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Not chaos-like together crush'd aridbruis'd,
But, as the world, harmoniously conflls'd:

lVh ere order in variety we see,
And where, though all things differ. all agree.

-Alexander Pope, 1713
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To the Student

This is a book for life science students who are willing to use calculus. This is also
a book for physical scie nce and eng ineering students who are willing to think about
cells. I believe that in the future every srudent in both groups will need to know the
essential core of the others' knowledge.

In the past few years, I have attended many conferences and seminars. Increas
ingly, I have found myself surrounded not only by physicists, biologists, chemist s, and
engineers. but also by physicians, mathematicians, and entrepreneurs. These peop le
come togeth er to learn from one anot her, and the traditional academ ic distinctions
between their fields are becoming increasingly irrelevant to this exciting work. I want
to share some of their excitement with you.

I began to wonder how this diverse group managed to overcome the Tower-of
Babel syndrome. Slowly I began to realize that, even though each discipline carr ies
its immense load of experim ental and theoretical detail, still the headwaters of these
rivers are manageable. and come from a common spring, a handful of simple, general
ideas. Armed with these few ideas, I found that one can understand an enormous
amount of front line research. This book explores these first common ideas, ruthlessly
suppressing the mo re specialized ones for later.

I also realized that my own undergraduate education had po stponed the intro
duction of many of the basic ideas to the last year of my degree (or even later) and
tha t many programs still have this character: We meticu lously build a sophisticated
mathematica l edifice before introducing many of the Big Ideas. My colleagues and I
became convinced that this approach did not serve the needs of our students. Many
of our undergraduate students start research in their very first year and need the big
picture early. Many others create interdisciplinary programs for them selves and may
never even get to our specialized, advanced courses. In this book, I hop e to make
the big picture accessible to any student who has taken first-year physics and cal
culus (plus a smatter ing of high school chemistry and biology), and who is willing
to stretch. When you're don e, you should be in a position to read current work in
Science and Nature. You won 't get every detail, of course. But you will get the sweep.

When we began to offer this course, we were surprised to find that many of ou r
graduate students wanted to take it, too. In part this reflected their own compart
mentalized education: The physics students wanted to read the bio logy part and see
it integrated with their other knowledge; the biology students wanted the reverse. To
our amazement, we found that the course became popular with students at all levels
from sophomore to third-year graduate, with the latter digging more deeply into the
details. Accordingly, many sections in this book have "Track-S" addenda addressing
this more mathemati cally experienced group.

xv



I xvi To the Student

Physical science versus life science At the dawn of the twentieth century, it was al
ready clear that , chemically speaking, you and I are not much different from cans of
soup. And yet we can do many complex and even fun thin gs we do not usually see
cans of so up doing. At that time, peopl e had very few co rrect ideas abo ut how living
organisms create order from food , do wo rk, and even compute things-just a lot of
inappropriate metaphors draw n from the technology of the day.

By mid-centu ry, it began to be clear that the answers to many of these quest ion s
would be found in the study of very big molecules. Now, as we begin the twenty-fi rst
century, ironically, the situation is inverted: The problem is now that we have way too
much information abo ut those molecules! We are drowni ng in infor mation ; we need
an armature, a framework, on which to organize all thos e zillions of facts.

Some life scientists dismi ss physics as 'reductionist', tending to strip away all
the details that make frogs different from , say, neutron stars. Ot hers believe th at
right now so me uni fying framework is esse ntial to see the big picture. I think that
the tension between the develo pmental/histo rical/complex sciences and the univer
sallahistoricallreductionist ones has been enormously fruitful and that the future be
longs to those who can switch fluidly between bo th kinds of bra ins.

Setti ng aside philosophy, it's a fact that the past decade or two has seen a revolu
tion in physical techniques to get inside the nanoworld of cells, tweak them in phys
ical ways, and measure qu antitatively the results. At last, a lot o f physical ideas lying
behind the car toons found in cell biology book s are gett ing th e precise tests needed
to confirm or reject them. At the same time. even some mechanism s not necessarily
used by Nature have proved to be of immense techn ological value.

Why all the math?

I said it in Hebrew, I said it in Dutch,
I said it itl German and Greek;

BlIt I wholly forgot (and it vexes lIle much )
That English is what yOIl speak!

- Lewis Carroll, The Hunting of the Snark

Life science stud ents may wonder whether all the mathematical formulas in this bo ok
are really needed. This book's premi se is that the way to be sure that a theory is cor
rect is to make quant itative prediction s from a simplified model. then test those pre
dictions experimentally. The following chapters supply many of the tools to do th is.
Ultimately, I want you to be able to walk into a room with an un fam iliar problem,
pull out the right tool, and solve the problem. I realize this is not easy, at first.

Actually, it's true that physicists some times overdo the mathem atical analysis.
In contrast. the po int of view in this book is that beautiful formulas are usually a
means, not an end , in our attempts to und erstand Nature. Usually on ly the simplest
too ls, like dimension al analysis, suffice to see what's going on . Only when yo u've been
a very good scie ntist. do yo u get the reward of carrying out some really elaborate
mathematical calculation and seei ng yo ur predictions come to life in an experiment.



To the Student xvii

Your other physics and math courses will give you the background you'll need for
that.

Features of tllis book I have tried to adhere to some principles while writing the
book. Most of these areboring and technical, but there are four that are worth point
ing ou t here:

1. When possible, relate the ideas to everyday phenomena.

2. Say what's goingOil . Instead of just giving a list of steps, I have tried to explain why
we are taking these steps, and how we might have guessed that a step would prove
fruitful. This exploratory (or discovery-style) appro ach involves more words than
you may be used to in physics texts. The goal is to help you make the difficult
transition to choosingyour own steps.

3. No black boxes. The dreaded phrase "it can be shown" hardly ever appears in
Track- I. Almost all mathem atical results menti oned are actually derived here, or
taken to the point where you can get them yourself as homework prob lems. When
I cou ld not obtain a result in a discussion at this level, I usually omitted it alto
gether.

4. No fake data. When you see an object that looks like a graph, almost always it
really is a graph. That is, the point s are somebody's actual laboratory data, usually
with a citation. The curves aresome actual mathematical function, usually derived
in the text (or in a homework problem). Graphlike sketches are clearly labeled as
such. In fact, every figure carries a pedantic little tag giving its logical status, so
you can tell which are actual data. which are reconstructions, and which are an
artist's sketches.

Real data are generally not as pretty as fake data. You need the real thing in order
to develop your critical skills. For one thing, some simple theories don't work as
well as you might believe just from listening to lectures. On the other hand , some
unimpressive-looking fits of theory to experiment actually do support strong con
clusions; you need practice looking for the relevant features.

Many chapters contain a section titled "Excursion." These sections lie outside
the main story line. Some are short articles by leading experimentalists about experi
ments they did. Othersarehistorical or cultural essays. There arealso two appendices.
Please take a moment now to check them. They include a list of all the symbols used
in the text to represent physical quantities, definitions of all the units, and numerical
values for many physical quant ities, some of them useful in working the problems.

Why the history? This is not a history book, and yet you will find many ancient
results discussed. (Many people take "ancient" to mean "before Internet," but in this
book I use the more classical definition "before television.") The old stuff is not there
just to give the patina of scholarship. Rather, a recurring theme of the book is the
way in which physical measurements have often disclosed the existence and nature
of molecular devices in cells long before traditional biochemical assays nailed down
their precise identities. The historical passages document case studies where this has
happened; in some cases, the gap has been measured in decades!



xviii To th e Student

Even tod ay. with our immensely sophisticated armamentum of molecular bi
ology, the traditi onal knock-out-the-gene-and-see-what-kind-of-mouse-you-get ex
perim ental strategy can be mu ch slower and more d ifficult to perform and interpret
than a more direct, reach -in-and-grab-it approach. In fact, the menu of ingenious
new tools for applying physical stresses to functioning cells or their constit uents (all
the way down to the single-mo lecule level) and quan titativety measuring their re
sponses has grow n rapidly in the last decade, giving unprecedented opportunities for
ind irectly deduci ng what must be happen ing at the molecular level. Scientists who
can integrate the lessons of bot h the biochem ical and biophysical approaches will
be the first ones to see the whole picture. Knowing how it has worked in the past
prepares you for your turn.

Learning tlris subject If your previous background in physical science is a first-year
undergraduate course in physics or chemistr y, this boo k will have a very di fferent feel
from the texts you've read so far. This subject is rapidly evolving; my presentation
won' t have that autho ritat ive, stone-tablets feeling of a fixed, established subject, nor
should it. Instead, I offer you the excitement of a field in flux, a field where you per
sonally can make new contr ibut ions without first hacking through a ju ngle ofexisting
formalism for a decade.

If your previou s background is in life sciences, you may be accustomed to a writ
ing style in which facts are delivered to you. But in this book, man y of th e assertions.
and most of the formulas, are supposed to follow from the previou s ones, in ways you
can and must check. In fact. you will noti ce the words we. us.our. let's throughout the
text. Usually in scientific writing. these words are just pompous ways of saying I, me,
my , and watch me;but in th is boo k, they refer to a team consisting ofyou and me. You
need to figure o ut which statements arc new information and which are deductions,
and work out the latt er ones. Sometimes, I have flagged especially important logical
steps as "Your Turn" quest ions. Most of these are sho rt enough that you can do them
on the spot before proceeding. It is essential to work these out yourself in order to get
the skill you need in constructing new physical arguments.

Each time the text introduces a formula, take a moment to look at it and think
abo ut its reasonableness. If it says x = yz]w, does it make sense that increasing w
sho uld decrease x? How do the units work out? At first, I'll walk you through these
steps; but from then on , you need to do them automatically. When you find me us
ing an unfamiliar mat hem atical idea, please talk to your instructor as soon as possi
ble instead of just bleepin g over it. Ano the r helpfu l resource is the book by Shankar
(Shankar, 1995).'

Beyond the questions in the text, you will find pro blem s at the ends of the chap
ters. They are not as straightforward as they were in first-year physics; often you will
need some common sense, some seat-of-the-pants qualitative judgment, even some
advice from your instructor to get off to the right start. Most students are uncomfort
able with thi s approach at first-it's not just youl-but in the end this skill is going to
be on e of the most valuable ones yo u' ll ever learn, no matter what you do later in life.

' See the Bibliograph y at the back of this book.
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It's a high-technology world out there, and it will be your oyster when you develop
the agility to solve open-ended, quantitative problems.

The problems also get harder as you go on in the text , so do the early ones even
if they seem easy.

IT2 1 Some sections and problems are flagged with this symbol. These are For

Mature Audiences Only. Of co urse, I say it that way to make you want to read them,
whether or not your instructor assigns them. These Track-2 sections take the math
ematical development a bit further. They forge links to what you are learn ing/will
learn in other physics courses. They also advertise some of the cited research liter
ature. The main (Track- I) text does not rely on these sections; it is self-contained.
Even Track-2 readers should skip the Track-2 sections on the first readin g.

Many students find this course to be a stiff challenge. The physics students have
to digest a lot of biological terminology; the biology students have to bru sh up on
their math. It's not easy, but it's worth the effort : Interdisciplinary subjects like this
one are among the most exci ting and fertile. I've noticed that the happi est studen ts
are the ones who team up to work together with ano ther student from a different
background and do the problems together, teaching each other things. Give it a try.
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A few years ago, my depart ment asked their undergraduate students what they
needed but were not gett ing from us. One of the answers was, «a course on biological
physics." Our students could not help noti cing all the exciting articles in The New
York Times, all the cover articles in Physics Today, and so on; they wanted a piece of
the action. Th is book emerged from their request.

Around the same tim e, ma ny of my friends at other un iversities were begin
nin g to work in th is field and were keenly interested in teaching a course, bu t they
felt uncomfortable with the existin g texts. Some were brilliant but decades old; no ne
seemed to cover the beau tiful new results in molecular mo tor s, self-assembly, and
single-molecule man ipu lat ion and ima ging that were revolutioni zing the field. My
friends and I were also dau nted by the vastness of the literatu re and our own limited
penetration of the field ; we needed a synthesis. This book is my attempt to answer
that need.

The book also serves to introduce muc h of the conceptual material underlying
the young fields ofnanotechn ology and soft materials. It's not surprising- the molec
ular and supram olecular machi nes in each of our cells are the inspiration for mu ch of
nanotechnology, and the polymers and membranes from which they are construc ted
are the inspiration for mu ch of soft-materials science.

This text was int end ed for use with a wildly diverse audience. It is based on a
course I have taught to a single class conta ining students majoring in physics, biol
ogy, biochemistr y, biophysics, mate rials science, and chemical, mechanica l, and bio
engineering. I hope the book will prove useful as a main or adjunct text for courses
in any science or engineering department. My students also vary widely in experi
ence , from sop homo res to thi rd-year graduate students. You may not want to try
such a broa d group. but it works at Penn. To reach them all, the course is divided into
two sections; the graduate section has harder and more mat hematically sop histicated
problems and exams. The st ructure of the boo k reflects this division, with numerou s
Track-2 sections and problems covering the more advanced material. Th ese sections

are placed at the ends of the chapters and are introduced with a special symbo l: IT21·
The Track-2 sections are largely independent of one another, so you can assign them
ala carte. I recommend that all students skip them on the first reading.

The only prerequisites for the core, Track- L material are first-year calculus and
calculus-based physics, and a distant memor y of high school chem istry and biology.
The concep ts of calculus are used freely, bu t very little of the technique; only the
very simplest d ifferen tial equations need to be solved . More impor tant, the student
needs to possess or acquire a fluency in th rowing numbers aro und, makin g estimates.
keeping track of un its, and carrying out short derivations. The Track-2 material and
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problems sho uld be appropriate for senior physics majors and first-year graduate
students . .

For a one-semester class o f less experienced students, you will probably want to
skip one or bo th of Chapters 9 and 10 (or po ssibly 11 and 12). 1'or more experienced
students, you can instead skim the opening chapters quickly, then spend extra time
on th e advanced chapters.

When teachin g this course, I also assign supplementary readings from one of
the standard cell biology texts. Cell biology inevitably conta ins a lot of nomenclature
and iconogra phy; both students and instructor must make an investme nt in learning
these. The payoff is clear and immediate: Not only does this investment allow one to
communicate wi th professionals do ing exci ting wo rk in many fields, it is also crucial
for seeing what physicalproblems are relevant to biomedical research.

[ have made a special effort to keep the terminology and notation un ified, a diffi
cult task when spanning several disciplines. App endix A summarizes all the notation
in one place. Appendix B co ntains many useful numerical values. more than are used
in the text. (You may find these data useful in making new homework and exam
problems.)

More details about how to get from this book to a full course can be found in
the Instructor's Guide, available from W. H. Freeman and Company. The Guide also
contains solutions to aU the problems and "Your Turn" questions. suggested class
demonstrations. and the computer code used to generate many of the graphs found
in the text. You can use this code to create computer-ba sed problems, do class demo s,
and so on. Errata to this book will appear at

http : / /www .whfreeman. c om/biologicalphysi c s

Why doesn't my favorite topic appear?

A garden isfinished when there is nothing left to remove.

-Zen aphorism

it 's probably one of my favorite topics, too. But the text reflects the relentless pursuit
of a few maxims:

Keep it a course, not an encyclopedia. The book corresponds to what I actually
manage to cover (that is, what the students actually manage to learn ) in a typical
42-hour semester, plus abo ut 20% more to allow flexibility.

Keep a unifi ed story line.

Maintain a balance between recent results and the im portant classica l topics.
Choose those topic s that open the most doors into physics, biology, chemistry, and
engineering .

Make practically no mention of quantum theory, which our students encounter
only after thi s course. Fortunately, a hu ge body of important biological physics
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(including the whole field of soft bioma terials) makes no use of the deep quantum
ideas.
Restrict the discussion to concrete problemswhere the physical vision leads to falsi
fiable, quantitativepredictions and wherelaboratorydata areavailable. Every chap
ter presents some real experimental data.
But choose prob lems that illuminate, and are illumin ated by, the big ideas. Students
want that- that's why they study science.

There arecertainly othertopics meeting all these criteria but not covered in this book.
I look forward to your suggestions as to which ones to add to the next edition.

Underlying the preceding points is a determination to present physical ideas as
beautiful and important in their own right. Respect for these foundational ideas has
kept me from relegating them to the curren tly fashionable ut ilitarian status of a mere
toolbag to help out with other disciplines. A few apparently dilatory topics, which
pursue the physics beyond the point (currently) needed to explain biological phe
nom ena, reflect this conviction.

Statlda rd disclaim ers This is a textbook, not a monograph. I am aware that many
subtle subjects are presented in this book with impor tant details burnished off. No
attempt has been made to sort out historical priority, except in those sections titled
"history." The experiments described here were chosen simply because they fit some
pedagogical imperative and seemed to have particularly direct interpretations. The
citation of original works is haphazard. except for my own work. which is systemat
ically not cited. No claim is made that anything in th is book is original, altho ugh at
times I just couldn't stop myself.

Is this stuff really physics? Should it be taught in a physics department ? If you've
come this far, probably you have made up your mind already. But I' ll bet you have
colleagues who ask this question . The text attem pts to show, not only that many of
the founders of molecu lar biology had physics background, but conversely that his
torically the study of life has fed crucial insights back into physics. It's true at the
pedagogical levelas well. Many students find the ideas ofstatistical physics to be most
vivid in the life science context. In fact. some students take my course after courses in
statistical physics or physical chemist ry; they tell me that it puts the pieces together
for them in a new and helpful way.

More important, I have found a group of students who are interested in studying
physics but feel turned away when their physics departments offer no connections to
the excitement in the life sciences. It's time to give them what they need.

At the same time. your life sciences colleagues may ask, "Do our students need
this much physics?" The answer is. maybe not in the past. but certainly in the future.
You r colleagues may enjoy two recent eloquent articles on this subject (Alberts, 1998;
Hopfield , 2002), and the comprehensive NRC report (National Research Council,
2003). This book tries to show that there is a quantitative, physical sciences approach
to problems, and it's versatile. It's not the only toolbox in the well-educated scientist's
mind, but it's one of the powerful ones. We need to teach it to everyone, not just
to physical science majors. I believe that the recent insularity of physics is only a
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temporary aberration; both sides can only stand to prosper by renewing their once
tight linkage.

Last I had the great good fortune to see statistical physics for the first time through
the beautiful lectures of Sam Treiman (1925- 1999). Treiman was a great scientist and
one of the spiritual leaders of a great department. From time to time, I still go back
to my notes from that course. And there he is, just as before.
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Transduction of free energy. [Drawing by Eric Sloane, from EricSloane. Diary ofan early American
boy (Funk and Wagnalls, New York, 1962).)





CHAPTER 1

What the Ancients Knew

Although thereis no direct connection between beerand the
First Law of thermodynamics, the influence ofJoule's

professional expertisein brewingtechnologyon his scientific
work is clearly discernible.

- Hans Christian von Baeyer,
Warmth disperses and time passes

The modest goal of th is book is to take you from the mid- nineteenth century, where
first-year physics courses often end, to the science headlin es you read this morning.
It's a long road. To get to OUf destination on tim e, we'll need to focus tightly on just
a few core issues involving the interplay between energy, information, and life.

We will eventua lly erect a framework, based on on ly a few principles, in which
to begin addressing these issues. It's not enough simply to enunciate a handful of
key ideas, of course. If it were, then this book could have been published on a single
wallet card. The pleasure, the depth, the craft of our subject lie in the details of how
living organisms work out the solutions to their challenges within the framework of
physical law. The aim of the book is to show you a few of these details.

Each chapter of this boo k opens with a biological question, and a terse slogan
encapsulating a physical idea relevant to the question. Think about these as you read
the chapter.
Biological question: How can living organisms be so highly ordered?
Physical idea: The flow of energy can leave beh ind increased order.

1.1 HEAT

Living organisms eat, grow, reproduce, and compute. They do these things in ways
that appear totally different from man-made machines. One key difference involves
the role of temperature. For example, if you chill your vacuum cleaner, or even your
television, to a degree above freezing, these appliances continue to work fine. But try
this with a grasshopper, or even a bacterium, and you find that life processes practi
cally stop. (After all, that's why you own a freezer in the first place.) Unde rstanding the
interplay of heat and work willbecome a central obsession of this book. This chapter
will develop some plausible but preliminary ideas about this interplay; Part 11 of the
book will sharpen these ideas into precise,quantitative tools.

3



( 1.1)

4 Chapte r 1 Wh at the Ancie nts Knew

1.1 .1 Heat is a form o f energy

Whe n a rock of mass 111 falls freely. its altit ude z and veloci ty v change togeth er in ju st
suc h a way as to ensure that the quant ity E = mgz + ~ mv2 stays constant, where g is
the acceleration of gravity at Earth's surface.

Example: Show this.
Solut ion : We need to show that the time derivative ~ equals O. Taking v to be the

velocit y in the upward direction i, we have v = ~ . Applying the cha in rule from

calculus then gives ~ = mu(g + ~). But the accelerati on, ~. is always eq ual to -g

in free fall. Hence. ~ = 0 throughout the motion: Th e energy is a constant.

Go ttfr ied Leib nit z obtained this result in 1693. We call the first ter m of E (that
is. mgz) the potentia l energy of the rock, and the second term ( i mv2) its kinetic
ene rgy. We'll call their sum the mechanical energy of the rock. We express the
con stancy of E by saying th at "energy is conserved."

Now suppose our rock lands in some mud at z = O. The instant before it lands,
its kin etic energy is nonzero, so E is nonzero, too. An instant later, the rock is at rest in
the mud and its total mechanical energy is zero. Apparently, mechanical energy is not
conserved in the presence of mud! Every first-year ph ysics stude nt learns why: A mys
teriou s "frictional" effect in the m ud d rain ed off the mechanical energy of the rock.
Th e genius of Isaac Newton lay in part in his realizing that the laws of motion were
best stud ied in the context of the motions of can no nba lls and planets, where compli
cations like frict iona l effects are tiny: Here the conserva tio n of ene rgy. so ap pare ntly
false on Earth, is mo st clearly seen . It took another two centuries before others would
ar rive at a precise statement of the more subtle idea tha t

Friction converts m echanical energy into therm al form. Wh en ther
mal energy is properly accounted for, the energy accounts balance.

Th at is, the actua l conserved qu an tity is not th e mechanical ene rgy, but th e total
ene rgy, the sum of the mechanical energy plus heat.

But wha t is friction? What is heat? On a practical level, if energy is conserved.
if it cannot be created o r destroyed. the n why m ust we be careful not to "waste" it?
Indeed, wha t could "was te" mean ? We' ll need to look a bit more deeply before we
really un de rstand Idea i . i . '

Idea 1.1 says that friction is no t a process of energy loss bu t rather of ene rgy
conversion. just as the fall of a rock co nver ts potenti al to kinetic energy. You may
have seen an illustrat ion ofene rgy conversion in a grammar school exercise exploring .l{
the pathways that could take energy from the Sun and convert it to useful work, for
example, a trip up a hill (Figure I. I ).

A po int your schoolteache r may not have men tioned is that, in princip le. all
the energy conversions in Figure 1.1 are two-way: Light from the Sun can generate
electr icity in a solar cell, that energy can be part ially conver ted back to light with a

"Throughout this book, the references Equation 1I.m, Idea /1.111, and Reaction 11.1n all refer to a single
sequence of num bered items. Thus Equation 1.2 comes after Idea 1.1; there is no Idea 1.2.
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Figu re 1.1: (Diagram.) Various ways to get up a hill. Each arrow represents an energy-conversion process.

light bu lb, and so on . The key word here is partially. We never get all the orig inal
energy back in th is way: Some is lost as heat, in both the solar cell and the light bulb .
The word lost doesn't imply that energy disappears, but rather that some of it makes a
one-way conversion to heat. 0 '.r

The same idea holds for the falling rock. We could let it down on a pulley, taking
some of its gravitational potential energy to run a la\vniilt),~er. But if we just let it
plop into the mud , its mechani cal energy is lost. Nobody has ever seen a rock sitting
in warm mud suddenly fly up into space, leaving cold mud beh ind, even though such
a process is perfectly compatible with the conservation of energy! l./

So, even though energy is strictly conserved, somethinghas been wasted when we
let the rock plop. To make a scientific theory of th is something, we'd like to find an
independent, measurable quantity describing the "quality" or "usefulness"of energy;
then we could assert that sunlight, or the potential energy of a rock, has high qual
ity, whereas therm al energy (heat) has poo r quality. We could also try to argue that
the quality of energy always degrades in any transaction , and thus explain why the
conversions indicated byarrows in Figure 1.1 are so much easier than those moving
against the arrows. Before doi ng these things. though . it's wo rthwhile to recall how
the ancients arrived at Idea 1.1.
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1.1 .2 Just a little histo ry
k.

Physicists like a tidy world with as few irreducib le concepts as possible. If mechanical
energy can be converted to thermal energy, and (par tially) reconverted back again,
and the sum of these forms of energyis always constant, then it's attractive to suppose
that in some sense these two forms of energy are really the same thing. But we can't
build scientific theories on eestbetic, culturally dependent judgments-Nature cares

~ ( -~-P' ., -" .J.....

little for OUf prejudices. and other eras have haddifferent prejudices. Instead. we must
"..;'.--

p-Pranchor Idea Li on some firmer ground.
An example may help to underscore this point. Weremember Benjamin Franklin

as the great scientist who developed a theory of electricity as an invisible fluid.
FrankJin proposed that a positively charged body had "too much" of this fluid' and a
negative body "too little." When such bodies were placed in contact, the fluid flowed
from one to the other, much like joining a cylinder of compressed air to a balloon
and opening the valve. What's less well~emembered is that Franklin, and most of his
~c~ntempora ries ) had a similar vision of heat. In this view, heat also was an invisible
fluid. Hot bodies had "too much;' cold bodies "too little." When one placed such
bodies in contact, the fluid flowed until the fluid was under the same "pressure" in
each-or in other words, until both were at the same temperature.

The fluid theory of heat made some fUPerficial sense. A large body would need
more heat fluid to increase its temperature by one degree than would a small body,
just as a large balloon needs more air than does a small one to increase its internal
pressure to, say. 1.1 times atmospheric pressure. Nevertheless. today we believe that
Franklin's theory of electricity was exactly correct. but the fluid theory ofheat was dead
wrong. How did this change in attitudes come about?

Franklin's contemporary Benjamin Thompson was also intrigued by the prob
lem of heat. After leaving the American colonies in a hurry in 1775 (he was a spy for
the British), Thompson eventually became a major general in the court of the Duke
of Bavaria. In the course of his duties, Thompson arranged for the manufacture of
weapons. A curious phenomenon in the boring (drilling) of cannon barrels aroused
his cur iosity. Drilling takes a lot ofwork, at that time supplied by horses. It also gener
ates a lot of frictional heat. Ifh eat were a fluid, one might expect that rubbing would
transfer some of it from one body to another.just as brushing your cat leaves cat and
bru sh with opposite electrical charges. But the drill bit doesn't grow cold while the
cannon barrel becomes hot! Bothbecome hot.

Moreover, the fluid theory of heat seems to imply that eventually the cannon
barrel would become depleted of heat fluid and that no more heat could be gener
ated by additi onal friction. This is not what Thom pson observed. One barrel could
generate enough heat to boil a surrounding bath of water. The bath could be replaced
by cool water, which would also eventually boil, ad infinit um. A fresh cannon barrel
proved neither better nor worse at heating water than one that had already boiled
many liters. Thompson also weighed the metal chips cut out of the barrel and found

"Pranklin's convention for the sign of charge was unfortunate. Today we know that the main carriers of
charge-electrons-each carry a negative quantity of charge in his co nventio n. Thus, it's more accurate to
say that a positively charged body has too few electrons, and a negatively charged body too many.
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their mass plus that of the bar rel to be equal to the origina l mass of the barrel: No
material substance had been lost.

Wha t Thom pson no ticed instead was that heat production f rom fr iction ceases
the moment we stop doing mechanical work on the system. This was a suggestive ob
servation . But later work, presented independently in 1847 by James Joul e and Her
mann von Helmholtz, went mu ch fur ther. Joul e and Helmholt z upgraded Thomp
son's qualitative observatio n to a quan tita tive law: The heat produced by fricti on is a
constant times the mechanical work done against that friction, or

(heat produced ) = (mechanical energy input) x (0.24caIfJ ). (1.2)

Let's pause to sor t out the sho rthand in th is for mula. We measure heat in calorie s:
One calorie is ro ughly th e amo unt of heat needed to warm a gram of water by one
degree Celsius.' The mechan ical energy input, or work done, is th e force applied (in
Thompson's case, by the horse), tim es th e distance (walked by the horse); we measure
it in joules just as in first -year physics. Multiplying work by the constant 0.24 cal / J
creates a quant ity with units of calories. The formula asserts that thi s quantity is the
amoun t of heat created.

Equation 1.2 sharpens Idea 1.1 into a quantitative assertion. It also succinctly
predicts the outcom es of several different kinds of experiments: It says that the horse
will boil twice as many liters of water if it walks twice as far, or walks equally far
while exerting twice the force, and so on. It thu s conta ins vastly more info rma tion
than the precise but limited stateme nt that heat ou tput stops when work input stops.
Scientists like hypoth eses that make such a sweeping web of int erlocking predi ction s,
because the success of such a hypothesis is hard to brush aside as a mere fluke. We
say that such hypotheses are highly falsifi ab le, because any on e of the many predic
tion s of Equation 1.2, if disproved experimentally, would kill the whole thing. The
fluid theo ry of heat made no comparably broad, correc t predi ctions. Indeed, as we
have seen, it does make some wrong qualitative predictions. This sor t of reasoni ng
ultimately led to the dem ise of th e fluid th eory, despite the strenuous efforts of its
powerful adherents to save it .

Suppose that we use a very dull d rill bit , so th at in one revolution we make little
progress in dri lling; tha t is, the can non barrel (and the drill itself) are not changed
very mu ch. Equation 1.2 says that th e net work do ne on the system equals th e net
heat given off. More generally,

Suppose that a system undergoes a process that leaves it in its original
state (that is, a cyclic process). Then the net of the mechanical work
done on the system, and by the system, equals the net of the heat it (1.3)
gives off and takes in, once we convert the work into calories using
Equation 1.2.

-'The modern defin ition of the calori c acknowledges the mechanical equiva lent of heat: One calorie is now
defined as the quantity of thermal energy created by convert ing exactly 4.184 J of mechanical work. (The
"Calorie" appearing on nutritional statements is actually one tho usand of the physical scient ist's calories,
or one kllocalorie.)

-



8 Cha pte r 1 What the Ancients Knew

It do esn't matt er whether the mechanical work was done by a horse. or by a co iled
spring, or even by a flywheel that was initi ally spi nning .

What about processes that do change the system und er study? In this case, we'll
need to am end Idea 1.3 to account for the energy that was sto red in (or released from )
the system. For example, the heat released when a match burns represen ts energy ini
tially stored in chemical form. A trem endous amount of nineteenth-centu ry research
by Joule and Helm holt z (a mo ng many others) convinced scientists that when every
form of energy is properly included, the acco unts balance for all the arrows in Fig
ure 1.1, and for every other thermal/mechanical/chemical process. This generalized
form of Idea 1.3 is now called the First Law of th ermodynamics.

1.1.3 Preview : The concept of free energy

This subsectio n is just a preview of ideas to be made precise later. Don't wo rry if
these ideas don't seem firm yet. The goal is to build up so me intu ition . so me expecta
tion s, abo ut the interplay of order and energy. Chapters 3- 5 w ill give many con crete
examples of this interp lay, to get us ready for the abst ract formulat ion in Chapter 6.

Th e quantitative connect ion between heat and work lent strong support to an
old idea (Newton had d iscussed it in the seventeenth century) that heat really is noth
ing but a particular form of mechanical energy, namely, the kineti c ene rgy of the in
dividual molecules constituting a body. In this view, a ho t body has a lot of energy
stored in an (imperceptible) jiggling of its (invisible) molecules. Certainly we' ll have
to work hard to justify claim s about the imperceptible and the invisible. But before
do ing this , we must deal with a more direct problem.

Equation I.2 is some times called the "mechan ical equivalent of heat." The dis
cussion in Section 1.1.1 makes it clear, however, that this phrase is a slight misnomer:
Heat is not fully equivalent to mechanica l work, beca use one cannot be fully con
verted to the ot her. Chapter 3 will explore the view that slowly emerged in the late
nineteenth cent ury, which is that thermal energy is the portion of th e total energy at
tributable to random mole cular motion (all molecules jiggling in random direction s)
and so is distin ct from the organized kinetic energy of a fallin g rock (all molecules
have the same average velocity).

Thu s, the random character of thermal mo tion mu st be th e key to its low qu ality.
In oth er words. we are propos ing that the distinction between high- and low-quality
energy is a matter of organizatio n. Everyone knows that an orderly system tends to
degrade into a disorganized, random mess. Sorting it back o ut again always see ms to
take work. bo th in the co lloq uial sense (so rting a big pile of co ins into penn ies, nick
els. and so on is a lot o f work) and in the strict sense. For example. an air conditioner
consumes elec trical energy to supp ress random molecular motion in the air of your
room; hence, it heats the outside wor ld more than it cools your room.

The idea in the preceding paragraph may be inte rest ing, but it hardly qual ifies
as a testa ble physical hypothesis. We need a quantitative meas ure of the IIseflll energy
of a system, the part of the to tal that can actually be harnessed to do useful work.
A major goal of Chapter 6 will be to find such a measure, which we will call free
energy and denote by the symbol F. But we can already see what to expect. The idea
we are consi dering is that F is less than the total energy E by an amount related to
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the randomness. or disorder, of the system. More precisely. Chapter 6 will show how
to characterize this disorder by using a quan tity called entropy and denoted by the
letter S. The free energy will turn out to be given by the simple formula

F=E- TS. (1.4)

( 1.5)

where T is the tem perature of the system. We can now state the proposal that F mea
sures the "useful" ener~y of a system a bit more clearly:

A sys tem held at a fixed tempera ture T can spontaneously drive a
process jf the net effect of the process is to redu ce the system 's free
energy F. Thus, lEthe system 's free energy is already at a minimum ,
no spontaneous change will occur.

According to Equation lA , a decrease in free energy can come about either by lower
ing the energy E (rocks tend to fall) or by increasing the entropy S (disorder tends to
increase).

We can also use Equat ion 1.4 to clarify ou r idea of the "quality" of energy: A
system's free energy is always less than its mechan ical energy. If the disorder is small,
tho ugh, so that TS is much smaller than E, then F '" E; we then say that the system's
energy content is of "high quali ty." (More precisely still, we should discuss changes of
ene rgy and ent ropy; see Section 6.5.4.)

Again, Equation 1.4 and Idea 1.5 are provision al- we haven't even defined the
quantity S yet. Nevertheless, they should at least seem reasonable. In particular, it
makes sense that the second term on the right side of Equation 1.4 should be mul
tiplied by T, because hotter systems have more thermal motion and so should be
even more strongly influenced by the tend ency to maximi ze disorder than cold ones.
Chapters 6 and 7 will make these ideas precise. Chapter 8 will extend the idea of free
energy to include chemical forms of energy; these are also of high quality.

1.2 HOW LIFE GENERATES ORDER

1.2.1 The puzzle of biological order

The ideas of the previous section have a certain intuitive appeal. When we put a drop
of ink in a glass of water, the ink eventually mixes, a process we will study in great
detail in Chapter 4. We never see an ink- water mixture spontaneously un mix. Chap
ter 6 will make th is intuition precise, formulating a principle called the Second Law
of thermo dynamics. Roughly speaking, it says that in an isolated system molecular
disorder never decreases spontaneously.

But now we are in a bit of a bind. We have just concluded that a mixture of hy
drogen, carbon, oxygen , nitrogen , phosphoru s, and traces of a few other elements,
left alone and isolated in a beaker, will never organize spontaneously to make a liv
ing organism. After all, even the lowliest bacterium is full of exquisite structure (see
Chapter 2), whereas physical systems tend relentlessly toward greater disorder. Yet the
Earth is teemi ng with life, even though long ago it was barren. How indeed does any
organism manage to remain alive. let alone create progeny, and even evolve to more
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Jl

sophisticated organisms? Stated bluntly, our puzzle is, Must we suppose that living
organisms somehow lie olltside thejurisdiction ofphysical law?

At the end of the nineteenth century, many respected scientists still answered
"yes" to this question . Their doctrine was called "vitalism." Today vitalism has go ne
the way of the fluid theory of heat, as answers to the paradox of how living things
generate order have emerged. Sketching a few of the details of these answers, along
with their precise quantitative tests, is the goal of this book. It will take so me time to
reach that goal. But we can already propose the outlines of an answe r in the language
developed so far.

It's encouraging to notice that living creatures obey at least some of the same
physical laws as inanim ate matter, even those involving heat. For example, we can
measure the heat given offby a mouse, and add the work it does on its exercise wheel
by using the conversion formula (Equation 1.2). Over the course of a few days, the
mouse doesn't change. The First Law of therm odynamics, Idea 1.3, then says that the
total energy out put must be proportional to the food intake of the mouse, and indeed
it's roughly true. (The bookkeeping can get a bit tricky-see Problem 1.7.)

Thus, living organisms don't manage to create energy from nothi ng. Still, when
we look around, it seems obvious that life is constantly generating order from noth
ing (that is, from disorder). To escape from vitalism, then, we must reconcile this
commonplace observation with the Second Law of thermodynamics.

Such a reconciliation is easier than it at first sounds. After all, a sealed jar full
of dense water vapor changes spontaneo usly into a jar with a pudd le of water at
the bottom and very little vapor. After this transformation , the inside of the jar
is more organized than before: Most of the water molecules are stuck in a very
thi n layer instead of moving freely throughout the interior of the jar. But nobody
would be tempted to believe that an unphysical, occult influence ord ered the water
molecules!

To see what is hap pening, we must recall that the Second Law app lies on ly to an
isolated system . Even though the jar with water vapor is sealed, it gave off heat to its
surroundings as the water condensed; so it's not isolated. And there is no thing para
doxical about a subsystem of the world spontaneously increasing its order. lndeed,
Section 1.1.3 proposed that a system (in this case, the contents of the jar) will tend
spontaneously to move toward lower free energy F, whic h is not necessarily the same
as moving toward higher disord er. According to our proposed formula for F (Equa
tion 1.4), the subsystem's entropy S can indeed decrease (the water can condense)
without raising F, if the internal energy E also decreases by a large enou gh amo unt
(via heat loss).

The Earth, like our jar, is not an isolated system. To see whether the increase
in the ordering of molecules on Earth as life began to develop really contradicts the
Second Law, then, we must look globally at what flows into and out of the Earth.
Figure 1.2a depicts the stream of solar energy impinging on Earth. Because Earth's
temp erature is roughly stable over the long term, all of this energy must also leave the
Earth (along with a bit of geothermal energy generated here). Some of this energy is
just reflected into space. The rest leaves when the Earth radiates it away as thermal
energy to the rest of the Universe. Thus, Earth constantly accepts energy from the
Sun, a very hot body, and exports it as radiation at its own surface temperature. On
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Figure 1.2 : (Diagram. ) (a) Energy budget of Earth's biosphere. Most of the incident high
quality energy is degraded to thermal energy and radiated into space, but some gets captured
and used to create the order we see in life. (b) What plants do with energy: High-quality so
lar energy is partly used to upgrade low-energy molecules to high-energy molecules and the
ordered structures they form; the rest is released in thermal form. (c) What animals do wi
energy: The high-quality energy in food molecules is partly used to do mechanical work and
create ordered structures; the rest is released in thermal form.

a dead rock like the Moon, this is the whole story. But , as depicted symbolically in
Figure l .zb.c, there is a more interesting possibility.

Suppose that the incoming energy is of higher "quality" than the outgoing energy
and hence represents a net flow oforder into the Earth (Chap ter 6 will sharpen this
statement ). Then we can imagine some enterpr ising middleman inserting itself in the
middle of this process and skin;;;'ingoff some of the incoming flow oforder, using it to
create more and better middlemen! Looking only at the middle layer, it would seem
as though ord er were magically increasing. That is,

The flow of energy through a system can leave behind increased order. (1.6)
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This is life's big trick. The middle zon e is our biosphere ; we are the middlemen.'
Green plants ingest a high-qua lity form of energy (sunligh t) , passing it th rough their
bodies to exit as thermal energy (Figure 1.2b). Th e plant needs some of this energy
just to resist the degradi ng tendency of thermal disorder to turn its tissues int o well
mixed chemica l solut ions. By processing even more energy th rough its bod y than thi s
minimum, the plant can grow and do some "useful work;' for example, upgrad ing
some of its input matt er from a low-energy form (carbon dioxide and water) to a
high-energy form (carbohyd rate). Plants consume order, not energy.

Closer to hom e, each of us must constantly process abo ut 100 joules per second
( lOOW) of high-qual ity energy throu gh o ur bodies (for example, by eatin g the car
bohydrate mo lecules manu factured by plants), even at rest . If we eat more than that ,
we can generate some excess mechan ical (ordered) energy to bu ild our homes and
so on . As shown in Figure 1.2c, the input energy again leaves in a low-quality form
(heat) . Animals, too, consume order, not ellergy.

Again . life doesn't really create order from nowhere. Life captures order. ulti
mately from the Sun. This order then trickles through the biosphere in an intricate
set of pro cesses that we will refer to generically as free energy transductions. Looking
only at the biosphere, it seems as though life has created order.

1.2.2 Osmotic flow as a paradigm for free energy transduction

If the trick described in Section 1.2.1 were uni que to living organi sms, then we might
still feel that they sat outside the physical world. But nonliving systems can transduce
free energy. too: Th e dr awing on page I shows a machine that pro cesses solar energy
and performs useful work. Unfortunately, th is sort of machine is not a very preci se
metaphor for the processes d riving living cells.

Figure 1.3 sketches another sort of machine. mo re closely related to what we are
looking for. A sealed tank of water has two freely slid ing pistons. When one piston
moves to the left, so does the other, because th e water between th em is practically
incompressible (and un stretchable). Across the middle of the cham ber, we place a
membrane permeable to water but not to d issolved sugar molecules. Th e who le sys
tem is kept at roo m temperature: Any heat that mu st be added or removed to hold
it at this temperature comes from (or goes into) the surround ing room. Initially, a
lump of sugar is unc overed on the righ t side. What happens?

At first, nothing seems to happ en at all. But as the sugar dissolves and spreads
th rou ghout the right -hand chamber, a mysterio us force begins to push the piston s
to the right . This is an honest, mechanical force; we cou ld use it to lift a weight . as
shown in Figu re l.3a . The process is called osmotic flow.

Where did the energy to lift the weight come from? Th e only possible source of
energy is the ou tside world. Indeed, careful measurements show that the system ab
sorbs heat from its surround ings; some how th is thermal energy gets converted to
mechan ical work. Didn't Sect ion 1.1.3 arg ue that it is impossible to convert heat

4A second, largely independent, biosphere exists in hot ocean vents, fueled not by the Sun but by high
energy chemicals escaping from inside the Earth.
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Rgure 1.3 : (Schematic.) A machine transducing free energy. A cylinder filled with water
is separated into two chambers by a semipermeable membrane. The membra ne is anchored
to the cylinder. Two pistons slide freely, thus allowing the volumes of the two chambers to
cha nge as water molecules (solid dots) cross the membrane. The distance between the pisto ns
stays fixed , however, because the water between them is incompressible. Sugar molecules (open

circles) remain confined to the right-hand chamber. (a ) Osmotic flow: As long as the weight
is no t too heavy, when we release the pistons, water crosses the membrane, thereby forcin g
both pisto ns to the right and lifting the weight. The sugar molecules then spread out in to the
increased volume of water on the right. (b) Reverse osmosis: If we pull hard eno ugh, ho wever,
the pisto ns will mo ve to the left. th ereby increasing the concentration of the sugar soluti on in
the righ t-hand chamber and generati ng heat.

completely back into mechanical work? Yes, but we are paying for th is transaction;
something is gettin g used up. That something is order. Init ially, the sugar molecules
are partially confined: Each one moves freely, and randomly, thro ughout the region
between the membrane and the right-h and piston. As water flows through the mem
brane. forcing the pistons to the right . the sugar molecules lose some of their order
(or gain some disorder), being no longer confined to just one-half of the total volum e
of water. When finally the left side has shrunk to zero, the sugar molecules have free
run of the entire volume of water between the pistons; their disorder can't increase
any more . Our device then stops and will yield no more work. even thou gh there's
plenty ofthermal energy left in the surrounding world. Osmotic flow sacrifices molec
ular order to organize random thermal motion into gross mechanical motion against
a load.
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We can rephrase the above argument in the language introduced in Section 1.1.3.
Idea 1.5 introduced the idea that the osmoti c machine will spontaneously move in
the direction that lowers its free energy F. According to Equation lA, F can decrease
even if the potential energy of the weight increases, as long as the entropy increases
by a compensating amount. But the previou s paragraph argu ed that, as the pistons
move to the right , th e disorder (and hence the entropy) increases. So, ind eed, Idea 1.5
predicts that the piston s will move to the right , as long as the weight is not too heavy.

Now suppose we pull very hard on the left piston, as in Figure 1.3b. Th is time, a
rightward movement of the piston would increase the potential energy of the weight
so mu ch that F increases, despite the second term of Equation 104. Instead, th e pis
ton s will mo ve to the lef t, the region of concentrated solution will shrink and becom e
more concentrated, and the system will gain ord er. This really works-it's a com 
mon indu strial pro cess called reverse osmosis (or ultra filtration ). You cou ld use it to
purify water before drinking it.

Reverse osmosis (Figure l .3b) is just the sort of pro cess we were looki ng for. An
input of high-quality energy (in this case, mechanical work ) suffices to upgrade the
order of our system. The energy input mu st go somewhere, accord ing to th e First
Law (Idea 1.3), and indeed it does: The system gives off heat in the pro cess. Wepassed
energy through our system, which degraded the energyfrom mechanicaLform to thermaL
form while increasing its own order. We could even make our machin e cyclic. After
pulling th e piston s all th e way to the left, we dump out the contents of each side,
move the pistons all th e way to the right (lifting the weight), refill the right side with
sugar solution, and repea t everything. Then our machine cont inuously accepts high
quality (mechanical) energy, degrad es it into th ermal ener gy, and creates mo lecular
order (by separating the sugar solution into sugar and pure water ).

But that's the same trick we ascribed to living or ganisms, as summarized in Fig
ure 1.21 It's not precisely the same- in Eart h's biosphere, the input stream of high
quality energ y is sunlight, whereas our reverse-osmo sis machine runs on externally
supplied mechan icai wor k. Nevertheless, much of thi s book will be devoted to show
ing that at a deep level these proc esses, one from the living and one from the nonl iving
world , are essent ially the same. In particular, Chapters 6, 7, and 10 will pick up this
story and parlay ou r understanding into a view of biomol ecular machines. The mo
tors found in living cells differ from our osmotic mac hine by being single molecules,
or collections of a few molecules. But we'll argue that these "molecular motors" are
again just free energy tran sdu cers, essentially like Figure 1.3. They work better than
simple machines because evolution has engineered them to work better, not because of
some funda mental exempt ion f rom physical law.

1.2.3 Preview : Disord er as information

The osmotic machine illustrate s anot her key idea, on which Chapter 6 will bu ild,
namely, the connection between disord er and information . To introduce this con
cept, consider again th e case of a small load (Figure 1.3a). Suppose that we measure
experimentally the maximum work don e by th e piston, by integrating the maxi mum
force the piston call exert over the distance it tra vels. Doing this experiment at room
temp eratu re yields an empirical observat ion :
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(ma ximum work) "" N x (4. 1 X 10- 21 J x y ). ( 1.7)

Here N is the number of dissolved sugar molecu les. (y is a numer ical constant whose
value is not important right now ; you will find it in Your Turn 7B.)

In fact. Equation 1.7 holds for any dilu te solution at room temperature, not just
sugar dissolved in wate r, regardless of the details of the size or shape of the con tainer
and the number of molecules. Such a universal law m ust hav e a deep mean ing. To in
terpret it, we retu rn to Equation 104. We get the maxim um work when we let the pis
tons move gradually, always app lying the biggest possible load. Accord ing to Idea 1.5,
the largest load we can apply without stalling the m achine is the one for which the
free energy F hardly decreases at all. In thi s case, Equation 1.4 claims that the change
in potential ene rgy of the weight (that is, the mechani cal work done) ju st equals the
tem peratu re times the change of entropy, Writing tJ.S for the entropy change, Equa
tion 1.7 says TtJ.S "" N x (4. 1 X 10- 21 J x y ).

We alread y have the expectation that en tropy involves disorder, and indeed, some
order does disappear when the pistons move all th e way to the righ t in Figure l.3a .
In itially, each suga r molecule was confined to half the total volume, whereas in the
end they are not so co nfined . Thus, what's lost as the pistons move is a knowledge
of wh ich half of the chamber each sugar molecule was in-a binary choice. If there
are N sugar molecules in all, we need to specify N b ina ry digits (bits) of in formation
to specify where each one sits in the final state, to the same accuracy that we knew it
originally. Combining thi s remark with the resu lt of the previous paragraph gives

tJ.S = co nstant x (num ber of bit s lost) .

Thus, the entropy,which we have been thin king of qualitatively as a measure of disor
der, tu rns out to have a qua nt itative int erpretation . If we find that biom olecular mo
tors also obey some version of Equation 1.7, wit h the same numerical constant, then
we will be on firm grou nd when we asse rt th at they really are free energy transdu ction
devices; and we can make a fair claim to have learned something fundament al about
how they work. Chapter 10 will develop thi s idea,

1.3 EXCURSION : COMMERCIALS, PHILOSOPHY,
PRAGMATICS

And oftentimes, to winne us to c nr hnrme
The Instruments of Darkness tell ti S Truths

Winne us with honest trifles, to betray's
ItJdeepest consequence.

- Shakespeare, Macbeth

Celland tissue. shell and bone, leafand flower. areso many
portionsof matter, and it is in obedience to the laws of
physics that theirparticles have been moved. moulded,

and conformed.

- D'ArcyThompson, On growth and form. 1917

Section 1.2 dove di rectly into the technical issues that we'll wres tle with throu ghout
th is book. But before we begin o ur explorat ion in earnest, a very few words are in
order about the relation between physical science and biolo gy.
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testable

Fig ure 1.4 : (Vision .) One approach to understanding natural phenom ena.

The quo tes above were chosen to highlight a fru itful tension between the two
cultures:

The physical scientist's impulse is to look for the forest, not the trees, to see that
which is universal and simple in anysystem.

Traditionally, life scientists have been more likely to emphasize that. in the inher
entlycomplex living world, frozen accidents of history often dominatewhat we see.
not universal laws. In such a world, often it's the details that really matter most.

The views are complementary; one needs the agility to use whichever approach is
appropriate at any given moment and a w illin gness to entertain the possibilit y that
the other one is valuable, too.

How can one synthesize these two approaches? Figure 1.4 shows the essential
stra tegy. The first step is to look around at the rich fabric of the pheno mena around
us. Next, we selectively ignore nearly everything about these phenomena, snipping
the fabric down to just a few threads. Th is process involves (3) selecting a simplified
but real model system for detailed study and (b) representing the simple system by
an equally simple mathematical model, with as few independent constructs and re
lations as possible. The steps (a) and (b) are not deductive; words like mystery and
insight apply to this process.
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The last step is to (c) deduce from the mathematical model some nonobvious,
quanti tative, and experimentally testable pred ictions. If a model makes many such
successful predictions, we gain conviction that we have found the few key ingredients
in our simplifying steps (a) and (b) . Words like hygiene and technique apply to step
(c) . Even though this step is deductive, again imagination is needed to find those con
sequences of th e model that are both nontrivial and practical to test. The best, most
striking results are those for which the right side of th e figure opens up to embrace
phenom ena that had previously seemed unrelated. We have already foreshadowed an
example of such a global linkage of ideas: The physics of osmotic flow is linked to the
biology of molecular machines.

In the best case, the results of step (c) give the sense of getting som ething for
noth ing: The model generates more structure than was present in its bare statement
(the middle part of Figure 1.4), a structure, moreover, that is usually buried in the
mass of raw phenomena we began with (left end of Figure 1.4). In add ition, we may
in the process find that the most satisfactory physical model involves some threads,
or postul ated physical entities (mid dle part of the figu re), whose very ex;stence wasn't
obv;ons from the observed phenomena (left part ) but can be substantiated by making
and testing quant itat ive predictions (right part). One famo us example of this process
is Max Delbruck's dedu ction of the existence ofa hereditary molecule, to be discussed
in Chapter 3. We'll see ano ther example in Chapters I I and 12, nam ely, the discovery
of ion pumps and channels in cells.

Physics student s are heavily trained on the right end of the figure, the techniques
for working through the consequences of a mathema tical model. But this technical
expertise is not eno ugh. Uncritically accept ing sorneone's model can easily lead to a
large bod y of bo th theo ry and experiment culminating in irrelevant results. Similarly,
biology studen ts are heavily tra ined in the left side, th e amass ing of many details of a
system. For them , the risk is that of becoming an archivist who misses the big picture.
To avoid both these fates, one mu st usually know all the details of a biological system,
then transcend them with an appropriate simple model.

Is the physicist's insistence on simplicity, concreteness, and quantitative tests on
model systems just an immature craving for certainty in an uncertain world? Cer
tainly, at times. But at other times . this approach lets us perceive conn ection s not
visible "on the ground" by viewing the world "from above." When we find such uni
versality. we get a sense of having explained some thing. We can also get more prag
matic benefits:

Often, when we forge such a link, we find that powerfu l theoretical tools useful
to solve one problem have already been created in the con text of another. An ex
ample is the mathematical solution of the helix-co il transition model discussed in
Cha pter 9.

Similarly, we can carryover powerful existing experimentaltechniq ues as well. For
exam ple. the realization that DNA and proteins were molecules led Max Perut z,
Linus Pauling. Maurice Wilkins, and others to study the structure of these mole
cules wi th X-ray diffraction , a technique invented to find the structure of simple,
nonbiological crystals like quartz.
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Finally. perceiving a link between two circles of ideas can lead us to ask new ques
tions that later prove to be important. For examp le, even after James Watson and
Francis Crick's discovery that the DNA mo lecule was a very long sentence written
in an alphabet with four letters (see Chapter 3), attention did not focus at once
on the importance of finding the dictionary. or code. relating sequences of those
letters to the 20-letter alphabet of amino acids that const itute pro teins. Thinkin g
about the problem as one in information transfer led Geo rge Camow, a physicist
interested in bio logy, to write an influential paper in 1954 asking this question and
suggesting that answering it might not be so difficult as it at first seemed.

It may seem that we need no longer content ourselves with simple model s. Can't
massive computers now follow the fine details of any process? Yes and no. Many 10\'1

level processes can now be followed in molecular detail. Nevertheless, our ability to
get a detailed picture of even simple systems is sur prisingly limited , in part by the
rapid increase of comput ational complexity when we study large numb ers of par
ticles. Surprisingly, though, man y physical systems have simple "emergent proper
ties" not visible in the complex dynamics of their individual molecules. The simple
equations we'll study seek to encapsu late these properties and ofte n manage to cap
ture the important features of the whole complex system. Examples in this boo k will
include the powerful property of hydrodynami c scale invariance to be explored in
Chapter 5, the mean-field behavior of ions in Chap ter 7, and the elasticity of macro
molecules in Chapter 9. The need to exploit such simplicity and regularity in the
collective behavior of many simila r actors becomes even more acute when we begin
to study even larger systems than the ones discussed in this book.

1.4 HOW TO DO BETTER ON EXAMS (AND DISCOVER
NEW PHYSICAL LAWS)

Equation 1.2 and the discussion followin g it made use of some simple ideas involv
ing units. Students often see units, and the associated ideas of dimension al analysis,
presented with a brush-your -teeth attitude. This is regrettable. Dimension al analy
sis is more than just hygiene. It's a shortcut to insight, a way to organize and clas
sify nu mbers and situations, and even to guess new physical laws. Working scientists
eventually realize that, when faced with an unfamiliar situation, dimensional analysis
is always step one.

1.4.1 Most physical quantities carry dimensions

A physical quantity generally has abstract dimensions that tell us what kind of thing
it represents. Each kind of dim ension can be measured by using a variety of different
units. The cho ice of units is arbitrary. People once used the size ofthe king's foo t. This
book will instead use pr imarily the Systerne Internation al d'Un ites, or SI units. In this
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system, lengths are measured in meters, ma sses in kilograms, time in seconds, and
electric charge in coulombs. The distinction between dimensions and units becom es
clearer when we look at some examples:

1. Length has dimensions of R.., by defin ition. In 51 units, we measure it in meters,
abbreviated in this book as m.

2. Mass has dimension s of M, by definit ion . In 51 un its, we measure it in kilograms,
abbreviated as kg.

3. Time has d imension s of T, by definition. In 51 uni ts, we measure it in seconds,
abbreviated as s.

4. Veloc ity has dimensions ofII.:Ir- I
. In 51 un its, we measure it in m 5- 1 (pronounced

"meters per second") .

5. Acceleration has d imensions of IL1I'- 2. In 51 units, we measure it in m 5- 2.

6. Force has dimension s of MlI.....Ir-2
. In 51un its, we measure it in kg m 5 - 2, wh ich we

also call newtons and abbreviate as N.

7. Energy has dimension s of MIL2'lI' -2 . In 51units, we mea sure it in kg m2 5- 2 , which
we also call joules and abbreviate as J.

8. Electric charge has dimension s of Q\ by definiti on . In 51 un its, we measure it in
cou lombs, abbreviated in th is book as co ul to avoid confusion with the symbol C.
The flow rate of charge, or electriccurrent, then mu st have dimensions of Q1r- I . In
51 units, we measure it in coulombs per second, or cou l 5- 1, also called amperes ,
abbrevia ted as A.

9. We defer a discussion of temperature units to Section 6.3.2.

No tice th at in this book all units are set in a special typeface, to help you distin guish
th em from nam ed quant ities (such as m for the ma ss of an obj ect ).

We also create related units by attaching prefixes giga (= 109
, or billion ), mega

(= 106, or million), kilo (= 103, or thou sand ), milli (= 10- 3, or thousandth), micro
(= 10-6, or millionth), nano (= 10- 9 , or billionth), pico (= 10- 12) . In writing, we ab
breviate these prefixes to G, M, k, m, /1, n, and p, respectively. Thus, 1 Gy is a billion
years, 1 pN is a billionth of a newton, and so on . Forces in cells are usua lly in the pN
range.

A few non-51 units, like em and kca l, are so traditional that we'll occasionally
use th em as well. You will constantly find these units in the research literature, so
you mi ght as well get good at intercon verting them now. See Appe ndix A for a list
of all the units in this book; Appendix B presents the hiera rchy of length , time, and
energy scales of interest to cell biology and pu lls together the numerical values of
many useful constants.

In any qu antitative prob lem , it is absolutely crucia l to keep units in mind at all
times. Students sometimes don 't take dimensional analysis too seriously because it
seems tri vial, but it's a very powerfu l method for catch ing algeb raic errors.

A few physical qu antities are dimensionless (they are also called "pure num
bers" ). For example, a geometrical angle is dimensionless; it expresses th e circumfer
ence of a part of a circle divided by the circle's radius. Nevertheless, we sometimes
use d imensionl ess units to describe such quantities. A dimensionle ss unit is just an
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abbrevia tion for some pure number. Thu s the degree of angle, represented by the
symbol 0, denotes the numb er 2rr/ 360. From this point ofview, the "radian" is not h
ing but the pure number I and may be dropped from formulas; we sometimes retain
it just to emphasize that a particular quantity is an angle.

A quantity with dimensions is sometimes called dimensional. It's important to
understand that the units are an integral part of such a quantity. Thus, when we use a
named variable for a physical quantity, the units are partofwhat the name represents.
Forexample. we don't say. "A force equal to f newtons" but rather, «A force equal to
f" where, say,f = 5 N.

In fact, a dimensional quantity should be thou ght of as the product of a "nu
merical part" times some units; this viewpoint makes it dear that the numerical part
depends on the units chosen. For example. the quantity 1 m is equal to the quan
tity 1000 mm. Similarly, the phrase "ten square micrometers:' or "10 11 m2," refers to
10 x (j1m)' = 10- 11 m' , not (10I'm )' = 10- 10 m'.

To convert from one unit to another, we take any equivalence between units, for
example 1 ineh = 2.54 em, and recxpress it as

1inch
.,..:...::::::... = 1.
2.54 em

Then, we take any expression and multiply or divide by I, canceling the undesired
units. For example, we can convert the acceleration ofgravity to inch 5- 2 by writing

91' 100qt\ l inch inch
g = 9.8- x - - x = 386-.

5' 91' 2.54 qt\ 5'

Finally, no dimensional quantity can be called "large" in any absolute sense.
Thus, a speed of 1cm 5- 1 may seem slow to you, but it's impossibly fast to a bac
terium. In contrast, dimensionless quantities do have an absolute meaning: When we
say that they are "large" or "small," we implicitly mean "compared with I." Finding
relevant dimensionless combinations of parameters is often a key step to classifying
the qualitative properties of a system. Section 5.2 will illustrate this idea, defining the
"Reynolds num ber" to classify fluid flows.

1.4.2 Dimensional analysis can help you catch errors
and recall definitions

Isn't this a lot of pedantic fuss oversomething trivial?Not really. Things can get com
plicated pretty quickly; for exampie, on an exam. Training yourself to carr yall the
units explicitly, through every calculation, can save you from many errors.

Suppose you need to compute a force. You write down a formula that con
tains various quantities. To check your work, write down the dimensions of each
of the quantities in your answer, cancel whatevercancels, and make sure the result is
MIL11'-'. If it's not, you probably forgot to copy something from one step to the next.
It's easy, and it's amazing how many errors you can find in this way. (You can also
catch your instructors' errors.)

When you multiply two quantiti es, the dimensions just pile up: force (MILlI'- ' )
times length (IL) has dimensions of energy (Mll.,'lI'-'). But you can never add or sub-
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tract terms with different dimensions in a valid equatio n. any mo re than you can add
do llars to kilograms. You can add euros to rupees, with the appropriate con version
factor, and similarly meters to miles. Meters and miles are different units that both
carry the same dimension, namely, length (IL).

Anoth er useful rule of thumb involving dimensions is that you can only take
the exponential of a dimensionless number. The same thin g hold s for other familiar
functions, such as sin. cos, and In. One way to understand this rule is to recall that
expx = I + x + tx' + ... .According to the previous paragraph , th is sum makes no
sense unless x is dimen sionless. (Recall also that the sine function's argument is an
angle, and angles are dim ensionless.)

Suppose you run into a new con stant in a formu la. For example, the force be
tween two poi nt charges ql and q2 in vacuum, separated by distance r, is

f = _ I_ q,q, .
4JrEo r2

What are the dim ensions of the constant EO? Just compare:

(1.8)

In this formula, the notation [Eo] means "the dimensions of EO"; it's some combina
tion of lL, MJ, 11' , <Q that we want to find. Remember that numbers like 411 have no
dimen sions. (After all, 11 is the rat io of two lengths, the circumference and the diam
eter of a cirde.) So right away, we find [EO] = <Q'1I"1L-'M-1

> which you can then use
to check other formul as conta ining EO .

Finally, dimensional analysis helps you remember things. Suppose you're faced
with an obscure SI unit, say, "farad" (abbreviated F). You don't remem ber its defi
nition . You know it measures capaci tance. and you have some formul a involving it,
say, E = t q'j C, where E is the stored electro static energ y, q is the stored charge,
and C is the capacitance. Starting from the dim ensions of energy and charge, yo u
find that the dim ensions of Care [C] = 1I" <Q' M-' 1L- 2 Substituting the SI uni ts sec
ond, coul omb, kilogram , and meter, we find that the natural SI unit for capacitance
is s'coul'kg-'m- '. That's what a farad really is.

Example: Appendix B lists the units of the perm ittivity of empty space Eo as F/m.
Check this statement.

Solution: You could use Equation 1.8, but here's another way. Th e electrostatic po
tential VCr ) a distance r away from a point charge q is

V( r) = -q-.
4Jr Eo r

(1.9)

The pot enti al energy of another charge q sitt ing at r equals qV(r) . Because we know
the dim ensions of energy, charge, and distance, we work out [EO] = 1I"<Q'MJ- 11L- 3, as
we already found. Also using what we found earlier for the dimensio ns of capaci tance
gives [Eo] = [CIIIL, so the SI uni ts for EO are the same as those for capacitance per
length, or F m" .
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1.4.3 Dimensional analysis can also help you formulate hypotheses

Dimensional analysis has other uses. For exam ple, it can actually help us to guess new
physical laws.

Chapter 4 willdiscuss the "viscous friction co efficient" s for an objec t immersed
in a fluid. This parameter equals the force applied to the object, divided by its re
suIting speed; so its dimension s are MIT. We will also discuss another quantity, the
"diffusion constant" D of the same object, which has dim ensions IL' nL Both I; and
D depend in very complicated ways on the temperature, the shape and size of the
object, and the nature of the fluid.

Suppose now that someone tells you that, despite this great complexity, the prod
uct SD is very simple: This product depends only on the temp erature, not on the na
ture of the object no r even on the kind of fluid it's in. What could the relation be?
You work out the dim ensions of the product to be M IL'/To. That's an energy. What
sort of energy scales are relevant to our prob lem? It occurs to you that the energy of
thermal mo tion , Ethermal (to be discussed in Chapter 3), is relevant to the physics of
friction , because friction makes heat. So you could guess that if there is any funda
mental relation, it must have the form

,
{ D == Ethcrmal. ( l. to)

You win. You have just guessed a true law of Nature, one that we will derive in
Chapter 4. In this case, Albert Einstein got there ahead of you, but maybe next tim e
you'll have pr iorit y. As we'll see, Einstein had a specific goal: By measuring bo th I;
and D experimentally, he realized, on e could find Ethcrmal. We'll see how this gave
Einstein a way to measure how big atoms are, without ever needing to manipula te
them individually. And .. . atoms really are rhat size!

What did we really accomplish here? This isn't the end, it's the beginn ing: We
didn't find any explanation of frictional drag, nor of diffusion , yet. But we know a
lorabout how that theory should work. It has to give a relation that looks like Equa
tion 1.10. This result helps in figuring out the real theory.

1.4.4 Some notational conventions involving flux and density

To illustrate how units help us disentangle related concepts, consider a family of re
lated qua nt ities tha t will be used throughout the book. (See Append ix A for a com
plete list of symbols used in the book.)

• We will often use the symbols N to denote the numb er of discrete things (a dimen
sionless integer), V to denote volume (with 51units rn"), and q to denote a quanti ty
of electric charge (with 51un it coul).

• The rates of change of these quanti ties will generally be written dN / dt (with unit s
5- \ ) , Q (the volume flow rate, with units m3 5- J

) , and I (the electric current, with
units caul 5 - 1) , respectively.

If we have five balls in a room of volume 1000 rrr ' , we say that the number density
(or concentration) ofba lls in the room is c = 0.005 m- 3 . Densities of dimensional
quantit ies are traditionally denoted by the symbol p; a subscript will indic ate what
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sort ofqu antity. Thus, ma ss densit y is Pm (units kg m"), whereas charge density
is Pq (units co ulm").
Similarly. if we have five checkers on a 1 m1 checkerboard, the surface number
density (J is 5 m- 2• Similarly, the surface charge density uq has units coul m- 2•

Sup pose we po ur sugar down a funnel and 40000 grains fall each second through
an openi ng of area 1em' . We say that the numberflux (or simply "flux" ) of sugar
grains through the opening is j = (40000 S- I ) /(10-2 m ) 2 = 4 . 10' m - ' S-I . Sim
ilarly. the fluxes of dimensional quantities are again indicated by using subscripts;
thus, j q is the electric charge flux (with units ca ul m- 2 5- 1) and so on.

If you accidentally use num ber density in a form ula requiring mass density, you'll
notice that your answer's un its are missing a factor of kg; thi s discrepancy is your
signal to go back and find your erro r.

1.5 OTHER KEY ID EAS FROM PHYSICS AND CHEMISTRY

Our story will rest on a numb er ofother points known to the ancients.

1.5 .1 Mol ecules are small

Ordinary molecules, like water, must be very sma ll-we never perceive any grainy
quality to water. But how small, exactly, are they? Once again we turn to Benjamin
Franklin.

Around 1773, Franklin's atte ntion turned to, of all things, oil slicks. What in
tr igued him was the fact that a certain quantity of oil could spread only so far on wa
ter. Attempting to spread it farther caused the film to break up into patches. Franklin
not iced that a given quant ity of olive oil always covered about th e same area of water;
specifically, he found that a teaspoon of oil ("" 5 em') covered half an acre of pond
("" 2000 m' ). Franklin reasoned that if th e oil were composed of tiny irreducib le par
ticles, then it could only spread unt il these part icles formed a single layer, or "mo no
layer," on the surface of the water. It's easy to go one step further than Franklin did
and find the thickness of the layer, and hence the size scale of a single mo lecule. Di
viding the volume of oil by the area of the layer, we find the linear size of one oil
molecule to be abo ut 2.5 nm. Remarkably, Franklin's eighteent h-century experi ment
gives a reasonable estimate of the molecular size scale!

Because mol ecules are so tiny, we find ourselves discussing inconveniently big
numbers when we talk abo ut, say. a gram of water. Conversely, we also find ourselves
discussing inconven iently small nu mbers when we try to express the energy of one
molecule in human-size uni ts like joules- see, for example, the constant in Equa
tion 1.7. Chemists have found it easier to define, on ce and for all, one huge number
expressing the smallness of molecules and then relate everything to thi s one number.

5That number is Avogadro's number Nmole, defined as the number of carbo n atom s
Lneeded to make up twelve grams of (ordinary) carbon. Thus, Nmol' is also roughly

the nu mber of hydrogen ato ms in one gram of hydrogen, because a carbon atom has
a mass abo ut 12 times that of hydrogen. Similarly, there are roughly Nmol' oxygen
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molecules, O2• in 32 g of oxygen, because each oxygen atom's mass is about 16 time s
that of a hydrogen atom and each oxygen molecule consists of two of them.

Note tha t N mole is dim ensionless." Any collection of Nmole molecules is called a
mole of tha t type of mo lecule. In our formulas, the word mole will simpl y be a syn
onym for th e number N mole> just as the word million can be thought of as a synonym
for the number 106

•

Returning to Franklin's estimate, suppose water molecules are similar to oil mol
ecules, roughly tiny cubes 2.5 nm on a side." Let's see what we can deduce from thi s
observation.

Example: Find an estim ate for Avogadro 's number starting from thi s size.
Solution: We won't get lost if we carryall the dim ensions along throughout the cal
culation. On cubic meter of water contains

I j)13
.,.,.--::-:'-:--;:--::c;- = 6.4 . 1025

(2.5 . 10 9 j)1)3

molecule s. Th at same cubic meter of water has a mass of a thousand kilograms, be
cause the density of water is 1g cm- 3 and

(
100 c;rti ) 3 19/ t kg

1 j)13 x --- X - -3 X --- = 1000 kg.
t j)1 I c;rti 1000 g/

We want to know how many molecules of water make up a mole. Because each water
molecule consists of on e oxygen and two hydrogen atoms, its total mass is about
16 + 1 + 1 = 18 time s that of a single hydrogen atom. So we mu st ask, if 6.4 . 102s

molecules have mass 1000 kg, then how many molecules does it take to make 18 g, or
0.Ql 8 kg?

6.4 . 1025

Nmoie = 0.01 8!f1: x 1000!f1: = 0.011 . 1023• (estimate)

Your
Turn

1A

The estima te for Avogadro's number just found is not very accurate (the modern
value is Nm o1e = 6.0 . 1023 ) . But it's amaz ingly good, considerin g that the data on
which it is based were taken nearly a quarter of a millennium ago. Improving on this
estimate, and hence nailin g down th e precise dim ensions of atoms, proved surpris
ingly difficult. Chapter 4 will show how the dogged pursuit of thi s quarry led Albert
Einstein to a key advan ce in our understanding of the nature of heat .

Using the modern value of Avogadro's number, turn the above calculation
around and find th e volum e occupi ed by a single water mo lecule. /~0~

5~ See Section 1.5.4' o n page 30 for more abo ut nota tional conventions.

"Really they're more like slende r rods. Th e cub e of th e length of such a rod is an overestima te of its volume,
so our estimate here is rough.
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1.5.2 Molecules are particular spatial arrange ments of atoms

There are only about a hundred kinds of atoms. Every atom of a given element is
exactly like every other: Atom s have no individual personalities. For examp le. every
atom of (ord inary) hydro gen has the same mass as every other one. Th e mass ofNmole

atoms of a particular species is called tha t atom's molar mass.
Similarly, every molecul e of a given chemic al compo und has a fixed. defini te

compositio n. a rule we att ribute to l. Dalton and J. Gay-Lussac. For example. carbo n
dioxide always consists of exactly two oxygen ato ms and one carbon. in a fixed spatial
relationship . Every CO2 molecule is like every other, for example, equally ready or
unwi lling to undergo a given chemical change.

There may be more than one allowed arrangement for a given set of atoms, yield
ing two or more chem ically dist inct molecules called isomers. Some molecules flip
back and forth rapidly between their isomeric states: They are "labile." Others do so
very rarely: They are rigid. For example, Louis Pasteur discovered in 1857 tha t two
sugars containing the same atoms, but in mirror- image arrangements, are chemically
di fferent and essentially never spontaneo usly interconvert (Figure 1.5). A molecule

c

Figure 1.5 : (Molecular st ructure skctches.) (a ) The molecule shown is chira !. (b) To show this
propert y, this pan el shows the mirror image of (a). (c,d) No rotated version of (a) coincides
with its mirror image (b), even though (b) has the same atoms, bond s, and bond angles as (a).
However, if the or iginal molecule had had two identical groups (for example , two white grou ps
in place of one white and one black), then the molecule would have been nonchiral: (b) would
then coincide with (a).
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whose mir ror image is an inequivalent stereo isome r is called chiraI; such molecules
will playa key role in Chapter 9.

IT21Section l .5.Z on page 30 discusses the division ofelements into isotopes.

1.5 .3 Molecules ha ve well-defined internal energ ies
1,_",/

Section 1.1.2 briefly alluded to the chemical energy stored in a match. Indeed, the
atoms making up a molecule carry a definit e amount o f stored energy, which is said
to resid e in chemical bonds between the atoms. The chemica l bond energy drives
toward lower values just as any other form of stored energy do es (for exa mple . the
po tential energy of the weight in Figure 1.3). In fact, the chemical bond energy is
just another co ntribution to the quantity E appearing in the formula fo~ free energy
F = E - TS (Equation 1.4). Molecules generally prefer to indulge in heat-liberating
(exothermic) reaction s rather than heat-accepting (endotherm ic) ones, but we can
nevertheless get them to adopt higher energy states by adding energy from outside.
For example, we can split (or hydrolyze) water by passing electric current th rough
it. Mo re precisely, Chapter 8 will show that chemical reactions proceed in the direction
that tends to lower thefree energy, just as in the osmotic mach ine.

Even an un stable mol ecul e may not spontaneously split up un til a large "acti
vation energy" is supplied; thus for examp le an explosive stores its chemical energy
until detonated by an outside agency. The activation energy can be de livered to a
molecule mechanically, by collision with a neighbor. But this is no t the only possi
bility. In one of his five historic papers written in 1905, Albert Einstein showed that
light, too, comes in packets of definite energy, called photons. A molecule can absorb
such a packet and then ho p over its activation energy barrier, perhaps even ending in
a higher energy state than its in itial state.

The explanations for all the familiar facts in this subsection and the previo us
one come from a branch of physics called "quantum mech anics." Qu antum mechan
ics also explains the num erical values of the typ ical atomic sizes and bo nd ene rgies in
terms of a fund amen tal physical constant, the Planck constant h. This boo k will take
all these values simply as experimentally deter mined facts, sidestepping their quan
tum origins altogeth er.

How can there be a "typical" bond energy? Don't some reaction s (say, in a stick
of dynamite) liberate a lot more energy than others (burning a match)? No, the dy
namite just liberates its energy much faster, the energy liberated per chemical bond is
roughly co mparable to that liberated in any other reaction .

Example : On e important chemical reaction is the one happ en ing inside the batteries
in your channel changer. Estimate the chemical energy released in this reaction.
Solution: Printed on the battery, we find that its term inals differ in potent ial by
6. V = 1.5 volt . This statement means that the battery impar ts an energy of roughly
e6.V = 1.6 . 10- 19 coul X 1.5volt = 2.4 . 10- 19 J to each electro n passing th rough
it. (The value of the fundamental charge e is listed in Appendix B.) If we suppose
that each electron passing across the battery enables the chem ical reaction inside to
take one step, then the energy just calculated is the change in chemical bo nd energies
(minus any thermal energy given off) .
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In contrast to chemical reactions, the radioacti ve decay of plutonium liberates
abo ut a million times more energy per atom than the value just found . Historically,
th is discovery was the first solid d ue that something very d ifferent from chemistr y
was going on in rad ioactive decay.

1.5.4 Low-dens ity gases o bey a universal la w

Th e founders of chemistry arrived at the idea that atom s combine in definit e prop or
tions by noti cing that gases combine in simple, fixed ratio s of volum e. Eventually it
became d ear that this observation reflects the fact that the flllmber of gas molecu les
in a box at atmospheric pressure is just proport ional to its volum e. More precisely,
one finds experimentally that the pressure p, volume V, number of molecules N, and
temperature T of any gas (at low enough density) are related in a simple way called
the ideal gas law:

( l.l I)

Here the temperatu re T is understood to be measured relative to a specia l point called
absolute zero; other equations in this book, such as Equat ion lA , also use T mea
sured from this point. In contrast, the Celsius scale assigns a O( to the freezing point of
water, which is 273°( above abso lute zero . Thus. room temp erature T, corresponds
to about 295 degrees above absolute zero (Section 6.3.2 will define temperature more
carefully). The quantity kB appearing in Equation l.ll is called the Boltzmann con 
stant; it turns out to be about 1.38 . 10- 23 joul es per degree. Thu s, the numerical
value of kBT at room temperatu re is keT, = 4.1 . 10- 21 J. A less cumbe rsome way of
quoting thi s value) and an easier way to memorize it, is to express it in un its relevant
to cellular physics (piconewtons and nanometers):

kBT, '" 4.1 pN nm. (most important formula in this book) ( 1.12)

Take a minute to think about the reason ableness of Equation 1.11: Ifwe pump
in more gas (N increases), the pressure goes up. Similarly, if we squeeze the box
(V decreases) or heat it up (T increases), p again increases. The detailed form of
Equation 1.11 may look un familiar) however. Chemistry texts generally write it as
pV = llRT, where 11 is the "amount of substance" (number of moles) and RT is
abou t 2500 jou les per mole at room temperature. Dividing 2500 J by Nmoi, indeed
gives the qua ntity keT, in Equation 1.12.

The remarkable thing about Equation l.l l is that it holds universally: Any gas,
from hydrogen to vapori zed steel, obeys it (at low enough density). All gases (and
even mixtures of gases) have the same numerical value of the constant kB and all
agree about the value of absolute zero. In fact, even the osmotic work formul a, Equa
tion 1.7) involves this same quantity! Physical scient ists sit up and take not ice when
a law or a constant of Nature proves to be universal (Section 1.3). Accord ingly, our
first ord er of business in Part II of this book will be to tease ou t the deep mean ing of
Equation 1.11 and its constant ke-
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IT21Section 1.5.4' on page 30 makes more precise this book's use of the word mole

and relates it to other books' usage.

THE BIG PICTURE

Let's return to this chapter's Focus Question. Sectio n 1.2 discussed the idea that the
flow of energy. together with its degradation from mechanical to thermal energy.
could create order. We saw this principle at work in a hum ble process (reverse os
mosis, Section 1.2.2), then claimed that life, too, exploits this loophole in the Second
Law of thermodynamics to create-c-or rather. capture-order. OUf job in the follow
ing chapters will be to work out a few of the details. For examp le, Chapter 5 will
describe how tiny o rganisms. even single bacteria. carry out purposeful mot ion in
search of food , enhancing their survival, despite the randomizing effect of their sur
roundings. We will need to expand and formalize our ideas in Chapters 6-8. Chap
ter 8 will then consider the self-assembly of compound molecular structures. Finally,
Chapters 10- 12 will d iscuss how two paragons of orderly behavior-namely, the mo
tion of molecular machines and nerve impulses-emerge from the disorderly world
of single-mo lecule dynamics.

Before attempting any of these tasks. however. we sho uld pause to appreciate the
sheer immensity of the biological o rder puzzle. Accordingly, the next chapter will give
a tour of some of the extraordina rily ordered structures and processes present even
in single cells. Along the way, we will meet many of the devices and interactions to be
discussed in later chapters.

KEY FORMULAS

Each chap ter of Parts II and III of th is book ends with a summary of the key formulas
appearing in that chapter. The list below is slightly different; it focuses mainly on
formulas from first-year physics that will be used throughou t the book. You may
want to rev iew these. referring to an introductory physics text.

1. First-year physics: Make sure you recall these formulas from first-year physics,
and what all their symbols mean . Most of these have not been used yet, but they
will appear in the coming chapters.
mom entum = (mass) x (velocity).
centripetal acceleration in uniform circular motion = rw 2 .

force = rate of transfer of mom entum .
torqu e = (moment arm) x (force).
work = transferred mechanical energy (force) x (d istance) = (torque) x

(angle) .
pressure = (forcej/t arca).
kinetic energy = !mvl.
force and potential energy of a spring, f = kx, E = ~kx' .
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potent ial energy in Earth 's gravity = (mass) x g x (height) .
poten tial ene rgy of a charged object in an electros tatic field = qV.
electric field, t.' = -dV/ dx.
force on a charged body, f = qt.' .
electrostatic potent ial created by a single point charge q in an infinite, uniform,

insulating medium, V(r) = q/(4rrglr l), where e is the perm ittivity of the
medium.

electrostatic self-energy of a charged sphere of radi us a, q' / (8rrta) .
Ohm's law, V = IR; power loss from a resistor. I2R.

electrostatic potential drop across a capacitor) V = qj C.
electrostatic potential energy stored in a capacitor, E = t q2 / C.
capacitance ofa parallel-plate capacitor of area A and thickness d, C = Ag/d.

2. Mechanical equivalen t ofheat: One joule of mechanical energy, when completely
converted to heat, can raise the temp erature of I g of water by about 0.24 °(
(Equation 1.2).

3. Idealgas: The pressure, volume, number of mo lecules, and temp erature of a con
fined ideal gas are related by pV = NkBT (Equation 1.11). At room temperature
T" the quantity kBT, '" 4.1 pN nm (Equation 1.12).

FURTHER READING

Semipopular:
Heat: von Baeyer, 1999; Segre, 2002.
The Second Law: Atkins, 1994.
Franklin's oil experim ent: Tanford, 1989.

Intermediate:
Biophysics, and general physics with biological applications: Benedek & Villars,

2000a; Benedek & Villars, 2000b; Benedek & Villars, 2000c; Hobbie, 1997; Cot
terill, 2002; Vogel, 2003.

Technical:
The Biophysical Society's On-Line Textbook:http: / /,,,,,, . biophysics . or g/btol/
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IT21 1.5.2' Track 2

There is an imp ortant elaboration of the rule that atoms of a given species are all
identical. Atoms that behave identically chemicallymay nevertheless subdivide into a
few distinct classes of slightly different mass, the "isotopes" of that chemical element.
Thu s, we specified ordinary hydrogen in Section 1.5.2 on page 25 to acknowledge the
existence of two oth er, heavier forms (deuterium and tritium). Despite this compli
cation, however, there are on ly a han dful of different stable isotopes of each eleme nt,
so the number of distinct species is still small, a few hundred. The key point is that
the distinction between them is discrete, not continuous.

IT21 1.5.4' Track 2

Physics textbooks generally use molecular quantities, whereas chemistry textbo oks
generally use the cor respo nding molar versions. Like most artifi cial barriers to friend
ship, th is one is easily overcome. The 51 gives "amount of substance" its own di
mension, with a corresponding fund amental unit called mol. This book will not use
any quantities containing this unit. Thu s, we will not measure amounts by using the
quantity n, with unit s mol, nor will we use the quantities RTr = 2470 J mol- l or
:F = 96 000 coul rnol" : instead, we will use respectively the number of molecules
N, the molecular thermal energy, keT" and the charge on one proton, e. Similarly,
we will not use the quanti ty No = 6.0 . 1023 rnol" : ou r Nmo1e is the dim ensionless
num ber 6.0 · 1023

. And we don't use the unit dalton , defined as 1g rnol" : instead, we
measure masses in kilograms.

A mo re serious not ation al problem arises from the fact that different books use
the same symbol M (th e "chemical potential" defined in Chapter 8) to mean two
slightly different things: Mcan represent the derivative of the free energy either with
respect to n (so [Ml - J mol"), or with respect to N (so [M] - J ). This book always
uses the second convention (see Chapter 8). We choose this convention because we will
frequently want to study singlemolecules, not mole-sized batches?

In this book the word mole in formu las is just an abbreviation for the number
Nm o1c. When convenient, we can express molecular energies as mu ltiples of mole- );
then the numerical part of ou r quantit ies just equals the numerical part of the corre
sponding molar quan tities. For examp le, we can write

- 21 6.0 · 1023

kBT, = 4.1 . 10 J x I '" 2500 J/mole,
mo e

whose num erical part agrees with that of RTr•

"Similar remarks apply to the standard free energy change l'.G.
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PROBLEMS

1.1 Dorm-room dynamics

a. An air conditioner cools down your room, removi ng thermal energy. Yet it con
sumes electrical energy. Is there a contradiction with the First Law?

b. Cou ld you design a high- tech device that sits in your window, conti nuously con
verting the unwanted thermal energy in your room to electricity, which you then
sell to the power company? Explain.

1.2 Thompson 's experiment
Long ago, people did not use 51units.

a. Benjamin Thompson actually said tha t his cannon-boring apparatus could brin g
25.5 poun ds of cold water to the bo iling point in 2.5 hours. Supposing that "cold"
water is at 20 °(' find the power input into the system by his horses, in watts.
[Hint: A kilogram of water weighs 2.2 pounds. Tha t is, Earth's gravity pulls it
with a force of I kg x g = 2.2 pou nd.)

b. James Joule actually found that I pound of water increases in temp erature by one
degree Fahrenh eit (or 0.56 °C) after he inp ut 770 foot pounds of work. How close
was he to the modern value of the mech anical equivalent of heat?

~ 1.3 Metabolism
Metabolism is a generic term for all of the chemical reactions that break down and
"burn" food , thereby releasing energy. Here are some data for metabolism and gas
exchange in humans.

food kcal/g liters Ol /g liters COl /g

carbohydrate 4.t 0.8t 0.8t
fat 9.3 1.96 1.39
protein 4.0 0.94 0.75
alcohol 7. t 1.46 0.97

The table gives the energ y released, the oxygen consumed, and the carbon dioxide
released upon metabolizing the given food , per gram of food.

a. Calculate the energy yield per liter of oxygen consumed for each food type and
note that it is roughly constant. Thus, we can determine a person's metabolic rate
simply by measuring her rate of oxygen consumption. In contrast, the CO,IO,
ratios are different for the different food groups ; this circumstance allows us to
estimate what is actually being used as the energy source, by comparing oxygen
intake to carbon dioxide output.

b. An average adult at rest uses about 16 liters of a, per ho ur. The correspo nd ing
heat release is called the "basal metabolic rate" (BMR). Find it, in kcal/hour and
in kcal/day.

c. What power output does this correspond to in watts?
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d. Typically, the CO, output rate might be 13.4 liters per hour. What, if anything,
can you sayabout the type of food materials being consumed?

e. During exercise. the metabolic rate increases. Someone performing hardlabor for
10 hours a day might need about 3500 kcal of food per day. Suppose the person
does mechanical work at a steady rate of 50 W over 10 hours. We can define the
body's efficiency as the ratio of mechanical work done to excess energy intake
(beyond the BMR calculated in (b)) . Find this efficiency.

1.4 Earth 's temp erature
The Sun emits energy at a rate of about 3.9 . 1026 W. At Earth, this sunshine gives
an incident energy flux I, of about 1.4 kW m- ' . In this problem, you'll investigate
whether any other planets in our solar system could support the sort of water-based
life we find on Earth.

Consider a planet orb iting at distance d from the Sun (and let d, be Earth's dis
tance). The Sun's energy flux at distance d is I = I, (d, / d)" because energy flux de
creases as the inverse square ofdistance. Call the planet's radius R. and suppose that
it absorbs a fractiona of the incident sunlight. reflecting the rest back into space. The
planet intercepts a disk of sunlight of area Jr R' , so it absorbs a total power of rrR'CiI.
Earth's radius is about 6400 km.

The Sun has been shining for a long time, but Earth's temperature is roughly
stable: The planet is in a steady state. For this to happen, the absorbed solar energy
must get reradiated back to space as fast as it arrives (see Figure 1.2). Because the rate
at which a body radiates heat depends on its temperature, we can find the expected
mean temperature of the planet, using the formula

radiated heat flux = Cia T'.

In this formula, a denotes the number 5.7. 10- 8 W m-' K- 4 (the "Stefan- Boltzmann
constant"). The formula gives the rate of energy loss per unit area of the radiating
body (here, the Earth). You needn't understand the derivation of this formula but
make sure you do understand how the units work.
a. Using this formula, work out the average temperature at the Earth's surface and

compareyouranswer to the actual value of 289 K.
b. Using the formula, work out how far from the Sun a planet the size of Earth may

be, as a multiple of dt:, and still have a mean temperature greater than freezing.
c. Using the formula, work out how close to the Sun a planet the size of Earth may

be, as a mult iple of d" and still have a mean temperature below boiling.

d. Optional: If you know the planets' orbital radii, which ones are then candidates
for water-based life, using this rather oversimplified criterion?

1.5 Fra nklin 's est imate
The estimate of Avogadro's numb er in Section 1.5.I came out too small partly be
cause we used the molar mass of water, not of oil. We can look up the molar mass
and mass density of some sort of oil available in the eighteenth century in the Hand
book ofchemistry and physics (Lide, 200I). The Handbook tells us that the principal
component of olive oil is oleic acid and gives the molarmass ofoleic acid (also known
as 9-octadecenoic acid or CH,(CH,),CH;CH(CH,),COOH) as 282g mole- I. We'll
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see in Chapter 2 that oils and othe r fats are tri glycerides, ma de up of th ree fatty acid
chains, so we estimate the molar mass of olive oil as a bit more than three time s the
value for oleic acid. The Handbook also gives the density of olive oil as 0.9 g cm"".

Make an improved estimate of Nmolr from these facts and Franklin's original
observation.

Yo 1.6 Atomic sizes, again
In 1858. J. Waterston found a clever way to estimate molecular sizes from macro
scopic properties of a liquid, by comparing its surface tension and heat of vaporiza
tion.

The surface tension of water. L , is the work per unit area needed to create more
free surface. To define it, imagine breaking a brick in half. The two pieces have two
new surfaces. Let :E be the work needed to create these new surfaces, divided bytheir
total area. The analogous quant ity for liquid water is the surface tension.

The heat of vaporization of water, Q vap, is the energy per unit volume we must
add to liquid water (just below its boili ng po int ) to convert it completely to steam
(just above its bo iling point). Th at is, the heat of vapor izatio n is the energy needed
to separate every mo lecu le from every other one.

Picture a liquid as a cubic array with N molecules per centime ter in each of three
directions. Each mo lecule has weak attractive forces to its six nearest neighbors. Sup
pose it takes energy € to break one of these bond s. Then the complete vapo rization of
I em' of liqu id requ ires that we break all the bonds. Th e correspo nding energy cost
is Q" p x ( I em') .

Next consider a mo lecule on the surface of the fluid. It has only five bonds-the
nearest neighbor on the top is missing (suppose this is a fluid- vacuum interface).
Draw a picture to help you visualize this situation. Thus, to create more surface area
requires that we break some bonds. The energy needed to do tha t, divided by the new
area created, is :E .

a. For water, Q"p = 2.3 . 10' J m- 3 and L =0.072 J m- 2 Estima te N .

b. Assuming the molecule s are closely packed, estimate the approximate molecule
diameter.

c. What estimate for Avogadro's number do you get?

1.7 Tour de France
A bicycle rid er in the Tour de Franc e eats a lot. If his tot al daily food intake were
burned, it would liberate abo ut 8000 kcal of heat. Over the three or fou r weeks of the
race, his weight change is neglig ible, less than I%. Th us, his ene rgy input and output
mu st balance.

Let's first look at the mechanical wo rk done by the racer. A bicycle is incred ibly
efficient. The energy lost to internal friction, even including the tires, is negligible.
The expenditure against air drag is, however, significant, amounting to 10 MJ per
day. Each day, the rider races for 6 hours.

a. Compare the 8000 kcal input to the 10 MJ of work done. Something's missing!
Could the missing ene rgy be acco unted for by the altitude change in a hard day's
racing?
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Regard less of how you answered (a), next suppose that on one particular day of
racing there's no net altitude change, so that we must look elsewhere to see where the
missing energy went. We have so far neglected another part of the energy equation:
the rider gives off heat. Some of this is radiated. Some goes to warm up the air he
breathes in. But by far the greatest share goes somewhere else. ~

The rider drinks a lot of water. He doesn't need this water for his metabolism
he is actually creating water when he burn s food . Instead, nearly all tha t liqui d water
leaves his body as water vapor. The thermal energy needed to vaporize waterappeared
in Problem 1.6.

b. How much water would the rider have to drink for the energy budget to balance?
Is this reasonable?

Next let's go back to the 10 MJ of mechanical work done by the rider each day.

e. The wind drag for a situation like thi s is a backward force of magn itude f = Bu',
were B is some constant. We measure B in a wind-tunnel to be 1.5 kg rn " . If we
simplify by supposing a day's racing to be at constant speed, what is tha t speed? Is
your answer reasonable?



CHAPTER 2

What's Inside Cells
Architecture is the learnedgame, correctand magnificent. of

forms assembled in the light.

- LeCorbusier, 1887- 1965

Chapter 1 exposed an apparent incompatibilit y between physical law and the living
world (the apparently spontaneous generation of order by living things) and pro
posed the ou tline of a reconciliation (living things ingest high-quality energy and
give off low-qu ality energy). With this physical backdrop, we're now ready to look a
bit more closely into the organization of a living cell, where the same ideas play out
over and over. This chapte r sketches the context for the vario us phenomena that will
concern us in the rest of the book:

• Each device we will study is a physical object; its spatial context involves its location
in the cell relative to the other objects.

Each device also par t icipates in some processes; its logical context involves its role
in these processes relative to ot her devices.

Certainly th is introductory chapter can only scratch the surface of this vast topic.'
But it is useful to collect some visual images of the main characters in ou r stor y. so
that you can flip back to them as they appear in later chap ters. Figures 2.1-2.4 give
an overall sense of the relative sizes of the objects we'll be studying.

flea
1 mm

protczoau
0.1 mm

whit e hloo d
cell

0 .01 m m

E. coli
1 11m

T 2 ph age
0.1 11m

microt ub ule
25 nm

DNA
2 nm

atoms in
DNA

0.2 nm

Figure 2.1: (Icons.) Dramatis persona? Approximate relative sizes of some of the actors in our story. T2 phage is a virus
that infects bacter ia, for example , Escherichia coli. Much of this book will be occup ied with phenomena relevant at length
scales from the protozoan dow n to the DNA helix. [Adapted from Kornberg, 1989.J

llf you're not familiar with the vocabulary of this chapter, you will probably want to supplemen t it by
reading the openi ng chapters of any cell biology book; see for example the Jist at the end of this chapter.

35
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Figure 2 .2 : (Drawing, based on light microscopy.) Relative sizes. (a ) Five Escherichia coli
bacteria cells (enlarged in Figure 2.3). (b) Two cells of baker's yeast. (e) Human red blood
cell. (d) Human white blood cell (lymphocyte). (e) Human sperm cell. (f) Human epider mal
(skin) cell. (g) Hum an str iated muscle cell (myofibr il). (h) Hum an neuron (nerve cell). [From
Goodsell. 1993.1

This chapter has a very di fferent flavor from the others. For one thing, there will
be no formulas. Most of the assertions will ap pear with no attempt to just ify them.
Most of the figu res have detailed captions, whose meaning may no t be clear to you
unt il we study them in de tail in a later chapter. Don't worry about this. Righ t now,
your goal should be to finish this chapter knowing a lot of the v.'l~~~].lary we will use
later. You sho uld also come away with a general feeling for the hierarchy of scales in a
cell and a sense of how the govern ing principles at each scale emerge from, but have
a character different from, those at the next deeper scale.

Finally, the exqui site structures on the following pages practically beg us to ask:
How can a cell keep track of everyt hing , whe n there's nobody in there ru nning the
factory? Th is question has a ver y long answer, of course. Among the many physical
ideas relevant to thi s question , however, three will do minate this chapter and the rest
of the boo k:
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0.1 I' m

d

Figu re 2 .3 : (Drawing, based on electron microscopy.) Relative sizes. (a ) Several molecules
and macromolecules (enlarged in Figure 2.4). (b) A bacter ial cell (see Figures 2.1 and 2.2a),
Visible st ructures include flagella (trailing to the right ), the nucleoid (white region in center),
and the thick, rigid cell wall. The flagella propel the bacterium by a mechan ism discussed in
Chapter 5; they are, in turn, driven by motors discussed in Chapter II. (e) Human immunod
eficiency virus. (d ) A bacter ial virus, or phage. [From Goodsell, 1993.]

Biological question: How do cells organize their myriad ongo ing chemica l processes
and reactan ts?
Physical ideas: a. Bilayer membranes self-assemble from their compo nent molecules;
the cell uses them to part ition itself into separate compart ments. b. Cells use active
transport to bring synthesized materials to part icular destinations. c. Biochemical
processes are highly specific: Most are med iated by enzymes, which select one par
ticular target molecule and leave the rest alone.

2.1 CELL PHYSIOLOGY

Roadmap Section 2.1 will begin our story by recalling some of the characteristic
activities of living cells, then turn to their overall structural features. The physical
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a .

h r--.

c.,.
10 nm

Figure 2.4 : (Drawing, based on st ructur al data.) Relative sizes of the objects shown in
panel (a) of Figure 2.3. (a) Single carbon atom. (b) Glucose, a simple sugar molecule. (e ) ATP,
a nucleoti de. (d ) Chlorophyll molecule. (e) Transfer RNA, or tRNA. (f) An ant ibod y. a protein
used by the immune system. (g) The ribosom e, a complex of protein and RNA. (h) The virus
responsible for polio. (i) Myosin, a molecular machine discussed in Chapter 10. mDNA. a
nucleic acid. Chapter 9 will discuss the mechan ical properties of long molecules like this one.
(k) F-actin, a cytoskeletal eleme nt. (I) Ten enzymes (protein machines) involved in glycolysis,
which is a series of coupled chemical reactions that prod uce ATP, the energy cur rency mole
cule, from glucose. Chapter II will discuss ATP production. (m) Pyruvate dehydrogenase, a
large enzyme complex also discussed in Chapter 11. IFrom Goo dsell, 1993.1

aspects ofcell functi on and st ructure are sometimes called cell physiology.Section 2.2
will turn to th e ultimate molecular constituents of cells, progressively bu ilding from
the smallestto the largest. By this point, we will have a beaut iful, but static, picture
of the cell as a collection of architectural elements. To close the circle of logic, we'll
need to understand something abo ut how these element s get constructed and, more
generally, how the cell's othe r activities come about. Thus, Section 2.3 will introduce
the world of mo lecular devices. This third aspect of cells is the primary focus of this
book, although along the way, we will touch on the others, and even occasionally go
beyond cells to organisms.



Color Figure 1: (Fluorescence micrograph.) Newt lung cell in which the DNA is stained
blue and microtubules in the cytoplasm are stained green. This network of rigid cytoskcletal
filaments helps maintain the cell's required shape as weIl as supplying the tracks along which
kinesin and other motors walk. Chapter 10 will discuss these motors.



Colo r Figure 2: (Com pute r simulation.) The struc ture of a bilayer membrane formed by the
self-assembly of phospholipid molecules. Imagine repeating the arrangement of molecules up
ward and downward on the page, and into and out of the page, to form a double layer. The
phosp holipid molecules are free to move abo ut in each layer, but they remain oriented with
their polar head groups (red) facing outward, toward the surrounding water (blue), and their
nonpolar hydrocarbon tails (yellow) pointing inward. Chapter 8 will discuss the self-assembly
of structures like these. For com putational simplicity the molecules have been simplified: Each
yellow segment represents four carbon atoms in the real molecule. [Digital image kindly sup
plied by S. Neilsen; see Nielsen & Klein, 2002.)



Co lo r Figure 3 : (Fluorescence optical micrograph.) Experim en tal demonstration that ki
nesin and microtubules are fou nd in the same places within cells. Th is cell has been doubly
labeled with fluorescent an tibodies labeling both kinesin (yellow ) and tubulin (grcclI ). The ki
ncsin, atta ched to transport vesicles, is mostly associated with the microtubule net work , as seen
from the orange color where fluorescen ce from the two kinds of an tibodies overlap. [Digital
image kindly supplied by S. T. Brady; see Brady & Pfister, 199 1.1
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Co lo r Figure 4 : (Video photomicrograph frames.) Motility assay of the tluorescently labeled
molecular motor C35 1, a single-headed member of the kinesin family. A solution of C351
with concentration between 1- 10 pM was washed over a set of micro tubules fixed to a glass
slide. The microtubu les were also tluorescently labeled; on e of them is show n here (green) . The
moto rs ( red) attached to the microtubule, moved along it for several seconds, then detached
and wan dered away. Two individua l moto rs have been chosen for study; their successive lo
cations are marked by tr iangles and arro ws, respectively. Generally the mo tor s moved st rictly
in one di rection, but backward stepping was also observed ( triangles), in cont rast to ordinary,
two-headed kinesin . (From Okada & Hirokawa, 1999.J



Colo r Figure 5: (Structure rendered from atomic coordinatcs.) Phosphoglycerate kinase.
This enzyme performs one of the steps in the glycolysis reaction; sec Section lOA . In th is figure
and Color Figure 6, hydrophobic carbon atoms arc white, mildly hydrophilic atoms are pastel
(light blue for nitrogen and pink for oxygen), and strongly hydrophilic atoms carrying a full
electric charge are brightly colored (blue for nitrogen and red for oxygen). The concept ofhy
drophobicity and the behavior of electrostatic charges in solution are discussed in Chapter 7.
Sulfur and phosphorus atoms are colored yellow. Hydrogen atoms are colored according to
the atom to which they are bonded. The enzyme manufactures one ATP molecule (green ob
ject ) with each cycleof its action . IDigital image kindly supplied by D. Goodsell; see Goodsell,
1993.]

Colo r Rgu re 6: (Composite of structures rendered from atom ic coordinates.) A DNA
binding protein . The color scheme is the same as Color Figure 5. Repressor proteins like this
one bind directly to the DNA doubl e helix, physically blocking the polymerase that makes
messenger RNA. They recognize a specific sequence of DNA, generally blocking a region of
10-20 basepairs. The binding does not involve the formation of chemical bond s; instead it
uses the weaker interactions discussed in Chapter 7. Repressors form a molecular switch, tu rn
ing off the synthesis of a given protein unt il it is needed. [Digital image kindly supplied by
D. Goodsell; see Goo dsell, 1993.1
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Cells are the fund amen tal functional units of life. Whe ther alone or integrated
into communities (organisms), individual cells perform a common set of activities .
Even though a particular cell may not do everything on the following list-there are a
couple hundred distinct, specialized cell types in our bodies, for example-still there
is enough overlap between all cells to make it clear that all are basically similar.

Like entire organisms, individualcells take in chemical or solarenergy. As discussed
'"r l d ,"

in Chapter I, most of this energy gets discarded as heat , but a fraction turns into
useful mechanical activity or the synthesis of ot her energy-storing molecules. via a
set of processes co llectively called metabolism. Chapter 11 will examine one aspect
of this remarkably efficient free energy transduction process.

In particular, each cell manufactures more o f its ow n internal structure in order to
.~~.,. ~ N -'"

grow. Much of this structure consists of a versatile class of macromolecules called
proteins. Our bodies contain about 100 000 different protein types. We will return
many times to the interaction s responsible for protein structure and function .

Most cells can reprod uce by mitosis, a proce ss of dup licating their contents and
splitting in two. (One cell type instead creates germ cells by meiosis; see Sec
tion 3.3.2.)

).fi f-

All cells must maintain a particular internal composi tion, sometimes in spite of
widely varying external conditions. Cells generally must also maintain a fixed inte
rior volume (see Chapter 7).

By maintainin g concentration differences of elec trically charged atoms and mole
cules (generically called io ns), most cells also maintain a resting elec trical potential
difference between their interiors and the outside world (see Chapter Il ). Nerve
and muscle ceils use this resting potenti al for their signaling needs (see Chapter 12).

Many cells move abo ut, for example, by crawling or swimming. Chapter 5 discusses
the physics of such motions.

Cells sense environmental co nditions for a variety of purp oses:

I. Sensing the environment can be one step in a feedback loop that regulates the
cell's interior composition .."

2. Cells can alter their behavior in response to opportunit ies (such as a nearby food
supply) or hardships (such as drought). '_

3. Single cells can even engage in attack, self-defense, and evasive maneuvers upon
detecting oth er cells.

4. The highly specialized nerve and muscle cells obtain input from neighboring
nerve cells by sensing the local concentration of particular small molecules, the
neu rotran smitters, secreted by those neighbors. Chapter 12 will discu ss this,
process.

Cells can also sense their own internal condition s as part of feedback and control
loops. For example, an abundant supply of a particular product effectively shuts
down further production of that product. One way feedback is implemented is by
the physical distortion of a molecular machin e when it binds a messenger molecule,
a phenom enon cailed alloster ic control (see Chapter 9).
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• As an extreme form of feedback, a cell can even destroy itself. This mechanism ,
called apoptosis, is a normal part of the development of higher organisms. for ex
ample. removing unneeded neuron s in the develop ing brain.

2.1.1 Internal gross anatomy

Paralleling the large degree of overlap between t~e functions of all cells, we find a
correspondingly large ove rlap between their gross internal architecture: Most .cells
share a common set of quasipermanent structures. many of them visible in optical
microscop y. (Electron microscopy reveals finer substructure, sometimes down to a
fraction ofa nanometer, but its use involves killing the cell.)

Prokaryotes and eukaryotes The simplest and most ancient types of cells are the
prokaryotes, including the familiar bacteri a (Figure 2.3b)2 Bacteria are typically
abo ut one micrometer long; their gross anatomy consists mainly of a thick, rigid
cell wall that sur rounds a single interior compartmen t. The wall may be studded
with a variety of structures, such as one or several flag~lla) long appendages used for
swimming (Chapter 5). Just inside the wall lies a th in layer called th e plasma mem
brane.

Plants, fungi, and animals are collectively called eukarvotes. Baker's yeast, or
Saccharomyces cerevisilE, is an example of a simple eukaryot ic cell (Figure 2.5). Eu
karyotic cells are bigger than prokaryotes, typica lly 10 u tt: or more in diameter. They
too are bounded by a plasma membran e, although the cell wall may be either absent
(in animal cells) or presen t (in plant s and fungi) . Eukaryotes contain var ious well
defined internal compartmen ts (examples of org anelles), each bounded by one or
more membranes roughly similarto the plasma membrane.' In particular. eukaryotic
cells are defined by the presence of a nucleus. The nucleus contains the genetic mate
rial, which con denses into visible chromosomes during cell division (Section 3.3 .2) ;
the rest of the cell's contents is collectively called the cytoplasm. The nucleus loses its
defin ition during division , then re-form s.

Membrane-bounded structures in eukaryotes In addition to a nucleus. eukaryotic
cells contain mitochondria, sausage-shaped organelles about I I-'m wide (Figure 2.6).
The mitochondria carry out the final stages of the metabolism of food and the con
version of its chemical energy into molecules of ATP, the internal energy currency of
the cell (see Chapter 11): Mitocho ndria divide independently of the sur rounding cell;
when the cell d ivides, each dau ghter cell gets some of the parent's intact mitochon 
dria.

2Because prokaryotes were originally defined only by the absence of a well-defined nucleus. it took some
time to realize that they actually consist of two distinct kingdom s, the bacteria (including the familiar
human pathogen s) and the archea (including many of those fou nd in environments with extreme acidity,
salt conce ntration, o r high temperature).
"One definition of organe lle is a discrete structure or subcompartment of a cell specialized to carry o ut a
particular functio n.
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Figure 2.5: (Electron micrograph .) Budd ing yeast cell, asimple eukaryote. Th e nucleus (n) is
in the process of dividing. Pores in the nuclear surface are visible. Also show n is a vacuo le (v)

and several mitochondria trn, lower left ). The sample was prepared by flash-freezing, cleaving
the frozen block, then heating gently in a vacuum chamber to remo ve outer layers of ice. A
replica in a carbon-platinum mixture was then made from the sur face thus revealed and finally
exam ined in the electron microscope. [From Dodge , 1968.]

Eukar yotic cells also contain several other classes of organelles:

• The endoplasmic reticulum is a labyrinthine st ructure atta ched to the nucleus. It
serves as th e main factory for the synthesis of the cell's membran e structures, as
well as mo st of the produ cts destined for export outside the cell.

• Products from the endoplasmic reticulum in turn get sent to a set of organelles
called the Golgi apparatus for fur ther processing, modification , sorting, and pack
aging.



42 Chapter 2 What's Inside Cells

inner membrane ATP sy nthase enzymes

intermem brane space

matrix outer membran e

a

Figu re 2 .6 : (Schematic; scanning electron micro graph.) (a ) Locations of various internal structures in the mitochon 
drion. The ATP synthase particles are molecular machines where ATP produ ction takes place (see Chapter 11). They are
studded thro ugho ut the mitochondrion's inner membrane. a partition between an interior compartment (the matrix )
and an intermembrane space. (b) Interior of a mito cho ndr ion. The sample has been flash-frozen, fract ured. and etched
to show the convoluted inner mem brane (arrows). l( a ) Adapted from Karp. 2002. (b) From Tanaka, 1980.1

Green plant s contain chloroplasts. Like mitochondria, chloroplasts manu facture
th e internal energy-carrying molecule ATP. Instead of metabolizing food, however,
they obtain high-quality energy by capturing sunlight.

The cells of fun gi, such as yeast, as well as those of plants also contain interna l stor
age areas called vacuoles (see Figure 2.5). Like the cell itself, vacuoles also maint ain
an elect rostatic potential difference across their bounding memb ran es (see Prob 
lem 11.3).

The pa rt of the cytoplasm not contained in any membrane-bounded organelle is
collectively called the cell's cytosol.

In add ition, cells create a variety of vesicles (small bags). Vesicles can form by
endocytosis. a process occurring when a part of the cell's outer memb rane engulfs
some exterio r object or fluid, then pinches off to form an intern al com partment. The
resulting vesicle then fuses with internal vesicles containing digestive enzymes, which
break down its contents. Another class of vesicles are the secretory vesicles, bags con
taining pro ducts destined for delivery outside the cell. A particularly importan t class
of secretory vesicles is the synaptic vesicles, which hold neurotransmitters at the ends
of nerve cells. When triggered by an arriving electr ical impulse, the synaptic vesicles
fuse with th e ou ter mem brane of the nerve cell (Figure 2.7), release their contents,
and thus stimu late the next cell in a neura l path way (see Cha pter 12).

Other elements In addition to the membran e-bou nded structures listed above, eu
karyo tes construct various other structures that are visible with the light microscope.
For example, du ring mitosis, the chromoso mes condense into individu al objects,
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Figure 2 .7: (Transmission electron micro graph.) Fusion of synaptic vesicles with the nerve
cell memb rane (up per solid line) at the ju nction , or synapse, betwe en a neuron (above ) and
a muscle fiber (be low) . A vesicle at the left has arrived but not yet fused; two in the cent er
are in the process of fusion, releasing thei r conten ts; one on the right is almost completely
incorporated into the cell membrane. Vesicle fusion is the key event in the transmission of
nerve impulses from one neuron to the next (see Chapte r 12). [Digital image kind ly supplied
by j . Heuser. J

DNA (10 om
in d ia meter)

nucleosomes
(10 nm in diameter)

chromatin fibe r
(30 nm in d ia me ter)

mitotic chromosome
(tw o chromat ids, each
600 nm in diameter)

Figure 2 .8 : (Schema tic.) One of the 46 chro mosomes of a somatic (ord inary, or non germ ) hu man cell. Just prior to
mitosis, every chromosome cons ists of two copies called chromatids, each consist ing of tightly folded fibers called chro
matin . Each chromatin fiber consists of a long DNA molecule wrap ped around a chain of pro teins called histones forming
complexes called nud eosom e particles. [From Nelson & Cox, 2000.J

each with a character istic shape and size (Figure 2.8). Anoth er class of structures,
the cytoskeletal elements, will app ear in Section 2.2.4.

-«
+

2.1.2 External gross anato my

Although many cells have simple spherical or brick-shaped form s, still others can
have a mu ch richer external anatomy. For example, the fantastically complex,
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Figure 2.9: (Scanning electron rnicrograph.) Crawling cell. At the leading edge of this fibro
blast cell (upper left ), filopodia, lameIlipodia, and ruffles project from the cell surface. The cell
crawls byextending its leading edge to the left. [Digital imagekindlysupplied by J. Heath.)

branched form of nerve cells (see the cover of this book) allows them to connect
to their neighbors in a correspondingly complex way. Each nerve cell, or neuron, has
a centrai cell bod y (the som a) with a branch ing array of projections (or processes).
The processes on a neuron are subdivided into many "input lines," the dendr ites,
and one "output line;' the axon. The entire branched structure has a single interior
compartment filled with cytoplasm. Each axon terminates with one or more axon
termin als (or boutons) containing synaptic vesicles. A narrow gap, or synapse , sep
arates the axon terminal from one of the next neuron's dendrites. Chapter 12 will
discuss the transmission of information along the axon and from one neuron to the
next.

Still other elements of the external anatomy of a cell are transient. For example,
consider the cell shown in Figure 2.9. This cell is a fibroblast; its job is to crawl be
tween other cells, laying down a trail of protein that then forms connective tissue.
Oth er crawling cells include the osteoblasts, which lay down mineral material to make
bones, and Schwann cells and oligodendroglia, which wrap themselves around nerve
axons, creating layers of electrical insulation.

The fibroblast in Figure 2.9 has many protrusions on its leading edge. Some
of these protrusions, called filopodia, are fingerlike, about 0.1 Jlrn in diameter and
several micrometers long. Others, the lamellipodia, are sheetlike. Single-celled or
ganisms such as Amreba push out thicker protrusions called pseudopodia. All these
protrusions form and retract rapidly, for example. searching for other cells with ap
propriate signaling molecules on their surfaces. When such a surface is found, the
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Figure 2.10 : (Scanning elect ron micrograph.) The ciliate Didinium, a single-cell animal
fou nd in st ill fresh water . Didiniu m's "mouth" is at the end of a sma ll projection, sur rounded
by a ring of cilia. Chapter 5 will d iscuss how cilia drive fluid flow. [From Shih & Kessel, 1982.]

crawling cell adheres to it, pulling the rest of its body along . In this way, cell crawling
can lead to the construction of complex multicellular tissues: Each cell searches for a
proper neighbor, then sticks to it.

Other specialized cells, such as those lining the human intestine, have hundreds
of tiny fingerlike projections. called microvilli, to increase their surface area for fast
absorption of food. Other cells have similarly shaped projections (cilia and eukaryotic
flagella) that actively beat back and forth (Figure 2.10). For examp le, the protozoan
Paramecium has cilia that propel it through fluid ; conversely, the stationary cells lin
ing your lun"gs wash themselves by constantly transporting a layer of m ucus upward .
Chapter 5 will discuss this pro cess. Figure 2.10 shows yet another use for cilia: Th ese
appendages brin g food particles to the "mouth" of a single-celled animal.

Another class of small anatomical features includes the fine structure of the den
drite on a neuron. The actual synapse frequently involves not the main body of the
dendrite, but a tiny dendritic spine projec ting from it (fine bumps in the cover illus
tra tion of this book).

2.2 THE MOLECULAR PARTS LIST

As promised at the start of this chapter (Roadmap, page 37), we now take a brief
tour of the chemical world, from which all the beautiful bio logical structures shown
earlier arise. We will not be particul arly concer ned with the chemical details of the
molec ules shown in this section. Nevertheless, a certa in minimum of terminology is
needed to express the ideas we will study.
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2.2.1 Small molecules

Of the hundred or so chemically distinct atoms, our bodies consist mostly of just six:
carbon, hydrogen, nitro gen , oxygen, pho sphorus, and sulfur. Other atoms (such as
sodium and chlori ne) are present in smaller amounts . A subtle change in spelling
communicates a key prop erty of many of these single-atom chemicals: In water, neu 
tral chlorine atoms (abbreviated Cl) take on an extra electron from their surround
ings, becoming chloride ion s (CI- ). Other neutral atoms lose one or more electrons
in water, such as sodium atoms (abbreviated Na), whi ch become sodium ions (Na + ).

Of the small molecules in cells, the most important is water, which constitutes
70% of our bod y mass. Chapter 7 will explore some of the rem arkable properties
of water. Another imp ortant inorganic (that is, containing no carbon) molecule is
pho sphoric acid (H, P0 4 ) ; in water, this molecule separates into the doubly charged
inorganic phosphate (HPO; - , also called Pi) and two positively charged hydrogen
ions (called protons). (You'll look more carefully at the dissociation of pho spha te in
Prob lem 8.6.)

An important group of organic (containing carbon) mol ecule s have atoms
bonded into rin gs:

Simple sugars include glucose and ribose (compounds w ith one ring) , and sucrose
(cane sugar, w ith two rings).

The four bases of DNA (see Section 2.2.3) also have a ring structure. On e class (the
pyrimidines: cyto sin e and thymine) has on e ring; the oth er (the purines: guanine
and adenine) has two. See Figure 2.11.

A slightly different set of four bases is used to construct RNA: Thymine is replaced
by the simil ar one-ring molecule uracil.

The ring structures of all these molecules give them a fixed, rigid shape. The bases
are flat (planar) rings. Joining a base to a simple sugar (ribose or deoxyribo se) and
a pho sphate yields a nucleotide. For example, the nu cleotide form ed from the base
adenine, the sugar ribo se, and a single phosph ate is called adenosine monopho s
phate, or AMP. The correspondi ng molecules with two or thr ee pho sphate groups
in a row are called adenosine dipho sphate (ADP) or adenosine triphosphate (ATP),
respectively (Figure 2.12). Such molecules are sometimes referred to generically as
nucl eoside triphosphates, or NTPs.

Nucleos ide triphosphates such as ATP carry a lot of stored energy, due in part to
the self-repulsion of a large electric charge (equivalent to three proto ns) held in close
proximity by the chemical bonds of the molecule. (Chapter 8 will discuss the idea of
stored chemical energy and its util ization .} In fact, cells use ATP as a nearly uni versal
internal energy currency ; they maintain high interior concentrations of ATP for use
by all their molecular machines as needed.'

Two more classes of small molecules are of special interest to us, The first of
these, the fatty aci ds , have a simple structure: They consist of a chain of carbon

4Cells also use guanosine triphosphate (GTP) and a handful ofothersmall molecules forsimilarpurposes.
Nucleotides also serve as internal signaling molecules in the cell. A modified form of AMP,called cyclic
AMP orcAMP, is particularly important in this regard.
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Figure 2 .11 : (Molecular structure. ) J. Watson and F. Crick demonstrate the complementarity
of DNA basepair s. The dotted lines denote hydrogen bon ds (see Chapter 7). The shapes and
chem ical structure of the bases allow hydrogen bonds to form opt imally on ly between adenine
(A) and thymine (T) and between guan ine (G) and cytosine (C); in these pairings, atoms that
are able to form hydrogen bonds can be bro ught close together witho ut distorting the bases'
geometries. [Cartoon by Larry Gonick, from Gonick & Wheelis, 1991.J
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Figure 2.12 : (Molecular structure d iagrams. } Adenosine triph osphate is hydrol yzed as part of many biochemical pro
cesses. An ATP and a water molecule are both split, yielding ADP, inorganic phosphate (Pd. and a proton (H+). A similar
reaction yielding abo ut the same amount of free energy splits ATP into adenosine monoph osphate (AMP), a com po und
with one phosphate grou p, and pyrophosphate, or PPj. Chapter 8 will discuss chemical energy storage; Chapter 10 will
discuss molecular motors fueled by ATP. [Adapted from Alberts et al., 1997.]
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Figure 2 .13 : (Mol ecular structure diagrams.) (a) Formatio n of a polypept ide from amino
acids by the condensation reaction , essentially the reverse of the hydrolysis reaction shown in
Figure 2.12. The four atom s in the gray box constitute the peptide bon d. (b) A sho rt segment
of a polypeptide chain, showing three residues (amino acid mo no mers) joined by two peptide
bonds. The residues con sist of a common backbone, with various side groups attached to it.
The residu es shown are respectively histidine, cysteine, and valine. Chapters 7 and 8 will dis
cuss the interactio ns between the residues that determin e the protein's structure; Chapter 9 will
briefly discuss the resulting complex arrangement of protein substates. [Adapted from Alberts
et aI., 2002 .1

atoms (for examp le, 15 for palmitic acid, derived from palm oil), with a carboxyl
group (- COOH) at the end. Fatty acids are partly important as building blocks of the
phospholipids to be discussed in Section 2.2.2. Finally, the amino acids are a group
of about 20 building blocks from which pro teins are constructed (Figure 2.13). As
shown in the figure, each amino acid has a commo n central backbone, with a "plug"
at one end (the carboxyl group) and a "socket" at the other (the amino group, - NH, ).
Attached to the side of the central carbon atom (called the a-carbon ) is a side group
(genericallydenoted by R in Figure 2.13a) determining the identity of the amino acid;
for example, alanine is the amino acid with the side group -CH 3. Protein synthesis
consists of successively attaching the socket of the next amino acid (or residue) to
the plug of the previous one by the condensation reaction in Figure 2.13a, thereby
creating a polymer called a polypept ide. The C-N bond formed in this process is
called the peptide bond. Section 2.2.3 and Chap ter 9 will sketch how polypeptides
turn into functioning proteins.

2.2.2 Medium-sized molecules

A huge number of medium -sized molecules can be formed from the handful ofatoms
used by living organisms. Remarkably, only a tiny subset of these are actually used
by living organisms. Indeed, the list of possible compou nds with mass under 25 000
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Table 2.1 : Molecular composition of bacterial cells, by weight.

molecular class

Small molecules
ions, other inorganic small molecules
sugars
fatt y acids
indiv idual amino acids
individual nucleotides
water

Medium and big molecules
protein
RNA
DNA
lipids
polysaccharides

(FromAlberts er al., 1997.1

percentage of total cell weight

(74% of total cell weight)
1.2
1

1
0.4
0.4

70
(26% of total cell weight)

15
6
I
2
2

times that of water probably run s into the billion s, and yet fewer than a hund red
of these (and their polymers) account for most of the weight of any given cell (see
Table 2.1).

Figure 2.14 shows a typical phospholipid molecule. Phospholipids are formed
by joining one or two fatty acid chains ("tails"), via a glycerol molecule, to a phos
phate and thence to a "head group ." As described in Section 2.3.1 and Chapter 8,
phospholipids self-assemble into thin membranes, including the one surrounding
every cell. Phospholipid molecules have long but informative nam es; for example, di
palmitoyl phosphatidylcholine (or DPPC) consists of two ("di" ) palmit ic acid chains
joined by a phosphate to a choli..e head group. Similarly, most fats consist of thr ee

hydrophobic tails

polar head group 1 nm

Rgure 2.14: (Structure.) Space-filling model of a phospholipid molecule. Two hydrocarbon
tails (right) join to a head group (left) via phosphateand glycerol groups (middle). Molecules
like this one self-assemble into bilayer membranes (Colo r Figure 2 and Figure 2.20 ), which
in turn form the partitions between cell compartments. Chapter 8 will disc uss self-assembly.
[From Goodsell, 1993 .1
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fatty acid chains, each joined by a chemic al bond to one of the three carbon atoms in
a glycerol molecule, to form a tr iglyceride. Th e joinin g is accomplished by a conden
sation reaction similar to the one shown in Figure 2.13.

2.2.3 Big m olecu les

Cells create giant mo lecules as polymers . long chains of similar units.

Polynucleotides Just as amino acids can be joined into polypeptide chains, so, too
can chains of nucleotid es be stru ng together to form polynucleotides. A polynu
cleotide formed from nucleotides containing ribose is called a ribonucleic acid, or
RNA; the analogous chain with deoxyribose is called a molecule of deoxyribonucleic
acid, or DNA. Watson and Crick's insight (Section 3.3.3) was that not on ly do the flat
bases of DNA fit each other precisely, like jigsaw pu zzle pieces (Figure 2.1I); but they
also can nest neatly in a helical stack (Figure 2.15). In this helix, the bases po int in
ward and the sugar and phosphate groups form two backbones on the outside. Cells
do not manufacture double-stranded RNA; but a single RNA strand can have sho rt
tracts that complement others along the chain, a situation giving rise to a partially
folded struc ture (Figure 2.16).

Each of your cells contains a total of about a meter of DNA, consisting of 46
pieces. Manipu lating such long threads, witho ut turning them into a useless tangle.
is not easy. Part of the solution is a hierarchical packaging scheme: The DNA is wo und
onto protein "spools," to form complexes called nudeosom es. The nucleosom es in
turn wind into higher order structures, and so on up to the level of entire condensed
chromosomes (Figure 2.8).'

Polypeptides Section 2.2.1 mentioned the form ation of polypept ides. The genetic
message in DNA encodes only the polypep tide's prima ry structure, or linear se
quence of amino acids. After the linear polypeptide chain has been synthesized, it
folds into an elaborate three-dimensional structure-a pro tein- such as those seen
in Figure 2.4£, i, k, I. The key to unde rstanding this process is to no te that individ
ual amino acid residues o n a protein may attract or repel each other. Later chapters
will discuss how the polypeptide's primary structure thus determine s the protein's fi
nal, three-dimensiona l folded structure. (In contrast, the monomer units composing
DNA are all negatively charged, so they repel each other uniformly: DNA by itself
does not spontaneously fold.)

The lowest level of folding (the secondary structure ) involves interactions be
tween residues near each other alon g the polypeptide chain. An example that will
interest us in Chapter 9 is the alpha heli x, shown in Figure 2.17. At the next higher
level, the secondary structures (along with other, disord ered regions) assemble to give
the protein 's terti ary structure, the overall shape visible in the examples of Figure 2.4 .
A simp le protein consists of a single chain of 30-400 amino acids, folded into a ter
tiary structure that is dense, roughly spherical, and a few nanometers in diameter (a
"globular" protein).

"Simpler forms of DNA packaging have also been found in prokaryotic cells.
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Figure 2.15 : (St ructure rendered from atomic coordi nates.) Stereo image of the DNA do uble
helix. To view this image. begin with your nose a few centimeters from the page (i f you're
nearsighted, remove your glasses). Imagine staring through the page at a distan t object. If
necessary. rotate the page a few degrees, so that the two dots near the centers of each pan el are
aligned horizontally. Wait until the dots fuse. Co ncentrate on holding the dots fused as you
slowly move the page away from your nose. When the page is far enough away for your eyes to
focus on it, the three -dimensional image will jump off the page at you. The st ructure is abo ut
2 nm wide. The port ion show n consists of twelve basepairs in a vertica l stack . Each basepa ir
is roughly a flat, ho rizontal pla te about 0.34 nm th ick. The stack twists throug h slightly more
than one full revolution from top to botto m. [From Dickerson et al., 1982.]

More complex proteins consist of multiple polypeptide chain subunits, usually
arranged in a symmetrical array-the quaternary structure. A famous example is
hemoglobin, the carr ier of oxygen in your blood (Chapter 9), which has four sub
units. Many membrane channels (see Section 2.3.1) also consist of four subunits.

Polysaccha rides Polysaccharides form a third class of biopolymers (after nucleic
acids and proteins). These are long chains of sugar molecules. Some, like glycogen,
are used for long-term energy storage. Others help cells to identify themselves to one
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Fig ure 2.16: (Struc ture rendered from ato mic coordi nates.) A single strand of RNA uses base
pairing and other interact ions to form a unique thre e-dimensional stru cture. The molecule
shown is a tr ansfer RNA from yeast; it bin ds the am ino acid phenylalanin e. transports it to the
ribosome. then releases it (see Figure 2.24). Th e flat , stacked nucl eotides are sho wn as stick
structu res mostly on the interior; the sugar-phosphate backbone atoms are instead shown as
sphe res. to reveal the do uble helical nature of parts of the folded mo lecule. Longer stra nd s
of RNA can have several pai rs of compl ementar y stretches, leading to more complex folded
structures tha n the one shown here. Section 6.7 will discuss how the foldi ng and unfolding of
RNA can be con tro lled by external fo rces.
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Figu re 2.17 : (Molecu lar st ruct ure fro m crystallography data. ) A segment of the alpha helix
st ruct ure. Nine successive residues are shown . Each residue's side grou p has been replaced by a
single ball, labeled RI • • • • • R9 • Each residu e has a hydro gen atom boun d to one of the nitrogens
on the chain. Each of these hydrogens loses its electron to an oxygen located four units farther
down the cha in, to form a hydrogen bo nd (thin lines). The hydrogen bonds help to stabilize
the ordered, helical structure against thermal disruption. Chapter 9 will discuss the forma tion
and loss of ordered structures like this one under changes in environmental conditions. The
struc ture shown is "right-handed" in the following sense: Choose eithe r direction along the
helix axis, for example . upwa rd in the figure. Point your right thumb along this direction.
Then as you proceed in the direction of your thumb, the peptide backbone rot ates around the
axis in the same direction as your fingers point (opposite to the direction you'd have gotten

using your left han d).
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another. When crosslinked by short peptides, polysaccharides can also form a tough
two-dimensional mesh, the peptidoglycan layer that gives the bacter ial cell wall its
strength.

2.2.4 Macrom olecular assemblies

The previous section mentioned that individual protein chains can form co nfeder
ations with definite shapes, the quaternary structure of a protein assembly. Another
possibility is the construction of a linear array of polypeptide subunits, extend ing for
an arb itra rily long distance. Such arrays can be thought of as polymers made up of
monomers that are them selves prote ins. Two examples will be of particular interest
in Chapter 10: microtubules and F-actin.

The organelles men tioned in Section 2.1.1 are suspended with in the eukaryotic
cell's cytosol. The cytosol is far from being a structureless, fluid soup. Instead, a host
of structural elements pervade it, both anchoring the organelles in place and con fer
ring mechanical integrity upon the cell itself. These elements are all long, polym eric
structures; collectively, they are called the cytoskeleton.

Th e mo st rigid of the cytoskeletal elements are the micro tubules (Figure 2.18).
Microt ubules are 25 nm in diameter and can grow to be as long as the ent ire cell.
They form an interio r network of girders, helping the cell to resist overall deforma
tion (Color Figure I). Another fun ction of micro tubules is to serve as highways for
the trans port of cell products from one place to another (see Figure 2.19 and Sec
tion 2.3.2).

Actin filaments (also called "filamento us" actin, or F-actin) form a second class
of cytoskeletal eleme nts. F-actin fibers are only 7 nm in diameter; they can be several
micrometers long (Figure 2.4k). A thin meshwork of these filaments underlies the
surface of the cell, form ing the cell's actin cortex. Filopodia. lamellipc dia, and mi
crovilli are all full ofact in fibers, which cross-link to one ano ther to form stiff bundles
that help to push these projections out of the cell. Finally,actin filame nts furni sh the
"tracks" along which single-molecule mot ors walk to generate muscle contraction
(Chapter 10).

Examples of even mo re elaborate protein assemblies includ e the shells surround
ing viru ses and the whiplike bacterial flagellum (see Figure 2.3 on page 37).

2.3 BRIDGING THE GAP: MOLECULAR DEVICES

We now have a catalog of bea utiful structures in cells, but little has been said abo ut
how they form from the molecules in Section 2.2, nor, indeed. abou t how cells carry
out the many other activities characteristic of life. To begin bridging this gap. this
section will sketch a few of the molecu lar devices cells use. The unity of living thin gs
becomes very apparent when we study molecular devices: All cells are somewhat sim
ilar at the level of physiology, but they are very similar at the molecular level. Today's
routine use of bacteria as facto ries for the expression of hum an genes testifies to this
unit y.
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Figure 2.18 : (Scanning force microgra ph; reconstruction from elect ron microscopy; drawing based on st ruc tural data.)
Structure of microtubules. (a) To make this image, a fine probe was scan ned over the microtubule and repeatedly brought
down to touch it, mapping out its th ree-dimensional struct ure. The protofilament s making up the microtubule are visible
as longitudinal lines on its surface. (b) Cross-section. again showing the pro tofilaments. (c) The drawing shows how the
sub units line up to form a parallel ar rangement ofpro tofilaments. Tubulin mon omers, called a and fJ. first link in afJ pairs
to for m the dumbbell-shaped sub units shown in the dr awing; the dumbbells then assemble to form the microtubule. The
vertical distance between adjacent fJ subunits is 8 nm. [Ia.b) Digital images kindly supplied by I. Schaap and C. Schmidt,
and by K. Downing; for (b) see also Li et al., 2002. (c) From Goodsell, 1996.]

2.3.1 The plasma membrane

To maintain its ident ity (for example. to control its composition ), every cell must
be surro unded by some sort of envelope. Similarly, every organelle and vesicle must
somehow be packaged. Remarkably, all cells have met all of these challenges with a
single molecular construction: the bilayer membran e (Color Figure 2). For example,
the plasma membrane surrounding any cell is a bilayer of this type and so looks like
a double layer under the electron microscope. All bilayer membranes have roug hly
similar chemical composition. electrica l capacitance, and other physical properties .

As its name implies. a bilayer membrane consists of two layers of molecules, pri
marily the phospholipids shown in Color Figure 2. Even though it's only about 4 nm
thick, the plasma membrane nevertheless covers the entire exterior of a cell, often
a billion or more square nanometers! To be effective. this fragile-looking structure
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a

microtubul e

Figure 2.19 : (Schematic; electron micrograph.) (a) Model showing how kinesin drags a vesicle along a microtubul e.
Chapter 10willdiscuss the action ofthis single-molecule motor. (b) Micrograph appearing to show the situation sketched
in (a). Arrows show the attachment points. Neurons from rat spinal cord were flash-frozen and deep-etched to create the
sample. [(a ) Adapt ed from Kandel et al., 2000. (b) Image kindly supplied by N. Hirakawa; see Hirakawa et al., 1989.]

must not rip: yet it mu st also be fluid enough to let the cell crawl, endocytose, and
divide. We will study the remarkable propert ies of phospholipid mo lecules th at rec
onci le these constra int s in Chapter 8.

We get another surprise when we mix phospho lipid mo lecules with water: Even
without any cellular machinery, bilayermembranes self-assemble spontaneously. Chap
ter 8 will show that th is phenomenon is driven by the same interactions that cause
salad dressing to separate spontaneously into oil and water. Similarly, microtubules
and F-actin can self-assemble from their subunits, without th e intervention of any
special machinery (see Figure lOA on page 408).

Bilayer membranes do far more th an partition cells. Th ey also carry a rich var iety
of mole cular devices (see Figure 2.20):

Integral membrane proteins span the membrane, projecting on both the inner and
outer sides. Examp les include the channels, ';'h ich allow the passage of specified
mo lecules under specified condition s; receptors, which sense exterior conditions;
and pumps, which actively pull ions and other material across a membrane (see
Figure 2.21).

Receptors can, in turn, conn ect to peripheral membran e proteins, which commu
nicate inform ation to the interior of the cell.

Still other integral membrane proteins anchor the cell's membrane to its under
lying act in cortex, helping the cell maintain its requ ired shape. A related example



/inn er
membrane

cytoplas m

matrix

oute r
mem bran e..............

10 nm

Figu re 2.20 : (Drawing based on structura l data.) Cross section of a part of a mitochondrion (Figure 2.6), showing its
two membranes. Each membrane consists of a lipid bilayer (Color Figure 2) with proteins embedded in (or attached to) it.
The surroundingcell's cytoplasm app ears at the bottom of the figure. (Its own plasma memb rane is similarly crowded with
embedded proteins.) The mitochond rion's outer membrane is pierced by channel-forming integral membra ne proteins
(labeled p). The folded inner membrane of the mitochondr ion above it is embedded with protein complexes involved in
making ATP. Chapter II will discuss one of these, the Fo-Fl complex (labeled f) . A part of the mitochondrial matr ix
appears at upper left. [From Goodsell, 1993.]
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Figure 2.21: (Schematic.) (a) Passive ion channel, like the ones giving rise to the Ohmic
part of membrane conductances (see Chapter 11). (b) The sodium-potassium pump (also
discussed in Chapter 11). The sketch has been simplified; actually, the pump is believed to
bind th ree Na+ ions and an ATP before its main conformatio nal change, which expels the
Nat 's. Then it binds two K+ ions, releases ADP and phospha te, pulls the K+'s inward, and
releases them. At this point, the pum p is ready to begin its cycle anew. {Adapted from Kandel
et al., 2000.1
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concerns the membrane of th e hu man red blood cell. A network of elastic protein
strands (in this case, spectrin) is anchored to the membrane byintegral membrane
proteins. This network deforms as the red cell squeezes thro ugh th e body's capil
laries, then pops the cell back to its no rm al shape after passage into a vein.

2.3.2 Molecular motors

As mentioned earlier, actin filaments form the "tracks" along which protein motors
walk, thereby generating mu scle contraction (see Chapter 10). Many other examples
ofwalking motors are know n in cells. Figure 2.19 shows a vesicle being dragged along
a microtubule to its destination at an axon terminal. This axonal transport brings
needed proteins to the axon termin al. as well as the ingredients from which synap
tic vesicles will be built . A family of single-protein mo tors called kinesins supply the
motive force for this and other motions, for example, the dragging of chromosomes
to the two halves of a dividing cell. Indeed , selectively staining both th e microtub ules
and th e kinesin (by attaching fluorescent markers to each) shows that they are gen
erally found together in the cell (Color Figure 3). It is even possible to follow the
progress of individual kinesin molecules as they walk along individual micro tubu les
(Color Figure 4). In such experiments, the kinesin molecules begin to walk as soon
as a supply of ATP molecules is added; they stop when th e ATP is used up or washed
away.

The cilia mentioned in Section 2.1.2 are also powered by walking mo tors. Each
cilium contains a bundle of microtubules. A moto r molecule called dynein attaches
to on e microtubule and walks along its neighbor, inducing a relative motion. Coordi
nated waves ofdynein activity create traveling waves ofbend ing in the cilium, making
it beat rhythmically.

Other motors generate rotary mo tion. Examples include the motor that drives
the bact erial flagellum (Figure 2.3b; see Chapters 5 and II ), and the one th at drives
the synthesis of ATP in mitochondria (Chapter II ). Rather th an being driven dire ctly
by ATP, both of these motors use as the ir "fuel" a chemical imbalance between the
sides of the membrane they span. Ultimately, the imba lance comes from the cell's
metabolic activity.

2.3.3 Enzymes and regulatory proteins

Enzymes are molecular devices whose job is to bind particular molecules, under par
ticular conditions, and promote particular chemical changes. The enzym e molecule
itself is not modifi ed or used up in this process-it is a cata lyst, or assistant, for a
process that cou ld in principle happen on its own . Enzymes may break down large
mol ecules, as in digestion , or build small mo lecules into big ones. One feature of
enzymes immediately apparent from their structures is their complicated and well
defined shape (Color Figure 5). Chapter 7 will begin a discussion of th e role of shape
in con ferring specificity to enzymes; Chapter 9 will look more deep ly into how the
shapes actually arise and how an enzyme maintains them despite random thermal
mot ion.
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Another context where binding specificity is cruc ial concerns control and feed 
back. Near ly every cell in you r body contains the same collection of chromosomes,"
and yet only pancreas cells secrete in sulin, only hair cells grow hair s, and so a ll. Each
cell type has a characteristic arra ngeme nt of genes that are active ("switched on" ) and
inactive ("switched off") . Moreover, ind ividual cells can modulate their gene activ
ities depending on exter nal circumstances: If we deny a bacterium its favori te food
molecule but supply an alterna tive food, the cell will suddenly sta rt synthesizing the
chemicals needed to metabolize what's available. The secret to gene switching is a
class of regul ato ry proteins, which recogni ze and bind spec ifically to the begin ning
of th e genes they contro l (Color Figure 6). One subclass, th e repressor s, can blo ck
the start of their gene, thereby preventing transcription. Other regulatory proteins
help with th e assembly of the transcriptional apparatus and have the opposite effect.
Eukaryotic cells have a more elaborate implem entation of the same general idea.

Finally, the pumps and channels em bedded in cell membran es are also quite spe
cific. For example, a remarkable pump to be studied in Chapter 11 has an operating
cycle in which it binds only sodium ions, ferr ies them to the other side of the mem
brane, then binds only potassium ions and ferries them in the other direction! As
shown -in Figure 2.21b, thi s pump also consumes ATP, in part because the sodium
ions are being pulled from a region of negative electrostatic pot ential (the cell's int e
rio r) to a po sitive region . thereby increasing their pot ential energy. According to the
First Law (Section 1.1.2 on page 6), such a transaction requires a source of ene rgy.
(The Exam ple on page 484 will exp iore th e energy budget of thi s pump in greater
detail. )

2.3.4 The overall flow of information in cells

Section 2.3.3 hinted that the cell's gene tic mess age (the genome) should not be re
garded as a "blueprint," or literal representation , of the cell, but rather as specifying
an algorithm, or set of in structions. for creating and maint aining the entire or gan 
ism con taining th e cell. Gene regulatory proteins supply some of th e switches turning
parts of the aigorithm on and off.

We can now describe a sim plified version of th e flow of information in cells
(Figure 2.22) .'

1. Th e DNA in the cell nucl eus contains the ma ster copy of the software. in dupli
cate. Und er ordinary circumst ances, the DNA is not modified bu t only copied
(repiicated ) during cell division . A molecuiar ma chine called DNA polymerase
accom plishes the replication. Like the mach ines mention ed in Section 2.3.2, DNA
pol ymerase is made of proteins. The DNA contains genes , wh ich consist of regu
latory regions and coding region s that specify th e am ino acid sequences of vario us

"Exceptions include germ cells (genes not present in duplicate) and hum an red blood cells (no nucleus at
, II).
"Some authors refer to this scheme as the "central dogma" of mo lecular biology, a playful bu t unfor tunate
phrase coined by F.Cr ick. Several amendme nts to this scheme are discussed in Section 2.3.4' on page 63.
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Fig ur e 2 .22 : (Schematic.) The flow of informa tion in a cell. Someti mes the produ ct of trans
lation is a regulatory prot ein , which interacts with the cell's genome. thereby creating a feed
back loop . [Adapted from Calladine & Drew, 1997.1

needed proteins. A complex organism may have tens of thousands of distinct
genes, whereas E. coli has fewer than 5000. (The simplest known organism, My
coplasma genitali""', has fewer than 500!) In add ition to the genes, the DNA con
tains a rich array of regulatory sequences for the binding of regulatory prot eins,
along with imm ense stretches with no known function.

2. Another molecular machine called RNA polymerase reads the master copy in
a process called tran scription (Figure 2.23). RNA polymerase is a combination
of walking motor and enzyme; it attaches to the DNA near the start of a gene,
then pulls the polymer chain through a slot, simultaneously adding successive
monomers to a growing "transcript" made of RNA (Section 2.2.3). The transcript
is also called messenger RNA, or mRNA. In eukaryotic cells, mRNA leaves the
nucleus through pores in the nuclear membrane (see Figure 2.5) and enters the

/ RNA polymerase

DNA

, , ,

10 nm

I-

Figure 2 .23 : (Drawing, based on structural data .) Transcript ion of DNA to messenge r RNA
by RNA polymerase, a walking motor. The polymerase reads the DNA as it walks along the
DNA strand, synthesizing a mRNA transcript as it moves. [From Goodsell, 1993.1
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Figure 2 .24 : (Drawing, based on structural data.) The information in messenger RNA is translated into a sequence of
amino acids making up a new protein by the combined action of over 50 molecular machines. In particular, amino acyl
tRNA synthetases supply transfer RNAs loaded with amino acids to the ribosomes, which construct the new protein as
they read the messenger RNA.Not shown aresome smallerauxiliaryproteins, the initiation. elongation, and transcription
factors, that help the ribosomes do their job. [FromGoodsell. 1993.J

cytosol. The energy needed to drive RNA polymerase comes from the added nu
c1eotides themselves, which arrive in the high-energy NTP form (Section 2.2.1);
the polymerase clips off two of the th ree phospha te groups from each NTP as it
incorporates the nucleotide into the growing transcript (Figure 2.12).

3. In the cytoso l, a complex of devices collectively called the ribosome binds the
transcript and again walks along it, successively building up a polyp ept ide on
the basis of instructions encoded in the transcript. The ribosome accomplishes
this translation by orchestrating the sequential attachmen t of transfer RNA
(or tRNA) molecules (see Figure 2.16), each bind ing to a particular tr iplet of
monomers (bases) in the transcript and each carrying the corresponding amino
acid monomer (residue) to be added to the growing polypeptide chain (Fig
ure 2.24).

4. The polypeptide may spontaneo usly fold into a func tioning protein, or it may fold
with the help of other auxiliary devices picturesquely called chaperones. Addi
tional chemical bonds (disulfide bonds between residu es containing sulfur atoms)
can form to cross-link monomers distant from each other along the chain, or even
in another chain.
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5. The folded protein may then form par t of the cell's architecture. It may become a
func tioning device, for example, o ne of those shown in Figure 2.24. Or it may be a
regulatory protein, helping close a feedback loop. This last option creates a mech
anism for orchestrating the development of the cell (or indeed of a mu lticellular
organism ).

112 1Section 2.3.4' on page 63 mentions some modifications to the simpUfied schem e

given above.

THE BIG PICTURE

Returning to the Focus Que stion , we see that we have a lot of work to do : The fol
lowing chapters will need to shed physical light on the key phenomena of specificity,
self-assembly, and active transpor t. As indi cated throughout the chapter, many spe
cific structures and processes will be discussed again later, includi ng flagellar propul
sion, RNA folding, the material properties of bilayer membranes and of individual
DNA and protein molecules, the structure and function of hemoglobin. the opera
tion ofthe kine sin motor, the synthes is of ATP in mi tochondria, and the transm ission
of nerve impulses.

It should be clear that the complete descript ions of these processes will occupy
whole shelves full of books, at some future date when all the details are known! The
purpose of this book is not to give the complete details, but to add ress the more
elementary question: Faced with all these miraculous processes, we will only ask,
"How could anything like thorhappen at all?" We will find that simple physical ideas
do help with this more modest goal.

FURTHER READING

Semipopulor:
Structure and function in cells: Goodsell, 1993; Hoagland & Dodson, 1995.

Intermediate:
General reference: Lackie & Dow, 1999; Smith et al., 2000.
Texts: Coo per, 2000; Albert s et al., 1997; Karp , 2002; Pollard & Earn shaw, 2002.

Technical:
Texts: Alberts et al., 2002; Lodish et al., 2000.
Proteins: Branden & Tooze, 1999.
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IT21 2.3.4' Track 2

Since its enunciation in the 19505, several amendments to the simplified picture of
information flow given in Sect ion 2.3.4 have been found. (Others were known even
at th e time.) Just a few examp les include

r. It is an overstatement to claim that all the cell's her itab le characteristics are deter
mined solely by its DNA sequence. A cell's en tire state, includ ing all the pro teins
and other macromolecules in its cytoplasm. can potentially affect its descendants.
The study of such effects has come to be called epige netics. One example is cell
differentiation: Once a liver cell forms, its descendants will be liver cells. A cell can
also give its da ugh ters misfolded proteins, or prions, transmitting a pathology in
this way. Even multiple clones of the same animal are generally no t iden tical,"

Moreover, the cell's DNA can itself be mod ified, either permanen tly or
tem porari ly. Examples of permanent modification include ran dom point muta
tions (see Chapter 3), rando m duplicat ion , deletion , and rearrangem ent of large
stretches of the geno me from errors in crossing-over (Chapter 3), and insertion of
foreign DNA by retroviruses such as HIV. Temporar y, reversible changes include
chemical modi ficat ion, for example, methylation .

2' , Ot her operatio ns, such as RNA editing, may intervene between mRNA synt hesis
and translation .

3'. A po lypep tide can be modified after translation: Additional chemical groups may
need to be added, and so on, befo re the finished pro tein is functional.

4' . Besides chaperones, eukaryotic cells also have special enzymes to destroy polypep
tides that have improp erly folded.

"Identical twins are more similar, but they share more than DNA-they come from a common egg and
thus share its cytop lasm.
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PROBLEMS

2.1 All Greek to me
Now's the tim e to learn the Greek alph abet . Here are the lellers mo st often used by
scientists. The following list gives both lowercase and uppercase (but omits the up
percase when it looks just like a Roman letter):

a , /3, y / r , ~ //}. , f ,~ , ~ , 8 / e , K, A/ A, 1-' , v, 1;/'3 . ]f i n ,

p, al E, T, v/ Y , ¢/~, x , ~/ w , w/ Q

When reading aloud we call them alpha. beta, gamma, delta, epsilon. zeta, eta , theta,
kappa, lambda, rnu, nu, xi (pronounced "k'see"), pi, rho, sigma. tau, upsilon , phi , chi
(pronounced "ky") , psi, omega. Don't call th em all "squiggle."

Practice by exam ining the quote given in Chapter 1 from D'Arcy Th om pson,
which in its ent irety reads: "Cell and tissue, shell and bone, leaf and flower, are so
ma ny portions of matter, and it is in obedience to the laws of physics that their par
ticles have been moved, mo ulded , and conformed. Th ey are no excepti on to the rule
that ef("; aft v ecouetoei" From the sounds made by each letter, can you guess
what Thompson was trying to say? [H int: ,. is an alternate form of 0.1

, "L
2.2 Do-i t-yourself proteins
Th is book contains some mo lecular structure pictures; you can easily make many
more yourself. Download RasMol from http : / /W101V .umass . edu/m icrob io/
rasmol /index .ht ml (or htt p: / / openrasmol. er g) , or get some other free
molecular viewing application.' Now go to the Protein Data Bank,'? ht tp : / /
www . r cs b. erg/pdb/ . On the main page, try searching for and viewing molecules
(see also the "mo lecule of the month" department, from which the examples below
were taken). Once you get th e molecule's main entry. click "explore" on the right,
th en "view" and downloa d in RasMol forma t. Play with the many RasMol optio ns.
Alternatively, you can just click qu i ckpdb for a viewer that requi res no separate
app lication. Here are some examples; several are discussed in this and later chap ters:

a. th rombin, a blood -clotting pro tein (code lppb).

b. insulin, a hormone (code 4ins).

c. myosin, a mo lecular motor (code l b7t ).

d. the actin-myosin complex (code l alm). Thi s entry shows a model of one myosin
motor bound to a short actin filament formed of five molecules, based on data
from electron microscopy. The file contains only alpha carbon position s for the
pro teins, so you'll need to use backbone diagrams when you look at it.

e. rhinovi rus, responsible for the common cold (code 4rhv).

"Protein Explorer. also available at http : / /'JVTJ . U.IIIass . ed u/mi crobio/ r asmol/index . ht ml re
qui res installation of add itional software. Other popular packages include PyMol (ht t p://
pymol . s ourceforge . ne t ) and VMD (ht t p: / / www. ks . uiuc. edu/Resear ch/vmd/).
IOThe PDB is operated by the Research Collaboratory for Structural Bioin formatics (RCSB). You can also
find RasMol there under "software."
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f. myoglobin, an oxygen-storing molecule found in mu scles (code 1mbn). Myo
globin was the first protein structure ever determin ed .

g. DNA polymerase (code ltau).

h. the nucleosome (code laoi ).

Use your mouse to rotate the pictures. Use the measu rement feature of RasMol to
find the physical size of each object. Selectively color only the hydrophobic residues.
Try the "stereo" option . Print the on es you like.

2.3 Do-it-yourself nucleic acids
Go to the Nucleic Acid Database, http : / /ndbserver . rut gers . edu/ . Download
coordinates and view, using RasMol or another software:

a. the B-form of DNA (code bd0001 ). Choos e the space-filling representat ion and
rotate the mo lecule to see its helical structure.

b. transfer RNA (code t rna12).

c. RNA hammerhead enzyme, a ribozym e (code urx067 ).

d. the compl ex of integrat ion host factor bound to DNA (code pdt 040). Try the
cart oon display option .

2.4 Do-it-yourself small molecules
Go to http: //molbio . info .nih . govl cgi - bi n/pdb and search for some small
molecule mentioned in this chapter. You'll probably find PDB files for larger mole
cules binding the one yo u chose. Look arou nd .

2.5 Do-it-yourself micelles and bilayers
Go to ht t p : / / mo o s e . b i o . u c a l g a r y . c a / , http : / /persweb . wabash . edu/
facstaff /fel lers / .http: / / www .umass.edu/mi crobio/rasmol /bi layers .htm.
or some other database with lipid structures.

a. Go to "downloads" at the first site mentioned and look at the file m65. pdb , which
shows a micelle containing 65 mol ecules of the surfactant. This picture is the out
put of a molecular simulation. Tell RasMol to remove the thou sands of water mol 
ecules surrounding the micelle (uncheck "hydrogen" and "hetero atoms"), so you
can see it.

b. At the second site mentioned, get the coordinates of the dipalmitoyl phosphatidyl
choline bilayer and view it. Again rem ove the surrounding water. Rotate it to see
the layer structure.
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Diffusion, Dissipation, Drive

Robert Hooke's or iginal drawing of cork cells (1665). [Hooke. Micrographia, 1665]





C HAPTER 3

The Molecular Dance

Who will lead me into that still more hidden and dimmer
region where Thought weds Fact, where the mental operation
of the mathematician and the physical action of the molecules
are seen in their true relation?Does not the way pass through

the very den of the metaphysician, strewed with the remains of
former explorers?

- Jam es Clerk Maxwell, 1870

Chapter 2 made clear that living cells are full of fan tastically ordered structures, all the
way down to the mo lecular scale. But Chapter I proposed that heat is disorganized
molecular mot ion and tend s to destroy order. Does that imp ly that cells work best at
the co ldest tem peratures? No, lifeprocesses stop at low temperature.

To work our way out of this paradox. and ultimately own the concept of free
energy sketched in Chapter 1) we must first understand more precisely the sense in
which heat is a form of motion. This chapter will begin to explain and justify that
claim. We will see how the idea of rando m molecular mot ion quantitatively explains
the ideal gas law (Section 1.5.4), as well as many common observation s, from the
evapo ration of water to the speeding up of chemical reactions when we add heat.

These physical ideas have an immediate biological application: As soon as we
appreciate the nanoworld as a violen t place, full of incessant thermal motion, we
also realize just how miraculous it is that the tiny cell nucleus can maintain a huge
database-your genome-without serious loss of information over many genera
tions. Section 3.3 will see how physical reasoning led the founders of molecular bi
ology to infer the existence of a polymer carrying the database, decades before the
actu al discovery of DNA.
Here is a question to focus our thoughts:
Biological question: Why is the nanoworld so different from the macrowo rld?
Physical idea: Everything is (thermally) dan cing.

3.1 THE PROBABILISTIC FAGS OF LIFE

We want to explore the idea that heat is nothing but random motion of molecule s.
First, though, we need a closer loo k at that slippery word random. Selecting a person
at random on the street, you cannot predict that person's IQ before measuring it. But,

69
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on the other hand, you can be virtually certa in that her IQ is less than 300! In fact,
whenever we say that a measured quantity is random, we really implicitly have some
prior knowledge of the limits its value may take and, more specifically,of the overall
distribut ion that many measurements of that quantity will give, even thou gh we can
say little about the result of any one measurement. This observation is the starting
point of statistical physics.

Scientists once found it hard to swallow the idea that sometimes physics gives
only the expected distribution of measurements and cannot predict the actual mea
sured value of, say, a particle's momentum. Actually, this lim itation is a blessing in
disguise. Suppose we idealize the air mo lecules in the room as tiny billiard balls. To
specify the "state" of the system at an instant of time, we would list the position s and
veloc ity vectors of every one of these balls. Eighteenth-ce ntury physicists believed that
if they knew the initial state of a system perfectly, they could, in principle, find its final
state perfectly, too . But it's absurd- the initial state of the air in this room consists
of the position s and velocities of all 1025 or so gas molecules. No body has that much
initial inform ation, and nobody wants that much final information! Rather, we deal
in aggregate quantities, such as «how mu ch 'momentum do the mo lecules transfer to
the floor in one second?" That question relates to the pressure, which we can easily
measure.

The beautiful discovery made by physicists in the late nineteenth century is that
in situations where only probabilistic inform ation is available and only probabilistic
information is desired, physics can sometimes make incredibly precise predictions.
Physics won't tell you what any one molecule will do, nor will it tell you precisely
when a molecule will hit the floor. But it can tell you the precise prob ability distri
bution of gas molecule velocities in the room , as long as there are lots of them. The
following sections introdu ce some of the terminolog y we'll need to discuss probabil
ity distribution s precisely.

