ = β1Π

∗f + Bφ.

Because operator β1Π∗ is bounded, the following estimates hold
‖(β0Γ0 + β1Γ1)u‖ ≤ C‖u‖B, u = A−1

0 f +Πφ, f ∈ H, φ ∈ D(Λ).

The set {A−1
0 f + Πφ | f ∈ H,φ ∈ D(Λ)} is dense in HB; hence the operator

β0Γ0 + β1Γ1 is bounded as a mapping from HB into E. �

Remark 4.2. The symbol β0Γ0 + β1Γ1 will be used for the extension of operator
of Lemma 4.1 to the space HB, although two terms in the sum (β0Γ0 + β1Γ1)u
need not exist separately for an arbitrary u ∈ HB.

Taking Lemma 4.1 into consideration, we shall look for solutions of the prob-
lem (4.1) that belong to HB.

Theorem 4.1. Suppose z ∈ ρ(A0) is such that the closed operator β0 + β1M(z)
defined on D(B) is boundedly invertible in the space E. Then the problem (4.1) is
uniquely solvable and the solution wf,φ

z ∈ HB is given by the formula
wf,φ

z = (A0 − zI)−1f + (I − zA−1
0 )−1ΠΨf,φ

z (4.4)
where Ψf,φ

z is a vector from D(B)

Ψf,φ
z = (β0 + β1M(z))−1(φ− β1Π

∗(I − zA−1
0 )−1f). (4.5)

Remark 4.3. According to this theorem the problem (4.1) is reduced to the
problem (3.3) with φ replaced by the vector Ψf,φ

z defined in (4.5). This obser-
vation makes the concept of weak solutions applicable to the problem (4.1), see
Definition 3.4 and Remark 3.5.

The proof of Theorem 4.1 is given at the end of this section.
In order to discuss the notion of M-operators associated with the boundary

value problem (4.1) define the corresponding M-operators as follows. The solu-
tion wφ

z := w0,φ
z is obtained in the closed form by putting f = 0 in (4.1) and

(4.4):

wφ
z = (I − zA−1

0 )−1Π(β0 + β1M(z))−1φ = Sz(β0 + β1M(z))−1φ

Vector wφ
z belongs to the domain of Γ0 for any φ ∈ E and

Γ0w
φ
z = (β0 + β1M(z))−1φ

Hence the operator (β0 + β1M(z))−1 could be termed “(β0β1)-to-(I, 0) map.” The
notation “(I, 0)” reflects equalities β0 = I, β1 = 0 that correspond to the condi-
tion Γ0w = 0 in (4.1). At the same time the inclusion wφ

z ∈ D(Γ1) needs not be
valid for an arbitrary φ ∈ E. However, if there exists a set of φ ∈ E such that
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vectors (β0 + β1M(z))−1φ lie in D(Λ), similar arguments lead to the definition
of (β0β1)-to-(0, I) map M(z)(β0 + β1M(z))−1 that may be unbounded and even
non-densely defined as an operator in E.

This argumentation is easily extendable to the definition of M-operators as
(β0β1)-to-(α0α1)-maps, where α0, α1 is another pair of “boundary operators” from
the boundary condition (α0Γ0 + α1Γ1)u = ψ. Such a map is formally given by the
“linear-fractional transformation with operator coefficients”

(α0 + α1M(z))(β0 + β1M(z))−1.

The precise meaning of this formula needs to be clarified in each particular case
at hand. Operator transformations of this kind (with z-dependent coefficients) are
typical in the systems theory where M-functions are realized as transfer functions
of linear systems, see [73, 77]. For the cases when Ker(β0 + β1M(z)) 6= {0} relevant
results are given by the boundary triplets approach in [21, 23, 25] in terms of linear
boundary relations in Hilbert and Krein spaces.

The section concludes with the proof of Theorem 4.1.

Proof. As clarified in Remark 4.1 and Remark 4.3, operators β0 + β1M(z) are
closed on D(B) simultaneously for all z ∈ ρ(A0) and in accordance with Theo-
rem 3.1 the vector wf,φ

z from (4.4), (4.5) is a solution to the system (3.3) with φ
replaced by Ψf,φ

z . In particular, Theorem 3.1 implies that Γ0w
f,φ
z = Ψf,φ

z and the
solution wf,φ

z ∈ Ker(A− zI) is unique.
Assume the vector Ψf,φ

z defined by (4.5) belongs to D(Λ) so that wf,φ
z ∈

D(Γ1). Then
Γ1w

f,φ
z = Γ1(A0−zI)−1f+Γ1(I−zA−1

0 )−1ΠΨf,φ
z = Π∗(I−zA−1

0 )−1f+M(z)Ψf,φ
z .

Therefore
(β0Γ0 + β1Γ1)w

f,φ
z = (β0 + β1M(z))Ψf,φ

z + β1Π
∗(I − zA−1

0 )−1f

= φ− β1Π
∗(I − zA−1

0 )−1f + β1Π
∗(I − zA−1

0 )−1f = φ.

Hence both equations (4.1) are satisfied if Ψf,φ
z ∈ D(Λ).

In the general case when Ψf,φ
z ∈ D(B) the vector wf,φ

z from (4.4) belongs to
HB and therefore the expression (β0Γ0 + β1Γ1)w

f,φ
z is well defined in accordance

with Lemma 4.1. We need only show that it is equal to φ, as required by the
second equation in (4.1). Consider the sequence Ψn ∈ D(Λ), n = 0, 1, . . . such
that Ψn → Ψf,φ

z in the graph norm of operator B. Then vectors wn ∈ D defined
by (4.4) with Ψf,φ

z replaced by Ψn converge to wf,φ
z in the metric of HB as n→ ∞.

Due to the boundedness of expression (β0Γ0 + β1Γ1) as an operator from HB to
E,

lim
n→∞

(β0Γ0 + β1Γ1)wn = (β0Γ0 + β1Γ1)w
f,φ
z . (4.6)

From the other side,
(β0Γ0 + β1Γ1)wn = (β0Γ0 + β1Γ1)[(A0 − zI)−1f + (I − zA−1

0 )−1ΠΨn]

= β0Ψn + β1Γ1(A0 − zI)−1f + β1M(z)Ψn.
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Since β0Ψn + β1M(z)Ψn → (β0 + β1M(z))Ψf,φ
z as n→ ∞, we see that

lim
n→∞

(β0Γ0 + β1Γ1)wn = (β0 + β1M(z))Ψf,φ
z + β1Γ1(A0 − zI)−1f.

Direct substitution of Ψf,φ
z from (4.5) yields (β0Γ0 + β1Γ1)wn → φ as n → ∞. In

accordance with (4.6), the equality (β0Γ0 + β1Γ1)w
f,φ
z = φ follows. �

5. Linear Operators of Boundary Value Problems
Let A00 be the minimal operator defined as a restriction of A to the set of ele-
ments u ∈ D satisfying conditions Γ0u = Γ1u = 0. This section is concerned with
extensions of A00 to operators corresponding to “boundary conditions” of the form
(β0Γ0 + β1Γ1)u = 0. These operators are first defined via their resolvents given by
a version of Krein’s resolvent formula [44, 48]. More conventional definitions via
boundary conditions are provided in terms of extensions of A00. The groundwork
for the study is laid down in Theorem 4.1.
Definition 5.1. Let A00 be the restriction of A0 to the linear set

D(A00) = Ker(Γ0) ∩Ker(Γ1) = D(A0) ∩Ker(Γ1),

that is, A00 = A
∣∣
D(A00)

. We call A00 the minimal operator.

