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Preface

This book has grown out of more than ten years of teaching an introductory course
in system theory, control and identification for students in the areas of Business
Mathematics and Computer Science, Econometrics and Mathematics at the ‘Vrije
Universiteit’ in Amsterdam. The interests and mathematical background of our
students motivated our choice to focus on systems in discrete time only, because
the topics can then be studied and understood without preliminary knowledge
of (deterministic and stochastic) differential equations. This book requires some
preliminary knowledge of calculus, linear algebra, probability and statistics, and
some parts use elementary results on Fourier series.

The book treats the standard topics of introductory courses in linear systems
and control theory. Deterministic systems are discussed in the first five chapters,
with the following main topics: realization theory, observability and controllabil-
ity, stability and stabilization by feedback, and linear-quadratic optimal control.
Stochastic systems are treated in Chapters six to eight, with main topics: realiza-
tion, filtering and prediction (including the Kalman filter), and linear-quadratic
Gaussian optimal control. Chapters nine and ten discuss system identification and
modelling from data, and Chapter eleven concludes with a brief overview of further
topics.

Exercises form an essential ingredient of any successful course in this area.
The exercises are not printed in the book and are instead incorporated on the
accompanying CD-Rom. The exercises are of two types, i.e., theory exercises to
train mathematical skills in system theory and practical exercises applying system
and control methods to data sets that are also included on the CD-Rom. Many
exercises require the use of Matlab or a similar software package.

We benefitted greatly from comments of many colleagues who, over the years,
participated in teaching from this book. In particular, we mention the contribu-
tions of (in alphabetical order) Sanne ter Horst, Rien Kaashoek, Derk Pik and
Alistair Vardy. We thank them for their comments, which have improved the text
considerably. In addition, many students helped us in improving the text by asking
questions and pointing out misprints.



Chapter 1

Dynamical Systems

1.1 Introduction

Many phenomena investigated in such diverse areas as physics, biology, engineer-
ing, and economics show a dynamical evolution over time. Examples are thermo-
dynamics and electromagnetism in physics, chemical processes and adaptation in
biology, control systems in engineering, and decision making in macro economics,
finance, and business economics. The main questions analysed in this book are the
following.

• What type of mathematical models can be used to study such dynamical
processes?

• Once a model class is selected and we know the parameters in the model,
how can we achieve specific objectives such as stability, uncertainty reduction
and optimal decision making?

• If we do not know the parameters in the model exactly, how can we estimate
them from available data and how reliable is the obtained model?

The first question is the topic of Chapters 2, 3 and 6, the second one of Chapters
4, 5, 7, 8 and 9, and the third one of Chapters 9 and 10. The answers to these
questions will in general depend on accidental particularities of the problem at
hand. However, there are important common characteristics of these problems
which can be expressed in terms of mathematical models. We first give some
examples to illustrate the main ideas in modelling, estimation, forecasting and
control.

Example 1.1. Suppose that for a certain good the market functions as follows. The
quantity currently produced will be supplied to the market in the next period.
Supply and demand determine the market price. Let D denote the quantity de-
manded, S the quantity supplied, P the market price, P̂ the anticipated price used
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by the suppliers in their production decisions, and let t denote the time period. A
simple market model is given by the equations

D(t) = α0 + α1P (t), (1.1)
S(t) = β0 + β1P̂ (t), (1.2)
P̂ (t) = f(P (s); s ≤ t − 1), (1.3)
S(t) = D(t). (1.4)

Here (1.1) and (1.2) are (linearized) behavioural equations, in general with α1 < 0
and β1 > 0. Equation (1.3) describes how the suppliers predict future prices, and
equation (1.4) expresses the equilibrium condition of market clearing. In practice
the equations (1.1) and (1.2) are of course only approximations, and the same
holds true for the equilibrium condition (1.4). The precise form of the forecasting
function (1.3) will in general also be unknown. Depending on the specification of
(1.3), different dynamical systems result with corresponding different evolutions
of prices and quantities. Adaptive forecasts can be described as follows, with 0 <
λ < 1,

P̂ (t) = P̂ (t − 1) + λ{P (t − 1) − P̂ (t − 1)}. (1.5)

Another specification is to let the price consist of an unobserved permanent com-
ponent, denoted by X , that is affected by stochastic disturbances, u and v,

P (t) = X(t) + u(t); X(t) = X(t − 1) + v(t). (1.6)

The price forecast could be obtained by minimizing the expected quadratic forecast
error E(P (t)− P̂ (t))2, where E(·) denotes the expectation operator. This is called
a prediction or filtering problem.

If the form of (1.3) has been specified, then the dynamical evolution of price
and quantity depends on the model parameters. In practice these parameters are in
general unknown. Let us denote the model error in D(t) by εD(t), and the model
error in S(t) by εS(t). Such model errors εD and εS arise for several reasons,
for example neglected relevant variables and misspecification of the functional
form and of the dynamics. Incorporating these model errors into the behavioural
equations (1.1, 1.2) leads to the model

D(t) = α0 + α1P (t) + εD(t), (1.7)
S(t) = β0 + β1P̂ (t) + εS(t). (1.8)

System identification is concerned with the estimation of the unknown model
parameters from available data on quantity and prices.

Example 1.2. National governments are confronted with the task of designing a
macro economic policy. A much simplified version of this problem is the following
model of the business cycle. Let C denote consumption expenditures, Y national
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income, I investments and G government expenditure. We assume that consump-
tion depends on the income of the last period and that investments are based on
the so-called accelerator principle. This gives the model

C(t) = α + βY (t − 1), (1.9)
I(t) = γ + δ{C(t) − C(t − 1)}, (1.10)
Y (t) = C(t) + I(t) + G(t). (1.11)

Here (1.11) is a definitional equality, and equations (1.9) and (1.10) are behavioural
equations. From the viewpoint of macro economic policy this leaves the variable G
as policy or control variable. In econometrics this is called an exogenous variable,
in systems theory an input variable. The other variables Y, C and I are the policy
targets. In econometrics these are called endogenous variables, in systems theory
output variables.

The government could be interested in regulating income, consumption and
investments. A possible objective is to keep these macro economic variables as
close as possible to pre-assigned target trajectories, denoted by Y ∗, C∗ and I∗. If
N denotes the planning horizon, then deviations from these objectives could, for
instance, be measured by the cost function

J =
N∑

t=1

[g1{Y (t) − Y ∗(t)}2 + g2{C(t) − C∗(t)}2 + g3{I(t) − I∗(t)}2]. (1.12)

Here the coefficients gi, i = 1, 2, 3, reflect the relative importance of the objec-
tives. This is an example of a dynamic optimization problem, known as the linear
quadratic control problem.

We should mention that in modern economics control theory plays a role
mainly in the following two areas. First, in micro economic theory to model the
behaviour of individual economic agents. Second, in business applications, for ex-
ample in production planning and financial decision making. Macro economic mod-
els and control theory play only a minor role in government decisions. Originally
such an approach was inspired by the wish to smooth business cycles. However,
macro economic policy depends on many factors that are not easily captured in a
model.

Example 1.3. Consider a firm producing a single good. The production is organized
in planning periods of three months. At the beginning of each period the produc-
tion quantity is determined. In order to meet random fluctuations in demand the
firm also holds inventories of the good. Let D denote demand, Q the quantity
produced, and X the inventory of the good. The inventory develops according to

X(t + 1) = X(t) + Q(t) − D(t). (1.13)

We assume that a negative inventory corresponds to excess demand that will be
satisfied by the production in the next period. Let f(X) denote the cost of holding
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inventory (if X > 0) and the cost of delayed demand (if X < 0). Further let α
denote the production cost per unit, and let N be the planning horizon. As the
demand shows random variations, the firm could minimize the expected total cost

J = E[
N∑

t=1

{αQ(t) + f(X(t + 1))}]. (1.14)

This is a stochastic optimal control problem. Here Q is the input or control vari-
able. The optimal production plan depends on the cost function f and on the
demand process D.

If the demand D(t) contains trends and seasonal patterns, these may be
incorporated in a model for the demand. In such a so-called structural model the
demand is decomposed in a trend term T with varying slope B, a seasonal term S
consisting of a yearly recurring pattern, and a random component ε. We then have
equations for the trend, for the varying slope of the trend, and for the seasonal
term S. The demand model is not driven by control variables, but by noise terms
in each of the equations, representing unanticipated random shocks. The auxiliary
variables T (t), B(t) and S(t) are unobserved. A possible model of this kind is

D(t) = T (t) + S(t) + ε(t), (1.15)
T (t) = T (t − 1) + B(t − 1) + η(t), (1.16)
B(t) = B(t − 1) + ξ(t), (1.17)
S(t) = −S(t − 1) − S(t − 2) − S(t − 3) + ω(t). (1.18)

Here ε, η, ξ and ω are random components. Note that (1.18) with ω(t) = 0 gives a
periodicity for S(t). Indeed, starting with S(0) = a, S(1) = b, S(2) = c leads to a
repeating pattern in the sequence S(t) of a, b, c,−a− b − c, as one readily checks.

1.2 Systems and Laws

In this section we shall consider several types of models that can be used to describe
dynamical systems. A dynamical system is characterized by a collection of system
variables that evolve in mutual dependence. Denoting the time axis by T and the
outcome space for the system variables at each time instant by W , we formalize a
(deterministic) dynamical system as follows.

Definition 1.2.1. A dynamical system consists of a set of allowable trajectories of
the system variables, i.e., it is characterized by its behaviour B ⊂ {w : T → W}.

This gives a deterministic description, as trajectories in B are possible within
the system and the other trajectories are excluded. In this book we only consider
systems that evolve in discrete time (T = Z). We will not discuss continuous time
systems (with T = R), as the theory of linear systems largely coincides for both
cases. In economics one uses mostly discrete time models, because the available
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data are often observed in discrete time. The mathematical models for discrete
time systems involve difference equations, whereas models for continuous time
systems involve differential equations.

In many applications a system is considered as a part of reality which in-
teracts with its environment. In this case the variables are divided into inputs,
consisting of the variables from the environment that influence the system, and
outputs, the variables that describe the effects. A system is then seen as a mech-
anism producing the outputs (endogenous variables) from the inputs (exogenous
variables).

Definition 1.2.2. An input-output system consists of a set of input trajectories
{u : T → U} and output trajectories {y : T → Y } related by a mapping F . The
system behaviour is given by B = {(u, y) : T → U × Y ; y = F (u)}.

This definition is somewhat limited, as it requires that the input uniquely de-
termines the output. Sometimes an additional effect of so-called initial conditions
is allowed.

For purposes of forecasting and control it is of particular interest to consider
causal input-output systems. This means that the present output is completely
determined by the past evolution of the inputs (including the present input).

Definition 1.2.3. A causal input-output system is a system for which the input-
output mapping F has the property that y(t) = Ft(u(s); s ≤ t) for certain map-
pings Ft, t ∈ T .

For identification and control of dynamical systems it is of crucial importance
that the system is expressed in a convenient way. A given system can be represented
in many alternative ways. Which representation is preferred will depend on the
model objectives.

A system can often be described by a set of equations, the system laws, each
of which describes a relationship between the variables. Of special interest are
(vector) difference equations of the form

G(t, w(t), w(t − 1), . . . , w(t − L)) = 0, (1.19)

where w(t) is a vector in Rq for all t ∈ Z, and where G is a map from Z× (Rq)L+1

to R
p for some p. The parameter L specifies the order of the equation. If the

system laws are invariant over time, then they can be expressed in the form

G(w(t), w(t − 1), . . . , w(t − L)) = 0. (1.20)

Equations of this type (and their continuous time counterparts, being differential
equations) are at the heart of most dynamical models in physics, biology, engi-
neering, economics, and other sciences. The system is called linear if the function
G is linear in its arguments. Linear difference equations are very useful in practice
for the following reasons.
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• In many cases nonlinear systems can be approximated rather well by linear
ones.

• In most applications the precise nature of possible nonlinearities is unclear,
but methods based on nonlinear models are often sensitive with respect to
the chosen type of nonlinearity.

• Practical identification and control methods are mostly developed for linear
systems.

Nonlinear systems can be approximated by linearization. Let w0 be a solution of
interest and let Ak(t) be the matrix of first derivatives of G in (1.20) with respect to
the k-th position, k = 0, . . . , L, and evaluated at w0 and time t. If w has q variables
and G consists of p equations, then these matrices have size p× q. Locally around
the solution w0, other system trajectories w satisfying (1.20) are approximately
described by the first order Taylor expansion in terms of w� := w − w0, that is

A0(t)w�(t) + A1(t)w�(t − 1) + · · · + AL(t)w�(t − L) ≈ 0. (1.21)

This is a linear difference equation with time-varying parameters. If w0 is constant
over time, for instance identically zero, then the parameters are constant, and
locally around zero the system is described by the approximate law

A0w(t) + A1w(t − 1) + · · · + ALw(t − L) = 0. (1.22)

Systems of the form (1.22) are called linear, time invariant and finite dimensional.
These systems are of fundamental importance in identification and control. Lin-
earity means that the behaviour defined by the solution set of equation (1.22) is a
linear space. Time invariance means that solutions shifted in time remain within
the system. The property of finite dimensionality has to do with state space mod-
els, as discussed in the next section. Because of their relative simplicity and because
good theory for solving systems of the type (1.22) exists, these models are very
useful.

We illustrate the concept of linearization with a well-known example from
physics, for once using a continuous time model. The mathematical model for a
swinging pendulum with no friction is given by the differential equation x(t)′′ = c ·
sin(x(t)). Here x(t) denotes the angle of the swinging pendulum with the downward
vertical measured in radians and c is a constant depending on the length of the
pendulum. The pendulum is at rest when x(t) ≡ 0; this is called an equilibrium
solution. Linearization around this equilibrium solution is obtained by observing
that for small values of x(t) one has sin(x(t)) ≈ x(t), whereby the differential
equation for the linearized model becomes a linear equation: x(t)′′ = c · x(t).

1.3 State Representations

In the foregoing section the system structure was made explicit by means of func-
tional relationships between the system variables. In order to derive and use these
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relationships it is often helpful to introduce auxiliary variables. An auxiliary vari-
able of particular importance is the state, which summarizes all the past infor-
mation that is relevant for the future evolution of the system. State space models
have the following form, where A, B, C, D are matrices of appropriate dimensions.

x(t + 1) = Ax(t) + Bv(t), (1.23)
w(t) = Cx(t) + Dv(t). (1.24)

Here v is an auxiliary variable which drives the evolution of the state x via the
first order equation (1.23), with resulting observed system trajectory w described
by the static equation (1.24). To describe the evolution of w for future times,
t ≥ t0, it suffices to know x(t0) and the future driving forces v(t), t ≥ t0. So x(t0)
summarizes the past information that is relevant for the future. For this reason x
is called a state variable.

Definition 1.3.1. A state space representation of a system with variables w is a
representation of the form (1.23), (1.24), so that the behaviour is given by

B = {w : T → W ; there exist (x, v) such that (1.23) and (1.24) are satisfied}.
The practical usefulness of state space models lies in their simple first order

dynamical structure. It can be shown that it is precisely the class of systems de-
scribed by (1.22) which can be represented in state space form. As the state vector
contains a finite number of elements, these systems are called finite dimensional.

Stochastic state space systems are of the form (1.23), (1.24) with w an ob-
served stochastic process and with v an auxiliary white noise process. In this case
the process x has the Markov property and acts as a sufficient statistic in pre-
diction and control. The class of stochastic processes which can be represented in
this way corresponds to the widely used class of so-called autoregressive moving
average processes.

For causal input-output systems satisfying equation (1.22) we obtain, by
splitting the system variables w into inputs u and outputs y, a representation of
the form

P0y(t)+P1y(t−1)+· · ·+PLy(t−L) = Q0u(t)+Q1u(t−1)+· · ·+QLu(t−L) (1.25)

Causality is guaranteed if P0 is invertible. A state space representation of such
a system can be obtained with the input variables u as the auxiliary variables
v. As we shall see later, this leads to the following so-called input-state-output
representation

x(t + 1) = Ax(t) + Bu(t), (1.26)
y(t) = Cx(t) + Du(t). (1.27)

This model forms the cornerstone in linear control theory. In the next chapter
we shall show the equivalence of the representations (1.25) and (1.26, 1.27) for
appropriately chosen matrices A, B, C and D.
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If we neglect the influence of initial conditions and consider the effect of the
inputs on the outputs, then this relationship can be described by a convolution,
i.e., under certain boundedness conditions we get

y(t) =
∞∑

k=0

Gku(t − k). (1.28)

Convolution systems are sometimes more easily analysed in the so-called frequency
domain, where the system trajectories are decomposed into cyclical components.
Stochastic processes allow a similar decomposition into cyclical components.

1.4 Illustration

To give a simple illustration of the concepts and models discussed in this chapter
we consider the business cycle model of Example 1.2. Suppose that the purpose
of this model is to describe the macro economic business cycle in Y, C and I, and
the possible effects of government spending G.

This system, in the sense of Definition 1.1, is characterized by the solution
set of the three equations (1.9)–(1.11). The equilibrium values, for a fixed level of
government expenditure G, are obtained by solving the equations for fixed levels
of all the variables, so that

C =
α + βγ + βG

1 − β
, I = γ, Y =

α + γ + G

1 − β
. (1.29)

Defining the deviations from equilibrium by c(t) = C(t)−C, i(t) = I(t)−I, y(t) =
Y (t) − Y and g(t) = G(t) − G, we obtain the linear model

c(t) = βy(t − 1), (1.30)
i(t) = δ{c(t) − c(t − 1)}, (1.31)
y(t) = c(t) + i(t) + g(t). (1.32)

Let us consider what happens if we take consumption as an input variable in the
sense of Definition 1.2. Specification of c(t) for all t ∈ Z gives unique corresponding
values of y(t), i(t) and g(t), for all t ∈ Z. However, this is not a causal input-
output system as {c(t); t ≤ t0} determines {i(t); t ≤ t0}, {y(t); t ≤ t0 − 1} and
{y(t) − g(t); t ≤ t0}. Hence it is not possible to determine y(t0) and g(t0).

A causal input-output system can be obtained, for instance, by taking gov-
ernment expenditure as input. This can be seen from the relationship

y(t) = β(1 + δ)y(t − 1) − βδy(t − 2) + g(t), (1.33)

which one readily checks. This shows that income, consumption and investment
are determined in a causal way by government expenditure for two given initial
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values of income. When the model is used to explain the business cycle in income
and the effect of government policy, then equation (1.33) is the core of the model
after the auxiliary variables c and i have been eliminated. This so-called “final
form equation” contains all dynamical information on the income process. Note
that equation (1.33) would probably not easily have been specified on theoretical
grounds, but it is motivated by the auxiliary behavioural relations (1.30) and
(1.31).

An input-output description of the form (1.25) is easily obtained:⎛⎝ 1 0 0
−δ 1 0
−1 −1 1

⎞⎠⎛⎝c(t)
i(t)
y(t)

⎞⎠+

⎛⎝0 0 −β
δ 0 0
0 0 0

⎞⎠⎛⎝c(t − 1)
i(t − 1)
y(t − 1)

⎞⎠ =

⎛⎝0
0
1

⎞⎠ g(t). (1.34)

An input-state-output representation is obtained from this by taking as past in-
formation the state variable x(t) with components c(t − 1), i(t − 1), and y(t − 1),
so that

x(t + 1) =

⎛⎝ 0 0 β
−δ 0 βδ
−δ 0 β(1 + δ)

⎞⎠x(t) +

⎛⎝0
0
1

⎞⎠ g(t), (1.35)

⎛⎝c(t)
i(t)
y(t)

⎞⎠ =

⎛⎝ 0 0 β
−δ 0 βδ
−δ 0 β(1 + δ)

⎞⎠x(t) +

⎛⎝0
0
1

⎞⎠ g(t). (1.36)

This state representation is not minimal, in the sense that there exist representa-
tions with fewer state variables. For example, by taking z(t) = (y(t−1), y(t−2))T

we get the model

z(t + 1) =
(

β(1 + δ) −βδ
1 0

)
z(t) +
(

1
0

)
g(t), (1.37)⎛⎝c(t)

i(t)
y(t)

⎞⎠ =

⎛⎝ β 0
βδ −βδ

β(1 + δ) −βδ

⎞⎠ z(t) +

⎛⎝0
0
1

⎞⎠ g(t). (1.38)

It can be shown that this is a minimal state representation. We shall return to
this example in the next chapter.



Chapter 2

Input-Output Systems

In this chapter we consider input-output systems. Such systems can be described in
the time domain, in terms of the impulse response, and in the frequency domain, by
the transfer function. For rational transfer functions the system can be represented
by a finite dimensional state space model.

2.1 Inputs and Outputs in the Time Domain

Dynamical systems are characterized by a collection of variables and their in-
terrelationships over time. As stated before, we shall only consider discrete time
systems. For input-output systems there are two types of variables, namely inputs,
which one may choose freely and outputs, which are determined by the choice of
the inputs. Such systems may be schematically described by the following figure:

u y

Here u(t) =
(
u1(t) . . . um(t)

)T is the vector with the m input variables at time

t and y(t) =
(
y1(t) . . . yp(t)

)T is the vector with the p output variables. The
box is called the plant or the process and stands for the way the outputs depend
on the inputs. If m = p = 1, then the system is called a single input, single output
(SISO) system, and all other cases are referred to as multi-variable systems. If
the input variables are meant to control the system they are called control or
command variables. It may also be that some of the input variables are not in our
hands. Such inputs may result from outside disturbances.
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If the input is given beforehand, this is an open loop system. One may wish
to choose the input in such a way that a prescribed goal is reached. This is called
an optimal control problem. If the input is regulated by information on the past
evolution of the system, then this is a closed loop system. This may be depicted
as follows.

u

F

S
y

Example 2.1. We consider the business cycle model of Section 1.4. The system
equations (1.30)–(1.32) lead to the following relation between national income
y(t) and government spending g(t),

y(t) − β(1 + δ)y(t − 1) + βδy(t − 2) = g(t). (2.1)

Here we may think of y as the output and of g as the input of the system. If
the government spends without regarding the income this is an open loop system.
If spending is seen as an instrument to steer the income in a desired path of
evolution, then the value of g(t) may be based on the realized past incomes y(t−1),
y(t− 2), . . .. This is a closed loop system. The use of past information to generate
the current input is called feedback.

We denote a system by the symbol Σ. For convenience we assume that Σ
starts operating at time instant t = 0. For time t < 0 the values of all variables
are supposed to be zero. Since the system operates in discrete time, the input
trajectories are sequences u = (u(0), u(1), . . .) of which the elements are vectors
in Rm. The output trajectories are sequences y = (y(0), y(1), . . .) with elements in
R

p. The map which assigns to a given input trajectory u the corresponding output
trajectory y is called the input-output map and is denoted by GΣ. So the output
y(t) is given by y(t) = (GΣu)(t).

The system is called causal if the output does not depend on future inputs
and is totally dependent on past and present inputs, that is, if for any two input
trajectories u and v the following implications holds for each t0:

{u(t) = v(t), ∀t ≤ t0} ⇒ {(GΣu)(t) = (GΣv)(t), ∀t ≤ t0}.
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The system Σ is said to be linear if the input-output map is a linear transformation,
i.e.,

GΣ(u + v) = GΣu + GΣv, GΣ(λu) = λGΣu (λ ∈ R).

If Σ is linear and causal, then the output y(t) at time k depends linearly on the
inputs u(0), . . . , u(t). It follows that the input-output map can be written in the
form

(GΣu)(t) =
t∑

k=0

G(t, k)u(k), t = 0, 1, 2, . . . . (2.2)

where G(t, k), 0 ≤ k ≤ t are p × m matrices.
The system Σ is said to be time-invariant if the input-output behaviour does

not depend on time. That is, if an input trajectory u is applied k time instants
later, then the resulting output trajectory is the original output trajectory but
now also starting k time instants later. To make this more precise, we consider the
shift operator S on trajectories, defined by

S(x(0), x(1), x(2), . . .) = (0, x(0), x(1), . . .).

The condition that the system Σ is time-invariant is equivalent to

GΣS = SGΣ. (2.3)

(Strictly speaking, we abuse notation here. The letter S on the left-hand side of
the equality is the shift on trajectories of input vectors, while on the right-hand
side of the equality it denotes the shift on trajectories of output vectors.)

Proposition 2.1.1. Let Σ be a causal linear time-invariant system. Then the input-
output map of Σ has the form

(GΣu)(t) =
t∑

k=0

G(t − k)u(k), t ≥ 0. (2.4)

Proof. Let e be an impulse applied at time t = 0, so e = (u(0), 0, 0, . . .), with u(0)
an arbitrary vector in Rm. Using (2.2) it follows that

(SkGΣe)(t) = G(t − k, 0)u(0), t ≥ k, while (GΣSke)(t) = G(t, k)u(0), t ≥ k.

Thus, using (2.3) repeatedly, we see that G(t, k) = G(t − k, 0). �
For a causal linear time-invariant system Σ the sequence of matrices

(G(0), G(1), G(2), . . .) is called the impulse response of the system. This termi-
nology is motivated by the output response to an impulse input:

GΣ(u(0), 0, 0, . . .) = (G(0)u(0), G(1)u(0), G(2)u(0), . . .). (2.5)
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Example 2.2. Consider again the relation (2.1) between government spending g(t)
and national income y(t). It is easily checked that this is a causal, linear, time-
invariant system if we take g as input and y as output. We suppose that the
economy starts at equilibrium, so that y(t) = g(t) = 0 for t < 0, see Section 1.4.
One can deduce from (2.1) that the impulse response of this system is given by
G(0) = 1, G(1) = β(1+δ), whereas for k ≥ 2 the impulse response matrices satisfy
the second order difference equation

G(k) = β(1 + δ)G(k − 1) + βδG(k − 2), k ≥ 2.

(The verification of this is left to the reader as an exercise.) Hence they can be
computed recursively.

2.2 Frequency Domain and Transfer Functions

Let u = (u(0), u(1), . . .) be a sequence with elements u(t) ∈ Rm. By definition the
Z-transform of u is the formal power series in z−1 given by

û(z) := u(0) +
1
z
u(1) +

1
z2

u(2) + · · · . (2.6)

This is a formal power series in the sense that it is not required that the series
in the right-hand side of (2.6) converges. In a similar way, if G = (G(0), G(1), . . .)
is a sequence of p × m matrices, then the Z-transform of G is the formal power
series in z−1 given by

Ĝ(z) = G(0) +
1
z
G(1) +

1
z2

G(2) + · · · . (2.7)

For û(z) and Ĝ(z) as above the product Ĝ(z)û(z) is defined as the formal power
series which one obtains by carrying out the product formally,

Ĝ(z)û(z) =
∞∑

k=0

(
1
z

)k

(G(k)u(0) + G(k − 1)u(1) + · · · + G(0)u(k)). (2.8)

To discuss convergence of the sequence in (2.8) we first introduce the following
notion. A sequence x = (x(0), x(1), . . .) of vectors or matrices is exponentially
bounded if there exist positive constants M and α such that

‖x(t)‖ ≤ Mαt, t = 0, 1, 2, . . . . (2.9)

The norm in (2.9) is the Euclidean norm for vectors, that is, if the vector is given
by x(t) =

(
x1(t) · · ·xn(t)

)T then ‖x(t)‖2 =
∑n

j=1 |xj(t)|2. The norm in (2.9) is
the induced matrix norm if x(t) are matrices, i.e., if x(t) is a p × q matrix, then

‖x(t)‖ = sup
‖w‖=1, w∈Rq

‖x(t)w‖.
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An important property of the induced matrix norm is the inequality

‖Ax‖ ≤ ‖A‖ · ‖x‖

for any matrix A and any vector x (provided, of course, the product Ax makes
sense), and

‖AB‖ ≤ ‖A‖ · ‖B‖
for any pair of matrices A and B for which the product AB can be formed. Under
this condition, the series x(0) + 1

z x(1) + 1
z2 x(2) + · · · is convergent for z ∈ C with

|z| > α, and in that case x̂(z) is a well-defined function on |z| > α.
If the impulse response sequence G(j), j = 0, 1, . . . is exponentially bounded,

then

Ĝ(z) =
∞∑

k=0

1
zk

G(k),

is called the transfer function of the system.

Proposition 2.2.1. Let Σ be a causal linear time invariant system with exponentially
bounded impulse response sequence (G(0), G(1), . . .). If u = (u(0), u(1), . . .) is an
exponentially bounded input trajectory, then the output trajectory y = GΣu is also
exponentially bounded, and for |z| sufficiently large we have

ŷ(z) = Ĝ(z)û(z). (2.10)

Proof. Suppose that ‖u(t)‖ ≤ M1α
t
1 and ‖G(t)‖ ≤ M2α

t
2. We may always take

α2 > α1. From Proposition 2.1.1 it follows that

‖y(t)‖ ≤
t∑

k=0

M2α
t−k
2 M1α

k
1 ≤ M1M2

α2

α2 − α1
αt

2 = M3α
t
2,

where M3 = M1M2
α2

α2−α1
. Thus the sequence of outputs is exponentially bounded.

The sequence of outputs is given by y(t) =
∑t

j=0 G(t − j)u(j) (cf. (2.4)). Since∑
y(t)z−t,

∑
u(t)z−t and

∑
G(t)z−t converge absolutely for |z| big enough, we

conclude from a well-known result in analysis (see, e.g., [54, Theorem 3.50]) that
(2.10) holds for z ∈ C, with |z| sufficiently large. �

When we apply the Z-transform to a trajectory we say that we pass from the
time domain to the so-called frequency domain. In the time domain the action of
the system is given by the input-output map which is the somewhat complicated
convolution (2.4). In the frequency domain the action of the system is given by a
straightforward multiplication, see (2.10). To justify the use of the term “frequency
domain” consider the following example.

Example 2.3. The transfer function describes the way in which the frequencies in
the inputs are transferred to the outputs. We illustrate this for a SISO system
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with impulse-response sequence satisfying |G(k)| ≤ Mαk for some α < 1. In
particular

∑∞
k=0 |G(k)| < ∞. Assume we have a summable input trajectory, that

is,
∑∞

k=0 |u(k)| < ∞. Then u(t) has a well-defined Fourier transform û(eiω) =∑∞
t=0 u(t)e−iωt. The same holds for G(t) and y(t), and, moreover, we have ŷ(eiω) =

Ĝ(eiω)û(eiω). In particular, the absolute value of Ĝ(eiω) is called the gain, and
this number shows the amplification of the frequency 2π

ω by the system.

2.3 State Space Models

The input-output map T of a system has a state space representation if the action
Tu = y can be described by a system of equations of the following type:⎧⎪⎨⎪⎩

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . ,

y(t) = Cx(t) + Du(t),
x(0) = 0.

(2.11)

As before, the system is assumed to be at rest for t < 0, so that y(t) = 0,
u(t) = 0, and x(t) = 0 for t < 0. Further, A is a linear transformation acting on
an n-dimensional Euclidean space Rn, called the state space, and B : Rm → Rn,
C : Rn → Rp, D : Rm → Rp are linear transformations. Choosing standard bases
in Euclidean space, A, B, C and D correspond to matrices with real coefficients.
A is called the state transition matrix , B the input matrix , C the output matrix ,
and D the external (or feedthrough) matrix.

Example 2.4. Consider the equation

y(t) − β(1 + δ)y(t − 1) + βδy(t − 2) = g(t) (2.12)

of Example 2.1 for the relation between government spending g(t) and national
income y(t). If we assume y(t0 − 1) and y(t0 − 2) to be known, then for t ≥ t0 the
values of y(t) are uniquely determined by g(t) for t ≥ t0. Thus the vector

x(t) =
(

y(t − 1)
y(t − 2)

)
describes the “state” of the economy at year t, and the input-output map corre-
sponding to (2.12) is described by the following state space equations:⎧⎪⎪⎨⎪⎪⎩

x(t + 1) =

(
β(1 + δ) −βδ

1 0

)
x(t) +

(
1
0

)
g(t), t ≥ t0,

y(t) =
(
β(1 + δ) −βδ

)
x(t) + g(t).

(2.13)

It is left as an exercise for the reader to verify this.
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If in (2.11), the state x(t0) is known, then for t ≥ t0 the state x(t) is given
by

x(t) = At−t0x(t0) +
t−1∑
j=t0

At−j−1Bu(j), t > t0. (2.14)

Consequently, the output y(t) is given by

y(t) = Du(t) + CAt−t0x(t0) +
t−1∑
j=t0

CAt−j−1Bu(j).

The information about the past contained in the state x(t0) together with the
input trajectory for t ≥ t0 allows us to determine the output trajectory for t ≥ t0.
A state variable is a vector function x(t) with the property that for each t > t0 ≥ 0
the output trajectory (y(t0), . . . , y(t)) is uniquely determined by the state x(t0)
and the input trajectory (u(t0), . . . , u(t)). In particular, we need no information on
the past inputs and outputs u(s), y(s) for s < t0. To achieve an effective reduction
in the required past information, the initial state x(t0) and the input trajectory
(u(t0), . . . , u(t − 1)) should also uniquely determine the state x(t). The variable
x(t) in (2.11) has this additional property, because of (2.14).

Theorem 2.3.1. The state space model (2.11) describes the input-output map of a
causal linear time-invariant system with impulse response

G(t) =

{
D for t = 0,

CAt−1B for t > 0,

and with transfer function equal to

Ĝ(z) = D + C(z − A)−1B. (2.15)

In formula (2.15) we use the notation z−A to denote z ·I−A. This convention
will be used frequently in the sequel.

Proof. The solution of the state equation x(t + 1) = Ax(t) + Bu(t), t ≥ 0, with
x(0) = 0 is given by x(t) =

∑t−1
k=0 At−1−kBu(k), for t ≥ 1. So the input-output map

T of the state space model (2.11) is given by (Tu)(t) =
∑t−1

k=0 CAt−1−kBu(k) +
Du(t) (compare (2.2) where T is denoted by GΣ).

It remains to prove the formula for the transfer function. The sequence
CAk−1B, k = 1, 2, . . . is exponentially bounded because ‖CAk−1B‖ ≤ ‖C‖ · ‖B‖ ·
‖A‖k−1 = Mαk−1, where M = ‖C‖ · ‖B‖ and α = ‖A‖. It follows that (2.11) has
a well-defined transfer function,

Ĝ(z) = D +
∞∑

k=1

1
zk

CAk−1B. (2.16)
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For |z| > ‖A‖ we have I = (z − A)
∑∞

k=1
1
zk Ak−1, and hence (z − A)−1 =∑∞

k=1
1
zk Ak−1, where the convergence of the series on the right-hand side is inter-

preted in the norm sense, i.e., we say that the series converges to a matrix E when
limn→∞ ‖E −∑n

k=1
1
zk Ak−1‖ = 0. So for |z| > ‖A‖ the series on the right-hand

side of (2.16) converges to C(z − A)−1B which proves (2.15). �

State space models can also be characterized in terms of transfer functions.
A matrix-valued function W is called a rational matrix function if its entries are
quotients of polynomials. It is called proper if lim|z|→∞ W (z) exists.

Proposition 2.3.2. The transfer function of the system represented by (2.11) is a
rational matrix function that is proper.

Proof. By Cramer’s rule it follows that (z − A)−1 is a rational matrix function,
and as lim|z|→∞(z − A)−1 = 0, it is also proper. �

Conversely, every system with a proper rational transfer function has a state
space representation. This is what we shall show in the next theorem.

Theorem 2.3.3. The input-output map of a causal linear time-invariant system Σ
admits a state space representation if and only if Σ has a transfer function that is
rational and proper.

To prove this result we use the following lemma.

Lemma 2.3.4. Consider the matrix polynomials H(z) =
∑�−1

j=0 zjHj and L(z) =

z�I +
∑�−1

j=0 zjAj of sizes p × m and m × m, respectively. Let

A =

⎛⎜⎜⎜⎝
0 I

. . .
I

−A0 −A1 . . . −A�−1

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
0
...
0
I

⎞⎟⎟⎟⎠ , C =
(
H0 H1 . . . H�−1

)
.

Then H(z)L(z)−1 = C(z − A)−1B for z not an eigenvalue of A.

Proof. First we assume that H(z) ≡ I, so that C = (I, 0, 0, . . . , 0). Let z ∈ C and
consider the equation

L(z)x = y (2.17)

where x, y ∈ Cm. Defining x1 = x, x2 = zx1, . . . , x� = zx�−1, equation (2.17) can
be rewritten as −A0x1 − A1x2 − · · · − A�−1x� = zx� − y. Therefore

A

⎛⎜⎝x1

...
x�

⎞⎟⎠ = z

⎛⎜⎝x1

...
x�

⎞⎟⎠− By, x = x1 = C

⎛⎜⎝x1

...
x�

⎞⎟⎠ .
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If z is not an eigenvalue of A, then⎛⎜⎝x1

...
x�

⎞⎟⎠ = (z − A)−1By,

and hence x = C(z − A)−1By, which proves the lemma for the case H(z) ≡ I.
Next we consider the general case. Let⎛⎜⎝C1(z)

...
C�(z)

⎞⎟⎠ = (z − A)−1B.

From the previous result we know that C1(z) = L(z)−1. Since

(z − A)

⎛⎜⎝C1(z)
...

C�(z)

⎞⎟⎠ =

⎛⎜⎜⎜⎝
0
...
0
I

⎞⎟⎟⎟⎠ ,

the special form of A implies that Cj(z) = zj−1C1(z), j = 1, . . . , 
. Hence

C(z − A)−1B =
(
H0 . . . H�−1

)
⎛⎜⎜⎜⎝

C1(z)
zC1(z)

...
z�−1C1(z)

⎞⎟⎟⎟⎠ = H(z)C1(z) = H(z)L(z)−1,

which proves the lemma. �

Proof of Theorem 2.3.3. Proposition 2.3.2 already shows that the transfer function
of a state space model is rational.

To prove the converse, let Σ be a causal linear time-invariant system with
rational transfer function Ĝ(z) that is proper. We have to prove that y(t) =
(GΣu)(t) =

∑t
k=0 G(t−k)u(k), t = 0, 1, 2, . . ., admits a state space representation.

As Ĝ(z) is rational and proper, each entry is rational and proper as well. So
Ĝ(z) → G(0) for |z| → ∞, and hence we can write Ĝ(z) = G(0) + K(z), where

lim
|z|→∞

K(z) = 0. (2.18)

The (i, j)-th entry kij(z) of K(z) is a quotient of two polynomials, kij(z) =
pij(z)/qij(z), where we take qij(z) to be monic, that is, with leading coefficient
equal to 1. Condition (2.18) implies that the degree of pij is strictly less than the
degree of qij . Let r(z) be the product of all qij(z), that is, r(z) = Πijqij(z) and
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H(z) = r(z)K(z), then H(z) is a matrix polynomial, H(z) = H0 + zH1 + · · · +
z�−1H�−1, and from the property of the degrees of pij and qij it follows that 
 is
not larger than the degree of r(z). Define L(z) = r(z)I, where I is the m × m
identity matrix, then L(z) is a monic matrix polynomial (i.e., its leading coefficient
is I) and K(z) = H(z)L(z)−1. Thus, by Lemma 2.3.4 we can find matrices A, B
and C so that K(z) = C(z − A)−1B, whenever z is not an eigenvalue of A. This
shows that G(t) = CAt−1B for t ≥ 1, so that GΣ has a state space representation
(with D = G(0)). �

The foregoing result in terms of the transfer function has the following corol-
lary for system representation in the time domain.