3.1.1 Discrete distribution s

Suppose some measurable variable x can take only certain discrete values X l , x 2,

(see Figure 3.1). Suppo se we have measured x on N unrelated occasions, finding X =
XI on N , occasions, x = X2 on N2 occasion s, and so on . If we start all over with
another N measurements, we'll get different numbers N;; but for large enough N,
they should be about the same. Then we say that the probab ility of observing x; is
Pi x;), where

N;j N -> Pi x ;) for large N. (3.1)

Thus , Pix;) is always a number between 0 and I.
The probability that any given observation will yield eithe r x, or X12 (say) is just

(N , +N12)/N, or Pix,) +P(X 12). Because the probability of observing some value of
x is 100% (that is, I), we must have
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Figure 3.1: (Metaphor. ) Examples of intermediate outcomes not allowed in a discrete proba
bility distribution. jCartoc n by Larry Gonick, from Gonick & Smith, 1993.J

L P(x;) = (N, + N, + ... )/N = N /N = I. normalization condition

(3.2)

Equation 3.2 is sometimes expressed in the words "the probability distribution
P is properly normali zed,"

3.1.2 Continuous distributio ns

More often, x can take on any value in a continuous interval. In this case, we partition
the interval into bins of width dx. Again we imagine making many measurements
and d rawing a histogra m, find ing that dN(Xo) of the measurements yield a value for
x somewhere between Xo and Xo + dx. We then say that the probability of observ ing
x in this interval is P( Xo ) dx, where

dN(xo)/ N -> P(xo) dx for large N . (3.3)

Strictly speaking, P(x ) is only defined for the discrete values of x defined by the bins .
But if we make enough measurements, we can take the bin width s dx to be as small
as we like and still have a lot of measurements in each bin. Thus we suppose dN(x) is
mu ch greater than I, or in symbols dN (x) » L lf P(x ) approaches a smooth limiting
function as we do th is, then we say P(x ) is the probability distri bution .tor probability
density) for x. Once again, P(x ) mu st always be nonnegative.

Equation 3.3 imp lies that a continuo us probability distribution has dimensions
inverse to those ofx. A discrete distribution, in contrast, is dim ensionless (see Equa-
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tion 3.1). The reason for this difference is that the actual number of times we land
in a small bin depends on the bin width dx. To get a quant ity P(x) that is indepen
dent of bin width, we mu st divide dN (Xo )IN by dx in Equation 3.3; this operat ion
introdu ces dimension s.

What if the interval isn't small? The probability of observing a value of x be
tween X I and Xl is the sum of all the bin probabiliti es makin g up that interval, or
J~2 dxP(x). The analog of Equat ion 3.2 is the normalization conditio n for a contin
uou s distribution :

Jdx P(x) = 1.

Dull Example:The unifor~ distribu tion is a constant from 0 to a:

(3.4)

P(x) = { ( l l a),
0,

ifO ::: x :;: a;

otherwise.
(3.5)

In teresting Examp le: The famous Gaussian distribution (also called the Gaussian,
the bell curve, or the normal distributio n) is

P(x) = ~e-(X-xo ) 2 / ( 2a 2 ).

where A and (J are positive constants and XQ is some other constant.

(3.6)

Your
Turn

3A

You can qu ickly see what a function looks like with your favorite graphing
software. For examp le, in Maple writing pl ot (exp (- (x-L) - 2) , x=- l. . 3 ) ;
gives Figure 3.2. Try it, then play with the constants A and (J to see how the
figure changes.

1.

0.8

H
Ii:;'

0.6

- 1
x

2 3

Figure 3 .2 : (Mathematical function .) Unnorma lized Gaussian distribution centered at Xo =
1 with (J = 1/ J2 and A = I (see Equation 3.6).
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The consta nt A isn't arbitrary; it's fixed by the normalizat ion condition. Th is
derivation is so importan t and useful that we sho uld see how it works in detail.

Example: Find the value ofA required to normalize the Gaussian distri bu tion.
Solution: First we need to kn ow that

100 dy e- Y' = ,Jii.
-00

(3.7)

You can think of th is expression as merely a mathem at ical fact to be looked up in
an integral table (or see the derivation in Section 6.2.2' on page 233). What's more
im po rtant are a co uple of easy steps fro m calculus. Equation 3.4 requires that we
choose the value of A in such a way th at

Change variables to y = (x - XfJ) /( ,[ia), so dy = dx / (,[ia) . Then Equa tion 3.7
gives A = l /(a$).

In short, the Gaussian distribut ion is

Gaussian distribution (3.8)

Looking at Figure 3.2, we see that it 's a bump fu nction centered at Xo (that is, max
imum there). The bump has a widt h contro lled by a . The larger a is, the fatte r the

bum p, because one can go far ther away from X Q before the factor e -(X- xo )2/ ( 2(J2) begin s
to hurt. Remembering that P(x) is a probabil ity d istr ibution, thi s observation mean s
that , for bigger a, you're likely to find measurements with bigger deviations from the
most likely value XfJ . The prefacto r of l / a in front of Equa tion 3.8 arises beca use a
wide r bum p (larger a ) needs to be lower to mai ntain a fixed area. Let's make all these
ideas more precise, for any kind of dis tribution.

3.1.3 Mean and variance

The average (or mean or expectation value) of x for any distribut ion is written (x)
and defined by

(x) = { L i Xi P(Xi ),
f dx xP(x) ,

discrete

continuous.
(3.9)

For the uniform and Gaussian distr ibutions, the mean is the center point , because
these distr ibution s are sym metrical: There are exac tly as many observations a dis
tance d to the right of the center as there are a d istan ce d to the left of center. For a
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general distribution, however. the mean needn't equal the center value, nor in general
will it equal the most probable value, which is the place where PIx) is maximum .

More generally, we may instead want the mean value (f) of some other quanti ty
f (x) depending on x. We can find (f) via

(f) = { L J (Xi)P(Xi) ,
Jdx f (x )P (x ) ,

discrete

continuous.
(3. 10)

If you go out and measure x just once, you won't necessarily get (x) right on
the nose. There is some spread. which we measure by using the root -mean-square
devi ation (or RMS deviation. or standard devi ation):

RMSdeviation = ./« x - (x) )') . (3.11)

Your
Turn

38

Example:

a. Show that ( (f) )) = (f) for any function f of x. That is, find the average of (f) .

b. Show that, if the RMS deviation equals zero, then every measurement of x really
does give exactly (x) .

Solution:

a. We note that (f) is a constant (that is, a num ber), independent of x. The average
of a constant is just that con stant.

b. In the formu la 0 = « x - (x) )') = L i P(Xi)(Xi - (x ))' , the right-hand side doesn't
have any negative terms. The only way this sum could equal zero is for every term
to be zero separately, which in turn requires that P(Xi) = 0 unless Xi = (x) .

Note that it's crucial to square the quantity (x - (x) ) when defining the RMS de
viation; otherwise, we'd trivially get zero for the average value «x - (x) ) ). Then we
take the square root to give Equation 3.11 the same dimension s as x. We'll refer to
« x - (x) )') as the var iance of x, or variance(x).

a. Show that variance(x) = (xl) - «x)) '.

b. Show for the uniform distribu tion (Equation 3.5) that variance(x) = a' / 12.

Let's work out the variance of the Gaussian distribution, Equation 3.8. Chang
ing variables as in the Example on norm alization (page 73) , we see that we need to
co mpute

2a' j'"variance(x) = '- dy r'e- yl
.

v tt -00

(3.12)

To do this calculation we need a trick, which we'll use again later: Define a function
I (b ) by
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T(b) = I:dy e- bY' .

Again changing variables givesT(b) = Jrr l b. Now consider the derivative dT/ db. On
one hand , it's

Iff,dT/db = -- -.
2 b3

On the other hand,

J
OO d 2 J OO 2dT/db = dy - e- I,y = - dy y' e-by .

- 00 db -00

(3.13)

(3.t 4)

Setting b = I, we see that the last integral in Equat ion 3. 14 is the one we needed (see
Equation 3.12). Combining Equations 3.13, 3.14, and 3.12 gives!

2a' ( dT I ) 2a ' ..;rrvariance(x) = - -- = - x - ...;rr db b~ I ..;rr 2

Thus, the RMS deviation of the Gaussian distribution just equals the parameter a
appearing in Equation 3.8.

3.1.4 Addition and multiplicatio n rules

Addition rule Section 3.1.1 noted that, for a discrete distr ibution, the probability
that the next measured value ofx is either X; or Xj equals P(x;) + P(Xj ) , unless i = j .
The key point is that x can't equal both Xi and Xj; we say that the alternative values
are exclusive. More generally, the probability that a person is either taller than 2 m
or shorter than 1.9 m is obtained by addition, whereas the probability of being either
taller than 2 m or nearsighted cannot be obtained in this way.

For a continuous distribution , the probabili ty that the next measured value of x
is either between a and b or between c and d equals the sum ,f:dx P(x) +1:1

dx P(x),
provided the two intervals don't overlap. This result follows because the two proba
bilities (to be between a and b or between c and d) are exclusive in this case.

Multiplication rule Now suppose that we measure two independent quantit ies, for
example, tossing a coin and rolling a die. What is the probability that we get heads
and roll a 6?To find out , just list all 2 x 6 = 12 possibilities. Each is equally probable,
so the chance of getting the specified outcome is -fl .This example shows that the
joint probability distribution for two independent events is the product of the two
simpler distributions. Let Pjoint(Xi , YK) be the joint distribution , where i = 1 or 2
and X I = (heads), X, =(tails); similarly, YK = K, the number on the die. Then the

lThe notation ~ 11=1 means the derivative of I(b) with respect to b, evaluated at the point b = 1. See
Appendix A for more on mathematical notation.
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multiplication rule says

(3.15)

Your
Turn

3C

Your
Turn

3D

Equation 3.15 is correct even for loaded dice (the Pdi,(YK) aren 't all equa l to ~ )

or a two-headed coin (P<oi'(X, ) = I, P<oi, (X2) = 0). On the other hand , for two
connected events (fo r example, the chance of rain versus the chance of hai l), we don't
get such a simple relation.

Show that if P coin and P dic are correctly normalized, then so w ill be P joint.

Suppose we roll two dice. What 's the probability that the numbers on the dice
add up to 21To 61To 121Think abo ut how you used both the addition and the
multiplication rule for this.

Here's a more complicated example. Suppose you are shooting arrows into a
distant target. Wind current s give random shifts to the x component of your arrows'
arrival locations, and indep endent random shifts to the y co m po nent. Sup po se that
the probability distribution PA x) is Gaussian with variance a 2, and that the same is
tru e for Py(Y) .

Example: Find the probability, P( r ) dr , that an arrow lands a distance between r and
r + dr from the bu ll's-eye.

Solution: We must use both the rules discussed earlier. r is the length of the displace
ment vector: r sa [r ] sa ";x2 + y 2• First, we find the joint distribution, the probability
that the x -co mponent lies between x and x + dx and the y-com po nent lies between
Yand Y+ dy . The multiplication rule gives this probability as

Pxy(X, y )dxdy = PxCx)dx x Py(y)dy

= (2rra2 ) - 2j 2 e - (>?+ y 2)j (2(J2) x dxdy

== (2rra 2) -1 e-r2j(2a2)d2r. (3.16)

The two Gaussians combine into a single expo nential invo lving only the distance r.
We're not do ne . Many different displacement vectors r all have the same r ; to

find the total probability that r has any of these values, we mu st now use the addition
rule. Think about all the r vectors with length lying between rand r + dr . They form
a thin ring of width dr. The joint probability distribution Pxy( r ) is the same for all
these r , because it depends only on the length of r. So, to sum all the probabilities,
we multiply Pxy by the total area of the ring, which is its circum ference times its
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4<1

Figure 3.3 : (Mathematical funct ion. ) The probability distribution P(r ) for the distance r
from the origin. when both x and y are independent Gaussian distribution s with variance a 2•

thickness: 2rrrdr. We thus get

P(r)dr = (_1_) e- " /(' O' ) x 2rrrdr.
2rr(Y2

Figure 3.3 shows this distributi on.

(3.17)

Your
Turn

3£

Your
Turn

3F

Notice two notational conventions used in this Example (see also Appendix A).
First, the symbol sa is a special form of the equal sign that alerts us to the fact that
r == [r] is a definition: it defines the number r in terms of the vector r . We pronounce
this symbol "is defined as" or "equals by definition ." Second, the symbol d'r denotes
the area of a little box in position space; it is not itself a vector. The integral of d2r

over a region of space equals that region's area.

Find the fraction of all the arrows you shoot that land outside a circle of some
radius Ro• as a function of Ro.

a. Repeat the calculation in the Example just given, fora three-component vec
tor Y, each of whose components is an independent, random variable dis
tributed as a Gaussian distribution with variance a 2. That is, let u denote
the length of v and find P(u )du. [Hint: Examine Figure 3.4.]

b. Graph your answer to (a) with a computer math package. Again try various
values of a .
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v,

Vy

Your
Turn

3G

Figure 3.4 : (Skctch.) The endpoints of all the vectors v = (v x , vy• vz ) having length u form
a sphe re. The endpoi nts of all the vectors with length between II and u + du form a spherical
shell.

3.2 DECODING THE IDEAL GAS LAW

Let's try to interpret the ideal gas law (Equation !.l Ion page 27), and its un iversal
constant kB, in the light of th e working hypothesis that heat is rand om moti on . Once
we make thi s hypoth esis precise, and confirm it, we'll be in a pos ition to understand
many physical aspects of the nanoworld.

3.2.1 Temperature reflects the average kinetic energy of thermal motion

When faced with a mysterious new formula, our first impulse sho uld be to think
about it in the light ofdimensional analysis.

Examine the left side of the ideal gas law (Equation !.l Ion page 27) and show
that the product kBT has the un its of energy, consisten t with the numerical
value given in Equation 1.12.

So we have a law of Nature, and it contains a fundamental, uni versal constant with
units of energ y. We still haven't interp reted the mea ning of that constant, but we will
in a moment; know ing its units will help us.

Let's think some mo re about the box of gas introduced in Section 1.5.4 on page
27. If the density is low enough (an ideal gas). the molecules don't hit one another
very often.' But certainly each one does hit the walls of the box. We now ask whether

2~ The precise way to say this is that we define an ideal gas to be one for which the time-averaged

potential energy ofeach molecule in its neighbors' potential fields is negligible relative to its kinetic energy.
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r
L

!

Your
Turn

3H

Figure 3.5: (Schematic.) Origin of gas pressure in a cubical box of length L. (a) A mo lecule
traveling parallel to an edge with velocity v, bounces elastically off a wall of its container. The
effect of the collisio n is to reverse the direction of the molecule, transferring mo mentum 2mvx

to the wall. (b) A molecule traveling with arbitrary velocity v. If its next collisio n is with a
wall parallel to the yz-plane, the effect o f the collisio n is to reverse the x -component of the
molecule's momentum, again transferring momentum 2mv x to the wall.

that con stant hitting of the walls can exp lain the phenomenon of pressure. Suppose
that a gas mo lecule of mass m is traveling parallel to one edge of the box (say in the x
direction ) with speed vx , and the box is a cube of length L (see Figure 3.5a).

Every time the mo lecule hits the wall, the mo lecule's momentum changes from
mvx to - I1W x ; it delivers2mvx to the wall. This event happens every time the molecule
makes a round trip, whi ch takes a tim e t1t = 2L/vx o If there are N mo lecules, all
with this velocit y, then the total rate at whic h they del iver momentum to the wall
is (2mvxHvx I2L )N. But you learn ed in first-year physics that the rate of delivery of
mo mentum is precisely the force on the box's wall.

Check the dim ensions of the formu la f = (2m vx HvxI2L)N to make sure they
are appropriate for a force.

In reality, every molecule has its own , individual velocity V x' So what we need is not
N time s one molecule's veloc ity-squared, but instead the sum over all molecules, or
equivalently, N times the average velocity-squared. As in Equatio n 3.9, we use the
shorthand notation (vx ' ) for this quantity.

The force per unit area on the wall is called pressure, so we have just found that

p = m {v/ )N IV. (3.18)

Our simple formu la Equation 3.18, which embodies the idea that a gas consists of
molecules in motion, has already explained two key features of the experimentally
observed ideal gas law (Equation 1.11), namely, the facts that the pressure is propor
tional to N and to I I V.
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Skeptics may say, "Wait a minute. In a real gas, the molecules aren't all traveling
in the x direct ion!" It's tru e. Still, it's not hard to do a better job. Figure 3.Sb shows
the situation. Each individual molecule has a velocity vector v. When it hits the wall
at x = L. its component Vx changes sign, but vy and Vz don't. So, the momentum
delivered to the wall is again 2mvx _Also, the time between bounces off this particu
lar wall is on ce again 2Lj vx, even though in the meantime the mol ecule may bounce
off other walls as well, as a result of its motion along y and z. Repeating the argu
ment leading to Equation 3.18 in this more general situation. we find that it needs no
modifications.

Combi ning the ideal gas law with Equation 3.18 gives

m (v} ) = kBT. (3.19)

Th e gas mo lecules are flying aro und at ran dom. So the average, (vx ), is zero: There are
just asmany molecules traveling left as there are traveling right, so theircontributions
to (vx) cancel. But the square of the velocity can have a nonzero average, {v/} . Just
as in the discussion of Equation 3.11, both the left-movers and right-movers have
positive values of V x2; so instead of canceling, they add.

In fact, there's nothing special abo ut the x direction . Th e averages (vx ' ) , (vy' ),
and (v,') are all equal. So, their sum is th ree times as big as any individu al term. The
sum Vx

2 + v/ + v/ is the total length of the velocity vecto r, so (v 1) = 3{v/ }. Thus,
we can rewrite Equation 3.19 as

~ x ~ m (v' ) = ~kBT. (3.20)

We now rephrase Equatio n 3.20, using the fact that the kinetic energy of a particle is
~mu', to find that

The average kin etic energy ofa molecule in an ideal gas is ~ kBT, (3.21)

regardless of what kind of gas we have. Even in a mixture of gases, the molecules of
each type mu st separately obey Idea 3.21.

The analysis leading to Idea 3.21 was given by Rudolph Clausius in 1857; it sup
plies the deep molecular mea ning of the ideal gas law. Alternatively, we can regard
Idea 3.21 as explaining the conce pt of temperature itself, in the special case of an
ideal gas.

Let's work out some numbers to get a feeling for what our results mean. A mole
of air occupies 22 L (that's0.022 rrr' ) at atmospheric pressure and room temperature.
What's atmospheric pressure? It's a pressure big enough to lift a column of water
about ten meters (you can't sip water through a straw taller than thi s). A 10 m column
of water presses down with a force per area (pressure) equal to the height times the
mass density ofwater time s the acceleration of gravity, or ZPm.wg . Thus, atmos pheric
pressure is

p "" 10 m x (IO
J ~~) x (9 .8 :,) "" 10' ~:' = 10' Pa . (3.22)

Here se means "equals approximately" and Pa stands for pascal , the 51 uni t of pres
sure. Substituting V = 0.022 m" p "" 10' kg m- ' s- ' , and N = Nmo', int o the ideal
gas law (Equation 1.11 on page 27) shows th at, ind eed, it is approximately satisfied:
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(105:~2) x (0.022 m3)"" (6.0 .1023) x (4. 1 .1O- 2IJ) .

We can go further. Air consists mo stly of nitrogen molecules. The mol ar mass
of atomic nitrogen is about 14 g mole" , so a mole of nitrogen molecules, N2, has
mass about 28 g. Thus, the mass of one nitrogen molecule is m = 0.028 kgjNmole =

4.7 . 10- 26 kg.

Using Idea 3.2 1, show th at the typical velocity of air molecules in th e room

where you're sitt ing is about M "" 500 m 5- 1. Convert to miles/hou r
(or km /hour) to see whether you should drive that fast (maybe in the space
shuttle).

So the airmolecules in yourroom are pretty frisky. Can we get some independent
confirmation to see if this result is reasonable? Well, one thing we know about air
is . .. there's less of it on top of Mt. Everest. This density difference arises because
gravity exerts a tiny pull on every air mo lecule. On the other hand, the air density
in your room is quite uniform from top to bottom. Apparently, the typical kinetic
energyof air molecules, ~ kB Tv, is so high that the difference in gravitational potential
energy, /:).U, from the top to the bottom of a room is negligible, whereas the difference
from sea level to Mt. Everest is not so negligible. Let's make the very rough estimate
that Everest is z = 9 km high and that the resulting fl U is rou ghly equal to the mean
kinetic energy:

flU = mg(9 km) "" tm (v' ). (3.23)

Your
Turn

3J

Your
Turn

3K

Show that th e typical velocity is abo ut u = 420 m 5- 1, or reasonably close to
what you just found in Your Turn 31. (Neglect the temperatu re difference be
tween sea level and mountaintop.)

This new estimate is completely independent of th e one we got from the ideal gas law,
so the fact that it gives the same typical u is evidence that we're on the right track.

a. Compare the average kinetic energy ~ kB T, of airmolecules to the difference
in gravitational potential energies fj" U at the top and the bottom of a room.
Assume that the height of the ceiling is z = 3 m. Why doesn't the air in the
room fan to the floor? What could you do to make it fall!

b. Repeat (a), but this tim e calculate the appropriate energies for a dirt particle.
Suppose that the particle weighs about as much as a 50 u rn cube of water.
Why does dirt fan to the floor?



82 Cha pter 3 The Molecular Dan ce

In this section, we have seen how the hypothesis of random molecular mot ion,
with an average kinetic energy proportional to the absolute temperature.explains the
ideal gas law and a number of other facts. Other questions, however, come to mind.
For example, ifheating a pan of water raises the kinetic energy of the water molecules,
why don't they all suddenly fly away when the temperature gets to some critical value,
the one giving them enough energy to escape?To understand questions like this one,
we need to keep in mind that the average kinet ic energy is far from the whole story.
We also want to know abou t the full distribution of molecular velocities, not just its
mean-square value.

3.2.2 The co m plete distribution of molecular velociti es
is experime ntally measurable

The logic in the previous subsection was a bit informal, in keeping with the ex
ploratory character of the discussion. But we ended with a precise question: What
is the full distribution of molecular velocities? In oth er words, how many molecules
are moving at 1000 m s" ; how many at 10m 5- 1? The ideal gas law implies that (v')
changes in a very simple way with temperature (Idea 3.21), but what about the com
plete distribution?

These arc not just theoretical questions. One can measure directly the distribu
tion of speeds of gas molecules. Imagine taking a box full of gas (in practice, the
experimen t is done using a vaporized metal) with a pinhole that lets gas molecules
emerge into a region of vacuum (Figure 3.6). The pinhole is made so small that the
escaping gas molecules do not disturb the state of the others inside the box. The
emerging molecules pass through an obstacle course, which only allows those with

detector

to vacuu m pump

Figure 3.6 : (Schematic.) An experimental apparatus to measure the distribution of molecular
speeds by using a velocity filter consisting of two rotating slotted disks. To pass through the
filter. a gas molecule must arrive at the left disk when a slot is in the proper position. then
also arrive at the right disk exactly when another slot arrives at the proper position. Thus. only
molecules with one selected speed pass through to the detector; the selected speed can be set
by adjusting how fast the disks spin. [Adapted from Rief, 1965.}
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Figu re 3.7: (Experimental data with fit.) Speeds of atoms emerging from a box of thallium
vapo r, at two different tem peratures. Open circles: T = 944 K. Solid circles: T = 870 K. The
quantity uon the horizontal axis equals uJm/4kBT; both distributions have the same most
probable value, umax = I. Thus IlIl'\,1X is larger for higher temperatures, as implied by Idea 3.21.
The vertical axis shows the rate at which atoms hit a detector after passing th rough a filter like
the one sketched in Figure 3.6 (times an arbitrary rescaling factor). Solid line:Theoretical pre
diction (see Problem 3.5). Th is curve fits the experim enta l data with no adjustab le parameters.
[Data from Miller & Kusch, 1955.1

speeds in a particular range to pass. The successful molecules then land on a detector,
which measures the total number arriving per unit time.

Figure 3.7 shows the results of such an experiment. Even tho ugh individu al mol
ecules have random velocities, clearly the distribution of velocities is predictable and
smooth. Th e data also show clearly that a given gas at different temp eratu res will have
closely related velocity distribution s; two different data sets lie on the same curve after
rescaling the molecular speed u.

3.2.3 The Boltzmann distribution

Let's use the ideas ofSection 3.2.1 to understand the exper imental data in Figure 3.7.
We are exploring the idea that, even thou gh each molecule's velocity cannot be pre
dicted, there is nevertheless a definite prediction for the distribution of molecular
velocities. One thing we know about that probability distr ibut ion is thai it must fall
off at large velocities: Certainly there won't be any gas molecules in the roo m moving
at a mi llion meters per second! Moreover, the average speed must increase as we make
the gas hotter, because we've argued that the average kinetic energy is propor tion al to
T (see Idea 3.21). Finally the probability of find ing a molecule moving to the left at
some velocity Vx should be the same as that for findi ng it moving to the right at -Vx '
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One probability distrib ution with these propert ies is the Gaussian (Equa
tion 3.8), where the spread a increases with temp erature and the mean is zero.
(I f the mean were nonzero, there'd be a net, directed, motion of the gas, that is, a
wind blowing.) Remarkably, this simple distribution really does describe any ideal
gas! More precisely, the probability P(vx ) of findin g that a given molecule at a given
time has its x-componen t of veloci ty equal to Vx is a Gaussian, like the form shown
in Figure 3.2, but cente red on O. Each mo lecule is incessantly changing its speed
and direction. What's unchanging is not the velocity of any one molecule but the
distribution P(vx ) .

We can replace the vague idea that the variance (1 2 of Vx increases with tempera
ture by something more precise. Because the mean velocity equals zero, Your Turn38
on page 74 says that the variance of Vx is (v.' ). According to Idea 3.21, the mean ki
netic energy is ~kBT. Combining these statements gives

a' = kBT/tn . (3.24)

Your
Turn

3L

Section 1.5.4 on page 27 gave the numerical value of kBT at room temperature as
kBT, '" 4.1 . 10- 21 J. That's pretty small, but so is the mass m of one gas molecule, so
a need not be small. In fact, you showed in Your Turn 31that the quantity J kB T,/ 111

corresponds to a large velocity.
Now that we have the probability distribution for one component of the velocity,

we can follow the approach of Section 3.1.4 to get the three-dim ensional distribution,
PlY). Your result in Your Turn 3F on page 77 then gives the distribution of molecular
speeds, a function similar to the one shown in Figure 3.3.3

Find the most probable value of the speed u. Find the mean speed (u). Looking
at the graph you drew in Your Turn 3F (or the related function in Figure 3.3),
explain geometrically why these are/aren't the same.

Still assumi ng that the molecules move independently and are not subjected to
any external force, we can next find the probability that all N molecules in the room
have specified velocities V I•. . . , VN , again using the multiplication rule:

James Clerk Maxwell derived Equation 3.25 and showed how it explained many prop
erties of gases.-""The proportionality sign, 0::, reminds us that we haven't bothered to
write down the appropriatenormalization factor.

Equation 3.25 applies only to an ideal gas, free from any externa l influences.
Chapter 6 will generalize this formula. Although we're not ready to prove this gener
alization , we can at least form som e reasonab le expectations:

J [§]The curve fining the experimental data in Figure3.7 is almost, but not quite, the one you found in

YourTurn 3F(b). You'll find the preciserelation in Problem 3.5.
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If we wanted to discuss the whole atmosphere, for example, we'd have to under
stand why the distribution is spatially nonuniform-air gets thinn er at higher alti
tude s. But Equation 3.25 gives us a hin t. Apart from the normalization factor, the
distribution given by Equation 3.25 is just e-E/ kBT , where E is the kinetic energy.
When altitude (potential energy) star ts to becom e imp ortant , it's reasonable to
guess that we should just replace E by the molecule's total (kinetic plus potential)
energy. Ind eed, we then find the air thinnin g out, with dens ity propor tional to the
exponential of minus the altitude (because the potential energy of a molecule is
mgz) .

Molecules in a sample of air hardly interact at all-air is nearly an ideal gas. But
in more crowded systems, such asliq~id water, the molecules interact a lot. There
the molecules are not independent and we can't simply use the multiplication rule.
But again we can form some reasonable expectations. The statement that "the mol
ecules interact" means that the potential energy isn't just the sum of independent
terms U(x,) + . . .+ U(XN) but instead is some joint function U(XI , . .. , XN) . Call
ing the corresponding total energy E es E(XI, VI; . . . ; XN, VN), let's substitute that
into our provisional formu la:

Boltzmann distribution (3.26)

We will refer to this formula as the Boltzmann distribution" after Ludwig Boltz
mann , who found it in the late 1860s.

We should pause to unp ack the very condensed notation in Equation 3.26. To
describe a state of the system, we mu st give the location r of each particle , as well as
its speed v. The prob ability of finding particle a with its first coordinate lying between
X l. a and XI ,a +dxl ,a and so on, and its first velocity lying between VI ,a and Vl.a +dVl.a

and so on, equa ls

dxl ,a X ..• X d V l. a X .• • X P(X l. a' , • . ,VI,a , ... ) . (3.27)

For K particles, the probability distribution P(XI.", ... , VI.", . . . ) is a function of 6K

variables given by Equation 3.26.
Equation 3.26 has some reasonable featu res: At very low temperatures, or

T ~ 0, the exponential is a very rapidly decreasing function of v: The system is
overwhelmingly likely to be in the lowest energy state available to it. (In a gas, this
state is the one in which all of the molecules are lying on the floor at zero velocity.)
As we raise the temperature, thermal agitation begins; the molecules begin to have a
range of energies, which gets broader as T increases.

It's almost unb elievable, but the very simple formu la Equation 3.26 is exact. It's
not simplified; you'll never have to unlearn it and replace it by anything more comp li
cated. (Suitably interp reted, it holds without changes even in quantum mechanics.)
Chapter 6 will derive it from very general considerations.

"Some aut hors use the synonym "canonical ensemble."



86 Chapter 3 ll1e Molecular Dance

3.2.4 Activati on barriers control reaction rates

We are now in a better position to think abou t a question posed at the end of Sec
tion 3.2.1: If heat ing a pan of water raises the kinetic energy of its molecules, then
why doesn't the water in the pan evaporate suddenly, as soon as it reaches a critical
temperature? For that matter, why does evaporat ion cool the remainin g water?

To think about this pu zzle, imagine that it takes a cert ain amount of kinetic
energy E barrier for a water molecule to break free of its neighbor s (because they att ract
one an6tnerf. Any water molecule near the surface with at least thi s much energy can
leave the pan; we say that there is an activation barrier to escape. Suppose we heat a
covered pan of water, then tu rn off the fieai"';~entarily remove the lid. allow
ing the most energetic molecules to escape. The effect of removing the lid is to clip
the Boltzmann probability distribution, as suggested by the solid line in Figure 3.8a. _

~ l.

We now replace the lid of the pan"and therm ally insulate it. Now the constant jostling ;
of the rema in ing molecules once again pushes some up to higher energies, regrowing
the tail of the distribution as shown by the dashed line of Figure 3.8a. We say that
the remaining mo lecules have equilibrated. Rut the new distribution is not q uite the
same as it was init ially. Because we removed the most energetic molecules. the aver
age energy of those remainin g is less than it was to begin with: Evaporation cooled
the remaining water. Moreover, rearranging the distri bution takes time: Evaporation
doesn't happen all at once. If we had assumed the water to be ho tter initially, however,
its initial distribution of energies wou ld have been farther to the right (Figure 3.8b ),
and more of the molecules wou ld have been ready to escape. In other words, evapo
ration proceeds faster at higher temperature.

The idea ofactivation barriers can help make sense of our experience with chem
ical reactions, too. When you flip a light switch, or click your computer 's mouse, there
is a minimal energy, or activation barri er, which your finger mu st supply. Tapping the
switch too lightly may move it a fract ion of a millime ter but doesn't click it over to
its "on" position . Now imagine drumming your finger lightl y on the switch, giving a
series of random ligh t taps with some distr ibution of energies. Given enough time .
eventually one tap will be above the activation barr ier and the switch will flip.

Similarly. on e can imagine that a mo lecu le with a lot ofsto red energy. say hydro
'gen peroxide, can on ly release that energy after a minimal initial kick pushes it over
an activatio n barrier. The molecule constantly gets kicks from the thermal mo tion of
its neighbors. If most of those thermal kicks are much smaller than the barri er, how
ever, it will be a very long time before a big enough kick occur s. Such a molecule is
practically stable. We can speed up the reaction by heating the system, just as in evap
ora tion. For example, a candle is stable, but it bu rns when we tou ch it with a lighted
match. Th e energy released by burn ing in turn keeps the candle hot long eno ugh to
burn some more, and so on .

We can do better than these simple qualitative remarks. Our argume nt implies
that the rate ofa reaction is pro portional to the fraction ofall molecules whose energy
exceeds the thresho ld . Consulting Figure 3.8, we see that we want the area under the
part of the ori ginal distr ibution th at gets clipped when mole cules escape over the bar
rier. The fraction of molecules represented by th is area is small at low temperat ures
(see Figure 3.8a). In general, the area depend s on the temperature with a factor of
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Figure 3.8: (Mathematical functions.) (a ) Solid line:The dist ribution of molecular speed s for a sample ofwater, initially
at 100°( . from which some of the most energetic molecules have suddenly been removed. After we reseal the system,
molecular collisions br ing the distribut ion of molecu lar speeds back to the standard form (dashed line). The new distri
bution has regenerat ed a high-energy tail, but the average kinetic energy did not change; accordingly, the peak has shifted
slightly, from Umu to u~. (b) The same system, with the same escape speed; bu t this time the system starts at a higher
temperature. The fraction of the distr ibu tion removed is now greater than in (a), and hence the shift in the peak is larger,
too.

e- Ebartier/ kBT. You already foun d such a result in a simpler situation in Your Turn 3E
on page 77: Substituting Uo for the dist ance Ro in that problem, and kBTJIII for 0" ,

indeed gives the fraction of molecules over threshold as e- mllo2/ (2kBn .

The preceding argument is rather incomplete. For example, it assumes that a
chemical reaction consists of a single step, which certainly is not true for many reac
tions. But there are many elementary reactions between simple molecules for which
our conclusion is experimentally tru e:

The rates ofsimple chem ical reaction s depend on tem perature mainly _
via a fa ctor of e - Enm ier/ kBT, where Ebarrier is some temperature- (3.28)
indepen den t constant characterizing the reaction.

We will refer to Idea 3.28 as the Arrhenius ra te law. Chapter 10 will discuss it in
greater detail.

3.2.5 Relaxation to equilibrium

We are beginning to see the ou tlines of a big idea: When a gas, or oth er complicated
stat istical system, is left to itself und er constant external conditio ns for a long time,
it arrives at a situation where the probability distr ibutions of its physical quanti ties
don't change over time. Such a situation is called ther mal equilibrium . We will define
and explo re equilibr ium more precisely in Chapter 6, but already something may be
troubling you , as it is troubling Gilbert:

Gilbert : Very good, you say the air doesn't fall on the floor at room temperature
because of thermal motion . Why then do esn't it slow down and eventually stop (and
then fall on the floor), as a result of friction?
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Sullivan: Oh, no, that'squite impossible because of the conservation of energy. Each
gas molecule makes only elastic collisions with others, just like the billiard balls in
first-year physics.

Gilbert: Oh? So then , what is friction? If I drop two balls off the Tower of Pisa, the
lighter one gets there later, because of friction. Everybody knows that mechanical
energy isn't conserved; eventually it wind s up as heat.

Sullivan: Uh, urn, . . . .

As you can see. a little knowledge proves to be a dangerous thing for our two fic
titious scientists. Suppose that, instead of dropping a ball, we sho ot one air mo lecule
into the room with enormous speed. say. 100 times greater than the average mo lec
ular speed. (One can actually do this experiment with a particle accelerator.) What
happens?

Soon this molec ule bangs into one of the ones that was in the room to begin
with. There's an overwhelming likelihood that the latter molecule will have kinet ic
energy much smaller than the injected one and, indeed, probably not much more
than the average. When they collide, the fast one transfers a lot of its kinetic energy
to the slow on e. Even though the collision was elastic. the fast one lost a lot of energy.
Now we have two medium-fast mol ecules; each is closer to the average than it was
to begin with . Each one now cruises along till it bangs into anoth er, and so on , until
they all blend into the general distribut ion (Figure 3.9).

Even though the total energy in the system is unchanged after each collision, the
original distribution (with one molecule way out of line with the others) will settle
down to the equilibrium distribution (Equation 3.26), by a process of sharing the
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Figure 3 .9: (Schematic; sketch graph.) (a) When a fast billiard ball co llides with a slow one, in general bo th move away
with a more equal division of their total kinet ic energy than before. (b) An initial molec ular speed distribution (solid line)
with one anomalously fast mo lecule (or a few, creating the bump in the graph) quickly reequilib rates to a Boltzmann
distribution at slightly higher temperature (dashed lirle). Compare with Figure 3.8.
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energy in the or iginal fast molecule with all the others.' Wha t has changed is not
energy but the ordering oft hat energy: The one dissident in the crowd has faded into
anonymity. Again, the directed motion of the original molecule has been degraded
to a tiny increase in the average random motion of its peers. But, average random
velocity is just temperature, according to Equation 3.26. In other words, mechanical
cnergy has been converted to thermal energy in the pro cess of reaching equilibr ium.
Friction is the name for th is conversion.

3.3 EXCURSION: A LESSON FROM HEREDITY

Section 1.2 outlined a broad puzzle about life (the generation of order) and a corre
spondingly bro ad outline of a resolution. Many of the point s mad e there were ele
gantly summarized in a short but enormo usly influential essay by the physicist Erwin
Schrodinger in 1944. Schrodinger then went on to discuss a vexing question from an
tiqui ty: the transmission of order from one organism to its descendants. Schrodinger
noted that this transmission was extremely accura te. Now that we have some con
crete ideas about probability and the dance of the molecules, we can better appre
ciate why Schrodinger found that everyday observation to be so pro found. In fact,
careful thou ght abo ut the physical context underlying known biolo gical facts led
Schrodinger's contemp orary Max Delbruck to an accurate prediction of what the
genetic carrier would be like, decades before the discovery of the details of DNA's
struct ure and role in cells. Delbruck's argument rested on ideas from probability the
ory, as well as on the idea of thermal motion.

3 .3 .1 Aristotle w eighs in

Classical and medieval authors debated long and hard abo ut the material basis of
the facts of heredity. Many believed that the only possible solution was that the egg
conta ins somewhere inside itself a tiny but complete chicken, which needed on ly to
grow. In a prescient analysis, Aristotl e rejected this view, po int ing out, for example,
that certain inherited traits can skip a generation entirely. Contrary to Hipp ocrates,
Aristotle argued, .

The male contributes the plan of development and the female the
substrate. . . . The sperm contr ibutes nothing to the material body of
the embryo, but only communicates its program of development .. .
just as no part of the carpenter enters into the wood in which he works .

Aristot le missed the fact that the mother also contributes to the "plan of develop
ment ; ' bu t he made crucial progress by insisting on the separate role of an informa
tion carrier in heredity.The organism uses the carrier in two distinct ways:

"what if we take one molecule and slow it down to muc h smaller speed than its peers? Now, the mole
cule tends to gail! energy by collisions with average molecules, unt il once again it lies in the Boltzmann
dist ribution.
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It uses the software stored in the carrier to direct its own construction; and

It duplicates the software, and the carrier on which it is stored, for transm ission to
\' the offspring.

Today we make this distinction by referring to the collection of physical characteris
tics of the organism (the output of the software) as the phenotype, and the program
itself as the genotype.

It was Aristotle's misfortune that medieval commentators fastened on his con
fused ideas about physics, raising them to the level of dogma while ignoring his cor
rect biology. Even Aristotle , however, cou ld not have guessed that the genetic infor
mation carrier would turn out to be a single molecule.

3.3.2 Ident ifying the physical carrier of genetic information

Nobody has ever seen a molecule with their unaided eye. We can nevertheless speak
with confidence about molecules. because the mol ecular hypo thesis makes such a
tightly interconnected web of falsifiable pred ictions. A similarly indirect but tight
web of evidence drew Schrodi nger's contemporaries to their concl usions about the
molecular basis of heredity.

To begin. thousands ofyears'experience in agrono my and animal husbandry had
shown that any organism can h~'inbred to the point where it will breed true for many
generations. This statement does not mean that every individual in a purebred lineage
will be exactly identical to every other one-certainly there are individual variations.
Rather, a purebred stock is one in which there are no heritable variation s among in
dividuals. To make the distinction clear, suppose we take a purebred popu lation of
sheep and make a histogram of, say~ 'femur lengths. A familiar Gaussian-type distri
bution emerges. Suppose now that we take an unu sually big sheep, from the high end
of the distribut ion (see Figure 3.10). Its offspring will no t be un usually big; rath er,
they will lie on the same distribution as the population from which the parent was
drawn. Whatever the genetic carrier is. it gets dupl icated and transmitted with great
accuracy. Indeed, in humans, some characteristic features can be traced through 10
generations .

The significance of this remark may no t be immediately obvio us. After all, an
audio compact disk contains nearly 1010 bits of information , duplicated and trans
mitt ed with near-perfect fidelity from the factory. But each sheep began with a single
cell. A sperm head is only a micrometer or so across, yet it conta ins roughly the same
massive amount of text as that compact disk. in a package around 10- 13 times the
volume! What sort of physical object could lie behind th is feat of miniatu rization?
Nineteenth-century science and technolo gy offered no direct answers to this ques
tion. But a remarkable chain of observation and logic broke this impasse, starting
with the work of Gregor Mendel, a monk trained in physics and mathematics.

Mendel's chose n model system was the flowering pea plant, Pisum sativum. He
chose to study seven heritable features (flower position. seed color, seed shape. ripe
pod shape, unripe pod color, flower color, and stem length). Each occu rred in two
clearly identifiable, alternative forms. The distinctness of these features, or traits. en
dured over many generations. leading Mendel to propose that sufficiently simple traits
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femur length (arbitrary scale)

Figure 3 .10 : (Sketch histogram.) Results of an imaginary experiment measuring the femur
lengths of a purebredpopulation of sheep. Selectively breeding sheep from the atypical group
shown (black bar) doesn't lead to a generation of bigger sheep, but instead to offspring with
the same distribution as the one shown.

are inherited in a discrete, yes/no mauner. Mendel imagined the genetic code as a col
lection of switches, which he called factors, each of which could be set to either of two
(or more) settings . The vario us available option s for a given factor are now called
alleles of that factor. Later work would show that other traits, which appear to be
continuo usly variable (for example, hair color), are really the combined effect of so
many different factors that the discrete variations from individual factors can't be
distinguished.

Painstaking analysis of many pea plants across several generations led Mendel in
1865 to a set of simple conclusions:"

The cells making up most of an individual (somatic cells) each carry two copies of
each factor; we say they are diploid. The two copies of a given factor may be "set" to
the same allele (the individual is homozygous for that factor) or to different ones
(the ind ividua l is heterozygous for that factor).

Germ cells (sperm or pollen, and eggs) are exceptional: They contain only one copy
of each factor. Germ cells form from diploid cells by a special form of cell division,
in which one copy of each factor gets chose n from the pair in the parent cell. Today,
we call this division meiosis and the selection of factors asso rtment.

Meiosis cho os es each factor rando mly and independently of the oth ers, an idea
now called the principle of independ ent asso rtment.

"Interestingly, Charles Darwin also did extensive breeding experiments, on snapdragons, and obtained
data similar to Menders; yet he failed to perceive Mendel's laws. Mendel's advantage was his mathematical
background. Later Darwinwouldexpress regretthat he hadnot madeenoughof an effort to know "some
thingof the greatleadingprinciples of mathematics," and wrote thatpersons"thus endowed seem to have
an extra sense."
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Figure 3 .11 : (Diagra m.) (a ) Purebred red and white flowers are cross-pollinated to yield off
spring. each with one chromosome containing the "red" allele and one con taining the "white"
allele. If neither allele is dominant , the offspring will all be pink. For example. four-o'clocks (a
flower) exhibit this "sem idomi na nce" behavior. (b) Interbreeding the offspr ing of the previous
generation. we recover pure white flowers in one out of four cases. Even in ot her species. for
which the red allele is dominant, nevertheless one in fou r of the second-gener at ion offspring
will be whit e. [Car too n by Geo rge Garnow, from Gamow, 1961.]

Thu s, each of the four kind s of offspri ng shown in each generation of Figure 3.11
is equally likely. After the fertilized egg forms, it creates the organism by ordinary
division (mitosis), in which both copies of each factor get duplicated. A few of the
descend ant cells eventually und ergo meiosis to form ano ther generation of germ cells,
and the process repeats.

If the two copies of the factor corresponding to a given trait represent different
alleles, it may be that one allele overrides (or "do minates") the other in determi ning
the organism's phenotype. Nevertheless, both copies persist, with the hidd en (or "re
cessive") one ready to reappear in later generations in a precisely pred ictable ratio.
Verifying such quan titative predictio ns gave Mendel the c.oEvic tion that his guesses
about the invisible pro cesses of meiosis and mitosis were...correct.

Mendel' s ru les drew attention to the discrete character of inheri tance; the image
of two alternative alleles as a switch stuck in one of two possible states is physically
very appealing. Moreover, Mendel's work showed that most of the apparent varia
tion between generations is simply reassortmen t of factors. which are themselves ex
tremely stable. Other types of heritable variations do occur spontaneously, but these
mutations are rare. Moreover, mu tations, too, are discrete events, and once formed, a
mutation spreads in the population by the same Mendelian rules listed above. Thus,
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factors are switches that can snap crisply into new positions, but not easily; once
changed by mutation , they don 't switch back readily.

Th e histor y of biology in thi s per iod is a beautiful counterpoint between clas
sical genetics and cell biology. Cell biology has a rema rkable history of its own; for
exampl e, many advances had to await the discovery of staining techniques, without
which the various components of cells were invisible. By about the tim e of Mendel's
work, E. Haeckel had identified the nucleus of the cell as the seat of its heritable
characters. A recently fertilized egg visibly contained two equal-s ized objects called
pronuclei, which soo n fused. In 1882, W. Flemming noted that the nu cleus orga
nized itself into threadlike chromosomes just before division. Each chromosome was
present in duplicate prior to mitosis, as required by Mendel's rules (see Figure 3.11);
and just before cell division, each chromosome appeared to doubl e, after which one
copy of each was pulled into each daught er cell. Moreover, E. van Beneden observed
that the pronuclei of a fertilized worm egg each had two chromosomes , whereas the
ordinary cells had four. van Beneden's result gave visible testim ony to Mendel's logical
deduction about the mixing of factors from both parent s.

By this point, it would have been almost irresistible to conclude that the phys
ical carriers of Mend el's genetic facto rs were precisely the chromosomes, had any
one been aware of Mend el. Unfortunately, Mendel's results, published in 1865, fell
into obscurity, not to be rediscovered unti l 1900 by H. de Vries, K. Correns, and
E. von Tschermak. Immediately upon this rediscovery, W. Sutton and T. Boveri in
dependently prop osed that Mend el's genetic factors were physical objects-genes
located on the chromosomes . (Sutton was a graduate student at the time.) But what
were chromosomes, anyway? It seeme d imposs ible to make further progress on this
point with the existing cell biology tools.

A surprising quirk of genetics broke the imp asse. Altho ugh Mendel's rules were
approxim ately correct, later work showed that not all traits assorted independently.
Instead, W. Bateson and Correns began to no tice that certain pairs of traits seemed to
be linked , a phenom enon already predicted by Sutto n. That is, such pairs of tra its will
almo st always be inhe rited togeth er: Th e offspring gets either both, or neither. This
complication mu st have seemed at first to be a blemi sh on Mendel's simple, beautiful
rules. Eventu ally, however, the phenomenon of linkage op ened up a new wi ndow on
the old question of the nature of genet ic factors.

Th e embryologist T. H. Morgan studied the ph enomenon of genetic linkage in a
series of experiments starting around 1909. Mo rgan's first insight was that, in order
\p-gen erate and analyze hu ge sets of genea logical data , big enough to find subt le sta-

\ tistical patterns, he wo uld need to choose a very rapidly multiplying organism for his
mod el system. Cer tainly bacteria multiply rapidly, but they were hard to manipulate
individually and lacked readily identifiable hereditary traits. Morgan's compromise
choice was the fruit fly Drosophila melanogaster.

One of Mo rgan's first discoveries was that some heritable traits in fruit flies (for
example, white eyes) were linked to the fly's sex. Because sex was already known to be
related to a gross, obvious chromosomal feature (fema les have two X chromosomes ,
whereas males have just one), the linkage of a mutable factor to sex lent direct support
to Sutton's and Boveri 's idea that chromosomes were the physical carriers of Mendel's
factors.
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. Figure 3.12 : (Diagram.) Meiosis with crossing-over. (a ) Before meiosis, the cell carr ies two homologous (similar) cop ies
of a chrom osome, carrying genes A, B on one copy and potent ially different alleles a, b on the other. (b) Still pr ior to
meiosis, each chromosome is dupl icated; the copies arc called chromatids. During prophase I of meiosis. the homologous
chromatid pairs are brought close togethe r, in register. Recombination may then occur: (c) Two of the four paired chro
matids are broken at corresponding locations. (d ) The broken ends "cross over," that is, they rejoin with the respective
broken ends in the opposi te chromatid. (e) The cell now carr ies new combinati ons of alleles. The four chromatids then
separate into four germ cells by a four -way cell division . [Adapted from Wolfe, 1985.]

But now an even mo re subt le level of structure in the genetic data was begin
ning to appear. Two linked traits almost always assorted together, but they occasion
ally would separate. For example, certain body-color and eye-color factors separate
in only abou t 9% of offspring. The rare failure of linkage reminded Morgan that
F. Janssens had recently observed chromosome pairs wrapping around each other
prior to meiosis and had proposed that this interaction could involve the breakage
and exchange of chro mosome pieces. Morgan suggested that this crossing-over pro
cess could explain his observation of incomplete genetic linkage (Figure 3.12). If the
carrier object were th readlike, as the chromosomes appeared to be under the micro
scope, then the genetic factors might be in a fixed sequence, or linear arra ngement,
along it, like a pattern of knot s in a long rope . Some unknown mechanism could
brin g two corresponding chromosomes together and align them so that each factor
was physically next to its partner, then choose a random point at which to break and
exchange the two strands. It seemed reasonab le to suppose that the chance of two
factors on the same chromosome being separated by a physical break sho uld depend
on the distance between their fixed positio ns. After all, when you cut a deck of cards,
the chance of two given cards becoming separated is greater if the cards in question
are initially far apa rt in the deck.

Morgan and his und ergraduate research student A. Sturteva nt analyzed these ex
ceptio ns in an attempt to confirm the hypothesis of a linear arrangement of genetic
factors. They reasoned that it should be possible to list any set of linked traits along
a line, in such a way that the probability of two traits' becoming separated in an off
spring is related to their distance on the line. Examining the available data, Sturtevant
confirmed this deduction, and moreover fou nd that each linked set of traits admit 
ted just one such linear arrangement that fit the data (Figure 3.13). Two years later,
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Figure 3.13: (Diagram.) Partial map of the fruit fly genome as ded uced by the 19405 from
purel y genetic experiments. The map is a graphical summary of a large bod y of statistical
information on the degree to wh ich various mutant trai ts are inherited together. Traits shown
on di fferent vert ical lines assor t independ ently. Tra its appearing near on e anot her on the same
line are more tightly linked tha n those listed as far apart. [Cartoon by George Gamow, from
Gamow, 1961.]

the data set had expand ed to include 24 different traits, which fen into exactly four
unlinkedgroups-the same number as the nu mbe r of visible chromoso me pairs (Fig
ure 3.13)! Now one could hardly doubt that chromosomes were the physical objects
carrying genetic facto rs. The part of a chromosome carrying one factor, the basic unit
of heredity, was christened the gene.

Thus, by a tour de force of stat istical inference, Morgan and Sturtevant (together
with C. Bridges and H. Muller ) parti ally mapp ed the genome of the fly, concluding
that

The physical carriers of genetic information are indeed the chromosomes; and

Whatever the chromoso mes may be physically, they are chains, one-dimensional
"charm bracelets" of subo bjects- the genes- in a fixed sequence. Both the indi
vidu al genes and their sequence are inh erited.'

"Later work by Barbara :-.teClinlock on maize would show that even the order of the genes along the
chromosome is not always fixed: Some genes arc transposable elements, that is. they can jump. But this
jumping is not caused by simple thermal motion; we now know that it is assisted by special-purpose
mo lecular machines. which cut and splice the o therwise stable DNA molecule.
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b

Figure 3 .14: (Light micrograph; schematic.) (a ) Polytene chromosomes of the fru it fly Drosophila[unebris. Each chro 
mosome consists of 1000-2000 identical copies of the cell's DNA, all laid parallel and in register. Each visible band is a
stretch of DNA abou t 100 000 basepairs long. (b) Koltzo ff's view of the structure ofa polytene chromosome (bottom) as a
bundle of straightened filament s, each of dia meter d. The normal chromosome seen du ring mitosis (top) consists of just
one of these filaments, tightl y coiled.

By 1920, Muller could assert confidently that genes were "bound together in a line, in
the ord er of their linkage, by material, solid connections:' Like Mendel before them,
Morgan's group had applied quantitative, statistical analysis to heredity to obta in in
sight into the mechanism, and the invisible structural elements, underlying it.

There is a coda to this detective story. On e might want to examine the chro 
mosomes directly, to see the genes. Attempts to do th is were unsuccessful: Genes are
too small to see with ord inary, visible light . Nevertheless, by an almost unbelievable
stroke of serendipity, it turned out that salivary-gland cells of Drosophila have enor
mou s chromosomes, with details easilyvisible in the light microscop e. N. Koltzoff in
terpreted these giant (or polytene) chromosomes, arguing that they are really clusters
of over a thousand copies of the fly's usual chromosome, all laid side by side in regis
ter to form a wide, optically resolvable object (Figure 3.14a). After treatment with an
appropriate stain, each polytene chromosome shows a characteristic pattern of dark
bands. T. Painter managed to discern differences in these patterns among different
individua ls and to show that these were inherited and in some cases correlated with
observable mut ant features. That is, at least some different versions of a chromosome
actually look different. Moreover, the observed linear sequence of bands associated
with known traits match ed the sequence of the corresponding genes deduced by ge
netic mapping. The observed bands are not individual genes (these are still too small
to see under the light microscope). Nevertheless, there could be no doubt that genes
were physical objects located on chromosomes. Genetic factors, orig inally a logical
construct, had become things, the genes.

IT21Section 3.3.2' on page 104 mentions the role ofdouble crossing-over.

3.3.3 Schriidinger"s summary: Genetic inform ation is structural

For some time, it seemed as tho ugh the techn iques of classical genetics and cell bi
ology, powerfu l though they were, could shed no further light on the nature of the
chromosomal charm bracelet. Even the physical size of a gene remain ed open for dis-
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pu te, But by the mid-twentieth century, new experimental techniques and theoret ical
ideas from physics were open ing new windows on cells. Schrodinger's br ief summa ry
of th e situation in 1944 drew attention to a few of the emerging facts.

To Schrodinger, the biggest question about genes concerned th e nearly perfect
fidelity of thei r information storage despi te their minute size. To see how serious this
problem is, we first need to know just how small a gene is. One crude way to estim ate
this size is to guess how many genes there are, and note that they must all fit into a
sperm head . Muller gave a som ewhat better estima te in 1935 by noting that a fruit
fly chro mosome condenses during mitosis into rou ghly a cylinder of length 2.u rn
and diam eter 0.25 /lID (see Figure 3.14b). Th e total volume of the gene tic materia l
in a chromosome is th us no larger than 2.um x rr(O.2S .umj2)2. When the same
chro mosome is stretched ou t in the po lytene form mentioned earli er, however, its
length is more like 200 IlID. Suppose that a single thread ofthe genetic charm bracelet ,
st retched o ut straight. has a d iam eter d. Th en its volume equals 200/l m x rr(d/2 )' .
Equating these two expressions for the volume yields the estimate d ::': 0.025 /lID for
the diam eter of the genetic information carrier. Although we now know that a strand
of DNA is really less than a tenth th is wide, still Muller's up per bound on d showed
that the genetic carrier is an obj ect of mo lecular scale. Even the tiny pits encoding the
information on an audio compact disk are thousands of times larger than this, just as
the disk itself occupies a far larger volume than a sperm cell.

To see what Schrod inger found so shocking about this conclu sion, we mu st again
rem ember that molecu les are in constant, random thermal moti on (Section 3.2). Th e
words on this page may be stable for many years; but, if we cou ld write them in letters
only a few nano meters high, then random mot ion s of the ink molecules cons tituting
th em would quickl y obliterate them. Random thermal mo tion becomes mo re and
more destructive of ord er on shorter length scales, a point to which we wiII return in
Chapter 4. How can genes be so tiny and yet so stable?

Muller and others argued tha t the only known stable arrangeme nts of just a few
atoms are single molecules. Quant um physics was just beginning to explain this phe
nomenal stabi lity, as the na ture of the chemica l bo nd became understood. (As one of
the architects of qu antum theory, Schrodinge r himself had laid the foun dations for
th is understanding.) A molec ule der ives its enormous stability from the fact that a
large activation barrier must be momentari ly overcome in order to break the bonds
between its constituent atoms. More preci sely, Section 1.5.3 po inted out that a typ ical
chemical bond energy is E"""d "" 2.4 . 10- 19 J, abo ut 60 times bigger than the typical
thermal ene rgy E'thermal. Muller argued that thi s large activation barr ier to conversion
was the reason why spontaneous thermally induced mutat ion s are so rare, following
the ideas of Section 3.2.4.'

The hypot hesis that the ch romosome is a single molecule may appear satisfying,
even obvious, tod ay. But to be convinced that it is really true, we must require that
a model generate some quantitative, falsifiable predictions. Fortunately, Muller had
a po werful new tool in hand: In 1927, he had found that expo sure to X-rays cou ld
induce mutat ions in fru it flies. This X-ray mutagenesis occurre d at a mu ch greater

"Today we know that eukaryotes enhance their genome stability still further with specia l-pu rpose molec
ular machines for the detection and repair o f damaged DNA.
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Figu re 3 .15: (Experimental data. I Some of Tirnofeeff 's original data on X-ray mutagenesis.
Cultures of fruit flies were exposed either to gamma rays (solid circles) or to Xc rays (crosses).
In each case, the total radiation exposure is given in r units, with 1 r corresponding to about
2 . 1012 ion pairs created per cubic centimeter of tissue. The vertical axis is the fraction of
cultures developing a particular mutant fly (in this case on e with abnormal eye color). Both
kinds of radiation proved equally effective when their expo sures were measured in r units.
{From Timofeeff-Ressovsky et al., 1935.1

rate than natural, or spontaneo us, mu tation . Muller enthusiastically urged the appli
cation of modern physics ideas to analyze genes, even going so far as to call for a new
science of "gene physics."

Working in Berlin with the geneticist Nikolai Timofeeff, Muller learned how to
make precise quantitative studies of the frequency of mutation s following different
radiation doses. Remarkably, they and others found that, in many instances, the [re
quency with which a specific mutation occurred rose linearly with the total X-ray expo
sure given to the sample. This linear relation persisted over a wide range of exposures
(Figure 3.15). Thus, doubling the exposure simply doubled the number of mutants
in a given culture. Prior irradiation had no effect on those individuals not mutated
(or killed outri ght); it neither weakened nor toughened them to further exposure.

Timo feeff went on to find an even mo re remarkable regularity in his dala: Dif
ferent kinds of radiation proved equivalent for inducin g mutation s. More precisely,
cultures of fruit flies were subjected to X-rays produced at various voltages, and even
gamma rays from nuclear radioactivity. In each case the exposure was expressed by
giving the number of electrically charged molecules (or ions ) per volume produced
by the radiation (Figure 3.15). When the exposures to the various forms of radiation
were equal, each was equally effective at producing a particular mutation.

At this point a young physicist named Max Delbruck entered the scene. Delbruck
had arrived in the physics world just a few years too late to part icipate in the feverish
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discovery days of quantum mechanics. His 1929 th esis (which he later termed "ac
ceptable but dull ") nevertheless gave him a thorough understand ing of the recently
discovered theory of the chemical bond, an un derstanding that experimentalists like
Muller and Tim ofeeff needed. Updated slightly, Delbruck's analysis of the two key
observat ions (linear response to exposure and equivalency of rad iation types) ran as
follows: When X-rays pass through any so rt of matter, living or not, they kno ck elec
trons out of a few of the mo lecules they enco unter. The ions thus formed can in turn
react with other molecules, creating highly reactive fragments gene rically called free
radicals. The density Cion of ions created per volume is a convenient , physically mea
surable index of total radiation expo sure ; it also reflects the density of free radicals
formed.

The reactive molecular fragments generated by the radia tion can in turn en
counter and dam age other nearby molecules. We assu me that the density c. of these
dam age-inducing fragment s equals a constant times the measured ionization: c. =
KCi on ' Delbruck argued that if the gene were a single molecule, then a sing le encounter
with a reactive fragment could ind uce a permanent change in its structure. and so
cause a heritable mu tation . Suppose tha t a free radical can wander thro ugh a volume
v before reacting with something and that a particular gene (for example, the one for
eye colo r) has a chance PI of suffering a particular mutation if it is located in this
volume (and zero chan ce otherwise). Then the tota l chance tha t a particular egg or
sperm cell will undergo the mutat ion is (see Figure 3.16)

(3.29)

Delbruck did not know the actual nu merical values of any of the constants P" K , and
v appearing in th is formu la. Nevertheless, his argume nt implied that

Figure 3 .16 : (Schematic.) Max Delbru ck's simplified model for X-ray induced mutagene
sis. Incom ing X-rays (diagonal arrows) occasiona lly interact with tissue to create free radicals
(stars) with nu mber density c. depe nding on the X-ray intensity, the wavelength of the Xcrays,
and the duration of exposu re. The chance that the gene of interest lies within a box of volume
v centered on one of the rad icals, and so has a chance of being altered, is the fraction of all
space occupied by the boxes, or c. v.
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The hypothesis that the gene is a single molecule suggests that a single
molecular encounter can break it and, hence, that the probability of
mutation equals a constant times the expos ure measured in ioniza
tions per volume,

(3.30)

as found in Muller's and Timofeeff 's experiments.
Equation 3.29 tells a remarkable story. On the left-hand side, we have a biological

quantity, which we measure by irradiati ng a lot of normal flies and seeing how many
have offspring with, for example, white eyes. On the right- hand side, we have a purely
physical quantity, Cion- The formula says that the biological and the physical qu antities
are linked in a simple way by the hypothesis that the gene is a molecule. Data like
those in Figure 3.15 agreed wit h this prediction, and hence supported the picture of
the gene as a single molecule. Combining this idea with the linear arrangeme nt of
genes found from Stur tevant's linkage mapping (Section 3.3.2) led Delbru ck to his
main conclusio n:

The physical object carrying gene tic f.1Ctors m ust be a single long
chain m olecule. or p olym er. The genetic informa tion is carried in the
exact identities, and sequence, ofthe links in this chain. This informa
tion is long-Jived because the chemical bonds holding the molecule
together requirea large activation energy to break.

(3.31)

To appreciate the boldness of this proposal, we need to reme mber th at the very
idea of a lon g-chain molecule was quite young and still controversial at the time. De
spite the enormou s development of organic chemis try in the nineteenth century, the
idea that long chains of atoms could retain their structural integrity still seeme d like
science fict ion. Eventually,careful experiments by H. Staudinger around 1922 showed
how to synthes ize po lymer solu tion s from well-understood small precursor mole
cules by standard chem ical techniques. Staudinger co ined the word macromolecul e
to describe the objects he had discovered. Th ese synthesized polymers turned out
to mimic their natural analogs: For example, suspensions of syn thetic latex behave
muc h like natural rubber-t ree sap.

In a sense, Delbruck had again followed the physicist's strategy of thinking about
a simple mod el system. A humb le sugar molecule stores some energy through its
configuration of chemical bonds. In the language of Section 1.2, this energy is of high
quality, or low disorder; and , in isolation, the sugar molecule can retain this energy
practically forever. The individual units, or monomers , o f the genetic po lyme r also
store so me chemical energy. But. far more important, they store the entire software
needed tod irect the construction of the redwood tree from atmospheric CO2, water
with dissolved nitrates. and a source of high -quality energy. Section 1.2.2 proposed
that the construction itself is an act of free energy transduction, as is the duplication
ofthe software.

The idea of an enormous mol ecule w ith perma nent structural arrangements of
its constituen t atoms was certainly not new. A diamond is an example of such a
hu ge molecule. But nobod y (yet) uses diamonds to store and transmit info rma tion.
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Why not ? Because the arrangement of atoms in a d iamond, although permanent ,
is boring. We could summarize it by drawing a handful of atoms, then add ing the
words et cetera. A diamond is a per iodic structure. Schrodinger's point was that huge
molecules need not be so dull: We can equally well imagine a nonperiodic string of
monomers, just like the words in this book.

Today we know that Nature uses polymers for an enormous variety of tasks.
Humans, too, eventually caught on to the versatility of polymers, which now ente r
technology everywhere from hair con diti on er to bulletproof vests. Tho ugh we will
add little to Schrodinger's remarks on the info rmation storage potent ial of polymers,
the following chapters will return to them over and over as we explore how they carry
out the many tasks assigned to them in cells.

Schrodinger's summary of the state of knowledge focused the world 's atten tion
on the deepest, mo st pressing questio ns: If the gene is a molecule, th en which of the
many big molecules in the nucleus is it? If mitosis involves duplication of this mole
cule, then how does such dupli cation work? Many young scientists heard th e call of
these questions, including th e geneticist James Watson . By thi s time, further advances
in biochemistry had pinpointed DNA as th e genetic information carrier: It was the
on ly mo lecule that, when purifi ed, was capable of permanently transforming cells
and thei r progeny. But how did it work ? Watson join ed the physicist Francis Crick
to attack this problem. Integrating recent physics results (Rosalind Franklin's discov
ery of th e helical geome try of the DNA molecule) with biochem ical facts (the base
compositio n rules observed by Erwin Chargaff) , th ey deduced thei r now-famo us
basepaired mod el for the structure of DNA in 1953. The mo lecular biology revo
lut ion then began in earnest.

IT21Section 3.3.3 on page 96 mentions more modern views of gene tic damage in

duced by radiation.

TH E BIG PICTURE

Let's return to the Focus Q uestion. This chapter has explored the idea that random
thermal motion dominates the molecular world . We found that thi s idea explains
quantitatively some of the behavior of low-density gases. Gas theor y may seem re
mote from the living systems we wish to study, but in fact, it turned out to be a good
playing field to develop some themes that transcend this sett ing. Thus,

• Section 3.1 developed many concepts from probability that will be needed later.

• Sect ions 3.2.3-3.2.5 used the study of ideal gases to mo tivate thre e crucial ideas,
namely, th e Boltzmann distr ibuti on , the Arrhenius rate law, and th e origin of fric
tion, all of which will turn out to be general.

• Section 3.3 also showed how the concept of activation barri er, on which the Ar
rheniu s law rests, led to the correct hypothesis that a long-chain molecule was the
carrier of genetic informat ion.
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Chapters 7 and 8 will develop th e general concept of entropic forces, again starting
with ideas from gas theory. Even when we cannot neglect the interactions between
particles. for example. when studying electrostatic interactions in solution, Chapter 7
will show that sometimes the noninteracting framework of idea l-gas theo ry can still
be used.

KEY FORMULAS

Pro bability: The mean value of any quantity f is (f) = Jdx f (x) P(x) (Equa
tion 3.10). The variance is the mean-square deviation, variance(f) = ((f - (i))' ).
Addi tion rule : The probability of gett ing either of two mutually exclusive outcomes
is the sum of the ind ividu al probabilities.
Multiplication ru le: Th e probability of getting particular outcomes in each of two
ind ependent random str ings is the product of the individu al probabilities (Equa
tion 3.15).
Gaussian distribution: P(x) = (2rra ') - I/ 'e- tx- XO )' / t, . ' ) (Equation 3.8). Th e roo t
mean- square deviati on of this dist ribution equals (J •

• Th erm al energy: The average kinetic energy of an ideal gas mol ecule at tempera
tu re T is ~kBT (Idea 3.21).

• Boltzm ann distribution: In a free, ideal gas, the probability distribution for a mo l
ecule to have x-component of velocity between Vx and Vx + dvx is a con stant tim es
e- m(vx)2/ (2kBD dvx • The total distribut ion for all three components is then the prod

uct , namely, another constant tim es e- mvl/ (2kBT ) d3v. Equa tion 3.25 generalizes this
statement for the case of many particl es.
In an ideal gas on which forces act, the probability that one mo lecule has given posi
tion and mom entum is a constant tim es e-E/ kBT d3vd3x, where the total energy E of
the molecule (kinetic plus potential) depend s on position and velocit y. In the spe
cial case where the potential energy is a constant, thi s formula redu ces to Maxwell's
result (Equation 3.25). More genera lly, for man y interacting molecules in equilib
rium, th e prob ability for molecule 1 to have velocity VI an d position XI ' and so
on, equals a consta nt times e- E/ kRT d3vI d3vl . . . d3x)d3xl ' " (Equat ions 3.26 and
3.27), where now E is the total energy for all the molecules.

Rates: Th e rates of many chemical reaction s depend on tem perature mainly via the
Arrhenius exponential factor, e- Ebarri(1" / kRT (Idea 3.28).

FURTHER READING

Semipopulor:
Probability: Gonick & Smith , 1993.
Genetics: Gonick & Wheeli s, 1991.
Schrod inger's and Gamow's reviews: Schrodinger, 1967; Gamow, 1961
Polymers: deGennes & Badoz, 1996.
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History of genetics: Judson , 1995.
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1721 33.2' Track 2

Sturtevant's genetic map (Figure 3.13) also has a more subtle.iand remarkable, prop
erty. If we choose any three traits A, B, and C appearing in the map in that order
on the same linkage group, we find that the probability P AC that A and C will be
separated in a single meiosis is less than or equal to the sum p."-8 + PBC of the corre
sponding probabilities of separation of AB and Be. There was initi ally some confu 
sion on this point. Requiring that PAC be equal to PAB + Pac led W. Castle to propose
a three-dimensional arrangement of the fly genes. Muller later pointed out that re
qui ring strict equa lity amo unted to neglecting the possibility of doub le crossing-over.
Revising his model to incorporate this effect, and including later data, Castle soon
found that the data actually required that the genes be linearly arrange d, as Morgan
and Sturtevant had assumed all along.

1721 333 ' Track 2

Delbruck's picture of genetic damage by ioni zing radiation was rather incomplete.
DNA repair mechanisms in eukaryot ic cells can usually fix the harm done when a
free radical damages only one strand of the double helix. For many more details see
Hobbie, 1997, § IS. lO.
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PROB LEMS

3.1 White-collar crime

a. You are a city inspec tor. You go un dercover to a bakery and buy 30 loaves of bread
marked 500 g. Back at th e lab you weigh them and find th eir masses to be 493,
503, 486,489,501 ,498, 507, 504, 493, 487, 495,498, 494,490,494,490,497, 503,
498,495, 503, 496, 492,492,495, 498,490, 490, 497, and 482 g. You go back to the
bakery and issue a warning . Why?

b. Later you return to the bakery (this tim e, th ey know you) . They sell you 30 more
loaves of bread. You take them hom e, weigh th em, and find th eir masses to be 504,
503, 503, 503, 501, 500, 500, 501, 505,501,501, 500,508,503,503,500,503, 501,
500,502,502,501,503,501,501,502,503,501,502, and 500 g. You're satisfied,
because all th e loaves weigh at least 500 g. But your boss reads your report and tells
you to go back and close the shop down. What did she not ice that you missed?

3.2 Relative concentration versus altitude
Earth's atmos phere has roughly four mol ecul es of nitro gen for every oxygen mole
cule at sea level; more precisely, the ratio is 78:21. Assuming a constant temperature
at all altitudes (not really very accurate), what is the ratio at an altitude of 10 km? Ex
plain why your result is qualitatively reasonable. [Hint: Thi s problem concerns the
number density of oxygen molecules as a function of height. The density is related
in a simple way to the probability that a given oxygen molecule will be found at a
particular height. You know how to calculate such probabiliti es.]
[Remark: Your result is also applicable to the sorting of macrom olecules by sedimen
tation to equilibrium (see Problem 5.2).1

3.3 Stop the dance
A suspension of virus particles is flash- frozen and chilled to a temperature of nearly
absolute zero. When the suspensio n is gently thawed , it is found to be still virulent.
Wh at co nclusio n do we draw abou t the nature of hereditary information?

3.4 Photons
Section 3.3.3 reviewed Muller's and Tim ofeeff's empirical results that the rate of in
duced mutation s is proportional to the radiation exposure. Not only X-rays can in
duce mutations; even ultraviolet light will work (that's why you wear sunblock). To
get a feeling for what is so shoc king about these results, noti ce that they impl y that
there's no "safe," or threshold, dose level. The amount ofdamage (proba bility of dam
aging a gene ) is d irectly proportion al to the total radiation expos ure. Extrapo lating
to the smallest po ssible do se, we must co nclude that even a single photon of UV
light has the ability to cause permanent genetic damage to a skin cell and its progeny.
(Photons are th e packets of light mentioned in Section 1.5.3.)

a. Some body tells you that asingle ultraviol et photon carries an energy equivalent of
about 10 electron volts (eV, see Appendix B). You propose a damage mechanism:
A photon delivers that energy into a volume the size o f the cell nucl eus and heats
it up; then the increased thermal mot ion knoc ks the chromosomes apart in some
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way. Is this a reasonable propo sal?Why or why not? [Hint: Use Equation 1.2, and
the definition of calorie found just below it, to calculate the temp erature change.]

b. Turning the result around, suppose that that photon's energy is delivered to a small
volume L' and heats it up. We might suspect that if it heats up the region to boil
ing , this change co uld disrupt any genetic mes sage contained in that volume. How
small must L be for this amoun t ofenergy to heat that volume up to boiling (from
30°C to lOOO( )? What could we conclude about the size of a gene if this proposal
were correct?

3.5 IT2 1Effusion
Figure 3.6 shows how to check the Bol tzm ann distribution of molecular speeds ex
perimentally. Interpreting the data. however, requires some analysis.

Figure 3.17 shows a box full of gas with a tiny pinhole of area A, which slowly
allows gas mo lecules to escape into a region of vacuum. You can assume that the
gas molecules have a nearly equil ibrium dis tribution inside the box; the disturbance
caused by the pinh ole is small. The gas molecules have a known mass m. The num ber
density of gas in the box is c. The emerging gas molecules pass through a velocity
selector. whi ch admits only those with speed in a particular range , from u to II + duo
A detector measures the total number of mo lecule s arriving per unit tim e. It is located
a distance d from the pinhole, on a line perpendicular to the ho le, and its sensitive
region is of area A•.
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o - - -<........jl? - ~- it~~ ------ :~t;

o Udt-;/O .

L ~·----d --- --

Figure 3.17 : (Schematic.) Gas escaping from a pinho le of area A in the wall of a box. The
number density of gas molecules is c inside the box and zero outside. A detector counts the
rate at which molec ules land on a sensitive region of area A •. The six arrows in the box depict
schematically six molecules, all with one particular speed u = [v]. Of these, only two will
emerge from the box in time dr. and of those two, onlyone will arrive at the detector a distance
d away.

a. The detector catches on ly those molecules emitted in certain direction s. If we
imagine a sphere of radius d centered on the pinhole, then the detec tor covers
only a fraction" of the full sphere. Find " .

Thu s, the fraction of all gas molecules whose v makes them candidates for detection
is P (v)d' v, where v point s perpendicular to the pinhole and has magnitud e 1/ and
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d3v = 4JTau2du. Of these, the molecules that actua lly emerge from the box in tim e
dt will be those initially located with in a cylinder of cross-sectional area A and length
udt (see the dashed cylinder in the figure).

b. Find the tot al number of gas molecules per unit tim e arr iving at the detector.

c. Some authors report their result s in terms of the trans it time T = diu instead
of u. Rephrase your answer to (b) in terms of T and dr , not u and duo

[N ote: In practice, the selected velocity range du depend s on the width of the slots
in Figure 3.6, and on the value of u selected. For thin slots, du is rou ghly a constant
times u. Thus, the solid curve drawn in Figure 3.7 consists of your answer to (b) ,
multiplied by another factor of u, and no rmalized; the experimental point s reflect
the detector response, similarly normalized.]



108

CHAPTER 4

Random Walks, Friction,
and Diffusion

It behoves us always to remember that in physics it has taken
great minds to discover simple things. They arevery great

names indeed which we couple with the explanation of the
path ofa stone, the droop of a chain, the tints ofa bubble, the

shadows in a cup.

-D'ArcyThompson ,1917

Section 3.2.5 argued th at the origin of friction was the conversion of organized mo
tion to disordered motion by collisions with a surro unding, disordered medium. In
this picture, th e First Law of therm odynamics is just a restatement of the conservation
of energy. To justify such a unifyin g conclusion , we'll continue to look for nontrivial,
testable, quantitative predictions from the model.

1'b.\S ,\?Ioce~~ \s not )\\s\ an exetc.\se \u retrac\u%othe!5 nlsto!k a\ lootste'Ps, Once
we understand the ori gin of friction, a wide variety of other dissipative processes
those that irreversibly turn order into disorder-will make sense, too:

The diffusion of ink mo lecules in water erases order; for example, any pattern ini
tially present disappears (Section 4.4.2).

Friction erases order in the initial dire cted motion of an object (Section 4.1.4).

• Electrical resistance run s down your flashlight batteries, making heat (Section
4.6.4).

• The conduction of heat erases the initial separation into hot and cold region s (Sec
tion 4.4.2' ).

In every case just listed , organized kin etic or potent ial energy gets degraded into dis
organized motion, by collisions with a large, random environment. The paradigm
we will study for all these processes will be the physics of the random walk (Sec
tion 4.1.2).

None of the dissipative processes listed in the preceding paragraph matters much
for the Newtonian questions of celestial mechanic s. But all will tu rn out to be of
supreme importance in understanding the physical world of cells. The difference is
that, in cells, the key actors are single molecules or perhap s structu res of at mo st
a few thousand molecules. In thi s nanoworld, the tiny energy kBT, is not so tiny;
the randomizing kicks of neighboring molecules can quickly degrade any concerted
motion. For example,
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• Diffusion turns out to be the dom inant form of material transport on submicrorn
eter scales (Section 4.4.1).

• The mathematics of rando m walks is also th e appropriate language to understand
the conformations of many biological macromolecules (Section 4.3. 1).

Diffusion ideas will give us a quantitative account of the permeability of bilayer
membran es (Section 4.6.1) and the electrical potenti als across them (Sectio n 4.6.3),
two topics of great importance in cell physiology.

The Focus Q uestion for th is chapter is
Biological question: If everything is so random in the nanoworld of cells, how can we
say anything predictive abo ut what's going on there?
Physical idea: The collective activity of many randomly moving actors can be effec
tively predictable. even if the individual motions are not.

4.1 BROWNIAN MOTION

4 .1.1 Just a little more history

Even up to the end of the nin eteent h century, influent ial scientists were criticizing,
even ridiculing. the hypothesis tha t matter consisted of discrete, un changeable, real
particles. The idea seemed to them philosophically repugna nt. Many physicists, how
ever, had by this time long con cluded that the atomic hypothesis was indispensable
for explaining the ideal gas law and a host ofother phenomena. Nevertheless, doubts
and controversies swir led. For one thing, the ideal gas law does n't actually tell us how
big mo lecules are. We can take 2 g of mo lecular hydrogen (one mo le) and measure
its pressure , volume, and temperature, but all we get from th e gas law is the prod
uct k nNmole> not the separate values of kB and N mole; thus we don't actually find how
many molecules were in that mole. Similarly, in Section 3.2 on page 78. the decrease
ofatmospheric density on Mt. Everest told us th at mg x 10 km "" !mv' , but we can't
use this to find the mass m of a single molecule-m drops out.

If only it were possible to seemolecules and their motion! But this dream seemed
hopeless. Th e many improved estima tes of Avogad ro's number deduced in the cen
tury since Franklin all po inted to an impossibly small size for molecules, far below
what could ever be seen with a microscope. But there was one ray of hope.

In 1828. a botan ist named Robert Brown had noti ced that pollen grai ns sus
pended in water do a peculiar incessant dan ce, visible with his microscop e. At roughly
1um in diameter, pollen grains seem tiny to us. But they're enormous on the scale of
atoms, and big enough to see under the microscopes of Brown's time (the wavelength
of visible light is around half a micrometer). We will generically call such objects col
loidal pa rti cles. Brown naturally assumed that what he was observing was some life
process, but being a careful observer, he proceeded to check this assumption. What
he found was that:

• The motion of th e pollen never stopped. even after the grains were kept for a lon g
time in a sealed container. If the motion were a life pro cess. the grains would run
out of food eventually and stop moving. Th ey didn't.
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Totally lifeless particles do exactly the same thing. Brown tried using soot ("de
posited in such Quantities on all Bodies, especially in London") and other materi
als, eventually gett ing to the most exotic material available in his day: ground-up
bits of the Sphinx. The motion was always the same for similar-size particles in
water at the same temp erature.

Brown reluctantly concluded that his phenomenon had nothing to do with life.
By the 1860s several people had proposed that the dance Brown observed was

caused by the constant collisions between the pollen grains and the mol ecules of wa
ter agitated by their thermal motion. Experiments by several scientists confirmed
that this Brownian motion was more vigorous at higher temperature , as expected
from the relation (average kinetic energy)= ~kBT (Idea 3.21). (Other experiments
had ruled out other, more prosaic, explanations for the motion , such as convection
currents.) It looked as thou gh Brownian motion could be the long-awaited missing
link between the macroscopic world of bicycle pumps (the ideal gas law) and the
nanoworld (individual molecules). Missing from these proposals, however, was any
precise qu antitative test.

But the molecular-motio n explanation of Brownian motion seems, on the face
of it, absurd, as others were qui ck to poin t out. The critique hinged on two points:

1. If molecules are tiny, then how can a molecular collision with a comparatively
enormou s pollen grain make the grain move appreciably? The grain takes steps
that are visible in light microscopy and hence are eno rmous relative to the size of
a molecule.

2. Section 3.2 argued that molecules are moving at high speeds, around 103 m 5- ' . If
water molecules are about a nanometer in size and closely packed, then each one
moves less than a nanometer before colliding with a neighbor. The collision rate
is then at least (103 m 5-') / (10- 9 m), or about 1012 collisions per second. Our eyes
can resolve events at rates no faster tha n 30 5-\ . How could we see these hypothet
ical dance steps?

Thi s is where matters stood when a graduate student was finishing his thesis
in 1905. Th e student was Albert Einstein. The thesis kept getting delayed because
Einstein had other th ings on his mind that year. But everything turned out all right
in the end. On e of Einstein's distractions was Brownian motion.

4.1.2 Random walks lead to diffusive behavior

Random walks Einstein's beautiful resoluti on to the two paradoxes just mentioned
was that the two problems canceleachother. To und erstand his logic, imagine moving
a marker on the sidewalk below a skyscraper. Once per second, you toss a coin. Each
tim e you get heads, you move the marker one step to the east; for tails, one step to the
west. Youhave a friend looking down from the top of the building. She cannot resolve
the individual squares on the sidewalk; they are too distant for that. Nevertheless, once
in a while you will flip 100 heads in a row, thus producing a step clearly visible from
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Fig ure 4 .1: (Metaphor.) A random (or "drunkard's") walk. (Cartoon by George Gamow,
from Gamow, 1961.}

afar. Certainly such events arc rare; your friend can check up on your game only every
hour or so and still not miss them.

In just the same way, Einstein said, although we canno t see the sma ll, rapid jerks
of the pollen grain d ue to ind ividual molecular collisions, still we can and willsee the
rare large displacements.'

The fact that rare large displacement s exist is sometimes expre ssed by the state
men t that a random walk has structure Of l all length scales, not just on the scale of a
single step. Moreover, studying only the rare large displacem ents will not only con
firm that the pictu re is correc t but will also tell us something quant itative about
the invisible mo lecular motion (namely, the value of the Boltzmann constant ). Th e
motion of pollen gra ins may not seem to be very significant for biology, but Sec
tion 4.4.1 will arg ue that therma l motion becomes more and more important as
we look at smaller objects- and biological macromolecules are mu ch sma ller than
pollen grains.

It's easy to adapt thi s logic to more realistic motions, in two or three dimension s.
For two dimensions, place the marker on a checkerboard and flip two coins each
second, a penny and a nickel. Use the penn y to move the marker east/west as before.
Use the nickel to move the marker no rth/south . The path tra ced by the marker is
then a two-di men sion al random walk (Figures 4.1 and 4.2); each step is a diagonal
across a square of the checkerboa rd. We can similarly extend ou r procedu re to three
dimensions. But to keep the formulas simple, the rest of this section will only d iscuss
the one-dimensional case.

1~Wh at follows is a simp lified version of Einstein's argume nt. Track-Z readers will have lillie difficulty

following his original paper (see Einstein , 1956) after reading Chapter 6 of this book.
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Figure 4 .2 : (Mathematical functions;experimental data.) (a) Computersimulation of a two
dimensional random walk with 300 steps. Each step lies on a diagonal as discussed in the text.
(b) The same with 7?~~_ steps. each 1/5 the size of the steps in (a). The walk has been sam
pled every 25 steps. giving a mean step size similar to that in (a). The figure has both fine
detail and an overall structure: We say there is structure on all length scales. (e) Jean Perrin's
actual experimental data from 1908. Perrin periodically observed the location of a single par
ticle, then plotted these locations joined by straight lines, a procepure similar to the periodic
sampling used to generate the mathematical graph (b). The field of view is about 75 p,rn wide.
[Simulations kindly supplied by P. Biancaniello; experimental data from Perrin, 1948.f

Suppose our friend looks away for 10000 5 (about three hours). When she looks
back, it's quite unlikely that our marker will be exactly where it was originally. For
that to happen, we would have to have taken exactly SOOOsteps right and SOOOsteps
left. Just how improbable is this outcome? For a walk of two steps, there are two
possible outcomes that end where we started (HT and TH ), out of a tot al of 2' = 4
possibilities; thu s the probability to return to the start ing point is Po = 2/ 2' or 0.5.
For a walk off?ur steps, there are six ways to end at the starting point, so Po = 6/ 24 =
0.37S. For a walk of 10 000 steps, we again need to find Mo, the number of different
outcomes that land us at the starting point, then divide by M = 210000 .

Example: Finish the calculation.

Solution: Of the M possible outcomes, we can describe the ones with exactly 5000
heads as follows: To describe a particular sequence of coin tosses, we make a
list of which tosses came out heads. This list contains 5000 different integers,
(n l , . . . , n5000 ), each less than 10000. We want to know how many such distinct lists
there are.

We can take n, to be any number between 1 and 10000, nz to be any of the 9999
remaining choices, and so on, for a total of 10 000 x 9999 x . . . x 5001 lists. We can
rewrit e thi s quantity as (10 0001)/ (SOOOI), where the exclamation point denotes the
factor ial function. But any two lists differin g by exchange (or permutation) of th e ni s
are not really different, so we must divide our answer by the total numb er of possible
permutations , which is 5000 x 4999 x .. . x 1. Altogether, then, we have

distinct lists.

100001
Mo = -S-OO-O"""'!-x-SO- O-O"""'! (4.1)
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Dividing by the tot al number of possible outcom es gives the probability of landing
exactly where you started as Po = MaiM '" 0.008 . It's less than a 1% chance.

The probability distribution found in the Examp le is called the bino mial distribu
tion . (Some authors abbreviate Equation 4.1 as Mo= C~o~~O), pronounced "ten thou 
sand choose five thousand.")

You can't do the precedin g calculation on a calculator. You could do it with a
computer-algebra package, but now is a good tim e to learn a handy too l: Sti r
ling's formula gives an approximation for the factorial M! of a large number
M as

InM! '" M lnM - M + ~ In(2rrM ).

Work out for yourself the result for Po just quo ted. using this formula.

(4.2)

The preceding discussion shows that it's qui te unlikely that you will end up ex
actly where you started. But you're even less likely to end up 10000 steps to the left of
your starting point, a movement requiring that you flip 10 000 consecutive tails, with
P '" 5 . 10- 3011• Instead, you're likely to end up somewhere in the middle. Figure 4.3
illustrates these ideas with some shor ter walks.

a 4 coins : b 4 coin s: C 36 coins:

0.4 0.4 0.4

"
0.3 0.3 0.3

i!;"
0.2 0.2 0.2

0.1 0.1 0.1

0 0.2 0.4 0.6 0.8 l. 0 0.2 0.4 0.6 0.8 l. 0 0.2 0.4 0.6 0.8 l.

x x x

Figure 4 .3 : (Experimental dat a.) Behavior of the binomial distr ibu tion. (a ) Four coins were tossed, and the fraction x

that came up heads was record ed. The histogram shows the result for a sample of 57 such trials. Because thi s is a discrete
distribution, the bars have been no rmalized so that the sum of thei r heigh ts equals 1. (b) Anothe r sample of 57 tosses of
4 coins. (c) Thi s time, 36 coins were tossed, again 57 tim es. The resulting distribution is mu ch narro wer than (a.b): we
can say with greater certain ty that "abo ut half" our coin tosses will come up heads if the total number of tosses is large.
The bars are not as tall as in (a.b) because the same number of tosses (57) is now being divided among a larger number
ofbins (37rather than 5). [Data kindlysupplied by R. Nelson.}
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Tire diffusion law One way to find how far you're likely to go in a random walk
would be to list explicitly all the possible outcomes for a 10 OOO-toss sequence, then
find the average over all outcomes of (XlQooO)2) the mean-square position after step
10000. Luckily, there is an easier way.

Suppose each step is of length L. Thus the displacement of step j is kj L , where
k j is equally likely to be ±l. Call the position after j steps Xj: the initial position is
Xo = 0 (see Figure 4.4a). Then XI = kl L, and similarly the position after j steps is
Xj = Xj _1 + k jL.

We can't say anything about Xj because each walk is random. VYe can, however.
make definite stateme nts abo ut the average of Xj over many different trials: For ex
amp le, Figure 4.4b shows that (x,) = O. The diagram makes it clear why we got this
result: In the average over all possible outcomes, those with net displacem ent to the
left will cancel the contributions of their equally likelyanalogs with net displacement
to the right.

Thu s the mean displacement of a random walk is zero, But this doesn't imply
we won't go anywhere!The preceding Example showed that the probability ofend ing
right where we started is small for large N . To get a meaningful result, recall the
discussion in Section 3.2. 1: For an ideal gas, (vx ) = 0 but (vx') oJ O. Following
that hint, let's compute (XN 2 ) in our problem . Figure 4.4 shows such a computation,
yielding (X,2) = 3L2

a

-j = I
k l = I

j = 3
k3 = - 1

{ Xl, X2 , X 3}, em x2 k3 , em

+ 1, + 2, + 3 + 2
}O

+ 1, + 2, +1 -2

+ 1, 0, + 1 0
} O

+ 1, 0, - 1 0

I , 0, +1 0
} O

- I , 0, - 1 0

-1 ,-2,- 1 - 2
} O-1, -2,-3 +2

Y Y
(X3) = ~ X 0 = 0 (X2k3) = 0

((X3)') = ~ x 24 cm=3 em

Figure 4 .4 : (Diagram.) (a) Anatomy of a random walk. Three steps, labeled j = I. 2. 3, are shown. Step j makes a
displacement of kj = ±l. (b) Complete list of the eight distinct 3-s tep walks, with step length L = I cm . Each of these
outcomes is equally probable in our simplest mo del.
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Repeat this calculation for a walk of four steps, just to make sure you under
stand how it wo rks.

Admittedly, the math gets tedious. Instead of exhaustively listing all possible out 
comes, though. we can no te that

In the last expression , the final term just equals L', because (± l) ' = I. For the mid
dle term, note that we can group all 2N possible walks into pairs (see the last co lumn
of Figure 4.4). Each pair consists of two equally probable walks with the same XN_I ,
differing only in their last step,so each paircontributes zero to the average ofXN-lkN .

Think about how this step implicitly makes use of the multiplication rule for prob 
abilities (see page 75) and the assumption that every step was independent of the
prev iou s ones.

Thus, Equation 4.3 says that a walk of N steps has mean- square displacement
bigger by L' than a walk of N - I steps, which in turn is L' bigger than a walk of
N - 2 steps, and so on. Carrying this logic to its end, we find

(4.4)

We can now apply our result to our original problem of moving a marker in one
dimension , once per second. If we wait a total tim e t . the marker makes N = t / .6. t

random steps, where .6. t = 1s, Define the diffusion co ns tant of the proce ss as D =
L' / (2/;1) . Then,'

a. The m ean-square displacem ent in a one-dim ensional random walk
increases linearly in time: (XN )') = 2Dt, where (4.5)

b. The constant D equals L' / (2/; t ).

The first part of Idea 4.5 is called the one-dimensional diffusion law. In our example,
the time between steps is t1t = 1s: so if the marker makes 1e m steps, we get D =
0.5 em' 5 - 1. Figure 4.5 illustrates the fact that the averaging symbol in Idea 4.5a must
be taken seriously-any indiv idual walk w ill not conform to the diffusio n law, even
approximately.

Idea 4.5a makes our expectation s abo ut random walks precise. For example, we
will ob serve excursions of any size X, even if X is much lon ger than the elementary
step length L, as long as we are prepared to wait a time on the order ofX' / (2D).

Returning to the physics of Brown ian motion . our result means that. even if
we cannot see the elementary steps in ou r microsco pe. we can nevertheless confirm
Idea 4.5a and measure D experimen tally: Simply note the ini tial position of a co l
loidal particle, wait a time t , no te the final position , and calculate x' / (2t). Repeat the

lThe definition of D in Idea 4.5b contains a factor of 112. We can define D any way we like.as long as we're
consistent; the definition wechose results ina compensating factorof2 in the diffusion law, Idea 4.5a. This
convention will be convenient when we derive the diffusion equation in Section 4.4.2.
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Figure 4 .5 : (Mathematical function s.) (a) Squared deviation (Xj) 2 for a single, one-dimen~ional random walk 0£ 700
steps. Each step is one unit long. The solid line shows j itself; the graph shows that (Xj )2 IS not at all the same as j .
(b) Here the the dots represent the average {(Xj) l ) for 30 walks. each having 700 steps. Again the solid line shows j . This
time ((Xj )2) does resem ble the idealized diffusion law (Equation 4.4 ).

observation many times; the average ofxl / 2t gives D. The content ofIdea 4.5a is that
the value of D th us found will not depend on the elapsed time t ,

We can extend all these ideas to two or more dimensions (Figure 4.2). For a
walk on a two-dim ension al checkerboard with squares of side L, we still define D =

L' / (2l!.t ). Now, however, each step is a diagonal and hence has length Lh . Also, the
position rN is a vector, with two com ponents XN and YN. Thu s ( rN)') = ( XN)') +
« YN)') = 4Dt is twice as large as before, because each term on the right separately
obeys Idea 4.5a. Similarly, in three dimensions, we find

diffusion in three dimensions (4.6)

Itmay seem confusing to keep track ofall these differentcases. But the important
features about the diffusion law are simple: In any number of dimension s. mean
square displacement increases linearly with time, so the con stant of proport iona lity
D has dim ensions 1L'1!'-I . Remember th is, and many other formulas will be easy to
remember.

From macro to micro Section 4.1. 1 introduced a puzzle: How can we learn things
abo ut the molecular-scale (or "microsco pic") world, when we can't see molecules?
This section has explored the idea that Brownian mot ion supplies the link between
the microscopic world and the "macroscopic" world (things we can see with light ).
Ultimately, we'd like to find that observation s of Brownian motion, a macroscopic
phenomenon, not only support the molecular th eory ofheat qualitatively but also test
some quantit ative prediction of that theory. We're not ready to get this predic tion yet
(it's Equation 4.16). But at least we have found one relation between the microscop ic
parameters of Brownian mo tion (the step size L and step time ~t) and a quantity
observable in macroscopic experiments (the diffusion constant D ), namely, Idea 4.5b.
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Unfortunately, we cannot solve on e equation for two unkn owns: Just measurin g
D is not enough to find speci fic values for either one of these parameters. We need a
second formula relating Land 6.t to some macroscopic obs ervation, so that we can
so lve two equations for the two unkn owns. Section 4.1.4 will provide the required
additional form ula.

4.1 .3 The diffusion law is model independent

O Uf mathem atical treatment of the random walk made some drastic simplifying as
sumptions. One might well wor ry that o ur simple result , Idea 4.5, may not survive in
a more realistic model. This subsection will show that, on the co ntrary, the diffusion
law is universal-it's ind epend ent o f the mod el, as long as we have some distribut ion
of random, independen t steps.

For sim plic ity) we'll co nt inue to work in one dimension. (Besides bein g math
ematically simpler than three dimensions, the one-d imensional case will be of great
interest in Section 10.4.4.) Suppose that our marker makes steps of various lengths.
We are given a set of numbers P" the probabilities of taking steps oflength kL, where
k is an integer. The length kj of step j can be positive or negative, for forward or
backward steps~ We assu me that the relative prob abilities of the various step sizes are .>

all the same for each step (that is, each value of j). Let u be the mean value of kj :

u = (kj ) = "L kPk.
k:

(4.7)

u describes average drift mot ion sup erimposed on the random walk. (The analysis of
the preceding subsec tion co rrespo nds to the specia l case P± l = t,with all the o ther
Pk = o. For that case, u = 0.)

The mean po sition of the walker is now

(4.8)

To get the last equality, we noticed that a walk of N steps can be built one step at a
time; after each step, the mean displaceme nt grows by uL.

The mean displacem ent is no t the who le story: We know from our earlier ex
perience that di ffusio n concerns the fluctuations about the me an. Accordingly, let's
now compu te the variance (or mea n-square deviatio n, Equation 3. 11) of the actual
position about its mea n. Repeati ng the analysis leading to Equation 4.3 gives

variancetxe ) es ( XN - (XN) ' ) = ( XN_I + kNL - N uL) ' )

= (((XN_I - u(N - I )L ) + (kNL _ uL)) ' )

= {(XN_I - u(N - I )L)' ) + 2{(XN_1 - u(N - I)L)(kNL - uL)}

+ L' {(kN - u)' ). (4.9)

As before, we now recall that kl; the length of the Nth step, was assumed to be a
random variable, statisticaUy ind ependent o f aU the previous steps . Thus the middle
term of the last formul a becomes 2L(XN_1 - u(N - l )L ) (kN - u), which is zero by
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the definition of II (Equation 4.7). Thus Equation 4.9 says that the variance of XN

increases bya fixed amount on every step. or

variancetx») = « XN _ I - (XN_I)') + L' (kN - (kN ) ' )

= variance(xN_d + L2 x variance(k) .

After N steps, the variance is then NL2 x variance(k) . Suppose the steps come every
ilt, so that N = tl ilt. Then

variancetxe ) = 2Dt .
L'

where D = - - x var iance(k) .
2il t

(4.10)

In the special case where u = 0 (no drift), Equation 4.10 just reduces to our earlier
result, Idea 4.5a! ~

Thus the diffusion law (Idea 4.5a) is model independent. Only the detailed for
mula for the diffusion constant depends on the microscopic details of the model
(compare Idea 4.5b to Equation 4.10).3 Such universality, whenever we find it, gives
a result great power and wide applicability.

4 .1 .4 Friction is quantitatively related to diffu sion

Diffu sion is esse ntially a question of random fluctuations: Knowing where a particle
is now, we seek the spread in its expected position at a later time t. Section 3.2.5
argued qualitatively that the same random collisions responsible for this spread also
give rise to friction . So we shou ld be able to relate the micro scopic quantiti es L and
Il t to friction, another experim entally measurable, macroscopic quantity. As usual,
we'll make some simplifications to get to the point quickly. For example, we again
consider an imaginary world where everything moves only in one dimension .

To study friction, we want to consider a particle pulled by a constant external
force f in the xdirection. For example, f could be the force mg of gravity, or the
artificial gravity inside a centrifuge. We want to know the average motion of each
particle as it falls in the direction of the force. In first-year physics, you probably
learned that a falling body eventually comes to a "terminal velocity" determined by
friction. Let's investigate the origin of friction , in the case of a small body suspended
in fluid.

In the same spirit as Section 4.1.2, suppose that the collisions occ ur exactly once
per ilt (although really there is a distribution of times between collisions). In between
kicks, the particle is free of random influen ces, so it is subject to Newton's Law of
moti on, dVx/d t = f I m; its velocity accordingly changes with time as vAt) = Va.x +
f ti m, where Va.x is the starting value just after a kick and m is the mass of the parti cle.
The resulting uniformly accelerated motion of the particle is then

I f ,
ilx = Va.xil t + - -(il t) .

2m
(4.1I)

J~ Section 9.2.2' o n page 389 will show that, similarly, the structure of the thr ee-dimensional diffusion

law (Equation 4.6) does not change if we replace our simple model (diagonal steps on a cubic lattice) by
something more realistic (steps in any direction ).
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Following Section 4.1.1, we assum e that each coliision obli terat es all mem or y of
the previous step. Thus, after each step, Vo.x is randomly pointing left or right , so
its average value, (vo.x ) , equals zero. Takin g the average of Equation 4.11 thus gives
(Ll.x) = ([ / 2rn)( Ll.t )2 In other word s, the particle, although buffeted about by ran
dom collisions, nevertheless acquires a net dri ft velocit y equal to (6 x} / 6 t , or

where

t; = 2rn/Ll. t.

(4.12)

(4. I3)

Equation 4.12 shows that. under the assumptions made. a particle under a consta nt
force indeed comes to a terminal velocity proportion al to the force. Th e viscous fric
tion coefficient {) like the diffusion constant . is experimentally measurable-we just
look through a microscope and see how fast a part icle sett les under the influence of
gravity, for example.

Recovering the famili ar friction law (Equation 4.12) strengthens the idea that
friction or iginat es in randomizing coliisions of a bod y with the thermally disorga
nized surrounding fluid . O Uf result goes well beyond the mo tion of Robert Brown's
po llen grains: Any macromolecule, small dissolved solute mo lecule, or even the mol 
ecules of water itself are subject to Equations 4.12 and 4.13. Each type of particle, in
each type of solvent, has its own characteristic values of D and (.

Returning to colloidal part icles. in practice it's often not necessary to measure (
di rectly. Th e viscous friction coefficient for a spherical object is related to its size by a
simple relat ion :

l; = 6,,~R . Stokes formula (4.14)

In th is expression , R is the rad ius of the par ticle and 1) is a con stan t called th e viscosity
of the fluid. Chapter 5 will discuss viscosity in greater detail; for now, we only need
to know that the viscosity of water at room tem perature is about 10- 3 kg m -Is- I.

Equation 4.14 gives us ( once we measure the size ofa colloida l particle (for example,
by look ing at it). If we also know the density of the particle (for examp le, by weighin g
a bulk sample of soot) , then knowing its size also lets us dete rmi ne its mass m.

Summa rizing, we have found that ( and m are experimentally measurable
propert ies of a macroscopi c colloida l par ticle. Equation 4.13 con nects them to a
molecular- scale quantity, the coll ision tim e ~ t . We can also substitute th is valu e back
into Idea 4.5b and use the particl e's di ffusion constant D to find another molecular
scale quantity, the effective step size L.

Unfortunately, however, our theory has not made a falsifiable, quantit ative pre
dict ion yet. It lets us compute the molecular-scale parameters Land 6.t ofthe random
walk's steps, bu t these are unobservable! To test the idea that diffusion and friction
are merely two faces of thermal motion , we must take one further step.
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Einstein noticed that there's a third relation involvi ng L and tiL To find it, note
that (L j <'.1) ' = (v e.x ) ' . Our discussion leading to the ideal gas law concluded that

(4.15)

Your
TUrn

4C

(Unlike Idea 3.21 on page 80, there's no factor of 3: We need only one component of
the velocity.)

Combining Equation 4.15 with our earlier results (Idea 4.5b and Equation 4.13)
overdetermines L and .6. t . That is, these three relations in two unknowns can only
hold if D and { themselves satisfy a particular relation . This relation between experi
mentally measurable quantities is the prediction we were seeking . To find it, consider
the product {D. \

Put all the pieces together: Use Equations 4.5b and 4.13 to express { D in terms
of m, L, and <'.1. Then use the definitio n vo.x = Lj <'.1, and Equation 4.15, to
show that

Einstein relation (4. 16)

Equation 4. 16 is Einstein's 1905 result. It states that the fluctuations in a particle's
positionare linked to the dissipation (o r frictional drag) that it is subject to .

The Einstein relation is rem arkable in a num ber of ways. For one thing. it tells
us how to find kB by making macroscopi c measurements. Einstei n was then able to
find Avogadro's number by dividing the ideal gas law constant, Nmol,kB, by k• . That
is. he found how many mol ecules are in a mole. and hence how small molecules
are--witho ut seeing molecules.

The Einstein relation is quantitative and universal: It always yields the same value
for knT, no matter what sort of particle and solvent we stud y. For exam ple. the right
hand side of Equation 4.16 does not depend on the mass m of the particle. Smaller
par t icles will feel less drag (smaller n, but will diffuse more readily (bigger D ), in
such a way th;;lall part icles obey Equation 4.16. Also, altho ugh both { and D gen
erally depend on temp erature in a complicated way, Equation 4.16 says their product
depends on T in a very simpie way.

Th e un iversality of {D is a falsifiable prediction of the hypothesis that heat is
disordered molecular motion: We can check whether various kinds of particles . of
various sizes, at various temperatures, an give the same value of kB• (They do : you'll
see one example in Prob lem 4.5.)

Einstein also checked whether the experiment he was proposing was actually
doable. He reasoned tha t, to see a measurable displacement of a single I J1. m colloidal
particle. we'd have to wait until it had moved several microm eters. If the waiting
time for such a motion were impracticably long. then the experiment itself wo uld
be impractical. Using existing estim ates of kB, Einstein estim ated that a 1 J1.rn sphere
in water would take about a minute . a convenient waiting tim e. to wander a mean-
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square distance of 5 tIm. Einstein concluded that colloidal part icles occupy a window
of experimental oppor tu nity: They are large enough to resolve optically, yet not so
large as to render their Brownian mo tion un observably sluggish. Very soon after his
prediction , Jean Perr in and others did the exper imen ts and confir med the predic
tions. As Einstein pu t it later, "Sudd enly all doubts vanished abou t the found ation s
of Boltzmann's theory [of heat]."

I72 1Section 4.1.4' on page 147 m ention s several finer points about random walks.

4.2 EXCURSION: EINSTEIN 'S ROLE

Einstein was not the first to suggest that the origin of Brownian motion was therm al
agitation . Wha t did he do that was so great?

First of all, Einstein had exq~l~{te " t~~te in realizing what problems were im
por tant. At a time when others were pottering with acoustics and such, he realized
that the pressing questions of the day were the reality of molecules, the struc ture of
Maxwell's theory of light, the apparent breakdown of statistical physics in the radia 
tion of hot bodies, and radioactivity. His thr ee articles from 1905 practically form a
syllabus for all of twentieth-century physics.

Einstein's interests were also interdisciplinary. Most scientists at that time could
hardly comprehend that these problems even belonged to the same field of inquiry,
and certainly 00 on e guessed that they would all interlock as they did in Einstein's
haods.

Third, Einstein grasped that the way to take the molecular theory out of its dis
reputable state was to find new, testable, quantitative predict ions. Thus Section 4.1.4
discussed how the study of Brownian motion gives a numerical value for the constant
kB, and hence, for Nmole. The molecular theory of heat says that the value obtained in
this way should agree with earlier. approximate, determination s-and it did .

Nor did Einstein stop there. His doctoral thesis gave yet another independent
determi nation of Nmole (and hence of kB ) , again making use of Equation 4.16. Over
the next few years, he publi shed four moreindependent determ inations of Nmole! Ein
stein was making a point: If molecules are real, then they have a real, finite size, which
manifests itself in many different ways. If they were not real, it would be an absurd
coincidence that all these independent measurements pointed to the same size scale.

These theoretical results had technological impli cations. Einstein's thesis work,
on the viscosity of suspensions, remains his most heavily cited work today. At the
same tim e, Einstein was also shar pening his tools for a bigger project: Showing that
matter consisted of discrete particles prepared his mind to show that ligh t does as
well (see Section 1.5.3 on page 26). It is no accident that the Brownian motion work
immediately preceded the light-qu antum paper.

IT21Section 4.2' on page 148 views some of Einstein 's other early work in the light

of the preceding discussion .
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4.3 OTHER RANDOM WALKS

4.3.1 The conformatio n of polymers

Up to this poi n t, we have been th inking of Figure 4.2 as a time-lapse photo of the mo
tion of a point par ticle. Here is another applicat ion of exactly the same mathem atics
to a to tally differen t physical problem , with biological relevance: the conformation of
a po lymer.

To describe the exact state of a polymer. we'd need an enormous number of
geometrical param eters, for example. the angles of every chemical bo nd . It's hopeless
to predict thi s state, because the polymer is constantly being kno fked about by the
thermal motion of the surrounding fluid. But. here again , we may turn frustration
into opportunity. Are there some overall, average pro perti es of the whole polymer's
shape tha t we could try to pred ict?

Let's imagine that th e polymer can be regarded as a string ofN un its. Each un it is
joined to the next by a perfectly flexible joi nt, like a string of paperclips.' In thermal
equilibrium. the jo ints willall be at random angles. An instantaneous snapshot of the
polymer will be differen t at each instant of tim e, bu t there will be a family resem
blan ce in a series of such snapshots : Each one will be a random walk. Followin g the
approach of Section 4.1.2, we will sim plify the problem by supposing that each joint
of the chain sits at one of the eight corners of a cube centered on the previous joint
(Figure 4.6 ). Takin g the length of the cube's sides to be 2L,then the length of one link
is ./3L. We can now apply our result s from Section 4.1.2. For instance, th e polymer is
extremely unlikely to be stretched out st raight, just as in our imagined checker game

••••

.'.'

Rgure 4 .6 : (Schematic.) A fragmen t of a three-di mension al random walk, simplified so that
every joint can make any of eight possible bend s. In the con figuratio n show n, the step from
joint n to joint n + I is the vector sum of one step to the right, one step down, and one step
into the page.

4In a real polymer. the joints will not be perfectly flexible. Chapter 9 will show that. even in this case,
the freely jointed chain model has some validity. as long as we unde rstand that each of the "units" just
mentioned may actually consist of many mo nomers.
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Figu re 4 .7 : (Experimental data with fits.) (a ) Log-log plot of the diffusion cons tant D of polymethyl methacrylate in
acetone, as a function of the polymer's molar mass M. The solid line corresponds to the function D ex M-0.57 . For com
parison, the dashed line shows the best fit with scaling exponen t fixed to - 1/ 2, which is the prediction of the simplified
analysis in this chapter. (b) The sedimentation time scale S of the same polymer, to be discussed in Chapter 5. The solid
linecorresponds to the function s (X m°.44. For comparison, the dashed line shows the best fit with scaling exponent fixed
to I/ Z. IData from Meyerhoff& Schultz, 1952.J

we're unlikely to take every step to the right. Instead, the polymer is likely to be a
blob, or random coil.

From Equation 4.4 on page 11 5, we find that the roo t-mean-square distance
between the ends of the random coil is .j(rN') = .j(XN') + (YN') + (ZN') =
J 3LzN = L.,J3N. This is an experimentally testable predictio n. The molar mass of
the po lymer equa ls the numb er of units, N, times the molar mass of each uni t, so we
predict that

If we synthesize polym ers made from various numbers of the same
units, then the coil size increases proportionally as the square root of
the molar mass.

Figure 4.7a shows the results of an experiment in which eight batches of polymer,
each with a different chain length, were synthesized. The diffusion consta nts of di
lute solutions of these polymers were measured. The Stokes and Einstein relations
(Equations 4.14 and 4.16) imply that D is a constant divided by the radius of the
polymer blob. Idea 4.17 then leads us to expect that D should be proport ional to
M - 1/ 2, roughly as seen in the experime ntal data.s

Figure 4.7 also illust rates an impo rtant graphica l tool. If we wish to sho w that
D is a cons tant times M- 1/ 2, we could try graphing the data and superimposi ng the

' See Section 5.1.2 and Problem 5.8 for moreabout random-coil sizes.
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curves D = AM -1/2 for various values of the constan t A and seeing whether any of
them fit. A far more transparent approach is to plot instead (IogD) versus (IogM).
Now the different predicted curves (log D) = (IogA) - ~ (IogM) are all straight lines
ofslope - ~ . We can thus test our hypoth esis by laying a ruler along the observed data
points, seeing whether they lie on any straight line, and if so, finding the slope of that
line .

One conseq uence ofIdea 4.17 is that random-coil po lym ers are loose structures.
Tosee this, no te that, if each unit of a polymer takes up a fixed volume v, then packing
N units tightly together would yield a ball of radius (3N v/4 :rr)' /'. For large eno ugh
polymers (N large enough), this size will be smaller than the random-coil size, be
cause N 1{2 increases more rapidly than Ni l ) .

We made a number of expedient assumptions to arrive at Idea 4.17. Most im
portant , we assumed that every polymer unit is equally likely to occupy all the spaces
adjacent to its neighbor (the eight corners of the cube in the idealization of Fig
ure 4.6). This assumption co uld fail if the monomers are strongly attracted to one
ano ther; in that case, the po lymer will not assume a random-walk conformation but
will instead pack itself tightly into a ball. Examples of this behavior include globu
lar proteins such as serum albumin. We can crudely classify po lymers as "compact"
or "extended" by comparing the volume occupied by the polymer with the minimal
volume it would occupy if all its monomers were tightly packed together. Most large
proteins and nonbiological polymers then fall unambiguously into one or the other
category; see Table 4.1.

Even if a po lymer does not collap se into a packed coil, its monome rs are not re
ally free to sit anywhere: Two monomers cannot occupy the same po int of space! Our
treatm ent ignored this self-avo idance phenomenon. Remarkably, introdu cin g the
physics of self-avoidance simply ends up changing the scaling exponen t in Idea 4.17
from ~ to anot her, calculable, value. Th e actual value of this expo nent depends on
tempeE,!!l}-re and solvent conditio ns. For a walk in three dimensions, in "good sol
vent ," the corrected value is about 0.58. The experiment shown in Figu re 4.7 is an
example of this situation; and, indeed, its scaling exponent is seen to be slightly
larger than the simple model's prediction of ~ . Whatever the precise value of this
exponent, the main point is that simple scaling relations eme rge from the complexity
of polymer motions.

Table 4 .1 : Properties of various polymers. RG is the measuredradius of gyration fora few
natural and artificial polymers, along with the radius of the ban the polymer would occupy if
it were tightly packed, estimated fromthe molarmass and approximate density.

polymer molar mass, g/mole RG,nm packed-ball radius, nm type

serum albumin 6.6 · 10' 3 2 compact
catalase 2.25 · 10' 4 3 compact
bushy stunt virus 1.1 ·10' 12 II compact
myosin 4.93 · 10' 47 4 extended
polystyrene 3.2 . IOn 49 8 extended
DNA, in vitro 4.0 · 10' 117 7 extended

[From Tanford, 1961.J
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Figur e 4 .8 : (Schematic; experimental data; photomicrograph .] Experimental test of the self-avoiding random walk
model of polymer conformation, in two dimensions. (a) Experimental setup. A negatively charged DNA molecule sticks
to a positively charged surface. The DNA has been labeled with a fluorescent dye to make it visible in a light microscope.
(b) The entire molecule perform s a random walk in time. The plot shows the mo lecule's center of mass on successive
observations (compare Figure 4.2b,c on page 112). (c) Successive snapshots of the molecule taken at 2 s intervals. Each
oneshows a different random conformation. The fine structure of the conformation is not visible. because of the limited
resolving power of an optical microscope. but the mean-squaredistance of the molecule from its center of mass can still
becalculated.(d) Log-log plot of the size of a random coil oflength N basepairs versus N . For each N. the coil size has
been averaged over 30 independent snapshots like the ones in (c) (see Figure4.5). The averagesize increases proportion
ally to tyO.79±O.04 . close to the theoretically predicted N l / 4 behavior (see Problem 7.9). [(c ) Digital image kindly supplied
byB. Maier; see also Maier& Radler, 1999.)

Figure 4.8 shows a part icularly direct test of a scaling law for a polymer confor
mation . B. Maier and J. Radler formed a positively charged surface and let it attract
single strands'o f DNA; which is negatively charged. They then took successive snap
shots of the attached DNA's changing confo rmation (the DNA contained a fluores
cent dye to make it visible). The DNA may cross over itself; but each time it does so,
there is a cos t in binding energy because the negatively charged upper strand doe s not
co ntact the positive surface at the poin t of crossing and, instead) is forced to contact
another negative strand. Thus we may expect the coil size to follow a scaling relation
appropriate to a two-dimensional, self-avoiding random walk. Problem 7.9 will show
that the predicted scaling exponent for such a walk is ~.
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On ce bound to the plate. the st rands began to wander (Figure 4.8c). Measuring
th e fluorescence intensity as a function of position and averaging over many video
frames allowed Maier and Radler to compute the polymer chain 's radi us of gyratio n
Re, which is related to the cha in's mean -square end-to-end distance. The data in
Figure 4.8d show th at RG ex MO." , close to the ~ power law predicted by th eory.

IT2 1Section 4.3.1' on page 148 mentions some finer poin ts\about the conformation

of random-coil polym ers.

4.3.2 Vista: Random walks on Wall Street

Stock markets are interacting systems of innum erable, independent biological
subunits- the investors. Each investor is governed by a personal mixture of prior
experience, emo tion, and incomplete knowledge. Each bases his decisions on the
aggregate of the other investor s' decisions, as well as on the tota lly unpredicta ble
events in the daily news. How could we possibly say anything predictive abo ut such a
tremendously complex system?

Indeed, we cannot predict an individual investor 's behavior. But remarkably, the
very fact that investors are so well informed abo ut one another's aggregate behavio r
does lead to a certa in stat istical regularity in their behavior: It turns out th at over the
long term, stock prices execute a random walk with drift. The "thermal mo tion" driving
this walk includes the whims of ind ividual investors, along with natu ral disasters,
collapses oflarge firms. and other unpredictable news items. The overall dri ft in the
walk comes from the fact that, in the long run, investing mon ey in firms does make a
pro fit.

Why is the walk random? Suppose th at a techn ical analyst finds that there was
a reliable year-end rally, that is, every year stock prices rise in late December, then
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Figu re 4.9: (Experimental data.) Ubiquit y of random walks. The distribution of mon thly
return s for a lOO-securi ty portfolio, January 1945- June 1970. [Data from Malkiel, 1996.]
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fan in early janu ary. The problem is that once such a regularity becomes known to
market participant s, many people will natu rally choose to sell during thi s period .
driving prices down and eliminat ing the effect in the future. More generally, the past
history of stock -price movements, which is pu blic info rm ation , contains no useful
information that will enable an investor consistently to beat other investors.

If this idea is correct, then some of our results from random-walk theory sho uld
show up in financial data. Figure 4.9 shows the distribution of step sizes taken by the
market value ofa stock po rt folio. The value was samp led at one-month intervals, over
306 consecutive periods. The graph indeed bears a strong resembl ance to Figure 4.3.
In fact, Section 4.6.5 will argue that the dist ribution of step sizes in a random walk
should be a Gaussian, as seen approxi mately in the figure.

-t-

4.4 MORE ABOUT DIFFUSION

4.4.1 Diffusion rules the subcellular world

Cells are full of localized str uctu res; "factory" sites mu st transport their products to
distan t "customers." For example, mitochondria synthesize ATP, which then is used
throughout the cell. We may speculate that thermal motion, which we have found is
a big effect in the nanoworld, somehow causes mo lecular transport. It's time to put
this speculation on a firm er footing.

Suppose we look at one colloidal particle-perhaps a visible pollen grain-every
to second, th e rate at which an ord inary video camera takes pictures. An enormous
number of collisions happen in this tim e, and they lead to some net displacement.
Each such displacement is inde pendent of the precedin g on es, just like th e successive
tosses of a coin, because the surro unding fluid is in random motion. It's true that
th e steps won't be all the same length , but Section 4.1.3 showed th at correcting this
oversimp lification comp licates the math but doesn't change th e physics.

With enough patience, one can watch a single particle for, say, one minute, note
its displacement squared, then repeat the pro cess enough tim es to get the mean . If we
start over, this time using two-m inute runs , the diffusion law says that we should get
a value of ((XN )2) twice as great as before, and we do. The actu al value of the diffusion
cons tant D needed to fit the observations to the diffusion law (Idea 4.6) will depend
on the size of the part icle and the nature of the surrounding fluid.

Moreover, what works for a pollen grain holds equally for the individual mol
ecules in a fluid. They, too, will wander from their position s at any initial instant.
We don 't need to see individu al molecules to confirm this pred iction experimenta lly.
Simply release a large number N of ink molecules at one point, for examp le, with
a micropipette. Each begins an indepe nden t random walk through the surround
ing water. We can come back at tim e t and examine the solutio n optically by us
ing a photometer. The solution's color gives th e number density c( r , t ) of ink mole
cules, which, in tu rn , allows us to calculate the mean-square displacement (r (t )2) as
N - 1 Jd'r r' c (r , r). By watching the ink spread, we can not only verify that diffusion
obeys Idea 4.6a but also find the value of the diffusion consta nt D. For small mole
cules, in water, at roo m temperature, one find s D ~ 10- 9 m2 5- 1, A more useful form
of this number, and one worth memorizing, is D ~ 1 flm 2 rns" .
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Example: Pretend that the interior of a bacterium could be adequately modeled as a
sphere of water of radiu s l urn . About how long does it take for a sudden supply of
sugar molecules at, say, the center of the bacterium to spread uniformly throughout
the cell? How long would this diffusion take in a container the size of a eukaryotic
cell?

-,
Solution : Rearranging Equat ion 4.6 slightly and substituting D = l/lm' ms" gives
that the tim e is around (l/lm)' / (6D) "" 0.2 ms fnr the bacterium. It takes a hundred
times longer for sugar to spread thro ughout a "cell" of radius 10 tu« .

The estimate just made points out an engi neering design problem that larger,
more complex cells need to address: Altho ugh diffusion is very rapid on the microm
eter scale, it quickly beco mes inadequate as a means of transpo rting material on long
scales. As an extreme examp le. you have some single cells, the neurons that stretch
from your spinal co rd to you r toes. that are abo ut a meter long! If the specialized
proteins needed at the terminus of these nerves had to arrive there from the cell body
by diffusion , you'd be in trouble. Indeed, many animal and plant cells (no t just neu
rons ) have developed an infrastructure of "highways" and "trucks," all to carry out
such transport (see Sectinn 2.2.4). But on the subcellular, l jzm level, diffusion is fast,
automatic. and free. And. indeed. bacteria don't have all that transport infrastructure;
they don't need it.

4.4.2 Diffusion obeys a simple equatio n

Altho ugh the motion of a colloidal particle is tota lly unpredictable, Section 4.1.2
showed that a certain average property of many random walks obeys a simp le law
(Equation 4.5a on page lIS). But the mean- square displacement is just one of many
properties of the full probability distribution P(x , t) nf particle displacements after a
given tim e t has passed. Can we find any simple rule governing the full distr ibution?

We could try to use the binomial distribution to answer this question (see the
random walk Example on page 112). Instead, however, this section will derive an
approximation. valid when there are very many steps between each observation ," The
approximation is simpler and more flexible than the binomial distribution approach
and will lead us to some important intuition abo ut dissipation in general.

It's possible experimentally to obse rve the initial position of a collo idal particle.
watch it wander. log its position at various times til then repeat the experiment and
compute the probability distribution P(x , t)dx by using its definition (Equation 3.3
on page 71). But we have already seen in Section 4.4.1 that an alternative ap proach
is much easier in practice. If we sim ply release a trillion random walkers in some
ini tial distribution P(x, 0), then monitor their density, we'll find the later distr ibut ion
Pix, r), automatica lly averaged for us over those trillio n independent random walks.
all in one step.

6~ Section4.6.5' on page ISO explores the validity of this approximation.
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Fig ure 4 .10 : (Schematic.) Simultaneous diffusion of many particles in three dimensions. For
simplicity, the figure shows a distribution unifo rm in y and z, but nonuniform in x. Space is
subdivided into imaginary bins centered atx - L. x,x+ L, ... The planes labeleda, b represent
the (imaginary) boundaries between these bins. X. Y. and Z denote the overall size of the
system.

Suppose that the initial distribution is everywhere uniform in the y . z directions
but nonuniform in x (Figure 4.10). We again simplify the prob lem by supposing that,
on every time step ~ t , every suspended particle moves a distance L either to the
right or to the left, at random (see Section 4.1.2). Thus about half of a given bin's
pop ulation hops to the left, and half to the right. And more will hop from the slot
centered on x - L to the one centered on x than will hop in the other direction,
simply because there were more at x - L to begin with.

Let N(x) be the total num ber of par ticles in the slot centered at x , and Y, Z the
widths of the box in the y . z directions. The net number of particles crossing the
bin boundary a from left to right is then the difference between N evaluated at two
nearby points, or t(N(x - L) - N (x)) ; we count the par ticles crossing the other way
with a minus sign.

We now come to a crucial step: The bins have been imaginary all along, so we
can, if we choose, imagine them to be very narrow. But the difference between a
function, like N(x) , at two nearby points is L times the derivative of N:

dN
N(x - L) - N(x) --+ - L dx . (4.18)

The point of th is step is that we can now simplify our formulas by eliminating L
altogether, as follows.

The number density of particles, c(x), is just the number N(x) in a slot, divided
by the volume LYZ of the slot. Clearly, the futu re developm ent of the density won't
depend on how big the box is (that is, on X, Y, or Z ); the important thing is not
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really the number crossing the boundary a, but rather the number per unit area of a.
This notion is so useful that the average rate of crossing a surface per unit area has a
special nam e, th e number flux, denot ed by the letter j (see Section 1.4.4 on page 22).
Thus, number flux has dimensions 'If-IlL- 2.

We can restate the result of the three preceding paragraphs in terms of the nurn
ber density c = N / (LYZ ), finding tha t

1 I ( d ) I L' dej = x - x L x - - LYZe(x ) = - -- x - .
YZ x D. t 2 dx D.t 2 dx

We have already given a name to the combination L' /(2 D.t) , namely, the diffusion
constant D (see Equation 4.5b ). Thus we have

. de
} = - D dx Fick's law (4.19)

j measures the net number of particles moving from left to right. If there are
more on the left than on the right, then c is decreasing, its derivative is negative, so the
right-hand side is positive. That makessense intuitively: A net drift to the right ensues,
tending to even out the distribution, or make it more uniform. If there's structure (or
order) in the original distribution, Fick's law says that diffusion will tend to erase it.
Th e diffus ion con stant D enters the formula becau se more-r apid ly diffusing pa rticl es
will erase their order faster.

What "drives" the flux? It's not that the particles in the crowded region push
against one another, driving one another out. Indeed, we assumed that each particle
is moving totally independently of the others; we've neglected any possible interac
tions among the particles, which is appropriate if they're greatly outn um bered by the
surrounding solution molecules. The only thing causing the net flow is simply that,
if there are more particles in one slot than in the neighboring one and if each particle
is equa lly likely to hop in either direction, then more will hop out of the slot wit h
the higher initial populat ion. Mere probability seems to be "pushing" the particles. Thi s
simple observation is the conceptual rock upon which we will build the notion of
entropic forces in later chapters.

Fick's law is still no t as useful as we'd like, thou gh . We began thi s subs ectio n with
a very practical question: If all the particles are initially concentrated at a point (that
is, the number density e(r , 0) is sharply peaked at one point), what will we measure
for c(r. t ) at a later time t? We'd like an equa tion we could solve; but all Equ at ion 4.19
does is tell us j , given c. That is, we've found one equation in two unknowns, namely,
c and j. Butto find a solution, we need one equation in oneunknown, orequivalently
a second independent equation in c and j .

Lookin g again at Figure 4.10, we see that the average num ber N(x) changes in
one time step for two reasons: Particles can cross the imaginary wall a, and they can
cross b. Recallin g that j refers to the net flux from left to right , we find the ne t cha nge

: tN(X) = ( YZj ( x-D-YZj ( x + D) ·
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Once again, we may take the bins to be narrow, whereupon the right-hand side of
this formula becomes (- L) times a derivative. Dividing by LYZ then gives

dc dj
dt - dx '

a result known as the continuity equation. That's the second equation we were seek
ing. We can now combine it with Fick's law to eliminate j altogether. Simply take the
derivative of Equation 4.19 and substitute to find'

dc d'c
- = D - .
dt dx'

diffusion equation (4.20)

In more advanced texts, you will see the diffusion equation written as

ac a'c
-=D- .at ax'

The curly symbols are just a stylized way of writ ing the letter "d," and they refer to
derivatives. as always. The anotation simply em phasizes that there is more than one
variable in play, and the derivatives are to be taken by wiggling one variable while
holding the others fixed. Thi s book will use the more familiar "d" notation .

IT21 Section 4.4.2' on page 149 casts the diffusion equation in vector notation and

identifies thermal conduction as another diffusion problem .

4.4.3 Precise stat istical prediction of random processes

Something magical seems to have happened. Section 4.4.1 started with the hypoth
esis of random molecular moti on . But the diffusion equation (Equation 4.20) is de
terministic; that is. given the initial profile of concentration c(x , 0). we can solve the
equation and predict the[uture profile c (x, t).

Did we get something from nothing? Almost-but it's not magic. Section 4.4 .2
started from the assump tion that the number of random-walking particles, and in
particular, the number in anyone slice, was huge. Thu s we have a large collection of
independent rand om event s, each of which can take either of two equally probable
options, just like a sequence of coin flips. Figure 4.3 illustrates how, in this limit , the
fraction taking one of the two options will be very nearly equal to !.as assumed in
the derivation of Equation 4.20.

Equivalently, we can consider a smaller number of particles but imagine repeat
ing an observation on them many times and finding the average of the flux over the
many trials. Our derivation can be seen as giving this average flux, (j (x) ), in terms of
the average number density, c(x) = (N (x»)! (LYZ ). The resulting equation for c(x )
(the diffusion equa tion) is deterministic. Similarly, a deterministic formula for the

"Some authors call Equation 4.20 " Pick's seco nd law."
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squared displacement (the diffusion law, Equation 4.5 on page 115) emerged from
averaging man y ind ividua l random walks (see Figure 4.5).

When we don't deal with the ideal world ofjnfinitely repeated observations. we
should expect some deviation of actual results from their predicted average values.
Thus, for example. the peak in the coin-flipping histogram in Figure 4.3c is narrow,
but not infinitely narrow. This deviation from the averageis called statistical fluctu
ation. For a more interesting example, we'll see that the diffusion equation predicts
that a uniformly mixed solution of ink in water won't spontaneo usly assemble it
self into a series of stripes. Certainly this couldhappen spontaneously. as a statistical
fluctuation from the behavior predic ted by the diffusion equation. But, for the huge
number of molecules in a drop of ink, spo ntaneous unm ixing is so unlikely that we
can forget about the possibility. (Section 6.4 on page 206 will give a quantitative es
timate.) Nevertheless, in a box containing just ten ink molecules, there's a reasonable
chance of find ing all of them on the left-hand side, a big nonuniformity of density.
The probability is (1/ 2)' · , or '" 0.1%. In such a situation, the average behavior pre
dicted by the diffusion equation won't be very useful in predicting what we'd see: The
statistical fluctuations willbe significan t, and the system'sevolution really willappear
random, not deterministic.

So we need to take fluctuations seriously in the nanoworld of single molecules.
Still, there are many cases in which we study collections of molecules large enough
for the average behavior to be a good guide to what we'll actually see.

IT2 1Section 4.4.3' on page 149 mentions a conceptual parallel to quantum

mechanics.

4.5 FUNCTIONS, DERIVATIV ES, AND SNAKES
UNDER TH E RUG

4 .5 .1 Functio ns describe th e detail s of qua ntitat ive relationships

Before solving the diffusion equation, it's important to get an intuitive feeling for
what the symbols are saying. Even if you already have the techni cal skills to handle
equations of this sort, takesome time to see how Equation 4.20 summarizes everyday
experience in one terse package.

The simplest possible situation, Figure -t.H a, is a suspension of particles that al
ready has uniform density at time t = O. Because c(x) is a constant, Fick's law says
there's zero net flux. The diffusion equation says that c doesn't change: A uniform
distribution stays that way. In the language of this book, we can say that it stays uni 
form because any nonuniformity would increase its order, and orderdoesn't increase
spontaneously.

The next simplest situation, Figure 4.11b, is a uniform concentration gradient.
The first derivative de/dx is the slope of the curve shown, which is a constant. Fick's
law then says there's a constant flux j to the righ t. The second derivative d' e/ dx'
is the curvature of the graph, which is zero for the straight line shown. Thus, the
diffusion equation says that once again c is unchanging in time: Diffusion maintains
the profile shown. This conclusion maybe surprising at first, but it makes sense: Every
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a b c d c/dt < 0

x x x

Figure 4 .11 : (Mathe matical functions.) (a) A uniform (well-mixed) solution has constant concentrat ion (x) of solute.
Aconstant func tion has dcjdx = 0 and d2c/<:Ix2 = 0; its graph is a horizontal line. (b) A linear function has d 2c/<tx2 = 0;
itsgraph is a straight line. If the slope, de / dx, is not zero. then this function represents a un iform concentration gradient.
The dashed lines denote two fixed locati ons; see the text. (e) A Jump ofdissolved solute centered on x = O. Th e curvature,
d2c{dXI. is now negative near the bump. zero at the points labeled *.and positive beyond those points. The ensuing flux
of part icles will be directed outward. Th is flux will deplete the concentration in the region between the points labeled
with stars, while increasing it elsewhere. for examp le. at the point labeled A . The flux changes the distribution from the
solidcurve at one instant of time to the dashed curveat a later time.

second, the net number of particles entering the region bounded by dashed lines in
Figure 4,11b from the left is just equal to the net number leaving to the right, so c
doesn't change.

Figure 4.llc shows a more interestin g situation: a bump in the initial concen tra
tion at O. For example) at the mome nt when a synaptic vesicle fuses (Figure 2.7 on
page 43» it suddenly releases a large concen tra tion of neurotransmitter at one point)
creating such a bump distribution in th ree dim ensions. Lookin g at the slope of the
curve) we see that the flux will be everywhere away from 0) indeed tending to erase
the bump . More precisely. the curvature of this graph is concave-down between the
two starred points. Here the diffusion equation says that de/dt will be negative: The
height of the bump goes down. But outside the two starred points) the curvatu re is
concave-up: de/ dt will be positive)and the concent ratio n grows. Th is conclusion also
makes sense: Particles leaving the bump must go somewhere. enhancing the concen
tration away from the bump. The star red points) where the curvature changes sign.
are called inflect ion po ints of the graph of concentratio n, We'll soon see that they
move apart in time. thereby leading to a wider. lower bump.

Suppo se you stand at the point x = A and watch. Initially, the concen tration is
low. Then it starts to increase. because you're outs ide the inflection poin t. Later. as
the inflection point moves past you, the concentrati on again decreases: You've seen a
wave of diffusing particles pass by. Ultimately, the bump is so small that the concen
tration is uniform: Diffusion erases the bump and the order it represents.
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4.5.2 A fun ction of tw o variabl es can be visualized as a landscape

Impli cit in all the discussion so far has been the idea that c is a function of two vari
ables, space x and tim e t. All the pictures in Figure 4.11 have been snapshots, graphs
of c (x , [ I) at some fixed time t = f l ' But the stationary observer just mentioned has
a different point of view: She would graph the time development by cCA , t) hold
ing x = A fixed. We can visualize bot h point s of view at the same time by drawing
a picture of the whol e function as a surface in space (Figure 4.12). In these figures,
po ints in the horizontal plane correspond to all point s in space and tim e; the height
of the surface above this plan e represents the concentration at that point and that
time. The two derivatives de /dx and de / d r are then both interpreted as slopes, corre
sponding to the two direc tion s you could walk away from any point. Sometimes it's
useful to be ultra explicit and ind icate both what 's being varied and what 's held fixed.
For example, the no tatio n ~ It denotes the deri vative holding t fixed. To get the sort
of grap hs shown in Figure 4.11, we slice the surface-graph along a line of constant
time; to get the graph made by our stationary observer, we instead slice along a line
of constant x (heavy line in Figure 4.12b).

Figure 4.12a shows the behavior we'll find for th e solut ion to the diffusion equa
tion.

a

Your
Turn

40

Examine Figure 4.12a and convince yourself visually that a stationary observer,
for example, one located at x = - 0.7, indeed seesa tra nsient increase in con 
centration.

b

2
v

1.5

1

-2 3

Figure 4 .12: (Mathematical functions.) (a) The surface specifies a function c(x , t), describing diffusion as a concen
trat ed lump of solute begins to spread (see Section 4.6.5). Notice that time is drawn as increasing as we move diagonally
downward in the page (a rrow ). The heavy line is the concentration profile at on e particular time, t = 1.6. (b) This sur face
specifies a funct ion v(x, t), describing a hypothetical traveling wave. The diffusion equation has no such solutions, but
Chapter 12 will find this behavior in the context of nerve impulses. The heavy line is the concentration as seen by an
observer fixed at x = 0.7.
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In contra st, Figure 4.12b depicts a behavior very different from what you just foun d in
Your Turn 4D. Th is snake-under-the-rug sur face shows a localized bump in a func
tion v(x . fl, initially centered on x = 0, which mo ves steadily to the left (larger x )
as time proceeds, without changing its shape. This function describes a traveling
wave.

The ability to look at a graph and see at a glance what sort of physical behavior
it describes is a key skill, so please don 't proceed until you're comfortable with these
ideas.

4.6 BIOLOGICAL APPLICATIONS OF DIFFUSION

Up to now, we have admired the diffusion equation but not solved it. Thi s book is
not abo ut the elaborate mathematical techniques used to so lve diffe rential equations.
But it's well worth our while to examine some of the simplest solutions and extract
their intuitive content.

4 .6 .1 Th e perm ea bility of artificia l m e mbra ne s is d iffu sive

Imagine a lon g, th in glass tub e (or capillary tube) of length L, full of water. One end
sits in a bath of pure water, the other in a solution of ink in water with concentra
tio n Co. Eventually, the con tainers at bot h ends will come to equi libr ium with the
same ink concentration. somewhere between 0 and Co . But equilibrium will take a
long time to achieve if the two containers are both large. Prior to equilibrium , the
system will instead come to a nearly steady, or quasi-steady, state. That is, all vari
ables descr ibing the system will be nearly un changing in time: The conce ntration
stays fixed at c(O) = Co at one end of the tube and e(L ) = 0 at the other and will take
various intermediate values c(x) in between.

To find the quasi-steady state, we look for a solution to the diffusion equation
with dcIdt = O. According to Equat ion 4.20, this condition means that d' cIdx' = O.
Thus the grap h of c(x) is a straight line (see Figure 4. l l b), or c(x) = <0 (1 - x I L). A
constant number flux i . = DcolL of ink molecules then diffuses through the tub e.
(The subscript "s" reminds us that this is a flux of solute, not ofwater.) If the concen
tration s on each side are both non zero, the same argument gives the flux in the +x
direction as js = -D(/).c )/L , where /).[ = CL - Co is the con centration difference.

Th e sketch in Figure 2.21a on page 57 shows cell membranes as hav ing chan
nels even narrowe r than the membrane th ickness. Accordingly, let's try to apply the
preceding picture of diffusion through a long, thin channel to membran e transport.
Thus we expect that the flux through the membrane will be of the form

• j s = - Ps /).c . (4.21)

Here the permeability of the membr ane to solute, Ps, is a number depending on bo th
the membrane and the molecule who se permeation we're studying. In simple cases,
the value ofP, roughly reflects the widt h of the pore, the thickness of the membrane
(length of the po re), and the diffusion constant for the solute mo lecules.
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-!T b.

r

Your
Turn

4£

a. Show that the units ofPs are the same as those of velocity.

Using this simplified model of the cell membrane, show that P, is given by
DJL times the fraction a of the mem brane area coveted by pores.

Example: Th ink of a cell as a spherical bag of radius R = to 11m , bounded by a
membrane that passes alcohol with perm eability P, = 20 11m 5- 1. Question: If, ini
tially,the alcohol concentration is Cout outside the cell and Cin(O) inside, how does the
interior concentration Cin change with time?

Solution: The o utside world is so immen se and the permeation rate so slow that
the concentration outside is essentially always the same. The concentration inside
is related to the number N (t) of mo lecules inside by c;n(t) = N (t) / V, where
V = 4rrR' / 3 is the volume of the cell. Accord ing to Equation 4.21, the outward
flux through the memb rane is then i . = - P , (COUI - c;o(t» '" - P, x t.c(t) . Note
that iscan be negative: Alcohol willmove inward if there's more outside than inside.

Let A = 4rrR' be the area of th e cell. From the definition of flux (Section 4.4.2),
N changes at the rate dN/ dt = -Aj, . Remem bering that C;n = N / V , we find that
the concentration jump fj" c obeys the equation

_ d(t. c) = ( AP, ) S c.
d t V

relaxation ofa concentration jump (4.22)

This is an easy differential equatio n: Its solution is t.c(t) = t.c(O)e- I
/ ' , where T =

V/(AP,) is the deca y const ant for the concentration difference. Putting in the given
numbers shows that r ::::::: 0.2 s. Finally, to answer the question we need Cjn, which we
write in terms of known quantitie s as Cjn(t) = COUI - ( COUI - cin(O)) e- tj r .

We say that an initial concentration jum p relaxes expo nentially to its equilibrium
value. In one second, the concentration difference drops to abo ut e- 5 = 0.7% of its
initial value. A smaller cell would have a bigger surface-to -volume ratio, so it would
eliminate the co ncentration difference even faster.

The rather literal model for permeability via membrane pores, used in Your
Turn 4£, is certainly oversimplified. Other processes also contr ibute to permeation .
Forexample, a molecu le can dissolve in the membrane material from one side, diffuse
to the other side, then leave the memb rane. Even artificial mem branes, with no pores
at all, will pass some solutes in this way. Here, too, a Pick-type law, Equation 4.2 1,
will hold; after all, some sort of random walk is still carrying molecules across the
membran e.

Because artificial bilayers are quite reproducible in the laboratory, we sho uld be
able to test the dissolve-ediffuse-» und issolve mechanism of permeation by checking
a quantitative dedu ction from the model. Figure 4.13 shows the result of such an
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Figure 4 .13: (Experimental data with fit.) Log-log plot of the permeability P, of artificial bi
layer membranes (made of egg phosphatidykholine) to vario us small molecules. ranging from
urea (jar lef t point ) to hexanoic acid (far right point ). The horizontal axis gives the produ ct ED
of the diffusion constant D of each solute in oil (hexadecane) time s its partitio n coefficient B in
oil versus water. The solid line has slope equal to 1, indicating a stric t proportionality'P, (X RD.
[Data from Finkelstein, 1987.J

experiment by A. Finkelstein, who measured the permeabilities of a membrane to
16 small molecules. To understand these data) first imagine a simp ler situation, a
container with a layer of oil floating on a layer of water. If we introduce some sugar,
stir well, and wait, eventua lly we will find that almost, but not all, of the sugar is
in the water. The rat io of the concentration of sugar in the water to that in the oil is
called the pa rtition coefficient B; it charac terizes the degree to which sugar molecules
prefer one enviro nment to another. We will investigate the reasons for this preference
in Chap ter 7; for now, we only note that this ratio is some measurab le constant.

We will see in Chapter 8 that a bilayer membrane is essentially a thin layer of
oil (sandwiched between two layers of head groups), Thus, a mem brane separating
two watery compartments with sugar concentrations CI and ' 2 will itself have sugar
concentration Bel on one side and Be2 on the other, and hence a drop of fj,c =
B(el - e, ) across the membrane. Adapting the model discussed at the start of this
section shows that the resulting flux of sugar gives the membrane a permeability
P, = BD/ L Thu s, even if we do n't know the value of L, we can still assert that

The permeability of a pure bilayer membrane is roughly BD times a
constant independent ofthe solute. where B is the partition coefficient
ofsolute and D its diffusion constant in oil.

(4. 23 )

Th e data in Figure 4.13 support this simple conclusion , over a remarkably wide range
(six orders of magn itud e) of BD.
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Typical real values are P, '" 10- 3/l m S-I for glucose diffusing across an artificia l
lipid bilayer membrane, or three to five ord ers of magnitude less than th is (that is,
0.001 to 0.0000 1 times as great) for charged ions like 0 - or Na+, respectively.

The bilayer membranes surrounding living cells have much-larger values of P s

than do artificial bilayers. Indeed, Chapter 11 will show that the transport of small
molecules across cell membranes is far more complicated than simple diffusion
would suggest. Nevertheless, passive diffusion is one important ingredie nt in the full
membrane-transport picture.

4.6.2 Diffusion sets a fundamental lim it on bacterial metabolism

Let's idealize a single bacterium as a sphere of radius R. Suppose that the bacterium
is suspended in a lake and that it needs oxyge n to survive (it's e robic). The oxygen is
all around it , dissolved in the water. with a concentration Co . But the oxygen nearby
gets depleted, as the bacterium uses it up.

The lake is huge, so the bacterium won't affect the lake's overall oxygen level;
instead , the environment near the bacterium will come to a steady state, in which
the oxygen conce ntration c doesn't depend on time . In this state, the oxygen concen
tra tion c(r ) will depend on the distance r from the center of the bacterium. Very far
away, we know that c (00) = Co. We'll assume that every oxyge n mo lecule reaching the
bacterium's surface gets imm ediately gobbled up. Hence, at the cell surface, c(R) = O.
From Pick's law, there must therefo re be a flux j of oxygen molecules inward.

Example: Find thefull concentration profile c( r) and the maximum nu mber of oxy
gen molecules per time that the bacterium can consume.

Solution: Imagine drawin g a series of co ncentric spherical shells around the bac
terium with radii r\, ri . .. . . Oxyge n is moving across each shell on its way to the
center. Because we're in a steady state, oxygen do es not accumulate anywhere: The
number of molecules per tim e crossing each shell equals the number per tim e cross
ing the next shell. This condi tion means that the inward flux j ( r) tim es the surface
area of the shell mu st be a constant, independent of r. Call this con stant I. Now we
know j (r) in terms of I (but we don't know I yet).

Next, Fick's law says j = D(dc/dr) , but we also know j = 1/ (4rrr' ). Solv
ing for c(r) gives c( r) = A - O /r)(l/4rrD), where A is some constant. We can fix
bot h I and A by imposing c(oo) = Co and c(R) = 0, thereby finding that A = C{)
and I = 4rrDRC{). Along the way, we also find that the concentration profile itself is
c( r) = <0(1 - (R/ r)).

Remarkably, we have jus t computed the maximum rate at which oxygen molecules can
be consumed by any bacterium whatsoever! We didn't need to use any biochemistry
at all, just the fact that living o rganisms are subject to constraints from the physical
world . Notice that the oxygen uptake I increases with increasing bacterial size, but
only as the first power of R. We might expect the oxygen consumptio n, however, to
increase roughl y with an organism's volume. Together, these stateme nts imply an up
per limit to the size of a bacterium: If R were too large, the bacterium wou ld literally
suffocate.
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a. Evaluate the expression for I in the Example. using the illustrative values
R = t I' m and co '" 0.2 mole/rn ".

A convenient measure of an organism's overall metabolic activity is its
rate of O2 consumption divided by its mass. Find the maximu m possi-
ble metabolic activity of a bacterium of arbitrary radius R, again using
Co ~ 0.2 mole m- J .

c. The actual metabolic activity of a bacterium is about 0.02 mole kg-'S- I.
What limit do you then get on the size R of a bacterium? Compare your
answer to the size of real bacteria. Can you think of some way for a bac
terium to evade this lim it?

1121Section 4.6.2' on page 149 m entions the concept ofallometric exponen ts.

4.6.3 The Nernst relation sets the scale of membrane poten tials

Many of the molecules floating in water carry a net electric charge. unlike the alcohol
molecules studied in the concentration decay Examp le (page (36). Wh en table salt
dissolves, for example, the individual sodium and chlorine atoms separate, but the
chlorine atom grabs one extra electron from sodium, thereby becoming a negatively
charged chloride ion, CI-, and leaving the sodium as a po sitive ion, Na+. Any electric
field S present in the solution will then exert forces on the individu al ions, dr agging
them just as gravity drags colloida l particles to the bottom of a test tube.

Suppose first that we have a un iform-density solution of charged part icles, each
of charge q, in a region with electric field S . For example, we could place two parallel
plates just outside the solution's container, a distance eapart, and connect them to a
battery that maintains a constant electrostatic potential difference 6.V across them.
We know from first -year physics that S = !J. vie and each charged particle feels a
force qS, so it drifts with the net speed we fo und in Equation 4.12: Vd" ' t = qS/ ( ,
where ~ is the viscous friction coefficient.

Imagine a small net of area A stretched out perpendicular to the electric field
(that is, parallel to the plates); see Figure 4.14. To find the flux of ions induced by the
field, we ask how many ions get caught in the net each second. The average ion drifts
a distance Vdriftdt in time dr , so, in this time , all the ions contained in a slab of volume
AVdriftdt get caught in the net. The number of ions caught equals this volume times
the number density c . The flux j is then the nu mber crossing per area per time, or
CV d" ft - (Check to make sure thi s formula has the proper un its.) Substituting the d rift
velocity gives j = qSc/ ( , the electrophoretic flux of ions.

Now suppose that the density of ions is not uniform. For this case, we add the
driven (electrophoretic) flux just found to the probabilistic (Pick's law) flux, Equa
tion 4.19, thereby obtaining

. qS(x) c(x ) dc
j (x ) = - D- .

( dx
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Figu re 4.14 : (Sketch.) Origin of the Nernst relation. An electric field point ing downward
drives positively charged ions down. The system comes to equilibrium with a downwa rd den
sity gradient of positive ions and an upward grad ient of negative ions. The flux through the
sur face element shown (dashed square) equa ls the number den sity c times Vdrift.

We next rewrite the viscous friction coefficient in terms of D. using the Einstein rela
tion (Equation 4.16 on page 120) to getS

. (de qc)
J = D - dx + k

R
T U . Nemst-Planck formula (4.24)

The Nernst-Planck form ula helps us to answer a fundamenta l question: What
electric field wou ld be needed to get zero net flux, that is, to cancel th e diffusive ten
dency to erase nonuniform ity?To answer the questio n. we set j = 0 in Equation 4.24.
In a planar geometry) where everything is constant in the y . z directions, we get the
condition

(in equ ilibrium) (4.25)

The left side of this formula can be written as ~ (In e).
To use Equat ion 4.25, we now integrate both sides from the top plate to the

bot tom one (see Figure 4.14). The left side is 10' dx ~ In c = In COOt - In Ctop' tha t is,
the difference in In C from one plate to the other. To un derstand the right side, we
first note th at q£ is the force acting on a charged particle, so the particle's potential
energy obeys - dU j dx = q£, or U(x) = - q£x. The electrostatic potential V is the

B~ In the three-dim ensionallanguage introdu ced in Section 4.4.2' on page 149. the Nernst-Planck

formula becomes; = D(- Ve + (q/ kRTlee ). The gradient 't'e points in the direction of most steeply
increasing concentra tion.
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potential energy per unit charge, so !J. V es Vbot - Vtop = - £e. Writing !J. (In c) for
In Cbot - In Ctop then gives the condition for equilibrium:

Nernst relation (4.26)

The subscript on /j" Veq reminds us that this is the voltage needed to maintain a con
centration jump in equilibrium . (Chapter 11 will consider non equilibrium situations,
where the actual potenti al difference differs from fj. Veq , th ereby driving a net flux of
ions.)

Equation 4.26 predicts that positive charges will migrate toward the bottom of
Figure 4.14. It makes sense: They're attracted to the negative plate. We have so far
been ignoring the corresponding negative charges (for example, th e chloride ion s in
table salt ), but the same formula applies to th em as well. Because they carry negative
charge (q < 0), Equation 4.26 says they migrat e toward th e positive plate.

Substituting some real numbers into Equation 4.26 yields a suggestive result.
Consider a singly charged ion like Na+, for which q = e. Suppose we have a moder
ately big concentration jump, ChOI/Ctop = 10. Using the fact th at

kBT, = ~ volt
e 40

(see Appendi x B), we find !J. V = +58 mV. What's suggestive about thi s result is that
many living cells, part icularly nerve and muscle cells, really do mainta in a potential
difference across their membranes of a few tens of millivolts! We haven't proven that
these potent ials are equilibrium Nernst potential s, and ind eed Chap ter 11 will show
th at they're not. But the obser vation does show that dim ension al argumen ts success
fully predict the scale of membrane potentials with almost no hard work at all.

Something interestin g happ ened on th e way from Equati on 4.24 to Equa
tion 4.26: Whe n we consider equilibrium only, the value of D drops ou t. Tha t's
reasonable: D controls how fast things move in response to a field; its uni ts involve
tim e. But equilibri um is an eternal state; it can't depend on tim e. In fact, expo nen
tiatin g th e Nems t relation gives that c(x) is a constant time s e-qV(x)/kI\T . Thi s result
is an old friend : It says that the spatial distribution of ions follows the Boltzmann
distribution (Equation 3.26 on page 85). A charge q in an electric field has electro 
static potenti al energy qV (x) at x ; its probabilit y to be there is proport ional to the
exponential of minus its energy, measured in units of the thermal energy kBT. Thus,
a positive charge doesn't like to be in a region of large positive pote nt ial, and vice
versa for negative charges. Our formulas are mutually consistent."

9~ Einstein's origina l derivation of his relation inverted the logic here. Instead of start ing with Equa

tion 4.16 and rediscovering the Boltzmann distribution, as we just did, he began with Boltzmann and
arr ived at Equation 4.16.



142 Chapter 4 Random Walks, Frktton, and Dtffuslon
,

4.6.4 The electr ical resistance of a solution reflects friction al dissipation

Suppose we place the metal plates in Figure 4. 14 inside the container o f salt water. so
that they become electrodes. Then the ions in solution mi grate. but they don't accu
mu late: The posit ive o nes get elec trons from the - electrode while the negative ones
hand thei r excess electrons over to the + elec trode. The resulting neut ral atoms leave
the solution; for example, they can elec troplate on to the attracting elec trode o r bub 
ble away as gas. 10 Then. instead of establishi ng equilibrium, our system co ntinuo usly
conductselect ricity. at a rate co ntro lled bythe steady-state ion fluxes.

The potent ial drop across our cell is !'>. V = f f, where f is the separat ion of
the plates. According to the Nernst-Planck formula (Equation 4.24), this time with
uni form c, the electric field is

Recall that j is the number of ions passing per area per tim e. To co nvert this expres
sion to the total elec tric current I , no te that each io n deposits charge q when it lands
on a plate; thus, J = qAj, where A is the plate area. PUlling everythin g together gives

(
k.T f)

!'>.V = Dq'c A J. (4.27)

This is a familiar result: It's Ohm's law, !'>. V = JR. Equation 4.27 gives the electrica l
resi stance R of the cell as the co nstant o f propo rtionality between vo ltage and cur
rent. To use this formula, we must rem em ber that each typ e of ions co ntributes to
the total current; for table salt, we need to add separately the contributions from NaT
with q = e and 0 - with q = - e, or in other words, double the right-hand side of
the formu la.

The resistance depends not on iy on the solution but also on the geometry of the
cell. It's customary to eliminate the geometry dependence by defining the electrica l
conductivity of the solution as K = f j(RA) . Then our result is that each ion species
co ntributes K = Dq2c/ kBT to K . It makes sense: Saltier water conducts better.

I T21Section 4.6.4' on page 149 mentions other points abo ut electrical conduction.

4.6.5 Diffusion from a point gives a spreadin g. Gaussian profil e

Let's return to one dimension, and to the quest ion of time-dependent diffusion pro
cesses. Section 4.4.2 on page 128 posed the question of finding the full distribution
function of particle positions after an initial density profile c(x, 0) has spread out for
time t .

10~ Electroplating does not occur with a solution of table salt. nor does chlorine gas bubble away.

because sodium metal and chlorine gas are so strongly reactive with water. Nevertheless. the following
discussion is valid for the alterna ting-curren t conductivity of NaC!.
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Suppose we release many particles all at on e place (a "pulse" of concent rati on).
We expect the resulting distribution to get bro ader with time. We might, therefore,
guess tha t the solution we seek is a Gaussian ; perhaps c(x, t ) ~ Be- x2

/ (2Atl , where
A and B are some constants. Th is profi le has the desired propert y th at its variance,
a 2 = At, indeed grows with tim e. But substitut ing it into the diffusion equation, we
find that it is not a solution , regardless of what we choose for A and B.

Before abandoning our guess , notice th at it has a more basic defect: It's not prop
erly normalized (see Section 3.Ll on page 70) . The int egra l J~oo dxc (x , t) is the total
number of par ticles and hence cannot cha nge in time. Th e proposed solution do esn't
have that property.

a. Establish that last statemen t. Th en show that the profile

const - x2/ (4Dt )
c( x , t) = .ji e

does always maintain the same normalization. Find th e constant , assuming
that N particles are present . [Hint: Use the change of variables tr ick from
the Gaussian normalization Example on page 73.]

b. Substitute your expression from (a) into the one-dimensional diffu sion
equation, take the derivatives, and show that with thi s correction we do get
a solution.

c. Veri fy that (xZ) = 2Dt for thi s distribution: It ob eys the fun damental diffu
sion law (Id ea 4.5a on page t 15).

Th e solutio n you just found is the function shown in Figure 4.12 on page 134. You
can now find the inflection poi nts, where the concentration switches from increas
ing to decreasing, and can verify that they mo ve outward in time, as mentioned in
Sect ion 4.5.1.