The next characterization of D(A00) is more universal since it does not involve
the map Γ1. Recall that Ker(A) = R(Π) by definition of A.
Remark 5.1. The domain D(A00) is described as follows

D(A00) = {u ∈ D(A0) | A0u ⊥ R(Π)} = A−1
0

(
R(Π)⊥

)
where R(Π)⊥ is the orthogonal complement to the range of Π. The range of A00

is closed in H and coincides with the subspace R(Π)⊥ = H 	Ker(A).
Proof. Indeed, if u ∈ D(A0) then u = A−1

0 f with some f ∈ H. The condition
Γ1u = 0 means that Γ1A

−1
0 f = 0, or f ∈ Ker(Π∗) (since Γ1A

−1
0 = Π∗), which is

equivalent to f ⊥ R(Π). The second statement holds because A00A
−1
0 R(Π)⊥ =

R(Π)⊥ = H 	KerA. �
Remark 5.2. The equality D(A00) = A−1

0 R(Π)⊥ shows in particular that the
operator A00 does not depend on any given choice of Λ. Moreover, A00 is symmetric
but need not be densely defined. The operator A0 is a selfadjoint extension of A00

contained in A.
Relations (4.5) and (4.4) offer a rather natural way to define the resolvent

of an operator associated with the “boundary condition” (β0Γ0 + β1Γ1)u = 0. By
putting φ = 0 and inserting (4.5) into (4.4) a suitable candidate for the role of
resolvent is obtained:

Rβ0,β1
(z)

= (A0 − zI)−1 − (I − zA−1
0 )−1Π(β0 + β1M(z))−1β1Π

∗(I − zA−1
0 )−1. (5.1)
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As will be shown, the operator function (5.1) is indeed the resolvent of some
closed linear operator Aβ0,β1 in H whose domain D(Aβ0,β1) coincides with the set
Ker(β0Γ0 + β1Γ1). Assuming the conditions of Theorem 4.1 are satisfied, denote

Qβ0,β1
(z) = −(β0 + β1M(z))−1β1.

The operator-function Qβ0,β1
(z) is analytic and bounded as long as z ∈ ρ(A0)

satisfies conditions of Theorem 4.1. The expression (5.1) for Rβ0,β1
(z) takes the

form
Rβ0,β1

(z) = Rz + SzQβ0,β1
(z)S ∗

z̄ (5.2)
where Rz = (A0 − zI)−1 is the resolvent of A0 and Sz = (I − zA−1

0 )−1Π is the
solution operator. For simplicity, the indices in Qβ0,β1

will be omitted and the
notation Q(z) will be used for Qβ0,β1

(z) when it does not lead to confusion. An
important analytical property of Q(z) is formulated in the next lemma.
Lemma 5.1. For z, ζ ∈ ρ(A0) satisfying assumptions of Theorem 4.1 the following
equality holds:

Q(z)−Q(ζ) = (z − ζ)Q(z)S ∗
z̄ SζQ(ζ).

Proof. By virtue of formula (3) from Theorem 3.3, we have for φ ∈ D(Λ)

(z − ζ)β1S
∗
z̄ Sζφ

= β1 [M(z)−M(ζ)]φ

= (β0 + β1M(z))φ− (β0 + β1M(ζ))φ

= (β0 + β1M(z))
[
(β0 + β1M(ζ))−1 − (β0 + β1M(z))−1

]
(β0 + β1M(ζ))φ.

Therefore
(z − ζ)Q(z)S ∗

z̄ SζQ(ζ) =
[
(β0 + β1M(ζ))−1 − (β0 + β1M(z))−1

]
β1

= Q(z)−Q(ζ),

as stated. �
The main theorem of this section reads as follows.

Theorem 5.1. Assume z ∈ ρ(A0) is such that the closed operator β0 + β1M(z)
defined on D(B) is boundedly invertible in the space E. Then the operator func-
tion Rβ0,β1

(z) defined by (5.1) is the resolvent of a closed densely defined opera-
tor Aβ0,β1

in H. For Aβ0,β1
the inclusions are valid
A00 ⊂ Aβ0,β1

⊂ A, (5.3)
The domain of Aβ0,β1

satisfies
D(Aβ0,β1) = {u ∈ HB | (β0Γ0 + β1Γ1)u = 0} = Ker(β0Γ0 + β1Γ1). (5.4)

In addition,
Γ0(Aβ0,β1

− zI)−1 = Q(z)Γ1(A0 − zI)−1 (5.5)
and the resolvent identity holds:

(Aβ0,β1
− zI)−1 − (A0 − zI)−1 =

[
Γ1(A0 − z̄I)−1

]∗
Γ0(Aβ0,β1

− zI)−1. (5.6)
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Proof. Operator function R(z) = Rβ0,β1
(z) is bounded and analytic for suitable

z ∈ C. To show that R(z) is a resolvent, we need to check three conditions [40].
They are: (1) Ker(R(z)) = {0}, (2) R(R(z)) is dense in H, and (3) the function
R(z) satisfies the first resolvent equation

R(z)− R(ζ) = (z − ζ)R(z)R(ζ). (5.7)

The equality Ker(R(z)) = {0} follows directly from the last statement of Theo-
rem 3.1. The same argument applied to [R(z)]∗ in conjunction with boundedness
of Q(z) and equality Ker([R(z)]∗) = H 	R(R(z)) shows that the range of R(z)
is dense in H.

We shall verify the resolvent identity for R(·) written in simplified nota-
tion (5.2):

R(z)R(ζ) =
(
Rz + SzQ(z)S ∗

z̄

)
×

(
Rζ + SζQ(ζ)S ∗

ζ̄

)
= RzRζ +RzSζQ(ζ)S ∗

ζ̄ + SzQ(z)S ∗
z̄ Rζ + SzQ(z)S ∗

z̄ SζQ(ζ)S ∗
ζ̄ .

Multiplying by (z − ζ) and noticing that Rz − Rζ = (z − ζ)RzRζ due to the
resolvent identity for A0, the identity (5.7) is rewritten as

SzQ(z)S ∗
z̄ − SζQ(ζ)S ∗

ζ̄ = (z − ζ)
[
RzSζQ(ζ)S ∗

ζ̄ + SzQ(z)S ∗
z̄ Rζ

]
+ (z − ζ)SzQ(z)S ∗

z̄ SζQ(ζ)S ∗
ζ̄ .

By virtue of (3.5), its adjoint, and Lemma 5.1 the right-hand side of this equality
is

(Sz − Sζ)Q(ζ)S ∗
ζ̄ + SzQ(z)(S ∗

z̄ − S ∗
ζ̄ ) + Sz(Q(z)−Q(ζ))S ∗

ζ̄ ,

which coincides with the left-hand side. The existence of a closed densely defined
operator Aβ0,β1

with the resolvent (Aβ0,β1
− zI)−1 defined by (5.1) thereby is

proven.
Turning to the proof of (5.3), notice that in accordance with (5.2) the range

of (Aβ0,β1
− zI)−1 is contained in D(A) and since Szf ∈ Ker(A− zI) for f ∈ H,

(A− zI)(Aβ0,β1 − zI)−1f = (A− zI) (Rz + SzQ(z)S ∗
z̄ ) f = (A− zI)Rzf = f.

Hence Ag = Aβ0,β1g for g ∈ D(Aβ0,β1), which means Aβ0,β1 ⊂ A.
To prove the inclusion D(Aβ0,β1

) ⊂ Ker(β0Γ0 + β1Γ1) in (5.4) note that, as
follows from (4.5) with φ = 0, the vector wf

z = (Aβ0,β1
− zI)−1f is represented as

(Aβ0,β1
− zI)−1f = Rzf + SzΨ

f
z for each element f ∈ H, where Ψf

z = Q(z)S ∗
z̄ f ∈

D(B). Therefore wf
z ∈ HB and (β0Γ0 + β1Γ1)w

f
z = 0 by Theorem 4.1 with φ = 0.