Corollary 2.3.5. A causal linear time-invariant system Σ has a state space repre-
sentation if and only if the input-output map is of polynomial form, that is,

y(t) = A1y(t − 1) + · · · + ALy(t − L) + B0u(t) + B1u(t − 1) + · · · + BLu(t − L)

for p × p matrices Ai and p × q matrices Bj, i = 1, . . . , L, j = 0, . . . , L. Here we
take u(j) = 0 for j < 0.

Proof. This is an immediate consequence of Theorem 2.3.3. As we have seen in the
proof of Theorem 2.3.3 a proper rational transfer function can be written as Ĝ(z) =
G(0)+ H(z)

r(z) . Denoting L(z) = r(z)I, we rewrite this as Ĝ(z) = L(z)−1(G(0)r(z)+
H(z)). We conclude that any proper rational transfer function can be written
as the quotient of two matrix polynomials: Ĝ(z) = Â−1(z)B̂(z) with Â(z) =
I − A1z

−1 − · · · − ALz−L and B̂(z) = B0 + B1z
−1 + · · · + BLz−L. Observe that

it is quite possible that some of the Bj ’s are zero. Rewriting the relation ŷ(z) =
Ĝ(z)û(z) as Â(z)ŷ(z) = B̂(z)û(z), and transforming this relation to the time
domain gives the result. Note that there may be many ways in which we can write
Ĝ(z) as Â−1(z)B̂(z), i.e., the matrix polynomials A(z) and B(z) are not uniquely
determined.

Conversely, suppose that Â(z)ŷ(z) = B̂(z)û(z). As Â is proper, Â−1(z) is
rational and proper. Hence Ĝ(z) = Â−1(z)B̂(z) is rational and proper as well.
Consequently it has a state space representation. �

2.4 Equivalent and Minimal Realizations

An ordered quadruple (A, B, C, D) is called a realization of the system Σ if{
x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . ,

y(t) = Cx(t) + Du(t)
(2.19)

is a state space representation of the input-output map of Σ. In other words,
(A, B, C, D) is a realization of Σ if and only if Σ has transfer function Ĝ(z) =
D + C(z − A)−1B.
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Realizations are not unique. For example, we may carry out a basis trans-
formation in the state space, replacing the state variable x(t) in (2.19) by x̃(t) =
Sx(t), where S is an invertible matrix. In terms of the state x̃(t), we have

x̃(t + 1) = Sx(t + 1) = SAx(t) + SBu(t) = SAS−1x̃(t) + SBu(t),

and y(t) = Cx(t)+Du(t) = CS−1x̃(t)+Du(t). Thus if (A, B, C, D) is a realization
of Σ, then the same holds true for (SAS−1, SB, CS−1, D).

There is another source of non-uniqueness. Let (A0, B0, C0, D0) be a realiza-
tion, and let

A =

⎛⎝A1 A3 A4

0 A0 A5

0 0 A2

⎞⎠ , B =

⎛⎝B1

B0

0

⎞⎠ , C =
(
0 C0 C2

)
, (2.20)

where A1, A2, A3, A4, A5, B1 and C2 are free to choose. Then

Ak =

⎛⎝∗ ∗ ∗
0 Ak

0 ∗
0 0 ∗

⎞⎠ ,

where the ∗’s denote entries which we do not specify further. It follows that for
k ≥ 0, CAkB = C0A

k
0B0. So, if (A0, B0, C0, D0) is a realization of Σ, then the

same holds true for (A, B, C, D0) (compare Theorem 2.3.1).
The above two operations describe all possible realizations, as will be shown

in Chapter 3. Of course, the realization (2.20) is less attractive than the realization
(A0, B0, C0, D0), as it involves more parameters and more state variables.

A realization (A, B, C, D) of a system Σ is called minimal if among all re-
alizations of Σ the state space dimension (that is, the size of A) is as small as
possible.

We shall now construct a minimal realization from the matrices in the im-
pulse response sequence. The construction is done using as a starting point an
infinite dimensional vector space, and some linear transformations acting on it.
By Lm we denote the linear space of all sequences u = (u(1), u(2), u(3), . . .)
with elements in Rm, and similarly, by Lp we denote the space of all sequences
y = (y(1), y(2), y(3), . . .) with elements in Rp. By Lm

0 we denote the subspace of Lm

consisting of all sequences with finite support , that is, only a finite number of the
u(j)’s are nonzero. Equivalently, u(t) = 0 for sufficiently large t. Similarly, Lp

0 is the
subspace of Lp consisting of all sequences of finite support. Let V be the linear
transformation on Lp, defined by V (y(1), y(2), y(3), . . .) = (y(2), y(3), y(4), . . .).
This linear transformation is called the backward shift . Observe that V leaves the
space Lp

0 invariant. By H : Lm
0 → Lp we denote the linear transformation with
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matrix representation

H =

⎛⎜⎜⎜⎝
G(1) G(2) G(3) . . .
G(2) G(3) G(4) . . .
G(3) G(4) G(5) . . .

...
...

...

⎞⎟⎟⎟⎠ . (2.21)

That is, for u = (u(1), u(2), . . .) ∈ Lm
0 the sequence y = Hu has i-th entry y(i) =∑∞

j=1 G(i + j − 1)u(j). Since u has finite support the right-hand side is a finite
sum that always converges. (If sequences in Lm are considered as infinite columns,
then the action of H is given by the usual matrix multiplication.) The infinite
matrix (2.21) is called a block-Hankel matrix, as it has constant values on the
counter (block) diagonals. The range of the linear transformation H will play an
important role in the next theorem; we shall denote it by Im H .

Theorem 2.4.1. Let Σ be a causal linear time-invariant system with p×m impulse
response matrices G(0), G(1), G(2), . . .. Let H : Lm

0 → Lp be given by (2.21), and
define X = Im H. Let V denote the backward shift on Lp. Then the minimal state
space dimension of realizations of Σ is equal to the dimension of X. Furthermore,
if k = dimX < ∞, then a minimal realization is obtained by taking

A = V |X : X → X,

B =

⎛⎜⎝G(1)
G(2)

...

⎞⎟⎠ : R
m → Im H, (2.22)

C =
(
I 0 0 . . .

) |Im H : Im H → R
p,

D = G(0) : R
m → R

p.

Proof. Let Θ̃ = (Ã, B̃, C̃, D̃) be a realization of Σ with state space R
n. Define

Λ̃ =
(
B̃ ÃB̃ Ã2B̃ . . .

)
: Lm

0 → R
n,

and

Γ̃ =

⎛⎜⎜⎜⎝
C̃

C̃Ã

C̃Ã2

...

⎞⎟⎟⎟⎠ : R
n → Lp,

where sequences in Lm and Lp are written as infinite columns. As sequences in
Lm

0 have finite support, the operator Λ̃ is well defined. Since Θ̃ is a realization
of Σ, the j-th value of the impulse response of Σ is given by G(j) = C̃Ãj−1B̃

for j ≥ 1. It follows that H = Γ̃Λ̃, and hence k = dim ImH ≤ dim Im Λ̂ ≤ n.
So if a realization exists, then dim ImH < ∞ and the state dimension is at least
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k = dim Im H . To complete the proof, it suffices to show that Θ = (A, B, C, D) as
given by (2.22) is a realization of Σ. Let X = Im H be finite dimensional. As

V H =

⎛⎜⎜⎜⎝
G(2) G(3) . . .
G(3) G(4) . . .
G(4) G(5) . . .

...
...

⎞⎟⎟⎟⎠ : Lm
0 → Lp,

it follows that V X = V (Im H) = ImV H ⊂ Im H = X, and hence X is invari-
ant under V . Therefore A in (2.22) is a well-defined linear transformation. Since
Im B ⊂ Im H , we have

Aj−1B = V j−1B =

⎛⎜⎝ G(j)
G(j + 1)

...

⎞⎟⎠ , j ≥ 1.

This shows that G(j) = CAj−1B for j ≥ 1, that is, Θ = (A, B, C, D) is a realiza-
tion of Σ. �

The realization Θ = (A, B, C, D) described in Theorem 2.4.1 is called a
restricted shift realization. An algorithm to construct a minimal realization from
the Hankel matrix H will be given in Section 3.4.



Chapter 3

State Space Models

This chapter discusses structure theory of state space systems. The central con-
cepts are observability (the possibility to reconstruct the state from inputs and
outputs) and controllability (the possibility to influence the state by manipulating
the inputs). Minimal realizations are observable and controllable, and the converse
is also true. We characterize all non-minimal realizations, and give an algorithm
to compute the matrices in a minimal realization from the impulse response of the
system.

3.1 Controllability

A realization Θ = (A, B, C, D) of a system Σ is called controllable if, starting from
an arbitrary initial state x0, any other state x1 can be reached in finite time by
choosing an appropriate input sequence. To make this more precise, let x(t; x0, u)
be the solution at time t of the recursion x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . ,
with x(0) = x0, and input sequence u, so that

x(t; x0, u) = Atx0 +
t−1∑
j=0

At−1−jBu(j), t ≥ 1. (3.1)

Thus Θ is controllable if and only if for every x0, x1 ∈ Rn there exist t > 0 and an
input sequence u such that x1 = x(t; x0, u).

A related notion is that of reachability. A realization is called reachable if
starting from the origin x0 = 0 every other state can be reached with an appro-
priate input sequence in a finite time interval, so that for every x ∈ Rn there exist
t > 0 and an input sequence u such that x = x(t; 0, u). Obviously, a controllable
realization is also reachable.

For the analysis of controllability and reachability it is helpful to consider
the sets Rt(Θ) of states that can be reached at time t with an appropriate input
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sequence u(0), u(1), . . . , u(t − 1) starting from the origin, that is

Rt(Θ) = {x ∈ R
n | there exists u such that x = x(t; 0, u)}.

It follows from (3.1) with x0 = 0 that Rt(Θ) is the image of the partitioned matrix(
B AB . . . At−1B

)
, i.e.,

Rt(Θ) = Im
(
B AB . . . At−1B

)
. (3.2)

Theorem 3.1.1. Let Θ = (A, B, C, D) be a realization of the system Σ with state
space dimension n. Then the following statements are equivalent.

(i) Θ is controllable;

(ii) Θ is reachable;

(iii) rank
(
B AB . . . An−1B

)
= n;

(iv) the matrix
∑n−1

j=0 AjBBT (AT )j is non-singular.

Proof. (i) ⇒ (ii). This follows directly from the definitions.
(ii) ⇒ (iii). Let us denote by p(z) = zn+pn−1z

n−1+· · ·+p0 the characteristic
polynomial of A. By the Cayley–Hamilton theorem we have p(A) = 0, and so the
matrix An is a linear combination of the matrices I, A, . . . , An−1. It follows from
this that also the matrix An+k (k ≥ 0) is a linear combination of the matrices
I, A, . . . , An−1. Hence Rk(Θ) = Rn(Θ) for all k ≥ n. When Θ is reachable there
holds Rn = ∪k≥1Rk(Θ) = Rn(Θ) = Im

(
B AB . . . An−1B

)
, and this shows

(iii).
(iii) ⇒ (i). By assumption Rn(Θ) = Rn, so that x − An−1x0 ∈ Rn(Θ) for

every x, x0 ∈ R
n. So there exists an input sequence u = (u(0), u(1), . . . , u(n − 1))

with x − An−1x0 =
∑n−1

j=0 An−1−jBu(j). Therefore, x = x(n; x0, u), and Θ is
controllable.

(iii) ⇔ (iv). Let Λ =
(
B AB . . . An−1B

)
, then we have that ΛΛT =∑n−1

j=0 AjBBT (AT )j , and the result follows from the fact that rank Λ = rank ΛΛT .
�

Note that controllability of the realization Θ = (A, B, C, D) is independent
of the matrices C and D. For that reason, instead of saying that the realization
Θ = (A, B, C, D) is controllable, this is also expressed by saying that the pair
(A, B) is controllable. The condition (iv) shows that controllability is a “robust”
property, as controllability is preserved under small perturbations of the system
parameters A and B.

Example 3.1. Consider the state space representation (2.13) of the model of a
national economy discussed in Example 2.4. Here the state space dimension is 2,
and

A =
(

β(1 + δ) −βδ
1 0

)
, B =

(
1
0

)
.
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Thus (
B AB

)
=
(

1 β(1 + δ)
0 1

)
,

which obviously has rank 2. So this realization is controllable.
In Section 1.4 we also considered a three-dimensional realization of this sys-

tem, with the state space matrices (corresponding to the single output y(t)) given
by

A =

⎛⎝ 0 0 β
−δ 0 βδ
δ 0 β(1 + δ)

⎞⎠ , B =

⎛⎝0
0
1

⎞⎠ , C =
(−δ 0 β(1 + δ)

)
, D = 1.

It is easily seen that this system is controllable provided β �= 0 and δ �= 0. If for
example δ = 0, so that investments are constant, then

(
B AB A2B

)
=

⎛⎝0 β β2

0 0 0
1 β β2

⎞⎠ ,

and the set of reachable states is given by

R = {(x1 x2 x3

)T ∈ R
3 | x2 = 0}.

So, if δ = 0 then this state space system is not reachable.

3.2 Observability

A state space system is called observable if the state vector can be reconstructed
from the inputs and outputs. By y(t; x0, u) we denote the output at time t gener-
ated by the input sequence u and initial state x(0) = x0 in the system{

x(t + 1) = Ax(t) + Bu(t), t ≥ 0,

y(t) = Cx(t) + Du(t).
(3.3)

In other words, y(t; x0, u) = Cx(t; x0, u)+Du(t), where x(t; x0, u) is given by (3.1).
The realization Θ = (A, B, C, D) is called observable if for some input sequence
the following implication holds:

y(t; x0, u) = y(t; x̃0, u), t ≥ 0 ⇒ x0 = x̃0. (3.4)

This means that the initial state at time t = 0 is uniquely determined by the
inputs and outputs. The particular choice of the input u is irrelevant here. Indeed,
x(t; x0, u) = x(t; x0, 0) +

∑t−1
j=0 At−1−jBu(j), and hence y(t; x0, u) = y(t; x0, 0) +∑t−1

j=0 CAt−1−jBu(j) + Du(t), so (3.4) holds if and only if

y(t; x0, 0) = y(t; x̃0, 0), t ≥ 0 ⇒ x0 = x̃0. (3.5)
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A state x in the state space Rn is said to be unobservable over the time
interval t = 0, . . . , k − 1 if y(t; x, 0) = CAtx = 0, t = 0, . . . , k − 1. The set of all
states that are unobservable over t = 0, . . . , k − 1 is denoted by

Nk(Θ) = {x ∈ R
n | y(t; x, 0) = 0 for t = 0, . . . , k − 1}.

It follows that

Nk(Θ) = Ker

⎛⎜⎜⎜⎝
C

CA
...

CAk−1

⎞⎟⎟⎟⎠ . (3.6)

Theorem 3.2.1. Let Θ = (A, B, C, D) be a realization of the system Σ with state
space dimension n. Then the following statements are equivalent:

(i) Θ is observable,

(ii) rank

⎛⎜⎜⎜⎝
C

CA
...

CAn−1

⎞⎟⎟⎟⎠ = n,

(iii) the matrix
∑n−1

j=0 (AT )jCT CAj is non-singular.

Proof. (i) ⇔ (ii). By the Cayley–Hamilton theorem, the matrix At (t ≥ n) is
a linear combination of the matrices I, A, . . . , An−1. This means that Nt(Θ) =
Nn(Θ) for all t ≥ n. According to (3.5), the realization is observable if and only if

{0} = ∩k≥1Nk(Θ),

which in turn is equivalent to

{0} = Nn(Θ).

The result now follows from (3.6).
(ii) ⇔ (iii). This follows from the fact that a matrix M has full column rank

if and only if MT M is invertible. �
The equivalence of (i) and (iii) in Theorem 3.2.1 shows that observability is

preserved under small perturbations of the system parameters. Since the condition
for observability does not involve the matrices B and D, one says that (A, C) is
observable if the realization Θ = (A, B, C, D) is observable.

There is a kind of duality between observability and controllability, as (A, C)
is observable if and only if (AT , CT ) is controllable.

Example 3.2. Consider the realization (2.13) given in Example 2.4. The state space
dimension is n = 2, and

A =
(

β(1 + δ) −βδ
1 0

)
, C =

(
β(1 + δ) −βδ

)
,
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so that (
C

CA

)
=
(

β(1 + δ) −βδ
β2(1 + δ)2 − βδ −β(1 + δ)βδ

)
.

This matrix has rank 2 if and only if βδ �= 0, so the realization is observable if
and only if β �= 0 and δ �= 0. In our model of a national economy we may assume
that β > 0 and δ > 0, and hence for that case the system is observable.

Next we consider the three-dimensional realization of this system discussed
in Section 1.4 with

A =

⎛⎝ 0 0 β
−δ 0 βδ
δ 0 β(1 + δ)

⎞⎠ , C =
(−δ 0 β(1 + δ)

)
.

This gives ⎛⎝ C
CA
CA2

⎞⎠ =

⎛⎝∗ 0 ∗
∗ 0 ∗
∗ 0 ∗

⎞⎠ ,

where ∗’s denote entries that depend on β and δ. Clearly, this matrix has rank 2
at most, so that this realization is not observable. In particular, it is not possible
to reconstruct the second state variable.

This result may be understood by considering the model in Section 1.4 in
more detail. If we apply the input g(t) = 0, t ≥ 0, then the output y(t), t ≥ 0
can be used to reconstruct the initial values y(−1) and y(−2) in (1.33). It follows
from (1.30) and (1.31) that also c(t), t ≥ −1 and i(t), t ≥ 0, can be derived from
this information. However, the state x(t) =

(
c(t − 1) i(t − 1) y(t − 1)

)T at time
t = 0 also contains i(−1), and this can not be calculated from the information in
y(t), t ≥ 0. Therefore, this state component is not observable.

Another characterization of observability can be given in terms of the eigen-
values of the matrix A. Let Θ = (A, B, C, D), and let N (Θ) be the subspace of
unobservable states,

N (Θ) := ∩k≥1Nk(Θ) = ∩k≥1KerCAk−1.

This subspace is invariant under A, that is, if x ∈ N (Θ), then also Ax ∈ N (Θ). We
denote by AN the restriction of A to N (Θ) viewed as a map from N (Θ) to itself. If
N (Θ) �= {0}, decompose R

n as R
n = N (Θ)⊕N (Θ)⊥. (Here and in the sequel the

symbol ⊕ denotes the orthogonal direct sum of two subspaces.) Choosing bases in
N (Θ) and N (Θ)⊥, and combining these bases to a basis for Rn, we can write a
matrix for A with respect to this basis. The invariance of N (Θ) implies that this
matrix for A has the form

A =
(

A11 A12

0 A22

)
. (3.7)

Here, A11 is a matrix representation of AN . So, if N (Θ) �= {0}, then AN has
eigenvalues. Every eigenvalue of AN is also an eigenvalue of A. An eigenvalue of A
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is called (A, C)-observable if it is not an eigenvalue of AN . The (A, C)-unobservable
eigenvalues are defined as the eigenvalues of A that are also eigenvalues of AN .
Hence, in the representation (3.7) the (A, C)-unobservable eigenvalues are those of
A11, while the observable eigenvalues are those of A22 that are not also eigenvalues
of A11.

Theorem 3.2.2. Let Θ = (A, B, C, D) be a realization with state space dimension
n. Then the following statements are equivalent.

(i) Θ is observable;

(ii) rank
(

A − λI
C

)
= n for each λ ∈ C;

(iii) rank
(

A − λI
C

)
= n for each eigenvalue λ of A;

(iv) all eigenvalues of A are (A, C) observable.

Proof. Let M(λ) =
(

A − λI
C

)
: Cn → Cn+p. It is important here that we consider

this as a map between complex vector spaces, as the eigenvalues of the (real) matrix
A may be complex, and its eigenvectors may be complex vectors.

(ii)⇔(iii) If λ is not an eigenvalue of A, then M(λ) has rank n, so this
equivalence is trivial.

(iii)⇔(iv) Suppose rank M(λ) < n. Then there exists a (possibly complex)
vector x �= 0 with M(λ)x = 0, so that Ax = λx and Cx = 0. This implies
that CAt−1x = λt−1Cx = 0 for t ≥ 0, and the same holds true for the real
and imaginary parts of the vector x. This shows that λ is also an eigenvalue
of AN , so that it is an (A, C)-unobservable eigenvalue. Conversely, if λ is an
(A, C)-unobservable eigenvalue, then there exists x �= 0 with Ax = λx and x ∈
N (Θ) + iN (Θ). (Observe that N (Θ) is a real vector space.) This implies that
Cx = 0, so that M(λ)x = 0, and hence rank M(λ) < n.

(i)⇔(iv) If Θ is observable, then N (Θ) = {0} by definition, and hence there
can be no (A, C)-unobservable eigenvalues. On the other hand, if all eigenvalues of
A are (A, C)-observable, this means that N (Θ) = {0} so that Θ is observable. �

The condition (iii) is called the Hautus test for observability.
By using transposition and the remark preceding Example 3.2, one obtains

the notions of controllable and uncontrollable eigenvalues. An eigenvalue λ of A is
called an (A, B)-controllable eigenvalue if rank

(
A − λI B

)
= n. Otherwise it is

called an uncontrollable eigenvalue. For example, if A =
(

1
2 0
0 1

2

)
and B =

(
1
0

)
,

then 1
2 is not a controllable eigenvalue. The following Hautus test for controllability

is an immediate corollary of Theorem 3.2.2.
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Theorem 3.2.3. Let Θ = (A, B, C, D) be a realization with state space dimension
n. Then the following statements are equivalent.

(i) Θ is controllable;

(ii) rank
(
A − λI B

)
= n for each λ ∈ C;

(iii) rank
(
A − λI B

)
= n for each eigenvalue λ of A;

(iv) all eigenvalues of A are (A, B) controllable.

3.3 Structure Theory of Realizations

In this section we describe the structure of state space representations of a given
system. We pay particular attention to minimal realizations, that is, realizations
with the lowest state space dimension. As a first step, we show that realizations
that are uncontrollable or unobservable can be reduced to realizations of smaller
dimension. For this purpose we use the following terminology.

Two realizations Θ = (A, B, C, D, ) and Θ0 = (A0, B0, C0, D0) are called
similar if (i) D = D0, (ii) Θ and Θ0 have the same state space Rn and (iii)
there exists an invertible linear transformation S : Rn → Rn such that A =
SA0S

−1, B = SB0, C = C0S
−1.

The realization Θ is called a dilation of Θ0 or equivalently, Θ0 is a reduction
of Θ, if (i) D = D0, and (ii) for a suitable choice of A1, A2, A3, A4, A5, B1 and C2

the three identities in (2.20) hold true, that is,

A =

⎛⎝A1 A3 A4

0 A0 A5

0 0 A2

⎞⎠ , B =

⎛⎝B1

B0

0

⎞⎠ , C =
(
0 C0 C2

)
.

It is an easy exercise to show that similar realizations produce the same
input-output behavior, provided both are started with initial state zero. Likewise,
if Θ is a dilation of Θ0, then these two realizations produce the same input-output
behavior when started with initial state zero.

Let Θ = (A, B, C, D) be a realization of the system Σ, and let the state space
dimension of this realization be n. The reachable subspace associated with Θ is
denoted by R(Θ) and the unobservable subspace by N (Θ). Thus

R(Θ) = Im
(
B AB . . . An−1B

)
,

N (Θ) =
n−1⋂
k=0

KerCAk.

The state space is decomposed as a direct sum as

R
n = X1+̇X2+̇X3+̇X4, (3.8)
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where X1 = N (Θ) ∩ R(Θ), X1+̇X2 = N (Θ), X1+̇X3 = R(Θ), and {N (Θ) +
R(Θ)}+̇X4 = Rn. (Here and in the sequel +̇ denotes the direct sum of subspaces.)
Let Xi have dimension ni, i = 1, 2, 3, 4, so that n1 + n2 + n3 + n4 = n, and let
b1, . . . , bn be a basis for R

n ordered in such a way that the first n1 vectors are a
basis for X1, the next n2 vectors are a basis for X2, the next n3 vectors from a basis
of X3, and finally, the last n4 vectors are a basis for X4. Let S =

(
b1 . . . bn

)
,

so that S is invertible, and let

Θ̃ := (S−1AS, S−1B, CS, D). (3.9)

As Θ and Θ̃ are similar, both are realizations of Σ. The matrices S−1AS, S−1B
and CS have a special structure, namely

S−1AS =

⎛⎜⎜⎝
A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

⎞⎟⎟⎠ ,

S−1B =

⎛⎜⎜⎝
B1

0
B3

0

⎞⎟⎟⎠ , CS =
(
0 0 C3 C4

)
.

The partitioning is in accordance with the above decomposition of the state space,
and we have used that AN (Θ) ⊂ N (Θ), AR(Θ) ⊂ R(Θ), Im B ⊂ R(Θ) and
N (Θ) ⊂ KerC. It follows that Θ̃ is a dilation of Θ0 = (A33, B3, C3, D).

Proposition 3.3.1. The quadruple Θ0 = (A33, B3, C3, D) is a controllable and ob-
servable realization of Σ.

Proof. As Θ̃ is a dilation of Θ0 it is easily checked that they have the same impulse
response. Therefore they represent the same system Σ.

The realization Θ0 is controllable. If this were not the case, then A33 has an
(A33, B3)-uncontrollable eigenvalue λ. Thus there exists a vector x3 �= 0 in Cn3

such that
x∗

3A33 = λx∗
3, x∗

3B3 = 0.

Let x =
(
0 0 xT

3 0
)T , then x∗(S−1AS)kS−1B = 0, k = 0, 1, 2, . . ., so that x

is orthogonal to S−1R(Θ). As on the other hand Sx ∈ X3 ⊂ R(Θ) it follows that
x = 0, and hence x3 = 0. This shows that Θ0 is controllable.

The realization Θ0 is also observable. Let x3 ∈ N (Θ0), so C3A
k
33x3 = 0 for

each k ≥ 0. Hence CS(S−1AS)kx = 0, k ≥ 0, where x =
(
0 0 xT

3 0
)T . This

means that Sx ∈ N (Θ) = X1+̇X2, but also Sx ∈ X3 and therefore x = 0 and
thus also x3 = 0. �
Proposition 3.3.2. Two controllable and observable realizations of the same sys-
tem Σ are similar, and the corresponding state space similarity transformation is
unique.
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Proof. Let Θ1 = (A1, B1, C1, D) and Θ2 = (A2, B2, C2, D) be controllable and
observable realizations of Σ with state space dimensions n1 and n2, respectively.
Let G(·) be the impulse response matrix of Σ, then

G(j) = C1A
j−1
1 B1 = C2A

j−1
2 B2, j ≥ 1. (3.10)

Let n be the largest of the two numbers n1 and n2, and let Hn be the block Hankel
matrix defined by

Hn =

⎛⎜⎜⎜⎝
G(1) G(2) . . . G(n)
G(2) G(3) . . . G(n + 1)

...
...

...
G(n) G(n + 1) . . . G(2n − 1)

⎞⎟⎟⎟⎠ .

It follows from (3.10) that Hn = Γ1(n)Λ1(n) = Γ2(n)Λ2(n), where

Γi(n) =

⎛⎜⎜⎜⎝
Ci

CiAi

...
CiA

n−1
i

⎞⎟⎟⎟⎠ , Λi(n) =
(
Bi AiBi . . . An−1

i Bi

)
, i = 1, 2. (3.11)

As Θ1 and Θ2 are controllable and observable and n ≥ ni, i = 1, 2, it follows that
ImΛi(n) = Rni and KerΓi(n) = {0}, so that rankHn = n1 = n2 = n.

To prove the similarity of Θ1 and Θ2, we define S : Rn → Rn as follows. For
every x ∈ Rn and every k ≥ n there exist uj ∈ Rm, j = 0, . . . , k − 1, so that

x =
k−1∑
j=0

Aj
1B1uj . (3.12)

We define Sx =
∑k−1

j=0 Aj
2B2uj . This definition does not depend on the particular

choice of the vectors u0, . . . , uk−1. Indeed, let k′ ≥ n and x =
∑k′−1

j=0 Aj
1B1u

′
j .

By adding zero vectors if necessary we may assume without loss of generality
that k = k′. Let u and u′ be the vectors in (Rm)k with components uj and u′

j ,
respectively. Then Hk(u − u′) = Γ1(k)Λ1(k)(u − u′) = Γ1(k)(x − x) = 0. As
Hk = Γ2(k)Λ2(k) it follows that Γ2(k)Λ2(k)(u − u′) = 0, and as Θ2 is observable
this implies that Λ2(k)(u − u′) = 0, that is

∑k−1
j=0 Aj

2B2uj =
∑k−1

j=0 Aj
2B2u

′
j. This

shows that S is well defined.
It is straightforward to check that S is a linear operator that is surjective,

as Im S = Im Λ2(n) = Rn because Θ2 is controllable. Therefore S is invertible.
From the definition of S it follows that SB1u = B2u for every u ∈ Rm, so that
SB1 = B2. Further, for x as in (3.12) there holds

S(A1x) = S

( k−1∑
j=0

Aj+1
1 B1uj

)
=

k−1∑
j=0

Aj+1
2 B2uj = A2

( k−1∑
j=0

Aj
2B2uj

)
= A2Sx.
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As Θ1 is controllable this implies that SA1 = A2S. Finally, for x as in (3.12) it
follows from (3.10) that

C2Sx =
k−1∑
j=0

C2A
j
2B2uj =

k−1∑
j=0

C1A
j
1B1uj = C1x,

so that C2S = C1. We have proved that A2 = SA1S
−1, B2 = SB1, C2 = C1S

−1,
and hence Θ1 and Θ2 are similar.

To prove the uniqueness of S, let S̃ : Rn → Rn be invertible with A2 =
S̃A1S̃

−1, B2 = S̃B1, C2 = C1S̃
−1. Then C2A

j
2S = C1A

j
1 = C2A

j
2S̃, j ≥ 0, and

as (A2, C2) is observable this implies that S = S̃. �

We now come to the two central results of realization theory.

Theorem 3.3.3. A realization is minimal if and only if it is controllable and ob-
servable.

Proof. First we prove that a minimal realization is observable and controllable.
Let Θ be a realization of the system Σ with state space Rn, and suppose that
Θ is not observable or not controllable. In terms of the decomposition (3.8) of
the state space, this means that N (Θ) = X1+̇X2 �= {0}, or R(Θ) �= Rn so that
X4 �= {0}. Therefore dimX3 < n, and the realization of Proposition 3.3.1 has
dimension smaller than n. This shows that Θ is not minimal.

To prove the converse, let Θ be a controllable and observable realization of
Σ and let Θ0 be a minimal realization of Σ, so that Θ0 is also controllable and
observable. Proposition 3.3.2 shows that Θ and Θ0 are similar, so that the state
space dimensions of Θ and Θ0 are equal. Therefore Θ is also minimal �

Theorem 3.3.4. (i) Two minimal realizations of Σ are similar, and the corre-
sponding similarity transformation is unique.

(ii) Every realization of Σ is similar to a dilation of a minimal realization.

Proof. (i) This follows directly from Theorem 3.3.3 and Proposition 3.3.2.
(ii) Let Θ be a realization of Σ with state space Rn = X1+̇X2+̇X3+̇X4,

decomposed as in (3.8). Then Θ is similar to the realization Θ̃ in (3.9), and Θ̃ is
a dilation of the controllable and observable realization Θ0 in Proposition 3.3.1.
Theorem 3.3.3 implies that Θ0 is a minimal realization. �

3.4 An Algorithm for Minimal Realizations

In this section we present a matrix algorithm to construct minimal realizations for
systems Σ with rational transfer function. The impulse response of Σ is denoted
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by G(·), and for every k ≥ 1 we define the pk × mk block Hankel matrix

Hk =

⎛⎜⎜⎜⎝
G(1) G(2) . . . G(k)
G(2) G(3) . . . G(k + 1)

...
...

...
G(k) G(k + 1) . . . G(2k − 1)

⎞⎟⎟⎟⎠ .

The result in Theorem 2.4.1 shows that the minimal state dimension of realizations
of Σ is given by n = maxk≥1 rankHk. Let Θ0 be a minimal realization, for instance
the one constructed in Theorem 2.4.1. Then Hn = Γ(n)Λ(n) where Γ(n) and
Λ(n) are defined in (3.11), and Im Λ(n) = R

n, Ker Γ(n) = {0}. This means that
rankHn = n, a result we shall use shortly in the algorithm. In what follows we
assume that n > 0, as the case n = 0 is trivial. The following steps provide an
algorithm to construct a minimal realization from a given impulse response.

Step 1. Determine n = maxk≥1 rankHk, and recall that rankHn = n.

Step 2. Construct a minimal rank decomposition of Hn, that is, a factor-
ization Hn = ΓΛ where Γ is a pn × n matrix and Λ is a n × mn matrix.
Let

Λ =
(
Λ1 . . . Λn

)
, Γ =

⎛⎜⎝Γ1

...
Γn

⎞⎟⎠ ,

where Λj are n × m matrices and Γj are p × n matrices, for j = 1, . . . , n.
Define B = Λ1 and C = Γ1, and let D = G(0).

Step 3. Determine a right inverse Λ+ of Λ and a left inverse of Γ+ of Γ, and
define

A = Γ+

⎛⎜⎜⎜⎝
G(2) G(3) . . . G(n + 1)
G(3) G(4) . . . G(n + 2)

...
...

...
G(n + 1) G(n + 2) . . . G(2n)

⎞⎟⎟⎟⎠Λ+.

Theorem 3.4.1. The realization Θ = (A, B, C, D) constructed in the three steps
above is a minimal realization of Σ.

Proof. Let Θ̃ = (Ã, B̃, C̃, D̃) be a minimal realization of Σ. According to Theorem
2.4.1, Θ̃ has state space dimension equal to n. Clearly, D̃ = G(0) = D, and as
G(j) = C̃Ãj−1B̃ there holds Hn = Γ̃Λ̃, with Γ̃ and Λ̃ defined as in (3.11) in terms
of Ã, B̃, C̃. Then Hn = Γ̃Λ̃ = ΓΛ are two minimal rank decompositions, so there
exists an invertible n × n matrix S such that Γ̃ = ΓS and Λ̃ = S−1Λ. Comparing
Λ and Γ with Λ̃ and Γ̃ it follows that CS = C̃ and S−1B = B̃. Since Hn = ΓΛ is
a minimal rank decomposition of Hn, it follows that Γ has a left inverse Γ+ and
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Λ has a right inverse Λ+. At this point it is instructive to note that Γ̃ÃΛ̃ is equal
to the matrix ⎛⎜⎜⎜⎝

G(2) G(3) . . . G(n + 1)
G(3) G(4) . . . G(n + 2)

...
...

...
G(n + 1) G(n + 2) . . . G(2n)

⎞⎟⎟⎟⎠ .

Thus, the matrix A in step 3 is given by A = Γ+Γ̃ÃΛ̃Λ+ = Γ+ΓSÃS−1ΛΛ+ =
SÃS−1. It follows that Θ = (SÃS−1, SB̃, C̃S−1, D̃), and hence Θ is also a minimal
realization. �

To apply this algorithm we have to construct the factorization Hn = ΓΛ
and the matrices Γ+ and Λ+. This can be done in many ways. An explicit and
convenient construction is as follows. The singular value decomposition of Hn gives

Hn = U

(
D 0
0 0

)
V,

where U and V are orthogonal matrices and D is an invertible n × n diagonal
matrix. We rewrite this as

Hn = U

(
D
0

)(
In 0
)
V.

Now define Γ = U

(
D
0

)
and Λ =

(
In 0
)
V . Clearly Hn = ΓΛ, and it is easy

to see that this is a minimal rank decomposition of Hn. The matrices B and C
are simply read off from Γ and Λ. In step 3 we can take Γ+ =

(
D−1 0

)
UT and

Λ+ = V T

(
In

0

)
.

Example 3.3. As an illustration, we consider again the example of a national econ-
omy described by equation (2.12) and the minimal state space model (2.13). We
assume that β = 0.5 and δ = 1 in this model. Using (2.13) and Theorem 2.3.1, it
follows that the impulse response of this system is given by G(0) = 1, G(1) = 1,
G(2) = 0.5, G(3) = 0, G(4) = −0.25, and G(4k + j) = (−0.25)kG(j) for all k ≥ 1
and j = 1, 2, 3, 4.

Step 1 of the algorithm gives n = 2 and

H2 =
(

1 0.5
0.5 0

)
.

For the rank decomposition we could of course use the singular value decompo-
sition. However, in this case it can be taken very simply, as the matrix H2 is
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invertible. So, we can use Γ = H2 and Λ = I2. Using this minimal rank decompo-
sition we see that B is the first column of I2 and C is the first row of H2, that is,

B =
(

1
0

)
and C =

(
1 0.5
)
. Finally,

A = H−1
2

(
G(2) G(3)
G(3) G(4)

)
=
(

0 −0.5
1 1

)
.

In Examples 3.1 and 3.2 we considered the observable and controllable realization
given by

A0 =
(

1 −0.5
1 0

)
, B0 =

(
1
0

)
, C =
(
1 −0.5

)
.

It is easily verified that (A, B, C) = (SA0S
−1, SB0, C0S

−1) with S =
(

1 −1
0 1

)
.

It follows that (A, B, C) as constructed by the algorithm is indeed a minimal
realization.



Chapter 4

Stability

Input-output systems are applied in control, where the inputs are chosen in such
a way that the system shows satisfactory performance. Stability is an important
objective, that is, disturbances have a limited effect on the system. Systems can
be stabilized by feedback, where past performance is used to choose the input
variables.

4.1 Internal Stability

Stated in general terms, a system is stable if perturbations have no long lasting
effects. That is, if a system at rest is brought out of equilibrium, then the dynamics
tends to bring the system back to its original position. If a system is not stable,
then we may wish to make it stable by applying an appropriate control input to
the system. In this chapter we consider these questions for linear systems. As a
first step we consider the stability of the state vector when no control is applied.
The system is then given by the equation

x(t + 1) = Ax(t), (4.1)

where A is an n×n matrix with real entries. Clearly, the zero vector is an equilib-
rium, i.e., the function x(t) ≡ 0 is a constant solution, and the question is whether
the state vector tends to zero when started at x(0) = x0 �= 0.

Definition 4.1.1. The system (4.1) is called asymptotically stable if x(t) → 0 for
t → ∞ for every initial value x(0) ∈ R

n.

We describe two methods to check the stability of (4.1), one in terms of
eigenvalues and the other in terms of linear matrix inequalities.

Theorem 4.1.2. The system (4.1) is asymptotically stable if and only if A has all
its eigenvalues in the open unit disc.
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Proof. For simplicity we prove this result only under the simplifying assumption
that A is diagonalizable, The general case requires the use of the Jordan canonical
form of A. Readers who are familiar with the Jordan canonical form may adjust
the following argument to prove the general case.

Assume A = Sdiag (λ1, . . . , λn)S−1, then Ak = Sdiag (λk
1 , . . . , λk

n)S−1. If all
|λi| < 1 then λt

i → 0 as t → ∞ for all i. Therefore x(t) = Atx0 → 0 for t → ∞
for every initial vector x(0) = x0. Conversely, suppose |λi| ≥ 1 for some i, say for
i = 1. Let x(0) = x0 be a (complex) eigenvector of A corresponding to λ1, then
x(t) = Akx0 = λt

1x0, and ‖x(t)‖ = |λ1|t‖x0‖. This does not tend to zero, so that
(4.1) is not asymptotically stable. �

The matrix A is called stable if all its eigenvalues are in the open unit disc.
The next result is a test on the stability of a matrix in terms of positive definite
matrices.

Theorem 4.1.3. An n×n matrix A is stable if and only if there is a positive definite
matrix P such that P − AT PA is positive definite.