The result of Your Turn 4G per tains to one -d imensional walks, but we can pro
mote it to three dimensions. Let r = (x, y , z). Because each di ffusing particle mo ves
independently in all three dim ensions, we can use the multipli cation rule for proba
bilit ies: Th e concentration c (r) is the product of three one -d imensional distributions:

c (r, t ) = N - r 2/ (4Dt )e .
(4rr Dt) 3/2

fundamental pu lse solution (4.28)

In this formula, th e symbol r' refers to the length -squared of the vector r, that is, x2 +
y2+ z2 Equation 4.28 has been normalized to make N the total number of particles
released at t = O. Applying your result from Your Turn 4G(c) to x, y, and z separately
and adding th e result s recovers the three-dimension al diffusion law (Equation 4.6).

We get another important application of Equation 4.28 when we recall the dis
cussion of pol ymers. Section 4.3.1 argued that , although a pol ymer in solution is
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constantly changi ng its shape, nevertheless its mean-square end -to-end length i5a
con stant times its length. We can now sharpen that statement to say that the distribu
tion of end-to-end vectors r will be Gaussian.
IT2 1Section 4.6.5' on page 150 points out that an approxima tion used in Sec

tion 4.4.2 limits the accuracy of o ur result in the far tail of the distribution.

THE BIG PICTURE

Returning to the Focus Question. we've seen how large numbers of random, inde
pendent actors can collectively behave in a predictable way. For exam ple, we found
that the purely random Brownian moti on of a single molecule gives rise to a rule
of diffusive spreading for collections of molecules (Equation 4.5a) that is simple. de
terministic, and repeatable. Remarkably. we also found that precisely the same math
gives useful results about the sizes of polymer coils, at first sight a completely un re
lated problem.

We have already found a number of biological appl icatio ns of diffusion and its
other side. dissipation. Later chapters will carry this theme even further:

Frictiona l effects dominate the mechanica l world ofbacteria and cilia. dictating the
strategies they have chosen to do their jobs (Cha pter 5).

Our discussion in Sectio n 4.6.4 abou t the conduction of electricity in solution will
be needed when we discuss nerve impulses (Chapter 12).

Variants of the rand om walk help explain the operation of some of the walking
motors mentioned in Chapter 2 (see Chapter 10).

• Variants of the diffusion equation also control the rates of enzyme -mediated reac
tion s (Chapter 10) and even the progress of nerve impulses (Chapter 12).

More bluntly, we cannot be satisfied with unde rstanding thermal equilibrium
(for example. the Boltzmann distribution foun d in Chapter 3), because equilibrium is
death. Chapter I emphasized that life prospers on Earth only by virtue of an incoming
stream of high-quality energy. which keeps us far from thermal equilibrium. Th e
present chapter has provided a framework for understanding the dissipation of order
in such situations; later chapters will apply this framewo rk.

KEY FORMULAS

Binomial: The number of ways to choose k objects out of a jar full of II distinct
objects is 1l!j(kl(1l - k) !) (Equation 4.1).

Stirling: The formula: In N! '" N In N - N + ~ In(2rrN) allows us to approximate
N ! for large values of N (Equat ion 4.2).

Random walk: The average locat ion after random-walking N steps of length L in
on e dimension is (XN) = O. The mean-square distance from the starting po int is
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(XN') = N L' , or 2Dt, where D = L' I(2 {). t) if we take a step every {).t (Idea 4.5).
Similarly, taking diagonal steps on a two-dimensional grid gives « XN ) ' ) = 4Dt. D
is given by the same formula as before; this time L is the edge of one square of the
grid. In three dimensions, the 4 becomes a 6 (Equation 4.6).

Einstein: An imposed force f on a particle in suspension, if sma ll enough, result s
in a slow net dri ft with velocity Vd,;ft = f it; (Equation 4.12). Drag and diffusion
are related by the Einstein relation, t; D = kBT (Equation 4.16). This relation is not
limited to our simplified model.

• Stokes: For a macroscop ic (many nanometers) sphere of radius R moving slowly
through a fluid, the drag coefficient is t; = 6JrryR (Equation 4.14), where n is the
fluid viscosity.
(In contrast, at high speed, the drag force on a fixed object in a flow has the form
-Bv' for some constant B characterizing the object and the fluid; see Problem 1.7.)

• Fick and diffu sion: The flux of particles along xis the net number of particles
passin g from negative to positive x, per area per time. The flux created by a con
centration gradient is j = - D deldx (Equation 4.19), where e(x) is the number
density (concentration) of particles. (In th ree dimensions, j = -DVc.) The rate of
change of e(x, r) is then deI dt = D(d' eI dx' ) (Equation 4.20 ).

Membrane permeability: The flux of solute through a membrane is i , = - P, {).e
(Equation 4.2 1). where P, is the perm eabili ty and 6 c is the jump in co ncentratio n
across the membrane.

Relaxation: The concentration difference o f a perm eable so lute between the inside
and outside o f a spherical bag decreases in time. following the equatio n

_ d({). e) = (AP'){).e
dt V

(Equation 4.22).

Nemst- Planck: When charged particles diffuse in the presence of an electric field,
we must modify Pick's law to include the electrophoretic flux:

(Equation 4.24).

Nernst: If an electrostatic potential difference D. V is imposed across a region
of fluid , then each disso lved ion species with charge q co mes to equilibrium
(no net flux) with a concent ration change across the region fixed by {). V =
- (kBTlq){).(1n e) (Equation 4.26) or equivalently

58 mV
V, - VI = ---loglO (c,jeil ,

z

where the valence z is defined by z = ql e.

• Ohm : The flux of electr ic current created by an elect ric field £ is proportional to
E, a relation leadin g to Ohm's law. Th e resistance of a conductor of length eand
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cross section A is R = i l(AK), where K is the conductivity of the material. In our
simplified model, each ion species contributes Dq2cI k. T to K (Section 4.6.4).

Diffusion from an initial sharp point: Suppose N molecules all begin at the same
location in three-dimensiona l space at tim e zero. Later the concentration is

c( r, t) = N e-" / (4O<)
(4rrDt) J/2

(Equation 4.28).

FURTHER READING

Semipopular:
Historical: Pais, 1982, §S.
Finance: Malkiel, 1996.

Intermediate:
General: Berg, 1993; Tinoco et al., 200I.
Polymers: Grosberg & Khokhlov, 1997.
Better derivations of the Einstein relation: Benedek & Villars, 2000b, §2.SA-C; Peyn
man et al., 1963a, §43.

Technical:
Einstein 's original discussion : Einstein , 1956.



1121 4.1.4' Track 2

Some fine points:

Track 2 147 I
I. Sections 4.1.2 and 4.1.4 made a number of idealizations, so Equations 4.5b and

4.13 should not be taken too literally. Nevertheless, it turns out that the Einste in
relatio n (Equation 4.16) is both general and accura te. Th is broad applicabil ity
must mean that it actually rests on a more general, although more abstract. ar
gument than the one given here. Indeed , Einstein gave such an argument in his
ori ginal 1905 paper (Einstein, 1956).

For example. introducing a realistic distribution of times between collisions
does not change o ur main results, Equation s 4.12 and 4.16. See Feynman et al.,
1963a, §43 for the analysis of this more detailed model. In it, Equation 4.13 for
the viscous frict ion coefficient { expressed in terms of microscopic quantities be
comes instead { = m l t , where r is the mean time between collisions.

2. The assumption that each collision wipes out all memory of the previous step is
also not always valid . A bullet fired into water does no t lose all memory of its initial
mo tion after the first mo lecu lar co llision! Strictly speaking, the der ivation given
here applies to the case where the particle of in terest starts o ut with momentum
comparable to that transferred in each coll ision, that is, no t too far from equilib
rium. We must also require that the momentum imparted by the external force in
each step no t be bigger than that tran sferred in molecular collisions, or, in ot her
words, that the applied force is not too large. Chapter 5 will explore how great the
applied force may be before "low Reyno lds-number" formulas like Equation 4.12
beco me invalid, concludi ng that the results of this chapter are indeed app licable
in the world of the cell. Even in th is world, however, our analysis can certainly be
made mo re rigorous: Again see Feynma n et al., 1963a, §43.

3. Cauti ous readers may worry th at we have applied a result ob tained for the case of
low-density gases (Idea 3.21, that the mean -squ are velocity is ( vx ) ' ) = kBTim ),
to a dense liquid, nam ely, water. But our working hypo thes is, the Boltzma nn d is
tri bution (Equation 3.26 on page 85) assigns probabilities on the basis of the tot al
system energ y. Th is energ y contains a complicated po tential energy term, plus a
simple kine tic energy term, so the probability d ist ribution factors into the product
of a complicated fun ctio n of the positions, times a simple func tion of the veloci
ties. But we don't care about the positional correlations. Hence we may simpl y in 
tegrate the com plicated factor over d3x I . . . d3xN, leaving behind a constant times
the same simple probability distribution function of velocit ies (Equation 3.25 on
page 84) as the one for an ideal gas. Takin g the mean-squ are velocity then leads
again to Idea 3.21.

Thus, in particular, the average kinetic energy of a colloidal particle is the
same as that of the water molecules, just as argued in Sect ion 3.2.1 for the different
kinds of gas molecule in a mixture. VVe implicitly used thi s equ ality in arriving at
Equation 4.16.

4. The Einstein rela tion, Equation 4.16, was the first of many similar relations be
tween fluctuations and dissipat ion. In other contexts such relations are generically
called fluctuation-dissipat ion theorems.
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1121 4.2 ' Track 2

The themes explored in Section 4.2 also pervade the rest of Einstein's early work:

1. Einstein did not originate the idea that energy levels are quantized; Max Planck
did, in his approach to thermal radiation. Einstein pointed out that applying this
idea directly to light explained ano ther, seemingly unrelated phenomenon, the
photoelectric effect. Moreover, if the light- quantum idea was right , then both
Planck's thermal radiation and the photoelectric experiments should indepen
dently determine a number, which we now call the Planck constant. Einstein
showed that both experiments gave the same num erical value of this constant.

2. Einstein did not invent the equations for electrodynamics; Maxwell did. Nor was
Einstein the first to point out their curious invariances; H. Lorentz did. Einstein
did draw attention to a consequence of this invariance: the existence of a funda
ment al limiting velocity, the speed of light c. Once again, the idea seemed crazy.
But Einstein showed that doggedly following it to its logical end point led to a new,
quantitative, experimentally testable prediction in an apparently very distant field
of research. In his very first relativity paper, also published in 1905, he observed
that , if the mass m of a body could change, the transformation would necessarily
liberate a definite amount of energy equal to !i.E = (ti. m) c 2. Yet again, Einstein
offered a highly falsifiable prediction to test his seemingly crazy theory: The nu
merical value of c can be deduced from measuring ti.m and ti.E of any nuclear
reaction . Later experiments confirmed this prediction, with the same numerical
value of c as that measured from light prop agation .

3. Einstein said some deep things about the geometry of space and time, but
D. Hilbert was saying many similar things at about the same time. On ly Ein
stein, however, realized that measuring an apple's fall yields the numerical value
of a physical parameter (Newton's constant), which also controls the fall of a pho
ton. His theory thu s made quantitative predictions about both the bending oflight
by the Sun and the gravitational blue-shift of a falling photon. The experimenta l
confirmation of the light-bending prediction catapulted Einstein to international
fame.

1121 4.3.1'Track2

I. We saw that typically the scaling exponent for a polymer in solvent is not exactly
!.One special condition, called theta solvent, actually does give a scaling expo

nent of !, the same as the result of o ur narve analysis. Theta conditions roughly
correspond to the case where the monomers attract one another just as much as
they attract solvent molecules. (Problem 5.8 will explore this situation.) In some
cases, theta conditions can be reached simply by adjusting the temperature.

2. The precise definition of the radius of gyration RG is the root·mean-square dis
tance of the individual monomers from the polymer's center of mass. For long
polymer chains, it is related to the end- to-end distance rN by the relation (RG)' =
i« rN )').

3. Another test for polymer coil size uses light scattering; see Tanford, 1961.
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1121 4.4 .2' Track 2

1. What if we don't have everything un iform in the y and z directions? The net flux
of par ticles is really a vector, like velocity; our j was just the x component of this
vector. Likewise, the derivative deIdx is just the x compo nent of a vector, the gra
dient, denoted Vc (and prono unced "grad c"). In this lan guage, the general form
of Pick's law is then j = - DVc, and the d iffusion equation reads

ac ,
- = D V-c.at

2. Actually, any conserved quantity carri ed by ran dom walkers will have a diffusive
transpo rt law. We've studied the num ber of particles, which is conserved because
we assumed them to be indestructible. But particles also carry energy, ano ther
conserved quantity. So it shouldn't surprise us that there's also a transfer of heat
whenever molecular energy is not un iform to begin with, that is, when the tem 
peratu re is nonuniform. And indeed, the law of heat conduction reads just like
ano ther Pick-type law: The flux jQ of ther mal energy is a constant (the thermal
conductivity) tim es minus the gradient of temp erature. (Various versions of this
law are sometimes called Newton's law of cooling, or Fourier's law ofconductio n.)

Section 5.2.1' on page 187 discusses another imp ortant example, the dissipa
tive transport of momentum.

[T21 4.4.3' Track 2

On e can hardly overstate the conceptual importa nce of the idea th at a probability dis
tr ibution may have deterministic evolution, even if the events it describes are them
selves random. The same idea (with d ifferent details) underlies quan tum mechanics.
There is a popular conception th at quantum theory says «everything is uncertain;
nothi ng can be predict ed." But Schrodinger's equation is deterministic. Its solution,
the wave func tion , when squared yields the probabilityof certain obse rvations being
made in any given trial, just as c(x. t) reflects the probability of find ing a particle near
x at time t.

1121 4.6.2' Track 2

Actually, a wide ran ge of organisms have basal metabolic rates scaling with a power
of body size that is less than three. All that matters for the st ructure ofour argument
is that this "allome tric scaling expo nent" is bigger than 1.

1121 4.6.4' Track 2

1. Section 3.2.5 on page 87 menti oned that frictio nal d rag must generate heat. In
deed, it's well kno wn that electrical resistance creates heat, for example, in your
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toaster, Using the First Law, we can calculate the heat : Each ion passed between
the plates falls down a potent ial hill, losing potential energy q x ""V. The total
number of ions per time making the trip is I l q, so the power (energy per time)
expended by the external batte ry is ""V x I. Using Ohm's law gives the familiar
formula: power= /2R.

2. The conduction of electricity through a copper wire is also a diffusive transport
process and also obeys Ohm's law. But the charge carriers are electrons, not ions;
and the nature of the collisions is quite different from that in salt solution. In
fact, the electrons could pass perfectly freely th rough a perfect single crystal of
copper; they only bounce off imp erfect ion s (or thermally induced distortions)
in the crystal lattice. Figuring out this story required the invention of quantum
theory. Luckily, your body doesn't contain any copper wires; the picture developed
in Section 4.6.4 is adequate for OUf purposes.

112I 4.65' Track 2

I. Gilbert says: Someth ing is bothering me abo ut the pulse solution (Equation 4.28
on page 143). For simplicity, let's work in just one dimension. Recall the setup
(Section 4.1.2): At time t = 0, I release some random walkers at the origin, x = O.
A short time t later, the walkers have taken N steps of length L, where N = t ]"" t.
Then none of the walkers can be found farther away than xm" = ± NL = tLI ""t.
And yet, the solution (Equation 4.28) says tha t the density c(x . t) of walkers is
nonzero for any x, no matter how large! Did we make some error or approxima
tion when solving the diffusion equation?

Sullivan: No, Your Turn 4G showed that it was an exact solution . But let's look
mo re closely at the derivation of the diffusion equation itself-maybe what we've
got is an exact solution to an approximate equation. Indeed, it's suspicious that we
don't see the step size L, nor the time step Lit. anywhere in Equation 4.20.

Gilbert: Now that you mention it, I see that Equation 4.18 replaced the discrete
difference of the pop ulations N in adjacent bins by a derivat ive. remarking that
this was legitimate in the limit of small L.

Sullivan: That's right. But we took this limit holding D fixed, where D =

L' /(2 ""t). So we're also taking ""t --> 0 as well. At any fixed time t, then , we're
taking a limit where the number of steps is becoming infinite. So the diffusion
equation is an approximate, limiting representation of a discrete random walk.
In this limit , the maximum distance xm" = tLI ""t = 2Dtl L really does becom e
infinite , as implied by Equation 4.28.

Gilbert: Should we trust this approximation?

Let's help Gilbert out by comparing the exact, discrete prob abilities for a walk
ofN steps to Equation 4.28 and seeing how fast they converge with increasing N .
We seek the probability that a random walker will end up at a position x after
a fixed amo unt of time t , We want to explore walks of various step sizes, while
holding fixed the macroscopically observable quantity D.
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Figure 4.15 : (Mathema tical func tions .) The discrete binomial distr ibution for N steps (bars), versus the corresponding
solution to the diffusion equation (curve ). In each case, the rand om walk under cons ider ation had 2Dt = 1 in the
arbitrary uni ts used to express x; thus, the curve is given by (2Jr) - If2e- x.:! / 2. The discrete dist ribution (Equation 4.29) has
been rescaled so that the area unde r the bars equals I, for easier comparison to the curves. (a ) N = 4. (b) N = 14.

Sup pose that N is even. An N-step random walk can end up at one of
the points (-N ). (- N + 2), . . . ,+N. Extending the random walk Example
(page 112) shows that the probability of taking (N + j)/2 steps to the right (and
hence (N - j )/2 steps left), ending up j steps from the origin, is

(4.29)

Such a walk ends up at position x = j L. We set the step size L by requiring a fixed ,
given D: Noting that Ar = t tN and D = L' /( 2!;t) gives L = .j2Dt/N. Thus, if
we plot a bar of width 2L and height Pj / (2L), centered on x = j L, then the area
of the bar represents the probability that a walker will end up at x. Repeating for
all even integers j between -N and +N gives a bar chart to be compared with
Equation 4.28. Figure 4.15 shows that the ap proximate solution is quite accurate
even for small values of N .

Str ictly speaking, Gilbert is right to note that the tru e probability must be
zero beyond Xm a:o whereas the approximate solution (Equation 4.28) instead
equals (4n Dt )- 1/2e- (Xmax )2 / (4Dtl . But the ratio of this error to the peak value of P,
(4][DO-I I ', is e- NI2, which is already less than I% when N = 10.

Similar remarks apply to polymers: The Gaussian mo del of a polymer men
tioned at the end of Section 4.6.5 gives an excellent account of many polymer
properties. We do need to be cautious. however, about using it to study any pro p
erty that depends sensitively on the par t of the distribut ion representi ng highly
extended molecular con formations.
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c

-2 3

Figure 4.16: (Mathematical functions.) Diffusion from an initial concentration step. Time
increases as we move diagonally downward (arrow). The sharp step gradually smoot hs out.
starting from its edges.

Your
Turn

4H

Instead of graphing the explicit formula, use Stirling's approximation (Equa
tion 4.2 on page 11 3) to find the limiting behavior of the logarithm of Equa
tion 4.29 when N ~ 00, holdin g x, t I and D fixed. Express your answer as a
probability distributi on P(x, t)dx and compare it with the diffusion solution.

2. Once we've found one solution to the diffusion equation. we can manufacture
others. For example, if c, (x, r) is one solution, then so is c,(x, r) = dc,/dr, as
we see by differentiating both sides of the diffusion equation. Similarly, the an
tiderivative c,(x, r} = r dx' c, (x' , t) yields a solution. The latter procedure, ap
plied to the fundamental pulse solution in Your Turn 4G on page 143, gives a
new solution describing the gradual smoothing-out of a sharp con centration step;
see Figure 4.16. Mathematicians give the function 2/,fiiJ; dx' e- (Xl' the name
Erf(x), the error functio n.
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PROBLEMS'

4 .1 Bad luck

a. You go to a casino with a d ishonest coin, which you have filed down in such a way
that it comes up heads 51% of the time. You find a credulous rube willing to bet
$1 on tails for 1000 con secutive throws. He merely insi sts in advance th at if after
1000 th rows you 're exactly even, then he' ll take your shir t. You figure that you 'll
win abou t $20 from this sucker, but instead you lose your shirt. How could this
happen? You come back every weekend wit h the same propositio n, and indeed,
usually you do win. How ofte n on average do you lose your shirt?

b. You release a billion protein molecules at positio n x = 0 in the middle of a narrow
capillary test tub e. The molecu les' diffusion constant is 10- 6 em? 5- 1. An electric
field pulls the mol ecul es to the right (larger x) wit h a drift velocity of l u rn S- I.

Nevertheless, after 80 5 you see that a few protein molecules are actually to the left
of whe re you released them . Ho w could this happen? What is the endin g num ber
density righ t at x = O? [Note: This is a one-dimensional problem , so you should
express your answer in terms of the number densi ty in tegrated over the cro ss
sectio nal area of the tube, a quantity with dimension s IT..-].J

c. 1'121Explain why (a) and (b) are essentia lly, but not exactly, the same mathemat

ical sit uation.

\' 4.2 Binomial distribution
The genome of the HI V-l virus, like any genome, is a str ing of "letters" (basepairs)
in an "alphabe t" containi ng onl y four lett ers. The message for H IV is rather sho rt ,
just 11 ~ 104 letters in all. Becau se any of th e letters can mutate to an y of the three
othe r choices, there's a total of 30 000 po ssible distinct one-letter m utatio ns.

In 1995, A. Perelson and D. Ho found tha t every day abo ut 1010 new virus par
ticles are formed in an asymptomatic H IV pa tien t. Th ey further estimated that about
1% of these viru s particles pro ceed to infect new whit e blood cells. It was alread y
known that the erro r rat e in dupl icating the HIV genome was about one error for
every 3 · 104 "letters" copied. Thus th e number of newly infected white cells receivin g
a copy of the viral genome with on e mutation is roughly

1010 x 0.01 x (104( (3 . 104» '" 3 . l a'

per day. This number is m uch larger than the total 30 000 possible l-Ietter m utations,
so every po ssible mutatio n will be generated many times pe r day.

a. How many distinct two-base m uta tio ns are there?

b. You can work out the probability P2 that a given viral particle has two bases copied
inaccurately from the previous generation by using the sum and product ru les of
probability. Let P = 1( 3 · 10' ) be the probability that any given base is copied
incor rectly. Th en the probability of exactly two erro rs is P' , times the prob ability

•Problem 4.7 is adapted with perm ission from Bened ek & Villars, zocot,
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that the remaining 9998 letters don't get copied inaccurately, times the number of
distinct ways to choose which two letters get copied inaccurately. Find P2-

c. Find the expected number of two- letter mutant viruses infecting new white cells
per day and compare to your answer to (a).

d. Repeat (a- c) for three independent mutations.

e. Suppose that an antiviral dru g attacks some part of HIV but that the virus can
evade the drug's effects by making one particular, single-base mutation. According
to the preceding information, the virus will very quickly stumble upon the right
mutation-the drug isn't effective for very long. Why do you suppose an effective
HIV therapy involves a combination of threedifferent antiviraldrugs administered
simultaneously?

4.3 Limitations of passive transport
Most eukaryotic cells are about 10/l m in diameter, but a few cells in your body are
about a meter long. These are the neurons running from you spinal cord to your feet.
They have a norm al-sized cell body, with various bits sticking out , notabl y the axon
(see Section 2.1.2 on page 43).

Neurotransmitters are small molecules synthesized in the cell body but needed
at the tip of the axon. One way to get them to their destinat ion is just to let them
diffuse there. Model the axon as a tube I m long and 1/lm in diamete r. At one end
of the axon. the concentration of a small molecule is maintained at one millimolar
(that is, (10- 3mole)/(l0-3 m3».Some process removes all the molecules arriving at
the other end.

a. Estimate how many molecules per second arrive at the end.
b. Real neurons package neurotransmitter molecules in packets containing about

10000 molecules. To send a signal to the muscle, a motor neuron must release
about 300 of these packets. Using the model just outlined, estimate how often the
neuron could send a signal if diffusion were the only means of transport.

4 .4 Diffusion versus size
Table 4.2 lists the diffusion constants D and radii r of various biologically interesting
molecules in water. Consider the last four entries. Interpret these data in light of the
diffusion law. [Hin t: Plot D versus l / R, and remember Equation 4.14.]

Table 4 .2 : Sizes and diffusion constants of some molecules in water at 20°e.

molecule molar mass, g/ mole radius, nm D x 109 , m2 5 - 1

water 18 0.15 2.0
oxygen 32 0.2 1.0
urea 60 0.4 1.1
glucose 180 0.5 0.7
ribonuclease 13683 1.8 0.1
fJ- lactoglobulin 35000 2.7 0.08
hemoglobin 68000 3.1 0.07
co llagen 345000 31 0.007

[Fro m Tanford , 1961.\
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4.5 Perrin 's experiment
Figure 4.17 shows some experi mental data on Brownian motion taken by Jean Perri n.
Per rin took colloida l particles of gut ta-percha (natural rubber), with radius 0.37 11 m.

He watched th eir projections into the xy plane, so the two-dimensional random walk
sho uld describe their motions. Following a suggestion of his colleague P. Langevin,
Perrin observed the locat ion of a particle. waited 30 s, then observed again and plot
ted the net displacement in that tim e interval. He collected 508 data points in this
way and calculated the root -m ean-square displacement to be d = 7.84 Ji m . Th e con
cent ric circles drawn on the figure have radii d/ 4, 2d/ 4, 3d/ 4, .. ..

•
Figure 4.17 : (Experimental data.}See Problem 4.5. [From Perrin, 1948.1

a. Find the expected coefficient of frictio n for a sphere of radius O.37 Il m , using the
Stokes formula (Equation 4.14). Then wor k out the predicted value of d, using the
Einstein relat ion (Equation 4.16) and compare with the measured value.

b. IT2 1How many dots do you expect to find in each of the rings? How do your

expectations compare with the actual num bers?

4.6 Permeability versus thickness
Look at Figure 4.13 on page 137 again. Find the thickness of the bilayer membrane
used in Finkelstein's experiments.

4.7 Vascular design
Blood carr ies oxygen to your bod y's tissues. For this problem, you may neglect th e
role of the red cells: Just suppose that the oxygen is dissolved in the blood and dif
fuses out through the capillary wall because of a concentrat ion difference. Model a
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capillary as a cylind er oflength L and radius r, and describ e its oxygen transport by a
permeability P.
a. If the blood did not flow, the interior oxygen concentration would approach that

of the exterior as an exponential, similarly to the con centration decay Example
(page 136). Show th at the corresponding time constan t would be T = r/ (2P).

b. But blood does flow. For efficient transport, the time that the flowing blood re
main s in the capillary should be at least se T; oth erwise the blood would carry its
incoming oxygen right back out of the tissue after entering the capillary. Using this
constraint, derive a formula for the maximum speed of blood flow in the capillary.
Evaluate your formula numerically, usin g L ~ 0.1e m, r = 4 {lm , P = 311m5- 1.

Compare with the actual speed v "" 400 11m 5- 1.

4.8 Spreading burst
Your Turn 4D on page 134 claim ed that, in one-dimensional diffu sion , an observer
sitting at a fixed point sees a transient pulse of concentration pass by. Make this state
ment more useful, as follows: Write the explicit so lution of the diffu sion equation for
release of a million particles from a po int source in three dimensio ns. Then show that
the concentration measured by an observer at fixed distance r from the initi al release
point peaks at a certain tim e.

a. Find that tim e, in terms of r and D.

b. Show that the value of concentration at that tim e is a constant time s r- 3 and
evaluate the constant numerically.

4.9 IT2 1Rotational random walk

A particle in fluid will wande r: Its center does a random walk. But the same particle
will also rotate randomly, leading to diffusion in its orientation. Rotational diffusion
affects the precision with which a microorganism can swim in a straight line. We can
estimate this effect as follows.

a. You look up in a book that a sphere of radius R can be twisted in a viscous fluid by
applying a torque T = I;,w, where w is the speed in rad ians/s and 1;, = 8rr ry x (??)
is the rotational friction coefficient. Unfortunately, the dog has chewed your copy
of th e book and you can't read th e last factor. What is it?

b. But you didn't want to know about frictio n- yo u wanted to know abou t diffu
sion. After tim e t, a sphere will reorient with its axis at an angle 8 to its original
direction . Not surprisingly, rotational diffusion obe ys (82) = 4Drt, where Dr is a
rotational diffu sion constant. (This formul a is valid as long as t is short enough
that this quantity stays small.) Find the dim ensions of D,.

c. Use your answer to (a) to obtain a numeri cal value for Dr. Mod el the bacterium
as a sphere of radius 1 fl m in water at room temperature.

d. If this bacterium is swimming, about how lon g will it take to wander significantly
(say, 30°) off its origina l direction ?

X 4.10 I T2 1Spontan eous versus driven permeation

This chapter discussed the permeability P, of a membrane to dissolved so lute. But
membranes also let water pass. The permeabi lity P w of a membrane to water may be
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measured as follows. Heavy water, HTO, is prepared with tritium in place of one of
the hydrogens; it'schemically identicalto waterbut radioactive.We takea membrane
patch ofarea A. Initially, one side is pure HTO, the other pu re H, O. After a short time
dt , we measure some radioactivity on the other side) corresponding to a net passage
of (2.9 moles- Im- ' » x Adt radioactive water mo lecules.

a. Rephrase th is result as a Fick-type formula for the diffusive flux of water mole 
cules. Find the constant P w appearing in that formula. [Hint: Your answer will
contain the number density ofwater molecules in liqu id water, about 55 molejL. ]

Next suppose that we have ordinary water, H, O, on both sides, but we push the fluid
across the membrane with a pressure difference tlp. The pressure results in a flow
of water, which we can express as a flux of volume j ; (see the general discussion
of fluxes in Section 1.4.4 on page 22). The volume flux will be proportion al to the
mechanical driving force: j , = - Lp !!op. The constant Lp is called th e membrane's
filtration coefficient.

b. There should be a simple relation between Lp and Pw . Guess it, remembering to
check your guess with dimensional analysis. Using your guess, estimate Lp) using
your answer to (a). Express your answer both in SI units and in the tradi tional
un its em s-' atm - I (see Appendix A). What will be the net volume flux of water if
!!op = 1atm ?

c. Human red blood cell membranes have water permeability corresponding to the
value you found in (a) . Compare your result in (b) to the measured value of the
filtration coefficient for this membrane, 9.1 . 10- 6 em s-I at m-l .
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CHAPTER 5

Life in the Slow Lane: The Low
Reynolds-Number World

Nobody is sillyenough to think that an elephant will only fall
undergravity if itsgenes tell it to do so, but the same

underlyingerror can easily be made in less obvious
circumstances. So [we must} distinguish betweenhow much

behavior, and what part. has a genetic origin, and how much
comessolely because an organism lives in thephysicaluniverse

and is therefore bound by physicallaws.

- Ian Stewa rt, Life's Other Secret

Before our final assault on the citadel of stat istical physics in Chapter 6, thi s chapter
will show how the ideas we have already developed give some simple but powerful
conclusio ns about cellular, subcellular, and physiological processes, as well as helping
us understand some important laborator y techniques. One key example will be the
propulsion of bacteria by their flagella (see Figure 2.3b on page 37).

Section 4.4.1 described how diffusion dominates transport of molecules in the
nanoworld. Diffusion is a dissipat ive proc ess: It tend s to erase ordered arrangements
of molecules. Similarly, this chapter will outline how viscous friction dominates
mechanics in the nanoworld. Friction , too, is dissipative: It ten ds to erase ordered
motion, convert ing it to ther ma l energy. The physical concept of symmetry will help
us to und erstand and unify the someti mes surprising ramifi cati ons of this statement.
The Focus Quest ion for thi s chapter is
Biological question: Why don't bacteria swim like fish?
Physical idea: Th e equations of moti on appro pria te to the nanoworld behave differ
ently under time reversal than do those of the macroworld .

5.1 FRICTION IN FLUIDS

First let'ssee how the friction formula Vd, if< = f / 1; (Equation 4.12 on page 119) tells
us how to sort particles by their weight or electric charge, an emi nently practical lab
orato ry technique. Th en we'll look at some odd but suggestive phenomena in viscous
liquids like honey. Section 5.2 will argue tha t, in the nanoworld , water itself acts as
a very viscous liqu id; so these phenomena are actually representative of the physical
world of cells.

5.1 .1 Suffi ciently small parti cles can remain in suspension indefinitely

If we suspend a mixture of several part icle types (for example, several proteins) in
water, then gravity pulls on each particle with a force mg proportional to its mass. (If
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we prefer. we can put our mixture in a centrifuge, where the centrifugal "force" mg'
is again propor tional to the particle mass, although g' can be much greater than the
ordinary acceleration of gravity.)

The net force propelling the particle downward is less than mg, because for the
particle to go down , an equal volume of water mu st move lip. Gravity pulls on the
water, too, with a force (VPm )g. where Pm is the mass den sity of water and V the vol 
ume of the particle. Let z denote the particle's height. Thu s, when the particle moves
downward a distance [Az], displacing an equal volume of water up a distance [Az],
the total change in gravitation al potential energy is <lU = (mg)<lz- ( Vpmg)<lz. The
net force driving sedimentation is then the derivative f = - dU/dz = - (m - VPm)g,
which we'll abbreviate as -mnclg. All we have done so far is to derive Archimedes'
principle: The net weight of an object under water gets reduced by a buoyant force
equal to the weight of the water displaced by the object.

What happens after we let a suspension settle for a very long time? Won't all
the particles just fall to the bottom ? Pebbles would, but colloidal particles smaller
than a certain size won't, for the same reason that the air in the room around you
doesn't: Thermal agitation creates an equilibrium distributi on in which some par
ticles are con stantly off the bottom. To make this idea precise. con sider a test tube
filled to a height h with a suspension. In equilibrium, the profile of particle den
sity c(z ) has stopped changing, so we can apply the argument that led to the Nernst
relation (Equation 4.26 on page 141), replacing the electrostatic force by the net grav
itational force = mne,g. Thus the density of particles in equ ilibrium is

(sedimentation equilibrium, Earth's gravity) (5.1)

Your
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Here are some typical numbers. Myoglobin is a globular protein , with mo lar
mass m ::::::: 17 000 g mole- l . The buoyant correction typically reduces m to mne, :::::::
0.25m. Defining the scale heigh t as z, sa kBT, / (m o"g) '" 59 rn, we expect c(z) DC

e- z/z-. Thus, in a 4 em test tube, in equilibrium , the concentration at the top equals
c (O)e- O.04 m/59m, or 99 .9% as great as at the bottom. In other wo rds. the suspension
never settles out. In that case. we call it an equilibrium collo idal suspens ion, or just
a co lloid. Macromolecul es like DNA or soluble protein s form colloidal suspensions
in water; ano ther exam ple is Robert Brown's pollen grains in water. On the other
hand, if mo" is big (as it would be for sand grains), then the density at the top will
be essentially zero: The suspension settles. How big is "big"? Looking at Equation 5.1
shows that, for settling to occ ur. the gravitational potenti al energy difference mnetgh
between the top and bottom must be bigger than the thermal energy.

Here is another example. Suppose that the container is a carton of milk, with
It = 25 em. We idealize homogenized milk as a suspension of fat droplets
(spheres of diameter up to about a micrometer) in water. The Handbook
of Chem istry and Physics lists the mass density of butt erfat as Pm.f,' =
0.91g cm>' (the density of water is I g cm"), Find c(h ) /c(O) in equilibrium.
Is homogenized mil k an equilibrium colloidal suspension?
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Return ing to myoglob in , it m ay seem as th ough sed imentation is not a very use
ful tool for protein analysis. But the scale height depends not only on properties of
th e protein and solvent but also on th e acceleratio n of gravity, g. Art ificially increas
ing g with a centrifuge can reduce z; to a m an ageably small value ; indeed, laborator y
centrifuges can attain values ofg' up to aro und 106 m 5- 2• m aking protein separat ion

feasible.
To m ake th ese remarks precise, first n ote tha t, when a particle gets whirled ab out

at angular frequency w, a first-year physics for m ula gives its centripetal acceleration
as r(2 ) where r is the distan ce fro m th e cen ter.

Your
Turn
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Suppose you didn't remembe r this form ula. Show how to guess it by dimen
siona l analysis, knowing that angu lar frequency is me asured in radia ns/so

Sup pose that the sample is in a tube lying in the plane of rotation, so that its long axis
points radially. The centripetal acceleration point s inward, toward the axis of rot a
tion , so there must be an inward-pointing force, f = -mnetrw2 , causing it. This force
can only come from the frictional drag of the surrounding fluid as the particle drifts
slowly outward. Thus, the drift velocity is given by mo"rw' /; (see Equation 4.12 on
page 119). Repeating the argument that led to the Nems t relation (Section 4.6.3 on
page 139) now gives the drift flux as CUd"" = cmo"rw' D/ kBT, where c(r) is the
number den sity. In equilibrium, this drift flux is canceled by a diffusive flux, given by
Fick's law. We th us find that, in equilibrium ,

. _ _ ( _ de r£t}mnet )
] -O - D d + k c ,

r BT

a result analogous to the Nernst-Planck formula (Equation 4.24 on page 140). To
solve this differential equation, divide by c (r) and int egrate:

e = const x emnClw2r2/ (2kBT) .

I ~, (u r
(sedimentatio n equilibri um, centrifuge) (5.2)

5.1 .2 The rate of sedimentation depends on solvent viscosity

Our discussion so far has said nothing about the rate at which the concentra tion
e(r) arr ives at its equilibrium profile. This rate depends on the drift velocity Vdriftl

which equals mo"g/; (Equation 4.12). The drift velocity isn't an intr insic pro perty
of the part icle, because it depends on the strength of gravity, g. To get a quantity that
we can tabul ate for various particle types (in given solvents), we instead define the
sedimentation time scale

(5.3)

Measurin g 5 and looking in a table thu s gives a roug h-and-ready particle identifi
cation. (The quantity 5 is sometimes expressed in units of svedbergs; a svedberg by
definition equals IO- 13 s.)
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What determi nes the sed imentation time scale s? Surely sedimentatio n will be
slower in a "thick" liquid like honey than in a "thin" one like water. That is, we expect
the viscous frictio n coefficient { for a single particle in a fluid to dep end not only
on the size of the particle but also on some intrinsic property of the fluid, called the
viscosity. In fact, Section 4.1.4 already quoted an expression for { , namely, the Stokes
formula, ~ = 6" ~R, for an isolated , spherical particle of radius R.

a. Work out the dim ension s of ~ from the Stokes formula. Show that th ey can
be regarded as those of pressure tim es time and that , hence, the 51un its for
viscosity are Pa s.

b. Your Turn SA raised a paradox: The equilibrium formula you found sug
gested that milk should separate, and yet we don't normally observe this
happening. Use th e Stokes formula to est imate how fast this separation
should happen in hom ogenized milk. Th en compare homogenized milk
with raw milk (which has fat droplets up to abo ut 5 /lm in diameter), and
comment .

It's worth memonzmg the value of 11 for water at room temperatu re:' 1Jw :::::::

10- 3 kg rn" S-I = 10- 3 Pa s.
We can use th e preceding remarks to look once again at the sizes of polymer

coils. Let 's suppose that a particular type of polymer forms ran dom coils, with radiu s
given by a constant tim es some power of the molecular mass: Rex mP• We'd like to
verify this claim, and extract the value of the scaling exponent P. from an experiment.
Then we'll compare th e result to the prediction from random-walk th eor y, which is
that p = ~ (Idea 4.17 on page 123).

Combining Equation 5.3 with the Stokes for mula gives s = (m - Vpm ) / (6,, ~R ) .

Assuming that the polymer displaces a volume of water propo rtional to the number
of monomers yields 5 ex m l - p• Figure 4.7b on page 123 shows that our prediction
p = ~ indeed is roughly t rue. (More precisely, for one particular polymer/solvent
combination Figure 4.7a gives the scaling expo nent for R as p = 0.57. Figure 4.7b
gives the expo nen t for 5 as 0.44, which is qu ite close to 1 - p.)

5 .1.3 It' s hard to mi x a viscous liquid

Section 5.2 will argu e that, in the nanoworld of cells, ordinary water behaves as a
very viscous liquid. Because most people have made only limited observations in th is
world , it's worthwhile to pause first and notice some of the spooky phenom ena that
happ en there.

Pour a few centimeters of clear corn syrup in to a clear cylindrical beaker or wide
cup. Set aside some of the syru p and mix it with a small amo unt of ink to serve as
a marker. Put a stirri ng rod in the beaker, then inject a small blob of marked syru p

I Some aut hor s express this result in unit s of poise. defined as e rg sJc m l = 0.1 Pa s; thus 'I.. is about one
cent ipoise. Values of 11 for other biologically relevant fluids appe ar in Table 5.1 on page 165.
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a b c

Figure 5 .1 : (Photographs.) An experiment showing the peculiar character of low Reynolds-num ber flow. (a) A small
blob of colored glycerine is injected into dear glycerine in the space between two concen tric cylinders. (b) The inner
cylinder is turned throu gh four full revolutions, apparently mixing the blob into a thin smear. (c) Upon turning the inner
cylinder back exactly four revolu tions, the blob reassembles, only slightly blurred by diffusion . Th e finger belongs to Sir
Geoffrey Taylor. [From Shapiro, 1972.1

somewhere below the sur face, far from both the rod and the walls of the beaker.
(A syringe with a long needle helps with thi s step, but a medicine d rop per will do ;
remove it gently to avoid disturbing the blob. ) Now try mov ing the stirring rod slowly.
O ne particu larly revealing experiment is to hold the rod against the wall of the beaker,
slowly run it aro und the wall on ce clockwise, then slowly reverse your first mot ion ,
running it counterclockw ise to its starting position .

You'll note several phenomena:

It's very hard to mix the marked blob in to the bulk.

The ma rked blob actually seems to take evasive act ion when the stirr ing rod ap 
proaches.

In the clockwise-counterclockwise experiment, the blob will smear ou t in the first
step. But if yo u're careful in the second step to retrace the first step exactly, you'll
see the blob ma gically reassemble itself into nearly its original position and sha pe!
That's no t what happ ens when you stir crea m into your coffee.

Figure 5.1 shows the result of a more controlled experimen t. A viscous liquid sits
between two concentric cylind ers. On e cylinde r is rotated th rou gh several full turns,
smearing out the marker blob as shown (Figure 5.1b). Upon rotation through an
equal and opposite angle, the blob reassembles itself (Figure S. lc).

What's going on? Have we stumbled onto some violation of the Second Law?
Not necessaril y. If yo u just leave the marked blob alone, it does di ffuse away, but
extremely slowly, because th e viscosity 1] is large, and the Einstein and Stokes relations
give D = kBT/t; ex 11-

1 (Equations 4.16 and 4.14). Mo reover, diffu sion init ially
onl y cha nges the density of ink near the edges of the blob (see Figure 4.16 on page
152), so a com pac t blob canno t change mu ch in a short tim e. One could ima gine
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Figu re 5.2 : (Schematics.) Shearing motion of a fluid in laminar flow, in two geometries. (a) Cylindr ical (ice-cream
maker) geome try. viewed from above. The central cylinder rotates while the ou ter on e is held fixed. (b) Planar (sliding
plates) geometry. The top plate is pushed to the right while the bottom one is held fixed. The plates have area A and are
separated by distan ce d.

that stirr ing causes an organized motion , in which successive layers of fluid simply
slide over one another and stop as soo n as the stirr ing rod stops (Figure 5.2). Such
a stately fluid motion is called laminar flow. Then the motion of the stirring rod, or
of the con tainer walls, wou ld just stretch out the blob, leaving it still many billions of
molecules thick. The ink molecules are spread out but are still not random) because
diffusion hasn't yet had eno ugh time to randomize them fully. When we slide the
walls back to their original configuration, the fluid layers could then each slide right
back and reassemb le the blob. In short, we could explain the reassembly of the blob
by arguing that it never "mixed" at all, despite appeara nces. It's hard to mix a viscous
liquid.

The preceding scenario sounds good for corn syrup. But it doesn't address one
key question : Why doesn't water behave this way? When you stir cream into your
coffee, it imm ediately swirls into a com plex, turbulent pattern. Nor does the fluid
motion stop when you stop stirring; the coffee's momentum continues to carry it
along . In just a few seconds, an init ial blob of cream gets stretched to a thin ribbon
only a few molecules thick; diffusion can then quickly and irreversibly obliterate the
ribbon. Stirring in the opposite direction won't reassemb le the blob. It's easy to mix
a non viscous liquid .

5.2 LOW REYNOLDS NUMBER

To summarize, the last two paragraph s of Section 5.1.3 served to refocus our atten
tion, away from the striki ng observed distinction between mixing and nonmixing
flows and onto a more sub tle und erlying distinction , between turbulent and lam
inar flows. To make prog ress, we need some physical criterion that explains why
'corn syrup (and other fluids like glycerine and crude oil) will un dergo laminar flow,
whereas water (and other fluids like air and alcohol ) commonly exhibit turbulent
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flow. The surprise will be that the criterion dep ends not only on the nature of the
fluid but also on the scale of the process under consideration. In the nanoworld, wa
ter will prove to be effectively much thicker than the corn syrup in your experiment;
thus, essentially all flows in the nanoworld are laminar.

5.2.1 A critica l force demarcates th e physical regime
dominated by friction

Because viscosity certainly has something to do with the distinction between mixing
and nonmixing flows, let's look a bit more closely at what it means. The planar ge
ome try sketched in Figure S.2b is simp ler than that of a spherical ball, so we use it for
our formal definition of viscosity. Imagine two flat parallel plates separated bya layer
of fluid of th ickness d. We hold one plate fixed while sliding the other sideways (the
z direction in Figure S.2b) at speed vo. This motion is called shear. Then the dragged
plate feels a resisting viscous force directed against Va; the stationary plate feels an
equal and opposite force (called an entraining force) parallel to Yo.

The viscous force f will be proportional to the area A of each plate. It will in
crease with increasing speed Vo but decrease as we increase the plate separation. Em
pir ically, for small enough Yo, many fluids indeed show the simplest possible force
rule consistent with these expectations:

f = -ryvoA /d. viscous force in a Newtonian fluid , planar geometry

(5.4)
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The constant of proportionality '7 is the fluid's viscosity. Equation 5.4 separates ou t
all the situation-dependen t factors (area, gap, speed), thereby exposing ry as the one
factor intrinsic to the type of fluid. The minus sign rem inds us that the drag force
opposes the imposed motion.

Verify that the units wo rk o ut in Equation 5.4, by using your result in Your
Turn Sq a).

Any fluid obeying Equation 5.4 is called a Newtonian fluid after the ubiquitous
Isaac Newton. Most Newtonian fluids are, in addition, isotropic (the same in every
direction ; anisotropic fluids will not be discussed in this book). Such a fluid is com
pletely characterized by its viscosity and its mass density Pm .

We are pursuing the suggestion that simple, laminar flow ensues when 1] is
"large:' whereas we get com plex, turbulent flow when it's "small." But the question
immediately arises, "Large relative to what!" The viscos ity is not dimensionl ess. so
there's no absolute meaning to saying that it's large (see Section 1.4.1 on page 18):
No fluid can be deemed viscous in an absolute sense. Nor can we form any dimen
sionless quantity by comb inin g viscosity (dimensions MIlL-I'r') with mass density
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Table 5.1: Density, viscosity, and viscous critical force for common fluids at 25°C.

fluid

air
water
olive o il
glycerine
corn syrup

Pm. kg m'" '1 . Pa s fait> N

I 2 . 10- 5 4 . 10- 10

1000 0.0009 8. 10- 10

900 0.08 7. 10- 6

1300 I 0.0008
1000 5 0.03

(dimensions Mn...-3 ). But we can form a characteristic quantity with the dimensions
afforce:

visco us critical force (5.5)

The motion of any fluid will have two physica lly distinct regime s, depending on
whether we apply forces bigger or smaller than that fluid 's critical force. Equivalently,
we can say that

a. There's no dimensionless measure ofviscosity and, hence, no
intrinsic distinction between "thick"and "thin" fluids, but . . .

b. Nevertheless, there is a situation-dependent characterization (5.6)
ofwhen a fluid 's motion will be viscous, namely, when the
dimensionless ratio f fI eri! is small.

For a given applied force f, we can get a large ratio f If"" by choosing a fluid with
a large mass density or small viscosity. The n inertial effects (proportional to mass)
will dominate over friction al effects (proportional to viscos ity), and we expect tur
bulent flow (the fluid keeps moving after we stop applying force). In the opposite
case, friction will quickly damp out inertial effec ts and we expect laminar flow.

Sum marizing the discussion so far, Section 5.1.3 began with the distinction be
tween mixing and nonmixing flows . Thi s section first rephrased the issue as the dis
tinction between turbulent and lamin ar flow, then finally as a distin ction between
flow s dominated by inertia or viscous friction , respectively. We found a criterion for
making this distinction in a given situation by using dim ension al analysis.

Let's examine some rough numbers for familiar fluids. Table 5.1 shows that, if we
pull a ma rble through corn syru p with a force mu ch less than 0.03 N, then we may
expect the moti on to be dominated by friction. Inertial effects will be negligible; and,
indeed, in the corn-syrup experiment, there's no swirling after we sto p pushing the
stirring rod. In water, on the other hand, even a millin ewton push puts us well into
the regime dominated by inertia, not friction; turbulent motion then ensues .

What's str iking about the tab le is that it predicts that water will appear jus t as
viscous to a tiny creature exerting forces less than a nano newton as glycerine does
to us! Ind eed, we'll see in Chapter 10 that the typical scale of forces inside cells is
more like a thou sand times smaller than J erit (the piconew ton range). Friction rules
the world of the celt.
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Figure 5.3 : (Photog raph.) Low Reynolds-number fluid flow past a sphere. Th e fluid flows fro m left to right at n = 0.1.
The flow lines have been visual ized by illuminating tiny suspended metal flakes with a sheet ofl ight coming from the top.
(The black area below the sphere is just its shadow.) Note that the figure is symmetr ical; the time -reversed flow from right
to left would look exactly the same. Note also the orderly, laminar characte r of the flow. If the sphere were a single-cell
organ ism, a food particle located in its path would get carr ied around it without ever encou nteri ng the cell at all. [From
Coutanceau, 1968.]

It's no t size per se th at counts, but force. To understand why, recall that the flows
of a Newto nian fluid are com pletely determ ined by its mass density and viscosity,
and convince yourself tha t there is no combination of these two quant ities with the
dimensions of length . We say th at a Newtonian fluid "has no int rinsic length scale,"
or is "scale invariant." Thus, even tho ugh we haven't worked out th e full equations of
fluid motion , we already know that they won't give qualitat ively different physics on
scales larger and sma ller than some critical length scale, because dimensional analysis
has just told us that there can be no such scale!A large object-even a battle ship-will
move in the frictio n-do minat ed regime, if we push on it with less than a nanonewton
of force. Similarly, macroscopic expe rime nts, like the one shown in Figure 5.3, can
tell us something relevan t to a microscopic organism.

IT21Section 5.2.1' on page 187 sharpens the idea of friction as dissipation, by rein

terpreting viscosity a? a form ofdiffusion .
)

~-

5.2.2 The Reynolds number quant if ies the relat ive importance
of fri ction and inert ia

Dimension al analysis is powerful, but it can move in mysterious ways. Section 5.2.1
propo sed the logic tha t (i ) two numbers, Pm and I], characterize a simple (that is,
isotropic Newtonian) fluid ; (i i) from these quant ities, we can form another, f ecit ' with
dimensions of force; (iii) something in teresting mu st happen at around this range
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----~ v

Figure 5.4: (Schematic.) Motio n of a small fluid element , of size t, as it impinges on an ob
struc tio n of rad ius R (sec Figure 5.3) .

of externally applied force. Such argu ments generally strike students as dangerously
sloppy. Indeed. when faced with an unfamili ar situation, a physical scientist begins
with dimensional argume nts to raise certain expectat ions but the n proceeds to justify
those expectat ions with more det ailed analysis. Th is section will begin thi s process,
deriving a more precise criterion for laminar flow. Even here. however, we will not
bother with numerical factors like 21T and so on; all we want is a rough guide to the
physics.

Let's begin with an experiment. Figure 5.3 shows a beautiful example of laminar
flow past an obstruction , a sphere of radius R. Far away, each fluid element is in
un iform motion at some velocity v. We'd like to know whether the motion of the
fluid elements is main ly dominated by inertial effects or by friction.

Consider a small lump of fluid of size t; which is carried by a flow on a collision
cour se with the sphere (Figure 5.4). To sidestep the sphere, the fluid element must
accelerate: The velocity mu st change direction during the enco unter time flt :::::: Rjv.
The magnitude of the change in v is comparable to tha t of v itself, so the rate of
change ofvelocity (that is.the acceleration dv/dr) has magnit ude se vl(Rlv) = v' IR.
The mass m of th e fluid element is the density Pm tim es the volume.

Newton's Law of motion says that our fluid element obeys

[e« + /rricl == flol = mass x acceleration. (5.7)

Here f ext denotes the external force from the surro unding fluid 's pressure and /rrict

is the net force on the fluid element from viscous friction. In term s of the quantities
defined in the previous paragraph, the right-hand side of Newton's Law (the "inertial
term") is

inertial term = mass x acceleration se (£3Pm)V2JR. (5.8)

We wish to com pare the magnitude of thi s inertial term with that of f frict . If one
of th ese term s is mu ch larger than the other, then we can d rop the sma ller term in
Newton 's Law.

To estima te the frictional force, we first genera lize Equation SA to the case where
the velocity of the fluid is not a uniform gradient (as it was in Figure 5.2b) . To do
so, rep lace the finite velocity difference void by the derivative, dv Idx. Whe n a fluid
elem ent slides past its neighbor, then, they exert forces per un it area on each other
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equal t 0 2

f dv
A = - ry dx ' (5.9)

In the situation sketched in Figure 5.4, the surface area A of one face of the fluid
eleme nt is ::::::: e2• The net frictional force frrict on the fluid element is th e force exerted
on it by the one above it, minus th e force it exerts on the one below it. We can estima te
this difference as e times the derivative df /dx, or f ,,,,, "" ry e'(d'vldx'). To estimate
the derivative, again note th at v changes appreciably over distan ces comparable to the
obstruction's size R; accordingly, we estimate d1vj <:J.x2 ::::::: v/R 2

. Putting everything
together gives

(5. 10)

We are ready to compare Equa tions 5.8 and 5.10. Dividi ng these two expressions
yields a characteristic dimensionless quan tity:"

the Reynolds number (5.11)

When n is small, frictio n domi nates. Stirri ng pro duces the least possible respon se,
namely, lamin ar flow; and the flow stops im med iately after the external force [ext

stops. (Engi neers often use the synonym "creeping flow" for low Reyno lds-number
flow.) When R is big, inertial effects dominate, the coffee keeps swirling after you
stop stirring, and the flow is turbulent.

We obtained the Reynolds number criterion by considering flow impinging on
a sphere, but it is more generally applicable to any situation where the geometry is
cha racter ized by some length scale R. Consider, for example, th e flow of fluid down
a pipe of radius R. In a series of carefu l exper iments in the 1880s, O. Reynolds found
that genera lly the trans ition to tu rbu lent flow occur s aro und R "" 1000. Reynolds
varied all the parameters describing the situation (pipe size, flow rate, fluid mass
density, and viscosity ) and found that the onset of turbulence always depended on
just one combination of the parameters, namely, the one given in Equation 5.11.

Let's connect Reynolds's result to the concep t of critical force discussed in Sec-
tion 5.2.1: )

Example: Suppose that the Reynolds nu mber is small, R « I. Compare the external
force needed to anchor the obst ruct ion in place with the viscous critical force.

Solution : At low Reynolds number, the inertial term is negligible, so [ ext is essentially
equal to the frictional force (Equation 5.10). To estimate this force, take the fluid

21!iJ Equation 5.9 is valid on ly in planar geometry (see Problem 5.9). Nevertheless, it gives an adequat e

estimate of the viscous force for ou r purposes here.
"Notice that the arbitra ry size eof ou r fluid element dropped ou t of this expression, as it should.
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element size e to be that of the obstruc tion itself; then

!frict ,.,R3
V 1 vRPm

-- '" - ,--,-- = -- = R .
l Ull R n I Pm n

SO, indeed, the force appli ed to the fluid is mu ch smaller than lUll when n is small.

Suppose that the Reynolds number is big, n » I. Compare the externa l force
needed to anchor the ob struction in place wit h the viscous critical force.

As always, we need to make some estimates. A 30 m whale, swimming in water at
10 m S-I, has R. '" 300 000 000. But a I u r« bacterium , swimming at 30 /Lm S- I , has
R: '" 0.000 03! Ind eed, Section 5.3.1 will show that the locomotion of bacter ia works
quite differently from the way large creatures swim .

I T21 Section 5.2.2' on page 188 o utlines m ore precisely the sense in whi ch fluids have

no characteristic length scale.

5.2.3 The tim e-reversal propert ies of a dynamical law
signal its dissipative character

Now that we have a criterion for laminar flow, we can make our reso lution of the
rnixinglunmixing puzzle (Section 5. 1.3) a bit more explici t.

Unmixing The full equations of fluid mechanics are rather complicated, but it's not
hard to guess the minim al response of a fluid to the shearing force applied in Fig
ure 5.2b. Because every thing is uniform in the y, z direction s, we can think of the
fluid layer as a stack of thin parallel sheets, each of thickness dx, and apply Equa
tion 5.9 to each layer separately. Denoting the relative velocity of two neighboring
sheets by dv" each sheet pulls its neighbor with a force per area of

I dv,
A = -ry dx '

In partic ular, the shee t of fluid immediately next to a solid wall mu st move with
the same speed as the wall (the no -slip boundary condition), because otherwise v
wou ld have an infinite derivative at that point, and the required visc ous force would
be infinite, too .

Because every sheet of fluid moves uniformly (does not accelerate), Newton's
Law of moti on says the forces on each slab must balance. Thus each must exert on its
neighbor above the same force as that exerted on it by its neighbor belo w, or

dv,

dx
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must he a co nstant, independent of x. A function with constant derivative must be
a linear function. Because v must go from Vo on the top plate to zero on the bottom
plate, we find v,(x) = (x ] d)vo.

Thus a volume element of water in itially at (xo. "0) moves in time t to (xo, "0 +
(xold)vot) . It's th is motion th at stretches o ut an initia lly spherical blob of ink (Fig
ure S.2b). If we reverse the force pulling the top plate for an equal time I. we find that
every fluid element returns to exactly its original starting point. The blob reassem
bles; if it had originally been stretched so far as to appear mixed, it now appears to
"unmix" (Figure 5.1).

Now suppose that we don't insist on steady motion and instead apply a time
dependent force f (t) to the top plate. This time, the forces on each slab won 't quite
balance; instead, the net force equals the mass of fluid in the slab times its accelera
tion, by Newton's Law of motion. As long as the forceis well below the viscous critical
force, however, this correction will be negligible and all the same conclusions as be
fore apply: Once the top plate has returned to its initial position , each fluid elemen t
has also returned. It's a bit like laying a deck of cards on the table and pushing the top
card sideways. then back. Regardl ess of whether the return stroke is hard and short.
or gentle and long, as soon as the top plate returns to its original position , so have all
the fluid eleme nts (apart from a small amount of true, diffusive mixing).

Time reversal The "u nmixing" phenomeno n points up a key qualitative feature of
low Reynolds-number fluid flow. To understand thi s feature, let's contrast such flows
with the more familiar world of Newtonian mechanics.

If we throw a rock up in the air, it goes up and then down in the familiar way:
z (t) = vot - ! g t2• Now imagine a related process, in which the position zr(t) is related
to the original one by time reversal; that is, z, (I ) es z(-t) = -Vo l - ~gt' . The time
reversed process is also a legitim ate solution of New ton's laws, albeit with a different
init ial velocity from the original process. Indeed, we can see directly that Newton's
Law has this property, just by inspecting it: Writing the force as the derivative of a
potentia! energy gives

dU d' x
- - =m-.

dx dt'

Because this equation con tains two time derivatives, it is unchanged under the sub
stitution t ~ - to Ballistic motion is time-reversal invariant.

A second example may reinforce the point. Suppo se you're stopped at a traf
fic light when someo ne rear-ends you. Starting at time I = 0, the position x(l) of
your head suddenly accelerates forward . Th e force needed to make this happen comes
from your headrest; it's also directed forward, according to

d' x
f = 111 - , '

dt

Now imagine another process, in which your head moves along the time-reversed
trajectory xr(t) ss x( - t ). Physically, x, describes a process where your car is initially
rolling backward, then hits a wall behind you and stops. Once again your head's ac-



5.2 Low Reynolds number 171

celerat ion pointsforward, as its velocityjumps from negative to zero.Once again your
headresr pushes forward on your head. In other word s.

In Newtonian physics, the time-reversed process is a solution to the
equations ofmotion with the same sign of force as the original m o
rion .

(5.12)

In contrast, the viscous friction rule is not time-reversal invariant: The time
reversed trajectory doesn't solve the equation of motion with the same sign of the
force. Certainly a pebble in molasses never falls upward, regardless what starting ve
locity we choose! Instead, to get the time-reversed motion we mu st apply a force that
is time reversed and opposite in direction to the original. To see this in the math
ematics, let's recon sider the equation of motion we found for diffusion with drift.
Vd, ift = f /~ (Equation 4.12). and rephrase it using x(t) . the pos ition of the particle
at time t averaged over many collision tim es. (x (t) shows us the net drift but no t the
much faster thermal jiggling motion .) In this language, our equation of mo tion reads

di

d t

f (t)
=

~
(5.13)

Your
Turn

SF

Th e solution x( t) to Equation 5.13 cou ld be un iform motion (iftheforce f ( t) is con
stant) or accelerated motion (otherwise) . But think abo ut the time-reversed motion,
x,(t) es x( - t ). We can find its time deri vative by using the chain rule from calculu s;
it won 't be a solution of Equation 5.13 unl ess we replace f (t) by - f ( - t) .

The failure of time -reversal invariance is a signal that something irreversible is
happening in frictional motion . Phrased this way, the conclusion is not surprising:
We already knew that friction is the one-way dissipation , or degradation , of ordered
mo tion into disordered motion. Our simple model for friction in Section 4.1.4 ex
plicitly introduced this idea, via the assumption of randomizing collisio ns.

Here is anot her examp le of the same analysis. Section 4.6 gave some solutions
to the diffusion equation (Equation 4.20 on page 131). Taking any solution c,(x , r),
we can con sider its time-reversed version C2 ( X . r) sa Ct (x , - t ), and its space-reflected
version C3(X , r) sa c,(-x, r) . Take a moment to visualize C2 and C3 for the example
shown in Figure 4. I2a on page 134.

Substitute ( 2 and ( 3 into the diffusion equation and see whether they also are
solutions. [Hint: Use the chain rule to express derivatives of ~2 or ( 3 in terms
of those of c,.] Th en explain in words why the answer you got is righ t.

The distinction between fluids and solids also hinges upon their time-reversal
behavior. Suppose we put an elastic solid, like rubber. between the plates in Fig
ure 5.2b. Th e plates have area A and are separated by a distance d. If we slide the plates
a distance ~z. the rubber resists with a force given by a Ho oke rel ation: f = -k(~z) .

The spring constant k in this relation depe nds on the geomet ry of the sample; for
simple mat erials, it takes the form k = QA/d . where the shear modulus Q is a prop-
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erty of the material. Thus

(5.14)

The quantity f f A is called the shea r stress; ( l!.z) f d is the shear strain. A fluid, in
contrast, has f f A = - ry vf d (Equation 5.4).

In short , for solids, the stress is proportiona l to the strain ( l!.z)fd , whereas for
fluids, it's proportional to the stra in rate. vJd. A simple elastic solid doesn't careabout
the rate; you can shift the plates and then hold them stationary, and an elastic solid
will continue resisting forever. Fluids, in contrast, have no memory of their initial
configuration; they only notice how fast you're changing their boundaries.

The difference is one of symmetry: In each case, if we reverse the applied distor
tion spatially, the opposing force also reverses. But for fluids, if we time-reverse the
distortion ~z(t) J then the force reverses direction; whereas, for solids, it doesn't. The
equation of motion for distortion of an elastic solid is time-reversal invariant, a signal
that there's no dissipation .

I T21Section 5.2.3' on page 188 describes an extension of the ideas just discussed to

materials with both viscous and elastic behavior.

5.3 BIOLOGICAL APPLICATIONS

Section 5.2.3 brought us close to the idea of entropy, promised in Chapter 1. En
tropy will measure precisely what is increasing irreversibly in a dissipative process
like diffusion. Before we finallydefine it in Chapter 6, the next section will give some
imm ediate consequences of these ideas, in the world of swimming bacteria.

5.3.1 Swimming and pumping

Section 5.2.1 discussed how, in the low Reynolds-number world, applying a force to
fluid generates a motion that can be canceled completely by applying minus the time
reversed force. These results may be amusing to us, but they are matters of life and
death to microorganisms.

An organism suspended in water may find it advantageous to swim about. It can
only do so by changing the shape of its body in some periodic way. It's not as simple
as it may seem. Suppose you flap a paddle, then bring it back to its original position
by the same path (Figure 5.5a). You then look around and discover that you have
made no net progress, just as every fluid elemen t returned to its original position in
the unmixing experimen t (Figures 5.1 and 5.2). A more detailed example can help
make this clearer.

Cons ider an imaginary microorganism, trying to swim by pushing a part of its
body ("paddles") relative to the rest ("body") (see Figure 5.6). To simplify the math,
we'll suppose that the creature can move only in one direction , and the relative mo 
tion of paddles and body also lies in the same direction. The surrounding fluid is
at rest. We know that in low Reynolds-number motion, moving the body through
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a b c

Figure 5.5 : (Schematic.) Three swimmers. (a) The flapper makes reciprocal motion. (b) The
twirler cranks a stiff helical rod. (c) The spinner swings a stiff, stra ight rod .

the fluid requires a force determined by a viscous friction coefficient ~o . Mov ing the
paddles through the fluid requ ires a force determined by a different con stant 'I.

Initially, the body is located at x = O. Th en it pushes its paddles backward (to
ward negat ive x ) relative to its body at a relative speed v for a time t. Next it pushes
the padd les forward at a different relative speed Vi to return them to their or igina l 10
cat ion . Th e cycle repeat s. Your friend suggests that, by making the "recovery" stroke
slower than the "power" stroke (that is, taking V i < t/), the creature can make net
progress.

a b

• •-
v' t t

c

f

• • ~-
~

I I

Figure 5.6: (Schematic.) A microscopic swimmer trying to make progress by cycling between for ward and backward
strokesof its paddles. (a) On the first stroke, the paddles move backward relative to the body at relative speed v, prop elling
thebody through the fluid at speed I I . (b) On the second stroke, the paddl es move forward at relative speed v', propelling
the body backward at speed d . (c) Then the cycle repeats. The progress made on the first st roke is all lost on the second
stroke; recipro cal motion like this cannot give net progress in low Reynolds-number fluid mechanics. [Cartoon by Iun
Zhang.]
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Example:

a. The actual speed at which the padd les move through the water depends bot h on
the given v and on the speed u of the body, which you don't know yet. Find u for
the first half of the cycle.

b. How far and in what direction does the body move in the first stroke?

c. Repeat (a,b) for the second (return) stroke.

d. Your friend proposes to choose v and zI to optimize this process. How do you
advise him?

Solution:

a. The velocity of the paddles relative to the surrounding fluid is the relative velocity,
- v, plus u, Balancing the resulting drag force on the padd les against the drag force
on the body gives u = I,v/ (l;o + Ill.

b. 6x = tu, forward. where u is the quantity found in (a).

c. u' = I 'V'/ (10+ I,), f).x' = -t',i. We must take t't/ = tv if we want the paddles
to return to their original positions on the body. Thu s

A I , I ( I ( 1
uX = - t V --- = -tu- - - = - tu.

10+ I' 10+ I'

d. It won't work. The answers to (b) and (c) always cancel, regardless of what we
takefor V and i/ , For example. if the "recovery"strokeis half as fast as the "power"
stroke, the corresponding net motion is also halfas fast. Butsuch a recovery stroke
must last twice as long as the power stroke in order to prepare the creature for
another cycle!

So a strictly reciprocating motion won't work for swimming in the low Reynolds
numberworld. What otheroptions does a microorganism have?The required motion
must be period ic, so that it can be repeated. It can't be of the reciprocal (out-and
back) type described in the Example. Here are two examples.

4 ~

recovery stroke

2

3

/ - - .....

effective stroke

5 10 9 8 7 6

Figure 5 .7 : (Schematic.) The ciliary cycle. The effective stroke (left ) alternates with the re
covery stroke (right) . The motion is not reciprocal, so the cilium can make net progress in
sweeping fluid past the surface.
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Ciliary propulsion Man y cells use cilia , which are whiplike appendages 5-10 J1 m
long and 200 nm in diam eter, to generate net thrust. Motile cells (such as Parame
cium ) use cilia to move. Stationary cells (such as the on es lining our air passages) use
them to pump fluid or sweep food to themselves (see Figure 2.10 on page 45).

Each cilium contain s internal filaments and molecular motors that can slide the
filamen ts across one ano ther, thereby creating an overall bend in the cilium . The
motion in Figure 5.7 is typical; it is periodic but not recip rocal. To see how it generates
propulsion. we need one in tuitive result from low Reynolds-number fluid mechanics
(whose mathematical pro of is beyond the scope of th is book):

A rod dragged along its axis at velocity v feels a resisting force pro
portional to - v (that is, also directed along the axis). Sim ilarly; a rod
dragged perpendicular to its axis feels a resisting force also propor
tional to - v (that is, also directed perpendicular to the axis). How
ever, the viscous friction coefficien t ( II for m otion parallel to the axis
is smaller than the one ~.l for perpendicular m otion.

(5.15)

The ratio be tween the two friction coefficients depends on the length of the rod; we
will use the illust rative value ~ .

Figure 5.7 shows a ciliu m ini tially lying parallel to the cell surface, pointing to the
left. Du ring the effective stroke (left panel), the en tire ciliu m moves perpendicular to
its axis, whereas during the recovery stroke (right panel) most of it is moving nearly
parallel to its axis. Thus the motion of the fluid created by the power stroke gets on ly
partly undo ne by the backflow created by the recovery stroke. The difference between
th ese flows is the net pum ping of one cycle.

Bacterial flagella Wh at if the speed v is neith er parallel nor perpend icular to the
axis? In th is case, Figure 5.8 shows that the resulting drag force will also be somew here
in between the para llel and perpendicu lar d irect ions, bu t not along v. Instead, the

Figure 5 .8 : (Schematic.) A thin rod is dragged at low Reynolds num ber with velocity v. The
force f needed to drag the rod is the resultant of two forces £11 and f.l coming from the compo
nents of v parallel to and perpendicular to the rod 's axis. Even if VI and vi. are the same length,
as shown. the result ing componen ts of f will not be equal; thus f will not point parallel to v.
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force points closer to the perp endicular di rection than does the velocity; th e larger
;.t "wins" over the smaller ;8' E. coli bases its propulsion on this fact.

Unlike cilia, E.coli's flagella do not flex; they are rigid , helical objects, like twisted
coathangers, so they cann ot solve the propulsion problem by the means shown in
Figure 5.7. Because they are on ly 20 nm thick, it's not easy to visualize the ir th ree
dimensional motion under the microscope. Ini tially, some people claimed that the
bacterium waves them back and forth, but we know this can't work: It's a reciprocal
motion. Ot hers proposed that a wave of bendi ng travels down the flagellum , but
there hard ly seemed to be room for any of the required machinery inside such a thin
object. In 1973, H. Berg and R. Ande rson argued tha t instead the bacterium crallked
the flagellum at its base in a rigid rotary motion (like the twirler in Figure 5.5b) . This
was a heret ical idea. At that time, no tr ue rota ry engine had ever been seen in any
living creature (we will, however, meet another example in Chapter 11). Nor was it
easy to imagine how to prove such a theory- it's hard to judge the three-dimensional
character of a motion seen under the microscope.

M. Silverma n and M. Simon fou nd an elegant solution to the experimental prob 
lem. The y used a mut ant E.coli strain that lacks most of its flagellum, having instead
only a stump (called the "hook"). They anchored the cells to a glass coverslip by the ir
hooks. The flagellar motor, un able to spin the anchored flagellar hook, instead spun
the whol e bodies of the bacteria, a pro cess easily visible in the microscope! Today
we know that th e flagellar motor is a marvel of nanotechn ology, a rotary engine just
45 nm wide (Figure 5.9).

outer
membrane

peri plasmic
space

cytoplasmic
membrane

cytoplasm switch _"-_~
proteins

flagellum
a

Figu re 5.9: (Schematic; reconstruction from electron microscopy.) (a) The bacterial flagellar motor, with elements anal
ogous to those ofa macroscopic rotary motor. The inner part of the motor assembly develops a torque relative to the outer
part, which is anchored to the polymer network (the peptidoglycan layer), thereby turning the flagellum. The peptido
glycan layer provides the rigid framework of the cell wall; it is located in the per iplasmic space between the cell's two
membranes. (b) Composite electron micrograph of the actual structure of the motor assembly. [Digital image kindly
supplied by D. Derosier; see Derosier, 1998.1
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Figure 5.10: (Schematic.) Principle of flagellarpropulsion in bacteria. A thin, rigid, helical
rod is cranked about its helix axis at angular speed ca. For better visualization, a phantom
cylinder has been sketched, with the rod lying on its surface. Two short segments of the rod
have been singled out for study, both lying on the near side o f the hel ix and separated by on e
turn.The rod is attached (black circle)to a diskand the disk is rotated, cranking the helix about
its axis. The two short segments then move downward, in the plane of the page. Thus, dfl ies in
the plane of the page, but tipped slightly to the left as shown (see Figure 5.8). A net force with
a negative z-component is required to keep the helix spinning in place.

Rotary motion certainly meets our criterion ofbeing periodic but not reciprocal.
And we are familiarwith other spinning helical objects that develop thrust along their
axis, namely, submarine and boat propellers. But the details are quite different in the
low Reyno lds-number case. Figure 5.10 shows a schematic of the situation. A rigid
helical object (representing the flagellum) is cranked abou t its axis (by the flagellar
motor). Twoshort segments of the helix have been singled out for study.-Ti1<: net force
df exerted on one short segment by its two neighbors must balance the viscous drag
force on that segment. Thu s for the helix to undergo the desired rotational motion, df
must be the vector shown in Figure 5.8. Adding up all the contributions from every
rod segment, we see that the components in the xy plane all cancel (think about the
corresponding segments on the far side of the helix, whose veloci ty vectors point
upward ). But df also has a small component directed along the - zdirection , and the
df,'s do not cancel. Rather, a net leftward force must be supplied to spin the flagellum
in place (in addition to a torque about the axis).

Suppose the flagellum is not anchored but, instead, is attached to a bacterium
at its rightmost end. Then there is nothing to supply a net leftward force; cranking
the flagellum will therefore pull the bacterium to the right. This is the propulsion
mechanism we sought. Interestingly, mutant bacteria have been found with straight
flagella. They spin and spin, but never go anywhere.

I '12 1Section 5.3.1' on page 189 discusses the ratio ofparallel and perpendicular fric

tion constants in greater deta il.

5.3.2 To stir or not to stir?

It's surprisingly difficult to get anythi ng to eat when you're tiny. We get a hint of
why when we examine the experimental photograph, Figure 5.3 on page 166. At low
Reynold s number, the flow lines just part majestically as they come to the surface of
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the sphere; any food molecules car ried in the fluid follow the flow lines and never
arrive at the surface.

Things are not as bad as they seem. The macroscop ic experiment shown in Fig
ure 5.3 doesn't show the effects of diffusion , which can carry mo lecules to receptors
on a cell's surface. Diffusion willbring food even to a lazy, motionless cell! Similarly,
diffusion will carry waste away. even if the cell is too lazyto move away from its waste.
So why bot her swimm ing?

Similar remarks apply to stirring. It was once believed that a major job of cilia
was to sweep fresh fluid to the cell, thereby enhancing its intake relative to passively
waiting. To evaluate such arguments, imagine the cilium as moving at some char
acteristic speed v and swinging through a length d. These parameters determine a
time scale t = diu, the time in which the cilium can replace its surrounding fluid
with fresh, outside fluid. On the oth er han d, movement of molecules a distan ce d
will occ ur just by diffusion in a characteristic time d2ID, according to the diffusion
law (Idea 4.5a on page l iS ). So stirring will on ly be worthwhile (more effective than
diffusion) if dlv < d' ID, or

D
v > d.

(Some authors call the dim ension less ratio ud]D the Peelet number.) Taking a cilium
to be abo ut d = 111 m long, the criter ion for stirring to be wor thwhile is then that
v > 1000 J!rn5 - 1. This is also the criterion for swimming to enhance food intake
significantly.

But bacteria do not swim anywhere near this fast. Stirring and swimm ing don't
help enhance food intakefor bacteria. (The story is different for larger creatures, even
protozoa, for which th e Reynolds num ber is still small but d and v are both bigger.)
There is experimental support for this conclusion. Mutant bacteria with defective
flagellar systems man age abo ut as well as their wild-type cousins when food is plen 
tiful.

5.3.3 Foraging. attack, a nd e scape

Foraging Section 5.3.2 may have left you wondering why wild-type bacteria do swim .
The answer is that life in the mean, real world can be more challenging than life in a
nice warm flask ofbro th. Although bacteria don't need to swim around systematically
scooping up available food, still it may be necessary for a cell to find a food supply.
The word find implies a degree of volition; and mind- boggling as it may seem , sup
posedly primitive organism s like E. colican indeed perform the computatio ns needed
to hunt for food .

The strategy is elegant. E. coli swims in a burst of more or less straight-line mo 
tion , pauses, and then takes off in a new, randomly chosen direction. While swim 
min g. the cell continuously samples its environment. If the concentration of food is
increasing, the bacterium extends its run. If the food concentration is decreasing, the
cell termi nates the run and starts off in a new direction sooner than it wo uld have
in an imp roving environment. Thus the cell executes a form of biased random walk,
with a net drift toward highe r food concen trations.
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'\ But there's no point in making a run so short that the environment won't be
appreciably different at the end . Because diffusion con stantly tries to equalize the
concentration of food (and everything else), then, it's necessary for the bacterium to
outrun diffusion if swimming is to be of any use in navigating food gradient s. We have
already found the criterion, Equation 5.16. Now, however, we take v ;::::: 30 Jim 5- 1 to
be the known swimming speed and d to be the length of the run, not the length of
the cell. Then we find that, to navigate up food gradients, a bacterium mu st swim at
least 30 li m, or 30 body lengths, before changing direction. And . . . that's what they
really do.

), Att ack and escape Take another look at Figure 5.3 on page 166. Clearly a solid object ,
gliding through a liquid at low Reynolds number, disturbs the fl uid out to a distance
comparable to its own diameter. This fact can be a liability if your livelihood depend s
on stealth, for example, if you need to grab your dinner before it escapes. Moreover,
swimming up to a tasty morsel will actually tend to push it away, just like your colored
blob in the experiment described in Section 5.1.3 on page 161. That's why many
medium-small creatures, not so deeply into the low Reyno lds-regim e as bacteria, put
on a burst of speed to push themselves momentarily up to high Reynolds number for
the kill. For example, the tiny crustacean Cyclops makes its strike by accelerating at
up to 12 m 5- 2, briefly hitting Reynold s numbers as high as 500.

In the same spirit, escaping from an attacker will just tend to drag it along with
you at low Reynolds number! Here again, a burst of speed can make all the differ
ence. The sessile proto zoan Vorticella, when threatened, contracts its stalk from 0.2
0.33 mm down to less than half that length at speeds up to 80 mm 5- 1, the most rapid
shortening of any contractile eleme nt in any animal. This impressive performance
garners the nam e "spasmoneme'' for the stalk.

5.3.4 Vascular networks

Bacteria can rely on diffu sion to feed them, but large organi sms need an elaborate
infrastructure of delivery and waste-disposal systems. Virtually every macroscop ic
creature thus has one or more vascular networks carrying blood, sap, air, lymph, and
so on . Typically these networks have a hierarchical, branching structure: The human
aorta splits into the iliac arteries, and so on , down to the capillary beds that actually
nourish tissue. To get a feelin g for some of the physical con straints governing such
networks, let's take a moment to work out one of the simplest fluid-flow problem s:
the steady, lamin ar flow of a simple New tonian fluid through a straight, cylindr ical
pipe of radiu s R (Figure 5.l la). In this situation, the fluid does not accelerate at all,
so we can neglect the inertial term in New ton's Law even if the Reynolds number is
not very small.

We must push a fluid to make it travel dow n a pipe, in order to overcom e viscous
friction. The friction al loss occurs throughout the pipe , not just at the walls. Just
as in Figure 5.2 on page 163, where each layer of fluid slips on its neighbor, in the
cylindrical geome try, the shear will distribute itself across the whole cross section of
the pipe. Imagine the fluid as a nested set of cylindrical shells. The shell at distan ce
r from the center moves forward at a speed vCr), whi ch we must find. The unknown



180 Chapter 5 Life in the Slow Lane: The Low Reynolds-Number World

a

flow

b

w r

Figure 5.11: (Sketches.) (a) In laminar pipe flow, the inner fluid moves fasterthanthe outer
fluid, which must be motionless at the pip e wall (the no-slip boundary condition). We imagine
concentric cylindrical layers of fluid sliding over one another. (b) The torsional drag on a
spinning rod in viscous fluid. This time the inner fluid rotate s faster than the outer fluid, which
must be at rest far awayfrom the rod. Again we imagine concentric cylindrical layers of fluid
sliding over one another; the angularvelocity w(r) is not constant but decreases with r .

function v(r) interpolates between the stationary walls (with vCR) = 0) and the
center (with unknown fluid velocity v( O) ).

To find v(r) , we balance the forces acting on the shell lying between rand r -l- dr .
The cross-sectio nal area of this she ll is 2rrr cir. Hence the press ure drop between the
ends of the pipe, p, contributes a force df , = 2Jrrp dr directed along the pipe axis.
A viscous force dj, from the slower-moving fluid at larger r pulls backward on the
she ll, whereas the faster-movin g fluid at sma ller r drags it forward with a third force ,
df, . For a pipe oflength L, the viscous force rule (Equation 5.9 on page 168) gives

dv(r )
df, = -ry(2lfrL)-

dr
and dv(r ' ) Idj, = ry (2lf(r + dr )L) - - .

dr' r'= r+dr

Notice that v decreases with r, so [: is a negative quantity, whereas [ s is positive.
Force balance is then the statement that df, + dj, + df, = O.

Because dr is very small, we can evaluate dv/d r at the point (r + dr) by using a
series expansion, dropping term s with more than on e power of dr:

dv(r') I = dv(r ) + dr x d' v + ...
dr' r'=r +dr dr dr2

Thus adding dj, to df, gives

(dV d'V)2lfryLdrx - + r-
2

.
dr dr
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Adding dfi and requiring the sum to be zero gives

rp dv d'v-+ - +r- =0.
Lry dr d-r

This is a differential equation for the unknown function v(r ). You can check that its
general solution is v(r ) = A + Bin r - r' p/ (4Lry ), where A and B are constants. We
had better choose B = 0, because the velocit y cannot be infinite at the center of the
pipe. And we need to take A = R' p/(4Lry) to get the fluid to be stationary at the
stationary walls. These co nditions fix our solution. the flow profile for lamin ar flow
in a cylindrical pipe:

After going through the math to check the solution (Equation 5.17), explain in
words why every factor (except the 4) "had" to be there.

ter
ne

1 a
ich
aid Your

Turn
5G

(R'-r')p
v( r) = -"-'-..,..,....-'-!..

4Lry
(5.17)

Now we can see how well the pipe transports fluid. The velocity v can be thought
of as the flux of volume j v, or the volume per area per time transported by the pipe .
The total flow rate QJwith the dim ensions of volume per time, is then the volume
flux i - = v from Equation 5.17, integrated over the cross-sectional area of the pipe:

Equation 5.18 is the Hagen- Poiseuille relation for laminar pipe flow. Its applicability
extends somewhat beyond the low Reynolds-number regime studied in most of this
chapter: All we really assumed was laminar flow. This regime includes all but the
largest veins and arteries in the human bod y (or the entire circulatory system of a
mouse).

The general form of Equation 5.18 can be expressed as Q = pfZ, where the
hydrodynamic resista nce Z = 8ry L/(rr R') . The choice of the word resistance is no
accident. The Hagen- Poiseuille relation says that the rate of transport of some con 
served quantity (volume) is proport ional to a driving force (the pressure drop p),just
as Ohm's law says that the rate oftransport of charge is proport ion al to a driving force
(potential drop). In each case, the constant of proportionality is called resistance. In
the context oflow Reynolds-num ber fluid flow, transport rules ofthe form Q = p/ Z
are quite common and are collectivelycalled Darcy's law. (At high Reynolds number,
turbulence complicates matters; and no such simp le rule holds.) Another example is
the passage of tluid across a membrane (see Problem 4.10 ). In this con text, we write
Z = 1/ (AL p ) for the resistance, where A is the membra ne area and l.p is called the
filtration coefficient (some authors use the synonym hydraulic permeability).

x is
the

itive

ing s

l
R n R4

Q = 2rrr dr v(r) = - p.
o 8Lry

(5. 18)



182 Chapter.5 Life in the Slow Lane: The l ow Reynolds-Number World

A surprising feature of the Hagen-Poiseuille relation is the very rapid decrease
of resistance as the pipe radius R increases. Two pipes in parallel will transport twice
as much fluid at a given pressure as will one . But a single pipe with twice the area will
transpor t jo ur times as much, because rrR' = ( l jrr)(rrR')', and rrR' has doubled.
This exquisite sensitivity allows our blood vessels to regulate flow with only small
dilations or contractions:

Example: Find the change in radius needed to increase the hydrodynamic resistance
of a blood vessel by 30%, other things being equal. (Idealize the situation as lamin ar
flow of a Newtonian fluid.)

Solution: We want pIQ to increase to 1.3 times its previous value. Equation 5.18 says
that this happens when (R')-' jR- ' = 1.3, or R' jR = (1.3) -1 /' "" 0.94. Thus the
vessel need only change its radius by about 6%.

5.3.5 Viscous drag a t the DNA replicati on fork

To finish the chapter, let's descend from physiology to the realm of molecular biology,
which will occupy much of the rest of this book.

A major theme of the chapters to come will be that DNA is not just a database of
disembodied information but a physicalobject immersed in the riotous thermal envi
ronment ofthe nanoworl d. This is not a new observation . As soon as the double-helix
model of DNA structure was announced, peop le asked: How do the two stran ds sep
arate for replication, when they're woun d around each other? One solution is shown
in Figure 5.12. The figure shows a Y-shapcd jun ction where the original strand (top)
is being disassembled into two single strands. Because the two single strands cannot
pass through each other, the original must continually rotate (arrow).

The prob lem with the mechanism sketched in the figure is that the upp er strand
extends for a great distance (DNA is long). If one end of this strand rotates, then
it would seem that the whole th ing must also rotate . Some people worried that the
frictional drag resisting this rotation would be enormous. Following C. Levinthal and
H. Crane we can estimate this drag and show that, on the contrary, it's negligible.

Consider cranking a long, thin , stra ight rod in water (Figure 5.llb). This model
is not as drastic an oversimpl ification as it may at first seem. DNA in solution is
not really straight, but, when cranked, it can rotate in place, like a tool for unclog
ging drains. Our estimate will be roughly applicable for such motions. Also, the cell's
cytoplasm is not just water; but for small objects (like the 2 nm thick DNA double
helix) it's not a bad estimate to use water's viscosity (see Appendix B).

The resistance to rotary moti on should be expressed as a torque. The drag torque
r will be proportion al to the viscosity and to the cranking rate, just as it is in Equa
tion 5.4 on page 164. It will also be proportional to the rod's length L, because there
will be a unifo rm drag on each segment. The cranking rate is expressed as an angular
veloc ity w, with dimensions 1r- I

. (We know co once we've measured the rate of repli
cation. because every helical turn contains about 10.5 basepairs.) In sho rt, we must
have r ex: W1]L. Before we can evaluate this expression, however, we need an estimate
for the constant of propor tionali ty.
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2R = 2n m-

lagging stra nd
/

Figure 5 .12 : (Schematic.) Replication of DNA requir es that the ori ginal double helix (top) be
unwound into its two stran ds. Molecular machines called DNA polym erase sit on the single
strands synthe sizing new, complementary strands. The process requ ires the ori ginal strand to
spin about its axis, as shown. Another mo lecular machin e called DNA helicase (not show n) sits
at the openi ng point and walks along the DNA, unw inding the helix as it goes along. [Adapted
from Alber ts et al., 2002.]

Cer tainly th e dra g will also depend on the rod 's radius, R. From th e first-year
physics formula T = r x f we find that torque has the same dimension s as energy.
Dimensional analysis then shows that the constant of proportion ality we need has
dimension s L 2

• We have already taken into accou nt the dependence on L. The only
other parameter in the problem with th e dim ensions oflength is R (recall that water
itselfhas no intr insic length scale, Section 5.2. 1). Thus th e constant ofproport ion ality
we seek mu st be R2 times some dim ensionl ess number C, or

T = - C x wryR2L. (5. 19)

Probl em 5.9 shows th at thi s result is indeed correct and that C = 471 ; but we don't
need th e precise value for what follows.

The rate at which we mu st do work to cra nk the rod is the product of the applied
torque times the rotation rate: - r w = Cw2TJR 2L. Because th e rod rotates through
Zzr radians for each helical turn, we can instead quote the mechanical work needed
per helical turn, as

W fricl = - 2rr r = 2rrC x wry R2L. (5.20)
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An enzyme called DNA polymerase synthesizes new DNA in E. coli at a rate of about
1000 basepairs (abbreviated bp ) per second, or

radi an 1000bps-l I
W = 2Jr X :-::--;:-;----;--'--,--,-- "" 600 s- .

revolut ion 10.5 bp jrevolution

Equation 5.20 then gives W,,,,, "" (2Jr)(4Jr)(600s-1)(l O- 3 Pa s) (l nm )2L "" (4.7·
10-17 J m -1 ) L.

A second enzyme, called DNA helicase, does the actual cranking . Helicase walks
along the DNA in front of the polymerase, un zipp ing the double helix as it goes along.
The energy required to do this comes from the universal energy-supply mol ecule
ATP. Appendix B lists the useful energy in a single mo lecule of ATP as "" 20k.T, =
8.2 . 10- 20 J. Let's suppose that one ATP suffices to crank the DNA by one full turn.
Then th e ene rgy lost to viscous frictio n will be negligible as long as L is much smaller
than (8.2 · 10- 20 J)j (4.7· 10- 17 J m- 1) , or about 2 rnrn, a very long distance in the
nanoworld. Levinth al and Crane correctly concluded that rotational drag is not an
obstacle to replication.

Today we know that another class of enzymes, the topoisom erases, remove the
excess twisting generated by the helicase in the course of replication. The preceding
estimate should thus be applied only to the region from the replicat ion fork to the
first topoisornerase, and hence viscou s rotary drag is even less significant than the
previous paragraphs makes it seem. In any case, a physical argument let Levinthal
and Crane dismiss an objection to the double-he lix model for DNA, long before any
of the details of the cellular machinery respon sible for replication were known.

5.4 EXCURSION : THE CHARACTER OF PHYSICAL LAWS

We are starting to amass a large collection of statements called "laws." (This chapter
alone has mentioned Newton's Law of motion, the Second Law of thermodynam
ics, and Ohm's and Pick's laws.) Generally these terms were born like any other new
word-someone noticed a certain degree of generality to the statement, coined the
name, a few others followed, and the term stuck. Physicists, however, tend to be a
bit less promiscuo us in attaching the term physical Law to an assertion. Altho ugh
we canno t just rename terms hallowed by tradition , this book attempts to make the
distinction by capitalizing the word Law on those statements that seem to meet the
physicist's criteri a, elegantl y summa rized by Richard Feynman in 1964.

To summarize Feynman's summary, physical Lawsseem to share some common
characteristics. Certainly there is an element of subjectivity in the canon ization of a
Law; but, in the end, there is generally more consensus than dispute on any given
case.

Certainly we must insist o n a very great degree of generality, an applicability to an
extremely broad class of phenomena. Thus, many electrical conductors do not obe y
«Ohm's law," even approximately, whereas any two objects in the Universe really do
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seem to attract each other with a gravitational force described (approximately!) by
Newton's Law of gravitation.

Althou gh they are general, physical Laws need not be,and generally catltlot be, exact.
Thus, as people discovered more and deeper layers of physical reality,Newton's Law
of motion had to be replaced bya quantum-mechanical version; his Law of gravita
tion was superseded by Einstein's, and so on. The older. approximate laws remain
valid and useful in the very large domain where they were originally discovered,
however.

• Physical Laws all seem to be intrinsically mathematical in their expression. This
characteristic may give them an air of mystery, but it is also the key to their great
simplicity. There is very litt le room in the terse form ula f = rna to hide any sleight
of-hand, little room to bend a simple formula to accommodate a new, discrepant
experiment. When a physical theory starts to acquire too many complicating fea
tures, added to rescue it from various new observations, physicists begin to suspect
that the theory was false to begin with.

• Yet, out of the simplicity of a Law, there always emerge subtle, unexpected, and
true conclusions revealedby mathematical analysis. Word-stories are often invented
later to make these conclusions seem natural, but generally the clearest, most direct
route to get them in the first place is mathematical.

An appreciation of these ideas may not make you a more productive scientist. But
many people have drawn inspiration, even sustenance, from their wonder at the fact
that Nature should have any such uni fying threads at all.

THE BIG PIGURE

Returning to the Focus Qu estion , we've seen tha t the key difference between the
nanoworld and our everyday life is that viscous dissipation completely dominates
inertial effects. A related result is that objects in the nanoworld areessentially unable
to store any significant, nonrandom kinetic energy-they don't coast after they stop
actively pushing themselves (see Problem 5.4). These results are remin iscent of the
observation in Chapter 4 that diffusive transport, another dissipative process, is fast
on small length scales; indeed, we saw in Section 5.3.2 that diffusion beats stirring in
the submicrometer world.

We saw how to express the distinction between dissipative and nondissipative
processes in a veryconcise form by describing the invariance properties of the appro
priate equations of motion: Frictionless Newtonian physics is time-reversal invariant,
whereasthe friction-do minated world oflow Reynolds number is not (Section 5.2.3).

Hiding in the background of all this discussion has been the question of why
mechanical energy tends to dissipate. Chap ter I alluded to the answer- the Second
Law of thermodynamics. Our task in the next chapter is to make the Second Law, and
its cardinal concept of entropy, more precise.
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KEY FORM ULAS

Viscosity: Suppose a wall is perpendicularto thex direction. The viscous force per
area in the zdirection exer ted by a fluid on a wall is r ndv, / dx (Equation 5.9).

IT21The kinematic viscosi ty is defined as v = '1 /Pm. where Pm is the fluid mass

density, and has the units of a diffusion constant (see Section 5.2.1' ).

• Reynolds: The viscous critical force for a fluid is f erit = .,,2 / Pm' where Pm is the
mass density of the fluid and tt its viscosity (Equation 5.5). The Reyno lds number
for a fluid flowing at velocity v and negotiating obstacles of size R is R = vRpm/q
(Equation 5.11). Laminar flow switches to turbulent flow when R exceeds about
1000.

Rotarydrag: For a macroscop ic (many nanom eters) cylinder of radius R and length
L, spinning on its axis in a fluid at low Reynolds numb er, the drag torque is r =
-4JrwqR'L (Equation 5.19 and Prob lem 5.9), where n is the fluid viscosity.

• Hagen-Poiseuille: The volume flux through a pipe of rad ius R and length L, in
laminar flow, is

Jr R'
Q = 8Lq p,

where p is the pressure drop (Equation 5.18). The velocity profi le is parabolic, that
is, v(r ) is a con stant times RZ - , 2) where r is the distance from the center of the
pipe.
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(5.21)(planar geometry )

IT21 5.2.1' Track 2

I. Section 4.1.4' on page 147, point (2), pointed out that ou r simple theor y of fric
tional drag wo uld break down whe n the force applied to a particle was too great.
We have now found a precise criterion: The inertial (me mory) effects neglected in
Section 4. 1.4 will indeed be significant for forces greater than ! crit.

2. The phenom enon ofviscosity actually reflects yet ano ther diffusion process. When
we have small indestructible particles. so that the number of particles is con
served, we found that random thermal mot ion leads to diffusive transport of
part icle number via Pick's law, Equatio n 4. 19 on page 130. Section 4.6.4 on page
142 extended this idea, showing that when particles carry electric charge (another
conserved quantity), their thermal mot ion again leads to a diffusive transport of
charge (Ohm's law). Finally, because particles carry energy, yet another conserved
quantity, Section 4.4.2' on page 149 argued for a third Pick-type transpor t rule,
called thermal conduction. Each transport rule had its own diffusion constant,
giving rise to the electrical and thermal conductivity of materials.

One more conserved quantity from first-year physics is the momentum p.
Random therm al motion should also give a Pick-type transport rule for each com
ponent of p.

Figure 5.2b on page 163 shows two flat plates, each parallel to the j-z-plane,
separated by d in the x direct ion . Let Pp, deno te the density of the z-component of
mom entum. If the top plate is dr agged at v, in the +z direction while the bottom
is held stationary,we get a nonuniform Ppz' namely, Pm X vz(x ), where Pm denotes
the mass density of fluid. We expect that this nonu niformity should give rise to a
flux of pz whose component in the x direction is given by a formula analogo us to
Fick's law (Equat ion 4.19 on page 130):

(
. ) _ _ d(Pmv, )

} pzx - v d.x

The constant v is a new diffusion constant, called the kinematic viscos ity . (Check
its units.)

But the rate of loss ofmo mentum is just a force;similarly, the flux of momen
tum is a force per unit area. The flux of momentum (Equation 5.2 I) leaving the
top plate exerts a resisting drag force opposing the mot ion; when this momen
tum arrives at the bottom plate, it exerts an entraining force along Vz . We have
thus fou nd the molecular origin of viscous drag. It's appropriate to name v a kind
of viscosity, because it's related in a simple way to 1]: Comparing Equation 5.4 to
Equatio n 5.21 shows that v = ~/Pm.

3. We now have two empirical definitions of viscosity, namely, the Stokes formula
(Equation 4.14 on page 119) and our parallel-plates formula (Equation 5.4 on
page 164). Th ey look similar, but some work is required to prove tha t they are
equivalent. One must write down the equations of mot ion for a fluid, containing
the pararneter n, solve them in bo th the para llel-p late and moving-sphere geome
tries, and compute the forces in each case. (The math can be found in Landau
& Lifsh itz, 1987 or Batchelor, 1967, for exam ple.) But the form of the Stokes for
mula just follows from dimensional analysis. Once we know we're in the low-force
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regime, we also know that the mass density Pm of the fluid cannot enter into the
drag force (because inertial effects are insignifican t). For an isolated sphere, the
only length scale in the problem is its radi us R, so the only way to get the proper
dim ensions for a viscous friction coe fficient is to multiply the viscosity by R to
the first power. That's what the Stokes formula says, apart from the dim ension less
pre factor 6rr .

1721 5.2.2' Track 2

1. The physical discussion in Section 5.2.2 may have given the impression that the
Reyno lds- number criterion is not very precise-R itself looks like the ratio of two
rough estim ates! A mo re mathematical treatment begins with the equation of in
compressible, viscous fluid mot ion (the Navier- Stokes equation). This equation
is essentially a more general form of Newton's Law than the version used in Equa
tion 5.7.

Suppose fluid flows through a geo metry with a length scale R (for example,
the radius of a pipe). Some external agency keeps th e fluid moving at overall speed
v. Expressing the fluid's velocity field u(r ) in terms of the dimensionless ratio
ii sa u/ v, and the position r in terms of f == t ]R, one finds that ii (r ) obeys a set of
dimensionless equations and bou ndary conditions. In these equations the param
eters Pm, '1 . VI and R enter in only on e place, via the dime nsionless co mbination
R (Equation 5.11). Two different flow problems of the same geometrica l type,
with the same value of R ; will therefore be exactly the same when expressed in
dim ension less form , even if the separate values of the fou r parameters may differ
widely! (See for example Landau & Lifshit z, 1987, §19.) Thi s hydrodyn amic scal
ing invariance of fluid mechanic s is what lets engineers test submarine designs by
bu ilding scaled- down models and putt ing them in bathtubs. ~

2. Section 5.2.2 quietly shifted from a discussion of flow around an obstruction
to Reynolds's results on pipe flow. It's important to remember that the critical
Reynold s num ber in any given situation is always roughly I, but this estimate is
on ly accurate to within a couple of orders of magni tude. The actual value in any
specified situa tion depends on the geom etry, ranging from abo ut 3 (for exit from
a circular hole) to 1000 (for pipe flow, where R is computed by usin g the pip e
radius).

IT21 5.2.3' Track 2

I. Section 5.2.3 claim ed that the equation of mot ion for a purely elastic solid has
no dissipation . Indeed, a tuning fork vibrates a long time before its energy is
gone. Mathematically, if we shake the top plate in Figure 5.2b back and forth ,
l:> z( t ) = Lcos(w t ), th en Equation 5.14 on page 172 says that for an elastic solid
the rate at which we must do work is f v = WA)(L cos(wt)/d)(wLs in(wt» , which
is negative just as often as it's positive: All the work we put in on on e half-cycle gets
returned to us on the next one. In a fluid, however, multiplying the viscous force
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by v gives f v = ( ryA)(Ltvsin(w t)/d)(w Ls in(w t» , which is never negative. We're
always doin g wo rk, which gets converted irreversibly to thermal energy.

2. There's no reason why a substance can't display both elastic and viscous response.
For exampl e. when we shear a polymer solution there's a transient period when
its individu al polymer chains are starting to stretch. If the applied force is released
during this period , the stretched chains can partially restore the original shape
of a blob. Such a substance is called viscoelas tic . Its restoring force is generally a
complicated function of the frequency w, not simply a constant (as in a solid) nor
linear in w (as in a New toni an fluid). The viscoelastic properties of human blood,
for example. are imp ortant in physiology.

3. It's not necessary to apply the exact tim e-reversed force in order to return to the
starting configuration . That's because the left side of Equation 5.13 is more special
than simply chang ing sign under time reversal: It's first order in time derivatives.
More generally, the viscous force rule (Equation 5.4 on page 164) also has this
property. Applying a time-dependent force to a particle in fluid then gives a total
displacement ,;x(t ) = __I f~ fIt' ) dr'. Suppose we apply some force f (r}, thereby
moving the particle and all the surrounding fluid. We could bring the particle, and
every other fluid element in the sample, back to their original positions by any
force whose integral is equal and opposite to the original one. It doesn't matter
whether the return stroke is hard and short, or gentle and lon g, as long as we stay
in the low Reyno lds-number regime .

1'121 5.3.1' Track 2

The ratio of parallel to perpendicular drag is not a universal number; instead, it de
pend s on the length of the rod relative to its diameter (the "aspect ratio"). The illus
trative value ~ quoted in Section 5.3. 1 is appropriate for a rod 20 time s as long as its

diameter. In the limit of an infinitely long rod, the ratio falls to t. (The calculations
can be found in Happel & Brenner, 1983, §§5- 11.)

I
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PROBLEMS

5 .1 Friction versus dissipation

Gilbertsays: You saythat friction and dissipation aretwo manifestations ofthe same
thing. So high viscosity mu st be a very dissipative situ ation. Then why do I get beau ti
fully ordered, laminar mo tion only in the high-v iscosity case? Why does my ink blob
miraculously reassemble itself only in this case?
Sullivan: Urn, uh ...

Help Sullivan out.

5.2 Densi ty profile
Finish the derivation of particle density in an equilibrium colloidal suspension (be
gun in Section 5.1.1) by finding the constant prefactor in Equatio n 5. I. That is, find
a formula for the equilibrium numberdensity c (x) of particles with net weight mnetg
as a function of the height x. The tot al number of particles is N; the height of the test
tube is h and its cross sectional area is A.

5.3 Archibald method
Sedimentation is a key analytica l too l in the lab for the study of big molecules. Con
sider a particle of mass m and volume V in a fluid of mass density Pmand viscosity 1} .

a. Suppose a test tube is spun in the plane of a wheel, pointing along one of the
"spokes." The artificial gravity field in the centrifuge is not uniform; rather, it is
stronger at one end of the tube than the other. Hence the sedimentation rate will
not be uni form either. Suppose that one end lies a distance r\ from the center, and
the other end is at r i = rj + f. The centrifuge is spun at angular frequency c;;.
Adapt th e formula Vd,ift = gs (Equat ion 5.3 on page 160) to find an analogous
formula for the drift speed in terms of s in the centrifuge case.

Eventually, sedimentation will stop and an equilibrium profile will emerge. It may
take quite a lon g time for the whole test tube to reach its equilibrium distribution. In
that case, Equation 5.2 on page 160 is not the 010st convenient way to measure the
mass parameter mn". The Archibald meth od uses the fact tha t the ends of the test
tube equilibrate rapidly, as follows.

b. There can be no flux of material through the ends of th e tub e. Thu s, the Fick-law
flux must cancel the flux you fou nd in (a). Write down two equations expressing
this statement at the two ends of the tube.

c. Derive the following expression for the mass parameter in terms of the concentra
tion and its gradient at one end of the tube:

mnet = (stuff) x de I .
dr '~' I

and a similar formula for the other end, where (stuff) is some factors that you are
to find. The con centration and its gradient can be measured photom etrically in
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the lab, thus allowi ng a measurement of tn net long before the whole test tube has
come to equilib rium .

5.4 Coasting at low Reynolds
The chapter asserted that tiny objects stop moving at once when we stop pushing
them. Let's see.

3 . Consider a bacterium, idealized as a sphere of radius 1 Il m, propelling itself at
1 J1 m $-' . At time zero, the bacterium suddenly stops swimming and coasts to a
stop, following Newton's Law of motion with the Stokes drag force. How far does
it travel before it stops? Comment.

b. O U f discussion of Brownian mot ion assumed that each random step was inde 
pendent of the previous one; thus, for example, we neglected the possibility of a
residual drift speed left over from the previous step. In the light of (a), would you
say that this assumption is justified for a bacterium?

5.5 Blood flow
Your heart pumps blood into yo ur aorta. The maximum flow rate into the aorta is
about 500 crn' 5- 1. Assume that the aorta has diameter 2.5 em, that the flow is laminar
(not very accurate), and that blood is a Newtonian fluid with viscosity roughly equal
to that of water.

a. Find the pressure drop per unit length along the aorta. Express your answer in 51
uni ts. Compare the pressure drop along a 10 em section of aorta with atmospheric
pressure (10' Pa l.

b. How much power does the heart expend just pushing blood along a 10 cm section
of aorta? Compare your answer with your basal metabol ic rate, about 100 W, and
commen t.

C. The fluid velocity in laminar pipe flow is zero at the walls of the pipe and maxi
mum at the center. Sketch the velocity as a func tion of distance r from the center.
Find the veloc ity at the center. [Hint: The total volume flow rate, which you are
given, equals f v(r)2Jfrdr.]

5.6 1121 Kinematic viscosity

a. Although the kinematic viscosity v has the same dim ension s n...2IT as any other
diffusion co nstant, its physical meaning is quite different from that of D, and its
num erical value for water is qui te different from the value of D for self-diffusio n
of water molecules. Find the value of v frorn n and compare with D.

b. Still, these values are related. Show, by combining Einstein's relation and the
Stokes formula, that taking the radius R of a water molecule to be about 0.2 nm
leads to a satisfactory order-of-magni tude prediction of v from D, R) and the mass
density of water.

5.7 IT21No going back

Section 5.2.3 argued that the motion of a gently sheared, flat layer would retrace its
history if we reverse the applied force. When the force is large, so that we canno t
ignore the inertial term in Newton's Lawof motion , where exactly does the argument
fam



192 Cha pte r 5 Life in the Slow Lane : The Low Reynold s-Number World

5.8 I121Intrinsic viscosity of a polym er in solution

Section 4.3.2 arg ued that a long polymer chain in solution would be found in a
random-walk conformation at any instant of time," This claim is no t easy to ver
ify directly, so let's ap proach the quest ion indi rectly, by examining the viscosity of a
polym er solution.

Figure 5.2b on page 163 shows two parallel plates separated by distance d, with
the space filled with water of viscosity n. If one plate slides sideways at speed v, then
both plates feel visco us force rw/d per unit area. Suppose now that a small fraction
q, of the volume between plates is filled with solid objects, taking up space previously
taken by water. Then , at speed v, the shear strain rate in the remaining fluid must be
greater than befo re, and the viscous force will be greater, too.

3 . To estimate the shear strain rate, imagine that all the rigid objec ts are lying in a
solid layer of thickness q,d attached to the bottom plane , effectively red ucing the
gap berween the plates. Th en what is the viscous force per area?

b. We can express the result by saying that the suspension has an "effective viscosity"
q' bigger tha n n. (Your result for the speed of milk separation in You r Turn 5C
on page 161 was actually a bit too high, in par t because of this effect.) Write an
expressions for the relative change (q ' - q) / q. Use q, « I to simplify your answer.

c. We want to explore the proposition tha t a polymer N segme nts lon g behaves like a
sphere with rad ius a LNPfor some power p. (Here L is the segme nt length and a is
a constant of proportion ality; we won't need the exact values of these parameters.)
Wh at do we expect p to be?Wh at then is the volume frac tion q, of a suspension of
c such spheres per volume? Express your answer in terms of the total mass M of a
polymer, the mass m per monomer, the concentration of polymer c, L, and a .

d. Discuss the experimental data in Figure 5.13 in the light of your analysis. Each set
of points joined by a line represents measurem ents taken on a family of po lyme rs
with various num bers N of ident ical mon om ers; each mon om er has the same
mass m. The total mass M = N m of each polymer is on the x-axis, The quantity
[1]]e on the vertical axis is called the polymer's intrinsic viscos ity; it is defined
as (q ' - q) /(qPm ,p), where Pm,p is the ma ss of dissolved po lymer per volu me of
solvent. [Hint: Recall Pm.p is small. Write everything in terms of the fixed segment
length L, the fixed mon omer mass tn, and the variab le total mass M.l

e. What combination of L and 111 could we measure from the data? (Don't actually
calculate it.)

5.9 IT21Friction as diffusion

Section 5.2.1' on page 187 claimed that viscous frictio n can be interpreted as the
diffusive transport of momentum. The argum ent was that, in the planar geo me try,
when the flux of momentum given by Equa tion 5.21 leaves the top pla te, it exerts a
resisting drag force. When this momentum arrives at the bottom plate, it exerts an
entraining force. So far, the argument is quite correct.

~This problem co ncerns a polymer under "theta conditions" (see Section 4.3.1'on page 148).
sThe expression you'll get is not quite com plete. because o f some effects we left o ut, but its scaling is
right when rp is small. Einstein obtained the full formula in his doctoral dissertation. (Then he fixed a
co mputational error six years later!)
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Figure 5 .13 : (Experimental data.) Log-log plot of the intrinsic viscosit y [1J] (-) for polymers
with different values for the molarmassM. The two data sets shown represent different com
binations of po lymer type, solvent type, and temperature, both corresponding to "theta so l
vent" conditions. Opencircles:Polyisobutylene in benzene at 24"C. Solidcircles: Polystyrene in
cyclo hexane at 34°C. The two lines each have logarithmic slope t . IData from Flory, 1953.J

Viscous friction is more complicated than ordinary diffusion , however, because
momentum is a vector quantity, whereas number density is a scalar. For example,
Section 5.2.2 noted that the viscous force law (Equation 5.9 on page 168) needs to
be modified for situations other than planar geometry. The required modi fication
really matters if we want to get the correct answer for the spinning- rod problem (Fig
ure 5.11b on page 180).

We con sider a lon g cylinder of radius R with its axis along the zdirection and
centered at x = y = o. Some substance surrounds the cylinder. First suppose that
this substance is solid ice. When we crank the cylinder, everything rotates as a rigid
object with some angular frequency w. The velocity at position r is then v(r) =
(-wy, +wx, 0). Certainly noth ing is rubbing against anything, and there should be
no dissipative friction- the frictional transport of momentum had better be zero.
And yet, if we exam ine the poi nt f O = (ro. 0, z) , we find a non zero gradient

dvy I- = w .
dx r=ro

Evidently, our formula for the flux of momentum in planar geometry (Equation 5.21
on page 187) needs some modi fication for the nonpl anar case.

Wewant a modified form of Equation 5.21 that applies to cylindricallysymmet
rical flows and vanishes when the flow is rigid rotation. Letti ng r sa II r ll = .jx2 + y',
we can write a cylindrically symmetrical flow as

v(r ) = (- yg( r), xg (r), 0) .
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The case of rigid rotation corresponds to the choice of a consta nt angular velocity
g(r) . You are abo ut to find g(r ) for a different situa tion, namely, fluid flow. We can
th ink of th is flow as a set of nested cylinders, each with a different value ofg(r ).

Near any point , say, ro, let u(r) = ( -yg(ro), xg(ro)) be the rigidly rotating vector
field that agrees with v(r) at rooWe then replace Equat ion 5.21 by

(cylind rical geometry) (5.22)

In this formula, 11 ss VPm, the ordinary viscosity. Equation 5.22 is the proposed mod
ification of the moment um -transpo rt rule. It says that we compute dvy/dx and sub
tract off the correspon ding quantity with u, to ensure that rigid rotation incurs no
frictional resistance.

a. Each cylindrical shell of fluid exerts a torque on th e next one an d feels a torque
from the previous one. These torques must balance. Show that. as a result. the
tangential force per area across the surface at fixed r is (r j L) j (2rr r'), where r is
the extern al torque on the central cylinde r and L is the cylinder's length .

b. Set your result from (a) equal to Equation 5.22 and solve for the function g(r) .

c. Find TIL as a constant time s w. Hence. find the constant C in Equatio n 5.19 on
page 183.

5.10 I '12 1Pause and tumble

In between straight-line runs, E. coli pauses. If it just turned off its flagellar motors
during the pauses, eventually the bacterium would find itself pointing in a new, ran
domly chosen direction, as a result of rotational Brownian motion.

If you haven't done Problem 4.9, do it now and compare you r answer to part (d)
with the measured pause time of 0.14s. Do you think the bacteriu m just shuts down
its flagellar motors and waits during the pauses? Explain your reasoning.



CHAPTER 6

Entropy, Temperature,
and Free Energy

The method of"postulating" what we want has many
advantages; they are the same as the advantages of

theft over honest toil.

-Bertrand Russell, 1919

It's time to come to grips with the still rather woolly ideas proposed in Chapter I
and turn them into precise equations. Wecan do it. starting from the statistical ideas
developed in our study of the ideal gas law and Brownian motion.

Chapter 4 argued that friction in a fluid is the loss of memory of an object's
initial, ordered motion . The object's organized kinetic energy passes into the dis
organized kinetic energy of the surrounding fluid. The world loses so me order as
the object merges into the surrounding distribution of velocities. The object doesn't
stop moving, nor does its velocity stop changing (it changes with every molecular
collision ). What stops changing is the probability distribution of the part icle's many
velocities over time.

Actually.friction is just one of several dissipative processes relevant to livingcells
that we've encountered: ~11 obey similar Fick-type laws and aUtend to erase order.
We need to bring them all into a common framework, the Second Law of thermo
dynamics introduced in Section 1.2.1. As the name implies, the Second Law has a
universality that goes far beyond the concrete situations we've studied so far; it's a
powerfulway of organizing our understandingof many different things.

To make the formulas as simple as possible, we'll continue to study ideal gases
for a while. This may seem like a detour, but the lessons we draw will be applicable
to all sorts of systems. For example, the Mass Action rule governing many chemi
cal reactions will turn out to be based on the same physics underlying the ideal gas
(Chapter 8). Moreover, Chapter 7 will show that the ideal gas law itself is literally
applicable to a situation of direct biological significance, namely, osmotic pressure.

The goal of this chapter is to state the Second Law and, with it, the crucial con
cept of free energy. The discussion here is far from the whole story. Even so, this
chapter will be bristling with formulas. So it's especially impor tant to work through
this chapte r instead of just reading it.
The Focus Question for this chapter is
Biological question: If energy is always conserved, how can some devices be more
efficient than others?
Physical idea: Order controls when energy can do useful work, and it's not conserved.

195
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6.1 HOW TO MEASURE DISORDER

Chapter 1 was a little vague abo ut the precise meanin g of disorder. We need to refine
our ideas before they become sharp tools.

Flip a coin a thou sand times. You get a rando m sequence HTTTHTTHTHHHTHH

. . .. We will say that this sequence contains lots of disorder, in the following sense:
It's impossib le to summarize a random sequence. If you want to store it on your
computer, you need 1000 bits of hard disk space. You can't compress it; every bit is
independent of every other.

Now let's consider the weather, rain/shine. You can take a thousand days of
weather and write it as a bit stream RSSSRSSSSRRRSRR .. . . But this stream is less dis
ordered than the co in-flip sequence, because today's weather is more likely to be like
yesterday's than different . We could change our coding and let 0 = same as yesterday,
I = different from yesterday. Then our bit stream is 10011000100110... , and it's not
perfectly unpredictable: It has more D's than i 's, We could compress it by report ing
ins tead the length of each run of similar weather.

Here is another point of view: You coul d make money betti ng even odds on the
weather every day, because you have some a priori kno wledge abo ut this sequence.
You won't make money betti ng even odds on a coin flip, beca use you have no such
prior knowledge. The extra knowledge yo u have about the weather means that any
actual string of weather reports is less disordered than a corresponding string of co in
flips. Again, rhe disorder in a seql/ence reflects its predictability. High predictability is
10\'{.disorder.

We still need to propose a quantitative measure of disorder. In particular, we'd
like o ur measure to have the prope rty that the total amount of diso rder in two un 
correlated streams is just the sum of that in each stream separately. It's crucial to have
the word uncorrelated in the preceding sentence. If you flip a penn y a tho usand times,
and flip a dime a tho usand times, tho se are two unco rrelated streams. If yo u watch
the news and read the newspaper, those are two correlated streams; on e can be used
to predict the other, so the total disorder is less than the sum of those for the two
streams.

Suppose that we have a very lon g stream of events (for example, co in flips) and
that each event is drawn randomly, independentl y, and with equal probability from
a list of M possibilities (for example, M = 2 for a coin; or M = 6 for rolling a die).
We divide our long stream into "messages" con sisting of N events. We are goi ng to
exp lore the propo sal that a good measure for the amount of disorder per message is
I '" N log, M, or equivalently KN In M, where K = Ifln 2.

It's tempting to glaze over at the sight of that logarithm, regarding it as just a
button on yo ur calculator. But there's a simple and much better way to see what the
formula means: Taking the case M = 2 (coin flip) shows that, in this special case, I
is just the number of tosses. More generally, we can regard I as the number of binary
digits, or bits, needed to transmit the message. That is, I is the number of digits
needed to express the message as a big binary number.

Our proposal has the triv ial property that 2N co in tosses give a message with
twice as much disorder as N tosses. What's more, suppose that we toss a coi n and roll
a die N times. Then M = 2 x 6 = 12 and I = KN In 12 = KN(1n 2 + In 6), by the
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prop erty of logarithms. That makes sense: We could have reorganized each message
as N coin flips follo wed by N rolls, and we wanted our measure of disorder to be
additive. This is why the logarithm function enters our formula. Letting rl = MN

be the total number of all possible N- event messages and again K = 1/ In 2, we can
rewrite the proposed formula as

I=K ln rl. (6.I)

We also want to measure disorder in other kinds of event streams. Suppose we
have a message N letters long in an alphab et with M letters (let's say, M = 31, Rus
sian), and we know in advance that the letter frequency isn't uniform: There are N 1

letters "A," Nz letters "D ," and so on . That is, the composition of ou r stream of sym
bols is specified, although its sequence is not . The prob ability of gett ing each letter is
then Pi = N ;jN, and the Pi aren't necessarily all equal to fr.

The total number of all possible messages is then

(6.2)

To justify this formula we extend the logic of the random walk Example (page 11 2).
There are N factorial (written N! ) ways to take N objects and arrange them into a
sequence. But swapping any of the A 's among them selves doesn't change the message,
so N ! overcounts the po ssible messages: We need to divide by N 1! to eliminate this
redundancy. Arguing similarly for the oth er letters in the message gives Equation 6.2.
(It's always best to test theory with experiment, so try it with two apples, a peach, and
a pear (M = 3, N = 4).)

If all we know about the message are the letter frequencies, then any of the rl
possible messages is equally likely. Let's apply the proposed disorder formula (Equa
tion 6.1) to the entire message:

I = K [I n N ! - fln Nj!] .
] = !

If the message is very long, we can simplify the preceding expression using Stirling's
formul a (Equation 4.2 on page 11 3). For very large N, we only need to keep the term s
in Stirling's formula that are proportional to N, namely, In N ! '" N In N - N . Thus

the amount of disorder per letter is b = -K L j ';q- In ';q- , or

Shannon's formula (6.3)

Actually, not every string of letters makes sense in real Russian, even if it has
the correct letter frequencies. If we have the extra knowl edge that the string consists
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of real text, then we could take N to be the number of words in the message, M
to be the number of words listed in the dictionary, P, the frequencies of usage of
each word, and again use Equation 6.3 to get a revised (and smaller) estimate of the
amount ofdisorder of a message in this more restricted class. That is, real text is more
predictable, so it carries even less disorder per letter than do random strings with the
letter frequencies of real text.

Shannon's formula has some sensible features. First. notice that I is always pos
itive because the logarithm of a num ber smaller than 1 is always negative. If every
letter is equally probable, Pj = 1/ M, then Equation 6.3 just reproduces our original
proposal, I = KN In M . If, on the other hand, we know that every letter is an "A,"
then PI = 1, all the other Pj = 0 and we find I = 0: A string of all "A's" is perfectly
predictable and has zero disorder. Because Equation 6.3 makes sense and came from
Equation 6.1, we'll accept the latter as a good measure ofdisord er.

Shannon's formula also has the reasonable property that the disorder of a ran
dom message is maximum when every letter is equally probable. Let's prove this im
portant fact. We maxim ize l over the Pj • subject to the constraint that they must all
add up to 1 (the normalization condition , Equation 3.2 on page 71). To implement
this constraint, we replace PI by 1 - L~2 Pj and maximize over all the remaining
Pj 's:

-;K = [p\lnp\] + [~ Pj InPj ]

= [ (I- ~Pj) In(I - ~Pj)]+ [~ Pj InPj].
(

Let's focus on one particular letter, jo, and set the derivative with respectto Pja equal
to zero. Using the fact that ;j!;(x lnx) = (ln x ) + I gives

Exponentiating this formula gives

M

Pj , = 1 - L P},
j =2

The right -hand side is always equal to PI> so all the Pi's are equal. Thus the disorder
is maximal when every letter is equa lly probable-and then it's given by NK In M.

I '121Section 6.1' on page 232 shows how to obtain the last result by using the m ethod

o£Lagrange multipliers.
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6.2 ENTROPY

6.2.1 The Statistical Postulate

What has any of this got to do with physics or bio logy? It's time to sta rt th inking,
not of abstrac t strings of data, but of the string form ed by repeatedly examining the
detailed state (or microstate) of a physical system. For example, in an ideal gas, the
microstate consists of the pos ition and speed of every molecule in the system. Such a
measurement is impossible in practice . But imagining what we'd get if we coulddo it
will lead us to the entropy, which call be defined experimen tally.

We'll define the disord er of the physical system as the disord er per observation
of the stream of success ively measured microstates.

Suppose that we have a box of volume V. abou t which we know absolutely no th
ing except that it is isolated and contains N ideal gas molecules with total energy E.
Isolated means that the box is thermally insula ted and closed; no heat, light, or par
ticles enter o r leave it, and it does no wo rk on its surroundings. Thus the box will
always have N mo lecules and energy E. What can we say about the precise states of
the molecules in the box, forexample, their individual velocities? Of course. the an
swer is. "No t much": The microstate changes at a dizzying rate (with every molecular
colli sion ). \ Ve can't say a priori that anyone microstate is more probable than any
other.

Accordingly, this chapter will begin to explore the idea that after an isolated sys
tem has had a chance to come to equilibrium , the actual sequence of microstates we'd
measure (if we could measure micro states) wo uld be effectively a random sequence ,
with each allowed micro state being equally probable. Restating th is in the language
of Section 6. 1 gives the Sta t ist ical Post ulate:

When an isolated system is left alone long eno ugh, lt evolves to ther
mal equWbrium. Equilibrium is no t one particular microstate. Rather,
it's that probability distribution of microstates having the grea test
possible disorder allowed by the physical constraints on the sy~

(6.4)

The co nstraints just ment ion ed include the facts that the total energy is fixed and the
system is confi ned to a box of fixed size.

To say it a thi;d time, equilibrium corresponds to the probability distribution ex
pressing greatest ignorance of the microstate, given the constraints. Even if initially we
had some addit ional knowledge that the system was in a special class of states (for ex
ample. that all molecules were in the left half of a box of gas), eventually the complex
molecular motions wipe ou t this know ledge (the gas expa nds to fill the box). We then
know nothing about the system except what is enfo rced by the physical const raints.

In some very special systems, it's pos sible to prove Idea 6.4 mathem atically in
stead of taking it as a postulate. We wo n't attempt this. Indeed, it's not even always
true. For example , the Moon in its orbit around the Earth is constantly changing its
velocity. but in a predictable way. There's no need for any probability distribution,
and no disord er. Neverthe less, the Postulate is a reasonable proposa l for a large, com
plex system. and it does have experimentally testable conseq uences; we will find that
it applies to a wide range of phenom ena relevant for life processes. The key to its
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success is that even when we want to study a single molecule (a sma ll system with
relatively few moving parts), in a cell that molecule will inevitably be surrounded by
a th ermal environment consisting of a huge number of other mo lecules in thermal
mot ion.

Th e Great Pyramid at Giza is not in thermal equilibrium: Its gravitational poten
tial energy could be reduced considerably, with a corresponding increase in kinetic
energy and hence disorder, if it were to disint egrate into a low pile of gravel. This
hasn't happened yet. So the phrase long enough in th e Statistical Postulate mu st be
treated respectfully. There may even be intermediate time scales where some variables
are in th ermal equilibri um (for example, the temperature throughout th e Pyramid is
un iform ) while others are not (it hasn't yet flowed into a low pile of sand) .

Actually, the Pyramid isn't even at un iform temperature: Every day, the sur face
heats up , but the core rem ains at constant tempera ture. Still, every cubic millimeter is
of quite uni form temperature. So the question of whet her we may apply equilibrium
argumen ts to a system depends both on time and on size scales. To find how long a
given length scale takes to equilibrate, we use the appropriate diffusion equation-in
thi s case, th e law of th ermal conduction.
IT21Section 6.2.1' on page 232 discusses the foundation s of the Statistical Postulate

in more detail.

6.2.2 Entropy is a constant times the max imal value of disorder

Let's continue to study an isolated stat istical system. (Later, we'll get a more general
for mulation that can be appli ed to everyday systems, which are not isolated.) We'll
denote the number of allowed states of N molecules with energy E by [l eE, N, . . . ) ,
where the dots represent any other fixed constraints, such as the system's volume.
According to the Statistical Postulate, in equilibrium a sequence of observation s cif----"
the system's microstate will show that each one is equally probable; thus Equation 16.1
gives the system's disord er in equilibr ium as I (E, N, . . . ) = K in [leE, N , . . . ) bits.
As usual, K = I jln 2.

Now certainly Q is very big for a mole of gas at roo m temperature. It's huge
because mole cules are so numerous. We can work with less mind-boggling qu ant ities
if we multiply th e disorder per observation by a tiny consta nt , like th e thermal energy
of a single molecule. More precisely, the tradition al cho ice for the constant is kB/K,
which yields a measure of disord er called the entropy, denoted S:

(6.5)

Before saying another word about these abstractions , let 's pau se to evaluate th e
entropy explicitly, for a system we know in timately.

Example: Find the entropy for an ideal gas.

Solution: We want to count all states allowed by the conservation of energy. We ex
press th e energy in terms of the momentum of each particle:
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N N N 3

E = L ~V;,= _I LP;, =_I LL(PU)'.
i=l 2 2m i=1 2m i= l J=1

Here Pu is the compo nent of particle i's mom entum along the j -axis, and m is its
mass. This formula resem bles th e Pythagorean formula: In fact, for N = I, it says
precisely that .)211lEis the distance of th e point p from the origin; or in other words,
that the allowed mom ent um vectors lie on the surface of a sphere (recall Figure 3.4

on page 78).
When there are lots of molecules, the locus of allowed values of (p ;./) is the sur

face of a sphere of radius r = J2mE in 3N-dimensional space. The number of states
available for N molecules in volume V at fixed E is then proportional to the surface
areaof this hypersphere. Certainly that areamust be proportional to the radius raised
to the power 3N - I (think about the case of an ord inary sphere, N = I, whose sur
faceareais 4rr , 2 = 4rr r3N- 1). Because N is much larger than 1, we can replace 3N - 1
by just 3N.

To specify the microstate. we must give not only the momenta but also the lo 
cations of each particle. Because each may he located anywhere in the box, the num
ber of available states must also contain a factor of VN . So n is a constant times
(2m£)3N/' VN, and 5 = Nk. In[(£)3/ ' Vl+ const.

The complete version of the last result is called the Sakur- Tetrode formula:

(6.6)

This is a complex formul a, but we can understand it by considering each of the factors
in turn. The first factor in round parentheses is the area of a sphere of radius 1, in 3N
dimension s. It can be regarded as a fact from geometry, to be looked up in a book
(o r see Section 6.2.2' on page 233). Certa inly it equals 2rr when 3N = 2, and that's
the right answer: The circumference of a unit circle in the plane really is 2Jl' . The next
two factors are what we jus t found in the Example. The factor of (N!) - ) reflects the
fact that gas molecules are indistinguishable; if we exchange r j , PI with r z, P2, we get
a different list of ri s and pi s, bu t not a physically different state of the system . h. is the
Planck constant, a constant of Nature with the dimension s M II.} 1r- I

. Its origin lies
in quant um mechanics; but for our purpo ses, it's enough to note that some constant
with these dimension s is needed to make the dimension s in Equation 6.6 work out
properly. The actual value of f< won't enter any ofour physical predictions.

Equation 6.6 looks scary. but many of the factors enter in nonessential ways. For
instance, the first 2 in the numerator gets overwhelmed by the other factors when N
is big, so we can drop it, or equivalently put in an extra factor of l' as was done at
the end of Equat ion 6.6. Other factors like (mj (2rr ' f<'» 3N/' just add a constant to
the entropy per mo lecule and won't affect derivatives like dSj dE. (Later on, however,
when studying the chemical potenti al in Chapter 8, we will need to look at these
factors again.)
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112ISection 6.2.Z on page 233 m akes several m ore com men ts about the sak ur

Tetrade formula and derives the form ula for the areaofa higher-dim ensional sphere.

6.3 TEMPERATURE

6.3.1 Heat flows to maxim ize disorder

Having constructed the rather abstract not ion of entropy, it's time to see some con
crete consequences of the Statist ical Postu late. We begin with the humblest of every
day phenomena, the flow of thermal energy from a hot object to a coo l one.

Thus, instead of studying one isolated box of gas, we now imag ine connecting
two such boxes, called A and B, in such a way that they're still isolated from the world
but can slowly exchange energy with each other (Figure 6. t ). We could put two insu
lated boxes in contact and make a small hole in the insulation between them . leaving
a wall that transmi ts energy but does not allow particles to cross. (Yo u can imagine
this wall as a drumhead , which can vibrate when a molec ule hits it.} The two sides
contain NA and N B mo lecules, respectively, and the total energy Etot is fixed. Let's
explore how the boxes share this energy.

To specify the total state of the co mbined system, choose any state of A and any
state of B, with energies obeying Etot = EA. +EB. The interaction between the systems
is assumed to be so weak that the presence of B doesn't significantly affect the allowed
states of A, and vice versa.

EA can go up, as long as En goes down to compensate. So EB isn't free. After
the boxes have been in contact a long tim e, we then shut the thermal door between
them, thereby isolating them, and let each come separately to equilibrium. According
to Equat ion 6.5, the tota l entropy of the combined system is then the sum of the two
subsystems' entropies: 5,0'(EA ) = SA (EA ) +sB (Etot - EA ) . We can make this formula
more explicit, because we have a formula for the entrop y of an ideal gas, and we know
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Figu re 6 .1: (Schematic.) Two systems thermally insulated from the world but on ly partially
insulated from each other. The hatching denotes thermal insulation, with one small break on
the common wall. The boxes don't exchange particles, on ly energy. The two subsystems may
contain different kinds of molecules.
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that energy is conserved. The Sakur- Tetrode formula (Equation 6.6) gives

Equation 6.7 appears to involve logarithms of dimensio nal quantities, which aren't
defined (see Section 1.4.1 ). Actua lly, formul as like this one are abbreviation s: The
term In EA can be tho ught of as short for In(EA10 J») . Th e choice of unit is imm a
terial; different choices just change the value of the constant in Equation 6.7, which
wasn't specified anyway,

We can now ask, "What is the most likely value of f A?"At first it may seem that
the Statistical Postulate says that all values are equally probable. But wait. The Pos
tulate says that just before we shut the door between the subsystems, all microstates
of the jo int system are equally probable . But there are many microstates of the join t
system with any given value of EA , and the 1lI/llIber depends on EA itself In fact, ex
ponentiating the entropy gives this number (see Equation 6.5 ). So, drawing a mi
crostate of the joint system at random. we are most likely to come up wit h on e who se
f A corresponds to the max imum of the total entropy. To find this maximum, set the
derivative of Equation 6.7 to zero:

(6.8)

In other words, the systems are most likely to divide their therm al energy in such a
way that each has the same average energy per molecule: EA INA = EBINB .

This is a very familiar conclusio n. Section 3.2. 1 argued that in an ideal gas, the
average energy per molecule is ~ kB T (Idea 3.2 1 on page 80). So we have just con
cluded that two boxes ofgasin thermal equilibrium aremostlikely to divide their eIlergy
in a way that equalizes their temperature. Success fully reco vering this well-known fact
of everyday life gives us some confidence that the Statistical Postulate is on the right
track.

How likely is "most likely"?To simplify the math, suppose that NA = N B , so that
equal temp erature corresponds to EA = En = !Etot ' Figure 6.2 shows the entropy
maximum and the probability distribut ion P(E A ) to find A with a given energy after
we shut the door. The graph makes it clear that even for just a few thousand molecules
on each side, the system is quite likely to be found very close to its equal-temperature
poi nt, because the peak in the probabil ity distribut ion funct ion is very narrow. That
is, the observed statistical fluctua tion s about the most probable energy distribution
will be small (see Section 4.4.3 on page 131). For a macroscopic system, where N A ""

N8 "" 10" , the two subsystems will be overwhelmingly likely to share their energy in
a way corresponding to nearly exactly equal temperatures.

6.3.2 Temperature is a stat istical property of a system in equilibrium

Th e fact that two systems in therm al cont act come to the same temperature is not
limi ted to ideal gases! Indeed, the early thermod ynam icists found this proper ty of
heat to be so significant that they named it the Zeroth Law of thermodynamics. Sup
pose that we put any two macroscopic objects into thermal contact. Their entropy
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Figure 6.2 : (Mathematical functions.) The disorder (entropy) of the joint system is maximal when the two subsystems
share the total energy according to Equation 6.8. (a) Entropy of subsystems A (risingcurve) and B (descendingcurve),
as functions of EA/ElO t • Each chamber has N = 10 molecules. A constant has been added and the entropy is expressed
in units of kB; thus the actual functions plott ed are a constant plus In(EA ) 3N/2 and In(Eto t - EA ) 3N/2 , respect ively. The
dashed line shows the sum of these curves (total system entro py plus a constant); it's maximal when the subsystems share
the energy equally. (b) Probability dist ribution cor respo nd ing to the dashed curve in (a) (low, wide curve), and similar
distributions with N = 300 and 7000 molecules on each side. Compare with the related behavior seen in Figure 4.3 on
page 113.

functi ons won't be th e simple one we found for an ideal gas. We do know, however,
that the tot al entropy 5tot will have a big, sharp, maximum at one value of EA , be
cause it's th e sum of a very rapidly increasing function of EA (namely, SA (EA ) ) plus
a very rapidly decreasing function ' (namely, SH(E!o! - EA ) ) , as shown in Figure 6.2.
The maximu m occurs when dStot/dEA = O.

The previou s paragraph suggests that we define temperature abstractly as the
quant ity that com es to equal values when two subsystems exchanging energy come
to equilibri um. To implemen t this idea, let the qu ant ity T for any system be defined
by

fundament al definition of temperature (6.9)

'This argument also assumes that bot h of these functions are concave-d own, or d2SjdE2 < O. This con
d ition certainly holds in our ideal gas example; and according to Equation 6.9, it expresses the fact that
putt ing more energy into a (normal) system raises its temperature.
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a. Verify that the dimensions work in Equ ation 6.9.

b. For the special case of an idea l gas, use the Sakur- Tetrode formula to verify
that the temperature really is (3kB/ 2) times the average kine tic energy, as
required by Idea 3.21.

c. Show that, quite gene rally, the condition for maximum entropy in the situ
atia n sketched in Figure 6. 1 is

(6.10)

Your
Turn

68

Suppose that we duplicate a system (consider two discon nected, isolated boxes,
each with N molecules and each with total energy E). Show that then the en
tropy do ubles but T. defined by applying Equation 6.9 to the combined system,
stays the same. Th at is, find the chan ge in S tot when we add a small amo unt dE
of add itional energy to the co mbined system . It may seem tha t one needs to
know how dE got divided between the two boxes; show that, on the contrary,
it doesn't ma tter, [Hinr: Use a Taylor series expansion to express SeE+ dE) in
terms of SeE) plus a correction. ]

We say that S is an extensive quantity (it doubles when the system is doubled),
whereas T is intensive (it's unchanged when the system is doubled) .

Mo re precisely, the temperature of an iso lated macroscopic system can be de
fined once it has come to equilibrium; it is then a function of how much energy
the system has, namely, Equation 6.9. When two isolated macroscop ic systems are
brought into thermal contact, energy will flow until a new equilibrium is reached. In
the new equilibrium. there is no net flux of energy. and each subsystem has the same
value of T, at least up to small fluctuation s. (They won't have the same energy-a
coin held up against the Eiffel Tower has a lot less thermal ene rgy than the tower,
even tho ugh both come to the same tem perature.) As mentioned at the end of Sec
tion 6.3.1, the fluctuations will be negligible for macroscopic systems. Our result
bears a striking resemblance to something we learned long ago: Section 4.4 .2 on page
128showed how a difference in particledensities can drivea flux ofparticles, via Fick's
law (Equation 4.19).

Subdividing the freezing and boiling poin ts of water into 100 steps and agreeing
to call freezing "zero" gives the Celsius scale. Using the same step size, but starting
at abso lute zero, gives the Kelv in (or abso lute) scale. The freezing point of water lies
273 degrees above absolute zero, which we write as 273 K. We willoften evaluate OUf

results at the illustrative value T, = 295 K, which we will call "room temperature," .
Temperature is a subtle, new idea, not directly derived from anything you learned

in classical mechanics. In fact, a sufficiently simple system. like the Moon orbiting
Earth, has no useful concept of T; at any moment, it's in one particular state, so
we don't need a statistical description . In a complex system, in contrast. the entropy
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S, and hence T, involve all allowed microstates. Temp eratu re is a qualitatively new
property of a complex system not obviously contained in the microscopic laws of
collisions. Such properti es are called emergent (see Section 1.2.3).

IT2 1Section 6.3.2' on page 235 gives som e more details about temperature and en

rropy.

6.4 THE SECOND LAW

6.4.1 Entropy increases sponta neously when a constraint is removed

We can int erpr et the Zeroth Law as saying that a system with order initially (entropy
not maximal; energy separated in such a way tha t TA i' TB) will lose tha t order
(increase in entropy un til the temp eratu res match).

Actuall y, even before people knew how big mo lecules were, before peop le were
even quit e sure that molecules were real at all, they could still measure temperature
and energy. By the mid -n ineteenth century, Clausius and Kelvin had concluded that
a system in thermal equilibrium had a fundamental property 5 imp licitly defined by
Equation 6.9 and obeying a general law, now kno wn as the Second Law of thermo 
dynam icsr'

Whenever we release an internal constrain t on an isolated macro
scopic system in equilibrium, even tually the system comes to a new
equilibrium whose en tropy is at least as great as before.

(6.11)

It all sounds very mysterious when you present it from th e histo rical point of view;
people were confused for a long time about the mean ing of the quantity S, until
Ludwig Boltzmann explained that it reflects the disorder of a macroscopic system
in equilibrium, when all we have is limi ted, aggregate, knowledge of the state. The
Second Law states that, after enough tim e has passed to reestablish equilibrium, the
system will be spending as mu ch time in the newly available states as in th e old ones:
Disorder will have increased. Entropy is not conserved.

Notice that isolated means, in part icular, that the system's surro undings don't do
any mechanic al work on it, nor does it do any work on th em. Here's an example.

Example: Suppose that we have an insulated tank of gas with a partition down the
middle, N mo lecules on the left side, and non e on the right (Figure 6.3). Each side
has volum e V . At some time, a clockwork mechan ism suddenly opens th e partition
and the gas rearranges. What happ ens to the entropy?

Solution: Because the gas doesn't push on any mo ving part , the gas does no work;
because the tank is insulated, no thermal energy enters or leaves either. Hence , the
gas mole cules lose no kinetic energy. So, in Equation 6.6, nothing changes except the

"The First Lawwas just the conservat ion ofenergy, includ ing the therma l part (Section 1.1.2).
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Figure 6.3 : (Schematic.) Expansion of gas into vacuum.

factor V N
, and the change of entropy is

10.5 = kB [In (2V) N - In (V )N] = NkBIn 2,

which is always positive.

(6.12)

Th e corres ponding increase in disorder after the gas expands, 10. [, is (Kj kB)Io.S, where
K = 1j (ln 2). Substitut ion gives 10.[ = N bits. That makes sense: Before the change,
we knew wh ich side each mo lecule was on, whereas afterward, we have lost that
knowledge. To specify the state to the previous degree of accuracy, we'd need to spec
ify an additional N binary digits. Chapter I already made a similar argum ent , in the
discussion leading up to the maximum osmotic work (Equation 1.7 on page 15).

Would this change ever spo ntaneously happen in reverse? Would we ever look
again and find all N molecules on the left side? Well, in principle, yes; but, in pra ct ice,
no : We wou ld have to wait an imp pssibly long tim e for such an unli kely accident .'
Entropy increased spontaneously whim we sudden ly released a constraint, arriving at
a new equilibrium state. We forfeited some order when we allowed an un controlled
expansion; and in practice, it won' t ever come back on its own. To get it back, we'd
have to compress th e gas with a piston . Compression requ ires us to do mechan ical
work on the system, there by heating it up. To retu rn the gas to its original state. we'd
then have to coo l it (remove some thermal energy). In other words,

Th e cost of recreating order is that we must degrade some organized
energy into the rma l form,

another conclusion foreshadowed in Chapter 1 (see Section 1.2.2 on page 12).
~

(6.13)

' How unlikely is it? A mole occupies 22 L at atmospheric pressure and room temperature. If V

I L, then the chance that any observation will see all the gas on one side is UV / v(molc
V

/22L ~
I 0- 8 240 000 000 000 000000 000 •
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Figure 6 .4: (Schematics.) Com pression of gas by a spring. (a) Thermally isolated system. The direction of increasing 8
is to the left. (b) Subsystem in contact with a heat reservoir. at temperature T. The slab on the bottom of (b) conducts
heat, whereas the other walls around the box are thermally insulating. In each case, the chamber o n the righ t (wi th the
spring) con tains no gas; only the spring opposes gas pressure from the left side.

Thus the entropy goes up as a system comes to equilibrium. If we fail to harness
the escaping gas (as in Figure 6.3), its initialorder is lost, as in the parable of the rock
falling into mud (Section 1.1.1): We just forfeited knowledge about the system. But
now suppose that we do harness an expanding gas. We therefore modify the situation
in Figure 6.3, this time forcing the gas to do work as it expands.

Again we consider an isolated system, but this time with a sliding piston
(Figure 6.4a). The left side of the cylinder contains N gas molecules, initially at
temperature T. The right side is empty except for a steel spring. When the piston is
at L, the spring exerts a force f directed to the left. Suppose that initia lly we clamp
the piston to a certain position x = L and let the gas come to equilibrium.

Example:

a. Now we unclamp the piston, let it slide freely to a nearby position L - 8, clamp
it there, and again let the system come to equilibrium. Here 8 is much smaller
than L. Find the difference between the entropy of the new state and that of the
old one.

b. Suppose we unclamp the piston and let it go where it likes. Its position will then
wander thermally, but it's most likely to be found in a certain position Leq. Find
this position.

Solution:

a. Suppose. for concreteness, that 8 is small and positive, as drawn in Figure 6.4a.
The gas molecules initi ally have total kinetic energy Ek;o = ~ kBT. The total sys
tem energy Etoe equals the sum of E kin and the potential energy stored in the
spring, Espring. (By definition, in an ideal gas, the molecules' potential energy
can be neglected; see Section 3.2.1 on page 78.) The system is isolated, so Etot
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doesn't change. Th us th e potential energy [ 8 lost by the spr ing increases the ki
netic energy Ekin of the gas molecu les, thereby increasing the temperature and en
tropy of the gas slightly. At the same time, the loss ofvolume!'>.V = - AS decreases
the entropy.

We wish to compute the change in the gas's entropy, using the Sakur- Tetrode
formula (Equation 6.6). Note that !'>. In V = (!'>. V)/ V and similarly, !'>. In Eli" =
(!'>.Eli")/ EIU". The se ident ities give the net entro py change as

(
..IN/ 2 N ) 3 N N

!'>.S/ kB = !'>. In "'"" + In V = - - !'>.Eli" + - !'>. V.
2 Ekin V

Replace Eli"/N in the first term by ~ kB T. Next use !'>.El i" = [8 and !'>. V =
- 8/ (LV) to find !'>.S/ kB = «3/ 2)[ (3kBT/ 2) -1 - N / L)8, or

1 ( N kB T )!'>.S = T [- - L- 8.

b. The Statistical Postu late says that every microstate is equally probable. lust as in
Section 6.3.1, however. there willbe far more microstates with L clo se to the value
L,q maximizing th e entropy than for any other value of L (recall Figure 6.2). To
find Leq , set AS = 0 in the preceding formula, which yields [ = N kBT/ Leq, or
L,q = NkBT/[.

Dividin g the force by the area of th e piston yields the pressure in equ ilibr ium, p =
[ /A = NkBT/(AL) = NkBT/ V. We have just recovered the ideal gas law, this time
as a consequence of the Second Law: If N is large, th en our isolated system will be
overwhelmingly likely to have its piston in the location maximizing the entropy. We
can characterize this state as the one in which the spring is compressed to the point
where it exerts a mechanical force just balancing the ideal-gas pressure.

6.4.2 Three remarks

Some remar ks and caveats about the Statistical Postu late (Idea 6.4 ) are in order before
we proceed:

1. The one-way increase in entropy implies a fundament al irreversibility to physical
processes. Where did the irreversibil ity come from ? Each molecular collis ion co uld
equally well have happened in reverse. The origin of the irreversibility is not in
the microscopic equatio ns o f co llisions. but in the choice of a highly specialized
initial state. The instant after the partition is opened, suddenly a huge number
of new allowed states open up , and the previ ously allowed states are suddenly
a tiny minority of tho se now allowed. There is no analogous work-free way to
suddenly forbid those new states . For example, in Figure 6.3, we'd have to push
the gas molecules to get them back into the left side once we let them out. (In
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principle, we could just wait for them all to be there by a spontaneous statistical
fluctuation, but we have already seen that this would be a very long wait.)

Maxwell himself tried to imagine a tiny "demon" who could open the door
when he saw a mo lecule com ing from the right but shut it when he saw one com 
ing from the left. It doesn't work; upon closer inspection, one always finds that any
physically realizable demon of this type requires an external energy supply (and a
heat sink) after all.

2. The formu la for the entropy of an ideal gas, Equation 6.6, appl ies equally to a
dilute solution of N molecules of solute in some other solvent. Thus, for instance,
Equation 6.12 gives the entropy of mixin g when equal volumes of pure water and
dilute sugar solut ion mix. Chapter 7 will pick up this theme again and app ly it to
osmotic flow.

3. The Statistical Postulate claims that the entropy of an isolated, macroscopic system
must not decrease. Nothing of the sort can be said about individual mo lecules,
which are neither isolated (they exchange energy with their neighbo rs) nor macro
scopic. Indeed, individual mo lecules can certainly fluctuate into special states. For
example, we already know that any given air mo lecule in the room will often have
energy three times its mean value, because the exponential factor in the velocity
distribution (Equation 3.25 on page 84) is not very small when E = 3 x ~ kB T, .

IT2 [Section 6.4.2' on page 236 touches on the question of why entropy shou ld in
crease.

6.5 OPEN SYSTEMS -:
Point (3) in Section 6.4.2 will prove very important for us. At first, it may seem like
a discouraging remark: If individual mo lecules don't necessarily tend always toward
greater disorder, and if we want to study individual molecules, then what was the
point of formulatin g the Second Law? This section will begin to answer this question
by find ing a form of the Second Law that is useful when dealing with a small system,
which we'll call a, in therma l contact with a big one, called B. We'll call system a open
to emphasize the distinction from d osed (that is, isolated) systems. For the moment,
we continue to suppose that it is macroscopic. Section 6.6 will then generalize ou r re
sult to handle the case of microscopic , even single-molecule, subsystems. (Chapter 8
will generalize still further, to consider systems free to exchange molecules, as well as
energy, with each other.)

6.5.1 The free energy of a subsystem reflects the competition
between entropy and energy

Fixed-volume case Let's return to our gas+piston system (see Figure 6.4b ). We'll re
fer to the subsystem including the gas and the spring as a. As shown in the figure,
a can undergo internal motions, but its total volume as seen from outside does not
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change. In contrast to the gas expansion Example (page 208), this time we'll assume
that a is not thermally isolated, but rather rests on a huge block of steel at temper
ature T (Figure 604b). The block of steel (system B) is so big that its temperature is
practically unaffected by whatever happens in our small system: We say it's a therm al
reservoir. The combined system, a + B, is still isolated from the rest of the world.

Thus, after we release the piston and let the system come hack to equilibrium,
the temperature of the gas in the cylinder will not rise, as it did in the gas expansion
Example, but will instead stay fixed at T, by the Zeroth Law. Even though all the po
tential energy lost by the spring went to raise the kinetic energy of the gas molecules
temporarily, in the end, this energy was lost to the reservoir. Thus, Ekin remains fixed
at ~NkB T, whereas the total energy E, = Ekin + Espring goes down when the spring
expands.

Reviewing the algebra shows that this time, the change in entropy for system a is
just tlS, = -~~. Requiring that this expression be positive would imply that the
piston always moves to the right-but that's absurd. If the spring exerts more force
per area than the gas pressure, the piston will surely move left, thereby reducing the
entropy of subsystem A. Something seems to be wrong.

Actually, we have already met a similar prob lem in Section 1.2.2 on page 12, in
the context of reverse osmosis. The point is that we haveso farlooked onlyat the sub
system'sentropy, whereas the quantity that must increase is the wholeworld's entropy.
We can get the entropy change of system B from its temperature and Equation 6.9:
T(tlS.) = tlE. = -tlE, . Thu s the quantity that must be positive in any sponta
neous change ofstate is not T(tlS, ) but T(tlS<o,) = - tl E,+ T(tlS, ). Rephrasing this
result, we find that the Second Law has a simple generalization to deal with systems
that are not isolated:

If we bring a small system a in to thermal contact with a big system
B in equilibrium at temperature T , then B will stay in equilibrium at
the same temperature (a is too small to affect it), but a will come to a
new equilibrium, which minim izes the quantity Fa sa Ea - TSa.

(6.14)

Thus the piston finds its equilibrium position, and is therefore no longer in a position
to do mechanical work for us, once its free energy is minimum. The minimum is
the point where Fa is stationary under small changes of L; or, in other words, when
tlF, = O.

The quantit y F, appearin g in Idea 6.14 is called the Helmholtz free energy of
subsystem a. Idea 6.14 explains the name "free"energy: When Fa is minimum, then a
is in equilibrium and won't change any more. Even though the mean energy (Ea ) isn't
zero, nevertheless a won't do any more useful work for us. At this point, the system
isn't driving to any state of lower Fa and can't be harnessed to do anythi ng useful
along the way.

A system whose free energy is not at its minimum is poised to do mechanical or
other useful work. This compact principle is just a precise form of what was antici
pated in Chapter I, which argued that the useful energy is the total energy reduced
by some measure of disorder. Indeed, Idea 6.14 establishes Equation 104 and Idea 1.5
on page 9.
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Your
Turn

6C

Apply Idea 6.14 to the system in Figure 6.4b, find the equilibrium location of
the piston, and explain why that's the right answer.

The virtue of the free energy is that it focuses all O U f attention on the subsystem of
interest to us. The surrounding system B enters only in a generic, anonymous way.
through onenumber, its tem perature T.

Fixed-pressure case Another way in which a can interact with its surroundings is by
expanding its volume at the expense o f B. We can incorporate this possibility while
still formulating the Second Lawsolely in terms of a.

Imagin e that the two subsystems have volumes V, and VB, constrained by a fixed
total volume: V, + VB = V io l ' First, we again define temperature by Equation 6.9,
specify ing now that the derivative is to be taken at fixed volume. Next we defin e pres
sure in analogy with Equation 6.9: A closed system has

(6.15)

Your
Turn

60

where the notation means that the derivative is to be taken holding E fixed. (Through
out this chap ter, N is also fixed.)

The factor ofT may look peculiar,but it makes sense:Show that the dimensions
of Equation 6.15 work . Then use the Sakur- Tetrcde formula (Equation 6.6) to
show that Equation 6. 15 does give the pressure of an ideal gas.

Supp ose that system B has pressure p, which doesn't change muc h as a grows or
shrinks because B is so much bigger. Then, by an argument like the on e leading to
Idea 6.14, we can rephrase the Second Law to read: If we bring a small system a into
thermal and mechanical contact with a big system B, then B will stay in equilibrium at
its original temperature T and pressure P. but a will come to a new equilibrium, which
minimizes

G, es E, + PV, - TS, . Gibbs free energy (6.16)

Just as T measures the availability ofenergy from B, so we can thin k of pas measuring
the unwillingn ess of B to give up some volume to a.

The quantity H, == E, + PV, is called the entha lpy ofa. We can readily interpret
its second term. If a change of a causes it to grow at the expense of B, then a must do
some mechanical work, p(Cl Va), to push aside the bigger system and make roo m for
the change. Thi s work will part ially offset any favorable (negative) {).E,.
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Chemists often study reactions in which one reactantentersor leaves a gas phase,
with a big ti.V, so the distinction between F and G is a significant one. In the chapters
to follow, however, we wo n't worry abo ut this distinction; we'll use the abbreviated
term "free energy" without specifying which one is meant. (Similarly, we won't dis
tinguish carefully between energy and enthalpy.)fThe reactions of interest to us occur
in water solution, where the volume does oo f c~ange much when the reaction takes
one step (see Problem 8.4), and hence the difference between F and G is practically
a constant. which drops out of before-and-after comparisons. Chapter 8 will use the
traditional symbol c C to denote the change in free energy when a chemical reaction
takes one step.

6.5.2 Entropic forces can be expressed as derivatives of the free energy

A system can also be open if an external mechanical force acts on it. For example,
suppose that we eliminate the spring from Figure 6.4b, replacing it by a rod that sticks
out of the thermal insulation and that we push with force f ext. Then the free energy
of subsystem a is a constant (including Ekin) minus TSa. . Dropping the constant gives
F, = - N kBTln V = - N kBTl n(LA).

The cond ition for equilibri um cann ot be simply dF, / dL = 0, because this condi
tion holds only at L = 00. But it's easy to find the right condi tion, just by rearranging
your result in YourTurn 6C. Our system will have the same equilibrium as the one in
Figure 6.4b; it doesn't matter whether the applied force is internal or external. Thus
we find that in equilibrium,

dF"t, = - dL" . entropic force as a derivative of F (6.17)

In this formula fa = - f exl is the force exerted by subsystem a on the externalworld,
in the direction of increasing L.Wealready knew that the subsystem tends to lower its
free energy; Equation 6.17 makes precise how hard it's willing to push. Equa tion 6.17
has intentionally been written to emphasize its similarity to the corresponding for
mula from ordinary mechan ics, f = - d U/ dL.

Now we can also find the work that our subsystem can do against a load. We see
that the subsystem will spontaneously expand, even if expansion requires opposing
an externa l load, as long as the oppo sing force is less th an th e value in Equation 6.17.
To get the maxim um possible wor k, we should continuously adjust the load force to
be always just slightly less than the maximum force the system can exert. Integrating
Equation 6.17 over L gives a sharpened form ofldea 6.14:

If a subsystem is in a state ofgreater than minimum free energy, it can
do work on an external load. The maximum possible work we can
extract is F a - F a. m in .

(6.18)
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Gilbertsays: By the way,where did the work come from? The internal energy of the
gas molecules didn 't change, because T didn 't change.

Sullivan: That's right: The cylinder has drawn thermal energy from the reservoir
(system B) and conve rted it into mechan ical wo rk.

Gi/bert: Doesn't that violate the Second Law?

Suliivan: No, our system sacrificed some order by letting the gas expand. After the
c;' expan sio n. we don 't know as precisely as before where the gas molecule s are located.