Hence D(Aβ0,β1
) in included into Ker(β0Γ0 + β1Γ1).

In order to prove the inverse inclusion first consider u ∈ D in the form u =
Rzf +Szφ ∈ Ker(β0Γ0+β1Γ1) with f ∈ H and φ ∈ D(Λ). Then u ∈ D(Γ0)∩D(Γ1)
and the operator sum β0Γ0 + β1Γ1 can be calculated for the element u termwise,
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i. e. (β0Γ0 + β1Γ1)u = β0Γ0u+ β1Γ1u,

(β0Γ0 + β1Γ1)u = (β0Γ0 + β1Γ1)(Rzf + Szφ)

= β0Γ0Szφ+ β1Γ1(A0 − zI)−1f + β1Γ1Szφ

= β1Π
∗(I − zA−1

0 )−1f + (β0 + β1M(z))φ.

(5.8)

If u ∈ Ker(β0Γ0 + β1Γ1), the left hand side of (5.8) equals zero, so that

φ = −(β0 + β1M(z))−1β1Π
∗(I − zA−1

0 )−1f = Qβ0,β1(z)S
∗
z̄f,

by virtue of invertibility of β0+β1M(z). Thus, vector u = Rzf +Szφ due to (5.2)
is

u = (Rz + SzQβ0,β1(z)S
∗
z̄ )f = Rβ0,β1(z)f.

Since Rβ0,β1
(z) is the resolvent ofAβ0,β1

, we have u ∈ D(Aβ0,β1
).

Consider now the general case of element v = Rzf + Szφ ∈ HB, f ∈ H,
φ ∈ D(B) so that v /∈ D and the operator sum β0Γ0 + β1Γ1 calculated on v
cannot be computed termwise. Since the set D is dense in the Hilbert space HB,
see Definition 4.1 and Lemma 4.1, there exists a sequence vn = Rzfn + Szφn

with fn ∈ H and φn ∈ D(Λ) converging to v in HB as n → ∞. It means in
particular that φn → φ and (β0 + β1M(z))φn → (β0 + β1M(z))φ for n → ∞.
Because β0Γ0 + β1Γ1 is bounded as an operator from HB to E by virtue of
Lemma 4.1, we have

(β0Γ0 + β1Γ1)vn → (β0Γ0 + β1Γ1)v, n→ ∞. (5.9)

Expression for (β0Γ0 + β1Γ1)vn follows from (5.8)

(β0Γ0 + β1Γ1)vn = β1Π
∗(I − zA−1

0 )−1fn + (β0 + β1M(z))φn.

Because of the boundedness of β1Π∗(I − zA−1
0 )−1 and closability of β0 + β1M(z)

this leads to

(β0Γ0 + β1Γ1)vn → β1Π
∗(I − zA−1

0 )−1f + (β0 + β1M(z))φ, n→ ∞.

Comparison with (5.9) gives

(β0Γ0 + β1Γ1)v = β1Π
∗(I − zA−1

0 )−1f + (β0 + β1M(z))φ.

Therefore if v ∈ Ker(β0Γ0 + β1Γ1), then under conditions of Theorem

φ = −(β0 + β1M(z))−1β1Π
∗(I − zA−1

0 )−1f = Qβ0,β1
(z)S∗

z̄f.

Hence, v = (Rzf + SzQβ0,β1
(z)S∗

z̄ )f = Rβ0,β1
(z)f and v ∈ D(Aβ0,β1

).
To prove that A00 ⊂ Aβ0,β1 in (5.3) we need to show that any vector u

from D(A00) belongs to D(Aβ0,β1
), in other words, can be represented in the

form u = (Aβ0,β1
− zI)−1f with some f ∈ H. Suppose u ∈ D(A00) and let us
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choose f = (A00 − zI)u. Then f = (A0 − zI)u because A00 ⊂ A0 and
(Aβ0,β1

− zI)−1f = (Aβ0,β1
− zI)−1(A0 − zI)u

= (Rz + SzQ(z)S∗
z̄ ) (A0 − zI)u

= u+ SzQ(z)S∗
z̄ (A0 − zI)u

= u.

The last equality holds due to identities
S∗
z̄ (A0 − zI)u = Π∗(I − zA−1

0 )−1(A0 − zI)u = Γ1u, u ∈ D .

and Γ1u = 0 for u ∈ D(A00). All claims (5.3) and (5.4) are proven.
Finally, in the notation above the formula (5.5) is equivalent to the already

established relation Γ0w
f
z = Ψf

z . The resolvent identity (5.6) is obtained from (5.1)
by (5.5) and equality Γ1(A0 − zI)−1 = Π∗(I − zA−1

0 )−1. �
Remark 5.3. Equalities (5.1) and (5.6) are correspondingly Krein’s formula and
Hilbert resolvent identity for A0 and Aβ0,β1

.

Remark 5.4. Let β̃0 and β̃1 be two linear operators with the same proper-
ties as β0 and β1 in Theorem 5.1. A natural question arises as to whether the
boundary conditions (β̃0Γ0 + β̃1Γ1)u = 0 define the same operator as the condi-
tions (β0Γ0 + β1Γ1)u = 0 discussed in the theorem. One obvious answer is that
when β0 = Cβ̃0 and β1 = Cβ̃1 with some operator C such that Ker(C) = {0}
then the equality Aβ0,β1 = Aβ̃0,β̃1

holds because the null sets Ker(β0Γ0 + β1Γ1)

and Ker(β̃0Γ0 + β̃1Γ1) are equal. Necessary and sufficient condition follows from
the formula (5.1). Namely, the identity ΠQβ0,β1(z)Π

∗ = ΠQβ̃0,β̃1
(z)Π∗ for z in a

(non-empty) domain of the complex plane is equivalent to the identity of resol-
vents of Aβ0,β1

and Aβ̃0,β̃1
, thus to the equality Aβ0,β1

= Aβ̃0,β̃1
.

Corollary 5.1. Assume the operator B = β0 + β1Λ is boundedly invertible in E.
Then Aβ0,β1

is boundedly invertible in H,
A−1

β0,β1
= A−1

0 −Π(β0 + β1Λ)
−1β1Π

∗ = A−1
0 +ΠQ(0)Π∗,

and Q(z) has the representation
Q(z) = Q(0) + zQ(0)Π∗(I − zA−1

β0,β1
)−1ΠQ(0)

at least in a small neighborhood of z = 0.
Proof. Noting that Q(0) = −(β0 + β1Λ)

−1β1 is bounded, invertibility of Aβ0,β1

and the formula for A−1
β0,β1

follow directly from (5.1) or (5.2). Existence of Q(z) =

−(β0 + β1M(z))−1β1 for small |z| results from analyticity and invertibility of
β0 + β1M(z) at z = 0. Lemma 5.1 with ζ = 0 yields

Q(z) = Q(0) + zQ(z)S ∗
z̄ S0Q(0). (5.10)

Observe now that Q(z)S ∗
z̄ = Q(z)Γ1(A0 − zI)−1, thus according to (5.5),

Q(z)S ∗
z̄ = Γ0(Aβ0,β1

− zI)−1 = Γ0A
−1
β0,β1

(I − zA−1
β0,β1

)−1
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Formula (5.5) for z = 0 gives Γ0A
−1
β0,β1

= Q(0)Γ1A
−1
0 = Q(0)Π∗ so that

Q(z)S ∗
z̄ = Q(0)Π∗(I − zA−1

β0,β1
)−1.

In combination with S0Q(0) = ΠQ(0) the expression (5.10) yields the required
representation for Q(z). �

Corollary 5.2. Assume conditions of Corollary 5.1 are satisfied, operators β0, β1
and Λ are bounded, and β0β∗

1 is selfadjoint. Then Aβ0,β1
is selfadjoint.