This is a corollary of the following result; it will be proved after the next
result.

Theorem 4.1.4. Let (A, C) be observable, then A is stable if and only if there is a
unique positive definite solution of the equation

P − AT PA = CT C. (4.2)

In that case P is given by

P =
∞∑

j=0

(AT )jCT CAj . (4.3)

Proof. First suppose that A is stable. For simplicity we assume that A is diag-
onalizable, the general case uses the Jordan canonical form again. So let A =
Sdiag
(
λ1 . . . λn

)
S−1 with m = max1≤i≤n |λi| < 1. We first show that (4.3) is

a convergent series. Now Aj = Sdiag
(
λj

1 . . . λj
n

)
S−1, so that (with the induced

matrix norm) ‖Aj‖ ≤ ‖S‖ · ‖S−1‖mj. Therefore

‖(AT )jCT CAj‖ ≤ ‖(AT )j‖‖CT C‖‖Aj‖ ≤ ‖ST ‖‖(S−1)T ‖ · ‖S‖‖S−1‖‖CT C‖.m2j ,

so that ‖(AT )jCT CAj‖ ≤ c0m
2j for some constant c0. Hence the series (4.3)

converges. It is easy to see that P as defined in (4.3) satisfies (4.2), and as
(AT )jCT CAj is positive semidefinite for all j it follows that also P is posi-
tive semidefinite. It remains to show that P is non-singular. Suppose Px = 0,
then (4.3) implies that (AT )jCT CAjx = 0, and hence 〈(AT )jCT CAjx, x〉 =
〈CAjx, CAjx〉 = ‖CAjx‖2 = 0. So CAjx = 0 for j ≥ 0, and as (A, C) is ob-
servable this implies x = 0. The solution of (4.2) is also unique in this case.
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Indeed, let Q be a solution of (4.2), let P be given by (4.3). Then

PQ−1 =
∞∑

j=0

(AT )jCT CAjQ−1

=
∞∑

j=0

(AT )jQAjQ−1 −
∞∑

j=0

(AT )jAT QAAjQ−1

=
∞∑

j=0

(AT )jQAjQ−1 −
∞∑

j=1

(AT )jQAjQ−1 = QQ−1 = I,

so that P = Q.
Conversely, suppose there is a solution P of (4.2), then we have to show that

A is stable. Let λ be an eigenvalue of A, so that Ax = λx with x �= 0. Then

‖Cx‖2 = 〈CT Cx, x〉 = 〈(P − AT PA)x, x〉
= 〈Px, x〉 − 〈PAx, Ax〉 = (1 − |λ|2)〈Px, x〉.

As P is positive definite there holds |λ| < 1, or |λ| = 1 with Cx = 0. However,
Cx = 0 and Ax = λx, x �= 0 is impossible as (A, C) is observable, see Theorem
3.2.2. Thus |λ| < 1, so that A is stable. �

Proof of Theorem 4.1.3. Suppose that there exists a P > 0 such that P−AT PA >
0. Put V = P−AT PA. This matrix is symmetric and positive definite. Hence there
is a unitary matrix U and a positive diagonal matrix Λ such that V = UΛU∗. Put
C = V

1
2 = UΛ

1
2 U∗. Then P − AT PA = CT C, and since C = V

1
2 is positive it

is invertible, and hence (A, C) is observable. From Theorem 4.1.4 it now follows
that A is stable.

The converse is immediate from Theorem 4.1.4 by taking C = I. �

The dual version of Theorem 4.1.4 is the following result.

Theorem 4.1.5. Let (A, B) be controllable, then A is stable if and only if there is
a unique positive definite solution of the equation

Q − AQAT = BBT . (4.4)

In that case Q is given by

Q =
∞∑

j=0

AjBBT (AT )j . (4.5)

Equations (4.2) and (4.4) are called Stein equations (or discrete Lyapunov equa-
tions). Their solutions P and Q given by (4.3) and (4.5) are called, respectively,
the observability Grammian and controllability Grammian of (A, B, C).
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As an illustration we consider the stability of the second order difference
equation

y(t) = ay(t − 1) + by(t − 2).

Introduce as state x(t) =
(

y(t − 1)
y(t − 2)

)
, then the equation can be written as

x(t + 1) =
(

a b
1 0

)
x(t),

y(t) =
(
a b
)
x(t).

The equilibrium solution y(t) ≡ 0 is asymptotically stable if and only if the equilib-
rium state x(t) ≡ 0 is asymptotically stable. The eigenvalues of the state transition
matrix are given by

λ1,2 = 1
2a ± 1

2

√
a2 + 4b if a2 > −4b,

λ1,2 = 1
2a ± i

2

√−a2 − 4b if a2 < −4b.

We consider three cases: (i) a2 + 4b > 0, a > 0; (ii) a2 + 4b > 0, a < 0; (iii)
a2 + 4b < 0. In case (i) |λ1,2| < 1 if and only if 1

2a + 1
2

√
a2 + 4b < 1, so that

0 ≤ 1
2

√
a2 + 4b < 1 − 1

2a, that is, 0 < a < 2 and b < 1 − a. In case (ii) |λ1,2| < 1
if and only if 1

2a − 1
2

√
a2 + 4b > −1, so that 0 ≥ − 1

2

√
a2 + 4b > −1 − 1

2a, that
is, −2 < a < 0 and b < 1 + a. In case (iii) |λ1| = |λ2|, so |λ1,2| < 1 if and only if
(1
2a)2 + (−b− 1

4a2) = −b < 1. Combining these results, the system is stable if and
only if (a, b) lies in the triangle in the following figure.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

a

b

Example 4.1. In section 1.4 we considered a simple model for the macroeconomic
business cycle. Taking the variables in deviation from their equilibrium values
corresponding to a given level of government spending, the model is described by

c(t) = βy(t − 1),
i(t) = δ(c(t) − c(t − 1)),
y(t) = c(t) + i(t) + g(t).
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Here c denotes consumption, y national income, i investment and g government
expenditures. Now assume that government spending is constant for t ≥ 0, so
that g(t) = 0 for t ≥ 0. The economy is stable if the other variables tend to their
equilibrium values corresponding to this level of government spending, that is, if
c(t), y(t) and i(t) all tend to zero if t → ∞. Clearly it is necessary and sufficient
that y(t) → 0 for t → ∞.

For t ≥ 0 the dynamics of national income is described by (1.33) with g(t) ≡
0, that is,

y(t) = β(1 + δ)y(t − 1) − βδy(t − 2).

This is a second order difference equation with coefficients a = β(1 + δ) and
b = −βδ. From an economic point of view, the restrictions β > 0 and δ > 0 are
reasonable. This implies that a > 0 and b < 0. From the above result for general
second order difference equations it follows that this system is asymptotically
stable if and only if b > −1 and a + b < 1, that is, βδ < 1 and β < 1. The
last restriction is plausible for economic reasons, while the first restriction means
that investors should not react too strongly to increased consumption. Finally, the
path towards equilibrium will show oscillations if the characteristic roots of the
equation are non-real, that is, if a2 + 4b < 0, or equivalently, β < 4δ

(1+δ)2 .

4.2 Input-Output Stability

So far we considered stability of the state of a system. This internal stability is
closely connected to external stability, which is defined as follows. We consider the
system {

x(t + 1) = Ax(t) + Bu(t), x(0) = 0,

y(t) = Cx(t) + Du(t).
(4.6)

Definition 4.2.1. The system (4.6) is called externally stable (or bounded-input,
bounded-output stable) if for each M > 0 there exists N > 0 such that ‖u(t)‖ ≤ M
for t ≥ 0 implies ‖y(t)‖ ≤ N for t ≥ 0.

The next result gives a criterion in terms of the impulse response of the
system.

Theorem 4.2.2. (i) The system (4.6) is externally stable if and only if

∞∑
j=0

‖G(j)‖ < ∞,

where G(j) = CAj−1B is the impulse response of (4.6), and G(0) = D.

(ii) If A is a stable matrix, then the system is externally stable.
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Proof. (i) Suppose that
∑∞

j=0 ‖G(j)‖ < ∞, and let u be an input sequence with
‖u(t)‖ ≤ M for all t ≥ 0. Then

‖y(t)‖ =
∥∥∥∥ t∑

j=0

G(t − j)u(t)
∥∥∥∥ ≤ t∑

j=0

‖G(t − j)‖‖u(j)‖ ≤ M.

∞∑
j=0

‖G(j)‖.

So we can take N = M.
∑∞

j=0 ‖G(j)‖.
The converse we will prove first for single-input, single-output systems. As-

sume that the system is externally stable. Let N be such that each input u with
|u(t)| ≤ 1 for all t gives an output y with |y(t)| ≤ N . Now, for fixed j, define the
input sequence v by

v(t) =

{ |G(j−t)|
G(j−t) for all 0 ≤ t ≤ j, G(j − t) �= 0,

0 for all other t ≥ 0.

As |v(t)| ≤ 1 for all t, the corresponding output satisfies |y(t)| ≤ N for all t, and
in particular

|y(j)| =
∣∣∣∣ j∑

t=0

G(j − t)v(t)
∣∣∣∣ = j∑

t=0

|G(j − t)| =
j∑

t=0

|G(t)| ≤ N.

As this holds for all j it follows that
∑∞

t=0 |G(t)| ≤ N < ∞.
The general case now follows easily. Assume that the system is externally

stable. To fix notation, the input space is Rm, the output space is Rp. From the
single-input, single-output case we see that it follows that for each entry G(j)k,l of
G(j) we have

∑∞
j=0 |G(j)k,l| < ∞. Now we use a well-known estimate of the norm

of a matrix in terms of the absolute values of its entries: ‖G(j)‖ ≤∑p,m
k,l=1 |G(j)k,l|.

So
∑∞

j=0 ‖G(j)‖ ≤∑∞
j=0

∑p,m
k,l=1 |G(j)k,l| =

∑p,m
k,l=1

∑∞
j=0 |G(j)k,l| < ∞.

(ii) We show this only for the case when A is diagonalizable, so that S−1AS =
diag (λ1, . . . , λn). As before, the general case requires the use of the Jordan canoni-
cal form. Let the eigenvalues of A be ordered such that |λ1| ≥ |λj | for j = 1, . . . , n,
then ‖G(j)‖ ≤ ‖C‖ · ‖B‖ · ‖S‖ · ‖S−1‖ · |λ1|j−1 = c0|λ1|j−1 for some constant c0. If
A is stable then |λ1| < 1, so that

∑∞
j=1 ‖G(j)‖ ≤ c0.

∑∞
j=0 |λ1|j = c0

1−|λ1| < ∞. �

Theorem 4.2.3. Let (4.6) be a minimal realization, then (4.6) is externally stable
if and only if A is a stable matrix.

Proof. Given the results in Theorem 4.2.2, it remains to prove that stability of the
matrix A follows from

∑∞
j=0 ‖CAjB‖ < ∞. Let λ be an eigenvalue of A, and let

x �= 0 be a corresponding eigenvector. As (A, C) is observable, we have Cx �= 0.
As (A, B) is controllable, there exist T ≥ 1 and an input sequence {u(t)}T−1

t=0 such
that the state x(T ) at time T resulting from this input sequence is equal to x,
that is,

∑T−1
j=0 AT−1−jBu(j) = x. Let this input sequence be continued with zero
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inputs from time T onwards, that is u(t) = 0, t ≥ T. The corresponding output
is given by y(t) =

∑t−1
j=0 CAt−j−1Bu(j), and for t ≥ T this equals

y(t) =
T−1∑
j=0

CAt−j−1Bu(j) = CAt−T
T−1∑
j=0

AT−j−1Bu(j) (4.7)

= CAt−T x = λt−T Cx.

Using the first equality in (4.7) and defining M = max0≤j≤T−1 ‖u(j)‖, it follows
that

‖y(t)‖ ≤
T−1∑
j=0

‖CAt−j−1B‖‖u(j)‖ ≤ M

T−1∑
j=0

‖CAt−j−1B‖

= M
t−1∑

i=t−T

‖CAiB‖ → 0

for t → ∞ because
∑∞

i=0 ‖CAiB‖ < ∞. As also ‖y(t)‖ = |λ|t−T ‖Cx‖ with Cx �= 0
this can only converge to zero for t → ∞ if |λ| < 1. This shows that A is a stable
matrix. �
Example 4.2. We consider the model for the demand process in Example 1.3, given
by ⎛⎜⎜⎜⎜⎝

T (t + 1)
B(t + 1)
S(t + 1)

S(t)
S(t − 1)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

T (t)
B(t)
S(t)

S(t − 1)
S(t − 2)

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
η(t + 1)
ξ(t + 1)
ω(t + 1)

0
0

⎞⎟⎟⎟⎟⎠
D(t) = T (t) + S(t) + ε(t).

Here D is the observed demand, T is the trend term with slope B, S is a seasonal
term, and η, ξ, ω and ε are noise terms. Taking D as output and

(
ε η ξ ω

)T as
input variables, it is easily checked that this realization is controllable and observ-
able, hence minimal. If all noise terms are zero, then D(t) = 0 is an equilibrium.
However, this equilibrium is not asymptotically stable because the state transition
matrix does not have all its eigenvalues within the unit disc. In fact, the character-
istic polynomial is given by (λ−1)2(λ+1)(λ+ i)(λ− i), so that all the eigenvalues
are exactly on the unit circle.

4.3 Stabilization by State Feedback

In control applications, one of the basic objectives is to construct stable systems. If
a system is not stable by itself, the question arises whether it can be stabilized by
choosing the control inputs appropriately. This is called the stabilization problem.
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More in particular, we wish to construct a control law such that the system is
brought to rest from any given initial position. The idea is that the system may
be excited by external disturbances, and that the control inputs should eliminate
these effects.

We consider the input-output system described by{
x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t).

(4.8)

The fundamental idea of feedback control is to use the past information on inputs
and outputs to choose the current value of the input. As the state variable sum-
marizes all past information that is relevant for the future, this suggests that we
consider so-called static state feedback controllers of the form

u(t) = Fx(t) (4.9)

where F is an m×n matrix. In this section we assume that the state x(t) is known
at time t, so that this control can be implemented. In the next section we discuss
controllers for the case that the state is not directly observed, so that it should be
reconstructed from the observed inputs and outputs.

The closed loop system obtained by applying the control law (4.9) to the
system (4.8) has state equation

x(t + 1) = (A + BF )x(t), x(0) = x0.

The stability of this system depends on the matrix A + BF , where A and B are
given and F has to be constructed.

Theorem 4.3.1. Let A be an n×n matrix and B an n×m matrix. The pair (A, B)
is controllable if and only if for every monic polynomial p(λ) = λn + pn−1λ

n−1 +
· · · + p1λ + p0 there exists an m × n matrix F such that

det(λIn − (A + BF )) = p(λ).

This result is called the pole placement theorem. It shows that for control-
lable systems the feedback law (4.9) can achieve any desired level of stability. For
example, by an appropriate choice of (4.9) the closed loop polynomial is equal to
λn. This means that (A + BF )n = 0, that is, the system is back at equilibrium in
finite time, after n time periods. Such a controller is called a dead-beat controller.

Proof. We prove this only for systems with a single input, so that m = 1.
First assume that (A, B) is controllable. We shall first show that in this case

we may assume that in an appropriately chosen basis we have

A =

⎛⎜⎜⎜⎝
0 1

. . .
1

−a0 . . . . . . −an−1

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠ .
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Indeed, let det(λI −A) = a0 + a1λ + · · ·+ an−1λ
n−1 + λn. Now we define vectors

sj for j = 1, . . . , n as follows: s1 = b and sj+1 = Asj + an−jb, and we define a
matrix S by S =

(
sn · · · s1

)
. Then by using the Cayley–Hamilton theorem (0 =

a0 + a1A + · · · + anAn) one sees that

AS = S

⎛⎜⎜⎜⎝
0 1

. . .
1

−a0 . . . . . . −an−1

⎞⎟⎟⎟⎠ , SB =

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠ .

So, we may as well assume that A and B have the form given above. Define
F =
(
a0 − p0 a1 − p1 . . . an−1 − pn−1

)
, then

A + BF =

⎛⎜⎜⎜⎝
0 1

. . .
1

−p0 . . . . . . −pn−1

⎞⎟⎟⎟⎠ .

It is easily seen that A + BF has characteristic polynomial p(λ).
Conversely, if (A, B) is not controllable, then by an appropriate choice of

basis we may write

A =
(

A11 A12

0 A22

)
, B =

(
B1

0

)
.

In this case the characteristic polynomial of A +BF will always have roots at the
eigenvalues of A22. �

As minimal realizations are controllable, the pole placement theorem solves
the state feedback stabilization problem for minimal systems. In practice it may
also be of interest to consider non-minimal realizations and to investigate whether
all states in a non-minimal realization are stable. For this purpose we use the
concept of stabilizability.

Definition 4.3.2. The pair (A, B) is called stabilizable if there exists a matrix F
such that A + BF is stable. In this case any matrix F such that A + BF is stable
is called a stabilizing feedback matrix .

That is, (A, B) is stabilizable if and only if the system (4.8) can be stabilized
by the static state feedback (4.9). The next result shows under which conditions
stabilization is possible.

Theorem 4.3.3. The pair (A, B) is stabilizable if and only if every (A, B)-uncon-
trollable eigenvalue of A lies in the open unit disc.
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Proof. Let (A, B) be stabilizable and let λ be an uncontrollable eigenvalue of
A, so that xT

(
A − λI B

)
= 0 for some x �= 0. Then for every F there holds

xT (A + BF ) = xT A = λxT , so that λ is an eigenvalue of A + BF . Stabilizability
implies that |λ| < 1.

Conversely, if every uncontrollable eigenvalue of A lies within the open unit
disc, then after basis transformation we can write

A =
(

A11 A12

0 A22

)
, B =

(
B1

0

)
,

where (A11, B1) is controllable and all eigenvalues of A22 are in the open unit disc.
By Theorem 4.3.1 there exists a matrix F1 such that A11 + B1F1 is stable. Now
define F =

(
F1 0
)
, then

A + BF =
(

A11 + B1F1 A12

0 A22

)
is a stable matrix. �
Example 4.3. In Section 1.4 we derived the state space model

x(t + 1) =
(

β(1 + δ) −βδ
1 0

)
x(t) +

(
1
0

)
g(t),⎛⎝c(t)

i(t)
y(t)

⎞⎠ =

⎛⎝ β 0
βδ −βδ

β(1 + δ) −βδ

⎞⎠x(t) +

⎛⎝0
0
1

⎞⎠ g(t).

Here the state vector is defined by x(t) = (y(t − 1), y(t − 2))T .
Assuming that δ > 0 and 0 < β < 1, we showed in Example 4.1 that this

system is asymptotically stable if and only if βδ < 1. Now suppose that βδ ≥ 1.
As the system is controllable it is certainly stabilizable. If F =

(
f1 f2

)
then the

feedback law (4.9) is given by

g(t) = f1y(t − 1) + f2y(t − 2).

Combining this with (1.33), this gives the closed loop system

y(t) = (β(1 + δ) + f1)y(t − 1) + (−βδ + f2)y(t − 2).

The conditions for stability are described by the triangle in Figure 4.1, with a =
β(1 + δ) + f1 and b = −βδ + f2. In particular, if βδ ≥ 1 then it follows that the
system cannot be stabilized with f2 = 0, that is, the government can not stabilize
the system if it only considers the deviation from equilibrium occurring in the last
year. It has to take into account also the year before. If, for example, we take
f2 = βδ and f1 = −β(1 + δ), then we obtain a dead-beat controller that brings
the economy back to equilibrium in two periods of time.
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4.4 Stabilization by Output Feedback

In the foregoing we assumed that the state is observed, so that the feedback law
(4.9) can be implemented. Now suppose that x(t) in (4.8) is not available at time
t. The control input can then be based on past inputs and outputs. We assume
that the controller is described by the system{

z(t + 1) = Mz(t) + Nu(t) + Ly(t),
u(t) = Fz(t).

(4.10)

This is called a dynamic compensator . It is called a stabilizing compensator or
stabilizing dynamic feedback if the closed loop system composed of (4.8) and (4.10)
is stable, that is, if for every initial value x(0) and z(0) all signals u(t), y(t), x(t)
and z(t) tend to zero for t → ∞.

The closed loop system is described by the equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
x(t + 1)
z(t + 1)

)
=

(
A BF

LC M + NF

)(
x(t)
z(t)

)
,(

y(t)
u(t)

)
=

(
C 0
0 F

)(
x(t)
z(t)

)
.

(4.11)

Of particular interest are compensators where the state vector z(t) of the controller
can be seen as an estimate of the state vector x(t) of the system. Define the
estimation error by

e(t) = x(t) − z(t).

The quality of the state estimate can be measured by comparing the predicted
output Cz(t) with the observed output y(t) = Cx(t). Since z(t) is supposed to be
an estimate of the state, it is natural to expect it to satisfy a dynamic relation
of the form z(t + 1) = Az(t) + Bu(t) + f(t), where f(t) denotes an error term
that should be based on the quality of the state estimate, that is, on y(t)−Cz(t).
This suggests choosing the following particular form of the state dynamics in the
compensator (4.10):

z(t + 1) = Az(t) + Bu(t) + R(y(t) − Cz(t)), (4.12)

for some matrix R. In this case the error dynamics is given by

e(t + 1) = (A − RC)e(t). (4.13)

The system (4.12) is called a state observer for the system (4.10) if e(t) → 0 for
t → ∞, for all initial values x(0) and z(0). So, state observers are characterized
by the condition that A − RC is stable.

Definition 4.4.1. The pair (A, C) is called detectable if there exists a matrix R
such that A − RC is stable.
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Theorem 4.4.2. (i) The pair (A, C) is detectable if and only if every (A, C)-
unobservable eigenvalue of A lies in the open unit disc.

(ii) There exists a state observer (4.12) for the system (4.8) if and only if the
pair (A, C) is detectable.

Proof. (i) This is the dual version of Theorem 4.3.1. Indeed, the pair (A, C) is
detectable if and only if the pair (AT , CT ) is stabilizable.

(ii) This is evident from the definitions. �
Next we consider conditions for the existence of a stabilizing compensator.

Theorem 4.4.3. (i) The system (4.8) can be stabilized by a compensator (4.10) if
and only if (A, B) is stabilizable and (A, C) is detectable.

(ii) Let R and F be such that A − RC and A + BF are stable matrices. Then a
stabilizing compensator is given by (4.10) with state dynamics (4.12), that is,
M = A − RC, N = B and L = R.

Proof. First assume that (A, B) is stabilizable and (A, C) is detectable. Let R and
F be such that A − RC and A + BF are stable. Then the closed loop system
(4.11) obtained by taking (4.10) as compensator with state dynamics (4.12) can
be obtained as follows for t = 0, 1, . . .:

Σcl

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t),
u(t) = Fz(t),
z(t + 1) = Az(t) + Bu(t) + R(y(t) − ȳ(t)),
ȳ(t) = Cz(t).

Here:

x(t) is the unknown state of the system,

y(t) is the measured output of the system,

z(t) is the known estimated state of the system,

u(t) is the computed input of the system,

ȳ(t) is the known estimate of the output based on the estimated state.

By eliminating u(t), y(t) and ȳ(t) from Σcl one finds for the state (x(t)T z(t)T )T

the following for t = 0, 1, . . .:

Σcl

{
x(t + 1) = Ax(t) + BFz(t),
z(t + 1) = RCx(t) + (A − RC + BF )z(t).

Thus the state transition matrix is(
A BF

RC A − RC + BF

)
.
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If we compute the state transition matrix in terms of the transformed state vari-
ables (x(t)T e(t)T )T = (x(t)T x(t)T − z(t)T )T we obtain(

I 0
I −I

)(
A BF

RC A − RC + BF

)(
I 0
I −I

)
=
(

A + BF −BF
0 A − RC

)
.

This is a stable matrix. This proves part (ii) and the “if” part of (i).
It remains to prove that stabilizability of the system implies that the pair

(A, B) is stabilizable and the pair (A, C) is detectable. Stabilizability means that(
A BF

LC M + NF

)
is stable. Let λ be an (A, C)-unobservable eigenvalue, and let

x �= 0 be such that Ax = λx, Cx = 0. Then(
A BF

LC M + NF

)(
x
0

)
= λ

(
x
0

)
,

and as this matrix is stable it follows that |λ| < 1, and according to Theorem 4.9(i)
the pair (A, C) is detectable. Now let λ be an (A, B)-uncontrollable eigenvalue,
and let xT �= 0 be such that xT A = λxT , xT B = 0. Then(

xT 0
)( A BF

LC M + NF

)
= λ
(
xT 0
)
.

Again we conclude |λ| < 1, and according to Theorem 4.3.3 the pair (A, B) is
stabilizable. �

The result in part (ii) of the above theorem is called the separation principle.
It shows that the stabilization problem with unobserved state can be solved in
two independent steps. First the unobserved state x(t) is estimated by z(t) by a
state observer of the form (4.12), by choosing R such that A−RC is stable. Then
the controller u(t) = Fz(t) is applied, with F chosen as in the case of observed
states, that is, with A + BF stable. This separation of estimation and control is
possible for linear input-output systems. Later we will obtain a similar result for
linear stochastic input-output systems. It should be mentioned that the separation
principle may fail to produce stability for more complex systems.

Example 4.4. Continuing our analysis of Example 4.3, the system (4.8) has input
g(t) and outputs

(
c(t) i(t) y(t)

)T with state space matrices

A =
(

β(1 + δ) −βδ
1 0

)
, B =

(
1
0

)
, C =

⎛⎝ β 0
βδ −βδ

β(1 + δ) −βδ

⎞⎠ , D =

⎛⎝0
0
1

⎞⎠ .

As compared with the model (4.10) considered before, the system has a nonzero
feedtrough matrix D. The estimator (4.12) can then be replaced by

z(t + 1) = Az(t) + Bu(t) + R(y(t) − Cz(t) − Du(t)).
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Then the error dynamics is still described by (4.13), and Theorem 4.4.3 holds true
with this adjusted estimator.

As β �= 0 and δ �= 0 it follows that rankC = 2, so that (A, C) is observable.
Also (A, B) is controllable. Therefore the system can be stabilized by output feed-
back. In Example 4.3 we already constructed a matrix F such that A+BF is stable.

A matrix R such that A−RC is stable is given, for example, by R =
(

0 0 −1
0 0 0

)
,

as in this case A − RC =
(

0 0
1 0

)
. With this choice the state estimation error

e(t) = (A − RC)te0 = 0 for t ≥ 2. So this gives a dead-beat observer.

For observable systems a dead-beat observer can always be constructed. This
follows from the pole placement theorem, by choosing R such that A−RC has all
its eigenvalues equal to zero.

Likewise, when (A, B) is controllable, one may construct a dead-beat con-
troller F , being the matrix such that A+BF has all its eigenvalues equal to zero.
Although this may seem to be a perfect choice for all purposes, a dead-beat con-
troller may not always be the most desirable one. We shall see this in the next
chapter, when additional design conditions are considered. However, even from
a purely numerical point of view one may see that a dead-beat controller can
have disadvantages. Indeed, if A is imperfectly known, then trying to place all
eigenvalues of A + BF at zero may result in loss of accuracy in the computed
eigenvalues.



Chapter 5

Optimal Control

In this chapter we consider quantitative control objectives for rather general sys-
tems. The inputs are chosen to minimize a function that expresses the costs asso-
ciated with the system evolution. This can be solved by dynamic programming.
We pay special attention to the so-called LQ-problem, where the system is lin-
ear and the cost function is quadratic. In this case the optimal control is given
by state feedback, and the feedback matrix can be computed by solving certain
matrix equations (so-called Riccati equations).

5.1 Problem Statement

Whereas stability is a qualitative property, in many control applications one is
also interested in the quantitative performance of the system. For instance, one
could wish to keep the outputs close to a desired trajectory. In most situations the
application of control inputs will be associated with costs, for example in terms
of energy or money. We assume that these control objectives can be expressed
in a single cost function. The resulting optimal control problem is analysed first
in a general setting, and then for the case of linear systems with quadratic cost
functions. In the latter case the optimal control law can be obtained simply in
terms of the parameters of a state space realization of the system. Throughout
this chapter we assume that the system is given in state space form and that the
state is observed, so that state feedback controllers can be applied.

The general optimal control problem is formulated as follows. The system is
described by

x(t + 1) = ft(x(t), u(t)), x(0) = x0 given. (5.1)

Here ft is a function of states and inputs with values in the state space. Note that
this function may also depend on t, a fact which is expressed in the notation by
the subscript t. We are interested in the behaviour of the system for a fixed set
of times t = 0, 1, . . . , N . In addition to the system we have cost functions at each
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time instant t, which we denote by kt. The function kt is a scalar-valued function
of the state and the input at time t, except for the function kN which we assume
to depend only on the state at time N . The objective is to minimize the total cost
function

J(x0, u) = kN (x(N)) +
N−1∑
t=0

kt(x(t), u(t)), (5.2)

over all trajectories u(t) = (u(0), . . . , u(N − 1)), where the state evolution is con-
trolled by (5.1). So we should choose the inputs {u(t) | t = 0, . . . , N − 1} such
that this cost is minimized, for given initial state x0. Hence kN expresses the final
cost, and kt the combined cost of control and system performance at time t. If
N < ∞ this is called a finite horizon problem. If the term kN (x(N)) is dropped
from (5.2), and the summation in the second term runs up to N = ∞, then this
is an infinite horizon problem. In the latter case the control problem only makes
sense if the inputs can be chosen so that the total cost is finite.

As a particular case of special interest we consider the so-called LQ-problem,
where the system (5.1) is linear and the cost function (5.2) is quadratic. For
simplicity we describe only the time invariant case, for which the finite horizon
problem is to minimize

J(x0, u) = x(N)T Mx(N) +
N−1∑
t=0

(x(t)T Qx(t) + u(t)T Ru(t)) (5.3)

subject to
x(t + 1) = Ax(t) + Bu(t), x(0) = x0 given. (5.4)

Here M , Q and R are symmetric matrices with M and Q positive semidefinite
and R positive definite. So the objective is to keep both the states and the inputs
small. The interpretation in many applications is that the system describes the
deviation from a desired trajectory. Further, as R is positive definite this means
that every control action gives rise to costs. The LQ-problem is of much practical
relevance, because it leads to a relatively simple optimal control law.

Example 5.1. Consider a trader on a single commodity market. Every day the
trader can buy or sell the commodity. We assume that also short selling is possible,
that is, the trader can sell more than he owns right now. Further we assume that
the net amount bought or sold per day is limited. Let u(t) denote the amount sold
on day t, negative values meaning that the trader bought the commodity. The
trade restriction is formulated as

|u(t)| ≤ K, t = 0, 1, . . . , N.

Let m(t) denote the amount of money and g(t) the amount of goods owned by the
trader at day t. By p(t) we denote the price per unit of the good at day t. Further,
let s be the cost per day to keep one unit of the good in portfolio. Starting with
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the initial capital m(0) + p(0)g(0), the goal of the trader is to maximize the final
capital

m(N) + p(N)g(N).

The amount of money and goods evolves according to

m(t + 1) = m(t) + p(t)u(t) − sg(t),
g(t + 1) = g(t) − u(t).

In a situation of perfect foresight, the price trajectory {p(t) | t = 0, . . . , N} is
known. Defining the state variable x(t) =

(
m(t) g(t)

)T , this problem fits in the
general formulation (5.1), (5.2). The final cost is kN (x(N)) = −m(N)−p(N)g(N),
and k(t) = 0 for t = 0, . . . , N − 1.

Example 5.2. We return to Example 1.2. Suppose that the government aspires
to bring consumption, income and investment close to their equilibrium values
expressed in (1.29), for a given equilibrium value G of government spending. In
state space form the deviations from equilibrium are described by (1.37), (1.38),
that is, with state variable x(t) =

(
y(t − 1) y(t − 2)

)T , input u(t) = g(t) and
with state space parameters

A =
(

β(1 + δ) −βδ
1 0

)
, B =

(
1
0

)
, C =

⎛⎝ β 0
βδ −βδ

β(1 + δ) −βδ

⎞⎠ , D =

⎛⎝0
0
1

⎞⎠ .

As objective function the government could consider

J(x0, g) =
N−1∑
t=0

(k1c(t)2 + k2i(t)2 + k3y(t)2 + k4g(t)2)

with ki > 0, i = 1, 2, 3, 4, the relative costs of deviations from equilibrium for each
of the variables. Using (1.38) it follows that this cost function is quadratic of the
type

J(x0, g) =
N−1∑
t=0

(x(t)T Qx(t) + g(t)T Rg(t) + 2x(t)T Sg(t))

with cost parameters given by

Q = CT diag (k1, k2, k3)C, R = k3 + k4, S = CT

⎛⎝ 0
0
k3

⎞⎠ .

So this is an LQ-problem with the cross term 2x(t)T Su(t) added to (5.3).
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5.2 Dynamic Programming

We consider the dynamical system (5.1) with cost function (5.2). The optimal
control problem is to minimize (5.2) by choosing the input sequence {u(t) | t =
0, . . . , N−1}. We restrict the attention to static state feedback controllers, so that

u(t) = ht(x(t)),

for some function ht. The input set may also depend on the current state of the
system, so that u(t) ∈ Ut(x(t)).

Dynamic programming gives a recursive solution for this optimal control
problem. The idea is as follows. Let {u∗(t) | t = 0, . . . , N − 1} be the optimal
solution, and let {x∗(t) | t = 0, . . . , N − 1} be the resulting state trajectory
generated by (5.1). At time t = i, the inputs {u∗(t) | t = i, . . . , N − 1} will
then minimize the costs

kN (x(N)) +
N−1∑
t=i

kt(x(t), u(t)), x(i) = x∗(i).

Indeed, if another input {u+(t) | t = i, . . . , N − 1} would give smaller costs,
then the input defined by u(t) = u∗(t) for t ≤ i − 1 and u(t) = u+(t) for t ≥ i
would give a cost (5.2) that is smaller than that obtained by taking the inputs
{u∗(t) | t = 0, . . . , N − 1}. This contradicts optimality of the inputs {u∗(t) | t =
0, . . . , N − 1}. This is called the principle of optimality. It leads to the following
dynamic programming solution, in terms of the cost-to-go functions Jt : R

n → R

defined recursively by
JN (x) = kN (x), (5.5)

Jt(x) = min
u∈Ut(x)

(kt(x, u) + Jt+1(ft(x, u))). (5.6)

Theorem 5.2.1. For given x ∈ Rn let u = ht(x) be a minimizing input for (5.6).
Then the control input defined by

u∗(t) = ht(x∗(t)), x∗(t + 1) = ft(x∗(t), u∗(t)), x∗(0) = x0

minimizes (5.2) and the minimal cost is equal to J(x0, u
∗) = J0(x0).

Proof. The minimization of (5.2) can be written as

min
u(0),...,u(N−1)

J(x0, u) = minu(0),...,u(N−1){k0(x0, u(0)) + k1(x(1), u(1))

+ · · · + kN−1(x(N − 1), u(N − 1)) + kN (x(N))}.
As only the last two terms depend on u(N − 1), we may write this as

min
u(0),...,u(N−2)

[{k0(x0, u(0)) + · · · + kN−2(x(N − 2), u(N − 2))}

+ min
u(N−1)

{kN−1(x(N − 1), u(N − 1)) + kN (x(N))}].
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Using kN (x(N)) = JN (x(N)) = JN (fN−1(x(N − 1), u(N − 1))) it follows that

min
u(N−1)

{kN−1(x(N − 1), u(N − 1)) + kN (x(N))}
= min

u(N−1)
{kN−1(x(N − 1), u(N − 1)) + JN (fN−1(x(N − 1), u(N − 1)))}

= JN−1(x(N − 1)),

so that u∗(N − 1) = hN−1(x(N − 1)) is optimal and

min
u(0),...,u(N−1)

J(x0, u)

= min
u(0),...,u(N−2)

[
k0(x0, u(0)) + · · ·

+kN−2(x(N − 2), u(N − 2)) + JN−1(x(N − 1))
]
.

Again, as only the last two terms depend on u(N − 2), this can be written as

min
u(0),...,u(N−1)

J(x0, u)

= min
u(0),...,u(N−3)

[{k0(x0, u(0)) + · · · + kN−3(x(N − 3), u(N − 3))}

+ min
u(N−2)

{kN−2(x(N − 2), u(N − 2)) + JN−1(x(N − 1))}],
where

min
u(N−2)

{kN−2(x(N − 2), u(N − 2)) + JN−1(x(N − 1))}
= min

u(N−2)
{kN−2(x(N − 2), u(N − 2)) + JN−1(fN−2(x(N − 2), u(N − 2)))}

= JN−2(x(N − 2)).

This shows that u∗(N − 2) = hN−2(x(N − 2)) is optimal, and continuing in this
fashion shows that the algorithm of the theorem indeed gives minimum costs. �

This algorithm can only be applied for finite horizons, as the recursions (5.5),
(5.6) start at the final time t = N . The infinite horizon problem requires techniques
that are beyond the scope of this book. See for instance [6] for an excellent book
on dynamic programming.

Although in the other parts of the book we restrict attention to linear systems
we have chosen to treat here the general problem of minimizing (5.2) subject to
(5.1). The reason for this is that the argument in the proof of Theorem 5.2.1 works
just as well and probably even more transparent in the more general case discussed
here.

Example 5.3. Consider the trader described in Example 5.1. It is assumed that the
price trajectory {p(t) | t = 0, . . . , N} is known to the trader. Before giving a formal
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analysis, common sense suggests the following strategy. On day t, the trader has
to decide whether to buy or to sell the good. This decision has no effect on his
future options, as the only restriction is that |u(t)| ≤ K on all days. Therefore
he should buy if the final profit p(N) is larger than the cost p(t) + (N − t − 1)s
associated with buying the good now and keeping it until time N . He should sell
if p(N) < p(t) + (N − t − 1)s.

To prove the optimality of this strategy we solve the optimization problem
explicitly. In this simple case this can be done directly by writing out the objective
function J((m0, g0), u) = −m(N) − p(N)g(N). Indeed, there holds g(N) = g0 −∑N−1

t=0 u(t) and

m(N) = m0 +
N−1∑
t=0

(p(t)u(t) − sg(t))

= m0 +
N−1∑
t=0

p(t)u(t) − s

N−1∑
t=0

(g0 −
t−1∑
i=0

u(i))

= m0 − Nsg0 +
N−1∑
t=0

p(t)u(t) + s

N−1∑
t=0

(N − t − 1)u(t),

so that the cost function is given by

J((m0, g0), u) = −(m0 + (p(N) − sN)g0) +
N−1∑
t=0

(p(N) − p(t) − (N − t − 1)s)u(t).

This is minimized by choosing u(t) = K, that is, to sell the maximal amount,
if p(t) + (N − t − 1)s > p(N), and to buy the maximal amount, u(t) = −K, if
p(t) + (N − t − 1)s < p(N).

The optimality can be checked also by the dynamic programming algorithm.
The cost functions are given by kN (m, g) = −m − p(N)g and kt = 0 for t =
0, . . . , N − 1. The first step is to solve (5.6) for t = N − 1, that is, to determine
u(N − 1) by minimizing

JN (m(N − 1) + p(N − 1)u(N − 1) − sg(N − 1), g(N − 1) − u(N − 1))
= −(m(N − 1) + p(N − 1)u(N − 1) − sg(N − 1))

−p(N)(g(N − 1) − u(N − 1))
= −(m(N − 1) + (p(N) − s)g(N − 1)) + u(N − 1)(p(N) − p(N − 1)).