Something-order-did get used up, just as foreshadowed in Chapter I (see Sec
tion 1.2.2). The concept of free energy makes this intu ition precise.

In a nutshell.

The cost of upgrading energy from thermal to m echanical form is that
we mu st give up order.

This stateme nt is just the obverse of the sloga n given in Idea 6. 13.

(6.19)

6.5.3 Free energy transduction is most eff icient wh en it proceeds
in small, controlled steps

Idea 6.18 tells us about the maximum work we can get from a small subsystem in
contact with a thermal reservoir. To extract this maximum wo rk, we must co ntinu
ously adjust the load force to be just slightly less than the force the system can exert.
This procedure is generally not practical. We should explore what will happen if we
maintain a load that is somewhere between zero (free expan sion, Figure 6.3 ) and the
maximum. Also, most familiar engines repeat a cycle ove r and over. Let's construct
such an eng ine in our minds and see how it fits into the framewo rk of o ur ideas.

Let subsystem a be a cylinder of gas with a piston ofarea A at on e end, held down
by weights W I and Wz. The initial, equilibrium pressure in the cylinder is the force per
un it area: Pi = ( WI + w, )/A (Figure 6.5). (For simplicity, suppose that there's no
air out side; also, take the weight of the piston itself to be zero.) The cylinde r is in
thermal cont act with a reservoir B at fixed tem perature T. Suddenly remove weight
Wz from the piston (slide it o ff sideways so that this action doesn't require any work ).
The piston pops up from its initial height Li with its final height L" measured from
the bo ttom , and the pressure goes down to pc= WI/A.

Example: Find the change in the free energy of the gas, {J, F,,, and compare it with
the mec hanica l work do ne in lifting weig ht WI _

Solution: The final temperature is the same as the initial, so the total kinetic energy
Ekin = ~NkBT of the gas doesn't change during this process. Th e pressure in the
outside wo rld was assumed to be zero. So all that changes in the free ene rgy is - TSJ •

The Sakur-Tetrode formula gives the change as

Lr
{J,F, = - N kll Tln - .

L;
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area A

subsyst em a

Figure 6.5 : (Schematic.) Extracting mechanical work by lifting a weight. After we remove
weight "'2. the cylinder rises, lifting weight W I . A large thermal reservoir (subsystem B) main
tains the cylinder at a fixed temperature T.

The ideal gas law now gives the final-state pressure as prLr = NkBT/A , where Pr =
wI!A. Let X = (Lr - Li) / Lr, so X lies between 0 and I. Then the mechanic al work
don e in raising weight w, is WI (Lr - Li) = NkBTX, whereas the free energy changes
by It-FI = - NkBTln(1 - X) . But X < - In(1 - X) when X lies between 0 and I, so
the work is less tha n the free energy change.

One coul d do something useful with the mechanica l work done lifting W I by sliding it
off the piston, lett ing it fall back to its original height Li' and harnessing the released
mechanic al energy to grind coffee or whatever. As predicted by Idea 6.18, we can
never get more useful mechan ical work out of the subsystem than j.6. F;II .

What could we do to op tim ize the efficiency of the process, that is, to get out all
the excess free energy as work? The ratio of work don e to It-F,I equals -X/(ln(l 
X».This expression is maximum for very small X, that is. for small W2 _ In other
word s. we get the best efficiency when we release the constraint ;11 (i"y. controlled incre
ments-a quasistatic process .

We could ge t back to the original state by moving o ur gas cylinder into co ntact
with a different thermal reservoir at a lower temperature T'. Th e gas cools and shrinks
until the piston is back at position Lj. Now we slide the weights back onto it, switch
it back to the original, hotter, reservoir (at T ), and we're ready to repeat the who le
process ad infinit um .

We have just invented a cyclic heat engine. Every cycle con verts some thermal
energy into mechanical form . Every cycle also saps some of the wor ld's order, trans
ferring thermal energy from the hotter reservo ir to the colder one, and tending ulti
mately to equalize them . Figure 6.6 summarizes these wo rds.
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heat (at lower temperature)

mechanica l work heat (at higher temperature)

(6.20)

, Your
Turn

6£

Figure 6.6 : (Diagram.) Operating cycle of a heatengine.

That's amusing, but . . . biological motors are not cylinders of ideal gas. Nor are
they driven by tempe rature gradients. Your body do esn't have a firebox at one end
and a cooling tower at the other, like the electri c company's generating plant. So
Chapter 10 will turn away from heat engines to motors run by chemical ene rgy. O U f

effort has not been wasted, thou gh. The valuable lesson we learned in this section is
based on the Second Law, so it is quite general:

Free energy transd uction is least efficient when it proceeds by the un
controlled release ofa big constraint . It's m ost efficient when it pro
ceeds by the increm ental, con trolled release ofm any sm all constraints.

,/
Why do you suppose your bod y is full of molecular-size moto rs, taking tilly,
steps? Why do you th ink the electri c company only succeeds in captur ing a
third of the energy content in coal, wasting the rest as heat?

6.5.4 The biosphere as a thermal engine

The abstract definition of temperature (Equation 6.9) gives us a way to clarify the
"quality ofenergy" concept alluded to in Chapter I. Consider again an isolated system
with two subsystems (Figure 6.1). Suppose that a large, nearly equilibrium system A
transfers energy LlE to system B, whic h need no t be in equilibrium . Then A lowers
its entropy by ~SA = -~E/TA ' According to the First Law, this transaction raises
the energy of B by ~E. The Second Law says that it mu st also raise the entropy of B
by at least I ~SA I because ~SA + ~SB ::: O.

To give B the greatest possible energy per unit of en tropy increase, we need
~E/~SB to be large. We just argued that this quant ity canno t exceed ~E/ I ~SA I. Be
cause the last expression equals TA , our requirement implies that TA must be large:
High-quality energy comes from a high-temperature body.

More precisely, it's not the temp erature but the fractional temperature difference
straddled by a heat eng ine that determines its maxim um possible efficiency. We can
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see this poin t in the context of the heat engine Example (page 214) and the foliowing
text . O U f strategy for extrac ting work from this system assume d that the first reservoir
was hotter than the second, or T > T'. Let's see why this assum ption was necess ary.

The engine did work Won its power stroke (the left-pointing arrow in Fig
ure 6.6). It doesn't change at all in one comp lete cycle. But it released a quantity
of thermal energy Q into the cooler reservoir during the contraction step, thereby
increasing the entro py of the outside world by at least Q/T. Some of this entropy
increase is compensated in the next step, where we raise the temp erature back up to
T : In this process, an amount of thermal energy equal to Q + W flows out of the
hott er reservoir, thereby reducing the entropy of the outside world by (Q + W)/ T.
The net change in world entropy is then

(1 1) W
I'>5to , = Q T' - T - Y' (6.21)

Because this quantity mu st be positive, we see that we can get useful wo rk out (that
is, W > 0) only if T < T. In other wo rds, The temperature difference is what drives
the motor.

A perfect heat engine would convert all the input thermal energy to work, ex
hausting no heat. At first this may seem impossible: Sett ing Q = 0 in Equation 6.21
seems to give a decrease in the world's entropy! A closer look, however, shows us an
other option . If the second reservoir is close to absolute zero temp erature, T' ~ 0,
then we can get near-perfect efficiency, Q ~ 0, without violating the Second Law.
More generally,a big temperature difference, T/ T', permits high efficiency.

We can now apply the intu ition gleaned from heat engines to the biosphere. The
Sun's surface consists ofa lot of hydrogen atoms in near-equilibrium at abo ut 5600 K.
It's not perfect equilibrium because the Sun is leaking energy into space, but the rate
of leakage, inconceivably large as it is, is still small compared to the total. Thus we
may think of the Sun as a nearly closed thermal system , connected to the rest of the
Universe by a narrow channel, like system A in Figure 6. 1 on page 202.

A singie chioro plast in a cell can be regarded as occupying a tiny fraction of the
Sun's output channel and joining it to a second system B (the rest of the plant in
which it's embe dded) , which is at room temperature. The discussion above suggests
that the chloroplast can be regarded as a machin e that can extract useful energy from
the incident sunlight using the large difference between 5600 K and 295 K. Instead
of doin g mechanical work, however, the chloroplast creates the high-energy mole
cule ATP (Chapter 2) from lower-energy precursor molecules. The details of how the
chloroplast captures energy involve quantum mechanics, and so are beyond the scope
of this book. But the basic thermodynamic argu ment does show us the possibility of
its doin g so.

6.6 MICROSCOPIC SYSTEMS

Much of our analysis so far has been in the familiar context of macroscopic systems.
Such systems have the comforting property that their statistical character is hidden:
Statistical fluctuations are small (see Figure 6.2 on page 204), so their gross behavior
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appears to be deterministic. We invoked this idea each time we said that a certain
configuration was "overwhelmingly mo re probable" than any other, for example, in
the discussion of the Zeroth Law (Section 6.3.2).

But as mentioned earlier,we also want to understand the behavior of single mol
ecules. This task is not as hop eless as it may seem: We are becoming familiar with
situations in which individual actors are behaving randomly and yet a clear pattern
emerges statistically. We just need to replace the idea of a definite state by the idea of
a definite probability distribution of states.

6.6.1 The Boltzmann d istrib ution follows from the Statist ica l Postu late

The Boltzmann distribution The key insight needed to get a simple result is that any
single molecule of interest (for example, a mo lecular motor in a cell) is in contact with
a macroscopic thermal reservoir (the rest of your body). Thus we want to study the
generic situation shown in Figure 6.7. The figure shows a tiny subsystem in contact
with a large reservoir at temp erature T. Although the statistical fluctuations in the
ener gies of a and B are equal and opposite, they're negligible for B but significant
for a. We would like to find th e probability distribution for the various allowed states
of a.

The number of states available to B depends on its energy via Q B(EB) =
eS,(E, l lkB (Equation 6.5). The energy Ea , in turn, depends on the state of a by
energy conservation: En = Eto ! - Ea. Thus the numb er of joint microstates where
a is in a particular state and B is in any allowed state depends on Ea : It equals
QB(E,o' - E, ).

The Statistical Postul ate says th at all allowed micros tates of the joint syste,!, have
the same probability; call it Po. The addition ru le for probabilities then implies that
th e probability of a being in a parti cular state, regard less of what B is doin g,' equals
Qn(Etot - Ea)Po, or in other words, it is a constant times e SB(Etot-Ea) /kBT . We can
simplify thi s result by noti ng that E, is mu ch smaller than E,o' (because a is small),

a

:c.:tf <::::>. C?
CJ

I3

" 0 0 0

0 0 0

0 0 0
0

0 0 0

0
0

0
0

0 0 0
0

0
0

0
0

0 0 0 0
0 0 0 0

o 0
o 0 0

o

).,.~",,"=:""~~~~.,1~G
0<:;:>. Ol)~

Figure 6.7: (Schematic.) A small subsystem a is in thermal contact with a large system B.
Subsystem a may be microscopic, but B is macroscopic. The total system a+B is thermally
isolated from the rest of the world.
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and by expanding

dSB
SB(E. ) = SB(E,o' - E,) = SB(E,o' ) - E' -d + .. . .

E.

Th e dots refer to higher powers of the tiny quant ity E" which we may neglect. Using
th e fundam ental defini tion of temperatu re (Equation 6.9) now gives the probability
of observing a in a particular state as eSB (El0t>/ kB e-( E~ /nl kB po)or

The probability for the sm all system to be in a state with energy E, is
a normalization constant times e - Ea/ kBT , where T is the temperature
of the surrounding big system and kB is the Boltzm ann cons tant.

We have just fou nd the Boltzmann distribution , establishing the proposal made in
Cha pter 3 (see Section 3.2.3 on page 83).

What makes Idea 6.23 so powerfu l is that it hardly depends at all on the character
of the surrounding big system: The properties of system Benter via only one number,
its temperature T. We can think of T as the "availability of energy from B": When
it's big, system a is more likely to be in on e of its higher-energy states, because then
e- E,,/ kBT decreases slowly as E", increases.

Two-state systems Here's an immediate example. Suppose that the small system has
only two allowed states.S , and 52, and that th eir energies differ by an amo unt ilE =
E, - E,. The prob abilities of being in th ese states must obey bo th 1', +1', = 1 and

PI e-EI /k BT
= = edE/k BT.

P2 e- IE1 + d E)/ ksT

Solving gives

(simple two-state system) (6.24)

(6.25)

Your
Turn

6F

I
1', = P, = --=~1+e- d E/ kBT' 1 + e d E/ kBT ·

That makes sense: When the upper state 5, is far away in energy ( ilE is large), the
system is hardly ever excited: It's almost always in the lower state 51. How far is "far"?
It depends on the temperature. At high eno ugh temperatur e, ilE will be negligible,
and P, "" P, "" 4.A~"the temperature falls below ilE( kB, however, the d istributi on
(Equat ion 6.25) cha nges to favor state 5, .

Here is a more involved example:

Suppose a is a sma ll ball tied elastically to some point and free to move in one
dime nsion on ly. The ball's microstate is described by its position x and velocity
v. Its tot al ene rgy is E, (x, v) = 4(mv2 + kx2) , where k is a spring con stant .

a. From the Boltzmann distribution, find the average energy (Ea) as a function
of temperat ure. [Hint: Use Equation 3.7 on page 73 and Equation 3.14 on
page 75.1

b. Now try it for a ball free to move in three dimension s.
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state 82 state 81

Figure 6.8: (Metaphor.) Where the buffalo hop. [Cartoon by Larry Gonick.]

Your result has a name, the equipartition of energy. The name reminds us that
energy is being equally partitioned among all the places it could go. Bot h kinetic
and potential forms of energy participate.
I '12 1Section 6.6.1' on page 236 makes some connections to quantum mechanics.

6.6.2 Kinetic interpretation of the Boltzmann distribution (

Imagine yourself having just stampeded a herd of buffalo to a cliff. There they are,
grunting, jostling, crowded. But there's a small rise before the cliff (Figure 6.8). This
barrier corrals the buffalo, althou gh from time to time one falls over the cliff.

If the cliff is ten meters high, then certainly no buffalo will ever make the trip
in the reverse direction . If it's only half a meter high, then they'll occasionally hop
back up, altho ugh not as easily as they hop down. In the second case, we'll eventually
find an equilibrium distribution of buffalo, some up but most down. Let's make these
ideas precise.

Let ~EI_2 be the change"in gravitational potential energy between the two sta
ble states; abbreviate it as /lE. The key observation is that thermal equilibrium is
not a static state; rather, it'sa situation where the backward flow equals-and hence
cancels- the forward flow," To calculate the flow rates, notice that there's an activa
tion barrier L'. EI for falling over the cliff, namely, the gravitational potential energy
change needed to move a buffalo up over the barrier. The corresponding energy
L'. P + L'.E in the reverse direction reflects the total height of both the small rise
and the cliff itself.

"Compare our discussion of the Nernsl relation (Section 4.6.3 o n page 139) or sedimentation equilibrium
(Section 5.1 o n page 158).



6.6 Microscopic systems 221

As for bu ffalo, so for molecules. Here we have the adva ntage of knowing how
rates depend on barriers, from Section 3.2.4 on page 86. We imagin e a population of
molecules, each of which can spo ntaneously flip (or isomeri ze) between two config
urat ion s. We'll call the states 5, and 5, and denote the situa tion by the shorthand

(6.26)

The symbols k+ and k: in th is formula are called the forward and backward rate
constants, respectively; we define them as follows.

Initially, there areN2 molecules in the higher-energy state 52and N 1 in the lower
energy state 51 - In a short interval of time d t , the probability that any given molecule
in state 5, will flip to 5, is proportiona l to dt ; call th is probability k+dt. Section 3.2.4

argued that the probability per time k.; is a constant C times e -IlE*' /k BT. so the aver
age number of co nversions per unit tim e is N2k+ = CN2e- t:.E'*j ksT . The co nstant C
roughly reflects ho w often each molecule collid es with a neighbor.

Similarly, the average rate o f co nversion in the oppos ite direction is N1k_ =
CNJe - (6 E*+ .6.E)/ kBT . Requiring that the two rates be equal (no net conversio n) then

gives that the equ ilibr ium populations are related by

N IN - e- 6E / k8Tz.eq Leq - • (6.27)

which is ju st what we found for P,fP, in Section 6.6. 1 (Equation 6.24). Becau se both
isomers live in the same test tube, and so are spread through the same volume, we can
also say that the ratio of their number densities, cdc" is given by the same formula.

We began wit h an idea about the kine tics of mo lecular hop ping between two
states, then found in the special case of equilibrium that the relative occupancy of
the state is just wha t the Boltzmann distribution predicts. The argument is like the
observation at the end of Section 4.6.3 , where we saw that diffusion to equilibrium
ends up with the concentration profi le expected from the Boltzmann distribution .
Our formulas ho ld togeth er con sistently.

We can extracta testable prediction from this kinetic analysis. Ifwe watch asingle
two -state mol ecul e sw itching states, we should see it hop ping with two rate con stants
k; and L . If, moreover, we have some prior knowledge of how [). E depends on im
posed con diti on s. then the pred iction is that k+/ k: = eI1El kBT . Sectio n 6.7 will de
scribe how such predictions can be confirmed directly in the laborato ry.

No tice a key feature of the equilibrium distributi on: Equation 6.27 does not con
tain [). E* . All that malters is the energy difference l'. E of the two states. It may take
a lon g time to arrive at equilibrium if .6.£+ is big; but once the system is there, the
height of the barrier is immaterial. This result is analogous to the obs ervation at the
end ofSection 4.6.3 that the value of the diffusion constant D drops out ofthe Nerns t
redm on, f quatlo n 4.26 on page f4L

Suppose we begin with nonequilib rium populations of molecules in the two
states. Then the number N2(t ) in the upper state will change with time. at a net rate
given by the difference between the up and down rates just found; similar logic ap
plies to the number N ,(I) in th e lower state:
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N, "" dN ,fdt = - k+N , (t ) + LN, (t)

N, es dN ,/dt = k+N,(t) - LN,(t) .
(6.28)

The steps leading from Reaction 6.26 to Equations 6.28 were simple but important,
so we sho uld pause to summarize them:

Toget rate equations from a reaction scheme. we

• Examine the reaction diagram. Each node (state) of this diagram
leads to a differential equation for the number of molecules in the
corresponding state.

• For each node, find all the links (arrows) impinging on ir. The time
derivative of the number of this state, N, has a positive term for each
arrow pointing toward its node and a negative term for each arrow
pointing away from it.

(6.29)

Returning to Equations 6.28, note that the total num ber of molecules is fixed:
N, + N, = N!o!' So we can eliminate N,( t) everywhere, replacing it by N IO! - N, (t ).
when we do this, we see that one of the two equations is redun dant; either one gives

This equation is already familiar to us from the concentration decay Example
(page 136). Let N I.'" be the popu lation of the lower state in equilibrium. Be
cause equilibrium implies N, = 0, we get N,.,q = k+N IO! / (k+ + k_). Let x(t ) _
N ,(t) - N ,.,q be the deviation from equilibrium. Then (

relaxation to
chemical equilibrium

(6.30)

In other words, N, (I ) approaches its equilibrium value exponentially, with the decay
constant r = (k+ + L)-' . We again say that a nonequilibrium initial popu lation
"relaxes" expon entially to equil ibrium . To find how fast it relaxes, different iate Equa
tion 6.30: The rate at any time t is the deviation from equilibrium at that time, or
(N, (I) - N I.",) , times 1/r.

According to the discussion following Equation 6.26,
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Thus. unlike the equilibrium populations themselves, a reaction 's rate does depen d on
the bar rier llP, a key qualitative fact. Indeed, many important biochem ical reactions
proceed spontaneously at a negligible rate, because of their high activation barriers.
Chapter 10 willdiscuss how cells use mo lecular devices-enzymes-to facilitate such
reactions when and where they are desired .

Ano ther aspect of expo nential relaxation will prove useful later. Suppose that we
follow a single molecule, wh ich we observe to be in state S, initially. Eventually the
molecule will jump to state S2. Now we ask, how long does it stay in S2 before jumping
back? There is no single answer to this question- som etimes th is dwell time will be
short, other tim es long.t But we can say som eth ing definite about the probability
distribution of dwell tim es, P2_ ' (t ).

Example: Find this distribu t ion.

Solution: First imag ine a large collection of No mo lecu les, all sta rting in sta te 52. Th e
number N(t) surviving in this state after an elapsed time t obeys the equatio n

N(t + dt) = (I - k+dt)N(t), with N(O) = No.

The solut ion to this equation is N (t) = Noe- J.:.+t. Now use the multiplication rule
(Equation 3.15 on page 76): Th e pro bab ility of a mo lecule surviving till tim e t, and
then hopping in the next interval dt, is the product (N(t) /No) x (k+dt). Calling this
probabili ty P2_ , (t)d t gives

(6.3 I)

Notice that this distri bution is properly normalized: f o"" P2_ 1(t )dt = 1.

Similarly, the distrib ution of dwell times before hopping in the other direction is
P' _ 2(t) = k:e :":',

)~ 6.6.3 Th e mi nim um fre e e nergy pri n ciple a lso a pplies
to microscopic s ubsyste m s

Section 6.6.1 foun d the Boltzmann d istribution by requi ring that every microstate of
a combined system a + B be equa lly prob able, or in other words, that the entropy of
the total system be maxim um. Just as in our discussion of macroscop ic subsystems,
though (Section 6.5), it's better to cha racterize our result in a way that directs all our
attent ion onto the subsystem of in terest and away from the reservoir. For the case of
a macroscopic system a, Idea 6.14 on page 211 did this by introdu cing the free energy
F" = E" - TS", which depended on system B only thro ugh its temp erature. This
section will extend the result to a corresponding formu la for the case ofa microscopic
subsystem a.

In the microscopic case, the energy of a can have large relat ive fluctuations, so
it has no definite energy Ea. We must therefore first replace Ea by its average over all

"Some authors use the synonym waitinglime for dwell time.
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allowed state s of a, or (E, ) = L j PjEj . To define the entropy S" note that the Boltz
mann distribution assigns different probabilities P, to different states j of system a.
Accordingly, we mu st define the entropy of a using Shannon's formula (Equation 6.3
on page 197). This substitution gives S, = - kB L j Pj In Pj . A reasonable extension
of the macroscopic free energy formula is then

F, = (E,) - TS, . free energy of a molecular-scale subsystem (6.32)

Your
Turn

6G

Following the steps in Section 6.1 on page 196, show that the Boltzmann prob
ability dist ributi on is the one that minimizes the quan tity F, defined in Equa
tion 6.32.

Thus, if initially the subsystem has a probability distribution differing from the Boltz
mann formula (for example, just after releasing a constraint), it is out of equilibrium
and can, in principle, be harnessed to do useful work.

Example : What is the minimal value of F, ?Show that it's just -kBT in Z, where the
partition function Z is defined as

Z = L e- Ej / kRT .

j

partition function (6.33)

Solution: Use the probabil ity distribution you found in Your Turn 6G to evaluate the
minimum free energy:

F, = (E,) - TS,

= L r ' e- Ej /I ,TEj + kBT L r ' e- Ej / I , T In (Z - ' e- Ej / k, T)

j j

= L Z - ' e- Ej / k, TEj + kBT L Z - ' e- Ej / kBT (In (e- Ej / kBT) - InZ) .
j j

In the preceding formulas, the summation extends over all allowed states; if M al
lowed states all have the same value of Ej , then they contr ibute M e- Ej / k, T to the
sum. (We say that M is the degen eracy of that energy level.) The trick of evaluating
the free ene rgy by finding the partition function will prove useful when we work out
entropic forces in Chapters 7 and 9.
IT21Section 6.6.3 ' on page 237 makes some additional comments about free energy.
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6.6.4 The free energy determin es the popul ations
of complex two-state systems

The discussion of two-state systems in Sections 6.6.1 and 6.6.2 may seem too over
simplified to be useful for any real system. Surely the complex macromo lecules of
interest to biologists never literally have just two relevant states!

Suppose that subsystem a is itself a complex system with many states but that the
states may usefully be divided into two classes (or "ensembles of substa tes"), For ex
ample, the system may be a macromo lecule; states 5, . . ... SNI may be confor mat ions
with an overall "open" shape, and states SNI+ I, .. . ,SNI+Nu consti tute the "closed"
shape. We call N[ and Nil the mu ltiplicities of the open and closed conformations.

Consider first the special situation in which all the stat es in each class have the
same energy. Then P,/ Pn = (N,e-E,/k ,T)/(N ne-Enlk,T): In this special case, we just
weight the Boltzmann probabilities of the two classes by their respective degeneracies.

More genera lly, the probability to be in class I is P, = Z-l L7~, e- Ei l k, T, and
similarly for class II , where Z is the full pa rtition funct ion (Equation 6.33). Then the
rat io of probabilities is PI / Pn = ZI/Zn , where ZI is the part of the par tition function
from class I and so on.

Although the system is in equilibrium and hence visits all its available states,
nevertheless, many systems have the property that they spend a long time in on e
class of states, then hop to the other class and spend a long time there. In that case,
it makes sense to apply the definition of free energy (Equation 6.32) to each of the
classes separately. That is, we let Fa.1 = {f a)1 - TSa,h where the subscripts denote
quantities referr ing on ly to class I.

Adapt the result in the free energy form ula Example (page 224) to find that

(6.34)

where !::J..F es Fa•1 - Fs.n. Interp ret your result in the special case where all the
substates in each class have the same energy.

Your result says that our simple formula for the population of a two-state system
(Equation 6.24) also applies to a comp lex system, once we replace energy by free
energy."

Just as in Section 6.6.2, we can rephrase our result on equilibrium populations
as a statement abo ut the rates of hopping betwee n the two classes of substates:

complex two-state system (6.35)

(,~ You can generalize this discussion to the fixed-pressure case; the Gibbs free energy app ears in place

of F (see Section 6.6.3' o n page 237).
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6.7 EXCURSION : "RNA FOLDING AS A TWO-STATE SYSTEM "
BY 1. L1PHARDT, I. TINOCO, JR., AND C. BUSTAMANTE

Recently, we set out to explore the mechan ical properties of RNA, an important
biopolymer. In cells, RNA molecules store and transfer information , and catalyze
biochem ical reactions. We knew that numerous biological processes like cell division
and pro tein syn thesis depend on the ability of the cell to unfold RNA (as well as to
unfold proteins and DNA) and that such unfoldin g involves mechan ical forces, which '
one might be able to reproduce by using biophysical techniques. To investigate how
RNA might respond to mechani cal forces, we needed to find a way to grab the ends
of individual molecules of RNA. Then we wanted to pull on them and watch them
buckle, twist, and unfold under the effect of the applied externa l force.

We used an optical tweezer apparatus, which allows small objects, like poly
styrene beads with a diameter of '" 3 /l m, to be man ipu lated by using light (Fig
ure 6.9). Although the beads are tran sparent, they do bend incoming light rays,
transferr ing some of the light's momentum to each bead, which accordingly expe
riences a force. A pair of opp osed lasers. aim ed at a common focus, can thu s be used
to hold the beads in prescribed locations. Because the RNA is too small to be trap ped
by itself, we attached it to molecular "handles" made of DNA, which were chemi
cally modi fied to stick to specially prepared polystyrene beads (Figure 6.9, inset). As

lase r t rap

ac t uator /

~M !

t rap bead

actuator head

Figure 6 .9 : (Schematic.) Optical tweezer apparatus. A piezoelectric actuator contro ls the po
sition of the bottom bead. The top bead is captured in an optical t rap for med by two opposing
lasers. and the force exerted on the polymer connect ing the two beads is measured from the
change in momentum of light that exits the optical t rap. Molecules are stretched by moving
the bottom bead vertically. The end- to-end length of the molecule is ob tained as the difference
of the position of the bottom bead and the top bead. [m et: The RNA molecule of interest is
coupled to the two beads via DNA "han dles." The handles end in chemical gro ups tha t stick
to com plementary groups on the bead . The drawing is not to scale: Relative to the diameter of
' he beads ("" 3000 nm), 'he RNA is tiny ("" 20 nm). [Figure kindly supplied by ). Liphardt.]



6.7 Excursion: RNA folding as a two-state system 227

sketched in the inset, the RNA sequence we stud ied has the ability to fold back on
itself, thereby formi ng a "hairpin" structure (see Figure 2.16 on page 52).

When we pulled on the RNA via the handles, we saw the force initially increase
smoothly with extension (Figure 6.lOa, black curve), just as it did when we pulled
on the handl es alone: The DNA handles behaved much like a spring (a phenomenon
to be discussed in Chap ter 9). Then, suddenly, at f = 14.5 pN, there was a small
discontinui ty in the force-e xtension curve (points labeled a and b). The change in
length (Az '" 20 nm) of that event was consistent with the known length of the
part of the RNA that could form a hairpin. When we reduced the force, the hairpin
refolded and the handles contract ed. Different samples gave slightly different values
for the critical force, but in every case it was sharply defined.

To our surprise, the observed properties of the hairpin were entirely cons istent
with those of a two-state system. Even though the detailed energetics of RNA folding
are known to be rather complex, involving hydration effects. Watson-Crick base
pairing and charge shielding by ions, the overall behavior of the RNA hairpin under
external force was that of a system with just two allowed states, folded and unfolded.
We stretched and relaxed the RNA hairpin many times and then plotted the fraction
of folded hairpins versus force (Figure 6. lOb). As the force increased, the fraction
folded decreased, and that decrease could be fit to a model used to describe two-state
systems (Equation 6.34 and Figure 6. lOb, inset). Just as an externa l magnetic field can
be used to change the probability of an atomic magnet to point up ordown ," the work
don e by the externa l force (f l>z ) was apparently changi ng the free energy difference
6.F = Fopen - Fc10sed between the two states and thus controlling the probability
P(f) of the hairpin being folded. But if the l>F could be so easily ma nipulated by
changing the external force, it might be possible to watch a hairpin "hop" between
the two states if we tun ed the strength of the external force to the right critical value
(such that P(f) '" ~ ) and held it there by force-feedback.

Indeed, about one year after starting our RNA unfolding project , we were able
to observe this predicted behavior (Figure 6.lOc). After showing RNA hopping to
everyone who happened to be in the Berkeley physics building that night , we began to
investigate this process more closely to see how the application of increasing force tilts
the equilibrium of the 'i>y5tem towatd the \on ger, unfolded form of the molecul e. At
forces slightly below the critical force, the molecule stayed mostly in the sho rt folded
state except for brief excursions into the lon ger unfolded state (Figure 6. lOc, lower
curves). When the force was held at 14.I pN, the molecule spent roughly equal lim es
in either state (~ I s). Finally, at 14.6 pN, the effect was reversed:The hairpin spent
more time in the extended, unfolded form and less time in the short, folded form.
Thus, it is possible to control the thermodynamicsand kinetics of the folding reaction
in real time, simply by changing the external force. The only remaining question had
to do with the statistics of the hopping reaction . Was RNA hopp ing a simple process
characterized by a constant probability of hoppi ng per unit time at a given force?
It appears so: Histograms of the dwell times can be fit to simple exponentials (see
Figure 6.IOd and Equation 6.31).

"SeeProblem 6.5.
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Fig ure 6 .10 : (Experimental data) (a) Force-extension curves of an RNA hairpin with handles. Stretching (black) and
relaxing (gray) curves are superimposed. Hairp in unfolding occurs at abo ut 14.5 pN (labeled a). (b) Fraction P(f) of
hairpins folded versus force. Data (filled circles) are from 36 consecutive pulls of a single RNA hairpin . Solidline. proba
bility versus force for a two-state system (see Equation 6.34 on page 225). Best-fit values, 6.Fo = 79kB Tn 6.z = 22 nm,
consistent with the observed 6.z seen in panel (a). (c) Effectofmechanical force on the rate of RNA folding . Length versus
time traces of the RNA hairpin at various constan t forces. Increasing the external force increases the rate of unfolding and
decreases the rate offolding. (d) Histograms of the dwell times in the open and closed states of the RNA hairpin at two
different forces (f = 14.4 and 13.7 pN). The solid lines are exponential functions fit to the data (see Equation 6.31),
giving rate constants for folding and unfold ing. At 13.7 pN, the molecule is mostly folded , with ko~n = 0.9 5-1

, and
kfo1d = 8 .5 5- 1. At 14.4 pN, the unfolded state predomi nates. with ko~n = 75- 1 and kfo1d = 1.5 5- 1. [Figure kindly supplied
by [, Liphard t.]
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Using the data given in Figure 6.10 and its cap tion, check how well Equa
tion 6.35 is obeyed by comparing th e folding and opening rates at two di f
ferent forces. That is. find a combination of the rates that does not involve t!.Fo
(which we don't know a priori ). Then substitute the experimental numbers and
see how well yo ur prediction is obeyed.

The first tim e one encounters a complicated process. it's natural (and frequently
the only thing you can do) to tr y to strip away as mu ch deta il as possible. Th en again ,
such simplification certainly has risks-what is one missing, and are the approxima
tion s really that good? In this case, the simple two-state model seems to fit the obser
vatio ns very well, and (so far ) we have not detected any behaviors in our RNA hairpin
system that wo uld force us to replace this model with some thing mo re elaborate.

For more deta ils See Liphardt et al., 2001, and the on -line supplemental materi al.
Carlos Bustamante ;5the Howard Hughes Medical Institute Professor of Physics and Molecular
and Cell Biology at tile University of California, Berkeley. His work involves the development of
methods ofsingle molecule manipulationand theirapplication to study complexbiochemicalpro
cesses. Jan Liphardt is currently a Divisional Fellow at Lawrence Berkeley National Lab. He is
interested in noncquilibrium statistical mechanics, and in how smallsystems respond to local ap
plication of mechanical forces. Ignacio Tinoco, lr.• is Professor of Chemistry at the University of
Caliiornia, Berkeley. He waschairmanof the Departmentof Energy committeethat recommended
in 1987 a major initiative to sequence thehumangenome.

TH E BIG PICTURE

Returni ng to the Focus Question , we found that a system's useful energy (the port ion
that can be harnessed to do mec hanical or other useful work) is generally less than its
total energy content. A machine's efficiency involves how much of this useful energy
actually turns into work (with the rest turning into waste heat ). We found a precise
measu re of useful energy, called free energy.

This chapter has been qui te abstract, but that's jus t the obverse ofbei ng very gen
erally applicable. Now it's time to look at the fascinatin g details of how the abstract
princip les are implemented-to see some concrete realization s of th ese ideas in living
cells. Thus, Chapter 7 will extend the idea of entropic forces to situations relevant in
cells, Chapter 8 will look at self-assembly, Chapter 9 will develop the mechanics of
macromolecules, and Chapter 10 will examine the operati on of mol ecular motors.
All of these bioph ysical developm ent s will rest on ideas introduced in th is chapter.
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KEY FORMULAS

Entropy: The disord er of a string of N random, uncorrelated letters drawn from
an alphabet of M letters is I = K in Q bits, where Q = MN and K = 1/ In 2
(Equation 6.1).

For a very long message whose letter frequencies Pj are known in advance. the

disorder is reduced to -KN L~I P, In P, (Shannon's formul a) (Equation 6.3).
For example, if P, = 1 and all o ther P, = 0, then the disorder per letter is zero:
The message is predictable.

Suppose that there are Q (E) states available to a physical system with energy
E. Once the system has come to equilibrium, its entropy is defined as S(E) =
kB In Q (E) (Equation 6.5).

Temperature: The temperature isdefined as T = ( ~) - I (Equation 6.9). If a system
is allowed to come to equilibrium in isolation. then later is brought into therm al
co ntact with ano ther system. then T describes the «availability o f energy" that the
first system could give the seco nd. If two systems have the same T, then there will
be no net exchange of energy (the Zeroth Law of ther modynamics).

Pressure: Pressure in a clo sed subsystem can be defined as p = T ft lE (Equa
tion 6.15). p can be thought of as the "unavailability of volume" from the subsys
tem, just as T is the "availability o f energy,"

Sakur-Tetrode: The entro py of a box of ideal gas of volume V, containing N mol
ecules with total energy E, is S = N kB In[E3/ 2 Vj (Equation 6.6), plus terms inde
pendent of E and V.

Statistical Postulate: When a big enough. isolated system . subject to some macro
scopic constraints. is left alon e lon g enough. it evolves to an equilibrium. Equi
librium is not one particu lar microstate; rather. it is a prob ability di stribution .
Th e distributi on cho sen is the one with the greatest disorder (entropy). that is.
the one acknowledging the greatest ignorance of the detailed microstate subject to
any given constra ints (Idea 6.4).

• Second Law: Any sudden relaxation of internal co nstraints (for example. openin g
an internal door) will lead to a new distributi on , one co rrespo nding to the max
imum disorder among a bigger class of possibili ties. Hence the new equilibrium
state will have entropy at least as great as the old one (Idea 6.11).

Efficiency: Free energy transduction is least efficient when it proceeds by the un
co ntrolled release of a big constraint. It's most efficient when it proceeds by the
incremental, controlled release of many small constraint s (Idea 6.20).

Two-state systems: Suppose that a subsystem has only two allowed states (isomers ),
differin g in energy by Ll. E. Then the probabilities of being in the two states are
(Equation 6.25)

Suppo se that there is an energy barr ier Ll. P between the two states. The probability
per time k+ that the subsystem will hop to the lower state, if we know it's initially in
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the upper state, is proport iona l to e- 6 E' I" T; the proba bility per time L that it will
hop to the higher state, if we know it'sinitially in the lowerstate, is proportional to
e -( b.E+ b.E*" l / kBT . For a complex but effectively two-state system. analogous formulas
apply with !'>.F or !'>. G in place of !'>.E (Equation 6.35).

If we prepare a collection ofmolecules in two isomeric forms with populations
N; divided in any way other than the equilibrium distribution Ni.eq , then the ap
proach to equilibrium is exponential: N i(t) = Ni,,,, ± Ae- (k++L ), (Equation 6.30).
Here A is a constant set bythe initial conditions.
Free energy: Consider a small system a of fixed volume, sealed so that mattercan't
go in or out. If we bring system a into thermal contact with a big system B in
equilibrium at T , then B will stay in equilibrium at the same temperature (a is
too small to affect it), but a will come to a new equilibrium, which minimizes its
Helmholtz free energy F, = E, - TS, (Idea 6.14). If a is not macroscopic, we
replace E" by (E, ) and use Shannon's form ula for 5, (Equation 6.32).

Suppose, instead, that small system a can also exchange volume with (push on)
the largersystem and that the largersystem has pressure p. Then a will minimize its
Gibbs free energy G, = E, - TS, +pV, (Equation 6.16). When chemical reactions
occur in water, Va is essentially constant, so the difference between Fa and Ga is
also essentially a constant.
Eouipertition: When the potential energy of a subsystem is a sum of terms of the
form kx' (that is, an ideal spring), then each of the displacement variables shares
average thermal energy ~kBT in equilibrium (Your Turn 6F).
Partition function: The partition function for system a in contact with a thermal
reservoir B at temperature T is Z = L j e- Ei l " T (Equation 6.33). The free energy
can be reexpressed as Fa = - knTln Z.

FURTHER READING

Semipopular:
The basic ideas of statist ical physics: Feynm an, 1965, Chapter 5; Ruelle, 1991, Chap

ters 17- 21; von Baeyer, 1999.

Intermediate:
Many books take a view of this material similar to the one presented here, for ex

ample: Schroeder, 2000 and Feynman et al., 1996, Chapter 5; see also Widom,
2002.

Heat engines: Feynman et al., 1963a, §44.

Technical:
Statistical physics: Callen, 1985, Chapters 15-17; Chandler, 1987.
Maxwell's demon: Left& Rex, 1990.
More on optical tweezers: Bustamante et al., 2000; Mehta et al., 1999; Svoboda & .

Block, 1994.
The DNA- repressor system as a two-state system: Finzi & Gelles, 1995.
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IT21 6.1' Track 2

1. Communication s enginee rs are also interested in the compressibilit y of streams
of data. They refer to the quantity I as the "information content" per message.
This defin ition has the unintuitive feature that random messages carry the most
information! This book will use the word disorder for I; the word information will
only be used in its everyday sense.

2. Here is another, more elegant. proo f that uniform probability gives maximum dis
order. We'll repeat the previous derivation, this time using the method of Lagrange
multipliers. Thi s trick proves indispensable in more co mplicated situations. (For
more about this method, see for example Shankar, 1995.) We introduce a new pa
rameter a (the Lagrange multiplier ) and add a new term to I . The new term is ex
times the constraint we wish to enforce (that all the P; add up to I ). Finally, we
extrernize the modified l over all the P, independently, and over 0':

M

and 1 = L Pj .
j =1

Proceed ing as before,

0 = InPjo + t + 0';

once again we conclude that all the Pj are equal.

IT21 6.2.1' Track 2

I. Why do we need the Statistical Postu late? Most people would agree at first that a
single helium atom , mile s away from anything else, shielded from external radia
tion , is not a statistical system. For instance, the isolated atom has definite energy
levels. Or do es it? If we put the atom into an excited state, it decays at a ran
domly chosen time. One way to und erstand this pheno me non is to say that even
an isolated atom interacts with ever-present weak, random quan tum fluctuations
of the vacuum. No physicalsystem can ever be totally disconnected from the rest of
the world.

We don't usually think of this effect as making the atom a statistical system
sim ply because the ene rgy levels of the atom are so widely spaced relative to the
energies of vacuum fluctuatio ns. Similarly, a billion helium atoms, each separated
from its neighbor by a meter, will also have widely spaced energy levels. But if
those billion atoms condense into a droplet of liquid helium, then the energy lev
els get split, typi cally into sublevels a billion times clo ser in ene rgy than the orig
inal one-atom levels. Suddenly, the system becomes much more susceptible to its
environment.



Track 2 233

With macroscopic samples. in the range of Nmole atoms, this environmental
susceptibility becomes even more extreme. If we suspend a gram of liquid helium
in a th ermally insulatin g flask, we may well manage to keep it "thermally isolated"
in the sense that it won't vaporize for a long time. Butwe can never isolate it from
random environmental influences sufficient to change its substate. Thus, deter
mining the detailed evolution of the microstate from first principles is hopeless.
Thi s property is a key difference between bul k matter and single atom s. We there 
fore need a new principle to get some predictive power for bulk samples ofmatter.
We propose to use the Statistical Postulate for this purpose and see whether it gives
experimentally testable results. For more on this viewpoint. see Callen, 1985, § lS
I; see also Sklar, 1993.

2. The Statistical Postulate is certainly not graven in stone the way Newton's Laws
are. Point ( I) has already mentioned that the dividing line between "statistical"
and "deterministic" systems is fuzzy. Moreover, even macroscopic systems may
not actually explore all their allowed states in any reasonable amount of time,
a situation called nonergodic behavior, even though they do make rapid transi
tions within some subset of their allowed states. For example, an isolated lump
of magnetized iron won't spontaneously change the direction of its magnetiza
tion. We will ignore the possibility of nonergodic behavior in our discussion, but
misfolded proteins, such as the prions thought to be responsible for neurological
diseases like scrapie, may provide examples. In addition, single enzyme molecules
have been found to enter into long-lived substates with catalytic activity signifi
cantly different from those of chemically identical neighb oring molecules. Even
though the enzymes are constantly bombarded by the th ermal motion of the sur
rounding water molecules, such bombardment seems unable to shake them out
of these states of different "personality," or to do so extremely slowly.

IT2 1 6.2.2' Track 2

I. The Sakur-Tetrode formula (Equation 6.6) is derived in a mo re careful way in
Callen, 1985, §16- IO.

2. Equation 6.6 has anot her key feature: 5 is extensive. Th is pro perty means that the
entropy doubles when we consider a box with twice as many molecules, twice the
volume, and twice the total energy.

Your
Turn

6J

a. Verify thi s claim (as usual, suppose that N is large).

b. Also show that the ent ropy density of an ideal gas is

SjV = - ckB[ln (cj c. )] . (6.36)

Here the number density c = N/ V as usual, and c. is a constant depending
only on the energyper molecule, not on the volume.
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As you work through (a) , you'll notice that the factor of N ! in the denomin ator
is crucial to gelling the desired result; before people knew about this factor, they
were puzzled by the apparent failure of the entropy to be extensive.

3. Those who question author ity can find the area of a higher-dim ensional sphere as
follows. First, let's return to a defe rred promi se (from the Gaussian normalization

examp le, page 73) to compute J~:: dxe- x'. We'll call this unknown numb er Y.

The trick is to evaluate the expressio n f dx,dx2 e - {XI
2

+ X2
2

) in two different ways.

On one hand, it's just Jdx, e-X11 x f dx1 e- X22
, or y l . On the other hand, because

the integrand depends only on the length of x , this integral is easy to do in polar
coordinates. We simp ly replace Jdx ,dx2 by J rdrdB. We can do the B integral
right away (because nothi ng depends on Bl, so the integrals become 2" J rdr .

Co mparing our two exp ressions for the same thing then gives y2 = 2rrf rdr e- r2
•

But this new integral is easy. Changing variables to z = ,2 shows that it equals 1;
so Y = ,fiC,as claimed in Chapter 3.

To see what that's got to do with spheres, notice that the factor of 2rr arising
above is the circumference o f the unit circle. wh ich we can think of as the analog
of the surface area for a "sphere" in two- dimensional space. In the same way, let's

now evaluate r~: dx, . . . dx,,+1e- x2 in two ways. On on e hand, it's just y n+l; but

it's also Jooo(Allrtldr) e- ,2, whe re now All is the surface area of an n-d ime nsio nal
sphere. our quarry. Let's call the integral in this expressio n Hn• Using Y = rr l 12,

we conclude that A'l = rr(II+I )12/ H".
We already kno w that H I = !.Next consider that

(a trick recycled from Equation 3. 14) . The right side is just H,,+2, whereas on the
left, we change variables to r' = J{Jr, findin g - d~ I p~1 [ p - I,,+ I)/ 2 x H,,] .So H, =

H I> Hs = 2H); and in general, for any odd number n, we have Hn = ! x C;I)!.
Substituting into the earlier formula for the sphere area All and taking n = 3N - 1
gives the first factor quoted in Equation 6.6. (Think for yourself about the case
where n is even.)

4. Why did we need the Planck constant " in Equation 6.6? No such constant ap
pears in Equation 6.5. Actually, we might have expected that constant s with di
mensions would appear when we passed from purely math em atical constructions
to physical ones. On e way to explain the appearance of fi is to note that in classi
cal physics, posi tion and momentum are co ntinuous variables wi th dimensions.
Thu s the "number of allowed states" is really a volume in the space o f pos itions
and momenta; so it has dimensions. But yo u can't take the logarithm of a num
ber with dimensions! Thus we needed to divide our expressio n by eno ugh powers
of a number with the dimensions IL x MILT-I . The Planck co nstant is such a
numbe r.

Quantum mechanics gives a deeper answer to this que stion. In quan tum
mechanics, the allowed states of a system really are discrete, and we can count
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them in the naive way. The numb er of states corresponding to a volume of po
sition/mo mentum space involves h via the Uncertainty Principle, so Ii enters the
entro py.

5. We must be careful when formulating the Statistical Postulate, because the form of
a probability distr ibution function will depend on the choice of variables used to
specify states. To form ulate the Postulate precisely, we must therefore specify that
equilibrium corresponds to a probability distribution that is uniform (constant),
when expressed in terms of a particular choice of variables.

To find the right choice of variables, recall that equilibrium is supposed to
be a situation where the probability distribution doesn't change with time. Next,
we use a beautiful result from mechanics (Liouville's theorem): A small region
d3Npd3N r evolves in time to a new region with the same volume in r-p space.
(Other choices of coordinates on thisspace, like (v., r.), do not have this property.)
Thus, if a probability distribution is a constant tim es d3Np d"Nr at one mom ent. it
willhave the same form at a later time;such a distribution is suitable for describing
equilibrium.

IT21 63.2' Track 2

I. What's the definition ofT (Equation 6.9 on page 204) got to do with older ideas of
temp erature? One could define temperature by making a mercury thermom eter,
marking the places where water boils and freezes, and subdividing into 100 equal
divisions. That's not very fundamental. If we did the same thing with an alcohol
thermom eter, the individual markings wouldn't agree: The expansio n of liquids
is slightly nonlinear. Using the expansion of an ideal gas would be better, but the
fact is that each of these standards depends on the proper ties of some specific
material- they're no t universal. Equation 6.9 is universal, and we've seen that,
when we define temperature this way, any two big systems (not just ideal gases)
come to equilibrium at the same value of T.

2. In Your Turn 6B on page 205, you showed that du plicatin g an isolated system
doubles its entropy. Actually, the extensive property of the entropy is more general
than this. Consider two weakly interacting subsystems. for examp le. ou r favorite
system of two insulated boxes tou ching each other on small uninsulated patches.
The total energy of the state is dominated by the inte rnal degrees of freedom deep
in each box, so the counting of states is practically the same as if the boxes were in
dependent, and the ent ropy is thus addi tive, giving 510 1 '" SA+SB . Even if we draw
a purely imaginary wall down the middle of a big system, the two halves can be
regarded as only weakly interacting because the two halves exchange energy (and
particles, and mo mentum . . . ) only across their bou ndary. If each subsystem is
big enough, the surface-to-volume ratio is small; again, the total energy is dom
inated by the degrees of freedom interior to each subsystem, and the subsystems
are statistically nearly independent except for the constraints of fixed total energy
(and volume). Then the total entropy will again be the sum of two independent
terms. More generally still, in a macroscop ic sample. the entropy will be an en-



236 Cha pte r 6 Entropy, Temperatu re, an d Free Energy

tropy density times the total volume, as you have already shown in Your Turn 6J
for the extreme case ofa noninteracting (ideal) gas.

More precisely, we define a macroscopic system as one that can be subdivided
into a large number of subsystems, each of which still contains many internal de
grees of freedom and interacts weakly with the!others. The previous paragraph
sketched an argument that the entropy of such a system willbe extensive. See Lan
dau & Lifshit z, 1980, §§2, 7 for more on this important poin t.

1T2 1 .6.4.2' Track 2

One can ask why the Universe started out in such a highlyordered state, that is, so far
from equilibrium. Unfortunately, it's no tor iously tri cky to apply thermodynamics to
the whole Universe. For one thing, the Universe can never come to equilibrium: At
t --+ 00 it either collapses or at least forms black holes. But a black hole has negative
specific heat; hence it can never be in equilibrium with matter!

For our purposes, it's enough to note that the Sun is a hot spot in the sky, and
most other directions in the sky are cold. This unevenness of temperature is a form
of order. It's what (most) life on Earth ultimately feeds on.

112 1 6.6.1' Track 2

I. O ur derivation of Idea 6.23 impli citly assum ed that on ly the probab ilities of oc
cupying the various allowed states of a depend on temperat ure; the list of possible
states themselves, and their energies. was assumed to be temperature independent.
As mentioned in Section 1.5.3 on page 26. the states and their energy levels come
(in principle) from quantum mechanics and hence are outside the scope of this
book. All we need to know is that there is some list of allowed states.

2. Skeptic s may ask why we were allowed to drop the higher-ord er terms in Equa
tion 6.22. The justification goes back to a remark in Section 6.2.2': The disorder
of a macroscopic system is extensive. If you double the system size, the first ex
pansion coefficient IB in Equation 6.22 doubles, the second one dIB/ dEBstays th e
same, and th e next one 4(d' IB/dEB' ) drops to half. So each successive term of
Equation 6.22 is smaller by an extra factor of a small energy E, divided by a big
energy EB .

Doesn't th is throw out baby with the bathwater?Shouldn 't we truncate Equa
tion 6.22 after the first term ? No; When we exponentiate Equatio n 6.22, the first
term is a constant, which got wiped out when we normalized our probability dis
tribution for system a. So the second term is actually the leading one.

Because this is such an impo rtant point, let's make it yet again in a slightly dif
ferent way. System B is macroscopic, so we can subdivide it equally into M = 1000
little systems, each one itself macroscopic and weakly interacting with the others
and with a. We know that these little systems are overwhelmingly likely to share
EB equally, because they're all identical and have come to the same temperature.
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Hence, each has the same number of allowed states,

SI' (liE as, )f.1 =e ' B= f.1o· exp --+ ...
I , I MdE

i
i= l , .. . ,M.

Here ~E = Etat - Ea , n o,; is the number of allowed states when subsystem i has
energy Etot/ M, and the dots denote terms with higher powers of -11. The derivative
dS;/dE; is just l iT and is independent of M, so we can take M large enou gh to
justify truncating the Taylor series expansion after the first term. The total number
of states available to system B is then (O:j )M, which is indeed a constant times
eSE/kRT, and we recover Equation 6.23.

3. The equipartition formula is not valid in quantum statistical physics: Modes
whose excitation energy exceeds the thermal energy get "frozen out" of equipar
titian. Historically, this observation held the key to understanding black-body
radiation and, hence, to the creation ofquantum theory itself.

IT21 6.6.3' Track 2

I. The entropy S, defined above Equation 6.32 on page 224 can't simply be added
to SB to get the total system entropy. because we can't assume that a is weakly
interacting with B (a may not be macroscopic; hence, surface energies needn't be
smaller than interior energies).

But suppose that a is itself macroscopic (but still smaller than B). Then
the fluctuations in Ea are negligible, so we can omit the averaging symbol
in (E,) . In addition, all microstates with this energy are equally prob able, so
- Lj~ 1 PIlnP j = (Lj~ 1 P)(ln p-I) = I x In« f.1 , )- I)- 1 = In f.1" and S, re
duces to the usual form , Equation 6.5. Thu s the formu la Equation 6.32 derived
in Section 6.6.3 reduces to our prior formu la (Idea 6.14) for the special case of a
macroscopic subsystem.

2. The Gibbs free energy (Equation 6.16) has a similar generalization to microscopic
subsystems, namely,

G, = (E,) + p(V, ) - TS, . (6.37)

3. Equation 6.32 gives an important formula for the free energy of an ideal gas
of uniform temp erature, but nonuniform density c( r). (For example , an ex
ternal force like gravity may act on the gas.) Suppose a container has N mol
ecules, each moving independ ently of the others but with specified poten
tial energy U(r) . Divide space into many small volume element s [).v . Then
the probability for any one molecule to be in the element centered at r is
P(r) = c(r)!wIN. Equation 6.32 on page 224 then gives the free energy per
molecule as F, = L,(c (r) t1vI N) (U(r) + kBTln(c(r)t1v I N » . (We can omit the
kinetic energy, which just adds a constant to F,.) Multiplying by N gives the tota l
free energy.
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Your
Turn

6K

a, Show that

F = f d' r c (r ) (U(~) + kBTln(c(r) /c.» , (6.38)

for some constant c. . Why don't we care abo ut the value of this constant?

b. Co mpare the entropic part of your result with the one for an isolated system,
YourTurn 6} on page 233. Which result was easier to derive?
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PROBLEMS

6.1 Tall tale
Th e myth ical lumberjack Paul Bunyan usua lly cut dow n trees, but on one occasion
he attem pted to diversify and run his ow n sawm ill. As the historian s tell it, "Instead
of turning out lumber the m ill began to take in piles of sawdust and tu rn it back into
logs. Th ey soo n found out the trouble: A technician had connected every thi ng up
backwards,"

Can we reject thi s sto ry on the bas is of the Second Law?

6.2 Entropy change upon equilibra tion
Co nsider two boxes of idea l gas. The boxes are th erm ally isolated fro m the world and,
in itia lly, from each other as well. Each box holds N molecu les in volume V . Box 1
sta rts with tem perature Tu, whereas box 2 starts with Ti,Z . (T he subscript "i" means
"initial," and "f" will mean "fina l.") So th e initial tota l energies are Ei,] = N~kBTi .1

and Ej ,2 = N~kp,Ti.2 '

Now we put the boxes in to thermal contac t with each othe r but still isola ted from
the rest of the wor ld. We know they'll eventually come to the same temperatu re, as
argued in Equation 6.10.

a. What is th is temperat ure?

b. Show that the change of tota l en tropy S'a' is th en

kB~N ln (Ti.t + T..,)'
2 4Ti . I Ti .2

c. Show that th is change is always 2: O. [Hint: Let X = ~:: ~ and exp ress the change

of entropy in terms of X. Plot the resulting funct ion of X.]

d. Under a special circumstance, the cha nge in Slot will be zero: Whe n? Why?

6.3 Bobble Bird
Th e Bobble Bird toy dips its beak in to a cup of water, roc ks back until the water has
evaporated, then dips forward and repeats the cycle. All you need to know about the
intern al mechanism is that after each cycle, it retur ns to its original state: There is no
spring winding do wn and no interna l fuel getti ng consume d. You cou ld even at tach
a litt le ratchet to the toy and extrac t a little mechanical work from it, maybe liftin g a
sma ll weight.

a. Where does the energy to do thi s work come from?

b. Your answer in (a) may at first seem to contra dict the Second Law. Explain why it
doe s not. [Hint: What system d iscussed in Chapter 1 does th is device resemble?]

6 .4 Efficient energy storage
Section 6.5.3 discussed an ene rgy-transduction machine. We can see some sim ilar
lesson s from a simpler system, an energy-storagedevice. Any such device in the cellu
lar world will inevit ab ly lose ene rgy, as a result of viscous drag, so we imagine pu sh
ing a ba ll through a viscous fluid. We pu sh with constant exte rna l force f ;as th e ball
moves, it com presses a spring (Figure 6.1 1). Accordi ng to the Hoo ke relat ion, the
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f >

f------+
d

Figure 6 .11: A simple energy-storage device. A tank filled with a viscous fluid con tains an
elastic element (spring) and a bead, whose motion is op posed by viscous drag.

spring resists compression with an elastic force f = led, where k is the spring con 
stant.' When thi s force balances the extern al force , the ba ll stops moving , at d = 1/k.

Thrnughnut th e prn cess, the applied force was fixed , so by thi s point we've done
work I d = I ' / k. But integrating the Hooke relation shows that our spring has stored

only J: I (x)dx = !kd", or U'/k. The rest of the work we did wen tto generate heat.
Indeed, at every position x along the way from 0 to d, some of the applied force
compresses the spring while the rest goes to overcome viscous friction.

Nor can we get back all the stored energy, tt2/ k, because we lose even more to
friction as the sprin g relaxes. Suppos e that we suddenly reduce the extern al force to a
value I I that is smaller than I .
a. Find how far the ball moves and how mu ch work it do es against the external force.

We'll call the latter quantity the "useful work" recovered from the storage device.

b. For what constant value of II will the usefu l work be maximal? Show that even
with this optimal choice, the useful work output is only ha lf of what was sto red in
the spring, or tI'/k.

c. How cou ld we make thi s process more efficient? [Hint: Keep in mind Idea 6.20.1

6.5 Atom ic polarizat ion
Suppose that we have a lot of nonint eractin g atoms (a gas) in an external magnetic
field . You may take as given the fact that each atom can be in one of two states, whose
energies differ by an amount L'>.E = 2J1.B, depending on the strength of the ma gn etic
field B. Here u. is some positive constant, and B is also positive. Each atom's magne
tization is taken to be +1 if it's in the lower energy state or - 1 if it's in the higher
state.

a. Find the average magn etization of the entire sample as a function of the applied
magnetic field B. [Remark: Your answer can be expressed in terms of L'>.E by using
a hyperbol ic trigonometric fun ctio n; if you know these , then write it this way.]

b. Discuss how your solution behaves when B -+ 00 and when B -+ 0, and why
your results make sense.

6.6 Polymer mesh
D. Discher studied th e mechanical character ofthe red blood cell cytoskeleton, a poly
mer network attached to its inn er membrane. Disch er attached a bead of diameter

8Another Hooke relation appeared in Chapter S. where the force resisting a shear deformation was pro
portional to the size of the deformation (Equation 5.14 on page 172).
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Figure 6.12 : (Schematic;optical micrograph; experimental data.) (a) Attachment of a single
fluorescent nanoparticle to actin in the red blood cell cortex. (b) The red cell, with attached
particle, is immobilized by partially sucking it into a micropipette (right) of diameter 1J1m .
(e) Tracking of the thermal motion of the nanoparticle gives information about the elastic
properties of the cortex. [Digital image kindly supplied by D. Discher; see Discher. 2000.J

40 nm to this network (Figure 6.12a). The network acts as a spring, constraining the
free motion of the bead. He then asked, "What is the stiffness (spring constant ) of
this spring?"

In the macroworld, we'd answer this question by applying a known force to the
bead, measuring the displacement 6x in the x direction , and using f = kS ». But it's
not easy to apply a known force to such a tiny object. Instead, Discher just passively
observed the thermal mot ion of the bead (Figure 6.12c). He found the bead's root
mean-s uare deviation from its equilibrium positio n. at room temperat ure, to be

« "'x)') = 35 nm; from this, he computed the spring constant k. What value did
he find?

6.7 Inner ear
A. J. Hudspeth and coautho rs found a surprising phenomenon while studying signal
transduction by the inner ear. Figure 6.13a shows a bund le of stiff fibers (called stere
ocilia ) projecting from a sensory cell. The fibers sway when the surrounding inner-ear
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Figure 6 .13 : (Scanning electron micrograph; diagram; experimental data; diagram) {a) Bund le of stereocilia projecting
from an aud itory hair cell. (b) Pushing the bundle to the right causes a relative motion between two neighbor ing stere
ocilia in the bundle. stretching the tip link, a thin filament joining them. At large enough displacement , the tension in
the tip link can open a "trap door." (c) Force exerted by the hair bundle in response to imposed displacements. Positive
values of f correspon d to forces directed to the left in (b); positive values of x correspond to displacements to the right.
(d) Mechanical model for stereocilia. The leftspring represents the tip link. The spring on the right represents the stiffness
of the attachment point where the stereocilium joins the main body of the hair cell. The two springs exert a combined
force f. The model envisions N of these units in parallel. [(a) Digital image kindly supplied by A. J. Hudspeth; (c) data
from Martin et al., 2000.1

fluid moves. Oth er micrograph s (not shown) revealed th in, flexible filaments (called
tip links) joining each fiber in the bundle to its neighbor (wiggly line in the sketch,
Figure 6.13b).

The experimenters measured the force-d isplacement relation for the bundle by
using a tiny glass fiber to poke it. A feedback circuit maintained a fixed displacement
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for the bundle's tip and reported back the force needed to maintain this displacement.
The surprise is tha t the experiments gave the complex curve shown in panel (c). A
simple spring has a stiffness k = 'it that is constant (independent ofx), The diagram
shows that the bundle of stereocilia behaves like a simple spr ing at large deflections;
but in the middle, it has a region of negative stiffness!

To explain their observation s, the experimenters hypoth esized a trap door at one
end of the tip link (top right of the wiggly line in Figure 6.13b), and proposed that
the trap door was effectively a two -state system.

a. Explain qual itatively how this hypothesis helps us to understand the data.

b. In particular, explain whythe bump in the curve is rounded, not sharp.

c. In its actual operation. the hair bundl e is not clamped; its displacement can wan
der at will, subject to applied forces from motio n of the surrounding fluid. At zero
applied force, the curve shows three pos sible displacem ents, at about - 20, 0, and
+20 nm. But really, we will never observe one of these three values. Which one?
Why?

6.8 IT21 Energy fluctuations

Figure 6.2 imp lies that the relative fluctuation s of energy between two macroscopic
subsystems in thermal cont act will be very small in equilibrium. Confirm this state
ment by calculating the root-mean- square deviation of EA as a fraction of its mean
value. [Hints: Suppose the two subsystems are identical , as assumed in the figure.
Work out the probab ility P(EA ) that the joint system will be in a microstate with
EA on one side and Elo l - EA on the other side. Approximate In P(EA ) near its peak
by a suitable quadratic function, A - B(EA - ! EIOI ) 2 Use this approximate form to
estimate the RMS deviation.]

6.9 1121The Langevin function

Repeat Problem 6.5 for a slightly different situa tion: Instead of having just two dis
crete allowed values, our system has a continuous, unit-vector variable nthat can
point in any direction in space. Its energy is a constant plus -an· i, or -anz =
- a cos e. Here a is a positive constant with units of energy and e is the polar angle
of fi.

a. Find the probability distribution P(O, q> )dO dq> for the directions that it may point.

b. Compute the parti tion function Z (a) and the free energy F(a) for this system.
Then compute the quantity {nz } . (Your answer is some times called the Langevin
funct ion .) Find the limiting behavior at high temperature and make sure your
answer is reasonable.

6.10 1121 Gating compliance

(Continuation of Problem 6.7.) We can model the system in Figure 6.13 quantit a
tively as follows. We think of the bundle of stereocilia as a collection of N elastic units
in parallel. Each element has two springs: One, with sprin g constant k, and equilib
rium position X,J ' represents the elasticit y of the tip link filament. The other spring,
characterized by kb and xs, represents the stiffness of the stereocilium's attachment
point (provided by a bundle of actin filaments). See panel (d) of the figure.
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The first spring attaches via a hinged element (the "trap door"). When the hinge
is in its open state, the attachment po int is a distance /) to the left of its close d state
relative to the bod y of the stereocilium. The trap doo r is itself a two-state system with
a free energy change l:1 Fo to jump to its open state.

a. Derive the formul a [do,,"(x) = k, (x - x,) + kb(x - Xb) for the net force on the
stereocilium in the closed state. Rewrite this in the more compact form fdosed =
k(x - xI> and find the effective parameters k and X l in terms of the earlier quanti 
ties. Then find the analogous formula for the state in which the trap door is open.

b. The total force flol is the sum of N terms. In Po~nN of these terms, the trap door is
open; in the remaining (l - Pop,")N, it is closed. To find the open probability using
Equatio n 6.34 on page 225, we need the free energy difference !'.F(x) between the
system's two states (at fixed x). Th is difference is a con stant, llFo, plus a term
involving the energy stored in spring a. Get a formula for !'.F (x ).

c. Assemble the pieces of your answer to get the force[tot (x) in term s of the unknown
parameters N , k'H kb, x, ; x«, 8, and ti.F" where llFI == ti.Fo + ! ka82. That's a lo t
of parameters, but some of them enter only in fixed combination. Show that your
answer can be expressed as

and find the quantities Ktot , fo.z, and Xl) in terms of the earlier parameters.

d. Hudspeth and coauthors fit this model to their data and to other known facts.
They found N = 65, Kto• = l.l pN nm", Xo = -2.2 nrn, and [ 0 = 25 pN. Graph
the form ula in (c), using these values. Use vario us trial values for z, starting from
zero and moving upward. What value ofz gives a curve resemb ling the data?

e. The authors also est imated that k, = 2 . 10- 4 N m- I
• Use this value and your

answer from (d) to find 8. Is this a reasonab le value?
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CHAPTER 7

Entropic Forces at Work

If someone points out to you that your pet theory of the
Universeis contradicted by experiment. well, these

experimentalists do bungle things sometimes. But ifyour
theory isfound to be against the Second Law, I can give

you no hope; thereis nothingfor it but to collapse ifI
deepest humiliation.

- Sir Arthur Eddington, 1944

Chapter 6 argued that all transactions in a fixed-temperature system are paid for
in a single unified currency. the free energy F = E - TS. The irreversible processes
discussed up to that poin t emerge as particular cases. For example, a freely falling rock
converts its gravitational potent ial energy to kinetic energy. with no net change in the
mechanical energy E. If it land s in mud , however. its organized kinetic energy gets
irreversibly converted to th erm al form, th ereby lowering E and hen ce F. Similarly,
ink diffuses in water to maximize its entropy. thereby raising Sand again lowerin g F.
More generally. if both energy and entropy change. a macroscop ic system in contact
with a therm al reservo ir will change to lower its free energy. even if

The cha nge actually increases the energy (but increases TS more), or

The change actually decreases the entropy (but decreases Ej T more).

In first-year physics. the change in potential energy as some state variable
changes is called a mechanical force. More precisely. we write

f = - dU j dx.

Section 6.5.2 extended this identification to statistical systems, starting with the sim
plest sort of en tro pic force, namely, gas pressure. We found that the force exerted by
a gas can be regarded as the derivative of - F with respect to the po sition ofa confin
ing piston. Thi s chapter will elaborate the notion of an entropic force, extending it to
cases of greater biological relevance. For example. Chapter 2 claimed that the amaz
ing specificity of enzymes and other molecular devices stems from the precise shapes
of their surfaces and from short-range physical interactions between those surfaces
and the molecules on which they act. Thi s chapter will explore the origins of some of
these entropic forces: the electrostatic, hydrophobic, and depletion effects. As always,
we will look for quant itative confirmation of our formal derivations in controlled
exper iments.
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The Focus Questions for this chapterare
Biological question: Wh at keeps cells full of fluid? How can a membrane pu sh fluid
against a pressure gradient?
Physical idea: Osmotic pressure is a simple example of an entropic force.

7.1 MICROSCOPIC VIEW OF ENTROPIC FORCES

Before proceed ing to new ideas, let's take two last looks at the ideal gas law. We already
understand the formula for pressu re, p = kllTN / V , fro m a mechan istic point of
view (Section 3.2.1 on page 78 ). Let's now recover this result by using the partition
function- a useful warm-up for our study of electrostatic forces later in this chapter
and for single-molecule stretching in Chapter 9.

7.1 .1 Fixed-volume a p p roach

Suppose that a chamber with gas is in thermal contact with a large bo dy at fixed
temperature T. In an ideal gas, N particles of mass t1l move independently of one
ano ther, con strained on ly by the walls of their vessel, a cube with sides of len gth L.
The total energyis then just the sum of the molecules' kinetic energies, plus a constant
for their unchanging internal energies.

The free energy form ula Exam ple (page 224) gives us a conve nient way to calcu
late the free energy of th is system, by first calcu lating the partition function . Indeed,
in this situation, the general formula for the partition function (Equation 6.33 on
page 224) becomes very sim ple. To specify a state of the system, we must give the
positions Ir e} and momen ta {p;} of every particle. To su m over all possible states, we
therefore mu st sum over every such collection of r j , • • • , PN. Because positio n and
momentum are continuo us variables, we write the sums as integrals:

Don't confuse the vecto rs p. (momentum) wit h the scalar p (pressure)! Th e lim its
on the integrals mean that each of the three co mponents of [ i runs from 0 to L.
The factor C includes a factor of e-~ i/ kB T for each particle, where Ej is the internal
energy of molecule i. For an ideal gas, these factors are all fixed, so C is a constant;
we won't need its num erical value. (In Chapter 8, we will let the internal energies
cha nge, to study chemical reac tions.) The free ene rgy form ula Example then gives
F(L) = - kBTIn Z(L).

Equa tion 7.1 looks awfu l; but all we rea lly want is the change in free energy as
we change the volume of the box, because an entropic force is a derivative of the free
ene rgy (see Equation 6.17 on page 213). To get the d imensio ns of pressure (force/area
or energy/volume), we need - dF(L)/ d(L3 ) . But most of the integrals in Equation 7.1
arejust constants, as we see by rearranging them:

Z(L) = c(f.Ld3r1. . .f. Ld3rN) ( [ : d3P1e-P" /(' '''' Bn . . .1:d3PNe- PN' /(' '''' Bn) .
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The only depend ence on L comes via the limits of the first 3N integrals, and each of
these integrals just equals 1. Thu s Z is a con stant times L3N ) so F(L) is a co nstant plus
-kBTN In L3 . Thi s result is reasonable: In an ideal gas , the total po tential energy is a
constant (the particles don 't change, and they don't interact with one another), and
so is the total kinetic energy (it's just i kBTN ). Hence the free energy F = E - TS is a
constant minus TS. So we have recovered a fact we already kn ew, that the entropy is a
constant plus NkB In L3 (see the ideal gas entropy Example, page 200). Differentiating
the free energy recovers the ideal gas law:

dF knTN
p - - - ----

- d(L' ) - V .

7.1.2 Fixed-pressure approach

(7.2)

(7.4)

A slight rephrasing of the argument just given will prove useful for our discussion
of macromolecular stretching in Chapter 9. Instead of fixing V and findin g p, let's
fix the pressure and find the equilibrium volume. That is, instead of a box of fixed
volume, we now imagine a cylinder with a sliding piston. The displacement Lof the
piston is variable; its area A is fixed . A force f pushes the piston inward; thus) the
potential energy of the mechanism pushing the piston is f I. The available volume
for the gas molecules is now AI. Thu s we'd like to compute the average value (L),
given the externally supplied force. This average is given by a sum over all states o f L
times the probability to be in the given state.

The Boltzmann distribution gives the prob ability of having a specified set of po
sitions and momenta:

[ (
PI' + ...+ PN

2
(Pr;"on)' ) ]

P (r l, . . . , PN, L' Pr;"nn) =Cl exp - 2m + 2M + f L / kB T .

(7.3)

In this formula, m is the gas particle mass, M is the mass of the piston, and P piston is
its momentum.

We wish to calculate f L x P(L , . . . ) . It's convenient to use the fact that P, like
any probability distribu tion , is normalized;' thus, its integral equals I, and we can
rewrite our desired quantity as

f L x p el , r l , ) d3rl d3pNdPpntondL

(L) = f P(L, rr , ) d3rl d3pNdPpntondL

It was convenient to introduce the denominator in Equation 7.4 because now most
of the integrals simply cancel between the numerator and denominator, as does the
constant Ci . leaving

(7.5)

I See Section 3.1.1 on page 70.
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Your
Turn

7A

a. Check that Equation 7.5 equals (N + l )kBT/f . IHint: Integrate by parts to
make the numerator of Equation 7.5 look more like the denominator.]

b. Show that we have once again derived the ideal gas law. [Hint: Remember
that N is so big that N + 1 '" N .]

Here is one last reformulation . The trick of differentiating under the integral
sign' shows that Equation 7.5 can be written compactly as (L}= d(-kBT in Z(f}} / df,
where Z (f) is the partition function of the gas + piston system. Replacing f by pA
and L by V IA gives

(V } = d(- kBTln Z (p}}/dp = dF (p )/dp. (7.6)

where p is the pressure.

IT21Section 7.1-Z on page 283 introdu ces the idea of therm odynamical1y conjugate

pairs.

7.2 OSMOTIC PRESSURE

7.2.1 Equilibrium osmotic pressure follows the ideal gas law

We can turn no w to the problem of osmotic pressure (see Figure 1.3 on page 13).
A mem brane divides a rigid container into two chambers, one with pure water, the
other containing a so lution of N solute particles in volume V . The so lute cou ld be
anything from individua l molecules (sugar) to colloidal particles. We suppose the
membrane to be perme able to water but not to solute. A very literal example would
be an ultrafine sieve, with pores too small to pass so lute particles. The system will
come to an equilibrium with greater hydrostatic pressure on the sugar side, which we
measure (Figure 7.1). We'd like a quantitative prediction for this pressure.

One might think that the situation just described would be vastly more compli
cated than the ideal-gas pro blem just studied. After all, the solute molecules are con
stantly in the crowded company of water molecules; hydrodynamics rears its head,
and so on. But examining the arguments of Section 7.1.2, we see that they apply
equally well to the osmotic problem. It is true that the solute molecules interact
strongly with the water, as do the water mol ecules among themselves. But, in a di
lute so lution, the so lute particles don't interact muc h with each other, so the total
energy of a microstate is unaffected by their locations. More precisely, the integral
over the positions of the solute mo lecules is do minated by the large dom ain where
no two are close eno ugh to interact significantly. (This approxim ation breaks down
for concentrated solutions, just as the ideal gas law fails for dense gases.)

Thus for dilute solutions, we can do all the integrals over the solute particle lo
cations Jd3rl . . . d3rN first: Just as in the derivation of Equation 7.2, we get VN . This
time V is the volume of only that part of the chamber accessible to solute (right-hand

"See Equation 3. 14 on page 75.
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Rgure 7.1: (Schematic.) Osmotic pressure experiment. (a) A semipermeable membrane is
stretched across a cup-shaped vessel containing sugar solut ion with conce ntration Co. The ves
sel is then plung ed into pur e water. Initially, the sugar solution extends to a height Zo in the
neck of the cup. (b) Solution begins to rise in the vessel by osmo tic flow, until (e) it reaches
an equilibrium height 2£. The pressure in the final equilibrium state is the final height Zr times
Pmg. where Pm is the mass density of the solut ion.

side of Figure 1.3). Because the membrane is essentially invisible to water molecules,
nothing else in the partition function depends 011 V. Hence th e sum over the positions
and mom enta of all the water mo lecules just contributes a constant factor to Z, and
such factors cancel from formulas like Equation 7.2.

The equilibrium osmotic pressure P equil in Figure 1.3 is th us given by the ideal
gas law:

P equil = ckp, T. van 't Hoff relation (7.7)

Here c = N/ V is the nu mber density of solute molecules. p equil is the force per area
that we m ust apply to the solute side of the ap paratus to get equilibrium.

The precedin g discussion was appropriate to the situation shown in Figure 1.3 on
page 13, where we somewhat art ificially assumed that there was no air, and hence no
atmo spheric pressure, outside the apparatus. In the more common situation shown
in Figure 7.1, we again get a relation of the form Equation 7.7, but th is tim e for the
difference in pressure between the two sides of the membrane. Thus t1p = zrPm g,
where z ( is the final height of the column of fluid, Pm is the mass density of solution,
and g is the acceleration of gravity. In thi s case, we conclude tha t the equilibrium
height ofthe fluid column isproportional to the solute concentration in the cup.

The van 't Hoff relation explains a mysteriou s empirical fact from Chapter I, the
formula for the maximum work that can be done by the osmotic machine (Equa
tion 1.7). Consider again Figure 1.3b on page 13. Suppose that the solvent flows until
the volume of the left side (with solute) has doubled. Throughout the flow, the pis-
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ton has been harnessed to a load. To extract the maximum possible work from the
system , we continuously adjust the load to be almost , but no t quite, big enough to
stop the flow.

Your
Turn

78

Integrate Equation 7.7 to find the maximum total work the piston can do
against the load. Compare your answer with Equa tion 1.7 on page 15 and find
the value of the constant of proportionality y .

Estimates We nee d so me estimates to see wheth er osmotic pressure is really signifi
cant in the world of th e cell. Suppose that a cell contains globu lar proteins , roughly
spheres of radius 10 nrn, at a concentration such that 30% of the cell's vo lume is oc 
cupied with pro tein (we say th at the volume fraction ¢ equals 0.3). Th is is not an
unreasonable picture of red blood cells, which are stuffed with hemoglobin . To find
the concentration c in Equation 7.7, we set 0.3 equal to the number of protei ns per
volume tim es the volume of on e prote in:

4"0.3 = c x - (10- 8 m)' .
3

(7.8)

Thus c ;::::: 7. 1022 m- 3. To phrase this in more famil iar units, remember that one mole
per liter corresponds to a concentration of N mole/ OO- 3 rn"). We'll call a sol utio n of
1mole/ L a one molar solut ion, defining the symbol M = mole/ L. Recalling that in
this book the word mole is a syno nym for Avogadro's number (see Section 1.5.1 on
page 23), we find that c = 1.2 · lQ-4 M: It's a 0.12 m M solution.'

Thus, ifwe suspe nd our cell in pure water, the pressure needed to stop the inward
flow of water equals kBT,c "" 300 Pa. Th at's cer tainly much smaller than atmospheric
pressure (l 05 Pal . But is it big for a cell?

Suppose th at th e cell has radi us R = to zz rn.The excess int ern al pressure will cre
ate tension in the cell 's membrane: Every part of the membrane pulls on every other
part. We describe tension by imagining a line drawn on the surface; the membrane
on the left of the line pulls the membrane on the other side with a certain force per
unit length, called the surface tension 1:. But force per length has the same units as
energy per area; and indeed, to stretch a membrane to greater area, from A to A + clA,
we must do work. If we draw two closely spaced, pa rallel lines of length E, the work
to increase their separation from x to x+ dx equals (eL:) x dx. Equivalently, the work
eq uals 1: x dA, where dA = f dx is th e change in area . Sim ilarly, to stretch a spherical
cell from radius R to R + dR would increase its area by dA = (dR)~ = 8"RdR and
cost ene rgy equa l to 1: x dA.

The cell will stre tch until the energy cost of furthe r stretching its membrane
balances the free energy reduction from letting the pressurized interior expand. The
latter is just pdV = p ~~ dR = p4"R' dR. Balancing this gain aga inst 1: x 8"RdR

3In this book , we pretend that dilute-solution formul as are always applicable; so we will not distinguish
between mo lar and molal concentration.
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shows that the equilibrium surface tensio n is

1: = Rp/2. Laplace's formula (7.9)

Substituting our estimate for p yieids 1: = 10- 5 m x 300 Pa / 2 = 1.5 · 10- 3 N m- 1•

This tension is roughly eno ugh to rupture a eukaryotic cell memb rane, thereby de
stroying the cell. Osmotic pressure is significant for cells.

The situation is even more serious with a small solute like salt. Bilayer mem
branes are almos t impermeable to sodium and chloride ions. And a IM salt solution
contains about 1027 ion s per rrr ' , ten thousand times more than in the protein ex
ample just given! Indeed, you cannot dilute red blood cells with pure water; at low
concentrations of exterior salt they burst, or lyse. Clearly, to escape lysis, living cells
mu st precisely fine-tune their interior concentrations of dissolved solutes, an obser
vation to which we will return in Chapter 11.

7.2.2 Osmot ic pressure creates a depletio n force between large mo lecules

Take a look at Figure 7.2. One thing is clear from this picture: It's crowded inside
a cell. Not only that, but there is a hierarchy of objects of all different sizes, from
the enormous ribosomes on down to sugars and tiny single ion s (see Figure 2.4 on
page 38). This hierarchy can lead to a sur prising entropic effect, called the depletion
interaction or molecular crowding.

Consider two large solid objects ("sheep" ) in a bath containing a suspension of
many smaller objects ("sheepdogs") with number density c. (Admittedly, it's an un 
usual farm where th e sheep dogs outnumber the sheep.) We will see that the sheep
dogs give rise to an effect tendin g to herd the sheep together, a purely entropic force
having nothing to do with any direct attraction between the large objects.

The key observation , made by S. Asakura and F. Oosawa in 1954, is that each of
the large objects is surrounded by a depletion zone of thickness equal to the rad ius
R of the small particles; the centers of the small particles cannot enter this zone. Fig
ure 7.3 sketches the idea. Two surfaces of area A approach each oth er in the presence
of smaller particles. The depletion zone reduces the volume available to the small par
ticles; conversely, elimi nating it wo uld increase their entropy and hence lower their
free energy.

Now iet the two surfaces come together. If their shapes match, then as they ap
proach, their depletion zones merge and finally disappear (Figure 7.3b). The corre
sponding reduction in free energy gives an entropic force drivin g the surfaces into
contact. The effect does not begin until the two surfaces approach each other to
with in the diameter 2R of the small particles: The depletion interaction is of short
range. Even if the two surfaces' shapes do not match precisely, there will still be a de
pletion interaction as long as their shapes are similar on the length scale of the small
particlesJFor examp le, when two big spheres meet (or when a big sphere meets a flat
wall), their dep letion zones will shr ink as lon g as their radii are much bigger than R,
because they look flat to the small spheres.
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Figu re 7.2 : (Dra wing, based on stru ctura l data.) It's crowded inside E. coli. For clar ity, the
main part of the figure shows only the macro mo lecules; the lower right inset includes smaller
mo lecules (water molecules, however, arc still omitted ). Left side, a strand of DNA (far left )
is being transcribed to messenger RNA, which is immediately tra nslated into new proteins by
ribosom es (largest objects shown). Between the ribosomes. proteins of many shapes and sizes
are breaking dow n small molecules for ene rgy and synthesizing new molecules for growth and
maintenance.j Prom Goodsell. 1993.)

We can also interpret the depletion interaction in the language of pressure. Fig
ure 7.3b shows a small particle that attempts to enter the gap but bounces away in
stead. It's as though there were a semipermeable membrane at the entra nce to the
gap. admitting water but not particles. The osmotic pressure across this virtual mem
brane sucks water out of the gap, thereby forcing the two large particles into contact.
The pressure is the change of free energy per change of volume (Equation 7.2). As
we bring the surfaces into contact, the volume of the depletion zone between them
shrinks from 2RA to zero. Multiplying this change by the pressure drop ck. T in the
zone gives

(7.10)
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Rgure 7.3 : (Schematic.) Origin of the dep letion interaction. (a) Two sur faces of area A with matching shapes are initially
separated by a distance ethat is more than twice the radius R of some suspended particles. Each surface is sur rounded by
a depletion zone of thickness R tdoshed litles). (b) When the surfaces get closer than 2R. the depletion zones merge and
their combi ned volume decreases.

focal plane

Rgure 7.4 : (Schematic; experimental data.) An experiment measuring depletion interac tions. (a) Experimental setup.
A microsco pe looks at the cen tral plane ofa rigid vesicle containing a polystyrene sphere (the "sheep") of rad ius 0.24 Jlm.
(b) Histogram of the measured locat ion of the large sphere's center over 2000 observatio ns. The solvent in this case
contained no sma ller ob jects. Instead ofdisplaying frequencies by the height ofba rs, the figure shows how often the sphere
was found in each location by the shade of the spot at that position ; lighter shades deno te places where the sphere was more
often fou nd. Th e dashed line represent s the actual edge of the vesicle; the sphere's center can come no closer than its radiu s.
(c) Conditions sim ilar to (b), except that the vesicle contained a suspension of smaller, 0.04 Jl rn spheres ("sheepdogs")
with volume frac tion abo ut 30%. Although the "sheepdogs" are not optically visible, they cause the "sheep" to spend
most of its time clinging to the wall of the chamber. [Digital images kindly sup plied by A. Dinsmore; see Din smore et al.,
1998.1

The rearrangement of a thin layer around a hu ge particle may seem un impor tant, but
the total effect of the depletion interaction can be considerable (see Problem 7.5).

A. Dinsmore and coauthors gave a clear exper imenta l demo nstration of the de
pletion interaction (Figure 7.4). They prepared a vesicle containing one large particle,
about a quart er of a micro meter in radius, and a solution. In one tri al, the solution
contained a suspension of smaller par ticles, of radius 0.04 J1m; in another trial, these
particles were absent, with everything else the same. After carefully arranging con-



254 Chapter 7 Entropic Forces at Work

diti ons to eliminate all other attractive forces between spheres (for example, elec
trostat ic repulsion), they found a dramatic effect: The mere presence of th e small
"sheepdog" particles forced the large par ticle to spend most of its tim e at the wall of
the vesicle. By analyzing what fract ion of the time the large pa rticle spent at the wall,
the experimenters measured the free energy reduc tion when the part icle was sticking
there and quant itatively verified the estima te Equation 7.10 (appropriately modified
for a curved surface).

Replacing th e images of sheep by large macromolecules, and of sheepdogs by
polymer coils or small globular proteins, we see that the presence of small objects
can significantly help th e large macromolecules to find each others ' specific recogni
tion sites. For example, intro ductio n of bovine seru m albumin (BSA, a protein ) or
polyethylene glycol (PEG, a polymer ) redu ces the solubility of deoxyhemoglobin and
other large proteins by helpin g th em to st ick together; th e magnitude of the effect can
be a lO-fold rednction of the solubility. Dextran or PEG can also stabilize complexes
against th ermal d isruption : For instance, adding PEG can increase th e meltin g tem
perature of DNA by several degrees (see Cha pter 9) and enhance the association of
protein complexes by an order of magnitud e or more. In all th ese examples, we see
th e general theme that the entropic part of a reaction's free energy change, - T t1S, is
interchangeable with the energetic term in t1F . Either of these changes can affect the
reaction's equilibri um poi nt (see Section 6.6.4 on page 225) .

Crowding can also speed up reactions, as the sheepdogs jockey th e sheep into
th eir best contact. The presence of a "crowding agent" like PEG or BSA can increase
th e rate of self-assemb ly of actin filaments, or the action of various enzymes, by or
der s of magnitude. We can inte rpret this result in terms of free energyf The ent rop ic
contribution to F lowers an activation barrier to assembly (see Section 6.6.2). In
deed, some cellular equipment , for exam ple, th e DNA replication system of E. coli,
just doesn't work in vitro without some added crowd ing agent. As our simple physical
model predicts, it doesn't matter too mu ch what exactly we choose as our crowding
agent-all that matters are its size relative to the assembly and its number density.

It may seem paradoxical that the drive toward disorder can assemble thin gs. But
we mu st rememb er th at the sheepdogs are much mo re numerous than th e sheep. If
the assembly of a few big macromolecules liberates some space for many smaller mol
ecules to explore, then the total disorder of the system can go up, not down. In just
the same way, we will see later how another entropic force, the hydrophobic interac
tion , can help drive th e exquisitely organized folding of a pro tein or the assemb ly of
a bilayer membrane from its subunits.

7.3 BEYOND EQUILIBRIUM : OSMOTIC FLOW

The discussion of Section 7.2.1 illustrates the power, the beaut y, and the un satis
fied feeling we get from very general argum ents. We found a quantitative prediction ,
which works in practice (see Problem 7.2). But we are still left wonder ing why there
should be a pressure drop. Pressure involves an hon est, Isaac Newton-type force.
Force is a transfer of momentum. But the argument given in Section 7.2.1 makes no
menti on of momentum; instead, we just manipulated entropy (or disord er). Where
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exactly does the force come from ? How does a change in ordertr ansmu te into a flow
of momentum?

We met an analogous situation in the context of th e ideal gas law: The result
ob tain ed abst ractly in Section 7.1 would not have been very convincing had we no t
already given a more concrete, albeit less genera l, argument in Chapter 3. vVe need
the abstract viewpoint because it can take us safely into situations so complicated
tha t th e concrete view obscures the point. But whenever possible, we should also seek
concrete pictures, even if they're very simplified. Accordingly, this section will revisit
osmotic pressure, develop ing a simplified dynamical view of the van 't Hoff relation.
As a bonus, we will also learn about nonequilibrium flow, which will be useful when
we study ion tran sport in Chapters 11 an d 12. More generally, our discussion will
lay th e groundwo rk for understanding many kinds of free ene rgy transducers. For
example, Chapter 10 will use such ideas to explain force gene ration in molecular
machines.

7.3.1 Osmotic force s arise fro m the rectif ica t ion of Brownia n motion

Osmotic pressure gives a force pushing the piston s in Figure 1.3 on page 13 relative to
th e cylinder. Ultima tely, thi s force must come from the membrane separating the two
cha mbers, because on ly the membrane is fixed relative to th e cylinder. Experimen 
tally, one sees th is memb rane bow as it pu shes th e fluid, which in turn pushes against
the piston. So what we really want to understand is how, and why, the membran e
exerts force on (transmits mom entum to ) th e fluid .

To make the discussion concrete, we'll need a number of simplifying assump
tions . Some are approxima tions, where as oth ers can be arra nged to be literally true
in carefully contro lled experiments. For examp le, we will assume th at our membran e
is totally imp erm eable to solute particl es. Such a membran e is called semipermeable;
th e semi reminds us that water doespass th rough such a membrane . We will also take
th e fluid to be essentially incompressible, like water. Finally, as usual we will suppose
that everything is constant in the x and y dir ectio ns.

Imagine a fluid with an exter nal force acting directly on it , like that of gravity.
For example, the pressure in a swim ming pool increases with depth because in equi 
librium, each fluid element mu st push upward to balance the weight of the column
of fluid above it:

p(z) = Po + Pmg X (zo - z). (7.11)

Here Po is atmospheric pressure, Zo - z is the depth, and Pmg is the weight (force)
per unit volume (a similar expression appears in Equation 3.22 on page 80) . More
generally, the force acting on a fluid may not be a consta nt. Let :F(r) be an externa l
force per volume acting in the +zdir ection at position r and cons ider a sma ll cube
of fluid centered at r = (x , y , z). Balan cing the forces on the cub e again shows that
in equilibrium, the pressure canno t be constant but instead must vary (Figure 7.5):

[ - p(z + 4dz) + p(z - 4dz)] dxdy + F(z) dxdy dz = O. (7.12)
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Figure 7.5 : (Schematic.) Forces on a small element of fluid. An external force density :F(r)
acts on the element's center of mass, at r = (x . y . z). This force densit y, and the resulting
pressure p, areassumed to be independent of x and y . The fluid's pressure pushes inward on
all six sides of the box . The net pressure forces in the x and y directio ns cancel. but there is a
nontrivial requirement for force balance in the i.direction.

Taking dz to be small and using the definition of the derivative gives dpJdz = F(z),
the condition for mechanical equilibrium (in this case, called hydrostatic equilib
rium ). Taking the force density F to be the constant -Pmg and solving recovers
Equation 7.11 as a special case.

Next imagine a suspension of colloidal particles in a fluid with number den
sity c(z) . Suppose that a force !(z) acts along i on each par ticle, depen din g on the
particle's position. (For a literal example of such a situation. imagine two perforated
para llel plates in the fluid with a battery connected across them; then a charged par 
ticle will feel a force when it's between the plates. but zero force elsewhere.)

In the low Reyno lds-number regime, inert ial effects are negligibly small (see
Chapter 5); so the app lied force on each par ticle is just balanced by a viscous drag
from the fluid. The part icles, in turn, push back on the fluid, thereby transmitting
the applied force to it. Thus, even though the force does not act directly on the fluid,
it creates an average force density F(z) = c(z)! (z ) and a corresponding pressure
gradient;

dp
dz = c(z)! (z). (7.13)

The force on each particle reflects the gradient of that part icle's potential energy:
! (z) = -dUJdz. For examp le, an impenetrable solid wall creates a zone where the
potential energygoes to infinity; the forceincreases without limit near the wall, push
ing any particle away. We'll makethe convention that U ----+ 0 far from the membrane
(see Figure 7.6b).
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Fig ure 7.6: (Schematic; sketch graphs.) (a) A literal model of a semipermeable memb rane.
cons isting ofa perfora ted wall with chan nels too small for suspended part icles to pass through.
(b) The force along z exerted by the membrane on approaching particles is - dUjdz. where U
is the potential energy of one particle. (e) In equilibrium, the pressure p is constant inside the
channel (between the first two dashed lines), but p falls in the zone where the part icle conce n
tration is decreasing. (d) Solid wrve: If the pressure on both sides is maintained at the same
value. osmo tic flow through the channel proceeds at a rate such that the pressure drop across
the channel (from viscous drag) cancels the osmotic pressure jump. Dashed curve: In reverse
osmosis, an external force maintains a pressure gradient even greater than the equ ilibrium
value. The fluid flows in a direction opposite to that seen in ordinary osmotic flow, consistent
with the reversed slope of the pressure profile inside the channel.
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Equation 7.13 presents us with an apparen t roadb lock: We have just one equation
bu t two unknown fun ction s, c(z ) and p(z) . Luckily, we know someth ing else abo ut c:
In equilibrium, the Boltzmann distribution gives it as a constant times e - U{z )/ kBT,

and the constant is just the concentration Co in the force-free region ) far from the
membrane. Then the force density along i is ( coe- U/k, TH - dU / dz), which we rewrite
as co kBT ;j';re- U(, )/ k,T j . According to Equation 7.13, this expression equals dp/dz:

d p = kBTdc .
dz dz

Integrating the equatio n across the membrane channel and out into the force-free
region then shows that tlp = <:okBT or more generally, that

The equilibrium pressure difference across a semipermeable mem
brane equals kBT times the difference in concentration between the
two force-free regions on either side of the membrane.

(7. 14)

We have just reco~ered the van 't Hoff relat ion, Equation 7.7 on page 249. Com
pared with the discussion of Section 7.2.1, however, this time we have a greater level
of detail.

Gilbertsays: Now I can see the actual mechanism of force generation. When a mem
brane is impermeable to so lute particles, then those particles bo unce off the mem
brane when they approach it. Because of visco us friction, the particles entrain some
water as they move, and so water, too, is pulled away from the membrane. But water
carl pass through pores in the membrane, so so me is also swept through it. That's
osmotic flow; a backward pressure is needed to stop it.

Sullivan: But wait. Even when the particles are free (no memb rane), their Brownian
motion disturbs the surrounding fluid! What's your argument got to do wi th the
osmo tic case?

Gilbert: That's true, but the effect you menti o n is random and averages to zero. In
contrast, the mem brane exerts on ly rightward, never leftward, forces on the solute
particles. This force does not average to zero. So its effect is to recti fy the Brownian
mo tion of the nearby particles, that is, to create a net motion in one direction .

Sullivan: It still seems like you get something for nothing.

Gilbert: No, the rectificat ion comes at a price: To do useful wo rk, the piston must
move, thereby increasing the volume of the side with solute. This change cos ts order,
as requ ired by the abst ract Idea 6.19 on page 214.

Gilbert has put a finger on where the net momentum flow into the fluid come s
from. Particles constan tly impin ge on the membrane in Figure 7.6a from the right,
never from the left . Each time the mem brane is obl iged to supply a kick to the right.
Each kick delivers some momentum ; these kicks don't average to zero. Instead, they
pull fluid through the channel un til equilibrium is reached.
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Now suppose that there are particleson both sides of the membrane, with con
centrations c and '2. Suppose ' I > ' 2. Redraw Figure 7.6 and find the form
taken by the van 't Hoff relation in this case.

OUf discussion makes clear how misleading it can be to refer to "the osmotic
pressure," Suppose we throw a lump of sugar into a beaker. Soon we have a very
nonuniform concentration c( r) of sugar. Yet the pressure per) is everywhere con
stant, not equal to kBTc(r) as we might have expected from a narve application of
the van ' t Hoff relation. After all. we know that osmotic pressures can be huge; the
fluid would be th rown in to violen t motion if it suddenly developed such big pressure
variations. Instead it sits there quietly,and the concentration spreads bydiffusion.

The flaw in the naive reasoning is the assumption that concentration gradients
themselves somehow cause pressure gradients. But pressure can only change if aforce
acts (Equation 7.12). Thus osmotic pressure can only ari se if there is a physical ob
ject (the semipermeable membrane) present to apply force to the solute par ticles. In
the absence of such an object- for instance, if we just throw a lump of sugar into
the water-there is no force and no pressure gradient. Similarly, in the experiment
sketched in Figure 1.3 on page 13, init ially there will be no osmotic force at all. Only
when solute mol ecules have had a cha nce to diffuse from the in itial lump of sugar to
the membrane will the latter begin to rectify their Brownian motion and so transmit
force to them, and thence to the fluid .

- r
7.3 .2 Osmoti c flow is quant itatively related to forced permeation

Sectio n 7.3.1 argued tha t the membrane repels pa rticles, which in turn drag fluid
awayfrom the membrane, thus creating a low-pressure layer there. This layer is the
depletion zone: see the solid curve in Figure 7.6c.

Now suppose that we apply no force to the pistons in Figure 1.3a. Then there
will be no net pressure difference between the sides. After all, pressure is force per
area,namely, zero on each side. (More realistically, it's likely to be atmospheric pres
sure on each side: but still there's no jump.) Doesn't this contradict the van ' t Hoff
relation? No, the van ' t Hoff relation gives, not the actual pressure, but that pressure
which would be needed to stop osmotic flow, that is, the pressure drop if the system
were brought to equilibrium. We can certainly maintaina smaller pressure drop than
Co kBT; then the osmotic effect will actually pull water through the pores fro m the
c = 0 side to the c = Co side. This process is osmotic flow.

The solid curve in Figure 7.6d summarizes the situation. In equilibrium, the
fluid pressure was constant throughout the pore (Figure 7.6c), but now it cannot
be. The discussion lead ing to the Hagen- Poiseuille relation (Equation 5.18 on page
18I) then gives the flow rate Q needed to create a uniform pressure drop per unit
length of p/L. The system simply chooses that flow rate which gives the pressure drop
required by the van ' t Hoff relation. These observations apply to reverse osmosis as
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well (see Section 1.2.2 on page 12): If we push against the na tural osmotic flow with
a force per area even greater than cOkBT , then the flow needed to accommo date the
im posed pressure d rop goes backward. This situa tion is shown as th e dashed curve
in Figure 7.6d.

We can su mmari ze the en tire d iscussion in a single master formula. First we
note that, even when we have pure water on bo th sides of the membrane, there will
be flow if we push on one piston . Because the pores are generally sma ll and the flow
slow, we expect a Darcy-type law for th is phenomenon , called hydraulic permeat ion
(see Section 5.3.4 on page 179). If there is a fixed density of pores per uni t area, we
expect a volume flow (volume per time) proportional to the app lied pressure and to
the area. The correspondi ng volume flux is then j v = - Lp 6p, where Lp is a constant
called the filtration coefficient of the membrane (see Problem 4.10 and Section 5.3.4
on page 179). The preced ing d iscussion suggests that there is a generalization of the
hydrau lic perm eation relation to embrace both driven and osm otic flow:"

volume flux th rough a
semipermeable membrane

(7.15)

Equation 7.15 establishes a qua ntitat ive link between driven permeat ion and os
motic flow, two seem ingly different phenomena. Ifwe app ly zero external force, then
osmotic flow proceeds at a rate j v = LpksT ts c, This is the rate at which the en
tropic force per area, ("'c) kB T, just balan ces the frictiona l d rag per area, j, / Lp• As
we increase the opposing applied pressu re the volume flux slows, drops to zero when
"'p = ("'e )k. T, then reverses at still greate r "'p, thereby giving reverse osmosis.

Equation 7.15 actually transcends the rather literal model of a membrane as a
hard wall pierced with cylindrical channels, introduced earlier for concreteness. It
is similar in spirit to the Einstein relation (Equation 4.16 on page 120), as we see
from the telltale presence of kBT linking a mechanically driven tran sport process to
an entrop ically d riven one.

t T21Section 7.3.1' on page 283 m entions the more general situation ofa membrane

with some perm eability to bo th water and dissolved solute.

7.4 A REPULSIVE INTERLUD E

Unt il now, we have stud ied osmo tic forces under the assumption that interact ion s
between solute part icles can be neglected . That may be reason ab le for sugar, whose
molecules are uncharged; but, as we'll see in a moment, electrosta tic interac tions

"Some authors int rod uce the abbreviation n = ckll T when writing this formul a, and call n the "osmotic
pressu re." We willavoid this confusi ng locut ion and simply call this quantity ckl\T.
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between the objects contained in a cell can be immense. Accordingly, this section will
introduce mixed forces, those that are partly entropic and partly energetic.

7.4 .1 Electrostatic interactions are crucial for proper cell fu nction ing

Biomembranes and other big objects (such as DNA) are often said to be "electrically
charged." The term can cause confusion. Do esn't matter have to be neutral? Let's
recall why people said th at in first-year physics.

Example: Consider a raindrop of radius R = 1 mm suspended in air. How much
work would be needed to remove just one electron from just 1% of the water mol e
cules in the drop?

Solution: Removing an electron leaves some water molecules electrically charged.
These charged water mol ecules migrate to the surface of the drop to get away from
one another, thereby forming a shell of charge of radius R. Recall from first-year
physics that th e electro static potent ial energy of such a shell (also called its Born self
energy) is ~qV(R) , or q' / (S" 80R). In this formula, 80 is a const ant describing the
properti es of air, th e permittivity. Appendix B gives e' /(4"80) = 2.3 . 10- 28 J m.
The charge q on the drop equals the number density of water molecul es, time s the
drop volume, tim es the charge on a proton, times 1%. Squaring gives

('1.)' = (10
3

kg 6 .10
23

X 4" (10- 3 m)3 x 0.01) ' = 1.9 .1036 .
e m3 O.OIS kg 3

Multiplying by 2.3 . 10- 28 J m and dividing by 2R yields abo ut 2 . i o! ' J.

Two hu nd red billio n joules is a lot of energy-certainly it's mu ch bigger than
kBT,l And ind eed, macroscopic objects really are electri cally neutral (they satisfy the
cond ition of "bulk electroneutrality") . But things look different in the nanoworld.

Repeat th e calculation for a droplet of rad ius R = l jzm in water. You'll need to
know that the permittivity e of water is about 80 tim es bigger than the one for
air used in the Example; in other words, the dielectric constant e/ eo of water
is about 80. Repeat again for an R = I nm object in water.

Thus it is possible for thermal motion to separate a neutral molecule into charged
fragments. For example, when we put an acidic macromolecule such as DNA in water,
some of its loosely attached atoms can wander away, leaving some of their electrons
behind. In this case, the remainin g macromolecul e has a net negative charge: DN A
becom es a negative macroion. This is the sense in which DNA is charged. The los t
atoms are positively charged; they are called counterions, because their net charge
counters (neutralizes ) the macroion . Positive ions are also called cations, because
they'd be attracted to a cathode; similarly, the remaining macroion is called anionic.
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The counterions diffuse away because they were no t bound by chemical (cova
len t ) bonds in th e first place and because by diffusing away, they increase their en
tropy. Chapter 8 will discuss the question ofwhat fraction detach, th at is, the prob lem
of partial dissociation. For now, let's study the simple special case of fully dissociated
macroions. This is an interesting case, in part because DNA is usually nearly fully
dissociated.

Th e counterions, having left the macro ion, now face a di lemma. If they stay too
close to home, they won't gain much entropy. But to travel far from ho me requires
lots of energy, to pull away from the opposite charges left behind on th e macroion.
The counterions thu s need to make a compromise between the competing imper
atives to m inimize energy and maximize entro py. This section will show that for a
large flat macroion , the compromise chosen by the counte rions is to remain hang
ing in a cloud near the rnacroion 's surface. After working Your Turn 7D, you won't
be surprised to find that the cloud can be a cou ple of nanometers th ick. Viewed
from beyond the counterion cloud, the macroio n appears neutral. Thus, a second
app roachin g macroion won't feel any attraction or repulsion un til it gets closer than
about twice the cloud's th ickness. Thi s behavior is quite different from the behavior
of charges in a vacuum: In that case, the electric field doesn't fall off with distance at
all!5 In sho rt,

Electrostatic interactions are of/o ng range in vacuum . But in solution,
a screening effect reduces this interaction's effecti ve range, typically to
a nanometer or so.

(7. 16)

We'd like to understand the format ion of the counterion cloud, which is often
called the d iffuse charge layer . Togethe r with the cha rges left beh ind in the surface, it
forms an electric double layer surrounding a charged macroion. The previous para
grap h makes it clear that the forces on charged macro ions have a mixed character:
Th ey are partly electrostati c and par tly entro pic. Certainly, if we could turn off ther
ma l motion , the diffu se layer would collapse back onto the macro ion, thereby leaving
it neut ral, and there'd be no force at all; we'll see this in the formulas we obtai n for
the forces.

Before we pro ceed to calculate properti es ofthe diffuse cha rge layer, two remarks
may help set the biological context.

First, your cells contain a variety of macromolecules. A number of att ractive
forces are constantly tr ying to stick the macromolecules togeth er, for example, the
depletion force or the more comp licated van der Waals force. It wouldn' t be nice if
they just acquiesced, clum ping into a ball of sludge at the bo ttom of the cell, with
the water on top. The same problem bedevils many indust rial colloidal suspensions,
for examp le, paint. On e way Nature, and we its imitators, avoid this "clumping catas
trophe" is to arra nge for the colloidal part icles to have the same sign of net charge.
Indeed, most of the macromolecules in a cell are negatively charged and hence repel
one another.

Second, the fact that that electrostatic forces are effectively of sho rt range in so
lution (summa rized in Idea 7.16 above) matt ers crucially for cells, because it means

"See Equa tion 7.20 on page 264.
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that

Macroions will not feel one another unti l they're nearby, but

Once they are nearby, the detailed surface pattern of po sitive an d negative residues
on a pro tein can be felt by its neighbor, not just the overall cha rge.

As mentioned in Chapter 2, this observation goes to the heart of how cells organi ze
their myriad in tern al biochemical reactions. Although thousands of macromolecules
may be wan dering around any pa rticular locatio n in the cell, typically only th ose with
precisely matching shapes and cha rge distributio ns will bind to gether. We call now
see that the root of this amaz ing specificity is that

Even though each individual electrostatic int eraction between match-
ing charges is rather weak (rela tive to kBT,), still the combined ef
fect of many such interactions can lead to strong binding of two
molecules-i-ii their shapes and orientations m atch precisely.

Notice that it's not eno ugh for two matching surfaces to come together; they mu st
also be properly oriented before they can bind. We say that macromolecular binding
is stereospecific.

Th us, understa nd ing the very fact of molecu lar recogn ition, which is crucial for
the operation of every cell process, requires that we first understand the coun terion
cloud around a charged surface.

7.4.2 The Gauss Law

Before tackling statistical systems with mobile charged ions, let's pause to review
some ideas abo ut systems of fixed cha rges. We need to recall how a cha rge distri 
bution gives rise to an elect ric field E, in the plan ar geometry shown in Figure 7.7.
Th e figure represents a th in. negat ively charged sheet with uniform surface charge
density -uq• next to a spread-out layer of positive cha rge wi th volume charge density
Pq(x) . Thu s O"q is a positive constant with units coul m- 2

• whereas Pq(x) is a positive
fu nction with un its coul m - 3• Everything is constant in the r and i direction s. We'll
write E for the com po nent of the electric field in the i direction .

Th e electric field above the negati ve shee t is a vector pointing along the -xdi 
rect ion, so the function [(x) is everywhe re negative. Just above the shee t, the electric
field is proportional to the surface cha rge density:

[Isurface = -aq/ f . Gauss Law at a flat, cha rged surface (7.18)

In th is formula, the permittivity e is the same constant appearing in Your Turn 7D;
in water, it's about 80 times the value in air or vacuum." As we move away from

"Many authors use the notation l:l:o fo r the quan tity called e in this book. It's a confusing notation, because
then their e :::::- 80 is dimensionless while £ 0 (which equals our £ 0) does have dim ensions.
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ciA

po sitive layer

x

Figure 7.7: (Schematic.) A planar distribution of charges. A thin sheet of negative charge
(hatched.bottom) lies next to a neutralizing positive layer of free counterions (shaded, top).The
individual counterions are not shown; the shading represents their averagedensity.The lower
box encloses a piece of the surface; so it contains total charge -uqd.A. where dA is its cross
sectional areaand -uq is the surfacechargedensity. The upperbox encloses chargePq(x)dAdx,
where Pq(x) is the chargedensity of cou nterions. The electric field £ (x) at any point equals the
electrostatic force on a small test particle at that po int, divided by the particle's charge. For
all positive x, the field points along the - xdirection. The field at Xl is weaker than that at X2.

because the repelling layer of positive charge between XI and X = 0 is thickerthan that between
X2 andx = O.

the surface, the field gets weaker (less negative): A positively charged part icle is still
att racted to the negative layer, but the attraction is partially offset by the repu lsion of
the intervening positive charges. The difference in electric fields at two nearby points
reflects the reduction of Equation 7.18 by the charge per area in the space between
the points. Calling the points x ± ~ dx) we see that this surface charge density equals
pq(x) dx (sec Figure 7.7). Hence

In other words,

E:(x + t dx) - E:(x - t dx) = (dx)pq(x) / e . (7. 19)

dE: = Pq
dx e

Gauss Law in bulk (7 .20)

Section 7.4.3 will usc this relation to find the electric field everywhere ou tside the
surface.
IT2 1Section 7.4.2' on page 284 rclates the preceding discussion to the more general

form of the Gauss Law.

7.4.3 Charged surfaces are surrounded by neutralizing ion clouds

The mean field Now we can return to the problem of ions in solution. A typical
prob lem might be to consider a thin , flat, negatively charged surface with surface
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Figure 7.8: (Schematics.) Behavior of counterion near surfaces. (a) Counterion cloud outside a charged surface with
surface charge density -aq • (b) When two similarly charged surfaces approach, their counterion clouds begin to get
squeezed. (c) When two oppositely charged sur faces approach, their counterion clouds are liberated, and entropy in
creases.

charge density -2ag and water on both sides. For example, cell membranes are neg
atively charged. You might want to coax DNA to enter a cell (say, for gene therapy).
Because both DNA and cell membranes are negatively charged, you'd need to know
how much they repel.

An equivalent, and slightly simpler, problem is that of a solid surface carry ing
charge density - erg, with water on just one side (Figure 7.8a). Also for simplicity,
suppose that the loose positive counterion s are mo novalent (for example, sodium,
Na+). That is, each carries a single charge: q+ = e = 1.6 · 10- 19 ca ul. In a real cell,
there will be additional ions of both charges from the surrounding salt solution. The
negatively charged ones are called coions because they have the same charge as the
surface. We will neglect the coions for now (see Section 7.4.3' on page 284).

As soon as we try to find the electric field in the presence of mobile ions, an
obstacle arises: We are not given the distribut ion of the ion s, as we were in first-year
physics, but instead must find it. Moreover, electric forces are of long range. The
unknown distribution of ion s will thus depend on each ion's interactions not only
with its nearest neighbo rs but also with many other ions! How can we hope to model
such a complex system?

Let's t ry to turn adversity to our advantage. If each ion interacts with many oth
ers, perhaps we can approach the problem by thinking of each ion as moving in
dependently of the others' detailed location s but und er the influence of an electric
potential created by the average charge density of the others, or (Pq). We call this ap
proximate electric potenti al V (x) the mean field and this approach the mean-field
approximation. The approach is reasonable if each ion feels many others; then the
relative fluctuations in V ex) abo ut its average will be small (see Figure 4.3 on page
113). To make the no tation less cumbersome, we will drop the averaging signs; from
now on , Pq refers to the average density.
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solve Poisson equat ion

charge
density

Bolt zman n distrib ution

Figu re 7.9: (Diagram.) Strategy to find the mean-field solution. Neither the Poisson equation
nor the Boltzmann distribution alone can determine the charge distribution. but solving these
two equations in two unknowns simultaneously does the job.

The Poisson- Boltzmann equation Wewant c+ (x), the concentration ofcounterions.
We are supposing that our surface is immersed in pure water; hence, far away from
the surface, c+ ~ O. The electrostatic potential energy of a counterion at x is eV(x).

We are treating the ions as moving independently of each other in a fixed potential
V (x ), so the den sity of counterions, ,+(x) , is given by the Boltzmann distribution.
Thus c+(x) = coe - tV(x)/k BT, where Co is a constant. We can add any constant we like
to the potential because this change doesn't affect the electric field E = -dVldx. It's
convenient to choose the constant so that V(O) = O. This choice gives , +( 0) = '0; so
the unknown constant Co is the con centration of coun terions at the surface.

Unfortunately, we don't yet know V (x ). To find it, app ly the second form of the
Gauss Law (Equation 7.20), taking Pq equal to the density of counterions times e. Re
membering that the electric field at x is [(x) = -dVI dx gives the Poisson equation:
d' V I <Ix' = - Pql e. Given the charge density, we can solve the Poisson equation for
the electric potential. The charge density, in turn. is given by the Boltzma nn distri
bution as ec+(x) = eeoe-eV(x) /kBT .

It may seem as thou gh we have a chicken-and-egg problem (Figure 7.9): We need
the average charge density Pq to get the potent ial V . But we need V to find Pq (from
the Boltzmann distribution )! Luckily, a little mathematics can get us out of predica
ments like this one. Each of the arrows in Figure 7.9 represents an equation in two
unknowns, namely, Pq and V. \"Ie just need to so lve these two equations simu ltane
ously to find the two unknown s. (We enco untered the same prob lem when deriving
the van ' t Hoff relation, at Equation 7.13 on page 256 , and resolved it in the same
way.)

Before proceed ing, let's take a moment to tidy up our formulas. First, we com
bine the variou s con stants into a length scale:

e'
eB == -:4".-e"""'k-:.:::T Bjerrum len gth , in water (7.21)

lB tells us how close together we can push two like-charge ions, if we have energy kBT
available. For mo novalent ions in water at room tem perature, l B= 0.7 1 nm. Next,
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define the dimensionless rescaled potential V:

Now combine the Poisson equation with the Boltzmann distribution to getYour
Turn

7£

V(x) '" eV (x ) / kBT.

Poisson-Boltzmann equati on

(7.22)

(7.23)

The payoff for intro duci ng the abbreviatio ns V and £B is that now Equatio n 7.23 is
less clutt ered, and we can verify at a glance that its dimensions work: Both d' /dx'
and f s co have units m- 2

.

Like any differential equation, Equation 7.23 has, not one, but a whole family
of solutions. To get a un ique solution, we need to specify additiona l inform ation ,
namely, some boundary conditions on the unknown func tion V (x) . For example, if
you throw a rock upward , Newton's Law says that its height z( t) obeys the equatio n
d' z/dt' = - g. But th is equation won't tell us how high the rock will go! We also need
to specifyhow hard you threwthe rock, or more precisely, its speed and location when
it left your hand at time zero. Similarly, we should not expect Equation 7.23 to specify
the full solution because it do esn't ment ion the surface charge density. Instead, the
equation has a family of so lutions; we must choose the one corresponding to the
given value of O"q.

To see how a q enters the problem, we now apply the surface form of the Gauss
Law (Equation 7.18),whichgives- d

dx
v l r = - "' ,or

sur ace E

dVI a q- = 4rr£B-.
dx surface e

(when the allowed region is x > 0) (7.24)

When using this formula, rememb er that crq is a positive number; the surface has
charge density -aq.

Example: How does on e rememb er the correct sign in this formu la?

Solution: Notice that the elec trostatic potential V goes down as we approach a nega
tive object. Thus, approaching counterion s feel their potential energy eV decrease as
they approach the surface, so they're attracted. If x is the distance from a negatively
charged surface, then Vwill be decreasing as weapproach it, orincreasing asweleave:
dV/dx > 0, so the sign is correct in Equatio n 7.24.

Solution ofti,e Poisson- Boltzmann equation We have reduced the problem of find
ing the counterion distribution outside a surface to solving Equation 7.23 . This is a
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differenti al equation , so we'll need to impose some conditions to determine a unique
solution. Furthermore, the equation itself conta ins an unknown constant Co, which
requ ires another condition to fix its value. The conditions are

The boundary condition at the surface (Equation 7.24),

An analogous condition dV/ dx = °at infinit y, because no charge is located there,
and

The convention that V (O) = o.

It's usually not easy to solve non linear differential equation s like Equation 7.23.
Still, in some special situations, we do get lucky. We need a function whose second
derivative equals its exponential. We recall that the logarithm ofa power ofx has the
property that both its derivative and its exponenti al are powers of x. We don't want
Vex) = ln x, because that's d ivergent (equal to infinity) at the surface. Nevertheless,

- ,
a slight modificat ion gives something promising: Vex) '" Bln(l + (X/Xo) ) . Thi s ex-
pression has the feature that V (O) = 0, so we need not add any extra constant to V .

We now check wheth er we can cho ose values for the con stant s Band Xo in such a
way that the proposed solution solves the Poisson-Boltzmann equation. Substituting
B ln (l + (x/Xo)) into Equation 7.23, we indeed find that it works, provided we take
B = 2 and x, = 1/ ../27rf B",.

Next we must impose the bou ndary condition (Equation 7.24). In the present
situation, this condition says 2/ Xo = 47rf B(aq/ e) . It may seem as thou gh we have
exhausted all our freedom to adjust the tr ial solution (when we chose values for B
and Xo) . But the Poisson- Boltzmann equation itself contains an unknown parameter,
Co. You can check that taking this parameter to be Co = 27rf B(aq/e) 2 ensures that our
solution satisfies the bou ndary cond ition, and that then

kaT
V ex ) = 2- ln(l + (x /Xo) ) , where Xo = (27rfaaq/e ) - ' .

e
(7.25)

Your
Turn

7F

Find the equilibrium concentration profile c+ (x ) away from the surface.
Check your answer by calculating the total surface den sity of counterions,
fa"" dx c+(x) , and verifying that the whole system is electrically neutral.

The solution you just found is sometimes called the Gouy-Chapman layer ; Xo is
called the Gouy- Chapman length. Thi s solution is appropriate in the neighborh ood
of a flat, charged surface in pure water.' Let's extract some physical conclusions from
the math.

First, we see from Your Turn 7F that, indeed, a diffuse layer forms. with thick
ness roughly Xo . As argued physically in Section 7.4.1, the counterio ns are willing

7 @]or morerealistically, a highly charged sur face in a salt solution whose concentration is low enough;

see Section 7.4.3' on page 284.
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to pay some electrostatic potential energy in order to gain entropy. More precisely.
the counterions pull some thermal ene rgy from their environme nt to make this pay
ment. They can do this because doing so lowers the entropic part of their free energy
more than it raises the electrostatic part. If we could turn off thermal motion (that is,
send T --+ 0), the energy term would dominate and the layer would collapse. We see
this mathematically from the observation that then the Bjerrum length would go to
infinity and Xo ---7 O.

How mu ch elect rostatic energy must the cou nterions pay to dissociate from the
planar surface? We can think of the layer as a planar sheet of charge hovering at
a distance X Q from the surface. When two sheets of charge are separated, we have
a parallel-plate capacitor. Such a capacitor, with area A, stores electrostatic energy
E = q'o,'1(2C). Here q,o' is the total charge separated; for our case, it's aqA. The
capacitance of a parallel-plate capacitor is given by

C = cAl"" . (7.26)

Combining the preceding formulas gives an estimate for the density of stored elec
trostatic energy per unit area for an isolated surface in purewater:

EI (area) '" k. T(aq /e) . (electrostatic self-energy, no added salt) (7.27)

That makes sense: The env ironment is willing to give up about kBT of energy per
. counterion. This energy gets stored in forming the diffuse layer.

Is it a lot of energy? A fully dissociating bilayer membrane can have one unit
of charge per lipid head group, or roughly laql el = 0.7 nm- ' . A spherical vesicle
ofradius 10I' m then carr ies stored free energy '" 4rr(10 I' m)' x (0.7/ nm')k. T, '"
10'k. T . It's a lot! We'll see how to harness this stored energy in Sectiou 7.4.5.

Forsimplicity, the preceding calculations assumed that a dissociating surfacewas
immersed in pure water. In real cells. however, the cytoso l is an electrolyte, or salt so
lution. In this case, the density of counterions at infinity is not zero, and the counteri
ons originally on the surface have less to gain entro pically by escaping; so the diffuse
charge layer will hug the surface more tightly than it does in Equation 7.25. Tha t is,

Increasing salt in the solution shrinks the diffuse layer. (7.28)

IT2 1Section 7.4.3' on page284 solves the Poisson-Boltzm ann equation for a charged

surface in a salt solution . arriving at the concep t of the Debye screening length and
making Equation 7.28 quantitative.

7.4.4 The repulsion of like-charged surfaces arises from compression
of their ion clouds

Now that we know what it's like near a charged surface, we'reready to go further and
compute an entropic force between charged surfaces in solution. Figure 7.8b shows
the geometry. One might be temp ted to say, "Obviously, two negatively charged sur
faces will repel." But wait: Each surface, together with its counterion cloud, is an elec
trically neutral object! Indeed. if we co uld tum o f( thermal motion. the mobile ions
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would collapse down to the sur faces, thereby rendering them neutral. Thus the repul 
sion between like-charged sur faces can only arise as an entropic effect . As th e surfaces
get closer than about twice their Gouy-Chapma n length Xc. thei r diffuse counterion
clouds get squeezed; they then resist with an osmotic pressure. Here are the details.

For simplicity, let's continue to suppose that the surrounding water has no added
salt and , hence, no ions other than the counterions dissociated from the surface."
This t ime we'll measure distance from the midplane between two surfaces, which are
located at x = ± D (Figure 7.8b). We'll suppose that each surface has surface charge
density -aq • We choose the constant in V so that V (O ) = 0; hence the parameter
Co = , +(0) is the unknown concentra tion of counterions at the midplane. V(x ) will
then be symmetrical about the midplane, so Equation 7.25 won't work. Keeping the
logarithm idea, though, this time we try V(x ) = A In cos(fJx ), where A and fJ are
unknown constants. Certainly this trial solution is symm etrical and equals zero at
the midplane, where x = o.

The rest of the procedure is familiar. Substitut ing the trial solution into the
Poisson- Boltzmann equation (Equation 7.23) gives A = 2 and fJ = J 2rri BCo. The
boundary condition at x = - D is again Equation 7.24. Impo sing the boundary con
dit ions on our trial solution gives a condition fixing f3 :

4rr i .(ag/e ) = 2f3 tan(Df3). (7.29)

Given the surface charge density -aq , we solve Equat ion 7.29 for f3 as a function of
the spacing 2D ; then the desired solution is

V (x) = 2 In cos(fix), or c+ (x ) = co(cosfix) - 2. (7.30)

As expected, the charge density is greatest near the plates; the potential is maximum
in the center.

We want a force. Examining Figure 7.8b, we see that ou r situation is essent ially
the opposite of the depletion interaction (Figure 7.3b on page 253): There, particles
were forbidden in the gap, whereas now they are required to be there, by charge
neutrality. In either case, some force acts on individual particles to constrain their
Brownian motion ; that force gets transmitted to the confining surfaces by the fluid,
ther eby creating a pressure drop of klJT times the concentration difference between
the force-free regions (see Idea 7.14 on page 258). In our case, the force-free regions
are the exterior and the mid plane (because E: = - ~ = 0 there). The corresponding
concentrations are 0 and Co, respectively; so the repulsive force per unit area on the
surfaces is just

f /(area) = cokBT. repu lsion of like-charged surfaces, no adde d salt

(7.31)

II~ This is not as restrictive as it sounds. Even in the presence of sail, o ur result will be accurate if the

surfaces are highly charged because in this case, the Gouy-Chapma n length is less than the Debye screening
length (see Section 7.4.3' on page 284).
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Figure 7.10: (Mathematical functions.) Graphical solution of Equation 7.29. The sketch
shows the function 21C £IlGq /(EfJ), as well as tanDfJ for two values of the plate separation 2D .
The value of fJ at the intersect ion of the rising and falling curves gives the desired solution.
The figure shows that smaller plate separation gives a larger solution fh than does large sepa
ration (yielding fJl)' Larger f3 in turn implies a larger ion concentration Co = fJ2/ (l rr£ll) at the
midplaneand larger repulsive pressure.

In this formula, Co = fJ ' / (2rreB ) and fJ (D, aq) is the solution of Equati on 7.29, You
can solve Equation 7.31 numerically (see Problem 7.10), but a graphical solution
shows qualitat ively that fJ increases as the plate separa tion decreases (Figure 7.10),
Thus the repuls ive pressure increases, too, as expected.

Note that the force just found is not simply proportional to the absolut e tem
perature, because f3 has a complicated tem perature depend ence. This means that our
pressure is not a purely entropic effect (like the depletion interaction , Equation 7.10),
but a mixed effect: The counterion layer reflects a balancebetween en tropic and en
ergetic imperatives. As remarked at the end of Section 7.4.3 , the qualitative effect of
adding saltjo the solution is to tip this balance away from entropy, thereby shri nking
the diffuse layers on the surfaces and shortening the range of the interaction.-

- Thi;;(he ory works (see Figure 7.11), You'llm ake a detailed compa rison with ex
periment in Problem 7.10, but for now, a simple case is of interest:

Show that at very low surface charge density, a q « 1/ (DeB) , the density of
counterions in the gap is nearly uni form and equals the total charge on the
plates divided by the volume of the gap between them , as it must.

Thus, in this case, the counterions act as an ideal so lution, and the pressure they exert
is that predicted by the van 't Hoff formul a.
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Figu re 7.1 1 : (Experimental data with fits.) The repulsive pressure between two positively
charged surfaces in water. The surfaces were egg lecithin bilayers contain ing 5 mole% or
IOmo le% phosphatid ylglycerol (open and filled circles, respectively). The curves show one
parameter fits of these data to the numerical solution of Equations 7.29 and 7.31. The fit
parameter is the surface charge density aq • The dashed line shows the solution with one proton
charge per 24 nm2; the solid line corresponds to a higher charge den sity (see Prob lem 7.10). At
separations below 2 om, the surfaces begin to touch and oth er forces besides the electrostatic
one appear. Beyond 2 nm, the purely electrosta tic theory fits the data well, and the membrane
with a larger density of charged lipids is found to have a larger effect ive charge density, as
expected. [Data from Cowley et al., 1978.1

IT21Section 7.4.4' on page 286 derives the electros tatic force directly as a deriva tive

of the free energy.

7.4.5 Oppositely charged surfaces attract by counterion release

Now consider an encounter between surfaces of opposite charge (Figure 7.Se on
page 265). Withou t working through the details, we can understand the attraction of
such surfaces in solution qualitatively by using the ideas developed earlier. Again, as
the surfaces approach from infinity, each presents a net charge den sity of zero to the
other; there is no long-range force. un like the constant attractive force between two
such planar surfaces in air. Now. however, as the surfaces approach. they can shed
counterion pairs while preserving the system's neutrality. The released counterions
leave the gap altogether and hence gain entropy, thereby lowering the free energy
and driving the surfaces together. If the charge densities are equal and opposite. the
process proceeds until the surfaces are in tight contact, with no coun terions left at all.
In this case, there is no separation of charge, and no counterions remain in the gap.
Thus aU the self-energy estimated in Equation 7.27 gets released. We have already
estimated that this energy is substantial: Electrostatic binding between surfaces of
matching shape can be very stro ng.
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7.5 SPECIAL PROPERTIES OF WATER

Suppose you mix oil and vinegar for your salad, shake it thoroughly, and then the
phone rings. When you come back, the mixt ure has separated. The separation is
not caused by gravity; saiad dressing aiso separates (a bit more slowly) on the space
shuttle. We might be temp ted to pan ic and declare a violation of the Second Law. But
by now we know enough to frame some other hypotheses:

1. Maybe some attractive force pulls the individual mol ecules afwater together (ex
peiiing the oil) to lower the total energy (as in the water-condensation example of
Section 1.2.1 on page 9) . The energy thus liberated would escape as heat, thereby
increasing the rest of the world's entropy, perhaps enough to drive the separation.

2. Maybe the decrease of entropy when the small, num erous oil droplets combine is
offset by a much larger increase of entropy from some even smaller, even more
numerous, objects, as in the depletion interaction (Section 7.2.2 on page 251).

Actually, many pairs of liquids separate spo ntaneously, essentially for energetic rea
sons like point (1). What's special about water is that its dislike for oil is unusu
ally strong and has an unusual temperature dependence. Section 7.5.2 will argue
that these special properties stem from an additional mechanism, listed as point (2 )
above. (In fact, some hydrocarbons actually liberate energy when mixed with water,
so point ( 1) cannot explain their reluctance to mix.) Before this discussion, however,
we first need some facts about water.

7.5.1 Liquid water contains a loose network of hydrogen bonds

The hydrogen bond The water molecule consists of a large oxygen atom and two
smaller hydrogen atoms. The atoms don't share their electrons very fairly: All the
electrons spend almost all their time on the oxygen. Molecules that maintain a per
manent separation of charge, like water, are called polar. A molecule that is every
where roughly neutral is called nonpolar . Common nonpolar molecules include hy
dro carbon chains, like the ones making up oils and fats (Section 2.2.1 on page 46).

A second key property of the water molecule is its bent , asymmetrical shape: We
can draw a plane slicing thro ugh the oxygen atom in such a way that both the hydro
gens lie on the same side of the plane. The asymmetry means that an external electric
field will tend to align water mo lecules, partly countering the tendency of therm al
motion to randomize their orientations. Your microwave oven uses this effect. It ap
plies an osciiiating electric field, which shakes the water molecules in your food. Fric
tion then converts the shaking motion into heat. We summarize these comments by
saying that the water molecule is a dipole and that the ability of these dipoles to align
(or "polarize") makes liquid water a highly pol arizabl e medium. (Water's polari z
abiiity is also the origin of the large value of its permittivity E; see Section 7.4.1.)

There are many small polar mo lecules, most of which are dipoles. Among these,
water belongs to a special subclass. Note that each hydrogen atom in a water mole
cule had only one electron to begin with. Once it has lost that electron, each hydrogen
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Figure 7.12: (Sketch; metapho r.) (a) Tetrahedral arrangement of water molecules in an ice
crystal. The sticksdep ict chemical bonds ; the dashed lines are hydrogen bonds. The gray outline
of the tetrahedron is just to guide the eye. The oxygen atom in the center of the figure has two
dashed lines (one is hidden beh ind the oxygen ), coming from the direct ions most distant from
the directions of its own two hydrogen ato ms. (b) Crystal struc ture of ice. [(a) Adapted from
Israelachvili, 1991. (b) From Ball.2000.1

ends up essen tially as a naked proton; its physical size is much smaller than that of
any neutral atom. The electr ic field abo ut a point charge grows as 1/ r2 as the d istance
r to the charge goes to zero, so the two tiny positive spots on the water molecule are
each surro unded by an int ense electric field. This effect is spec ific to hydrogen: Any
oth er kind of atom bonded to oxygen retains its other electrons. Such a part ially
stripped atom carries about the same charge +e as a proton, but its charge distri bu
tion is much larger and hen ce more diffuse, with milder electric fields than those on
a hydro gen.

Each water molecule thus has two sharp ly posit ive spots. which are or iented at a
defini te angle of 1040 to each other. Tha t angle is abo ut the same as the ang le between
rays d rawn from the center to two of the corners of a tetrahedron (Figure 7.12a). The
molecule will try to orient itself in such a way as to point each of its two positive
spots d irectly at some other molecule's "back side" (the negat ively cha rged region
opposite the hydrogens), as far away as possible from the latter's two positive spots.
The strong electric fields near the hydrogen ato ms make this interaction stronger
than the generic tendency for any two electric dipo les to att ract. and align with. each
other.

The idea that a hyd rogen atom in on e molecule could interact with an oxygen
atom in another molecule. in a characteristic way, was first proposed in 1920 by
M. Huggins, an undergraduate student of the chemist G. Lewis. Lewis named this
interaction the hydrogen bond. or H-bond.

As noted earlier, every molecule in a sample of liquid water will simultaneously
attempt to point its two hydro gen atoms toward the back sides of other mo lecules.
The best way to arrange this is to place the water molecules at the points of a tetrahe
drallattice. Figure 7.12a shows a central water mo lecule with four nearest neighbors.
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Two of the centra l molecule's hydro gens are pointing directly at the oxygen atoms of
neighbors (top and front -right ), while its two other neighbo rs (front-left and back)
point their hydrogen s toward its back side . As we lower the temperature, thermal d is
order becomes less dominant and the molecules lock into a perfect lattice-an ice
crystal. To help yourself imagin e thi s lattice, th ink o f yo ur to rso as the oxygen ato m,
your hands as the hydrogen atoms, and your feet as the docking sites for other hy
drogen s. Stand with yo ur legs apart at an ang le o f 104° and yo ur arms at the sam e
angle. Twist 90° at the waist. Now you're a water molecule. Get a few dozen friends
to assume the same po se. Now instruct everyo ne to grab someo ne's ankle with each
hand (this works better in zero gravity). Now you're an ice crystal (Figure 7. t2b ).

X-ray crystallogra phy reveals that ice really does have the struc ture shown in Fig
ure 7. 12. Each oxyg en is surrounded by four hydro gen atoms. Two are at the distance
0.097 nm appro priate fo r a cova lent bond; the other two are at a distan ce 0 .177 nm .
Th e latter distance is too long to be a covalent bon d but shorter than the distance
0.26 nm we'd expect from adding the radii of atomic oxygen and hydrogen. Instead,
it reflects the fact that the hydrogen has been stripped of its electron cloud; its size
is essentially zero. (One often sees the "length of the H-bond" in water quoted as
0.27 nm. This number actually refers to the distance between the oxygen atoms, that
is, the sum of the lengths of the sticks and dashed lines in Figure 7.t2a. )

The energy o f attractio n o f two water mol ecul es, oriented to opt imi ze their
H-bonding, is interm edi ate between a true (covalent) chemical bo nd and the
gene ric attractio n o f any two molecul es; thi s explains why it m erits the separate
name "H-bo nd." More precisely, wh en two isol ated water molecules (in vapor)
stick togeth er, the energy change is abo ut - 9kBYr. For com parison , the generic
(van der Waals) attractio n between any two sma ll neut ral molecu les is typically only
0.6-1. 6 kBT,. True chemical bond energies range from 90 to 350 kBTp

The hydrogen bond network ofliquid water The network ofH-bonds shown in Fig
ure 7.12 cannot withstand thermal agitat ion when the temperature exceeds 273 K: Ice
melts. Even liquid water, however, remains partially ordered by H-bonds. It adopt s
a compromise between the energetic drive to form a lattice and the ent ropic drive
to diso rder. Thus, instead of a sing le tetrahedral net work, we can think of water as
a collec tion of many small fragments of such netwo rks. Therm al mot ion co nstantly
agitates the fragm ent s, movin g, breaking, and reconne cting them , but the neighbo r
hood of each water molecule still looks approximately like the figure. In fact, at room
temperature, each wate r mol ecul e m aintain s m ost of its H-bonds (averaging abo ut
3.5 o f the original 4 at any given time) . Becau se each water m ol ecule still has m ost
of its H -bonds, and these are stronge r than the generic attractions between sma ll
molecules, we expect that liquid water will be harder to break apart into individual
molecules (water vapor) than other liqu ids of small, but not H-bonding, molecules.
And indeed, the boiling poin t of water is 189 K high er than that of the sm all hydro
carbon molecule ethane. Methano l, ano the r sma ll m olecule capable o f m aking one
H -bond from its - OH group, boil s at an intermed iate tem perature, 36 K lower than
water (with two H-bonds per molecule). In short ,

The cohesive forces between molecules of water are larger than those
between other sm all molecules that do no t form H-bonds.

(7.32)
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Hydrogen bonds as interactions wi tl,;n and betwee n macromolecules in solutio n
Hydrogen bon ds will also occur between molecules containing hydrogen covalent ly
bonded to any electronegative atom (specifically oxygen, nitrogen. or fluorine). Thus,
not only water, but also many of the molecules described in Chapter 2 can interact
via H-bonding. Wecanno t directly apply the estimates just given for H-b ond strength
to the water environment, however. Suppose that two parts of a macromolecule are
initially in direct contac t, forming an H-bond (for example, the two halves ofa DNA
basepair, Figure 2.11 on page 47). When we separate the two parts, their H-bond is
lost. But each of the two will immediately form H-bonds with surrounding water
molecules, partially compensating for the loss! In fact, the net free energy cost of
breaking a single H-bond in water is generally only about 1-2kBT,. Other competing
interactions are also smaller in water, however, so the H-bond is still significant. For
example, the dipole interactio n, like any electrostat ic effect, is diminished by the high
permittivity of the surro unding water (see Your Turn 7D on page 261).

Despite their modest strength, H-bonds in the water environment are never
theless important in stabilizing macromolecular shapes and assemblies. In fact. the
very weakness and short range of the H-bond are what make it so useful in giving
macromolecular interactions their specificity. Suppose that two objects need several
weak bonds to overcome the tendency of thermal motion to break them apart. The
short range of the H-bond impli es that the objects can on ly make multiple H-bonds
if their shapes and distribution of bonding sites match precisely. Thus, for examp le,
H-bonds help hold the basepairs of the DNA double helix together, but only if each
base is properly paired with its complemen tary base (see Figure 2.11 on page 47).
Section 9.5 will also show how, despite theirweakness, H-bonds can give rise to large
structural features in macromolecules via coo perativity

1121Section 7.5.1' on page 288 adds more detail to the picture of H-bonding j ust

ske tched.

7.5.2 The hydrogen-bond network affects the solubility of small
mo lecules in water

Solvation of small nonpolar molecules Section 7.5.1 described liquid water as a
rather complex state, balancing energetic and entropic imperatives. With this picture
in mind, we can now sketch how water responds to- and, in turn, affects-other
molecules immersed in it.

One way to assess water's interaction with another molecule is to measure that
molecule's solubility. \Vater is quite choosy in its affinities, with some substances mix
ing freely (for example, hydrogen peroxide, H, O, ), others dissolving fairly well (for
example, sugars ), while yet others hardly dissolve at all (for example, oils). Thus ,
when pure water is placed in contact with. say. a lump of sugar. the resulting equi
librium solution will have a higher concentration of sugar than the corresponding
equilibrium with an oil drop in water. We can interpret these observations by say
ing that the free energy cost for an oil molecule to enter water is larger than that for
sugar (Section 6.6.4 on page 225 relates free ene rgy changes to occupation probabil
ities).
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Figur e 7.13 : (Sketch.) Clathrate cage of l-l -bonded water molecules, shown as vertices o f a
polyhedron surrounding a nonpolarobject (graysphere). Four lines emerge from each vertex,
representing the directions to the four water molecules H-bonded to the one at the vertex.
This idealized structure should not be taken as a literal depiction; in liquid water, some of the
H-bonds willalways be broken. Rather, the figure demonstrates the geometrical possibility of
surrounding a small non polar inclusion without any loss o f H-bonds.

To understand these differences, we first note that hydrogen peroxide, which
mixes freely with water. has two hydrogen atoms bonded to oxygens; so the mol
ecule can participate fully in water's H-bond network. Thus, introducing an HzOz
molecule into water hardly disturbs the network, and hence incurs no significant free
energy cost. In contrast, hydrocarbon chains such as those composing oils are non 
polar (Section 7.5.1), and so offer 110 sites for H-bonding. We might at first suppose
that the layer of water molecules surrounding such a nonp olar intruder would lose
some of its energetically favorable H-bonds, thereby creating an energy cost for in
troducing the oil. Actually, though, water is more clever than this. The surrounding
water molecules can form a structure called a clathrate cage around the intruder,
thereby maintaining their H-bonds with each other with nearly the preferred tetra
hedral orientation (Figure 7.13). Hence the average number of H-bonds maintained
by each water molecule need not drop very much when a small nonpolar object is
introduced .

But energy minim ization is not the whole story in the nanoworld. To form the
cage structure shown in Figure 7. 13. the surrounding water molecules have given up
some of their orientational freedom : They canno t point any of their four H-bo nding
sites toward the nonpolar object and still remain fully H-bonded. Thus the water
surrounding a nonpolar molecule must choose between sacrificing If-b onds, with a
corresponding increase in electrostatic energy, or retaining them, with a correspond
ing loss of entropy. Either way, the free energy F = E - TS goes up. This free energy
cost is the origin of the poor solubility of nonpol ar molecules in water at room tem
peratu re, a phenome non generally called the hydrophobic effect.

The change in water structure upon entr y of a nonpolar molecule (called hy
drophobic solvation) is too complex for an explicit calculation of the sort given in



278 Chapter 7 Entropic Forces at Work

IO r' ~---- --.

56

~

484024 32
tempera t ure, o(

1G8o
0.1 '-'-__.l.-_----'__--'-__-'-__'--_----'_ _ -'

Rg ure 7.14: (Experimental data.) Semilog plot of the solubilities of small nonpolar molecules
in water, as functions of temperature. The vertica l axis gives the mass percentage of solute in
water, when water reaches equ ilibri um with the pur e liquid . Top to bottom. butanol (C4 H~OH),

pentanol (CSHllOH). hexano l (Cf, H130 H), and hep tanol (C7H ISOH ). Note that the solubili
ties decrease with increasing chain length. [Data from Lide, 2001.]

Section 7.4.3 for electrostat ics. Hence we cannot predict a prior i which of the two ex
tremes ment ioned earlier (preserving H-bonds or main taining high entropy) water
will choose. At least in some cases, thou gh, we can reason from the fact that certain
small nonpolar molecules become less soluble in water as we warm the system start
ing from room temp erature (see Figure 7.14). At first, this observation seems sur
prising: Shouldn't increasing temperature favor mixing? But suppose that for every
solute molecule that enters, thereby gaining some entropy with its increased freedom
to wander in the water, several surrounding water molecules lose some of their orien
tat ional freedom, for example, by forming a cagelike struct ure. In this way, dissolving
more solute can incu r a net decrease in entro py. Raising the temperatu re makes this
cost more significant, and so makes it harder to keep solute in solution. In short, sol
ubility trends like the ones shown in Figure 7.14 imply a large entropiccomponent to the
free energycosrof hydrophobic solvation.

More generally, detailed measurements con firm that, at room temp eratu re, the
entropic term - T lJ.S dominates the free energy cost lJ.Fofdissolving any small non
polar molecule in water. The energychange lJ.E may actua lly be favorable (negative),
but, in any case, it is outweighed by the entrop ic cost. For examp le, when propane
(C, H,) dissolves in water, the tota l free energy change is +6.4kBT, per molecule; the
entropic contribution is + 9.6kBTn whereas the energetic par t is - 3.2kBTr• (Further
evidence for the entropic character of the hydrophobic effect at roo m temperature
comes from computer simulations of water structure, which show that, outside a
nonpolar surface, the water's O-H bonds are ind eed constrained to lie para llel to the
sur face.)
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The short range of the hydrogen bond suggests that th e H-bond network will get
disrupted only in the first layer of water mol ecules surrounding a non polar object.
The free energy cos t of creating an interface sho uld therefore be proportional to its
surface area; and experimentally, it's rou ghly true. For example, the solubilities of
hydrocarbon chains decrease with increasing chain length (see Figure 7.14 ). Taking
the free energy cost of introducing a single propane molecule into waterand dividing
by the approximate surface area of one molecule (abo ut 2 nm2 ) gives a free energy
cost per surface area of~ 3kBT, nm- 2•

Solvation of sma ll polar molecules The precedin g discussion contrasted molecules
like hydrogen peroxide, wh ich make H-bonds and mix freely with water, with non 
pola r mo lecules like propane. Small polar molecules occupy a middle ground be
tween these extremes . Like hydrocarbon s, they do not form H-bonds with water; so
in many cases, their so lvation carries an entropic penalty. Unlike hydrocarbons, how
ever, they do interact electrostatically with water: The surrounding water mol ecules
can point their negative sides toward the molecule's positive parts and away from
its negative parts. The resulting reduction in electrostatic energy can compensate
the entropic loss, th ereby makin g small polar mo lecules soluble at room temp era
ture.

Large nonpolar objects The clathrate cage strategy shown in Figure 7.13 only works
for sufficiently small included objects. Consider the extreme case of an infinit e planar
surface, for example, the surface of a lake, wh ich is an interface between air and wa
ter. Air itself can be regarded as a hydrophobic substance because it too disrupts the
H-bond network; the surface tensio n of the air-water interface is about 0.072 J m- 2 .

Clearly, the water mol ecules at the surface cannot each maintain four H-bonds di
rected tetrahedrally! Thus th e hydrophobic cost of introducing a large nonpolar ob
ject into water carries a significant energy component, reflectin g the breaking of
H-bonds. Nevertheless, the magnitude of the hydrophobic effect in the large-object
case is roughly th e same as that of small mo lecules:

Convert the free energy cost per area given earlier to J m- 2 and compare it
with the measured bulk oil- water surface tension ~, which equals se 0.04
0.05J m - 2

Nonpolar solve nts Although this section has mainly been concerned with solvation
by water, it is useful to contrast the situation with nonpolar so lvents, like oil or the
interior of a bilayer membran e. Oils have no network of H-bonds. Instead, the key
determinant of solubility is the electrostatic (Born) self-energy of the guest mol ecule.
A polar molecule will prefer to be in water, where its self- energy is reduced by wa
ter 's high permittivity (see Section 7.4.1 on page 261). Transferr ing such a molecule
into oi l thus incurs a large energy cost and is unfavorable . Nonpolar molecules, in
contrast, have no such preference and pass more easily into oillike environments. We
saw these phenomena at work when studying the permeability of lipid bilayers (Fig-
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ure 4.13 on page 137): Fatty acids like hexanoic acid. with their hydrocarbon chains.
dissolve more readily in the membrane (and hence permeate better) than do polar
molecules like urea.
IT21Section 7.5.2' on page 289 adds some details to our discussion of the hydropho

bic effect.

7.5.3 Water generates an entropic attraction between nonpolar objects

Section 7.4.5 described a very general interaction mechanism:

1. An isolated object (for example. a chargedsurface) assumes an equilibrium state
(the coun terion cloud ) that makes the best com promise between entropic and
energetic imperatives.

2. Disturbing this equilibrium (by bringing in an opposi tely charged surface) can
release a constraint (charge neutrality) and hence allow a reduction in the free
energy (by cou nterion release).

3. This change favors the disturbance. thereby creating a force (the surfaces att ract).

The depletion force furnishes an even simpler example (see Section 7.2.2 on page
25 1); here the released constraint is the reduction in the depletion zone's volume as
two surfacescome together.

Thinking along these same lines, W. Kauzmann proposed in 1959 that any two
nonpolarsurfaces in water would tend to coalesce, in orderto reduce the total nonpo
lar surface that they present to the water. Because the cost of hydroph obic solvation
is largely entropic, so will be the corresponding force, or hydrophobic interaction.
driving the surfaces together.

It's not easy to derive a quantitative, predictive theory of the hydrophobic inter
action, but some simple qualitative predictions emerge from the picture just given.
First. the largely entropic character of the hydrophobic effect suggests that the hy
drophobic interaction should increase as we warm the system, starting from room
temperature. Indeed, in vitro, the assembly of microtubules, driven in part by their
monomers' hydrophobic preference to sit next to one another, can be controlled by
temperature: Increasing the temperature enhances microtubule formation. Like the
depletion interaction, the hydrophobic effect can harness entropy to create an ap
parent increase in order (self-assembly) by coupling it to an even greater increase
of disorder among a class of smaller, more numerous objects (in this case the water
molecules). Because the hydrop hobic interaction involves mostly just the first layer
of water molecules, it is of short range, like the depletion interaction. Thus we add
the hydrophobic interaction to the list of weak, short-range interactions that are use
ful in giving macromolecular interactions their remarkable specificity. Chapter8 will
argue that the hydrophobic interaction is the dominant force driving protein self
assembly.
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THE BIG PICTURE

Returning to the Focus Question. we have seen how the concentration of a solute
can cause a flux of water across a membrane, with potentially fatal consequences.
Chapter II will pick up this thread, showing how eukaryotic cells have dealt with the
osmotic threat and even turned it to theiradvantage. Starting with osmotic pressure,
we generalized the approach to include partially en tropi c forces, like the electrostatic
and hydrophobic interactions responsible in part for the crucial specificity of inter
molecular recognition.

Taking a broader view, entropic forces are ubiquitous in the cellular world. To
take just one example, each of your red blood cells has a meshwork of polymer strands
attached to its plasma membrane. The remarka ble ability of red cells to spring back
to theirdisklike shape after squeezing through capillaries many times comes down to
the elastic pro perties of this polymer mesh-and Chapter 9 will show that the elastic
resistance of polymers to deformation is another example of an entropic force.

KEY FORMULAS

Osmotic: A semipermeable membrane is a thin, passive partition through which
solvent, but not solute, can pass. The pressurejump across a semipermeable mem
brane needed to stop osmotic flow ofsolvent equals ckBT for a dilute solution with
number density c on one side and zero on the other (Equation 7.7) .

The actual pressure jump !'.P may differ from this value. In that case, there is
flow in the direction of the net thermodynamic force, !'.P - (!'.c) kBT. If that force
is small enough, then the volume flux of solvent will be i- = - Lp(!'.p - (!'. c)kBT),
where the filtra tion coefficient Lp is a prop erty of the membrane (Equation 7. 15).

• Dep letion interact ion : When large particles are mixed with smaller ones of radius
R (for example, globular proteins mixed with small polymers), the smaller ones
can push the larger ones together, to maximize their own entropy. If the two sur
faces match precisely. the corresponding reduction of free energy per contact area
is !'.F/ A = ckBT x 2R (Equation 7.10).

Gauss: Suppose that there is a plane of chargedensity - O'q at x = 0 and no electric
field at x < O. Then the Gauss Law gives the electric field in the xdirection , just
above the surface: [ I,ud" , = - aq/ e (Equation 7.18).

Poisson: The potential obeys Poisson's equation, d'V/ dx' = - pq/ e , where Pq(r)
is the charge density at r and s is the permittivity of the medium, for example,
water or air.

Bjerrum length: eM = e' / (4" ekll T) (Equation 7.21). This length describes how
closely two like-charged ions can be brought together with kR T ofenergy available.
In water at room temperature, €B= 0.71nm.

Debye: I '121The screening length for a monovalent salt solution (for example,

NaCl at concentration coo ), is AD = (8" eBcoo) -I / ' (Equation 7.35). At room tem-
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perat ure, it's 0.3 1nm/~( for a 1:1 salt like NaCl), or O.18 nmlJlCaCI,J (2:1
salt), or 0.15 nml j [MgS04 ] (2:2 salt) , where [NaCl] is th e concentration measured
in moles per liter.

FURTHER READING
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I. Th e formal way ro explain why we added th e term f L to Equation 7.3 on page
247 is to saythat we are perform ing a "Legendre transform ation" from the fixed
volume to the fixed-pressure ensemble.

2. Th ere is a symmetry between Equation 7.6 and the cor responding formula fram
our earlier discussion:
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p = -dF(V) /dV (Equation 7.2); (V) = dF(p )/dp (Equation 7.6).

Pairs of quantities such as p and VI which appear symmetrically in these two ver
sions , are called thermo dynam ically conjugate variables.

Actua lly, the two formulas jus t given are not perfectly symmetrical because
one involves V an d the other (V ). To understan d this difference, recall that th e
first one rested on the ent rapic force formula, Equation 6.17. The deri vation of
this formula involved macroscopic systems, in effect saying «the piston is over
whelmin gly likely to be in the position . .. ." In macroscop ic systems , there is no
need to distinguish between the expectation value ofa variable and the value mea
sured in a particular observation. In contrast, Equation 7.6 is valid even for mi
croscopic systems, so it needs to specify that the expectation value is what is being
predicted. The formulat ion of Equation 7.6 is the one we'll need when we analyze
single-molecule stretching experiments in Chapter 9.

IT21 7.3.1 ' Track 2

1. The discussion of Section 7.3.1 made an implicit assumption; although it is quite
well obeyed in practice, we should spell it ou t. We assumed that th e filtra tion
coefficient Lp was small enough, and hence that the flow was slow eno ugh , to
prevent the flow from significantly disturbing the concentrations on each side.
So we can continue to use the equilibrium argument of Section 7.2.1 to find ti.p.
More generally, the osmotic flow rate will be a power series in ti.e; we have just
computed its leading term.

2. Osmot ic effects will occur even if the membrane is not totally impermeable to
solute, and indeed real membranes permit both solvent and solute to pass. In this
case, the roles of pressure and concentration jump are not quite as simple as in
Equatio n 7.15, although they are still related. When both these forces are sma ll,
we can expect a linear response combining Darcy's law and Fick's law:

[ ~ : ] = - p [ ~~ ] . (7.33)

Here P is called the permeabili ty matrix.' Thus P II is th e filtration coefficient ,
whereas P" is the solute perm eabilit y P, (see Equation 4.21 on page 135). The
off-d iagonal entry P 12 descr ibes osmo tic flow, that is, solvent flow dri ven by a

"Section 9.3.1o n page 354 reviews matrix notation.
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concentration jum p. Finally, P2I desc ribes "solvent drag": Mecha nically pushing
solvent th rough the mem bra ne pulls along some solute.

Thus, a semi permeable membrane correspon ds to th e specia l case wi th P 22 =
P21 = O. If, in addition, the system is in equilibrium, so th at both fluxes vanish,
then Equat ion 7.33 reduces to P 11 C,P = - P12C, c, and the result of Section 7.3.1
becomes, for a sem ipermeable membrane, P 12 = - LpkBT.

More generally, L. Onsager showed in 1931 fro m basic thermodynamic
reason ing tha t solvent dr ag is always related to solute permeability by P 12 =
keT(co - I P21 - Lpl. Onsager 's reasoning is given, for instance, in Katchalsky &
Curra n, 1965. For a concre te mod el, sim ilar in spirit to th e treatment of this
cha pter, see Benedek & Villars, 2000b.

IT21 7.4.2' Track 2

The form ulas in Section 7.4.2 are speci al cases of the general Gauss law, which sta tes
that

f £ .dA = ~.

In this formula, the integral is over any closed surface. The symbo l dA represents a
directed area element of th e surface ; it is defined as ildA, where dA is th e elemen t's
area and il is the outwa rd- po inting vecto r perpendicul ar to th e element . q is the tot al
cha rge enclosed by the surface. Applying th is form ula to the two small boxe s shown
in Figure 7.7 on page 264 yields Equations 7.20 and 7.18, respect ively.

IT21 7.4.3' Track 2

The solution Equation 7.25 has a disturbing feature : The potential goes to infinit y far
fro m the surface! It's true tha t physical qu antities like the electric field an d concent ra
tion profile are well behaved (see Your Turn 7F), but still, thi s path ology hints that we
have mi ssed some thing . For one thing, no macromolecule is really an infinite plane .
But a more important and int eresting om ission from ou r analysis is the fact th at any
real solution has at least some coio ns; the concentra tio n Coo of salt in th e surrounding
water is never exactly zero.

Rathe r th an introducing the un kn own parameter Co and th en going back to set
it, this time we' ll cho ose the constant in V(xl so that V -> 0 far from the surface;
th en the Boltzmann distrib ution reads

for th e counrerio ns and coions, respectively. Th e correspo nding Poisson-Bolt zmann
equa tion is

2-
d V I -2[ -v V]
dx' =-ZAn e -e , (7.34)



where again V = eVI kBT and AD is defined as
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Debye screening length (7.35)

In a solution of table salt, with c = 0. 1 M, the screening length is abo ut 1 nm.
The solutions to Equation 7.34 are not elementary functions (they're called el

lipt ic func tions ), but once again, we get lucky for the case of an isolated surface.

Your
Turn

71

Check that

_ 1 + e - (X+ X..) /A D

Vex) = -2 In ( )/Al - e x-l-x .. D
(7. 36)

solves the equation. In th is formula, x, is any constant. [Hint: It saves some
writing to define a new variable, { = e - (X+X..)/ AD, and rephras e the Poisson
Boltzmann equat ion in terms of ( , no t x.]

Before we can use Equat ion 7.36, we still need to impose the surface bo undary con
diti on. Equation 7.24 fixes X*, via

(7.37)

Your
Turn

7J

Suppose that we only wan t the answer at distan ces less tha n some fixed Xmax'

Show that at low eno ugh salt concentration (big eno ugh AD), th e solution
Equation 7.36 becomes a constant plus our earlier result, Equation 7.25. How
big mu st AD be?