Proof. Since A−1
β0,β1

− (A−1
β0,β1

)∗ = Π
[
(β0 + β1Λ)

−1β1 − β∗
1(β

∗
0 + Λβ∗

1)
−1

]
Π∗

= Π(β0 + β1Λ)
−1 [β1(β

∗
0 + Λβ∗

1)− (β0 + β1Λ)β
∗
1 ] (β

∗
0 + Λβ∗

1)
−1Π∗ = 0

under assumption β1β
∗
0 = β0β

∗
1 , the operator Aβ0,β1 is an (unbounded) inverse of

the bounded selfadjoint operator. �

A special case of operator Aβ0,β1
in Theorem 5.1 with β0 = 0, β1 = I is

of particular interest. It can be seen as an abstract analogue of the Laplacian
with Neumann boundary condition from Sect. 2. Note that in this case Q(z) =
−(M(z))−1 and Q(0) = −Λ−1.

Corollary 5.3. Suppose Λ is boundedly invertible. Then operator A1 defined as a
restriction of A to the set D(A1) = {u ∈ D | Γ1u = 0} is selfadjoint and boundedly
invertible. For z ∈ ρ(A0) ∩ ρ(A1),

(A1 − zI)−1 = (A0 − zI)−1 − (I − zA−1
0 )−1Π(M(z))−1Π∗(I − zA−1

0 )−1 (5.11)

where (M(z))−1 = Λ−1 − zΛ−1Π∗(I − zA−1
1 )−1ΠΛ−1, z ∈ ρ(A1).

Moreover, for z ∈ ρ(A0) ∩ ρ(A1),

(A1 − zI)−1 = (A0 − zI)−1 − (I − zA−1
1 )−1πM(z)π∗(I − zA−1

1 )−1, (5.12)

where π = (Γ0A
−1
1 )∗ is bounded with R(π∗) ⊂ D(Λ).

In particular, A−1
1 = A−1

0 −ΠΛ−1Π∗ = A−1
0 −πΛπ∗ where both ΠΛ−1Π∗ and

πΛπ∗ are bounded operators.

Proof. The first equality (5.11) follows directly from (5.1) and Theorem 5.1. Self-
adjointness of A1 is a consequence of representation of A−1

1 as a sum of two
bounded selfadjoint operators. Because A−1

1 is bounded, the analytic operator
function (M(z))−1 from (5.11) can be analytically continued from a neighborhood
of the origin z = 0 to all z ∈ ρ(A1). The alternative representation (5.12) is ob-
tained from (5.11) with the help of equalities (5.5) and (5.6). Boundedness of the
operator function πM(z)π∗, z ∈ ρ(A0), or equivalently of the operator πΛπ∗, is
ensured by the calculations

π∗ = Γ0A
−1
1 = Γ0(A

−1
0 −ΠΛ−1Π∗) = −Γ0ΠΛ−1Π∗ = −Λ−1Π∗,

so that Λπ∗ = −Π∗. This equality also follows from (5.5) with z = 0. �
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There exists a close relationship between analytical properties of the ope-
rator-function Qβ0,β1(z) and spectral characteristics of Aβ0,β1 . For example, pa-
pers [24, 25] report some general results obtained within the boundary triplet based
framework when β1 = I, β0 is closed, R(Γ0) = R(Γ1) = E, and therefore M(z) is
bounded. The next theorem regarding the point spectrum of Aβ0,β1

renders sim-
ilar results in the paper’s setting. Much more complicated relationships between
spectral properties of nonselfadjoint operators and their M-functions are discussed
in [15, 17].

Theorem 5.2. Assume the operator B = β0 + β1Λ is boundedly invertible. Then
for any z ∈ ρ(A0) the mapping φ 7→ Szφ establishes a one-to-one correspondence
between {φ ∈ D(B) | (β0 + β1M(z))φ = 0} and Ker(Aβ0,β1

− zI). In particular,
Ker(β0 + β1M(z)) = {0} is equivalent to Ker(Aβ0,β1

− zI) = {0} for z ∈ ρ(A0).

Proof. We start with the observation that under the theorem’s assumptions the
operator Q(0) = −B−1β1 is bounded. Hence, according to Corollary 5.1, Aβ0,β1

is boundedly invertible and A−1
β0,β1

= A−1
0 +ΠQ(0)Π∗.

Assume that (β0 + β1M(z))φ = 0 for some z ∈ ρ(A0) and φ ∈ D(B). Let
u = Szφ be the corresponding solution to the equation (A − zI)u = 0 satisfying
condition Γ0u = φ. Then

0 = (β0 + β1M(z))φ = (β0 + β1Λ)φ+ zβ1Π
∗(I − zA−1

0 )−1Πφ,

and therefore φ can be expressed in terms of u = (I − zA−1
0 )−1Πφ as follows

φ = −z(β0 + β1Λ)
−1β1Π

∗(I − zA−1
0 )−1Πφ = −zB−1β1Π

∗Szφ = zQ(0)Π∗u

Owing to identity (I − zA−1
0 )−1 = I + zA−1

0 (I − zA−1
0 )−1 we obtain

u = (I − zA−1
0 )−1Πφ

= Πφ+ zA−1
0 (I − zA−1

0 )−1Πφ

= Πφ+ zA−1
0 Szφ

= zΠQ(0)Π∗u+ zA−1
0 u = z(A−1

0 +ΠQ(0)Π∗)u

= zA−1
β0,β1

u.

It means inclusion u ∈ D(Aβ0,β1). It follows that (Aβ0,β1 − zI)u = (A− zI)u = 0
since Aβ0,β1 ⊂ A.

Suppose now that u ∈ Ker(Aβ0,β1
−zI) and denote φ = Γ0u ∈ E. Then u has

the form u = (I− zA−1
0 )−1Πφ because Aβ0,β1

⊂ A and therefore u ∈ Ker(A− zI).
We need to show that φ belongs to the domain of B = β0 + β1Λ and Bφ =
−zβ1Π∗u. The equality (Aβ0,β1

− zI)u = 0 implies (I − zA−1
β0,β1

)u = 0. Hence
u = zA−1

β0,β1
u = z

(
A−1

0 +ΠQ(0)Π∗)u. Application of Γ0 to both sides yields
φ = Γ0u = zQ(0)Π∗u. Recall now that Q(0) = −(β0 + β1Λ)

−1β1 = −B−1β1 and
the required identity Bφ = −zβ1Π∗u follows. �
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The rest of this section is devoted to the special case of operators Aβ0,β1

inspired by the Birman–Krein–Vishik theory of extensions of positive symmetric
operators [11, 44, 85]. Only a simplified version of this theory is considered as-
suming that the extension parameter (operator B below) is densely defined and
boundedly invertible in the space R(Π). For the general case of the Birman–
Krein–Vishik theory the reader is referred, apart from the original publications
cited above, to the work [35] for the exhaustive treatment and to the paper [6] for
an overview.

Denote H := R(Π) = Ker(A). Recall that according to Remark 5.1 the
orthogonal complement of H is the subspace H⊥ = H 	Ker(A) = R(A00). Let B
be a closed densely defined operator in H such that D(B) ⊃ ΠD(Λ). Consider the
restriction LB of A to the set

D(LB) =
{
A−1

0 (f⊥ +Bh) + h | f⊥ ∈ H⊥, h ∈ ΠD(Λ)
}
.

Since LB ⊂ A by definition, we have

LB : A−1
0 (f⊥ +Bh) + h 7→ f⊥ +Bh, f⊥ ∈ H⊥, h ∈ ΠD(Λ). (5.13)

Clearly, A00 ⊂ LB because D(A00) = A−1
0 H⊥ ⊂ D(LB). We would like to show

that LB is closed and LB = Aβ0,β1 for some β0, β1. To simplify the matter,
additional conditions of the boundedness and invertibility of Π∗BΠ are imposed
in the following theorem.