This shows that u(N − 1) = K if p(N) < p(N − 1) and u(N − 1) = −K if
p(N) > p(N − 1), with resulting cost-to-go function

JN−1(m(N − 1), g(N − 1))
= −(m(N − 1) + (p(N) − s)g(N − 1) + K|p(N) − p(N − 1)|).
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Continuing in this way shows the optimality of the above strategy, with cost-to-go
functions

Jt(m(t), g(t))

= −(m(t) + [p(N) − (N − t)s]g(t) + K

N−1∑
i=t

|p(N) − p(i) − (N − i − 1)s|).

Note that the optimal strategy leads to extreme actions, that is, always the
maximally allowed amount is bought or sold. This is a widespread phenomenon,
called bang-bang control . Further, the strategy requires perfect foresight. In prac-
tice the price trajectory, and in particular the final price p(N), will not be known
when the trader has to make his decisions on days t < N . If the price is uncertain
then this decision problem also becomes uncertain. Later we describe stochas-
tic systems to model this kind of uncertainty. The optimal strategy can then be
determined by stochastic dynamic programming.

5.3 Linear Quadratic Control

Dynamic programming is a very general technique. The principal condition for
practical applications is that the minimization in (5.6) should be solved as a func-
tion of the state variable x, that is, we need to determine the feedback functions
ht(x) in Theorem 5.2.1. In this section we show that for the LQ-problem these
feedbacks can be computed in a simple way.

Let the system be linear as in (5.4), that is

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 given.

We consider a generalization of the cost function (5.3), that is,

J(x0, u) = xT (N)Mx(N)

+
N−1∑
t=0

xT (t)Qx(t) + uT (t)Ru(t) + uT (t)Sx(t) + xT (t)ST u(t).
(5.7)

We impose the conditions that both matrices
(

Q ST

S R

)
and M are positive

semidefinite and that R is positive definite. Note that uT (t)Sx(t)+xT (t)ST u(t) =
2uT (t)Sx(t), so (5.7) can be rewritten as

J(x0, u) = xT (N)Mx(N) +
N−1∑
t=0

xT (t)Qx(t) + uT (t)Ru(t) + 2uT (t)Sx(t).

The LQ optimal control problem is to minimize (5.7) for a given system (5.4).
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Before solving this optimal control problem, we comment on another form of
cost function that is useful, and that will appear later. Consider a cost function
of the form

J1(x0, u) = xT (N)Mx(N) +
N−1∑
t=0

‖R1x(t) + S1u(t)‖2, (5.8)

where we impose the conditions that M is positive semidefinite and that ST
1 S1 is

positive definite. Obviously, this type of cost function can be viewed as a special
case of (5.7), with R = ST

1 S1, Q = RT
1 R1, and S = ST

1 R1. Conversely, every cost

function (5.7) can also be rewritten in the form (5.8), by taking R1 =
(

Q1/2

R−1/2S

)
and S1 =

(
0

R1/2

)
. Thus, results we shall present in the sequel for the cost function

of the form (5.7) can be reformulated in terms of the equivalent cost function (5.8).
The solution of the LQ optimal control problem is given by dynamic pro-

gramming, and has the following form.

Theorem 5.3.1. The optimal control law for the LQ problem (5.4), (5.7) is given
by the state feedback law

u∗(t) = ht(x(t)) = Ftx(t) (5.9)

where
Ft = −(R + BT Kt+1B)−1(S + BT Kt+1A). (5.10)

The minimal cost is given by

J(x0, u
∗) = xT

0 K0x0, (5.11)

where the matrices Kt are defined by the backwards recursion given by the Riccati
difference equation⎧⎪⎨⎪⎩

Kt = Q + AT Kt+1A − FT
t (R + BT Kt+1B)Ft,

Ft = −(R + BT Kt+1B)−1(S + BT Kt+1A),
KN = M.

(5.12)

Moreover, the cost-to-go functions Jt are given by Jt(x) = x(t)T Ktx(t).

Proof. We apply Theorem 5.2.1, with the cost functions kN (x) = xT Mx and
kt(x, u) = xT Qx + uT Ru + 2uT Sx. First, we will prove that Jt(x) = xT Ktx with
Jt as defined in (5.6) and Kt as in (5.12). This is evidently correct for t = N . We
proceed by induction and suppose that Jt+1(x) = xT Kt+1x. We now prove that
this implies that Jt(x) = xT Ktx with the minimizing input given by (5.9). In (5.6)
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the following expression should be minimized:

kt(x, u) + Jt+1(ft(x, u)) = xT Qx + uT Ru + 2uT Sx + Jt+1(Ax + Bu)
= xT Qx + uT Ru + 2uT Sx + (Ax + Bu)T Kt+1(Ax + Bu)
= xT (Q + AT Kt+1A)x

+ uT (R + BT Kt+1B)u − 2uT (R + BT Kt+1B)Ftx.

As all cost functions kt ≥ 0 for t = 0, 1, . . . , N , it follows with finite induction that
Jt+1(x) ≥ 0 for all x ∈ Rn. So, Kt+1 is positive semidefinite, and as R is positive
definite, this means that R + BT Kt+1B is invertible. By completing the squares
the above expression can be rewritten as

(u − Ftx)T (R + BT Kt+1B)(u − Ftx)
+ xT (Q + AT Kt+1A)x
− (Ftx)T (R + BT Kt+1B)(Ftx).

As R + BT Kt+1B is positive definite, this expression is minimized by taking the
input (5.9) with resulting cost-to-go Jt(x) = xT Ktx, where Kt is given by (5.12).
This concludes the inductive proof.

Finally, according to Theorem 5.2.1 the minimal cost is given by J0(x0) =
xT

0 K0x0. �
From the theorem one sees that the LQ controller is given by linear state

feedback. This makes LQ control attractive, as this controller can be implemented
relatively easily. The feedback gains in (5.9) depend on time, but they can be
computed recursively and independent of the actual observations of the system.
One says that the control problem is solved off-line. That is, we only need to know
the system and the cost parameters in (5.4), (5.7) to compute the optimal feedback
matrices in (5.9), by the recursions (5.12). So, the controller can be constructed
before the actual observations are available.

The result of Theorem 5.3.1 is true as well for time-varying linear systems
with time varying cost function. That is, a similar result holds when the objective is
to minimize the cost function J(x0, u) =

∑N−1
t=0 (x(t)T Q(t)x(t) + u(t)T R(t)u(t) +

2x(t)T S(t)u(t)) + x(N)T Mx(N), where Q(t) = Q(t)T and R(t) = R(t)T > 0,
subject to x(t + 1) = A(t)x(t) + B(t)u(t).

In some applications it may not be so clear how to choose the horizon N .
This motivates study of the infinite horizon problem with cost function

J∞(x0, u) =
∞∑

t=0

xT (t)Qx(t) + uT (t)Ru(t) + 2uT (t)Sx(t), (5.13)

or the infinite horizon analogue of (5.8) given by

J1,∞(x0, u) =
∞∑

t=0

‖R1x(t) + S1u(t)‖2, (5.14)
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subject to x(t + 1) = Ax(t) + Bu(t) with x(0) = x0 given. Of course, this only
makes sense if the cost can be given a finite value by appropriate choice of the
inputs. A sufficient condition for this is that the pair (A, B) is stabilizable.

One could expect that the infinite horizon problem can be approximated by
considering finite horizon problems with horizon N → ∞. Under suitable con-
ditions this idea indeed works. Moreover, the solutions of the Riccati difference
equations (5.12) then converge to a limit, which is independent of the choice of
the final cost M , and the corresponding control law (5.9) becomes time invariant
in the limit. So the solution of the infinite horizon problem becomes quite simple
in this case.

Theorem 5.3.2. Assume that the pair (A − BR−1S, Q − ST R−1S) is detectable
and that the pair (A, B) is stabilizable. Denote the solutions of (5.12) at t = 0,
obtained by starting at KN = M , by K0(N, M). Then the following hold true:

(i) limN→∞ K0(N, M) = K+ exists and is independent of M . Denote

F+ = −(R + BT K+B)−1(BT K+A + S). (5.15)

(ii) K+ satisfies the algebraic Riccati equation

K = Q + AT KA − (AT KB + ST )(R + BT KB)−1(BT KA + S). (5.16)

Moreover, it is the unique positive semidefinite solution of (5.16), and it is
also the unique solution K for which A − B(R + BT KB)−1(BT KA + S) is
a stable matrix. In particular, A+BF+ is a stable matrix. Furthermore, K+

is the largest solution in the sense that for any other solution K the matrix
K+ − K is positive semidefinite.

(iii) The optimal control law for (5.4), (5.13) is given by

u∗(t) = ht(x) = F+x(t), (5.17)

with cost J∞(x0, u
∗) = xT

0 K+x0.

Proof. We shall not prove all statements of the theorem, but we will concentrate
our attention on the ones that are most relevant for our purpose. In particular, we
will prove only part of the statements in (i) and (ii). See [1] for full proofs.

The reader should be forewarned that the pace of the arguments in this proof
is considerably higher than the pace usual for the preceding parts of the book.

As (A, B) is stabilizable there exists a matrix F such that A + BF is stable,
that is, all eigenvalues of A + BF are inside a circle of radius less than 1. Hence
if we employ F as feedback and take u(t) = Fx(t), then the state x(t) is given by
x(t) = (A + BF )tx0. Note that ‖(A + BF )t‖ ≤ C0r

t for some constant C0 and
some 0 < r < 1. Hence ‖x(t)‖ can be estimated as follows: ‖x(t)‖ ≤ C ·rt for some
constant C. But then also

‖
(

x(t)
u(t)

)
‖ = ‖
(

x(t)
Fx(t)

)
‖ = ‖
(

I
F

)
(A + BF )tx0‖ ≤ C1 · rt,
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for some constant C1. Hence for this choice of inputs the cost function J(x0, u)
is finite for each choice of x0. This implies that the optimal cost, infu J(x0, u) is
finite.

Denote by K0(N) the solutions of (5.12) at t = 0 with KN = 0, that is
K0(N) = K0(N, 0). First we show that limN→∞ K0(N) exists. Let us denote by u∗

the input minimizing infu J(x0, u), and by u∗
N the input minimizing infu JN (x0, u)

with M = 0. Then

infu JN (x0, u) ≤∑N−1
t=0

(
u∗(t)T x∗(t)T

)(Q ST

S R

)(
u∗(t)
x∗(t)

)
≤∑∞

t=0

(
u∗(t)T x∗(t)T

)(Q ST

S R

)(
u∗(t)
x∗(t)

)
= infu J(x0, u).

This implies that x∗
0K0(N)x0≤ infu J(x0, u). Therefore, the sequence {K0(N)}∞N=1

has an upper bound.
The same reasoning applies to show that K0(N) ≤ K0(N + 1). Thus the

sequence {K0(N)}∞N=0 is an increasing sequence of positive semidefinite matrices
that is bounded above. Thus there is a limit, which we denote by K+ for the time
being. As K0(N) satisfies the Riccati difference equation (5.12) (with M = 0) it
is immediate that K+ satisfies the algebraic Riccati equation (5.16). Moreover, it
is clear that 0 ≤ xT

0 K+x0 ≤ infu J(x0, u).
To show that the corresponding closed loop feedback matrix A + BF+ is

stable, we can rewrite (5.16) for K = K+ as follows, where we use for convenience
the notation A+ = A + BF+:

K+ = Q + AT K+A + (AT K+B + ST )F+

= Q + AT
+K+A+ − FT

+ (BT K+A + BT K+BF+) + ST F+

= Q + AT
+K+A+ + FT

+ (RF+ + S) + ST F+

= AT
+K+A+ +

(
I FT

+

)(Q ST

S R

)(
I

F+

)
.

This shows that K+−AT
+K+A+ is positive semidefinite. Since (A, B) is stabilizable

and (A − BR−1S, Q − ST R−1S) is detectable, A+ is stable. Compare Theorem
4.1.4. We shall not provide the details here.

Let us consider the input obtained by taking the static state feedback u(t) =
−(R + BT K+B)−1(S + BT K+A)x(t) = −F+x(t). The cost associated with this
input is equal to xT

0 K+x0, as one sees by the same completion of the squares
argument as used in the proof of Theorem 5.3.1. Indeed, consider for this choice
of input

J∞(x0, u) +
∞∑

t=0

(x(t + 1)T K+x(t + 1) − x(t)T K+x(t))

= −x(0)T K+x(0) + J∞(x0, u)
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(as A+ is a stable matrix). On the other hand, using x(t + 1) = Ax(t) + Bu(t),
and the definition of J∞(x0, u), this is equal to the following, where we suppress
the dependence on t for the sake of clarity:

∞∑
t=0

(
xT AT K+Ax − xT K+x + xT Qx

+ xT (AT K+B + ST )u + uT (S + BT K+A)x + uT Ru + uT BT K+Bu
)

=
∞∑

t=0

{(u + F+x)T (R + BT K+B)(u + F+x)

+ xT (−K+ + AT K+A + Q)x
− xT (AT K+B + ST )(R + BT K+B)−1(BT K+A + S))x}.

As K+ satisfies (5.16) it follows that

J∞(x0, u) = x(0)T K+x(0) +
∞∑

t=0

‖(R + BT K+B)1/2(u + F+x)‖.

But then, for the particular choice of inputs u = −F+x, we have J(x0, u) =
xT

0 K+x0. So infu J(x0, u) ≤ xT
0 K+x0 and thus infu J(x0, u) = xT

0 K+x0. It follows
that the optimal input is given by u(t) = F+x(t). �

The assumptions in Theorem 5.3.2 that the pair (A, B) is stabilizable and
that the pair (A−BR−1S, Q−STR−1S) is detectable are made to guarantee that
the cost function (5.13) makes sense (that is, (5.13) is finite for some control inputs
u), and that the optimal control law (5.17) actually stabilizes the system. Without
these assumptions there could exist inputs that minimize (5.13), but which are not
stabilizing. Such inputs do not have much practical significance.

As an example, the assumptions of Theorem 5.3.2 are satisfied for cost func-
tions of the form

J(x0, u) =
∞∑

t=0

(y(t)T Q1y(t) + uT (t)Ru(t))

with Q1 and R positive definite and with y(t) = Cx(t) the output of the system
(5.4) with (A, B, C) a minimal realization. Indeed, in that case (A, B) is control-
lable and hence stabilizable. As concerns the detectability, clearly in (5.13) we
have S = 0 and Q = CT Q1C, so detectability of (A, Q) follows from observability
of (A, C) and positivity of Q1.

Let us formulate also the main results of Theorem 5.3.2 for the alternative
infinite horizon cost function (5.14). Assume that the pair (A, B) is stabilizable,
that ST

1 S1 is positive definite, and that the pair

(A − B(ST
1 S1)−1ST

1 R1, R1 − S1(ST
1 S1)−1ST

1 R1)
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is detectable. Consider the algebraic Riccati equation

K = RT
1 R1 + AT KA − (ST

1 R1 + BT KA)T (ST
1 S1 + BT KB)−1(ST

1 R1 + BT KA)

together with the control law u(t) = −Fx(t), where the feedback matrix F is
given by F = (ST

1 S1 + BT KB)−1(ST
1 R1 + BT KA). If we take for K the unique

positive semidefinite solution K+ of this Riccati equation, then this control law
is the optimal one, it is a stabilizing control, and the optimal costs are given by
xT

0 K+x0.

Example 5.4. In Example 5.2 we described a control problem for government policy.
As an example, suppose that the government expects to be in power for this and
the coming three years and that the objective is to keep the national income as
close as possible to a desired level Ȳ . Associated with this are equilibrium values
of consumption, investment and government expenditures as described in (1.29).
Taking all variables in deviation from equilibrium, this gives the linear system
described in Example 5.2. The objective function is given by

J(x0, g) =
3∑

t=0

y(t)2,

where x0 =
(
y(−1) y(−2)

)T and g =
(
g(0) g(1) g(2) g(3)

)
. Introduce the

matrix S =
(
β(1 + δ) −βδ

)
, then in terms of (5.7), we have M = 0, R = 1, and

Q = ST S. The optimal control follows from Theorem 5.3.1. Here K4 = M = 0,
and it follows from (5.12) that also K3 = K2 = K1 = K0 = 0. Therefore, the
optimal controller (5.9) is given by

g∗(t) = −Rx(t) = −β(1 + δ)y(t − 1) + βδy(t − 2).

Of course, this result could also have been obtained directly from equation (1.33).
The minimal cost is given by xT

0 K0x0 = 0.
A more realistic cost function would also penalize deviations from equilibrium

of the other economic variables, see Example 5.2. For given values of β and δ and of
the relative weights gi, i = 1, 2, 3, 4, the optimal control law and associated cost are
easily obtained by applying Theorem 5.3.1. In practice β and δ are unknown and
have to be estimated from observed data. Furthermore, it may be unclear how the
relative weights in the cost function should be chosen. Here a sensitivity analysis
may be of interest, where the effect of the policy objectives on the economic
developments is considered.

For the infinite horizon problem with J∞(x0, g) =
∑∞

t=0 y(t)2 the optimal
control law is of course the same as before. This can also be checked by means of
Theorem 5.3.2. More realistic cost functions require the solution of (5.16).

There exist several reliable algorithms for solving Riccati equations. A simple
method is to start with K0 = 0, and to compute Kt, t ≤ −1 backwards in
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time using the Riccati difference equation (5.12). For t → −∞ the matrices Kt

converge to the required solution of (5.16). This is never used in practice. A faster
method uses an approach via eigenvalues and eigenvectors of certain matrices, and
another way to approximate the solution of (5.16) is to apply Newton’s method
to the nonlinear matrix equation (5.16). However, it would lead us too far afield
to explain these methods here in detail. A good source for results on the algebraic
Riccati equation is [40].



Chapter 6

Stochastic Systems

In stochastic systems, the outputs are (partly) driven by unobserved random in-
puts. This chapter is concerned with stationary processes and their approximation
with finite dimensional linear stochastic systems. Similar to the results for deter-
ministic input-output systems there is an equivalence between finite dimensional
stochastic state space models, polynomial (ARMA) representations, and rational
spectra (in the frequency domain), which are the analogue of the transfer function.

6.1 Modelling

The methods introduced in the foregoing chapters concern the representation and
control of completely specified systems. In most applications, however, the pre-
cise form of the system is not known. This is the case, for example, in complex
technical systems like an airplane or a chemical plant. The situation is even more
complicated in economic applications. The reaction mechanisms between economic
variables are often known only in qualitative terms, and one cannot identify all
factors that influence the system behaviour. This motivates the study of imper-
fectly known dynamical systems. The uncertainties involved may be modelled in
several ways, one of which is the use of stochastic models. System identification is
concerned with the construction of a dynamical system for an observed process.
The main purpose is to determine the so-called systematic part, which explains
the process up to unpredictable variations. In practice one tries to capture these
systematic relations by equations of the form

G(w, a) = 0. (6.1)

Here w denotes trajectories of the observed variables and a denotes auxiliary
variables used to facilitate the system description. The auxiliary variables represent
unobserved influences. For practical purposes one is interested in relatively simple
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representations, for example of the form

G(t, w(t), w(t − 1), . . . , w(t − L), a(t), a(t − 1), . . . , a(t − L)) = 0. (6.2)

Time-invariant models are of particular interest, which means that the function G
does not explicitly depend on time. The linearized form of the model consists of
linear difference equations of the type

F0w(t) + · · · + FLw(t − L) = B0a(t) + · · · + BLa(t − L). (6.3)

The essential difference with the models in the foregoing chapters (see for example
(1.22)) is that the auxiliary variables a(t) are not observed and that the system
parameters F0, . . . , FL and B0, . . . , BL are unknown. If we assume that F0 = B0 =
I, then the term a(t) can be interpreted as the modelling error at time t. For a good
specification this model error should not have any predictable dynamical pattern,
as this would indicate misspecification. Such a completely unpredictable process
is called white noise. This forms the building block for the processes described in
this chapter.

Specializing (6.3) to the case of input - output systems with w =
(
uT yT

)T
,

writing FT
i = (−CT

i − AT
i ), and taking −A0 = B0 = I we get the so-called

ARMAX representation

y(t) = A1y(t − 1) + · · · + ALy(t − L) + a(t) + B1a(t − 1) + · · ·
+BLa(t − L) + C0u(t) + C1u(t − 1) + · · · + CLu(t − L). (6.4)

In this model the current value of the output y is explained by an autoregression
(AR) on its own past, a moving average (MA) of the auxiliary variables a, and
the exogeneous (X) inputs u. Note that this model imposes no restrictions on
the input-output behaviour if the variables a are considered as completely arbi-
trary. For the reason mentioned before it is often supposed that a is a white noise
stochastic process. In this chapter we first consider systems without control inputs
u, so that the observed process y is driven by white noise. This means that the
output y is a stochastic process.

6.2 Stationary Processes

A stochastic process is defined as a collection of random variables {y(t), t ∈ Z}.
A time series is an outcome of this process, that is, a series of observed vectors
y(t). In practice, the available information often consists of an observed time series
and the question is how to estimate the properties of the underlying process. The
statistical properties of primary importance are the mean µ(t) := E{y(t)} and the
covariances R(t, s) := E{(y(t) − µ(t))(y(s) − µ(s))T }.
Definition 6.2.1. A stochastic process is (weakly) stationary if µ(t) = µ(s) and
R(t, s) = R(t+ k, s+ k) for all t, s, k ∈ Z, that is, if its mean and covariances exist
and are time-invariant. In this case we write µ(t) = µ and R(t, s) = R(t − s).
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In the case of a Gaussian process, that is, a process {y(t), t ∈ Z} such that
the distribution function of each y(t) is multivariable normal, this is equivalent to
strong stationarity in the sense that the probability distributions are time invari-
ant, that is, for all n ∈ N, k ∈ Z, ti ∈ Z, i = 1, . . . , n, there holds

p(y(t1), y(t2), . . . , y(tn)) = p(y(t1 + k), y(t2 + k), . . . , y(tn + k))

where p denotes the joint probability distribution. In the sequel, whenever we say
stationary, we mean strongly stationary. Note that for a stationary process we
have R(−k) = R(k)T .

In practice the mean and covariances of a stationary process are often not
known. If the process is observed on a time interval of length N so that the
available data are y(1), y(2), . . . , y(N), then the sample mean is defined by

µ̂N :=
1
N

N∑
t=1

y(t) (6.5)

and the sample covariances are defined by

R̂N (k) :=
1
N

N∑
t=k+1

(y(t) − µ̂N )(y(t − k) − µ̂N )T , 0 ≤ k ≤ N − 1 (6.6)

while for k < 0 we have R̂N (k) = R̂N (−k)T .

Definition 6.2.2. A stationary stochastic process is ergodic if the following holds
true almost surely:

lim
N→∞

µ̂N = µ, (6.7)

lim
N→∞

R̂N (k) = R(k). (6.8)

In the sequel we will simply assume that ergodicity holds true. The sample
mean and covariances then provide reliable information on the underlying process
if the number of observations is sufficiently large.

Example 6.1. A white noise process is a stationary process characterized by the
property that values at different time instants are uncorrelated, in the sense that
R(k) = 0 for all k �= 0. The law of large numbers implies that (6.7) holds true.
Condition (6.8) requires some additional assumptions, for example, that the pro-
cess has bounded fourth moments. In case R(0) = I and µ = 0 the white noise
process is called standard white noise.

A useful evaluation of estimated stochastic systems is to test whether the
model errors can be considered as white noise. If this is not the case then additional
(linear) dynamical relationships are present in the data.
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Example 6.2. Consider the univariate process described by the equation

y(t) = sin(ωt + θ). (6.9)

Suppose that ω is unknown but fixed, and that the phase θ is a random variable
with uniform distribution on the interval [0, 2π). Then y is a stochastic process.
This process is very particular, as it is perfectly predictable. Indeed, from the
equality sin a + sin b = 2 sin(a+b

2 ) cos(a−b
2 ) one can derive

y(t + 2) + y(t) = (2 cosω)y(t + 1). (6.10)

For every time series generated by the process the value of cosω can be deter-
mined from three subsequent observations, and this makes the whole future of the
trajectory perfectly predictable. The process y is nonetheless stationary, as it has
mean µ(t) = 0 and covariances

R(t, s) =
1
2π

∫ 2π

0

sin(ωt + θ) sin(ωs + θ)dθ =
1
2

cos(ω(t − s)) = R(t + k, s + k).

This shows that the interdependence between the observations never dies out, even
if the distance in time is arbitrarily large.

Example 6.3. A moving average (MA) process is modelled in terms of uncorrelated
driving forces, that is,

y(t) =
∞∑

k=0

G(k)ε(t − k) (6.11)

where ε is an unobserved standard white noise process. If
∑∞

k=0 ‖G(k)‖ < ∞,
then this process is well defined. The process y is stationary and ergodic with
covariances

R(t, s) =
∞∑

k=k(t,s)

G(t − s + k)G(k)T = R(t − s) (6.12)

where k(t, s) = max{0, s − t} and where it is assumed that ε is standard white
noise. The auxiliary variables ε act like inputs that generate the observed out-
put process via a convolution relation, that is, via a linear, time-invariant system.
An essential difference with input-output convolution systems is that the auxil-
iary variables need not have an external significance. They merely facilitate the
system description, and the process representation (6.11) is non-unique. The MA-
representation (of the model) is called (causally) invertible if it can be rewritten
as ∞∑

k=0

H(k)y(t − k) = ε(t) (6.13)

with
∑∞

k=0 ‖H(k)‖ < ∞. This is called an autoregressive (AR) representation. It
expresses y(t) in terms of its past values and an additional innovation ε(t) which
is uncorrelated with this past.
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The two processes described in Examples 6.2 and 6.3 are in a sense the building
blocks of all stationary processes. The Wold decomposition theorem, which we
state below, tells us that every stationary process can be decomposed into a moving
average part and a perfectly predictable part.

Definition 6.2.3. A stationary process y is called perfectly predictable if there exists
a prediction function with error zero, that is, for some function F there holds

E‖y(t) − F (y(s), s ≤ t − 1)‖2 = 0 ∀t ∈ Z. (6.14)

For example, a cyclical process as in Example 6.2 is perfectly predictable, in the
case of Example 6.2 the function F (y(s), s ≤ t − 1) is given by (2 cosω)y(t − 1)−
y(t − 2), as in (6.10).

A process is called harmonic if it is of the form y(t) =
∑n

k=1 αk sin(ωkt+ θk)
with αk, ωk fixed and the θk independent and uniformly distributed on [0, 2π).
One can prove that such processes are stationary and perfectly predictable, also
for n ≥ 2 (cf. Example 6.3).

The proof of the following result requires mathematical methods that are
beyond the scope of this book. The interested reader is referred to [8, page 187,
Theorem 5.9.1].

Theorem 6.2.4. Every stationary process y has a Wold decomposition y = y1 + y2

where

(i) y1 and y2 are stationary and uncorrelated,

(ii) y1 is an invertible moving average process (6.11) with
∑∞

k=0 ‖G(k)‖2 < ∞,
and with

∑∞
k=0 ‖H(k)‖2 < ∞ in the inverse representation (6.13),

(iii) y2 is a perfectly predictable process with a linear function F in (6.14).

Note that we only get here
∑∞

k=0 ‖G(k)‖2 < ∞, and not the stronger condi-
tion
∑∞

k=0 ‖G(k)‖ < ∞.

6.3 ARMA Processes

In this section we assume that any perfectly predictable component of the process
has been removed, so that by Theorem 6.2.4 a moving average process remains.
For the MA-process (6.11) the function Ĝ(z) =

∑∞
k=0 G(k)z−k is called the fil-

ter generating y(t) from standard white noise. The relevance of filters is that the
composition of processes corresponds with the multiplication of filters. Note its
similarity with the transfer function of a linear time-invariant system. The mov-
ing average process in principle involves an infinite number of parameters. This
presents the problem to construct approximate models involving fewer parameters.
A suitable approximation is a so-called autoregressive moving average model

y(t) = A1y(t−1)+ · · ·+Apy(t−p)+B0ε(t)+B1ε(t−1)+ · · ·+Bqε(t−q). (6.15)
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This is called an ARMA(p, q) model. In case q = 0 it is called an AR(p) model
and for p = 0 it is called an MA(q) model. Here the filter Ĝ(z) =

∑∞
k=0 G(k)z−k,

is approximated by a rational function A−1(z)B(z), where A(z) = I − A1z
−1 −

· · · −Apz
−p and B(z) = B0 + B1z

−1 + · · ·+ Bqz
−q are matrices with entries that

are polynomials in z−1. The next result states that these approximations become
arbitrarily accurate if the orders p and q are chosen sufficiently large.

Theorem 6.3.1. Every stationary process without a perfectly predictable component
can be approximated by AR and MA processes, that is, for every process y of the
form (6.11) and for every δ > 0 there exist orders p, q and an AR(p) process yA and
an MA(q) process yM such that for all t = 1, 2, . . . we have E‖y(t) − yA(t)‖2 < δ
and E‖y(t) − yM (t)‖2 < δ.

Proof. For simplicity we will only construct the approximation by an MA process
in the zero mean, univariate case. The construction of the AR(p) process is more
involved, and we refer to the literature for this.

So, let y(t) be a scalar stationary process without a perfectly predictable
component. From Theorem 6.2.4 it follows that y(t) =

∑∞
k=0 G(k)ε(t − k), where∑∞

k=0 G(k)2 < ∞ and with autoregressive representation (6.13) with the property
that
∑∞

k=0 H(k)2 < ∞. By appropriate scaling we may assume that G(0) = 1, so
that H(0) = 1 as well. The variance of the corresponding white noise process is
denoted by E(ε2) = σ2.

For given δ > 0 let q be such that
∑∞

k=q+1 G(k)2 < δ
σ2 , then yM (t) :=∑q

k=1 G(k)ε(t − k) is an MA(q) process with the desired property. �

Although from an approximation viewpoint the AR and MA processes are
sufficiently rich, ARMA models may provide a more accurate approximation with
fewer parameters.

The moving average process (6.11) has an ARMA representation (6.15) if and
only if the filter Ĝ(z) =

∑∞
k=0 G(k)z−k is a rational matrix function. However,

the parameters of the model (6.15) are not uniquely determined. First, the noise
process ε may be chosen in different ways. Second, for a given choice of ε, the
factorization Ĝ(z) = A−1(z)B(z) in terms of the polynomials A(z) and B(z) is
not unique. We illustrate this by two simple examples.

Example 6.4. Consider the scalar MA(1) process y given by y(t) = ε(t)+ θε(t− 1)
with |θ| < 1, where ε is standard white noise. Then ε(t) =

∑∞
k=0(−θ)ky(t − k),

almost surely, which means that the process can be decomposed as y(t) = ε(t) +
f(y(s), s ≤ t − 1). As ε(t) is uncorrelated with the past observations of y, i.e.,
{y(s), s ≤ t − 1}, it follows that ε is the forward prediction error process corre-
sponding to the process y. Actually, this is the Wold representation of Theorem
6.2.4(ii) for this process.

Now define the process ω by ω(t) =
∑∞

k=0(−θ)ky(t + 1 + k). Use that
E(y(s)y(s − 1)) = E(y(s − 1)y(s)) = θ, E(y(s)2) = 1 + θ2 and Ey(s)y(t) = 0 if
|s− t| ≥ 2 to check that ω is a white noise process and that y(t) = θω(t)+ω(t−1).
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This is an alternative MA(1) representation of the process y. Actually, ω is the
backward prediction error process corresponding to the process y. So the process y
can be described by the filter 1+θz−1 and also by the filter θ+z−1, by appropriate
choice of the driving white noise process.

Example 6.5. Consider the bivariate MA(1) process

y1(t) = ε1(t) + θε2(t − 1),
y2(t) = ε2(t).

(6.16)

One easily derives the alternative AR(1) representation

y1(t) − θy2(t − 1) = ε1(t),
y2(t) = ε2(t).

(6.17)

That is, this process can be written in ARMA form (6.15) with A(z) = I and

B(z) =
(

1 θz−1

0 1

)
or alternatively with A(z) =

(
1 −θz−1

0 1

)
and B(z) = I.

In practice one prefers representations with few parameters and where the
noise process ε has a good interpretation. The first condition is related to the
notion of coprimeness, the second to the notions of stationarity and invertibility.

Two matrices that are polynomial in z−1, A(z) and B(z) are called left
coprime if they have no non-trivial common left factors, i.e., if there are polynomial
matrices C, A1, B1, in z−1, such that A(z) = C(z)A1(z) and B(z) = C(z)B1(z),
then C must be unimodular, that is, C(z)−1 is also a polynomial in z−1. In the
univariate case, coprimeness means that the two polynomials A and B have no
common factors. If A and B are not coprime, then one can find A1 and B1 such
that A−1

1 B1 = A−1B, but (A1, B1) are of lower degree than (A, B).

Proposition 6.3.2. If the stationary process y in (6.15) has no perfectly predictable
component, then it can be represented by a coprime ARMA model.

Proof. For simplicity we only consider the univariate case, in the multivariate case
the proof is more complicated.

Recall that multiplication of filters corresponds to composition of correspond-
ing (MA or AR) representations. Write (6.15) for simplicity as Ay = Bε. Let F be
the greatest common divisor of A and B, so that A = FÃ, B = FB̃, and Ã and
B̃ have no common factors. Introduce x = Ãy − B̃ε. Define the processes y1 and
y2 by Ãy1 = B̃ε and Ãy2 = x. Then y = y1 + y2 because A(y1 + y2) = Bε. Since
according to (6.15), Ay2 = Fx = 0 we conclude that y2 is perfectly predictable.
Then, by assumption y2 = 0, so that y = y1, and hence Ãy = B̃ε is a coprime
ARMA representation. �

Further, the ARMA model (6.15) is said to be stationary if it can be written
as in (6.11) with

∑ ‖G(k)‖ < ∞, and the model is called invertible if it can be
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written as in (6.13) with
∑ ‖H(k)‖ < ∞. The corresponding filters are called

causal , and invertible, respectively. So stationarity of the model means that y is
related to ε in a causal way, invertibility means that ε is related to y in a causal
way. These conditions mean that the process ε consists of the (forward) prediction
errors of the process y. The first filter in Example 6.4 is causal with a causal
inverse. A filter Ĝ is called anticausal if it can be represented as

∑0
k=−∞ G(k)z−k

with
∑0

k=−∞ ‖G(k)‖ < ∞. The second filter in Example 6.4 is causal with an
anticausal inverse.

Theorem 6.3.3. Consider a stationary process with coprime ARMA representation
(6.15).

(i) The representation is stationary if and only if detA(z) has all its roots inside
the unit circle |z| < 1; in this case (6.11) is obtained by the filter Ĝ(z) =
A(z)−1B(z).

(ii) The representation is invertible if and only if detB(z) has all its roots inside
the unit circle, and (6.13) is then given by the filter Ĥ(z) = B(z)−1A(z).

Proof. Again, for simplicity we only consider the univariate case. The multivariate
result follows in a similar way by using the Smith form of polynomial matrices (see,
e.g., [17]).

First assume that A has all its roots inside the unit circle. Then Ĝ(z) =
A−1(z)B(z) is a rational function which has all its poles inside the unit disk
and has limit B0 for z → ∞. It is well known in scalar complex function theory
that such a rational function Ĝ(z), has a series expansion

∑∞
k=0 G(k)z−k with∑∞

k=0 |G(k)| < ∞.
For the converse we first remark that A(z) and B(z) do not have a com-

mon zero because they are coprime. Hence any zero of A(z) gives a pole of
Ĝ(z) = A−1(z)B(z). Since Ĝ(z), has a series expansion

∑∞
k=0 G(k)z−k with∑∞

k=0 |G(k)| < ∞ it is known from complex function theory that Ĝ(z) has all
its poles inside the unit disk. Thus A(z) has all its zeros inside the unit disk.

Part (ii) is proved in a similar way. �

Let y be a stationary process without a perfectly predictable component and
with a coprime ARMA representation (6.15). In the next chapter we will show
that this process then also has a stationary and invertible ARMA representation.
We conclude that within this setting it is no restriction to assume that an ARMA
model is stationary and invertible. However, this representation is still not unique.
For instance, the representation in (6.16) and (6.17) are both coprime, stationary
and invertible. To obtain uniqueness one should impose additional restrictions on
the parameters in ARMA models.
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6.4 State Space Models

The state of a system contains all the information on the interdependence between
the past and the future of the system. Given the current state, the future evolution
becomes independent from the past.

Consider stochastic vectors x and y. The best linear prediction of x in terms
of y is a stochastic vector Ly, where L is a matrix such that E(x−Ly)(x−Ly)T is
minimal. The solution is then given by projecting each component x1, . . . , xn of x
orthogonally on the space spanned by the components y1, . . . , ym of y. This means
that we look for row vectors lj , j = 1, . . . , n, such that E(xj − ljy)yk = 0 for k =
1, . . . , m. This gives m linear equations for the lj , which can be written as Exjy

T =
ljEyyT . In the case that EyyT is invertible we find lj = Exjy

T (EyyT )−1. For the
matrix L we therefore get L = ExyT (EyyT )−1. For this Ly we use the nota-
tion E(x|y) and call this best linear prediction of x based on y the conditional
expectation of x based on y. Therefore, E(x|y) = 0 if and only if E(xyT ) = 0,
so that all components of x and y are uncorrelated. In a similar way we define
E(x|y(1), y(2), . . .) as the best linear approximation of x by a combination of the
components of the vectors y(1), y(2), . . ., which then has the form ΣjH(j)y(j) for
appropriate matrices H(j).

Definition 6.4.1. The process x is called a state for the process y if for every t ∈ Z,

E(y(t + k)|x(t), y(t − 1), y(t − 2), . . .) = E(y(t + k)|x(t)) ∀k ≥ 0,

E(y(t − k)|x(t), y(t), y(t + 1), . . .) = E(y(t − k)|x(t)) ∀k ≥ 1.
(6.18)

Thus the process x summarizes all correlations between the past and the future
of the process y.

We consider models of the form{
x(t + 1) = Ax(t) + ε1(t), t ∈ Z,

y(t) = Cx(t) + ε2(t),
(6.19)

where (ε1, ε2) is a joint white noise process with covariance matrix

E

(
ε1(t)
ε2(t)

)(
ε1(t)
ε2(t)

)T

=
(

Σ11 Σ12

Σ21 Σ22

)
= Σ. (6.20)

We restrict the attention to stationary representations, where the filter generating
x from ε1 is causal. According to Theorem 6.3.3 (i) this means that det(I −Az−1)
has all its zeros in the unit disk. This is equivalent to A being a stable matrix, that
is, A has all its eigenvalues in the open unit disc. Further we assume for simplicity
that all processes considered have zero mean.
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Proposition 6.4.2. If the matrix A is stable, then the process x in (6.19) is a Markov
process, that is,

E(x(t + 1)|x(s), s ≤ t) = E(x(t + 1)|x(t)),

and it is a state for the process y (6.19).

Proof. Since A is stable we have x(t) =
∑∞

k=1 Ak−1ε1(t − k). If s ≤ t then
E(x(s)ε1(t)T ) =

∑∞
k=1 Ak−1E(ε1(s − k)ε1(t)T ) = 0. We conclude that ε1(t) and

x(s) are uncorrelated. Therefore

E(x(t + 1)|x(s), s ≤ t) = E(Ax(t) + ε1(t)|x(s), s ≤ t) = E(Ax(t)|x(s), s ≤ t).

Now by definition E(Ax(t)|x(t), x(s), s ≤ t) = Ax(t) = E(Ax(t)|x(t)). Again using
that ε1(t) and x(t) are uncorrelated we get

E(Ax(t)|x(t)) = E(Ax(t) + ε1(t)|x(t)) = E(x(t + 1)|x(t)).