We can no w look at a more relevant limit for biology: This time, hold the salt
concen tra tio n fixed and go ou t to large distan ces, where our earlier result (Equa
tion 7.25) displayed its pathological behavior. For x » AD, Equation 7.36 reduces
to

(7.38)

(7.39)

That is,

The electric fields far outside a charged surface in an electrolyte are
exponeotially screened at distances greater than the Debye length AD.

Idea 7.39 and Equation 7.35 confirm an earlier expectation: Increasing Coo decreases
the screening length, shrinking the diffuse charge layer and hence shortening the ef
fective ran ge of the electrostatic interaction (Idea 7.28).
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In the special case of weakly charged surfaces (aq is small), Equation 7.37 gives
e- X*/ AD = 7( eB}.,D(J,\le~ so the potential simplifies to

V(x) = _ aqAo e- X / AD.

8
potential outside a weakly charged surface

(7.40)

The ratio of the actual prefactor in Equation 7.38 and the form appropriate for weakly
charged surfaces is sometimes called charge renormalization: Any surface will, at
great distances, look the same as a weakly charged surface, but with the "renorrnal
ized" charge density aq,R = (4s/AD )e- X* / AD . The true charge on the surface becomes
apparent only when an incom ing object penetrates into its strong-fi eld region .

In the presence of added salt, the layer thickness no longer grows witho ut limit
as the layer charge gets smaller (as it did in the no -salt case, Equation 7.25); rather, it
stops growing whe n it hits the Debye screening length. For weakly charged surfaces,
then, the stored electrostatic energy is roughly that of a capacitor with gap spacing
AD, not xj, Repeatin g the argum ent at the end of Section 7.4.3, we now find the stored
energy per unit area to be

Ej(area) '" k«T(:q)22" Aot B•
(electrostatic energy with added
salt, weakly charged surface)

(7.4 1)

[121 7.4.4' Track 2

The crucial last step leading to Equation 7.3 1 may seem too slick. Can't we work
out the force the same way we calculate any entropic force, by taking a derivative of
the free energy? Absolutely. Let's compute the free energy of the system of counteri
ons+surfaces,holding fixed the charge density - aq on each surface but varying the
separat ion 2D between the surfaces (see Figure 7.8b on page 265). Then the force
between the surfaces will be pA = - dF j d(2D), where A is the surface area, just as in
Equation 6.17 on page 213.

First we no tice an important property of the Poisson-Boltzmann equation
(Equation 7.23 on page 267). Multiplying both sides by dV j dx, we can rewrite the
equation as

Integrating this equation gives a simpler. first-order equation:

(
dV ) 'dx =8" t B(c+ - co) . (7.42)

To fix the constant of integration. we noted that the electric field is zero at the mid
plane, and c+(O) = Co there.
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Next we need the free energy density per unit area in the gap. You found the
free energy density of an inh om ogeneous ideal gas (or solution) in Your Turn 6K on
page 237. The free energy for our problem is the in tegral of this qu antity. plus the
electrostatic energy'? of the two negat ively charged plates at x = ±D:

I a q IV - ) l D
[ c+ I - ]F/( k" T x area) =-- - \ V(D)+V(-D) + dx c+ ln - +-c+V.

2 e - D C... 2

In this formu la, c. is a constant whose value will drop out of our final answer (see
Your Turn 6K).

We simplify our expression by first noting that In(c+/ c. ) = In(Co/ c. ) - V. so the
terms in square brackets arec, [n(eo / c. )- 1'+V.The first of these terms is a constant
times c+, so its integral is 2(aq/ e) In(Co/ c. ). To simplify the second term, use the
Poisson- Boltzmann equation to write c; = -(41f t B)- 1(d'V / <Jx2 ).Next integrate by
parts. obtaining

F/(kBTXarea)=2aq [ln 9!. - ~V(D)]+ _ 1_ dV vI
D

_ _ 1_ ( Ddx ( dV ) ' .
e c. 2 81ft B dx - D 81f t BL D dx

We evaluate the boundary terms by using Equation 7.24 on page 267 at x = -D and
its analog on the other sur face; they equal - (a. / e)V (D).

To do the remaining int egral. recall Equation 7.42: it's - J!!Ddx (c, - Co) . or
2(Dco - (aq/e)). Combining these results gives

F/ (kBT x area) = 2Dco + 2a. (In 9!. - V(D) - I)
e c.

a c+(D)
= const + 2Dco + 2-'! In - - .

e c.

The concentration at the wall can again be found from Equatio ns 7.42 and 7.24:
c+( D) = Co + (81f t B)- ' (dV / dx)' = Co + 21ftB(a. /e )' .

A few abbreviations will make for shorter formulas. Let y = 21f t .a. /e and
u = fJD, where fJ = J 21ftBCo as before. Th en u and fJ depend on the gap spacin g.
whereas y does not . With these abbreviations,

y Co + y' / (21ftB)
F/ (k. T x area) = 2Dco + - In -=-'--'--=---=-

1Tf a c.

Wewant to compute the derivative of this expression with respect to the gap spacing,
holdin g aq (and hence y ) fixed. We find

p I d(F /(kBT x area)) ( y) dCo
kBT = - kBT d(2D) = - Co - D + 21ftBCo + y' ao

IONorice that addinganrconsranrto V Jeal'e5 this formula unchanged. becausethe integralJc+dx = 2a./ e
ISa I,,"UnsCJnC. Of'..-ndrgt'm.'u(r.u'ri'y. 7i:J undC'rs(drtdm<." «:lSUlT &Jane' tfra '(1r-i' fa rne-lim ;tadu s'((mrrs; (hiaK
about two point charges ql and q2' Their potential energy at separation r is qlqdl41TH) (plus a constant).
This is one half of the sum tllV!(rl ) + q:VI(r2)' (The same factor of i also appeared in the electrostatic
self-energy Example on page 261.)
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In the last term , we need

dco d ( U' ) U (dU )
dD = dD D' 2rreB = rre.D' D dD - U .

To find dujdD, we wri te the boundary condition (Equation 7.29 on page 270) as
y D = U tan U and differenti ate to find

du y y u

dD = tan u + usee' u = D y + u' + (Dy)2 .

This has gone far enough. In Problem 7.11, you'll finish the calculation to get a
direct derivation of Equation 7.3 1. For a deeper derivation from thermodynamics,
see Israelachvili, 1991, § 12.7.

IT21 7.5.1' Track 2

1. The discussion in Section 7.5 .1 described the electric field around a water mole
cule as that due to two positive point charges (the naked protons) offset from a
diffuse negative cloud (the oxygen atom). Such a distribution will have a perm a
nent electric dipole moment ; and indeed, water is highly polarizable. But we drew
a distin ction between the H-bond and ordinary dipole interactions. Thi s distin c
tion can be describ ed mathematically by saying th at th e charg e distribution of the
water mole cule has many higher muItipole moments (beyond th e dipole term).
These higher moments give the field both its great intensity and rapid falloff with
distance.

For comparison, propanone (acetone, or nail-polish remover, CHrCO -CH3)

has an oxygen atom bonded to its central carbon. The oxygen grabs more than its
share of the carbon's electron cloud, leaving it po sitive but not naked . Accordingly,
propanone has a dipole moment but not the strong short-range fields responsible
for H-b onds. And indeed, th e boiling point of propanone, altho ugh higher than a
similar nonpolar molecu le, is 44 K lower than that of water .

2. The picture of th e H -bond given in Section 7.5 .1 was root ed in classical electro
statics, so it is only part of the story. In fact, the H -bo nd is also partly cova lent
(quantum- mechanical) in character. Also, the formation of an H-bond between
the hydrogen of an - O H group, for example, and another oxygen actually stretches
th e covalent bond in the or iginal - OH group. Finally, the H-bond accepting sites,
described rather casually as the "back side" of the water molecule, are in fact more
sharply defined than our picture made it seem: Th e molecule strongly prefers to
have all four of its H-bonds directed in the tetrahedral directi ons shown in Fig
ure 7.12a on page 274.

3. Another feature of the ice crystal structure (Figure 7.12) is important, and general.
In every H-bond shown, two oxygens flank a hydrogen, and all lie on a straight line
(that is, th e H-bond and its corresponding covalent bond are colinear ). Qu ite gen
erally, th e H-bond is directional: There is a significant loss of binding free energy
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if the hydrogen and its partners are not on a line. This additional prop erty of
H-bond s makes them even more useful for giving binding specificity to macro
mo lecules.

4. The books listed at the end of the chapter give many more details about the re
ma rkable propert ies ofl iquid water.

I '12 1 75.2 ' Track 2

1. The term hydrophobic can cause confu sion , because it seems to imply that oil
"fears" water. Actually, oil and water molecules att ract each oth er, by the usual
generic (van dec Waals) interaction between any molecu les; an oil- water mixture
has lower energy than equivalent molecules of oil and water floating separately
in vacuum. But liquid water attracts itself even more than it attracts oil (that is,
its undisturbed H-bondin g network is quite favorable), so it nevertheless tends to
expel nonpolar molecules.

2. In his pioneering wo rk on the hydrophobic effect, W. Kauzmann gave a more
precise form of the solubility argument of Section 7.5.2. Figure 7.14 on page 278
shows that at least some nonpolar molecu les' solubilities decrease as we raise the
temp erature beyon d room temp erature. LeChatelier's Principle (to be discussed
later, in Section 8.2.2' on page 336) implies that for these substances, solvation
releases energy because raising the temp erature forces solute out of solution. The
translational entropy change for a molecule to enter water is always positive be
cause then the molecule explores a greater volume . If the entropy change of the
water itself were also positive. then every term of ti.F would favor solvation, and
we co uld dissolve any amount of solute. That's not the case, so these so lutes must
induce a negative entropy change in the water upon solvation .
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PROBLEMS'

7.1 Through one's pores

a. You are making strawberry shortcake. You cut up the strawberries, then sprinkle
on some powdered sugar. A few moments later, the strawberries look juicy. What
happened ?Where did this water come from?

b. One often hears the phrase "learni ng by osmosis." Explain what's technically
wrong with this ph rase, and why "learni ng by perm eation" might describe the
desired idea better.

7.2 Pfeffer 's experiment
van 't Hoffbased his theory on the experimental results of W. Pfeffer. Here are some
of Pfeffer's original 1877 data for the pressure needed to stop osmotic flow between
pure water and a sucrose solution, across a copper ferrocyanide membrane at T =
15' (:

sugar concentration, g/ ( 100 g of water) pressure, mm of mercury

1 535
2 1016
2.74 1518
4 2082
6 3075

a. Convert these data to our units, m- 3 and Pa (the mo lar mass of sucrose is about
342 g mole - I ) and graph them. Draw some conclusions.

b. Pfeffer also measured the effect of temperature. At a fixed concentration of
(I g sucrose)/(IOO g water) he found:

temperature, O( pressure, mm of mercury

7 505
14 525
22 548
32 544
36 567

Again convert to 51 units, graph, and draw conclusions .

7.3 Experimental pitfa lls
Youare trying to make artificial blood cells. Youhave managed to get pure lipid bilay
ers to form spherical bags of radiu s 10 (.im, filled with hemoglobin. The first time you
did this, you transferred the "cells" into pur e water and they promptly burst, spilling

.Problem 7.4 is adapted with permission from Benedek & Villars. zooct ,
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the cont ents. Eventually, yo u found that transferring them to a 1 m M salt solution
preven ts bursting, leaving the "cells" spherical and full of hemoglobin and water.

a. If 1 mM is goo d, then would 2 mM be twice as good? Wh at happ ens when you t ry
thi s?

b. Later you decide that you don't want salt outside because it makes yo ur solution
electrically conducting. How many moles per liter of glucose should you use in
stead?

7.4 Osmotic estimate of molecular weight
Chapter 5 discussed the use of centrifugation to estimate macrom olecular we ights,
but this method is not always the most convenient.

3 . The osmo tic pressure of bloo d plasma protein s is usually expressed as about
28 mm of mercu ry (this unit is defined in Appendix A) at bo dy tem perature ,
303 K. Th e qu antity of plasma proteins present has been mea sured to be about
60 g L- 1. Use these data to estimate the average mola r mass M in g/mole for these
plasma proteins, assuming the validity of the di lute lim it.

b. The filtra tio n coefficie nt of capillary membranes is some times quoted as Lp =
7 · 1O- 6 cm s- latm -l . If we put pure water on both sides ofa membrane with a
pressure drop of 6.p, the resulting volume flux of water is Lp6.p. Assume that
a normal person has rough' osmotic balance across his capillaries but that in a
particu lar individual, the blood plasma proteins have been depleted by 10%, as th e
result of a nutritional deficiency. Wh at would be the total accum ulation of fluid
in interstitial space (liters per day), given that the total area of open capillaries is
abo ut 250 m' ? Why do you think starving ch ildren have swollen bellies?

7.5 Deplet ion interaction estimates
Section 7.2.1 said that a typical globular protein is a sphere of radius 10 nm. Cells
have a high concentration of such proteins; for illustration, suppose that they occupy
abo ut 30% of the interior volume .

a, Imagine two large, flat objects inside the cell (representing two big macromolec
ular complexes with complementary surfaces). when they approach each other
closer than a certain separation, they'll feel an effective depletion interaction driv
ing them still closer, a force caused by the surrounding suspension of smaller pro
teins, Draw a picture, assuming that the surfaces are parallel as they approach each
other. Estimate the separation at which the force begins.

b. If the contact area is 10 Il-m2, estimate the total free energy reductio n when the sur
faces stick. You may neglect any ot her possible interactio ns between the surfaces;
and as always, assume that we can still use the van ' t Hoff (dilute-suspension)
relation for osmotic pressure. Is it significant relative to ksTr?

7.6 Effect of hydrogen bonds on water
According to Section 7.5 .1, the average number of H-bonds between a molecule of
liquid water and its neighb or s is abo ut 3.5 . Assume that these bonds are the major
interaction holdi ng liquid water toge the r and that each H-bond lowers the energy by
about 9kBTr- Using these ideas, find a numerical estima te for the heat ofvaporization
of water (see Problem 1.6), then compare your prediction wi th the measured value.
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7.7 1121 Weak-charge limit ~

Section 7.4.3 considered an ionizable surface immersed in pure water. Thus, the sur
face dissociated into a negative plane and a cloud of positive counterions. Real cells,
however, are bathed in a so lution of salt, among other things; there is an external
reservo ir of both co unterio ns and negative coions. Section 7.4.3' on page 284 gave a
solution for this case, but the math was complicated; here is a simpler, approximate
treatment.

Instead of solving Equation 7.34 exactly, consider the case where the surface's
charge density is small. Then the poten tial V(O ) at the surface will no t be very dif
ferent from the value at infinity, which we took to be zero. (More precisely, the di
mensionless combination V is everywhere much smaller than 1.) Approximate the
right-hand side of Equat ion 7.34 by the first two terms of its series expansion in pow
ers of V. The resulting approximate equation is easy to solve. Solve it, and give an
in terpretat ion to the qua ntity AD defined in Equation 7.35.

7.8 1T2 1Diffusion increases entropy

Suppose that we prepare a solution at time t = 0 with a nonuniform concentration
c (r) of solute. (For example, we could add a drop of ink to a glass of water with
out mixing it.) This initial state is not a minimum of free energy: Its entropy is not
maximal. We know that diffusion will eventually erase the initial order.

Sect ion 7.2.1 argued that for dilute solutions, the dependence of entropy on con
centration was the same as that ofan ideal gas. Thus the entropy S of our system will
be the integral of the entro py density (Equation 6.36 on page 233) over d'r, plus a
constant that we can ignore. Calculate the time derivative of S in a thermally isolated
system, using what you know about the time derivative of c. Then comment. [Hint:
In th is problem, you can neglect bulk (convective) flow of water. You can also as
sume that the concentration is alwayszero at the boundaries of the chamber; the ink
spreads from the center witho ut hitti ng the walls.]

7.9 1121 Another mean-field theory

The aim of this problem is to gain a qualitative understanding of the experimental
data in Figure 4.8c on page 125, by using a mean-field approximation pioneered by
P. Flory.

Recall that the figure gives the average size of a random coil of DNA attached
("adsorbed") to a two-d imensional surface-a self-avoiding, two-dimensional ran
dom walk. To model such a walk, we first review uncon strained (non- self-avoiding)
ran dom walks. Notice that Equation 4.28 on page 143 gives the numb er of N -step
paths that startat the origin and end in an area d2r around the position r (in an ap
proximation discussed in Section 4.6.5' on page 150). Using Idea 4.5b on page 115,
this number equals e-~/(2NL2 ld2 r times a normalization constant, where L is the step
size. Tofind the mean-squaredisplacement of an ordinary random walk,we compute
the average (r'), weighting every allowed path equally. The preceding discussion lets
us express the answer as
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(r') = - ~ I (In !d' r e- P'' ) = 2L'N. (7.43)
dtl P~(2NL' ) - 1

That's a familiar result (see the discussion preceding Equation 4.6).
But we don't want to weight every allowed path equally; those that self-intersect

sho uld be penalized by a Boltzmann factor. Flory estimated this factor in a simple
way.The effect of self-avoidance is to swell the polymer coil to a size larger than what
it would be in a purerandom walk. This swelling also increases the mean end- to-end
length of the coil, so we imagine the coil as a circularblob whose radius is a constant
C times its end-to-end distance, r = [r], The area of such a blob is then rr(Cr) ' . In
this approximation, the average surface density of polymer segments in the class of
path s with end- to-e nd distance r is N/ (rrC' r').

We next idealize the adsorbed coil as having a uniform surface density of seg
ments and assume that each of the polyme r's segments has a probability of bumping
into another that depends on that density." If each segment occ upies a surface area
a, then the probability of an area element being occupied is Na /(rrC' r' ). The prob
ability of any of the N chain elements landing on a space that is already occupied is
given by the same expression, so the numberof doubly occupied area elements equals
N' a/ (rrC'r') . The energy penalty V equals this number times the energy penalty E

per crossing. Writing E = Ea/(rrC 'kBT ) gives the estimate V / kBT = EN' / r2

Adapt Equation 7.43 by introduci ng the Boltzmann weighting factor e- Vl k, T.

Take L = I nm and i = 1nrn? for concreteness, and work at room temperature.
Use some numerical software to evaluate your modified integral, finding (r) as a
funct ion of N for fixed segment length L and overlap cost E. Make a log-log plot of
the answer and show that, for large N, (r') --+ const x N". Find the exponent v and
compare with the experimental data.

7.10 IT21Charged surfaces

Use some numerical software to solve Equation 7.29 for (3 as a function of plate sep
aratio n 2D for fixed charge density uq . For concre teness, take uq to equal e/(20 nm' ).
Now convert your answer into a force by using Equation 7.31 and compare your an
swer with Figure 7.11. Repeat with other values of uq to find (roughly) the one that
best fits the upper curve in the figure at separation greater than 2 nm. If this surface
were fully dissociated, it would have one electro n charge per 7 nm'. Is it fully dissoci
ated?

7.11 1121 Direct calculation of a surface force

Finish the derivation of Section 7.4.4' on page 286. The goal is to establish Equa
tion 7.31.

I I Substituting this estimate for the actual self-intersection of the conformation amo unts to a mean-field
approximation, similar in spirit to the one in Section 7.4.3 o n page 264.
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CHAPTER 8

Chemical Forces and
Self-Assembly

The ant has made himself illustrious
Through constant industry industrious.

So What?
WOllid YO II be calm and placid
IfYO II were[ul! offormic acid?

- Ogden Nash, 1935

Chapter 7 showed how simple free energy transduction machines, like the osmotic
pressure cell (Figure 1.3 on page 13) or the heat engine (Figure 6.5 on page 215),
generate mechanical forces from concentration or temperature differences. But even
thoug h living creatures do make use of these sources of free energy, their mos t impor
tant energy storage mechanisms involve chemical energy. This chapter will establish
chemical energy as just ano ther form of free energy, mutually convertible with all the
other forms. We will do this by developing further the idea that every molecule car
ries a definite stored potential energy and by addin g that energy into the first term of
the funda mental formul a for free energy, F = E - T5. We will then see how chem i
cal energy drives the self-assembly respo nsible for the creation of bilayer memb ranes
and cytoskeletal filaments.
The Focus Question for this chapter is
Biological question: How can a mol ecular machine. sitting in the midd le of a well
mixed solution, extract useful work? Doe sn't it need to sit at the boundary between
chambers of different temperature, pressure. or concentration. like a heat engine.
turbine. or osmotic cell?
Physical idea: Even a well-mixed solution can con tain many different mo lecular
species. at far-from-equil ibrium concentration s. The deviation from equilibrium
gives rise to a chemical force.

8.1 CHEMICAL POTENTIAL

Cells do not run on temperature gradients. Instead, they eat food and excrete waste.
Moreover. the "useful work"done by a molecular machine may be chemical synthesis,
not mechanical work.

In short, the machines of interest to us exchange both energy and molecules with
the outside world. To begin to understand chemical forces, then. we first examine
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how a sma ll subsystem in contact with a large on e chooses to share each kind of mol
ecule, temporarily neglecting the possibility of int erconversion s among the molecu lar
species.

8.1.1 J1 measures the availab ility o f a particle species

We must generalize our formulas from Chapter 6 to handle the case where two sys
tems, A and B, exchange part icles as well as energ y. As usual , we will begin by thinking
about ideal gases. So we imagine an isolated system, for examp le, an insulated box of
fixed volume with N noninteracting gas molecules inside. Let S(E , N ) be the entropy
of this system. Later. when we want to consider several species of molecules, we'll call
their populations N1, N2• . . • , or generically N« , where ex = 1,2, .. . .

The temperatu re of our system at equilib rium is again defined by Equatio n 6.9,
+= ~ . Now, however, we add the clarification tha t the derivative is taken holding

the Net 's fixed: T- 1 = ~ IN
u

' (Take a moment to review the visual interpretation of
this statement in Section 4.5.2 on page 134.) Because we want to consider systems
that gain or lose mo lecules, we'll also need to look at the der ivatives with respect to
the No's: Let

dS If.la = -T - - .
dNa E.N~ .Na

(8.1)

The J1.a 'Sare called chemical potentials. Th is tim e, the no tation means that we are to
take the derivative with respect to one of the Na's, ho lding fixed both the other N's
and the total energy of the system. Notice that the number of molecu les is dimen
sionless, so J1. has the same dimension s as energy.

You should now be able to show, exactly as in Section 6.3.2, that when two
macroscop ic subsystems can exchange both particles and energy. eventually each is
overwhelmingly likely to have energy and pa rticle numbers such that TA = T. and
the chem ical potent ials match for each spec ies a:

J1. A.a = J1. B.a · ma tching rule for macroscopic systems in equilibrium

(8.2)

Wh en Equation 8.2 is satisfied, we say the system is in chemical equilibri um. Just as
TA - TB gives the entro pic force dr iving energy tran sfer. so J.L A .a - J.L B.a gives another
ent ropic force driving the net tr ansfer of par ticles of type a . For instan ce, this rule is
the right tool to study the coexistence of water and ice at 0° ( ; in equilibri um , water
molecules mu st have the same J.L in each phase.

There is a subt le point hiding in Equation 8.1. Up to now, we have been ignoring
the fact that each ind ividual molecule has some internal energy E. for example. the
energy stored in chemical bonds (see Sect ion 1.5.3 on page 26). Thus the total energy
is the sum Eto t = Ekin + N 1Ej + ... of kinet ic plus in ternal energies. In an ideal gas.
the part icles never change. so the intern al ene rgy is locked up : It just gives a constant



296 Chapt er 8 Chemical Forces and Self-Assembly

Your
Turn

8A

contribution to the total energy E. which we can ignore. In this chapter, however,
we will need to account for the internal energies. which change during a chemi cal
reaction. Thus it's important to note that the derivative in the definition ofchemi cal
potential (Equation 8.1) is to be taken while holding fixed the total energy. including
its internal component.

To appreciate thi s point. let's work out a formula for the chemical po tential in
the ideal-gas case and see how E come s in. Our derivation of the entropy of an ideal
gas is a useful starting point (see the ideal gas entropy Example on page 200). but we
need to remember that E appearing there was only the kinetic energy Ekin.

As a first step to evaluating Equation 8. 1, calculate the derivative of S with
respect to N for an idea l gas. hold ing fixed the kine tic energy. Take N to be
very large and find

dS I = k. ~ In ( _1 .'!!. Ekin (V)'13).
dN E 2 31T tI' N N

kin

To finish the derivation of /1- , we need to convert the formula you just found to
give the derivative at fixed total energy E, not fixed Ekin. If we inject a molecule into
the system. holding Ekin fixed, then ex tract an amount of kinetic energy equal to the
internal energ y f of that molecule, this combined process has the net effect ofho lding
the to tal energy E fixed while changing the particle number by dN = 1. Th us we need
to subtract a correction term from the result in Your Turn 8A.

Example: Carry out the step just described, and show that the chemical potential of
an ideal gas can be written as

I-' = k.Tln(c/co) + I-'°(T). chemical potential. ideal gas or dilute solution

(8.3)

In this formula. c = N / V is the number density, Co is a con stant (called the refer ence
concentration), and

° 3 IIlk. T
I-' (T) = f - - k. Tln " 13

2 21T h Co
(ideal gas) (8.4)

Solution: Translating the words into math, we need to subtract E d~s. I from the
km N

result in Your Turn 8A. Combining the resulting formula with Equation 8.1 and using
the fact that the average kine tic energy Eki, /N equals ~k.T then gives

3 [ 41T III 3 ]I-' = k.Tln c - - k. Tl n --- , -k.T .
2 3 (21T tI) 2
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Th is formula appears to involve the logar ithms of dimensional qu antities. To make
each term sepa rately well defined , we add and subtract kBTIn co, ob taining Equa 
tions 8.3 and 8.4.

We call f.l0 the standa rd chemical poten tia l at temperature T defined with respect to
the chosen reference concentration. Th e cho ice of the reference value is a convention;
the derivat ion just given makes it clear tha t its value d rops out of the right-hand

side of Equation 8.3. Chemists refer to the dimensionless qu antity e(lt -/~o) l kB T as the
activity. Thus Equation 8.3 states that the activity equals approximately c/co for an
ideal gas.

Equation 8.3 also hold s for dilute solutions as well as for low-d ensity gases. As
argued in our discussion of osmotic pressure (Section 7.2 on page 248), the entropic
term is the same in either case. For a solute in a liquid, however, the value of f..l°(T)
will no longer be given by Equation 8.4. Instead, f.l°(T) will now reflect the fact th at
the solvent (water) molecules themselves are not dilute, so the att ractions of solvent
mol ecules to one another and to the solute are not negligible. Nevertheless, Equa
tion 8.3 will still hold with some measurable standard chemical potential f.l° (T ) for
the chemica l species in qu estion at some standa rd concentration Co. Usually we don 't
need to worry abo ut th e details of the solvent interactions; we'll regard J.L 0 as just a
phenomeno logical quantity to be looked up in tab les.

For gases, the standa rd concentration is taken to be the on e obtained at atmo
spheric pressure and temperature: roughly one mole per 22 L. In thi s book, however,
we will near ly always be concer ned with aque ous solut ions (solutions in water), not
with gases. For aqueous solutions, the standa rd concentrations are all taken to bel
Co = 1 M es 1 mo le/L, and we in troduce th e shorthand notation [X] sa cx/( 1M) for
th e concentration of any mol ecular species X in mo lar units. A solution with [X] = 1
is called a on e molar solution.

You can generalize Equation 8.3 to situations where in addition to £ , each mole
cule also has an extra pot ential ene rgy U(z) depending on its position. For example,
a particle of mass m in a gravita tional field has U(z) = mgz, where z is the height . A
more important case is th at of an electrically charged species, where U (z) = qV(z).
In either case, we simply replace f.l0 by /10+U(z) in Equation 8.3. (In the electric case,
some autho rs call this generalized J.L the elect rochemical poten tial. ) Makin g thi s
change to Equation 8.3 and app lying the matching ru le (Equation 8.2) shows that, in
equilibrium, every part of an electrolyte solut ion has the same value ofc(z ) ei/V(z)/ kBT .

Th is result is already familiar to us-it's equivalent to the Nernst relation (Equa
tion 4.26 on page 141).

Setting aside th ese refinements, the key result of th is section is that we have found
a qu an tity u. describin g the availability of particles just as T describ es the availability
of energy; for dilute systems, it separates into a part with a simple depend ence on
the concentr ation, plus a concentration-independent part J-L° (T) involving the inter
nal energy of the molecule. Mo re generally, we have a fundamental definition of this
availability (Equat ion 8.1) and a result about equilibrium (the match ing ru le, Equa
tion 8.2) that is applicable to any system, dilute or not. This degree of genera lity is

'With some exceptions- see Section 8.2.2.
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important because we know that the interior of cells is not at all dilute-it's crowded
(see Figure 7.2 on page 252).

The chemical potential goes up when the concent ration increases (more mole
cules are available), but it's also greater for molecules with more internal energy
(they're mo re eager to dump that energy into the world as heat, thereby increasing
the world's disorder). In short,

A molecular species w jJJ be highly available for chemical reactions if
its concentra tion c is big or its int ernal energy E is big.

The chemical potent ial (Equation 8.3) describes the overall availability.

I T2 1Section 8.1.1' on page 335 makes some conn ection to more advanced treatments

and to quantum mechanics.

8.1.2 The Boltzmann distributi on has a simple generalizatio n accounting
for particle exchange

From here, it's straightforward to redo the analysis of Section 6.6.1. We temp orarily
continue to suppose that particles cannot interconvert and that a smaller system a
is in equilibrium with a much larger system B. Then the relative fluctuations of N,
(the numbe r of particles in a) can be big because a may no t be macroscopic. So we
cannot just compute Na by using Equation s 8.1 and 8.2; the best we can do is to give
the probability distribution Pj of various states j that a may assume . System B, on
the other hand, is macroscopic; in equilibrium, the relative fluctuations of NB will
therefore be sma ll.

Let state j of subsystem a have energy Ej and particle number Nj. We want the
probability Pj for a to be in state j , regardless of what B is doing.

Your
Turn

88

Show that in equilibrium,

(8.6)

where again the grand partitio n function Z is the appropriate normalization
constant , Z = L j e (- Ej +" Nj l/ " T . [Hint: Adapt the discussion in Section 6.6.1
on page 2I8. J

The probability distr ibution you just found is sometimes called the Gibbs, or grand
. cano nical, distribution . It's a generalization of the Boltzmann distribution (Equa
tion 6.23 on page 219). Once again, we see that most of the details abou t system B
don't matter; all that enters are two num bers, the values of its tempe rature and chem 
ical potential.

Thus, large Jl means system a is mo re likely to contain many particles , justifying
the interpretation ofJl as the availability of particles from B. It's now straightforward
to wo rk out results analogous to Your Turn 6G and the free energy formu la Example
(page 224), but we won't need these later. (It's also straightforward to include changes
in volume as molecules migrate; see Problem 8.8.)
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8.2 CHEMICAL REACTIONS

8.2.1 Chemical equilibrium occurs when chemical forces balance

At last we are ready to think about chemical reaction s. Let's begin with a very simple
situation, in which a molecule has two states (o r isomers) Q' =1 ,2 differing only in
internal energy: f2 > f l . We also suppose that spo ntaneo us transition s between the
two states are rare; so we can think of the states as two different mo lecular species.
Thus we can prepare a beaker (system B) with any numbers N, and N, we like, and
these numbers won't change.

But now imagine that, in addition, O U f system has a "phone booth" (called sub
system a) where, like Superman and his alter ego, mo lecules of one type can duck in
and convert (or isomerize) to the oth er type. (We can think of th is subsystem as a
mol ecular machine, like an enzyme, although we will later argue tha t the same anal
ysis applies more generally to any chemical reaction.)

Suppose that type 2 walks into the phone booth and type 1 walks out. After thi s
transaction , subsystem a is in the same state as it was to begin with. Because energy
is conserved, the big system B also has the same total energy as it had to begin with.
But now B has one fewer type 2 and one more typ e 1 molecule. The difference of
internal energies, ei - e I , gets delivered to the large system B as thermal energy.

No physical law prevents the same reaction from happening in reverse. Type 1
can walk into the phon e boo th and spontaneously convert to type 2, drawing the
necessary energy from the thermal surroundings.

Gilbert says: Of course, this would never happen in real life. Energy doesn't spon
taneously organize itself from thermal motion to any sort of potential energy. Rocks
do n't fly out of the mud.

Sullivan: But transformation s of individual mo lecules can go in either direction. If
a reaction can go forward, it can also go backward, at least on ce in a while. Don't
forget our bu ffalo (Figure 6.8 on page 220).

Gilbert: Yes, of course. I meant the net number converting to the low-energy state
per second mu st be positive.
Sullivan: But wait! We've seen before how even that isn't necessarily true, as long
as som ebody pays the disorder bill. Remember our osmotic machin e; it can draw
thermal energy out of th e environment to lift a weight (Figure l.3a on page 13).

Sullivan has a good point. The precedin g discussion , alon g with the definin g Equa
tion 8.1, impli es that when the reaction takes one step that co nverts type 1 to type 2,
the world's en trop y changes' by (- /1., + /1., )/T. The Second Law says th at a net,
macroscopic flow in this direction will happen if II I > J.L 2. So it makes sense to refer
to the difference of chemical potentials as a "chemical force" driving isomerization.
In the situation sketched above, f ] < f l ' but f is only a part of the chemical poten 
tial (Equat ion 8.3). If the concentration of the low-energy isomer is high (or that of
the high- energy isomer is low), then we can have III > 11 2, and hence a net flow

2It's crucialthat we defined !J. as a derivative holding totalenergyfixed. Otherwise (-!J.l + jJ. 1)/ T would
describe an impossible, energy-nonconserving process.
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1 ~ 2! And, indeed, some spontaneous chemical reactions are endothermic (heat
absorbing): Think of the chemical icepacks used to treat sprains. The ingredients
inside the icepack spontaneo usly put themselves into a higher-energy state, drawing
the necessary thermal energy from their surroundings.

Wha t does Sullivan mean by "pays the disorder bill"? Suppose that we prepare a
system where initially species 1 far outnumber 2. This is a state with some order. Al
lowing conversions between the isomers is like conn ecting two tanks of equal volume
but with different numbers of gas molecu les. Gas whooshes through the connection
to equalize those numb ers. thereby erasing that order. It can whoosh through even
if it has to tu rn a turbine along the way and do mechanical work. The energy to
do that work came from the thermal energy of the environment, but the conversion
from thermal to mechanical energy was paid for by the increase ofdisorder as the system
equilibrated. Similarly, in our example, if state 1 outnumbers state 2 there will be an
entropic force pushing the conversion reaction in the direction 1 -+ 2 , even if this
direct ion is "uphill," that is, even if the reaction raises the stored chemical energy. As
the reaction proceed s. the supply of 1 gets depleted (and 1'1 decrea ses) while that of 2
gets enriched (J.L2 increases), until J.L I = J.L 2. Then the reaction stalls. In other words,

Chemical equilibrium is the point where the chemical forces balance. (8.7)

More generally, if mechanical or electrical forces act on a system, we should expect
equilibrium when the net of all the driving forces, including chemical ones, is zero.

The preced ing parag raph sho uld sound fami liar. Section 6.6.2 on page 220 ar
gued that two species with a fixed energy difference f>..E wou ld come to an equilib
rium with concentrations related by C,fCI = e-llE/ kBT (Equation 6.24 on page 219).
Taking the logari thm of th is formula shows tha t for dilute solutions. it's not hing but
the condition that /.1 2 = J.LI . If th e two "species" have many internal substates, the dis
cussion in Section 6.6.4 on page 225 applies; we just replace f>..E by the interna l free
energy difference of the two species. The chemica l potenti als include both the inter
nal entropy and the concentration-dependent part, so the criterion for equilibrium
is still 1' 2 = 1' 1'

There is another useful interpretation of chemica l forces. So far, we have been
considering an iso lated system and discussing the change in its entropy when a reac
tion takes one step. We imagined dividing the system into subsystems a (the mo lecule
undergoing isom erization) and B (the surro unding test tub e), and required that the
entrop y of the isolated system a+B increase. But mo re commonly, a+B is in ther
mal contact with an even larger world, as, for examp le, when a reaction takes place
in a test tu be sitt ing in our lab. In this case. the entro py change of a+B will not be
(-1'2 + I' I )/T. because some thermal energy will be exchanged with the world in
order to hold the temperat ure fixed. Nevertheless. the quanti ty 1' 2 - 1' 1 still does
control the direction of the reaction:

Your
Turn

Be

a. Following Section 6.5.1 on page 210. show that in a sealed test tube held at
fixed temperatu re, th e Helmholtz free energy F of a+B changes by 1' 2 -1' 1
when the reaction takes one step.
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b. Similarly, for an open test tube in con tact with the atmosphere at pressure
p, show that the Gibbs free energy G cha nges by /1, - /11 when the reaction
takes one step.

1121Section 8.2.1' on page 335 connects the discussion to the notation used in ad

vanced texts.

8.2.2 tlG gives a universal criterion for the direction
of a chemical reaction

Section 8.2.1 showed how th e condition /11 = /1, for the equilibr ium of an isomer
ization reaction recovers some ideas from Chapter 6. Ou r present viewpoint has a
number of advanta ges over the earlier one, however:

I. The analysis of Section 6.6.2 was concrete, but its app licability was limited to di
lute solutions (of buffalo). In contrast, the equilibrium condition /12 = /11 is
completely general: It's just a restatement of the Second Law. If /11 is bigger than
J..L 2' then the net reaction 1 -+ 2 increases the wo rld's entropy. Equilibrium is the
situation where no such further increase is possible.

2. Interconversions between two isomers are interesting , but there's a lot more to
chemistry than that. Our present viewp oi nt lets us generalize our result.

3. The analysis of Section 6.6.2 gave us a hint of a deep result when we not ed that
the activatio n barrier ~E* dropped out of the equilibrium co ndi tion. We now see
that more gene rally, it doesn't matter at all what happens inside the "phone booth"
menti oned at the start of Section 8.2.1. We made no ment ion of it. apart from the
fact that it ends up in the same state in which it started.

Indeed, the "phone booth" may not be present at all: Our result for equilibrium holds
even for spontaneous reactions in solution, as long as they are slow enough that we
have well-defined initial concentrations c. and C2.

Burning hydrogen Let's follow up on point (2). The burning ofhydrogen is a familiar
chem ical reaction:

2H, + 0 , ~ 2H,O. (8.8)

Let's consider this as a reaction involving three ideal gases. We take an isolated cham
ber at room temperature containing twice as many moles of hydrogen as oxygen.
then set off the reaction with a spark. We're left with a chamber containi ng water va
por and very tiny traces of hydrogen and oxygen. We now ask, how much unreacted
hydrogen rem ains?

Equilibrium is the situat io n where the wo rld's en tropy S tat is a max im um. To be
at a maximu m, all the derivatives of the entropy must equal zero; in particu lar. there
mus t be no change in 510 1 if the react ion takes one step to the left (o r right ). So, to
find the condition for equilibrium, we compute this change and set it equal to zero.



302 Chapter 8 Chemical Forces and Self-Assembly

Becau se atoms aren't being crea ted or destroyed . a step to the right removes one
oxygen and two hydrogen molecules from th e world and crea tes two water molecules.
Define the symbol !l.G by

(8.9)

With th is definition, Equa tion 8.1 says tha t the change in the world's entropy for
an isolated reaction cham ber is ~Stot = -~G/ T. For equilibr ium, we require that
Li5to t = O. Your Turn 8egave another interpretation of !i.G, namely, as the change of
free ene rgy of an op en reaction cha mber. From th is equivalent point of view) setting
!i.G = 0 amounts to requiring that the Gibbs free energy be at a minimum.

Oxygen, hydrogen , and water vapor are all nearly ideal gases under ordinary
conditions . Thu s we can use Equ ation 8.3 on page 296 to simplify Equation 8.9 and
put the equilibrium condition int o the form

0= !l.G = 2 /l~20 -2/l~2 -/l~2 + In [(CH20) ' ( CH2) -' ( C0 2)-I].
kB Y kBY Co Co Co

We can lump all th e concentration-independent ter ms of th is equation into on e pack
age, the equ ilibrium constant of the reaction :

(in equilibrium )

With thi s abbreviation, the cond ition for equilibrium becomes

(cH20)'
--'--"'-",--'-- = K,q/ Co.(CH2) cO2

(8.10)

(8.11)

The left side of this formula is some times called the reacti on quotient. It's also con
veni ent to define a logarithmic measure of the equilibrium constant via

(8.12)

Your
Turn

8D

Equation 8.11 is just a restatement of the Second Law. Nevertheless, it tells us
some thing useful: Th e condition for equilibrium is that a cer tain combination of
the concentrations (the reaction quotient) must equa l a concentration -independent
constant (the equilibrium constant divided by the reference concentration) .

In th e situation under discussion (hydrogen gas reacts with oxygen gas to make
water vapor), we can make our formulas still more explicit:

a. Show that the result s of th e gas chemical potential Example (page 296) let
us wri te th e equilibri um constant as

b. Check the dimension s in th is formula.
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Equation 8.13 shows that the equilibrium constant of a reaction depends on our
choice ofa reference concent ration Co. (Indeed, it mu st, because the equilibrium value
of the reaction quot ient does ,JOt depend on co.)

The equilibri um constant also depends on temperature. Mostly this dependence
arises from the expon ential factor in Equation 8.13. Hence we get the same behavior
as in isom erizat ion (Equation 6.24 on page 219):

At low temp eratures, the first factor becom es extremely large because it is the ex
ponential of a large positive number. Equation 8.11 in turn implies that the equi 
librium shifts almos t completely in favor of water.

At very high temp eratures, the first factor is close to 1. Equation 8.11 th en says that
th ere will be significant amounts of unreacted hydrogen and oxygen. The mechan
ical inte rpretati on is that thermal collisions are constantly ripping water molecules
apart as fast as they form.

Example: Physical chemistry books give the equilibrium constant for Reaction 8.8
at room temperature as e(457 kJ / mole)/ kBTr• If we begin with 2000 mole of hydrogen and
1000 mole of oxygen in a 22 m3 room, how mu ch of these reactant s will remain after
th e reaction comes to equilibri um?

Solution: We use Equation 8.11. Let x be the number of mol es of unreacted O 2• So
we have 2(1 - x) mole of H 20 in th e final state and 2x moles of unreacted H 2• Re
calling that stan dard free energy cha nges for gases are computed using the reference
concentra tion 1molej 22 L, Equation 8.11 says

(
2(1000 - x) mOle) ' 22 m' ( 22 m' )2= e (457kJ/ mol, )/ (2.5kJ /mo l, ) 0.022 m'

22 m3 x mole 2x mole mole

Almost all the reactant s will be used up because th e reaction is energetically very
favorable. So x will be very small, and we may approximate th e numerator on th e

left, replacing (1000 - x) by 1000. Thus x = (1000 ' C 457/ 2.5f / ' , or 3.4· 10- ' 4. That's
just two molecules of unreac ted oxygen!

General reactions Quite generally,we can consider a reaction among k reactants and
m - k products:

The whole numbers Vk are called th e stoichiometric coefficients of the reaction .
Defining

(8.14)

we again find that -6.G is the free energy change when the reaction takes one forward
step, or

A chemical reaction will run forward if the quantity .6.. G is a negative
number, or backward ifit 's positive.

(8. 15)
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Idea 8.I5 justifies our calling ll.G the net chemical forc e dr iving the reaction.
Equilibrium is the situation where a reaction makes no net progress in either direc
tion , or ll.G = O. lust as before, we can usefully rephrase this condition by separating
6.G into its con centrat ion - independent part, the standard free energy change of the
reaction.

(8.16)

plus the concentration terms. Defining the J.1 °'S with standard concentrations Co =
I M gives the general form of Equation 8.1I:

[Xk+ll "'+' [Xml "m

[Xd "' [X,j "'
= Keq in equilibrium, where Keq == e- 6 c}J / kBT .

Mass Act ion rule

(8.17)

Your
Turn

BE

Your
Turn

BF

In thi s expression, [X] denotes cx/ (I M).
Even in aqueo us solution, where the formu la for J.l0 found in the gas chemical

potential Example (page 296) won't literally apply, we can still use Equatio n 8.17 as
long as the solution s are dilute. We just find ll.G' by looking up the appro priate IJ.° 'S
for aqueou s so lutions.

Actu ally, chemistry books generally don' t tabulate IJ.~; instead they list values
of ll. G'i.a ' the free energy of form ation of mo lecular species " un der standard
conditions from its elemental constituents. You can use these values in place of
IJ.~ in Equation 8.16. Explain why th is works.

Chemistry books sometimes quote the value of ll.G in units of kcallmole and
qu ote Equatio n 8.17 in the han dy form K", = IO-"""!mkc,' ! mol,). Find the
missing number.

Special biochemica l conventions Biochemi sts make some special exceptions to the
convention that Co = 1 M:

• In a dilute aqueo us solution of any solute, the concentration of water is always
about 55 M . Accordingly, we take this value as the reference concentration for water.
Then instead of [H 20 ], Equation 8.17 has the factor CH20 / CO.H20 = cH,o/ (55 M) ""

1. With this convention, we can just omi t this factor altogether from the Mass Ac
tion rule, even if water participates in the reaction.



8.2 Chemica l reactions 305

Similarly. when a reaction involves hydrogen ions (protons, or H+ ), we choose their
standard concentration to be 10- 7 M. Again, this is the same as omitting factors of
CH+/CO,H + when the reaction pro ceeds at neutral pH (see Section 8.3.2) .

In any case, the notation [Xl will always refer to cxl 1M.

The choice of standard concentrations for a reaction influences the numerical
value of the reaction's standard free energy change and equilib rium constant. When
we use the preceding special conventions, we deno te the corresponding quantities as
tlG'o and K;q (the standard transformed free energy change and transform ed equi
librium constant) to avoid ambiguity.

Beware: Different sources may use additional special conventions for defining
standard quantities. Standard conditions also include the specification of temp era
tur e (to 25°C) and pressure (to 10' Pa, rou ghly atmospheric pressure).

Actually, it's a bit simplistic to think of ions, like H+, as isolated objects. We al
ready know from Chapter 7 that any foreign molecule introduced into a solvent like
water disturbs the structure of the neighboring solvent molecules, becoming effec
tively a larger, somewhat blur ry object, loosely called a hydrated ion . When we speak
of an ion like Na+, we mean this entire complex; the standard potential f.l0 includes
the free energy cost to assemble the whole th ing. In particula r, a pro ton in water as
sociates especially tightly with one of the surrounding water molecules. Even though
the proton doesn't bind covalently to its partner molecule, chemists refer to the com
bined object as a single entity, the hydronium ion H,O+. We are really referrin g to
this complex when we write H+.

Disturbing the peace Another famou s result is now easy to understand : Suppose that
we begin with concent rations not obeying Equation 8.17. Perhap s we took an equi lib
rium and dumped in a little more Xj, Then the chemical reaction will run forward
or in other words, in the direction that partiallyundoes the change we made-in order
to reestablish Equation 8.17, and thereby increase the world's entropy. Chemists call
this form of the Second Law Le Chatelier's Principle.

We have arrived at the promised extension of the matchin g rule (Equation 8.2)
for systems of interconvert ing molecules. When several species are present in a system
at equilibrium, once again each on e's chemica l potential must be constant th rough
out the system. But we found that the possibility of interconversions imposes addi
tional conditions for equilibrium:

Wh en one or m ore chem ical reactions can occur at rates fast enough
to equilibrate on the tim e scale of the experim ent, equilibrium also
implies relations between the various /.La' namely, one Mass Action
rule (Equation 8.17) for each relevant reaction.

(8.18)

Remarks The discussion of this section has glossed over an important difference be
tween thermal equilibr ium and ordinary mechan ical equilibri um. Suppose that we
gently place a piano on a heavy spring. The piano moves downward. compressing the
spring. which stores elastic potentia l energy. At some point , the gravitational force
on the piano equals the elastic force from the spring, and then everything stops. But
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in statistical equilibrium, nothing ever stops. Watercontinues to permeate the mem
brane ofOUf osmotic machine at equilibrium; isomer 1 continues to convert to 2 and
vice versa. Statistical equilibrium just means that there's no net flow of any macro
scopic qu antity. (We already saw this point in the discussion of buffalo equilibrium,
Section 6.6.2 on page 220.)

Wearepartway to understanding the Focus Question for this chapter. The caveat
about reaction rates in Idea 8.18 reminds us that, for example, a mixture of hydrogen
and oxygen at room temperature can stay out of equilibrium essentially forever; the
activation barrier to the spontaneous oxidation of hydrogen is so greatthat we instead
get an apparent equilibrium, where Equation 8.11 does not ho ld. The deviation from
complete equilibrium represents stored freeenergy. waiting to be harnessed to do our
biddi ng. Thus hydrogen can be burn ed to fuel a car, and so on .

1121Section 8.2.2' on page336 mentions some finer pointsabout free energy changes
and the Mass Action rule.

8.2.3 Kinetic interpretation of complex equilibria

More compl icated reactions have more complex kinetics, but the interpretation of
equilibrium is the same. There can be some surprises along the way to this conclu
sion, however. Consider a hypothetica l reaction. in which two diatomic molecules X2

and Y, join and recombine to make two XY molecules : X, + Y, -+ 2XY. It all seems
stra ightforward at first. The rate at which any given X, mo lecule finds and bu mps
into a Y, molecuie should be proportional to Y, 's number density, Cy, . The rate of all
such collisions is then this quantity times the total number OfX2molecules. which in
turn is a constant (the volume) times CX2'

It seems reasonable that at low concentrations a certain fixed fraction of those
collisions would overcome an activation barrier. Thus we might conclude that the
rate r., of the forward reaction (reactions per time) should also be proportional to
CX2CyP and likewise for the reverse reaction:

(8.19)

In this formula, k+ and k: are the rate constants of the reaction. They are similar to
the quantities we defined for the two-state system (Section 6.6.2 on page 220), but
with different units: Equation 8.19 shows their units to be [k±J ""-' S-IM- 2. We asso
ciate rate constants with a reaction by writing them next to the appropriate arrows:

k+
X, + Y, ;=: 2XY.

k-
(8.20)

Sett ing the rates equal, r+ = r_, gives that at equilibrium, ex, Cy, / (exy)' = L / k+, or

CX2CY2
--2 = Keq = const.
(eXY)

This seems good- it's the same conclusion we got from Equation 8.17.

(8.21)
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Unfortunately, predictions for rates based on the logic leading to Equation 8.19
are often totally wrong. For example. we may find that over a wide range of con
centrations, doubling the concentration of Y2 has almost no effect on the forward
reaction rate, whereas doubling CX2 quadruples the rate! We can summarize such
experimen tal results (for our hypot hetical system) by saying that the reaction is of
zeroth order in Y 2 and seco nd order in X2; this statement means that the forward
rate is proport ional to (cy,)O(ex,)2 Naively,we expected it to be first order in both .

What is going on? The problem stems from our assumption that we knew the
mechanism of the reaction, that is, that an Xl smashed into a Y2 and exchanged
one atom, all in one step. Maybe instead, the reaction involves an improbable but
necessary first step followed by two very rapid steps:

x, + X, ;= 2X+ X, (step 1, slow)

X + Y, ;= XY, (step 2, fast)

XY, + X ;= 2XY (step 3, fast). (8.22)

The slow step of the proposed mechanism is called the bottleneck, or rate
limiting process. The rate-l imitin g process con trols the overall rate, in this case
yielding the pattern ofconce ntration dependences (Cyz)O(cxz)2. Either reaction mech
anism (Reaction 8.20 or 8.22) is logically possible; experimental rate data are needed
to rule out the wrong one.

Won't this observation destroy our satisfying kinetic interpretation of the Mass
Action rule, Equation 8.191 Luckily, no. The key insight is that in equilibrium, each
elementary reaction in Equation 8.22 must separately be in equilibrium. Otherwise,
there would be a constant pileup of some species, either a net reactant like X2 or an
intermediate like XY, . Applying the naive rate analysis to each step separately gives
that in equilibrium

(ex)'ex,

(ex,) '
= K eq. lco •

Multiplying these three equations together reproduces the usual Mass Action rule for
the overallreaction, with K eq = K eq. IKeq.2Keq.3:

The details of the intermediate steps in a reaction are immaterial for
its overall equilibrium.

(8.23)

This slogan should sound familiar-it's another version of the principle that "equi
librium doesn't care what happens inside the phone boot h" (Section 8.2.2).

8.2.4 The primordial soup was not in chemical equilibrium

The early Earth was barren. There was plenty of carbon, hydrogen, nitrogen , oxygen
(although not free in the atmosp here as it is today), phospho rus, and sulfur. Could
the organic com pounds of life have formed spo ntaneo usly? Let's look into the equi
librium concentrations of some of the most important biomo lecules in a mixture of
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atoms at atmosp heric pressure, with overall proportions C:H:N:O=2:10:1:8 similar
to that of our bod ies. We optimistically assume a temp erature of 500°(, to promote
the form ation of high-energy molecules. Mostly, we get familiar low-energy, low
complexity molecules H20 , CO2 , Nz, and CH4 • Then molecular hydrogen comes in
at a mole fraction of about 1%, acetic acid at 10- 10• and so on. The first really inter
esting biomol ecule on the list is lactic acid, at an equilibrium mole fraction of 1O- 24 t

Pyruvic acid is even further down the list, and so on.
Evidently, the exponential relation between free energy and po pulation in Equa

tion 8.17 must be treated with respect. It's a very rapidly decreasing function. The
concentrations ofbiomolecules in the biosphere today are nowhere near equilibrium.
This is a mo re refined statement of the puzzle first set out in Chapter 1: Biomolecules
m ust be produced by the transduction of some abundan t source of free energy. Ulti
mately, th is source is the Sun.'

8.3 DISSOCIATION

Before going on, let's survey how our results so far explain some basic chemical phe
nomena.

8.3.1 Ioni c and partially ionic bonds dissociate readily in water

Rock salt (sodium chlor ide) is "refractory": Heat it in a frypan and it won't vaporize.
To understand this fact, we first need to kno w that chlorine is highly electronegative.
That is, an isolated chlor ine atom, altho ugh electr ically neut ral, will eagerly bind an
other electro n to become a CI- ion, because the ion has significantly lower internal
energy than the neutral atom. An isolated sodium atom, on the other hand, will give
up an electron (becoming a sod ium ion Na+) without a very great increase in its in
ternal energy. Thus, when a sodium atom meets a chlorine atom , the joint system
can redu ce its net internal energy by transferr ing one electro n completely from the
sodium to the chlorine. So a crystal of rock salt consists entirely of the ions Na+ and
Cl", held together by their electrostatic att raction energy. To estimate that energy,
write qV from Equation 1.9 on page 21 as e' /(4Jr80d), where d is a typical ion di
ameter. Taking d ::::::: 0.3 nm (the atomic spacing in rock salt) gives the energy cost to
separate a single NaCI pair as over a hundred times the therm al energy. No wond er
rock salt doesn't vaporize un til it reaches temp eratu res of thou sands of degrees.

And yet, place that same ionic NaCI crystal in water and it immediately disso
ciates, even at roo m tempe rature. The difference is that, in water, we have an extra
factor of (8010 '" 1/ 80; thu s the energy cost of separa ting the ions is now compa
rable to kHTr- This modest contribution to the free energy cost is overcome by the
increase of entro py when an ion pair leaves the solid lump and begins to wander in
solutio n; the overall change in free energy thus favors dissolving.

Ion ic salts are not the on ly substances that dissolve readily in water: Many other
molecules dissolve without dissociating at all. For example, sugar and alcohol are

"As mentioned in Chapter I, th e ecosystems around hot ocean venrs are an exception to this genera l ru le.
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highly soluble in water. Altho ugh their mo lecules have no net cha rge, still each has
separate positive and negative spots. as does water itself: They are polar mo lecules .
Polar molecules can par ticipate at least par tially in the hydrogen-bon ding network
of water, so there is little hydrophobic pena lty when we introduce such intruders
into pure water. Moreover. the energy cos t of breaking the attraction of their plus
ends to their neighb ors' minus ends (the dipole inte raction ) is offset by the gain of
forming similar conjunctions with water molecules. Because an entrop ic gain always
favors mixing, we expect pola r mo lecules to be highly soluble in water," Indeed , on
the basis of th is reasoning, we could predict that any small molecule with the highly
polar hydroxyl (or - OH ) group found in alcohol sho uld be solub le in water; and in
fact, it's generally so. Ano ther example is th e amino (or -NH2 ) gro up , for example,
the one on methylamine. On the other hand , non polar molecules. like hydrocarbons,
exact such a high hydrophobic penalty that th ey are poorly soluble in water.

This book won 't develop the quantum-mechanical too ls to pred ict a priori
whether a molecule will dissociate into polar components. This isn't such a serious
limitation , however. OUf attitude to all these observations will be simply that there
is nothing surprising about the ionic dissociation of a group in water; it's just an
other simple chemical react ion, to be treated by the usu al methods develop ed in th is
chapter.

8.3.2 The strengths of acids and bases reflect their dissociation
equilibrium constants

Section 7.4. 1 discussed the diffuse charge layer that forms near a macromolecule's
surface when it dissociates (breaks apart) into a large macroion and many small coun
terion s. The analysis of that section assumed that a constant number of charges per
area, cyq /e, always dissociated, but this is no t always a very good assump tion. Let's
discuss the problem of dissoci ation in general, starting with small molecules.

Water is a small molecule. Its dissociation react ion is

(8.24)

Section 8.3.1 argued that reaction s of thi s type need not be prohibitively costly; but
still, the dissociation of water do es cost more free energy than that of NaCL Accord
ingly, the equilibrium constant for Reaction 8.24, altho ugh not negligible, is rath er
small. In fact, pure water has CH+ = COH- = 10 - 7 M. (These numbers can be obtained
by measuring the elect rical cond uctivity of pure water; see Section 4.6.4 on page 142.)
Because the concentration of H20 is essentially fixed, the Mass Action rule says that
water maintains a fixed value of the ion product, defined as

ion product of water at room temperature

(8.25)

4We still don't expect sugar to vaporizereadily. the way a small nonpolar molecule like acetone does. Va
porization would breakattractive dipole interactions without replacing them by anyt hing else.
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Suppose that we now disturb this equi libr ium, for example, by add ing some hy
drochlor ic acid. HCI dissociates much more readily than H20 , so the disturbance in
creases the con centration of H+ from the tiny value for pure water. But Reaction 8.24
is still available, so its Mass Action constraint must still hold in the new equilibrium,
regardl ess of what has been added to the system. Accord ingly, the concent ration of
hydroxyl ions (O H-) must go down to main tain Equation 8.25.

Let 's instead add some sod ium hydroxide (lye). NaO H also dissociates readily,
so the disturbance increases the concentration of OH-. Accordingly, [H+] must go
down: Th e added O H- ions gobble up the tiny number of H+ ion s, makin g it even
tinier. Chemists summarize both situations by defining the pH of a solution as

(8.26)

a definition analogo us to that of pK (Equation 8.12).
We'vejust seen that

The pH of pu re water equals 7, from Equat ion 8.25. Th is value is also called neutral
pH .

Adding HCllowers th e pH . A solution with pH less than 7 is called acidic. We will
call an acid any neutral substance that, when disso lved in pure water, creates an
acidic solution.

• Add ing NaOH raises the pH. A solution with pH greater than 7 is called basic. We
will call a base any neutral substance that, when dissolved in pure water, creates a
basic solution.

Many organic molecules behave like HCI, so they are called acids . For example,
the carboxyl group - COOH dissociates via

- COOH ;= - CO O- + H+.

Familiar examples of this sort of acid are vinegar (acetic acid), lem on juice (citric
acid ), and DNA (deoxyribonucleic acid ). DNA dissociates into many mobile charges
plus one big macro ion. with two net negative charges per basepair. Unlike hydrochlo
ric acid. ho wever. all these organic acids are o nly partially dissociating. For exampl e,
the pK for dissociation of acetic acid is 4.76 ; compare this value wi th the correspo nd
ing value of 2.15 for a st rong acid like phosphoric acid (H, PO,) . Dissolving a mol e
of acet ic acid in a liter of water will th us generate a lot of neutral CH,CO OH and
only a modest am ount of H+ (see Problem 8.5). We say that acetic acid is a weak
acid.

Any molecule that gobbles up H+ will raise the pH. This can happen dir ectly
or indirectly. For example, another common motif is the amine group, - NH2• which
dir ectly gobbles protons by the equilibr ium

(8.27)

A special case is ammonia, NH3 , which is simply an amine group attached to a hydro
gen atom. We've already seen how other bases (such as lye) work by gobbling protons
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indirectly, liberating hydroxyl ions that push the equilibrium (Reaction 8.24) to the
left. Bases can also be strong or weak, depending on the value of their dissociation
equilibrium constant (for example, NaOH "" Na+ + OH- ) or association constant
(for example, Reaction 8.27). -

Now suppose that we add equal quantities of both HCl and NaOH to pure wa
ter. In this case, the number of extra H+ from the acid equals the number of extra
OH- from the base, so we still have [H+] = [OH-]. The resulting solution of Equa
tion 8.25 again gives [H+] = 10- 7

, or pH = 7! What happened? The extra H+
and OH- gobbled each other. combining to become water. The other ion s rem ained.
forming a solution of table salt, Na+ + CI-. (You could also get a neutral solution
by mixing a strong base, NaOH, with a weak acid, CH,COOH, but you'd need a lot
more acid than base.)

8.3.3 The charge on a protein varies with its environment

Chapter 2 described proteins as linear chains of monomers, the amino acids. Each
amino acid (except proline) contributes an identical group to the protein chain's
backbone, - NH- CH- CO-, plus a variable group (called a side group) covalently
bonded to the central carbon . The resulting polymer is a chain of residues. in a pre
cise sequence specified by the message in the cell's geno me coding for that protein.
The interaction s of the residu es with one another and with water determine how the
protein folds; the structure of the folded prote in determines its function.

In short, proteins are horrendou sly complicated. How can we say anything
simple about such a complex system?

Some amino acids, for example, aspartic or glutamic acid, liberate H+ from car
boxyl groups, like any organic acid. Others, including lysine and arginine, pull H+
out of solution ont o their basic side chains. The corresponding disso ciation reactions
thus involve the transfer of a proton:

acidic side chain :
basic side chain:

- COOH "" - COO- + H+
- NH,+ "" -NH, + H+.

(8.28)

The species on the left are the protonated form s; those on the right are deprotonated.
Each residue of type a has a characteristic equilibrium constant Keq.u for its de

protonation reaction. We find these values tabulated in books. The range of actual
values is about 10- 3.7 for the most acidic (aspartic acid) to abou t 10- 12.5 for the most
basic (arginine). The actual probability that a residue of type a willbe protonated will
then depend on K", .a , and on the pH of the surrounding fluid. Denoting this proba
bility by Pa , we have, for example, Pa = [-COOH I/ ([-COOHj + [- COO-D. Com
bining this definition with the equilibrium condition, [--COO-][H+]/[-COOH] =
Keq,u, gives

1

1 + K", .a / [H+]

1

1 + K,q.a lOPH·

It's convenient to rephrase this result, usin g Equation 8.12, as
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Po = (1 + 10,,")-1, where Xa = pH - pKo • probability of protonation

(8.29)

The average charge on an acidic residue in solution will then be ( - e)(l - Pa ) . Sim
ilarly, the average charge on a basic residu e will be ePa . In both cases, the average
charge goes down as pH goes up, as we can see directly from Reactions 8.28.

Actually, in a protein , uncharged and charged residues will affect each other in
stead of all behaving independently. Hence Equation 8.29 says that the degree of dis
sociation of a residue is a universal function of the pH in its local environment, shifted
by the pK of that residue. Equation 8.29 shows that a residu e is protonated half the
time when the local pH just equals its dissoc iatio n pK.

Altho ugh we don't know the local pH at a residue, we can guess that it will go up
as that of the surrounding so lution goes up. For example, we can titrate a so lution
of protein, gradua lly dripping in a base (starting from a strongly acidic solution).
Initially, [H+] is high and most residues are pro tonated: therefore the acidic on es
are neutral, the basic ones are positively charged, and hence the protein is positively
charged. Increasing pH decreases [H+], drivin g each of Reactions 8.28 to the right
and decreasin g the net charge of the protein. But at first , onl y the most strongly acidic
residues (those with lowest pK ) respond. To understand why, not e that the universal
function (1+ 10X ) - 1is roughly a constant, except near x = 0, where it rapidly switches
from 1 to O. Thu s only tho se bases w ith pK close to the pH respo nd whe n pH is
changed slightly; the basic residues remain completely protonated as we raise the pH
from very acidic to somewhat acidic.

As titration proce eds, each type of residue pops over in turn from protonated
to deprotonated, until) under very basic conditions, the last ho ldouts-the strongly
basic residues- finally surrender their protons. By this time, the protein has com 
pletely reversed its net charge; no w Reactions 8.28 say that the acidic resid ues are
negative and the basic ones neutral. For a big protein ) the charge difference between
the extremes can be large: For example, titration can change the protonation state of
ribonuclease by abo ut 30 protons (Figure 8.1).

8.3.4 Electrophoresis can give a sensitive measure of protein compositio n

Even tho ugh the analysis in Section 8.3.3 was rough, it did explain one key qua litat ive
fact about the experimental data (Figure 8.1): At som e criti cal ambient pH , a protein
will be effectively neutral. The value of pH at this point and, indeed) the entire titra
tion curve are fingerprints characteristic of each specific protein.

Section 4.6.4 on page 142 explained how putting an electric field across a salt so
lution causes the ion s in that so lution to mig rate. Simi lar remarks apply to a so lution
of macroions) for example, protein s. It is true that the viscous friction coefficient ~

on a large globular pro tein will be much larger than that on a tiny ion (by the Stokes
form ula, Equ ation 4.14 on page 119). But the net driv ing force on the protein will be
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Figure 8 .1: (Experimental data. ) The protonation state of ribonuclease depends on the pH
of the surrounding solution. The arrowshows the point of zero net charge. The vertical axis
gives the number of H+ ions dissociated per molecule at 25"(, so the curves show the protein
becoming deprotona ted as the pH is raised from acidic to basic. [Data from Tanford, 1961.]

huge, too: It's the sum of the forces on each ioni zed group. The resulting migration
of macroions in a field is called electrophoresis.

The rule governing the speed of electropho retic migration is more complicated
than the simple qE/1; used in our study of saltwater conductivity. Nevertheless, we
can expect that an object with zero net charge has zero electrophoretic speed. Sec
tion 8.3.3 argued that any protein has a value of ambient pH at which its net charge is
zero (called the protein's isoelectric point ). As we titrate through this point, a prot ein
should slow down, stop, and then reverse its direction of electrophoret ic drift. We can
use this property to separate mixtur es of proteins.

Not only does every protein have its characterist ic isoe1ectr ic point ; each variant
of a given protein will, too. A famous example is the defective protein responsible
for sickle-cell anemia. In a historic discovery, Linus Paulin g and coauthors showed
in 1949 that the red blood cells of sickle-cell patients contained a defective form of
hemoglob in. Today we know tha t the defect lies in parts of hemoglobin called the
,Ii-globin chains, which differ from norm al ,Ii-globin by the substitution of a single
amino acid, from glutamic acid to valine in position six. This tiny change (J3-globin
has 146 ami no acids in all) is eno ugh to create a sticky (hydro phobic) patch on the
molecular surface. The mutant molecules clump together to form a solid fiber of
fourteen interwou nd helical stran ds inside the red cell and give it the sickle shape for
which the disease is named. Th e deformed red cells in turn get stuck in capillaries
and then damaged; finally they are destroyed by the body, with the effect of creating
anemia.
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Figu re 8 .2 : (Experimental data.) Pauling and coauthor s' orig inal data showing that nor
mal and sickle-cell hemo globin could be disti nguish ed by their electrophoretic mobility.
In this trial, the hemoglobin was bou nd to carbon monoxide, and its mobility J.t (in
(em s- I)/ (volt cm'" } was measured at various values of pH. Circles: Normal hemoglobin.
Squares: Sickle-cell hemoglobin. (Solid black symbols represent trials with dithionite ion
present; open symbols are trials without it.) {From Pauling et al., 1949.1

In 1949, the sequence of l3-globin was unknown. Nevertheless, Pauling and
coauthors pinpointed the sou rce of the disease in a single molecule. They reasoned
that a slight chemical mod ification in hemoglobin could make a correspo ndingly
small change in its titration curve if the differing amino acids had different disso
ciation constants. Isolating normal and sickle-cell hemoglobin, they indeed found
that even though the correspo nding titration curves look similar, the two pro teins'
isoelectric poin ts differ by about a fifth of a pH unit (Figure 8.2). The sign of this
difference is just what wou ld be expected for a substitution of valine for glutamic
acid: The normal pro tein is consistently more negat ively charged in the range of pH
shown than the defective one because

It has on e more acidic (negative) residue, and

That residue (glutamic acid ) has pK = 4.25, so it is dissociated thro ughout the
range of pH shown in the graph.

In other physical respects, the two molecules are alike: for example, Pauling and
coauthors found that both had the same sedimentation and diffusion constants. Nev
ertheless, the difference in isoelectric point was eno ugh to distinguish the two ver
sions of the molecule. Most strikingly, Figure 8.2 shows that at pH 6.9, the charges of
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the no rmal and defective pro teins have opposite signs, and so the two proteins mi
grate in opposite directions under an electric field. (You'll show in Problem 8.7 that
this difference is indeed big enough to separate proteins.)

I T2 1Section 8.3.4' on page 336 m entions some m ore 'advanced treatmen ts of elec

trophoresis.

8.4 SELF-ASSEMBLY OF AMPHIPH ILES

The pictures in Chapter 2 show a world of complex machin ery inside cells, all of
which seems to have been constructed by other complex machinery. This arrange
ment fits with the observation that cells can arise only from other living cells, but it
leaves us wondering about the origin of the very first living th ings. In this light , it's
significant that the most funda mental structures in cells- the membranes separat
ing the interior from the world- can actually self-assemble from approp riate mole
cules, just by following chemical forces. This section begins to explore how chemical
forces-in parti cular, the hydrophobic interaction- can drive self-assembly.

Some architectural features of cells blossom quite suddenly at the appropr iate
moment when they are needed (for example, the microt ubules that pu ll chromo
somes apar t at mitosis), then just as suddenly melt away. We may well ask, "If self
assembly is automatic, what sort of contro l mechanism could turn it on and off so
suddenly?" Section 8.4.2 will begin to expose an answer to this qu estion .

8.4.1 Emulsions form when amphiphilic molecules reduce
Ihe oil- water interface tension

Section 7.5 discussed why salad dressing separates into oil and water, despite the su
perficial increase in order that such separation entails. Water molecules are attrac ted
to oil molecules, but not as much as they are attracted to one another : The oil-water
interface disrupts the network of hydrogen bonds, so dropl ets of water coalesce to
reduce their total surface area . But some people prefer mayonnaise to vinaigrette.
Mayonn aise, too, is mostly a mixtu re of oil and water; yet it does not separate. What's
the difference?

On e difference is that mayonn aise contains a small quantity of egg. An egg is a
complicated system, including many large and small molecules. But even very simple,
pu re substances can stabilize suspensions of tiny oil droplets in water for long peri 
ods. Such substances are generically called emulsifiers or surfactants; a suspens ion
stabilized in this way is called an emulsion. Parti cularly important are a class of
simple molecules called detergents, and the more elaborate phosph olipids found in
cell membranes.

Th e molecular architecture of a surfactant shows us how it works. Figure 8.3a
shows the str ucture of sodium dodecyl sulfate (SDS), a strong detergent . One side
of this molecule is hydrophobic: It's a hydrocarbo n chain. The other side, however,
is polar: In fact, it's an ion. This fusion of unlike parts gives the class of molecules
with this structure the name amphiphiles. These two parts would normally migrate
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Figure 8.3: (Structural diagrams.) Two classes of amp hiphiles. (a) St ruct ure of sodium dodecyl sulfate (5DS), a strong
detergent. A nonpolar, hydrophobic, tail (left ) is che mically linked to a polar, hydroph ilic head (right) . In solution, the
Na" ion dissociates. Molecules from this class for m m icelles (see Figu re 8.5). (b) Struc ture of a gene ric phosphatidyl
choli ne. a class of phospholipid molecule. Two hydrophobic tails (left ) are chemically linked to a hydrophilic head (right ).
Molecules from th is class form bilayers (see Figure 8.4).

(or "partition") into the oil phase and water phase. respectively) of an oil- water mix
ture. But such an amicable separation is not an option- the two parts are handcuffed
together by a chemical bond. When added to an oil- water mixture. though. surfac
tant molecules can simultaneously satisfy both of their halves by migrating to the
oil- water interface (Figure 8.4). In this way. the polar head can face water while the
nonpolar tails face oil. Given enough surfactant to make a layer one molecule thick
(that is, a monolayer) over the entire interface, the oil and water phases need not
make any direct contact at all.

a

oil

b water

Figure 8.4: (Schematics.) (a) An oil- water inter face stabilized by the add ition of a small amount of sur factant. Some
surfactant molecules are disso lved in the bulk oil o r wate r regions, but most migrate to the bo undary as shown in the
inset. (b) An oil-wa ter em ulsion stabilized by sur factant: Th e situation is the same as (a), bu t for a finite drop let of o il.
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In mayonnaise, the relevant com ponent of the egg is a phospholipid (lecith in),
which migrates to the oil-water interface to minimize its own free energy and at
the same time, lower the interfacial energy to the po int where rapid coalescence
of droplets does not occur. (Other delicacies. for example, sauce beamaise, also
work this way.) Because a monolayer is typically just a couple of nanometers thick,
a small quantity of surfactant can stabilize an eno rmo us area of interface. Recall
Ben Franklin's teaspoon of oil, which covered a half-acre of pond (Section 1.5.1 on
page 23).

You can observe the reduction in surface tension brought about by a tiny
amo un t of dissolved soap in a simple experi men t. Carefully float a loop of fine
sewing thread on water. Now tou ch a bar of soap to the part of the water sur
rounded by th e thread. Explain what happens.

You can also see for yourself just how large an area can be covered by one drop of
detergent or, equivalently, just how mu ch that dro p can be diluted and still cha nge
the surface tension over several square centime ters of water. In the same way, a small
amount of detergent can clean up a big oily mess by encapsu lating oil into stable,
hydrophilic droplets small enough to be flushed away by running water.

8.4.2 Micelles self-assemble suddenly at a crilical concentration

A mixture of stabilized oil dro plets in water may be delicious or useful, but it hardly
qualifies as a "self-assembled" structure. The dropl ets come in many different sizes
(that is, they are polydisperse) and genera lly have little structure . Can entro pic forces
drive the construction of anything more closely resembling what we find in cells?

To answer the precedin g question , we begin with another. It may seem from
Sectio n 8.4 .1 that surfactant molecules in pure water would be stymied: With no in
terface to go to, won't th ey just have to accept the hydrophobic cost of exposing th eir
tails to the surrounding water?

Figure 8.5 shows that the answer to the second question is "no." Surfactant mol 
ecules in so lutio n can assemble into a micelle, a sphere consisting of a few do zen
molecules. In this way, the mol ecules can present their nonp olar tails to one another,
not to the surrounding water. This configuration can be entropically favorable, even
though by choosing to associate in this way, each molecule loses some of its freedom
to be located anywhere, oriented in any way (see Section 7.5 on page 273) .

A remarkable feature of Figure 8.5 is that there is a definite "best" size for th e re
sulting m icellar aggregate. If there were too many amphiphilic molecules, then some
would be comp letely in the inter ior, where their pola r heads would be cut off from the
surrounding water. But with too few amphiphiles (for example, just on e molecule),
th e tails would not be effectively shielded. Thus amphiphilic molecules can sponta
neously self-assemble into objects of fixed, limited, molecular-scale size. The chemi
cal force driving the assembly is not the formation of covalent bonds, but some thing
gentler: th e hydrophobic effect, an entropic force.
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Figure 8.5 : (Sketch.) A micelle of sod ium dodecyl sulfate (SDS). The micelle consists of 60
SDS mol ecules. The hydrocarbon chains pack in the core at a uniform density roughly the
same as that ofliquid oil. jProm Israelachvili, 199 1.]

As early as 1913, J. McBain had dedu ced the existence of well-defined micelles
from his quantitative study of the physical properties of soap solutions. One of
Mcbain's arguments went as follows. We know the total number of molecules in a
solution just by measuring how much soap we put in and checking that non e of it
precipitates out of solution. But we can independently measure how many indepen
dently moving objects the solution contains, by measuring its osmo tic pressure and
using the van 't Hoff relation (Equation 7.7 on page 249). For very dilute solutions,
McBain and others found that the osmotic pressure faithfully tracked the total num
ber of amphiphilic ions (solid symbols on the left of Figure 8.6), just as it would for
an ordinary salt like potassium chloride (open symbols in Figure 8.6). But the sim
ilarity ended at a well-defined point, now called the critical micelle concentration ,
or CMC. Beyond this concentration, the ratio of independently moving objects to all
ions dropped sharply (solid symbols on the right of the graph) .

McBain was forced to conclude that beyond the CMC, his molecules didn't stay
in an ordinary solution, dispersed throughout the sample. Nor, however, did they
aggregate into a separate bulk phase. as oil doe s in vinaigrette. Instead, they were
spontaneously assembling into intermediate-scale objects, bigger than a mol ecule but
still microscopic. Each type of amphiphile, in each type of po lar solvent, had its own
characteristic value of the CMC. This value typically decreases at higher temperature,
thus pointing to the role of the hydrophobic interaction in driving the aggregation
(see Section 7.5.2 on page 276 ). Mcbain's results were not imm ediately accepted . But
eventually, several physical quantities (for instance, electrical conductivity) were all
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Figure 8 .6: (Experi mental data, with fits.) Com parison of the osm otic behavior of a micelle
forming substance with that of an ord inary salt. The relative osmotic pressure is defined as the
osmotic pressur e divided by that of an ideal, fully dissociated solution with the same number of
ions. To emphasize the behavior at small conce ntratio n, the horizontal axis shows ,Je. where c
is the concentration of the solution. Solid symbolsare experimental data for potassium oleate,
a soap; open symbols are data for potassium chloride, a fully dissociating salt. The solid line
shows the result of the model discussed in the text (Equation 8.34 with N = 30 and crit ical
micelle concentration 1.4mM). For comparison, the dashed line shows a similar calculation
with N = s.The N = 30 mod el accou nts for the sharp kink in the relative osmot ic activity at
the CMC. It fails at higher concentrations, in part because it neglects the fact that the surfactant
mo lecules' head groups are not fully dissociated. [Data from Mcbain, 1944.]

found to undergo sharp changes at the same critical concentration as that for the
osmotic pressure, and the chemical community agreed that he was right.

We can interp ret McBain's results with a simplified model. Suppose that the
soap he used, potassium oleate, dissociates fully into potassium ions and oleate am 
phiphiles. The potassium ion s contr ibute to the osmotic pressure by the van 't Hoff
relation . But the remaining oleate amphiphiles will instead be assumed to be in ther
modynamic equilibrium between individual ions and aggregates of N ions. N is an
unk nown parameter, which we will choose to fit the data. It will turn out to be just a
few dozen, justifying our picture of micelles as objects intermediate in scale between
molecules and the macroscopic world.

To work ou t the details, apply the Mass Action rule (Equation 8.17) to the reac
tion (N monomers) ;:::::= (one aggregate) . Thus the concentration Cl of free monomers
in solution is related to that of micelles, eN, by

(8.30)
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where K", is a second unknown parameter of the model. (K", equals the dimension
less equilibrium con stan t for aggregation, K"" divided by (Co )N- I .) The to tal concen
tra tion of all monomers is then CtOI = 'I + NCN o

Example: Find the relation between the total number of amphiphilic mo lecules in
solut ion, Ctot> and the number that remain un aggregated, 'I .

Solution:

( • N- I)
Cto t = CI + NCN = CI 1 + NK,q(ctl . (8.3l)

We could stop at th is poin t, but it's more meaningful to express the answer, not in
terms ofKeq• but in terms of the CMC. '."By defin ition c.. is the value of ctot at which
half the monomers are free and half are assemb led into micelles. In other words, when
CIOI = c. then 'I •• = NCN.* = !c."Subs tituting int o Equation 8.30 gives

(8.32)

We now solve to find N K", = (2 /c.t - 1
and substitute into Equation 8.31, finding

(8.33)

Your
Turn

BH

Once we have chosen values for the param eters N and c••we can solve Equation 8.33
to get '\ in term s of the total amount of surfactant Ctot stirred into the solution. Al
though th is equ ation has no simple analytical solution, we can understand its limit
ing behavior. At low concentrations, Ctot « c, the first term dominates and we get
Ctot ~ c,: Essenti ally all the surfactan ts are lon ers. But well above the CMC, the sec
ond term dominates and we instead get Ctot ~ NCN; now essentially all the surfactants
are accounted for by the micelles.

We can now find the osmotic pressure. The contribution from th e Na+ ions
is simply clolksT as usual. The contribution from the amphiphi les resembles Equa 
tion 8.33, with one key difference: Each micelle counts as just one object, not as N
objec ts.

Show that the total osmotic pressure relative to the value 2ctotksT in this model
is

(8.34)

To use this formula, solve Equation 8.33 numerically for c , as a function of Ctot . Then
substitute into Equation 8.34 to get the relative osmot ic activity in terms of the total
concent ration of amphiphiles. Looking at the experimental da ta in Figure 8.6, we see
that we must take c. to be aro und 1 mM; the fit shown used c; = 1.4 mM. Two curves
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are shown: The best fit (solid line) used N = 30, whereas the poor fit of the dashed
line shows that N is greater than 5.

Certainly more detailed methods are needed to obtain a precise size estimate
for the micelles in the experiment shown. But we can extract several lessons from
Figure 8.6. First, we have obtained a qualitative explanation of the very sudden on
set of micelle formation by the hypo thesis that geometrical packing considerations
select a narrow distribution of "best" micelle size N. Indeed, the sharpness of the
micelle transition could not be explained at all if stable aggregates of two. three,
. . . monomers cou ld form as intermediates to full micelles. In other words. many
monom ers must cooperate to create a micelle, and this cooperativi ty sharpens the
transition, mitigating the effects of random thermal motion. We will revisit this lesson
repeated ly in future chapters. Without cooperat ivity, the curve would fall gradually,
not suddenly.

8.5 EXCURSION: ON FITTING MODELS TO DATA

If you give me two free parameters, I can describe an elephant.
If you give me three, I can make him wiggle hi, tai/.

- Eugene Wigner, 1902-1995

Figure 8.6 shows some experimental data (the solid dots), together with a purely
mathematical funct ion (the solid cur ve). The purpose of graphs like this one is to
support an author's claim that some physical model captures an important feature
of a real-world system. The reader is supposed to see how the curve passes through
the points, then nod approvingly, preferably without thinking too much abou t the
details of either the experiment or the model. But it's important to develop some
critical skills to use when assessing (or creating) fits to data.

Clearly the mod el shown by the solid line in Figure 8.6 is on ly moderately suc
cessful. Fo r one thing, the experimen tal data show the relative osmotic activity drop
ping below 50%. Our simplified model can't explain this phenom enon because we
assumed that the amphiphiles remain always fully dissoci ated: Na+ ions always re
main nearly an ideal solution . Actually, however, measurements of the elec trical con
ductivity of mice llar so lutions show that the degree of dissociation goes down as
micelles are formed . We could have made the model look much more like the data
simply by assuming that each micelle has an unknown degree of dissociation a , and
choosing a value of a < 1 that pulled the curve down to meet the data. Why not do
this?

Before answering, let's think about the content of Figure 8.6 as drawn. Our
model has two unknown parameters, the number N of particles in a micelle and the
critical micelle concentration ( >t<. To make the graph, we adjust their values to match
two gross visual features of the data:

There is a kink in the data at around a millimolar concentration.

After the kink, the data start dropping with a certain slope.
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So the mere fact that the curve resembles the dat a is perhaps not so impressive as it
may seem at first: We dialed two kn obs to match two visua l features. The real scientific
content of the figure com es in two observations we made:

A sim ple model, based on cooperativit y, explain s the qualitative existence of a sharp
kink , which we do n't find in simple two- bod y associatio n. The osmotic activity of
a weak, ordinary acid (for example, acetic acid ) as a fun ction of concentration has
no such kink: The degree of d issociation , and hence the relative osmo tic activity,
decreases gradually with concentration.

The numerical values of the fi t parameters fit in with the dense web of other facts
we know abo ut th e worl d. For example, N = 30 implies that the micelles are too
small to scatter visible light; and indeed, thei r solutions are clear, not m ilky.

Viewed in thi s light , introducing an ad hoc dissociation parameter to improve
th e fit in Figure 8.6 wou ld be merely a cosmetic measure: Certainly. a third free pa
rameter wou ld suffice to ma tch a thi rd visual feature in the data. but so what? In
short,

A fit of a m odel to data rells us som ething interesting only insofar as

a. On e or a few fit param eters reproduce several independent features
of the dara, or

b. The experimental errors on the data points are exceptionally low, (8.35)
and the fi t reproduces the data to within those errors, or

c. The values of the fit parameters determ ined by the data mesh with
some independen tly m easured facts about the world.

Here are some exam ples: (a) Figure 3.7 on page 83 matched the ent ire distribution
of molecular velocities with no fit parameters at all; (b) Figure 9.5 on page 355 in
Chapter 9 shows a fit to an except ionally clean data set; (c) The kink in Figure 8.6
accords with our ideas about the origin of self-assembly.

In case (c), one could fit a thi rd param eter a to th e data, try to create an electro
static theory of the dissociat ion, then see if it successfully predicted the value of a . But
the data show n in Figure 8.6 are too weak to support such a load of interpretat ion.
Elabo rate sta tistical tools exist to dete rmine what conclusions may be dr awn from a
data set, but most often the judgme nt is made subjectively. Either way, the maxim is
that : The more elaborate the model, the more data we need to support it.

8.6 SE LF-ASSEM BLY IN CELLS

8.6.1 Bilayers self-assemble from two-tailed amphiphiles

Section 8.4.2 began with a pu zzle: How can amphiphilic molecules satisfy their hy
drophobic tails in a pure water enviro nment?Th e answer given there (Figure 8.5) was
that they cou ld assemble into a sphere. But th is solution may not always be available.
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To pack into a sphere, each surfactant molecule must fit into something like a cone
shape: Its hydrophilic head mu st be wider than its tail. More precisely. to form mi
celles, the volume N Vlail occupied by the tails of N surfactants must be compatible
with the sur face area Na h"d occupi ed by the heads for some N . Although some mol
ecules, like 5DS, may be comfortable wi th this arrangement, it doesn't wo rk for two
tailed mo lecules like the phosphati dylcholines (abbreviated PCs; see Figures 2.14
and 8.3). We have not yet exhausted Nature's cleverness. however. An alternative
packing strategy. the bilayer membrane, also presents the hydrophobic tails only to
one another. Color Figure 2 shows a slice through a bilayer made of pc. To under
stand the figure, imagine the double row of molecules shown as extendi ng upward
and downward on the page. and out of and into the page, to form a double blanket.
Thus the bilayer's midplane is a two-dimension al surface, separating the half-space
to the left of the figure from the half-space to the right.

Suppose that N amphiphiles pack into a spherical micelle of radiu s R. Find
two relations between a head. Vtaih R, and N. Combi ne these into a single
relation betwe en a head, Vtaih and R.
Suppose instead that amphiphiles pack into a planar bilayer of thickness 2d.
Find a relation between ahead > Vtaih and d.
In each of the two precedin g situations. suppose that the hydrocarbon tails
of the amphiphiles cannot stretch beyond a certain length e. Find the re
sulting geometrical constraints on ahead and Vtail .

Why are one-tail amphiphiles likely to form micelles. whereas two-tail am 
phiphiles are likely to form bilayers?

Two-chain amphiphiles occurring naturally in cells generally belong to a chem i
cal class called phospholipid s. We can alread y understand several reasons why Nature
has chosen the phospholipid bilayer membrane as the mo st ubiquitous architectural
component of cells:

The self-assembly of two-chain phospholipids (like PC) into bilayers is even more
avid than that of one-chain surfactants (like 50S) into micelles. The reason is sim
ply that the hydrophobic cost of expo sing two chains to water is twice as great as
that for one chain. This free energy cost E enters the equilibrium constant and
hence the CMC, a measure of the chemical drive to self-assembly, via its expo
nential. There's a big difference between e -/:j kaTr and e- 2£/ kBTr , so the CMC for
phospholipid formation is tiny. Membranes resist disso lving even in environments
with extremely low pho spholipid concen tration.

Similarly, phospholipid memb ranes automatically form closed bags because any
edge to the planar structure in Color Figure 2 would expose the hydrocarbon chains
to the surrounding water. Such bags, or bilayer vesicles, can be almo st unlimited
in extent; it is straightforward to make "giant» vesicles of radius 10u m, the size
of eukaryotic cells. This is many thousand s of times larger than the thickness of
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Figure 8.7: (Photomic rograph.) Bilayer structures fo rmed by nonano ic acid, one of several
bilayer-forming fatty acids identified in meteo rites. The vesicles have been stained with rho
damine, a fluorescent dye. (Digital image kindly suppliedby D. Deamer.)

the membrane; giant vesicles are self-assembled structures comp osed of tens of
millions of individual phospholipid molecules.

Phospholipids are not particul arly exotic or complex molecules. They are relatively
easyfora cell to synthesize,and phospholipid-like molecules could even have arisen
abiotically (from nonliving processes) as a step toward the or igin of life. In fact,
bilayer membranes are even formed by phospholipid -like molecules that fall to
Earth in meteor ites (see Figure 8.7)!

The geometry of phospholipids limits the membrane th ickness. This thickness in
turn dictates the permeability of bilayer membranes (as we saw in Section 4.6.1
on page 135), their electr ical capacitance (using Equation 7.26 on page 269), and
even their basic mechanical properties (as we will see in a moment). Choosing the
chain length that gives a membrane thickness of a few nanom eters turns out to
give useful values for all these membrane properties; that's the value Nature has
in fact chosen. For example, the permeability to charged solutes (ions) is very low,
because the partition coefficient ofsuch molecules in oil is low (see Section 4.6.1 on
page 135). Thus bilayer membranes are thin, tough partiti ons, scarcely permeable
to ions.

Unlike, say, a sandwich wrapper, bilayer mem branes are fluid. No specific chemi
cal bond connects any phospholipid molecule to any other, just the generic dislike
of water for the hydrophobic tails. Thus the molecules are free to diffuse around
one another in the plane of the membrane. This fluidity makes it possible for
membrane-bound cells to change their shape, as, for example, when an amoeba
crawls or a red blood cell squeezes through a capillary.

Again because of the no nspecific nature of the hydrophobic interaction, mem
branes readily accept embedded objects; hence they can serve as the doorways to
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Figure 8.8 : (Schematic. ) Solubilization of integral membrane proteins (black blobs) by de
tergent (objects with shaded heads and one tail). Top righ t: At a concentration higher than
its critical micelle concentration. a detergent so lution can form micelles incorporating both
phospholipids (objects with white heads and two tails) and membrane proteins. Bottom right:
Detergent can also stabilize largermembrane fragments (which would otherwise self-assemble
into closed vesicles) by sealing o ff their edges .

cells (see Figure 2.20 on page 57) and even as the factory floors inside them (see
Chapter 11). An object intended to poke thro ugh the membrane simply needs to
be designed with two hydrophilic ends and a hydrophobic waist; entropic forces
then automatically take care of inserting it into a nearby membrane. Understand
ing this principle also immediately gives us a techno logical bonu s: a technique to
isolate membrane-bound prot eins (see Figure 8.8).

The physics of bilayer membranes is a vast subject. We will only int roduce it,
finding an estimate of one key mechanical property of membranes, their bending
stiffness.

A bilayer membrane's state of lowest free energy is that of a flat (planar) surface.
Because the layers are mirror images of each other (see Color Figure 2), there is no
tendency to bend to one side or the other. Because each layer is fluid, there is no
memory of any previous bent configuration (in contrast to a small patch snipped
from a bicycle tire, which remains curved), In short, although it's not impossible to
deform a bilayer to a bent shape (indeed, it must so deform in order to close onto
itself and form a bag), still bending will entail some free energy cost. We would like
to estimate this cost.

Color Figure 2 suggests that the problem with bending is that on one side of the
membranes, the polar heads get stretched apart, eventually admitting water into the
nonpolar core. In other words, each polar head group normally occupies a particular
geometrical area a head; a deviation Lla from this preferred value will incur some free
energy cost. To get the mathematical form of this cost for one of the monolayers, we
assume that it has a series expansion: !).F = Co +C,!).a +C,( !).a)' +....The coeffi-
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t. a is twice as great. Thus bend ing the layer into a spher ical shape with radius of
curvature R costs free energy per unit area 2K/ R2 . The total bending energy to wrap
a membrane into a spherical vesicle is then 8Jr K . This is already an important result:
The total bendingenergyof a sphere is independent of the sphere's radius.

To und erstand the significance of the free energy cost of bending a bilayer
(Idea 8.37 ), we need an estimate of the num erical value of K . Consider first a single
layer at an oil-water interface. Bendi ng the layer into a spherical bulge, with radius
of curvature R comparable to the length f lail of the hydrocarbon tails, will spread
the heads apart and expose the tails to water. Such a large distortion will incur a
hydrophobic free energy cost per unit area, I: , comparable to that at an oil- water
interface. The corresponding cost for a bilayer in water will be roughly twice this
value.

We thus have two different expressions for the bending energy of a spherical
patch of bilayer, namely, 2K/( f " ;I)' and 2~ . Equating these expressions lets us esti
mate K. Taking typical values 1: ~ 0.05 Jjm 2 and '€tail ~ 1.3 nm gives our estimate:
K ~ 0.8 . 10- 19 J.Our estimate is crude, but it's not too far from the measured value
K = 0.6 .10- 19 J = 15kBT, for dimyristoyl phosphatidylcholine (DMPC) . The tot al
bending energy 81TK of a spherical vesicle of DMPC is then around 400kBT,.

We can extract a simple lesson from the measured value of K . Suppose that we
take a flat membrane of area A and impose on it a corrugated (washboard) shape, al
ternating cylindrical segments of radius R. The free energy cost of this configuration
is ~ KA/R'. Taking A to be IOOO fLm ' , a value corres ponding to a typical Jnu m cell,
we find that the bend ing energy cost greatly exceeds kBT, for any value of R unde r
10 u s«. Thus the stiffness of phospholipid bilayer memb ranes has been engineered
to prevent spo ntaneo us corrugation by thermal fluctuation s. At the same time, the
bending energy needed for gross, overall shape changes (for example, tho se needed
for cell crawling ) is only a few hundred tim es kBTn so such changes require the ex
penditure of only a few dozen ATP molecules (see Appendix B). Phospholipid bilayer
membrane stiffness is thus in just the right range to be biologically useful.

Not only are cells themselves surrounded by a bilayer plasma membrane. Many
of the organelles ins ide cells are separate compa rtments, partitioned from the rest by
a bilayer. Prod ucts synthesized in one part of the cell (the "factory") are also shipped
to their destination s in special-purpose transport containers, them selves bilayer vesi
cles. Incoming complex food mo lecules awaiting digestio n to simpler forms are held
in still o ther vesicles . And Chapter 12 will describe how the activation of one neu 
ron by ano ther across a synapse involves the release of neurot ransmitters, which are
stored in bilayer vesicles unt il needed. Self-assembled bilayers are ubiquitous in cells.

I T21Section 8.6.1' on page 336 mentions some elaborations to these ideas.

8.6.2 Vista: Macromolecular fold ing and aggregation

Protein fold ing Section 2.2.3 on page 50 sketched a simple-sounding answer to
the question of how cells translate the static , one- dime nsional data stream in their
genome into function ing, three-dimensional proteins . The idea is that the sequence
of amino acid residues determin ed by the genome , together with the pattern of mu
tual interaction s between the residues, determines a unique, properly folded state,
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called the native con format ion . Evolut ion has selected sequences that give rise to
useful, functioning nat ive conformations. We can get a glimp se of some of the con
trib utions to the force driving protein folding by using ideas from this chapter and
Chapter 7.

Relat ively small disturbances in the protei n's environment (for example. change
of temperatu re, solvent, or pH ) can disrupt the nat ive conformation, or denat ure
the protein. Hsien Wu proposed in 1929 that denaturation was in fact precisely the
unfolding of the protein from "the regular arra ngement of a rigid structure to the
irregular, diffuse arrangement of the flexible open chain." In this view, unfolding
changes the pro tein's structure dramatically and destroys its function, witho ut nec
essarily breaking any chemica l bonds. Indeed, restoring physiological conditions re
turn s the balance of driving forces to one favoring folding; for example. M. Anson
and A. Mirsky showed that denatured hemoglobin retu rns to a state physically and
functionally identical to its or iginal form when refolded in this way.That is, the fold
ing of a (simple) protein is a spontaneous process, driven by the resulting decrease in
the free energy of the protein and the surrounding water. Experiments of th is sort
culminated in the work ofC. Anfinsen and coauthors , who showed around 1960 that
for many proteins.

The sequence of a protein completely determines its folded structure, and

The nat ive conformation is the minimum of the free energy.

The thermodynamic stability of folded proteins und er physiological conditions
stands in sharp contrast to the random-walk behavior studied in Chapter 4. The dis
cussion there pointed out the imme nse number of confor mations a rand om chain
can assume; prot ein folding thu s carr ies a correspondingly large entro pic penalty.Be
sides freezing the protein's backbone into a specific conformat ion. folding also tends
to immobilize each amino acid's side chain. with a furt her cost in entropy. Apparently
some even larger free energy gain overcomes these entropic penalties, driving protein
foldin g. It's a delicate balance: At body temp erature, the net chemical force drivin g
folding rarely exceeds 20k. Tn the free energy of just a few H-bonds.

What forces drive fold ing? Section 7.5. 1 on page 273 already ment ioned the role
of hydrogen bonds in stabilizing macrom olecules. Walter Kauzmann argued in the
1950s that hydroph obic interaction s also supply a major part of the thermodynamic
force driving protein folding. Each of the 20 common different amino acids can be
assigned a characteristic value of hydrophobicity. Kauzmann argued that a polypep
tide chain would spontaneously fold to bury its most hydrophobi c residues in its
interior, away from the surrounding water, in a manner similar to the formation of a
micelle. Indeed , structural data not available at the time has bor ne out this view: The
most hydro pho bic residues of proteins tend to be located in the interior of the native
(properly folded) confo rmation.' In addit ion, the study of analogous proteins from
different animal species shows that even though they can differ widely in their precise

5We will see later how the except ions to this general ru le turn out to be important fo r helping pro teins
st ick to one another.
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amino acid sequences, still the hydrophobicities of the core residues hardly differ at
all-they are"conserved" under molecularevolution. Similarly, one can createartifi
cial proteins by substituting specific residues in the sequence of some natural protein.
Such site-directed mutagenesis experiments show that the resulting protein structure
changes most when the substituted residue has a hydropho bicity very different from
that of the original residue.

Kauzmann also noted a remarkable thermal featureof protein denaturation. Not
only can high temperatu re (typically T > 55°( ) unfold a protein, but in many cases,
low temperatu re does, too (typically T < 200

( ) . Denatu ration by heat fits with an
intuitive analogy to melting a solid, but cold denaturation was initially a surprise.
Kauzmann pointed out that hydrophobic interactions weaken at lower temperatures
(see Section 7.5.3 on page 280), so the pheno menon of cold denaturation points to
the role of such interactions in stabilizing protein structure. Kauzmann also noted
that proteins can be denatured by transferring them to nonpolar solvents, in which
the hydrophobic interaction is absent. Finally, adding even extremely small concen
trations of surfactants (for example, 1% SDS) can also unfold proteins. We can in
terpret th is fact by analogy with the solubilization of membranes (Figure 8.8): The
surfactants can shield hydrophobic regions of the polypeptide chain, thereby reduc
ing their tendency to associate with one another. For these and other reasons, hydro
phobic interactions are believed to give the dominantforce driving protein folding.

Other interactions can also help to determine a protein's structure. A charged
residue, like those studied in Section 8.3.3 on page 311, will have a Born self-energy.
Such residues will prefer to sit at the surface of the folded protein, facing the highly
polar izable exterior water (see Section 7.5.2 on page 276) rather than being buried in
the interior. Positive residues will also seek the company of negatively charged ones,
and avoid other positive charges. Although significant, these specific interactions are
probably not as importa nt as the hydrophobic effect. For example, if we titrate a
protein to zero overall charge, its stability is found not to depend very much on the
surrounding salt concentration, even though salt weakens electrostatic effects (see
Idea 7.28) .

Aggregation Besides supplying intra molecular forces driving folding, hydrop hobic
interactions also give intermolecular forces, which can stick neighboring macro
molecules together. Section 7.5.3 on page 280 ment ioned the example of micro
tubules, whose tubulin monome rs are held together in this way. Section 8.3.4 on
page 312 gave anot her example: Sickle-cell anemia's debilitating effects stem from
the unwanted hydroph obic aggregation of defective hemoglobin molecules. Cells
can even turn their macromolecules' aggregating tendencies on and off to suit their
needs. Forexample, yourblood contains a structural protein called fibrinogen, which
normally floats in solution. When a blood vessel gets injured, however, the injury
triggers an enzyme that clips off a part of the fibrinogen molecule, exposing a hy
drop hobic patch. The trun cated pro tein, called fibrin, then polymerizes to form the
scaffold on which a blood clot can form.

Hydrophobic aggregation is not limited to the protein-protein case. Chapter 9
will also identify hydrophobic interactions as key to stabilizing the doub le-helical
structure of DNA. Each basepair is shaped like a flat plate; both of its surfaces are
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nonpolar, so it is driven to stick onto th e adjoining basepairs in the DNA chain and
form a stack. Hydrophobic interact ions also contribute to the adhesion of antibodies
to their corresponding antigens.

8.6.3 Another trip to the kitc hen

Thi s has been a long, detailed chapter. Let's take another trip to the kitchen.
Besides being a mul tibillion dollar indu stry, food science nicely illustrate s some

of the points made in th is chapter. For example, Your Turn SA on page 159 car ica
tu red m ilk as a suspension of fat droplets in water. Actually, milk is far mo re com
plex than this. In addition to th e fat and water, milk contains two classes of pro
teins, Miss Mu ffet's curds (the casein complex) and whe y (mainly a-lactalbumin and
fJ-lactoglobulin ). In fresh mi lk, the casein complexes self-assemble into micelles with
radii around 50 nm. Th e micelles are kep t separate in part by electros tatic rep ulsion
(see Sectio n 7.4.4 on page 269), so the mi lk is fluid . However, minor environmental
changes can indu ce curdling, which is a coagulation (clumping) of th e micelles into
a gel (Figure 8.lO).ln the case of yogurt, the growth of bacteria such as Lactobacillus
bulgaricus and Streptococcus thermophilus creates lactic acid as a waste product (alter
na tively, you can add acid by hand, for example. lemon juice). Th e ensuing increase
in the concentration of H+ ions reduces the effective charge on the casein mi celles
(see Section 8.3.3) and hence also redu ces the normal electro static repulsion between
them. This change tips the balan ce toward aggregat ion; milk curdles when its pH is

Figure 8 .10: (Scanning electron micrograph. ) Yogurt. Acid generated by bacteria triggers the
aggregation of casein micelles (spheres of diameter 0.1 fl m in the figure) into a network. The
fat globules (not shown ) are much bigger, with radius 1- 3 f1. 0l in fresh milk. [Digital image
kindlysupplied by M. Kalab.]
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Figu re 8 .11: (Schematic.) The physics ofomelettes. (a ) Proteins in their native conformation
(b) open up to form random coils upon heating. (e ) Neighbor ing coils then begin to interact
with one ano ther to form weak inte rmolecular bo nds. The resultin g networ k can trap water.

lowered from the natura l value of 6.5 to below 5.3. The casein network in turn traps
the fat globules.'

Eggs provide another example of a system of protein complexes. Each protein is
a long, chemically bonded chain of amino acids. Most culinary operations do not dis
rupt the primary structure, or sequence, of this chain because no rm al cooking tem
peratures don't supply enough energy to break the peptide bonds. But each protein
has been engineered to assume a useful native conformation under the assumption
that it will live in an aqueous environment at temperatu res below 37°C. When the
environment is changed (by introducing air or by cooking), the pro tein denatures.

Figure 8.11 sketches what can happen. Raising the temp erature can convert the
precisely folded native structures into rand om chains. Once the chains open , the var
ious charged and hydroph obic residues on one chain, previously interactin g mainly
with other residues elsewhere on the same chain, can now find and bind to tho se on
other chains. In this way, a cross-linked network of chains can form. Th e interstices
of this network can hold water, and the result is a solid gel: the cooked egg. As with
milk, one may expect that the addition of acid would enhance the coagulation of eggs
once the proteins are denatured, and indeed it's so.

Heat ing is no t the only way to den ature egg proteins and create a linked network.
Merely whipping air into the eggs to create a large surface area ofcontact with air can
totally disrupt the hydrophobic interactions. The ensuing "surface denaturation" of
egg proteins like conalbumin is what gives chiffon pie and mousse their structural
stability: A network of un folded proteins arrange themselves with their hydrophobic
residues facing the air bubbles and their hydrophilic ones facing the water. This net 
work not only reduces the air- water tension like any amphiphile (see Section 8.4.1),
it also stabilizes the arrangement of bubbles because, un like simple amphiph iles, the
proteins are long chains. Other prot eins, like ovomucin and globulins, play a support
ing role by makin g the egg so viscous that the init ial foam dra ins slowly, giving the
conalbumin tim e to form its network. Still others, like ovalbumin, support air foams
but require heat for their initial denaturation ; these proteins are key to supporting the
stronger structures of meringue and souffle. All these attributions of specific roles to

6The fat globules must themselves be stabilized against coalescing. In fresh milk, they are coated by an
amphiphilic membrane and hence form an emulsion (see Figure 8.4).
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• Grand ensemble: The prob ability of finding a small subsystem in the microstate i,
if it's in contact with a reservoir at temperature T and chemical potentials Il l . . . . ,
is (Equation 8.6)

Here Z is a normalization factor (the partition function ) and Ei, N l,i • . .. are the
energy and populations for state i of the subsystem.

Mass Action: Consider a reaction in which VI molecules of species Xj , . . . react
in dilute solution to form Vk+ l molecu les of species X k+l and so on. Let 6.(}J =
- VI"' ? - . . . + V'+I ",2+1 + ..., and let t:>G be the similar quantity defined using
the ",'s. Then the equilibrium concentrations obey (Equation 8.17)

[Xk+!l"k+ l .. . [XmlVrn
t:> G = 0, or = K""

[X,] "' . . . [X,) "'

where [X] es cx/ (I M) and K", = e-""1'/'oT. The ratio of concentra tions above is
called the reaction quo tient: if it differs from Keq) the system is not in equilibrium
and the reaction proceeds in the net direction needed to move closer to equilib
rium.

Note that fj,, (}J and Keq both depend on the reference concentrations chosen
when defining them; Equation 8.17 corresponds to taking the reference concentra 
tions all equal to I M. Often it's convenient to define pK = - log,oK,q'

Acids and bases: The pH of an aqueous solution is - loglO [H+ l. The pH of pu re
water reflects the degree to which H20 dissociates spontaneously. It's almost en
tirely undissociated: [H+J = 10- 7 , whereas there are 55 mole/ L of H20 molecules.

Titration: Each residue a of a protein has its own pK value for dissociation. The
probability of being protonated, Po, equals ~ when the surrounding solution's pH
matches the residue's pK. Otherwise we have (Equation 8.29)

Po = (I + 10"' )- ' , where x, = pH - pKo •

• Critical micelle concentration: In o ur mode l, the total concentration of am
phiphilic molecules Ctol is related to the concentration CI of those remaining un
aggregated by Ctot = c,( 1 + (2C, /C.)N-I) (Equation 8.33). The critical micelle
concentration C* is the concentration at which half of the amphiphili c molecules
are in the form of micelles: its value reflects the equilibrium constant for self
assembly.

FURTHER READING

Semipopulor:
On the physics and chemistry of food: McGee, 1984.
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Lipidlike molecules from space and the or igins of life: Deamer & Fleischaker, 1994.
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Physical chemistry: Mortimer, 2000.
Physical aspects of membranes: Lipowsky & Sackma nn, 1995; Seifert, 1997.
Protein structure: Branden & Tooze, 1999i Dill , 1990.



1121 8.1.1' Track 2

I. Equation 8.1 on page 295 defined /l as a derivat ive with respect to the number of
mol ecules N . Chemistry textbooks instead define fJ. as a derivative with respect to
the «amo unt of substa nce" n. See the discussion of units in Section 1.5.4' on page
30.

2. The discussion in the gas chemical potential Example (page 296) amounted to
converti ng a deri vative taken with Ekin fixed to one taken with E fixed . Th e formal
way to summarize this manipulation is to say that
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as I as I as I
aN E = aN El.dn - E aEkin N '

3. We have been descr ibing E as if it were a form of potent ial energy, like a coiled
spring inside the molecule. Purists will insist that the energy of a chemical bond
is partly po tential and partly kinetic, by the Uncertainty Principle. It's tru e. What
lets us lump these energies together, indeed what lets us speak of bond energies at
all, is that quantum mechan ics tells us that any molecule at rest has a ground sta te
with a fixed, definite total energy. Any additional kinetic energy from center-of
mass mo tion and any potential energy from external fields are given by the usual
classical formulas and simply added to the fixed internal energy. That's why we get
to use familiar results from classical physics in our analysis.

4. A complicated molecule may have many states of almost equally low energy. Th en
f will have a tem pera ture-dependent component reflecting in part the likelihood
of occupying the vario us low-energy states. But we won't use E di rectly; we'll use
/1.,0, which we already knew was temperatu re-dependent anyway. This fine point
doesn't usually matter becau se living organisms operate at nearly fixed tempera
ture; once again our atti tude is that /.L0 is a phenomeno logical quantity.

1121 8.2.1' Track 2

Th ere are other, equivalent defin itions of J1 besides the one given in Equation 8.1 on
page 295. Thus, for example, som e advan ced textbooks state you r results from Your
Turn 8e as

/l _ _a_F I = ac I
aN T.V aN T.p ·

Two more expressio ns for the chemical potential are ;~ Is v and ~~ Is , where H is
• -P

the enthalpy. The definit ion in Equat ion 8.1 was chose n as o ur starting point because
it emp hasizes the key role of entropy in determining any reaction's direction.
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IT21 8.2 .2' Track 2

I. The solutions of interest in cell biology are frequently not dilute. In th is case, the
Second Law still determines a reaction's equilibrium point. but we must use the
activity in place of the concentration [X] when writing the Mass Action rule (see
Section 8.1.1 on page 29S). Dilute-solution formulas are especially problematic
in the case of ionic solutions (salts) because ou r formu las ignore the electrostatic
interaction between ions (and indeed all o ther interactions). Because the electro
static interaction is of long range. its om ission becomes a serious problem sooner
as we raise the concentration than that of other interactions. See the discussion in
Landau & Lifshit z, 1980, §92.

2. We can also think of the temperature dependence of the equilibrium constant
(Your Turn 8D on page 302) as an instance of Le Chatelier's Principle. Dumping
thermal energy into a closed system increases the temperature (thermal energy
becomes more available). This chan ge shifts the equilibrium toward the higher
energy side of the reaction, so the system absorbs thermal energy, making the
actual temp erature increase smaller than it would have been if no react ion had
occurred. In other words, the reaction partially undoes our original disturbance.

IT21 83.4 ' Track 2

The discussion of electrophoresis in Section 8.3.4 is rather natve; the full theory is
quite involved. For an introductory discussion , see Benedek & Villars, 2000c, §3. I.Dj
for many det ails, see Viovy, 2000.

1121 8.6.1 ' Track 2

I. Sectio n 8.6.1 argued that a bilayer membran e prefers to be flat. Strictly speak
ing, this argument on ly applies to artificial, pu re lipid bilayers. Real plasma mem
branes have significant compositional differences between their two layers, wi th a
corresponding spo ntaneous tendency to bend in one direction.

2. The logic given for the elastic energy of a membrane may be more familiar in the
context of an ordinary spring. Here we find the elastic (potential) energy for a
small defo rmation to be of the form U = ! k( L'>x)', where L'>x is the change in
length from its relaxed value. Differen tiating to find the force gives f = - k( L'>x),
which is the Hooke relatio n (compare with Equation 5.14 on page 172).

3. More realistically, bendin g a bilayer involves a combination of stretching the outer
layer and squeezingthe inner layer. In addition, the bilayer's elasticity also contains
cont ributions from defor ma tion of the tails of the amphiphilic molecules, not
just the heads. These elaborations do not change the general form of th e bending
elasticity energy. (For ma ny more details abo ut bilayer elasticity, see for example
Seifert, 1997.)
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PROBLEMS

8 .1 Coagulation

a. Section 8.6.3 described how the addition of acid can trigger the coagulation
(clumping) of pro teins in milk or egg. The suggested mechanism was a reduction
of the effective charge on the proteins and a corresponding reduction in their
mutu al repulsion. The addition of salt also promotes coag ulation. whereas sugar
does not . Suggest an explanation for these facts.

b. Cheese-making dates from at least 2300 BCE. More recent ly (since ancient Roman
times), cheese-makers have used a milk-curdling method that does not involve
acid or salt. Instead, a pro teolytic (protein-splitting) enzyme (chymosin, or ren
nin) is used to cut off a highly charged segment of the K-casein molecule (residues
106-1 69). Suggest how this change could induce curdling and relate it to the dis
cussion in Section 8.6.2.

8.2 Isomerization
Our example of buffalo as a two-state system (Figure 6.8 on page 220) may seem
a bit fanciful. A more realist ic example from biochemistry is the isom erization of a
phosphorylated glucose molecule from its I-P to its 6-P form (see Figure 8.12), with
t:>. G' = - 1.74 kcal/rnole, Find the equilibrium concentration ratio of glucose-P in
the two isomeric states shown.

8.3 pH versus temperature
The pH of pure water is not a universal constant; rather, it depends on the tem
perature: At 0·(, it's 7.5, whereas at 40 · (, it's 6.8. Explain this phenomenon and
comment on whyyour explanation is numerically reason able.

8.4 Difference between F and G

a. Consi der a chemical reaction in which a mo lecule moves from gas to a water so
lution. At atmospheric pressure, each gas molecule occupie s a volume of abo ut
22 LJmole, whereas in solution, the volume is closer to the volume occupied by
a water molecule, or 1/ (55 mole/L), Estimate (t:>. V) p, expressing your answer in
units of kBTr.

b. Consider a reaction in which two mo lecules in aqueous solution combine to form
one. Compare an estimate of (t:>. V )P with what you found in (a) and comment on
why we usually don't need to distinguish between F and G for such reactions.

5~
glucose- I-P

~?;,
glucose-B.P

Figure 8.12: (Molecular structure diagrams.) Isom erization of glucose-R [Adapted from Al
berts et al., 1997.J
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8.5 Simp le dissociation
Section 8.3.2 gave the d issocia tion pK for acetic acid as 4.76. Suppose tha t we dissolve
a mo le of this weak acid in 10L of water. Find the pH of the resulting solution. What
fraction of acetic acid molecules is dissociated?

8.6 Ionization state of inorganic phosphate
Cha pter 2 oversimp lified somewha t in stating that phosphor ic acid (H, PO.J ionizes
in water to form the ion HPO;- . In reality, all four possible protonation states, from
three H's to none, exist in equilibrium. The three successive proto n-rem oving reac
tio ns have the following approximate pK values:

Find the relative populations of all fou r proton ation states at the pH of human blood,
around 7.4.

8.7 Electrophoresis
In this problem, you will make a crude est ima te of a typi cal value for the elec
trophore tic mobility ofa protein.

3 . Model the protein as a sphere of radius 3 om, carrying a net electric charge q ==
JOe, in pure water. If we apply an electri c field of t: = 2 volt crn", the protein
will feel a force qt: . Write a formula for the resulti ng drift velocity and evaluate it
numerically?

b. In th e experiment discussed in Section 8.3.4 on page 312, Pau ling and coauthors
used an elect ric field of 4.7 volt crn" , app lied for up to 20 ho urs. For a mixture of
normal and defective hemoglobin to separate into two distinguishable bands, they
mu st travel different distances under these conditions. Estimate the separation of
these bands for two species whose charges di ffer by just one unit and comment on
the feasibility of the experiment.

8.8 I '121 Grand partition function

Review Section 8.1.2 on page 298.

a. Show that the distribution you found in Your Turn 8B is the one that min imizes
the grand potential of system a at T. u , defined by analogy with the usual free
energy (Equation 6.32 on page 224) as

1/1, = (E, - /IN, ) - TS,. (8.38)

b. Show th at the mi nima l value of 1/1 thus obtaine d equals kBT In Z .

c. Optional: For the real gluttons, generalize your result in (a) and (b) to systems
exchangi ng part icles and energy, and chang ing volume as well (see Sectio n 6.5.1).

7~ Actually. one uses a salt solution (buffer) instead of pure water. A mo re careful treatment would

account for the screening of the particle's charge (Section 7.4.3' on page 284); the result contains an extra
factor of (3j2)(A Dja) relative to your answer.
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Molecules, Machines,
Mechanisms
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The med ian and ulnar nerves of the hand, as drawn by Leonardo da Vinci around 1504- 1509. [From
the Royal Library in Windsor Castle; Clark , Catalog of the drawings oiLeonardo da Vinci at Windsor
Castle (Cambridge Univers ity Press, Cambridge, UK, 1935).]





CHAP TER 9

Cooperative Transitions
in Macromolecules

Hookegave ill 1678 thefamous law ofproportionality of stress
and strain which bears his name, in the words "Ut tensio sic

vis." This law he discovered in 1660, but did not publish Imtil
1676, and then only ullder the form ofall allagram,

"ceiiinosssttuv"

-A. Love. A treatise on the mathematical
theory ofelasticity, 1906

The precedi ng chap ters may have shed some light on par ticular mo lecular forces and
processes, but they also leave us with a deeper sense of dissonance. On one hand, we
have seen that the activity of individual small molecules is chaotic . leading to phe
nomena like Brownian motion. We have come to expect predictable. effectively de
termin istic behavior only when dealing with vast numbers of molecules, for example,
the diffusion of a drop of ink or the pressure ofair in a bicycle tire. On the other hand ,
Chapter 2 showed a gallery of exquisitely structured individual macromolecules, each
engineered to do specific jobs reliably. So which image is right- shou ld we think of
macromolecules as being like gas molecules, or like tables and chairs?

More precisely, we'd like to know how individual mo lecules, held together by
weak interactions, nevertheless retain their structural integrity in the face of thermal
motion and, indeed, perform specific functions . The key to this puzzle is the phe
nom enon of cooperativity.

Chapter 8 introduced cooperativity, showing that it makes the micelle transition
sharper than we would otherwise expect it to be. This chapter willextend the analysis
and also deepen our understanding of macromolecules as brokers at the interface
between the worlds of mechan ical and chemical forces. Section 9.1 begins by studying
how an external force affects the conformation of a macro mo lecule. first in a very
simplified mo del and then in a second model adding the cooperative tendency of
each monom er to do what its nearest neighbor s are doin g. The ideas of Chapter 6
and the partition function met hod for calculating entropic forces (from Section 7.1)
will be very useful here. Next, Section 9.5 will extend the discussion to transitio ns
induced by changes in the chemical environ ment. The final sections argue briefly that
the lessons learned from simple model systems can help us understand qualita tively
the sharp state transition s observed in biologically imp ortan t systems. the allosteric
proteins.
The Focus Questions for this chapter are
Biological question: Why aren't proteins consta ntly disrupted by thermal fluctua
tions? The cartoons in cell bio logy books show proteins snapping crisply between
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definite conformations as they carry out their jobs. Can a floppy chain of residues
really behave in this way?
Physical idea: Cooperativity sharpens the transitions of macromolecules and their
assemblies.

9.1 ELASTICITY MODELS OF POLYMERS

Roadm ap The following sections introduce several physical models for the elasticity
of DNA. Section 9.1.2 begins by const ructing and justifying a physical picture of DNA
as an elastic rod. Although physically simple, the elastic rod mode l is complex to an
alyze mathematically. Thus we wo rk up to it with a set of reduced models, starting
with the "freely jointed chain" (Section 9.1.3). Section 9.2 introduces experimental
data on the mechan ical deforma tion (stretching) of single molecules and interprets
it, using the freely jointed chain model. Section 9.4 argues that the main feature ne
glected by the freely jointed chain is cooperativity between neighborin g segments of
the polymer. To redress this shortcomi ng. Section 9.4. 1 introduces a simple model ,
the "one-dime nsio nal cooperative chain." Later sectio ns apply the mathematics of
cooperativity to structural transitions within polymers, for example. the helix-coil
transition.

Figure 2.15 on page 51 shows a segment of DNA. It's an understatement to say
that this molecule has an elaborate architecture! Atoms combine to form bases. Bases
bind into basepairs by hydrogen bonding; they also bond covalently to two outer
backbones of phosphate and sugar groups. Worse, the beautiful picture in the figure
is in some ways a lie: It doesn't convey the fact that a macromolecule is dynam ic,
with each chemical bond constantly flexing and involved in promiscuous, fleeting
interactions with other molecules not show n (the surrounding water molecules, with
their network of H-bonds, and so on). It may seem hop eless to seek a simple account
of the mechanical properties of this baroque structure.

Before giving up on a simple description of DNA mec hanics, thou gh, we should
pause to examin e the length scales of interest. DNA is rough ly a cylindrical molecule
of diameter 2 nm. It consists of a stack of roughly flat plates (the basepairs), each
about 0.34 nm thick. But the total /engtll of a molecule of DNA (for example, in one
of your chrom osom es), can be 2 em , or ten million times the diameter! Even a tiny
virus such as the lambda phage has a genome 16.5 Jlm long, still far bigger than the
diameter. We may hope that the behavior of DNA on such long length scales may not
depend very much on the details of its structure.

9.1 .1 Why physics works (when it does work)

There is plenty of preceden t for such a hope. After all, engineers do not need to ac
count for the detailed atomic structure of steel (nor, indeed, for the fact that steel
is made of atom s at all) when designing bridges. Instead, they mode l steel as a con
tinuu m with a certain resistance to deformation, characterized by just two numbers
(called the bulk mod ulus and shear modulus; see Section 5.2.3 on page 169). Simi
larly, the discussion of fluid mechanics in Chapter 5 made no mention of the detailed
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struc tu re of the water molecule , its network of hydrogen bonds, and so on . Instead,
we again summarized the properties of water relevant for physics on scales bigger
than a couple of nanometers by just two numbers, mass density Pm and viscosity l} .

Any other Newtonian fluid, even with a radically different molecular structure, will
flow like water if it matches the values of these two phenomenological param eters.
What these two examp les share is a deep theme running through all of physics:

When we study a system with a large num ber of locally in teract
ing, iden tical constituents on a far bigger scale than the size of the
constituents, then we reap a huge simplification: Just a few effective (9.1)
degrees of freedom describe the system's behavior. with just a few
ph enomenological parameters .

Thus the fact that br idges and pipes are much bigger than iron atom s and water mo l
ecules un derlies the success of continuum elasticity theory and fluid mechanics.

Much of physics amo unts to the systematic exploitation of Idea 9. 1. A few more
examples will help explain the statement of this principle. Then we'll try using it to
address the questions of interest to this chapter.

Another way to express Idea 9.1 is to say that Nature is hierarchically arra nged
by length scale into levels of structu re and that each successive level of structure for
gets nearly everything about the deeper levels. It is no exaggeration to say that this
principle explains why physics is possible at all. Historically, our ideas of the struc 
ture of mat ter have gone from molecules, to atoms, to pro tons, neutro ns, electrons,
and beyond th is to the quarks composing the protons and neut rons, and perhaps to
even deeper levels of substructure. Had it been necessary to understand every deeper
layer of structure before making any pro gress, then the whole ente rprise could never
have start ed! Conversely, even now that we do know that matter con sists of atom s,
we would never make any progress und erstanding br idges (or galaxies) if we were
obliged to consider them as collections of atoms. The sim ple rules emerging as we
pass to each new length scale are examples ofthe emergent properties mentioned in
Sections 1.2.3 and 6.3.2.

Contin uum elasticity In elasticity theory, we pretend that a steel beam is a continu
ous object, ignori ng the fact that it's made of atoms. To describe a deformation of the
beam , we imagine dividin g it into cells of, say, 1crn'' (much smaller than the beam
but much bigger than an atom ). We label each cell by its position in the beam in its
unstressed (straight) state. When we put a load on the beam , we can describe the re
suIting deformation by reporting the change in the position of each element relative
to its neighbors, which is much less information than a full catalog of the positions of
each atom . If the deformation is not too large, we can assume that its elastic energy
cost per unit volum e is proportional to the square of its magnitude (a Hooke-type
relation; see Section 5.2.3 on page 169). The constants of proport ionality in this rela
tionship are examples of the phenomenological parameters ment ioned in Idea 9.1. In
this case, there are two of them, because a deformation can either stretch or shea r the
solid. We could try to predict their numerical values from the fun damental forces be
tween atoms. But we can just as con sistently take them to be experimentallymeasured
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quantities. As long as only one or a few phenomenological parameters characterize
a material, we can get many falsifiable predictions after making only a few measure
ments to nail down the values of those parameters.

Fluid mechanics The flow behavior of a fluid can also be characterized by just a few
numerical quantities. An isotropic Newtonian fluid, such as water, has no memory
of its original (undeformed) state. Nevertheless. we saw in Chapter 5 that a fluid re
sists certain motions. Again dividing the fluid into imagined macroscopic cells, the
effective degrees of freedom are each cell'svelocity. Neighboring cells pull on one an
oth er via th e viscous force rule (Equat ion 5.4 on page 164). The constant ry appearing
in that rule-the viscosity- relates the force to the deformation rate; it's one of the
phenomenological parameters describing a Newtonian fluid.

Membranes Bilayer membranes have properties resembling both solids and fluids
(see Section 8.6.1 on page 322). Unlike a steel beam or a thin shee t of aluminum foil,
the membrane is a fluid: It maintains no memory of the arrangement of molecules
within its plane, so it offers no resistance to a constant shear. But unlike sugar mol
ecules dissolved in a drop of water, the membrane does remember that it prefers to
lie in space as a continuou s, flat sheet- its resistance to bending is an intrinsic phe
nomenological parameter (see Idea 8.37 on page 326). Once again, one constant, the
bend stiffness K . summarizes the complex intermolecularforces adequately, as long as
the membrane adopts a shape whose radius of curvature is everywhere much bigger
than the molecular scale.

Summary Th e preceding examples suggest that Idea 9.1 is a broadly applicable prin
ciple. But there are limits to its usefulness. For example, the individual monomers
in a protein chain are not identical. As a result, the problem of finding the lowest
energy state of a protein is far more complex than the corresponding problem for,
say, a jar filled with identical marbles. We need to use physical insights when they are
helpful, while being careful not to apply them when inappropriate. Later sections of
this chapter will find systems where simple mo dels do apply and seem to shed at least
qualitative light on complex problems.

IT21Section 9.1.1' on page 384 discusses further the idea of phenomenological pa

rameters and Idea 9.1.

9.1.2 Four phenomenological parameters characterize
the elasticity of a long, thin rod

Let's return to DNA and begin to think about what phenomenological parameters
are needed to describe its behavior on length scales much longer than its diameter.
Imagine holding a piece of garden hose by its ends. Suppose that the hose is naturally
straight and of length LIO, . You can make it deviate from thi s geometry by applying
forces and torques with your hands. Consider a little segment of the rod that is ini
tially located adistance s from the end and oflength ds.We can describedeformations
of the segment by giving th ree qu antities (Figure 9.1):
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Ag u re 9 .1: (Schematic.) Defo rmations ofa thin elastic rod. (a) Definition of the bend vecto r,
P = di/ds, illustrated for a circula r segme nt of a thin rod. The parameter s is the contour
length (also called arc length) along the rod. The tangen t vector t (s) at one po int o f the rod
has been moved to a nearby point a distance ds away (dashed arrow), then compared with the
tangent vector there. or i(s+ds). The difference of these vectors,di, points radially inward and
has magn itude equal to dO, or dsjR. (b) Defini tion of stretch. For a uniformly stretched rod,
u = l:!.L /Llo t ' (e) Definition of twist density. Fora uniformly twisted rod. w = 6.¢totl !.tot .

The stretch u(s) (or extensional deform ation ) measures the fraction al change in
length of the segment: II = 6 (ds)jds. The stretch is a dimensionless scalar (that
is, a quantity with no spatial direction ).

The ben d /3 (5) (Drbend deformation ) measures how the hose's unir tangent vector
i changes as we walk down its length: /3 = di /ds. Thu s the bend is a vector with
dimensions lL- 1.

The twi st dens ity w (s) (or torsional deformation ) measures how each succeeding
element has been rotated about the hose's axis relative to its neighbor. For example,
if YD Ukeep the segment straight but twist its ends by a relative angle d,p, then w =
d,pj ds. Thu s the twist density is a scalar with dimensions n.. - I .

Show that all three of these quantities are independent of the length ds of rhe
small element chosen.

The stretch, bend , and twist density are local (they describe deformations near a par
ticular location, 5), but they are related to the overall deformation of the hose, For
example, the total conto ur length of the hose (the distance a bug would have to walk
to get from one end to the other) equals foL,", ds (I + 11 (5» . Note that the parameter
5 gives the contour length of the unstretched hose from one end to a given point , so it
always runs from 0 to rhe tDtal unstretched length, L,o" of the rod .

In the context of DNA, we can think of the stretch as measuring how the contour
length of a shor t tract of N basepairs differs from its natural (or "relaxed") value of
(0.34 nm) x N (see Figure 2.15 on page 51). We can think of the bend as measuring
how each basepair lies in a plane rilred slightly from the plane of its predecessor. To
visualize twist density, we first note that the relaxed doub le helix of DNA in solution
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makes one complete helical turn about every 10.5 basepairs. Thus we can think of the
twist density as measuring the rotation 6.0/ of one basepair relative to its predecessor,
minus the relaxed value of this angle. More precisely,

t; 1fr 2rr I bp
w = - (vo, where iVQ = ::-::-:-'~ ::::::: 1.8 nm" .

0.34 nm 10.5 bp 0.34 nm

Following Idea 9.1, we now write down the elastic energy cost E of deforming our
cylindrical hose (or any lon g, thi n elastic rod). Again divide the rod arbitrarily into
short segments oflength ds. Then E should be the sum of terms dE(s) coming from
the deformation of the segment at each position s, By analogy to the Hooke relation,
we now argue that dE(s) should be a quadratic function of the deformations, if these
are small. The most general expression we can write is

I
dE = -kBT [AI3' + Bu' + Cw' + 2Duw]ds.

2
(9.2)

The phenomenological parameters A, B, and C have dim ensions lL, lL- I , lL, respec
lively; D is dim ension less. The quantities AkBT and CkBT are called the rod 's bend
stiffness and twist stiffness at temperature T, respectively. It's convenient to express
these quantities in units of kBT, which is why we introduced the ben d persis tence
length A and the twist persistence length C. The remaining constants BkBT and
DkBT are called the stretch stiffness and twist- stretch coupling, respectively.

It may seem as though we have forgotten some possible quadratic terms in Equa
tion 9.2, for example, a twist-bend cross-term. But the energy must be a scalar,
whereas pwis a vector; terms of this sort have the wrong geometrical status to appear
in the energy.

In some cases, we can simplify Equation 9.2 still further. First, many polymers
consist of monomer s joined by single chemical bonds. The monomers can then ro
tate about these bonds, destroying any memory of the twist variable and eliminating
twist elasticity: C = D = o. In other cases (for example, the one to be studied
in Section 9.2), the polymer is free to swivel at one of its attachment point s, again
leaving the twist variable uncontrolled; then w again drops out of the analysis. A sec
ond simplifi cation comes from th e observation that the stretch stiffness kBTB has the
same dimensions as a force. If we pull on the polymer with an applied force much
less than this value, the cor responding stretch u will be negligible, and we can forget
about it, treating the molecule as an inextensibIe rod, that is, a rod having fixed total
length. Making both these simplifications leads us to a one-parameter phenomeno
logical model of a polymer, with elastic energy

I 1L
'0<E = -kBT dsA13 2

2 0
simplified elastic rod mo del (9.3)

Equation 9.3 describes a thin, inextensible rod made ofa continuous, elastic ma
terial. Other authors call it th e Kratky-Porod or wormlike chain model (despite the
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fact that real worms are highly extensible). It is certain ly a simp le, ultrareductive ap
proach to the complex molecule shown in Figure 2.15! Nevertheless, Section 9.2 will
show that it leads to a quantitatively accurate model of the mechanical stretching of
DNA.
17kISection 9.1.2' on page 385 mentions some finer points about elasticity models

ofDNA.

9.1.3 Polymers resist stre tch ing with a n e ntropic force

The f reely jointed chain Section 4.3 .1 on page 122 suggested that a polymer could
be viewed as a chain of N freely jo inted links and that it assumes a random-walk
conformation in certain so lution conditions. We begin to see how to justify this image
when we exam ine Equation 9.3. Suppose that we bend a segment of our rod into a
quar ter-circle of radius R (see Figure 9.1 and its caption). Each segment of length ds
then bends through an angle dO = dsj R, so the bend vector P points inward, with
magnitude IPI = de j ds = R-'. According to Equation 9.3, the total elastic energy
cost of this bend is then one half the bend stiffness, tim es the circumference of the
quarter-circle. times /3 2,or

elastic energy cost of a 90° bend = (~ kBTA) x (~ 2".R) X R-2 = ::kBT.
(9.4)

The key point about this expression is that it gets smaller with increasing R. That is, a
90° bend can cos t as little as we like. provided its radius is big enou gh. In particular.
when R is much bigger than A , then the elastic cost of a bend will be negligible relative
to the thermal energy kBTl In other words,

Any elastic rod immersed in a fluid will be randomly ben t by therm al
motion ii its contour length exceeds its bend persistence length A.

Idea 9.5 tells us that two distant elements will po int in random. uncorrelated direc
tions as lon g as their separation is muc h greater than A. This observation justifies
the name "bend persistence length" for A: Only over separations less than A will the
molecule remember which way it was pointing.'

A few structural elements in cells are extremely stiff, and so can resist thermal
bend ing (Figure 9.2). But mo st biopolymers have persistence lengths much shorter
than their total length. Because a polymer is rigid on the scale of a monomer, yet
flexible on length scales much longer than A, it's reasonable to try the idealizatio n
that its conformation is a chain of perfectly straight segments, joined by perfectly f ree
joints. We take the effective seg ment len gth, Lseg• to be a phenomenologica l param
eter of the mod el. (Many authors refer to L,,,, as the Kuhn length .) We expect L".

'The situation is quite different for two-d imensio nal elasticobjects, for example. membranes. We already
found in Section 8.6.1 that the energy cost to bend a patch of membrane into. say, a hemisphere, is 4Jf K , a
constant independent of the radius. Hence membranesdo not rapidly lose their planarcharacter on length
scales larger than their thickness.
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Figure 9.2 : (Wet scanning electron micrograph .) Actin bundles in a stained CHO cell. Each
bundle has a bend persistence length tha t is much larger than that of a single actin filament.
The bundl es are straight, not therm ally bent , because thei r bend persistence length is longer
than the cell's diameter. [Digital image kindly supplied by A. Nechushtan and E. Moses.]

to be roughly the same as A; because A is itself an un known parameter, we lose no
predictive power if we instead phrase the mod el in terms of Lseg•2 We call the result
ing model the freely jointed chain (or FjC) . Section 9.2 will show that for DNA,
Lseg ~ 100 nm; conventional polymers like polyethylene have much shorter segment
lengths, genera lly less than 1 nm. Because the value of L" g reflects th e bend stiffness
of th e molecule, DNA is often called a "stiff;' or semiflexible, polymer.

The Fje model is a reduced form of the und erlying elastic rod model (Equa
tion 9.3). We will improve its realism later. But it at least incor porates the insight of
Idea 9.5, and it will turn out to be mathematically simpler to solve than the full elastic
rod model.

In shor t, we propose to study the conformation of a po lymer as a random walk
with step size Lseg• Before bringing any math ematics to bear on the mo del, let's first
see if we find any qualitative support for it in our everyday experience.

The elasticity of rubber At first sight, the freely jointed chain may no t seem like a
promising model for polymer elasticity. Imagine puliing on the ends of th e chain un
t il it's nearly fully stretched, then releasing it. If you try this with a chain made of
paperclips, the chain stays straight after you let go. But a rubber band , which con
sists of many polymer chains, will recoil when stretched and released. What have we
missed?

The key difference between a macroscopic chain of paperclips and a polymer is
scale: The therm al energy kBT is negligible for macroscopic paperclips but significant
for the nanometer-scale mo nomers of a macrom olecule. Suppose that we pull our
pap erclip chain out straight, then place it on a vibrating table, where it gets random
kicks many times larger than kBT: Its ends will spontaneously come closer together
as its shape gradualiy becomes random. Indeed, we would have to place the ends of

2~ Section 9.1.3' on page 386 shows that the precise relation is L..g = lA.
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the chain und er constant, gentle tension to prevent this sho rtening, just as we must
appl y a con stant force to keep a rubber band stretched.

We can understand the retracting tendency of a stretched polymer by using ideas
from Chapters 6 and 7. A long pol ymer chain of length Ltot can consist of hundreds
(or million s) of monomers, with a huge number of possible conformation s. If there's
no external stretching, the vast majority of these conformations are spherelike blob s,
with mean -square end-to-end length z mu ch shorter than Ltot (see Section 4.3.1 on
page 122). Th e pol ymer adopts these random-coil conformations becau se there's only
oneway to be straight but many ways to be coiled up . Thus, if we hold th e ends a fixed
distance z apart, the entropy decreases when z increases. According to Chapter 7,
there must then be an entropic force opposing such stretching. That's why a stretched
rubber band spontaneously retracts:

The retracting force supplied by a stretched rubber band
is en tropic in origin.

Thus the retraction of a stretched po lymer, which increases diso rder, is like the
expansion of an ideal gas, which also increases disorder and can perform real work
(see the heat engine Example, page 214). In either case, what must go down is no t
the elastic energy E of the polymer but the free energy, F = E - TS. Even if E in
creases slightly upon bending, still we'll see that the increase in entropy will more
than offset the energy increase, driving the system toward the random-coil state. The
free energy drop in this process can then be harnessed to do mechanical work, for
example, flinging a wad of paper across the room.

Where does the energy to do this work come from? We already encountered
some analo gou s situations while studying thermal machines in Section s 1.2.2, and
Probl em 6.3. As in those cases, the mechanical work done by a st retched rubber band
mu st be extracted from the thermal energy of the surrounding environment. Doesn't
the Second Law forbid such a conversion from disordered to ordered energy? No,
because the diso rder of the polym er molecules themselves increases upon retraction :
Rubber bands are free energy transducers. (You'll perform an experiment to confirm
this prediction and support the entropic force model of polym er elasticity in Prob
lem 9.4.)

Could we actually build a heat eng ine based on rubber bands? Absolutely. To
impl em ent this idea, first notice a surprising consequence of the en tropic orig in of
pol ym er elasticity . If the free energy increase upon stretching comes from a decrease
in entropy, then th e formula F = E - TS implies th at th e free energy cost of a
given extension will depend on the temperature. The tension in a stretched rubber
band will thus increase with increasing T. Equivalently, if the imposed tension on the
rubber is fixed, then the rubber willshrink as we heat it up-its coefficient of thermal
expansion is negative, unlike , say, a block of steel.

To make a heat engi ne exploit ing this observation, we need a cyclic process, anal
ogous to the one symbolized by Figure 6.6 on page 216. Figure 9.3 shows one simple
strategy.

The remainder ofthis chapter will deve lop heavier tool s to und erstand po lym ers.
But this section has a simple point: The ideas of statistical physics, which we have
developed mainly in the context of ideal gases, are really of far greater applicability.
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Figure 9.3: (Engineeri ng sketch.) Rubber-band heat engine. The light bu lb sequentially heats
the rubber bands on one side of the disk, making them cont ract. The other side is shielded
by the sheet meta l screen; here the rubber bands coo l. The resu lting asymmetr ical contraction
unbalances the wheel, which tu rns. The turn ing wheel brings the warm rubber bands into the
shaded region, where they cool; at the same time, cool rubber bands emerge into the warm
region, making the wheel turn continuously. [FromStong, 1956.]

Even without writing any equations, these ideas have already yielded an immediate
insight into a very different -seeming system, one with applications to living cells.
Admittedly,your body is not powered by rubber-band heat engines, nor by any other
sort of heat engine. Still, understanding the entro pic origin of polymer elasticity is
important for our goal of und erstanding cellular mechanics.

IT2 1Section 9.1.3' on page 386 gives a calculation showing that the bend stiffness

sets the length scale beyond which a fluctuating rod's tangent vectors lose their cor
relation.

9 .2 STRETCHING SINGLE MACROMOLECULES

9 .2 .1 Th e force-extension curve ca n be measured
fo r s ingle DNA molec ules

We'll need some mathematics to calculate the free energy F (z) as a function of the
end -to-end length z of a polymer chain. Before doing this, let's look at some of the
available experimental data.
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Figure 9 .4 : (Experimental data with fu.) Force f versus relative extension Z/L"ol for a DNA molecule made of 10416
basepairs, in high-salt solution. The regimes labeled A, B, C, D, and E are described in the text. The extension z was
measured by video imaging of the positions of beads attached to each end; the force was measured by using the change
oflight momentum exiting a dual-beam optical tweezers apparatus (see Section 6.7 on page 226). Llot is the DNA's total
contour length in its relaxed state. The quantity z/ Ltot become s larger than 1 when the mo lecule begins to stretch, at
around 20 pN. The solid curve shows a theoretical model obtained by a combinat ion of the approaches in Sections 9.4.1'
and 9.5.1. [Experimental data kindly supplied byS. B. Smith; theoretical model and fit kindlysupplied byC. Storm.]

To get a clear picture, we'd like to pass from pulling on rubber bands, with zil
lions of enta ngled polymer chains, to pulling on individual polymer molecules with
tiny, precisely known forces. S. Smith, L. Finzi, and C. Bustamante accomplished this
feat in 1992; a series of later experiments improved both the quality of the data and
the range of forces prob ed, leading to the picture shown in Figure 9.4. Such exper
iments typically start with a DNA molecule of known length (for example, lambda
phage DNA). One end is anchored to a glass slide, the other to a micro meter-sized
bead, and the bead is then pulled by optical or magnetic tweezers (see Section 6.7 on
page 226).

Figure 9.4 shows five distinct regimes of qualitative behavior as the force on the
molecule increases:

A. At very low stre tching force, f < 0.01 pN, the molecule is still nearly a random
coil. Its ends then have a mean-square separation given by Equation 4.4 on page
115 as L.,../N. For a molecule with 104 16 basepairs, Figure 9.4 shows that this
separation is less than 0.3Lto t ' or 1060 nm, so we conclude that Lscg..jLtot /Lseg <
0.3L'01> or L,,, < (0. 3) ' L'ol "" 300 nm. (In fact, L~g will prove to be much smaller
than this upper bound-it's closer to 100 nm.)
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B. At higher forces, the relative extension begins to level off as it approaches unity.
At th is point , the molecule has been stretched nearly straight. Sections 9.2.2-9.4.1
will discuss regimes A and B.

e. At forces beyond about 10pN, the extension actually exceeds the total conto ur
length of the relaxed molecule. Section 9.4.2 will discuss th is "intrinsic stre tching"
phenomenon.

D. At around f = 65 pN, we find a rema rkable jump, as the molecule suddenly
extends to about 1.6 times its relaxed length. Section 9.5.5 brie fly discusses this
"overstretching transition."

E. Still higher forces again give elastic behavior, until eventually the molecule breaks.

9.2.2 A two-state system qualitatively explains DNA stretching
at low force

The freely jointed chain model can help us und erstand regime A of Figure 9.4. We
wish to comp ute the entropic force f exerted by an elastic rod subjected to thermal
motion. This may seem like a daunting prospect. The stretched rod is con stantly
buffetedbythe Brownian motion of the surrounding water molecules, receiving kicks
in the directions perpendicular to its axis. Somehow aUthese kickspull the ends closer
together, maintainin g a constant tension if we hold the ends a fixed distance z apart.
How could we calculate such a force?

Luckily, o ur experience with other entropic forces shows how to sidestep a de
tailed dynamical calculation of each random kick: When the system is in thermal
equilibrium , Chapter 7 showed that it's much easier to use the partition funct ion
method to calculate entropic forces. To use the method developed in Section 7. 1.2,
we need to elaborate the deep parallel between the entropic force exerted by a freely
jointed chain and that exerted by an ideal gas confined to a cylinder:

The gas is in thermal contact with the external world, and so is the chain .

• The gas has an external force squeez ing it; the chain has an external force pulling
it.

The internal potential energy Vint of the gas molecul es is independent of the vol
um e. The chain also has fixed internal potential energy- the links are assumed to
be free to point in any direction , with no potential-energy cost. In both systems,
the kinetic energy is fixed by the ambient temp erature, so it too is independ ent of
the constraint. But, in bot h systems, the potential energy Vext of the mechanism
supplying the external force willvary.

In the polymer stretching system, Vex1 goes up as the chain shortens:

Vex1 = con st - f z, (9.7)

where f is the applied external stretching force. The total pote ntial Vinl + Vext is what
we need when com puting the system's partition function.
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The observations just made simplify ou r task greatly. Following the strategy lead
ing to Equation 7.5 on page 247~ we now calculate the average end-to-end distance of
the chain at a given stretching force f directed along the +2 axis.

In this section, we will work in one dimension for simplicity. (Section 9.2.2' on
page 389 extends the analysis to three dimensions.) Thus each link has a two-state
var iable a , which equals +I if the link points forward (along the applied force) or - I
if it points backward (against the force). The total extension z is then the sum of these
variables:

N

Z = L~:~ ) L a..
i= ]

(9.8)

(The superscript " I d" reminds us that this is the effective segment length in the one
dimen sional FJe model.) The probabili ty of a given con formation (a i , ... • aNJ is
then given by a Boltzmann factor:

[9.9)

Here Z is the partition function (see Equation 6.33 on page 224). The desired average
extension is thus the weighted average of Equation 9.8 over all conformations, or

(z) = I.: ... I.: P(a , .... . aN) x Z

o\=±1 0N = ±I

(
L(l d) ~a.)

seg L...J I

i= l

d [ ( (ld) ",N ) ]=kBT;-i ln L ... L e - - f LscgL. i:::l0 ; /k p, T .

f ol =±1 "N=±l

This looks like a form idable formula, until we not ice that the argu men t of the loga
rithm is just the product of N independent, identical factors:

(z) = kBT~ In [('" eI~)"' /'BT) x . . . x ('" eI~)"NI 'B T) ]df L a l=±I L...aN= ±I

= kilTd~ In (eI~)/ 'BT + e-f~)/ 'BT) N

e!~) / kBT _ -f~)/kBT
_ N Ll ld) e
- seg e!~) / k8T + e-fL~ ) /kBT ·

Recalling that NL~~~) is just the tota l length Ltot , we have shown that

(z/L,o') = tanh (f L~g ) / kllT) . force versus extension for the Id Fje (9.10)
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Your
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If you haven't yet worked Problem 6.5, do it now. Explain why this is mathe
matically the same problem as the one we just so lved.

Solving Equation 9.10 for [ shows that the force needed to maintain a given ex
tension z is proportional to the absolute temperature. This property is the hallmark of
any purely entropic force, for example. ideal-gas pressure or os motic pressure; we
anticipated it in Section 9.1.3.

The function in Equation 9.10 interpolates between two impo rtant limiting be
havio rs:

At high force, (z) -> L,o,. This behavior is what we expect from a flexible but
inextensible rod: Once it's fully straight, it can't length en any more.

At low force, (z) -> [ / k, where k = kBT/(LIO,L~;~» ) .

The second point means that

At low extension, a po lymer beha\'es as a spring, that is, it obeys a
Hooke relation, [ = k(z). In the FJC m odel, the effective spring con- (9.1 1)
stant k is proportional to the tempera ture.

Figure 9.5 shows experimental data obtained by stretching DNA, together with the
function in Equation 9.10 (top curve). The figure shows that taking L~;~) = 35nm
makes the curve pass through the first data poiat. Altho ugh the one-dimensional
freely jointed chain correctly captures the qualitative features of the data , clearly it's
not in goo d quantitative agreement throu ghou t the range of forces shown. That's
hardly surprising in the light of ou r rather crude math emati cal treatment of the un
derlying physics of the elastic rod mod el. The following sections will improve the
analysis, eventually showing that the simplified elastic rod model (Equation 9.3) gives
a very good account of the da ta (see the black curve in Figure 9.5).

IT21Section 9.2.7' on page 389 works out the three-dim ensional freely jointed chain.

9.3 EIGENVALUES FOR THE IMPATIENT

Section 9.4 will make use of some mathematical ideas not always covered in first
year calculus. Luckily, for our purpo ses only a few facts will be sufficient. Many more
details are available in Shankar, 1995.

9.3.1 Matrices and eigenvalues

As always, it's best to approach this abstract subject through a fam iliar example. Look
back at our force diagram for a thin rod being dragged throu gh a viscou s fluid (Fig
ure 5.8 on page 175). Supp ose, as show n in the figure, that the axis of the rod points
in the direction I = (x- i) / J2;let ii = (x+ i) / J2 be the perpeodicular unit vector.



9.3 Eigenvalues for the impatient 3 5 5

1010.1

,

1
0.9

0.8

0.7

E 0.6
...,
--.. 0.5N

0.4

0.3

1d freely jointed chain model

I
--:-~--

t 
)f
'e

J

force, pN

Figure 9.5 : (Experimental data with f its.) Log-log plot of relative extension zl Llo, at low ap
plied stretching force f for lambda phage DNA in 10 rnM phosphate buffer. The points show
experimental data correspo nding to the regimes A- B in Figure 9.4. The curves show various
theoretical m odels discussed in the text. For com parison, the value of Lscg has been adiusrcd in
each model so that all the curves agree at low force. Top curve: One-dimensional freely jointed
chain (Equation 9.10 ), with L~) = 35 nm. Long-dash curve: One-dimensional cooperative

chain (see YourTurn 9H(b»), with L~ I held fixed at 3S om and y very large. Short-dash curve:
Three-dimensional FjC (YourTurn90), with L~ = 104 nm. Black curve through data points:
Three-dimensional elastic rod model (Section 9.4.1' on page 390), with A = 51nm. [Data
kindly supplied by V.Croquette; see also Bouchiat et al., 1999.J

Section 5.3.1 stated that the dra g force will be parallel to the velocity v if v is directed
along either tor fi, but that the viscous friction coefficients in these two directions, {.l
and 1;11 ' are not equal: The parallel drag is typically ~ as great as I;.t . For intermediate
directions, we get a linear combination of a parallel force proportional to the parallel
part of the velocity, plus a perpend icular force pro portional to the perpendicular part
of the velocity:

(9. 12)

This formula is indeed a linear function of Vx and vz , the components of v:

Your
Turn

9C

Use the preceding expressions for t and fa to show that

( ~ + i)Vx +(- t +pv, ] .
(- ~ + i )vx+ (, + , lv,
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Expressions of th is form arise so frequently th at we introduce an abbreviation:

[
f x ] [ ( ~ + ~ )

= ~.L I It. (-, +,)
(9.13)

Even though Equ ati on 9.13 is nothing but an abbreviation for th e formula above
it, let's pau se to put it in a broade r context. Any line ar relation between two vectors
can be writt en as f = Mv, where th e symbol M denotes a matrix, or rectan gular array
of numbers. In our example we are interested in only two directi on s xand i, so our
mat rix is two-by-two:

M 12 ]M" .

(9.14)

Thus the symbo l M ij de notes th e entry in row i and column j of the matrix. Placing
a matr ix to the left of a vector, as in Equation 9.13, denotes an operation where we
successively read across th e rows of M, multiplying each entry we find by th e corre
sponding entry of the vector v and adding to obta in the success ive com po nents of f:

Mv sa [ M llvi + M1 1VZ ] .
M 21v,+ M 21V Z

The key qu estion is now: Given a matrix M, what are the special directions ofv
(if any) that get transformed to vectors para llel to themselves under th e op eration
sym bolized by M? We alread y know th e answer for th e example in Equation 9. 13: We
constructed this matrix to have th e special axes 1: and fi, with corresponding viscous
frict ion coefficients ~ ~.L and I .L ' respectively. Mo re generally, tho ugh, we ma y not be
given the special directions in advance, and there may not even be any. The special
direct ions of a matrix M, if an y, a re called its eigenvectors; the correspo nd ing mul
tip liers are called the eigenva lues. ' Let's see how to work out the specia l directions.
and their eigenvalues, for a general 2 x 2 matrix.

Consider the m atrix M = [ ~ :;] . We want to know whe ther th ere is any vector

v; th at tu rn s in to a mul tip le of itself after tran sformation by M:

eigenvalue equation (9.15)

Th e notation on the right -hand side m eans th at we multiply each ent ry of th e vector
v, by the same con stant A. Equa tion 9.15 is actually two equa tio ns, becau se each side
is a vector with two componen ts (see Equat ion 9.14).

How can we solve Equation 9. 15 without knowing in advance the value of A? To
answer this qu estion, first note that there's always one solution, no ma tter what value

JLike "liverwurst," this word is a combination of the German eigen ("proper") and an English word. The
term expresses the fact that the eigenvalues are intr insic to the linear transfor mation represented by M. In
contr ast, the entries Mij themselves chatlgewhen we express the transfor mation in some other coordinate
system.
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we take for i-., namely, v, = [ ~]. This is a boring soiution. Regardin g Equation 9.15
as two equations in the two unknowns VI and vz, in general, we expect just one solu
tion; in other words, the eigenvalue equation, Equation 9.15, will in generalhaveonly
the boring (zero) solution. But for certain special values of A, we may find a second,
interesting solution after all. This requirement is what determines A.

We are looking for solutions to the eigenvalue equation (Equation 9.15 with M =

[ ~ ~ ] ) in which VI and Vl arc not both zero. Suppose that V I =f=. O. Then we can divide

both sides of the eigenvalue equation by VI and seek a solution of the form [ ~J. The
first of the two equat ions represented by Equation 9.15 then says that a + wb = i-.,
or bw = i-. - a. The second equation says that e + dw = i-.w . Multiplying by band
substituting the first equation lets us eliminate w altogether, finding

be = (i-. - a)( i-.- d ). (condition for i-. to be an eigenvalue) (9.16)

Your
Turn

9D

Your
Turn

9£

Thus only for certain special values of A-the eigenvalues-will we find any nonzero
solution to Equation 9.15. The solutions are the desired eigenvectors.

a. Apply Equation 9.16 to the matri x appearing in the frictional drag prob lem
(Equation 9.13). Find the eigenvalues, and the corresponding eigenvectors,
and confirm that they're what you expect for this case.

b. For some problems, it's possible that V I may be zero; in this case, we can't
divide through by it. Repeat the preceding argument, this time assuming
that Vz :f=. 0, and recover the same condition as Equation 9.16.

c. It's possible that Equation 9.16 will have no real solutions. Show that it will
always have two real solutions if be ~ O.

d. Show that, furthermore, the two eigenvalues will be different (not equal to
each other) if be > O.

Continuing the previous problem, consider a symmetric 2 x 2 matrix, that is,
one with M12 = M 21• Show that

a. It always has two real eigenvalues.

b. The corresponding eigenvectors are perpendicular to each other, if the two
eigenvalues are not equal.

9.3.2 Matrix mult iplication

Here is another concrete example. Consider the operation that takes a vector v, ro
tates it through an angle a , and stretches or shrinks its length by a factor g . You
can show that this operation is linear, that its matrix representation is R(a , g)

[-i ~~;: ::~~ : J. and that it has no real eigenvectors (why notr ).
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Suppose we apply th e operation R to a vector twice.

Your
Turn

9F

a. Evaluate M(Nv) for two arbitrary 2 x 2 matr ices M and N. (That is, apply
Equatio n 9.14 twice.) Show that your answer can be rewritten as Qv, where
Q is a new matrix called the product Nand M, or simply MN. Find Q.

b. Evaluate the matrix product R(a , g)R(fi , h), and show that it too can be
wr itten as a certain combination of rotation and scaling. That is, express it
as R(y . c) for some y and c. Find y and c and explain why your answers
make sense.

IT21 Section 9.3.2' on page 390 sketches the generalizations ofsome of the preceding

results to higher-dimensional spaces.

9.4 COOPERATIVITY

9.4.1 The transfer matrix technique allows a more accurate treatment
of bend cooperativity

Section 9.2.2 gave a provisiona l ana lysis of DNA stretchin g. To begin improving it,
let's recall some of the simplificatio ns made so far:

We treated a conti nuo us elastic rod as a chain of perfectly stiff segments, joined by
perfectly free joints.

We treated the freely jointed chain as being one-dimensional (Section 9.2.2' on
page 389 discusses th e three-dimension al case).

• We ignored the fact that a real rod cannot pass th rough itself.

This section will consider the first of these oversimpl ifications." Besides yielding a
slight improvemen t in our fit to the exper imental data, the ideas of this section have
bro ader ramifications and go to the heart of this chapter's Focus Qu estion.