Theorem 5.3. Suppose the set BΠD(Λ) is dense in H and the operator Π∗BΠ is
bounded and boundedly invertible in E. Then the inverse L−1

B exists and

L−1
B = A−1

0 +Π(Π∗BΠ)−1Π∗. (5.14)

Moreover, LB = Aβ0,β1
with β1 = −IE and β0 = Λ + Π∗BΠ. In particular, if the

function

MB(z) = ΛB + zΠ∗(I − zA−1
0 )−1Π, with ΛB = −Π∗BΠ,

is boundedly invertible for some z ∈ ρ(A0), then z ∈ ρ(LB) and

(LB − zI)−1 = (A0 − zI)−1 − (I − zA−1
0 )−1ΠM−1

B (z)Π∗(I − zA−1
0 )−1.

Proof. Formula (5.14) is verified by direct computations.
Assuming u = A−1

0 (f⊥ +BΠφ)+Πφ with f⊥ ∈ H⊥ = Ker(Π∗) and φ ∈ D(Λ), we
have (

A−1
0 +Π(Π∗BΠ)−1Π∗)LBu =

(
A−1

0 +Π(Π∗BΠ)−1Π∗) (f⊥ +BΠφ)

= A−1
0 (f⊥ +BΠφ) + Π(Π∗BΠ)−1Π∗BΠφ

= A−1
0 (f⊥ +BΠφ) + Πφ

= u

From the other side, consider f ∈ H in the form f = f⊥ + BΠφ with f⊥ ∈ H ⊥,
φ ∈ D(Λ). By assumptions the set of such vectors f is dense in the space H.
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Analogously, for the right-hand side of (5.14)(
A−1

0 +Π(Π∗BΠ)−1Π∗) f =
(
A−1

0 +Π(Π∗BΠ)−1Π∗) (f⊥ +BΠφ) = u

where u = A−1
0 (f⊥ + BΠφ) + Πφ. Application of LB defined in (5.13) to both

sides gives the desired result (here h = Πφ):
LB

(
A−1

0 +Π(Π∗BΠ)−1Π∗) f = LB

(
A−1

0 (f⊥ +BΠφ) + Πφ
)

= f⊥ +BΠφ

= f.

The formula L−1
B = A−1

0 + Π(Π∗BΠ)−1Π∗ now follows from the usual density
arguments.

Considering operator-function Q(z) = Qβ0,β1
(z) with β0 = Λ + Π∗BΠ and

β1 = −I,
Q(z) = −(β0 + β1M(z))−1β1 = (Λ + Π∗BΠ−M(z))−1 = −(MB(z))

−1.

Since Q(0) = −(MB(0))
−1 = −Λ−1

B = (ΠBΠ∗)−1 is bounded by assumption,
operators Qβ0,β1

(z) exist and are bounded at least for small |z|. According to
Theorem 5.1 and representation (5.1) (see Corollary 5.1) the inverse (Aβ0,β1)

−1 is
bounded and

(Aβ0,β1
)−1 = A−1

0 +ΠQ(0)Π∗ = A−1
0 −ΠΛ−1

B Π∗ = A−1
0 +Π(Π∗BΠ)−1Π∗,

which coincides with L−1
B . The last assertion again follows from Theorem 5.1. �

Simple corollaries of Theorem 5.3 and definition of LB are given below. Their
consequences will not be pursued here, see [71, 73] for further details.

Remark 5.5. Statements of Theorem 5.3 can be used to describe dependence of
M-operator on the particular choice of Λ in Definition 3.3 of boundary operator
Γ1. Obviously, if B = B∗ and the operator Γ1 is defined with Λ replaced by ΛB ,
i.e., as Γ1 : A−1

0 f+Πφ 7→ Π∗f+ΛBφ for f ∈ H, φ ∈ D(Λ), then all results remain
valid with LB playing the role of operator A1 with MB(z) being the M-function.

Remark 5.6. The equality Λ = ΛB is only possible if
Γ1(I +A−1

0 B)Πφ = 0, φ ∈ D(Λ)

by virtue of representations Λ = Γ1Π and ΛB = −Π∗BΠ = −Γ1A
−1
0 BΠ. It does not

follow that the solution to this equation is B = −A0. In fact, this equality contra-
dicts the assumption D(B) ⊃ ΠD(Λ) about operator B since D(A0)∩R(Π) = {0}.
When B is such that Λ = ΛB then LB and A1 coincide due to Corollary 5.3 (or
the equalities β1 = −I, β0 = 0 that follow from Theorem 5.3).

Remark 5.7. The operator AK corresponding to B = 0 is an analogue of Krein’s
extension of A00 characterized by the boundary condition (Γ1−ΛΓ0)u = 0 see [6, 35,
36, 44]. Note that the semiboundedness of A00 is not required for this definition
of Krein’s extension (cf. [38]). The formal equality B = ∞ corresponds to the
operator LB = A0.
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6. Cayley Transform of M-function. Applications to the
scattering theory

This section outlines basic results on the scattering theory for operators corre-
sponding to boundary conditions studied in the previous section. In order to in-
vestigate selfadjoint and nonselfadjoint cases simultaneously the schema based on
the functional model for linear operators suggested by S. Naboko in papers [60, 61]
is proposed. The central ingredient of this schema is a dissipative operator whose
B. Sz.-Nagy and C. Foias functional model [62] serves as the model space for all
operators under consideration. Papers [60, 61] are devoted to the case of additive
perturbations of a selfadjoint operator and offer an explicit form for the “model”
dissipative operator used in the study. The crucial element of the approach is avail-
ability of a certain factorization of the perturbation which allows the subsequent
model construction. These assumptions regarding perturbations render the schema
of [60, 61] not applicable to linear operators associated with boundary value prob-
lems because they can not be represented as additive perturbations of one another.
The obvious way to circumvent this difficulty, at least in case of elliptic boundary
value problems, is to investigate inverse operators instead of the “direct” ones [12].
Since the inverses are bounded, their differences are well defined bounded opera-
tors, and the method of [60, 61] is fully applicable provided the “model” dissipative
operator is suitably chosen. This chapter suggests such an operator based on con-
siderations involving the Cayley transform of M-function. In addition, the required
factorizations turn out to be direct consequences of formulas of previous section,
see especially Corollary 5.1. Necessary connections to the theory of dissipative
operators and functional models are established by the relationship between the
M-function and the so-called characteristic function of a “minimal” symmetric op-
erator discussed in papers [24, 42, 43, 79] in other contexts. The exposition in this
section is carried out in the spirit of nonselfadjoint operator theory and concludes
with a brief sketch illustrating the proposed approach in Remark 6.3.

It is convenient to begin with the following observation. Since values of M(z),
z ∈ C+ are (possibly unbounded) operators with positive imaginary part, operators
M(z)+ iI are boundedly invertible for z ∈ C+. Moreover, a short argument shows
that the Cayley transform of M(z) defined as Θ(z) = (M(z) − iI)(M(z) + iI)−1

is analytic and contractive for z ∈ C+. It turns out that Θ(z) for z ∈ C+ is the
characteristic function of some dissipative operator L in the sense of A. Štraus [78].
This fact was first observed in [42, 43, 79] for the characteristic function of Cayley
transform of A00 extended by the null map on [R(A00+iI)]

⊥ to the partial isometry
defined everywhere in H, and then reformulated in the setting of boundary triplets
(under assumptions R(Γ0) = R(Γ1) = E and M(z) bounded) for the characteristic
function of respective dissipative operator in [24]. The following Theorem renders
these results in the form convenient for the discussion of nonselfadjoint scattering
theory at the end of this section. Note that boundedness of M(z) below is not
required.
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Theorem 6.1. Operator L defined by the boundary condition (Γ1 − iΓ0)u = 0
according to the Theorem 5.1 with β0 = −iI, β1 = I is dissipative and boundedly
invertible. The inverse of L is the operator T = A−1

0 −Π(Λ− iI)−1Π∗. For z ∈ C+

the characteristic function of L is given by the formula:

Θ(z) = (Λ− iI)(Λ + iI)−1 + 2iz(Λ + iI)−1Π∗(I − zT ∗)−1Π(Λ + iI)−1.