Further, y(t) = ε2(t) +
∑∞

k=1 CAk−1ε1(t − k) shows that (ε1(t), ε2(t)) and y(s),
s ≤ t − 1, are uncorrelated. For u ≥ t there holds y(u) = CAu−tx(t) + ε2(u) +∑u−t

k=1 CAk−1ε1(u − k), so that

E(y(u)|x(t), y(s), s ≤ t − 1) = CAu−tx(t) = E(y(u)|x(t)).

This proves one part of (6.18).
Because y(u) is for u ≥ t a linear expression in x(t), ε2(u), and ε1(u), we get

E(y(t−k)|x(t), y(t), y(t+1), . . .)=E(y(t−k)|x(t), ε1(t), ε2(t), ε1(t+1), ε2(t+1), . . .).

Once again use that y(t − k) and ε1(t + j), ε2(t + j), j ≥ 0, are uncorrelated. We
get E(y(t − k)|x(t), y(t), y(t + 1), . . .) = E(y(t − k)|x(t)). �

The state space model (6.19) is of much practical use because of its simple
first order structure. We will now show which processes can be represented in
state space form and how such representations can be obtained. The following
result is the stochastic analogue of Theorem 2.3.3 for deterministic input-output
systems. Recall that the model being stationary means that the corresponding
filter is causal.

Theorem 6.4.3. A stationary process y can be represented in state space form (6.19)
with a stable matrix A if and only if it can be represented by a stationary ARMA
model (6.15).

Proof. First suppose that the model (6.15) is given. For the moment denote Â(z) =
I − A1z

−1 − · · · − Apz
−p. Let m := max{p, q} and define Ai = 0, i ≥ p + 1, and

Bj = 0, j ≥ q + 1. Let x(t) = (x1(t)T , . . . , xm(t)T )T where

xi(t) :=
m∑

k=1

Ak+i−1y(t − k) +
m∑

k=1

Bk+i−1ε(t − k), i = 1, . . . , m.
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This gives a representation (6.19) with C =
(
I 0 . . . 0

)
, ε2(t) = B0ε(t) and

ε1(t) = Bε(t), where

A =

⎛⎜⎜⎜⎜⎜⎝
A1 I 0 . . . 0
A2 0 I 0
...

...
...

. . .
...

Am−1 0 0 . . . I
Am 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
A1B0 + B1

A2B0 + B2

...
Am−1B0 + Bm−1

AmB0 + Bm

⎞⎟⎟⎟⎟⎟⎠ .

It follows that det(zI−A) = zm det Â(z), and thus by Theorem 6.3.3 the stationary
ARMA model gives a stable matrix A.

Conversely, for a given model (6.19) with A a stable n × n matrix, define
P̂ (z) := I − 1

z A and p̂(z) := det P̂ (z). Further let the polynomial matrix P̂+(z)
in 1

z denote the adjoint of P̂ (z), so that P̂+(z)P̂ (z) = p̂(z) · I. As in the proof
of Theorem 6.3.3 we relate to the matrix polynomials P̂ , p̂ · I, and P̂+ the corre-
sponding filters P , p, and P+. This way the state process in (6.19) can be written
as Px = ε1, so that py = Cpx + pε2 = CP+Px + pε2 = CP+ε1 + pε2. This is
an ARMA(n,n) representation with AR polynomial p̂(z) · I. This representation is
stationary because p̂(z) has its roots inside the unit circle. �

In the univariate case the construction above leads to a minimal state space
representation if Ap �= 0 and Bq �= 0 in (6.15). In the multivariate case it may be
non-minimal.

Stochastic realization theory concerns the relationship between stochastic
processes and their state space representations. Let y be a given stationary pro-
cess with representation (6.19) where A is a stable matrix. We assume that Σ22

in (6.20) is invertible, so that y has no perfectly predictable component. The au-
tocovariances of the process are easily obtained from this representation.

Proposition 6.4.4. Let A be a stable matrix. Then the autocovariances of the process
y in (6.19), (6.20) with Σ22 invertible, are given by

R(0) = CΠCT + Σ22, (6.21)

R(k) = CAk−1M, k ≥ 1, (6.22)

where M = E(x(t + 1)y(t)T ) = AΠCT + Σ12, and Π = E(x(t)x(t)T ) satisfies the
Stein equation

Π = AΠAT + Σ11. (6.23)

Proof. As A is stable the state process (6.19) satisfies x(s) =
∑∞

k=1 Ak−1ε1(s−k),
so that ε1(t) and ε2(t) are uncorrelated with x(s) for s ≤ t. Further, x(t) is a
stationary process, so that E(x(t)x(t)T ) = E(x(t + 1)x(t + 1)T ). Hence

Π = E(Ax(t) + ε1(t))(Ax(t) + ε1(t))T = AΠAT + Σ11.
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This implies

R(0) = E(y(t)y(t)T ) = E(Cx(t) + ε2(t))(Cx(t) + ε2(t))T = CΠCT + Σ22

and

M = E(x(t + 1)y(t)T ) = E(Ax(t) + ε1(t))(Cx(t) + ε2(t))T = AΠCT + Σ12.

Furthermore, for k ≥ 1 there holds x(t) = Ak−1x(t− k +1)+
∑k−1

j=1 Aj−1ε1(t− j),
so that

R(k) = E{y(t)y(t − k)T } = E{[CAk−1x(t − k + 1)
+
∑k−1

j=1 CAj−1ε1(t − j)]y(t − k)T } = CAk−1M

as ε1(t) is uncorrelated with y(s) for s < t. �

Next we consider the converse problem of weak stochastic realization. In this
case the autocovariances R(k) (with

∑ ‖R(k)‖ < ∞) of the process are given
and the problem is to determine a state space model (6.19), (6.20) with the same
autocovariances. The foregoing result expresses the involved restrictions on the
parameters in this model. The first step in the solution of the weak stochastic
realization problem is to construct (A, C, M) so that R(k) = CAk−1M, k ≥ 1,
using for example the algorithm of Section 3.4. The noise covariance matrices in
(6.20) can then be derived from the state covariance matrix Π = E(x(t)x(t)T )
because

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
=
(

Π − AΠAT M − AΠCT

MT − CΠAT R(0) − CΠCT

)
. (6.24)

Therefore it remains to determine a positive semidefinite matrix Π such that Σ is
positive semidefinite. The next theorem describes the solution set in qualitative
terms. For a proof we refer to [10].

Theorem 6.4.5. For given R(0) and minimal (A, C, M), the set of positive semidef-
inite matrices Π such that (6.24) is positive semidefinite is convex and bounded.
It has a minimal solution Π− and a maximal solution Π+ such that for all other
solutions Π− ≤ Π ≤ Π+.

A realization (6.19) of the covariances {R(k), k ∈ Z} is called minimal if both
the number of state variables x(t) and the number of independent noise variables

in
(

ε1(t)
ε2(t)

)
are as small as possible. The minimal number of states is obtained if

(A, C, M) is a minimal triple. The number of independent noise terms is minimized
by selecting a matrix Π of the solution set in Theorem 6.4.5 that minimizes the
rank of Σ in (6.24). As Σ22 is assumed to be invertible, it follows that

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
=
(

I Σ12

0 Σ22

)(
Z 0
0 Σ−1

22

)(
I 0

Σ21 Σ22

)
,
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where Z = Σ11 − Σ12Σ−1
22 Σ21. The rank is minimized by taking Z = 0, so that Π

satisfies the algebraic Riccati equation

Π = AΠAT + (M − AΠCT )(R(0) − CΠCT )−1(M − AΠCT )T . (6.25)

The solution of this equation is in general not unique. Of particular interest is the
minimal solution Π−, which is obtained as the limit for k → ∞ of the recursion

Π0 = 0, Πk+1 = AΠkAT + (M − AΠkCT )(R(0) − CΠkCT )−1(M − AΠkCT )T .

6.5 Spectra and the Frequency Domain

Let y be a stationary process with zero mean and covariances

R(k) = Ey(t)y(t − k)T , k ∈ Z. (6.26)

Definition 6.5.1. The spectrum of a stationary process is defined by the formal
power series

S(z) =
1
2π

∞∑
k=−∞

R(k)z−k. (6.27)

The spectrum is a well-defined function of the complex variable z = eiω on
the unit circle if we impose the condition

∞∑
k=−∞

||R(k)|| < ∞. (6.28)

As S(eiω) = S(e−iω) it suffices to consider the spectrum only for ω ∈ [0, π]. For
each ω, the value of S(eiω) is a complex-valued positive semidefinite matrix, and
in the scalar case S(eiω) is real-valued and non-negative. In Fourier Analysis the
following theorem is well known.

Theorem 6.5.2. The autocovariances of a process with spectrum S, which satisfies
the condition

∫ π

−π ‖S(eiω)‖dω < ∞, are given by

R(k) =
∫ π

−π

eikωS(eiω)dω (6.29)

and (6.28) is satisfied.

Note that
∫ π

−π einωdω = 0 if n �= 0 and that this integral equals 2π if n = 0.
So if (6.28) is satisfied, then∫ π

−π

eikωS(eiω)dω =
∞∑

l=−∞

1
2π

R(l)
∫ π

−π

ei(k−l)ωdω = R(k).
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The formulas (6.27) and (6.29) show that the covariance sequence {R(k), k ∈ Z}
and the function S(eiω) contain the same information.

We now consider the spectrum of a moving average process

y(t) =
∞∑

k=0

Gkε(t − k) (6.30)

where ε is a white noise process with Eε(t)ε(t)T = I, and where
∑∞

k=0 ‖Gk‖ < ∞.

Theorem 6.5.3. The spectrum of the moving average process (6.30) is given by

S(z) =
1
2π

Ĝ(z)ĜT (z−1) (6.31)

where Ĝ(z) :=
∑∞

k=0 Gkz−k.

Proof. It follows from (6.30) that

R(k) = Ey(t)yT (t − k) =
∞∑

i=0

Gi+kGT
i ,

which is also the coefficient of z−k in

Ĝ(z)ĜT (z−1) =
∞∑

i=0

∞∑
j=0

GjG
T
i zi−j .

These series are well defined as
∑∞

k=0 ||Gk|| < ∞. �
From this result we easily obtain the spectrum of an ARMA process with a

coprime, stationary and invertible representation

y(t) = A1y(t−1)+ · · ·+Apy(t−p)+B0ε(t)+B1ε(t−1)+ · · ·+Bqε(t−q). (6.32)

Theorem 6.5.4. The spectrum of an ARMA process (6.32), where ε is a standard
white noise, is given by

S(z) =
1
2π

A−1(z)B(z)BT (z−1)(AT )−1(z−1). (6.33)

Proof. According to Theorem 6.3.3 the filter of the moving average representa-
tion of the process is given by Ĝ(z) = A−1(z)B(z). The result then follows from
Theorem 6.5.3. �

Recall that a stochastic system has a finite dimensional state space realization
if and only its filter is rational. We proved that if the filter is rational, then the
spectrum is rational. Conversely, if the spectrum is rational, one can prove that the
filter is also rational. So, stochastic systems have a finite dimensional state space
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realization if and only if the spectrum is rational. This is similar to the result for
deterministic input-output systems in terms of the transfer function.

Example 6.6. For univariate ARMA processes with E{ε(t)}2 = σ2
ε we obtain

S(eiω) =
σ2

ε

2π

b(e−iω)b(eiω)
a(e−iω)a(eiω)

.

Here a and b are scalar polynomials.
In particular, a standard white noise process has spectrum S(eiω) = (2π)−1,

so that the spectrum is constant for all frequencies. The filter of an AR(1) process
y(t) = αy(t − 1) + ε(t) is given by

Ĝ(z) = A(z)−1 =
1

1 − αz−1
=

∞∑
k=0

αkz−k.

Hence the autocorrelations are R(k) = αk, k ≥ 0. The spectrum of this process is
given by

S(e−iω) =
1

2π(1 + α2 − 2α cosω)
.

If α > 0 the spectrum is monotonically decreasing in ω ∈ [0, π), indicating that
the lower frequencies are dominant in this process. This is in agreement with the
positive correlations R(k) = αk, k ≥ 0, so that this process tends to oscillate less as
compared with white noise. On the other hand, if α < 0 the process oscillates more
heavily, and this translates into a monotonically increasing spectrum in ω ∈ [0, π).
So here the high frequency components are dominant. Such interpretations of the
spectrum can often be made for stationary processes.

6.6 Stochastic Input-Output Systems

In this section we present a short description of the broad class of stochastic
input-output systems that can be described by the convolutions

y(t) =
∞∑

k=0

G1(k)u(t − k) +
∞∑

k=0

G2(k)ε(t − k). (6.34)

In this case the output process y is generated by a linear, time-invariant system
driven by control inputs u and an auxiliary white noise process ε. If Ĝ1(z) =∑∞

k=0 G1(k)z−k and Ĝ2(z) =
∑∞

k=0 G2(k)z−k are both rational, so that Ĝi(z) =
Âi(z)−1B̂i(z) for polynomial matrices Âi, B̂i, i = 1, 2, then the process y can
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be represented in ARMAX form (6.4). Indeed, define A = (det Â1)A2, B =
(det Â1)Â2Â

−1
1 B̂1, and C = (det Â1)B̂2, then A, B and C are polynomial ma-

trices and (6.34) can be written as

y(t)+A1y(t − 1) + · · · + ALy(t − L) = B0ε(t) + B1ε(t − 1) + · · ·
+ BLε(t − L) + C0u(t) + C1u(t − 1) + · · · + CLu(t − L),

(6.35)

where A(z) = I −∑L
k=1 Akz−k, B(z) =

∑L
k=0 Bkz−k, and C(z) =

∑L
k=0 Ckz−k.

The output process y of (6.34) can be decomposed as y = y1 + y2, where the
process y1(t) =

∑∞
k=0 G1(k)u(t−k) describes the impact of the control inputs and

the process y2(t) =
∑∞

k=0 G2(k)ε(t−k) the impact of the disturbance terms. If Ĝ1

and Ĝ2 are both rational, then y1 has a finite dimensional deterministic realization
and y2 a finite dimensional stochastic realization. By combining these models we
obtain a state space representation of the ARMAX process of the form

x(t + 1) = Ax(t) + Bu(t) + Eε(t),
y(t) = Cx(t) + Du(t) + Fε(t).

(6.36)

The models (6.34), (6.35) and (6.36) describe the stochastic properties of
the output process y only after the interdependence between u and ε has been
specified. One possible interpretation of these models is that they describe the
stochastic evolution of y conditionally, for a fixed input trajectory u. This is the so-
called open-loop interpretation. A similar interpretation is possible if the processes
u and ε are uncorrelated. In many cases, however, the input will be correlated
with the noise. This is the case, for example, in controlled processes where u
depends on past observations of y. This leads to a closed-loop interpretation. For
example, a finite dimensional controller could be of the form

∑N
k=0 P (k)u(t−k) =∑N

k=0 Q(k)y(t−k)+
∑N

k=0 R(k)η(t−k), where η is a white noise process modelling
additional influences on the control input. Combining this with (6.35) would lead
to a joint stochastic ARMA model for the external variables (u, y).
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Filtering and Prediction

Stochastic systems can be applied for forecasting purposes. The classical solution
for filtering, smoothing and prediction of linear systems was proposed by Wiener
and Kolmogorov in terms of spectral representations. The Kalman filter is a much
more efficient, recursive solution in terms of state space models.

7.1 The Filtering Problem

For a deterministic input-output system the future outputs are exactly known
once the future inputs have been chosen. For stochastic systems, however, the
future disturbances are unknown, and therefore the future outputs can only be
predicted with some error. The objective is to construct predictions that minimize
the prediction error in some sense. Forecasting is one of the major applications of
stochastic systems, in economics, engineering and many other disciplines.

The filtering problem is formalized as follows. Suppose that two jointly sta-
tionary processes, y and z, are mutually correlated and that the covariances (or
the spectrum) of the joint process are completely known, but that only y is ob-
served and z is not. As an example, you may think of z as the state in a model of
the type (6.19), and y as the output. The aim is to form an optimal reconstruction
ẑ of the unobserved process z on the basis of the observed process y, via some
function f of (possibly only some of) the values {y(s); s ∈ Z}, ie., f{y(s); s ∈ Z}.
So the problem will be to determine this function f .

If for the reconstruction ẑ of z(t) only the past and current values of y, i.e.,
{y(s); s ≤ t}, can be used, this is called filtering. If only {y(s); s ≤ t−m} for some
m > 0 can be used, this is the m-step ahead prediction problem, and if m < 0,
this is called smoothing. The case where m = −∞ is called unrestricted smoothing.
The one-step ahead prediction problem is often called the filtering problem, and
we will pay special attention to this case. For this case, as objective we consider
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here the minimization of the mean squared prediction error,

E‖z(t) − f{y(s); s ≤ t − 1}‖2. (7.1)

In particular, if z = y then this corresponds to the one-step ahead prediction of a
process based on the past observed values of this process.

The next proposition states that for the most common instances of the prob-
lem, when the process {y, z} is jointly Gaussian, we may as well assume that the
function f is a linear function.

Proposition 7.1.1. The optimal predictor in (7.1) is given by the conditional ex-
pectation E{z(t) | y(s); s ≤ t − 1}. This is a linear function in case the process
{y, z} is jointly Gaussian.

Moreover, if the prediction function f in (7.1) is restricted to be linear, then
the optimal solution for arbitrary distributions is as in the Gaussian case.

We do not give a detailed proof here, for a proof see, e.g., [8]. The outline
of the proof is as follows. The optimal solution in (7.1) is obtained by projecting
the components of z(t) on the space of all (measurable) functions spanned by the
components of {y(s); s ≤ t − 1}. This projection is the definition of conditional
expectation. In the Gaussian case the conditional expectation is a linear function. If
we require that the predictor in (7.1) is linear, then the prediction error criterion
depends only on the first and second moments of the processes, so the optimal
solution is the same as in the Gaussian case.

For background material on conditional expectation, see, e.g., [53, Chapter
7, Sections 6 and 7].

Restricting the attention to linear predictors, in particular, to the Gaussian
case, the filtering problem consists of determining the parameters of an optimal
predictor. As the processes y and z are assumed to be jointly stationary, by time-
invariance, instances of the filtering problem all reduce to finding matrices F (k)
such that

ẑ(t) =
∞∑

k=−∞
F (k)y(t − k). (7.2)

In the m-step ahead problem the filter F satisfies F (k) = 0 for k ≤ m − 1. In
particular, the optimal one-step ahead predictor ẑ(t) is given by a time-invariant
filter of the form

ẑ(t) =
∞∑

k=1

F (k)y(t − k). (7.3)

For the smoothing problem we have

ẑ(t) =
∞∑

k=m

F (k)y(t − k)

for some m < 0. The case m = −∞ is called the unrestricted smoothing problem.
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Obviously, the problem is now to determine the matrices F (k) based on given
data for the processes y and z. The solution depends essentially on what we assume
to be known.

As a first illustration, let y be a purely nondeterministic process with invert-
ible moving average representation y(t) =

∑∞
k=0 G(k)ε(t − k). Here the process

ε is standard white noise and can be written as ε(t) =
∑∞

k=0 H(k)y(t − k). We
denote the optimal linear m-step ahead predictor of y on the basis of its own past
by ŷ(t+m | t) = E(y(t+m) | y(s), s ≤ t). We assume here that the matrices G(k)
are known, and we are interested in the case y = z. In this case the m-step ahead
prediction problem has a particularly easy solution.

Proposition 7.1.2. Let y(t) =
∑∞

k=0 G(k)ε(t − k) be a causal and invertible MA
representation with ε standard white noise. Then the optimal linear m-step ahead
predictor of y is given by

ŷ(t + m | t) =
∞∑

k=m

G(k)ε(t + m − k) (7.4)

and the covariance matrix of the prediction error ŷ(t+m|t)− y(t+m) is equal to∑m−1
k=0 G(k)G(k)T .

Proof. Observe that y(t+m) =
∑m−1

k=0 G(k)ε(t+m−k)+
∑∞

k=m G(k)ε(t+m−k).
Now ŷ(t + m|t) =

∑∞
k=m G(k)ε(t + m − k), because for s > t the white noise

ε(s) is uncorrelated with y(t), and due to the invertibility of the moving average
representation

E(y(t + m)|y(s); s ≤ t) = E(y(t + m)|ε(s); s ≤ t).

This proves (7.4) and also

y(t + m) − ŷ(t + m|t) =
m−1∑
k=0

G(k)ε(t + m − k).

The latter formula gives that the error that it expresses has covariance matrix∑m−1
k=0 G(k)G(k)T . �

Let us consider what this means for a causal and invertible ARMA (p,q)-
process y(t) =

∑p
k=1 Aky(t − k) + ε(t) +

∑q
k=1 Bkε(t − k). First observe that

y(t) − ŷ(t|t − 1) = ε(t), and that ŷ(t|t − 1) is linear in ε(s) and y(s), s < t.
Note that E(ε(t)|y(s); s < t) = 0, E(y(s − k)|y(s); s < k) = y(s − k), and
E(ŷ(t − k|t − k − 1)|y(s); s < t) = ŷ(t − k|t − k − 1). Thus

ŷ(t | t − 1) =
p∑

k=1

Aky(t − k) +
q∑

k=1

Bk{y(t − k) − ŷ(t − k | t − k − 1)}. (7.5)
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Note that this is a recursive expression for the one-step ahead predictor. Similarly
we obtain for the two-step ahead predictor

ŷ(t | t − 2) = A1ŷ(t − 1 | t − 2) +
∑p

k=2 Aky(t − k)
+
∑q

k=2 Bk{y(t − k) − ŷ(t − k | t − k − 1)}.

An analogous formula holds for the m-step ahead predictor.

7.2 Spectral Filtering

Wiener and Kolmogorov solved the filtering problem in terms of the spectral prop-
erties of the processes. Suppose that the joint process (y, z) has zero mean and that
it has no perfectly predictable component. The process y then has an invertible MA
representation, see Theorem 6.2.4. We denote this by y(t) =

∑∞
k=0 Gy(k)ε(t − k),

where Ĝy(z) =
∑∞

k=0 Gy(k)z−k. Denote the autocovariances by

Ryy(k) := E(y(t)yT (t − k)) and Rzy(k) := E(z(t)yT (t − k)),

and the spectra by Syy(eiω) and Szy(eiω) respectively, as defined in formula (6.27).
According to Theorem 6.5.3 there holds

Syy(eiω) =
1
2π

Ĝy(eiω)Ĝy

T
(e−iω).

We shall assume here that the information given to us regarding the pro-
cesses y and z is the spectra Syy and Szy, or equivalently, the autocovariances Ryy

and Rzy. Although, as already stated, the process y has an invertible MA repre-
sentation y(t) =

∑∞
k=0 Gy(k)ε(t − k) we do not assume that the function Ĝy(z)

is known. In fact, it turns out that finding this function is the key step in solving
the m-step ahead filtering (or smoothing) problem.

The solution of the filtering problem in terms of the spectral properties of
the process is rather straightforward in the unrestricted smoothing case.

Proposition 7.2.1. For the joint Gaussian process (y, z) with zero mean and no
predictable component and given spectra Syy and Szy, we define

F̂ (eiω) = Szy(eiω)S−1
yy (eiω) =

∞∑
k=−∞

F (k)e−ikω .

Then ẑ(t) =
∑∞

k=−∞ F (k)y(t− k), is the best linear predictor for z(t) based on all
y(s).
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Proof. The prediction ẑ(t) should be such that E(z(t) − ẑ(t))yT (s) = 0 for all s.
So for each k the condition is that

Rzy(k) = Eẑ(t)yT (t − k) = E

( ∞∑
i=−∞

F (i)y(t − i)

)
yT (t − k)

=
∞∑

i=−∞
F (i)Ey(t − i)yT (t − k) =

∞∑
i=−∞

F (i)Ryy(k − i) k ∈ Z.

The very left-hand side of this equality is the coefficient of e−ikω in Szy(eiω) and
the right-hand side is the coefficient of e−ikω in F̂ (eiω)S−1

yy (eiω). �
The set of equations Rzy(k) =

∑∞
i=−∞ F (i)Ryy(k − i) for the unknown F (i)

is sometimes called the discrete time Wiener–Hopf equation.
The solution of the m-step ahead prediction problem needs a factorization

of the spectrum of the observed process y. That is, we need the function Ĝy

explicitly. The problem to recover the MA filter Ĝy from the spectrum Syy(eiω) =
1
2π Ĝy(eiω)Ĝy

T
(e−iω) is called the spectral factorization problem. In particular, we

wish to determine the so-called Wold factor, that is Ĝy should be causal and should
have a causal inverse. For the case where Syy is a rational matrix-valued function
this means that Gy should be a rational matrix-valued function with all its poles
in the open unit disc, and its inverse should also have all its poles in the open unit
disc. The problem can be solved by means of state space techniques for rational
spectra, as we will see in the next section.

Before stating the theorem, we introduce the following notation: for a formal
power series H(z) :=

∑∞
k=−∞ Hkz−k we use the notation [H ]+m :=

∑∞
k=m Hkz−k.

Theorem 7.2.2. (i) For the joint Gaussian process (y, z) with zero mean and no
predictable component and given spectra Syy and Szy, assume that Ĝy is a causal

filter with causal inverse such that Syy(eiω) = 1
2π Ĝy(eiω)Ĝy

T
(e−iω). We define

F̂m(eiω) =
∞∑

k=m

Fm(k)e−ikω = [2πSzy(eiω){Ĝy

T
(e−iω)}−1]+m{Ĝy(eiω)}−1.

Then ẑ(t) =
∞∑

k=m

Fm(k)y(t − k), is the optimal m-step ahead predictor.

(ii) If z(t) = y(t), then

F̂m(eiω) =
∞∑

k=m

Fm(k)e−ikω = [Ĝy

T
(e−iω)]+mĜy

−1
(eiω)

gives the optimal m-step ahead predictor, that is

ŷ(t | t − m) =
∞∑

k=m

Gy(k)ε(t − k).
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Proof. The m-step ahead prediction ẑ(t) should be orthogonal to the space of
available observations, that is, E{z(t)− ẑ(t)}yT (s) = 0 for all s ≤ t−m. So for k ≥
m the condition is that Rzy(k) = Eẑ(t)yT (t−k). Let F̂∞(eiω) = Szy(eiω)S−1

yy (eiω)
According to Proposition 7.2.1 the process F∞y is the optimal linear prediction
of z based on y. Hence, η = z − F∞y is uncorrelated with y. Put y = Gyε with ε

a standard white noise and Ĥ = F̂∞Ĝy. Then η = z − Hε and η is uncorrelated
with ε. Defining Gy(k) = 0 for k < 0 and Ĝy(eiω) =

∑∞
k=0 Gy(k)(e−ikω), we get

that

E‖z(t) −
∞∑

k=m

Fm(k)y(t − k)‖2

= E‖η(t)‖2 + E‖
∞∑

j=−∞
H(j)ε(t − j) −

∞∑
k=m

∞∑
j=0

Fm(k)Gy(j)ε(t − k − j)‖2

= E‖η(t)‖2 + E‖
∞∑

j=−∞
H(j)ε(t − j) −

∞∑
j=m

{
∞∑

k=m

Fm(k)Gy(j − k)}ε(t − j)‖2.

As the process ε is white noise, the optimal solution is obtained by taking
∞∑

k=m

Fm(k)Gy(j − k) = H(j) for all j ≥ m.

This means that the coefficients in F̂m(eiω)Ĝy(eiω) should coincide with those in
Ĥ(eiω) for all terms e−ijω with j ≥ m, i.e., F̂m(eiω)Ĝy(eiω) = [Ĥ(eiω)]+m.

Finally, to prove (ii), apply result (i) with z = y. Notice that we get Ĥ = Ĝy

and hence F̂m(eiω)Ĝy(eiω) = [Ĝy(eiω)]+m. Hence ŷ = Fy = FGyε = [Gy]+mε, which
means ŷ(t | t − m) =

∑∞
k=m Gy(k)ε(t − k). This is in agreement with (7.4). �

In the case of univariate rational spectra, i.e., univariate ARMA processes,
the spectral factor can be constructed from formula (6.33). We illustrate this by
a simple example.

Example 7.1. Consider the ARMA(1,1) model y(t) = ay(t−1)+ε(t)+bε(t−1) with
σ2

ε = 1. Assume that this model is causal and invertible, so that, −1 < a < 1 and
−1 < b < 1. In this case the spectral factor is Ĝ(e−iω) = {1+be−iω}/{1−ae−iω} =
1+(a+ b)

∑∞
k=1 ak−1e−ikω . Here a and b are easily determined from the spectrum

in (6.33), as a is the stable pole and b is the stable zero of this function.
So for m ≥ 1 the m-step ahead predictor is given by

[Ĝ(e−iω)]+mĜ−1(e−iω) = (a + b)
∞∑

k=m

ak−1e−ikω · 1 − ae−iω

1 + be−iω

= (a + b)am−1e−imω
∞∑

k=0

(−b)ke−ikω .
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So the optimal predictor of y(t + m) based on the data {y(s); s ≤ t} is obtained
from

ŷ(t + m | t) = (a + b)am−1
∞∑

k=0

(−b)ky(t − k).

The variance of the prediction error is

1 +
m−1∑
k=1

{(a + b)ak−1}2 = 1 + (a + b)2 · 1 − a2m−2

1 − a2
.

For m → ∞ this tends to the unconditional variance 1 + (a + b)2/(1 − a2) of the
process, as would be expected.

Note that for an MA(1) process, with a = 0, one has

ŷ(t + 1 | t) = b

∞∑
k=0

(−b)ky(t − k) = bε(t)

and ŷ(t + m | t) = 0 for m ≥ 2, which reflects that process values more than one
time unit apart are uncorrelated. For an AR(1) process, with b = 0, it follows that
ŷ(t + m | t) = amy(t). These results are also easily obtained from Proposition
7.1.2.

7.3 The Kalman Filter

An efficient approach to filtering and prediction was developed by Kalman and
Bucy. Here the starting point is not a spectral representation of the process, but
a state space model, that is⎧⎪⎨⎪⎩

x(t + 1) = Ax(t) + Fε(t),
y(t) = C1x(t) + G1ε(t),
z(t) = C2x(t) + G2ε(t).

(7.6)

We make the following assumptions. The white noise process ε has zero mean
and covariance Eε(t)εT (t) = I, which can always be achieved by appropriate
transformations. The matrices in (7.6) are given. However, we do not require that
A is a stable matrix, that is, the processes need not be causal. The process y is
assumed to have no perfectly predictable component. For this reason we assume
that G1 has full row rank, i.e., has linearly independent rows. We further assume
that observations y(t) are available for t ≥ 0, and that the initial condition x(0) is
a zero mean Gaussian random variable with covariance matrix P (0). Finally, we
assume that x(0) is independent of ε(t) for t ≥ 0.

As before, we consider the problem (7.1) of optimal filtering of z on the ba-
sis of observations from y. For simplicity we restrict the attention to Gaussian
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processes, because the solution for this case is also optimal among the linear pre-
dictors for arbitrary distributions. As Eε(t)yT (s) = 0 for all s < t, it follows from
(7.6) that the optimal filter ẑ(t) is given by ẑ(t) = C2x̂(t), where,

x̂(t) = E(x(t) | y(s), 0 ≤ s ≤ t − 1). (7.7)

So the filtering problem can be expressed in terms of the question how to predict
the state in (7.6) from the observations of the process y. As this does not cause
any additional problems, we will consider this state filtering problem for ARMAX
systems with exogenous inputs, that is, for which the inputs are completely un-
correlated with the outputs

Eu(t)yT (s) = 0 for all t, s ≥ 0.

So we consider systems of the form

x(t + 1) = Ax(t) + Bu(t) + Fε(t), (7.8)

y(t) = Cx(t) + Du(t) + Gε(t), (7.9)

where the white noise process ε has zero mean and unit covariance matrix, and
where the matrix G has full row rank. We remark that if x in (7.6) is a minimal
state for the joint process (y, z), then it is also a state for the process y, but in
general not a minimal one. Also the number of auxiliary noise variables ε is in
general not minimal for the representation of y. We will show that the process x̂
of (7.7) is also a (non-minimal) state for y, although in general not for (y, z).

The solution of the filtering problem (7.7) for the system (7.8), (7.9) is given
by the Kalman–Bucy filter. We use the notation

ŷ(t) := E(y(t) | y(s); 0 ≤ s ≤ t − 1) = Cx̂(t) + Du(t) (7.10)

and denote the corresponding prediction error by

ω(t) = y(t) − ŷ(t) = y(t) − Cx̂(t) − Du(t). (7.11)

This is the forward innovations process. Further we denote the covariance matrix
of the state reconstruction error by

P (t) = E
(
x(t) − x̂(t)

)(
x(t) − x̂(t)

)T
.

The following result gives recursive formulas for the computation of x̂ and P ,
which are of immediate use in prediction and filtering.

Theorem 7.3.1. The optimal filter for the state is given by

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)ω(t), x̂(0) = 0, (7.12)

where
ω(t) = y(t) − Cx̂(t) − Du(t),
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and where K(t) is defined recursively in terms of P (t) as follows:

K(t) = {AP (t)CT + FGT }{CP (t)CT + GGT }−1, (7.13)

P (t+1) = {A−K(t)C}P (t){A−K(t)C}T +{F −K(t)G}{F −K(t)G}T , (7.14)

where P (0) is the covariance matrix of x(0).

Before proving the theorem, let us comment on the recursive nature of the
the filter computation. First of all, given P (0), the matrices P (t) and K(t) can
be computed independent of observations of the process y(t) and the input u(t).
Then, as soon as we know u(0) and have observed y(0) we also know ω(0) =
y(0) − Du(0). From this we can compute x̂(1). Once we have the input u(1)
we can also compute ŷ(1). Subsequently, after observing y(1) we can compute
ω(1) = y(1) − Cx̂(1) − Du(1), as well as x̂(2), and we continue in this fashion.

Note that the optimal filter has the structure of a state observer.
Let us also comment on the choice of P (0), which may or may not be given.

In case P (0) = 0 we have x(0) = 0 and conversely, if x(0) is deterministic, we have
P (0) = 0. In case P (0) is unknown one can make appropriate choices, which we
shall comment upon in the next section.

Proof. As the inputs are exogenous they can be considered as fixed. For simplicity
we assume that u(t) = 0 for all t ≥ 0 and that P (0) is given as the covariance
matrix of x(0). We put x̂(0) = 0, motivated by x̂(0) = E(x(0) | y(s), 0 ≤ s ≤
−1) = 0. The proof for the general case can be done in an analogous way. Under
these assumptions, ε, x, y, x̂ and ω all are Gaussian process with zero mean. It
follows from (7.8), (7.9) and (7.11) that the components of {y(s), s ≤ t}, and those
of {ω(s), s ≤ t} span the same subspace of random variables as the components
of {ε(s), s ≤ t}. Remark that Eω(t)ω(s)T = 0 for all s �= t.

To prove (7.12) we make the following computation

x̂(t + 1) = E
(
x(t + 1) | y(s), s ≤ t

)
= E
(
x(t + 1) | ω(s), s ≤ t

)
= E
(
x(t + 1) | ω(s), s ≤ t − 1

)
+ E
(
x(t + 1) | ω(t)

)
= E
(
Ax(t) + Fε(t) | ω(s), s ≤ t − 1

)
+ E
(
x(t + 1) | ω(t)

)
= Ax̂(t) + E

(
x(t + 1) | ω(t)

)
.

Here we used in the second line the orthogonality of ω(t) and {ω(s), s ≤ t − 1},
and in the third line the fact that ε(t) is uncorrelated with {ε(s), s ≤ t−1}, hence
also with {ω(s), s ≤ t − 1}. According to Section 6.4 we have that

E
(
x(t + 1) | ω(t)

)
= E
(
x(t + 1)ω(t)T

)
E
(
ω(t)ω(t)T

)−1
.

So to prove (7.12) and (7.13) it is sufficient to show that

Eω(t)ω(t)T = CP (t)CT + GGT , (7.15)
Ex(t + 1)ω(t)T = AP (t)CT + FGT . (7.16)
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To check the first formula remark that ω(t) = y(t)− ŷ(t) = C(x(t)− x̂(t))+Gε(t),
and use that x(t)− x̂(t) and ε(t) are uncorrelated because x(t) and x̂(t) are linear
functions of {ε(s), s ≤ t − 1}. For the second formula we observe

Ex(t + 1)ω(t)T = E
(
Ax(t) + Fε(t)

)(
Cx(t) + Gε(t) − Cx̂(t)

)T
= E
(
A(x(t) − x̂(t)) + Ax̂(t) + Fε(t)

)(
C(x(t) − x̂(t)) + Gε(t)

)T
= AP (t)CT + FGT ,

because x(t)− x̂(t) and x̂(t) are uncorrelated with ε(t), and because x(t)− x̂(t) is
orthogonal to x̂(t). We have proved (7.12) and (7.13).

The result in (7.14) follows from

x(t + 1) − x̂(t + 1) = A(x(t) − x̂(t)) + Fε(t) − K(t)ω(t)
= A(x(t) − x̂(t)) + Fε(t) − K(t)(C(x(t) − x̂(t)) + Gε(t))
= (A − K(t)C)(x(t) − x̂(t)) + (F − K(t)G)ε(t)

and the fact that x(t) − x̂(t) and ε(t) are uncorrelated. �
Rewrite the equations (7.12) and (7.11) as

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)ω(t), (7.17)
y(t) = Cx̂(t) + Du(t) + ω(t). (7.18)

This is a state space model for the process y, with state x̂ and with the innovations
ω as driving noise process. The state updating equation (7.17) expresses the new
state in terms of the predicted part, Ax̂(t) + Bu(t), and an adjustment based on
the prediction error ω(t). The so-called Kalman gain K(t) measures the extent
in which this new information is taken into account. The filter is recursive and
the matrix recursions (7.13), (7.14) are independent of the data. This means that
the Kalman gain K(t) and the error covariances P (t) can be computed off-line,
before the actual observations are coming in. This is an attractive property for
applications that require fast updating.

The Kalman filter can be applied directly in prediction.

Proposition 7.3.2. The optimal one-step ahead predictor is given by

ŷ(t) = Cx̂(t) + Du(t),

with covariance matrix of the prediction error equal to

E
((

(y(t) − ŷ(t)
)(

y(t) − ŷ(t)
)T) = CP (t)CT + GGT .

The optimal m-step ahead predictor (for given inputs) is

ŷ(t + m− 1 | t− 1) = CAm−1x̂(t) + Du(t + m− 1) +
m−1∑
j=1

CAj−1Bu(t + m− 1− j)
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with prediction error covariance

CAm−1P (t)(AT )m−1CT + GGT +
m−1∑
j=1

CAj−1GGT (AT )j−1CT .

Proof. The results on the one-step ahead predictor appeared already in the for-
mulas (7.10) and (7.15).

For m-step ahead prediction note that (7.8) and (7.9) imply that

y(t + m − 1) = CAm−1x(t) + Du(t + m − 1) + Gε(t + m − 1)
+
∑m−1

j=1 CAj−1
(
Bu(t + m − 1 − j) + Gε(t + m − 1 − j)

)
.

Since ε(j) is uncorrelated with y(s) for j ≥ s we have

ŷ(t + m − 1 | t− 1) = CAm−1E
(
x(t) | y(s), s < t)

)
+ Du(t + m − 1)

+
∑m−1

j=1 CAj−1
(
Bu(t + m − 1 − j)

)
.