Clearly, it would be better to model the chain, not as N segments with free joints,
but as, say, 2N shorter segments with some "peer pressure," a preference for neigh
boring un its to point in the same direction. We'll refer to such a effect as a coop erative
coupling (or simply as cooperativity). In the context of DNA stretching, cooperativ
ity is a surrogate for the physics of bend ing elasticity, but later we'll extend the con
cept to include other phenomena as well. To keep the mathematics simple, let's begin
by constructing and solving a one-dimens ional version of thi s idea, which we'll call

4~ Section 9.4.1' on page 390 will tackle the first two together. Problem 7.9 discussed the effects of self

avoidan ce; it's a mino r effect for a stiff polymer (like DNA) und er tension. The discussion in this section
will introduce yet another simp lification, taking the rod to be infin itely long. Section 9.5.2 will illustrate
how to introduce finite-length effects.
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the Id cooperative chain model. Section 9.5.1 will show that the mathematics of the
one-dimensional cooperative chain is also applicable to another class of problems,
the helix-eoil transitions in polypeptides and DNA.

Just as in Section 9.2.2, we introduce N two-state variables o., describing links
of length f . Unlike the FIC, however, the chain itself has an internal elastic potential
energy Uint: When two neighboring links point in oppos ite directions (Uj = - Gj+l ) ,

we suppose that they contribute an extra 2ykBT to this energy, relative to when they
po int in parallel. We can imp lement this idea by introdu cing the term - y kBT u ;G;+ l

into the energy function; this term equals ±ykBT, dependi ng on whether the neigh
boring links agree or disagree. Adding contributions from all the pairs of neighboring
links gives

N - I

Uint/kBT = - y L G jGi+ l ,

;=1

(9.17)

where y is a new, dim ensionless phenomenological parameter (the cooperativity
parameter). We are assuming that only next-door neighbor links interact with each
other. The effective link length eneed Dot equal the FIe effective link length L~::) ;

again we will find the appropriate eby filling the mod el to data.
We can again evaluate the extension (z) as the derivative of the free energy,

computed by the partition function method (Equation 7.6 on page 248). l.et a es
f e/kBT, a dimensionl ess measure of the energy term biasing each segment to point
forward. With this abbreviation, the partition function is

Z(a) = " . . . " reaL~I °1+Y L~I I 0101+1]
L.,, (JI = ± 1 L.,, (JN = ± 1 . (9.18)

The first term in the exponential corresponds to the contribution Uext to the total
energy from the external stretching. We need to compute

d d
(z) = kBT-

j
In Z(f) = e- lnZ(a) .

d da

To make further progress, we must evaluate the summations in Equation 9.18.
Sadly, the trick we used for the FIC doesn't help us this time: The coupling between
neighboring links spoils the factorization of Z into N identical, simple factors. Nor
can we have recourse to a mean-field approximation like the on e that saved us in Sec
tion 7.4.3 on page 264. Happily, though, the physicists H. Kramers and G. Wannier
found a beautiful end run around this problem in 194 1. Kramers and Wannier were
studying magnetism, not polymers. They imagined a chain ofatoms, each a small per
manent magnet that could po int its north pole either parallel or perpendicular to an
applied magnetic field. Each atom feels not only the applied field (analogous to the
a term of Equation 9.18) but also the field of its nearest neighbors (the y term). In a
magnetic material like steel, the coupling tends to align neighboring atoms (y > 0),
just as in a stiff polymer the bendin g elasticity has the same effect. The fact that the
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solution to the magnet problem also solves interesting problems involving polymers
is a beauti ful example of the broad applicability of simple physical ideas.'

Suppose that there were just two links. Then the partition function 2 2 consists
of just four terms; it's a sum over the two possible values for each of lT l and lTz.

Your
Turn

9G

a. Show that this sum can be written compactly as the matrix product 2 2 =
V · (T W), where V is the vector [ ,":.. ]. W is the vector [ : ] , and T is the 2 x 2

matrix with entries

e- a
-

y
]

e - u + y . (9.19)

b. Show that for N links, the partition fun ction equals ZN = V · (T N-'W ).

c. 1'12 1Show that for N links the average value of the midd le link variable is

(aN/' ) = (V. T (N- 2)/' ( ~ _: ) TN/ 'W) / ZN .

Just as in Equation 9.14, the notation in Your Turn 9G(a) is a shorthand way to write

, ,
Z' = L L V;Tij Wj ,

i=1 j=l

where T ij is the element in row i and column j of Equation 9.19. The matrix T is
called the transfer matrix of our statistical problem.

Your Turn 9G(b) gives us an almo st ma gical resolution to our difficult rnathe
matical problem. To see this, we first notice that T has two eigenvectors. because its
off-d iagonal elem ents are both positive (see Your Turn 9D(c)) . Let's call these eigen
vectors e± and their corresponding eigenvalues A±. Thus Te., = A±e±.

Any other vector can be expanded as a combination of e., and e_; for example,
W = w+e+ + w_<- . We then find that

(9.20)

where p = w+V · e., and q = w_V ·e, ; Th is is a big simplification. It gets better when
we realize that for very large N , we can forget abo ut the second term of Equation 9.20,
becau se one eigenvalue will be bigger than the other (Your Turn 9D(d )) , and when
raised to a large power, the bigger one will be much bigger. Moreover. we don't even
need the numerical value of p:You are about to show that we need N - 1 ln ZN. which
equals In A+ + N - 1 In(p/ A+). The second term is small when N is large.

5Actually, an ordinary magnet is a three-dim ensiona l array ofcoupled spins. not a one-dimens ional chain.
The exact mathematical solution of the corresponding statistical physics problem remains unknown to
this day.
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Now finish the derivation:

a. Show that the eigenvalues are A± = eY [cosh a ± Jsinh' a + e- 4Y ].

b. Adapt the steps leadin g to Equation 9.10 on page 353 to find (z/[,o,) as a
function of f in the limit of large N.

c. Check your answer by setting y --> 0, e --> L~:) , and showing that you
recover the result of the FjC, Equation 9.10.

As always. it's interesting to chec k the behavior of your solut ion at very low force
(a --> 0). We again find tha t (z) --> f / k, where now the spring constant is

(9.21)

So at least we have not spoiled the parti al success we had with the FIC: The low
force limit of the extension , where the FJC was successfu l, has the same form in the
coo perative chain model, as long as we choo se e and y to satisfy le2y = L~::) . We
now ask whether the cooperative chain model can do a better job than the FJC of
fittin g the data at the high-force end.

The dashed curve in Figure 9.5 shows the function you found in You r Turn 9H.
The cooperativity y has been taken very large, while holding fixed L~;~) . The graph
shows that the coo perative one -dimensional chain indeed does a som ewhat better
job of represent ing the data than the FJC.

OUf Id cooperative chain model is still not very realistic. The lowest curve on
the graph shows that the three-d imensional cooperative chain (that is, the elastic rod
model , Equation 9.3 on page 346) gives a very good fit to the data. This result is a
remarkable vindication of the highly reductionist model of DNA as a uniform elastic
rod. Adjust ing just one phenomenological parameter (the bend persistence length A )
gives a quantitative account of the relative extension of DNA, a very com plex object
(see Figure 2.15 on page 51). This success makes sense in the light of the discussion
in Section 9.1.1: It is a consequence of the large difference in length scales between
the typical thermal bend ing radiu s ('" 100nm) and the diameter of DNA (2 nm).

IT21Section 9.4.1' on page 390 works out the force-extension relation for the full,

three-dim ensional elastic rodmodel.

9.4.2 DNA also exhibits linear stretching elasticity at moderate
applied force

We have arrived at a reasonable understanding of the data in the low- to mod erate
force regimes A and B shown in Figure 9.4. Turning to regime CJ we see that at
high force, the curve doesn't really flatten out as predicted by the inextensible rod
model . Rather. the DNA molecule is actually elongating, no t just straightening. In
other words, an external force can induce structural rearrangements of the atoms in
a macromolecule. We might have expected such a result-we arrived at the simple
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Figu re 9 .6 : (Experimental data with fit .) Linear plot of the stretching of DNA in regime C
of Figure 9.4. A DNA molecule with 388 00 basepairs was stretched with optical tweezers, in
a buffer solution with pH 8.0. For each value of the force, the ratio of the observed relative
extension and the prediction of the inextensible elastic rod model is plotted. The fact thatthis
ratio is a linear function of applied forceimplies that the molecule has a simple elastic stretch
ing response to the applied force. The solid line is a straight line through the point (0 pN, 1),
with fitted slope 1/ (Bk, T,) = 1/ (1400 pN). [Data kindly supplied by M. D. Wang; see Wang
et aI., 1997.]

model in Equation 9.3 on page 346 in part by neglectin g the possibilit y of stretching,
that is, by discarding the second term of Equation 9.2 on page 346. Now it's time
to reinstate this term and in so doing) formulate an extensible rod model, due to
T.Odijk.

To approximate the effects of this intrinsic stretching, we note that the applied
force now has two effects: Each element of the chain aligns as before, but now each
element also lengthens slightly. The relative extension is a factor of 1 + u) where u
is the st retch defined in Section 9.1.2 on page 344. Consider a straight segment of
rod, init ially of contour length Ss . Under an appli ed stretching force f , the segment
will lengthen by u x Ss, where u takes the value that minimizes the energy func
tion kBT[ t Bu2 D.s - f u As] (see Equation 9.2). Performing the minimization gives
u = f / (kBTB). We will make the approximation that this formula holds also for the
full fluctuating rod. In this approximation each segment of the rod again lengthens
by a relative factor of 1+ u) so (z/ Lto t ) equals the inextensible elastic rod chain result)
multiplied by I + (J /(kBTB»).

Figure 9.6 shows some experimental data on the stretching of DNA at moderate
forces. Intrinsic stretching is negligible at low force) so the low-force data were first
fit to the inextensible rod model ) as shown in Figure 9.5. Next, all the extension data
were divided by the corresponding point s obtained by extrapolating the inextensible
rod model to higher forces (corresponding to regime C of Figure 9.4). According to
the previou s paragraph) this residual extension should be a linear functio n of f 
and the graph confirms this prediction . The slope lets us read off the value of the
stretch stiffness asBkBT, "" 1400 pN for DNA under the condit ions of thi s parti cular
experiment.
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9.4.3 Cooperativity in higher-dimensional systems gives rise to infinitely
sharp phase transitions

Equation 9.21 shows that the force-in duced stra ightening transition becomes very
sharp (the effective spring constant k becomes small) when y is big. That is, cooper
ativity, a local interaction between neighbors in a chain, increases the sharpness of a
global transition.

Actually. we are already familiar with cooperative transitions in our everyday,
thr ee-dimensiona l, life. Suppose that we take a beaker of water, carefully main tain
it at a fixed, uniform temp erature, and allow it to come to equilibr ium. Then the
water will be either all liquid or all solid ice, depending on whether the temperatur e is
greater or less than 0°(' This sha rp transition can again be regarded as a consequence
of coope rat ivity. The interface between liquid water and ice has a surface tension, a
free energy cost for introducing a boundary between these two phases, just as the
parameter 2y in the polymer stretching transition is the cost to create a boundary
between a forward -directed domain and on e pointing against the applied force. Thi s
cost disfavors a mixed water/ ice state, making the water-ice transition discontinuous
(infinitely sharp ).

In contrast to the water/ ice system, you found in Your Turn 9H(b) that the
straightening of the one-dimensional FIe by applied tension is never discontinuous,
no matter how large y may be. We say that the freezing of water is a true phase tran
sit ion but that such transition s are impossible in on e-dimensional systems with local
interactions.

We can und erstand qualitatively why the physics of a cooperative, one-dimen
sional chain is so different from analogous systems in thr ee dim ensions. Suppose that
the temperature in your glass of water is just slightly below 0°(' Th ere will certainly
be occasiona l thermal fluctuations converting small pockets of the ice to water. But
the prob ability of such a fluctu ation is suppressed, both by the free energy difference
between bulk ice and water and by the surface tension energy, which grows with the
area of the small pockets of water. In on e dimension , in contrast, the boundary of a
dom ain of the energetically disfavored state is always just two points, no matter how
large that domain may be. It turns out that this minor-seeming difference is enough
to assure that in one dim ension , a nonzero fract ion of the sample will always be in
the energetically disfavored state-the transition is never qui te complete, just as in
our polymer, (z/Ltot ) is never quite equal to 1.

9.5 THERMAL, CHEMICAL, AND MECHANICAL SWITCHING

Section 9.4 introduced a conceptual framework-cooperati vity-for understanding
sharp transitions in macrom olecules ind uced by externally appli ed forces. We saw
how cooperativity sharpens the tran sition from random-coil to straight DNA. We
found a simple interpretation of the effect in term s of a big increase in the effective
segment length as we turn on cooperativity, from l to lezy (see Equation 9.21).

Some imp ortant conformational transitions in macromolecules really are in
du ced by mechanical forces. For example, the hair cells in your inner ear respond
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to pressure waves by a mechanically actuated ion channel. Understand ing how such
tra nsitions can be sharp, despite th e therm ally fluctu atin g enviro nment, was a major
goal of this chapter. But other macromolecules function by undergoing conforma
tion al transition s in respon se to chemical or thermal changes. Th is section will show
how these transitions, too, can becom e shar p by virt ue of their cooperativity.

9.5.1 The helix-coil t ransit io n ca n be observed by usin g polarized light

A protein is a polymer; its monom ers are the amino acids. Unlike DNA, whose large
cha rge density gives it a uniform self-repu lsion, th e ami no acid monomers of a pro
tein have a rich variety of attractive and repul sive interactions. These interactions can
stabilize definit e prote in structures.

For example, certain sequences of amino acids can form a right-han ded helical
structure , the alpha helix (Figure 2.17 on page 53). In th is structure, the free energy
gain of formin g hydrogen bo nds between mono mers outweighs the entropic ten
dency of a chain to assume a rand om walk confo rmation. Specifically, H-bonds can
form between the oxygen atom in th e carbo nyl group of monomer k and the hydro
gen atom in the amide group on mon om er k + 4, but only if the chain assumes the
helical shape shown in Figure 2.176

Th us the question of whet her a given polypeptide will assume a rando m coil or
an alpha helix (ordered) confo rmation comes down to a competi tio n between con
form ation al entropy and H-bond formation . Which side wins this competition will
depend on the polypeptide's composition, and on its thermal and chemical environ
ment. The crossover between helix and coil as the enviro nment changes can be sur
prisingly sharp , with nearly total conversion of a sample from one form to th e other
upon a temp erature change of just a few degrees (see Figure 9.7). (To see why this is
considered "sharp," recall that a change of a few degrees impli es a fractional change
of the thermal energy of a few degrees divided by 295 K.)

We can monitor confo rma tional changes in polypept ides witho ut having to look
at them individually; instead, we look at cha nges in the bulk prope rties of their so
lutions. When studying the helix-coil tra nsition , the most telling of these changes
involves the solution's effect on poiarized light.

Suppose that we pass a beam of polarized light rays through a suspension of per
fectly spherica l part icles in water. The light will be scatte red: It loses some of its per
fect uniformity in direction and polarizatio n, emerging with a slightly lower degree
of polarization . This loss of purity can tell us something about the density of sus
pended par ticles. Wha t we will not find , however, is any net rotation in th e direction
of polarization of the light. We can understand this important fact via a symm etry
argu men t.

Suppose that our suspension rotated th e angie of polarized iight by an angle IJ
(Figure 9.8). Imagine a second solution, in which every atom of the first has been
reflected th rough a mirror. Every particle of the second solution is just as stable as
those in the first because the laws of atom ic physics are invar iant under reflection.
And the second solut ion will rotate the polarization of incident light by - (), th at is,

"Other ordered, H-bonded structures exist, for example, the beta sheet; this section will study only
polypeptides whose main competing conformations are the alpha helix and random coil.
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Figure 9 .7 : (Experimental da ta with fit.) Alpha helix for matio n as a function of temperature
for solutions of poly- jy -benzyl-t -gluramare] (an artificial polypeptide), dissolved in a mix
ture of dichloro acetic acid and ethylene dichloride. At low temperature, all samples displayed
an optical rotation similar to that of isolated monomers; at high temperatu res, the rotation
changed, thu s ind icatin g alpha helix formation. Top dots: Polymer chains of weight-average
length equa l to 1500 mo no mers. Middle dots: 46-mo nomer chains. Lower circles: 26-monomer
chains. Th e vertical axis gives the optical rotation; this value is linearly related to the fraction
of all mo no mers in the helical confor mation . Top solid curve: Th e large-N for mula (Equa
tions 9.25 and 9.24) obta ined by fittin g the values of the five param eters il£. Tms y . C,. and C2

to the experi mental data. Th e lower two curves are then predictions of the model (see Sections
9.5.3 on page 369 and 9.5.3' on page 394). with no furth er fittin g done . [Experimental data
from Zimm et al., 1959.]

source

mono ch romat er

po larizer

I- d--""""'
I~O

)

sam ple conce nt ra t ion c

d etector

Fig ure 9 .8 : (Schematic.) A polarimeter. The arrows represent the elect ric field vector E in
a ray of light emerging from the source. They are shown rotating by an angle 8 as the light
passes through the sample; the rotat ion shown corresponds to the positive value 8 = +1r/ 2.
By convention. the plus sign means that an observer looki ng into the oncoming beam sees the
electric field rotating in the clockwise direction as the beam advances th rou gh the medium.
Try looking at this figure in a mirror to see that the op tical ro tatio n changes sign. (Adapted
from Eisenbe rg & Cro thers. 1979.)
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opposite to th e first solution's rotation. But, because a spherical object is unchanged
upon reflection, the n so is a random distribut ion (a suspen sion ) of such objects. So
we can also concl ud e that both solutions have the same value ofe.The only way that
the second suspension could have an optical rot ation that is equal to e and to -() is
for e to be zero, as claimed in the preceding paragraph.

Now consider a suspens io n of identical, but not necessar ily spherical, mo lecules.
If each mo lecu le is equiva lent to its mirror ima ge (as is true of water, for example),
then the argument just given again implies that e = O- and that's what we obser vein
water. But mo st biological molecules are not equivalent to their mirror images-they
are said to be chiral (see Figure 1.5 on page 25). To driv e the po int home, it's helpful
to get a corkscrew and find its handed ness, following the caption to Figure 2.17 on
page 53. Next, look at the sam e corkscrew (or Figure 2.17) in a mirror and discover
that its mirror ima ge has the opposite handedn ess." Th e two shapes are genuinely in
equivalen t: You cannot mak e the mirror ima ge coincide with the ori ginal by turning
the cork screw end-over-end, nor by any other kind of rotation .

Solutions of chiral mo lecules really do rotate the polarization of inciden t light.
Most inte restin g for our present purposes, a single chemical species may have differ
ent confo rmation s with differing degrees of chirality (reflection asymmetry). Thus,
whereas the ind ividual amino acids of a protein may ind ividually be chiral, the pro 
tein's abilit y to rotate polarized light at certai n wavelengths changes drama tically
when the individual monomers organize into the superstructure of the alpha helix.
In fact,

The observed optical rotation ofa solution ofpolypeptide is a linear
function of the fraction of amino acid monomers in the alpha helix
form.

Observing e thu s lets us measu re the degree of a polypeptide's conversion from ran
dom coil to alph a helix conforma tion. (This technique is used in the food indu stry,
where e is used to monitor the degree to which starches have been cooked.)

Figure 9.7 shows some experimental dat a obtained by P. Doty and K. Iso, to
gether with the results of the an alysis developed in Section 9.5.3. These experiments
monitored the optical rot ation of an artifi cial polypeptide in solution while ra ising
its temperature. At a critical value of T, the rota tion abruptly changed from the value
typ ical for isolated monom ers to some other value, signaling the self-assembly of al
pha helices.

IT2 1Section 9.5. 1' on page 393 defines the specific optical rotation, a more refined

measurem ent ofa solution's rotatory power.

9 .5. 2 Th re e phenomenol o gical parame ters de scribe a g iven
helix-coil trans ition

Let's tr y to model the data in Figure 9.7 by using the ideas set out in Section 9.4. Our
approach is based on ideas pioneered by ). Scheilma n and extended by B. Zimm and
I, Bragg.

"But don 't look at your IUlIId in the mirror while doing this! After all, the mirror image of your right hand
looks like your left hand.
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We can think of each mon omer in an alpha helix-forming polypept ide as being
in one of two sta tes labeled by a = +1 for alpha helix or a = -1 for random coil.
More precisely, we take cri = +1 if monomer number i is H-bonded to monomer
i + 4, and - 1 otherwise. The fraction of mo nomers in the helical state can be ex
pressed as ! ( (aav) + 1). In this expression, crall denotes the average of a ; over all the
monomers, in one particular state of the cha in; (crav) represents a further averaging
over all allowed chain states. We sup pose tha t each mono mer makes a contribution
to the overall opt ical rot at ion th at depends only on its state. Th en th e total optical
rot ation (vertical axis of Figu re 9.7) will be a linear function of (cray).

The th ree curves in Figure 9.7 show result s obtain ed fro m three different samp les
of polymer, di ffering in their average length . Th e polymer was synthes ized under
three sets of conditions; the mean molar mass for each sample was then determined.
We'll begin by studying the top curve, which was obtained with a sample of very long
pol ymer chains. We need a formula for (Gay) as a function of temperature. To get the
requ ired result , we adap t the analysis of Section 9.4.1, reinterpreting the parameters
a and y in Equation 9. 18, as follo ws.

The helix-extension parameters In the po lymer stretching problem, we imagined
an isolated th ermodynamic system consisting of th e chain, its sur rounding solvent,
and some kind of externa l spring supplying th e stretching force. The bias param 
eter 2et = 2£f / kBT then described the redu ction of the spring's potential energy
when on e link switched from the unfa vorable (backward, a = - 1) to the favorable
(forward, a = +1) di rection . The app lied force f was known, but the effective link
length ewas an unk now n param eter to be fit to th e da ta. In the present context, on the
other hand , th e link length is immaterial. Whe n a monomer bo nd s to its neighbo r, its
link variable Gj changes from - I to + 1 and an l-l-bon d forms . We must remember,
ho wever, th at the participati ng Hand 0 ato ms were already H-bonded to surround
ing solvent molecu les; to bo nd to each other, they m ust breakthese p reexisting bonds,
with a corresponding energy cost. The net energy cha nge of th is transact ion, which
we will call ~Ebond sa Ehcl ix - Ecoil, may therefore be either positive or negative, de
pend ing on solvent conditions ." Th e part icular combina tion of polym er and solvent
sho wn in Figu re 9.7 has ~Ebond > O. To see this, note that ra ising the tem perature
pushes the equilibrium toward the alpha helix conformation. Le Chate lier's Principle
then says that forming th e helix mu st cost energy (see Section 8.2.2 on page 301).

Th e formation and breaki ng ofH- bonds also involves an entropy change, which
we will call ~Sbond.

There is a third im por tan t contribution to the free ene rgy change when a tr act of
alph a helix extends by one more monomer. As mentioned in Section 9.5 .1, the for
mation of intramolecular H- bon ds requi res the immobili zation of all the int ervening
flexible links, so the participati ng H and 0 ato ms stay within the very sho rt ran ge
of the H-bond interaction . Each amino acid monomer contains two relevant flexi
ble links. Even in the ran dom-coil state, these links are not perfectly free, as a result
of ob struction s involving the atoms on either side of them ; instead , each link flips
between three preferred position s. But to get the alpha helix state, each link must oc-

8~ More precisely. we are discussing the enthalpy change. l:lH , but in this book we do not distinguish

energy from enthalpy (see Section 6.5.1).
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cupy just one particular position. Thu s the change of conformational entropy upon
extending a helix by one unit is roughly t.S<onf '" -kB In(3 x 3), with a corresponding
contribution to the free energy change ofabout +k.TIn 9.

The statement that t.Ebond > 0 may seem paradoxical. If alpha helix forma
tion is energetically unfavorable, and if it also reduces the conformational entropy
of the chain, then why do helices ever form at any temperature? This paradox,
like the related one involving depletion interactions (see the end of Section 7.2.2
on page 25 I). goes away when we consider all the actors on the stage. It is true
that extending the helix brin gs a reduction in the polypeptide's conformational en
tropy, t.S<onf < O. But the formation of an intramolecular H-bond also changes the
entropy of the surrounding solvent molecules. If this entropy change .6.Sbond is
positive and big enough that the tlet entropy change .6.Stot = .6.Sbond + llSconf is
positive. then increasing the temperature can indeed drive helix formation because
then t. Goond = t.Ebond - T t.SlOl will become negative at high eno ugh temperature.
We have already met a similar apparent paradox in the context of self-assembly:
Tubulin monomers can be induced to polymerize into microtubules-Iowering their
entropy-by an increase in temperature (Section 7.5.2 on page 276). Again, the
resolution of this paradox involved the entropy of the small, but numerous, water
molecules.

Summar izing, we have identified two helix-extension parameters ~Ebond and
~Stot describing a given helix-coil transition. We define the bias favoring the helical
state as a sa (t.Ebood - Tt. S,o,)! (-2k.T); extending an alpha helical stretch of the
polypepti de by one un it changes the free energy by - 2a kBT. (Some authors refer to
the related quantity e'" as the propagation paramete r of the system.) Thus,

The free energy to extend the helix is a funct ion of the polypeptide's
temperature and chemical environment. A po sitive value of ex means
that extending a helical region is thermodynamically favorable.

(9.23)

Clearly a first-p rinciples predict ion of a would be a very difficult prob lem, in
volving all the physics of the H-bond netwo rk of the solvent and so on. We will not
attempt this level of prediction. But the ideas of Section 9.1.1 give us an alternative
approach: We can view .6.E!xm d and ~Stot as just two phenomenologica l parameters
to be determined from experiment. If we get more than two nontrivial testable pre
dict ions out of the model, then we will have learned something. In fact, the complete
shapes of all three curves in Figure 9.7 follow from these two numbers (plus one
more , to be discussed momentarily).

It's convenient to rearrange the preceding expression for a slightly. Introducing
the abbreviation Tm sa ~Ebond/ ~Stol gives

1 ~Ebond T - Tm
a =---- .

2 k. TTm
(9.24)

The formula shows that Tm is the midpoint temperature, at which ex = O. At this
temperature , extending a helical section by one unit makes no change in the free
energy.
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The cocperativity parameter So far. each mon omer has been treated as an inde
pendent, two-state system. If this were true, then we'd be done-you found (a) in
a two-state system in Problem 6.5. But so far, we have neglected an important fea
ture of the physics of alpha helix form ation: Extending a helical section requires the
immob ilization of two flexible bonds, but creating a helical section in the first place
requires that we immobili ze all the bonds between units i and i + 4. That is, the
polymer mu st immobi lize one full turn of its nascent helix before it gains any of the
benefit of formi ng its first H-bond. The quantity 2akBT introduced earlier thus ex
aggerates the decrease of free energy upon initiating a helical section. We defin e the
cooperativity parameter y by writing the true change of free energy upon making
the first bond as - (20' - 4y )kll T. (Some authors refer to the quantity e- 4y as the
initi ation parameter.)

Use the previous discussion to find a rough num erical estimate of the expected
value of y .

The preceding discussion assumed that the extra free energy cost of init iating a
tract of alpha helix is purely entropic in character. As you found in Your Turn 91,
this assumption implies that y is a constant, independent of temperature. Althou gh
reasonable, this assumption is just an approximation. We will see, however, that it is
quite successful in interpreting the experimental data.

9.5.3 Calculation of the helix-coil trans itio n

Polypeptides, IU'Je N Having defined ex and y, we can now proceed to evaluate
(a,,) ss (N - 1I:i~ l o .), which we know is related to the observable opt ical rotation .
We characterize conformations by listing {a l, ... . aN} and give each such string a
proba bility by the Boltzmann weight formula. The proba bility contains a factor of
ea Oj for each mo nomer, which changes by eUr when a, changes from -1 (unbonded)
to +1 (H-bonded). In add ition , we introduce a factor of e yo'Oi+; for each of the N - I
links joini ng sites. Because introducin g a single +1 into a string of -I 's creates two
mismatches, the total effect of initiating a stretch of alpha helix is a factor of e - 4y ,

consistent with the definitio n of y given earlier.
When N is very large, the required partition function is once again given by

Equation 9.18, and (a,.) = N -' i. InZ. Adapting your result from Your Turn 9H
and recalling that 8 is a linear function of (aav) gives the predicted optical rotation as

C, sinh 0'
e = c, + r==";;=====

j sinh' 0' + c 4y
(9.25)

In this expression, arT} is the function given by Equation 9.24 and C" C, are two
constants.
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Your
Turn
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Derive Equation 9.25, then calculate the maximum slope of this curve. That
is, find dO/ dT and evalua te at the midpoint temperature, Tm = 6.Eoood/6.Slol
(see Equation 9.24). Comment on the role of y.

Th e top cur ve of Figure 9.7 shows a fit of Equation 9.25 to Doty and Iso's experi
mental data. Standard curve-fitting software selected the values ~Ebond = O.78kBTn

Tm = 285 K, y = 2.2, C, = 0.08, and C, = 15. The fit value of y has the same
general magnitude as your rough estimate in Your Turn 91.

The abil ity of o ur h ighly red uced model to fit th e large-N data is encour aging,
but we allowed ourselves to adjust five phenomenological parameters to make Equa
tion 9.25 fit the data! Moreover, only four combinations of these parameters corre
spond to the ma in visual features of the S-shaped (or sigmoid ) curve in Figure 9.7,
as follows:

• The overall vertical position and scale of the sigmoid fix the parameters C\ and C2.

The horizontal position of the sigmoid fixes the midpoint temperature Tm-

O nce C, and Tm are fixed , the slope of the sigmoid at the origin fixes the combina
tion e2y6.Ebond. acco rding to yo ur result in Your Turn 9}.

In fact, it is surprisingly difficult to determine the parameters y and ~Ebond sepa
rately from the data. We can see thi s in Figure 9.5 on page 355: There the top two
curves, represent ing zero and infinite cooperativity, were quite similar once we ad
justed e to give them the same slope at the origin. Similarly, if we hold y fixed to a
particular value, th en adj ust 6.£bood to get the best fit to the data, we find that we
can get a visually good fit using any value of y . To see thi s, com pare the top curve
of Figure 9.7 with the two curves in Figure 9.9a. It is true that unrealistic values of
~Ebond are needed to fit the data with the alternative values of y shown. But the point
is that the large-N data alone do not really test the model-there are many ways to
get a sigmoid .

Nevertheless, while ou r eyes would have a hard time distinguishing the curves
in Figure 9.9a from the one in Figure 9.7, still there is a slight difference in shape,
and numer ical curve fitting says that the latter is the best fit. To test our model , we
must now try to make some falsifiable prediction from the values we have obtained
for the model's parameters. We need some situation in whic h the alternative values
of 6. Ehond and y shown in Figure 9.9a give wildly different results, so that we can see
whether the best- fit values are really th e most successful.

Polypep tides, fi ni te N To get the new experimental situation we need, note that one
more parameter of the system is available for experimental control: Different synthe
sis protocols lead to different/ength, N of the po lymer. In general, po lymer synthesis
leads to a mixtu re of chains with many differen t lengths, a polydisperse solution. But
with care, it is poss ible to arrive at a rather narrow distribution oflengths. Figure 9.7
shows data on the helix-eoil transition in samples with two different , finite values
of N .
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Figure 9,9: (Experimental data with fits.) Effect of changing the degree of cooperativity. (a) Dots: The same long-chain
experimental data as Figure 9.7. Darkcurve: Best fit to the data holding the cooperativity parame ter y fixed to the value
2.9 (too much cooperativity). The curve was obtained by setting .6.Ehond = O.20k1\ Tn with the other thr ee parameters
the same as in the fit shown in Figure 9.7. Light curve: Best fit to the data fixing y = 0 (no cooperativity). Here .6.Ebond

was taken to be 57kg T ro (b) Solid and open dots: The same medium- and short-chain data as in Figure 9.7. The curves
showthe unsuccessful predictions of the same two alterna tive models shown in panel (a). Top curve: The model with no
cooperativity gives no length dependence at all. Lower curves: In the model with too much cooperativity, sho rt chains are
influenced too much by their ends. so they stay overwhelmingly in the random-coil state. Solid line, N = 46; dashed line.
N = 26.

Gilbert says: The data certainly show a big qualita tive effect: The midpoint temper
ature is much higher for short chains. For example, N = 46 gives a midpoint at
around 35'C (middle set of data po ints in Figure 9.7). Because we have no more free
parameters in the model , it had better be able to predict that shift correctly.

Sullivan: Unfortunate ly, Equation 9.18 shows equally clearly that the midpoint is
always at (1 = 0, which we found corresponds to one fixed temperature, Till ==
f:;E'xmdl f:; 5,oh indepe ndent of N. It looks like our model is no good.

Gilbert: How did you see that so quickly?

Su1livan: It's a symmetry argument. Suppose I define ai = -ai. Instead of summing
over Gi = ± I, I can equally well sum over t7i = ± I. In th is way, I show that Z( - ,, ) =
Z(o'); it's an "even function." Then its derivat ive must be an "odd func tion;' so it
must equal minus itself at ex = O.

Gilbert: That may be good math, but it's bad physics! Why sho uld there be any sym
metry relating the alpha helix and a random coil conformations?

Putting Gilbert's pain ' slightly differently, suppose that we have a tract of +I's
starting all the way out at the end of the polyme r and extending to some point in the
middle. There is one junctio n at the end of this tract, giving a penalty of e - 2y . In con-
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tra st, fora tract of + J's starting and ending in the middle, thereare two junctions,one
at each end. But really, initiating a tract of helix requires that we immobilize several
bonds, regardless of whether it extends to the end or no t. So our partitio n function
(Equation 9.18) underpenalizes those conformations with helical tracts extendingall
the way out to one end (or both). Such "end effects" will be more prominent for short
chains .

We can readily cure this problem and incorporate Gilbert's insight. Weintroduce
fictitious monomers in position s 0 and N + 1) but instead of summing over their
values, we fix 0"0 = O"N+! = - 1. Now a helical tract extending to the end (position
1 or N ) will still have two "junctions" and will get the same penalty as a tract in the
middle of the polymer. Choosing - I instead of +1 at the ends breaks the spurious
symme try between ± l. That is, Sullivan's discouraging result no longer holds after
this small change in the mod el. Let's do the math prop erly.

Your a.
JiJrn

9K
b.
c.

Repeat Your Turn 9G(a ) on page 360 with the modification just mentioned,
showing that the partition function for N = 2 is Z; = r [ ~] . T 3 [ ~] , wh ere
T is the same as before and r is a quantity that yo u are to find.

Adapt your answer to YourTurn 9G(b) (general N ) to the present situation.

Adapt Equation 9.20 on page 360 to the ('resent situat ion.

Your
JiJrn

9L

Because N is not infinite, we can no lon ger drop the second term of Equation 9.20,
nor can we igno re the cons tant p appearing in it. Thus we must find explicit eigen
vectors ofT . First we make the abbreviations

g± = eU- YA± = eU [cosh a ± J sinh2 a + e- 4y ] .

a. Show that we may write the eigenvectors as

b. Using (a), show that [:J = w+e+ + w..e.,; where w± = ± e2(y - a)(l 

g,J/(g+ - g-) .

c. I T21Find an expression for the full partition function, Z~, in terms of g±.

The rest of the derivation is famili ar, if involved: We compute (aav)N = N- \d: InZ~,
using your result from Your Turn 9L(c}. This calculation yields the lower two curves"
in Figure 9.7.

9~ A small correction is discu ssed in Section 9.5.3' on page 394 below.
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Summary Earlier, we saw how fittingour model to the large-N data yields a satisfac
tory account of the helix-coil transition for long polypeptid e chains. The result was
slightly unsatisfying, though. because we adjusted several free parameters to achieve
the agreement. Moreover, the data seem to underdeterm ine the parameters, includ 
ing the most interesting one, the cooperativity parameter y (see Figure 9.9a).

Nevertheless, we agreed to take seriously the value of y obta ined from the large
N data . We then successfully predicted, with no further fitting, the finite-N data .
In fact, the finite-N behavior of our model does depend sensitively on the separate
values of .6.Ebond and y . as we see in f igure 9.9b: Both the noncooperative and the
too-cooperat ive models. each of which seemed to do a reason able job with the large
N data, fail miserably to predict the finite-N curves! It's remarka ble that the large-N
data, which seemed so indifferent to the separate values of L'.Ebood and y, actually
determine them well enough to predict successfully the finite-N data.

We can interpret our results physically as follows:

a. A two -state transition can be sharp either because its /lE is large
or because of cooperetivity between many sim ilar units.

b. A modest amoun t of cooperativi ty can give as much sharpness
as a very large /lE. because it 's eY that appears in the maximum
slope (see Your Turn 9J). Thu s cooperetivity holds the key to giving
sharp transitions between macromolecular states using only weak
interactions (like H-bonds).

c. A hallmark of cooperetivity is a dependence on the system's size
and dimensionality.

(9.26)

Let's make point (c) quantitative. In the non coop erative case, each element behaves
independently (light gray curves in Figure 9.9a,b), and so the sharpness of the tran
sition is independent of N . With cooperativity, the sharpness goes dow n for small N
(lower two curves of Figure 9.9b).

IT21Section 9.5.3' 011 page 394 refines the analysis of the helix-coil transition by

accounting for the sample's polydispersity.

9.5.4 DNA also displays a cooperative "melting" transition

DNA famouslyconsists of two strands wound around each other (Figure 2.15 on page
51); it's often called the DNA dupl ex. Each strand has a strong, covalently bonded
backbone, but the two strands are only attached to each other by weak interactions,
the hydrogen bonds between complementary bases in a pair. This hierarchy of in
teractions is crucial for DNA's function: Each strand must strictly preserve the linear
sequence of the bases, but the cell frequently needs to unzip the two stra nds tem
porarily, to read or to copy its genome. Thus the marginal stability of the DNA duplex
is essent ial for its function.

The weakness of the interstrand interaction leaves us won dering, however. why
DNA's structure is so well-defined when it is not bein g read. We get a clue when
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we notic e that simply heating DNA in solution to around 90' ( does make it fall
apart into two strands, or "melt," Other environmental changes. such as replacing
the surro unding water by a nonpolar solvent, also destabilize the du plex. The degree
of melting again follows a sigmo id (S-shaped) cu rve, similar to Figure 9.7 but with
the disordered state at high, not low, temperature. That is. DNA undergoes a sharp
transition as its temperature is raised past a definite meltin g point. Because of the
general similarity to the alpha helix transition in polypeptides, ma ny authors refer to
DNA melting as another "helix-coil" transition .

To understand DNA melting qualitatively,we visualize each backbone of the du
plex as a cha in of sugar and phosphate groups, with the individu al bases hanging off
this chain like the charms on a bracelet. When the duplex melts, there are several
contributions to the free energy change:

I. The hydrogen bonds between paired bases break.

2. The flat bases on each strand stop being neatly stacked like coins; that is, they un
stack. Unstacking breaks some other energetically favorable interaction s between
neighb oring bases, like dipole-dipole and van der Waals att raction s.

3. The indi vidu al DNA strands are mo re flexible than the du plex, so the backbone's
conformational entropy increases upon meltin g. The unstacked bases can also flop
about on the backbone. giving another favorable entropic con tribution to the free
energy change.

4. Finally, un stacking exposes the hydro phobic surfaces of the bases to the surround
ing water.

Under typ ical condi tion s,

DNA melting is energetically un favorable (t-E > 0). This fact mainly reflects the
free energy contributions described in points (l) and (2) abo ve. But,

Unstacking is entropically favored ( t-S > 0). This fact reflects the do minance of
the contribution in poin t (3) over the entropic part of(4).

Thus, raising the temperature indeed prom otes melting: f:j. E- T f:j. S becom es negative
at high temp erature.

Now consider the reverse process, th e an nealing of single-stranded DNA. There
will be a large entropic penalty when two flexible single strands of DNA come to
gether and init iate a dupl ex tract. Thus we expect to find cooperativity, by analogy
to the situation in Section 9.5.2. In addition, the unstacking energy is an interaction
between neighboring basepairs, so it enco urages the extension o f an existing duplex
tract more than the creation of a new one . The coo perativity turns out to be signifi
cant. leading to the observed sharp transition .

9.5.5 Applied m echanical force can induce cooperat ive st ruc tural
transitions in m a cromol e cul e s

Sections 9.2-9.4 showed how applying mechanical force can cha nge the conforma
tion of a macrom olecule in the simplest way- by straightening it. Sections 9.5.1-



9.5 The rma l, che mica l, a nd mechani cal switching 375

9.5.4 discussed another case, wit h a more interesting structural rearrangement. These
two them es can be combined to study force-induced structural transition s:

Whenever a macromolecule has two conforma tions that differ in the
dis tance between two points, then a mechanical Force applied between
those points will alter the equilibrium bet ween the two conforma
tions.

(9.27)

Idea 9.27 underlies the pheno menon of mechanochemical coupling. We saw this
coupling in a simple context in O U f analysis of mo lecular stretching, via the ex
ternal part of the ene rgy function, U" , = -Iz (Equation 9.7). This term altered
the equilibrium between forward- and backward -pointing monomers from equally
probable (at low force) to mainly forward (at high force). Section 6.7 on page 226
gave ano ther example, where mechan ical force altered the balance between the folded
and unfolded states of a single RNA molecule. Here are th ree more examples of
Idea 9.27.

Overstretching DNA DNA in solution normally adop ts a confo rma tion called the
B-form (Figure 2.15), in which the H-bonded basepairs from the two chains stack on
each other like the steps of a spiral staircase. The sugar-phosphate backbones of the
two chains then wind around the periphery of the staircase. That is, the two back
bones are far from being straight. The distance traveled along the molecule's axis
when we take one step up the staircase is thus con siderably shorter than it wou ld be if
the backbones were straight (vertical). Idea 9.27 then suggests that pulling on the two
ends of a piece of DNA could alter the equilibrium between the B-form and some
other, "stretched," form, in which the backbon es are straightened. Figure 9.4 shows
this overstretching transition as regime D. At a critical value of the applied force,
DNA abandons the linear-elasticity behavior studied in Section 9.4.2 and begins to
spen d most of its time in a new state, about 60% longer than before. A typical value
for I,,;, in lambda phage DNA is 65 pN. The sharpness of this transition implies that
it is highly coope rative.

Unzipping DNA It is even possible to tear the two strands of DNA apart without
breaking them. F. Heslot and coautho rs accomplished this in 1997 by attaching the
two strands at one end of a DNA duplex to a mechanical stretching apparatus. They
and later wo rkers found the force needed to "unzip" the strands to be in the range
10-15 pN.

Unfolding titin Proteins, too . undergo massive structural changes in respo nse to me
chanical force. For exam ple, titin is a structu ral protei n found in muscle cells . In its
native state, titin consists of a chain of globular domains. Under increasing tens ion,
the domains pop open one at a time, somewhat like the RNA hairpin in Section 6.7
on page 226, thereby leading to a sawtooth -shaped force-extension relation . Upon
release of the applied force, titi n resum es its ori ginal structure, ready to be stretched
again.
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9.6 ALLOSTERY

So far, this chapter has focused on showing how nearest-n eighb or cooperativity can
create sharp transitions between conformations of rather simple polymers. It is a
very big step to go from these model systems to proteins, wi th complicated, nonlocal
interactions between residues that are distant along the chain backbone. Indeed, we
will not atte mpt any more detailed calculat ions. Let's instead look at some biological
con sequence s of the princi ple that cooperative effec ts of many weak interactions can
yield defin ite conformatio ns with sharp transit ions.

9.6.1 Hemoglobin binds four oxygen molecules cooperative ly

Returning to this chapter's Focus Question, first consider a protein critical to your
own life, hem oglobin. Hemoglobin's job is to bind oxygen molecules on cont act with
air, then release them at the appropriate moment, in some distant body tissue. As a
first hypothesis, one might imagi ne that

• Hemoglobin has a site where an O2 molecule can bind.

In an oxygen-rich environment, the binding site is more likely to be occupied , by
LeChatelier's Principle (Section 8.2.2 on page 30 I).

In an oxygen-poor environment, the binding site is less likely to be oc cupied. Thus,
when hemoglobin in a red blood cell moves from lungs to tissue, it first bind s, then
releases, oxygen as desired .

The problem wit h this tidy little scenario shows up when we try to model oxygen
bindi ng to hem oglobin qu antitat ively, using the Mass Action rule (Equation 8.17on
page 304) for the reaction Hb+ 0 2 ;= Hb 0 2. (The symbol "Hb" represents the whole
hemoglobin molecule.) Let Y sa [Hb021/ ([Hb] + [Hb0 2]) represent the fractional
deg ree of oxygenation .

Your
Turn

9M

Show th at accord ing to the preced ing model , Y = [02l!([021 + K;q' ) , where
K", is the equilibrium con stant of the binding reaction (see Equation 8.17 on
page 304 ).

In a set of careful mea surements, C. Bohr (father of the physicist Niels Bohr) showed
in 1904 that the curve of oxygen bind ing versus oxygen co nce ntratio n in solution (or
pressure in the surrounding air ) has a sigmoid form (open circles in Figure 9.10). The
key feature of the sigmoid is its inflection point, the place where the graph switches
from co ncave- up to concave- down. The data show such a point around cO2 = 8 .
10- 6 M. The formula you found in Your Turn 9M never gives such beh avior, no matter
what value we take for Keq. Interestingly, though, the corresponding binding curve for
myoglobin , a relat ed oxygen-binding mo lecule, do es have the form expected from
simple Mass Action (solid dot s in Figure 9. 10).
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Figure 9 .1 0 : (Experimental datawith fits.) Fractional degree of oxygenbinding as a function
of oxygen concentration . Solid circles: Data for myoglobin, an oxygen-binding molecule with
a single binding site. The curve through the points shows the formula in Your Turn 9M with
a suitable choice of Kcq . Open circles: Data for human hemoglobin, which has four oxygen
binding sites. The curve shows the formula in Your Turn 9N(a) with n = 3.1. Dashed curve:
Oxygen binding for an imaginary, noncooperative carrier (11 = 1), with the value of Kcq ad
justed to agree with hemoglobin at the low oxygen concentration of body tissue (left arrow).
The saturation at high oxygen levels (right arrow) is then much worse for the imaginarycarrier
than in real hemoglobin. [Data from Mills et al., 1976 and Rossi-Fanelli & Antonini, 1958.1

Archibald Hill found a more successful model for hemoglobin's oxygen binding
in 1913: If we assume that hemoglobin can bind several oxygen molecules and does
so in an all-or-nothing fashion , then the binding reaction becomes Hb + n02 ~
Hb(O, )". Hill's pro posal is very similar to the cooperative model of micelle format ion
(see Section 8.4.2 on page 317).

Your
Turn

9N

a. Find the fractional binding Y in Hill's modeL

b. For what values of n and Keq will this model give an inflection point in the
curve of Y versus [O,]?

Fitting the data to both K"l and n, Hill found the best fit for myoglobin gave n = I,
as expected, but n '" 3 for hemoglobin.

These observations began to make structural sense after G. Adair established
that hemoglobin is a tetramer: It cons ists of four subunits. each resembling a single
myoglobin molecule and, in particular, each with its own oxygen binding site. Hill's
result implies that the binding of oxygen to these four sites is highly cooperative.
The cooperat ivity is not really all-ot-none because the effective value of n is less than



378 Chapter 9 Coopera tive Transitions in Macromolecules

a b

Rgure 9 .11 : (Metaphor.) Allosteric feedback control. (a) An allosteric enzyme has an active site (left ), at which it cat
alyzes the assembl y of some intermedia te product from subs trate. (b) When a con tro l molecule binds to the regulatory
site ( right ), however. the active site becomes inactive. (c ) In a simplified version of a synthetic pathway, an allosteric en
zyme (top. in fedo ra) catalyzes the first step of the syn thesis. Its product is the subst rate for ano ther enzyme, an d so on.
Most of the final product goes off on its errands in the cell, but some of it also serves as the con tro l mol ecu le for the init ial
enzyme. When the final product is present in sufficient concentration. it binds to the regulatory site, turn ing off th e first
enzym e's catalytic activity. Th us the final product acts as a messenge r sent to the first worker on an assembly line, saying
"stop prod uction." [Cartoons by Bert Dod son, from Hoagland & Dod son, 1995.)

the number of binding sites (four). Nevertheless, the binding ofone oxygen molecule
leaves hemoglobin predisposed ro bind lIlore. Afrer all, if each binding site operated
independently, we would have found 11 = 1, because in that case, the sites might as
well have been on completely separate molecules.

Cooperativity is certainly a good thing for hemoglobin's function as an oxygen
carrier: It lets hemoglobin switch readily between accepting and releasing oxygen.
Figure 9.10 shows that a noncooperative carrie r would either have too high a satu
ration in tissue (like myoglobin) and hence fail to release enough oxygen. or have
too Iow a saturation in the lungs (like the imaginary carrier shown as the dashed
line) and hence fail to accept enough oxygen. Moreover, hemoglobin's affinity for
oxygen can be modulated by other chemical signals besides the level of oxygen it
self. For example, Bohr also discovered that the presence of dissolved carbon diox
ide or other acids (produced in the blood by actively contracting muscle) promotes
the release of oxygen from hemoglobin. delivering more oxygen when it is most
needed. This Bohr effect fits with what we have already seen: Once again, bind
ing of a molecule (CO,) at one site on hemoglobin affects the binding of oxygen
at another site. a phenomenon called allostery. More broadly. allosteric contro l is
crucial to the feedback mechanisms regulating many biochemical pathways (Fig
ure 9.11).

The puzzling aspect of all these interactions is simply that the binding sites for
the four oxygen molecules (and for other regulatory molecules such as CO, ) are
not close to one another. Indeed. M. Perutz's epochal analysis of the shape of the
hemoglobin molecule in 1959 showed that the iron atoms in hemoglobin that bind
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the oxygens are 2.5 nm apa rt. Interactions between spat ially distant binding sites on
a ma cromolecule are called allosteric. At first it was difficult to imagine how such
int eraction s could be poss ible at all. After all, we have seen that the main interaction s
respo nsible for molecular recogniti on and binding are ofvery short range. How, then,
can one binding site communicate its occupancy to another one?

9.6.2 AIIostery often invo lves relat ive motio n of molecular subunits

A big clue to the allostery puzz le came in 1938, when F. Haurowit z found that crystals
of hemoglobin had different morpho logies when prepared with or with out oxygen:
The deoxyge nated proteins took the form of scarlet needles, whereas crysta ls formed
with oxygen present were purple plates. Moreover, crysta ls prepared witho ut oxygen
sha ttered upon expos ure to air. (Crystals of myoglobin showe d no such alarming be
havior.) The crystals' loss of stabi lity upon oxygenation suggested to Haurowit z that
hemo glob in un dergoes a shape change upo n binding oxygen. Perutz's detailed struc
tural maps of hemoglobin , obtained ma ny years later, confirmed thi s interpretatio n:
The qu atern ary (h ighest-order) struc ture of hemoglobin changes in th e oxygenated
form.

Today, many allosteric prot eins are known, and their structures are being probed
by an ever-w iden ing ar ray of techniques. For example, Figure 9. 12 shows three
dimension al recon structed electron mic rographs of the motor prot ein kine sin . Each
kinesin mo lecule is a dimer ; that is, it cons ists of two identical subun its. Each sub
unit has a bindin g site tha t can recognize and bind a microtubule and another site

4 nm

Figure 9 .12 : (Image reconstructed from electron microscopy data.) Direct visualization of an allosteric change. The
four panels show th ree-dimensional maps of a molecular motor (kinesin) attached to a microtub ule. In each frame, the
microtubule is in the background, run ning vertically and directed upward. A gold parti cle was attached to the neck linker
region of the moto r, enabling the microscope to show changes in the linker's position when the motor binds a small
molecule. Dotted circles draw attention to the significant differences between the frames. (a) The motor has no t bound
any nucleotide in its catalytic domain; its neck linker flops between two positions (circles) . (b,c) The motor has bound
an ATP-like molecule (respect ively, AMP-PNP and ADP-AIF4- , in the two frames). The position of the neck linker has
changed. (d) When the motor has bound ADP, its conformation is much the same as in the unbou nd state (a). Each of
the images shown was reconstruc ted from data taken on 10000-20 000 individ ual molecules. [From Rice et aI., 1999 .J
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that can bind the cellular energy-supply molecule ATP. The figure shows that one
particular domain of the molecule, the neck linker, has two preferred positions when
no ATP is bou nd . When ATP (or a similarly shaped molecule) binds to its bind ing
site, however, the neck linker freezes into a definite third position. Thus kinesin dis
plays a mechanochemical coupling. The function of this allosteric interaction is quite
different from the one in hemoglobin. Instead of regulating the storage of a small
molecule, Chapter 10 wili show how the mechan ical motion induced by the chemical
event of ATP binding can be harnessed to create a single-molecule mo tor.

The observation of gross conformational changes upon binding suggests a
simple interpretation of allosteric interactions:

The binding of a molecule to one site on a protein can deform the neighborhood
of that site. For example, the site's original shape may not precisely fit the target
molecule, but the free energy gain of making a good fit may be sufficient to pull the
binding site into tight contact.

A small deformation can be amplified by a leverlike arrangement of the protein's
subunits, then transmitted to other parts of the protein by mechanica l linkage, and,
in general, manipulated by the protein in ways familiar to us from macroscopic
machinery.

Distortions transmitted to a distant binding site in this way can alter the binding
site's shape and hence its affinity for its own target molecule.

Although this purely mechanical pictu re of allosteric interactions is highly ideal
i zed, it has proved quite useful in understandin g the mechanisms of motor proteins.
More generally, we should view the mechanical elements in the picture just sketched
(forces, linkages) as metaphors also representin g more chem ical mechanisms (such
as charge rearrangements).

9.6.3 Vista: Protein substates

This chapter has emphasized the role of cooperative, weak interactions in giving
macromolecules definite structures. Actually, however, it's an oversimplification to
say that a protein has a unique native conformation. Although the native state is
much mo re restricted than a random coil, nevertheless it consists of a very large num
ber of closely related conformations.

Figure 9.13 summarizes one key experiment by R. Austin and coauthors on the
structure of myoglobin . Myoglobin (abbreviated Mb) is a globular protein consisting
of about 150 amino acids. Like hemo globin , myoglobin con tains an iron atom, which
can bind either oxygen (0 2 ) or carbon monoxide (CO). The native conformation has
a "pocket" region surrounding the bind ing site. To study the dynamics of CO bind ing,
the experimenters took a sample of Mb·CO and suddenly dissociated all the carbon
monoxide with an intense flash of light . At temperatures below abo ut 200 K, the CO
molecule remains in the protein's pocket, close to the binding site. Moni toring the
optical absorption spectrum of the sample then let the experimenters measure the
fraction N (t) of myoglobin molecules that had rebound their CO, as a function of
time.
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Figure 9 .13: (Experimental data; theoretical model.) Rebindingof carbon monoxide to myoglobin afterflash photodis
sociation. The myoglobin was suspended in a mixture of water and glycerol to prevent freezing. (a) Log-log plot of the
fraction N(t) of myoglobin mol ecules that have flot rebound their CO by time t , Circles: Experimental data at various
values of the temperature T. No ne of these curves is a simple exponential. (b) The distribution of activation barriers in
the sample, inferred from just one of the data sets in (a) (namely. T = 120 K). The curves drawn in (a) were all computed
by using this one fit function; thus, the curves at every temperature other than 120 K are all predictions o f the model
described in Section 9.6.3' on page 394. [Data from Austin et al., 1974. )

We might first tr y to model CO binding as a simple two-state system, like those
discussed in Section 6.6.2 on page 220. Then we'd expect the num ber of unbound
myoglobin molecules to relax exponentially to its (very small) equilibrium value, fol
lowing Equation 6.30 on page 222. This behavior was not observed, however. Instead,
Austin and coauthors proposed that

Each individual Mb molecule indeed has a simple exponential rebinding probabil 
ity, reflecting an activation barrier E for the CO mo lecule to rebind, but

• The many Mb molecules in a bulk sample were each in slightly different confor
mational substates. Each substate is functional (it can bind CO), so it can be con
sidered to be "native." But each differs subtly; for example, each has a different
activation barrier to binding.

This hypothesis makes a testable predict ion: It should be possible to dedu ce the prob
ability of occupying the various substates from the rebinding data. More precisely, we
should be able to find a distributio n g(t.E*)d t.E* ofthe activation barriers by study
ing a sample at one particular temp erature and, from this funct ion , predict the time
course of rebinding at other tem peratures. Indeed, Austin and coauthors fou nd that
the rather broad distribut ion shown in Figure 9.13b could account for all the data in
Figure 9.13a . They co ncluded that a given primary structure (amino acid sequence )
doe s not fold to a unique lowest-energy state; rather, it arrives at a group of close ly
related tertiary structures, each differing slightly in activation energy. These struc-
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tu res are the conformation al substates, Pictorial reconstruction s of protein structure
from X-ray diffraction generally do not reveal this rich structure: They show only
the one (or few) most heavily populated substates (corresponding to the peak in Fig
ure 9.13b).

1121 Section 9.6.3' on page 394 gives details of the func tions dra wn in Figure 9.13.

TH E BIG PICTURE

This chapter has worked through some case studies in which weak, nearest- neighbor
couplings between otherwise independent actors created sharp transitions in the
nanowo rld of single molecules. Admittedly, we have hardly scratched the surface of
protein structure and dynamics-our calculation s involved only linear chain s with
nearest-n eighbor cooperativity, whereas the allosteric couplings of greatest interest
in cell biology involve three-dimensional protein structures. But as usual our goal
was only to address the question "How could anyth ing like that happen at am" by
using simplified but explicit models.

Cooperat ivity is a pervasive theme in both physics and cell biology, at all levels of
organization. Thus, although this chapter mentioned its role in creating well-defined
allosteric transitions in single macromolecules, Chapter 12 will turn to the cooper
ative behavior between thousands of protein s, the ion channels in a single neuron.
Each channel has a sharp transition between "open" and "closed" states but makes
that transition in a noisy, random way (see Figure 12.17). Each channel also com
municates weakly with its neighbors, via its effect on the membrane's potential. We'll
see how even such weak cooperativity leads to the reliable transmission of nerve im
pulses.

KEY FORMULAS

Elastic rod: In the elastic rod model of a polymer, the elastic energy ofa short seg
men t of rod is dE = !kBT [A/3' + BII' + Cw' + 2Dllw] ds (Equation 9.2). Here
AkBT , CkBT , BkBT, and DkBT are the bend stiffness, twist stiffness, stretch stiffness,
and twist-stretch coupling, and ds is the length of the segment. (The quantities A
and C are also called the bend and twist persistence lengths.) II, /3, and ware the
stretch, bend, and twist density. Assuming that the polym er is inextensible, and ig
noring twist effects, led us to a simplified elastic rod model (Equation 9.3). This
model retains only the first term of the elastic energy.

Stretched freely jo in ted chain: The fract ional extension (z) / L,o, of a one -d imen
sional, freely jointed chain is its mean end-to-end distance div ided by its total un
stretched length. If we stretch the chain with a force f, the fractional extension is
equal to tanhfj'L~) / kB TJ (Equation 9.10), where L~) is the effective link length.
The bendi ng stiffness of the real molecule being represented by the FjC model de
termi nes the effective segm ent length L~:) .

Alpha helix formation: Let O'(T) be the free energy change per monomer for the
transition from alpha helix to random coil at temperature T. ln terms of the energy
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difference "'Elmnd between the helical and coiled forms, and the midp oint temper
ature Tm, we found (Equation 9.24)

1 "'Boond T - Tm
<> (T) = 2: k TT '

B m

The optical rotation of a solut ion of polypeptide is then predicted to be

Czs inhao= c, + --,====c===
.jsinh' a + e- 4y

where C\ and Cz are constants and y describes the cooperativity of the transition
(Equation 9.25).

• Simple binding: The oxygen saturat ion curve of myoglobin is of the form

Y = [O, ]/ ([O, J+ K;;,l)

(Your Turn 9M). Hemoglobin instead follows the formula you found in Your
Turn 9N.
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1121 9.1.1 ' Track 2

I. Th e idea of redu cing the multitude of molecular details of a material down to
just a few param eters may seem too ad hoc. How do we know that the viscous
force rule (Equation 5.9 on page 168), which we essentiaiiy puii ed from a hat, is
complete? Why can't we add mo re terms, like

dv d2v d' v
fjA = -~- +~2- +~,- + ...,

dx dx' dx' .

It turns out that the number of relevant parameters is kept small by dimensional
analysis and by sym metries inh eri ted from th e microscopic world.

Consider, for example, the constant TJ3 just menti on ed. It is supposed to be
an intrinsic property of th e fluid, ind ependent of the size R of its pip e. Cieariyit
has dimensions L 2 time s those of the ordinary viscosity. The only intrinsic length
scale of a simple (Newtonian) fluid , however, is the average distan ce d between
molecules. (Recall that the macroscopic parameters of a simple Newtonian fluid
don't determine any length scale; see Section 5.2.t on page 164.) Thu s we can
expect that rJ3, if present at all, mu st tu rn out to be rou ghly d2as large as rJ. Because
th e gradient of the velocity is rou ghly R- 1 as iarge as v itself (see Section 5.2.2 on
page 166), we see that the ~, term is less important than the usual ~ term by
roughly a factor of (d j R)', a tiny number.

Turning to th e rJ2 term , it turns out that an even stronger result forbids it
altogether: Thi s term cannot be written in a way that is invariant und er rota
tions. Thus it cannot arise in th e description of an isotropic Newtonian fluid (Sec
tion 5.2.1 on page 164), which by assumption, is the same in every direction. In
other word s, symmetries of the molecular wor ld restr ict the number and types of
effective parameters of a fluid. (For more discussion of th ese points, see Landau &
Lifshit z, 1987; Landau & Lifshit z, 1986.)

The conclusions just given are not universal-hence th e qualification that
they apply to isotropic Newtonian fluids. They get replaced by more complicated
rules in the case of non-Newtonian or complex fluids (for example, th e viscoelas
tic ones ment ioned in Sectio n 5.2.3' on page 188 or the liquid crystals in a wrist
watch display).

2. Some aut hors refer to the systematic exploitation of Idea 9.1 as "generalized elas
ticity and hydrodynamics." Certainly th ere is some art involved in implementing
the idea in a given situation, for examp le, in determining the appropriate list of
effective degrees of freedom. Roughly speaking, a collective variable gets onto the
list if it describ es a disturbance to the system that costs very little energy or that
relaxes very slowly, in the limit of long length scales. Such disturbances in turn
correspond to broken symmetries of the lowest-energy state, or to conservation
rules. For example,

• The centerline of a rod defines a line in space. Placing thi s line somewhere breaks
two translation symmetries, singling out two corresponding collective modes,
namely, the two directions in which we can bend the rod in its normal plane.
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Sectio n 9.1.2 shows that indeed bend ing costs very little elast ic energy on long
length scales.

In di ffusion, we assumed tha t the diffus ing part icles cou ld neit her be created
nor destroyed-they're conse rved. The correspond ing collective variable of the
system is the particle density, which indeed changes very slowly on long length
scales accord ing to the di ffusion equation (Equation 4.20 on page 131).

(For examples of this approach in the context of soft condensed matter physics,
see Chaikin & Lubensky, 1995.)

3. Much of the power of Idea 9.1 com es from the word local. In a system with local
in teraction s, we can arra nge the actor s in such a way that each one interacts with
only a few nea rest neighbors , and the arrangement resem bles a meshwork with
on ly a few dimensions, typically two or three. For example, each poin t on a cubic
lattice has just six nea rest neighbors (see Problem 1.6).

Idea 9.1 is not strictly applicable to problems involving nonlocal interactions.
In fact . one definition of a complex system is, "Many non- identical elements con
nected by diverse, nonlocal interactions:' Many pro blem s of biological and eco
logical o rganization do have th is cha racter; and ind eed, general resul ts have been
harder to get in this dom ain tha n in the traditional fields of physics.

4. Sect ion 9.1.1 stated that a fluid membrane has one elastic constant. Th is statemen t
is a slight simplification: Th ere are actually two elastic ben ding constants. The one
discussed in Section 8.6.1 discourages "mean curvat u re," whereas the oth er in
volves "Ga ussian curvatu re." (For more information and to see why the Gaussian
stiffness doesn't enter many calculat ions, see for example Seifert, 1997.)

IT21 9.1.2' Track 2

I. Techni cally w is called a pseudoscalar. Th e derogatory prefix pseudo rem inds us
that upon reflection thro ugh a mirror, w changes sign (try viewing Figu re 2.17 on
page 53 in a mirror), whereas a tru e scalar like II does not. Similarly, the last term
of Equation 9.2 on page 346 is also pseudoscalar, being the product of a tr ue scalar
tim es a pseudosca lar. We sho uld expect to find such a term in the elastic energy of
a mol ecule like DNA, whose structu re is no t mirror symmetric (see Section 9.5. 1).
The twist- stretch coup ling in DNA has in fact been observed experimen tally, in
experiments that contro l the twist variable.

2. We implicitly used dimensional analysis reasoning (see Section 9.I.1 ' ) to get the
continuum rod -elasticity equ at ion , Equation 9.2. Thus the only terms we retained
were those with the fewest possible derivatives of the deforma tion fields (that is,
none). In fact , single-stranded DNA is not very well described by the elastic rod
model becau se its persistence length is not much bigger than the size of the indi 
vidual monomers; so Idea 9.1 does not apply.

3. We also simp lified our rod model by requ iring that the terms have the sym metries
appropriate to a un iform, cylindrical rod . Clearly DNA is not such an object. For
example, at any position 5 along the molecule, it will be easier to bend in one di 
rection than in the other: Bend ing in the easy dir ection squeezes the helical groove
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in Figure 2.15 on page 51. Thus strictly speaking, Equation 9.2 is appropriate only
for bends on length scales longer than the helical repeat of 10.5 x 0.34 nm be
cause, on such scales, these an isotropi es average out . (For more details, see Marko
& Siggia, 1994.)

4. It is possible to consider terms in E of higher than quadratic order in the defor
mation. (Again see Marko & Siggia, 1994.) Under normal condi tion s, these terms
have small effects because the large elastic stiffness of DNA keeps the local defor
mation s small.

5. We need not, and should not, take our elastic rod imagery too literally as a repre
sentatio n of a macromolecule. When we bend the structure shown in Figure 2.15,
some of the free energy cost indeed comes from deforming various chemical
bon ds between the atom s, roughly like bend ing a steel bar. But there are other
contribution s as well. For exam ple, recall that DN A is highly charged- it's an acid,
with two negat ive charges per basepair. This charge makes DNA a self-repelling
object, adding a substantial contrib utio n to the free energy cost of bending it.
Moreover, this contributio n depends on external conditions, such as the sur
rounding salt concentration (see Idea 7.28 on page 269) . As long as we consider
length scales lon ger than the Debye screening length of the salt so lution, however,
our phenomenological argumen t rem ains valid; we can simply incorporate the
electrostatic effects into an effective value of the bend stiffness.

IT21 9.1.3' Track 2

1. We can make the interpretation ofA as a persistence length, and the passage from
Equat ion 9.2 to a corresponding Fje model, more explicit. Recalling that i(5) is
the unit vector parallel to the rod's axis at contou r distance S from one end, we
first prove that for a poly mer under no external forces,

(to be shown) (9.28)

Here SI and S2 are two points along the chain; A is the constant appearing in the
elastic rod model (Equation 9.3 on page 346). Once we prove it, Equation 9.28
will make precise the statement that the polymer "forgets" the direction i of its
backbon e over distances greater than its bend persistence length A.

To prove Equation 9.28, consider three points A , B. C located at contour dis
tances S, 5 +SAH, and S+SAB +SBC along the polymer. We will first relate the desired

quant ity i(A ) · i (C) to i (A ) · i (B) and i(B). i(C). Set up a coordinate frame ~ , ii ,(
whose ( -axis points along i (B). (We reserve the symbols x,y,i for a frame fixed
in the laboratory.) Let (t'! , 1» be the corresponding spherical polar coordinat es,

taking (as the polar axis. Writin g the unit operator as ( ~~ + iIiI+ (() gives

i (A ) . i( C) = i(A) . (~~ + iIiI + (() . i (C)

= t .d A) · tJ.(C) + (i (A ) · i(B ))(i(B)· «c».
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In the first term, the symbol t.t, represent s the projection of I to the ~ ~ plane.

Choosing the ~ axis to be along t.r (A) yields I.e(A) = sin II(A)~, so
I

I(A) · I(C) = sin II(A) sin II(C) cos4>(C) + cos II(A) cosll (C) . (9.29)

So far we have done only geo metry, not stat istical physics. We now take the
average of both sides of Equation 9.29 over all possible conformations of the poly
mer, weighted by the Boltzmann factor as usual. The key observations are that

The first term of Equation 9.29 vanish es upon averaging. Thi s result follows
because the energy functional, Equatio n 9.2, doesn't care which direction the
rod bends-it's isotropic. Thus, for every conformat ion with a particular value
of 4> (C), the re is ano ther with the same energy but a different value of 4> (C) ,
so our averaging ove r confo rmations includes integrating the right-hand side

of Equation 9.29 over all values of 4> (C). But th e integral Jo'" d4> cos4> equals
zero.10

The second term is the product of two statistically independent factors. The
shape of our rod between A and B makes a contribution EAB to its elastic energy
and also determines the angle II(A ). The shape between B and C makes a con
tribution esc to the energy and determines the angle II(C). The Boltzmann
weight for this conformation can be written as the product of e- f:ABl kBT (which
does no t involve II(C»), t imes e- ·.el k• T (which does not involve II(A»), times
other factors involving neith er II(A) nor II(C). Thus the average of the product
cos II(A ) cos II(C) equa ls the product of the averages, by the multiplication rule
for probabilities.

Let's write A(x) for the autocorrelation fun ct ion (1(5) · 1(5+ x»); for a lon g chain
th is qua ntity does not depend on the start ing poi nt 5 chosen. Then the preced ing
logic implies that Equation 9.29 can be rewrit ten as

(9.30)

The onl y functio n with this property is the exponential, A (x) eqx for some
constant q.

To finish the proof of Equatio n 9.28, then , we only need to show that the
constant q equals - IIA. But for very small "5« A, th ermal fluctuations can
hardly bend the rod at all (recall Equat ion 9.4 on page 347). Con sider a circular
arc in which I bends by a small angle l/J in the ~ (' plane as s increases by "5. That

is, suppose that I changes from 1(5) = (to 1(5 + As) = « + l/Jb IJ I + l/J2 ,
which is again a unit vector. Adapting Equation 9.4 for this situation yields the
elastic energy cost as (~ k.TA) x ("5) x ("51l/J )-2 , or (Ak. T1(2" s))(l/J )2. This
expression is a quadratic function of Vt .The equipartition of energy (YourTurn 6F
on page 219) then tells us that the thermal average of this qu antity will be ~k.T,

or that

lOWe used the same logic to discard the middle term of Equation 4.3 o n page 115.
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Repeating the argument for bends in the ~ry plane, and remembering that 1ft is
small, we find

A(~s) = (irs) . irs + ~s)) = «. <+ VtH f. + Vt."iI )
J I + (VtH) ' + (Vt., )'

'" 1 - t( VtH )') - t( Vt,,, )')

= 1 - ~sJA.

Comparing this result with A (x) = eq' '" I + qs + ... indeed shows that q =
- IJA, finally establish ing Equation 9.28, and with it, the int erpretat ion of A as a
persistence length .

2. To make the connection between an elastic rod model and its corresponding FJC
model, we now consider the mean -squar e end-to-end length (r') of an elastic rod.

Because the rod segme nt at 5 points in the direction 1: (5) , we have r = f oLtol ds 1:(5),
so

wherex sa S2 - 51 . Fora long rod, the first integral is dominated byvalues of SI far
from the end, so we may replace the upper limit of the second integral by infinity:

(r') = 2AL,o" (long, unstretched elastic rod ) (9.31)

This is a reassuring result: Exactly as in our simple discussion of random walks
(Equation 4.4 on page 115), the mean-square end- to-end separation of a semi
flexible polym er is proportio nal to its co nto ur length .

We now compute (r') for a freely jointed chain consisting of segmen ts of
length L.e,; and compare it with Equation 9.31. In this case, we have a d iscrete sum
over the N = Ltotl Lsegsegments:

, ,,,N - - ' [ N -, ",N " ](r ) = L.. i. j ~ l ( L".ti ) · (L" , t j) ) = (L" g) I:i~l ( t i) ) + 2 L..i<j (t i ' t j ) .

(9.32)

By a now-familiar argume nt, we see that the seco nd term equals zero: For every
con formatio n in which t; makes a particular angle wi th tj. there is an equally
weighted conformatio n with the o pposite value o f tj. tj. beca use the stretching
force is zero and the joints are assumed to be free. The first term is also sim ple
because, by definition, (ii) ' = I always, so we find

(unstretched, th ree-dimensiona l FIe) (9.33)



Com paring Equation 9.33 to Equ at ion 9.31, we find that

The freely join ted chain m odel correctly reproduces the size of the
underlying elastic rod 's random-coil con formation, jf we choose the (9.34)
effective link length to be L" , = 2A.
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(9.35)

3. This cha pter regard s a polym er as a stack of identical units. Such objects are called
homopolymers. Natural DNA, in contrast, is a heterop olymer: Itcontains a mes
sage wr itten in an alphabet of fou r d ifferent bases. But the effect of sequence on
the large-scale elasticity of DNA is rath er weak, essent ially because the AT and
GC pairs are geome trica lly similar to each other. Moreover, it is not hard to in 
corporate sequence effects into the results of the following sections. These ho
mopolymer result s also apply to heteropolym ers when A is sui tably interpreted as
a combination of elastic stiffness and intr insic d isorder.

IT21 9.2.2' Track 2

1. One major weakness of the discussion in Section 9.2.2 is the fact that we used a
one-dimensional random walk to describ e the th ree-dimensional conform ation of
the pol ymer! Thi s weakness is not hard to fix.

Th e three-dimension al freely jointed chain has as its conformational variables
a set of unit tangent vectors i i, which need not point only along the ±zdire ctions:
They can point in any direction, as in Equation 9.32. We take r to be the end 
to-end vector, as always; wit h an applied stretching force in th e zdirection, we
know that r will point alon g z.Thus the end -to -end extens ion z equals r . Z, or
(L i Lsegi i) . Z. (The parameter Lseg appea ring in th is formula is not the same as
th e parameter L~~g) in Section 9.2.2.) The Boltzmann weight factor analogous to
Equa tion 9.9 on page 353 is then

p (i \, .. . , iN) = Z - le - ( - fL scgLi ti·Z) /k BT.

Your
Turn

90

If you haven't done Problem 6.9 yet, do it now. Then adapt Your Turn 9B on
page 353 to arrive at an express ion for the extension of a three-dimension al
Fje. Again find the limitin g form of your result at very low force.

Th e express ion you just found is shown as th e th ird curve from the top in Fig
ure 9.5 on page 355. Your answer to Your Turn 90 shows why this time we took
L" , = 104 nm . Ind eed, th e three-dimensional FjC gives a somewhat better fit to
the experimenta l data than Equation 9.10 did.

2. The effect ive spring constant of a real polymer won't really be strictly proportional
to the absolute temperature, as im plied by Idea 9.11 on page 354, becau se th e bend
persistence length and hence Lseg themselves depend on temperature. Neverthe
less, ou r qualitative prediction that the effective spring constant increases with
temperature is observed experime ntally (see Section 9.1.3).
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1121 93.2' Track 2

The ideas in Section 9.3.2 can be generalized to higher-dimensional spaces. A linear
vector function of a k-dimensional vector can be expressed in terms of a k x kma
trix M. The eigenvalues of such a matrix can be found by subtracting an unknown
constant Afrom each diagonal element of M, then requ iring tha t the resulting matrix
have determinant equal to zero. The resulting condition is that a certain polynomial
in A should vanish; the roots of this polynomial are the eigenvalues of M. An im
portant special case is when M is real and symmetric; in this case, we are guaranteed
that there willbe k linearly independent real eigenvectors, so any other vectorcan be
written as some linear combination of them. Indeed, in this case, all the eigenvec
tors can be chosen to be mutually perpendicular. Finally, if all the entries of a matrix
are positive numbers, then one of the eigenvalues has greater absolute value than all
the others; this eigenvalue is real, positive, and nondegenerate (the Frobenius-Perron
theorem ).

IT21 9.4.1' Track 2

Even though we found that the t d cooperative chain fit the experimental data slightly
beller than the one-dimensional FIC, still it's clear that this is physically a very un
realistic model: We assumed a chain of straight links, each one joined to the next at
an angle of either 0° or 180°! Really, each basepair in the DNA molecule is pointing
in nearly the same direction as its neighbor. We did, however, discover one key fact:
that the effective segment length Lseg is tens of nanometers long, much longer than
the thickness of a single basepair (0.34 nm). This observation means that we can use
our phenomenological elastic energy formu la (Equation 9.3 on page 346) as a more
accura te substitu te for Equation 9. t 7 on page 359.

Thus, "all" we need to do is to evaluate the partition function starting from
Equat ion 9.3, then imitate the steps leading to Equatio n 9.10 on page 353 to get the
force-extension relation of the three-dimensional elastic rod model. The required
analysis was begun in the 1960s by N. Saito and coauthors, then completed in t994
by I. Marko and E. Siggia, and by A. Vologodskii. (For many more details, see Marko
& Siggia, t995.)

Unfortunately, the mathematics needed to carry out the program just sketched
is somewhat more involved than in the rest of this book. But when faced with such
beautifully clean experimental data as those in the figure, and with such an elegant
model as Equation 9.3, we really have no choice but to go the distance and compare
them carefully.

Wewill treat the elastic rod as consisting ofN discrete links, each oflength e. Our
problem is more difficult than the one-dimensional chain because the configuration
variable is no longer the discrete, two-valued Gj = ± l ; instead, it is the continuous
variable tj describing the orientation of link number i. Thus the transfer matrix T
has continuous indices." To find T, we write the partition function at a fixed external

llThis concept may be familiar from quantum mechanics. Such infinite-dimensio nal matrices are some
times caned kernels.
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force f ,analogous to Equation 9.18 on page 359:

! r " [~ ( f f A,)Z(f) = d I , · ·· diN exp L --(COSOi + COSOi+' ) - - (8 ,,+,)
i~' 2k.T U

t e ]+ - - (cosO, + cos ON) .
2kBT

In th is formula, the N integrals are over directions-each t; runs over the unit sphere.
OJis the angle betwee n link i's tangen t and the direction i of the applied force; in other
words, cos OJ = tj'z.Sim ilarly, 8 i,j+1is the angle between t; and t j+i; Section 9.1.3' on
page 386 showed that the elastic energy cost of a bend is (A k.TjU)8' . Because each
individual bending angle will be small, we can replace 8 2 by the more convenient
fun ction 2(1 - cos 8 ). Note that we have written every force term twice and divided
by 2; the reason for thi s choice will become clear in a moment.

Exactly as in Your Turn 9G, we can reformulate Equa tion 9.36 as a matrix raised
to the power N -I , sandwiched between two vectors . We again need the largest eigen
valu e of the matrix T . Remembering that our objects now have continuo us ind ices,
a "vector" V in th is context is specified by a [unction. V( t) . The "matrix product" is
the integral

where

(TV)(i) = ! d' n T(i , fi ) V (n),

, . [ ff " " A" ]T(I, n) =exp --(I · z+ n · z)+ -(n · I - I) .
2k"T e

(9.37)

(9.38)

Th e reason for our apparently perverse duplicatio n of the force terms is that now T is
a symmetric matrix. so the mathematical facts quoted in Section 9.3.2' on page 390
apply.

We will use a simp le technique- the Ritz variat iona l ap proximation-to esti
mate the maximal eigenvalue (see Marko & Siggia, 1995).12 The matrix T is real and
symmetric. As such, it mu st have a basis set of mutually perp endicular eigenvectors e,
satisfying Te, = Ajei with real, positive eigenvalues Ai. AllY vecto r V may be expanded
in this basis: V = L jCiCio We next consider the "estimated maximal eigenvalue"

V · (T V) LiAi (e,)'e, . e,
Amax est == = .

. V . V L ,(e;)'e , . e,
(9.39)

Th e last expression on the right cannot exceed the largest eigenvalue, Amax. It equals
Amax when we choose V to be equal to the corresponding eigenvector eo. that is, when
Co = 1 and the other ei = O.

12A more general approach to maximal-eigenvalue problem s of this sort is to find a basis of mutually
orth ogonal functions oft. expand V( t) in this basis, t runcate the expansio n after a large but finite num ber
of terms. evaluate T on th is tr uncated subspace. and use nu merical software to diagonalize it.
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Your
TUrn

9P

Suppose that there is one maximal eigenvalu e }..o- Show that A max,est is maxi 
mized precisely when V is a constant times eo. [Hints: Try the 2 x 2 case first:
here you can see the result explicitly. For the general case, let X i = (c;leo)' ,
Ai = (ei· ei)/(e.· eo),and Li = (J... ;lJ... . ) for i > I. Then show that the estimated
eigenvalue has no maximum other than at the point where all the X j = 0.1

To estim ate Amax• then, we need to find the function Vo(i) that saturates the
bound Amax.e51 :s Arnall:) or in other words. that maximizes Equation 9.39. This task
may sound as hard as findin g a needle in the infinit e-dimension al haystack of func
tions V (i ). The trick is to use physical reasonin g to select a promising family of
trial funct ions.Ver i), dependin g on a parameter w. We substitute Vw(i) into Equa
tion 9.39 and choose the value w. that maximizes ourestimated eigenvalue. The cor
responding vw• (i) is then our best proposal for the true eigenvector, Vo(l). Our esti
mate for the true maximal eigenvalue Arnax is then A. es Amax.est(w.).

To make a good choice for the family of trial funct ions V,,( i) , we need to think
a bit about the physical meaning of V. You found in Your Turn 9G(c) that the av
erage value of a link variable can be obtained by sandwiching [ ~_~] between two
cop ies of the do minant eigenve ctor eo. At zero force, each link of our chain sho uld
be equally likely to poin t in all direction s, whereas at high force, it should be most
likely to point in the + z direction. In either case, the link should not prefer any par
ticu lar azim uthal direction if). With these considerations in mind, Marko and Siggia
constructed a family of smooth trial functions, azimuthally symmetrica l and peaked
in the forward direction:

V,,(i) = cxplwi . z].

Thus, for each value of the applied force f , we must evaluate Equatio n 9.39, using
Equations 9.37 and 9.38 , then find the value w; of the parameter w that maximizes

Amax.esh and substitute to get A• .
Let v = t .z.We first need to evaluate

To do the integral, abbreviate, = w + £ and A = A/£. The integrand can then

be written as exp[Qm · fi], where m is the unit vector m = (Ai + , z)/ Q and

We can write the integral usin g spherical polar coordin ates fJ and cP , choosing mas

the polar axis. Then Jd' ii = J;' dol> f, du , where Il = cos iJ, and the integral
becomes simply 'Q (eO- e- O).

To evaluate the numerator of Equation 9.39, we need to do a seco nd integral,
over i.Thi s time choose pola r coordinates e. if) with zas the polar axis. Recalling that



I393

(9.40)
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LJ es t . z= cos 8) we find

v. . (TV w) = f d21Vw (l)(TV w)( l )

. 1+1
2][= e- A2rr dv e("-(eO - e- O)

-I Q

= e- A(2rr ) 2 r: ~Q e(O' - A' - {'I !(2A>CeO - e-O).
J,A- {1 As

The last step changed variables from v to Q. The final inte gral in Equation 9.40 is not
an eleme ntary function, but you may recogni ze it as related to the error functio n (see
Section 4.6.5' on page 150).

(9.41)

Your
Turn

9Q

Next evaluate the denominato r of Equation 9.39 for ou r trial function Vw '

Having evaluated the estimated eige nvalue on the family of trial fun ctions, it is now
straightforward to max im ize the result over the parameter w using mathematical
software, to obtain A, as a function of A, f, and f . For ordinary (dou ble-stra nded)
DNA, the answer is nearly independent of the link length f, as long as f < 2 nm. We
can then finish the calculation by following the analysis leading to Equation 9.10 on
page 353: For large N = L""l f ,

kBT d N I kBT d
(zILto t ) = -- In (W . (T - V)) "" -- lnA,(f).

Lto t df e df

The force-extension curve given by the Ritz approximati on (Equation 9.41 )
turns out to be practically ind istingu ishable from the exact sol ution (see Prob
lem 9.7). The exact result cannot be written in closed form (see Marko & Siggia,
1995; Bouchiat et al., 1999). For reference, however, here is a simp le expressio n that
is very clo se to the exact result in the limit f ~ 0:

(zI L,",) = h([ ) + 1.86h(f) 2 - 3.80h(f) ' + 1.94h(f)4,

where h(f) = I - 4(Jf + ~ - Ir (9.42)

In this formula, f = f A I keT . Adjust ing A to fit the experimenta l data gave the solid
black curve shown in Figure 9.5.

IT21 9.5.1' Track 2

Th e angle o f optical rotatio n is no t intrinsic to the molecular spec ies und er study: It
depends on the co nce ntration of the so lutio n and so on. To cure this defect, bio phys
ical chemists define the spec ific optical rotatio n as the rotation angle B divided by
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Pmdl (l OOkg m- ' ), where Pm is the mass concentration of solute and d is the path
length throu gh solution traversed by the light. The data in Figure 9.7 show spe
cific optical rotation (at the wavelength of the sodium D-line). With this normal
ization, the three different curves effectively all have the same total concentration of
monomers and so may be directly compared.

IT21 95.3' Track 2

1. OUfdiscussion focused on hydrogen-bonding interactions between monomers in
a polypeptide chain. Various other interactions are also known to contribute to the
helix--eoil transition. for example, dipole-d ipole interactions. Theireffects can be
summarized in the values of the phenomenological parameters of the transition,
which we fit to the data.

2. The analysis of Section 9.5.2 did not take into account the polyd ispersity of real
polymer samples. We can make this correction in a rough way as follows.

Suppose that a sample contains a num ber Xj of chains of length j . Then the
fraction is f j = Xj/ ('L, X,) , and the number-averaged chain length is defined as
Nn == 'L / jf j ). Another kind of average can also be determined experimentally,

namely, the weight- averaged cha in length u; == (l INn ) 'L / j 2f j ).
Zimm, Dot y, and Iso quoted the values (N n = 40, Nw = 46) and (Nn =

20, N w = 26) for their two short-chain samples. Let's model these samples as
each consisting of two equal subpopu lations, of lengths k and m. Then choosing
k = 55 , m = 24 reproduces the number- and weight-averaged lengths of the first
sample; similarly, k = 31, m = 9 model the second sample. The lower two curves
in Figure 9.7 actually show a weighted average of the result following from Your
Turn 9L(c), assuming the two subpopulations just mention ed. Introducing the
effect of polydispersity, even in this crude way. does improve the fit to the data
somewhat.

1121 9.6.3' Track 2

Austin and coauthors obtained the fits shown in Figure 9.13 as follows: Suppose that
each conformational substate has a rebinding rate related to its energy barrier 6 £*
by an Arrhenius relation, k(t. P , T) = Ae- U ' !" T. The subpopulation in a given
substate will relax exponentially, with this rate, to the bound state. We assume that
the prefactor A does not depend strongly on temperature in the range studied. Let
g( t.P)dt.P denote the fraction of the popu lation in substates with barrie r between
t.P and t.P + dt.P . We also neglect any temperature dependence in the distribu
tion function g(t.P ).

The total fraction in the unbound state at time t will then be

N (t , T ) = Nof dt. E' g(t.Et )e- " " E' .Dt.
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The no rmalization factor No is chosen to get N = 1 at time zero. Austin and coau
thors found that they could fit the rebin din g data at T = t20 K by taking the popu
lation fun ction g(Cl.EI) = g (Ce - 6E' /(k BXI20 K» , where C = 5.0. 108 5- 1and

_ (x /( 67 000 S- I) )0. 325e- x/(67 000,- I)

g(x) = -'--'--'--- -2.-7-6-'-kJ"-m-o.,-le-=>'1- - - when x < 23 kJ mol e- I . (9.44)

(The normalization constant has been abso rbed into No.) Above the cutoff energy
of 23 kJ rnole'" , g(x) was taken to be zero. Equatio n 9.44 gives the curve shown in
Figure 9.13b. Substitutingg( Cl. EI) into Equa tion 9.43 (the rebinding curve) at various
temperatures gives the curves in Figure 9. 13a.

Austin and coauthors also ruled out an alternative hypothesis. that all the protein
molecules in the sample are identic al but that each rebinds nonexponent ially.
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PROBLEMS

9.1 Big business
DNA is a highly charged polymer. That is, its neut ral form is a salt, with many small
positive counterions that dissoci ate and wander away in water solution. A charged
polymer of this type is called a polyelectro lyte. A very big industrial application
for polyelectrolytes is in the gels filling disposable diapers. What physical proper
ties of polyelectrolytes do you think make them especially suitable for th is critical
technology?

9.2 Geometry of bending
Verify Equation 9.4 on page 347 explicitly as follows. Consider the circular arc in
the xy plane defined by res) = (R cos(s(R) , R sin(s( R» (see Figure 9.1). Show that
5 really is contour length, find the uni t tangent vector t(5) and its derivative, and
thereby verify Equation 9.4.

93 Energy sleuth ing
The freely join ted chain picture is a simplification of the real physics of a polymer:
Actually, the jo ints are not qu ite free. Each polym er molecule consists of a chain of
ident ical individual units, which stack best in a straight line (o r in a helix with a
straight axis). Thus Equation 9.2 on page 346 says that bending the chain into a tangle
costs energy. And yet, a rubber band certainly can do work on the outside wo rld as it
retracts. Recon cile these observations qualitatively: Where do es the energy needed to
do mechanical work come from?

9.4 Thermodynamics of rubber
Take a wide rubber band . Hold it to your upper lip (moustache wearers may use
so me other sensitive, but public, part) and rapidly stretch it. Leave it stretched for
a moment, then rapidly let it relax while still in contact with your lip. You will feel
dist inct thermal phenomena durin g each process.

a. Discuss what happened upon stretching, both in terms of energy and in terms of
order.

b. Similarly discuss what happened upon release.

9.5 Simplified helix-coil transition
In this problem , you'll work through a simplified version of the cooperative helix
coil transition, assum ing that the transition is infinitely cooperative. That is, each
polypeptide molecule is assumed to be either all alpha helix or all random coil. The
goal of the prob lem is to understand qualitatively a key feature of the experimental
data show n in Figure 9.7 on page 365, namely, that lon ger chains have a sharper
helix- coil transition . Let the chain have N amino acid unit s.

a. The observed opt ical rotation e of the solution varies continuously from 8min to
emax as we change experime ntal conditions. How can an all-or-none mod el repro
duce this observed behavior?

b. Section 9.5. 1 argued that, for the conditions in Do ty and Iso's experime nts,
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The alpha helix form has greater energy per mon omer than the random-coil
form. or 6.Ebond > O.

Formin g the H-bond increases the entrop y of the solvent, by an amount
L\Sbond > O.

But form ing a bond also decreases the molecule's conformational entropy, by
L\Sconf < O.

The total free energy change to extend a helical region is then Il G = IlEbo"d 
TL\Sbond - TL\Sconf. Suppose that the total free energy change for conversion of a
chain were simply N IlG. What then would be the expected temp erature dependence
of II? [Hints: Find the probability of being in the alpha helix form as a function of
IlEbo"d, IlS, N , and T and sketch a graph as a function of T. Don't forget to normalize
your prob ability distribut ion properly. Make sure that the limiting behavior of your
formula at very large and very small temperatures is physically reasonable.]

c. How does the sharpness of the transition depe nd on N? Explain that result physi
cally.

d. The total free energy change for conversion of a chain is not simplyN Il G, however,
as a result of end effects. Instead suppose that the last two residues at each end are
unabl e to benefit from the net free ene rgy redu ction of H-bonding. What is the
physical origin of this effect? Again find the expected temp eratu re dependence of
II . [Hint: Same hint as in (b) .]

e. Continuing part (d) , find the temperature Tm at which II is halfway between 11m;"

and Omau including end effects. How does Tmdepend on N?This is an experimen
tally testable qu alitative pred iction ; compare it with Figure 9.7 on page 365.

9.6 I '121 High- force lim it

The analysis of DNA stretching experim ents in Sections 9.2.2-9.4.1 made a nu mber
of simplifications ou t of sheer expedie ncy. Mos t egregious was working in one di
mension: every link pointed either along +zor -i, so every link angle was either 0
or tt . In real life, every link points nearly (but not quite) parallel to the previo us one.
Section 9.4.1' on page 390 took this fact into account, but the analysis was very dif
ficult. In this problem, you'll find a shortcut applicable to the high-force end of the
stretching curve. You'll obtain a form ula that, in this limit, agrees with the full elastic
rod model.

In the high-force limit , the curve describing the rod'scenterline is nearly straight.
Thus at the point a distance s from the end , the tangent to the rod i (s) is nearly
pointing alon g the i direction. Let t1.be the projec tion of i to the xy plane; th us 11.'S
length is very small. Then

i(s) = M (s)i + t1.(s), (9.45)

where M = Jl - (t1.)2 = 1 - t <t1.)' + .. ..The ellipsis denotes terms of higher
order in powers of t j ,

In terms of the small variables t1.(s) = (t, (s), t, (s)), the bend ing term /3 ' equals
(i l ) ' + (i,)2+. " .(ii denotes dt;fd s.) Thus the elastic bending energy of any config-



398 Cha pter 9 Cooperative Tran sitions in Macromolecules

uration of the rod is (see Equation 9.3 on page 346)

1
1'0'I • 2 • 2

E = , kBTA a ds [(/ , ) + (t,) 1+ · ·· . (9.46)

Just as in Section 9.2.2, we also add a term - f z to Equation 9.46 to account for the
external stretching force f .Work in the lim it of very long Lto t ----+ 00 .

a. Rephrase E in terms of the Fourier modes of t l and t i - [Hint: Write - f z as

- f fa'"'' dst(s) . zand use Equation 9.45. Express M (s) in term s of I " I, as done
after Equation 9.45.1 Then E becomes the sum of a lot of decoup led quadratic
terms, a little bit (not exactly!) like a vibrating string.

b. What is the mean-square magnitude of each Fourier compo nent of t l and t2?
[Hint: Think back to Section 6.6.1 on page 218.1

c. We want the mean end- to-end distance (z)/ Lto t . Use the answer from (a) to write
this in a convenient form . Evaluate it, using your answer to (b).

d. Find the force f needed to stretch the thermally dancing rod to a fraction I - E of
its full length L tot> where E is small. How does f diverge as E ---l> O? Compareyour
result with the 3d freely jointed chain (Your Turo 90) and with the Id cooperative
chain (Your Turn 9H on page 361).

9.7 IT2 1Stretching curve of the elastic rod model

We can get a useful simplification of the so lution to the 3d cooperative chain (see
Section 9.4.1' on page390) by taking the limit of smali link length, £ --+ 0 (the elastic
rod model ).

a. Begin with Equation 9.40. Expand this expression in powers of £, ho lding A, [ ,
and w fixed and keeping the terms of order £' and £'.

b. Evaluate the estimated eigenvalue Amax .est as a functio n of the quan tity f es

Af I ke T, the variational parameter w, and other constants, again keeping only
leading terms in t :Show that

In Am" ." ,(w) = const + ~ ( - L+ coth 2W)(f - ~w) .

The first term is independ ent off and w , so it won't contribute to Equation 9.41.

c. Even if you can't do (b) , proceed using the result given there. Use sOJ!1e numeri
cal software to maximi ze In Amax.est over w, and call the result In A*(f ). Evaluate
Equation 9.41 and graph (z/ L,o') as a function of f .Also plot the high-precision
result (Equation 9.42) and compare the plot with your answer, which used the
Ritz variational approximation.

9.8 IT2 1Low-force limit of the elastic rod model

a. If you didn't do Problem 9.7, take as given the result in (b) . Consider only the case
of very low app lied force, f « kaT/ A. In this case, you can do the maximization
analyticaliy (on paper). Do it, find the relative extension by using Equation 9.41,
and explain why you "had to" get a result of the form you did get.
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b. In parti cula r, confirm the identification Lseg = 2A already found in Section 9.1.3'
on page 386 by compari ng the low-force extensio n of the fluctuating elastic rod
with that of the 3d freely jo inted chain (see Your Turn 90 on page 389).

9.9 IT21Twist and pop

A stretched macroscop ic spring pulls back with a force f) which increases linearly
with the extensio n z as f = -kz. Another familiar exam ple is the torsional spring: It
resists twisting by an angle e, generat ing a torque

r = - k,e. (9.47)

Here k, is called the tor sion al spring constant. To make sure you understand this
formula, show that the dim ensions of k, are the same as those of energy.

It is possible to subject DNA to tor sion al stress, too. On e way to accomplish this is
by usin g an enzyme called ligase, which joins the two ends of a piece of DNA together.
The two sugar-phosphate backbo nes of the DNA duplex th en form two separate,
closed loops. Each of these loops can bend (DNA is flexib le), but they cannot break
or pass through each other. Thus their degree of linking is fixed-it's a "topo logical
invari ant ."

If we ligate a collection of identical, op en DNA molecules at low conce ntra tion,
the result is a mixture of various loop types (topoisom ers), all chemically identical
but topologically distln ct .!' Each top oisomer is characterized by a linking number
M . If we measure M relative to the most relaxed possibilit y, then we can think of
it as the number of extra turns that the DNA molecule had at the moment when
it got ligated . M may be positive or negative; th e corresponding tot al excess angle
is () = ZrrM . We can separate different topoisomers by electropho resis, because a
"supercoiled" shape (such as a figure-eight ) is more compac t, and hence will migrate
mo re rapidly, than an op en circu lar loop.

Normally, DNA is a right -handed helix, making on e complete right-handed turn
every 10.5 basepairs. This normal conformation is called B-D NA. Suppose that we
overt wist our DNA; that is, suppose that we apply torsional stress tending to make
the double helix tight er (one turn every J basepa irs, where J < 10.5). Rem ark ably, it
then turns out tha t th e relation betwee n to rsional stress and excess linking number
really do es have the simple linear form show n in Equ at ion 9.47, even though the
DNA responds in a complicated way to th e stress. The torsion al spring constan t kt

depends on the length of the loop : A typical value is k, = 56kll T, j N , where N is the
number of basepairs in the loop.

When we U/ldertwist DNA, however, something more spectacular can happen.
Instead of responding to the stress by supercoiling , a tract of the DNA loop can pop
into a totally di fferent conforma tion, a left -handed hel ix! Th is new conformation is
called Z-DNA. No chemical bonds are broken in this switch. Z-DNA makes a left
handed tu rn every K basepairs, where K is a nu mber you will find in a moment.
Popping into the Z- form costs free energy, but it also parti ally relaxes the tors iona l
stress on the rest of the molecule. That is, totally disrupting the duplex structure
in a localized region allows a lot of the excess linking number to go there, instead

13At higher concentrat ion, we may also get some double-length loops.
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Figure 9.14 : (Exper imental data. ) Evidence for the B-2 transition in a 40 basepair tract in
serted into a closed circular loop of DNA (the plasmid pBR322). Each circle represents a
part icular topoisomer of DNA; the topoisomers were separated in a procedure called two
dimensiona l gel electrophoresis. In the horizontal direction, each circle is placed according to
the topoisomer's number of excess turn s (the linking numb er), relative to the most relaxed
form. All circles shown correspond to negative excess linking number (tending to unwind the
DNAdup lex). Placement in the vertical direction reflects the apparent change of excess linking
numb er after a change in the environment has allowed the B-2 transition to take place. [Data
from Howell et al., 1996.]

of being distributed throughout the rest of the molecu le as torsional strain (small
deformations to the B-form helix).

Certain basepair sequence s are especially susceptible to popping into the Z-form.
Figure 9.14 shows som e data taken for a loop of total length N = 4300 basepairs. The
sequence was chosen so that a tract of length 40 basepairs was able to pop into the
Z-form when the torsional stress exceeded some threshold.

Each point of the graph represents a distinct topoisomer of the 4300 basepair
loop, with the absolute value of M on the horizontal axis. On ly negative values of M
(called negative supe rcoiling) are shown. Beyond a critical number of turns , suddenly
the 40 basepai r trac t pop s into the Z-form. As described earlier, this transition lets the
rest of the molecule relax; it then behaves und er electrophoresis as though IMI had
suddenly decreased to IM I - t;M. The quantity t;M appears on the vertical axis of
the graph.

a. From the data on the graph , find the critical torque Tcril beyond which the transi
tion occurs .

b. Find the number K mentioned earlier. That is, find the number of basepairs per
left-handed turn of Z-DNA. Compare with the accepted value K "" 12.

c. How much energy per basepair does it take to pop from B- to Z-form? Is this
reasonable?

d. Why do you suppose the transition is so sharp? (Give a qua litative answer.)



CHAP T ER 10

Enzymes and Molecular
Machines

If ever to a theory I should say:
'You are so beautiful!' and 'Stay! Oh, stay!'

Then you may chain me upand saygoodbye
Then I'll beglad to crawl away and die.

- Delbriick and von Weizacker's upda te to Faust, 1932

A cons tan tly recurring theme of this book has been the idea that living organ isms
transduce free energy. For example, Chapter 1 discussed how animals eat high- energy
molecu les and excrete lower-energy mol ecules, thereby generating not only thermal
energy but also mechan ical work. We have constru cted a fram ework of ideas allegedly
useful for understandin g free ene rgy tr ansdu ction, and we have even presented some
primitive examples of how it can work:

• Chapter I introduced the osmotic mac hine (Section 1.2.2); Chapter 7 work ed
through the details (Section 7.2).

• Section 6.5.3 in troduced a motor driven by temperature differences.

Neither of the devices just mentioned is a very good analog of th e motors we find
in living organisms, however, because neither is dri ven by chemical forces. Cha pter 8
set the stage for the analysis of mo re biologically relevant machines, developing the
no tion tha t chemical bond energy is just another form of free energy. For example,
the cha nge 6G of chemical po ten tial in a chemical reaction was interpreted as a force
driving that reaction : The sign of 6G dete rmines in which direct ion a reaction will
proceed. But we stopped short of explaining how a molecular machine can harness a
chemical force to drive an otherwise unfa vo rable transact ion , such as doing mechan
ical work on a load. Understanding how molecules can act as free energy brokers,
sitt ing at the interface between the mechan ical and chemica l worlds, will be a major
goal of this chapter.

In terest in mol ecular machines blossomed with the realization that much of cel
lular behavior and arch itecture depends on the active, d irected transport of macro
molecules, membran es, or chromosomes within the cell's cyto plasm. Just as disrup
tion of traffic hurts the funct ioning of a city, so defective mol ecular transport can
resu lt in a variety of diseases.

The subject ofmo lecular machines is vast. Rather than surve y the field, th is chap 
ter will focus on showing how we can take some famili ar mechanical ideas from the
macroworld, add just one new ingredien t (thermal motion), and ob tain a rough pic
ture of how mo lecular mac hines work. Th us many important biochemical detai ls will
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be om itted ; just as in Chapter 9, mechanical images will serve as metaphors for subtle
chem ical details.

This chapter has a character di fferent from that of earli er ones because some of
the stories are still unfolding. After ou tlin ing some gene ral principles in Sections 10.2
and 10.3, Section 10.4 will look specifically at a rem arkable family of real machines,
the kinesins. A kinesin molecule's head region is just 4 x 4 x 8 nm in size (smaller
than th e smallest tran sistor in your computer) and is built from just 345 amino acid
residues . Ind eed , kines in's head region is one ofthe sma llest known nat ural molecular
motors, and poss ibly the simplest. We will illustrate the int erplay between models
and experiment s by exam ining two key experime nts in some detail. Although the
final picture of force generation in kinesin is still not known, still we will see how
structural, biochemical, and physical measurements have interlocked to fill in man)'
of th e det ails.
The Focus Question for th is chapter is
Biological question: How does a molecular motor convert chemical energy, a scalar
quant ity, into directed motion, a vector?
Physical idea: Mechanochemical coupling arises from a free energy land scape with a
direction set by the geometry of the motor and its track. The motor executes a biased
random walk on this land scape.

10.1 SURVEY OF M OLECULAR DEVICES FOUND IN CELLS

10.1.1 Terminology

This chapter will use the term molecular device to designate single molecules (or
few-molecule assemblies) falling into two broad classes:

1. Catalysts enha nce the rate of a chemical reaction . Catalysts created by cells are
called en zymes (see Sect ion 10.3.3).

2. Machi nes actively reverse the natural flow of some chemica l or mechanical pro
cess by coupling it to another one. Machines can in turn be roughly divided:

a. On e-shot machin es exhaust some inte rnal source of free energy. The osmotic
machine (Figure 1.3 on page 13) is a representative ofthis class.

b. Cyclic machin es process some external source of free energy such as food mol
ecules, absorbed sunlight, a difference in the concentration of some molecule
across a membrane, or an electrostatic poten tial difference. The heat engine in
Sectio n 6.5.3 on page 214 is a representa tive of th is class; it runs on a tempera
ture difference between two external reservoirs. Because cyclic machines are of
greatest interest to us, let us subdivide them still further:

i. Motors transduce some form of free energy into motion, either linear or
rotary. This chapter will d iscuss motors abstrac tly, then focus on a case
study, kinesin,

ii. Pumps create concentration differences across membranes.

iii. Synthases drive a chemical reaction , typically the synthesis of some prod
uct. An example is ATP syn thase, to be discussed in Chapter 11.



Your
Turn

lOA

10.1 Survey of molecular devices found in cells 403

A third broad class of molecular devices will be discussed in Chapters 11 and 12:
Gated io n channels sense external conditions and respond by changing their perme 
ability to specific ion s.

Before embarking on the mathematics, Sections 10.1.2 through 10.1.4 describe
a few represen tative classes of the molecu lar machines found in cells in order to have
some concrete examples in mind as we begin to develop a picture of how such ma
chines work. (Section 10.5 briefly describes still other kinds of motors.)

10.1.2 Enzymes display saturation kinetics

Chapter 3 noted that a chemical reaction, despite having a favorable free energy
change, may proceed very slowlybecause ofa large activation energy barri er (Idea 3.28
on page 87). Chapter 8 pointed out that this circumstance gives cells a convenient
way to store energy, for example, in glucose or ATP, unt il it is needed. But what
happens when it is needed? Quite generally, cells need to speed up the natu ral rates
of many chemical reactions. The most effic ient way to do this is with some reusable
device-a catalyst.

Enzy mes are biological catalysts. Most enzyme s are made of protein, so met ime s
in the form of a complex with other small molecules (called coenzymes or prosthetic
group s). Other examples include ribozymes, which consist of RNA. Comp lex cat
alytic organelles such as the ribosome (Figure 2.24) are complexes of prote in with
RNA.

To get a sense of the catalytic power of enzymes, consider the decomposition
of hydrogen peroxide at room temperature, H20 2 ~ H20 + !02. Thi s reaction
is highly favorable energetically, with /), c" = -4IkBT" yet it proceeds very slowly
in pure solution: With an initial co ncentra tio n 1 M of hydrogen peroxide, the rate
of spontaneous conver sion at 25°( is just 10- 8 M 5- 1. Thi s rate correspo nd s to a de
co mposition of just 1% of a sample after two week s. Variou s substances can catalyze
the decomposition, however. For example, the addition of 1 mMhydrogen bromide
speeds up the reaction by a factor of 10. But the add ition of the enzyme catalase, at
a co ncentration of binding sites again equ al to 1 mM, increases the rate by a facto r of
1000 000 000 OOO!

Reexpress this fact by giving the number of molecules of hydrogen peroxide
that a single catalase mo lecule can split per seco nd.

In your body's cells, catalase breaks down hydrogen peroxide generated by other en
zymes (as a by-produ ct ofeliminating dangerous free radicals before they can damage
the cell).

In the catalase reaction, hydrogen peroxide is called the substrate upon which
the en zym e acts; the resulting oxygen and water are the products. The rate of change
of the substrate concentration (here 104 M 5- 1) is called the reaction velocity. The
reaction veloci ty d early depend s on how much enzyme is present. To get a quantity
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int rinsic to the enzyme itself, we divide the velocity by the concentra tion of enzyme'
(taken to be 1 m M above). Even th is number is no t com plete ly intrinsic to the enzyme
bu t also reflects the availability (concentration) of the substrate. But most enzymes
exh ibit saturation kinetics: Th e reaction velocity increases up to a point as we in
crease substrate concentrat ion, then levels off. Accordingly, we define the turnover
number of an enzyme as the maximum velocity divided by the concentration of en
zyme. The turnover number really is an int rinsic propert y: It reflects one enzyme
molecule's competence at pro cessing substrate when given as mu ch substrate as it
can ha ndle. In the case of catalase, the numbers given in the previou s paragraph re
flect th e satu rated case, so the maximum tur nover number is the quantity you found
in Your Turn l OA.

Catalase is a speed cha mpio n among enzymes. A more typical example is fu
marase, which hydrolyzes fuma rate to t-ma late.Zwith max imum tu rnover numbers
somewhat above 1000 5- 1• This is still an impressive figure, howeve r: It means that
a liter of 1 m M fum arase solution can process up to abo ut a mo le of fumarate per
second, many orders of mag nitude faster than a similar react ion cata lyzed by an acid.

10.1.3 All eukaryotic cells contai n cyclic motors

Section 6.5.3 made a key observation, that the efficiency of a free energy transduc
tion process is greatest when th e process involves sma ll, cont rolled steps. Althoughwe
made this observation in th e context of heat eng ines, it sho uld seem reasonable in the
chemically dri ven case as well, leading us to expect that Nature should choose to build
even its mo st powerful motors out of many subunits, each made as sma ll as possible.
Indeed, early research on muscles discovered a hierarchy of st ruc tu res on shor ter and
shorter length scales (Figure lO.t ). As each level of struct ure was discovered, first by
optical and then by electron mic roscopy, each proved to be no t the ultimate force
generator bu t instead a collection of smaller force-generating structures, right down
to the mol ecular level. At the molecular scale, we find the origin of force residing in
two proteins: myosin (golf club-s haped objects in Figure 10.1) and actin (spherical
blobs in Figure 10.1). Actin self-assembles from its globular form (G-actin) into fil
aments (F-acti n, the twisted chain of blobs in the figure), form ing a t rack to which
myosin molecules attac h.

The direct proof th at single actin and myosin molecules were capable of generat
ing force came from a remarkable set of experiments, called single-molecule motility
assays. Figure 10.2 summarizes one such experiment. A bead attached to a glass slide
carr ies a small number of myosin molecules. A single act in filame nt attac hed at its
ends to other beads is maneuvered into position over the stationary myosin by us
ing op tical tweezers. Th e density of myosin on the bead is low eno ugh to ensure that
at most one myosin engages th e filam ent at a tim e. Whe n the fuel molecule ATP is
added to the system, th e actin filam ent is observed to take discre te steps in one def-

I More precisely, we divide by the concentration ofact ive sites, which is the concentrat ion ofenzyme times
the number of such sites per enzyme molecule. Thus, for example, catalase has four active sites; the rates
quoted here actually correspond to a concentration of catalase of 0.25 m M.

' Fumarase plays a part in the Krebs cycle (Chapter 11), splitt ing a water molecule and attaching the frag
men ts to fumara te, thereby converting it to malate.
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Rgure 10 .1: (Sketches.) Organ ization of skeletal mu scle at successively higher magn ificat ions. The ultimate generators
af force in a myofibril (muscle cell) are bundles of myosin molecules, interleaved with actin filame nts (also called F-actin).
Upon activation, the myosins crawl along the actin fibers. pulling them toward the plane marked M and thu s shortening
the muscle fiber. [From McMahon, 1984.)
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Figure 10.2: (Schematic; experime ntal data.) Force productio n by a single myos in molecu le. (a) Beads are attached to
the ends of an actin filament. Optical tweezers are used to mani pul ate the filament into position abo ve another. fixed
bead coated with myosin fragments. Forces gene rated by a myosin fragment pull the filam ent to the side, displacing the
bead s. The optical trap generates a known springlike force opposing this d isplacement, so the observed movement oft he
filamen t gives a measure of the force generated by the motor. (b) Force generation obse rved in the presence of I 11M ATP.
The trace shows how the mo to r takes a step, then detaches from the filament. [Adapted from Finer et al., 1994.J

inite direct ion away from the equilibrium po sition set by the optical tr aps; without
ATP, no such stepping is seen. This directed , nonrandom moti on occurs without any
external macroscopic applied force (u nlike, say, electrophoresis).

Mu scles are obvious places to look for molecular motors because muscles gen
erate macroscopic forces. Other motors are needed as well, however. In contrast with
m uscle myos in, man y other motors work not in huge team s, but alone, generating
tiny, piconewton-scale forces. For example, Section 5.3.1 described how locomotion
in E. colirequires a rot ary motor join ing th e flagellum to the body of the bacterium;
Figure 5.9 on page 176 shows thi s moto r as an assembly of macromolecules just a
few tens of na no meters across . In a more indi rect argument, Section 4.4 .1 argued
tha t passive diffusion alon e could not transport proteins and other products synthe
sized at one place in a cell to the distant places where they are needed; instead some
sort of "trucks and highways" are needed to tran sport these products actively. Fre
quentl y, th e "trucks" consist of bilayer vesicles. The "highways" are visible in electron
microscopy as long protein polymers called microtubules (Figure 2.18 on page 55).
Somewhere between the truck and the h ighway, there m ust be an "eng ine ."

One particularly important exam ple of such an eng ine, kinesin, was discovered
in 1985, in the course of single-molecule motility assays inspired by the ear lier work
on myo sin . Unlike the actin /myosin system, kinesin molecu les are designed to walk
individually along micro tu bu les (Figure 2.19 o n page 56): Often ju st one kinesin mol
ecule carries an entire transport vesicle toward its destinat ion . Ma ny ot her or ganized
intr acellul ar motions, for example, the sepa ration of chromosomes during cell di
vision, also imply the existence of motors to overcome viscous resistance to such
directed motion. Th ese motors too have been found to be in the kine sin family.'

JActually, both "kinesin" and "myosin" are large families of related molecules; human cellsexpressabout
40 varietiesofeach. For brevity, wewill use these terms 10 denote the best-studied members in eachfamily:
muscle myosin and "conventional" kinesia.
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For a more elaborate example of a molecu lar machine. recall that each cell's ge
netic script is arran ged linearly along a lon g pol ymer, the DNA. Th e cell must copy
(or replicate) the script (for cell division ) as well as tr anscribe it (for protein synthe
sis) . An efficient way to perform these operatio ns is to have a single readout machine
through which the script is physically pulled. The pulling of a cop y requ ires energy,
just as a mo tor is needed to pu ll the tape across the read heads of a tap e player. Th e
corresponding machines are known as DNA or RNA polymerases for the cases of
replication or transcription. respe ctively (see Section 2.3.4 on page 59) . Section 5.3.5
has already noted th at some of the chemical energy used by a DNA po lyme rase must
be spent op posi ng rotational friction of the o rigina l DNA and the cop y.

10.1.4 One-shot machines assist in cell locomotion and
spatial organizatio n

Myosin, kinesin , and polyrnerases are all examples o f cyclic motors; they can take
an unlimited number of steps without any change to their own structure, as long
as "fuel" molecules are available in sufficie nt quantities. Other directed, non random
mot ion s in cells do no t need this proper ty, and for them , simpler one-shot machi nes
can suffice.

Translocat ion Some prod ucts synthesized inside cells not only must be transported
some distance inside the cell, but also must pass across a bilayer membrane to get to
their destin ation. For example, mit ochondria import certain proteins that are syn
thesized in the surrounding cell's cytoplasm. Other proteins need to be pushed out
side the cell's outer plasma membrane. Cells accomplish this prote in translo cation by
th reading the chai n of amino acids through a membrane po re.

Figure 10.3 shows so me mechanisms that can help make translocation a one-way
process . This motor's "fuel" is the free energy change of the chemical modi fication
the protein und ergoes upon em erging into the environment on the right . Onc e the
protei n has passed through the pore , there is no need for further activity: A one-sho t
machine suffices for translocation.

Polym erization Many cells move , no t by cranking flagella or waving cilia (Sec
tion 5.3. l ), but by extrud ing their bo dies in the di rection of desired mot ion . Such
extrusio ns are vario usly called pseudop odia, filop odia, or lamellipodia (see Figure 2.9
on page 44 ). To overcome the viscous friction op posing such moti on, the cell's inte
rior structure (including its actin cortex; see Section 2.2.4 on page 54) must push on
the cell membrane. To this end, the cell stimulates the growth of actin filamen ts at
the leading edge. At rest, the individual (or monomeric) actin subun its are bound to
another small molecule, profilin , which prevents them from stickin g to one ano ther.
Changes in intracellular pH trigge r dissociatio n of the actin-profilin co mp lex when
the cell needs to move; the sudden increase in the concentration of actin monomers
then causes them to assemble at the ends of existing actin filame nts . To confirm that
actin po lyme rization is capable of changing a cell's shape in thi s way, it's possible
to recreate such behavior in vitro . A similar experiment , invo lving microtubules, is
shown in Figure 10.4: Here the tri ggered assembly of just a handful of microtubules
suffices to distend an artifici al bilayer membrane.
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transloca tion

disulfide
bonding

glycosyla t ion

Figur e 10.3 : (Schematic.) Translocation of a prote in through a pore in a membrane. Outside
the cell (right side offigure), several mechanisms can rectify (make un idirectio nal) the diffusive
motion of the protein through the pore , for example, disulfide bond forma tion and attachment
of sugar groups (glycosylation). In addi tion, variou s chemical asymmetries between the cell's
inter ior and exterior environment could enhance chain coiling ou tside the cell, thus preventing
reentr y. These asymmetries could includ e differences in pH and ion concentrations. [Adapted
from Peskin et al., 1993.J

Figu re 10.4: (Photomicrograph.) Micro tub ule polymerization distending an artificial bilayer membrane. Several mi
crotubules gradually distort an initially spherical vesicle by growing inside it at abou t 2/Lm per minute. [Digital image
kindly suppl ied by D. K. Fygenson ; see Fygenson et al., 1997.]

Actin polymer ization can also get coopted by parasitical orga nisms. The most
famous of these is the pathogenic bacteriu m Listeria monocytogenes, which propels
itself through its host cell's cytoplasm by triggering the polymerizat ion of the cell's
own actin, thereby forming a bundle behind it. The bundle remains stationary, en
meshed in the rest of the host cell's cytoskeleton, so the force of the po lymerization
motor propels the bacterium forward. Figure 10.5 shows this scary process at work.
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Figure 10. 5 : (Photomicrograph.) Polymerization from one end of an actin bundle provides
the force that propels a Listeria bacterium (black /ozw ge) through the cell sur face. The long tail
behind the bacter ium is the network of actin filaments whose assembly it stimulated. [Prom
Tilney & Portnoy, 1989 .1

Force generation by the polymerization of act in filaments or microtubules is
another example of a machine, in the sense that the chemical bind ing energy of
monom ers turns into a mechan ical force capab le of do ing useful work against the
cell memb rane (or invading bacterium). The machin e is of the one-s hot variety, be
cause the growing filament is different (it's longer) after every step.'

10.2 PURELY MECHANICAL MACH INES

To understand the unfamiliar, we begin with the familiar. Accordingly, this section
will examin e some everyday macroscopic machines, show how to interpret them in
the language of energy landscapes, and develop some termi nology.

10 .2 .1 Macroscopic mach ines can be described by a n e nergy la ndscape

Figure 10.6 shows three simp le, macroscopic machin es. In each panel. externa l forces
acting on the machi ne are symbolized by weights pulled by gravity. Panel (a) shows a
simple one-shot machine: In itially, crank ing a shaft of radiu s R in the direction op
posite that of the arro w stores potent ial energy in the spiral spring. When we release
the shaft, the spring unwinds, thereby increasing the angu lar posit ion e.The machine
can do useful work on an externa l load, for example, liftin g a weight WI> as long as
R W I is less than the torque r exerted by the spring. If the entire app arat us is immersed
in a viscous fluid, then the angular speed of rotation, de/ dr, will be proportionai to
r - Rw,.

"Strictly speaking. living cells constantly recycle actin and tubulin monomers by depolymerizing filaments
and microtubu les and "recharging" them for futu re use. so perhaps we should no t call this a one-sho t
process. Nevertheless, Figure lOA does show polymerization force genera ted in a one-shot mode.
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Figure 10 .6 : (Schematics.) Three simpl e macroscopic machines. In each case, the weights are
not considered part of the machin e proper. (a) A coiled spring exerting torque t: lifts weight
WI ' dr iving an increase in the ang ular position e.The spr ing is fastened to a fixed wall at one
end and to a rota ting shaft at the oth er; the rope holding the weight winds aroun d the shaft.
(b) A weight W2 falls, lifting a weight W I ' (c) As (b), but th'e shafts to which WI and Wz are
connected are joined by gears. Th e angular variables ex and f3 both decrease as W 2 lifts WI .

Explain that last assertion. [Hin t: Thi nk back to Section 5.3.5 on page 182.)

When th e spring is fully unwou nd , the machine stops .
Figure 10.6b shows a cyclic analog of panel (a), Here the "machine" is simply

the central shaft. An external source of energy (weight W 2) drives an extern al load WI

against its natural direction of motion, as long as W2 > WI . This time the machine is
a broker transducing a potential energy drop in its source to a potential energy gain
in its load . Again, we can imagine introducing so mu ch viscous friction that kinetic
energy may be ignored.

Figure lO.6c introduces another level of com plexity. Now we have two shafts,
with angular positions " and fJ . The shafts are coupled by gears. For simplicity, sup
pose that the gears have a 1:1 ratio; so a full revolution of f3 brin gs a full revolution
of a and vice versa. As in panel (b), we may regard (c) as a cyclic machine.

Our thre e little machine s may seem so simple that they need no further expla
nation . But for futu re use, let us pa use to extract from Figure 10.6 an abstract char
acterization of each one.

One-dimensional landscapes Figure 10.7a shows a po tent ial energy graph, or
energy landscape , for ou r first mac hine. The lower do tted line represent s the poten
tial energy of th e spr ing. Adding the potent ial energy of the load (upper dashed line)
gives a total (solid line) that decreases with increasing e.The slope of the total energy
is downward , so T = - dUj de is a positive net torque. In a viscous medium, the
angular speed is proporti onal to th is torque: We can think of the device as "sliding
down" its energy lan dscape.

For the cyclic machine shown in Figure 10.6b, th e graph is similar. Here U motor

is a constant, but there is a third contribution, Udrive = - W2 R e , from th e external
driving weight, giving the same curve for Utot(e ).
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Figure 10.7: (Sketch graphs. ) Energy land scapes for the one-dimensiona l machine in Figure 10.6a. The vertical scale is
arbitrary. (a) Lower dotted line: The coiled spring contributes U molur = - r B to the potentia l energy. Upper dashed line:
The external load contributes Ul oad = w.RO . Solid line: The total pot ent ial energy functio n Utot(B) is the sum of these
energies; it decreases in time. reflecting the frictional dissipation of mechanical energy into the rmal form. (b) The same,
but for an imperfect (slightly irregular) shaft. Solid wrve: Under load, the machin e will stop at the point 8" . Lowerdotted
curve:Without load. the machine will slow down, but proceed, at Ox.

Real machines are not perfect. Irregularities in the pivot may introduce bumps
in the potent ial energy function, "sticky" spots where an extra push is needed to
move forward. We can describe this effect by replacing the ideal potential energy
-rO by some other function Umotm(B) (lower dott ed curve in Figure 10.7b). As long
as the resulting tota l potential energy (solid curve) is everywhere sloping downward.
the machine will still run . If a bump in the potential is too large. however. then a
minimum forms in Utot (point ex ), and the machin e will stop there. Note that the
meaning of "too large" depends on the load: In the example shown. the unloaded
machine can proceed beyond ex . Even in the unloaded case. however, the machine
will slow down at ex : The net torqu e - d Utot / de is small at that point, as we see by
examining the slope of the dotted curve in Figure 1O.7b.

To summarize, the first two machines in Figure 10.6 operate by sliding down
the potential energy landscapes shown in Figure 10.7. These landscapes give"height"
(that is, potential energy) in terms of one coordinate e, so we call them "one
dimens ional."

Two-dimensionallandscapes Our third machine involves gears. In the macroworld ,
the sort of gears we generally encounter link the angles a and fJ together rigidly:
a = fJ. or more generally a = fJ + 21rIl/N, where N is the number of teeth in
each gear and n is any integer. But we could also imagine "rubber gears," which can
deform and slip over each other unde r high load. Then the energy landscape for th is
machine will involve two independent coordinates, a and fJ. Figure 10.8 shows an
imagined energy landscape for the internal energy Umotor of such gears with N = 3.



412 Chapter 10 Enzymes and Molecu lar Machin es

a b

Q

6 0

Figure 10 .8 : (Mathematical fun ctions.) Imagined potentia l energy landscape for the gear machine in Figure 1O.6c, with
no load nor driving (but with some imperfections). For clarity, each gear is imagined as having only three teeth. (a) The
two hori zontal axes are the angles a , {3 in rad ians. The vertical axis is poten tial ene rgy, with arb itrary scale. (b) The same,
viewed as a conto ur map. Th e da rk diagonal stripes are the valleys seen in panel (a). The valley corresponding to the main
diagonal has a bump. seen as the ligh t spot at fJ =a = 2 (arrows).

The preferred motions are along any of the "valleys" of this land scape, that is. the
lines a = f3 + 21fn /3 for any integer n. Imperfections in th e gears have again been
model ed as bumps in the energy landscape; thus the gears don't turn freely even if we
stay in one of the valleys. Slipping involves hopping from one valley to the next and
is opposed by th e energy ridges separating th e valleys. Slipping is especially likely to
occur at a bump in a valley, for example, the point (fl = 2, ,, = 2) (see the arrows in
Figure 1O.8b).

Now consider the effects of a load torque W IR and a dri ving torqu e W2R on the
machine. Define th e sign of ex and f3 so that ex increases when th e gear on the left
turns clockwise, whereas f3 increases when the ot her gear turns counterclockwise (see
Figure 10.6). Thus th e effect of the dri ving torque is to tilt the landscape downward in
the dir ection of decreasing ex. Th e effect of the load, however, is to ti lt the landscape
upward in the d irection of decreasing f3 (see Figure 10.9). The machine slides down
the landscape, following one of the valleys. The figure shows the case where W I < W2;
here ex and f3 dri ve toward negative values.

Just as in the one- dime nsional machine, our gears will get stuck if they att em pt to
cross th e bump at (fl = 2," = 2) under the load and dri ving conditions shown. De
creasing the load cou ld get the gears unstuck. But if we instead increased th e driving
force, we'd find that our machin e slips a notch at this poin t, sliding from th e mid
dle valley of Figure 10.9 to the next one closer to the viewer. That is, ex can decrease
without decreasing fl.

Slipping is an important new phenom eno n no t seen in th e one-dimensional ide
alization. Clearly it's bad for the machine's efficiency: A uni t of dr iving energy gets
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spent (0' decreases), but no corresponding un it of useful work is done ({3 does not
decrease). Instead the energy all goes into viscous dissipation. In short,

(10.1 )

The machine in Figure 1O.6c stops doing useful work (that is, stops
lift ing the weight W I ) as soon as either

a. WI equals 11'2' so the machine is in mechanical equilibrium (the
valleys in Figure 10.9 become horizon tal), or

b. The slipping rate becom es large.

10.2.2 Microscopic machines can step past energy barriers

The machines considered in Section 10.2.1 were deterministic: Noise, or random
fluctuation s, played no important role in their operation. But we wish to study
molecular machin es, which occupy a nanoworld dominated by such fluctuations.

u
5

Ag ure 10 .9 : (Mathematical function.) Energy landscape for the driven, loaded, imperfect
gear machine. The landscape is the same as the one in Figure 10.8, but tilted. The figure shows
the case where the driving torque is larger than the load torque; in this case, the tilt favors
motion to the front leftof the gra ph. Again the scale of the vertical axis is arbitrary. The bump
in the central valley (at fJ = 2, a = 2) is now a spot where "slipping" is likely to occur. That is.
the state of the machine can hop from one valley to the next lower one at such points.

Gilbert says: Some surprising thin gs can happen in th is world. For example, a ma
chine need no longer stop when it enco unters a bump in the energy landscape; after a
while, a large enough thermal fluctuation will always arrive to push it over the bump.
In fact, I have invented a simple way to translocate a protein. using thermal moti on to
my advant age. I've named my device the Gsratchet in honor of myself (Figure 10.1 Oa).
It's a shaft with a series of beveled bolts; they keep the shaft from taking steps to the
left. Occasionally, a thermal fluctu ation comes along and gives the shaft a kick with
energy greater than E, the energy needed to com press one ofthe little springs holding
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r
Figure 10 .10: (Schematics.) Two thermally activated ratchets. (a) The G-ratchet . A rod (hori
zontal cylinde r) makes a supposedly one-way trip to the right throu gh a hole in a "membrane»
(shaded wall ), driven by random thermal fluctua tion s. It's prevented from moving to the left
by sliding bolts, similar to tho se in a door latch. The bolts can move down to allow rightward
motion; then they pop up as soon as they clear the wall. A possible extern al "load" is depicted
as an app lied force f directed to the left. The text explains why this device does not work.
(b) The S-ratchet. Here the bolt s are tied down on the left side, then released as they emerge
on the right. Thi s device is a mechanical model for pro tein translocation (Figure 10.3).

the bolts. Then the shaft takes a step to the right.

Sullivan: That certainly issurprising. I no tice that you could even use your machine
to pu ll against a load (the external force f shown in Figure 10.10).

Gilbert: That's right! It just slows down a bit, because now it has to wait for a thermal
push with energy greater than E + f L to take a step.

Sullivan: I have just one question: Where does the work f L done against the load
come from?

Gilbert: I guess it must come from the thermal energy giving rise to the Brownian
motion ... .

Sullivan: Couldn't you wrap your shaft into a circle?Then your machine would go
around forever, constan tly doing work against a load.
Gilbert : Just what are you tr ying to tell me?

Yes, Sullivan is just about to point out that Gilbert' s device would continuously
extract mechan ical work from the surrounding therma l mo tion , if it worked the way
Gilbert supposes. Such a mach ine would spon taneou sly reduce the world 's entropy
and so violate the Second Law.s You can't convert thermal energy directly to me
chanical energy without using up something else-think about the discussion of the
osmotic machine in Section 1.2.2.

Sullivan continues: I th ink I see the flaw in your argument. It's no t really so clear
that your device takes only rightward steps. It cannot move at all unless the energy
E needed to retra ct a bo lt is comparable to kBT. But if that's the case, then the bolts
will spontaneouslyretract from time to time-they are thermally jiggling along with

"Unfortunately, it's already too late for Gilbert's financ ial backers, who didn 't study ther mo dynamics.
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everything else! If a leftward thermal kick comes along at just such a mome nt, then
the rod will take a step to the left after all.

Gilbert: Isn't that an extremely unlikely coincidence?

Sullivan: Not really. The applied force will make the rod spend mos t of its time
pinned at one of the locations x = 0, L, 21, .. . , at which a bolt is actually touching
the wall. Suppose that now a thermal fluctuation mome ntarily retracts the obstruct
ing bolt. If the rod then moves slightly to the right, the applied force will just pull
it right back to where it was. But if the rod moves slightly to the left, the bolt will
slip un der the wall and f will pu ll the rod a full step to the left. That is, an applied
force converts the random thermal motion of the rod to one-way, leftward, stepping.
If f = 0, there will be no net motion at all, either to the right or left.

Sullivan continues: But I still like your idea. Let me propose a modification, the S
ratchet shown in Figure 10.lOb. Here a latch keeps each bolt down as long as it's to
the left of the wall; some mechaism releases the latch whenever a bolt moves to the
right side.

Gilbert: I don 't see how that helps at all. The bolts still never push the rod to the
right .

Sullivan: Oh, but they do: They push on the wall whenever the rod tries to take a
step to the left, and the wall pushes back. That is, they rectify its Brownian motion by
bouncing off the wall.

Gilbert: But that's how my G-ratchet was supposed to work!

Sullivan: Yes, but now somet hing is really getting used up: Th e S-ratchet is a one
shot machine, releasing potential energystored in its compressed springs as it moves.
In fact, it's a mechanical analog of the translocation machine (Figure 10.3). There's
no longer any obvious violation of the Second Law.

Gilbert: Won't your criticism of my device (that it can make backward steps) apply
to yours as well?

Sullivan: We can design the S-ratchet's spr ings to be so stiff that they rarely retrac t
spontaneously, and hence leftward steps are rare. But thanks to the latches, rightward
steps are still easy.

10.2.3 The Smoluchowski equation gives the rate of a
microscopic machine

Qualitat ive expectations Let's supply ou r protagonists with the mathem atical tools
they need to clear up their controversy. Panels (a) and (b) in Figure 10.1I show the
energy landscapes of the G-ra tchet, both withou t and with a load force, respectively.
Rightward motion of the rod compresses a spring, increasing the potential energy. At
x = 0, L, 2L, ... , the bolt clears the wall. It then snaps up, dissipating the spring's
potential energy into therma l form. Panels (c) and (d) of the figure show the energy
landscape of the S-ratchet, with small and large loads (f and 1',respectively). Again
each spring stores energy E when compressed.

Note first that panel (d) is qualitatively similar to panel (b), and (a) is similar to
the special case intermediate between (c) and (d), namely, the case in which f = E/ 1.
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Figure 10.11 : (Sketch graphs.) Energy landscapes. (a) The unloadedG-ratchet (seeFigure 1O.lOa). Pushing the rodto
the right compresses the spring on one of the bolts. raising the stored potential energy by an amount E: and giving rise to
the cur ved part ofthe graph of UtOI _ Once a bolt has been retra cted, the potentia l energy is constan t until it clears the wall;
then the bolt pops up, releasing its spring, and the stored energy goes back down. (b) The loaded Ccratchet. Rightward
motion now carr ies a net energy penalty, the work done against the load force f .Hence the graph of Utol is tilted relative
to (a). (e ) The S-ratchet (see Figure 10.10b) at low load f .As the rod moves rightward, its potenti al energy progressively
decreases. as more of its bolts get released. (d) The S-ratchet at high load, f'. The downward steps are still of fixed height
E, but the upward slope is greater. so rightward progress now carr ies a net energy penalty.

Thus we need on ly analyze the S-ratchet to find what's going on in both Gilbert's and
Sullivan's devices. In brief, Sullivan has argued that

1. The unloaded G-ratchet will make no net progress in either direction ; the situa
tion is similar for the S-ratchet when f = ElL.

2. In fact, the loaded G-ratchet (or the S-ratchet with f > ElL) will move to the left.

3. The loaded S-ratchet , however, will make net progress to the right, if f < El L.

Sullivan's remarks also imply that

4. The rate at which the loaded S-ra tchet steps to the right will reflect the probability
of gett ing a kick of energy at least f L, that is, enough to ho p out of a local mini
mum of the potential shown in Figure 10.1Ie. The rate of stepping to the left will
reflect the probability of getting a kick of energy at least E.
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Let's begin with Sullivan's th ird assertion. To keep things simple, assume, as he did ,
that E is much bigger than kB T. Thus, once a bolt pops up. it rarely retracts sponta
neo usly: there is no backstepping. We'll refer to this special case of the S-ratchet as a
perfect ratchet. First suppose that there's no external force: In O U f pictorial language.
the energy landscape is a steep, descending staircase. Between steps, the rod wanders
freely with some diffusion constant D. A rod initially at x = 0 will arrive at x = Lin
a tim e given approxima tely by Isrep '" L' / 2D (see Equation 4.5 on page liS). On ce
it arrives at x = L, another bolt pops up, thereby preventing return, and the process
repeats. Thus the average net speed is

v = Li t"", '" 2DI L. speed of unloaded, perfect S-ratchet (10.2)

which is indeed positive as Sullivan claimed.
We now imagine introd ucing a load f ,still keeping the perfect ratchet assump

tion. The key insight is now Sullivan's observation that the fraction of time a rod
spends at vario us values ofx will depend on x, because the load force is always push
ing x toward one of the local mi nima of the energy lan dscape . We need to find the
probability distribution, P(x ), of being at pos ition x.

Math ematical framework The motion of a single ratchet is complex. like any ran
dom walker. Nevertheless, Chapter 4 showed how a simple. deterministic equation
describes the average motion of a large collection of such walkers: The averaging
eliminates details of each individual walk, revealing the simple collective behavior.
Let's adapt that logic to describe a large collection of M ident ical S-ratchets. To sim
plify the math further, we will also focus on just a few steps of the ratchet (say, four ).
We can imagine that the rod has literally been bent into a circle, so the po int x + 4L
is the same as the point x. (To avoid Sullivan's criticism of the G-ratchet, we could
also imagine that some external source of energy resets the bolts every time they go
around.)

Initially. we release all M copies of our ratchet at the same point x = Xo , then
let them walk for a long time. Eventually, the ratchets' locations form a probability
distr ibut ion, like the o ne imagined in Figure 10.12. In this distribution, the indi 
vidual ratchets cluster about the four potential minima (points just to the right of
x = -2L. . . . L; see Figure IO.ll e), but all memory of the initial position xo has been
lost. Th at is, P(x ) is a period ic function of x. In addition, eventually the probability
distribution will stop changing in time.

The previous paragraphs should sound familiar: They amount to saying that
our collection of ratchets will arrive at a steady, nonequilibrium state. We enco un
tered such states in Sectio n 4.6.1 on page 135 when studying di ffusion through a
thin tube joining two tanks with different concentrations of ink," Shortly after set-

6The con cept of a steady (or quasi-steady), nonequilibrium state also entered the discussion of bacterial
metabolism in Section 4.6.2. Sections 10.4.1 and 11.2.2 will again make use of this powe rful idea.
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Figure 10.12: (Sketch graph.) The probability of being found at various positions x foracol
lection of Svratche ts, long afterall werereleased at a common point. Weimagine each ratchet
to be circular, so the values x = ± 2L refer to the same point (see text). For illustration, the
case of a perfect ratchet (largeenergydrop, f » kll T) has been shown; see Your Turn JOe.

ting this system up, we found a steady flux of ink from one tank to the other. This
state is no t equilibrium-equilibrium requi res that all fluxes equal zero. Similarly,
in the ratchet case, the probability distribu tion P(x , t ) will come to a nearly time
independent form. as long as the external source of energy resetting the bolts remains
available. The flux (net number of ratchets crossing x = 0 from left to right ) need
not be zero in this state.

To summarize, we have simplified our problem by arguing that we need only
consider probability distributions P(x , t) tha t are periodic in x and independent of t.
Our next step is to find an equa tion obeyed by P(x , t ) and solve it with these two
conditions. To do so, we follow the derivation of the Nernst- Planck formula (Equa
tion 4.24 on page 140).

Note that in a time step ti t , each ratchet in our imagined collection gets a ran
dom thermal kick to the right or the left, in addition to the externa l applied force,
just as in the derivat ion of Fick's law (Section 4.4.2 on page 128). Suppose first that
there were no mechan ical forces (no load and no bolts). Then we can just adapt the
derivat ion leading to Equation 4.19 (recall Figure 4.10 on page 129):

Subdivide each rod into imaginary segments of length fj"x much smaller than L.

The distribution contains M P(a)!'.x ratchets located between x = a - ! !'.x and
x = a + ! !'.x. About half of them step to the right in time!'. t.

Similarly, there are MP(a + !'.x)!'.x ratchets located between x = a + ! !'.x and

x = a + ~ !'.x, of which half step to the lef t in time !'.t .

Thus the net num ber of ratchets in the distribution crossing x = a + !fj" x from left
to right is

1 1 d I- M [P(a) - P(a + !'.x )]!'.x '" - - (!'.x )'M dx P(x).
2 2 ~a



Now we add the effect of an external force:
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(10.3)

(I DA )o= ~ ( dP + _1_ pdUtot) .
dx dx kBT dx

Od) ( dP I dUtot )j '" net number crossing per time = - M D dx + kBTP~ .

(In this one-dimensional problem, the appro priate dimensions for a flux are ·r' .)
For the probability distribution P(x) to be time independent , we now require that
probability not pile up anywhere. This requirement means that the expression in
Equation 10.3 must be independent of x. (A similar argument led us to the diffusion
equation, Equation 4.20 on page 131.) In this context the resulting formul a is called
the Smoluchowski equation:

We can compactly restate the last result as -MD~ t:J. t . where D is the diffusion
constant for the movem ent of the ratchet along its axis in the surrounding viscous
medium. (Recall D = (l>x)' 1(2l> t ) from Equation 4.5b on page l IS).

The equilibrium case We want to find some spatially periodic so lutions to Equa
tion lOA and interpret them. First suppose that the potential Utot(x ) is itself peri
odic : UlOt(x + L) = Utot{x). This situation corresponds to the unloaded G-ratchet
(Figure 1O.l la ) or to the S-ratchet (Figure 10.ll c) with f = El L.

(To get this expression, write the force as - dU,o,/dx and use the Einstein relation,
Equation 4.16 on page 120. to express the viscous friction coefficient in terms of D.)

The net numb er of ratchets crossing x = a in tim e 6.t from the left thus gets a
second contribution, M x P(a)vddft l>t, or - (M DlkBT)(dU'o,l dx) P l>t.

The arguments just given yielded two contributions to the number of systems cross
ing a given poin t in tim e t1t . Adding these contributions and divi ding by fl.t gives

• Each ratchet also drifts under the influence of the force -dUtot/dx, where Utot(x)
is the potential energy function sketched in Figure 10.llc.

The average drift velocity of those ratchets located at x = a is

Example: Show that in this case. the Boltzm ann distribution is a solution of Equa
tion lOA, find the net probability per time to cross x, and explain why your result
makes physical sense.

Solution: We expect that the system will just come to equilibrium, where it makes
no net progress at all. Indeed, taking P(x) = C e - Utol(x)/ kBT gives a periodic. time 
independent probability distribution. (C is a normalization constant.) Equation 10.3
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(10.5)

II

Your
Turn

lOe

then says that j (ldl(x) = 0 everywh ere. Hence this P(x) is indeed a solution to the
Smoluchowski equation with no net motion .

Because j (ldl = 0, Sullivan 's first claim was right (see page 416): Th e un loaded G
ratchet makes no net progress in eitherdirection. Wecan also confirm Sullivan's phys
ical reasoning for this claim : Indeed, the func tion e - U\ol(xl /kBT peaks at the lowest
energy points. so each ratchet spends a lot of its time poised to hop backward when
ever a chance thermal fluctuation permit s this.

Beyond equilibrium Th e Boltzmann distri bution on ly applies to systems at equilib
rium . To tackle nonequilibrium situations, begin with the perfect ratchet case (very
large energy step f ). We already enco untered the perfect ratchet when der iving the
zero-force estimate Equation 10.2. Thus, as soon as a ratchet arrives at one of the
steps in the energy landscape, it immediately falls down the step and canno t return;
the probability P(x ) is thus nearly zero just to the left of each step, as shown in Fig
ure lO. t2.

Verity that the fun ction P(x ) = C(e- lX-Llf l " T - I) van ishes at x = L, solves
the Smoluchowski equation with the potential energy UM( x ) = f x , and re
sembles the curve sketched in Figure 10.12 between 0 and L. (Again C is a
no rmalization constant.) Substitute into Equation 10.3 to find that j' ld)(x) is
everywhere constant and positive.

You have just verified Sullivan's third claim (the loaded Svratchet can indeed make
net rightward progress ), in the limi ting case of a perfect ratchet. Th e consta nt C
should be chosen to make P(x )dx a prop erly normalized probabilit y distribution,
but we won't need its actual value. Outside the region between 0 and L, we make
P(x ) perio dic by just copying it (see Figure 10.12).

Let's find the average speed v of the perfect Svratchet. First we need to think
abo ut what v means. Figure 10.12 shows the distribution of position s attained by a
large co llection of M ratchets. Even thou gh the populatio ns at each po sition are as
sumed to be constant in time, there can nevertheless be a net motion, just as we found
when studying qua si-steady diffusion in a thi n tub e (Section 4.6.1 on page t35). To
find this net motion. we count how many ratche ts in the co llection are initially lo
cated in a single period (0. L), then find the average time !;,t it takes for all of the m
to cross the point L from left to right , using the flux j lldl found in Equation 10.3:

!;,t = (number)/( nurnber/t ime) = (1 L

dxMP(X)) / ( j (ldl).

Then the average speed v is given by

v = L/!;, t = ( Lj " dl) / ([ dx MP (X)).

The normalization constant C dro ps out of this result (and so does M ).

(10.6)



Substituting the expressio ns in Your Turn IOC into Equatio n 10.5 gives

10.2 Purely mechanical machines 421

(10.7)

(10.8)

speed of loaded,
perfect S-ratchet

v = ( I L ) ' Ee- i LI', '.
k,T L

(
I L ) 2D ( rLI' T )-1v= kilT L e- ' - I - I L/ kIl T

or

The last result establishes Sullivan's fourth claim (forward stepping rate contains an
expo nential activation energy factor), in the perfect ratchet limit (backward stepping
rate equals zero).

Although we only studied the perfect ratchet limit, we can now guess what will
happen more generally. Consider the equilibrium case, where I = </L. At th is point,
the activation barriers to forward and reverse motion are equal. Your result in Your
Turn IOD(b) suggests that then the forward and reverse rates cancel, giving no net
progress. This argume nt should sound familiar- it is just the kinetic interpretation
of equilibrium (see Section 6.6.2 on page 220). At still greater force, I > </L, the
barrier to backward mo tion is act ually sma ller than the one for forward motion (see
Figure 10. l l d), and the machine makes net progress to the left . That was Sullivan's
second claim .

a. Show that in the case of zeroexterna l force, Equation 10.7 reduces to 2D/ L,
agreeing with oor rough analysis of the unloaded perfect ratchet (Equa
tion 10.2).

b. Show that at high force (but still much smaller than </L) , Equation 10.7
reduces to

1. Molecu lar-sca le mach ines move by random-walking over their free energy land 
scape, no t by determ inistic sliding.

Although our answer is a bit complicated, it does have on e simple qualitative feature:
It's finite. That is, even thou gh we took a very large energy step (the perfect ratchet
case) , the ratche t has a finite lim iting speed.

Summary The S-ratchet makes progress to the right when I < e / L, then slows and
reverses as we raise the load force beyond I = e/ I.

The S-ratchet may see m rather artificial, but it illustrates some useful princip les
applicable to any molecular-scale mach ine :

Your
Turn

10D
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2. Th ey can pass th rough po tentia l energy ba rriers, with an average waitin g time
given by an expo nential facto r.

3. They can store potential energy (this is in part what creates the landscape) but
not kin etic ene rgy (because viscous dissipat ion is strong in the nanoworld, see
Chapter 5).

Point (3) stands in contrast to fam iliar macroscopic mac hines like a pendulum clock,
whose rate is contro lled by the inertia of the pendulum. Iner tia is immaterial in the
h ighly damped nanoworld; instead the speed of a mol ecu lar mot or is contro lled by
act ivation ba rriers.

Our study of rat chets has also yielded some more specific results:

a. A therm al machine can convert stored internal energy f in to di
rected m otion if it is structurally asym m etrical.

b. But structural asymmetry alone is not enough:A therm al machine
won 't go anywhere if it 's in equilibrium (periodic po ten tial, Fig
ure 10.1l a). To get LJsefu l work, we must p LJsh it out ofequilibrium
by arranging for a descending free energy landscape.

c. A ratchet 's speed does not increase without bound as we increase
the drive ene rgy E. Instead, the speed of the unl oaded ratchet sa t
urates at some lim iting value (Equation 10.7).

You showed in Your Turn IOD that, with a load, the lim itin g speed gets redu ced by
an exponentia l factor relative to the un loaded 2D/ L. This result should remind you
of the Arrhen ius rate law (Section 3.2.4 on page 86). Cha pter 3 gave a rather simple
minded approach to this law, im agining a single thermal kick carry ing us all the way
over a barrier. In the prese nce of viscous friction , such a one-kic k passage may seem
about as likely as a successful field goal in a football game played in molasses! But
the Smoluchowski equ ation showed us the right way to derive the rate law for large
molecu les: Mod eling the process as a random walk on an ene rgy landscape givesqual
itatively the same result as the naive argument.

We could go on to im plem ent these ideas for more complex mic roscop ic ma
chines, like the gears of Figure 1O.6c. Rath er than studying rolling on the pote ntial
ene rgy surface (Figure 10.9), we would set up a two-dimensional Smoluchowski equa
tion on the surface, again arriving at conclusio ns similar to Idea 10.1on page 413.The
following sections will not follow thi s pro gram , however, instead seeking sho rtcuts to
see the qualitat ive behavior without the difficult ma thema tics.

IT2 1Section 10.2.3' on page 455 generalizes the preceding discussion to get the force-

velocity relation for an imperfect ratchet.

10.3 M OLECULAR IM PLEM ENTATION
OF MECHANICAL PRINCIPLES

The discussion of purely mechanical machines in Sect ion 10.2 generated some nice
formulas bu t still leaves us with many quest ion s:
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Molecular-scale machines consist of one or a few molecules. unlike the macro
scopic machines sketched earlier. Can we apply our ideas to single molecules?
We still have no candidate model for a cyclic machine that eats chemical energy.
Won't we need some totally new ideas to create this?

Most important of all, how can we make contact wit h exper imental data?

To make progress on the first question. it's time to gather a number of ideas about
single molecules devel oped in previou s chapters.

10.3.1 Three ideas

First, the statistical physics of Chapter 6 was constructed to be applicable to single
mo lecule subsystems. For example, Section 6.6.3 on page 223 showed that such sys
tems drive to minimize their freeenergy,just like macroscopic systems, although not
necessarily in a one-way. deterministic fashion.

Second, Chapter 8 described how chemical forces are nothin g but changes in
free energy, in principle interconvertible with other changes involving energy (for
example, the release of the little bolts in the S-ratchet ). Chemical forces dr ive a re
action in a direction determined by its /),G, a quantity involving the stoichiometry
of the reaction but otherwise reflecting only the concen trations of molecules in the
reservoir outside the reaction proper. (Idea 8.23 on page 307 expresses this conclusion
succinctly.)

Third, Chapter 9 showed how even large, compl ex macromolecules, with tens of
thousands of atoms all in random thermal motion, can nevertheless act as though
they had just a few discrete states. Indeed, macromolecules can snap crisply between
those states, almost like a macroscopic light switch. We identified the source of this
"rnu ltistab le" behavior in the cooperative action of many weak physical interactions
such as hydrogen bonds. Thu s, for example, cooperat ivity made the helix- coil tran
sition (Section 9.5.1) or the binding of oxygen by hemoglobin (Section 9.6.1) sur
prisingly sharp. Similarly, a macromolecule can be quit e specific abo ut what small
molecules it binds, rejecting imposters by the cooperative effects of many charged or
H-bonding gro ups in a precise geomet rical arrangement (see Idea 7.17 on page 263).

10.3.2 The reaction coordinate gives a useful reduced description
of a chemical event

The idea of multistability (the th ird point in Section 10.3.1) sometimes justifies us in
writing extremely simple kinetic diagrams (or reaction graphs) for the reactions of
huge, complex macromolecules, as if they were simple molecules jumping between
just a few well-defined configurations. The reactio n graphs we write will consist of
discrete symbols (or nodes) joined by arrows, just like many we have already written
in Chapter 8, for example, the isomerization reaction A ~ B studied in Section 8.2.1
on page 299. A crucial point is that such reaction graphs are in general sparsely con 
nected. That is, many of the arrows one could imagine drawing between node s will
in fact be missing, reflectin g the fact that the corresponding rates are negligibly small
(Figure 10.13). Thus, in many cases, reactions can proceed on ly in sequential steps,



(10.10)

424 Chapter 10 Enzymes and Molecula r Machines

a A~ B b A~ B ~ C

1~ x 1~ 1~
D~ C D

Fig ure 10 .13 : (Diagrams.) (a) A fully connected reaction diagram. (b) A sparsely connected
reaction diagram.

ra rely if ever taking sho rtcuts on the reaction graph. Usually we can' t work out the
details of the reaction graph from explicit calculations of molecular dyn amics, but
sometimes it's enough to frame guesses about a system from experience with similar
systems, then look for quantitative predictions to test the guesses.

Wha t exactly happens along those arrows in a reaction graph? To get from one
configuration to the next, the ato ms composi ng the molecule mu st rearrange their
relat ive positions and angles. We could imag ine listing th e coord inates of every atom;

then the star ting and endi ng configuration s are points on the many-dimensional
space of these coordinates. In fact, they are special po ints, for which the free energyis
mu ch lower than elsewhere. This property gives those po ints a special) nearly stable
status, en titling them to be singled out as nod es on the reaction graph. If we could
reach in and pu sh individual atoms around, we'd have to do work on the molecule to
mo ve it away from either of these points. But we can instead wait for thermal motion
to do the pushing for us:

Chemical reactions reflect random walks on a free energy landscape
in the space ofm olecular con figurations.

Unfor tunately, the size of the molecular con figuration space is daunting, even
for small molecules. To get a tractable example, con sider an ultrasimple reaction: A
hydrogen atom, called H.. collides with a hydro gen mo lecule, pickin g up one of the
molecule's two atoms, Hg. To describe th e spatial relation of the three H atoms, we
can specify the three distan ces between pairs of atoms. Consider) for example, the
configurations in which all three atoms lie on a single line , so the two distances dab

and db< fully specify the geometry. Then Figure 10.14 shows schematically the energy
surface for the react ion. The energy is minimum at each end of the dashed line, where
two H ato ms are at the usual bond distance and the third is far away. Th e dashed line
represe nts a pat h in configura tion space that joins these two minima while climbing
the free energy landsca pe as litt le as possible. The barr ier that mu st be surmo unted in
such a walk corresponds to the bu mp in the midd le of the dashed line, represen ting
an intermediate configuration with d ab = dbc•

When a free energy landscape has a well-defined mountain, pass) as in Fig
ure 10.14, it makes sense to think of our problem approximately as just a one
dimensional walk along this curve) and to think in term s of the one-dimensional
energy lan dscape seen along th is walk. Chemists refer to the distance along the path
as the reaction coordinate , and to the highest po int along it as the transition sta te.
We'll denote the height of this poi nt on the grap h by the symbol t>G;.
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Figure 10.14: (Schema tic; sketch gra ph. ) (a) A simple chemica l reaction: A hydrogen molecule tr an sfers one of its atoms
to a lone H atom, H + H2 -. Hz+H. (b) Imagined free energy lan dscape for th is reaction . assuming tha t the ato ms travel
on one straight line. The dashed line is the lowest path join ing the starting and end ing configura tions shown in (a); it's
like a path throu gh a moun tain pass. The react ion coord ina te can be th ou ght of as distance along this path . Th e highest
point on this path is called the tran sition state. [(b) Adapt ed from Eisenbe rg & Crothe rs, 1979.]

Remarkably, the utility of the reaction coordinate idea has proven not to be
limited to small, simple molecules. Even macromolecules described by thousands
of atomic coordinates often admit a useful reduced descript ion with just one or
two reaction coordinates . Section 10.2.3 showed how the rate of barrier passage for
a random walk on a one-dimensional potential is controlled by an Arrhenius ex
ponential factor, involving the activation barrier: in our present notation this fac
tor takes the form e -tl.Gt jkn T• To test the idea that a given reaction is effectively a
random walk on a one-dimensional free energy landscape, we write' 6.G+/ kBT =
(~E* / kBT) - (S*/ kB) . Then we predict that the reaction rate should depend on tem
peratu re as

(10.11)

Indeed, many reactions amo ng macromolecules obey such relations (see Figure 10.15).
Section 10.3.3 will show how these ideas can help explain the enormous catalytic
power of enzymes.

I121Section 10.3.2' on page 456 gives more details abour the energy landscape
concept.

10.3.3 An enzyme ca ta lyzes a reaction by binding to the transition state

Reaction rates are controlled by activation barriers, with a temperature dependence
given roughly by an Arrhenius exponential factor (see Section 3.2.4 on page 86). En
zymes increase reaction rates but maintain that characteristic temperature depen-

7~ More precisely,we should use the ent halpy in place o f o W.
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Figure 10 .15: (Experimental data.) Rates of enzyme catalysis. (a) Semilog plot of initial reaction velocity versus inverse
temperaturefor the conversion of t -malare to fumaratebythe enzyme fumarase, at pH 6.35. (b) The same for the reverse
reaction. The first reaction follows the Arrhenius rate law (Equation 10.11), as shown bythe straight line. The line is the
function loglO Va = const - (3650 K/ T) , corresponding to an activation barrier of 29kBTr. The second reaction shows
two different slopes; presumably an alternative reaction mechanism becomes availableat temperatures above 294 K. [Data
from Dixon & Webb, 1979.1

dence (Figure 10.15). Thus it's reason ab le to guess that enzymes work by reducingthe
activation barrier to a reaction. What may not be so clearis how they could accomplish
such a reduction.

Figure 10.16 summarizes a mechan ism proposed by). Haldan e in 1930. Using
the mechanical lan guage of this chapter, let us imagine a substrate molecule S as an
elastic bo dy, with one particular chemical bond of interest show n in the figure as a
spring. The substrate wanders at random until it encounters an enzyme mo lecule E.
The enzyme molecule has been design ed wi th a binding site whose shape is almost,
but not quite, com pleme ntary to that of5. The site is assumed to be lined with groups
that coul d make ene rget ically favorab le contacts with 5 (hyd rogen bonds, electro
static attractions, and so on), if only the shapes matched precisely.