For z ∈ C+ this function coincides with the Cayley transform of M(z),

Θ(z) = (M(z)− iI)(M(z) + iI)−1, z ∈ C+.

Before turning to the proof, let us recall the definition of characteristic func-
tion of L according to [78]. This definition is equivalent to the definition given by
M. Livšic [50] and independently by B. Sz.-Nagy and C. Foias [62] and has been
proven more convenient in practical applications.

Following [78], introduce a sesquilinear form Ψ(·, ·) defined on the domain
D(L)×D(L):

Ψ(u, v) =
1

2i
[(Lu, v)H − (u, Lv)H ], u, v ∈ D(L),

and a linear set G(L) =
{
v ∈ D(L) | Ψ(u, v) = 0,∀v ∈ D(L)

}
. Define the linear

space L(L) as a closure of the quotient space D(L)/G(L) endowed with the inner
product [ξ, η]L = Ψ(f, g), where ξ, η ∈ L(L) and u ∈ ξ, v ∈ η. Obviously, L(L) =
{0} if L is symmetric. A boundary space for the operator L is any linear space L
which is isomorphic to L(L). A boundary operator for the operator L is the linear
map Γ with the domain D(L) and the range in the boundary space L such that

[Γu,Γv]L = Ψ(u, v), u, v ∈ D(L).

Let L′ with the inner product [·, ·]′ be a boundary space for −L∗ with the boundary
operator Γ′ mapping D(L∗) onto L′. A characteristic function of the operator L
is an operator-valued function θ defined on the set ρ(L∗) whose values θ(z) map
L into L′ according to the equality

θ(z)Γu = Γ′(L∗ − zI)−1(L− zI)u, u ∈ D(L).

Since the right-hand side of this formula is analytic with regard to z ∈ ρ(L∗), the
function θ is analytic on ρ(L∗).

This construction needs to be applied to the operator L from Theorem 6.1
defined by the boundary condition (Γ1 − iΓ0)u = 0. To that end, notice that
β0 = −iI and β1 = I, and therefore B = β0 + β1Λ = −iI + Λ is boundedly
invertible as Λ = Λ∗. The operator function Q(z) = −(β0 + β1M(z))−1β1 has the
representation Q(z) = −(M(z)− iI)−1 and is bounded for z ∈ C−. In accordance
with Theorem 5.1 and Corollary 5.1, the inverse L−1 exists and

L−1 = A−1
0 +ΠQ(0)Π∗ = A−1

0 −Π(Λ− iI)−1Π∗.
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Denote T = L−1 and compute the imaginary part of T defined as Im (T ) =
(T − T ∗)/2i. We have

T − T ∗ = L−1 − (L−1)∗ = −Π(Λ− iI)−1Π∗ +Π(Λ + iI)−1Π∗

= Π(Λ + iI)−1 [(Λ− iI)− (Λ + iI)] (Λ− iI)−1Π∗

= −2iΠ(Λ + iI)−1(Λ− iI)−1Π∗.

Therefore

Im (T ) =
T − T ∗

2i
= −Π(Λ + iI)−1(Λ− iI)−1Π∗,

which shows that T ∗ is dissipative:

Im (T ∗) = Π(Λ + iI)−1(Λ− iI)−1Π∗ ≥ 0. (6.1)

The proof of Theorem 6.1 is based on direct computations that closely follow
the schema of A. Štraus [78].

Proof. Suppose u, v ∈ D(L) and denote Lu = f , Lv = g. Then f = Tu, g = Tv
where T = L−1 and for the form Ψ(·; ·) we have

Ψ(u, v) =
1

2i
[(Lu, v)− (u, Lv)] =

1

2i
[(f, Tg)− (Tf, g)]

=

(
T ∗ − T

2i
f, g

)
= (Im (T ∗)f, g)

= ((Λ− iI)−1Π∗f, (Λ− iI)−1Π∗g) = ((Λ− iI)−1Π∗Lu, (Λ− iI)−1Π∗Lv).

Thus, the boundary space L for L can be chosen as a closure of R((Λ− iI)−1Π∗)
with the boundary operator Γ = (Λ− iI)−1Π∗L:

L = R((Λ− iI)−1Π∗L), Γ : u 7→ (Λ− iI)−1Π∗Lu, u ∈ D(L).

Note that the metric in L is positive definite, and L is in fact a Hilbert space. Anal-
ogous computations for (−L∗) justify the following choice of boundary space L′

and boundary operator Γ′

L′ = R((Λ + iI)−1Π∗L∗), Γ′ : v 7→ (Λ + iI)−1Π∗L∗v, v ∈ D(L∗).

Here L′ is a Hilbert space.
In order to calculate the characteristic function Θ(z) of operator L corre-

sponding to this choice of boundary spaces and operators, set again u = Tf with
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f ∈ H so that f = Lu. For z ∈ ρ(L∗) we have
Γ′(L∗ − zI)−1(L− zI)u

= (Λ + iI)−1Π∗L∗(L∗ − zI)−1(L− zI)L−1f

= (Λ + iI)−1Π∗(I − zT ∗)−1(I − zT )f

= (Λ + iI)−1Π∗(I − zT ∗)−1(I − zT ∗ + z(T ∗ − T ))f

= (Λ + iI)−1Π∗ [I + 2iz(I − zT ∗)−1(Im (T ∗))
]
f

= (Λ + iI)−1Π∗ [I + 2iz(I − zT ∗)−1Π(Λ + iI)−1(Λ− iI)−1Π∗f
]

=
[
(Λ− iI)(Λ + iI)−1 + 2iz(Λ + iI)−1Π∗(I − zT ∗)−1Π(Λ + iI)−1

]
× (Λ− iI)−1Π∗f.

Since (Λ − iI)−1Π∗f = (Λ − iI)−1Π∗Lu = Γu, this formula shows that the char-
acteristic function of L coincides with the expression in brackets, that is, the
function Θ(z) from the Theorem statement.

For the verification of identity Θ = (M − iI)(M + iI)−1 write down the
adjoint of function Θ

[Θ(z̄)]
∗
= (Λ+ iI)(Λ− iI)−1 − 2iz(Λ− iI)−1Π∗(I − zT )−1Π(Λ− iI)−1, z ∈ C−.

By virtue of equality Q(0) = −(Λ− iI)−1 and Corollary 5.1,
z(Λ− iI)−1Π∗(I − zT )−1Π(Λ− iI)−1 = zQ(0)Π∗(I − zL−1)−1ΠQ(0)

= Q(z)−Q(0)

= −(M(z)− iI)−1 + (Λ− iI)−1

Therefore
[Θ(z̄)]

∗
= (Λ + iI)(Λ− iI)−1 + 2i(M(z)− iI)−1 − 2i(Λ− iI)−1

= I + 2i(M(z)− iI)−1 = (M(z) + iI)(M(z)− iI)−1.