This proves the formula for ŷ(t + m − 1 | t − 1). Furthermore

y(t + m − 1) − ŷ(t + m − 1 | t − 1) = CAm−1(x(t) − x̂(t)) + Gε(t + m − 1)
+
∑m−1

j=1 CAj−1Gε(t + m − 1 − j).

Again use that x(t)− x̂(t) is uncorrelated with ε(s) for s ≥ t to obtain the formula
for covariance of y(t + m − 1) − ŷ(t + m − 1 | t − 1), i.e., the prediction error
covariance. �

The Kalman filter can also be used in smoothing and filtering. Let obser-
vations {y(t), t = 0, . . . , N} be available and suppose we wish to determine the
smoothed value x̂(t0 |N) = E

(
x(t0) | y(t), t = 0, . . . , N

)
, for some 0 ≤ t0 ≤ N .

Define the extended state by xe(t) =
(
x(t)T x(t0)T

)T , then we can rewrite (7.8)
and (7.9) in terms of this extended state with parameters

Ae =
(

A 0
0 I

)
, Be =

(
B
0

)
, Ce =

(
C 0
)
, De = D, Fe =

(
F
0

)
, Ge = G.

Applying the Kalman filter to this extended system, we obtain x̂e(N + 1) =
E
(
xe(N +1) | y(t), t = 0, . . . , N

)
, and therefore also x̂(t0 |N). In fact, it is not nec-

essary to run the Kalman filter separately for every time instant t0. All smoothed
values x̂(t |N) can be calculated by first applying the Kalman filter, followed by
a backward recursion starting from the final filtered state x̂(N + 1) in (7.12). For
algorithmic details we refer to [22], [1].
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The following result solves the true filtering problem, that is, the best state
estimate based on the past and current observations.

Proposition 7.3.3. The filtered state x̂(t | t) := E{x(t) | y(s); 0 ≤ s ≤ t} and its
error covariance P (t | t) := E

(
bigl(x(t) − x̂(t | t))(x(t) − x̂(t | t))T) are given by

x̂(t | t) = x̂(t) + P (t)CT {CP (t)CT + GGT }−1ω(t), (7.19)

P (t | t) = P (t) − P (t)CT {CP (t)CT + GGT }−1CP (t). (7.20)

Proof. The space spanned by the components of {y(s); 0 ≤ s ≤ t} can be decom-
posed into the two orthogonal components, the first spanned by the components
of {y(s); 0 ≤ s ≤ t − 1} and the second spanned by the components of {ω(t)}.
Because of this, and using that (x(t), ω(t)) has a joint Gaussian distribution, it
follows that

x̂(t | t) = E
(
x(t) | y(s), s ≤ t − 1

)
+ E
(
x(t) |ω(t)

)
= x̂(t) + E

(
x(t)ω(t)T

)
E
(
ω(t)ω(t)T

)−1
ω(t).

Here E
(
ω(t)ω(t)T

)
= CP (t)CT + GGT and

Ex(t)ω(t)T = E
((

x(t) − x̂(t)
)(

Cx(t) − Cx̂(t) + Gε(t)
)T) = P (t)CT ,

because Ex̂(t)ω(t)T = 0, Ex(t)εT (t) = 0 and Ex̂(t)εT (t) = 0. This proves (7.19).
Further, let L(t) := P (t)CT {CP (t)CT +GGT }−1, and recall that E(ω(t)ω(t)T ) =
CP (t)CT and E(x(t)ω(t)T ) = P (t)CT . Then

P (t | t) = E
((

x(t) − x̂(t) − L(t)ω(t)
)(

x(t) − x̂(t) − L(t)ω(t)
)T)

= P (t) + L(t)E(ω(t)ω(t)T )L(t)T

−E
((

x(t) − x̂(t)
)
ωT (t)
)
L(t)T − L(t)E

(
ω(t)
(
x(t) − x̂(t)

)T)
= P (t) + P (t)CT L(t)T − P (t)CT L(t)T − L(t)CP (t)
= P (t) − L(t)CP (t),

where we also used the fact that Ex̂(t)ωT (t) = 0. This shows (7.20). �

Example 7.2. Consider again the ARMA(1,1) model y(t) = ay(t−1)+ε(t)+bε(t−1)
with σ2

ε = 1. Define x(t) = ay(t − 1) + bε(t − 1), then y(t) = x(t) + ε(t) and
x(t + 1) = ay(t) + bε(t) = ax(t) + (a + b)ε(t). So a state space representation is
obtained by defining the parameters in (7.8), (7.9) by

A = a, B = 0, C = 1, D = 0, F = a + b, G = 1.
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Suppose that x(0) is a zero mean Gaussian random variable with variance p(0),
then the filter equations (7.12), (7.13) and (7.14) are given by

x̂(t + 1) = ax̂(t) + k(t)(y(t) − x̂(t)) = (a − k(t))x̂(t) + k(t)y(t),
k(t) = (ap(t) + a + b)/(p(t) + 1),

p(t + 1) = p(t)(a − k(t))2 + (a + b − k(t))2.

We consider the case of an MA(1) process in more detail. Then a = 0 and
y(t) = ε(t) + bε(t − 1). By substituting (7.13) in (7.14) it follows that p(t + 1) =
b2p(t)/(1 + p(t)), or more explicitly

p(t + 1) =
p(1)b2t

(1 + p(1)
∑t−1

j=0 b2j)
.

If the MA process is invertible, that is, if |b| < 1, then p(t) → 0 as t → ∞. So,
in the limit, we can reconstruct the state x(t) = bε(t − 1) without error from
the information {y(s), 0 ≤ s ≤ t − 1}. We also refer to Example 6.4, in this case
ε(t) =

∑∞
k=0(−b)ky(t − k), so that ε(t − 1) is a function of {y(s), s ≤ t − 1}. The

error occurs because the observations {y(s), s ≤ −1} are not available, but this
error disappears in the limit when |b| < 1.

If b = ±1, then still p(t) → 0 for t → ∞. On the other hand, if |b| > 1,
then by rewriting p(t + 1) = p(1)b2t(1− b2)/(1− b2 + p(1)(1− b2t)) it follows that
p(t) → b2 − 1 for t → ∞. So in this case the error does not vanish in the limit.

Example 7.3. Suppose that z is a random process that is observed under noise.
We assume that

z(t + 1) = z(t) + ε1(t), y(t) = z(t) + ε2(t),

where (ε1(t), ε2(t))T is a bivariate Gaussian white noise process with mean zero

and covariance matrix
(

σ2
1 0
0 σ2

2

)
. Here y is observed, but z is unobserved. This

was proposed, for instance as a possible model of price formation in Example 1.1,
where y denotes the observed price and z the underlying fundamental price that
is affected by random variations in the market. The aim here is to construct an
optimal estimate of the fundamental price on the basis of past observations, that
is, the filtering problem ẑ(t) = E (z(t) | y(s), 0 ≤ s ≤ t − 1). This is solved by the
Kalman filter, where the matrices in (7.8) and (7.9) are given by

A = 1, B = 0, C = 1, D = 0, F =
(
σ1 0
)
, G =

(
0 σ2

)
.

Substituting (7.13) in (7.14) the filter formulas are

k(t) =
p(t)

p(t) + σ2
2

, p(t + 1) =
p(t)(σ2

1 + σ2
2) + σ2

1σ2
2

p(t) + σ2
2

,



96 Chapter 7. Filtering and Prediction

and the optimal estimate is given by

ẑ(t + 1) = ẑ(t) + k(t)(y(t) − ẑ(t)) = (1 − k(t))ẑ(t) + k(t)y(t).

This is also called an adaptive expectations model, where the expectations ẑ(t)
are updated because of the prediction errors y(t) − ẑ(t). If t → ∞ then for every
p(0) > 0 the sequence p(t) converges to the positive solutions of the equation
p = ((σ2

1 + σ2
2)p + σ2

1σ
2
2)/(p + σ2

2), that is, to p = 1
2 (σ2

1 +
√

σ4
1 + 4σ2

1σ
2
2). The

corresponding gain is

k =
σ2

1 +
√

σ4
1 + 4σ2

1σ
2
2

σ2
1 + 2σ2

2 +
√

σ4
1 + 4σ2

1σ2
2

.

So 0 < k < 1, and k is small if σ2
2 is large relative to σ2

1 , and k is large if σ2
2 is small

relative to σ2
1 . In the limit, the adaptive expectations model can be rewritten as

the following forecast model for the process y:

ŷ(t + 1) = ẑ(t + 1) = ẑ(t) + k(y(t) − ẑ(t)) = k

∞∑
j=0

(1 − k)jy(t − j).

This is also called the method of exponentially weighted moving averages for fore-
casting. The forecast series ŷ(t) is smooth if k ≈ 0, that is, if the variance σ2

2 in
the observations is large relative to the variance σ2

1 in the underlying process. On
the other hand, if k ≈ 1, so that the observation variance σ2

2 is relatively small,
then ŷ(t) ≈ y(t − 1) and so the up- and down- movements of the observed series
are followed fast.

7.4 The Steady State Filter

The application of the Kalman filter requires initial values x̂(0) and P (0) in the
recursion (7.12) and (7.14). If the observed series is relatively short then the results
may be sensitive with respect to these initial values. Their specification becomes
less important if the number of observations increases. Under appropriate condi-
tions the filter becomes time-invariant and independent of the initial conditions if
the number of observations tends to infinity. To make this more precise, we first
state an auxiliary result.

Proposition 7.4.1. The recursions (7.13) and (7.14) are equivalent to

P (t + 1) = AP (t)AT + FFT

− (GFT + CP (t)AT )T (CP (t)CT + GGT )−1(GFT + CP (t)AT ).
(7.21)

Proof. The result follows by substituting (7.13) into (7.14) and rewriting the re-
sulting expression. �
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The filter Riccati equation (7.21) closely resembles the control Riccati equa-
tion (5.11). The result in Theorem 5.3.2 describes the limiting properties for t → ∞
of this equation. As before we assume that y has no perfectly predictable compo-
nent, so that G has full row rank and GGT is invertible.

Theorem 7.4.2. Assume that the pair (A−FGT (GGT )−1C, F −FGT (GGT )−1G)
is stabilizable, and that the pair (A, C) is detectable. Then the following hold true.

(i) For any positive definite P (0), the solution of (7.21) converges as t → ∞ to a
positive semidefinite matrix P , which does not depend on the choice of P (0).
The corresponding solution K of (7.13) is such that A − KC is stable.

(ii) P is the unique positive semidefinite solution of the algebraic Riccati equation

P = APAT + FFT − (GFT + CPAT )T (GGT + CPCT )−1(GFT + CPAT ).
(7.22)

Proof. This follows directly from Theorem 5.3.2. �

The assumptions in the theorem are satisfied, for example, if A is a stable
matrix with (A, C) observable and with FGT = 0. This is the case if y is a
stationary process with representation (6.19), (6.20) with Σ12 = 0. However, the
assumptions in the theorem are far more general.

Note that the theorem also gives insight in the choice of P (0) for the Kalman
filter when P (0) is unknown. It turns out that in case the assumptions of the
theorem are satisfied the choice of P (0) is immaterial to the asymptotic behaviour
of the Kalman filter, provided we take P (0) to be positive definite.

Under the above conditions, the Kalman filter converges to the so-called
steady state filter

x̂(t + 1) = Ax̂(t) + Bu(t) + Kω(t),
y(t) = Cx̂(t) + Du(t) + ω(t),

(7.23)

K = (APCT + FGT )(GGT + CPCT )−1. (7.24)

The state equation can be written as x̂(t + 1) = (A−KC)x̂(t) + (B −KD)u(t) +
Ky(t), and as A − KC is stable this means that the filtered state x̂ is indeed a
strictly causal function of the observed process y.

Next we consider this model without control inputs, that is, with u(t) = 0
for all t ∈ Z. We further assume that y is a stationary process with no perfectly
predictable component and with rational spectrum. In this case the steady state
filter has several interesting interpretations. It corresponds to the Wold decompo-
sition of the process (Theorem 6.2.4), it provides a causal and invertible ARMA
representation (Section 6.3), it solves the rational spectral factorization problem
(Section 7.2), and it gives a state representation with minimal state covariance
matrix (Theorem 6.4.5).
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First we consider the Wold decomposition. So we wish to determine a mov-
ing average representation y(t) =

∑∞
k=0 G(k)ε(t − k) with causal inverse ε(t) =∑∞

k=0 H(k)y(t−k). This can also be formulated as the spectral factorization prob-
lem, that is, the rational spectrum S of the process y should be factorized as
S(z) = 1

2π G(z)G(z−1)T , where G is a rational causal function with causal inverse.
Writing G(z) = A(z)−1B(z) with A(z) and B(z) polynomial matrices, this also
corresponds to a causal and invertible ARMA representation of the process.

Theorem 7.4.3. Every purely nondeterministic stationary process with rational
spectrum and with no perfectly predictable component has a causal and invertible
ARMA representation. The corresponding spectral factor is given by

G(z) = (I + C(zI − A)−1K)(GGT + CPCT )1/2 (7.25)

where (A, C, F, G) define a realization (7.8), (7.9) (with B = 0 and D = 0) and
with P and K as defined in (7.22) and (7.24). The Wold decomposition of the
process has filter (7.25).

Proof. Because the spectrum of y is rational, it has a state space realization (7.8),
(7.9) with A stable, B = 0 and D = 0. Take a minimal realization, so that in partic-
ular, (A, C) is observable, and let n be the dimension of the state space, so that A is
an n×n matrix. The corresponding steady state Kalman filter realization is given
by (7.23) (again, with B = 0, D = 0). Put Q =

(
CT AT CT . . . (AT )n−1CT

)T ,
then this matrix has full column rank n. Now⎛⎜⎝ y(t)

...
y(t + n − 1)

⎞⎟⎠ = Qx̂(t) + R

⎛⎜⎝ ω(t)
...

ω(t + n − 1)

⎞⎟⎠ ,

where R is a matrix that can be determined explicitly in terms of A, C and K. It
follows that x̂(t) can be expressed in terms of y(s) and ω(s) for t ≤ s ≤ t + n− 1.
Substituting this in the state space equation we obtain an ARMA representation
of the process y with ω as the driving noise process. This model is causal, as
y(t) = ω(t) +

∑∞
k=1 CAk−1Kω(t − k), and invertible, as ω(t) = y(t) − Cx̂(t) is

by construction a function of {y(s), s ≤ t} (see (7.11)). As y is a causal function
of ω and ω is also a causal function of y, this model corresponds to the Wold
decomposition.

Finally, the spectral factor follows from the filter I + C(zI − A)−1K that
produces y from ω, where ω is white noise with ω(t) = y(t) − Cx̂(t) =
C(x(t) − x̂(t)) + Gε(t), so that its covariance matrix is given by GGT + CPCT

(see also Proposition 7.3.2). �
Now consider a process y with given covariances {R(k), k ∈ Z} and minimal

realization (A, C, M) such that R(k) = CAk−1M for k ≥ 1. The corresponding
stochastic realization problem is discussed in Section 6.4, see in particular Theorem
6.4.5. For given (A, C, M), Π− denotes the minimal achievable covariance matrix
of the state in realizations of the process y.
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Theorem 7.4.4. For given (A, C, M) with R(k) = CAk−1M for k ≥ 1, consider
the steady state filter (7.23), with B = 0 and D = 0, i.e.,

x̂(t + 1) = Ax̂(t) + Kω(t),
y(t) = Cx̂(t) + ω(t),

(7.26)

where
K = (APCT + FGT )(GGT + CPCT )−1. (7.27)

Denote the covariance matrix of the state X̂ in (7.26) by Π−. Then Π− is minimal
among all covariance matrices of all possible state space representations with the
same (A, C, M), and Π− satisfies the algebraic Riccati equation (6.25), that is

Π = AΠAT + (M − AΠCT )(R(0) − CΠCT )−1(M − AΠCT )T .

Proof. For fixed (A, C, M) let (7.8), (7.9) with B = 0 and D = 0, be an arbitrary
realization of the process. The optimal predictor of the state of this process is given
by x̂(t) = E (x(t) | y(s), s ≤ t − 1). The steady state Kalman filter (7.26), with K
given by (7.27) is another realization of the process. The matrices A, C and M
are the same for this representation as for the original one. For the matrix M this
follows because M = Ex(t + 1)y(t)T , see Proposition 6.4.4, and Ex(t + 1)y(t)T =
Ex̂(t+1)y(t)T as x̂ is the optimal predictor, so that x̂(t+1)−x(t+1) is uncorrelated
with {y(s), s ≤ t}. Because it is an optimal predictor, it follows that the covariance
matrix of x̂(t) is not larger than that of x(t), that is, cov(x(t))−cov(x̂(t)) is positive
semidefinite. This holds true for every realization with the same matrices A, C, M ,
so it follows that cov(x̂(t)) = Π−, by definition.

It remains to show that Π− satisfies the algebraic Riccati equation (6.25).
The steady state Kalman filter realization is given by (7.26). Here x̂(t) and ω(t)
are uncorrelated, as ω(t) = y(t)− ŷ(t) is uncorrelated with {y(s), s ≤ t− 1}. This
shows that Π− = AΠ−AT + KΣωKT , where Σω = Eω(t)ω(t)T = R(0)−CΠ−CT

is the covariance matrix of ω(t). Further, M = Ex̂(t + 1)y(t)T , which by (7.23)
is equal to E(Ax̂(t) + Kω(t))(Cx̂(t) + ω(t))T = AΠ−CT + KΣω, so that K =
(M − AΠ−CT )Σ−1

ω . Combining these results we get that Π− satisfies

Π− = AΠ−AT + (M − AΠ−CT )(R(0) − CΠ−CT )−1(M − AΠ−CT )T ,

that is, Π− satisfies (6.25). �
Note that this motivates us to take for P (0) in the Kalman filter the choice

P (0) = Π− when P (0) happens to be unknown, even though the long term be-
haviour of the Kalman filter is asymptotically the same for all P (0) under the
appropriate conditions.

Example 7.4. Consider again an MA(1) process y(t) = ε(t) + bε(t − 1) with σ2
ε =

1 and with |b| > 1. This is a stationary process, but the representation is not
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invertible. Defining x(t) = bε(t−1), we can write y(t) = x(t)+ ε(t) and x(t+1) =
bε(t), so that in terms of (7.8), (7.9) the parameters are given by A = 0, B =
0, C = 1, D = 0, F = b, G = 1. The Riccati equation (7.22) is given by
p = b2 − b2(1 + p)−1, or p = b2 − 1, and (7.24) gives k = b(p + 1)−1 = b−1. The
steady state filter is x̂(t + 1) = b−1ω(t) and y(t) = x̂(t) + ω(t). By eliminating the
state, we obtain the model

y(t) = ω(t) + b−1ω(t − 1).

As |b| > 1, this is indeed a causal and invertible representation of the process. To
determine the variance σ2

ω of the white noise process ω, note that Ey(t)2 = 1+b2 =
σ2

ω(1 + b−2), so that σ2
ω = b2. The causal and causally invertible spectral factor

is therefore given by (1 + b−1z). Further, the variance of the process x̂(t) is equal
to b−2σ2

ω = 1, whereas the original state variable x(t) = bε(t − 1) has variance
b2 > 1. In terms of (6.24), there holds R(1) = b = CM = M and the variance Π of

any state variable should satisfy the condition that
(

Π b
b 1 + b2 − Π

)
is positive

semidefinite. This is equivalent to the condition that 1 ≤ Π ≤ b2. So the steady
state filter has minimal variance among all realizations.



Chapter 8

Stochastic Control

Stochastic optimal control problems can in principle be solved by stochastic dy-
namic programming. We pay special attention to the LQG problem where the
system is linear, the cost function is quadratic, and the random variables have
Gaussian distributions. The optimal controller is given by the LQG feedback law
where the unobserved state is replaced by the Kalman filter estimate.

8.1 Introduction

In this chapter we discuss control of uncertain systems. The methods discussed are
mostly applied in engineering. Here one often has good knowledge of the system
structure and of the costs involved in performing control actions. The situation is
quite different in most economic applications. In general there is much uncertainty
concerning the effect of decision variables on target variables, and there may be
many objectives that are not easily quantified. This does not mean that the meth-
ods described in this chapter are of no value in economic decision making. Models
of optimal control may assist in organizing relevant information, by making the
objectives more explicit, and by indicating possible effects of different strategies.
In this way one can get a better understanding of the source and extent of the
involved uncertainties. Further, for example in business applications, firms may
have a relatively clear idea of their objectives and the means which are available
to them to achieve their goals.

Given the extent of uncertainty in economic decision making, simple models
will often be more helpful than complex ones. We describe in this chapter some of
the main ideas and techniques. We pay particular attention to the case of linear
stochastic systems and quadratic control criteria. This leads to a relatively simple
algorithm.

There are important differences between deterministic and stochastic control.
In deterministic systems, the future development is completely determined by the
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current state and the future inputs. This means that every control strategy leads to
known costs. In stochastic systems, however, there is an additional and unknown
source of dynamics due to the disturbances. This means that, as opposed to the
deterministic case, there is an essential distinction between open loop and closed
loop control. A closed loop strategy may lead to lower costs, as the observed
system trajectories may provide information on the disturbances and the current
state of the system. This also means that the control variables play a dual role,
that is, they can be manipulated to obtain additional information from the system
and they should also lead to low costs. These two objectives may in general be
conflicting.

If the choice of the control inputs does not affect the uncertainty about the
system this is called neutrality. We will show that this holds true for the control of
linear stochastic systems with quadratic costs. In this case the optimal controller
has moreover the properties of certainty equivalence and separation. A controller
is called certainty equivalent if it coincides with the controller for the deterministic
system, replacing all uncertain quantities by their optimal estimates. A controller
has the separation property if control and estimation do not influence each other
in the following sense. The required estimates of uncertain quantities depend only
on the stochastic properties of the system, not on the control objectives, and the
control actions do not depend on the stochastic specification of the model.

In most applications it is difficult or even impossible to compute optimal
controllers. Further, there often exists considerable uncertainty about the correct
model specification and the control objectives. It may then be better to use rela-
tively simple controllers, instead of complicated methods that are more sensitive
to misspecifications. Suboptimal controllers can be based on heuristic principles,
for instance separation and certainty equivalence. Such controllers are relatively
easy to compute, and they may lead to acceptable performance.

8.2 Stochastic Dynamic Programming

The method of stochastic dynamic programming closely resembles the determinis-
tic algorithm. It is again based on Bellman’s principle of optimality. This requires
that the control problem has finite horizon and that all the parameters of the
problem are known, that is, the parameters of the cost function and the ones
describing the dynamical and stochastic properties of the system.

Consider a system with control variables u, observed state vector x and
unobserved disturbances ε related by

x(t + 1) = f(t, x(t), u(t), ε(t)), t = 0, . . . , N − 1. (8.1)

Here the system function f , the horizon N , the initial state x(0) and the probability
distribution of ε are all assumed to be known. We impose the condition that

p
(
ε(t)|x(s), u(s), ε(s − 1), s ≤ t

)
= p
(
ε(t)|x(t), u(t)

)
. (8.2)
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The input at time t may depend on the available information {x(s); s ≤ t}, and it
may further be restricted to belong to a set u(t) ∈ U{t, x(t)}. The costs in period
t are given by gt = g(t, x(t), u(t), ε(t)), for t = 0, . . . , N − 1, while for t = N the
cost only depends on x(N). As the costs are random variables there does not exist,
in general, a control policy that minimizes the costs for all possible disturbances.
As criterion one often takes the expected cost. In some cases the variance of the
outcomes may also be of importance, and this can easily be incorporated in the
cost function by appropriate definition of the functions gt. The cost of a control
policy u = {u(t), t = 0, . . . , N − 1} is given by

J(u) = E
(
g(N, x(N)) +

N−1∑
t=0

g(t, x(t), u(t), ε(t))
)
. (8.3)

Here certain (measurability) conditions on the control law have to be im-
posed in order that the expectation in (8.3) is well defined. For the rather simple
cases that we will consider in this chapter this causes no problems, but in more
complicated problems this may be more problematic. As in the deterministic case
the objective is to find an input sequence u∗(0), . . . , u∗(N−1) that minimizes J(u)
(if possible).

The dynamic programming algorithm can be expressed, as in the determin-
istic case, in terms of the optimal-cost-to-go functions

JN (x(N)) = g(N, x(N)), (8.4)

Jt(x(t)) = inf
u(t)

E
(
gt + Jt+1(x(t + 1)) | x(t), u(t)

)
, t = N − 1, . . . , 0. (8.5)

The optimality principle states that if u∗ = {u∗(t), t = 0, . . . , N−1} is an optimal
control policy, then the truncated policy {u∗(t), t = t0, . . . , N − 1} is also optimal
for the system starting at x(t0) and with horizon N − t0. This is expressed in the
following theorem, which is completely analogous to the deterministic result in
Theorem 5.2.1.

Theorem 8.2.1. Let u∗(t) achieve the infimum in (8.5), then the optimal control
law for (8.3) is given by u∗ = {u∗(t), t = 0, . . . , N − 1} and the minimal cost is
J0(x(0)).

Proof. Let Et denote the conditional expectation with respect to {x(t), u(t)}. For
fixed initial state we obtain, by repeated conditioning and using (8.2), that J(u) =
E0

(
g0+E1

(
g1+· · ·+EN−1(gN−1+gN) · · · )). Because the current input only affects

the current and future costs this implies that

inf
u

J(u) = inf
u(0)

E0

(
g0 + inf

u(1)
E1

(
g1 + · · · + inf

u(N−1)
EN−1(gN−1 + gN ) · · · )),

so the minimal cost is obtained by solving (8.5) for t = N − 1, . . . , 0 with cost
J0(x(0)). �
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Although the optimality principle seems quite trivial it should be mentioned
that it states sufficient conditions for optimality, not necessary ones.

The stochastic dynamic programming algorithm solves (8.3) by iteratively
solving the simpler, non-dynamic optimization problems (8.5), t = N − 1, . . . , 0.
These simpler problems may still be hard to solve. The dynamic programming
algorithm is feasible only in relatively simple cases, for example if there is only a
small finite number of possible values of the state or if the models have relatively
simple dynamical and stochastic properties. We give an example from inventory
control.

Example 8.1. Consider a shop manager who is faced with a randomly varying
demand. We assume that the demand can be modelled as a white noise process ε
with known probability distribution. The cost of ordering u units, with u > 0, is
K + c · u, with K ≥ 0 the fixed cost per order and with c > 0 the cost per unit.
Define c(u) = K + cu for u > 0 and c(u) = 0 for u = 0. Further, let h ≥ 0 denote
the cost of holding inventory per unit and let p ≥ 0 be the depletion cost per unit
demand that can not be met immediately. We assume that this excess demand
is fulfilled as soon as additional inventory becomes available and that p > c, as
else the manager better stop business. Let x denote the stock available at the
beginning of a period, then the problem of minimizing the total expected costs
over a time horizon of N periods can be formulated as follows. The state evolves
according to

x(t + 1) = x(t) + u(t) − ε(t). (8.6)

Using the notation [a]+ = max{0, a}, the expected cost is given by

J(u) = E

N−1∑
t=0

(
c(u(t)) + h[x(t) + u(t) − ε(t)]+ + p[ε(t) − x(t) − u(t)]+

)
. (8.7)

The initial stock x(0) is given, and it is assumed that the final stock x(N) has no
value.

In order to state the optimal policy it is helpful to define the functions F (a) =
ca + hE[a − ε]+ + pE[ε − a]+ and Gt(a) = F (a) + E

(
Jt+1(a − ε(t))

)
with Jt+1

the optimal-cost-to-go function. Let S be the value minimizing F and let s be the
smallest value such that F (s) = K + F (S). Then the single-period problem, with
N = 1, has the following solution. Order u∗(0) = 0 if x(0) ≥ s, and u∗(0) = S−x(0)
if x(0) < s. This is called the (s, S) policy, below the critical level s one should
order an amount so that the target inventory S is reached. If the fixed order
costs are zero, that is, K = 0, then s = S and this is the desired inventory. If
K = 0, then the multi-period solution also has the form u∗(t) = 0 if x(T ) ≥ St

and u∗(t) = St − x(t) if x(t) < St, where St minimizes Gt. It is somewhat more
involved to show that for K > 0 the optimal policy is still of the (st, St) type,
with St as before and with st the smallest value such that Gt(st) = K + Gt(St).
For details we refer to [6].
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8.3 LQG Control with State Feedback

The LQG problem is one of the stochastic control problems for which the optimal
control law is relatively simple. The LQG controllers are popular because the
control strategy allows a very straightforward implementation. The definition is
as follows.

Definition 8.3.1. The LQG problem is the stochastic control problem with f in
(8.1) linear, with gt in (8.3) quadratic, and with x(0) Gaussian and ε in (8.1)
Gaussian white noise. Allowable controls are of the form u(t) = u{y(s), s ≤ t},
with y a linear function of x and ε.

We restrict our attention to the time-invariant case, but the results are similar
if the parameters change over time. Under the above conditions, the system can
be represented as

x(t + 1) = Ax(t) + Bu(t) + Fε(t), (8.8)

y(t) = Cx(t) + Gε(t), (8.9)

and the cost functions as
gN = xT (N)QNx(N), (8.10)

gt = ‖Rx(t) + Su(t)‖2 =
(
Rx(t) + Su(t)

)T (
Rx(t) + Su(t)

)
. (8.11)

So the system is of the ARMAX type with D = 0, so that there is no direct feed
through from the inputs to the outputs. All matrices appearing in (8.8)–(8.11) are
supposed to be known. We will assume throughout that ε(t) ∼ N(0, I) and that
x(0) is a Gaussian random variable, x(0) ∼ N(m0, P0), independent of {ε(t); t ≥
0}. This also implies that x(t) and ε(s) are independent for all s ≥ t. Further we
assume that ST S is positive definite, so that no controls are without cost. The cost
function (8.11) contains as a special case gt = y(t)T Q1y(t)+u(t)T Q2u(t), with Q1

and Q2 positive semidefinite matrices. Indeed, as E(x(t)ε(t)T ) = 0 it follows that
in this case E(gt) = E(gT

t ) + c, where gT
t = x(t)T CT Q1Cx(t) + u(t)T Q2u(t) is of

the form (8.11) with R =
(

Q
1/2
1

0

)
and S =

(
0

Q
1/2
2

)
, and where c = trace(GT Q1G)

is independent of the control so that it can be neglected.
In this section we consider the LQG problem with full state observation,

that is, we assume that G = 0, C = I. The general case where the available
information consists of the observed outputs {y(s), 0 ≤ s ≤ t − 1} is discussed in
the next section.

For ease of exposition we first summarize the results obtained in Chapter 5 for
LQ control. This corresponds to the LQG problem with F = 0, G = 0, P0 = 0 and
C = I. According to Theorem 5.3.1, the solution is given by Jt = x(t)T Q(t)x(t)
achieved by the optimal control law

u∗(t) = −L(t)x(t), (8.12)



106 Chapter 8. Stochastic Control

where
L(t) =

(
BT Q(t + 1)B + ST S

)−1(
BT Q(t + 1)A + ST R

)
, (8.13)

and where the matrices Q are generated by the Riccati difference equation

Q(t) = AT Q(t + 1)A + RT R

− (BT Q(t + 1)A + ST R
)T (

BT Q(t + 1)B + ST S
)−1(

BT Q(t + 1)A + ST R
)
,

(8.14)

solved backwards in time starting from the final value

Q(N) = QN .

The infinite horizon problem, with N → ∞, has a solution with finite cost if the
pair (A, B) is stabilizable and the pair (A−B(ST S)−1ST R, (I −S(ST S)−1ST )R)
is detectable, for example, if A is stable and ST R = 0 so that the cost function does
not involve the cross product between x(t) and u(t). In this case the infinite horizon
optimal control law becomes time invariant, that is, u∗(t) = −Lx(t) with L =
(BT QB +ST S)−1(BT QA+ST R) and where Q is the unique positive semidefinite
solution of the algebraic Riccati equation

Q = AT QA+RT R− (BT QA+ST R)T (BT QB +ST S)−1(BT QA+ST R). (8.15)

The closed loop system is stable, that is, A − BL is a stable matrix.
Now we consider the LQG problem with full information on the state. This

means that the allowable control strategies are of the form u(t) = u{x(s), s ≤ t}.
The following result states that in this case the optimal control law is precisely
the same as that for the deterministic LQ problem.

Theorem 8.3.2. Consider the LQG problem with full state observation, that is,
with G = 0, and C = I in (8.9), and where ε is Gaussian standard white noise
and where x(0) ∼ N(m0, P0) is independent of {ε(t), t ≥ 0}. This LQG problem
with full state observation has the LQ solution given in (8.12)–(8.14) with minimal
cost equal to

E
(
xT

0 Q(0)x0

)
+

N−1∑
t=0

trace(FT Q(t + 1)F )

= mT
0 Q(0)m0 + trace(Q(0)P0) +

N−1∑
t=0

trace(FT Q(t + 1)F ).

Proof. The optimal-cost-to-go functions are given by

JN (x(N)) = x(N)T QNx(N)
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and

Jt(x(t)) = inf
u(t)

(‖Rx(t) + Su(t)‖2

+ E (Jt+1(Ax(t) + Bu(t) + Fε(t))|x(t))
)
.

By induction we will prove that Jt(x(t)) = x(t)T Q(t)x(t) + c(t), with Q(t) as
defined in (8.14) and with

c(t) =
N−1∑
k=t

trace(FT Q(k + 1)F ).

For t = N this is evident. Suppose it is correct for Jt+1, then Jt involves the term

E
(
x(t + 1)T Q(t + 1)x(t + 1) + c(t + 1)|x(t)

)
,

and as ε(t) is independent of x(t) and u(t) this term is equal to(
Ax(t) + Bu(t)

)T
Q(t + 1)

(
Ax(t) + Bu(t)

)
+ E
(
ε(t)T FT Q(t + 1)Fε(t)

)
+ c(t + 1)

=
(
Ax(t) + Bu(t)

)T
Q(t + 1)

(
Ax(t) + Bu(t)

)
+ c(t).

This implies that

Jt(x(t)) = inf
u(t)

(‖Rx(t) + Su(t)‖2

+
(
Ax(t) + Bu(t)

)T
Q(t + 1)

(
Ax(t) + Bu(t)

))
+ c(t).

Up to the constant term c(t), this is precisely the optimal-cost-to-go function
of the deterministic LQ problem. It follows from Theorem 5.3.1 that Jt(x(t)) =
x(t)T Q(t)x(t) + c(t), with Q(t) as defined in (8.14). The optimal value of the
control input is then of course also the same as in the LQ case, so that (8.12) gives
the solution. The optimal cost is J0(x(0)) = E(x(0)T Q(0)x(0)) + c(0). Since x0 ∼
N(m0, P0) this is easily computed to be J0(x(0)) = mT

0 Q(0)m0 +trace(Q(0)P0)+
c(0). �

This result shows that in general the costs are unbounded for the infinite
horizon problem, as the second cost term will be

∑∞
t=0 trace(FT QF ) with Q the

solution of (8.15). In the deterministic case the costs remain bounded if the control
inputs can force the state to zero. In the stochastic case this is not possible,
because the disturbances ε in (8.8) will always excite the state. Of course it makes
no sense to compare control strategies if even the optimal cost is infinite. In this
situation the definition of the cost criterion should be adjusted to obtain suitable
comparisons.
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One of the possibilities is to consider the discounted cost criterion

Jρ(u) = E
(
ρNxT (N)QNx(N) +

N−1∑
t=0

ρt‖Rx(t) + Su(t)‖2
)

(8.16)

where 0 < ρ < 1 denotes the discount factor. Redefining the state and input as
xρ(t) = ρ

1
2 tx(t) and uρ(t) = ρ

1
2 tu(t), it is easily seen that this control problem is

equivalent to an undiscounted control problem by redefining (A, B) as (ρ
1
2 A, ρ

1
2 B).

Note in particular that for ρ sufficiently small the stabilizability and detectabil-
ity conditions stated before will be satisfied, and then there is a finite optimal
discounted cost for the infinite horizon problem. For the discounted cost crite-
rion (8.16), the infinite horizon problem has finite cost if ρ is sufficiently small.
Then the optimal control law is of the form (8.12), in terms of the adjusted pa-
rameters (ρ

1
2 A, ρ

1
2 B, ρ

1
2 (t+1)F, ρ−

1
2 tC) instead of (A, B, F, C). The optimal cost is

xT
0 Qρx0 + ρ

1−ρtrace(FT QρF ), with Qρ the corresponding solution of (8.15).
In a sense, the discounted cost criterion favours the short run performance,

as the long run costs get a relatively smaller weight. Another method to obtain
finite costs is to consider the long run average cost, defined as

J̄(u) = lim
N→∞

1
N

E

N−1∑
t=0

‖Rx(t) + Su(t)‖2. (8.17)

For a finite horizon the average cost criterion is of course equivalent to the
undiscounted total cost criterion, as they only differ by the factor 1

N . Under the
stability and detectability conditions stated before, the optimal control law there-
fore converges for N → ∞ to the time invariant LQ control law. The result in
Theorem 8.3.2 shows that the minimal cost is equal to trace(FT QF ) where Q is
the solution of (8.15).

8.4 LQG Control with Output Feedback

In the foregoing section we assumed that y(t) = x(t) in (8.9), so that the state is
observed. Now we consider the LQG problem in its general form, with observed
outputs. So there is only partial information on the state. We first restrict the
attention to control laws of the form

u(t) = u{y(s), s ≤ t − 1}. (8.18)

This has the interpretation that decisions u(t) are made at the beginning of time
period t, when the observations y(t) over that period are not yet available. Later
we will consider the situation where the control input may also depend on the
current output.

We recall that the state is merely an auxiliary variable used to simplify the
description of the dynamical relationships between inputs, outputs and distur-
bances. The complication of the current LQG problem is that the state process
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is not observed. This would suggest that we construct an alternative realization
of the system for which the state is observable. Such a realization is obtained by
the Kalman filter, because the state x̂(t) = E(x(t)|y(s), s ≤ t− 1) is a function of
past observations. So, by using this alternative state space model we could solve
the LQG problem by state feedback as in Theorem 8.3.2. The only complication
is that the Kalman filter was derived in Chapter 7 under the assumption that the
inputs are exogenous in the sense that E(u(t)y(s)T ) = 0 for all t, s, whereas in the
current situation the inputs u(t) = −L(t)x̂(t) depend on the past outputs.

We will now first prove that for Gaussian systems the conditional expecta-
tion x̂(t) is still generated by the Kalman filter, independent of the control law.
This means that the LQG problem has the property of neutrality, because the
information on the state process is not influenced by the chosen control action.
The assumption of Gaussian distributions is crucial here. It can be shown that
neutrality in general does not hold true in the non-Gaussian case, and that then
the best linear predictor of the state under linear control laws need not be given
by the Kalman filter.

Theorem 8.4.1. Consider the system (8.8), (8.9), where G has full row rank, ε
is Gaussian standard white noise and where x(0) ∼ N(m0, P0) independent of
{ε(t), t ≥ 0}. Then for every control law u(t) = u{y(s); s ≤ t}, the conditional
expectation x̂(t) = E

(
x(t)|y(s), s ≤ t − 1

)
and its covariance P (t) = E

(
x(t) −

x̂(t)
)(

x(t) − x̂(t)
)T are given by the Kalman filter (7.12)–(7.14), with starting

conditions x̂(0) = m0 and P (0) = P0. The processes u, y, x, and x̂ are in general
not Gaussian, but the innovations process ω = y − Cx̂ is Gaussian.

Proof. As the control law need not be linear, this implies that u, y, x, and x̂ are in
general not Gaussian. (Note that they are Gaussian if the control law is linear.)