Under these circum stances , states E and 5 may be able to lower their total free
energy by deforming their shapes to make close contact and profit from the many
weak physical attractions at the binding site." In Haldane's wo rds, E. Fischer's famous
lock-and -key metaph or should be amended to say that "the key do es not fit the lock
quite perfectly, but rather exercises a certain strain on it." We will call the bound
complex E5. But the resultin g defo rmation on the par ticul ar bo nd of interest may
push it closer to its breaking point or, in other words, reduce its activation barrier

"Other kinds of deformations besides shape changes are possible, for example. charge rearrangements.
This chapter uses mechanical ideaslike shape change as metaphorsforall sortsof deformations.
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ES EP

Figur e 10 .16 : (Schematic.) Conceptual model of enzyme activity. (e) The enzyme E has a bin di ng site with a shape and
distribution of charges, hydr ophobicity, and If -bondi ng sites approx ima tely matching those presented by the subst rate
S. (b) To match perfectly. however, S (or both E and S) must deform. (Other, mor e dra matic conformational changes in
the enzyme are possible, too.) One bond in the substrate (shown as a spring in S) stretches dose to its breaking point.
(c) From the ES state, then, a thermal fluctuation can readily break the st retched bond, giving rise to the EP complex. A
new bond can now form (upper spring), stabilizing the product P. (d) The P state is not a perfect fit to the binding site
either, so it read ily un binds, thereby retu rn ing E to its original state.

to breakin g. Then ES will isomeri ze to a bound state of enzyme plu s product, or
EP, much more rapidly than S would spontaneously isomeri ze to P. If the product is
also no t a perfect fit to the enzyme's binding site, it can then readily det ach, thereby
leaving the enzyme in its or igina l state. Each step in the process is reversible ; the
enzyme also catalyzes the reverse reaction P ~ S (see Figure 10.15).

Let us see how the little story just sketched actually im plies a reduction in acti
vation energy. Figure 1O.17a sketches an imagined free energy lan dscape for a single
molecule S to isomerize (convert) spo ntaneously to P (top curve). Th e geome tri
cal change needed to make S fit the binding site of E is assumed to carry S alon g
its reaction coordina te, with the tightest fit at the tran sition state st. The enzyme
may also cha nge its conformation to one different from its usual (lowest free energy )
state (lower cu rve). These cha nges increase the self-energies of E and S, but they are
partially offset by a sharp decrease in the interaction (or binding ) energy of the com
plex ES (middle curve). Adding the three curves gives a total free energy landscape
with a reduced activation barrier to the formation of the transition state ESt (Fig
ur e 1O.17b ).

The picture outlined in the preceding paragraph sho uld not be taken too literally.
For example, there's really no unambiguous way to d ivide the free energy into the
three separate contributions shown in Figure 1O.17a. Nevertheless, the conclusion is
valid:

Enzymes work by reducing the activation energy for a desired reac
tion. To bring about this reduction, the enzyme is constructed to bind
m ost tightly to the substrate's transition state.

(10.12)

In effect, th e enzyme- subst rate complex borrows some of the free energy needed to
form the transition state from the many weak interactions between the subst rate and
the enzyme's binding site. To return the enzyme to its or igina l state, this bor rowed
energy mu st be paid back when the product unbinds. Thu s,
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Figure 10.1 7: (Sketch gra phs.) Imagined free energ y landscapes correspo nding to the story line in Figure 10.16. (a ) Top
curve:Th e subs t rate 5 can spontaneous ly convert to product P on ly by surmou nting a large act ivatio n barrier fj.G* , which
is the free energy of the transition state S* relative to S. Middle curve: The interaction free energy between subst rate and
product includ es a large binding free energy (dip), as well as the entrop ic cost of aligning the substrate properly relative
to the enzyme (slight bumps on either side of the dip). Lower curve: Th e bind ing free energy may be par tly offset by a
deformation of the enzyme upon bindi ng, but still the net effect of the enzyme is to reduce the ba rri er .6.G*. All three
curves have been shifted by arbi trary con stants to show them on a single set ofaxes. (b) Imagined net free ene rgy landscape
ob tained by summing the th ree curves in (a) . The enzyme has reduced .6. G*. but it cannot change .6.G.
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An enzyme cannot alter the net tlG of the reaction. (10.13 )

An enzyme speeds up both the forward and backward reaction s; the direction actually
chosen is still determined by 6.G, a quantity external to the enzyme, as always (see
Idea 8.15 on page 303).

Up to this po int, we have been imagining a system containing just one mo lecule
of substrate. With a simple mo dification, however, we can now switch to thinking
of our enzyme as a cyclic machine, progressively processing a large batch of S mol
ecules. When many mo lecules of S are available, then the net driving force for the
reaction includ es an entropic term of the form kBT In Cs. where Cs is the ir concentra
tion. (See Equation 8.3 on page 296 and Equation 8.14 on page 303.) The effect of
a high concentration of S, then, is to pull the left end of the free energy landscape
(Figure 1O.17b) upward, reducing or eliminating any activation barrier to the forma
tion of the complex ES and thus speeding up the reaction . Similarly, an increase in
product concentration Cp pulls up the right end of the free energy land scape, thereby
slowi ng or halting the unbinding of product. Just as in any chemical reaction, a large
eno ugh concentration of P can even reverse the sign of 6.G, and hence reverse the
direction of the net reaction (see Section 8.2.1 on page 299).

We can now make a simple but crucial observation: The state of our en
zyme/s ubstrate/product system depends on how many molecules of S have been
processed into P. Altho ugh the enzyme returns to its origin al state after one cycle,
stili the whoie system's free energy falls by tlG every time it takes one net step. We can
acknowledge this fact by generalizing the reaction coo rdinate to include the progress
of the reaction, for example, the number Ns of remaining substrate molecules. Then
the completefree ellergylandscape consistsofmallYcopies of Figure 1O.17b, each shifted
downward by tlG to make a colltilluouScurve (Figure 10.18). In fact, th is curve looks
qualitatively like one we have already studied, namely, Figure 10.ll c! We ident ify the
barri er f L in that figure as tlGI, and the net drop f L - E as tlG. In sho rt,

Many enzymes can be regarded as simple cyclic machines; they work
by random -walking down a one-dimensional free energy landscape.
The net descent of this landscape in one forward step is the value of
tlG for the reaction S --+ P.

(10.14)

Idea 10.14 gives an immediate qualitative payoff: We see at once why so many
enzymes exhibit satura tion kinetics (Section 10.1.2 on page 403). Recall what this
means. The rate of an enzyme -catalyzed reaction S --* P typically levels off at high
concentration ofS instead of being proportion al to Cs as simple collision theory might
have led us to expect. Viewing enzyme catalysis as a walk on a free energy landscape
shows that saturation kinetics is a result we've already obtained, namely, our result
for the speed of a perfect ratchet (Idea 1O.9c on page 422). A large concentration ofS
pulls the left side of the free energy landscape upward. In other words, the step from
E + S to ES in Figure I0.17b is steeply downhill. Such a steep downward step makes
the process effectively irreversibie, essentially forbidding backward steps; but after a
certain point, it doesn't speed up the net progress, as seen in the analysis leading to
Equation 10.7 on page 421. The reaction doesn't speed up because eliminating the
first bump in Figure 1O.17b doesn't affect the middle bump. Indeed, the activation
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»s+ kP

(lI - l)S + (k + l) P

(II - 2)S + (k + 2)P ge neralized reaction
coordinat e

Fig ur e 10 .18 : (Sketch grap h.) The free energy landscape of Figure IO.1 7b, duplicated and shifted to show th ree steps ina
cyclic reaction . The reaction coo rdinate of Figu re 10.17 has been gene ralized to include changes in the number ofenzyme
and substrate mo lecules; the curve shown connects the state with n substrate and k product molecules to the state with
three fewer 5 (and three more Pl.

barrier controlling passage from ES to EP is insensitive to the availability ofS, because
the binding site is already occupied throu ghout this process.

We also see anot her way to make the catalytic cycle essent ially irreversible: In
stead of rais ing cs. we can lower Cp , pulling the right side of the landscape steeply
down. It makes sense- if there's no product, then the rate for E to bind P and con

vert it to 5 will be zero! Section lOA will turn all these qua litat ive observa tions into a
sim ple, qu ant itative the or y of enzyme catalysis rates, then apply the same reasoning
to mo lecular machines.

Idea 10.14 also yields a second impo rtant qualitative prediction. Suppose that we
find another molecule Ssimilar to S, but whose relaxed state resembles the st retched
(transition) state of S. Then we may expect that 5 will bind to E even more tightly
than S itself, because it gains the full binding energy without having to pay any elastic
strain energy. Linus Pauling suggested in 1948 that int roducing even a small amount
of such a transition sta te an alog Sinto a solution of E and S would poison the en
zyme: E will bind 5tightl y and, instead ofcatalyzing a change in5,will simply hold on
to it. Indeed, today's protease inhibitors for the treatment of H IV infecti on were cre
ated by seeking transition state analogs directed at the active site of the HIV protease
enzyme.

IT21Section 10.3.3' on p<lge 458 m entions other physical m echanism s that enzym es

can use to facilitate reactions.
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10. 3.4 Me ch a n oche mical motors move by random-walking
on a tw o-d imensional la n dsca pe

Idea 10.14 has brou ght chemical devices (enzymes) into the same conceptual frame
work as th e microscop ic mechanica l devices studied in Section 10.2.2. This picture
also lets u s imagine how mechalwchemical machi nes might work. Consider an en
zyme that catalyzes the reaction of a substrate at high chem ical pot ential, ii s yielding
a product with low flp . In addition , this enzyme has a second bin din g site, which can
atta ch it to any point of a periodic "track." Thi s situation is mean t as a model of a
motorlike kinesin (see Section 10.1.3 on page 404), which conver ts ATP to ADP plus
phosphate and can bind to period ically spaced sites on a microtubule.

The system just described has two markers of net progress, namely, th e num
ber of remaining substrate molecules and the spatial location of the machin e along
its track. Taking a step in either of these two directions will generally require sur
mounting some activation bar rier; for example, stepp ing along the track involves
first unbinding from it. To describe these barri ers, we introduce a two-dimensional
free energy land scape, conceptually similar to Figure 10.8 on page 412. Let fJ denote
the spatia l position of one par ticular atom on the motor. Ima gine holding f3 fixed
with a clamp, then findin g the easiest path thro ugh th e space of conformations at
fixed f3 that accomplishes one catalytic step, findi ng a slice of th e free energy land
scape along a line of fixed f3. Putting these slices together could, in principle, give the
two-d imensiona l landscape.

If no external force acts on the enzyme and if the concentrations of substrate
and product correspond to thermodynamic equilibrium (JJ.. s = JJ..p), then we get a
picture like Figure 10.8a, and no net motion. If, however, there are net chemical and
mechani cal forces, th en we instead get a tilted land scape like Figure 10.9 on page 413,
and the enzyme will move, exactly as in Section 1O.2.2! The diagonal valleys in the
landscape of Figure 10.9 imp lement the idea of a mechanochemical cycle:

A m echanochemical cycle amounts to a free energy landscape with
directions corresponding to reaction coordinate and spatial displace
ment. If the landscape is not symme trical under reflection in the
mechanical (f3) direction, and if the concentrations of substrate and
produ ct are out of equilibriwll, then the cycle can yield directed net
motion.

(l0.1 5)

This result is just a restatement ofIdeas 1O.9a,b on page 422.
Figure 10.9 represen ts an extreme form of mechanochemical coupling, called

tig ht coup ling, in which a step in the mechanical (fJ) direction is nearly always
linked to a step in th e chemical (a) dire ction . There are well-defined valleys, well
separated by large barr iers, and so very little hopping takes place from one valley
to th e next. In such a situation it makes sense to eliminate altogether the direction
perp endic ular to the valleys, just as we already eliminated the man y oth er configu
rational variables (Figure 1O.14b ). Thu s, we can imagine reduci ng our descrip tion of
the system to a single reaction coordinate describing the location along just one of
the valleys. With this simplification, our motor become s simple ind eed: It's just an-
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other on e-dimension al device, with a free energy landscape resembling th e S-ratchet
(Figure IO.l lc on page 4 16).

We mu st keep in mind that tight coupling is ju st a hypothesis to be checked;
indeed Section 10.4.4 will argue tha t tight coupling is not necessary for a motor to
fun ction usefully. Nevertheless, for now let us keep the ima ge of Figure 10.9 in mind
as ou r provisional, intuitive notion of how coupling works.

l OA KINETICS OF REAL ENZYMES AND MACHINES

Certainly real enzymes are far more complicated than the sketches in the preceding
sections might suggest. Figure 10.19 shows phosph oglycerate kinase, an enzyme play
ing a role in metabolism . (Chapter I I will discuss th e glycolysis pathway, to which this
enzyme contributes.) The enzyme binds to phosphoglycerate (a modified fragment of

I nm
I nm

Figure 10.19: (Structure drawn from atomic coordinates.) (a) Structure of phosphoglycerate kinase, an enzyme com
posed of one protein chain of 415 amino acids. The chain folds into this distin ctive shape, with two large lobes conn ected
by a flexible hinge. The active site, where the chemical reaction occurs, is located between the two halves. The atoms are
shown in a gray scale according to their hydrophobicity, with the most hydrophobic in white, the most hydrophilic in
black. (b) Close-up of (a), showing the active site with a bound molecule of AT? (hatched atoms) . This view is looking
from the right in (a), centered on the upper lobe. Amino acids from the enzyme wrap around and hold the ATP molecule
in a specific position. [From Goodsell, 1993.J
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glucose) and transfers its phosphate group to an ADP mo lecule, forming ATP. If the
enzyme were instead to bind pho sphoglycerate and a water mo lecule, the phosphate
could be transferred to the water, and no ATP would be made. The kinase enzyme
is beautifully designed to solve th is enginee ring problem. It is com posed of two do
mains connected by a flexible hinge. Some of the amino acids needed for the reaction
are in its upp er half, som e in the lower half. When the enzyme binds to pho sphoglyc
erate and ADP, the energy of binding these substrate mo lecules causes the enzyme to
close around them. Only then are all the proper amino acids brought into position;
insid e, sheltered from water by the enzyme, the reaction is consumma ted.

In short, phosphoglycerate kinase is complex because it m ust not on ly channel
the flow of probability for molecular states into a useful direction bu t also prevent
probability from flowing into useless processes. Despite this comp lexity, we can still
see from its structure some of the general themes outlined in the preced ing sections.
The enzyme is muc h larger than its two substrate bin din g sites; it grip s the substrates
in a close embrace, making several weak physical bonds; optimizing these physical
bonds constrains the substrates to a precise configuration , presumably corresponding
to the transition state for the desired phosphate transfer reaction.

10.4.1 The Michaelis-Menten rule describes the kinetics
of simple enzymes

The MM rule Section 10.2.3 gave us some experience calculating the net ra te of a
random walk down a free energy landscape. We saw that such calculations bo il down
to solving the Smoluchowski equation (Equation 10.4 on page 419) to find the ap
propriate quasi-steady state. However, we genera lly don't know the free energy land
scape. Even if we did , such a detailed analysis focuses on the specifics of one enzyme,
whereas we wou ld like to begin by findin g some very broadly app licable lessons . Let's
instead take an extremely redu ctionist approach.

First, focus on a situation where initially th ere is no product present, or hardly
any. Then the chemical po tent ial f1p of the product is a large negative number. Thus,
the thi rd step of Figure 1O.17b, EP --> E + P, is steeply downhill , so we may treat
th is step as one-way forward-a perfect ratc het. We also make a related simplifying
assumption , that the transition EP ~ E + P is so rapid that we may neglect EP alto
gether as a distinct step, lum ping it together with E + P. Fina lly, we assume that the
remaining quasi-stab le states, E+S, ES, and E+P, are well sepa rated by large ba rriers,
so each transition may be treated ind epend ently. Th us the transition involving bind
ing of substrate from solution will also be supposed to proceed at a rate given by a
first -order rate law, that is, the rate is proportional to the substrate concentration Cs
(see Section 8.2.3 on page 306) .

Now suppose that we th row a single enzyme molecule into a vat initi ally contain
ing substrate at concentration CS, i and a negligible amount of product," Th is system
is far from equi librium, but it soon comes to a quasi-steady state: Th e concentra
tion of substrate rema ins nearly con stan t and that of product nearly zero, because
substrate molecules enormously outnumber th e one enzyme. Th e enzyme spends a

"Even if there are many enzyme molecules, we can expect the same calculations to hold as long as their
concent ration is much smaller than that of substrate.
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certain fraction PE of its tim e un occupied, and the rest, P ES = 1 - PE bound to sub
strate, and these numbers too are nearly constant in time. Thus the enzyme converts
substrate at a constant rate, which we'd like to find.

Let us summarize the discussion so far in a reaction diagram:

(10.16)

It's a cyclic process: The starting and ending states in this formula are different; but
in each, the enzyme itself is in the same state. The no tation associates rate constants
to each process (see Section 8.2.3), We are considering only one mo lecule of E: thus
the rate o f co nversio n for E + S ->- ES is k1Cs , not k1CsCE.

In a shor t tim e int erval d r, the prob ability PE to be in the state E can cha nge in
one of three ways:

I. If th e enzyme is init ially in the unbound state E, it has pro bability per uni t time
k,cs of binding substrate and hence leaving the state E.

2. If the enzyme is initially in the enzyme-substrate complex state ES, it has proba
bility per un it time k2 of processing and releasing product, hence reentering the
unbound state E.

3. Th e enzy me-substrate co mplex also has proba bility per unit time k_1 of losing its
bound substrate, reentering the state E.

Expressing the preceding argument in a formula (see Idea 6.29 on page 222),

(10.17)

Make sure you und erstand the units on both sides of this formula.
The quasi-steady state is the one for which Equation 10.17 equals zero. Solving

gives th e probability to be in the state ES as

(10.18)

Acco rding to Equatio n 10.16, the rate at whic h a single enzyme mol ecu le creates
product is Equation 10.18 tim es k2 . Multiplying by the conce ntration CE of en zym e
then gives the reaction velo city v, defin ed in Section 10.1.2.

The precedin g paragraph outlined how to get the initial reactio n velocity as a
fun ction of the in itial co nce ntrations o f enzyme and substrate, for a reaction with
an irreversible step (Reaction 10.16). We can tidy up the formula by defin ing the
Michaelis constant KM and maximum velocity Vmax of the reactio n to be

(10.19)
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Thus KM has the units of a concentration; Vmaxis a rate of change ofconcentration. In
terms of th ese quan titie s, Equat ion 10.18 becomes the Michaelis-Menten (or MM)
rule:

es
v = Vmax .

KM +es
Michaelis-Menten rule (10.20)

The MM rule displays saturation kinetics. At low substrate concentration, the
reaction velocity is proportional to c., as we might have expected from naive one
step kinet ics (Section 8.2.3 on page 306). At higher concentration, however, the extra
delay in escaping from the enzyme-substrate complex starts to modify that result: v
continues to increase with increasing Cs but neverexceedsVmax-

Let's pause to interpret the two con stants Vrnax and KM describing a particular
enzyme. The maximum turnover number vmax/ eEl defined in Section 10.1.2, reflects
the in tr insic speed of the enzyme. Accord ing to Equation 10.19, th is quantity just
equals k" which is indeed a property of a single enzyme molecule. To interpret KM,
we first notice that when Cs = KM • then the reaction velocity is just one-half of its
maximum. Suppose that the enzyme binds substrate rapidly relative to the rate of
catalysis and the rate of substrate dissociation (that is, suppose that k1 is large). Then
even a low value of es will suffice to keep the enzyme fully occupi ed, or in other
words, KM will be small. The explicit formula (Equation 10.19) confirms this int u
ition.

The Lineweaver- Burk plot Our very reductionist model of a catalyzed reaction has
yielded a testable result : We claim to predic t the full dep endence of v upon cs. a
[unction, using only two phenomenol ogical fitting parameters, Vmax and KM • An al
gebraic rearrangement of the result shows how to test whether a given experimental
data set follows the Michaelis-Menten rule. Instead of graphing v as a function of es,
consider graphing the recip rocal I/v as a function of l i es (such a graph is called a
Lineweaver-Burk plot ). Equatio n 10.20 then becomes

1 I ( KM )- - - 1+-
v Vmax Cs

(10.21)

Th at is, the MM rule predict s that I/ v sho uld be a linear func tion of li es, with slope
KM/ vmu. and intercept l / vmu..

Remarkably, many enzyme-m ediated reactions really do obey the MM ru le, even
thou gh few are so simple as to satisfy our assumptions literally.

Example: Pancreatic carboxypept idase cleaves amino acid residues from one end of
a polypeptid e. The table gives the initial reaction velocity versus Cs for this reaction
for a model system) a pept ide of just two amino acids:



436 Cha pte r 10 Enzymes an d Molecular Machines

a b
0.064

0.056 40

0.048 ,.
35,. "~ 0.040 E

"
~

E ~; 30
0.032 ---~o ~

25

20

0 15
0 5 10 15 20 0

C, mM
0.1

a

0.2 0.3

l /e l m M - 1

0.4

Figure 10.20 : (Experimental data.) (a ) Reaction veloc ity versus substrate con centration for the reaction catalyzed by
pancreatic carboxypeptidase. (b) The same data, this time plotted in the Lineweaver-Burk form (see Equation 10.21).
{Data from Lumry et al., 1951.J

substrate concentration, m M initial velocity, m M 5- 1

2.5 0.024
5.0 0.036

10.0 0.053
15.0 0.060
20.0 0.064

FindKM and Vmax by the Lineweaver- Burkmethod and verify that this reaction obeys
the MM rule.

SoluUon: The graph in Figure 10.20b is indeed a straight line, as expected fro m the
MM rule. Its slape equals 75 s, and the intercept is 12 ffi M - t s. From the preceding
formulas. then. Vmax = 0.085m M 5- 1 and KM = 6.4 m M.

The key to the great generality of the M M rule is that some of the assumptions
we made were not necessary. Problem 10.7 illustrates the general fact that atJy ooe
dimensional device (that is. one with a linear sequence of steps) effectively gives rise
to a rate law of the form Equation 10.20, as long as the last step is irreversible.

10.4.2 Modulation of enzyme activity

Enzymes create and destroy mo lecular species. To keep everything working, the cell
must regulate these activities. One strategy involves regulating the rate at which an
enzyme is created. by regulating the gene coding for it (see Section 2.3.3 on page 58).
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For some app lication s, however, this strategy is not fast enough; instead , the cell reg
ulates the turnover numbers of the existing enzyme molecules. For example, an en
zyme's activity may be slowed by the presence of another mo lecule that binds to, or
otherwise directly interferes with, its substrate binding site (competitive inhibition ;
see Problem 10.5). Or a control molecule may bind to a second site on the enzyme.
thereby altering activity at the substrate site by an allosteric interaction (noncompet
itive inhibition; see Problem 10.6 ). On e particul arly elegant arrangem ent is a chain
o f enzymes, the first of wh ich is inhibited by the presence of the last one's product to
make a feedback loop (see Figure 9.11 on page 378).

10.4.3 Two -head ed kin esin as a tightly coup led, perfect ra tch et

Section 10.3.4 suggested that the kinetics ofa tightly coupled molecular motor would
be much the same as those of an enzyme. In the language of free energy landscapes
(Figure 10.9 on page 413), we expect to find a one-dimensional random walk down
a single valley, corresponding to the successive processing of substrate to product
(shown as motion toward negative values of a ), combined with successive spatial
steps (shown as motion toward negative values of {3). If the concentration of product
is kept very low, then the random walk alo ng a will have an irreversible step, and so
will the overall mot ion along the valley. We therefore expect that the analysis of Sec
tion 10.4.1 should apply, with one modification : Because the average rate of stepping
depends on the free energy landscape along the valley, in particular it will depend on
the app lied load force (the tilt in the fJ direction ), just as in Sections 10.2.1-10.2.3. In
short, then, we expect that

A tightly coupled molecular motor, wi th at least one irreversible step
in irs kinetics, sho uld move at a speed governed by the Michaelis- (1 0.22)
Menten rule, with param eters V m;IX and KM dependent upon the load
force.

A real mo lecular mo tor will, however, have some important differences from
the gear machine imagined in Section 10.2.1. One difference is that we expect an
enzyme's free energy landscape to be even more rugged than the one shown in Fig
ure 10.9. Activation barriers will give the most important limit on the rate ofstepping,
not the viscous friction imagined in Section 10.2.1. In addition, we have no reason
to expect that the valleys in the energy landscape will be the simple diagonals imag
ined in Figure 10.9. More likely, they will zigzag from one corner to the othe r. Some
substeps may follow a path nearly parallel to the a-axis (a "purely chemical step").
The landscape along such a substep is unaffected by tilting in the fJ direction , so its
rate will be nearly independent of the applied load. Oth er substeps will follow a path
at some nonzero angle to the a -axis (a "mechanochemical step"); their rate will be
sensitive to load.

Physical measurements can reveal details about the individu al kinetic steps in a
motor's operation. This section will follow an analysis due to M. Schnitzer) K. Viss
cher, and S. Block. Building on others' ideas, these authors argued for a model of
kinesin's cycle (see Figure 10.24). The rest of this section will outline the evidence
leading to this model and describe the steps symbolized by the cartoon s in the figure.
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Figure 10.21 : (Schematic.) One plausible model for directed motion of two-headed kinesin: the "hand-over-hand"
scheme . After one cycle, the two head s of the kinesin di mer have exchanged ro les, and th e d imer has advanced along the
mic rotubule (gray) by one step, o r 8 om. Figure 10.24 explains the symbols and gives more de tails about the intermediate
bio chemical steps between th e illustrative stat es shown here.

Cluesfrom kinetics Conventional (that is. two-head ed) kinesin forms a homodimer,
an association of two ident ical protein subunits. Thi s struc ture lets kinesin walk along
its microtubule track with a duty rat io of nearly 100%. The duty ratio is the fraction
of the total cycle during which the motor is bound to its t rack and cannot slide freely
along it; a high duty ratio lets the motor move forwar d efficiently even when an op
posing load force is applied. O ne way for kinesin to achieve its high duty rat io could
be by coordinatin g the detachm ent of its two identi cal heads in a "hand-aver-hand"
manner. so that at any mom en t one is always attached while the other is stepping
(Figure 10.21).10

Kinesin is also highly processive. That is, it takes man y steps (typically about
100) before detachin g from the microtubule. Processivity is a very convenient prop
erty for the experimentalist seeking to study kinesin. Tha nks to proc essivity, it's pos
sible to follow the progress of a micrometer-size glass bead for many steps as it is
hauled alon g a microtubul e by a single kinesin mo lecule. Using optical tweezers and
a feedba ck loop, experimenters can also app ly a precisely known load force to the
bead, then study the kinetics of kinesin stepping at var ious loads.

K. Svoboda and coautho rs initiated a series of single-mo lecule motility assays
of the type just describ ed in 1993. Using an interferom etry technique, they resolved
individual steps of a kinesin dimer attached to a bead of radi us 0.5 J1 m, find ing that
each step was 8 nm lon g, exactly the distance between successive kinesin binding sites
on the microt ubul e track Some later data appear in Figure 10.22. As shown in the
figure, kin esin rarely takes backward steps, even under a significant backward load
force: In the terminology of Sect ion 10.2.3, it is close to the perfect ratch et limit.

Further experiments showed that, in fact, two-headed kinesin is tightly coupled:
It takes exactly one spatial step for each ATP mo lecule it consumes, even under mod
erate load. From the discussion at the start of th is subsection, then , we may expect
that two-headed kinesin would obey MM kinetics, with load -dependent parameters.

10~ Recent work has cast doubt on the hand-ove r-hand picture, in which the two kinesin heads execute

ident ical chem ical cycles (see Hua et al., 2002). Whatever the final model of kinesin stepping may be.
however. it will have to be consistent with the experiments discussed in this section.



Several experimental groups confirmed this prediction (Figure 10.23). Specifically,
Table 10.1 shows that Vmax decreases with increasing load, whereas KM increases.

The load forces tabulated in Table 10.1 reflect the force ofthe optical trap on the
bead. But the bead experiences another retarding force, namely, visco us drag
friction. Shouldn't this force be included when we analyze the experiments?

2.01.51.0
time, s
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Rgure 10.22: (Experimental data, withschematic.) Sample data from a kinesia motilityas
say. 111Set; An optical tweezers apparatus pulls a 0.5 J1m bead against the direction of kinesin
stepping (not drawn to scale). A feedback circuit continuously moves the trap (gray hourglass
shape) in response to the kinesin's stepping, maintaining a fixed displacement f:!J.x from the
center of the trap and hence a fixed backward load force (a procedure called forceclamping).
Graph: Stepping motion of the bead under a load force of 6.5 pN, with 2 m M ATP. The gray
lines areseparated by intervals 0£7.95 om; each corresponds to a plateau in the data. [Adapted
from Visscher et al., 1999.)

Let's see what these results tell us about the details of the mechanism of force gener
ation by kinesin.

O ne reasonabl e-sounding model for the stepping of kinesin might be th e follow
ing: Suppose that binding of ATP is a purely chemical step, but its subsequent hydrol
ysis and release entail forward motion-a power st roke. Referring to Figure lO.17b
on page 428, th is proposal amounts to assuming that the load force pulls the second
or third activation barrier up without affecting the first one; in the language of Equa-
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Figure 10 .23 : (Experimental data.) (a) Log-log plot of the speed v of kinesin stepping versus ATP concentration, at
various loads (see legend). Foreach value ofloa d, the data werefi t to the Michaelis-Menten rule,yielding the solid curves
with the parameter values listed in Table 10.1. (b) Lineweaver- Burk plot of the same data. [Data from Visscher et al.,
1999.1

Table 10.1 : Michaelis-Menten parameters for
conventional kinesin stepping at fixed load force.

load force, pN

1.05
3.6
5.6

8 13 ± 28
715 ± 19

404 ± 32

88 ± 7
140±6

312 ± 49

[Data from Schnitzer et aI., 2000. )

tion 10.16, load redu ces k, without affectin g k, or k:«. We already know how such a
change will affect the kinetics: Equation 10.19 predicts that Vmax will decrease with
load (as observed), while KM will also decrease (contrary to observation). Thu s the
data in Table 10.1 rule out this model.

Apparently there is another effect of load besides slowing down a combined
hydrolysis/motion step. To explain their dat a, Schnitzer and coauthors proposed a
model almost as simple as the unsuccessful one just described. Before discussing their
proposed mechanism, however, we must digress to summarize some prior structural
and biochemical studies.

Structural clues The microtubule itself also has a dimeric structure, with two alter
nating subunit types (see Figures 10.24, and 2. 18 on page 55). One of the two sub
units, called {3, has a binding site for kinesin; these sites are regularly spaced at 8 nm
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intervals. The microtubule has a polarity; the subunits areall oriented in the same di
rection relative to one another, thus giving the whol e structure a definit e "front" and
"back." We call the front the "+ end of the microtubule ." Because protein binding is
stereospecific (two matching binding sites must be oriented in a particular way), any
bound kinesin molecule willpoint in a definite direction on the microtubule.

Each head of the kinesin .dimer has a binding site for the microtubule and a
second binding site for a nucleotide, such as ATP. Each kinesin head also has a short
chain (IS amino acids) called the neck linker. The neck linkers in turn attach to
longer chains. The two heads of the kinesin dim er are joined only by these chains.
which intertwine , as shown schematically in Figure 10.24 . The distance between the
heads is normall y too short for the dimer to act as a bridge between two binding sites
on the microtubule, but under tension, the chains can stretch to allow such binding.

One further structural observation holds anot her clue to the me chanism of ki
nesin motility. Chapter 9 mentioned that the neck linker adopts strikingly different
conformations, depending on the occupan cy of the nucleotide-binding site (see Fig
ure 9.12 on page 379). When the site is empty, or occupied by ADP, the neck linker
flops between at least two different conformations. When the site contains ATP, how
ever, the neck linker binds tightl y to the core of the kinesin head in a single, well
defined orientation, pointing toward the "{" end of the microtubule. This allosteric
change seems to be essential for motility: A modified kinesin, with its neck linker
permanentl y attached to th e head , was found to be unable to walk.

Biochem ical clues We assign the abbreviations K, M, T, D for a single kinesin head,
the microtubu le, ATP, and ADP, respect ively; DP represents the hydrolyzed combina
tion ADP·P;. In the absence of microtubules, kinesin bind s ATP, hydrolyzes it, releases
P;, then stops- the rate of release for bound ADP is negligibly sma ll. Thus kinesin
alone has very little ATPase activity.

The situat ion changes if one removes the excess ATP and flows the solu tion of
K·D (kin esin bound to ADP) onto microtubules. D. Hackney found in 1994 tha t
in this case, single-headed (monomeric) kinesin rapidly releases all its bound ADP
upon binding to the microtubu les. Remarkably, Hackney also found that two-headed
kinesin rapidly releases half of its bound ADP, retaining the rest. Th ese and other
results suggested that

Kinesin binds ADP strongly, and

Kinesin without bound nucleotide binds microtubules strong ly, but

Th e complex M·K·D is on ly weakly bound.

In other words, an allosteric interaction within on e head ofkinesin prevents it from
binding strongly to both a microtubule and an AD P molecule at the same time. Thus
the weakly bound complex M·K·D can readi ly dissociate. Hackney proposed an ex
planation for why only half of the ADP was released by kinesin dimers upon binding
to microtubu les: In the presence of ADP only, just one head at a time can reach a
microtubule binding site (see state E of Figure 10.24).

It's hard to assess the ability of the complex K·T to bind micro tubules because
the ATP molecule is short lived (kinesin split s it). To overcome thi s difficulty, experi-
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menters used an ATP ana log molecule. This molecu le, called AMP- PN P, has a shape
and binding properties similar to those of ATP, but it does not split. Its com plex with
kinesin turned out to bind strongly to microtubules.

We can now state the key experime ntal observation. Suppose that we add two
headed (K·Dh to microtubules, thereby releasing half of the bound ADP as described
earlier. Adding AT? then causes the rapid release of the other half of the bound ADP!
Indeed, even the ana log molecule AMP- PN P works: Binding, not hydrolysis, of nu
cleot ide is sufficient. Some how the unoccupi ed kinesin head , strongly bo und to the
microtubule, communicates the fact that it has bound an ATP to its partner head,
stim ulating the latt er to release its ADP. This collaboration is remarkable, in the light
of the rather loose connection between the two heads; it is not easy to imagine an
allosteric interaction across such a floppy system .

In the rest of this section, we need to interpret these surprising phenomena and
see how they can lead to a provisional model for th e mechanochemical cycle of two

headed kinesin .

Provisi onal model: Assumptions Some of the following assumptions remain con
troversial. Still, we'll see that the model makes definit e, and tested, predictions about
the load dependence of kin esin 's stepping kinetics.

We make the following assumptions, based on the clues listed earlier:

AI. We first assume th at in th e complexes M ·K·T and M ·K·DP, th e kinesin binds
(or "docks") its neck linker tightly, in a posit ion that moves the attached chain
forward, toward th e "+ " end of th e m icrotubule. The other kine sin head in the
dim er will then also move forward . The states M·K and M·K·D, in contrast, have
the neck linker in a flexible state.

A2. When th e neck linker is docked , th e detached kinesin head will spend most of
its time in front of the bound head. Never theless, the detach ed head will spend
some of its time to the rear of its partner.

A3 . We assum e that kinesin with no nucl eotide binds strongly to the microtubule, as
do es K·T. The weakly bound stat e M ·K·D readil y dissociates, either to M+K·D
ortoM·K+D.

Assumption A3 says that the free energy gain from ATP hydrolysis and pho sphate
release is partly spent on a conformation al change that pulls the M·KT complex out
of a de ep potential ene rgy well to a sha llower one. Simi larly, Al says th at som e of this
free energy goe s to relax the head's grip on its neck linker.

Provisional model: Mechanism Th e proposed mechani sm is summarized graphi
cally in Figure 10.24. This cycle is no t meant to be taken literally; it just shows some
of the distinct step s in the en zymatic pa thwa y. Ini tially (top left panel of the figure),
a kinesin dimer approa ches the microtubule from so lution and binds one head, re
leasing on e of its ADPs. We name the subsequent states in th e ATP hydrolysis cycle
by abbreviations describing the state of th e head th at was in itiall y bound.
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Figure 10.24: (Schematic.) Details ofthe model for kinesin stepping. Each ofthe steps in this cyclic reaction is described
in the text, start ing on page 442. Some elements of this mechanism are still under debate. Th e steps form a loop. to be
read clockwise from upper left. The graysymbols represent a m icrot ubul e, with its "+" end at the right. Strong physical
bonds are denoted by mu ltipl e lines, weak ones by single lines. The symbols T, D, and P denote ATP, ADP, and ino rganic
phospha te, respec tively. The rapid isomerization step, ESj .;::::::::!; ES; , is assumed to be nearly in equilibrium. The states
denoted ESh £53 • and EP are under intern al strain. as described in the text. In the step from EP back to E, the roles of
the two kinesin heads exchange. [Similar schemes , with some variations, appea r in Gilbert et al., 1998; Rice et al., 1999;
Schnitzer et al., 2000; Vale & Milligan, 2000; Schief & Howard, 2001; Mogilner et al., 2001; Uemura et al., 2002.]

E: This panel shows the dimer with on e head strongly bound to the micro 
tubule. Th e other, free head cannot reach any binding site because its tether
is too short; the sites are separated by a fixed distance along the rigid mi
crot ubule .

ES"ES; : The bound head binds an ATP molecule from solution. Its neck linker then
docks onto its head , biasing the other head 's random motion in the forward
direction (assumption A2). Schnitzer and coauthors assumed that interac
tions with the microtubule effectively give the complex a weak energy land-
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scape, making th e unbound head hop between two dis tinct states ES, and
ES; .

ES2: The chains joining the two heads will have entropic elasticity, as discussed
in Cha pter 9. Being thrown forward by the bound head 's neck linker
greatly inc reases the probability that the tethers will momentarily stretch
far enough for the free head to reach the next binding site. It may bind
weakly, then detach, many times.

ES,: Eventua lly, instead of detachi ng, the forw ard head releases its ADP and
binds strongly to the microtubule. Its stretched tether now places the whole
com plex under susta ined strain. Both head s are now tightly bo und to the
microtubule, however, so the strain does not pull either one off.

EP: Mean while, the rear head splits its ATP and releases the resulting ph osphate.
This reaction weakens its binding to the microtubule (assumption A3). The
strain indu ced by the bind ing of the forward head then biases the rear head
to unbind from the microtubule (rather than releasing its AD P).

E: Th e cycle is no w ready to repeat , with the ro les of the two heads reversed
(see Figure 10.21). The kinesin d imer has made one 8 nm step and hy
d rolyzed one ATP.

The assumptions made earlier ensure that free kinesin (not bound to any micro 
tubu le) does not waste any of the available ATP, as observed experimentally. Accord 
ing to assumption A3, free kine sin will bind and hydrolyze ATP at each of its two
heads, th en stop, because the resulting ADPs are both tightl y bound in the abse nce of
a microtubule.

Our model is certa inly more complicated than the Scratcher imagined in Sec
tion 10.2! But we can see how our assumptions implement the necessary conditions
for a molecular motor found there (Idea 1O.9a,b on page 422):

• The forw ard flip induced by neck lin ker binding (assum ption AI ), together with
the pol arit y of the m icrotubul e, creates the needed spa tial asym metry.

The tight linkage to the hyd rolysis of ATP creates the needed out-of-equilibrium
condition , since the cell mai ntains the reaction quot ient CATP/ (CADP cp) at a level
much higher than its equilibrium value.

Let's see how to make these ideas quantitative.

Kinetic predictions Let's sim plify the problem by lumping all the states other than
ES, and ES; into a single state called E, just as Equation 10.16 on page 434 lumped EP
with E. Th e model sketched in Figure 10.24 then amount s to splitt ing the bound state
ES of the Michael is-Menten model int o two substates, ES\ and ES'\. To extract pre
dictions fro m th is model, Schnitzer and coa uthors proposed that the step ES\ ;= ES'\
is nearly in equilibrium. That is, they assumed that the activation barrier to this tran
sition is small enough, and hence the step is rapid enough relative to the others, that
the relative populations of the two states stay close to their equilibrium values. I I We

I I Some autho rs refer to this assumptio n as rapid isomerizatio n.
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igure 10.25 : (Experimental data with fi t.) Dependence of kinesin's MM parameters on applied load. Points denote the
ala derived from Figure 10.23 (see Table 10.1). The curves show (a) Equation 10.31 and (b) Equation 10.30, with the fit
arameter values given in Section 10.4.3' on page 459.

can consider these two states together. thinkin g of them jointly as a composite state.
In the language of Equation 10.16, the fraction of time spent in ES, effectively lowers
the rate k2 ofleaving the composite state in the forward direction. Similarly, the frac
tion of time spent in ES; effectively lowers the ratek_1 of leaving the composite state
in the backwarddirection.

We wish to und erstand the effect of an applied load force, that is, an external
force directed away from the "+" end of the microtubule. To do this, note that the step
ES1 --->.. ES; , besides throwin g head Kb forward, also mo ves the common connecting
chains to a new average position, shifted forward by some distance e. All we know
about e is that it is greater than zero, but less than a full step of 8 nm. Because a
spatial step does work against the externa l load, the applied load force will affect the
compos ite state: It shifts the equilibrium away from ES; and toward ES1• Schnitzer
and coauthors neglected other possible load dependences, focusing on ly on this one
effect.

We now apply the arguments ofthe previous two paragraph s to the definitions of
the MM parameters (Equation 10.19 on page 434), findin g that load reduces Urn", as
observed, and moreover may increase KM by effectively increasing k_1 by more than
it reduces k,. Thus we have the possibility of explaining the data in Table 10.1 with
the proposed mechan ism.

To test the mechanism, we mu st see wheth er it can model the actual data. That is,
we must see whether we can choose the free energy change DoG of the isomerization
ES, ;=: ES; , as well as the substep length t , in a way that explains the numbers in
Table 10.1. Some math ematical details are given in Section 10.4.3' on page 459. A
reasonably good fit can indeed be found (Figure 10.25). More important than the
literal fit shown is the observation that the simplest power stroke model does not fit
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the data, but an almost equally simple model, based on struc tu ral and biochemical
clues. reproduces the qualitative facts of Michaelis-Menten kinetics, with KM rising
and Vrnax falling as the load is increased.

The fit value of the equilibrium con stant for the isomerization reaction is rea
sonable: It corres ponds to a f).(J' of about - 5kBT, . The fit value are is about 4 nm,
which is also reasonable: It's half the full step length.

1'12 1Section 10.4.3' on page 459 completes the analysis. obta ining the relation be

tween speed, load, and ATP availability in this model.

10 .4 .4 Mo lecula r m olars can m ove even w ithout tight coupling
or a pow e r stroke

Section 1004.3 argued that deep within the detail s of kinesin's mechanochemicalcy
cle, there lies a simple mechanism: Two-headed kinesin slides down a valley in its
free energy landscape. Even while admitting that the basic idea is simp le. we can still
marvel at the elaborate mechanism that evolut ion has had to create to implement it.
For example, we saw that to have a high duty ratio, kinesin has been cunningly de
signed to coordinate the action of its two heads. How cou ld such a complex motor
have evolved from some thing simpler?

We could pu t the matter differen tly by asking, "Isn't there some simpler force
generating mechanism, perhaps not as efficien t or as powerful as two-headed ki
nesin, which could have been its evolutionary precursor?" In fact, a single-headed
(mono meric) form of kinesin, called KIFIA, has been found to have single-molecule
motor activity. Y. Okada and N. Hirokawa studied a modifi ed form of this kinesin,
which they called C35 1. They labeled their mo tor molecules with fluorescent dye,
then watched as successive motors enco untered a microtubule, bou nd to it, and be
gan to walk (see Color Figure 4).

Quantitative measurements of the resulting mot ion led Okada and Hirakawa
to conclude that C35 1 operates as a diffusing ratchet (or D-ratchet). In this class of
mo dels, the op erating cycle includes a step involving unconstrained diffusive motion,
unlike the G- and S-ratchets. Also, in place of the unspecified agent resetting the bolts
in the S-ratchet (see Section 10.2.3), the D-ratchet couples its spatial mot ion to a
chemical reaction.

The free energy landscape of a single-headed motor cannot look like ou r sketch,
Figure 10.9 on page 413. To make progress, the motor mu st periodically detach from
its track; on ce detached , it's free to move along the track. In the gear metaphor (Fig
ure 1O.6c on page 410), the gears must disengage on every step, thereby allowing
free slipping; in the landscape language, there are certain points in the chem icalcycle
(certain values of c ) at which the land scape is flat in the f3 direction. Thus there are
no well-defined diagonal valleys in the land scape. How can such a device make net
progress?

The key observation is that , even though the grooved landscape of Figure 10.9
was convenient for us (it made the landscape effectively one-dimensional), still such
a structure isn't really necessary for net motion. Idea 1O.9a,b on page 422 gave the
requirem ents for net motion as simply a spatial asymmetry in the track and some out
of-equilibrium process coupled to spa tial motion. In princip le, we should expect that
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solving the Smoluchowski equation on any two-dimensio nal free energy landscape
will reveal net motion, as long as the landscape is tilted in the chemical (a) direction
and asym metrical in the spatial (fJ) direction .

As mentioned earlier, however, it's not easy to solve the Smoluchowski equation
(Equation lOA on page 419 ) in two dim ensions, nor do we even know a realistic free
energy landscape for any real mo tor. To show the essence of the D-ratchet mecha
nism, then , we will as usual construct a simplified mathematical model. Our mod el
motor will con tain a catalytic site, which hydrolyzes ATP, and ano ther site, which
binds to the micro tubule. We will assum e that an allos teric interaction cou ples the
ATPase cycle to the microtub ule bind ing in a particul ar way:

1. The chemical cycle is autonomous-it's not significantly affected by the interac
tion wi th the microtubule. The motor snaps back and forth between two states.
which we will call 5 (for "strong-binding") and w (for "weak-binding"). After en
tering the s state. it waits an average tim e t, before snapping over to w; after en
tering the w state. it waits some other average time tw before snapping back to s.
(One of these states could be the one with the nucleotide-binding site empty, and
the other one E·ATP, as drawn in Figure 10.26.) The assumption is that t, and rw

are both independent of the mo tor's position x along the microtubu le.

2. However, the binding energy of the motor to the micro tubule does depend on
the state of the chemica l cycle. Specifically, we will assume that in the 5 state, the
mo tor prefers to sit at specific binding sites on the microtubule, separated by a
distance of 8 nm. In the w state, the mo tor will be assumed to have no positional
preference at all-it diffuses freely along the microtubule.

3. In the strongly bindin g state, the motor feels an asymm etrica l (that is, lopsided)
potential energy U( x) as a func tion of its position x. This potential is sketched
as the sawto oth curve in Figure 10.26a; asymmetry means that this curve is not
the same if we flip it end-for-end. Indeed. we do expect the micro tubule, a po lar
structure. to give rise to such an asymm etrical pote ntial.

In the D-ratchet model, the free energy of ATP hydrolysis can be tho ught of as en
tering the motion solely by an assumed allosteric conforma tiona l change, which al
ternately glues the motor onto the nearest bind ing site, then pries it off. To simplify
the math , we will assume that the motor spends enough time in the 5 state to find a
binding site. then binds and stays there unt il the next switch to the w state.

Let's see how the three assumptions listed above yield directed motion . follow
ing the left panels of Figure 10.26. As in Section 10.2.3, imagine a collection of many
motor-microtubule systems, all starting at one position , x = 0 (panels (b I) and
(b2»). At later times we then seek the probability distrib ution P(x ) to find the motor
at various position s x. At time zero the motor snaps from 5 to w. The motor then
diffuses freely along the track (panel (el )) , so its probability distribution spreads out
into a Gaussian centered on Xo (panel (c2» . After an average wait of tW J the motor
snaps back to its s state. Now it suddenly finds itself strongly attracted to the periodi
cally spaced binding sites. Accordingly, it dri fts rapidly down the gradient of U(x) to
the firsr such minimum, and we end up with the prob ability distribution symbolized
by panel (d2) of Figure 10.26. The cycle then repeats.
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Figure 10 .26 : (Schematic; sketch graphs.) Diffusing ratchet (or Dcratchet ) model for single-headed kinesin motility.
Left panels: Bound ATP is denoted by T: ADP and Pi molecules are not shown. Other symbols are as in Figure 10.24.
(bI) Initially, the kinesin monomer is strongly bound to site n on the microtubule. (el) In the weakly bound state, the
kinesin wanders freely along the microtubule. (d l ) When the kinesin reent ers the strongly bound state, it is mo st likelyto
rebind to its o riginal site. somewhat likely to rebind to the next site. and least likely to bind to the previous site. Relative
probabilities are represented by shading . Right panels: (a) A period ic bu t asymmetrical po tential for the st rong-bi nding
(o r s) state. as a funct ion of position x along the m icrotub ule t rack. The min imum of the pote ntial is not midway between
the maxima. but instead is shifted by a distan ce 8. The po ten tial repeats every distance L (L = 8 om for a m icro tubule).
(b2) Quasi-equilibrium probability distr ibution for a motor in its s sta te. trapped in the neighbor hood of the minimum at
x = O. The motor now suddenly switches to its w {or weak-binding) sta te. (c2) (Change ofvertical scale.) The probability
distribution just be fore the motor switches out of its w state. The darkgrayregion represents all the mo tors in an initial
ensemb le that are about to fall back into the microtubule binding site at x = 0; the area under this part of the curve is
Po. The medium grayregion represents th ose motors about to fall into the site at x = L; the correspondi ng area is Pl' The
light grayregions to the left and right have areas P_ I and P2• respectively. (d2) (Change of vertical scale.) The probability
distribution just before the motor switches back to the wstate. Th e areas P" from (c2) have each collapsed to sharp spikes.
Because PI > P_ I> th e mea n position has shifted slightly to the right.

The key observation is that the average position of the motor after one cycle
is now shifted relative to where it was originally. Some of this shift may arise from
conformational changes. "power stro ke" shifts analogous to those in myosin or two
headed kinesin. But the surprise is that there will be a net shift even without any
power stroke! To see this. examine Figure 10.26 and its caption. The dark gray part
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of the cur ve in panel (c2) of the figure represents all the motors in the original col
lection that are about to rebind to the microtubule at their original position , x = O.
Th us the probability of taking 110 step is the area Po under th is part of the curve.
The two flanking parts of the curve, medium and light gray, represent respectively
those motors abo ut to rebind to the microtu bule at positions shifted by + L or - L,
respectively. But the areas under these parts ofthe curve are not equal:PI i=- P- 1' The
motor is more likely to diffuse over to the basin of attraction at x = +L than to the
one at x = -L, simply because the latter's boundary is farther away from the starting
position .

Thu s the diffusing ratchet model predicts that a one-headed molecular motor
can make net progress. Indeed, we found that it makes net progress even if no confor
mational change in the motor drives it in the x direction. The model also makes some
predictio ns abou t expe rimen ts. For one thing, we see that the diffusing ratchet can
make backward steps." P_ I is not zero, and can indeed be large if the motor diffuses a
long way between chemical cycles. In fact, each cycle gives an independent displace
ment, with the same probability distri bution {P,j for every cycle. Section 4.1.3 on
page 117 analyzed the math ematics of such a random walk. The conclusion of that
analysis. translated into the present situation , was that

The diffusing ratchet makes net progress uL per step, where u = (k).
The variance (mean-square spread) of the total displacement in
creases linearly with the numb er of cycles, increasing by L2 X

variance(k) per cycle.

(10.23)

In our model. the steps come every I::!. t = t« + tw , so we predict a constant mean
velocity v = fiLl I::!. t and a constant rate of increase in the variance of x given by

L'
« x (t ) - vt) ' ) = t x - x variance(k).

IH
(10.24)

Okada and Hirakawa tested these predictions with their single-headed kinesin
construct, C35 1. Although the optical resoluti on of the measurements, 0.2 ,urn , was
too large to resolve individual steps, still Figure 10.27 shows that C35 1 often made net
backward progress (panel (a) ), unlike conventional two-headed kinesin (panel (b)).
The distribution of positions at a time t after the initial bind ing, P(x. I) , showed
features characteristic of the diffusing ratchet model. As predicted by Equation 10.24,
the mean position moved steadily to larger values of x, while the variance steadily
increased. In cont rast, two-headed kinesin showe d uniform motion with very little
increase in variance (panel (b)).

To make these qualitat ive observa tions sharp , Figure 1O.27c plots the observed
mean-square displacement , (x (t )') . Accordin g to Equation 10.24, we expect this
quantity to be a quadratic function of time, namely, (vI)' + teL'/Lll)variance(k).
The figure shows that the data fit such a function well. Okada and Hirokawa con
cluded that, although monomeric kinesin cannot be tightly coupled, it makes net
progress in the way predicted by the diffusing ratchet model.

" Compare with Problem 4.1 on page 153.
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Figur e 10 .2 7 : (Experime ntal data. ) Analysis of the movement of single kinesin molecules. (a) Data for C351, a single
headed form of kinesin. The gra phs give the obse rved d ist ributions of d isplacement x fro m th e original b ind ing site, at
three different times. The solid curves show the best Gaussian fit to each data set. Notice that even at 25, a significant
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pred icted random-walk law (see text ). (d) The same dat a and fits as (c), after subtract ing the (Vt) 2 term (see text). [Data
fro m Okada & Hirokawa, 1999.J
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Subt racting away the {vt) 2 term to focus attention on the diffusive par t reveals a
big difference between one- and two-headed kinesin. Figure 1O.27d shows that both
forms obey Equa tion 10.24, bu t C351 had a far greate r d iffusion constant of pro
porti onality, a difference reflecting the loosely coupled cha racter of single-headed
kinesin.

To end this section, let's return to the question that motivated it: How could
mol ecula r motors have evolved from some th ing simpler? We have seen how the hare
minimal requireme nts for a motor are simple, indeed:

It must cyclically process some substrate like ATP, to generate out-o f-equ ilibr ium
fluctuations.

These fluctuation s must in turn couple allosterically to the bin ding affinity for an 
other protein .

Th e latt er pro tein mu st be an asymmetrical polym er track.

It's not so difficult to imagine how an ATPase enzyme could gain a specific protein
binding site by genetic reshuffling; the required allosteric coupling would arise natu
rally from the general fact that all pa rts of a protein are tied together. Ind eed , a related
class of enzymes is already known in eukaryotic cells, the GTP-bind ing proteins (or
G-protei ns ); they play a number of int racellular signaling roles, includ ing a key step
in the detection of light in your retina. It seems reasonable to suppose that th e first,
primitive mo tors were G-proteins who se binding targets were polymerizing proteins,
like tubulin. Int erestingly, G-proteins have indeed turned out to have close structural
links to bo th kinesin and myosin , perhaps reflecting a commo n evolutionary ances
tr y.

IT2 1Section 10.4.4' on page 461 gives some quantitative analysis of the model and

compares it with the experim en tal data.

10.5 VISTA: OTHER MOLECULAR MOTORS

New molecular machin es are constantly being discovered. Table 10.2 lists some of
the know n examples. Yet ano the r class of machines transport ions across membranes
again st their electrochemical gradient; these "pumps" will play a key role in Chap
ter 1I.

THE BIG PICTURE

Let's return to the Focus Q uestion . This chapter has uncovered two simple requ ire
me nts for a mo lecular device to transduce chemical ene rgy into useful mechanical
work: Th e mo tor and track must be asymmetrical in order to select a directio n of
mot ion, and the y must couple to a source of excess free energy, for example. a chem
ical reaction that is far from equilibr ium. The following chapter will introduce two
oth er classes of molecular machin es, ion pumps and the rotary AT P synthase.
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Ta b le 10 .2 : Examples of proteins that are believed to act as molecular motors.

energy
mo tor pus hes on source motion ro le

Cytoskeletal motors:
kinesin m icrotubu le ATP linear mitosis, organelle tr ansport
myosin actin ATP linear muscle contraction, organelle

tra nsport
dynein m icrot ubu le ATP linear ciliary beating, o rganelle

tr ansport, m itosis
Polyme rizatio n motors:
act in none ATP extend/s hrink cell mo tility
m icro tubule none GTP extend/s hrink m itosis
dyna min membranes GTP pinchin g endocy tos is, vesicle budding

G-proteins:
ErG ribosome GTP lever moveme nt of pep tidyl-tRNA

and mRNA in ribosomes
Rotary motors:

FO motor Ft ATPase ""WI rotary ATPsynthesis
bacterial flagellar peptidoglycan MWI rotary propulsion

Nucleic aci d mo tors:
polymerases DNNRNA ATP linear template replication
helicases DNNRNA ATP linear ope ni ng of DNA duplex
phage portal motor DNA ATP linear packing virus capsid

[See Vale, 1999.1

A mechanochemical mo tor transduces chemical free energy to mechani cal work.
When the relative concentrations of fuel and waste differ from equilibr ium, that's a
form of order, analogous to the tem perature differential that ran ou r heat engine in
Section 6.5.3. It may seem surprising that the motors in this chapter can work in
side a single, well-mixed chamber; in contrast, a heat engine must sit at the junction
between a hot reservoir and a cold one. But if there is an activation barrie r to the
spo ntaneous conversion of fuel to waste, then even a well-mixed solution has an in
visible wall separa ting the two, like a dam on a river. It's really not in equilibrium at
all. The motor is like a hydroelectric plant on that dam : It offers a low-barri er path
way to the state of lower IJ. . Molecules will rush down that pathway, even if they are
required to do some work along the way, just as water rushes to drive the tu rbine of
the hydroelectric plant.

Cells contain a staggering variety of molecular motors. This chapter has made
no attempt to capture Nature's full creative range, once again focusing on the hum
bler question, "How could anything like that hap pen at all!" Nor did we attempt
even a survey of the man y beautiful experimenta l results now available. Rather) the
goal was simply to create some explicit mathematical models, anchored in simpler,
known phenomena and displaying some of the behavior experimentally observed in
real mo tors. Such conceptually simp le mod els are the arm atures upo n which more
detailed understanding must rest.
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KEY FORMULAS

Perfect ratchet: A perfect ratchet (that is, one with an irreversible step) at zero load
makes progress at the rate v = Ll t" ,p = 2DI L (Equation 10.2).

Smoluchowski: Consider a particle undergoing Brownian motion on a potential
landscape U(x) . In a steady (not necessarily equilib rium) state, the probability P(x)
of finding the particle at location x is a solution to (Equation 10.4)

o= ~ (dP + _1_pdU)
dx dx kBT dx '

with appropriate boundary conditions.

Micbeelis-Memen: Consider the catalyzed reaction

A steady, nonequilibrium state can arise when the supply of substrate S is much
larger than th e supply of enzyme E. Th e reaction velocity (rate of change of sub
strate concentration cs) in this case is v = vmaxCS/(KM + cs) (Equation 10.20),
where the saturating reaction velocity is Vmax = k2cE and the Michaelis constant is
K" = (k- , + k, )1k, (Equation 10.19).

FURTHER READING

Semipopulor:
Enzymes: Dressler & Potter, 1991.

Intermediate:
Enzymes: Berg et al., 2002; Voet & Voet, 2003.
Chemical kinetics: Tino co et aI., 200 1; Dill & Bromberg, 2002.
From actin/myosin up to muscle: McMahon, 1984.
Ratchets: Feynma n el aI., 1963a, §46.
Motors: Berg et al., 2002; Howard, 200 1; Bray, 2001; Duke, 2002.

Technical:
Kramers theory: Kramers, 1940; Frauenfelder & Wolynes, 1985; Hiinggi et al., 1990.
The abstract discussion of motors was largely drawn from the work of four groups

around 1993. Some representative reviews by these groups include Julicher et aI.,
1997; Asturnian. 1997; Mogilner et aI., 2002; Magnasco, 1996.

Single-mo lecule motili ty assays: Howard et al., 1989; Finer et aI., 1994.
Myosin, kinesin , and G-proleins: general, Vale & Milligan, 2000; role of kinesin neck

linker: Rice et al., 1999; Schnitzer et aI., 2000; Mogilner et al., 2001.
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RNA po lymerase: Wang et al., 1998.
Polymer ization ratchet, translocation ratchet: Mahadevan & Matsuda ira, 2000;

Borisy & Svitkina , 2000; Prost. 2002; for the shape assumed by a vesicle with
a growin g microtubule inside, see Powers et al., 2002.
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I. Strictly speaking, Istep in Equ ation 10.2 on page 417 should be computed as the
mean time for a random walker to arrive at an abso rber located at x = L, after
being released at a reflecting wall at x = O. Luckily, this time is given by the same
formula. t",p = L' / (2D). as the naive formul a we used to get Equatio n 1O.2! (See
Berg, 1993. Equation 3.13.)

2. M. Smoluchowski foresaw many of the points made in this chapter arou nd 1912.
Some authors instead use the term Fokker-Planck equation for Equation 10.4 on
page 419; others reserve that term for a related equation involvin g both position
and momentum.

3. Equatio n 10.7 on page 42 1 was applicable only in the perfect-ratchet limit. To
study the S-ralchet in the general nonequilibrium case. we first need the gen
eral solution to Equat ion 10.4 on the interva l (0. L) with dU,o' / dx = f. namely.
P(x ) = C(be- xi/kBT - I) for any constants C and b. The corresponding probabil
ity flux is p l d) = Mf DC! k. T.

To fix the unknown constant b. we next show quite generally that the function
P(x)eu 1ol (x )j kg T mu st have the same value just above and just below any disconti
nuit y in the potentiaL" Multiply both sides of Equation 10.3 by eU,. ,lxl / kBT. to
find
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Integrating both sides of this equatio n from L - 8 to L + 8. where 8 is a small
distance. yields

(10.25)

plus a correction that vanishes as 8 ~ O. That is, P(x)eUlOI(x)j kBT is continuo us at
L, as was to be shown.

Impo sin g Equation 10.25 on our solution at x = L and using the periodicity
assumpt ion, Ptl. + 8) = P(8). gives

pel - 8).,f L/k BT = pro + 8) el!L-'I /kBT

or

IJ p (X) itself will ncr be continuo us; for example, in equilibrium , Example lOA on page 4 19 gives P(x) ex
e- UlxljkB T,which is disconti nuous whene ver U( x ) is.
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Proceeding as in the derivation of Equation 10.5, we find

MC ( b )IH = - (e - f L/ kRT - 1) - L .
j (ldl f lkBT

and hence

v = !:... = _~ (fL ) ' [ fL _ (I - e-'/kRT)(I - e - fL /kRT) ] -1

l;.t L kBT kBT c f L/kRT _ C ' / kRT

You can verify from th is formula that all four ofSullivan's claims listed on page4l6
are co rrect:

Your
Turn

10F

a. Ch eck what happens when the load is close to the thermodynamic stall
point , f = ElL.

b. What happens to Equati on 10.26 at f ---> O? How can the ratchet move to
the right, as imp lied by Sullivan's third point? Doesn't the formula j(ldl =
Mf DCI kBT, along with Equation 10.6, imply that v ---> 0 when f ---> 01

c. Find the limit of very high drive, E » kBT, and compa re with the result in
Equat ion 10.7.

d. Find the limit E » f L » kBT, and comment on Sullivan's fou rth assertion.

4. The physical d iscussion of Figure 10.12 on page 418 was subtle; an equivalent way
to express the logic may be helpful. Rather than wrap the ratchet into a circle,
we can take it to be straight and infinit ely long. Then the probability distribution
will nor be periodic, nor will it be tim e inde pendent. Instead, P(x ) will look like
a bro ad bu mp (or envelope func tion), mod ulated by the spikes of Figure 10.12.
The envelope function drifts with som e speed v, whereas the individual spikes
remain fixed at the mult iples of L. To make con tact with the discussion given in
Section 10.2.3, we imagine sitt ing at the peak of the envelope function. After the
system has evolved a long tim e, the envelope will be very bro ad and hence nearly
flat at its peak. Therefore P(x , t ) will be approximately per iod ic and tim e indepen
dent. O Uf earlierana lysis, leading to the Smoluchowski equation. is thus sufficient
to find the average speed of advance.

1121 103.2' Track 2

1. The ultim ate origin of the energy landscape lies in quantum mechanics. For the
case of simple molecules in isolation (that is, in a gas). one can calculate this land
scape explicitly. It suffices to treat only the electrons quantum-mechan ically. Tbus,
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in th e discussion of Section 10.3.2, the phrase "pos itions of atoms" is interpreted
as "positions of nuclei." On e imagin es nailin g the nucl ei at speci fied location s,
computing the ground-state energy of the electrons, and add ing in the mu tual
electrostat ic energy of the nucl ei, to obtain the ene rgy landscape. This procedure
is known as the Born-Oppenh eim er approximation . For example, it could be used
to generate the energy landscape of Figure 10.14 on page 425.

For macromolecules in solution, more ph enomenological approaches are
widely used. Here one attempts to replace the complicated effects of the sur
rounding water (hyd rophobic interact ion and so on ) by empirical int eratomic
potentials involving onl y the atoms of the macromolecule itself.

Many more sophisticated calculations than these have been develop ed. But
quite generally th e strategy of understanding chemical reactions as essenti ally clas
sical random walks has proved successful for many biochemical processes. (An
example of the exceptional, intrinsically quantum-mechanical processes is the de
tection of single photons by the retina.)

2. You may have noticed that in passing from Sect ion 10.2.3 to Section 10.3.2, the
word energycha nged to free energy. To understand thi s shift, we first note that in a
com plex mol ecu le, there may be many critical paths, each accomplishing the same
reaction, not ju st one as shown in Figure 10.14. In this case, th e reaction's rate
gets multiplied by the number N of path s; equivalently, we can replace the barrier
energy f'"EI by an effective barrier f',,£l - kBT In N. If we interpret the second
term as the entropy of the tr ansition state (and neglect the difference between
energy and enthalpy), then we find that the reaction is really suppressed by f'" GI,
not l::J.E+. Ind eed, we already knew that equilibrium between two complex states is
controlled by free energy differences (Section 6.6.4 on page 225) .

Further evidence that we should use the free energy landscap e comes fro m
a fact we already know abo ut react ion rates . Suppose that the react ion involves
binding a molecu le that was previously mo ving independ ently, in a simple on e
step process. In this case, we expect the rate of the react ion to increase with the
concentration of that mol ecu le in solution. Th e same conclusion eme rges from
our current picture, if we conside r a walk on the free energy landscape. To see
thi s, no te that the bound molecule is being withd rawn from solut ion as it binds,
so its initial entropy Sin makes a positive contribution to l::J. G+ = l::J. E+- TS+
(Ein - TSin ) , decreases the Arr hen ius exponential factor e-L\ d /kBT, and therefore
slows the predic ted reaction rate. For example, if th e bound molecule is presen t
in solut ion at very low concentration, then its entropy loss upon binding will be
large, and the reaction will proceed slowly, as we know it mu st. (Reactions are also
slowed by the entropy loss implicit in orienting the reactin g mol ecule properly for
binding.)

More quantitatively, at sma ll concentrations, the entropy per molecule is
Sin = -/1/ T = -kH In c + const (see Equations 8.1 and 8.3) , so its contr ibution
to the exponential factor is a constan t times c. This is ju st the familiar stateme nt
that simple binding lead s to a first-order rate law (see Section 8.2.3 on page 306).

Finally, Section 10.2.3 argued that a mol ecular-scale device makes no net
pro gress when its free energy landscape has zero average slope. But we saw in

I
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Chapter 8 that a chem ical reaction makes no net progress when its 6.G is zero,
another way to see that the free energy. not ordinary energy. is the appropriate
landscape to use. (For more on this imp ortant po int, see Howard, 2001, Appendix
5.1.)

3. It's an oversimplification to say that we can simply ignore all direction s in config
uration space perpendicular to the critical path between two quasi- stable states.
Certainly there will be excursions in these directions , with their own contribution
to the entropy and so on . The actual elim inatio n procedure involves finding the
free energy by doing a partition sum over these directions. following essentially
the methods of Section 7.1; the resultin g free energy function is often called the
potential of mean force. (See Graber t. 1982.)

Besides modifying the free energy land scape. the mathematical step of elim
inating all but one or two of the coordinates describin g the macromolecule and
its surrounding bath of water has a second important effect. The many eliminated
degrees of freedom are all in thermal motion and are all interacting with the one
reaction coo rdinate we have retained. Thus all contribute, not only to generating
random motion along the reaction coord inate, but also to imp edin g directed mo
tion. That is, the elim inated degrees of freedom give rise to friction, by an Einstein
relation. (Again see Grabert . 1982.) H. Kramers pointed out in 1940 that this fric
tion cou ld be large and that, for complicated molecules in so lution, the calculation
of reaction rates via the Smo luchowski equation is more com plete than the older
Eyring theo ry. He reproduced Eyring's earlier results in a special (intermediate
friction ) case, then generalized it to cover low and high friction. (For a modern
look at some of the issues and experimental tests of Kramers' theory, see Frauen
felder & Wolynes, 1985.)

1121 1033' Track 2

I. The discussion in Section 10.3.3 focused on the possibility that the lowest free
energy state of the enzyme- substrate complex may be one in which the substrate
is geome trically deformed to a conformation closer to its transitio n state. Fig
ure 10.28 shows two other ways in which the grip of an enzyme can alter its sub
strate(s) , accelerating a reaction . (For more biochem ical details, see for example
Dressler & Potter. 1991.)

2. The physical pictu re of walking down a free energy landscape (Idea 10.14 on page
429 ) is also helpful in understanding a new phenomeno n occ urring at extremely
low con centration s of substrate. In this case, there will be large random variations
in the arrival times of substrate molecules at E. We interpret these variations as the
times to hop overthe first bump in Figure 10.17 on page 428b. Because this bump
is large when Cs is low, this contribution to the randomness of the process can be
as impo rtant as the usual one (hopping over the middle bum p of the figure). See
Svoboda et al., 1994 for a discussion of this effect in the context ofkinesin.
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a

b

enzyme induces
mechanical st ress

enzyme induces
charged regions
on substrate

enzyme holds
subst rates in
al ignment

Figure 10.28: (Schematic.) Th ree mechanisms for an enzyme to assist a reactio n. (a) Th e en
zyme may exert mechanical forces on the subst rate . (b) Th e enzyme may cha nge the subst rate's
reactivity by altering its ionic environment. (e) Th e enzyme may hold two subst rate molecules
in the precise orienta tion needed for a joining bond to for m, reducin g the entropic part of the
free energy barrier to the desired reaction. All these ind uced deviations from the substrate's
normal distr ibution of states can be con sidered as for ms of st rain, pu shing the substrate closer
to its transition state. [Adapted from Karp, 2002.]

I '121 10.4.3' Track 2

1. The assumptions outlined in Section 10.4.3 were chosen to discou rage any short
cuts across the reaction diagram. For exam ple, after state EP, the trailing head
could, in principle, release its ADP, remain bo und to the microtubule, then bind
and split another ATP-a futil e hydrol ysis, as there would be no forward motion.
The strain from binding the forward head makes this outcome less likely than the
altern ative shown (the head retains ADP but lets go of the microtubule), and so
helps ensure tight coupling. Interestingly, a large, externally appli ed force in the
backward directio n could cancel the effect of strain, leading to a breakdown of
tight coupling at a th reshold load force. The motor would then "slip," as imagined
in Figure 10.9 (seeIdea 10.1 on page 4 13). Schnitzer and coau thors measured and
analyzed the force at which the mot or stalls and argued that stalling reflects slip
ping (or futile hydro lysis), no t therma l equilibrium.

It's also possible for the trailing kinesin head to hydrolyze ATP and release
Pi prior to step ES2, thereby allowing the entire kinesin dimer to detach from the
microtubule and redu cing its processivity. The transition to ES2 (binding of the
forward head) is normally rapid enough to make this process rare.
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2. The discussion at th e end of Section 1004.3 simplified the react ion diagram of
kine sin, replacing Figure 10.24 by"

CATPk+ cquil k1j
E ;=' ESI ;=, ES' .. . ~ E.

'-

Instead of writing ATP explicitly as a participant, we are thinking of E as spon
taneously isomerizing to ES\ with a rate proportional to CATp. (Some authors call
the combination cATPk+ a pseudo-first-order rate constant.) The dots represent
possible other substeps, which we ignore; as usual, the last step (hydrolysis of Al P
and release of Pr) is assumed to be effectively irreversible, as in Section 1004.1.

Proceeding almost as in Section 10.4.1, we first note that each kinesin head
mu st be in one of the three states E, ES\) or E5'1• We assumed near-equilibrium
between the latter two states. The appropriate equilibrium constant will reflect an
intrinsic free energy change, t> d ,plu s a force- depende nt term f e(see Section 6.7
on page 226). Finally, although the state E is no t in equilibrium with the others,
we do assume that the whole reaction is in a quasi-steady state. All together, then,
we are to solve three equations for the three unknown probabilities P E, P ESt ' and
P ES' :,

(normalization)

(near-equilibrium )

1 = PE+ PES, + PES;

P _ P e(M.f'+! O/k BT
ESI - ES~

d
0 = - PE= - CATPk+PE+ L PEs, + k"PES"d t . ,

Solving gives

(10.27)

(10.28)

(quasi-steady state) (10.29 )

v = k« x (8 nm ) x

For any fixed value of load force f, this expression is of Michaelis-Menten form
(Equation 10.20 on page 435), with load-dependent parameters analogous to
Equation 10.19 given by

(10.30)

and

(10 .31)

Figure 10.25 on page 445 shows the kinetic data of Table 10.1, along with solid
curves showing the preceding functions with the parameter choices e = 3.7 nm,
t>d = - 5.1kBTn k" = 1035- 1, k+ = 1.3/lM- I 5- 1, and k: = 6905- 1•

14 See Problem 10.7 for another examp le of an enzym atic mechanism with a rapid- isome rization step.
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Schnitzer and coautho rs actually compared their model with a dat a set larger
than the one shown here, including additional measurements ofspeed versus force
at fixed CATP, an d again found satisfactory agreement. Th eir model . however, is
not the on ly one that fits the data . Other models also account for the observed
statistical properties of kinesin stepping. stall forces, and the loss of processivity at
high loads (see for example Fisher & Kolomeisky, 2001) .

1121 10.4.4' Track 2

I . C351 is not a natu rally occurring motor: it is a con struct designed to have certain
experimentally convenient properties. We nevertheless take it as emb lematic of a
class of natural molecular machines simpler than con ventional kinesin .

2. Okada and Hirokawa also interpreted the numerical values of their fit parameters,
showing that they were reason able (see Okada & Hirokawa, 1999). Their data (Fig
ure 10.27 on page 450) gave a mean speed v of 140 om 5 - 1 and a variance increase
rate of 88 000 nrn? 5 - 1. To interpret these result s, we mu st connect them with the
unknown molecular quantities ~, t5) t lV and the one-dime nsional diffu sion con
stant D for the motor as it wanders along the microtubule in its weak-binding
state.

Figure 10.29 shows again th e probability distribution at th e end of a weak
bind ing period. If we mak e the approxima tio n that the probability distributi on

bin -1 bin 0 bin + 1

x

Figure 10.29: (Sketch graph.) Illustrating the calculation of the diffusing ratchet's average
stepping rate. The solid lines delimit the bins discussed in the text. The dashed lines are the
same as those on the right side of Figure 10.26 on page 448: They mark potential maxima, or
"watersheds." Thus, a motor located in the region between two neighbori ng dashed lines will
be att racted to whichever minimum (0. L. 2L• . . . ) lies between those lines. For example, the
dark gray region is the part of bin 0 att racted to x = 0, whereas the lightgray region is the part
of bin 0 att racted to x = L. (The widt h of the bins has been exaggerated for clarity; actually
the calculation assumes that the distribution P(x ) is roughly constant within each bin.)
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was very sha rply peaked at the star t of this period . then the curve is just given hy
the fundamental solution to the d iffusion equation (Equation 4.28 on page 143).
To find the Pb we must compute the areas under the variou s shaded region s in
Figure 10.26. and from these, compute (k) and variance(k). This calculation is not
difficult to do numerically, but there is a shortcut that makes it even easier.

We begin by dividing the line into bins of width L (solid lines on Fig
ure 10.29). Suppose that Dr", is much larger than L2; so the motor diffuses many
steps in each weak-binding time. Then P (x ) willbe nearly a constant in the center
bin of the figure. that is. the region between ± L/2. As we move outward from the
center, P (x ) willdecrease. But we can still take it to be a constant in each bin, for
example. the one from L/2 10 3L/ 2. Focus first on the cente r bin. Those motors
lying between -L/2 and + L/ 2 - ~ (dark gray region of Figure 10.29) will fall back
to the binding site at x = 0, whereas the ones from L/ 2 - ~ to L/2 (light gray
region ) will land at x = L. For this bin. then, the mean position will shift by

P(O)(L - ~) xO + ~ x t) s
(k)b'" 0 = prO) x L L

Your
Turn

JOG

Show that for the two flanking bins, centered at ± L, the mean position also
sh ifts by (k)b'" ±I = ~/L. and similarly for all the other pairs of bins. (k)b'" ± i '

We have divided the entire range of x into strips, in each of which the mean posi
tion shifts by the same amount ojL. Hence the total mean shift per step, u, is also
~/L. According to Idea 10.23 on page 449, then. v sa uL/!:>. t is given by ~/ !:>. r. You
can also show usin g Idea 10.23 that the increase in the variance of x per cycle just
equals the d iffusive spread, 2Dt" .

The rate of ATP hydrolysis per motor under the condition s of the experiment
was known to be (M) - I "" 100 s- l . Substitut ing the experimen tal numbers then
yields

140 nm s-1 "" ~ x ( IOOS- I) and 88 000 nm' s-1 "" (l OOS-I ) x 2Dt",

or ~ = 1.4 nm and Dt" = 440 nrrr ' . The first of these gives a value for the asym
metry of the kinesin-microtubule binding that is so mewhat smaller than the size
of the bind ing sites. That's reasonable. The second result justifies a posteriori our
assum ptio n that Dr., » L' = 64 nm' . That's good. Finally, biochemical studies
imply that the mean duratio n tw of the weak-binding state is several millisecond s;
thus D ~ 10- 13 m2 5- 1. Th is diffusion constant is consistent with measured values
for oth er proteins that move passively along linear polymers. Everything fits.

3. It is not currently possible to apply a load force to single-headed kinesin mole
cules. as it is with two-headed kinesin . Neve rtheless, the velocity calculation . cor
responding to the result for the tightly coupled case (Equation 10.26 on page 456).
is instructive. (See for examp le Peskin et al., 1994.) The motor will stall when its
backward drift in the w state equals the net forward motion expected from the
asymmetry of the potent ial.
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But sho uldn't the condition for the motor to stall dep end on the chemical po
tent ial of the "food" molecule? Th is quest io n involves the first assumption made
when defining the di ffusing ratchet model, that the hydrolysis cycle is unaffected
by microtubule binding (page 447). This assu mption is chemically unrealistic, but
it is no t a bad approximatio n when 6. G is very large co mpared with the mechan
ical work don e on each step. If the chemical potential of ATP is too small, th is
assumptio n fails; the times t, and tw spent in the strong- and weak-binding states
will start to depend on the locat ion x along the track. Then the probabilities P,
to land at kL will not be given simply by the areas under the diffusion curve (see
Figure 10.26 on page 448), and the sta ll force will be smaller for sma ller lJ.G. (For
more details, see Iulicher et al., 1997; Astu mia n, 1997.)

Mo re generally, suppose that a particle diffuses along an asymmetrical poten
tial energy landscape, which is kicked by some extern al mechanism. The particle
will make net progress on ly if the external kicks co rrespond to a nonequilibrium
process. Such distu rbances will have time correlatio ns absent in pure Brown ian
mo tion . So me authors use the terms correlation ratchet or flashing ratchet instead
of diffusing ratchet to em phas ize th is aspect of the physics. (Still other related terms
in the literature include Browniall ratchet. thermal ratchet, and entropic ratchet.)
For a general argument that asymme try and an out-of-equilibrium step are suf
ficient to get net directed mo tion , see Magnasco , 1993 and Magnasco, 1994 . This
result is a particular case o f the general result that wheneve r a reactio n graph con
tains clo sed loo ps and is coupled to an ou t-o f-equilibrium process, there will be
circu lation around one of the loo ps.
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PROBLEMS'

10.1 Complex processes
Figure 10.30 shows the rate of firefly flashing as a function of the amb ient tempera
ture. (Insects do not maintain a fixed internal body temperature. ) Propose a simple
explanation for the behavior shown. Extract a quantitative concl usion and co mment
on why your answer is numerically reasonable.

0.4
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0
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Figure 10.30: (Experimental data.) Semilog plot of the frequency of flashing of fireflies (ar
bitrary units), as a function of inverse temperature. jData from Laidler, 1972.]

10 .2 Scaling in muscle
Figure 10.1 on page 405 sketches the organizat ion of vertebra te skeletal muscles. As
sume that all creatures great and small havemuscle tissues that are similar on the mi
croscopic level; thicker muscles simply have more myofibrils in parallel. and longer
muscles have longer myofibrils (or more copies laid end -to-end), than do smaller
muscles.

Typically each end of a myosin filament (bottom left of the figure) has about
100 myosin molecules pulling in the same direction. Under physiological conditions,
each myosin can exert a force of about 5.3 pN. We get an upper bound on the force
the filament can exert by assuming that all of the myosins are simultaneously attached
and exerting force. Each myosin filamen t occupies a cross-sectional area of about
1.8 . 10- 15 m2 in the relaxed muscle.

a. Use these data to estimate how much force your biceps can exert. Is your estimate
reasonable?

'Problems 10.7 and 10.8 (and Example lOB) areadapted with permission from Tinoco et al., 2001.
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b. Let's also make the rough approximation that large and small creatures are ge
ometrically similar; that is, that all dimens ions in the large creature's bod y are
obtained by a uniform rescaling of those of the small one. Which creature will be
better able to lift its own bod y weight over its head? Do es your answer agree with
what you know about ants and elephants?

10.3 Rescuing Gilbert
Sullivan suggested one possible mo dification of the G-ratchet; here is another, wh ich
we will call the F-ratchet.

We imagine that the rod in Figure 10.10 extends far to the right, all the way into
another chamber fullof gas at temperatu re 7". The rod ends with a plate in the midd le
of the seco nd chambe r; gas molecules bo unce against this plate, giving random kicks
to the rod. We further suppose that 7" is greater than the temperature T of the part
of the mechanism containing the ratchet mechanism .

a. Suppose the external force f = O. Will the F-ratchet make net progress? In which
direction? [Hint: Think abou t the case where the temperatu re T equals absolute
zero.]

b. Recall Sullivan's critique of the G-ra tchet: "Couldn't you wrap your shaft into a
circle? Then your machine would go around forever, violating the Second Law."
Figure 10.31 shows such a device. Here the one-way mechanism on the left is a
spring (the "pawl") that jams against the asymmetrical teeth on a wheel when it
tries to rotate backward. Reply to Sullivan's remark in the context of this circular
F-ratchet. [Hint: First review Section 6.5.3.J

Figure 10.31 : (Schematic.) The F-ratchet, an imagined motor. Twochambersaremaintained
at temperatures T andT' , respectively; theright-hand chamber contains gas. Thermalmotion
in the righ t-hand chamber drivesthe shaft; its motion isrectified by thedevice in the left-han d
chamber, perhaps lifting a weightattached to a pulley. [Adapted fromFeynman et al., 1963a.]

lOA Ion pump energetics
Textbooks quote the value ~G'" = -7.3 kcal/ rnole for the hydrolysis of ATP (Fig
ure 2.12). Chapter 11 will intro duce a molecular machine that uses one ATP per
step and does useful work equal to 14knTr• Reconcile these statements, using the fact
that typical intracellular concentrations are [ATP] = 0.01 (that is, CATP = 10 mea ),
[ADP] = 0.001, and [P;] = 0.01.
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10.5 Competitive inhibition
Section 10.4.2 on page 436 described competitive inhibition as one strategy to control
th e activity of an enzym e; for example, th e protease inhibitor s used to treat HIV use
thi s strategy. In th is m echani sm , an inhibito r molecule, which we will call I, binds to
th e act ive site of an enzyme E, block ing it fro m processing its substrate.

a. Write down th e Ma ss Action rule for th e reaction I + E ~ EI, with some equilib
rium cons tant Kcq , [ '

b. Now repeat th e deriva tion of th e Mich aelis-Men ten rul e in Sectio n 1004.1, with
th e cha nge th at now E can be in any of thre e sta tes: F E + F ES + F EI = I . Show that
the reaction velocity can be writte n as

cs
V = Vmax .

aKM + Cs
(com petitive inhibition ) (10.32)

Here a is a qu an tit y th at you are to find; it involves the pa rameters of th e unin
hibited enzyme (KM and vmax) , Keq,1> and th e conce ntra tion c, of inhibitor.

c. Suppose that we m easure th e initial reac tion velocity as a function of substrate
conce nt ra tion for two fixed values of ell th en plot the two data sets in Lineweaver
Burk form. Desc ribe th e two curve s we will get if! is a competitive inhibito r.

d. Etha nol and m etha nol are two sim ilar, sm all molecules. Methan ol is quite toxic:
The liver en zyme alcohol dehydrogen ase converts it to formaldehyde, which can
cause blindness. The kid neys will eventually rem ove m ethan ol from th e blood, but
not fast enough to avert thi s damage. Why do you suppose a the rapy for m eth anol
po isoning involves gradua l intravenous injectio n of ethanol ove r several hours?

10.6 Uncompetitive inhibition
Mo dify the derivat ion of th e Michaelis-Menten ru le for enzy me kin etics (Sec
tion 1004.1) to accoun t for uncompetitive inhibiticn." That is, au gm ent th e basic
reaction diagram

'S ki k2
E+S ;=ES ~E +P

L ,

by ad ding a second reaction (compare with Figure 10.13 on page 424),

Here E is th e enzyme, S th e subst rat e, P the product, and ES th e enzy me-substrate
com plex. Th e inhibitor I is a second substan ce th at , like E, is no t used up. State I can
bind to th e enzyme-substrate complex ES to crea te a dead- end com plex ESI, which
canno t p rocess substrate becau se of an allosteric in teraction . Eventually, however,
ESI spontaneously d issoc iates back to ES+I an d th e enzy me goes back to wo rk . This

IS~ Uncompetitive inhibition is a math ematical simplification of a more realistic situation called non

competitive inhibition. For a full discussion, see Nelson & Cox, 2000.
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dead -end branch slows do wn the reaction. As usual, assume a large reservoir ofS , no
product initially, and a small amo unt of enzyme.

a. Find the steady-state reaction rate v in terms of C5, ell the total enzyme concentra
tion [ E,l ot ' and the rate constants .

b. Consider the dependence of v on [5 , holding CE,tot and c, fixed. Can you express
your answer as a Michaelis-Menten func tion, where Vm ax and KM are funct ions of
c,?

c. Regardless of your answer to (b) , find the saturating value Vmax as Cs increases at
fixed [E .tot and q, Commen t on why your answer is physically reasonable; if you
did Probl em 10.5, cont rast to th e case studied th ere.

10.7 1121Generality of MM kinetics

In th is pro blem , you' ll see that th e MM for mula is really more generally applicable
th an th e discussion in the text may have made it seem.

Th e enzyme chymotrypsin catalyzes th e hydrolysis of peptides (short protein
fragm en ts). We will denote the enzyme 's ori ginal state as E- OH to emphasize one
key hydroxyl group on one of its residues. We will also represent a peptide generi cally
by th e symbo l R- CONH-R' , where the central atoms CON H indicate on e particular
peptide bond (see Figure 2.13 on page 48) and R, R' denote everything to th e left and
right , respectively, of th e bond in qu estion.

Th e enzyme op erates as follows: A noncovalent complex (E-OH· R-CON H-R')
form s rap idly between the enzyme E-OH and th e peptide substrate R- CONH-R',
which we will call S. Next E- OH gives up a hydrogen and bonds covalently to one
half of th e pep tide, breakin g the bond to the other half, which is released. Finally, the
rem aining enzyme- pept ide complex splits a water molecule to restore E-OH to its
or iginal form and release the other hal f of the peptide:

(S Kcq.S k2 I
E-OH + S + H20 ;= E-OH· S + H20 ~ E-OCO-R + NH2- R + H20

E-OH + R-C02H + NH,-R' .

Assume that the last step is irreversible, as indicated by the last arrow.
Assume tha t the first reaction is so fast that it's pra ct ically in equilibrium, with

equilibrium consta nt csKcq,s, Apply the steady-state assumption to CE- OCO- R to show
that the overall reaction velocity of the scheme just described is of Michaelis-Menten
form. Find the effective Michaelis constant and maximum velocity in term s of Keq,s,
the rate constants k2 , k3, and the total concentra tion CE,tot of enzyme.

10.8 1T2 1 /nvertase

Earlier proble ms discussed two distinct forms of enzyme inhibition: competitive and
un competit ive. More generally, noncompetitive inhibition refers to any mechanism
not obeying the ru le you fou nd in Problem 10.5. The enzyme invert ase hydrolyzes
sucrose (tab le sugar ). Th e reactio n is reversibly inhibited by th e addition of urea,
a small molecule. Th e initial rate of this reaction, for a certain concentration CE,tot
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of enzyme. is measured in terms of the initial sucrose concentration , both with and
witho ut a 2 M solution of urea:

0.0292
0.0584
0.0876
0.117
0.175
0.234

v (no urea), M 5 - 1

0.182
0.265
0.311
0.330
0.372
0.371

v (with urea), M S- 1

0.083
0.119
0.154
0.167
0.192
0.188

Make the approp riate Lineweaver- Burk plots and determine whether the inhibition
by urea is competitive in character. Explain.



CHAPT E R 11

Machines in Membranes

In going 011 with theseExperiments how many pretty Systems
do we build which we soon find ourselvesoblig'd to destroy!
If there is no other Usediscover'd of Electricity this however
is something considerable. that it may help to makea vain

man humble.

- B. Franklin to P. Co llinson, 1747

Chapter 12 will discuss the question of nerve impu lses. the electric signals running
along ner ve fibers that make up the ghostly fabric of tho ught. Before we can discuss
nerve impulses. however, this chapter must look at how living cells generateelectric
ity in the first place. Chapter 4 skirted this question in the discussion of the Nernst
formul a; we are now ready to return to it as a matter of free energy transduction ,
armed with a general unde rstanding of mo lecular machines. \ Ve will see how indi
rect. physical argume nts led to the discovery of a remarkable class of molecular ma
chines, the active ion pumps, long before the precise biochemical identity of these de
vices was know n. The sto ry may remind you of how Muller, Delbru ck, and their col
leagues characterized the nature of the genetic mo lecule, using physical experiments
and ideas, many years before others identified it chemically as DNA (Section 3.3.3).
The interpl ay of physical and biochemi cal approaches to life science probl ems will
continue to bear fruit as long as both sets of researchers know abo ut each others'
work.
The Focus Question for this chapter is
Biological question : The cytosol's composition is very different from that of the
outside wor ld. Why do esn't osmotic flow through the plasma membra ne burs t (or
shrink) the cell?
Physical idea: Active ion pum ping by molecular machines can maintain a nonequ i
librium, osmotically regulated state.

11.1 ELECTROOSMOTIC EFFECTS

11.1.1 Before the ancients

The separation of the sciences into disciplin es is a modern aberration. Historically,
there was a lively exchange between the study of bioelectr ic phenomena and the great
project of understanding physically what electricity really was. For example, Ben
jamin Franklin's famou s demo nstration in 1752 that lightning was just a very big

469
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electric spark led to much speculation and experimentation on electricity in general.
Lackin g soph istica ted measurement devices. it was natur al for the scientists of the
day to focus on the role of elect ricity in living o rganisms, in effect using them as their
instrumen ts. The physicians Albrecht von Haller and Luigi Galvani fou nd that elec
tricity, generated by physical mea ns and stored in a capacitor, cou ld stimulate strong
con trac tion in animal muscles. Galvan i publ ished h is observation s in 1791 and spec
ulated that muscles were also a source of electricity. After all, he reasoned . even with
out the capaci tor he could evoke muscle twitches just by inser ting elect rode s between
two point s.

Alessand ro Volta d id not accept this last conclusion . He regarded mu scles as elec
trically passive, receivin g signals but not generating any elect ricity themselves. He
explained Galvani's no- capacitor experimen t by suggesting that an electros tatic po
tential could develop between two dissimil ar metals in any electro lyte, alive or not. To
prove his po int , in 1800 he invented a purely nonliving source of electricity, merely
placin g two meta l plates in an acid bat h. Volta's device-the voltaic cell-led to deci
sive adva nces in o ur un derstanding of physics and chemistry. As tech no logy, Volta's
device also wins the longevity award: The batte ries in your car, flashlight, and so on
are voltaic cells.

But Volta was too quic k to dismiss Galvani's idea that life processes cou ld also
generate electric ity directly. Sections 11.1.2- 11.2.3 will show how this can happen.
Our discussion will rest up on many hard-won experimental facts. For examp le, after
Galvani , decades would pass before E. DuBois Reymond , another physician, showed
in the 1850s that living frog skin maintained a potential difference of up to 100 mV
between its sides . And the concept of the cell membrane as an electrical insulator only
a few nanometers thick rem ained a speculation until 1923, when H. Fricke measured
qu antitatively the capacitance of a cell membrane and thus estima ted its thickness,
essentially using Equation 7.26 on page 269.

To understand the origin of restin g membrane potentials, we first return to the
to pic of ions permeati ng membran es, a sto ry begun in Chapter 4.

11.1.2 Ion concentration differences create Nernst potentials

Figure 4.14 on page 140 shows a container of solution with two charged plates outside
supplying a fixed external elect ric field. Sect ion 4.6.3 calculated th e concentra tion
profi le in equ ilibrium and, from thi s, the change in concentrat ion of charged ions
between the two ends of the container (Equation 4.26 ). We then noted that the po
tential drop needed to get a significant concentration jump across the container was
rou ghly comparab le to the difference in electros tatic po tenti al across the membrane
of mo st living cells. We're now in a position to see why the results of Section 4.6.3
should have anything to do with cells, starting with some ideas fro m Section 7.4.

Figure 11.1 shows the ph ysical situa tion of interest . An un charged membrane,
shown as a long cylinde r, separates the world into two compartments, 1 and 2. Two
electrodes, on e inside and one outside, measure the electro static po tential across the
membrane. The figure is mean t to evoke the long, thin tube, or axon, emerging from
the body of a nerve cell. Indeed, one can literally inser t a th in needlelike electrode
into living nerve axons, essentially as sketched here, and connect them to an am-
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Figure 11.1: (Schematic.) Measurement of membrane potentiaL The bulk concen tra tion '2
of interior cations is greater than the exterior concentrat ion, q , as shown; the correspon ding
bulk concentrations of negative charges follow th e same patte rn (not shown), as required by
charge neutrality. The symbol on the left represent s a voltmeter.
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plifier. Histori cally, the systematic study of nerve impul ses open ed up only when a
class of organi sm s was found with axons lar ge enough for thi s delicat e procedure: the
cephalopods. For example. the "giant" axon of the squid Loligo forbesi has a diame
ter of up to a millimeter, much bigger than the typical axon diameter in your body,
whi ch is 5-20 Mm.

Each compartment contains a salt solution, which for simplicity we'll take to be
monovalent-say, potassium chloride. Imagine that the membrane is slightly perme
able to K+, bu t not at all to CI- (actually, squid axon membranes are about twice as
permeable to K+ as they are to CI-) . For now, we will also ignore the osmotic flow
of water (see Section 11.2.1). We imagine using different salt solutions on the inside
and out side of the cell: Far from the membrane, the salt concentration in each com
partment is uniform and equals C2 on the inside and ci on the ou tside. Suppose that
C2 > Cl, as shown in Figure 11.1.

Let c+(r ) denot e the concentration of pot assium ions at a distance r from the
center of the inn er compartment. After the system reaches equilibrium, c+(r) will
not be uniform near the membrane, and neither will be the chloride concentration,
c_ (r) (see Figure 11.2a). To und erstand the origin of membrane potential, we mu st
first explain these equilibrium concentration profiles.

The permeant K+ ions face a dilemma : They could increase their entropy by
crossing the membrane to erase the imposed concentration difference. Indeed, th ey
will do this, up to a point. But their imp erm eant partners, the Cl" ions, keep calling
them back by electro stat ic attraction. Thu s, far from the membrane on both sides, the
concentrations of K+ and CI- will be equal, as required by overall charge neutrality.
Only a few K+ ions will actually cross the membrane, and even these won't travel
far: They deplete a thin layer just inside the membrane and cling in a thin layer ju st
outside (see the c+ curve in Figure 11.2a).

The behavio r shown in Figure 11.2 is just what we could have expected from our
study of electrostati c interactions in Section 7.4.3 on page 264.Tosee the connec tion,
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Figure 11.2 : (Sketch graphs.) (a ) Con centration pro files near a membr ane, for the situ ation
sketched in Figure 11.1. The radius r is the distance from the cent erline of the cylindrical inner
compartment. Far outside the membrane (r --+ (0), the concent rations c± of positive and
negative ions must be equal, by charge neutrality; their common value Cl is just the exterior
salt concentration. Similarly, deep inside the cell, c+ = L = ( 2. The situation shown assumes
that only the positive ions are permeant. Thu s some positive ions leak out. enhancing c+ in
a layer of th ickness A just outside the membrane and depletin g it just inside. c: drops just
outside the membrane because negative ion s move away from the negatively charged cell. The
concentrations in the membrane's hydrophobic interior (the region between B and C) are
nearly zero. (b) The corr espo nding electrostatic potenti al V created by the charge distribution
in (a). In equilibrium, fi V equals the Nernst pot entia l of the perm eant species (in this case,
the positive ions).

first consider the region to the right of poi nt C in Figure 11.2. This region is a salt so
lution in contact with an "object" of net negat ive charge. The "object" cons ists of
th e membrane plus the interior of the cylinder in Figure 1J.]; it's negatively charged
because some of its pos itive ions have permea ted the membrane and escaped. But a
solution in contact with a negatively charged object develops a neutralizing positive
layer, just as in Figure 7.8a on page 265. This layer is shown in Figure I 1.2 as the
region between poi nts C and D. Its thicknes s Xis roughly analogous to X Q in our dis-
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cussion of the electric do uble layer (Equation 7.25 on page 268). ' Unlike Figure 7.8a,
however, we now have both positive and negative mobile charges in the solution.
Hence, the layer of enhanced K+ con centration is also depleted of CI-, because the
negative region to the left of point C in the figure repels anions. The effect of both
these distu rbances is to create a layer of net positive charge just outside the mern
brane.

Just inside the membrane, the situation is reversed . Here we have a salt solution
facing a positive object, nam ely, everything to the right of point B in the figure . Thus
there is a region relatively depleted of K+ and enriched in CI- ) a layer of net negative
charge just inside the membrane.

We can now turn to the question of findin g the electrostatic potent ial jump
across the membrane. One way to find it would be to solve the Gauss Law (Equa
tion 7.20 on page 264) for the electric field £ (x ) given the charge density shown
in Figure Il.2a, then integrate to find V(x) . Let's instead think physically (see Fig
ure 11.2b). Suppose that we bring a pos itively charged test object in from outside
(from the right of the figure). At first, everyth ing to the left of our test object has net
charge zero, so th e net force on it is also zero and its po tential energy is a constant.
Once the test object ente rs the outer charge cloud, at point D, however, it starts to
feel and be attracted to the net negative object to the left of po int C. Its potential thus
begins to decrease. Th e deeper it gets into the cloud, the mo re charge it sees: The
slope of its po tential curve increases.

The membrane itself was assumed to be uncharged. There will be very few per
meant ions inside it, in tra nsit. Thus, while traversing the membran e, the test charge
feels a constant force attracting it toward the int erior, from the charge of the region to
the left of point B. Its po tential thus falls linearly until it crosses point B, then levels
off in the neutral interior of th e cylinder.

The potential cu rve V( r) sketched in Figure 11.2b summarizes the narrative in
the precedin g two paragraphs.

Arrive at the same conclusion for the potential V Ir) by describing qualitatively
the solution to the Gauss Law with the charge density Pq(r ) = e(c+(r) - c (r» ,
where c± (r ) are as show n in Figure 11.2a.

Repeat the discussion , again assum ing that C2 > c\, bu t this time considering a
fict itious membrane permeable to 0 - but not to K+. What changes?

To determine the potential d rop !'1 V = V, - VI quant itatively, imagine replacing
the voltmeter in Figure 11.1 by a batt ery ofadj ustable voltage and incre asing the volt
age un til the current through the system jus t stops. Th e permeant ion species is then
in equilibrium throughout the system. If we write its charge q as the proton charge

I~ Or more appropriately. to the Debye screening length All (Equation 7.35 on page 285).
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e times an integer z (the ion 's valence), th en its concentration mu st obey the Boltz
mann distribution: c(x) = const x e-zeV(X)/ kBT. Taking the logarit hm and evaluating
on the inside and outside reprodu ces the Nernst relation:

.6..V = v Ncrnsl in equilibrium, where

.6.. V ss V2 - VI and v Nernst == _ kBT I n ~ .
ze Cl

(I l.l )

In the language of Section 8.1.1 on page 295, the Nernst relation says that, in equilib
rium, th e electrochemical potential of any permeant ion species must be everywhere
the same.

Notice that z in Equation 11.1 is the valence of the permeant species only (in
our case, it's + 1). In fact, the other (impermea nt) species in the problem doesn't
obey the Nernst relation at all, nor should it, because it's not at all in equilibrium.
If we suddenly pu nched a hole through the membrane, the imperm eant CI- would
begin to rush out, whereas K+ would not , because we adju sted th e battery to exactly
balance its electr ic force (to the left) against its entropic, diffusive force (to the right).
Similarly, you just found in Your Tum 11B that switching the roles of the two species
actually reverses the sign of the membrane's equilibrium potential drop.

IT21Section 11.1.2' on page 501gives some further comments involving ion perme

ation through membranes.

11.1.3 Donnan equilibrium can create a resting membrane potential

Section 11.1.2 ar rived at a simple conclusion:

The Nernst relation gives the potential arising when a permeant
species reaches equilibrium. Equivalently, it gives the potential that
m ust be applied to stop the net flux of that species, given the concen
tration jump across a m embrane.

(I 1.2)

In th is section, we begin to explore a slightly more complicated problem in which
there are more than two ion species. The pro blem is relevant to living cells, where
the re are several important small permean t ions. We will simplify our discussion by
consider ing only th ree species of small ions, with concentrat ions Ci, where the label i
runs over Na+, K+, Cl- .

Cells are also full of pro teins and nucleic acids, huge macromolecules carrying
net negative charge. The macromol ecules are practically impermeant, so we expect a
situation analogous to Figure 11.2, and a resulting membrane potential. Unlike the
simpler case with just two species, however, the bulk concentrations are no longer
automatically fixed by the initia l concentrations and by the condition of charge neu
trality: The cell can import some mo re Na+ while still rema ining neutra l if, at the
same time, it expels some K+ or pulls in some CI- . Let's see what happens.

A typical value for the total charge density Pq,macro of the trapped (imperme
ant) macromolecules is the equivalent of 125 m M of excess electro ns. Just as in Sec
tion 11.1.2, small ions can and will cross the cell memb rane, to redu ce the total free
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energy of the cell. We will suppose tha t our cell sits in an infinite bath with exterior
ion concentrations cu . (It could be an algal cell in the sea or a bacterium in your
blood.) These concentrations, like P q,macro , are fixed and given; some illustrative val
ue s are c l ,Na+ = 140 m M, CI,K+ = 10 mM , and ' 1.Cl- = 150 m M. These values make
sense, in that they imply that the exterior solution is neu tra l:

(Section 12.1.2 will discuss neutrality in greater detail. ) The oth er three equations
reflect th e fact that the same electrostatic potential func tion affects every ion species.
Th us, in equi librium, each permeant species mu st separately be in Nernst equilib
rium at the same value of /).V:

The cell's interior is not infinite, so the concentra tions there, C2,i . are not fixed.
Instead , they are all unknowns for which we mu st solve. Moreover. the memb rane
potential drop 6. V = V2 - VI is a fourth unknown. We therefore need to find four
equations in order to solve for these four unknowns. First, charge neutrality in the
bulk interior requires

ilib
here
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C2.Na+ + C2.K+ - cZ,C1 - + P q,macro / e = O.

'" V = _ kBT in C'. N,+ = _ kBT in c2,K+ = _ kBTin c' .C1- .

e c l. Na+ e Cl.K + - e c I,CI-

(11.3 )

(11.4)

To solve Equat ions 11.3 and 11.4, we first notice that the latter can be rewritt en as the
Gibbs-Donna n relations:

CI, K+ cZ.CI-
= = in equilibrium. (11.5)

Example:

a. Why is the chloride ratio in these relation s inverted relative to th e oth ers?

b. Finish the calculation by using the illustrative values for CI,; and P q.macro given
earlier in th is section. That is, find CZ.; and 6. V.

Solution:

a. The charge on a chloride ion is opposite to that on potassium or sodium, a situ
ation leading to an extra minus sign in Equat ion 11.4. Upon exponent iating the
formula, this minu s sign turns into an inverse.

b. Let x = [Na+] = C' .N, + / 1 M. Use Equation 11.5 and th e given values of CJ.; to
express CZ.K+ and cz.C1- in terms of x . Substitute in to Equation 11.3 and multiply
the equation by x to get

(
0.0 1) ,1 + - x - 0.15 x 0.14 - 0.125x=0.
0.14
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Solving with the quadrat ic formula gives x = 0.21, or CZ,Na+ = 210 m M, C2.K+ =
IS mM, c, .CI - = 100 mM. Then Equation II A gives 6 V = - 10 mV. (Appendix B
gives kB T,je = -10 volt .)

The equilib rium state you just found is called the Donnan equilibrium; /),. V is called
the Donnan po tential for the system.

So we have found one realistic way in which a cell can maintain a permanent
(resting) electrostat ic potent ial across its membrane, simply as a consequence of the
fact that some charged macromolecules are sequestered inside it. Ind eed, the typical
values of such potenti als are in the tens of millivolts. No energy needs to be spent
maintaining the Donnan potenti al-it's a feature of an equilibr ium state, a state of
min imum free energy. Notice that we could have arranged for charge neutrality by
having only c2,Na+ greater than the exterior value, with the other two concentrations
the same inside and out. But that state is not the minimum of free energy; instead, all
available permeant species sha re in the job of neutralizing P q,macro,

11.2 ION PUMPING

11.2.1 Observed eukaryotic m e mbrane potential s imply that these cells
a re far fro m Donn an eq uilibrium

The sodium anoma ly Donnan equilibrium appears superficially to be an attractive
mechanism for explaining resting membrane potentials, But a little mo re thought re
veals a problem. Let's return to the question of osmotic flow through our membrane,
which we postponed at the start of Section 11.1.2. The macromolecules are not very
numerou s; their contribution to the osmotic pressure will be negligible. The small
ions, however, greatly outnumber the macromolecules and pose a serious osmotic
thr eat. To calculate the osmotic pressure in the Donnan equilibrium Example just
given, we add the contributions from all ion species:

..6.Ctot = CVot - Cl.tot ~ 25 mM . (11.6)

The sign of our result indi cates that small ions are more numerou s inside the model
cell than outside. To stop inward osmotic flow, the membrane thus would have to
main tain an interior pressure of 25 mM x keT, ~ 6 . 104 Pa. But we know from
Section 7.2.1 on page 248 that eukaryotic cells lyse (burs t) at much smaller pressures
than this!

Certainly our derivation is very rough. We have compl etely neglected the os
motic pressure of other, un charged solutes (like sugar). But the point is still valid: The
equations of Donnan equilibrium give a unique solution for electroo smotic equilib
rium and neutrality. There is no reason why that solution should also coinciden
tally give small osmotic pressure! To maintain Don nan equilibrium, you've got to be
strong. In fact, plant , algal, and fungal cells, as well as bacteria, surround their bilayer
plasma memb rane with a rigid wall; thu s they can withstand significant osmotic pres
sures. Indeed, plant tissue actually uses the rigidity resulting from osmotic pressure
for structura l support and becomes limp when the plant dehydrates. (Think about



11.2 Ion pum ping 477

Table 11.1: Approximate ion concentrations inside and outside the squid giant axon. The
second line illustrates the "sodium anomaly": The Nernst potential of sodium is nowhere
near the actual membrane pot enti al of - 60 mV.

interior exterior Nernst potential
ion valence z C2.j, m M relation c l, i , m M v;"«n,,, mV

K+ + 1 400 > 20 - 75
Na+ + 1 50 < 440 +54

Cl- - I 52 < 560 - 59

eating old celery.) BUI your own bod y's cells lack a strong wall. Why don't they bursl
from osmotic pressure?

Table I J.l shows th e actual (measured) concen tration differen ces acro ss one par
ticul ar cell's membran e. Donnan equilibrium predicts tha t the presence of trapped,
negative macroions will give c2.Na+ > cl,Na+, C2,K+ > Cl ,K+, c2,CI- < cI.CI-' and
6. V < O. Th ese predict ions make sense intuitively: Th e trapped negat ive macroions
tend to push out negative permeant ions and pull in positive ones. But the table
sho ws that of these four predic tions, the first one proves to be very wro'lg. In thermo
dynamic equilibrium, all the ent ries in the last colum n wou ld have to be the same,
acco rding to the Gibbs-Donnan relations. In fact , both the pot assium and chloride
ions roughly ob ey th is predic tion; and moreover. the measured membrane potenti al
t; V = - 60 mV reaIly is similar to each of their Nernst po ten tials. But the Gibbs
Donnan relat ion fails for sodium; and even for K+. the qu antitative agreement is not
very successful.

To summarize:

The Nernst potential of sodium is much more positive than the actual
m embrane potential D. V .

(l J.7)

AIl animal ceIls (nol just the squid axon) have a so di um anomaly of this type.'
One interpretation for these result s might be that the sodium and other di s

crepant ions simply can no t permeate on the time scale of the experiment. so they
need not obey th e equilibrium relation s. However. we are discussing the steady -stat e,
or res t ing , potential; the «time scale" of this measurement is infinity. Any permeat ion
at all would evenluaIly bring the ceIl to Donnan equilibrium, contrary to th e actual
ob served concentrations . More imp ortant . it's possible to measure directly the ability
of sod ium ion s to pass through the axon membran e; the next section will show that
th is permeabi lity, althou gh smaIl, is not negligible.

We are forced to conclude that the ions in a living cell are no t in equilibrium.
But why sho uld they be? Equilibri um is not life; it's death. CeIls at resl are constantly
burning food, precisely to comba t the dr ive toward equ ilibrium! If the metabolic cost
of maintaining a nonequi libri um ion concentration is reasonable relat ive to the rest

2Many bacteria. plants, and fungi show a similar anomaly involving the concent ration of protons; see
Section 11.3.
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of the cell's ener gy bud get. then there's no reason not to do it. After all. the bene
fits can be grea t. We have already seen how maintaining electrostat ic and osmotic
equ ilibrium cou ld place a cell under large internal pressure, burst ing or at least im
mo bilizing it.

We get a big clue that we're finally on the right track when we put our nerve
cell in th e refrigerator. Chilling a cell to just above freezing shuts down the cell's
metabolism. Suddenly the cell loses its ability to maintain a non equilibrium sodium
concentration difference. Moreover, the shut-down cell also loses its ability to cont rol
its interior volum e. or osmoregulate. When normal conditions are restored, the cell's
metaboli sm starts up again and the interior sod ium falls.

Certain genetic defects can also inte rfere with osmoregulation. For example. pa
tient s with hereditar y spherocytosis have red blood cells whose plasm a membrane
is much more permeable to sod ium than that of normal red cells. The affected cells
must work harder th an normal cells to pump sodium out. Hence they are prone to
osmotic swelling, wh ich in turn triggers their destruction by th e spleen. Entropi c
forces can kill.

A look ahead This section raised two pu zzles: Eukaryotic cells main tain a far-from
equil ibr ium concentration drop o f sodi um, and they don't suffer from the immense
osmo tic pressur e pred icted by Donnan equilibrium. In pri nciple. both these prob
lems could be solved if. instead of being in equilibrium. cells could constantly pump
sodium across their membranes by using metabolic energy. Such active pumping
cou ld crea te a non equili br ium , but steady, state.

Here is a mechanical ana logy: Suppose that you visit your friend and see a foun
tain in his garden (Figure 11 .3). The fou ntain is supplied by a tank of water high
above it. Th e water flows downh ill, convert ing the gravita tional potential energy it
has in the tank to kinetic energy. You expect that eventually the water will run out
of the tank and the fountai n will stop, but th is never happens. So you instead begin
to suspect th at your friend is recirculat ing the water with a pump, by using some ex
ternal source of energy. In that case, the fountain is in a steady, but non equilibri um,
state.'

In the context of cells, we are explor ing the hypothesis tha t that cells mu st some
how be using their met abo lism to maintain resting ion concentra tions far fro m equi
libriu m. To make th is idea qu ant itative (that is, to see whether it's right ), we now
retu rn to the to pic of tran sport acro ss membranes (introduced in different contexts
in Sections 4.6.1 and 7.3.2).

11.2.2 The Ohmic conductance hypoth esis

To begin exploring non equilibrium steady states , first note that the Nernst potent ial
need not equal the actual potentia l jump acro ss a membrane, just as we found that the
quantity (Llc)k BT need not equal the act ual pressure jump Llp (Section 7.3.2 on page

"Similarly, Section 1004.1 discussed the steady state of an enzyme presented with nonequilib rium concen
trations of its substrat e and product. \Ve also encountered steady o r quasi-steady nonequilibrium states in
Sections 4.6.1, 4.6.2, 10.2.3, and 1004.1.
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Figu re 11.3 : (Metaphor.) If water is continuous ly pumped to the upper reservoir, the foun
tain will come to a nonequilibr ium steady state. If not , it will come to a quasi -stead y state,
which lasts unti l the reservoir is empty.

259). If the actual pressure jump across a membrane differs from ("' c)kBT, we found
that there would be a j111X of water across the membran e. Similarly, if the potential
drop differs from the Nerns t pote nt ial for some ion species, th at species will be out
of equi librium and will permea te. the reby giving a net electr ic current. In this case,
the pot enti als obt ained from Equation 11.1 for different kinds of ion s need not agree
with one another.

To emphasize the distinction, Equation 11.1 on page 474 int rodu ced Vru nst (read
"the Nernst pot ential of ion species i") to mean precisely - (kBT/(ezi)) In(clj / cl.i),
reserving the symbol ~ V for the actua l po ten tial drop V2 - VI. OUf sign con vention
assigns a positive Nern st potential to an entro pic force driving positive ion s into the
cell.

Prior experience (Sections 4.6.1 and 4.6.4) leads us to ex pect that the flux of
ions th rough a membrane will be dissipative. and hence proportional to a net drivin g
force. at least if the d riving force is not too large. Furthermore, according to Idea 11.2
on page 474. the net driving force on ions of type i van ishes when ~V = Vi"'~rn 'l . Thus
the net force is given by the sum ofan energetic term. zie~ V (from the elect ric fields).
and an entropic term . - zjeVr crn,t (from the tendency of ion s to diffuse to erase any
concentrat ion difference)." This is just the behavior we have come to expect from our

"Equivalently, the net d riving force acting on ions is the difference in electrochemical potential 6 J1. j (see
Sectio n 8.1.1 on page 295).
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2 (in)

1 (out)

Figure 11.4: (Ci rcuit diagram .) Equivalent circu it model for the electri cal propert ies of a
small patch of membrane of area A and conductance per area g, assum ing the Ohmic hy
pothesis (Equation 11.8). The membrane patch is equivalent to a battery (symbol ---l f- ) with
potential drop VNern,\ in series with a resistor (symbol ---VVV-) of resistance R = l / (gA). For
a positive ion species (z > 0), a positive Nernst pot ent ial means that the ion concentration is
greate r out side the cell; in this case, an entropic force pu shes ions upward in the diagram (into
the cell). A positive ap plied potential 6. V has the opp osite effect. pu shing positive ions down
ward (out of the cell). Equilibrium is the state where these forcesbalance, or V i'<<rn.1 = b.. V;

then the net current I equals zero. The electric current is deemed positive when it is directed
outward.

studies of osmotic flow (Section 7.3.2) and of chemical forces (see the gas chemical
potential Example on page 296).

In short, we expect that

. . ( V v NernSI)} q. i = z.e] , = /::). - i gj. Ohmic cooductance hypothesis (J 1.8)

Here as usual, the number flux j i is the number of ions of type i per area per time
crossing the membrane; the electr ic charge flux j q. i is this quantity times the charge
z.e on one ion . We choose the sign convention that j is positive if the net flux is
ou tward . The constant of proportionality gi app earing in Equation 11.8 is called the
conductance per area of the membrane to ion species i. It's always positive and has
units" m- 2Q - l . A typical magnitude for the overall conductance per area of a resting
squid axon membrane is about 5 m- 2 Q - l .

Equation 11.8 is just another form of Ohm's law. To see th is, note that the electric
current I through a patch of membrane of area A equals j qA. If only on e kind of
ion can perm eate, Equation 11.8 gives the potenti al drop across the membrane as
;" V = IR + V N

" " " , where R = I j(gA). The first term is the usual form of Ohm's
law. The second term corresponds to a battery of fixed voltage VNernst connected in
series with the resistor, as shown in Figure 11.4. The voltage across the terminals of
this vir tual battery is the Nernst pot ential of ion species i.

"Neuroscientists use the synonym siemens (symbol S) for inverse ohm; an older synonym is the mho
(symbol U). We won't usc either notation, instead wr iting n-t • Note tha t conducta nce per area has units
different from those of the conductivity, K , of a bulk electro lyte (Section 4.6.4 on page 142): The latter has
un its m-l ~rl .
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We mu st bear in mind, tho ugh, that a membrane's regime of Ohmic behav ior,
where Equa tion 11.8 applies, may be very limited. First, Equa tion 11.8 is just the first
term in a power series in 6.V - Vf crn.t. Because we have seen that sodium is far from
its equilibrium concen tration diffe rence (Table 11.1), we can 't expect Equation 11.8
to give more than a qualitative guide to the resting elect rical properties of cells. More
over, the "constant" of proportionality gi need not be constant at all; it may depend
on environmenta l variables such as ion concentrations and fj. V itself. Thus, we can
on ly use Equat ion 11.8 if both 6. V and the concentration of ion species j are close
to their resting values. For other conditions, we'll have to allow for the possibility
that the cond uctance per area changes, for example, writing gi(f:!,. V) . This section
will consider on ly small deviation s from the resting conditions; Section 12.2.4 will
explore more general situations.

The conductance per area, gi, is related to the ion's permeability P, (see Equa
tion 4.21 on page 135):

Find a relation between the cond uctance per area and the permeability of a
membrane to a parti cular ion species, assuming that the inside and outside
concentrations are nearly equal. Discuss why your result is reasonable. [Hint:
Remem ber that el. i - cu is small, and use the expansion In(1 + s ) ~ € for
small E.]

Notice that the conductances per area for various ion species, gi, need not all be the
same. Different ions have different diffusion constants in water; because they have
different rad ii, they enco unter di fferent ob structions passing th rou gh different chan
nels, and so on. Just as a membrane can be permeable to water but not to ions, so
the conductances to different ions can differ. If a particu lar ion species is irnperm e
ant (like the 0 - ions in the system imagined in Section 11.1.2), then its concen
trat ion needn't obey the Nernst relation. The impermeant species are important in
determining the equilibrium membrane potential, however: They enter the system's
overall charge neutrality condition.

1121Section 11.2.2' on page 501 mentions nonlinear corrections to the Ohmic be

havior ofmembrane conductances .

11.2.3 Active pumping maintains steady-state membrane potentials
wh ile avo iding large osmotic pressures

'We can now return to the sodium anomaly in Table 11.1. To investigate nonequi 
libriu m steady states using Equation 11 .8, we need separate values of the con
ductances per area, gi, of memb ranes to various ions. Several groups made such
measureme nts arou nd 1948 by using radioac tively labeled sodium ions on one side
of a membrane and ordinary sodium on the oth er side. They then measured the
leakage of radioactivity across the membrane unde r variou s condi tions of imposed
potentials and concentrations. Th is techn ique yields the sodium cur rent, separated
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from the contributions of other ions," The result of such experiments was that nerve
and muscle cells indeed behave ohmically (see Equation 11.8) und er nearly resting
conditions. The corresponding conductances areappreciable for potassium, chloride,
and sodium; A. Hod gkin and B. Katz found that, for the squid axon,

(resting) (11.9)

Thus the sodium conductance is small but not negligible, and certainly not zero.
Section 11.2.1 argued that a nonzero condu ctance for sodium implies that the

cell's resting state is not in equilibrium. Ind eed, in 1951 H. Ussing and K. Zehran
found that living frog skin, with identical solutions on both sides, and membrane
potential 6. V maintained at zero, nevertheless transported sodium ions, even though
the net force in Equation 11.8 was zero. Apparently Equation 11.8 must be supple
mented with an additional term describing the active ion pumping of sodium. The
simplest modification we could entertain is

. _ gNa+ (!:!J. V _ v !'\tnnt) + .pump
) Na+ - Na+ l Na+ 'e

(I UD)

The new, last term in this modified Ohm's law corresponds to a current source in
parallel with the elements shown in Figure 11.4. This current source must do work
if it's to push sodium ions "uphill" (against their electrochemica l potential grad ient).
The new term distinguishes between the inner and outer sides of the membrane: It's
positive, indicating that the membrane pump s sodium outward. The source of free
energy needed to do that work is the cell's metabolism.

A more detailed study in 1955 by Hod gkin and R. Keynes showed that sodium
is not the only actively pumped ion species: Part of the inward flux of potassium
th rough a membrane also depends on the cell's metabolism. Intriguingly, Hod gkin
and Keynes found that the outward sodium-pumping action stopped even in normal
cells when they were deprived of any exterior potassium, a result suggesting that the
pump couples its action on one ion to the other. Hodgkin and Keynes also found
that metabolic inh ibitors (such as din itrophenol) reversibly stop the active pump
ing of both sodium and potassium in individual living nerve cells (Figure 11.5),
leaving the passive, Ohmic part of the fluxes unchanged. Moreover, even with the
cell's metabolism shut down, pumping resumes when one injects the cellular energy
storing molecule ATP into the cell.

To summarize) the results just described pointed to a hypothesis:

A specific molecular machine em bedded in cell membranes hy
drolyzes ATp, then uses some of the resulting free energy to pump
sodium ions out ofthe cell. At the same tim e the pump imports potas
sium, partially offsetting the loss of electric charge from the exported
sodium .

(1 1.11)

6'An alternative approach is to shut down the permeation of other ions by using specific neurotoxins (a
class o f poiso ns).
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Figu re 11.5: (Experimenta l data.) Flux of sodium ions out of a cuttlefish axon after electrical
stimulation. At the beginning ofthe experiment, the axon was loaded with radioactive sodium,
then placed in ordin ary seawater; the loss of radioactivity was monitored. During the interval
represented by the arrow, the axon was exposed to the toxin dinitrophenol. which temporarily
shut down sodium pu mp ing. Later the toxin was washed away with fresh seawater, and ion
pumping spontaneously resumed. The horizontal axis gives the time after the end of elect rical
stimulation; the logarithmic vertical scale gives the rate at which rad ioactively labeled sod ium
left the axon. (Data from Hodgkin & Keynes, 1955.)

The pump operates only when sodium and ATP are available on its inner side and
potassium is available on its outer side. If any of these are cut off, the cell slowly
revert s to the ion concent rations appropriate for equ ilibrium.

Idea 11.11 amo un ts to a remarkably detailed portrait of the memb rane pump,
consider ing that in 1955 no specific membrane constituent was even known to be a
candidate for this job. Clearly something was pump ing those ions; but there are thou 
sands of transmemb rane prot eins in a living cell membrane, and it was hard to find
the right one. Then in 1957, the physiologist j . Skou isolated from crab leg neurons a
single memb rane protein with ATPase activity. By con tro lling the ion content of his
solutions, Skou found that to hydro lyze ATP, his enzyme required both sodium and
potassium , the same behavior Hodgkin and Katz had found for whole nerve axons
(Figure 11.6). Skou concluded that his enzyme must have separate bind ing sites for
both sodi um and potassium . For this and other reason s, he correctly guessed that it
was the anticipated sodium pump.

Additional experiments confirmed Skou's hypotheses: Remarkably, it is possible
to prep are a pure lipid bilayer, introduce the purified pump protein, the necessary
ions, and ATP, then watch as the protein self-assembles in the membrane and begins
to function in this totally ar tificial system.

The fact that the pu mp's ATPase activity depends on the presence of the pumped
ions has an important implication: The pump is a tightly coupled molecular machine,
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Fig ure 11.6 : (Experimental data.) The rate of ATP hydrolysis catalyzed by the sodium
potassium pump, as a function of the available interior sodium and exterior potassium. The
vertical axis gives the qua ntity of inorganic phosphate generated in a certain time interval.
The data show that ifeither sodium or potassium is missing, ATP consumption, and hence Pi
production , stop. (Data from Skou, 1957.)

wasting very little ATP on futile cycles. Later work showed that, in fact, the magnitude
of the potassium cur rent is always two-thirds as large as that of the sodium ions; the
pump maintained this relation across a range of different ATP concentrations. In
other words, the pump carr ies out coupled transport of sodium and potassium ions.
We can think of the machine as a special kind of revolving door, which waits for
th ree Na+-bin ding sites to be occupied on its interior face. Then it pushes these ions
out (or translocates them ), releases them. and waits for two K+-binding sites on the
outer face to be occupied. Finally, it translocates the pot assiurns, releases them on
the interior. and begins its cycle anew. Thus each cycle of this machine causes the net
transport of one unit of charge out of the cell; we say that the pump is elect rogenic."
Specific membrane pumps, or act ive transpo rte rs , of this sort are among the most
important molecular mach ines in a cell.

Before conclud ing that the ATPase enzyme discovered by Skou really is (in part)
responsible for resting membrane potentials, we should verify that the proposed
pumping process is energetically reasonable.

Example: Compare the free energy gain from hydro lyzing one ATP mo lecule with
the cost of running the pump through a cycle.

' Figure 2.21 on page 57 sim plified the sodi um-potassium pu mp. sketching only one ofeach kind of bind
ing site. A »onclectrogcnic pump would have had j~:mp + j ~::P = O. An example of this sort o f behavior is
the H+IK+ exchanger. fo und in the cells lining your stomach. In each cycle, it transport s two prot ons out
of the cell (helping to make your gastric tlu id acidic) while importing two pot assium ions.
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Solution: To pum p one sodium ion out of the cell costs bo th electros tat ic pote ntial
energy - et1V and the free ene rgy cos t of enhancing the world's order (by incremen
tally increasin g the difference in sodium concentration across the membrane). This
entropy is what the Nernst potential measures. Consulting Table I Li on page 477,
the total free energy cost to pump on e sodium ion out is thus

- e(t1 V - V~:.;''' ) = e(60 mV + 54 mV) = e x 114 mV.

For inward pumping of potassium, the corresponding calculation gives

+ e(t1V - V~~"" ) = e(- 60 mV - (-75 mV» = e x 15mV.

which is also positive. Th e tot al cost of on e cycle is then 3(e x 114 mV) +
2(e x 15mV) = 0.0372eV = 15kBT, . (The unit eV, or electron volt , is defined in
Appendix A.) ATP hydrolysis, on the other hand. libe rates about 19kBT, (see Prob 
lem 10.4). The pump is fairly efficient ; on ly 4kBT, is lost as thermal energy.

Let's see how the discovery of ion pu mping helps make sense of the data pre
sen ted in Tab le 11.1 on page 477. Ce rtainly the sodium-potassium pump's net effect
of push ing one unit of positive charge out of the cell will drive the cell's interior po 
tential down. away from the sodium Ner nst po tential and toward that of potassium.
The net effect of removing one os motically active ion from the cell per cycle also
has the right sign to reduce the osmo tic imb alance we found in Do nna n equilibrium
(Equation 11.6 on page 476 ).

To study pumping quantitatively, first note that a living cell is in a steady state
because it maintains its potenti al and ion concentrations indefinitely (as lon g as it
remain s alive). Thus there must be no net flux of any ion ; otherwise, some ion would
pile up somewhere, eventu ally changing the concentrations . Every ion mu st be either
impermeant (like the interior macromolecules), or in Nernst equilibrium, or actively
pumped. Th ose ion s that are actively pumped (Na+ and K+ in our sim plified mod el)
must sepa rately have thei r Ohm ic leakage exactly match ed by their active pu mpi ng
rates. Our mod el assumes that j~~mp = - ~j ~~:P and that j~~:P > 0, because ou r
convention is that j is the flux directed outward. In shor t, for steady state we must
have j Na+ = j K+ = 0, or

. pump __ 'Ohmic _ _ ~ . pump _ _ ~ (_ .Ohmic)
} K+ - }K+ - 3} Na+ - 3 } Na+ .

In this model. chlor ide is permeant and not pumped. so its Nernst potential
must agree with the resting membrane potential. Indeed, from Table 11.1, its Ne rnst
potential really is in good agreeme nt with the actual membrane potential f:j.V =
-60 mV. Turning to sodium and potassium, the previous paragraph implies that the
Ohmic part of the corresponding ion fluxes mu st be in the ratio - ~ ' Th e Ohmic
hypothesis (Equation 11.8) says that
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Solving for a V gives

2 V:-';«Tl~ + 3 VXrrnstgNa+ N + gK+ K+
"'V= '

2gN, + + 3gK+

We now substitute the Nernst potentials appearing in Table IU on page 477, and the
measured relation between conductances (Equation 11.9), finding zsV = - 72 mY.
We can then compare o ur prediction with the actual resting potential, about - 60 mY.

Our model is thus moderately successful at explainin g the observed memb rane
potential. In part the inaccuracy stemmed from our use of the Ohmic (linear) hy
pothesis for membrane conduction, Equation 11.8, when at least one permeant
species (sodium) was far from equilibrium. Neve rtheless, we have qualitatively an
swered our paradox: The membrane potential predicted by Equation 11.12 lies
between the Nernst potentials of sodium and potassium, and is much closer to the
latter. as observed in experiments. Indeed, Equation 11.12 shows that

The ion species with the greatest conductance per area gets the biggest
vote in determin ing the steady-state membrane potential. That is, the
resting mem brane potential '" V is closer to the Nemsr potent ial of (I U 3)
the m ost permeant pumped species (here, v~~mst ) than it is to that of
the less permeant ones (here, v~'.;" ) .

Our pred iction for z, V also displays experimentally verifiable trends as we change
the ion co ncentrations on either side of the membrane.

Even more interesting, if ou r membrane could suddenly switch from con duct
ing pota ssium better than sodium to the other way round, then Idea 11.13 predicts
that its tran smembrane potentia l would change drastically, switching suddenly from
a negative value close to V~~nsl to a positive value closer to V~:~_' l . And in fact, Chap
ter 12 will sho w that the measured membr ane potential dur ing a nerve impulse really
does reverse sign and come close to V~:~s, . But this is idle speculation-isn't it?Surely
the permeabilities of a membrane to various dissolved substances are fixed forever
by its physical architecture and chemica l co mpos ition-aren't they? Chapter 12 will
come back to this point.

1121Section 11.2.3' on page 501 com ments more about active ion pumping.

11 .3 MITOCHONDRIA AS FACTORIES

Like kinesin, studied in Chapter to, the sodium-potassium pump runs on a fuel, the
molecule ATP. Other molecular motors also run on ATP (or, in so me cases, other
NTPs). It takes a lot of AT? to run your body-som e estimates are as high as 2 . 1026

AT? molecules per day, all ultim ately derived from the food you eat. That much AT?
would weigh 160 kg, but you don 't need to carry such a weight around: Each ATP
molecule gets recycled many times per min ute. That is, ATP is a carrier for free energy.

ATP synthesis in eukaryotic cells also invo lves active ion pumping, altho ugh not
of sodium or potassium. Instead, the last step in oxidizing you r food (called respi
ration) pumps protons across a membrane. The next four sections will describe a
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remarkable molecular machine that accomplishes ATP synthesis starting from a pro
ton gradient.

11.3.1 Busbars and driveshafts distribute energy in factories

Chapter lOused the term machine to denote a relatively simple system, with fewparts,
doin g just one job. Indeed, the earliest technology was of this sor t: Turn a crank, and
a rope lifts water out of the well.

As technology developed. it became practical to combine machine s into a fac
tory. a loose collection of several machines with specialized subtasks. The factory was
flexible: It could be recon figured as needed, ind ividual machines could be replaced,
an without disruptin g the overall operation. Moreover, some of the machines could
specialize in importing energy and converting it into a common currency to be fed
into the other machines. The latter then made the final prod uct, or perhaps yet an
other form of energy currency for export.

The drawing on page 1shows such a factory, circa 1820. The waterwheel converts
the weight of the incoming water to a torque on the driveshaft. The driveshaft runs
through the mill, d istributing mechanical energy to the various machines attached to
it. Later, the invention of electric technology allowed a more flexible energy currency,
the potential energy of electrons in a wire. With this system, the initial conversion
of chemical energy (for example, in coal) to electricity could occur many kilometers
away from the point of use in the factory. With in the factory, distribution could be ac
complished by using a busbar, a large conducting bar running through the building,
with various machines attached to it.

Figure 11.7 sketches a factory of a sort that could supply hydrogen-powered au
tomobiles. Some high-energy substrate, like coal, comes in at the left. A series of
transductions converts the incoming free energy to the potential energy of electrons
for convenient transport (the electrons themselves are recirculated). In the factory, a
busbar distributes the electricity to a series of electrolytic cells, which convert low
energy water molecules to high-energy hydrogen and oxygen. The hydrogen gets
packaged and delivered to cars, which burn it (or convert it directly to electricity) and
generate useful work. In winter, some of the electricity can instead be sent through
a resistor, doing no mechanical work but warming up the factory for the comfort of
those working inside it.

The next sections will discuss the close parallels between the industrial process
just described and the activity of mitochondria.

11.3.2 The biochemical backdrop to respiration

The overall biochemical process we wish to study is one of oxidation. Originally th is
term referred to the chemical addition of oxygen to something else; and indeed, you
breathe in oxygen, attach it to high-energy compo unds containing carbon and hydro 
gen, and exhale low-energy H, O and CO, . Chemists have found it useful, however, to
generalize the concept ofoxidation in order to identify individual subreactions as ox
idation or the opposite process, reduction. According to this generalization, the key
fact about oxygen is the tremendous lowering of its internal energy when it acquires
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Figure 11.7: (Schematic.) An imagined industrial process. (a) Chemical fuel is burned, ultimately creating a difference
in the electrostatic potential of electrons across two wires. The difference is maintained by electrical insulation (in this
case, air) between the wires on the far right. (b) Inside a factory, the electrons are used to drive an uphill chemical
process, converting low-energy molec ules to ones with high stored chem ical energy. The latter can then be loaded into an
automobile to generate torque and do useful work. If desired. some of the electrons' potential energy can be converted
directly to thermal form byplacing a resistor (the "heater") across the power lines.

an additio nal electron. Thus as mentioned in Chapter 7, in a water molecule, the
hydrogen atoms are nearly stripped of their electrons, having given them almost en
tirely to the oxygen. Burning molecular hydrogen in the reaction 2H, +0 , --+ 21l, O
thus oxidizes it in the sense of removing electrons.

More generally, any reaction removing an electron from an atom or molecule is
said to "oxidize" it. Because electrons are neither created nor destroyed in chemical
reactions. any oxidation reaction must be accompanied by another reaction effec
tively addi ng an electron to something-a reduction reaction . For example, oxygen
itself gets reduced when we burn hydrogen; indeed, adding a neutral hydrogen atom
to anything is considered a reduction.

With this terminology in place, let's examine what happens to your food. The
early stages of digestion break down complex fats and sugars to smaller molecules
such as the simple sugar glucose, which then get transported to the bod y's individ
ual cells. Once inside the cell, glucose undergo es glycolysis in the cytoplasm. We will
not study glycolysis in detail, although it does generate a small amo unt of ATP (two
molecules per glucose). Of greater interest to us is the fact that glycolysis splits glu
cose to two molecules of pyruvate (CH,-CO-COO- ), another small, high-energy
molecule.

In anaerobic cells, glycolysis is essentially the end of the story. The pyruvate is a
waste product, which typically gets converted to ethanol or lactate and excreted by
the cell, thu s leaving only the two ATP molecules per glucose as the useful product
of metabolism. Prior to about 1.8 billion years ago, Earth's atmosphere lacked free
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oxygen, and living organisms had to manage with this anaerobic metabolism. Even
today. intense exercise can locally exhaust your muscle cells' oxygen supply, switching
them to anaerobic mode, with a resulting buildup of lactate.

With oxygen, however, a celi can synthesize about 30 more molecules of ATP per
glucose. In 1948, E. Kenn edy and A. Lehningerfound that the site of thissynthesis is
the mitochondrion (Figure 2.6 on page 42). The mitochondrion carries outa process
calied oxidative phosphorylation: Tha t is, it imports and oxidizes the pyruvate gen
erated by glycolysis, coupling this energeticaliy favorable reaction to the unfavorable
one of attaching a phosphate group to ADP ("phosphorylating" it).

The mitochondrion is surrounded by an outermembrane, which is permeableto
most small ion s and molecules. Inside this membrane lies a convoluted inner mem
brane, who se interior is called the m atrix . The matrix contains closed loops of DNA
and its transcripti onal apparatus, sim ilar to tho se in a bacterium . The inner side of
the inner membrane is densely studded with button s visible in electron microscopy
(sketched in Figure 2.6b). These are ATP synthase particles, to be discussed in Sec
tion 11.3.3.

Figure 11.8 shows in very rough form the steps involved in oxida tive phosphor y
lation , discussed in this section and the next one. The figure has been drawn in a way
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Figu re 11.8 : (Schematic.) Outline of the activity of a mitochondr ion , emphasizing the parallels to Figure 11.7.
(a) Metabolism of sugar generates a difference in the electrochemical potential of proton s across the inner mitochon 
drial membrane. For simplicity, "NAD H" represents both the carrier molecules NADH and FADH 2 . The dashed line
represents an indirect process of import into the mitochondr ion. (b) The proton s, in turn, drive a number of molecular
machines. (Although mitochond ria do not have flagella, bacteria such as E. coli have a similar arrangemen t, which do es
drive their flagellar motor.)
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intended to st ress the parallels between the mitochondrio n and the simple factory in
Figure 11.7.

Decarboxylation ofpyruvate The first step in oxidative pho sphorylation takes place
in the mitochond rion's matrix. It involves the removal of the carboxyl (CO) group
from pyruvate and its oxidat ion to CO2, via a giant enzyme com plex called pyru
vate dehydrogenase (see Figure 204m on page 38). The remainder of the pyruvate is
an acetyl group, CH,-CO-; it gets attached to a carrier molecule called coenzyme A
(abbreviated Cox) via a sulfur atom, thu s forming acetyl-CoA. As mentioned ear
lier. a reduction must accompany the oxidat ion of the carbon. The pyruvate dehy
drogenase complex cou ples the oxidation tightly to one particularreduction, that of
the carrier molecule nicotinamide adenine dinucl eotide (or NAD+). The net reac
tion,

CH,- CO-COO- + HS-CoA + NAD+ ---. CH,-CO-S-CoA + CO, + NADH,

(11.14 )

adds two electron s (and a proton) to NAD+, to yield NADH. Glycolysis also gen
erates anoth er molecule of NADH per pyruvate; this NADH enters the respiratory
cha in ind irectly (dashed line in Figure 11.8),

Krebs cycle The second step also occurs in the mitochondrial matrix. A cycle of
enzyme-catalyzed reactions picks up the acetyl-Cox generated in the previous step,
oxidizing further the acetyl group and recovering coe nzyme A. Corresponding to this
oxidation , three more mol ecules of NAD+ are reduc ed to NADH; in additi on , a sec
ond carrier molecule, flavin adenin e dinucleotide (abbreviated FAD), gets reduced
to FADH2 . The net reaction ,

CH, -CO-S-CoA + 2H,O + FAD + 3NAD+ + GDP' - + P~-

---. 2CO, + FADH, + 3NADH + 2H+ + GTP'- + HS-CoA, (1 1.15)

Your
Turn
110

thus adds eight electrons (and three proton s) to the carr iers FAD and NAD+. It also
generates one GTP, which is energetically equivalent to an ATP. This part of the reac
tion is called the Krebs cycle, or the t ricarboxylic acid cycle.

Confirm that Reaction 11.15 is properly balanced.

Summary Reactions 11.l 4 and 11.15 oxidize pyruvate completely: Pyruvate's three
carbon atoms each end up as molecules ofcarbon dioxide. Conversely, four molecules
of the carri er NAD+ and one of FAD get reduced to NADH and FADH, . Because
glycolysis also generates two molecules of pyruvate and two of NADH, the overall
effect is to generate ten NADH and two FADH, per glucose. Two ATP per glucose
have also been formed from glycolysis, and the equivalent of two more from the Krebs
cycle.
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, 1.3.3 The chemiosmot ic mechanism identifi es the mitochondrial inner
membrane as a busbar

How does the chemical energy stored in the reduced carriermolecules get harnessed
to synthesize ATP? Early attempts to solve this puzzle met with a frustrating inabil
ity to pin down the exact stoichiometry of the reaction: Unlike, say, Reaction 11.14,
where each incoming pyruvate yields exactly one NADH, the number of ATP mole
cules generated by respiration did not seem to be any definite. integral number.This
difficulty dispersed with the discovery of the chemiosmo tic mechanism, proposed
by Peter Mitchell in 196I.

According to the chemiosmotic mechanism, ATP synthesis is indirectly coupled
to respiration via a power transmission system. Thus we can break the story down
into the generation, transmission, and utilization of energy, just as in a factory (Fig
ure 11.8).

Genera tion The final oxidation reaction in a mitochondrion (respiration) is

(l l.l6)

Your
Turn

l1E

(FADH2 undergoes a similar reaction. ) This reaction has a standard free energy
change of' t>~AD = - 88ksTn but the enzyme complex th at facilitates Reac
tion 11.16 couples it to the pumping of 10 protons across the inner mitochondrial
membrane. The net free energychange of the oxidation reaction is thus partially off
set by the difference in the electrochemical potentialof a proton across the membrane
(see Section 8.l.l on page 295), tim es 10.

a. Adapt the logic of the pump energetics Exam ple (page 484) to find the dif
ference in electrochemical potential for protons across the mitochondrial
inner membrane. Use the following experimental input:The pH in the ma
trix minus that outside is ~pH = 1.4, whereas the corresponding electro
static potentia) d ifference equals t>V '" -0.16volt.

b. The difference you just found is often expressed as a protonmotive force (or
p.m.f.), defined as ( t>/lw) le. Compute it, expressing your answer in volts.

c. Compute the total t>~AD + 1Ot>/lH+ for the coupled oxidation of I mol
ecule of NADH and tran sport of 10 protons. Is it reasonable to expect this
reaction to go forward? What information would you need to be sure?

Transmission Under normal conditions, the inner mitochondrial membrane is im
permeable to protons. Thus by pumping protons out, the mitochondrion creates an
electrochemical potential difference that spreads all overthe surfaceofits inner mern-

8The actual ~G is even greater in magnitude than t::. CO because the co ncentrations of the participating
species are not equal to their standard values. We will nevertheless use the value given here as a rough
guide.
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brane. The impermeable membrane plays the role of the electrical insulation sepa
rating the two wires of an electric power cord: It maintains the potenti al difference
between the inside and out side of the mitochondrion. Any oth er mac hine embed
ded in the membrane can utilize the excess free energy rep resented by this 6./1 to do
useful work, just as any machine can tap into the busbar along a factory.

Utilizat ion The chemiosmotic mechanism requires a second molecular machine,
the ATP synthase. embedded in the inner membrane. The se mach ines allow pro
ton s back inside the mitochondrion but couple their transport to the synthesis of
ATP. Under cellular conditions, the hydrolysis of ATP yields a "' GAT P of about 20k.T,
(see Appendix B). This value is abou t 2.1 times the value you found for the proton's
IC1 J11 in Your Turn 11E, so we conclude that at least 2. 1 proton s must cross back into
the mitochondrion per ATP synthesis. The actual value' is thou ght to be closer to 3.
Another pro ton is tho ught to be used by the active transporters that pull ADP and
Pi into, and AT? out of, the mitocho ndrion. As mention ed earlier, each NAD H oxi
dation pumps 10 proton s ou t of the mitochon drion. Thus we expect a maximum of
about 10/(3+ I), or roughly 2.5 ATP molecules synthesized per NADH. This is indeed
the approximate sto ichiometry measured in biochemica l experiments. The related
molecule FADHz generates an average of ano ther 1.5 AT? from its oxidatio n. Thus
the 10 NADH and 2 FADH, generated by the oxidation of I glucose molecule ulti
mately give rise to 10 x 2.5 + 2 x 1.5 = 28 ATP molecules.

Adding to these 2 ATP generated directly from glycolysis and the 2 GTP from the
Krebs cycle yields a rough total ofabout 32 molecules of ATP or GTPfrom the oxidation
of a single glucose molecule. This figure is on ly an upper bo und because we assumed
high high efficiency (small dissipative Insses) thro ughout the respiration/synthesis
system. Remarkably, the actual ATP production is close to th is limit : The machinery
ofoxidative phosp horylation is quite efficient. The schematic Figure 11.9 sum marizes
the mec hanism presented in this section.

IT21Section 11.3.3' on page 502 com ments some more about ATP production .

11.3.4 Evidence for the cherntosrnottc mechanism

Several elegant experime nts confirm the chemiosmotic mechanism .

Independence of generation and utilization Several of these expe rime nts were de
signed to dem onstrate that oxidation and phosphorylation proceed almost indepen
dently, linked only by the common value of the electrochemical potent ial difference,
C1J.L , across the inner mitochon drial membrane. For example, artificially changing
~J1 by preparing an acidic exterior so lution was foun d to induce AT? synthesis in
mitochondria wi thout any so urce of food . Similar results were obtained with chloro
plasts in the absence of light. In fact, an external electrostatic potential can be di
rectly applied across a cell membrane to op erate other proton-driven motors-see
this chapter's Excursion.

"The precise stoichiometry of the ATP synthase is still underdebate. Thus the numbers here are subject to
revision.
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Figure 11.9 : (Schematic.) Mechanism of oxidative phosphorylation. Electronsare taken from
NADH molecules and transferred down a chain of carriers (blackdots), ultimately ending up
on an oxygenatom in water. Twoof the membrane-bound enzymes shown couple this process
to the pumping of protons across the inner mitochondrial membrane, seen in cross section.
Protons then flow back through the FOFl complex (right), which synthesizes ATP. Seealso the
more realistic depiction of this crowded system in Figure 2.20 on page 57. [From Goo dsell,
1993·1

In a more elabo rate experime nt, E. Racker and W. Stoec kenius assembled a to
tally artificial system, combining artificial lipid bilayers with a light-driven proton
pump (bacteriorhodopsin) obtained from a bacterium. The resulting vesicles gener
ated a pH gradient when exposed to light. Racker then added an ATP synthase from
beefheart to his preparation . Despite the diverse origins of the components) the com
bined system synthesized ATPwhen exposed to light , a result again emphasizing the
independence of ATP synthase from any aspect of the respiratory cycle other than the
electrochemical potential difference /:;. Jl..

Membrane as electrical insulation It is possible to rip apart the mitochondrial
membrane into fragments (using ultrasound), without damaging the individual
prote ins embedded in it. Ordin arily these fragments would reassemble into closed
vesicles, because of the high free energy cost of a bilayer membrane edge (see Sec
tion 8.6.1l, but this reassembly can be prevented by adding a detergent. The deter
gent, a one-chain amphiphile, protects the membrane edges by form ing a micellelike
rim (Figure 8.8 on page 325). When such fragments were made from the mito
chond rial inner membrane, they continued to oxidize NAD+ bllt lost the ability to
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synthesize AT? The loss of function makes sense in the light of the chemiosmotic
mechanism: In a membrane fragment , the electr ical tran smission system is "short
circuited"; protons pumped to one side can simply diffuse to the other side.

Similarly, int rod ucing any of a class of memb rane chan nel proteins. or ot her
lipid-soluble com pounds known to transpor t protons sho rt-circuits the mitochon
drion , cutt ing ATP product ion . Analogous to the electr ic heater shown in Figure 11.7,
such short-circuiting converts the chemical energy of respiration directly into heat.
Some animals engage this mechanism in the mitochondria of"brown fat" cells when
they need to turn food directly into heat (for example, during hiberna tion).

Operat ion of the ATP synthase We have seen that an elaborate enzymatic appara
tus accomplishes the oxidation of NADH and the associated pro ton pumping. In
contrast, the ATP synthase turned out to be remar kably simple. As sketched in Fig
ure I l.l Oa, the synthase consists of two major uni ts, called FOand FI. The FO unit
(shown as the elements a, b, and c in the figure) is normally embedded in the in
ner mitochondrial membrane, with the Fl unit (shown as the elements a , (3, y , 0,
and E in the figure) projecting into the matrix. Thus the FI units are the round but 
tons (sometimes called lollipops) seen project ing from the inner side of the mem
brane in electron micrograph s. They were discovered and isolated in the 1960s by
H. Fernandez-Moran and by Racker, who found that, in isolation, they catalyzed the
breakdown of ATP. This result seemed paradoxical: Why should the mitochondrion,
whose job is to synthesize ATP, cont ain an ATPase?

To answer the paradox, we first must remember that an enzyme cannot alter the
direct ion of a chemical reaction (see Ideas 8.15 on page 303 and 10.13 on page 429 ).
~G sets the reaction's direction, regardless of the presence of enzyme. The only way
an enzyme can imp lement an uphill chemical reaction (~Gn > 0 for ATP synthe
sis) is by coupling it to some downhill process ("'CFO < 0), with the net process

El -uhit
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Figure 11.10 : (Schematic; video micrograp h frames.) Direct observation of the rotation of the c ring of the FO proton
turbine. (a) A complete ATP synthase from E. coli (both FOand FI units) is atta ched to a coverslip, and a long, fluores
cendy labeled filamen t of actin is attached. (b) Successive video frames showing the rotation of the actin filament in the
presence of5 m M AT? The frames are to be read from left to right, start ing with the first row; they show a cou nterclock
wise rotation of the actin filament. jFrom Wada et al., 2000.1
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being downhill (t.GFI + t.GFO < 0). So the Ft un it must somehow be coupled to
the FO unit; FO, bein g embedded in the membran e, is driven by the electrochemical
potential difference of protons across the membrane. By isolating the F1 unit, the ex
perimenters had inadvertently removed this coupling, thereby converting FI from a
synthase to an ATPase.

In 1979, P. Boyer pro po sed tha t both FOand FI are rotary molecular mach ines,
mechanically co upled by a driveshaft. Accordi ng to Boyer 's hypothesis, we may think
of FO as a proton "turbine," driven by the chemical potential differenceof protons and
supplying torque to FI. Boyer also outlined a mechanochemical pro cess by which FI
could convert rotary motion to chemical synthesis. Fifteen years later,J. Walker and
coauthors gave concrete form to Boyer's model, finding the detailed atomic structure
for Pt (sketched in Figure II.I0a). Th e elemen ts label ed a, b, a . p, and 8 in the figure
remain fixedwith respect to one another; c, y, and f rotaterelative to them. Each time
the driveshaft y passes a fJ subunit, the FI unit catalyzes the interconversion of ATP
with ADP; the direction of rotation determines whether synthesis or hydrolysis takes
place.

Although static atomic structures such as the one in Figure 11 .1Oa can be highly
suggestive, nevertheless they do not actually establish that one part moves relative to
another. The look-and- see proof th at FI is a rotary machine came from an ingenious
direct experiment by K. Kino sita , Ir., M. Yoshida, and coauthors. Figure 11.10 shows
a second-generation version of this experiment.

With a diameter of less than 10 nm, F t is far too small to ob serve directly by light
microscopy. To overcome this problem, the experimenters attached a long, stiff actin
filam ent to the c eleme nt, as sketched in Figure 11.10a. They labeled the filame nt with
a fluorescent dye and anchored the a and f3 elements to a glass slide, so that relative
rotary motion of the c element would crank the entire actin filament. The resulting
motion pictures showed that the motor took random (Brownian) steps, with no net
progress, until ATP was added. With ATP, it moved in one direction at speeds up to
about six revolutions per second. The motion was not uniform;slowing the FI motor
by using low AT? levels showed discrete, 1200 steps. Such steps are just wha t we wou ld
expect on structural grounds:The structure ofF 1shows three f3 subunits, each spaced
one-third of a revolution from the others. (Compare with the steps taken by kine sin,
Figure 10.22 on page 439.) Th e subsequent experime nt shown in Figure I UO used
the entire FOF I complex, not just FI , to confirm that the FO really is rigidly con nec ted
to FI.

The experiments just described also allow an estimate of the torque generated
by AT? hydrolysis (o r the torque required for AT P synthesis), using ideas from low
Reynolds-number flow. The experimenters found that an actin filament 1fl m long
rotated at about 6 revolutions per second, or an angular velocity of 2Jr x 6 radians per
second, when AT? was supplied. Section 5.3 .1 on page 172 claimed that the viscous
drag force on a th in rod, dragged sideways through a fluid , is proportional to its speed
v and to the viscosity of water n. Th e force should also be proportion al to the rod 's
length. Detailed calculation for a rod of length I II rn, with the thi ckn ess of an actin
filament, gave Kinosita and coauthors the constant of proportionality:

f '" 3.0./Lv. (1 1.17)
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Your
TUrn

1JF

Your
Turn
1JG

Equa tion 11.17 gives the force needed to drag a rod at a given speed v. But we
want the torque needed to crank a rod pivo ted at one end at angularvelocity llJ.

a. Work this out from Equat ion ILl7. Evalua te your answer for a rod oflength
1 /lrn rotating at 6 revolutions per second.

b. How much work must the PI motor do for everyone-third revolution of
the actin filament?

More precisely. the rotatio n rate just quoted was achi eved when ATP was sup
plied at a concentration CATP = 2 m M, along with CADP = 10 J.lM and CPi = 10 rnM.

a. Find ll.G for ATP hydrolysis under these conditions (recall Section 8.2.2 on
page 301 and Problem lOA on page 465).

b. Each ATP hydrolysis cranks the y element by one-thi rd ofa revolution . How
efficiently does FI transduce chemical free energy to mechanical work?

Thus FI is a highly efficient transducer when operated in its ATPase mode. Unde r nat
ural co nditio ns, FI operates in the opposite direction (converting mechanical energy
supplied by FO to ATP product ion ) wi th a sim ilarly h igh efficiency, contributing to
the overall h igh efficiency of rerob ic metabolism .

11.3.5 Vista: Cells use chemiosmoli c coupling in many other contexts

Sectio n 11.2 introdu ced ion pump ing across me mbranes as a practical necessity, rec
onciling

• The need to seg regate macromolecules inside a cellular co mpartment, so that they
can do their jobs in a co ntrolled chemical environment,

The need to give macromolecu les an overall net negative charge. to avert a clump
ing catastrophe (see Sect ion 704 .1on page 261), and

Th e need to maintain osmo tic balance, or osrnoregulate, to avoid excessive internal
pressure (see Section 11.2.1).

This chain oflogic may well explain why ion pumps evolved in the first place: to meet
a challenge po sed by th e physical world.

But evolutio n is a tinkerer. Once a me chanism evolves to solve one prob lem. it's
available to be pressed into service for some totally different need. Ion pumping im
plies that the restin g. or steady, state o f the cell is not in equilibrium and . hence, is not
a state of minima l free energy. That is, the resting state is like a charged batte ry, with
available free energy distributed all over the membrane. We should th ink of the ion
pu mps as a "tr ickle charger," constantly keep ing the ba tte ry charged despi te "current
leaks" that tend to discharge it. Section 11.3.3 showed one useful cellular function
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that such a setup cou ld perform: the transmission of useful energy among mac hines
embedded in the mitochondrial membrane. In fact, the chemiosmotic mechanism is
so versatile that it appears over and over in cell biology.

Proton pumping in chloroplasts and bacteria Chapter 2 mentioned a second class
of ATP-genera ting orga nelles in the cell, the chloroplasts. These organelles capture
sun light and use its free energy to pump protons across their membrane. From this
point on, the story is similar to that in Section 11.3.3: The proton gradient dr ives a
"CFOCF1" complex similar to FOFt in mit ochondri a.

Bacteria, too, maintain a proton gradient across their membranes. Some ingest
and metabolize food , to dri ve proton pumps related to, though simpler than, tho se in
mitochondria. Others. for example, the salt-loving Halobaaeriurn salitwrium contain
a light -driven pump, bacterio rhodopsin. Again. whatever th e source of the proton
gradient. bacter ia conta in FOF1 synthases quite simila r to those in mit ochondria and
chloro plasts. Thi s high degree of homology, found at the molecular level, lends strong
sup po rt to the theo ry that bo th mitochondr ia and chloroplasts originated as free
living bacteria. At some point in history, they apparently for med symbiotic relat ions
with other cells. Grad ually the mitochond ria and chloroplasts lost their ability to live
independently, for example, both losing some of their genome.

Other pumps Cells have an array of active pumps. Some are powered by ATP: For
example, the calcium ATPase, which pumps CaH ions out of a cell, plays a role in the
transmission of nerve imp ulses (see Chapter 12). Others pull one mol ecule against its
gradient by coupling its motion to the transport ofa second species almlg its grad ient .
Thus, for example, the lactose permease allows a proton to enter a bacterial cell, but
only at th e price of bringing along a sugar mo lecule. Such pumps, where the two
coupled motions are in the sam e direction, are generically called symports. A related
class of pumps, coupling an inward to an outward transport. are called antiports.
An example is the sod ium-calcium exchanger. which uses sodium's electrochemical
potenti al gradient to force calcium out of animal cells (see Prob lem 11.1).