By passing to the adjoint operators and noticing that [M(z̄)]∗ =M(z) the claimed
identity follows. �

Remark 6.1. The characteristic function of a linear operator is not determined
uniquely [13, 62, 78]. Namely, consider two isometries τ : L → L̃ and τ ′ : L′ → L̃′

of the boundary spaces L, L′ of operator L to another pair of spaces L̃, L̃′. It is easy
to see that the characteristic function of L corresponding to the pair L̃, L̃′ is the
function θ̃(z) = τ ′θ(z)τ∗. In application to the characteristic function Θ(z) above
observe that the operator U = (Λ − iI)(Λ + iI)−1 is an unitary in E. Therefore,
both functions U∗Θ(z) and Θ(z)U∗, z ∈ C+

U∗Θ(z) = I + 2iz(Λ− iI)−1Π∗(I − zT ∗)−1Π(Λ + iI)−1,

Θ(z)U∗ = I + 2iz(Λ + iI)−1Π∗(I − zT ∗)−1Π(Λ− iI)−1

are characteristic functions of L, although corresponding to alternative choices of
boundary spaces and operators.
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Remark 6.2. Direct calculations as outlined above yield the following expression
for the characteristic function ϑ(z) of dissipative operator T ∗ = (L∗)−1:

ϑ(ζ) = I + 2i(Λ + iI)−1Π∗(T − ζI)−1Π(Λ− iI)−1, ζ ∈ C+.

By virtue of (6.1) this characteristic function is given in its “standard” form, which
is consistent with the expression for characteristic function W (z) = I+2iK∗(A∗−
zI)−1K of a bounded dissipative operator A = R+ iQ with R = R∗, Q = Q∗ ≥ 0
and Q = KK∗ (or the corresponding operator node) that can be found in the
literature [13, 62]. A close relationship between ϑ(ζ) and Θ(z) is clarified by the
substitution ζ → z = 1/ζ

ϑ(1/z) = I − 2iz(Λ + iI)−1Π∗(I − zT )−1Π(Λ− iI)−1, z ∈ C−.

Comparison with the expression for the adjoint of [Θ(z̄)U∗] leads to the identity
ϑ(1/z) = U [Θ(z̄)]

∗
, z ∈ C−

where U = (Λ− iI)(Λ + iI)−1 is an unitary.

Remark 6.3. Dissipative operator T ∗ = (L−1)∗ = A−1
0 − Π(Λ + iI)−1Π∗ can be

employed for the development of scattering theory of ( in general, nonselfadjoint)
operators Lκ defined by boundary conditions (Γ1 + κΓ0)u = 0 with κ : E → E.
Assume Λ + κ is boundedly invertible. Then the inverse Tκ = (Lκ)−1 exists and
Tκ = A−1

0 − Π(Λ + κ)−1Π∗ by Corollary 5.1. The functional model construction
for additive perturbations [60] is fully applicable to A−1

0 , T ∗, Tκ, which makes
possible development of the scattering theory for A−1

0 and Tκ. Application of the
invariance principle for the function t → (1/t), t ∈ R, t 6= 0 yields existence
and completeness results for the local wave operators for the pairs (A0, L

κ), and
(Lκ , A0). The interested reader is referred to the works [60, 61, 69, 72] for further
details on the functional model of nonselfadjoint operators and its applications to
the scattering theory.

7. Singular Perturbations
The schema developed in preceding sections is essentially axiomatic. The only
condition imposed on the set {A−1

0 ,Π,Λ} is the validity of two Assumptions from
Sect. 3, whereas nothing specific is requested of the “boundary”. Due to this fact,
our approach is applicable in situations not readily covered by the traditional
boundary problems technique. For instance, it makes possible a construction of
“boundary value problem” when no boundary is given a priori. Introduction of an
artificial boundary is a certain form of perturbation that is not “regular” in the
traditional sense. Such “singular” perturbations are typical in the open systems
theory where they are identified with the open channels connecting the system
with its environment [51]. From this point of view, the selfadjoint operator A0

acting in the “inner space” H describes the “unperturbed system” coupled with
the “external space“ E by means of the “channel” operator Π : E → H. The
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“coupling” takes place at the “boundary”. More details on connections to the open
systems theory can be found in [73].

This section offers an illustration of these ideas by means of an elementary
example considered previously within the framework of boundary triples in [70].
We study the physical model of a quantum particle in the potential field of finite
number of singular interactions modeled by Dirac’s δ-functions. The free particle
is described by the Hamiltonian operator which in this case is the “free” Laplacian
acting in L2(R3), and the point interactions define “perturbations” of the unper-
turbed system (see [3, 4, 5] and references therein). Within the paper’s context, the
points where the interactions are situated form the “boundary” of the “boundary
value problem.”

Let H := L2(R3). Denote A0 the selfadjoint boundedly invertible operator
I−∆ in H with domain D(A0) := H2(R3). The fundamental solution to the equa-
tion ((I −∆)− zI)u = 0, z ∈ C \ [1,∞) is the square summable function Gz(x) =
1
4π

exp (i
√
z−1|x|)

|x| . Fix a finite set of distinct points xj ∈ R3, j = 1, 2, . . . , n and in-
troduce n functions Gj(x, z) := Gz(x−xj). Formally, each Gj(x, z) is the solution to
the partial differential equation ((I−∆)−zI)u = δ(x−xj). Any function Gj(x, z)
is infinitely differentiable in any domain that does not contain xj . Because of
the singularity at x → xj functions Gj(x, z) are not in D(A0). However, for any
z, ζ ∈ C \ [1,∞) the difference Gj(x, z) − Gj(x, ζ) lies in D(A0). In the follow-
ing the abridged notation Gj for Gj(x, 0) will be used. Notice that Gj are linearly
independent as elements of H = L2(R3).

Choose the space E to be the n-dimensional Euclidian E = Cn with the
orthonormal basis {ej}n1 and define the operator Π : E → H on {ej}n1 by Π :
ej 7→ Gj . It follows that Π : a 7→

∑
ajGj where a =

∑
ajej is an element

of E. Since R(Π) ∩ D(A0) = {0} and the inverse to Π is the mapping
∑
ajGj 7→

{aj}nj=1, Assumption 1 holds. Therefore we can introduce the operator A on do-
main D(A) := D(A0)+̇H, where H := R(Π) =

∨
Gj . According to the Sect. 3,

A : A−1
0 f +

∑
ajGj 7→ f , f ∈ H. The equality Ker(A) = H can be understood

literally, because (I −∆)Gj = δ(x − xj) and the right hand side is supported on
the set of zero Lebesgue measure in R3. Further, the boundary operator Γ0 defined
on D(Γ0) = D(A) acts according to the rule Γ0 : f0 +

∑
ajGj 7→ {aj}n1 , where

f0 ∈ D(A0) and {aj}n1 ∈ E. Due to identity Γ0Gj = ej we have Ker(Γ0) = D(A0).
The requirements Γ0Π = IE and ΠΓ0Gj = Gj therefore are met.

The operator Sz maps a ∈ E into a unique solution uz of the equation
(A − zI)u = 0 satisfying condition Γ0u = a. It is not difficult to see that Sz has
the form

Sz : {aj}n1 7→ uz =
∑
j

ajGj(x, z), z ∈ C±.
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Indeed, the fact Gj(x, z) ∈ Ker(A − zI) was discussed above, and the boundary
condition is verified by direct computations. For a =

∑
j ajej we have

Γ0Sza =
∑
j

ajΓ0Gj(x, z) =
∑
j

ajΓ0Gj +
∑
j

ajΓ0 (Gj(x, z)− Gj) =
∑
j

ajej = a

because Γ0Gj = I and the difference Gj(x, z) − Gj belongs to D(A0), therefore to
Ker(Γ0).

To calculate the adjoint Π∗ : H → E and choose the operator Λ in the
representation Γ1 = Π∗A + ΛΓ0 appropriately suppose a =

∑
ajej and f ∈ H.