The idea is to split the system in two parts, one subsystem describing the
effect of the control inputs and the other one the effect of the disturbances. We
indicate the controlled part by a subindex c and the noisy part by a subindex n.
So let

xc(t + 1) = Axc(t) + Bu(t),
xc(0) = m0,

yc(t) = Cxc(t)

and let

xn(t + 1) = Axn(t) + Fε(t),
xn(0) = x(0) − m0 ∼ N(0, P0),
yn(t) = Cxn(t) + Gε(t).

Then x = xc + xn and y = yc + yn. An according decomposition of the predictor
is given by x̂ = x̂c + x̂n, where x̂c(t) = E(xc(t)|y(s), s ≤ t − 1) and x̂n(t) =
E(xn(t)|y(s), s ≤ t − 1). In fact there holds that

x̂(t) = xc(t) + E (xn(t)|yn(s), s ≤ t − 1) . (8.19)
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To prove this, note that xc(t) is a function of {u(s), s ≤ t − 1} as xc(0) = m0 is
known, so it is also a function of {y(s), s ≤ t − 1} and hence x̂c = xc. Concerning
the noisy part, it is sufficient to prove that {y(s), s ≤ t− 1} and {yn(s), s ≤ t− 1}
contain the same information, that is, that there exists a bijection between these
two sets of random variables. Now, yn(s) = y(s) − yc(s) = y(s) − Cxc(s) is a
function of the known initial condition m0 and of {y(s), u(r), r ≤ s− 1}, hence of
{y(r), r ≤ s}.

Conversely, y(0) = yn(0) + Cm0, and supposing that for all σ ≤ s, y(σ) is a
function of {yn(r), r ≤ σ} it follows that y(s+1) = yn(s+1)+C

(
Axc(s)+Bu(s)

)
is a function of {yn(s + 1), u(r), r ≤ s}, hence of {yn(s + 1), y(r), r ≤ s}, and by
the induction assumption hence also of {yn(r), r ≤ s + 1}. This proves (8.19).

In (8.19) xc is deterministic and x̂n is independent of the control inputs.
Therefore x̂n can be calculated by the standard Kalman filter, x̂n(t+1) = Ax̂n(t)+
K(t)ωn(t) where ωn = yn −Cx̂n with the Kalman gain (7.13), (7.14). As xn(0) ∼
N(0, P0) the starting conditions are x̂n(0) = 0 with P (0) = P0. The innovation
process ωn is Gaussian, as yn and x̂n are Gaussian, and as ω = y−Cx̂ = yc +yn−
Cxc − Cx̂n = ωn the innovation process ω is also Gaussian. Further, from (8.19)
and ω = ωn it follows that x̂(t+1) = xc(t+1)+x̂n(t+1) = Ax̂(t)+Bu(t)+K(t)ω(t)
which coincides with the Kalman filter equation (7.12). The starting condition is
x̂(0) = xc(0) + x̂n(0) = m0. Finally, P (t) is the state error covariance matrix,
as xn(t) − x̂n(t) = xn(t) + xc(t) − (x̂n(t) + xc(t)) = x(t) − x̂(t) so that P (t) =
E
(
xn(t) − x̂n(t)

)(
xn(t) − x̂n(t)

)T = E
(
x(t) − x̂(t)

)(
x(t) − x̂(t)

)T . �
This result gives an alternative state space representation of the system with

observed state, namely

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)ω(t), (8.20)

y(t) = Cx̂(t) + ω(t). (8.21)

The initial condition is x̂(0) = m0, and ω is a Gaussian white noise process with
ω(t) ∼ N(0, CP (t)CT + GGT ). So the parameters of this state space model are
time varying. The optimal control law is now obtained from Theorem 8.3.2.

Theorem 8.4.2. The optimal LQG controller of the form u(t) = u{y(s), s ≤ t− 1}
for the system (8.8), (8.9) and the cost (8.10), (8.11) is given by

u∗(t) = −L(t)x̂(t). (8.22)

The feedback gain L(t) is obtained by (8.13) and (8.14), and x̂(t) is obtained by
(8.20) and (8.21) with Kalman filter gain (7.13), (7.14). The minimal cost is given
by

mT
0 Q(0)m0 + trace

(
Q(0)P (0) + QNP (N)

)
+

N−1∑
t=0

trace
(
RP (t)RT + Q(t + 1)K(t)

(
CP (t)CT + GGT

)
KT (t)
)
.

(8.23)
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Proof. Note that we can rewrite (8.20) into the form (8.8) with a time varying

F given by F (t) = K(t)
(
CP (t)CT + GGT

) 1
2 . We shall apply Theorem 8.3.2 to

this situation. In order to do so, we first express the cost function in terms of x̂
instead of x. For this purpose let x̃(t) = x(t) − x̂(t). From (8.19) it follows that
x̃(t) = xn(t)− x̂n(t), so that x̃(t) ∼ N(0, P (t)) and E(x̃(t)y(s)T ) = 0 for s ≤ t−1.
Let Et−1 denote the conditional expectation with respect to {y(s), s ≤ t−1}, then
Et−1x̃(t) = Et−1(x(t) − x̂(t)) = x̂(t) − x̂(t) = 0. As u(t) = u{y(s), s ≤ t − 1} it
follows that

Et−1‖Rx(t) + Su(t)‖2 = Et−1‖Rx̂(t) + Rx̃(t) + Su(t)‖2

= ‖Rx̂(t) + Su(t)‖2 + Et−1‖Rx̃(t)‖2 + 2
(
Rx̂(t) + Su(t)

)T
REt−1x̃(t)

= ‖Rx̂(t) + Su(t)‖2 + trace
(
RP (t)RT

)
.

Further for the final cost

EN−1

(
x(N)T QNx(N)

)
= x̂(N)T QN x̂(N) + EN−1

(
x̃(N)T QN x̃(N)

)
+ 2x̂(N)T QNEN−1x̃(N)

= x̂(N)T QN x̂(N) + trace
(
QNP (N)

)
.

Using these results, the cost function can be reformulated as

J(u) = E
(
x(N)T QNx(N) +

N−1∑
t=0

‖Rx(t) + Su(t)‖2
)

= E
(
EN−1x(N)T QNx(N) +

N−1∑
t=0

Et−1‖Rx(t) + Su(t)‖2
)

= E
(
x̂(N)T QN x̂(N) +

N−1∑
t=0

‖Rx̂(t) + Su(t)‖2
)

+ trace
(
QNP (N)

)
+

N−1∑
t=0

trace
(
RP (t)RT

)
.

So, apart from a constant term that does not depend on the control law,
the cost function in terms of x̂ is precisely the same as the original one in terms
of x. The optimal control law is then obtained from Theorem 8.3.2, with x̂ re-
placing x. Actually, in Theorem 8.3.2 all parameters are time-invariant and the
white noise ε is distributed as ε(t) ∼ N(0, I), whereas in the current case the
parameter K in (8.20) varies over time and the white noise ω has distribution
ω(t) ∼ N(0, CP (t)CT + GGT ). However, Theorem 8.3.2 holds also true for pa-
rameters that vary over time, provided that all parameters are known. This is the
case here, see (7.13) and (7.14). This proves that the control law (8.22) is optimal.
In order to compute the minimal cost, recall that (8.20) can be standardised by
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defining F (t) = K(t)
(
CP (t)CT + GGT

) 1
2 . Then from the foregoing expression of

J(u) and Theorem 8.3.2 we obtain

J(u) =E
(
x(0)T Q(0)x(0)

)
+

N−1∑
t=0

trace
(
F (t)T Q(t + 1)F (t)

)
+ trace

(
QNP (N)

)
+

N−1∑
t=0

trace
(
RP (t)RT

)
,

and because E
(
x(0)T Q(0)x(0)

)
= mT

0 Q(0)m(0) + trace (Q(0)P0) this proves the
expression for the minimal cost given in the theorem. �

The optimal LQG controller has a simple recursive structure. The two in-
volved Riccati difference equations, (7.21) for the filter, and (8.14) for the con-
troller, can be solved off-line, independent of the observations. This gives the
Kalman filter gains (7.13) and the feedback gains (8.13). The state is recursively
estimated by the Kalman filter (7.12), and then the control is obtained by linear
feedback (8.22).

The LQG controller has the certainty equivalence property. It consists of
the deterministic LQ controller (8.12), with the unobserved state replaced by its
optimal estimate. Further, it also satisfies the separation principle. This means
that the form of the controller is independent of the parameters (F, G) of the
stochastic part of the model and that the form of the estimator is independent of
the parameters (Q, R, S) of the control objectives.

It can be shown that the LQG problem with control law u(t) = u {y(s), s ≤ t}
has optimal solution u∗(t) = −L(t)x̂(t|t), where x̂(t|t) = E (x(t)|y(s), s ≤ t) can
be obtained recursively as described in Proposition 7.3.3.

Under the stabilizability and detectability conditions of Theorem 5.3.2 and
Theorem 7.4.2 the controller and the filter become time-invariant in the limit if
the number of observations N → ∞. The state observer is then obtained from
(7.22), (7.23) and (7.24), and the controller from (8.13), (8.15). It follows from
Theorem 8.4.2 that the long-run average cost (8.17) is in this case equal to

J̄(u) = trace
(
RPRT + QK(CPCT + GGT )KT

)
.

For the discounted cost criterion (8.16) the optimal controller is given by u∗(t) =
−Lρ(t)x̂(t), with x̂(t) as before and with the feedback gain calculated in terms of
the transformed parameters (ρ

1
2 A, ρ

1
2 B, ρ

1
2 (t+1)F, ρ−

1
2 C). Under the conditions of

Theorems 5.3.2 and 7.4.2 the filter and the controller become again time-invariant
for N → ∞. The controller gain (8.13) is in terms of the solution Qρ of (8.15)
with the transformed parameters (ρ

1
2 A, ρ

1
2 B) instead of (A, B).

In practice it may be difficult to choose the parameters (R, S, QN ) of the
cost function. An alternative is minimum variance control, which uses the criterion
(8.17) with R = C and S = 0. In this case the costs are expressed in terms of
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the outputs, and the possible costs of the inputs are neglected. This violates the
assumption in LQG that ST S is positive definite. However, the criterion can be
approximated by choosing S = αI with α sufficiently small.

Further, in practice the system parameters (A, B, C, F, G) are often not
known. A possible approach is to use the certainty equivalence principle, that is,
first estimate the unknown parameters and then determine the control law. The
estimation of system parameters from observed data is called the system iden-
tification problem. The parameters may be varying over time, and it may then
be necessary to update the parameter estimates when new observations become
available. This is called recursive identification, and in connection with control
applications this is called adaptive control.

We conclude by an example of LQG control with output feedback.

Example 8.2. Consider the ARMAX system with single-input and single-output

y(t) = y(t − 1) + u(t − 2) + ε(t)

where ε is a standard white noise process with Eε(t)y(s) = 0 for all s < t. As cost
function we consider

J(u) = lim
N→∞

N∑
t=1

E(y(t)2 + u(t)2).

Define two state variables by x1(t) = y(t− 1)+u(t− 2) and x2(t) = u(t− 1), then
a state space realization (8.8), (8.9) is obtained with

A =
(

1 1
0 0

)
, B =
(

0
1

)
, C =
(
1 0
)
, F =
(

1
0

)
, G = 1.

For controls u(t) = u{y(s), s ≤ t−1} it follows that E(y(t)2 +u(t)2) = E(x1(t)2 +
ε(t)2 + 2x1(t)ε(t) + u(t)2) = 1 + E(x1(t)2 + u(t)2), so the control objective is to
minimize (8.17) with

R =
(

1 0
0 0

)
, S =
(

0
1

)
.

Concerning the conditions in Theorem 5.3.2 there holds ST R = 0 and (A, B) is
controllable (hence stabilizable) and (A, R) is observable (hence detactable). Also
the conditions of Theorem 7.4.2 are satisfied, because (A, C) is observable and

A−FGT (GGT )−1C =
(

0 1
0 0

)
is a stable matrix. It then follows that the optimal

control law is given by u(t) = −Lx̂(t) in Theorem 5.3.2 with x̂ the filtered state
in (7.22), (7.23), (7.24). As the two state variables in our model are functions
of past inputs and outputs, it follows that x̂ = x. This can also be checked by
observing that the filter equation (7.22) has solution P = 0. This means in (7.24)

that K =
(

1
0

)
. Direct calculation of the solution Q =

(
q1 q2

q2 q3

)
of the control
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equation (8.15) shows that q1 = 1
2 (3 +

√
5) and q2 = q3 = 1

2 (1 +
√

5), so that
the feedback gain is given by L =

(
f f
)
, where f = q2

(q3+1) . Substituting the
expressions for the state variables, this gives the control law

u∗(t) = −f(y(t− 1) + u(t − 1) + u(t − 2)).

With this control law, the closed loop system is

y(t) = −fy(t− 1) + ε(t) + fε(t − 1) + fε(t − 2).

Without controls, that is, with u(t) = 0 for all t ∈ Z, the output process y is not
stationary and Ey(t)2 → ∞ for t → ∞. However, the controlled system makes the
process y stationary because |f | < 1 in the above ARMA(1,2) model.



Chapter 9

System Identification

System identification is concerned with the estimation of a system on the basis of
observed data. This involves specification of the model structure, estimation of the
unknown model parameters, and validation of the resulting model. Least squares
and maximum likelihood methods are discussed, for stationary processes (without
inputs) and for input-output systems.

9.1 Identification

In the foregoing chapters we always assumed that the system is known to us,
and we considered the representation, regulation, and prediction of linear systems
with given parameters. In most practical applications the system is not known and
has to be estimated from the available information. This is called the identification
problem. The identification method will depend on the intended model use, as this
determines what aspects of the system are of relevance. The three main choices in
system identification are the following.

(i) Data. In some situations it is possible to generate a large amount of reliable
data by carefully designed experiments. In other situations the possibilities
to obtain data are much more limited and it is not possible to control for ex-
ternal factors that influence the outcomes. That is, the magnitude of outside
disturbances (‘noise’) may differ widely from one application to another.

(ii) Model Class. A model describes relations between the observed variables.
For practical purposes the less important aspects are neglected to obtain
sufficiently simple models. The identified model should be validated to test
whether the imposed simplifications are acceptable.

(iii) Criterion. The criterion reflects the objectives of the modeller. It expresses
the usefulness of models in representing the observed data.



116 Chapter 9. System Identification

In practice, system identification often involves several runs of the empirical cycle
which consists of the specification of the problem, the estimation of a model by
optimization of the criterion, the validation of the resulting model, and possible
adjustments that may follow from this validation.

In the following we restrict our attention to linear systems, quadratic cri-
teria and data that consists of observed time series of the system variables. The
advantage of this linear quadratic framework is that it leads to relatively simple
identification algorithms. Further, the ideas and concepts for these methods form
the basis for more advanced approaches.

Models are simplifications of reality and therefore they involve errors. It is
often assumed that the data can be decomposed into two parts, a systematic part
(related to the underlying system) and a disturbance part that reflects unmodelled
aspects of the system. By assuming that the disturbances are random variables,
the statistical properties of identification methods can be evaluated. In particular,
one considers the properties of unbiasedness, efficiency, and consistency. Let θ
denote the unknown system parameters, and let θ̂ be an estimator of θ based on
the observed data. Because the data are influenced by the random disturbances,
the estimator θ̂ is also a random variable. It is called an unbiased estimator if
E(θ̂) = θ, and it is called an efficient estimator in a class of estimators if it
minimizes the variance var(θ̂) = E(θ̂−E(θ̂))(θ̂−E(θ̂))T , that is, if for every other
estimator θ̃ in this class var(θ̃)−var(θ̂) is a positive semidefinite matrix. To define
consistency, let θ̂N denote the estimator based on data that are observed on a
time interval of length N . The estimator is called (weakly) consistent if, for every
δ > 0, there holds

lim
N→∞

P (‖θ̂N − θ‖ ≥ δ) = 0 (9.1)

where ‖ · ‖ denotes the Euclidean norm. This is also written as plim(θ̂N ) = θ.
Hereby it is assumed that the system under investigation belongs to the model
class, but this can be generalized to the situation where θ is the optimal (but not
perfectly correct) model within the model class.

9.2 Regression Models

In this section we consider single-input, single-output systems with a finite impulse
response (FIR), that is,

y(t) = β1u(t − 1) + · · · + βku(t − k) + ε(t). (9.2)

We assume that y is observed for t = 1, . . . , N , and u for t = 1 − k, . . . ,
N − 1. Let x(t) := (u(t − 1), . . . , u(t − k))T and let y = (y(1), . . . , y(N))T ,
X = (x(1), . . . , x(N))T , ε = (ε(1), . . . , ε(N))T and β = (β1, . . . , βk)T . Then (9.2)
can be written as the regression model

y = Xβ + ε. (9.3)
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In the sequel, we shall write XN instead of X to emphasize the dependence of X
on N , whenever necessary.

From the data, y and X , we have to estimate the parameters β. The least
squares estimator β̂ minimizes the sum of squared errors

N∑
t=1

ε2(t) = ‖ε‖2 = ‖y − Xβ‖2.

This is obtained by projecting y onto the column space of X , so that XT (y−Xβ̂)=
0. Assuming that rank(X) = k, the solution is given by

β̂ = (XT X)−1XT y. (9.4)

In order to investigate under which conditions this is a good estimator, we make
the following assumptions.

Assumptions
The data satisfy the relation y = Xβ + ε, where

A1 all entries of the matrix X are non-random, and rank(X) = k;

A2 all entries of the (unobserved) disturbance vector ε are outcomes of random
variables with E(ε) = 0, E(ε2(t)) = σ2 (equal variance), and E(ε(t)ε(s)) = 0
for all t �= s (no serial correlation).

Definition 9.2.1. We call an estimator linear if it is of the form β̃ = Ay, with A a
non-random matrix, and it is called a best linear unbiased estimator (BLUE) if it
is unbiased with minimal variance in the class of all linear unbiased estimators.

The following result is called the Gauss–Markov theorem.

Theorem 9.2.2. Under assumptions A1 and A2, the least squares estimator (9.4)
is BLUE with var(β̂) = σ2(XT X)−1. A sufficient condition for consistency is that

lim
N→∞

λmin(XT
NXN ) = ∞,

where XN is the regressor matrix in (9.3) for the first N observations and λmin

denotes the smallest eigenvalue.

Proof. It follows from (9.3) and (9.4) that β̂ = β + (XT X)−1XT ε. As X is non-
random, E(ε) = 0 and var(ε) = σ2I, it follows that E(β̂) = β and

var(β̂) = (XT X)−1XT var(ε)X(XT X)−1 = σ2(XT X)−1.

Let β̃ = Ay be another unbiased estimator and define ∆ = A − (XT X)−1XT .
Unbiasedness requires that E(β̃) = AXβ = β for every β, so that AX = I and
∆X = 0. Then β̃ − Eβ̃ = A(Xβ + ε) − β = Aε and

var(β̃) = E(β̃ − Eβ̃)(β̂ − Eβ̃)T = E(AεεT AT ) = σ2AAT

= σ2(∆∆T + (XT X)−1) = σ2∆∆T + var(β̂).
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As ∆∆T is positive semidefinite this shows that β̂ is BLUE.
To prove consistency we use the Markov inequality, that is, for every random

variable z and every c > 0 there holds E(z2) ≥ c2P (| z |≥ c) so that P (| z |≥ c) ≤
c−2E(z2). It then follows that for every δ > 0,

P (‖β̂N − β‖ ≥ δ) ≤ P (| β̂n,i − βi |≥ k− 1
2 δ for some i = 1, . . . , k)

≤ kδ−2E(β̂N,i − βi)2 = kδ−2var(β̂N,i) ≤ kδ−2σ2λmax{(XT
NXN )−1}

= kδ−2σ2{λmin(XT
NXN)}−1,

and this converges to zero for N → ∞, by assumption. �

Returning to the FIR system (9.2), assumptions A1 and A2 mean that the
input is not random but the output is random. This may be relevant in experi-
mental situations where the input is controlled. However, often the input will be
affected by uncertain factors that fall outside the scope of the model. The above
results remain asymptotically valid for random inputs, provided some conditions
are satisfied. We restrict the attention to consistency, and replace assumption A1
by the following.

A1* The matrix X is random and such that plim( 1
N XT

NXN ) = Q exists with Q
invertible (sufficiency of excitation).

For the FIR system (9.2) there holds 1
N XT

NXN = 1
N

∑N
t=1 x(t)xT (t), where x(t) =

(u(t − 1), . . . , u(t − k))T , so that Q corresponds to the covariance matrix of the
input and its lags. The excitation condition basically means that the input satisfies
no polynomial equations and that it does not die out when N → ∞.

Theorem 9.2.3. Under assumptions A1* and A2, the least squares estimator is
consistent if and only if plim( 1

N

∑N
t=1 ε(t)x(t)) = 0 (orthogonality condition).

Proof. The least squares estimator is β̂N = β + ( 1
N XT

NXN)−1( 1
N XT

Nε) where
1
N XT

Nε = 1
N

∑N
t=1 ε(t)x(t). The definition of convergence in probability gives that

if plim(an) = a and f is a continuous function, then plim(f(an)) = f(a). Therefore
plim(β̂N ) = β + Q−1plim( 1

N XT
Nε), which proves the result. �

The orthogonality condition essentially requires that the regressor variables
x(t) show no contemporaneous correlation with the error term ε(t). For the FIR
system this means that the output error in (9.2) is uncorrelated with the past
inputs.

Many time series that are observed in practice show trends and seasonal
variation. The modelling of trends and seasonals is discussed in the next chapter.
In the current chapter we will either assume that the data are stationary, which
can sometimes be achieved by appropriate data transformations, or that the model
explicitly includes variables for the nonstationary part.
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9.3 Maximum Likelihood

Stochastic models assign (relative) probabilities to the observations of the system
variables. Suppose that the model class consists of a set of probability densities
{pθ, θ ∈ Θ}, where θ ∈ Θ is a vector of unknown parameters. If the data consists
of q time series that are observed on a time interval of length N , then pθ is
a probability density on (Rq)N . The maximum likelihood method chooses the
model that assigns the highest probability to the observed data. If we denote the
data by w ∈ (Rq)N , then this means that the likelihood function L(θ) := pθ(w) is
maximized over the parameter set Θ.

Maximum likelihood estimation (ML) requires that the probability distribu-
tion is specified as an explicit function of the parameters θ. As an example, we
consider the regression model (9.3) y = Xβ + ε. In this case, the parameters θ are
given by (βT , σ2)T . We extend assumption A2 as follows.

A2* The disturbance vector ε has the multivariate normal distribution with mean
E(ε) = 0 and covariance matrix E(εεT ) = σ2I.

Theorem 9.3.1. Under assumptions A1 and A2*, the maximum likelihood esti-
mators in the regression model (9.3) are given by β̂ = (XT X)−1XT y and σ̂2 =
1
N (y − Xβ̂)T (y − Xβ̂).

Proof. Let θ = (βT , σ2)T denote the vector of the model parameters. As ε = y−Xβ
has the normal distribution, the likelihood function is given by

L(β, σ2) = pθ(y, X) = (2πσ2)−
N
2 exp{−(2σ2)−1(y − Xβ)T (y − Xβ)}. (9.5)

As the logarithm is a monotonic function, maximization of L(β, σ2) is equivalent
to maximization of

log L(β, σ2) = −N

2
log(2π) − N

2
log(σ2) − (2σ2)−1(y − Xβ)T (y − Xβ).

It follows that the maximum is obtained for β̂ = (XT X)−1XT y and σ̂2 =
1
N (y − Xβ̂)T (y − Xβ̂). �

Theorem 9.3.2. Under assumptions A1 and A2*, the least squares estimator β̂ in
(9.4) is minimum variance unbiased, that is, it is unbiased and if β̃ is another
unbiased estimator, then var(β̃) − var(β̂) is positive semidefinite.

Proof. Again, let θ = (βT , σ2)T denote the model parameters. The Cramer–Rao
theorem states that every unbiased estimator θ̂ has a covariance matrix var(θ̂) ≥
[−E(∂2 log L

∂θ∂θT )]−1, see [35]. It follows by direct calculation from (9.5) that in this case
the lower bound is a block-diagonal matrix with blocks σ−2(XT X) and (2σ4)−1N .
This implies that for every unbiased estimator there holds var(β̃) ≥ σ2(XT X)−1 =
var(β̂), see Theorem 9.2.2. �
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Under very general conditions, maximum likelihood estimators have optimal
asymptotic properties, provided that the model is correctly specified. That is, if
the data are generated by a probability distribution pθ0 , with θ0 ∈ Θ, and θ̂N

is the ML estimate based on N observations, then under very general conditions
there holds that

(i) θ̂N is consistent, that is, plim(θ̂N ) = θ0;

(ii) θ̂N is asymptotically efficient in the class of all consistent estimators, that is,
limN→∞ N(var(θ̃N ) − var(θ̂N )) is positive semidefinite for every consistent
estimator θ̃;

(iii) θ̂N has an asymptotic normal distribution, in the sense that
√

N(θ̂N − θ0)
converges to a normal distribution with mean zero and covariance matrix
[−E(∂2 log L

∂θ∂θT )]−1.

We refer to , e.g., [23] for a proof of this result. From a computational point of view,
ML estimation requires the maximization of the likelihood function or equivalently,
of its logarithm, both of which are functions of several real variables. The first order
conditions will in general consist of a set of nonlinear equations in θ that can be
solved by numerical methods. Such methods differ in the choice of initial estimates,
search strategies, and convergence criteria. The Newton–Raphson method consists
of an iterative linearization of the stationarity condition for a maximum. Consider
this for the maximization of the logarithm of the likelihood functions. If θ̂i is the
current estimate, Gi = ∂logL(θ)

∂θ the gradient and Hi = ∂2 log L
∂θ∂θT the Hessian in θ̂i,

then locally around θ̂i there holds ∂ log L(θ)
∂θ ≈ Gi +Hi(θ− θ̂i) by Taylor’s formula.

This motivates the iterations

θ̂i+1 = θ̂i − H−1
i Gi. (9.6)

A possible disadvantage is that this requires the computation and inversion of the
Hessian matrix. For nonlinear regression models of the form

y(t) = f(x(t), θ) + ε(t) (9.7)

one could use the Gauss–Newton method for the minimization of
∑N

t=1 ε2(t) as
an alternative. This corresponds to maximum likelihood if the disturbances sat-
isfy assumption A2*. Here x(t) is the vector of regressors at time t, and f is
a nonlinear function of the model parameters θ. If θ̂i is the current estimate,
then the model (9.7) is linearized by f(x, θ) ≈ f(x, θ̂i) + xT

i (θ − θ̂i), where
xi = ∂

∂θ f(x, θ) is the gradient evaluated at (x, θ̂i). The linearized model gives
ε(t) = y(t) − f(x(t), θ) ≈ y(t)− f(x(t), θ̂i) − xT

i (t)(θ − θ̂i) = εi(t) − xT
i (t)(θ − θ̂i),

where εi(t) denotes the residuals of (9.7) for the estimate θ̂i and xi(t) is the gra-
dient of f at (x(t), θ̂i). The corresponding approximation of the criterion function
gives
∑N

t=1 ε2(t) ≈∑N
t=1{εi(t) − xT

i (t)(θ − θ̂i)}2. This is a least squares problem
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with estimate θ̂i+1 = (XT
i Xi)−1XT

i (εi + Xiθ̂i), that is

θ̂i+1 = θ̂i + (XT
i Xi)−1XT

i εi. (9.8)

Here Xi is the matrix with N rows consisting of the gradients xi(t), t = 1, . . . , N ,
and εi is the N × 1 vector with the residuals for θ̂i.

9.4 Estimation of Autoregressive Models

In this section, we suppose that the data consists of observations of a single output
variable y(t), observed for t = 1, . . . , N , and generated by an autoregressive model

y(t) = α1y(t − 1) + · · · + αpy(t − p) + ε(t). (9.9)

Here ε is a white noise process with mean zero, variance σ2, and finite fourth order
moments, so that assumption A2 is satisfied. We assume that this model is causal,
that is, that the polynomial 1 −∑p

i=1 αiz
−i has all its roots inside the unit disc.

Moreover, we assume that p is known and correctly specified. In Section 9.6.1 we
shall discuss methods to estimate the lag order p from the data.

Theorem 9.4.1. The least squares estimator of (α1, . . . , αp) in a causal autoregres-
sive model (9.9) is consistent.

Proof. According to Theorem 9.2.3, it suffices to prove that assumption A1* is
satisfied and that plim( 1

N

∑N
t=1 ε(t)y(t− i)) = 0 for i = 1, . . . , p. As was discussed

in Section 6.3, stationarity implies that y(t) can be written as a function of the
past disturbances {ε(s), s ≤ t}. Therefore E(ε(t)y(t − i)) = 0 for all t and i =
1, . . . , p, so that ε(t) is uncorrelated with all the regressors in (9.9). This means
that 1

N

∑N
t=1 ε(t)y(t − i) is the sample mean of N mutually uncorrelated terms

with mean 0 and constant variance E(ε(t)y(t − i))2 < ∞, because ε has finite
fourth order moments. The weak law of large numbers implies that

plim(
1
N

N∑
t=1

ε(t)y(t − i)) = 0.

As concerns assumption A1*, 1
N XT

NXN is a p × p matrix with (i, j)-th element
1
N

∑N
t=1 y(t− i)y(t− j). Under the above conditions the process y can be shown to

be ergodic. The proof requires a generalized law of large numbers for the sample
mean of N correlated terms (but with exponentially decaying correlation between
y(t − i)y(t − j) and y(t − i + k)y(t − j + k) for k → ∞). Ergodicity implies
that the matrix Q in assumption A1* exists, and that Qij = E(y(t − i)y(t − j)).
Further Q is invertible, because otherwise there would exist a ∈ Rp such that
aT Qa = var(

∑p
i=1 aiy(t−i)) = 0 which contradicts that the autoregressive process

(9.9) has no perfectly predictable component. �
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In the model (9.9) the observations have mean Ey(t) = 0. In practice, one may
add regressors to take care of, for example, nonzero mean and trends, so that

y(t) = µ1 + µ2T (t) + α1y(t − 1) + · · · + αpy(t − p) + ε(t). (9.10)

Least squares is also consistent for this model under the conditions of Theorem
9.4.1.

Theorem 9.4.2. If in the autoregressive model (9.9) the noise ε satisfies assump-
tion A2* (normality), then the least squares estimator is consistent, asymptotically
efficient, and asymptotically normally distributed.

Proof. It is sufficient to prove that under these conditions least squares is asymp-
totically equivalent to maximum likelihood. The likelihood function of (9.9) can
be written, by conditioning, as

L(α1, . . . , αp) = p(y(1), . . . , y(N))
= p(y(1), . . . , y(p))ΠN

t=p+1p(y(t) | y(1), . . . , y(t − 1))

= p(y(1), . . . , y(p))ΠN
t=p+1p(y(t) | y(t − 1), . . . , y(t − p))

= p(y(1), . . . , y(p))ΠN
t=p+1p(ε(t)).

As p(ε(t)) = (2πσ2)−
1
2 exp{−(2σ2)−1ε(t)2} this gives

1
N

log L =
1
N

log(p(y(1), . . . , y(p))) +
1
N

N∑
t=p+1

log p(ε(t))

=
1
N

log(p(y(1), . . . , y(p))) − 1
2

log(2πσ2) − (2σ2)−1

N

N∑
t=p+1

ε(t)2.

Apart from the first term, that vanishes for N → ∞, this shows that the ML
estimates of α1, . . . , αp are obtained by minimizing

∑N
t=p+1 ε(t)2. �

There is a close connection between least squares and the so-called Yule–
Walker equations . As E(ε(t)y(t− i)) = 0 for i = 1, . . . , p, it follows from (9.9) that
the autocovariances R(k) = E(y(t)y(t − k)) of the process y satisfy⎛⎜⎜⎜⎝

R(1)
R(2)

...
R(p)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
R(0) R(1) · · · R(p − 1)
R(1) R(0) · · · R(p − 2)

...
...

...
R(p − 1) R(p − 2) · · · R(0)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

α1

α2

...
αp

⎞⎟⎟⎟⎠ . (9.11)

If we replace R(k) by R̂(k) = 1
N

∑N
t=k+1 y(t)y(t − k) then (9.11) can be solved

for the parameters αi, i = 1, . . . , p. For numerical reasons, the autocovariances are
often scaled by using the correlations ρ̂(k) = R̂(k)/R̂(0) in (9.11) instead of R̂(k).
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That is, one considers estimates α̂j obtained by solving the following set of linear
equations:⎛⎜⎜⎜⎜⎜⎜⎝

ρ̂(1)
ρ̂(2)

...

...
ρ̂(p)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ̂(1) · · · · · · ρ̂(p − 1)

ρ̂(1) 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . ρ̂(1)

ρ̂(p − 1) · · · · · · ρ̂(1) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
α̂1

α̂2

...

...
α̂p

⎞⎟⎟⎟⎟⎟⎟⎠ . (9.12)

The structure of the matrix in the right-hand side of this equation is a very spe-
cial one: it is symmetric positive definite, but also it is a Toeplitz matrix: along
diagonals the same entry occurs. Fast methods to solve sets of equations of this
kind for α̂1, . . . , α̂p are important, in particular in cases where p is large. One such
fast algorithm is known as the Levinson algorithm; it requires considerably fewer
numerical operations than the O(p3) operations needed for Gaussian elimination.
See, e.g., [18].

To discuss the estimation of σ2 resulting from the estimates for the αj we
use the fact that

ε(t) ≈ ε̂(t) = y(t) − α̂1y(t − 1) − · · · − α̂py(t − p).

Note that σ2 = E(ε(t)2) = E(ε(t)y(t)). Replacing in the latter formula ε(t) by
ε̂(t) we arrive at the following estimate σ̂2 for σ2:

σ̂2 = E(ε̂(t)y(t)) = R(0) − α̂1R(1) − · · · − α̂pR(p).

One can check that the estimates resulting from solving (9.12) are approx-
imately equal to the least squares estimates (where the summations run from
t = p + 1 to N instead of from t = k + 1 to N).

Next we consider autoregressive models with inputs, that is,

y(t) =
p∑

i=1

αiy(t − i) +
q∑

i=0

βiu(t − i) + ε(t). (9.13)

This is also called an ARX model, that is, an autoregressive model with
exogenous variables. We assume that

∑p
i=1 αiy(t−i)+

∑q
i=0 βiu(t−i) is the optimal

linear predictor of y(t), in the sense that it minimizes the mean squared prediction
error E(y(t) − ŷ(t))2 over the class of all linear predictors of the type ŷ(t) =∑

i≥0(aiy(t− i− 1)+ biu(t− i)). Optimality implies that E((y(t)− ŷ(t))ŷ(t)) = 0,
so that E(ε(t)y(t − i)) = 0 for all i ≥ 1 and E(ε(t)u(t − i)) = 0 for all i ≥ 0.
Further we assume that the uncontrolled system with input u(t) = 0 is causal, that
is, that 1−∑p

i=1 αiz
−i has all its roots inside the unit disc. We use the notation θ =

(α1, . . . , αp, β0, . . . , βq)T , x(t) = (y(t−1), . . . , y(t−p), u(t), u(t−1), . . . , u(t−q))T ,
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and

QN =
(

QN(yy) QN (yu)
QN(uy) QN (uu)

)
=

1
N

N∑
t=m

x(t)x(t)T ,

where m = max{p, q}. So [QN (yy)]ij = 1
N

∑N
t=m y(t− i)y(t− j) = R̂y(i− j),i, j =

1, . . . , p, are the sample autocovariances of the output, and similarly for the other
entries of the matrix QN .

Theorem 9.4.3. Under the above conditions, the least squares estimators of the
parameters in the ARX system (9.13) are consistent if the inputs are sufficiently
excited in the sense that plimQN (uu) = Q(uu) exists and is invertible.

Proof. Details of the proof fall outside the scope of this book, we refer to [19]. The
idea is similar to the proof of Theorem 9.4.1. That is, the least squares estimator
is given by θ̂N = θ + Q−1

N δN where δN = 1
N

∑N
t=m+1 ε(t)x(t). As plimQN(uu)

exists and the system (9.13) is causal, it follows that also plimQN(yy) = Q(yy)
and plimQN (yu) = Q(yu) exist. Further, Q = plimQN is invertible, because
otherwise there would exist a ∈ Rp and b ∈ Rq+1 such that (aT , bT )Q(aT , bT )T =
var(
∑p

i=1 aiy(t− i) +
∑q

i=0 biu(t− i)) = 0. Because Q(uu) is invertible, ai �= 0 for
at least one i = 1, . . . , p, and this contradicts the fact that y(t) is not perfectly
predictable from the observations {y(s − 1), u(s), s ≤ t}. Therefore, plim(θ̂N ) =
θ + Q−1plim(δN ), and plim(δN ) = 0. This orthogonality condition again follows
from a weak law of large numbers. �

Note that this result does not require that the input is deterministic. It may,
for instance, be generated by feedback, where u(t) depends on the past outputs
{y(s), s ≤ t − 1}. However, the input u(t) may not depend on the current output
y(t), as in this case the orthogonality condition E(ε(t)u(t)) = 0 would be vio-
lated. The input condition stated in Theorem 9.4.3 can be weakened, but some
persistency of excitation is needed.

In the foregoing we restricted our attention to systems (9.9) with one output
and (9.13) with one input and one output. Similar results hold true for multivariate
systems, with multiple inputs and outputs.

9.5 Estimation of ARMAX Models

In the foregoing section it was assumed that the disturbances ε(t) in (9.9) and
(9.13) are white noise. If the disturbances are correlated over time, then this
indicates that the dynamic specification of the model is not correct. This can be
repaired by increasing the lag orders of the model, but this may lead to a large
number of parameters. It may then be preferable to estimate more parsimonious
models. For example, for single-input, single-output systems one can use ARMAX
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models defined by

y(t) =
p∑

i=1

αiy(t − i) +
q∑

i=0

βiu(t − i) + ε(t) +
r∑

i=1

γiε(t − i). (9.14)

If the inputs are u(t) = 0, then this is an ARMA model. We assume that this
model is coprime, causal and invertible, i.e., the equations 1−∑p

i=1 αiz
−i = 0 and

1 +
∑r

i=1 γiz
−i = 0 have all their solutions in | z |< 1 and the equations have no

common solutions. The white noise process ε(t) then has the interpretation of the
one-step ahead prediction errors, see Section 6.3.

Theorem 9.5.1. For an ARMAX system (9.14) with p �= 0 and r �= 0, the least
squares estimate in the regression model (9.13) is in general not consistent.

Proof. The disturbances in the model (9.13) are given by ε(t) +
∑r

i=1 γiε(t − i).
If p �= 0 �= r, then these are in general correlated with the output regressors
in (9.13). Therefore the orthogonality condition is violated, and it follows from
Theorem 9.2.3 that least squares is not consistent.