TIle flagellar motor Figure 5.9 on page 176 shows the flagellar motor, another re
markable molecular device attached to the power busbar of E. coli. Like FO, the mo
tor converts the electrochemical potential jump of protons into a mechanical torque;
Section 5.3. 1 on page 172 described how this torque turns in to d irected swimm ing
mo tion. The flagellar motor spins at up to 100 revolut ion s per second; each revolu
tion requi res the passage of about 1000 protons. This chapter's Excursion describes
a rema rkab le exper ime nt show ing directly the relation between protonmotive force
and torque generation in thi s motor.

11.4 EXCURSION : "POW ERING UP THE FLAGELLAR MOTOR"
BY H. C. BERG AND D. FUNG

Flagellar rot ary motors are driven by protons or sodium ions that flow from the out
side to the inside of a bacter ial cell. Escherichia coli uses protons. If the pH of the
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Figure 11.11: (Photomicrograph; schemat ic; experimental data.) Experiment to show that the flagellar moto r runs on
proton mot ive force. (a ) Micropipette tip used to study the bacterial flagellar motor . (b) Micropipette with a par tially
inserted bacterium. Dashed lines represent the part of the cell wall permeabilized by a chemical in the pip ette. (e ) Flagellar
motor speed versus the protonmotive force across the part of the membrane con taining the motor. [(a ) Image kindly
supplied by H. C. Berg; see Fung & Berg, 1995.J

external medium is lower than that of the internal medium, protons move inward
by diffusion. If the electrostatic potent ial of th e externa l medium is high er than that
of the internal medium, they are driven in by a transmembrane electric field. We
thought that it wou ld be instructive to power up the flagellar motor with an exter
nal voltage source, for example. a laboratory power supply.to Escherichia coli is rather
small, less than I I-'m in diameter by about 21-'m long. And its inner membrane, the
on e that needs to be energized, is enclosed by a cell wall and porous outer membrane.
Thu s, it is difficult to inser t a micropipette into a cell. But one can put a cell into a
micropipette.

First, we grew cells in the presence of a penicillin analog called cephalexin: This
procedure suppresses septation (formation of new cell walls between the halves of
a dividin g cell). The cells then just grow lon ger without dividing-they become fil
amentous, like snakes. Then we attached inert markers (dead cells of normal size)
to one or more of their flagella. We learn ed how to make glass micropipettes with
narrow constrictions (Figure l 1.1Ia). Then by suction, we pulled a "snake" about
halfway into the pip ette, as shown schematically in panel (b) of the figure. The pipette
contained an ionophore, a chemical that made the inner segment of the cell perme
able to ions, as indicated by the dashed lines. On e electrode from the voltage clamp
was placed in the externa l medium and the other was placed inside th e pipette. At the
beginni ng of the experiment, the largest resistance in the circuit between the elec-

10Actually, we used a voltage clamp ; see Section 12.3.1 on page 532.
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trades was the membrane of the outer segment: Th e resistan ces of the fluid in the
pipette and of the memb rane of the inner segment were relatively small. Th erefore,
nearly all of the voltage drop was across th e memb rane of th e outer segment, as de
sired. However, a substantial fraction of the current flowing between the electrodes
leaked around the outside of the cell, so we could not measure the current flow
ing through the flagellar moto rs (or other membrane ion chann els). The job of the
voltage clamp circuitry was to supply whatever current was necessary to maintain a
specified difference in potent ial.

When we turned up the control knob of the voltage clamp , the marker spun
faster. When we turned it down, the marker spun more slowly. Ifwe turned it up too
far (beyond about 200 mV), the motor burned out. In between , th e angular speed
of the motor proved to be linearly proportional to the applied voltage, a satisfying
result. When we reversed th e sign of the voltage, the motor spun backward for a few
revolution s and then stopped. When we changed the sign back again , th e motor failed
to start for several seconds, and then sped up in a stepwise manner, gaining speed
in equally spaced increments. Eviden tly, the different force-generating elements of
the motor- we thin k there are eight, as in a V-8 automobile engine- either were
inactivated or came off of the moto r when expo sed to the reverse potenti al. They were
reactivated or replaced, one after another, when the initial potential was restored! We
did not expect to see th is self-repair phenomenon.

The main difficulty with this exper iment was that the ionophore used to perme
abilize the inner segment soon found its way to the oute r segment, destroying the
prepara tion. Correction could be made for thi s, but only for a few minutes. We are
still trying to find a better way to permeabil ize the inner segment.

For more details See Blair & Berg, 1988 and Pung & Berg, 1995.
Howard Berg is ProfessorofMolecular and Cellular Biology and ofPhysics at Harvard University.

Having studied chemistry, medicine, and physics, he began looking for a problem involving all

these fields-and settled on the molecular biology of behavior. David Pung did his doctoral work

011 several aspects of the bacterial flagellar motor. He currently works on technology transfer at

Memorial Sloan-Kettering Cancer Center in New York.

THE BIG PICTURE

Let's return to the Focus Question . This cha pter gave a glimpse of how cells actively
regulate their int erior compositio n and, hence, their volume. We followed a trail of
clues that led to the discovery of ion pumps in the cell membrane. In some ways, th e
story is reminiscent of the discovery of DNA (Chapter 3): A tour de force of ind irect
reasoning left little doub t that some kind of ion pump existed, years before th e direct
isolation of the pump enzyme.

We then turned to a second use for ion pumpi ng, the transmission of free ener gy
from th e cell's respiration pathway to its ATP synthesis machin ery. The following
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chapter will develop a third use: Ion pumps create a nonequi librium state in which
excess free energy is distributed ove r the cell's membrane. We will see how another
class of molecu lar devices. the voltage-gated ion channels, can turn this "charged"
membran e into an excitable medium . the resting state of a nerve axon.

KEY FORM ULAS

Gibbs- Donnan: If several ion species can all permeate a membrane, then to have
equilibrium, their Nernst potenti als must all agree with on ano ther (and with the
externally imposed potential drop, if any). For example. suppose that the ions are
sodium, potassium. and chloride. and let CI,i and C2.i be the exterior and interior
concentratio ns, respectively. of species i. Then (Equation 11.5)

Pumps: The effect of active ion pumping is to add an ATP-dependen t curren t
source to the membrane. Making the Ohmic hypothesis gives j Na+ = gN;+ (6 V 

V~:~st) + j~:~P (Equation I I. IO). Here j Na+ is the flux of sodium ions, gNa+ is
the membrane's conductance. V~:~M is the Nernst potent ial, and 6 V is the actual
pot ential difference across the membran e.
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1. To see why the charge density in the membran e is small, think of how permeation
works :

a. Some permeation occu rs through channel s; the volume of these channels is a
small fract ion of the total volume occupied by the membrane.

b. Some perm eation occurs bydissolving the ions in the mem bran e ma terial. The
corresponding par tition coefficient (see Section 4.6.1 on page 135) is small be
cause the ions have a large Born self-energy in the membrane inte rio r. whose
permittivity is low (see Section 7.4.1 on page 261).

2. We can get Equation ILion page 474 more explicitly if we imagine membrane
perm eation literally as diffusion through a channel in the membrane. Applying
the argument in Section 4.6.3 on page 139 to the channel gives

Track 2 501 I

V' _ V' = _ kHT in 1.
2 1 ze c'

1

Here V' and c' refer to the po tential and dens ity at the mo uth of the chan
nel (at lines B or C in Figure 11.2). But we can write similar form ulas for the
pot ential drops across the charge layers themselves. for example. V2 - V~ =
- «k. TI (ze)) In(c';c21 . Addin g these three formulas again gives Equation I LL

Actually, we needn't be so literal. The fact that the permeabili ty of the mem
brane drops out of the Nernst relation means that any diffusive transport process
will give the same result. .

IT21 11.2.2 ' Track 2

Section 11.2.2 on page 478 mentioned that there will be nonlinear corrections to
Ohmic behavior when /:). V - V jNcm Sl is not sma ll. Ind eed , each of the many ion
conductances has its own character istic current-versus-potential relation, some of
them highly nonlinear (or rectifying), others no t. One simple model for a nonlinear
current- voltage relat ion is the Goldm an-Hodgkin-Katz formula. (See for example
Appendix C of Berg, 1993.)

IT2 1 11.23' Track 2

I. Adding up the columns of Table Il.l on page 477 seems to show that even with
ion pum ping, there is a big osmotic imbalance across the cell membrane. We must
remember, however, that even though the list of ions shown in the table is fairly
complete for the extracellular fluid (essentially seawater), still the cytoso l has many
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other osmotically active solutes not listed in the table. The total of all interior
solute species just balances the exterior salt, as long as active pumping keeps the
interiorsodium level small. If active pumping stops, the interior sodium level rises
and an inward flow of waterensues.

2. The sodium-potassium pump can be artificially driven by external electric fields
instead of by ATP. Even an oscillating field (which averages to zero) will induce
a directed net flux of sodium in one direction and potassium in the other: The
pump uses the nonequilibrium, externally impo sed field to rectify the thermally
activated barrier crossings of these ions. likethe diffusing ratchet model of molec
ular motors (Section 10.4.4 on page 446). (See Astumian , 1997; Langer, 1991.)

1121 1133'Track2

Section 11.3.3 mentioned that pyruvate and ADP enter the mitochondrial matrix,
and ATP exits, via specialized transporters in the mitochondrial membrane. Forde
tails, see Berg et al., 2002.
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PROBLEMS'

11.1 Heart failure
A muscle cell normally ma inta ins a very low int erior calcium concentration; Sec
tion 12.4.2 will discuss how a small increase in the interior leaHI causes the cell to
contrac t. To maintain th is low concentration, muscle cells actively pump out Ca2+.
The pump used by cardiac (heart) mu scle is an antipo rt (Section 11.3.5): It coup les
the extrus ion of calciu m ion s to the entry into the cell of sodium.

The drug oubain suppresses the activ ity of the sodium- potassium pump. Why
do you suppose thi s drug is wid ely used to treat heart failure?

11.2 Electrochemical equilibrium
Suppose we have a pa tch of cell membra ne stuck on the end of a pipette (tube).
Th e mem bran e is permeable to bicarbona te ions, HC0 3" . On side A, we have a big
reservoir with bicarbonate ion s at a concentration of 1 M; on side B, th ere's a sim ilar
reservo ir with a concentrat ion of 0.1 M. Now we connect a power supply across the
two sides of th is memb rane to create a fixed potenti al differen ce Do V = VA - VB.

a. Wh at sho uld Do V be to maintain eq uilibrium (no net ion flow)?

b. Suppose Do V = 100 mV. Wh ich way will bicarbonate ions flow?

11.3 Vacuole equilibrium
Here are data for the marine alga Cha tomorpha. The extracellular flu id is seawater.
Th e plasmalemma (outer cell membrane) separates the out side from the cytoplas m.
A second membrane (the tonoplast) separates the cyto plas m from an interio r or
gane lle, the vacuo le; see Section 2.1.1 on page 40. In this problem , pretend that there
are no other sma ll ion s than those listed here:

vacuole cytoplasm extracellular Vr·,rnl Vr·,rnl
ion Ci, mM ci, mM Cj , mM (plasmalemma), mV (tonoplast), mV

K+ 530 425 10 - 5.5
Na+ 56 50 490 +57

CI- 620 30 573 - 74 +76

a. Th e table gives some of the Nernst potentials across the two membranes. Fill in
the m issing ones.

b. Th e tab le doe s not list the cha rge den sity Pq,macro ari sing from impermeant
macro ion s in the cytoplasm. Wh at is - Pq .macrol e in mM?

c. The actual measured memb rane potent ial difference across the tonoplast mem
brane is + 76 mV. Which ion(s) must be actively pum ped across the tonoplast
membrane, and in which direction(s)?

d. Suppose that we selectively shut down the ion pumps in the ton oplast mem brane
but the cell metabolism continues to maint ain the listed concentrations in the

' Problem 11.3 is adap ted with permission from Benedek & Villars, 2000c.
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cytoplasm. The system then relaxes to a Don nan equilibrium across the tonoplast
membrane. What will be the approximate ion concentrations inside the vacuole,
and what will be the final Donnan potential?

11.4 IT21Relaxat ion to Donnan equilibrium

Explore what happens to the resting steady state (see Section 1l. l.3 on page 474) after
the ion pumps are suddenly turned off, as follows.

a. Table ILI on page 477 shows that sodium ions are far from equilibrium in
the resting state. Find the cond uctance per area for these ions. using the value
5 n-1m- 2 for the total membrane conductance per area and the ratios of individ
ual conductances given in Equation 11.9 on page 482.

b. Using the Ohmic hypothesis , find the initial charge flux carried by sodium ions
just after the pumps have been shut off. Reexpress your answer as charge per time
per unit length along a giant axon. assuming its diameter to be 1 mm.

c. Find the total charge per unit length carried by all the sodium ions inside the
axon. What would the corresponding quantity equal if the interior concentration
of sodium matched the fixed exterior concentration?

d. Subt ract the two values found in (c). Divide by the value you found in (b) to get
an estimate for the time scale for the sod ium to equilibrate after the pumps shut
off.

e. Chapter 12 will describe a nerve impulse as an event that passes by one point on
the axon in about a millisecond . Compare with the time scale you just found and
comment.



CHAPT ER 12

Nerve Impulses

a Solemn-beating heart
Of Na ture! I have knowledge that thou art

Bound unto man's by cordshe cannot sever;
And, what time they are slackened by him ever,

So to attest his own supernal part,
Still runn eth thy vibration fast and strong

The slackened cord along.

- Elizabeth Barrett Browning,
The seraphim and other poem s

In a series of five articles pub lished in the Journal ofPhysiology, Alan Hodgkin, An
drew Huxley, and Bernard Katz described the results of experiments that determined
how and when a cell membrane conducts ions. In the last of these papers, Hodgkin
and Huxley presented experimental data on ion mo vem ent across electrically active
cell membranes, a hypothesis for the mechanism of nerve impulse propagation , a
fit of the model to their dat a, and a calculated prediction of the shape and speed of
nerve impulses agreeing with experiment. Many biophysicists regardthis workas one
of the most beauti ful and frui tful examples of what can happ en when we apply the
tools and ideas of physics to a biological problem.

Thinking abou t the problem in the light of this book's them es, living cells can do
"useful work"not only in the sense of mechanical contraction but also in the sense of
computation. Chapter 5 mentioned how single cells of E. coli make simple decision s
that enable them to swim toward food . For mo re complex computations, mult icellu 
lar organisms have had to evolve systems of specialist cells, the neurons. Like muscle
cells, neurons are in the business of metabolizing food and, in turn, locally redu cing
disorder in an organism. Instead of generating organized mechanical motion , how
ever, their job is manipulating information in ways useful to the organism. To give a
glimpse of how they manage this task, this chapter will look at an elementary prereq
uisite for information processing, namely, info rmation transmission .

One often hears a metaphor ical description of the brain as a computer and in
dividua l nerve cells as the "wiring," but a little thought shows that this can't literally
be true. Unlike, say, telephone wires, nerve cells are poorly insulated and bathed in a
conductive medium. In an ordinar y wire under such conditions, a signal would suf
fer serious degradation as a consequence of resistive losses-a form of dissipation. In
contrast, even your longest nerve cells faithfully transmit signals without loss of am
plitud e or shape. We know the broad outlin es of the reso lution to this paradox from

505
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Chapter 1: Living organisms constantly flush energy through th emselves to combat
dissipation. We'd like to see how nerve cells implement thi s program.

This chapter contains somewhat more historic al detail than mo st of the oth ers
in thi s book. The aim is to show how careful biophysical measurements, aimed at
answering the questions in the previo us para graph, disclosed the existence of yet an
other remarkable class of mo lecular devices, the voltage-gated channels, years before
the specific proteins constituting tho se devices were identified.
The Focus Question for this chapter is
Biological question: How can a leaky cable carry a sharp signa l over long dista nces?
Physical idea: Nonlinearity in a cell membrane's conductance turns the membrane
into an excitable medium , which can transmit waves by continuously regeneratin g
them.

12.1 THE PROBLEM OF NERVE IMPULSES

Roadmap Section 11.1 identified active ion pumps as the origin of th e resting po
tenti al across the membranes of living cells. Section 12.1 attemp ts to use th ese ideas
to understand ner ve impulses, arriving at th e linear cable equation (Equation 12.9).
This equation does not have solutions resembling traveling impulses: Some impor
tant physical ingredient, no t visible in the restin g properties of cells, is missing.
Section 12.2 argues that voltage gating is the missing ingredient , then shows how
a modification to the linear cable equation (Equation 12.22) does capture som e of
the key phenomena we seek. Section 12.3 qua litati vely sketches Hodgkin and Hux
ley's full analysis and the subsequent discovery of the molecular devices it predicted:
voltage-gated ion channels. Finally, Section 12.4 sketches briefly how the ideas used
so far to describe transmission of information have begun to yield an unders tanding
of computation in the nervous system and of its inte rface to the outside wor ld.

Some neurons surround their axon by a layer of electrica l insulation called the
myelin sheath. Th is chap ter will study only neurons lacking this structure (those hav
ing unmyelinated axons). With appropriate changes, however, the analysis given here
can be adapted to myelinated axons as well.

12.1 .1 Phenomenology of the actio n potential

Section 2.1.2 on page 43 discussed anatomy: the shape and connectivity of neurons.
The nerve cell's function can be summarized as three proce sses:

Stimulation of the cell's inputs (typically the dendrite) from th e preceding cells'
outputs (typically axon term inals);

• Computation of the appropriate output signal; and

Transm ission of the output signal (n erve impulse) along the axon .

Sections 12.2 and 12.3 will discuss the last of these processes in some detail; Sec
tion 12.4 will discuss the other two briefly. (A fourth activity, th e adjustment of synap
tic properties, will also be mentioned in Section 12.4.3.)
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Figure 12.1 : (Schematic; sketch graph.) (a) Schemat ic of an electrop hysiology experi ment. Stimuli at one point on
an axon (shown as a cylinder) evoke a response, which is measured at distant points. (b) Responses to a short, weak,
depolarizing pulse of current. The vertical axis represents the potential relative to its resting value. The response to a
hyperpolarizing pulse looks similar, but the traces are inverted (not shown ). The pulses observed at more distant point s
are weaker and more spread ou t than those observed up close, and they arrive later. The distance unit Aaxon is defined in
Equation 12.8 on page 517.

l

Figure 12.1a shows a schematic of an experiment to examine the passage of nerve
impulses. Measurin g devices situated at various fixed positions along an axon all
measure the tim e course of the membrane potent ial t:1 V after the axon is stimu
lated. The axon could be attached to a living cell, or isolated. The external stimulus
could be art ificially applied, as shown, or could come from synapses to other neurons.
Figure 12.1b sketches the results of an experiment in which a stimulating electrode
suddenly inj~itive charges into the inte! !.Qr of the axon (or removes negative
charges ). The effect of either change is to push the membrane potential at one point
to a value less negative than the resting potential (that is, closer to zero) ; we say that
the stimulus depolarizes the membrane. Then the externa l current source shuts off, l:.... 0'\ J1\

allowing the membrane to retu rn to its resting potential.
The sketch graphs in Figure 12.tb show that, for a weak depolarizing stimulus,

a potent ial change at one point spreads to nearby regions; the response is weaker at
more distant points . Moreover, the spread is not instant aneous. Another key point is
that the peak height is pro port ional~t imulus strength: Wesay that the response
is graded (see Figure 12.2a). The respon se to a stimulus ofthe opp osite sign- tending
to drive V more negative or hyperpolarize the membrane- is qualitatively the same
as that for weak depolarizat ion . We just get Figure t2.1b turned upside down.

'J,
The behavior shown in Figure 12.1b is called electrotonus, or passive spread.

Passive spread is not a "nerve impulse"; it dies out almost completely in a few mil
limeters. Somet hing much more interesting happens, however, when we try larger
depolarizing stimuli. Figure 12.2a shows the results of such an experiment. These
graphs depict the response at a single location close to the stimulus, for stimuli of
various strengths.
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The lower nine traces of Figure 12.2a correspond to small hyperpolarizing or de
polari zing stim uli. They again show a graded response. The axon's response chan ges
dramatically, however, when a depolarizing stimulus exceeds a threshold of about
10 mY. Asshown in the top two traces in Figure 12.2a, such stimuli can trigger a gI~s

sive response, called the action potential, in which the membrane potential shoots
up. Figure 12.2b, drawn with a coarser vertical scale, shows schematically how the
potenti al hits a peak (typically changing by 100 mY), then rap idly falls.

The action po tential is the behavior we have been calling a nerve imp ulse. Ex
periments like the one sketched in Figure 12.1a show several remarkable features of
the axon's electrical respon se (or electrophysiology ):
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Figu re 12 .2 : (Experimental dat a; sketch graph.) The action potenti al. (a ) Respon se of a crab axon to long (15 ms) pulses
of injected current. Th e vertical axis shows the membrane potential at a point close to the stimul us. measured relative to its
resting value. The lower traces record the response to hyperpola rizing stimuli; the lIppertraces correspond to depolarizing
stimuli. The threshold value of the stimulus has arb itrarily been designated as strength 1.0; the curves are labeled with their
strength relative to th is value. The top trace is just over threshold and shows the start of an action potential. (b) Sketch
of the respon se to an above-threshold, depolarizing stimu lus at three distances from the st imulation point (compare
with Figure 12.1). The time courses (shapes) of the pulses assum e a stereotyped form; each is shifted in time from its
predecesso r, reflecting a constan t propagation speed. Note how the potential drop s below its resting value (lower dashed
line) after the pu lse, then rises slowly.This is the phenomeno n of afterhyperpolarization; see also Figure 12.6b. [(a ) Data
from Hodgkin & Rushto n, 1946.]
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• Instead of being graded, the actio n potent ial is an all-or- not hing response. That
is, the action potent ial arises only when the membrane depolarizatio n crosses a
thr eshold ; subthreshold stimuli give electrotonus, with no response far from the

" -) ~ ~.9 >
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stimulating po int. In contrast, above- thresho ld stimuli create a traveling wave of
excitation, whose peak potential is independent of the strength of the initial stim
ulus.

The action potent ial moves down the axon at a constant speed (see Figure 12.2b),
which can be anywhere from 0.1 to 120m s- ' . This speed has nothing to do with
the speed at which a signal moves down a cop per wire (about a meter every three
nanoseconds, a billio n times faster).

When the p.(Q~s of an action po tential is measured at several distant poi nts,
as in Figure 12.2b, the peak potential is found to be independent of distance, in
contrast to the decaying behavior for hyperpolarizing or subthreshold stimuli. A
single stimulus suffices to send an action potential all the way to the end of even
the longest axo n.

Indeed. the entire time course of the action potential is the same at alldistant points
(Figure 12.2b). That is, the action potential preserves its shape as it travels, and that
shape i s':s~reotyp~d" (independent of the stimulus).'
After the passage of an action potential, the memb rane potent ial actually over
sh oots slightly, becomin g a few millivolts more negative than the resting potential,
and then slowly recovers. This behavior is called afterhyperp olar ization.

For a certain refrac to ry period after transmitting an action potenti al. the neuron
is harder to stimulate than it is at rest.

Our job in Sections 12.2 and 12.3 will be to explain all these remarkable qualitative
features of the action potential from a simple physical model.

12.1.2 The cell membrane can be viewed as an electrical network

Iconography Section 11 .2.2 on page 478 described the electr ical properties of a small
patch of membrane by using circuit diagram symbols from first-year physics (see Fig
ure 12.3a). Before elaborating on this figure, we should pause to recall the meanings
of the graphical elements of a schematic circuit diagram like this one and why they
are applicable to our problem.

The figure shown consists of "wires," a resisto r symbol, and a battery symbol.
Schematic circui t diagrams like this one convey various im plicit claims:

1. No signi ficant net charge can pile up inside the individual circuit elements: The
charge into one end of a symbol must always equal the charge flowing out the
other end. Similarly,

2. A junctio n of three wires imp lies that the total current into the junct ion is zero.

3. The electrostatic potent ial is the same at either end of a wire and among any set of
joined wi res.

4. The potent ial changes by a fixed amount across a battery symbo l.

I~ Thisstatement requires a slight qualification. Closeto the stimulatingpoint. strongerstimuli indeed

lead to a faster initialdepolarization, because the membrane gets to threshold faster. Thesedifferences die
out as the action potential travels down the axon, just as the entire response to a hyperpolarizing response
dies out.
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a 2 (in)

1 (out )

b
- - ,--- - ,--- - ,--- - --r- 2 (in)

c

----'--- - --'--- - --'--- - --'-- 1 (out)

Figure 12 .3 : (Circuit diagrams.) Discrete-element models o f a small patch of cell membrane of area A. (a) Dupl icate
of Figure 11.4, for reference. (b) A more realistic model. The orientations of the battery symbols (-II-) reflect the sign
convention in the text:A positive value ofVi~ means that the upper wireentering the corresponding battery is at higher
potential than the lower wire. Three representati ve ion species can flow between the interior and exterior of the cell,
corresponding to i = Na+. K+, and CI-. Each species has its own resistance R; = 1/ (gjA} (symbol~) and entropic
driving force V;"<f1Ul . The capacitance C = CA (symbol -H-) willbe discussed later in this section. The dashedarrowdep icts
the circulating current flow expected from the data in Table 11.1. The effect of the sodium- po tassium pumps described
in Chapter II is not show n; see text.

5. The potential changes by the variable amo unt IR across a resistor symbol.

We'll refer to the first two of these statements as Kirchoff' s first law. We prohibit
charge buildup in ordinary circuits because of the prohibitive potential energy cost
usually associated with it. In the cellular context, too, the separation of charge across
micrometer-sized regions is energetically very costly (see the electrostatic self-energy
Example on page 261and Problem 12.2).

The rest of this section will adapt and extend Figure 12.3a to get a mo re realistic
descrip tion of the resting cell membrane (Figure 12.3b).

Conductances as pipes The only "wire" in Figure 12.3a is the one joining the resistor
to the battery.Thus items (3-5 ) in the preceding list amountto the statement that the
total potential jump fj. V is the sum of two contributions, fj. V = I R + V Ncrn>l . This
statement is just the Ohmic hypoth esis (Equation 11.8 on page 480).

Thus, the electric circuit analogy appears to be useful for describing membranes.
But Figure 12.3a describes the behavior of just one species of ion, just as in first
year physics you studied circuits with only one kind of charge carrier, the electron.
Our situation is slight ly different : We have at least three important kinds of charge
carriers (Na+, K+, and Cl"), each of whose numbers is separately fixed. Moreover,
the conductance ofa membrane willbe different for d ifferent species (see for example
Equation 11.9 on page 482). It might seem as though we would need to write circuit
diagrams with three different kinds of wires, like the separate hot and cold plumb ing
in your house!

Fortunately, we don't need to go to this extreme. First note that there is only
one kind of electrostatic potential V. Any charged particle feels the same force per
charge, - dVjdx. Second, not on ly do all kinds of charged partides feel a common
potential, they also all contribllte to that potential in the same way. Thus the tota l elec-



12.1 The problem of nerve impulses 511

trostatic energy cost of a charge arrangement reflects only the spatial separa tion of
net charge, without distin guishin g between the types of charge. For example, pulling
some sodium into a cell while at the same time push ing an equal number of potas
sium ions out (or an equal nu mber of chloride ions in) creates no net separation of
charge and carries no electrostatic energy cost.

Thus. when writing circuit diagrams, we can combine the various types of wires
when dealing with elements. like the cell's cytoplasm. that do not discr iminate be
tween ion types.! We can think of these wires as rep resenting one kind of pipe in
which a mix ture of d ifferent "fluids" (representing the various ion species) flows at
a common "pressure" (the potential V ). Kirchoff's first law then corresponds to the
constraint that the total "volume of fluid" flowing in (total current) mu st equal tha t
flowing ou t. Our wires mu st branch into different types when we describe the mem
brane, which has different resistances to different ion species in the mixture. In ad
di tion, each fluid will have a different entropic force driving it (the vario us Nernst
potentials). We accommodate th ese facts by drawing the membrane as a compound
object, with one resistor-battery pair in parallel for each ion species (Figure 12.3b).
Notice that th is figure does not impl y that all th ree Nernst potentials are equal. In
stead, the hori zont al wires impl y (by point (3») that all three legs have the same value
of

f:j. V = I jRj + vicrnsl . (I 2.1)

Here, as always, f:j. V = V1 - VI is the in terior potential relative to the outside; Rj =

l /(gjA ) is the resistance; and I j = jq.iA are the currents thro ugh a patch of membran e
of area A, considered positive if the ion current flows from inside to outside.

Quasi-steadyapproximation Figure 12.3b includes the effect of diffusive ion trans
po rt th rough the cell membrane, drive n by entropic and electrostat ic forces. How
ever, the figure om its two important features of membrane physiology. One of these
feature s (gated ion conductances) is no t needed yet; it will be added in later sectio ns.
The ot her omitted feature is active ion pumping. Thi s omission is a simplification
that will be used throu ghou t the rest of this cha pter, so let's pause to justify it.

The situation sketched in Figure 12.3b cannot be a true steady state (see Sec
tions 11.2.2 and 11.2.3). The dissipat ive flow of ions, shown by th e dashed arrow in
the figure, will event ually change the sodi um and potassium concentrations until all
three species come to Donnan equilibrium, obeying Equation 12.1 with all currents
equal to zero.' To find a tru e steady state. we had to posit an additio nal element. the
sod ium-potassium pump. Setting the diffusive fluxes of bot h sod ium and pota ssium
equal to the pumped fluxes gave the steady state (Equation 11.12 on page 486).

But imagi ne that we begin in the steady state, then suddenly shut down the
pumps. The ion con centrat ion s will begin to drift toward their Donnan equilib
rium values, but rather slowly (see Problem 11.4). In fact, the immediate effect on
the membrane potential turns out to be rather small. We will denote the potential
difference across the memb rane shortly after shutt ing down the pumps (that is, the

2 @]weare neglecting possible differences in bulk resistivity among the ion species.

l in this case. Equation 12.1 reduces to the Gibbs-Donnan relations. Equation 11.4.



512 Chapter 12 Nerve Impulses

quasi-steady value) by the symbol VOTo find it, note that , whereas the charge fluxes
j q,; for each ion species need not separately be zero (as they must be in the true steady
state), still they mu st add up to zero, to avoid net charge pileup inside the cell. The
Ohmic hypothesis (Equation 12.1 ) then gives

L (V a - V,""""lg; = o. (12.2'

Example: Find the value Va of" V shortly after shutting off the pumps, assuming
the initial ion concentration s in Table ILion page 477 and the relative conductances
per areagiven in Equation 11.9 on page 482. Comparewith the estimated steady-state
potential found in Section 11.2.3.

Solution: Collecting terms in Equation 12.2 and dividing by g,o' es 2:;g; gives the
chord conductance formula:

(12.3)

Evaluating yields Va = - 66 mV, only a few millivolts different from the true steady
state pot ential - 72 mV found from Equation 11.12 on page 486.

In fact, the ion pump s can be selectively turned off, using drugs like oubain. The
immediate effect of oubain treatment on the resting potential is indeed small (less
than 5 mV), just as we found in the Exampl e.

In summary, Equation 12.3 is an approximation to the resting potential differ
ence (Equation 11.12)4 Instead of describing a true steady state, Equation 12.3 de
scribes the quasi-steady (slowly varying) state obtained immediately after shutting

.off the cell's ion pumps. We found that both app roaches give'(ou ghly the same mem
brane potent ial. More generally, Equation 12.3 reproduces a key feature of the full
steady-state formula: The ion species with the greatest conductance per area pulls
"V close to its Nernst potential (compare with Idea 11.13 on page 486). Moreover,
a nerve cell can transmit hundreds of action potentials after its ion pumps have been
shut down. Both of these observation s suggest that , for the purposes of studying the
action potential, it's reasonable to simplify our membrane model by ignoring the
pumps altogether and exploring fast disturbances to the slowly varying qua si-steady
state.

Capaci tors Figure 12.3b contains a circuit element not mentioned yet: a capacitor.
This symbol acknowledges that some charge can flow toward a membrane without
actually crossing it. To und erstand this effect physically, go back to Figure I 1.2a on
page 472. This time, imagine that the membrane is impermeable to both species but
that external electrodes set up a potential difference /j, V. The figure shows how a net

4~ Actually, both these equations are rather rough approximat ions, because each relies on the Ohmic

hypothesis, Equation 11.8.
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charge density. (c, - e-)e, piles up on on e side of a membrane (and a correspond
ing deficit on the other side) whenever the potential difference fj"V is non zcro.! As
6. V increases, this pileup amo unts to a net flow of charge into the cell's cytosol and
anotherflow out of the exterior fluid. even though no charges actually cross the mern
brane. The constant of proportionality between the total charge q separated in th is
way and l),V is called th e capacitance, C:

q = C(l), V) . (12.4 )

Gilbertsays: Wait a minute. Doesn 't charge neutralit y (the first two po ints listed on
page 509) say that charge can' t pile up anywhere?

Sullivan replies: Yes, but look again at Figure 11.2a: The region just o utside the
membrane has acquired a net charge, but the region just inside has been depleted of
charge, by an exactly equal amo unt. So the net charge between the dashed lines hasn't
cha nged, as requ ired by cha rge neut rality. As far as the inside and ou tside worlds are
concerned, it looks as though current passed through the membrane!

Gilbert: I'm still not satisfied. Th e region between the dashed lines of th e figure may
be neutral overall, but the region from the dashed line on the left to th e center of the
memb rane is not, nor is the region from the center to the dashed line on the right.

Sullivan: That's true. Indeed. Section 11.1.2 showed that it is this charge separation
that creates any potential difference across a membrane.

Gilbert: So is cha rge neutrality wron g or right?

Gilbert needs to remember a key point in our discussion of Kircho ff's law. A charge
imbalance over a micrometer-sized region will have an enormous electrostatic
energy cost and is essentially forbidden. But the electrostatic self-energy Example
on page 261 showed that over a nanometer-sized region, like the thickness of a
cell membrane, such costs can be mod est. We just need to acknowledge the energy
cost of such an imbalance, which we do by using the notion of capacitance. Our
assertion that the currents into the entire axon must balance, but that those in the
imm ediate neighborhood of the membrane need not , really amo unts to the quan
titative observation that the capacitance of the axon itself (an intermediate-scale
object) is negligible relative to the mu ch bigger capaci tance of the cell membrane (a
nanom eter-scale object).

Unlike a resistor, whose potential drop is propor tional to the rate of charge flow
(current). Equation 12.4 says that 6. V across the memb rane is proportional to the
total amount of charge q tha t has flowed (the in tegral of curren t ). Taking the time
derivative of this equation gives a more useful form for our purposes:

d( l),V )

d t

I

C
capacitive current (12.5)

SActually, a larger con tribution to a membrane's capacitance is the polarizatio n of the interior insulator
(the hydrocarbon tails of the con stituent lipid molecules); see Problem 12.3.
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So far, this section has considered steady- or quasi-steady situations. wherethe mem
brane pote ntial is either con stant, or nearly co nstant, in time. Equation 12.5 shows
why we were allowed to neglect capacitive effects in such situations: The left-hand
side equals zero. The following sections, however, will discuss transient phenom ena
such as the action potenti al; here, capacitive effects willplay a crucial role.

Two ident ical capacitors in parallel will have the same ~V as one when con
nected across a given battery because the electrostatic potenti al is the same amo ng
any set of joined lines (see point (3) in the list on page 509). Thus they will store
twice as much charge as one capacito r (adding two copies of Equation 12.4). That is,
they act as a single capacitor with tw ice the capacitance of eith er one. Applying this
observation to a membrane. we see that a small patch of membrane will have capac
itance proportion al to its area. Thus C = AC. where A is the area of the membrane
patch and C is a constant characteristic of the membrane material. We will regard the
capacitance per area C as a measured phenomeno logical parameter. A typical value
for cell membranes is C :::::;: 10- 2 F m- 2, more easily rem embered as 1 .uF cm- 2.

In summary, we now have a simplified model for the electrical behavior of an
individual small patch of membrane, pictorially represented by Figure 12.3b. O ur
model rests on the Ohmic hypothesis. The phra se small patch reminds us that we
have been imp licitly assuming that 6. V is uniform across our membrane. as implied
by the hori zon tal wires in our idealized circuit diagram. Figure 12.3b. Our model
involves several phenomenological parameters describing the membrane (gj and C)
as well as the Nernst potentials (Vrfin~,) describing the interior and exterior ion
concentration s.

12.1.3 Membranes with Ohmic conductance lead to a linear cable
equation with no traveling wave solutions

. Although the memb rane model developed in the previous section rests on some solid
pillars (like the Nernst relation ). nevertheless it contains other assumptions that are
mere working hypotheses (like the Oh mic hypothesis, Equation I 1.8). In addition,
the analysis was restricted to either a small patch of membrane or a larger membrane
maintained at a potenti al that was uniform along its length . This section will focus
on lifting the last of these restrictions, to let us explore the behavio r of an Ohmic
membrane wi th a nonuniform potential. We'll find that in such a membrane, exter
nal stimuli spread passively, giving behavior like that sketched in Figure 12.l b. Later
sections will show that to understand nerve impul ses (Figure 12.2b), we'll need to
reexamine the Ohmic hypothesis.

When the potential is no t uniform along the length of the aXOIl, then current will
flow axially (in the x direction, parallel to the axon). So far, we have neglected this
possibility, considering only radial flow (in the r d irection , through the membrane ).
In the language of Figure 12.3, axial flow corresponds to a current Ix flowing thro ugh
the ends of the top and bottom horizontal wires. We will adopt the convention that
Ix is called posit ive when positive ions flow in the + i:direct ion. If Ix is not zero. then
the net radial current flow need not be zero, as assumed when deriving the chord
conductance formula, Equation 12.3. Accordingly, we first need to generalize that
result .
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Your
Turn
12A

Show that the th ree resistor-battery pairs in Figure 12.3b can equivalent ly be
replaced by a single such pair, with effective conductance gratA and battery po
tenti al VO given by Equatio n 12.3.

We can now represent the axon as a chain of identical modules of the form you
just found, each representing a cylindrical slice of the membrane (Figure 12.4). Cur
rent can flow axially throu gh the interior fluid (representing the axon's cytoplasm,
or axoplasm, represented by the upper hor izontal line) or through the surround-

a - dx-
(V = 0 outside)

I . (x)

Ir(x )
ax ial

radia l r 1 I I
x - dx x x+ dx

I
dR.

I I
b --- - - -- -- - -

h

R,

V·

h
dR~

l _ _ _ _ _ __ _ __ _ J

Figure 12.4 : (Schematic; circuit diagram.) Distribu ted-element model of an axon. The axon is viewed as a chain of
ident ical modules, labeled by their position x along the axon. (a) Modules viewed as cylindrical segments of length dx
and radius a. Each one's surface area is thus ciA = 27Tadx. (b) Modules viewed as electrical networks , each containing
a battery of voltage va (recall that this quasi-steady state potential is negative). The "radial" resistor. with resistance
R, = l / (glo,dA). represents passive ion permeation through the axon membrane; the associated capacitor has de =
CdA. The "axial" resistors dRx and dR: represent the fluid inside and out side the axon. respectively. We will make the
approximation that dR: = O. so the entire lower horizontal wire is at a common potential. which we define to be zero.
The "radial" cur rent . I r(x ) == j q.r(x ) x dA. reflects the net charge of all the ions leaving the axoplasm (that is. downward
in (bj) at x; the axial current Ix represents the total current flowing to the right inside the axoplasm (that is, in the upper
hori zontal wire of (bj ). Vex) represents the potent ial inside the axon (and hence also the potential difference across the
membrane, because we took the potential to be zero outside).



516 Chapter 12 Nerve Impulses

ing extracellular fluid (represe nted by the lower hori zon tal line). The limit dx ---> 0
amounts to describin g the membr ane as a chain of infinitesimal elements, a dis
tributed network of resistors, capacitors, and batteries.

To explore the behavior of such a network under the sort of stimuli sketched in
Figure 12.1, we now take four steps:

a. Find numerical values for all the circuit eleme nts in Figure 12.4, then

b. Translate the figure into an equation;

c. Solve the equation; and

d. Interpret the soluti on.

a. Values To find the interior axial resistance dRx. recall that the resistance of a cylin
der of fluid to axial curre nt flow is proportional to the cylinder's length divided by its
cross-sectional area, or dRx = dx/ (KJr a2), where K is the fluid's electrical conductiv
ity (see Sectio n 4.6.4 on page 142). The conductivity of axoplasm can be measured in
the lab. For squid axon, its numerical value is K :::::: 3 n-1m- I , roughly what we would
expect for the corresponding salt solut ion (see Problem 12.5).

To simplify the math, we will set the electrical resistance of the exterior fluid
equal to zero: dR~ = O. This approximation is reasonable because the cross-sectional
area available for carrying current outside the cylindrical axon is much larger than
the arearra2 of the interior. Thus we have the very convenient feature that the entire
exterior of the axon is "short-circuited"and therefore is at a uniform potential, which
we take to be zero: VI (x ) es O. The membrane po tential difference is then II V(x) =
V, (x ); to simplify the notat ion , we will abbreviate this quantity as V (x) .

The resistance R, of the membrane surrounding the axon slice is just the recip
rocal of its total conductance; according to Your Turn 12A, it equals (gtot X 2rradx ) -1,

where g lot is the sum of the g i'S. As mentioned in Section 11.2.2, a typical value for
gtot in squid axon is :::::: 5 m- 2 n-1.

Finally, Section 12.1.2 says that the membrane capacitance is de = (2".adx) x C
and quoted a typ ical value of C "" 10- 2 F m- 2

b. Equation To get the equation for the spread ofan externalstimulus, we write down
the condition of charge neutrality for one cylindrical slice of the axon (Figure 12.4a).
This condition says that the net current into the ends of the slice, fx(x ) - lA x + dx) ,
must balan ce the tota l rate at which charge flows radially out of the axoplasm. The
radial current equals the sum of the charge permeating through the membrane, or
2". adx x j q . r s plus the rate at which charge piles up at the mem brane, (2".adx) x C~~
(see Equation 12.5). Thus

dix ( dV )l x(x) - l x(x + dx) = - dx x dx = 2".a j q.,(x) + Cdt dx. (12.6)

This equation is a good start, but we can't solve it yet: It's one differential equation
in three unknown functions, namely, Vex, t), Ix(x, t) , and jq.,(x, t ). First let's elimi
nate t;
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We already know some solutions to th is equation. Adapting the result ofSection 4.6.5,
we find that the response of our cable to a localized impulse is

(passive-spread solution) (12.10)

In fact) the linearcable equation has no traveling wave solutions because the di ffusion
equation has no such solutions.

Some numerical values are revealing: Taking our illustrative values of a =
0.5 rnrn, g tot '" 5 m- 2 ~r' , C '" 10-2 F m- 2

, and K '" 3 rr' m" (see step (all yields

Aa:l(On ~ 12 mm • r ::::: 2 ms. (12.11 )

d. Interpretation OUf mo del axon is terrible at transmitting pulses! Besid es the fact
that it has no travel ing wave solutions. we see that there is no threshold behavior,
and stimuli die ou t after a dista nce of abo ut 12 mm. Certainly a giraffe wou ld have
trouble moving its feet with neurons like this. Actually, tho ugh, these conclusions
are not a comp lete disaster. O U f model has yielded a reason able account of elect ro
tonus (passive spread, Section 12. J.l ). Equat ion 12.10 does reproduce the behav ior
sketched in Figure 12.1; mo reover, like the solution to any linear equation, ours gives
a graded respon se to th e stimulus. Wh at o ur model lacks so far is any hint of th e more
spectacular action-potent ial response (Figure 12.2b).

12.2 SIMPLIFIED MECHANISM OF THE ACTION POTENTIAL

12.2.1 The puzzle

Following the Roadmap at the start of Section 12.1, this section will motivate and
int roduce the physics of voltage gating, in a simplified form, then show how it pro
vides a way out of the impasse we just reached. The int roduction to this chapter
mentioned a key ques tion whose answer will lead us to the mechani sm we seek: Th e
cellular world is highly d issipative, in th e sense of electr ical resistance (Equation 11.8)
just as in the sense of mechanical friction (Chapter 5). How, then. can signals tr avel
without diminution?

We found the beginning of an answer to this puzzle in Section 11.I. The ion
concentrations inside a living cell are far from equilibrium (Section 11.2.1). Wh en a
system is not in equilibrium, its free energy is not at a minimum. When a system's free
ene rgy is no t at a minimum. th e system is in a positio n to do useful work. "Useful
work" can refer to the activity of a molec ular machine, bu t more generally. it can
include the manipulat ion of information , as in nerve impulses. Either way) the resting
cell membrane is po ised to do some th ing, like a beaker containing nonequilibrium
concentrations of ATP and ADP.

In short, we'd like tQ see how a system with a continuous distribution of excess
free energy can support traveling waves despite dissipation . Th e linear cable equation
did not give this behavior, but in retrospect, it's not hard to see why: Th e value of va
dropped out of the equation altogether, once we defined v as V - VOl This behavior
is typ ical of any linear differen tial equ ation (it's called the superposition property of
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Figu re 12.5 : (Schemat ic.) Mechanical analog of the action pot ent ial. A heavy chain lies in
a tilted channel. with two troughs at heights differing by .6. h. (a) An isolated kink will move
steadily to the left at a constant speed 'IJ : successive cha in elements are lifted from the upp er
trough, slide over the crest, and fall into the lower trough. (b) A disturbance can create a pair
of kin ks ifit is above thresho ld. The two kinks then travel away from each oth er.

a linear equation)." Apparently, what we need to couple the resting potential to the
traveling disturbance is some nonlinearity in the cable equation.

12.2. 2 A m e chanical a na logy

We can imagine that a cell could somehow use the free energy stored along its mem 
brane to regenerate the traveling act ion potential continuously as it passes, exactly
compe nsating for dissipative losses so that the wave maintains its amplitud e instead
of dying out. These are easy words to say. but it may not be so easy to visualize how
such a seemingly miraculous process could actually work . automatically and reliably.
Before proceedin g to the mathematics, we need an intuitive ana logy to the mecha
nism we seek.

Figure 12.5 shows a mo lding such as you might find in a hardware store. Th e
cross section of the moldin g is shaped like a rounded letter w. We hold the moldin g
with its long axis parallel to the floor but with its cross section tilted, so that one of the
two grooves is higher than the other. Call the height difference between the bolloms
of the two troughs tlh.

Suppose that we lay a long. flexible chain in th e higher groove and im merse
everything in a viscous fluid. We pull on the ends of the cha in, putting it under a

I>Actua H\', a linear equation COlt have tra\'e1ing" ':In'soJulioJls; the equations describing W pr0p.2~.;tion 01
..; i..... .,;-...." ......er-.. i c -.dl'cal :'" fr tt.iT wt' t.a rmor nave' IS a traveling wave In a linea r, dissipative medium. For
example. light rays traveling th rou gh a smoke-filled room will get fainter and die o ut,
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slight tension. In principle. the chain could lower its gravitational potential energy
by hopping to th e lower groov e. Th e differ ence in height between the two grooves
amounts to a certain sto red potential energy density per length of chain. To release
this energy. however, the chain would first have to mo ve upward, which costs energy.
What's more, the chain can't hop over the barrier all at once; it must first form a kink.
The applied tension discourages the formation of a kink. Hence the chain remains
stably in the upper groove. Even if we jiggle the apparatus gentl y, so that the chain
wiggles a bit, it still stays up .

Next suppose that we begin laying the chain in the upper groove. starting from
the far left end, but halfway alo ng, we bri ng it over the hu mp and conti nue thereafter
laying it in the lower groove (Figure 12.5a). We hold everything in place, then let go
at time zero. We will then see the crossover region moving uniformly to the left at
some velocity iJ. Each second, a fixed length of cha in iJ x (1 s) rises over the hump,
pu lled upward by the weight of the falling segmen t to its right. That is, the system
displays traveling wave behavior.

Each second the chain releases a fixed amo unt of its stored gravitational potential
energy. The energy thus released gets spent overcoming frictional loss (dissipation).

Your
Turn

128

a. Suppose that the chain's linear mass density is P~~~ain . Find the rate at
which gravitational potential energy gets released.

b. The speed at which the chain moves is proportion al to t? ; hence, so is the
retarding friction al force. Let the total retarding force be y t?, where y is
some constant. Find the rate at whic h mech anical work gets converted to
ther mal form.

c. What sets the speed {j of the traveling wave?

Finally, let's begin again with the chain entirely in the upper cha nnel. This time
we grasp it in the middl e, pu ll it over the hump, and let go (Figure 12.5b). If we pull
too little over the hump, as shown in the figure , then both gravity and the applied
tension act to pull it back to its initial state: No traveling wave appears, although the
disturban ce will spread before settling down. But if we d rape a large enough segment
over the hump initially, upon releasing the chain we'll see two traveling waves begin
to spread from the center point, one moving in each direction .

Our thought experiment has displayed most of the qualitative featu res of the
act ion potential, as descr ibed in Sect ion 12.1.1! The chain's height rou ghly represents
the deviation of concentrations from their equilibrium values; the friction represents
electrical resistance. We saw how a dynam ical system with continuously distributed
stored potential energy, and dissipatio n, can behave as an excitable medium, ready
to release its energy in a controlled way as a propagating wave of excitation:

• The wave requires a threshold stimulus.

For sub th reshold stimuli, the system gives a spread ing, but rapidly decaying, re
sponse.
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Similarly, stimuli of any strength but th e "wrong" sign give decaying respon ses
(imagine lifting the rope up the far side of the higher trough in Figure l2.5b).

Above-threshold stim uli create a traveling wave of excitation. The strength of the
distant response does not depend on the stimulus st rength. Althou gh we did not
prove this, it should be reasonable to you that its form will also be stereotyped
(independent of the st imulus type ).

The traveling wave moves at constant speed. You found in Your Turn 12B that
this speed is determ ined by a tra de-off between the stored energy density and the
dissipation (friction).

There will be num erous techni cal details before we have a mathematical model
of the action potential rooted in verifiable facts about membrane physiology (Sec
tions 12.2 and 12.3). In the end, tho ugh, the mechanism discovered by Hodgkin and
Huxley boils down to the one depicted in Figure 12.5:

Each segment of axon membrane goes in succession from resisting
change (like chain segments to the left of the kink in f igure 12.5a)
to amplitying it (like segments immediately to the right of the kink)
when pulled over a threshold by its neighboring segment.

Although it's suggestive, our mechanical model has one very big difference from
the action potential: It predicts one-shot behavior. We cannot pass a second wave
along our chain. Action potentials, in contrast, are self-lim iting: The passing nerve
impulse stops itself before exha usting th e available free energy, leaving behind it a
state that is able to carry more impul ses (after a short refractory period ). Even after
we kill a nerve cell, or temporarily suspend its metabolism, its axon can condu ct
tho usan ds of action potentials before runnin g out of stored free energy. This property
is needed when a nerve cell is called upon to transmit rapid bursts of impu lses in
between quiescent periods of trickle charging by the ion pum ps.

Th e following sections will explore a simplified , one-shot model for the action
potential, starting with more details about membrane excitability. Section 12.3 will
return to the question of how real action potentials can be self-limiting.

12.2.3 Just a lillie more histo ry

After showing that living cells can maintain resting potentials, DuBois Reymond also
undertook a systematic study of nerve impul ses, showing around 1866 that they trav
eled along the axon at a constant speed. Th e physical origins of this behavior re
mained completely obscure.

It seemed natural to suppose that some process in the cell's interior was respo n
sible for carrying nerve impulses. Thus, for examp le, when it became possible to see
microtubules runnin g in parallel rows down the length of the axon, most physiolo
gists assumed that they were involved in the transmi ssion . In 1902, however, Julius
Bernstein set in mo tion a train of thought that ultimately overturned this expecta
tion , locating the mechanism of the imp ulse in the cell's plasma membrane.

Bernstein co rrectly guessed that the resting memb rane was selectively permeable
to potassium . The discussion in Section 11. 1 then implies that a cell's membrane po-
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tential should be around V~.t"Jlst = - 75 mV, roughly as observed. Bernstein suggested
that dur ing a nerve impulse, the membrane temporarily becomes highly permeable
to all ions, bri nging it rapidly to a new equilibrium with no potential difference across
the membr ane. Bernstein's hypot hesis explained the existence of a resting potentia l,
its sign and approximate magnitude, and the observed fact that increasing the exte
rior potassium concentra tion changes the resting potential to a value closer to zero.
It also explained rough ly the depolarization observed du ring a nerve impulse.

Hodgk in was an early convert to the membrane-based picture of the action po
tential. He reasoned th at if the passage of ions through the memb ran e was important
to the mechanism (and not just a side effect), then changing the electrica l pro perties
of the exter ior fluid should affect the propagatio n speed of the action potential. And
indeed, Hodgkin found in 1938 that increasing th e exterior resistivity gave slower
traveling impulses, whereas decreasing it (by laying a good conductor alongside the
axon) almos t doubled the speed.

Detailed tests of Bernstein 's hypothesis had to await the technologica l advances
made possible by electronics, which were needed to measure signals with the required
speed and sensitivity. Finally, in 1938, K. Cole and H. Curtis succeeded in showing ex
perimentally that the overa ll membrane conductance in a living cell indeed increased
dr amatically during a nerve impu lse, as Bern stein had prop osed. Hodgkin and Hux
ley, and independently Curtis and Cole, also ma naged to measure t; V directly dur
ing an impulse by threading a tiny glass capillary electrode into an axon. Each group
found to their surprise that, instead of dri ving to zero as Bern stein had proposed, the
membrane potential temporarily reversed sign, as shown in Figure 12.6b. It seemed
imposs ible to reconcile these observatio ns with Bernstein's attractive idea.

Fur ther examinat ion of data like Figure 12.6b revealed a curious fact: The peak
potential (about + 40 mV in the figure), although far from the po tassium Nernst po
tential, is actually not far from the sodium Nernst potential (Table 11.1 on page 477).
Th is observation offered an intriguing way to save Bernstein's selective-permeability
idea:

If the membrane could rapidly switch from being selectively perme-
able to potassium only to being perm eable mainly to sodium, then the
m em brane po tential would tiip from the Nerns t potential ofpotas
sium to that ofsodium, explaining the observed polarization reversal
(see Eq uation 12.3).

Idea 12.13 is certainly a falsifiable hypothesis. It predicts that changing the exterior
concentration of sodium, and hence the sodium Nernst potent ial, will alter the peak
of the action po tenti al.

At thi s exciting moment, most of British civilian science was int errupted for
several years by the needs of the war effort. Picking up the threa d in 1946, Katz pre
pared axons with the exterior seawater rep laced by a solution containing no sodium."
Although thi s change did nothing to the interior of the axons, and indeed did not
alter the rest ing potential very mu ch, Katz fou nd that elim inating exterior sodium

7In this and other modified-solution experiments, it's impor tant to introduce some other solute to match
the overall osmotic pressure across the cell membrane.
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Rg ur e 12. 6 : (Photom icrograph; oscilloscop e trace.) Hodgkin and Huxley's histor ic 1939 result. (a ) A recording elec
trode (a glass capillary tub e) inside a giant axon, which shows as a d ear space between division s ma rked 47 and 63 on
the scale. (The axon, in turn, is contained in a larger glass tube.) One division of the horizontal scale equals 33 J1 m.
(b) Action potential and resting potentia l recorded between the inside and outside of the axon. Below the t race appears
a time marker, showing reference pulses every 2 ms. The vertical scale indicates the poten tial of the interna l electrode in
millivolts, the seawater ou tside being taken as zero potential. Note that the memb rane potent ial act ually cha nges sign for
a couple hundred microseconds; note also the overshoot, or afterhyperpolarization , before the potential sett les back to its
resting value. IBoth panels from Hodgkin & Huxley, 1939.J

completely abolished the action potential, just as predicted by the hypothesis in
Idea 12.13. Later Hodgkin and Katz showed in more detail that redu cing the externa l
sodium to a fraction of its usual concent ration gave action potent ials with reduced
peak potentials (Figure 12.7), whereas increasing it increased the peak. all in quan
titative accord with the Nernst equation . Rinsing out the abnormal solution and
replacing it with normal seawater restored the normal action potenti al, as seen in
Figure 12.7.

Hod gkin and Katz then managed to get a quan titative estimate of the changes of
the individual cond uctances per area dur ing an action potential. They found that they
could explain the dependence of the action potential on the sodium concent ration
if gNa+ increased about SOO-fold from its restin g value. That is. the resting values,
gK+ '" 2SgN,+ '" 2gCl- (Equation 11.9 on page 482), momentarily switch to

(at the action potential peak) (12.14)

Th is is a dramatic result; but how exactly do the membrane permeabilities change.
and how does the membrane know to change them in just the right sequence to create
a traveling, stereotyped wave? Sections 12.2.4-12.3.2 will address these question s.
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Figure 12.7 : (Experimental data.) The role of sodium in the conduction of an action poten
tial. One of the top traces was taken on a squid axon in normal seawater before exposure to
low sodium. In the middle trace, external sodium was reduced to one-half that in seawater,
and in the bottom trace, to one-third. (The other top trace was taken after normal seawater
was restored to the exterior bath.) The data show that the peak of the action potential tracks
the sodium Nernst potential across the membrane, an observation support ing the idea that
the action potential is a sudden increase in the axon membrane's sodium conductance. [Data
from Hodgkin & Katz, 1949.J

12 .2.4 Th e time course of a n act ion potentia l suggests th e hypothes is
of voltage gating

The previous sections have foreshadow ed what is about to come. We must aban
don the Ohmic hypoth esis, which states that all membran e conductances are fixed,
in favor of some thing more interesting: The temporary reversal of the sign of the
membrane pot ential reflects a sudden increase in gNa+ (Equation 12.14 instead of
Equation 11.9), so gtot temporarily becomes dom inated by the sodium contribution
instead ·of by potassium. The chord conductance form ula (Equation 12.3 on page
512) then imp lies that this change drives the membrane potenti al away from the
potassium Nernst potential and toward that of sodium, thus creating the temp orary
reversed polarization characteristic of the action potential.

In fact, the cable equation shows quite directly that the Ohmic hypothesis breaks
down during a nerve impulse. We know that the action potent ial is a traveling wave
of fixed shape, moving at some speed (j . For such a traveling wave, the entire history
V(x, t) is completely known once we specify its speed and its time course at one
point:' We then have V ex, r) = v(t - (x l iJ)), where V(t) sa V(O, t) is the curve
shown in Figure 12.6b. Hence.

dV
dx

=
I

iJ
dvl
dr'

t ' = t - (x / fJ)

"Recall the image of traveling waves as snakes under the rug (Figure 4.12b on page 134).
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Rgu re 12.8 : (Sketch graphs.) The time course of an action potential. (a) The sketch shows
the membrane poten tial V(t). measur ed at a fixed locat ion x = O. ii(t) refers to the difference
between the membrane potential and its resting value VO. The dashed lines are six particular
moments of time discussed in the text. (b) Reconstruction of the total membra ne curren t from
(a), using Equatio n 12.15. An Ohm ic stage A gives way to ano ther stage B. In B. the membrane
potenti al continues to rise but the current falls and then reverses; this is non-Ohm ic behavior.
[Adapted from Benedek & Villars, 2000c.1

by the chain rule of calculus. Rear ranging the cable equation (Equation 12.7) then
gives us the total membrane current j q.r from the measured time course V (t ) of the
membrane potential at a fixed position:

(12.15)

Applying Equation 12.15 to the measured time course of an action potential,
sketched in Figure 12.8a, gives us the corresponding time course for the membrane
current (Figure l 2.8b ). We can understand thi s result graph ically, without any cal-
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culations. Note that the membrane current is particularly simple at the inflection
points of panel (a) (the dashed lines labeled 1. 3. and 5): Here the first term of Equa
tion 12.15 equals zero, and the sign ofthe current is opposite to that of the slope of
V(r). Similarly. at the extrema of pan el (a) (the dashed lines labeled 2 and 4). we find
that the second term of Equation 12.15 vanishes: Here the sign of the current is that
of the curvature of V(t) . as shown in panel (b). With these hints. we can work out the
sign of jqJ at th e poin ts ()- 6; join ing the dots gives the curve sketched in panel (b).

Comparing the two panels of Figure 12.8 shows what is happ enin g during the
action potential. Initially (stage A), the membrane conductance is indeed Ohmic:
The cell's interior potential begins to rise above its resting value, thereby driving an
ou tward current flux, as predicted from you r calculation of the potential of three
resistor-battery pairs (Your Turn 12A on page 514). But when the membrane has
depolarized by abo ut 10 mV, something strange begins to happen (stage B): The po
tential continues to rise, but the net current falls.

Idea 12.13 made the key point needed for understanding the current reversal,
in terms of a switch in the membrane's permeabilities to various ions . Net current
flows across a membrane whenever the actual potential difference V deviates from
the "ta rget" value given by the chord formula (Equation 12.3 on page 512). But the
target value itself depends on the membrane conductances. If these suddenly change
from their resting values. so will the target potential; if the target switches from being
more negative than V to more positive. then the mem brane current will change sign.
Because the target value is dominated by the Nernst potential of the most permeant
ion species, we can explain the current reversal by suppos ing that the mem brane's
permeability to sodi um increases suddenly durin g the action potential.

So far, we have done little more than restate Idea 12.13. To go further, we must
understand what causes the sodium conductance to increase. Because the increase
does not begin until after the membrane has depolarized significantly (Figure 12.8.
stage B), Hod gkin and Huxley propo sed th at

Membrane depolarization itself is the trigger that causes the sodium
conductance to increase.

(12.16)

That is, they suggested that some collection of unknow n molecular devices in the
mem brane allow the passage of sodium ions. with a conductance depending on the
mem brane potential. Idea 12.16 introduces an element of po sitive feedback into our
picture: Depo larization begins to open the sodium gates, a process that increases the
degree ofdepolarization . The increased depolarization ope ns still more sod ium gates;
and so on.

The simplest way to implement Idea 12.16 is to retain th e Ohmic hypothesis. but
with the modification that each of the membrane's conductances may depend on V:

jqJ = L (V - vi'~"")g;(V). simplified voltage-gat ing hypothesis

(12.17)
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In this formula, the conductances gi(V) are unknown (but positive) functions of the
membrane potential. Equation 12.17 is our proposed replacemen t for the Ohmic
hypothesis. Equatio n 11.8.'

The proposal Equation 12.17 certainly has a lot ofcon tent. even though we don't
yet know the precise form of the cond uctance functions appearing in it. For example.
it implies that the membrane's ion currents are still Ohm ic (linear in In(c, / c, » if we
hold V fixed while changi ng the concentrations. However, the membrane current is
now a nonlinear function of V , a crucial point for the following analysis.

Before pro ceeding to incorporate Equation 12.17 into the cable equation, let's
place it in the context of this book's other concerns. We are accustomed to positive
ions moving along the electric field, which then does work on them; they dissipate
this work as heat as they drift against the viscous drag of the surrounding water. This
migration has the net effect of reducing the electric field: Organized energy (stored
in the field) has been degraded to disorganized (thermal) energy. But stage B of Fig
ure 12.8b shows ions moving inward, that is, in a direction opposite to that of the
potential d rop. The energy needed to drive them can only have come from the ther
mal energy of their surroundings. Can therma l energy really turn back into organized
(electrostatic) energy? Previous chapters have argue d that such un intuitive energy
transactions are possible, as long as they reduce the free energy of the system. And in
fact, the axon started out with excess free energy, in the form of its nonequil ibr ium
ion concentrations. Chapter 11 identified the source of this stored free energy as the
cell's metabol ism, via the memb rane's ion pumps.

Note that Equatio n 12.17 implies that the conductances track changes in poten
tial instantaneously. Section 12.2.5 will show how this simplified conductance hy
poth esis already accounts for much of the phenomenology of the action potent ial.
Section 12.3.1 will then describe how Hod gkin and Huxley managed to measure the
conductance functions and how they were forced to modify the simplified voltage
gating hypothesis somewhat.

12.2.5 Voltage gating leads to a nonlinear cable equatio n wit h traveling
wave solutions

We can now return to the apparent impasse reached in our discussion of the linear
cable equation (Section 12.2.1): There seemed to be no way for the action potential to
gain access to the free energy stored alon g the axon membrane by the ion pumps. Th e
previous section motivated a proposal for how to get the required coup ling, nam ely,
the simplified voltage-gating hypothesis. However, it left unanswered the question
posed at the end ofSectio n 12.2.3: Who orchestrates the ord erly. sequential increases
in sodium conductance as the action potential travels along the axon?The full answer
to this question is mathematically rather complex. Before describing it qualitatively
in Section 12.3, this section will imp lement a simplified version , in which we can
actually solve an equation and see the outline of the full answer.

' The symbol t::.. V appearing in Equ ation 11.8 is abbreviated as V in this chapter (see Section 12.I .3a on
page 516).
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Let's first return to our mechanic al analogy, a chain that pro gressively shifts from
a higher to a lower groove (Figure 12.5 on page 519a). Section 12.2.2 argued that this
system can support a traveling wave of fixed speed and definite waveform. Now we
mu st translate our ideas into the context ofaxons, and do the math .

Idea 12.1 2 said that the force needed to pull each successive segment of chain
over its potential barrier came from the previous segment of chain. Translating into
the language of our axon, this idea suggests that even though the resting state is a
stable steady state of the membrane,

Once on e segmen t depolarizes, its depolarization spreads passively
to the neighb oring segm en t;

Once the neighboring segment depol arizes by m ore than 10 mV, the
positive feedback phenomenon described in the previous section
sets in, triggering a massive depol arization; and

Th e pro cess repeats, spreading the depolarized region.

(12.18)

Let's begin by focusing only on the initial sodium influx. Thu s we imagine only one
voltage-gated ion species, say, Na+. We also suppose that the membrane's conduc
tance for this ion, gNa+ (v), depend s only on the momentary value'? of the potent ial
disturbance v sa V - Vo.

A detailed model would use an experim entally measured form of the conduc
tance per area gNa+ (z-) , as imagined in the dashed line of Figure 12.9a. We will instead
use a math ematically simpler form (solid curve in the figure), namely, the funct ion

(12.19)

Here g~a+ represent s the resting conductance per area; as usual, we lump this in with
the oth er conductances and call the sum g~t . B is a positive constant. Equation 12.19
incorporates the key feature of increasing upon depolarization; moreover, it is always
posit ive, as a conductance must be.

The toial charge flux through the membrane is then the sum of the sodium con
tribution, plus Ohmic terms from the other ions:

jq., = (L:(V - Wm")g?) + (V - V~:+")Bv'.
,

(12.20 )

As in Your Turn 12A on page 514, the first term in Equation 12.20 can be rewritten
as gt~tv. Letting H denote the constant V~:~SI - Vo, we can also rewrite the last term
as (v - H)Bv' , obtaining

jq" = vg~t + (v - H)Bv2
• (12.21)

Figure 12.9b helps us und erstand graphically the behavior of our model. There
are three important po ints on the curve of current versus depo larization, namely,

10As mentioned earlier, these assumptions are not fully realistic; thus our simple model will not capture all
the features of real action potentials. Section 12.3.1 will d iscuss an improved model.
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Figure 12.9: (Sketch graphs.) Voltage-gating hypothesis. (a ) Dashedcurve:The conductance g Na+ of an axon membrane
to sodium ions, showing an increase as the membrane potential increases from its resting value (v = 0). Solid curve:
Simplified form for membrane sodium conductance (Equation 12.19). This form captures the relevant feature of the
dashed curve, namely. that it increases as v increases and is positive. (Even the dashed line is not fully realistic: Real
membrane conductances do not respond instantly to changes in membrane potential; rather they reflect the past history
of v. See Section 12.3.1.) (b) Curre nt-voltage relat ion resulting from the conductance model in (a) (Equation 12.21). The
special values V I and V2 are defined in the text.

the points where the membrane current j q.r is zero. Equation 12.21 shows that these
points are the roots of a cubic equation. We write them as v = 0, VI , and V 2, where
VI and V2 equal 1(H 'F ../H2 - 4g~t/B) , respectively. At small depolarization v, the
sodium permeability stays small, so the last term of Equation 12.21 is negligible. In
this case, a small positive v gives small positive (outward) current, as expected: We
are in the Ohmic regime (stage A of Figure 12.8). The outward flow of charge tends to
reduce v back toward zero. A further increase of v, however, opens the voltage-gated
sodium channels, eventually reducing jq.r to zero, and then below zero as we pass
the point V I . Now the net inward flow of charge tends to increase v, giving positive
feedback-an avalanche. Instead of returning to zero, v drives toward the other root ,
V2. 11 At still higher v, we once again get a positive (outward) current, as the large
outward electric force on all the ions finally overcomes the entropic tendency for
sodium to drift inward.

In short, our model displays threshold behavior: Small disturbances get driven
back to V = 0, but above-threshold disturbances drive to the other stable fixed point
V2. Our program is now to repeat the steps in Section 12.1.3, starting from step (b)
on page 516 (step (a) is unchanged).

b'. Equation We first substitute Equation 12.21 into the cable equation (Equa
tion 12.7 on page 517) . Some algebra shows that VIV2 = gt~,, /B, so the cable equation

llThis bistability is reminiscent of the one studied in Prob lem 6.7c on page 241.
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becomes

nonlinear cable equation

(12.22)

Unlike the linear cable equation, Equation 12.22 is not equivalent to the diffusion
equation. In general, it's very difficult to solve nonlinear, many-variable differential
equations like this one. But we can simplify things, because our main interest is in
finding whether there are any traveling wave solutions to Equation 12.22. Following
the discussion leading to Equation 12.15, we can represent a wave traveling at speed
!J by a function v (t) of aile variable, via v(x, t) = v (t - (x/!J» (see Figure 4.12b
on page 134). Subst ituting into Equation 12.22 leads to an ordinary (one -variable)
differential equation:

(A",OO)' d2v _ r dv = v(v - VI )(V - v, ) . (1 2.23)
!J dt' dt VIV,

We can tidy up the equation by defin ing the dimension less quantities v es vlv2,
Y sa -f} t/Aaxon • 5 == V2 /V t> and Q es r{J /Aaxon , finding

d' v dv 3 ,
- = - Q- + 5V - (I + s)v + V. (12 .24 )
dy' dy

c'. Solution You could enter Equation 12.24 into a computer-math package, substi
tute some reason able values for the parameters Q and 5 , and look at its so lutions. But
it's tricky: The solutions are badly behaved (they blow up ) unless you take Q to have
one particularvalue (see Figure 12.10). This behavior is actuallynot surprising in the
light of Section 12.2.2, which pointed out that OUf mechanical analog system selects
one definite value for the pulse speed (and hence Q). You'll find in Problem 12.6 that
choos ing

A",OO fl( 5 )!J = ± -- - -- I
r 5 2

yields a traveling wave solution (the solid curves in Figure 12.10).

(12.25)

d', Interpretat ion Th e hypothesis of voltage gatin g, embodied in the nonlinear cable
equation. has led to the appearance of traveling waves of definite speed and shape.
In particular, the amplitude of the traveling wave is fixed: It smooth ly connects two
of the values of v for which the membrane current is zero, namely, 0 and V 2 (Fig
ure 12.9). We cannot excite such a wave with a very small disturbance. Clearly, for
small enough v. the nonlinear cable equation is essentially the same as the linear one
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Figure 12 .10 : (Mathemat ical functions.) Traveling wave solution to the nonlinear cable equa
tion (see Problem 12.6). The membrane pot ential relative to rest, vex.f), is shown as a functi on
of time at three different fixed locations (three solid curves). Points at larger x see the wave go by
at later times, so this wave is traveling in the +xdirection. The parameter s == vstv, has been
taken equal to 3 for illustrat ion . Comparison with Figure 12.2b on page 508 shows that this
simplified model qualitatively reprod uces the leadin g edge of the action potential. Th e dashed
lin esho ws a solution to Equation 12.23 with a value of the front velocity 0 d ifferent from that
in Equat ion 12.25; th is solut ion is singular. Tim e is measured in uni ts ofAaxon / {} . The pot ent ial
relative to resting is measured in units of Vl (see text ).

(Equation 12.9 on page 517), whose solution we have already seen corresponds to
passive, diffusive spreading (electrotonus), not an action potential. Thus

3. Voltage gating leads to a graded, diffu sive response for stimuli
below some threshold, but above-threshold, depolarizing stimuli
yield a large, fixed-amplitude response. (12.26)

b. The above -threshold response takes the form ofa traveling wave of
fixed shape and speed.

Our model, a math ematical embodiment of Idea 12.18, has captu red many of
the key features of real nerve impulses, listed at the end of Section 12.1.1. We didn't
prove that the wave rapidly forgets the precise nature of its initial stimulus, rem em
bering on ly whether it was above threshold or not, but such behavior should seem
reasonable in the light of th e mechanical analogy (see Section 12.2.2). We also get a
quan titative prediction. The velocity f) is proportional to A,mo/T = .jaKgtot/(2C')
tim es a factor ind ependent of the axon's radius a. Th us the model predicts that if
we examine a family of unmyelinated axons of th e same general typ e, with th e same
ion concentrations, we shou ld find that the pulse speed varies with axon rad ius as
{j ex ..ja. This predi ction is rou ghly borne out in experimental data . Moreover, the
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overall magnitude of the pulse speed is approximately A,mn/r . For the squid giant
axon, our estimates give this quantity as about 12 mmj 2 ms = 6 m 5- 1, a value within
an order of magnitude of the measured action potential speed of about 20 m 5- 1.

Our result also makes sense in the light of the mechanical analogy (Sec
tion 12.2.2). In Your Turn 12B(c), you found thatthe wave speed was proportional to
the density of stored energydivided by a frictionconstant. Examining our expression
for {j, we noti ce that both K and g lOl are inverse resistances, so .jKg101 is indeed an
inverse "friction" constant. In addit ion, the formula EIA = !q2/ (CA ) for the electro
static energy density stored in a charged membrane of area A shows that the stored
energy is proportional to l / C. Thus our formula for iJ has essentially the structure
expected from the mechanical analogy.

1121 Section 12.2.5 on page 552 discusses how the nonlinear cable equation deter

mines the speed of its traveling wave solution.

12.3 THE FULL HODGKIN-HUXLEY MECHANISM AND ITS
MOLECULAR UNDERPINNINGS

Section 12.2.5 showed how the hypot hesis of voltage-gated cond uctances leads to
a non linear cable equation , with self-sustaining, traveling waves of excitation remi
niscent of actual action potentials. This is an enco uraging preliminary result, but it
makes us want to see whether axon memb ranes really do have the remarkable prop
erties of voltage-dependent, ion-selective conductance we attributed to them. In ad
dition , the simplified voltage-gating hypothesis has not given us any und erstanding
of how the action potential terminates; Figure 12.10 shows the ion channels opening
and staying open , presumably until the concentration differences giving rise to the
resting potent ial have been exhausted. Finally, while voltage gating may be an attrac
tive idea, we do not yet have any idea how the cell could implement it with molecular
machinery. This section will address all these points.

12.3.1 Each ion conductance fOllOWS a characteristic tim e course when
the membrane potential changes

Hodgkin, Huxley, Katz, and others confirmed the existence of voltage-dependent,
ion- selective conductances in a series of elegant experiments , which hinged on three
main technical points.

Space clamping The conductances gi determine the current through a patch of
membrane held at a fixed, uniform potential drop. But durin g the norm al operation
of an axon, deviation s from the resting potential are highly nonuniform along the
axon- they are localized pulses. Cole and G. Marmont addressed this problem by
developing the space clamp technique. The technique involved threading an ultra
fine wire down the inside of an axon (Figure 12.11). The metallic wire was a much
better conductor than the axoplasm) so its presence forced the entire interior to be at
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Figure 12.11: (Schematic. ) An electrop hysiology experiment. The long wire threaded
through the axon maintains its interior at a spatially uniform electr ic potential (space clamp
ing). A feedback circuit mon itors the transmemb rane potential V and sends whatever CUf

rent is needed to keep V fixed at a "command" value chosen by the experimenter (voltage
clamp ing). The corresponding cur rent I is then record ed. Typically the axon is 30-40 mm long.
[From Lau ger, 1991.]

a fixed, uni form potential. Introducing a similar lon g exterior electrode then forces
V (x) itself to be uni form in x.

Voltage clamping One could imagine forcing a given current across the membrane,
measuring the resulting potential dro p, and attempting to recover a relation like the
one sketched in Figure 12.9b. There are a numb er of experimental difficulties with
this approa ch, however. For one thi ng, the figure shows that a given j q.r can be com
patible with multiple values of V. More important, we are exploring the hypothesis
that the devices regulating conductance are themselves regulated by V, not by current
flux, so V is the more natural variable to fix. For these and other reasons, Hodgkin
and Huxley set up their apparatus in a voltage clamp mode. In th is arrangement,
the experimenter chooses a "command" value of the membrane potential; feedback
circuitry supplies whatever current is needed to maintain V at that command value
and reports the value of that curren t.

Separation of ion currents Even with space and voltage clamp ing, electrical mea
surements yield on ly the total current th rough a membrane, not the individual cur-
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rents of each ion species. To overcome th is problem, Hod gkin and Huxley extended
Katz's technique of ion substitution (Section 12.2.3). Suppose we adjust the exterior
concentration of ion species i so that Vrcrnsl equals the clamp ed value of V. Then
thi s ion's contribution to the curren t equals zero, regardless of what its cond uctance
g;( V) may be (see Equation 12.17 on page 526). Using an elaboration of this idea,
Hodgkin and Huxley managed to dissect the full curre nt across the membrane into
its components at any V .

Results Hodgkin and Huxley systematized a number of observations made by Cole
and Marmont. Figure 12.12 sketches some results from th eir voltage clamp appara
tus (Figure 12.11). The command po tential was suddenly stepped up from the mem
brane's resting pot ential to V = -9 mV, th en held there. One striking feature of
these data is that the membrane conductance does not track th e applied potenti al
instant aneously. Instead, we have the following seque nce of events:

1. Immediately after th e imposed depola rization (Figure 12.12a), th ere is a very short
spike of outward current (panel b), lasting a few microseconds. Thi s is not really
current through the membrane; rather, it is the discharge of the memb ran e's ca
pacitance (a capacitive current), as discussed in Section 12.1.2.

2. A brief, inward sodium current develops in the first half-mill isecond. Dividing by
V - V~:r;st gives the sodium cond uctance, whose peak value was found to depend
on th e selected command potential V.

3. After peaking, however, the sodium conductance drops to zero, even though V is
held constant (Figure 12.12c).

4. Meanwhile, th e potassium current rises slowly (in a few milliseconds, Fig
ure 12.12d). Like gNa+ , the potassium conductance rises to a value that depends
on V . Unlike gN,+, however, gK+ hold s steady indefinitely at this value.

Thus, the simplified voltage-ga ting hypothesis describes reasonably well the ini
tial events following membrane depolarizati on (points (I ) and (2)), which is why it
gave a reasonabl y adequate description of th e leading edge of the act ion potential. In
th e later stages, however, our simplified picture breaks down (points (3) and (4)) and
ind eed, here our solution deviated from reality (com pare the mathematical solutions
in Figure 12.10 with the experimental trace in Figure 12.6b on page 523). The results
in Figure 12.12 show us what changes we should expect in our solutions when we
introduce more realistic gating function s:

• After half a millisecond, the spontaneous drop in sodium conductance begins to
drive V back down to its restin g value.

Indeed, the slow increase in potassium conductance after th e main pu lse impli es
th at the membrane potenti al will tem porar ily overshoot its resting value, instead
arriving at a value closer to v~~n'l (see Equation 12.3 on page 512 and Table ILIon
page 477). This observa tion explains the ph eno menon of afterhype rpolarization,
mentioned in Section 12.1.1.
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Figure 12.12 : (Sketch graphs of experimental data.) Membrane currents produced by depo
larizing stim uli. (a) Applied stim ulus. a 56 mV depolar ization of a squid axon mem brane im 
posed by a voltage clamp apparatus. (b) Curre nts m easured dur ing the stimulus. The observed
cur ren t con sists ofa brief po sitive pu lse as the membrane 's capacitance discharges, followed by
a short phase of inward current, and then finally a delayed outward current. The inward and
delayed outward currents are shown separately in (e) and (d ). (e) The tr ansient inward cur rent
is caused by sodium entry. (d ) Pot assium movem en t out of the axon gives the longer outward
cur ren t. Divid ing th e tra ces in (c.d) by the im posed V - Vi'<m>l yields the correspo nd ing con
du ctances. gj(V. t), wh ich depend on time . [Adapted from Hod gkin & Hu xley. 1952a.)
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Once the membrane has repolarized, ano ther slow process resets the potassium
conductance to its original, lower value. and the membrane potent ial returns to its
resting value.

Hodgkin and Huxley charact erized the full time course of the pota ssium con
ductance by assuming that for every value of V , there is a corresponding saturation
value of the pot assium conducta nce, g~ (V) . The rate at which gK+ relaxes to its sat
urat ion value was also taken to be a function of V. These two fun ction s were taken
as phenomenological membrane propert ies and were obtained by repeating experi
ments like Figure 12.12 with command voltage steps of vario us sizes. Thus the actual
conductance of a patch of memb rane at any time is not simply determined by the
instant an eous value of th e potential at that time. as implied by the simple voltage
gating hypothesis. Instead , the ent ire past history of the potential (in this case, the
time since V was stepped from V a to its comman d value) affects gj. A similar, but
slightly more elaborate, scheme successfully describ ed the rise/fall structure of the
sodium conducta nce.

Substitut ing the conductance functions just described into the cable equation
led Hodgkin and Huxley to an equation more complicated than our Equation 12.24.
Obtai ning the solutions was a prod igious effort, originally taking weeks to compute
on a hand-cran ked, desktop calculator. But the solution correctly reproduced all the
relevant aspects of the action potential. including its entire time cou rse, speed of
propagation, and dependence on changes of exterior ion concentrations.

There is an extraordinary postscript to this story. The model described in th is
chapter implies that as far as the action potential is concerned, the sole func tion of the
cell's interior machinery is to supply the requ ired nonequilibrium restin g concent ra
tion differences of sodium and potassium across the membrane. P. Baker, Hodgkin,
and T. Shaw confi rmed this rather extreme conclusion by the extreme measure of
emptying the axon of all its axoplasm. replacing it by a simple solution containing
potassium but no sodium. Althou gh it was almost entirel y gutted, the axon contin
ued to transmit action potentials indistinguishable from those in its natu ral state
(Figure 12.13)!

12.3.2 The patch clamp technique allows the study of single ion
channel behavior

Hodgkin and Huxley's theory of the action potential was phenomenological in char
acter: They measured the behavior of the membrane con ductances under space and
voltage clamped condit ion s, then used these measurements to explain the action
potential. Altho ugh they suspected that their membrane cond uctances arose by the
passage of ions thro ugh discrete, molecular-scale ion channels, thei r data could not
confirm th is picture. Indeed, the discussion of this chapter so far leaves us with sev
eral questions:

a. What is the mo lecular mechanism by which ions pass through a membrane? The
simp le scheme of diffusion thro ugh the lipid bilayer cannot be the answer (see
Section 4.6.1 on page 135) because the conductance of pure bilayer membranes is
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Figur e 12.13 : (Oscilloscope traces.) Perhap s the most remarkab le experim ent described in this book. (a) Action poten
tial recorded with an internal electrod e from an axon whose intern al contents have been replaced by potassium sulfate
solution. (b) Action potential of an intact axon , with sam e amplification and time scale. [From Baker et al., 1962.1

several orders of magnitude less than the value for natural membranes (see Sec
tion 11.2.2 on page 478).

b. What gives this mechanism its specificity for ion types? We have seen that the
squid axon membrane's conductances to potassium and to sodium are quite dif
ferent and are gated differently.

c. How do ion channels sense and react to the membrane potent ial?

d. How do the characteristic time courses of each conductance arise?

This section will br iefly sketch the answers to these questions, star ting with observa
tions made in the 1970s.

Hodgkin and Huxley could not see the molecular mechanisms for ion transport
across the axon membrane because they were observing the collective behavior of
thousands of ion channels, not the behavior of any individual channel. The situation
was somewhat like that of statistical physics at the turn of the twentieth century: The
ideal gas law made it easy to measure the product Nmole k B, but the individual val
ues of Nmole and kB remained in doubt until Einstein's analysis of Brownian motion
(Chapter 4). Similarly, measurements of g; in the 1940s gave only the prod uct of the
conductance Gj of an individual channel times the number ofchannel s per unit area
of membrane. Katz succeeded in the early 1970s in estima ting the magnitude of Gi

by analyzing the statistical properties of aggregate conductances. But others' (inaccu
rate) estimates disagreed with his, and confusion ensued.

The systematic study of membrane conductance at the single-channel level
had to await the discovery of cell biology techn iques capable of isolating individual
ion chan nels and electro nic instrumentation capable of detecting the tiny currents
they carry. E. Neher developed the necessar y electronic techniqu es in experiments
with ion channel proteins embedded in artificial bilayers. The real breakthro ugh
came in 1975, when Neher and B. Sakmann developed the patch clam p techn ique
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Figu re 12 .14: (Schematic; optical micrograph.) The patch clamp techn ique. (a) A small patch of membrane containing
only a single voltage-gated sod ium channel (or a few) is electr ically isolated from the rest of the cell by a patch electrode.
The current entering the cell through these channels is recorded by a mon itor conn ected to the patch electrode. (b) Patch
damp manipulation of a single. live photoreceptor cell from the retina of a salama nder. Th e cell is secured by partially
sucking it into a glass mic rop ipette (bottom), and the patch clamp electrode (upper left) is sealed against a small patch of
the cell's plasma membrane. [(a) Ada pted from Kandel et al., 2000. (b) Digital image kindl y supplied by T. D. Lamb: see
Lamb et aI., 1986.1

(Figure 12.14), thereby enabling the measurement of ion currents across single
channels in intact, living cells. Neher and Sakmann's work helped laun ch an era of
dynamical measurements on single-molecule devices.

One of the first results of patch clamp recordin g was an accura te value for the
conduc tance of individual channels: A typical value is G '" 25 . 10- 12 n-I for the
open sodium channel. Using the relations V = IR and R = 1/ G, we find that at a
driving po tent ial of V - V~:~SI ~ 100 mY, the current through a single open channel
is 2.5 pA.

Your
Turn

12C

Express this result in terms of sodium ions passing thro ugh the channel per
second. Is it reasonable to treat the membrane electric current as the flow of a
continuous quantity. as we have been doin g?

a. Mechanism ofconduction The simplest imaginable model for ion chann els has
proved to be essentially cor rect: Each one is a barrel-shaped array of protein subunits
inserted in the axon's bilayer membrane (Figure 2.21a on page 57), creating a hole
through which ions can pass diffusively. (Problem 12.8 tests this idea for reasonable
ness with a simple estimate.)
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Figu re 12 .15: (Experimental data.) Current-voltage relation of single sodium channels re
constitute d into an arti ficial bilayer in solut ion s ofNaCl and KCI. The vert ical axis gives the
curre nt observed when the channel was in its open state. The channels were kept open (that
is, chann el inactivation was supp ressed) by adding batrachotoxin, th e neuro toxin found in the
skin of the poison dart frog. The slopes give the channel conduc tances shown in the legend ;
the unit pS equa ls 10- 12 Q - l . The data show that th is channel is highly selective for sodium.
[Data from Har tshorn e et al., 1985.J

b. Specificity The channel concept suggests that the independent cond uctances of
the axon membrane ar ise through the presence of two (actually, several) subpopula
tions of channels, each carrying on ly one type of ion and each with its own voltage
gating behavior. Ind eed, the patch clamp technique revealed the existence of distinct,
specific channels. Figure 12.15 illustr ates th e great specificity of th e sodium chan
nel: Th e conductance of a single sodium channel to sodium is nearly ten times th e
conductance to other similar cations. The pota ssium chan nel is even mo re precise,
ad mitting potassium 50 times as readily as sodium.

It's not hard to imagine how a channel can accept smaller ions, like sodium,
while rejecting larger ones, like potassium and rubidium : We can just suppose that
the channel is too sma ll for the larger ions to pass. (More precisely, this geome tri
cal constraint applies to th e hydrated ion s; see Section 8.2.2 on page 301.) It's also
no t hard to imagine how a channel can pass pos itive ions in preference to neutral or
negative objects: A negative charg e somewhere in the middle can reduce th e activa
tion barr ier for a positive ion to pass, thereby increasing th e rate of cation passage
(Section 3.2.4 on page 86), while having the op posite effect on anions. Real sodium
channels seem to employ bot h these mechanisms.

Wha t is hard to imagine is how a cha nnel could specifically pass a large cation,
rejecting smaller ones, as the potassium channel must do! In the early 1970s, C. Arm
strong and B. Hille prop osed models exploring this idea. Th e idea is that the chan nel
could contain a const riction so narrow th at ions, normally hydr ated, would have to
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"undress" (lose some of their bound water molecules) to pass through . The energy
needed to break the corresponding hydration interactions will create a large acti
vation barrier, thus disfavoring ion passage, unless some other interaction forms
compensating (favorable) bonds at the same time. The first crystallographic recon
structions of a potassium channel, obtained byR. Mackinn on and coauthors in 1998,
indeed showed such a constriction, exactly fitting the potassium ion (diameter
0.27 nm) and lined with negatively charged oxygen atoms from carbonyl groups
in the protein making up the channel. Thus, just as the potassium ion is divested
of its companion water molecules, it picks up similar attractive interaction s to these
oxygens and hence can pass without a large activation barrier. The smaller sodi um
ion (diameter O. 19 nm), however, does not make a tight fit, so it cannot interact as
well with the fixed carbonyl oxygens. Nevertheless. it too must lose its hydration
shell, thus incurring a large net energy barrier. (In addition. because of its smaller
size, sodium holds its hydrat ion shell more tightly than does potassium .)

c. Voltage gating Already in 1952, Hodgkin and Huxley were imagining voltage
gated channels as devices similar to the fanciful valve sketched in Figure 12.16a: A
net positive charge embedded in a movable part of the channel gets pulled by an
external field. An allosteric coupling then converts this motion into a major confor
mational change, which opens a gate. Panel (b) of the figure shows a more realistic
sketch of this idea, based in part on Mackinnon's crystallographic data.

The mechanism just outlined leaves open the question of whether the confor
mational change is continuous, as implied in Figure 12.16a, or discrete. The two pos
sibilities give rise to an analog gating of the membrane current (as in the transistors
of an audio amplifier) or a digital, on/off mode (as in computer circuitry). Our ex
perience with allostery in Chapter 9 shows that the latter opt ion is a real possibility;
and indeed , patch clamp recording showed that most ion channels have just two (or a
few) discrete conductance states. For example, the traces in Figure 12.17b each show
a single channel jumping between a closed state with zero current and an open state,
which always gives roughly the same current.

The observation of digital (ali-or-nothing) switching in single ion channels may
seem puzzling in the light of our earlier discussion. Didn't ou r simple model for volt
age gating require a co'lt;nuous respon se of the membrane conductance to V (Fig
ure 12.9a)? Didn't Hodgkin and Huxley find a continuous time course for their con
ductances, with a continuo usly varying saturation value of gJ0. (V)? To resolve this
paradox. we need to recall that there are many ion channels in each small patch of
membrane (see Problem 12.7), each switching independently. Thu s the values of gi
measured by the space clamp technique reflect not only the conductances of indi
vidual open channels (a discrete quantity) and their density Uchan in the membrane
(a constant) but also the average fraction of all channels that are open. The last fac
tor mentioned can change in a nearly continuous manner if the patch of membrane
being studied contains many channels.

We can test the idea just stated by not icing that the fraction of open channels
should be a part icular functio n of V. Suppose that the channel really is a simple
two-state device. We studied the resulting equilibrium in Section 6.6.1 on page 218,
arr iving at a formula for the probability of one state ("channel open") in terms of the
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Figure 12.16: (Schematic; sketch based on structural data.) (a) Conceptual model of a
voltage-gated ion channel. A spring norm ally holds a valve dosed. An electric field point
ing upward lifts the positively charged valve, lett ing water flow downward . (b) Sketch of the
sod ium channel. Left: In the rest ing state, positive charges in the cha nnel protein's four "sens
ing» alpha helices are pulled downward, towa rd the negative cell interior. The sensing helices in
turn pull the channel into its dosed conformation. Right: Upon depolarization , the sensing he
lices are pulled upward. The chan nel now relaxes toward a new equilibr ium, in which it spends
most of its time in the open state. The lowerblob depicts schem atically the channel-inactivating
segment. This attached object can move into the channel, thereby blocking ion passage even
though the chan nel itself is in its open conforma tion. [(b) Adapted from Armstro ng & Hille,
1998·1

free energy d ifference I:>F for the transition closed-s-open (Equation 6.34 on page
225):

(12.27)

We cannot predict the numerical value of 6.F without detailed molecular modeling
of the channel. But we can predict the changein I:>F when we change V. Suppose th at
the channel's two states, and their intern al energies, are almost un changed by V. Then
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Figure 12 .17: (Experimental data.) Patch clamp recordings of sodium channels in cultured
muscle cells of rats. showing the origin of the inward sodium current from discrete channel
opening events. (a) Time course of a 10mV depolarizing voltagestep. applied acrossthe patch
of membrane. (b) Nine individual current responses elicited by the stimulus pulses. showing
six individual sodium channel openings (circles) . The potassium channels were blocked. The
patch contained 2-3 active channels. (c) Average 0£300 individual responses like those shown
in (b). If a region of membrane contains many channels, all opening independently,we would
expect its total conductance to resemble this curve; and indeed it does (see Figure 12.6c). [Data
from Sigworth & Neher, 1980.J

the only change to llF comes from the facl that a few charges in the voltage-sensing
region move in the external field. as shown in Figure 12.16b.

Suppose that upon switching, a total charge q moves a distance e in the direc
tion perpend icular to the membrane. The electric field in the membrane is E: "" Vj d,
where d is the thickness of the membrane (see Section 7.4.3 on page 264). The exter
nal electric field then makes a contribution to llF equal to -qE:e, or -qVejd; so our
model predicts that

llF(V) = llFo - qVejd , or Pop,,, = 1 + Ae ,VI I",Td) ' (12.28)

where 6.Fo is an unknown constant (the internal part of 6.F ), and A == etlFol koT.

Equation 12.28 gives our falsifiable predic tion. Althou gh it conta ins two un
known fit parameters (A and qejd ), it does make a definit e prediction about the
sigmoidal shape of the opening probability. Figure 12.18a shows experimental patch
clamp data giving Popen as a function of V. To see whether it obeys ou r prediction,
panel (b) shows the quantity In«(Pop,,)- 1 - I) = llFjkBT. According to Equa
tion 12.28, this quantity sho uld be a consta nt minus qVej(kllTd) . Figure 12.18b
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Figure 12.18 : (Experimental data with f it. ) Voltage dependence of sodium channel opening. (a) The current through
a single sodium channel reconstituted in an artificial bilayer membrane was measured under voltage clamp conditions
while increasing the voltage from hyperpolarized to depolar ized (this particular channel opened at fj. V ~ - 80 mY» ~.

Channel inactivation wassuppressed; see Figure 12.15.(b) The free energydifference tlF/ kBT between open and closed
states, computed from (a) under the hypothesis of a two-state switch (Equation 12.28). The curve is nearly linear in
the applied voltage, as we would expect if the channel snapped between two states with different, well-defined, spatial
distributio ns of charge. The slope is - 0.15 mV- I

. (a) Data from Hartshorne et al., 1985.1

shows that it is indeed a linear function of V. From the slope of this graph, Equa
tion 12.28 gives (qt) / (kBT,d) = 0.15 mV- '.

Your
Turn
12D

Interpret the last result. Using the fact that t canno t exceed the membrane
thickness, find a bound for q and comment.

d. Kinetics Section 6.6.2 on page 220 also drew attention to the implications of the
two-state hypothesis for lIollequ ilibrium processes: If initi ally the probabilities ofoc
cupation are no t equal to their equilibrium values, then they will approach those
values exponentially,following the experimental relaxation formula (Equation 6.30).
The situation with ion channels is somewhat complicated; mo st have more than two
relevant states. Nevertheless, in many circumstances, one relaxation time dominates,
and we do find nearly expo nential relaxation behavior. Figure 12.19 shows the results
ofsuch an experiment. The figure also illustrates the similarities between the voltage
gated channels studied so far in this chapter and ligand -gated ion channels, wh ich
open in respon se to a chemical signal.

The channel s studied in Figure 12.19 are sensitive to the presence ofthe molecule
acetylcholine, a neurotransmitter. At the start of each trial, a sudden release ofacetyl
choline opens a number of chann els simultaneously. Th e acetylcholine rapidly dif
fuses away, leaving the channels still open bu t ready to close. That is, the experiment
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Figu re 12 .1 9 : (Experimental data with fit.) Distri bu tion of the duration s of channel open
times in a ligand -gated ion channe l (frog synaptic channels exposed to acetylcholine). The
histogram shows how many individual ion channels stayed open for various times following
brief exposure to the activating neurotransmitter. The curve shows an exponential probability
distribu tion with time constant r = 3.2 ms; the curve has been normalized appropriately for
the total number of observ ations (480) and the bin width (0.5 ms ). The first bin of data is not
shown. Compare with the kinetics of RNA unfolding in Figure 6.10 on page 228. [Data from
Colquhoun & Hawkes, 1983.1

prep ares an initial nonequilibrium population of ion channel states. Each channel has
a fixed probability per unit tim e of jumping ro the closed state. Theexperimenters fol
lowed the time course of the membrane current. flagging individual channel-closing
events. Repeating the experiment to build a large data set yielded the histogram of
open tim es show n. which matches the exponential curve e-t/3.2ms. Altho ugh each
channel is either fully open or fully shut, adding the conductances of many channels
gives a tota l membrane current tha t roughly approximates a continuous exponen
tial relaxation . ana logous to that found in Hodgkin and Huxley's experiments for the
potassium cond uctance upon sudden depolarizat ion.

Th e complex. open-then-shut dyna mics of the sodium channel is not a simple
exponential, but it too arises from the all-or-nothing openin g and closing of individ
ual sodium channels. Figure 12.17 makes this point graphic ally. The nine traces in
panel (b) show successive trials in which a single sodium channel, initially in its rest
ing state, was suddenly depolarized. The individual traces show only digital behavior.
To simulate the behavior of a large patch of mem brane, containing many channels.
the exper imenters averaged 300 such single-channel time courses, obtaining the trace
in panel (c). Remarkably, the result resembles closely the time course of the sodium
current in space clamp experiments (Figure 12.12c on page 535).

Today we attribute the observed two-stage dynamics of the sodium conductance
under sustained depolarization to two independent . successive obstructions that a
sodium ion must cross. On e of these obstruction s opens rapid ly upon depolariza
tion, whereas the other closes slowly. Th e second process, called inactivation, in-
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valves a channel-inac tiva ting seg ment. According to a mod el due to Armstrong and
F. Bezanilla•.the channel- inactivat ing segment is loo sely attached to the sodium chan 
nel by a flexible tether (Figure 12.16b). Unde r sus tained depolarization , this segmen t
eventually enters the open channel, physically blocking it. Upon repolarization, the
segme nt wand ers away, and the channel is ready to open again.

Several ingenious experiments supported this model. For examp le. Armstrong
found that he could cleave away the channel- inactivating segment with enzymes,
thereby destroying the inactivation process but leaving the fast openi ng process un
cha nged. Later R. Aldr ich and coauthors manufactured channels in which the flexible
linker chain join ing the inactivating segment to the channe l was shorter than usual.
The modi fied channels inactivated faster than their natural counterparts: Shorten
ing the chain made it easier for the inactivation segme nt to find its docking site by
diffusive motion .

12.4 NERVE, MUSCLE, SYNAPSE

Another book the size of th is one wou ld be needed to explore the ways in which
neuron s accept sensory information. perform comp utation, and stimulate muscle
activity. This short section will at best convey a survey of such a survey, emphasizing
links to our discussion of action potentia ls.

12.4.1 Ne rve cells a re separated by na rro w synapses

Most body tissues co nsist of cells with simple, compact shapes. In contrast, nerve
cells are large, have complex shapes. and are intertwined with one anoth er to such
an extent that by the late nineteenth century, many anatomi sts still tho ught of the
brain as a continuous mass of fused cells and fibers. and not as a coll ection of distinct
cells. The science of neuroanatom y could not begin until 1873. when Camillo Golgi
developed a silver-impregnation techn ique that stained onl y a few nerve cells in a
sample (typically 10/0 ) but stained the selected cells completely.Thus the stained cells
stood out from the intertwining mass of neighboring cells, and their full extent co uld
be mapped.

Improving Golgi's techni que, Santiago Ramon y Cajal drew meticulous and
breathtaking pictures of entire neurons (Figure 12.20). Cajal argued in 1888 that
neurons were, in fact, distinct cells. Golgi him self never regarded this "neuron doc 
trine" as proved." Indeed, the definitive proof requ ired the development of electro n
micro scop y to see the narrow synapse separating adjoining neurons. Figure 12.21
shows a modern view of this region. One nerve cell's axon ends at another's dendr ite
(or on a dendritic spine attac hed to th e dendrite). The cells interact when an impulse
travels to the end of the axon and stimulates the next cell's dendrit e across a narrow
(l 0-30 nm wide ) gap, the synaptic cleft (Figure 12.21). Thus, informa tion flows
from the presynap tic (axon) side of the cleft to the postsynap t ic (dendrite) side. A

" Golgi was right to be cautio us: His method does flot always stain whole neurons; it often misses fine
processes, especially axons.
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Figure 12 .2 0 : (Anatomical drawings.) Two classes of hum an ne urons from the pioneering work of S. Ram6n y Cajal.
(a) A pyrami dal cell from the rabbit cerebral cor tex. The axon divides near the cell body (or soma, dark blob between a
an d b), sending branches to conne ct with nearby cells as well as a main axon (bottom ) projecting to distant pa rts of the
brai n. Th e oth er branched lines extending from the soma are dendri tes (input lines). (b) A Purkinje cell, with its extensive
dendrit ic (input) system ( top). Th e axon is labeled aj From Ramon y Cajal, 1995.1

similar synapse join s a motor nerve axon to the muscle fiber whose contraction it
controls.

12.4.2 The neuromuscular jun ction

The best- studied synapse is the junction betwee n a motor neuron and its associated
mu scle fiber. As sketched in Figure 12.21, the axon terminals contai n many synapt ic
vesicles filled with the neurotransmitter acetylcholine. In the qu iescent state, the vesi
cles are mo stly awaiting release, although a few release spontaneo usly each second.

As an action potential travels down an axon, it splits into multiple action po 
tentials if the axon bran ches, finally arriving at one or mo re axon termi nals. The
terminal's membrane contains voltage-gated calcium channels; in response to depo
larization , these channels ope n. Th e external concentration of CaH is in the millimo
lar range, but active pum ping maintains a much smaller (micromolar) concentration
inside (see Section 11.3.5 on page 496). The resulting influx of calcium catalyzes th e
fusion ofabout 300 synaptic vesicles with the presynaptic memb rane in about a mil 
lisecon d (Figure 2.7 on page 43). The vesicles' con tents then diffuse across the synap
tic cleft between the neuron and the muscle fiber.
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Agure 12.21: (Drawing based on structural data.) Cross section of a chemical synapse (see also Figure 2.7 on page 43).
The end of an axon is shown at the top, with two synaptic vesicles full of neurotransmitter molecules inside and one in
the process of fusing with the axon's plasma membr ane and dumpi ng its conten ts into the synaptic cleft. The receiving
(or postsynapti c) dendrite is shown at the bottom. Neuro transmitters diffusing across the cleft bind to receptor proteins
embedded in the dendrite's membrane. Typically these receptors are ligand-gated ion channels. [From Goodsell, 1993.J

On the other side of the synapse, the muscle cell contains ligand- gated ion chan
nels sensitive to acetylcholine (Figure 12.19). The release of a single synaptic vesicle
generates a measurable, subthreshold depola rization in the muscle cell. S. Kuffler and
coauthors showed that an ident ical response could be generated by manu ally inject
ing a tiny quantity of acetylcholine (fewer than 10000 molecules) into the neuro 
mu scular junction. The arri val of an action potential , however, releases many vesicles
at once. The ensuing large depolarization triggers an action potential in the mus
cle cell, ultimatel y activating the myosin molecules that generate muscle contraction
(Figure 10.1 on page 405).

Th us the neuromuscular connection involves two distinct steps: presynaptic re
lease of acetylcholine, followed by its postsynapti c activity. One way to separa te these
steps experi mentally involves the alkaloid curare, which paralyzes skeletal muscle.
Stimu latin g a moto r neuron in the presence of curare leads to normal action poten
tials and the release of normal amo unts of acetylcholine, but no muscle contraction.
It turns out that curare competes with acetylcholine for binding to the postsynapt ic
ligand-gated ion channels, inhibiting their normal action in a way analogous to com-
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petitive inhibition in enzymes (Problem 10.5). Other neurotoxins, for example, the
one in cobra venom, work sim ilarly.

To stop muscle contraction after the neuron stops supplying action potentials, an
enzyme called acetylcholinesterase is always present in the synaptic cleft, brea king
down neurotransmitter molecules shor tly after their release into the ir compo nents.
acetate and cho line. Meanwhile, the neuron is constantly replenishing its supply of
synaptic vesicles. It does th is by actively transporting cho line back inside to be used
for acetylcholi ne synt hesis, and by actively recovering the lipid bilayer that fused with
the neuro n's outer memb rane and repackaging the acetylcho line in to new vesicles.

12.4.3 Vista: Neural computation

The situat ion with synapses bet ween neu rons is similar to that just described for the
neuromuscular junction. An axon terminal can release a variety of neurotransmitters,
thereby altering the local membrane potential in another neuron 's dendrit ic tree. Th e
main difference between the neuromuscular and neuron-neuron ju nctions is that the
former acts as a simple relay, tr ansmitting an impulse without fail, whereas the latter
are used to perfo rm more subtle computations.

Th e effect of an arriving presynaptic act ion potential can either depolar ize or hy
perpolarize the postsynaptic den dr ite, depending on the details of what neurotrans
mitter is released and the nature and state of the receiving point's ion channels.' !
In the depolarizing case, the synapse is excitato ry ; in the hype rpolarizing case, it is
inhibitory.

If the total depolar ization in the soma near the axon (the axon hillock) exceeds a
thresho ld, the neuron will "fire," that is, generate an action potential. (Section 12.2.5
outlined how thresho ld behavior can arise in the context of the axon.) In many neu
rons, th e arrival of a single actio n po tentia l at a dendrite is not eno ugh to make the
cell fire. Instead, each incoming presynapt ic impulse generates a localized , tempo
rary disturbance to the membrane potential , similar to electro ton us (Sectio n 12.1.3
on page 514). If eno ugh of these disturbances arr ive close enough in space and in
time, however, they can add up to an above-thresho ld stimu lus. With this integrate
and-fire model of neuron activity, we can begin to understand how a neuron can
perform some simple computations:

Adding up those disturbances that overlap in tim e lets a cell measu re the rate of
incoming action potent ials at a particular synapse. Thus, although all action po
tent ials along a given axon are stereotyped (identical), nevert heless your nervous
system can enco de quantitative signals as rates of action -potential firing, a "rate
coding scheme."

• Add ing up those disturbances that overlap in space, that is, those arr iving in the
same neighborhood ofth e dend ritic tree, lets a cell determ ine whether two different
signa ls arrive together.

II~ It's also possible for a neuro transmitter to have an indirect effect on the postsynaptic membrane;

for examp le, it can alter a voltage-dependent conductance that is not cur rently active, thereby modulating
the response to other synaptic inputs.
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One model for neural computation supposes that the cell sums its input signals with
particular weights that correspond to the excitatory or inh ibitory character of each
component synapse. The cell fires if the sum exceeds a threshold .

A crucial aspect of the scenario just sketched is that a neuron can adjust its
synaptic couplings-for example, altering the numbers of ligand -gated channels at
a dendriti c spine-and thereby alter the com putation it performs. Neurons can also
modulate their connections by adjusting the amount of neu rotransmitter released
in response to an action potential. and in other ways as well. Taken together, such
reconfigurations allow a network of neuron s to "learn" new behavior.

Connecting even a few dozen of such simple computational devices can yield a
system with sufficiently complex behavio r to operate a simple organism, like a mol 
lusk. Connecting a hundred billion of them, as your body has done, can lead to very
complex behavio r indeed.

THE BIG PICTURE

Let's return to the Focus Question. This chapter has developed a picture o f the un
myelinated nerve axon as an excitable medium, capable of transmitting nonlinear
waves of excitation over long distances without loss of signal strength or definitio n.
Hodgkin and Huxley's insight had an imm ense impact, even on applied mathematics,
helping to launch the theory of such waves. In biology, too, the notion of nonlinear
waves in an excitable medium has led to an understandin g of systems as diverse as
the cooperative behavio r of individual slime mold cells (as they spontaneo usly coa
lesce into the multicellular fruiting body) and the cells in your heart (as they contract
synchronously).

We located the source of the axon's excitability in a class of allosteric ion chan
nels. Channels of the voltage-gated superfamily are the target of dr ugs widely used
against pain, epilepsy. cardiac arrhythmias, cardiac failure, hypertension , and hy
perglycemia. These advances are all rooted in Hodgkin and Huxley's biophysical
measurem ents- wh ich contained no direct ev idence for ind ividual ion channels!

KEY FORMULAS

• Capacitors: The potential across a capacitor is V = ql C. So the current flowing
into a capacitor is I = dqj dt = C(dVj dt) (Equation 12.5).

For capacitors in parallel, the total capacitance is C = C, + C, because both
share the same V; this observation explains why the capacitance of a membrane
patch is proportion al to its area.

Membran e conductance: The symbol jq always deno tes net electric charge per
time per area from inside the cell to outside (also called charge flux). The charge
flux through the mem brane due to ion species i is j q.i; thus j q = L i j q.i.
In this chapter, V deno tes the electrostatic potential inside the membrane (in
our mo del, the potential is zero everywhere outside). va denotes the quasi-
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steady value of V. and v = V-V". So v = 0 is the quasi-steady state. Also
Vr"M' = - (k. T/ (zie)) In(c;.,fci.\) is the Nernst po tential for ion species i.

We stud ied three increasingly real istic models of mem brane conductance:

Ohmic:Th e fluxes are j q,i = (V - Vrern·' )gi. where giare po sitive constant s (Equa
tion 11.8). Thus th e current of ion type i flows in the direct ion tending to bring
V back to that ion's equilibrium value, Vrern Si

• Because equilibrium is the state
of maxim um disorder, thi s is a dissipative process converting free ene rgy to heat,
like a resistor.

- Simplified voltage gating: One or more of the conductances are not constant but
instead depend on the instantaneou s value of v. We explored a model with j q,r =
vg,~, + B(v - H )v' (Equa tion 12.21). Here Band H are positive constants.

- Hodgkin-Huxley: Some cond uctances depend no t only on the value of v bu t also
on its recen t past history via relaxation-type relations.

Chord: If we neglect ion pumping. the Ohmic hypothesis yields the cho rd form ula
(Equation 12.3):

where gtat = L gi.
i

V" describes a quasi-steady poten tial approximat ing the tru e resting poten tial. The
formula shows th at th is value is a compromise between the various Nernst po ten
tials and is dominated by the ion species with the greatest conductance.

If V is ma intained at some value VO + v other than its quasi-steady value,
the Ohmic hypothesis says we get a net cu rrent j q = vg,o, (see Your Turn 12A).
Th e volta ge-gat ing hypothesis agrees with thi s prediction at small v; but at lar ger
depolar ization . it instead gives po sitive feedback (Figure 12.9).

Cable: For a cylindrical axon of rad ius a filled with axop lasm of conductivity K,

with the approxima tion that the resistance of the exterior fluid is zero, the mem
brane cu rrent jq. , and potential V are related by (Equation 12.7)

, d'V ( . dV)
rra K dx' = 2rra Jq., +Cdt .

Here C is the capaci tance per area of the membrane. Taking jq,r to be given by
one of the three hypotheses listed earlier gives a closed equation (a cable equation) .
which can in pr inciple be solved. In the Ohmic mod el. th is equation is essentially a
diffusion equation. Introducing voltage gating leads to a nonlinea r trave ling wave
solution. The full Hodgkin-Huxley conductance model gives a cable equa tion with
a realist ic, self-lim iting, traveling wave solution.

FURTHER READING

Semipopular:
Historical: Hod gkin . 1992; Neher & Sakmann, 1992.
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Intermediate:
This chapter again follows the approach of Benedek & Villars> 2000c.
See also> for example, Dowling, 2001; Nicholls et al., 2001; Koch>1999; and Katz's

classic book: Katz, 1966.
Computer modeling of electrophysiology: Hop pensteadt & Peskin, 2002.

Technical:
General: Kandel et al., 2000.
Membrane electrophysiology: Aidley, 1998.
Action poten tials: Hodgkin & Huxley>1952b; Keener & Sneyd, 1998.
Nonlinear waves in excitable media: Murray. 2002.
Ion channels: Hille, 2001.
Synapses: Cowan et al., 200 I.
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1121 12.2.5' Track 2

The main qualitative feature of our formula for the speed of an action potential
(Equation 12.25 on page 530) is that f} ex A"oo/ r; we could have guessed such a
result from dimensional analysis. But how does the nonlinear cable equation select
any velocity in the first place?To answer the question, notice that Equation 12.24 has
a familiar form. Interpreting y as a fictitious "time"and ii as "position:' the equation
resembles Newton's law of motion for a particle sliding with friction in a position 
dependent force field. Such math ematical analogies allow us to apply intu ition from
a familiarsystem to a new one.

Write the right-hand side as

dv dU
- Qdy - dv'

_ 5 _, 1 + 5 c3 1 - z
where U(v) sa - - v + - - v - - IT .

4 3 2

Then we can think of our fictitious particle as sliding on an energy landscape defined
by U. The landscape has two peaks and a valley in between.

The waveform we are seeking must go smoothly from ii = 0 at y ~ 00 (resting
potential, with channels closed at t ---> -00) to v = 1 at y ---> - 00 (channels open
at t ----+ + 00). In the language of our particle analogy, we want a solution in which
the par ticle star ts out just below v = I at large negative y, rolls slowly off one of the
two peaks of the potential U, gains speed, then slows down and approaches the oth er
peak (at v= 0) when y ---> 00.

Now V must pass through the value ! at some intermediate value yoO ' Without
loss of generality, we may take this point to be y. = 0 (any solutio n can be shifted
in y to make another solution). We now choose the "velocity" dvjdy at y. to be just
large enough that the particle comes to rest at the top of the v = 0 peak. This value
is unique: With a smaller push, the par ticle would stall, then slide back and end up at
the bottom of the valley, at y = , -I , whereas with a bigger push, it would run off to
v= - 00.

We have now used up all our freedom to choose constants of integration in our
solution. Looking at our solution for large negative y, it is very unlikely that our
solution will be perfectly at rest right at the top of the other peak, at v= I. The on ly
way to arrange for this it to adjust some parameter in the equation of motion. The
on ly available free parameter is the «friction" constant Q: We must tune Q so that
the solution does not over- or undershoot. Thus Equation 12.24 has a well-behaved
solution only for one part icular value ofQ (namely, the on e quoted in Problem 12.6).
The dashed line in Figure 12.10 on page 531 shows the result of attemp tin g to find a
solution by the procedure just outlined using a different value of Q: We can at best
make one asymptotic region satisfy its boundary condition. but not both.
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PROBLEMS'

12.1 Conduction velocity
Th e Chippendale Mupp is a mythical creature who bites his tail before going to sleep.
As the poets have sung, his tail is so long that he do esn't feel the pain until it's time
to wake up. eight hou rs after going to sleep. Suppos e that a single unmyelinated axon
connects the Mupp's tail to its spinal cord. Use axon parame ters approp riate to squid .
Given that the range of axon diameters in real animal s is 0.2-1000 u m, estimate how
long the Mupp's tail mus t be.

12.2 Discharging the battery
Imagine the resting axon membrane as a capacitor, an insulating layer that separates
charge and hence creates the resting membrane potential difference.

a. How much charge per unit area must pass through the membrane to discharge
the capacitor (that is, bring V from VO= - 60 mV to zero )?

b. Reexpress yo ur answe r to (a) by giving the surface area per excess proton charge
needed to maintain VO = -60 mV. Then express it a third time, as the charge per
un it length of axon, taking the squid giant axon to be a cylinder of radius 0.5 mm.

c. We saw that depolarization is largely the result of the passage of sodium ion s.
Estimate the effect on the interior ion concentration ofa charge transfer of the sort
just described, as follows. Again imagine the giant axon as a cylinder filled with
salt solution, with ion concentrations given by the data in Table I LI on page 477.
Find the total number of interior sod ium ion s per length. Find the correspo nding
number if the interior sodium concentration matched the exterio r value. Subtract
these two numbers and compare with the tot al number of so dium ion s passing
through the membrane as estim ated in (b) .

d. Co mment on yo ur answer in the light of the observation that an axon can con
tinue to transmi t many action potentials after its ion pumps have been shut down.

12.3 Contributions to capacita nce

a. Estimate the capacitan ce per area of a lipid bilayer. Consider only the electricall y
insulating part of the bilayer, the lipid tails, as a layer of oil about 2 nm thick. Th e
dielec tric constant of o il is £oil /£O ~ 2.

b. I T21 As mention ed in Section 12.1.2, the charge-screening layers in the water on

either side of the membran e also contribute to its capacitance (see Section 7.4.3 '
on page 284). In physiological salt concentrations, these layers are each roughly
0.7 nm thick. Use the formula for capacitors in series from first-year physics and
your result in (a) to estimate the contribution to the total capacitance from these
layers.

12.4 A fterhyperpolarization

a. The quasi-steady membrane pot enti al Example on page 512 showed how the rest
ing membrane conductances (Equation 11.9 on page 482 ) predict a membrane

'Problem 12.2 is adapted with permission from Benedek & Villars, 2000,.
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potential in rough agreement with the actual resting potenti al. Repeat the caleula
tion, using the conductances measuredduringan action potential (Equation 12.14
on page 523), and interpret in the light of Figure 12.6b on page 523.

b. Hodgkin and Katz also found that the membrane conductances immediately af
ter the passage of an action potential did not return immediately to their resting
values. Instead, they found that gN,+ fell to essentially zero, whereas gK+ "" 4gcl- .
Repeat your calculation using these values, and again interpret in the light of Fig
ure 12.6b.

12.5 Conduction as diffusion
Section 4.6.4 on page 142 argued that the conduction of electricity by a salt solu
tion was just another diffusive process. Mobile charged objects (sodium and chloride
ions) get pulled by an external force (from the imposed electrostatic potential gra
dient) and drift at a net speed Vdrift much smaller than their thermal velocity. Let's
rederive the result of that section and see how successful this claim is. We'll study
fully dissociated salts with singly charged ions, like table salt, NaCl. In this problem,
take all diffusion constants to have the approximate value for a generic small mole
cule in water, D "" 1 I1 m' l ms.

The resistance of a column of conductor with cross-sectional area A and length
L is not intrinsic to the material in the column, but a related quantity, the electrical
conductivity, is. We defined conductivity" by K = LI (AR ).

Not surprisingly, the conductivity of a salt solution goes up when we add more
salt. For low concentrations , one finds experimentally at room temperature

(l2.29)

where e/ l M is the salt concentration expressed in mole/L. We want to understand
the magnitude of the numerical prefactor.

A potential difference V across the cell gives an electric field E = VIL. Each
mole of salt gives 2Nmol< ions (one Na+ and one Cl" per NaCl molecule). Each ion
drifts under the applied electric field. Suppose that the solution is dilute, so we can
use ideal-solution formulas.

a. Write the force on each ion in terms of V, L, and known constants.

b. Write the resulting drift velocity Vdrift in terms of V, L, and known constants.

c. Get a formu la for the number of Na+ ions crossing the centerline of the cell in
time cit.

d. Write the resulting current I in the cell in terms of V, A. L. e , and known con
stants.

e. Write a formula for K in terms of e and known constants. Discuss every factor in
th is formula and its physical meaning.

f. Put in the numbers and compare with experiment (Equation 12.29).

" You may be mo re familiar with the resist ivity, which is I / K. Because the resistance R has the units of
ohms (denoted Q ), and an ohm is a Js ccul '", /( has the 51units couf J- 1m- 1s - 1•



Problems 555

g. Now evaluate the conductivity for the ion concen trations characteristic of squid
axop lasm (see Table 11.1 on page 477; pretend that you can use the dilute-solut ion
formulas and ignore ions not listed in the table). Compare your answer with the
mea sured value OfK ::::::: 3 Q- 1m- l •

h. What would you expect for a solution of magnesium chloride? You can suppose
th at (c / 1 M) moles of MgCl, dissociates completely into MgH and CI- in I L of
water.

12.6 Analytical solution for simplified action potential
Show that the fun ction v( y) = (l + eay)- t so lves Equation 12.24, if we take the pa
rameter Q to be given by fi1S( ~ - 1) . Hence derive the speed of the ac tion potenti al
(Equation 12.25). " is ano the r constant, which you are to find .

12.7 Discrete versus continuous

3 . Use the overall membrane conductance per area g~t of the resting squid axon
membrane, the SOO-fold increase in total conductance during the action potential,
and the conductance of a single open sodium channel to estimate the density of
sodium channels in the squid axon membrane. Compare with the accepted value
of roughly 300/l m - ' in squid.

b. Fora cylindrical axon of diameter I mrn, how many channels per unit length does
your estimate yield? Comment on the continuous appearance of Hodgkin and
Huxley's condu ctance curves in the light of your estimate.

12.8 Estimate for channel conduct ivity

a. Model a sodium channel as a cylindrical tube abo ut 0.5 nm in d iam eter (the di
ame ter of a hydrated ion ) and 4 nm lon g (the thickness of a bilayer membran e).
Use the discussion of Section 4.6.1 on page 135 to estimate the permeabilit y of a
membrane studded with such channels at an area density CYchan .

b. Use your result from Your Turn 11C on page 481 to estimate the co rresponding
conductance per area. Takethe concentration of ions to be c = 250 mM.

c. Convert your result to conductance per channel; O"chan will drop out of your an
swer. Get a numerical answer and compare with the experimental value GNa+ =
25 · 10- 12 n-t quoted in App end ix B.

[Rem ark: Certa inly the result you ob tain ed is very rough: We can not expect the
results of macroscopic diffusion theory to apply to a channel so narrow that ions
must pass th rough it single file! Nevert heless, you' ll see that the idea of a water-filled
channel can give the magnitude of real conductances observed in experiments.]

12.9 Mechanotransduction
Review Problem 6.7 on page 24 1. How could the arrangement shown in Figure 6.13b
help your ear to transduce sound (mechanical stimulation) into electric signals (ac
tion potentials)?

12.10 I12IExtracellular resistance
Repeat our derivation of the nonlinear cable equation, but this time don't set the
external fluid's resistivity equal to zero. Instead , let r I denote the electrical resistance
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per unit length of the extracellular fluid (we found that the axoplasm's resistance
per length is r 2 = (rra'K) - I) . Get a new estimate of the prop agation speed fj and see
how it depen ds on r I . Compare your answer qualitatively with Hodgkin's 1938 result
(Section 12.2.3 on page 521).



Epilogue
From Man or Angel thegreat Architect
Did wiselyto conceal, and not divulge

His secrets to be scann'dby them who ought
Ratheradmire; or if they list to try

Conjecture, he his Fabric ofthe Heav'ns
Hath left to thir disputes, perhaps to move
His laughterat thir quaint Opinions wide

Hereafter, when they come to model Heav'n
And calculate the Stars, how they will wield

The mighty frame, how build, unbuild, contrive
To save appearances, how gird the Sphere
With Centric and Eccentric scribbl'd o'er,

Cycleand Epicycle, Orb in Orb.

- John Milton, Paradise Lost

Farewells should be brief. Instead of a lengthy repetition of what we have done, here
is a short outl ine of what we didn't manage to do in this long book. (For what we did
do , you may wish to reread the chapter op enin gs and closings in one sitting.)

Put this book down, go outside, and look at an ant. After reading this book, you
now have some detailed ideas about how the ant gets the energy needed to move
around incessantly, how its nervou s system controls the mu scles, and so on. You can
also write some simple estimates to und erstand how the ant can carry load s several
times its body weight, whereas an elephant cannot. And yet reading this boo k has
given you no insight into the fantastic choreography of muscles needed simply to
walk, the interpersonal communication needed to tell other ants about sources of
food , nor the complex sociology of th e ant'snest. Even the equally fantastic choreog
raphy of the biochemical pathways in a single cell, to say nothing of cellular control
and decision networks, have exceeded our grasp.

Nor could we touch on the ecological questions- why do some ants lovingly
tend their host trees, but oth ers intentionally stunt their host's reproduction , to make
it a better home for ants? Clearly there is much, much more to biology than mole
cules and energy. I hope that by uncovering just one corner of this tapestry, I have
heightened, not dulled, your sense ofawe and wonder at the living world around us.

The master key for addressing all these questions is evolution by natural se
lection. Originally a modest proposal for understanding the origin of species, this
principle has become an organizing paradigm for attacking problems as diverse
as the development in cells of an array of self-folding protein sequences, the self-
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organization of metabolic networks, the self-wiring (and self-training) of the brain,
the spo ntaneous development of hum an language and cultu re, and the very origins
of life from its precursors.

Many scientists believe that the parallels between these problems go deeper than
just words and that a common modularity underlies them all. Fo llowing up on this
idea will require skills from many disciplines. Indeed, in its small way, this book has
sought to weave together many threads, including biochemistry, physiology, physical
chemistry,statistical physics. neuroscience, fluid mechanics, materials science, cell bi
ology, non linear dynamics , the history of science, and yes, even French cooking. O Uf

unifying theme has been to look at complex phenomena via simple mod el building .
Now it's Your Turn to apply this approach to your own question s.



APPEND IXA

Global List of Symbols and Units

"What's thegood of Mercator's North Poles and Equators
Tropics, Zones, and Meridian Lines?"

So the Bel/mall would cry: and the crew would reply
"They are merely conventionalsigns!"

- Lewis Carroll, The Hunting of the Snark

No tation is a perennial problem for scientists. We can give each quantity whatever
symbolic name we choose, but chaos would ensue if every writer chose completely
different names for familiar quantities. On the other hand. using standard names
unavoidably leads to the prob lem of too many different quant ities all having the same
name. The follow ing no tation tries to walk a line between these extremes; when the
same symbol has been pressed into service for two different quantiti es. the aim has
been to ensure that theyareso different that context willmake it clear which is meant I
in any given formula.

Notation

Mathematics Vectors are denoted by boldface: v = (vx , vy , v, ). The symbols v' , or
v · v, or lvi', refer to the total length-squared of v, that is, (vx ) ' + (vy ) ' + (v,) '.
Vectors oflength equal to I are flagged with a circumflex, for example, the three unit
vectors X, y,zor the tangent vector i (5) to a curve at position s. The symbol d3r is
not a vector, but a volume element of integration.

A matrix (linear funct ion of a vector) is denoted by sans serif type: M =
[ ~~ : ~~~ J.For more details. see Section 9.3 .1 on page 354.

Often the dimens ionless form of a quantity will be given the same name as that
quantity but with a baron top.

The symbol", is a special kind of equals sign ind icatin g that this equality serves,
as a definition of one of the symbols it contains. The symbol == signals a provisional
formula, or guess. The symbol se means "approximately equal to;" "'V means "has the
same dimensions as."The symbol ex means "is proportional to."

The syrnbollx] refers to the absolute value of a quantity. The notation (f) refers
to the average value of some function f . with respect to some probability distribu
tion.

The symbol ~ 1N refers to the derivative of 5 with respect to E, holding N fixed.

But the symbol d~ Ip=1 F, or equivalently ~; Ip=I' refers to the derivat ive of F with
respect to {3, evaluated at the poin t {3 = I.
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The no tation [X] denotes the co ncentratio n of some chemical species X, divided
by the reference co nce ntration of on e mole per 10- 3 m (also w ritten 1 M). Square
brackets with a quantity inside, lxl. refer to the dimensions of that quanti ty.

A dot over a quantity generally denotes that quantity's time derivative.

Electrica l circuits

battery, -jf-. The wide end is maintained at a potential greater than that of the
narrow end (if the battery voltage V is greater than zero).

resistor, --'\IIJ\r- .

capacitor. -.,r-.

Named quantities

Roman alphaber

A or a area of so me surface; A, gener ic cons tant

A bend persistence length of a polymer (bend modulus divided by kBT ) (Equa-
tion 9.2 on page 346 J

A autocorrelation function [Equation 9.30 on page 387J

a radius ofan axon (Figure 12.4 on page SIS]

B stretch mod ulus of a polymer divided by kBT [Equation 9.2 on page 346)

B partition coefficient (Section 4.6.1 on page 135]

C generic con stant

C twist persistence length ofa polymer (twist modulus divided by kBT) [Equa-
tion 9.2 on page 346J

C capacitance [Equation 12.4 on page 5 13J

C capacitance per unit area [Section 12.1.2 on page 509 ]

c number density (for example, molecules per un it volume), also called co ncen
tration [Section 1.4.4 on page 22]; Co, reference concentration [see Examp le 8A
on page 296] ; c, ; critical micelle concent ration (Section 8.4.2 on page 317J

D twist-stretch coupling of a polymer (Equation 9.2 on page 346J

D diffusion constant [Equation 4.5 on page l IS]; D" rotational diffusion con-
stant (Problem 4.9 on page 156)

D separation between two objec ts

d generic distance, especially thickness ofa layer

E energy (kinetic andlo r potent ial); !let ,activation energy [Section 6.6.2 on page
220]

E electric field, units of Ncoul" , or volt m"" (Equation 7.20 on page 264J

e electric charge on a proton

e± eigenvectors of a 2 x 2 matrix [Section 9.4.1 on page 358 J

F Helmholtz free energy (Section 1.1.3 on page 8J

:F force per unit volume [Section 7.3 .1 on page 255 )
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f force

G conductance of a single object; Gj , conductance of an ion channel of type i
[Section 12.3.2 on page 5361

G Gibbs free energy [Equation 6.37 on page 237J; ~G*, activation (or transition
state) free energy [Section 10.3.2 on page 423J; ~G free energy change (net
chemical force) [Equation 8.14on page303] ; ~G', standard free energy change
[Equatio n 8.16 on page 304J; ~G'o, standard transformed free energy change
[Section 8.2.2 on page 301J

g shear modulus, same units as pressure [Equatio n 5.14 on page In J

g acceleration of gravity

gi conductance per area of a mem brane to ions of type i [Section 11.2.2 on page
478J; g,n, , sum of all g; [Equation 12.3 on page 512J; gp, conductance at resting
conditions

H enthalpy [Section 6.5.1 on page 210J

n Planck constant [Section 6.2.2 on page 200]

1 disorder [Section 6.1 on page 196J

1 electric curren t (charge per time) [Equation 12.5 on page 5131 ; Ix and 1" axial
and radial currents in a nerve axon [Figure 12.4 on page 5 15]

] num ber flux [Section 1.4.4 on page 22]; i , nu mber flux of solute molecules
[Equation 4.21 on page 135J; j Odl one- dime nsional num ber flux [Equa- I
tion 10.3 on page 419J

j q charge flux (charge per time per area) [Equat ion 1l .8 on page 480]; j q';, that
part of the flux carried by ions of type i; jq .,(x), total charge flux across an
axon's membrane (radial direction) at location x [Section 12.1.3 on page 514],
considered to be positive when positive ions move outward.

j Q flux of thermal energy [Section 4.6.4 on page 142]

j, volume flux [Equation 7.15 on page 260J

KM Michaelis constant for an enzyme [Equation 10.20 on page 4351

K the constant 1/ In 2 [Equation 6.1 on page 197]

Kcq dim ension less equilibrium constant of some chemica l reaction [Section 8.2.2

on page 301J; K<q ' dimensional form [Section 8.4.2 on page 317J

Kw ion product of water [Equation 8.25 on page 309J

kB Boltzmann constant; kBT, thermal energy at temp erature T; kBTn thermal
energy at room temperature [Equatio n 1.12 on page 27]

k spring constant [Equation 9.11 on page 354]; k" torsional spring constant
[Problem 9.9 on page 399]

k rate constant (probability per time) for a chemical reaction [Section 6.6.2 on
page 220J

L, e gener ic variables for lengths; L~~) effective (Kuhn) segment length ofa po ly
mer mod eled as a one-dime nsional, freely jointed chain [Equation 9.8 on page
353]; L" g, segment length for three-dimensional freely jointed chain model
[Equation 9.32 on page 388J
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Lp filtration coefficient [Section 7.3.2 on page 259]

t . Bjerrum length in water [Equation 7.21 on page 266)

m mass of an object

N, 'J number of things

Nmo[, the dimensionl ess number 6.0 . 10" (Avogadro's number) [Section 1.5.1
on page 23]

P probability; P2_ 1(rj d t, probability of waiting in state 52 until time t, then hop 
ping to state S, before t + dt [Equation 6.3 1 on page 2231

P permeability of a membrane [Equation 4.21 on page 135); P«, to water; P" to
some solute

P membrane perm eability mat rix [Section 7.3.1' on page 283)

p pressure

p scaling exponent for a random walk [Problem 5.8 on page 192J

p momentum

Q volume flow rate [Equation 5.18 on page 181]

Q heat (transfer of thermal energy) [Section 6.5.4 on page 216]; Q" p, heat of
vaporization of water [Problem 1.6 on page 33)

q electr ic charge [Equat ion 1.9 on page 21)

R radius of a particle or pipe; radius ofcurvatureof a bent rod
R electrical resistance; R,. resistance in the radial direction (through an element

of axon membrane); Rx resistance in the axial direction (through a neuron's
axoplasm ) [Figure 12.4 on page 515)

RG radius of gyration of a polymer [Section 4.3.1 on page 122]

R Reynolds number [Equation 5.11 on page 168)

r position vector of an object, with com ponents (x, y. z)

S entro py [Section 6.2.2 on page 200]

s arc length (also called conto ur length ) {Section 9.1.2 on page 344)

s sedimentation tim e scale [Equation 5.3 on page 160)

T absolute (Kelvin) temp erature (unless othe rwise specified). In illustrative cal
culations. we often use the value T, sa 295 K (<<room temperature"). Tm' mid
point temp erature of a helix-coil transition [Equation 9.24 on page 368)

T transfer matrix [Sectio n 9.4.1 on page 358]

t time

i unit tangent vector to a curve [Section 9.1.2 on page 344)

U potential energy, forexample, gravitational

u speed ofa molecule, also written Ivl

u stretch (extensional deformation ) of a rod [Section 9.1.2 on page 344 )

V, v volume

V(x) electrostat ic potential at x [Equation 1.9 on page 211; VI> potential outside
a cell; Va- potential inside; t:!:J, V = V2 - VII membrane potential difference
[Equation Il.l on page 474. abbreviated as V in Chapter 12]; V(t ), time course
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of potential at fixed location [Sect ion 12.2.4 on page 524]; V, dimensionless
rescaled potentia l [Equation 7.22 on page 267]

Vrcrn•
1 Nernst potential of species j [Section 4.6.3 on page 139J; VO, quasi-steady

resting potential [Equation 12.3 on page 512]

Vrnax maximum veloci ty of an enzyme-catalyzed reaction [Equation 10.20 on
page 435J

vex, t) potential across a mem brane. minu s quasi-steady potential [Section 12.1.3

on page 514]; v(t), time cou rse of v at fixed location [Section 12.2.5 on page
527J; V, dimensionless rescaled form [Section 12.2.5 on page 527]

v velocity vector, with com pone nts (vx, vr • vz); Vdrift. drift velocity [Section 4.1.4
on page 118]

W work (transfer of mechanical energy)

w weight (a force)

x generic variable
x some distance (for example, along the xaxis); "0, the Gouy-Chapma n length

[Equation 7.25 on page 2681

Y degree of oxygen satura tion [Your Turn 9M on page 376J

Z hydrod ynamic resistance of a pipe [Section 5.3.4 on page 179J

Z partition funct ion [Equation 6.33 on page 224J

Z grand partition function [Section 8.1.2 on page 298]

z generic distance, especially distance in the vertical direction; end-to-end length
of a polymer [Section 9.2.1 on page 350]; z.. scale height of a suspension [Sec
tion 5.1.1 on page 158J

z, valence of an ion of type i, that is, its charge as a multiple of the proton charge,
z, sa qd e

Greek alphabet

ex bias in a two-state chain, for example minus the free energy change to extend
an alpha-helix by one unit [Equation 9. 18 on page 359 and Equation 9.24 on
page 368J

fJ parameter entering in the trial solution of the Poisson- Bolt zmann equation
[Section 7.4.4 on page 269]

f3 bending deformation of a rod [Sect ion 9.1.2 on page 344J

r electrical resistance per un it length of a column of electrolyte [Prob lem 12.10
on page 555J

y cooperativ ity parameter [Equation 9.17 on page 359 and Section 9.5.2 on page
366J

y various constants of proportionality appearing in Equation 1.7 on page 15,
Section 7.4.4' on page 286, and Your Turn 12B on page 520

t; prefix ind icati ng a small, bu t finite, change in the quantity following it. Thus
for example 6t is a time step.

8 a small distance



564 Appendix A Global list of Symb ols a nd Units

e permi ttivity of a medium; f O. permitt ivity of air or emp ty space [Section 7.4. 1
on page 261]. (The dielectr ic constant of a medium is defined as the rat io s/so.)

E internal stored energy; El}' internal energy of mo lecules of type a [Section 8.1.1
on page 295)

~ coefficient of friction at low Reynold s number [Equation 4.13 on page 11 9 1; ~"

rotational coefficient of friction [Problem 4.9 on page 156J

'7 viscos ity [Section 5.1.2 on page 160 ]; 1]w. viscosi ty of water; [11 J, intrinsic vis-
cosity of a polymer [Problem 5.8 on page 192]

e bending angle ofone link relat ive to the next [Equation 9.36 on page 39 1]

(J optical rotation ofa solut ion [Section 9.5.1 on page 364)

(J polar angle in spherical coordinates fixed in the lab [Problem 6.9 on page 243)

(j polar angle in spherical coordinates relative to some specified direction not
fixed in the lab [Section 9.1.3' on page 386]

tJ velocity of propagation of a traveling wave [Section 12.2.4 on page 524J

/( electrical conductivity [Section 4.6.4 on page 142)

« bending stiffness of a membrane [Section 8.6.1 on page 322]

A± eigenvalues of a 2 x 2 matr ix [Section 9.4.1 on page 358]

AD Debye screening length in solution [Equation 7.35 on page 285]

Aaxon space constant of an axon [Equation 12.8 on page 5 17l

J1.a chemica l potenti al of mo lecules of type a [Equation 8.1 on page 295]; J1.~ , at
stand ard concentration [Equation 8.3 on page 296]; J1. s, J1. P, chemical po ten tial
of enzyme substrate and of product [Section 10.3.4 on page 4311

Vk stoichiometric coefficients [Equat ion 8.14 on page 303]

v kin ematic viscosity [Equatio n 5.21 on page 187]

Pm mass density (mass per unit volume) [Section 1.4.4 on page 22); Pm.w, mass
density of water; p~d) linear mass density (mass per length) [Your Turn 12B
on page 520]

Pq bulk charge density (charge per unit volume) [Equation 7.20 on page 264);
Pq.maCTo. charge density ofimpermea nt macromolecules in a cell [Equation 11.3
on page 475)

1: surface tension [Section 7.2.1 on page 248]

(J sur face density (things per uni t area) [Section 1.4.4 on page 22); (Jq' sur face
density of electric charge [Section 7.4.2 on page 2631

(J,h, " area density of ion channels in a memb ran e [Prob lem 12.8 on page S55)

(J width of a Gaussian distribut ion ; standard deviation of any probability distri
bution ; (1 2 ) variance of a distribution [Section 3.1.3 on page 73]

(1 two-state variable describing the conformation of a mon omer in a polymer
chain [Section 9.2.2 on page 352; Section 9.5.3 on page 369)

T torque

T time constant for some relaxation process [see Example 4C on page 136]; time
constant for electrotonu s [Equation 12.8 on page 517]

qJ volume rrac tron , crrme ns rouress (St:l.:c iu l1 , .2. 1 0 11 p d g t: 2-18J
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ljJ azimuthal angle in spherical coordinates, relative to some specified direction
not fixed in the lab [Section 9.1.3' on page 386)

if! azimuthal angle in spherical coordinates fixed in the lab [Problem 6.9 on page
243)

1\1 grand potential [Problem 8.8 on page 338)

1/J generic angle

Q number of available states [Section 6.1 on page 196J

w twist density (torsional deformation) of a polymer [Section 9.1.2 on page 344)

w rota tional angular velocity [Section 5.3.5 on page 182J

Dimensions

Most physical quantities carry dim ensions. This book refers to abstract dimensions
by the symbols IL (length), T (time), M (mass), and iQ (charge). (The abstract di
mension for temp erature has no symbol in this book.)

Some quantities are dimension less, for example, geometrical angles: The angle
of a pie wedge equals the circumference divided by the radius, so the dimensions
cancel.

Units

There shall be standard measures of wine, beer, and corn
throughout the whole ofour kingdom ... and there shall be

standard weights also.

- Magna Carta , 1215

See Section 1.4 on page 18. This book primarily uses the Systeme Internationale of
units; but, when appropriate, convenient, or traditional, some outside units are also
used.

SI base units Corresponding to the abstract dimensions previou sly listed, this book
uses five of the seven 51base units:

length: The meter (m) has dimensions 1L. It is defined as the length of the path
traveled by light in vacuum during a time interval (1/ 299 792 458)s.

time: The second (s) has dimension s T. It is defined as the duration of9 192 631770
periods of the radiation corresponding to the transition between the two hy
perfine levels of the ground state of the cesium- 133 atom.

mass: The kilogram (kg) has dimension s M. It is defined as the mass of a partic
ular object, called the internationa l prototype of the kilogram.

electric current: The ampere (A) has dimensions iQT-' . It is defined as the con
stant current which, if maintained in two straight parallel wires of infinite

I
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length placed 1 m apart in vacuum, wo uld produce a magnetic force between
these co nductors equal to 2 . 10- 7 N per meter of length.

thermodynamic temperatu re: The kelvin (K) is defined as the fraction 1/ 273.16
of the thermodynamic temperature of the triple po int of water co unt ing up
from abso lute zero.

Prefixes The following prefixes modify the base unit s (and other uni ts):

giga (G) = 109

mega (M ) = 106

kilo (k) = 103

deci (d) = 10- 1

centi (c) = 10- 2

milli (m) = 10- 3

micro (Jl ) = 10- 6

nano (n) = 10- 9

pico (p) = 10- 12

femto (f) = IO- IS

SI derived units

volume: A liter (L) equals 10- 3 rrr ' .

force: A newton (N) equals I kg m s- '.

energy: A joule (1) equals I N m = I kg m2s- ' .

power: A watt (W) equals I J S-I = I kg m' s- 3.

pressure: A pascal (Pa) equals I N/ m2 = I kg m- Is- '.

charge: A coulomb (ca ul) equals I As.

electrostatic potential: A volt (volt ) equals I J S- IA-I = I m' kg S- 3A-I . Its de-
rived form s are abbreviated mV and so on.

capacitance: A farad (F) equals I ca ul/volt.

resistance: An ohm (Q) equals I J s coul"! = I volt A- I.

conductance: A siemens (5) equals I Q- I = I A/ volt .

Traditional but non-SI uni ts

length: An Angstrom unit (A) equals 0.1 nm.

time: A svedberg equals 10- 13 s. (Some texts use the abbreveviation 5 for sved
berg, bu t we reserve this notation for the siemens. )

energy: A calorie (cal) equals 4.184 J. Thu s I kcal mole- I = 0.043eV = 7 ·
10- 21 J = 4.2 kJ mole- I. An electron volt (eV) equals e x (I volt) = 1.60·
10- 19 J = 96.5 kJ /mole. An erg (erg) equals 10- 7 J.
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pressure: An atmo sphere (at m) equals 1.0 1 . 10' Pa. 752 mm of mercur y equals
10' Pa. (We also abbreviate this unit as " rnrn of Hg,")

viscosity: A poise (P) equals 1erg s cm-3 = 0.1 Pa s.

numberdensity: AIM solutio n has a number density of 1mo le L- 1 = 1000 mole m- 3.

Di mensionless units

A degree of angle correspo nds to 1/ 360 of a revolution; a radian is 1/271 of a
revolut ion .

In this book . the symbols mo le and Nmole bot h refer to the dimen sionless num ber
6.0· 10" .

I





APPENDIX B

Numerical Values

A single number has more genuineand permanentvalue than
an expans ive library fu ll ofhypotheses.

- Robert Mayer, 1814--1 878

Not all the values mentioned in this appendix are actually used in the text.

Fundamental constants

Boltzmann constant, kB = 1.38 . 10- 23 J K- 1. Therma l energy at roo m temper
ature (T, sa 295 K): kgT, = 4.1 pN nm = 4.1 . 10- ' 1J = 4.1 . 10- 14erg =
2.5 kJ mole' 1 =0.59 kcal mole' 1 = 0.025eV.

Charge on a pro ton, e = 1.6 · 10. 19 coul. (The charge on an electron is - e.) A
useful restatement is e = 40kBTr/ volt.

Permittivity of vacuum, eo = 8.9 . 10- 1' F m" ! (or cou l'N- 1m- ' ). The combina
tion e2/ (41tfo) equals 2.3 .10- 28 Jm. We treat wateras a continuum dielectric
with e "" 80eo.

Stefan- Boltzmann constant, a = 5.7 . 10- 8 W m- ' K- '.

Magnitudes

Sizes (sm allest to largest)

hydrogen atom (radius), 0.05 nm.

water molecule (radius), 0.135 nm.

covalent bond length , "" 0.1 nm.
H-bond (distance between centers of atoms flankin g H), 0.27 nm.

sugar, amino acid, nucleotide (diameter), 0.5-1 nm.

electron microscope resolution , 0.7 nm.

Debye screening length (of physiological Ringer's solution ), AD "" 0.7 nm.

Bjerrum length of water at room temperature, eosa e' / (4" ekoT,) = 0.71 nm.

DNA (diameter), 2 nm.

globular protein (diameter) , 2-10 nm (lysozyme, 4 nm; RNA polymerase, 10 nm).

bilayer membrane (thickness), "" 3 nm.

F-actin (diameter) , 5 nm.
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nucleosome (dia meter), 10nm .

E. coli flagellum (radius), 10 nm.

synaptic cleft in chemical synapse (width), 20-40 nm (neuromuscular junction ,
50-100 nm ).

polioviru s (diameter), 25 nm (smallest viru s, 20 nm ).

microtubule (diameter), 25 nm.

smallest feature that can be drawn with electron-beam lithograph y (wid th) ,
30 nm.

ribosome (diameter), 30 nm.

casein micelle (diameter), 100 nm.

thinnest wire in Pentium processor chip (width), ::::::: 100 nm.

eukaryotic flagellum (diameter), 100-500 nm.

transistor in consumer electronics (diameter), ::::::: 180nm.

optical microscope resolution, ee 200 nm.

vertebrate axon (diameter), 0.2-20 /l m.

wavelength of visible light, 400-650 nm.

smallest feature that can be created by ph otolit hography, 0.5 /l m.

typical bacterium (diameter), I /l m (smallest, 0.5 /l m ).

myofibril (diameter), 1- 2/l m.

capillary (d iameter), as small as 3 /l m.

E. coli flagellum (length), 10 /lm (20 000 subunits).

typical human cell (d iameter), '" 10 /l m (red blood cell, 7.5 /lm ).

lambda phage virus DNA (contour length) '" 16.5 /l m.

T4 phage DNA (contour length), 54 zz rn (160 kbp); T4 capsid (length), '" 100 nm.

human hair (diameter), 100/lm.

naked eye resolution, 200 /lm .

squid «giant» axon (diameter), 1mm.

E. coligenome (length if extended) , 1.4 mm.

human genome (total length ), '" 1m.

Earth (radius), 6.4· 10' m.

Energies Most of the following values areexpressed as multiples of kBTnthe thermal
energy at room temperature.

complete oxidation of one glucose, 1159kBT, .
triple covalent bon d (for example, C=N) , geV = 325kBT,; double bond (for ex-

ample, C= C), 240kBT,; single bond (for example C- C) , 140kBT,.

visible photon (green), 120k. T,.

streptavidin/biotin bond, 40ks Tr.

ATP hydrolysis under normal cell conditions, 6G = - JI to - 13 kcal mole- 1
::::::

- 20kBT,/molecule. (The standard free energy change is ",ao = - 12.4kBT, ;
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but cells are far from standard conditions. } ATP production in humans. ~
40 kg of ATP each day.

generic (van der Waals, or dispersion) attraction energy between atoms, 0.6
1.6kBT,.

human resting heat output, lOOW.
energy content: of glucose, 1.7 · 107 J j kg; of beer, 0.18 . 107 J j kg; of gasoline,

4.8 . 107 J j kg.

peak mechanical power of human athlete, 200 W; of bumblebee, 0.02 W.

solar energy output, 3.9 . 10' · W; power density striking Earth, 1.4 · 103 W j m' .

Speciali zed values

Viscosity

of water at 20°(, 1.0.10- 3 Pa 5; of air, 1.7.10- 5 Pa 5; of honey, 0.1 Pa 5; of glycerol,
1.4 Pa s.

The effective viscosity of cell cytoplasm depend s on the size of the object consid
ered: For molecules smaller than I nrn, it's similar to that of water; for particles
of diam eter 6 nm (such as a protein of mass 105 g mole" ), it's about 3 times
that of water. For 50-500 nm particles, it's 30-300 times that of water; the en
tire cell behaves as though its viscosity were a mill ion times that of water.

visco us critical force: for water. 10- 9 N, for air, 2 . 10- 10 N; for glycerine, 10- 3 N.

More about water

energy to break an intramolecular hydrogen bond in water, 1- 2kBT, (hydrogen
bond when two water molecules condense in vacuum, 8 kBTr) .

electrostatic attraction energy of two 0.3 nm ions in water, :::::: kBT;
heat of vaporization of water. Q vap = 2.3.106 J kg- J

•

oil-water surface tension. L = 0.04 J m- 2; air-water surface tension, 0 .072 J m- 2.

number density of water molecules in pure water. 55 M; mass density of water at
20°(, 998 kg m- '.

diffusio n constant for generic small mol ecules in water, D :::::::: 1 .um2 rns'" . Specifi 
cally, for O2 • it's 2 .um2ms-l; for water molecules themselves, 2.2 .um2 rns" : for
glucose. 0 .67 li m2 ms" : for globular protein in water, D :::::: 10- 2 .um2 rns" .

heat capacity of water at room tempe rature , 4180 J kg- 1K- 1 or 0.996ca l cm- 3K- 1•

thermal conductivity of water at O°C, 0.56 J 5- 1 rn" K- 1; at 1000( 6.8 J 5 - 1 m" K- '.

Rates

The turnover number for an enzyme can vary from about 5 . 10- 2 S-I (chy
motrypsin on N- acetylglycine ethyl ester) to I . 107

5 -
1 (catalase). For acetyl

cho linesterase, it's 25000 S-I .
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Membranes (artificia l)

bilayer bend stiffness (dimyristoyl phosphatidylcholin e, or DMP C), K 0.6 .
10- 19 J = 14kBT,.

bilayer stre tch modulus (DM PC), 144 mN m- I.

rupture tension (DM PC), "" 5 mN/m .

Permeability to water, P w: DMPC, 70 u r« S- I; dialysis tubing, 11 /L m S-I . (Filtr a
tion coefficient Lp for dialysis tubing, 3.4 . 10- 5 em ,-I at rn", )

Permeability of a bilayer membrane to solutes, P«: small inorganic cations, like
sodium or potassium , 10- 8 j..t m 5- 1; Cl" , 10- 6; for glucose, 10- 3 11m 5- 1, (For
sucrose through 2 mil cellophane, 1.0 /L m , - I. For glucose through dialysis tub
ing, 1.8 /L m , - I.)

Membranes (cell)

perm eabilit y to water of human red blood cell membran e, 53 /L m , - I.

filtration coefficient Lp: human red blood cell membrane, 91.10- 7 em , -Iatm- I;
capillary blood vessel walls, 69 . 10- 7 em S-I atrn " .

Polymers

B-fonn DNA: bend persistence length, "" 50 nm = 150 basepairs (in 10 mM NaCl)
(intrinsic, or high-salt limit, 40 om); twist persistence length, 75-100 nm;
stretch mo dulus se 1300 pN; basepair rise, 0.34 nm/bp; helical pitch in solu
tion , 10.3- 10.6 bp.

Others:
microtubule diameter, 25 nm; persistence length, 1 mm .
intermediate filame nt persistence length, D.l /lm ; diameter 10 nm.
actin diam eter, 7 nm; persisten ce length, 3- 10 ,urn.
neurofi lament persistence length, 0.5 u.m.

Mo tors

Myosin:
rnyosin- n (fast skeletal muscles) speed in vitro, 8 um 5- 1; force, 2-5 pN.
myosin-v (vesicle tran sport) speed, 0.35 /L m , -I.
myosin-vur and XI (cytop lasmic streaming in plants) speed, 60 /l m 5 - 1.

Conventional (2-headed) kinesin:step size, 8 nm; fuel consumption, 44 ATP S- I per
head; stall force, 6-7 pN; spee d in vitro, 100 steps/s = 800 nm 5- 1; processivity,

100 steps/ release.

E. coli flagellar motor: rotation rate, 100 revolutions/s (1200 protons/r evolution);
torque, 4000 pN nm.

Pi ATPase moto r: stall torque, 100 pN nm; torque generated against frictional load ,
"" 40 pN nm.
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RNA polymerase:stall force, 25 pN.
speed: E. coliPol 1,16 basepairls; Pol II, 0.05 times as great; Pol III, 15 tim es as
great; euka ryoti c polymerase, 50 bp /s ; T7 virus polymerase, 250 bp /s.

DNA polymerase: sta ll force 34 pN.
speed: bacteria, 1000 n ucleotides/s; eukar yoti c cells, 100 nucl eot ides/s.

HIV reverse transcriptase: 20-40 nucleo tides/s.

Ribosome: 2 ami no acids/s (eukaryotic cells) or 20 5- 1 (bacteria).

Neurons

pumps: '" 10' ions/s per pump.

carriers:~ 104 ions/s per carrier.

chamlels: ::::::: 106 ions/s per channel; density of sodium channels in squid axon, ~
300 /l m - ' ; un it conducta nce of open channel, GN, + = 25 pS = 25 . 10- 12 [I - I .

resting conductance per area, squid giant axon, gt~1 ;::::::: 5 n-1m- 2; individual rest
ing conductances follow gK + :::::::: 25gNa+ ;:::::: 2gcl- . During an action potential,
gNa+ mom entarily increases by about a factor of 500.

capacitance per area . ce 1 . 10- 2 F m- 2.

conductivity of squid axoplasm, K :::::: 3 n-1m- I •

human brain: power consumption, 10 W (about 10% ofwhole-body resting tot al).
There are se 1013 cells in the human body, of which se 10 11 are nerve cells,
making se 6 . 10" synapses.

Miscellaneous

acceleration of gravity at Earth's surface, g = 9.8 m 5 - 2.

typical acceleration in an ultracentrifuge, 3 · 106 m 5 - 2.

pH : human blood, 7.35-7.45; human stomach con tents, 1.0-3.0; lemons, 2.2-2.4;
drinkin g water, 6.5-8.0. Ion product of water at room temperature, 10- 14 •

pK: dissociation of acetic acid , 4.76; of phosphoric acid, 2.15.
deprotonation of aspartic acid , 4.4; of glutamic acid, 4.3; of histidine, 6.5; of
cysteine, 8.3; of tyrosine, 10.0; of lysine, 11.0; ofarginine, 12; of serine, > 13.0.
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526-529, 533
Fern andez-Moran, H.•494
Feynman, Richard , 184
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and pol ymer stre tching. 348-350
and protein folding, 328-330
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two-headed kinesin, 446

microscopic system , 223-224
of po lar solvation, 305, 308
tr an sduct io n , 12-15, 100, 216, 255, 308, 348,

40 1-404, 410, 451, 452, 487, 496
freely jointed chai n, 5« polymer
free radical , 99
Fricke, Hugo, 470
frictio n, 4-9, 22, 89
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pe riphe ral membrane prote in , 56
pcriplasrnic space. 176
permeability, 135-138, 156, 283, sec alsobilayer

memb rane
hydrau lic, sa filtra tio n coefficient

per meabil ity mat rix, 283
pe rmeation, 156, SOl
permittivity, 21, 29, 26 1, 263. 273. 569
Per rin, Jean , 112, 121. 155
persistence len gth

bend, 346-348, 386
twist, 346

Pa utz, Max, 17, 378
Pfetfer, Wilhelm , 290
pH, 309-3 15. 328, 330, 338, 408

and l1agellar motor , 497
a nd ox idative phos pho rylat ion. 493
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phos phoglycerate kinase, 432, Color Figure 5
phos pholipid, 49, 55, 3 \ 5, 316, 3H-326, 332,
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bou nda ry co nd ition, 267, 268

Poisson eq uatio n, 266, 267
polarimeter, 365
polar ity, o f a micro tubu le, 441 . 444 , 447
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pyr uvate deh yd rogenase, 38, 490

quasi- steady state. 135,433, 434.460 , 479. 512.
srs

q uasist atic process. 215
q uaternary struc ture, 51, 379

Racker, Efraim, 493, 494
radi a n (unit) , 567
rad ius of gyration . 124. 126, 148
Rad ler, Joach im, 125
Ramo n y Cajal , Santi ago, 545. 546
rando m coil. 122-1 26. 16 1, 192.396
random walk. I J0-117

on e-d imensiona l. I J6
po lymer co nfo rmation as. see random coi l
rota tiona l. 156
self-avoiding, 124, 125,292-293
three -dimemional, 122, 124, 388--389
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