Then (Πa, f) =
∑
aj(Gj , f) = 〈a,

∑
(f,Gj)ej〉, hence Π∗ is defined as Π∗ : f 7→∑

(f,Gj)ej . If f = A0f0 with some f0 ∈ D(A0), then Π∗Af0 = Π∗A0f0 =∑
(A0f0,Gj)ej . Summands here are easy to compute. It follows from the prop-

erties of fundamental solutions Gj that (A0f0,Gj) = f0(xj), therefore Γ1|D(A0)
=

Π∗A0 : f0 7→
∑
f0(xj)ej for f0 ∈ D(A0).

The operator Λ describing Γ1 restricted to the set R(Π) can be chosen arbi-
trarily as long as it is selfadjoint. For example, it could be taken as the identity
Λ = IE or the null operator Λ : a 7→ 0, a ∈ E. However, it is convenient to define
the action of Γ1 on R(Π) consistently with its action on D(A0). Since Γ1|D(A0)

evaluates functions f0 ∈ D(A0) at the points {xj}n1 and then builds a correspond-
ing vector {f0(xj)}n1 in E = Cn, we would like Γ1|R(Π) to act similarly. Functions
Gj(x) are easily evaluated at xs for s 6= j, but Gj is not defined at x = xj ; thus
is not possible to define Γ1 on R(Π) =

∨
Gj to be the evaluation operator. To cir-

cumvent this problem recall that in the neighborhood of xj the function Gz(x−xj)
has the following asymptotic expansion

Gz(x− xj) =
1

4π

exp (i
√
z − 1|x− xj |)
|x− xj |

∼ 1

4π

(
1

|x− xj |
+ i

√
z − 1 +O(|x− xj |)

)
.

Define the action Γ1 on the vector Gz(x− xj) as

Γ1 : Gz(x− xj) 7→
i
√
z − 1

4π
ej +

∑
s̸=j

Gz(xj − xs)es

where i
√
z−1
4π is the coefficient in the asymptotic expansion above corresponding to

|x− xj | to the power 0. In particular, for z = 0,

Γ1 : Gj 7→ − 1

4π
ej +

∑
s̸=j

Gj

∣∣
x=xs

es

where Gj

∣∣
x=xs

= Gj(xs, 0) = G0(xj − xs), s 6= j. Thus for a = {aj}n1 ∈ E,

Γ1 : Πa =
∑
j

ajGj 7→
{
− aj

1

4π
+

∑
s̸=j

asGs

∣∣
x=xj

}n

j=1

.
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The next step is the calculation of M-operator of A. Quite analogously to the
computation of Γ1Π above we have for a = {aj}n1 =

∑
j ajej ∈ E,

Γ1 :
∑
j

ajGj(x, z) 7→
{
aj
i
√
z − 1

4π
+
∑
s̸=j

as Gs(xj , z)

}n

j=1

.

Since Sza =
∑

j ajGj(x, z), this formula yields for M(z)a = Γ1Sza,

M(z)a = Γ1

(∑
j

ajGj(x, z)

)

=
1

4π

{
iaj

√
z − 1 +

∑
s̸=j

as
exp (i

√
z − 1|xj − xs|)
|xj − xs|

}n

j=1

.

Therefore the operator-function M(z) is the n× n-matrix function with elements

Mjs(z) =
1

4π

{
i
√
z − 1 , j = s,

exp (i
√
z−1 |xj−xs|)

|xj−xs| , j 6= s.

By the change of variable z 7→ z + 1 the matrix M(z + 1) can be interpreted
as the M-function of the Laplacian −∆ = A − I in L2(R3) perturbed by a set
of point interactions {δ(x − xj)}n1 . To elaborate more on this statement consider
extensions of symmetric operator A00 defined as −∆+ I on the domain
D(A00) = {u ∈ D(A0) | Γ1u = 0} =

{
u ∈ H2(R3) | u(xs) = 0, s = 1, 2, . . . , n

}
.

Suppose the operator Aβ is defined as a restriction of A to domain
D(Aβ) = {u ∈ D(A) | (β0Γ0 + β1Γ1)u = 0}

where β0, β1 are arbitrary n × n-matrices. The resolvent of Aβ is described in
Theorem 5.1. In particular, assuming that β0+β1Λ where Λ =M(0) is boundedly
invertible, the inverse of Aβ as given by Corollary 5.1 is

(Aβ)−1 = A−1
0 −Π(β0 + β1Λ)

−1β1Π
∗. (7.1)

Consider sesquilinear forms of both sides of this identity on a pair of vectors f, g ∈
H. Since R(A0) = H, vectors f and g can be represented as f = A0u, g = A0v
with some u, v ∈ D(A0). Then the form on the right is
(A−1

0 f, g)− (Π(β0 + β1Λ)
−1β1Π

∗f, g) = (A0u, v)− ((β0 + β1Λ)
−1β1Γ1u,Γ1v),

due to equalities Π∗f = Γ1A
−1
0 A0u = Γ1u and Π∗g = Γ1v. Notice that vectors Γ1u

and Γ1v are known explicitly, namely Γ1u = {u(xj)}n1 and Γ1v = {v(xj)}n1 .
In order to clarify meaning of the form ((Aβ)−1f, g) of the operator on the left

hand side of (7.1) we need to recall some basic concepts from the theory of scales
of Hilbert spaces [10]. Introduce the rigging H+ ⊂ H ⊂ H− of H constructed by
the positive boundedly invertible operator A0 = −∆+ I. The positive space H+

consists of elements from D(A0) and is equipped with the norm ‖u‖+ = ‖A0u‖H ,
u ∈ D(A0). It follows that A0 acts as an isometry from H+ onto H. The dual
space H− is identified with the Hilbert space of all antilinear functionals over
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elements from H+ with respect to the inner product in H. In the usual way,
the product (f, g)H of two vectors f, g ∈ H is naturally extended to the duality
relation between f ∈ H− and g ∈ H+. This construction allows one to consider a
continuation A+

0 of A0 from the domain D(A0) to the whole of H. The map A+
0

is defined on H by the formula (A+
0 f, v) = (f,A0v), f ∈ H, v ∈ H+ and its range

coincides with H−. The sesquilinear form of (Aβ)−1 on the left hand side of (7.1)
calculated on the pair A0u,A0v now can be written as

((Aβ)−1A0u,A0v) = (A+
0 (A

β)−1A0u, v), u, v ∈ H+.

Thus the operator A β := A+
0 (A

β)−1A0 acts from H+ into H− and its sesquilinear
form is

(A βu, v) = (u, v) + (−∆u, v) +
∑
j,k

αjku(xk)v(xj), u, v ∈ H2(R3) (7.2)

where αjk are the matrix elements of the operator −(β0 + β1Λ)
−1β1 in the ba-

sis {ej}n1 .
Formula (7.2) relates ideas of this section to the conventional theory of point

interactions. It is easily seen that the mapping Lβ = A+
0 (A

β)−1A0 is formally
represented as −∆+ I +α(· , δ⃗) δ⃗ where δ⃗ = {δ(x−xj)}n1 and α is the matrix α =
‖αjk‖. Non-diagonal elements of α describe pairwise interactions between points
{xj} themselves (the so called “non-local model” [46]), whereas the standard case
of n mutually independent point interactions is recovered from (7.2) when the
matrix α is diagonal. Under assumption β0β∗

1 = β1β
∗
0 the operator Aβ is selfadjoint

according to Corollary 5.2. Finally, Theorem 5.2 reduces the question of point
spectrum of Aβ to the study of det(β0 + β1M(z)), where M(z) is the M-function
discussed above. The point spectrum in the case β1 = I and the matrix β0 diagonal
was investigated in the work [82].

Notice in conclusion that considerations of this section suggest a consistent
way to construct singular perturbations of differential operators by “potentials”
supported by sets of Lebesgue measure zero in Rn, cf. [3].
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