As a simple example, consider the ARMA(1,1) model y(t) = αy(t − 1) +
ε(t) + γε(t − 1) with α �= 0 �= γ and |α| < 1, |γ| < 1. The least squares estimate
of α is given by α̂N = (

∑N
t=2 y(t)y(t − 1))/(

∑N
t=2 y2(t − 1)). From this it follows

that plim(α̂N ) = α + γσ2/var(y(t)). This is inconsistent if γ �= 0. �

Consistent estimators may be obtained by using so-called instrumental vari-
ables. We formulate this in terms of the regression model (9.3), with plim( 1

N XT
NεN )

�= 0 where XN is the N × k regressor matrix and εN the N × 1 disturbance vec-
tor for sample size N . The variables zi(t), i = 1, . . . , l, are called instruments if
the following conditions are satisfied, where ZN denotes the N × l matrix with
elements zi(t):

plim(
1
N

ZT
NεN ) = 0, plim(

1
N

ZT
NZN) = Qzz, plim(

1
N

ZT
NXN ) = Qzx,

rank(Qzz) = l, rank(Qzx) = k.
(9.15)

The idea is to replace the regressors XN by the instruments ZN , because they
satisfy the orthogonality condition. In order to approximate XN as well as possi-
ble, they are regressed on ZN . Therefore, the instrumental variables estimator
θ̂IV is defined by the following two steps. First regress XN on ZN , with fit-
ted values X̂N = ZN (ZT

NZN )−1ZT
NXN , and then regress y on X̂N . Let PN =

ZN(ZT
NZN )−1ZT

N be the projection operator on the column space of ZN , then

θ̂IV = (X̂T
N X̂N )−1X̂T

Ny = (XT
NPNXN)−1XT

NPNy. (9.16)

Theorem 9.5.2. The instrumental variables estimator θ̂IV is consistent if the condi-
tions (9.15) are satisfied, and var(θ̂IV ) is approximately given by σ2(XT

NPNXN )−1.
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Proof. By filling in (9.3) into (9.16) it follows that

θ̂IV = θ + {XT
NZN (ZT

NZN)−1ZT
NXN}−1XT

NZN (ZT
NZN )−1ZT

NεN .

Consistency now follows immediately from the assumptions in (9.15). The expres-
sion for the variance follows from Theorem 9.2.2, replacing X by X̂N . �

For the ARMAX model (9.14), assuming that the input u(t) only depends
on the past outputs {y(s), s ≤ t}, one can choose instruments from the set
{y(s), u(s), s ≤ t − r − 1} as these are uncorrelated with the composite distur-
bance term ε(t) +

∑r
i=1 γiε(t− i). The resulting IV estimator is consistent, but it

may be far from efficient.
From an asymptotic point of view, it is optimal to use maximum likelihood.

Denoting the lag operator by (z−1y)(t) = y(t−1), the model (9.14) can be written
as α(z−1)y(t) = β(z−1)u(t) + γ(z−1)ε(t). Because the model is assumed to be
invertible, ε(t) = (γ(z−1))−1(α(z−1)y(t) − β(z−1)u(t)) = F (y(s), u(s), s ≤ t) for
a function F that is linear in the observed data but nonlinear in the unknown
parameters θ = (α1, . . . , αp, β0, . . . , βq, γ1, . . . , γr). Because α(∞) = γ(∞) = 1,
this can also be written in prediction error form

ε(t, θ) = y(t) − f(θ, y(s − 1), u(s), s ≤ t). (9.17)

If the process ε(t) satisfies assumption A2*, then (conditionally on starting con-
ditions in (9.14)) the maximum likelihood estimators are obtained by minimizing∑N

t=m+1 ε2(t, θ) over θ, where m = max{p, q, r}. Note that (9.17) corresponds to
a nonlinear regression model of the type (9.7), so that the parameters θ can be
estimated, for instance, by the Gauss–Newton iterations (9.8).

An alternative is to use the Kalman filter. For given parameter vector θ,
the ARMAX system (9.14) can be expressed in state space form, see Section
6.6. The mean µ(t) and variance σ2(t) can then be computed by means of the
Kalman filter, see Theorem 7.3.1 and Proposition 7.3.3. In fact, in terms of the
notation of Theorem 7.3.1 and Proposition 7.3.3 we have µ(t) = ŷ(t) and σ2(t) =
CP (t)CT + GGT . Considering the inputs as fixed and using the notation Ut =
{u(t), u(t− 1), . . . , u(1)} and similarly for Yt, the likelihood function can be writ-
ten by sequential conditioning as log L(θ) =

∑N
t=1 log(p(y(t) | θ, Ut, Yt−1). Un-

der assumption A2*, the densities p(y(t) | θ, Ut, Yt−1) are normal, with mean
µ(t) = E(y(t) | θ, Ut, Yt−1) and variance σ2(t), so that

log L(θ) = −N

2
log(2π) − 1

2

N∑
t=1

(y(t) − µ(t))2/σ2(t) − 1
2

N∑
t=1

log σ2(t). (9.18)

This can then serve for a numerical optimization algorithm to obtain the maximum
likelihood estimate.

The foregoing results can be generalized to multivariate systems. As men-
tioned in Section 6.3, the parameters of multivariate VARMAX systems are in
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general not uniquely defined. That is, there exist different parameter vectors that
describe exactly the same (stochastic) input-output system. This so-called non-
identifiability implies that the likelihood function is constant for such parameters,
so that the gradient may be zero in such directions. This causes numerical prob-
lems, that can be solved by choosing a canonical form for the parameters. We refer
to [45].

Identification methods that are based on the prediction errors as in (9.17) are
called prediction error identification (PEI) methods. For multivariate systems, let
V (θ) = 1

N

∑N
t=1 ε(t, θ)εT (t, θ) denote the sample covariance matrix of the predic-

tion errors. Least squares corresponds to the criterion trace(V (θ)), and it can be
shown that maximum likelihood corresponds to the criterion log(det(V (θ)). So, in
the case of a single output these two methods are equivalent, but for multi-output
systems this only holds true if V (θ) is diagonal and there are no cross-equation
parameter restrictions in the equations (9.17). The consistency and relative effi-
ciency of PEI methods has been investigated under quite general conditions, see
[42].

9.6 Model Validation

Different model specifications may lead to different estimates of the underlying
system. In order to decide about the model structure, and accordingly about the
estimation method to be used, we can estimate different models and perform
diagnostic tests on the underlying model assumptions. In this section we discuss
some of the diagnostic tools that may be helpful in this respect.

9.6.1 Lag Orders

The estimation of ARMAX models requires that the lag orders (p, q, r) in (9.14)
have been specified. If the orders are chosen too large this means that many
parameters have to be estimated, with a corresponding loss of efficiency. On the
other hand, if the orders are too small then the estimates become inconsistent.
That is, the choice of the lag orders involves a trade-off between efficiency and
consistency. We illustrate this by an example.

Example 9.1. Consider the causal AR(2) model y(t) = α1y(t−1)+α2y(t−2)+ε(t),
where ε satisfies assumption A2. First assume that the order is specified too large,
that is, that α2 = 0. Using the variance expression in Theorem 9.2.2, with the
regressors x(t) = (y(t − 1), y(t − 2))T , it follows that α̂1 in the AR(2) model has
variance

var(α̂1) = σ2[(XT X)−1]1,1

=
σ2
∑

y2(t − 2)∑
y2(t − 1)

∑
y2(t − 2) − (

∑
y(t − 1)y(t − 2))2
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≈ σ2

NR(0){1 − (R(1)/R(0))2} =
1
N

,

where R(k) denotes the autocovariances of the process y(t). Because α2 = 0, there
holds R(0) = σ2(1 − α2

1)
−1 and R(1) = α1R(0). In the correctly specified AR(1)

model, the estimator has variance

var(α̂1) =
σ2∑

y2(t − 1)
≈ σ2

NR(0)
=

1 − α2
1

N
.

This shows that too large models lead to inefficient estimators. On the other hand,
if an AR(1) model is estimated while in fact α2 �= 0, then

plim(α̂1) = plim
( 1

N

∑
y(t)y(t − 1)

1
N

∑
y2(t − 1)

)
= α1 + α2

R(1)
R(0)

. (9.19)

So in this case the estimator is inconsistent if R(1) �= 0.

Several methods have been developed for choosing the lag orders. For exam-
ple, if the parameters are estimated by maximum likelihood, then the results in
Section 9.3 show that the estimators are approximately normally distributed. The
significance of the parameters in model (9.14) can then be evaluated by the usual
t- and F -tests.

If only a single output is observed, then the order of AR(p) models and MA(q)
models can be based on the (partial) autocorrelations. The autocorrelations of a
stationary process are defined by AC(k) = R(k)/R(0), with corresponding sample
estimates SAC(k) = R̂(k)/R̂(0). If y is an MA(q) process, then AC(k) = 0 for
k > q. If y is an AR(p) process, then in the regression model (9.9) of an AR(k)
model there holds αk = 0 for k > p. The sample partial autocorrelations are
defined by SPAC(k) = α̂k, the parameter of y(t − k) in the estimated AR(k)
model for the data (including constant, trends and dummies if needed). As a rule
of thumb, estimated values SAC and SPAC are considered significant if they are
(in absolute value) larger than 2/

√
N , where N is the sample size.

An alternative is to use information criteria, for instance the Akaike or Bayes
criterion

AIC = log(σ̂2) +
2M

N
, BIC = log(σ̂2) +

M log(N)
N

. (9.20)

Here σ̂2 is the estimated variance of the residuals of the model, and M is the
number of AR and MA parameters of the model. For instance, for a univariate
ARMA(p, q) process M = p + q, and for the model AR(p) model (9.10) with
constant and trend M = p. The model with the smallest value of AIC or BIC is
preferred. These criteria make an explicit trade-off between bias, measured by the
error variance σ̂2, and efficiency, measured by the number of parameters.
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9.6.2 Residual Tests

The estimation methods in Sections 9.4 and 9.5 are based on the assumptions A2
or A2* for the error terms. If, for example, the lag orders have been misspecified,
then this may result in serial correlation of the error terms. And if the data are
not appropriately transformed, then the error terms may show changing variance.
If the error terms are not normally distributed, then least squares is no longer
equivalent to maximum likelihood. In all these cases, the methods discussed in
Sections 9.4 and 9.5 may give misleading results.

Tests of these assumptions are based on the model residuals ε̂(t) = y(t)−ŷ(t),
where ŷ(t) denotes the fitted values. For instance, for the ARMAX model (9.14)
ε̂(t) = y(t) −∑p

i=1 α̂iy(t − i) −∑q
i=0 β̂iu(t − i) −∑r

i=1 γ̂iε̂(t − i). It is always
informative to make a time plot of the residuals to get an idea of possible misspec-
ification. The sample autocorrelations SACε(k) = R̂ε(k)/R̂ε(0) give an indication
of possible serial correlation, where R̂ε(k) are the sample autocovariances of ε̂(t).
As before, if there exist many values of k for which | SACε(k) |> 2/

√
N , then this

is a sign of serial correlation.
A combined test is the Box–Pierce test Qm = N

∑m
k=1(SACε(k))2. Under the

null-hypothesis that the model is correctly specified, this test follows a χ2
(m−p−r)

distribution for large enough sample sizes. The following Ljung–Box test involves
an adjustment for finite sample effects, and also follows an asymptotic χ2

(m−p−r)

distribution.

LBm = N(N + 2)
m∑

k=1

(N − k)−1(SACε(k))2. (9.21)

The null hypothesis of no serial correlation is rejected for large values of LBm.
This means that the model is not correct, and a possible solution is to enlarge the
lag orders.

As concerns heteroscedasticity, it may be that the variance is related to the
level of the series or that the variance shows correlation over time. Tests are based
on the series of squared residuals ε̂(t)2. For example, if an ARX(1, 0) model (9.13)
is estimated, then one can consider the regressions

ε̂2(t) = λ0 + λ1y(t − 1) + λ2y
2(t − 1) + λ3u(t) + λ4u

2(t), (9.22)

ε̂2(t) = λ0 + λ1ε̂
2(t − 1) + λ2ε̂

2(t − 2). (9.23)

These equations can of course be generalized. The null hypothesis is that λi = 0
for all i �= 0. In both cases an F -test can be used, and under the null hypothesis the
distribution is approximately χ2

(m) where m is the number of restrictions (m = 4 in
(9.22), and m = 2 in (9.23)). If there is significant heteroscedasticity, then the data
can be transformed, or one can adjust the identification criterion. More generally,
the following result holds true.

Theorem 9.6.1. For the regression model (9.3), assume that A1 is satisfied and
that E(ε) = 0 and var(ε) = V with V non-singular. Then the BLUE estimator



130 Chapter 9. System Identification

is obtained by minimizing εT V −1ε, with solution β̂ = (XT V −1X)−1XT V −1y and
var(β̂) = (XT V −1X)−1.

Proof. As V is a non-singular covariance matrix, it is positive definite and has a
symmetric square root V

1
2 such that V

1
2 V

1
2 = V . Let y∗ = V − 1

2 y, X∗ = V − 1
2 X

and ε∗ = V − 1
2 ε, then (9.3) implies that y∗ = X∗β+ε∗ with var(ε∗) = I. According

to Theorem 9.2.2, the BLUE estimator is given by β̂ = (XT
∗ X∗)−1XT

∗ y∗ with
var(β̂) = (XT∗ X∗)−1, and this corresponds to the minimization of εT∗ ε∗ = εT V −1ε.

�

The technique to transform the data in such a way that the error term satisfies
assumption A2 is called pre-whitening. In practice, the covariance matrix V is
unknown and has to be estimated. In the case of heteroscedasticity, V is a diagonal
matrix and the entries vtt = E(ε2(t)) can be estimated, for example, by models
of the type (9.22), (9.23). The parameters β are then estimated by weighted least
squares, with criterion function

∑N
t=1 ε2(t)/vtt.

Finally we consider the assumption of normality of the error terms. This
can be tested by considering the standardized third and fourth moments of
the residuals. Let ε̄ = 1

N

∑N
t=1 ε̂(t) and σ̂2 = 1

N

∑N
t=1(ε̂(t) − ε̄)2, then µ̂i =

1
N

∑N
t=1(ε̂(t) − ε̄)i/σ̂i are the skewness (for i = 3) and kurtosis (for i = 4). It

can be shown that, asymptotically and under the null hypothesis that A2* is
satisfied, the Jarque–Bera test

JB = N(
1
6
µ̂2

3 +
1
24

(µ̂4 − 3)2) (9.24)

has the χ2
(2) distribution. The normal distribution is symmetric (skewness zero)

and has kurtosis equal to 3 (a measure of the thickness of the tails of the distribu-
tion). Normality may be rejected, for instance, because there are some excessively
large residuals. They may arise because of special circumstances, for instance a
measurement error or a temporary disruption of the process. Because the least
squares criterion penalizes residuals by taking the squares, such outliers may have
large effects on the estimates. This can be reduced by using more robust identifi-
cation criteria, for example by minimizing

∑N
t=1 | ε(t) |.

9.6.3 Inputs and Outputs

For multivariable systems, the question arises how many equations should be esti-
mated and what are the properties of the error process. It is usual to model either
all the variables as a multivariate stochastic process or to model some of the vari-
ables (the outputs) in terms of the others (the inputs). This is also the basis for
the methods described in Sections 9.4 and 9.5. Here we will not discuss alterna-
tive modelling approaches, but we give two examples indicating the importance of
these questions.
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Example 9.2. In this example we analyse the effect of incomplete model specifica-
tion. Assume that three variables are observed that actually consist of one input
and two outputs, related by the equations

y1(t) = α1y2(t) + β1y1(t − 1) + γ1u(t) + ε1(t),
y2(t) = α2y1(t) + β2y2(t − 1) + γ2u(t) + ε2(t),

where (ε1, ε2)T is a white noise process with covariance matrix I. Suppose that
we do not know that y2 is an output and that we estimate only the first equation
for y1, seen as an ARX(1, 0) model with output y1 and inputs u and y2. This
model structure suggests that we estimate the parameters by least squares, see
Section 9.4. However, this gives inconsistent estimates. The result in Theorem
9.4.3 does not apply, because the regressor y2(t) is correlated with ε1(t) if α2 �= 0.
More precisely, assume that the processes y1, y2 and u are all stationary, and
let θ = (α1, β1, γ1)T and x(t) = (y2(t), y1(t − 1), u(t))T . Then the least squares
estimator θ̂N in the equation for y1 has the property that plim(θ̂N ) = θ + V −1δ,
where V = var(x(t)) is invertible and δ ∈ R3 has as first entry E(y2(t)ε1(t)).
Taking into account the two model equations, it follows that E(y2(t)ε1(t)) =
α2/(1 − α1α2) �= 0. This is called the simultaneity bias, that arises when some of
the system equations are missing in the model.

Example 9.3. Next we analyse the consequences of a wrong specification of the
properties of the error process. Suppose that the system consists of a single input
and a single output that are both measured with error, for instance,

y(t) = y∗(t) + ε1(t), u(t) = u∗(t) + ε2(t), y∗(t) = βu∗(t − 1) + ε3(t).

Here the underlying system for the unobserved variables (y∗, u∗) is ARX(0, 1).
We assume that εi are independent white noise processes with zero mean and
variance σ2

i , 1 = 1, 2, 3, and that u∗ is a stationary process with mean zero and
variance σ2

∗ that is independent of εi, i = 1, 2, 3. In terms of the observed input
and output, the ARX(0, 1) model y(t) = θu(t − 1) + ε(t) is correctly specified, in
so far as the lag order is correct, the input and output are chosen correctly, and
the errors satisfy assumption A2. Indeed, actually y(t) = βu(t − 1) + ε(t) where
ε(t) = ε1(t)−βε2(t−1)+ε3(t) is a white noise process. However, the least squares
estimator is not consistent because the orthogonality condition of Theorem 9.2.3
is not satisfied. As E(ε(t)u(t− 1)) = −βσ2

2 and E(u2(t− 1)) = σ2
∗ + σ2

2 , it follows
that

plim(θ̂N ) = β − βσ2
2

σ2∗ + σ2
2

= β(1 − 1
S + 1

),

where S = σ2∗/σ2
2 is the so-called signal-to-noise ratio for the input. This shows that

a wrong specification of the error assumptions may lead to inconsistent results.
Especially when the noise is relatively large, that is, when S is small, the estimates
may be very unreliable. Note that the orthogonality condition can not be checked
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by computing the correlation between the regressor u(t − 1) and the residuals
ε̂(t) = y(t) − θ̂u(t − 1), because plim( 1

N

∑N
t=1 ε̂(t)u(t − 1)) = E(y(t)u(t − 1)) −

plim(θ̂N )E(u2(t − 1)) = 0.

9.6.4 Model Selection

In system identification one is confronted with the choice of data, model class,
estimation method, and tools for evaluating the model quality. The validation
techniques for the lag orders and the residuals discussed in Sections 9.6.1 and
9.6.2 are of help. Further, the intended model use may suggest additional evalua-
tion criteria. For instance, if forecasting is the objective, then the models can be
compared with respect to their forecast performance. The standard deviation

σ̂ = { 1
N

N∑
t=1

ε̂(t)2} 1
2 (9.25)

is an indication of this. However, in least squares the data are first used to minimize
σ̂, so that this may underestimate the future forecast errors. A more reliable
criterion is σ∗ = { 1

N

∑N
t=1 ε∗(t)2} 1

2 , where ε∗(t) = y(t) − y∗(t) is the residual
corresponding to the model that is estimated on the basis of the data {y(s − 1),
u(s), s ≤ t}. The disadvantage is that this requires the estimation of a sequence
of models, a new one for every additional observation. One can also consider m-
step-ahead prediction, where only the data {y(s − 1), u(s), s ≤ t − m} are used
to estimate a model to forecast y(t). Instead of quadratic criteria one can also
consider, for instance, the absolute errors 1

N

∑N
t=1 | ε(t) | or the relative errors

1
N

∑N
t=1(| ε(t) | / | y(t) |). For input-output systems that allow experiments with

the inputs, one can also compare the simulated outputs of the model with the
outputs that result in reality.
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Cycles and Trends

For many time series, trends and cyclical fluctuations dominate the stationary
part. The main cyclical components can be identified by spectral analysis. Trends
and seasonals can either be incorporated explicitly in the model or they can be
removed by filtering the data.

10.1 The Periodogram

In this section we consider the modelling of a univariate time series in terms of
underlying cyclical components. Let the data consist of N observations {y(t); t =
1, . . . , N}, then a cyclical process with n components is described by

y(t) =
n∑

k=1

αk sin(ωkt + θk) + ε(t), t = 1, . . . , N. (10.1)

The parameters θk are assumed to be independent and uniformly distributed on
[0, 2π). The process ε takes account of the fact that the observed time series is
not purely cyclical. Here ε is assumed to be independent of the parameters θk,
with variance E(ε2(t)) = σ2. The aim is to estimate the number n of cyclical
components, the frequencies ωk, and their variance contributions α2

k, k = 1, . . . , n.
First we assume that n and ωk are known and that θk and αk are unknown. The
observed time series corresponds to a single realization of the process, so that the
parameters θk are fixed. Let βk = αk sin θk and γk = αk cos θk, then (10.1) can be
written as the regression model

y(t) =
n∑

k=1

βk cos(ωkt) +
n∑

k=1

γk sin(ωkt) + ε(t). (10.2)

In the vector notation (9.3), the parameter vector is

q := (β1, γ1, β2, γ2, . . . , βn, γn)T
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and the regression matrix is

X =

⎛⎜⎜⎜⎝
cos(ω1) sin(ω1) · · · cos(ωn) sin(ωn)
cos(2ω1) sin(2ω1) . . . cos(2ωn) sin(2ωn)

...
...

...
...

cos(Nω1) sin(Nω1) . . . cos(Nωn) sin(Nωn)

⎞⎟⎟⎟⎠ ,

that is, we rewrite (10.2) as
y = Xq + ε.

Here, y = (y(1), . . . , y(N))T , and ε = (ε(1), . . . , ε(N))T . The estimates q̂ =
(β̂1, γ̂1, β̂2, γ̂2, . . . , β̂n, γ̂n)T are given by

q̂ = (XT X)−1XT y.

Observe also that tan θk = βk

γk
.

The least squares estimates of β̂k, γ̂k give

α̂2
k = β̂2

k + γ̂2
k and θ̂k = arctan(β̂k/γ̂k).

Theorem 10.1.1. Assume that

ωk =
2πmk

N
, mk ∈ N, 0 < mk <

N

2
, k = 1, . . . , n. (10.3)

Then for the regression matrix X there holds XT X = N
2 I, and the least squares

estimators in (10.2) are given by

β̂k =
2
N

N∑
t=1

y(t) cos(wkt), γ̂k =
2
N

N∑
t=1

y(t) sin(ωkt).

If in addition ε satisfies assumption A2* (Gaussian white noise), then the estima-
tors α̂2

k are independent with distribution N
2σ2 α̂2

k ∼ χ2
(2) if αk = 0.

Proof. For simplicity we assume that N is even, the proof for N odd is similar.
To prove that XT X = N

2 I we have to prove that

N∑
t=1

cos(
2πj

N
t) sin(

2πk

N
t) = 0 for all j, k,

that

N∑
t=1

cos(
2πj

N
t) cos(

2πk

N
t) =

N∑
t=1

sin(
2πj

N
t) sin(

2πk

N
t) = 0 for j �= k,

and that for 0 < j = k < N
2 these last expressions are equal to N

2 . This can



10.1. The Periodogram 135

all be checked by direct calculation. For example,
∑N

t=1 cos(2πj
N t) cos(2πk

N t) =
1
2

∑N
t=1{cos(2π(j+k)

N t) + cos(2π(j−k)
N t)}, and

∑N
t=1 cos(ωt) = N if ω = 0 or ω = 2π

while for 0 < ω < 2πm
N < 2π we get

∑N
t=1 cos(ωt) = 1

2

∑N
t=1(e

iωt + e−iωt) =
1
2eiω 1−eiωN

1−eiω + 1
2e−iω 1−e−iωN

1−e−iω = 1
2 (e

1
2 iω − e−

1
2 iω)−1{eiω(N+ 1

2 ) − e
1
2 iω + e−

1
2 iω −

e−iω(N+ 1
2 )} = 1

2{
sin(N+ 1

2 )ω

sin 1
2 ω

−1} = 0, as sin(N + 1
2 )ω = sin(N + 1

2 )2πm
N = sin πm

N =

sin 1
2ω. This proves that XT X = N

2 I. Using this result in formula (9.4) gives
the expressions for β̂k and γ̂k. Under assumption A2*, the covariance matrix of
these estimators is σ2(XT X)−1 = 2σ2

N I, and if αk = 0 then βk = γk = 0 and
β̂k, γ̂k are independently distributed as N(0, 2σ2

N ). The distribution of α̂2
k follows

by definition of the chi-square distribution. �
So the least squares estimates of a harmonic process with frequencies satisfy-

ing (10.3) have attractive properties. The estimates of βk and γk, and hence also
of α2

k and θk, remain unchanged if an extra cyclical component is added to the
model. The efficiency of the estimates, as measured by the variance, depends only
on the number N of observations and is independent of possible misspecifications
of the model, such as omission of a relevant frequency or inclusion of an irrelevant
one. These results hold also approximately true for frequencies that do not satisfy
condition (10.3).

In practice the frequencies ωk are unknown and have to be estimated from
the data. For this purpose it is helpful to analyse the observed time series in the
frequency domain. A cyclical process y(t) = sin(ωt + θ) has covariances R(k) =
1
2 cos(ωk) = 1

4 (eiωk + e−iωk). So, in analogy with (6.27) the spectrum is given by
S(eiω) = 1

4 (δ(ω) + δ(−ω)), where δ(ω) is the Dirac distribution with the property
that
∫ π

−π
eiλkδ(ω)dλ = eiωk (a point distribution with all mass at ω). So the

frequency of a cyclical process is easily determined from the spectrum S(eiω) =
1
2π

∑∞
k=−∞ R(k)e−iωk. A natural estimate of the spectrum is obtained by replacing

the covariances by the sample autocovariances. This is called the periodogram.

Definition 10.1.2. The periodogram of the N observations {y(t), t = 1, . . . , N}, is
defined as

ŜN (eiω) =
1
2π

N−1∑
k=−(N−1)

R̂(k)e−iωk (10.4)

where the autocovariances are estimated by R̂(k) := 1
N

∑N
t=k+1 y(t)y(t − k), k =

0, . . . , N − 1 and with R̂(k) = R̂(−k) for k < 0.

Note that on the basis of the available N observations it is not possible to
compute R̂(k) for k ≥ N , and in (10.4) these autocovariances are replaced by zero.

Theorem 10.1.3. The periodogram is given by

ŜN (eiω) =
1

2πN
|

N∑
t=1

y(t)e−iωt |2 .
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At the frequencies ωk = 2πk
N , 0 < k < N

2 , the periodogram takes the values
ŜN(eiωk) = N

8π α̂2
k with α̂2

k = β̂2
k + γ̂2

k as defined in Theorem 10.1.1.

Proof. This follows from

1
N

N∑
t=1

N∑
s=1

y(t)y(s)eiω(s−t)

=
N−1∑

k=−(N−1)

e−iωk 1
N

N∑
r=|k|+1

y(r)y(r− | k |) =
N−1∑

k=−(N−1)

e−iωkR̂(k).

For ωk = 2πk
N we obtain from Theorem 10.1.1 that

ŜN (eiωk) =
1

2πN
{

N∑
t=1

y(t) cos(ωkt)}2 +
1

2πN
{

N∑
t=1

y(t) sin(ωkt)}2

=
N

8π
(β̂2

k + γ̂2
k) =

N

8π
α̂2

k. �
Theorem 10.1.4. Let y be a cyclical process (10.1) where ε is Gaussian white noise
and with frequencies ωk satisfying condition (10.3). The periodogram then has the
properties that

E{ŜN(eiωk)} =
1
8π

(Nα2
k + 4σ2), (10.5)

4π

σ2
ŜN (eiωk) ∼ χ2

(2) if αk = 0. (10.6)

Proof. The result in (10.6) follows from Theorems 10.1.1 and 10.1.3. It further
follows from Theorem 9.2.2, with (XT X)−1 = 2

N I according to Theorem 10.1.1,
that E{ŜN(ωk)} = N

8π E(β̂2
k + γ̂2

k) = N
8π{var(β̂k) + var(γ̂k) + (Eβ̂k)2 + (Eγ̂k)2}

= 1
8π (4σ2 + Nα2

k). �
This means that the periodogram tends linearly to infinity at the frequencies

that are present in the process. If the cycle with frequency ωk

2π is absent, then
the periodogram has a finite average value. So, on average, the periodogram can
clearly detect the cyclical components. If the periodogram shows a peak around
a certain frequency, then this indicates that cycles with this frequency contribute
substantially to the variations in the process.

It should be mentioned that the sampling period may influence the location
of the peaks in the periodogram. As a simple example, if the process y(t) = sin(ωt)
is observed at time instants t = k∆, k ∈ N, then the frequencies ω + 2πl

∆ , l ∈ N,
can not be discriminated by the data. This effect is called aliasing.

Example 10.1. As an illustration, we consider the cyclical process (10.1) with n = 2
frequencies. Here ε is a white noise process with variance σ2 = 1, θ1 and θ2 are
randomly chosen on [0, 2π), ωk = πk

10 and αk = k, k = 1, 2. The periodograms for
sample sizes N = 16, N = 128 and N = 1024 are shown in the following figure.
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As concerns the computation of the periodogram, direct calculations as described
in Definition 10.1.2 for all frequencies ωk = 2πk

N , k = 0, . . . , N − 1, requires the
order of N2 operations of multiplication and addition. This can be reduced to the
order N log(N) by the Fast Fourier transform (FFT). The idea is as follows.

Proposition 10.1.5. Let N = n1n2 and consider the periodogram at the frequencies
ωk = 2πk

N , k = 0, . . . , N−1, where k = n2k1+k2, k1 = 0, . . . , n1−1, k2 = 1, . . . , n2.
Then

ŜN (eiωk) =
1

2πN
|

n1∑
t1=1

e
2πikt1

N {
n2−1∑
t2=0

y(n1t2 + t1)e
2πik2t2

n2 } |2 . (10.7)

The number of operations involved in calculating (10.7) for all k = 0, . . . , N − 1 is
of the order N(n1 + n2).

Proof. Let t = n1t2+t1, then (10.7) follows directly from the periodogram formula
in Theorem 10.1.3, using the fact that

exp(
2πikt

N
) = exp(

2πikt1
N

) exp(
2πi(n2k1 + k2)n1t2

N
)

= exp(
2πikt1

N
) exp(

2πik2t2
n2

).

Now observe that the term in brackets in (10.7) depends on k only via k2, not
via k1. For fixed t1 and k2 this term requires the order of n2 additions and mul-
tiplications. In total this gives n1n

2
2 operations for all possible terms in brackets.

The term in front of it implies n1 operations for each value of k, so in total
this needs an additional number of Nn1 operations. The total number is hence
Nn1 + n1n

2
2 = N(n1 + n2). �
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By a similar factorization N = Πk
i=1ni this leads to the order of N(

∑k
i=1 ni)

operations, and if N = 2n this gives 2nN which is of the order N log(N).

10.2 Spectral Identification

In most observed time series there are no sharply defined frequencies that domi-
nate the fluctuations. Instead there may exist certain bands of frequencies that are
relatively more important than other ones. Instead of the cyclical process (10.1)
that has discrete spectrum, such series are better described by the continuous spec-
trum of a moving average process. In this section we consider frequency domain
identification methods for univariate stationary processes and for single-input,
single-output systems.

First we consider the case that the observed process is white noise. The
periodogram is not a completely satisfactory estimate of the spectrum in this
case.

Theorem 10.2.1. The periodogram of a white noise process with variance σ2 is an
unbiased but inconsistent estimate of the theoretical spectrum S(eiω) = σ2

2π , that
is, for ωk = 2πk

N , 0 < k < N
2 , there holds

E{ŜN(eiωk)} =
σ2

2π
= S(eiωk), (10.8)

var{ŜN (eiωk)} =
σ4

4π2
= S2(eiωk). (10.9)

Furthermore, the periodogram estimates ŜN (eiωk) and ŜN (eiωl) are uncorrelated
for k �= l.

Proof. A white noise process satisfies equation (10.1) with all coefficients αk = 0.
So (10.8) follows from (10.5) and (10.9) from (10.6) because a χ2

(2) distribution has
variance equal to 4. That the estimates are uncorrelated follows from Theorems
10.1.1 and 10.1.3. �

This shows that the periodogram is an unbiased estimate of the spectrum but
that the variance does not decrease when the sample size increases. Moreover, as
adjoining estimates are uncorrelated the periodogram typically has a very irregular
shape. Similar results hold true for other processes with continuous spectrum.

Theorem 10.2.2. If the data are generated by a moving average process y(t) =∑∞
k=0 Gkε(t−k) with

∑∞
k=0 G2

k < ∞, then the periodogram at frequencies ωk = 2πk
N

has the properties that

lim
N→∞

E{ŜN (eiωk)} = S(eiωk),

lim
N→∞

var{ŜN (eiωk)} = S2(eiωk),
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lim
N→∞

cov{ŜN(eiωk), ŜN (eiωl)} = 0 for k �= l.

Proof. By appropriate scaling we may assume that the white noise process has
variance σ2 = 1. According to Theorem 6.5.3 the spectrum is given by S(eiω) =
1
2π G(eiω)G(e−iω), where G(z) =

∑∞
k=0 Gkz−k. Using the expression in Theorem

10.1.3 for the periodogram, it follows that

ŜN (eiω) =
1

2πN
|

N∑
t=1

∞∑
k=0

Gkε(t − k)e−iωt|2

=
1

2πN
|

∞∑
k=0

Gke−iωk
N∑

t=1

ε(t − k)e−iω(t−k)|2.

For N → ∞ this expression tends to

G(e−iω)G(eiω)Ŝε
N (eiω) = 2πS(eiω)Ŝε

N (eiω),

where Ŝε
N denotes the periodogram of the white noise process ε. According to

Theorem 10.2.1, Ŝε
N has mean 1

2π and variance 1
4π2 , and the values at different

frequencies are uncorrelated. This shows the results. �
If the spectrum is continuous, then adjoining estimates can be used for

smoothing to reduce the variance. However, this may introduce a bias as sharp
peaks in the spectrum are smoothed over a larger region, the so-called leakage
effect. Various consistent smoothing procedures have been developed that differ in
their bias and variance properties. The idea is as follows. For given frequency ω
and M < N , let I be the set of M integers k for which ωk = 2πk

N are closest to ω.
Then estimate the spectrum by the average S∗

N (eiω) = 1
M

∑
k∈I ŜN (eiωk). This in-

troduces a bias, but according to Theorem 10.2.2, E(S∗
N (eiω)) = 1

M

∑
K∈I S(eiωk),

and if S is continuous this converges to S(eiω) if M
N → 0. Because the periodogram

estimates are uncorrelated, it follows that var(S∗
N (eiω)) = 1

M2

∑
k∈I S2(eiωk) → 0

if M → ∞. This shows that consistent estimates are obtained by smoothing, pro-
vided that the smoothing interval M

N → 0 and the number of included frequencies
M → ∞. Other smoothed estimates are obtained by

S∗
N (eiω) =

∫ π

−π

F (ω − λ)ŜN (eiλ)dλ

where F is the smoothing filter. The foregoing corresponds to a uniform filter
and is called the Daniell window. In practice one often uses filters that are more
smooth, for instance, Hamming and Bartlett windows.

Example 10.2. The spectrum of an AR(1) process y(t) = αy(t−1)+ε(t) is given by
σ2{2π(1+α2−2α cosω)}−1, see Example 6.6. The reader is urged to produce (for
instance using Matlab) graphs of the spectra and (smoothed) periodograms for the
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cases α = 0 and α = 0.9, for sample sizes N = 128 and N = 1024. The smoothing
can be done for instance as follows: replace in the formula for the periodogram
the R̂(k)’s by Ŝ(k) = (1− |k|

M )R(k), for k = −M + 1, . . . , M − 1, and Ŝ(k) = 0 for
|k| ≥ M , where M is (much) smaller than N . For example, for the sample sizes
indicated one may take M = 15.

Clearly, smoothing reduces the variance and the bias diminishes for larger
sample sizes. Because the spectrum of a white noise process is constant, smoothing
introduces no bias when α = 0.

Smoothed periodograms can be interpreted as nonparametric estimates of
stationary processes. This method of spectral identification can be extended to
input-output systems. For example, consider the single-input, single-output system
described by

y(t) =
∞∑

k=0

Gku(t − k) + ε(t). (10.10)

Theorem 10.2.3. For a given transfer function G(z) =
∑∞

k=0 Gkz−k the least
squares estimate, for N → ∞, is approximately given by

Ĝ(eiω) = Ŝyu(eiω)/Ŝuu(eiω) (10.11)

where Ŝyu(eiω) = 1
2π

∑N−1
k=−(N−1) R̂yu(k)e−iωk with

R̂yu(k) =
1
N

N∑
t=|k|+1

y(t)u(t − k)

and where Ŝuu is defined in a similar way.

Proof. The least squares criterion corresponds to minimizing∑
t

‖y(t) −
∑

l

Glu(t − l)‖2.

The first order conditions for a minimum imply that∑
t

{y(t) −
∑

l

Ĝlu(t − l)}u(t − k) = 0,

so that R̂yu(k) =
∑

l ĜlR̂uu(k − l). Therefore

Ŝyu(eiω) =
1
2π

∑
k

∑
l

ĜlR̂uu(k − l)e−iωk

=
∑

l

Ĝle
−iωl 1

2π

∑
k

R̂uu(k − l)e−iω(k−l)

≈ Ĝ(eiω)Ŝuu(eiω).
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Here we have neglected the fact that the summations are finite, but the approxi-
mation error tends to zero for N → ∞. �

This is called the empirical transfer function estimate. It can be expressed in
terms of the so-called discrete Fourier transform of the observations, defined as

y(ω) :=
1√
N

N∑
t=1

y(t)e−itω, 0 ≤ ω ≤ π. (10.12)

Theorem 10.2.4. The least squares estimate in (10.11) is equal to

Ĝ(eiω) = y(ω)/u(ω). (10.13)

Proof. Define the complex adjoint function by u∗(ω) = u(e−iω), and define u(t) =
0 and y(t) = 0 for t < 0 and for t > N . Then

Ŝyu(eiω) =
1

2πN

N−1∑
k=−(N−1)

N∑
t=|k|+1

y(t)u(t − k)e−iωk

=
1

2πN

N∑
t=1

y(t)e−iωt
N∑

s=1

u(s)eiωs =
1
2π

y(eiω)u∗(eiω).

In a similar way it follows that Ŝuu(eiω) = 1
2π u(eiω)u∗(eiω). The result follows

from (10.11). �

According to Chapter 2, in the noise-free case the relation between input and
output is described in the frequency domain by y(ω) = G(eiω)u(ω). This provides
a direct motivation for (10.13). To investigate the asymptotic properties of this
estimation method, suppose that the input and output are related by the system
(10.10) with

∑∞
k=0 G2

k < ∞ and with u and ε independent. We assume that the
input is stationary in the sense that Suu(eiω) = limN→∞ Ŝuu(eiω) exists and that
ε is stationary with zero mean and with spectrum Sεε (it need not be white noise).

Theorem 10.2.5. Under the above conditions, and with
∑∞

k=−∞ |kRεε(k)| < ∞, the
least squares estimator (10.13) of the transfer function has the following properties:

lim
N→∞

E{Ĝ(eiω)} = G(eiω), (10.14)

lim
N→∞

var{Ĝ(eiω)} = Sεε(eiω)/Suu(eiω), (10.15)

lim
N→∞

cov{Ĝ(eiω1), Ĝ(eiω2)} = 0 for ω1 �= ω2. (10.16)
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Proof. We only give the main ideas. From (10.10) we obtain that, for N sufficiently
large, y(ω) ≈ G(e−iω)u(ω) + ε(ω). So (10.13) shows that Ĝ(e−iω) ≈ G(e−iω) +
ε(ω)/u(ω). Then (10.14) is evident, as u is independent of ε and E{ε(ω)} = 0 for
all ω. The variance is given by

E{ε(ω)/u(ω)}{ε(−ω)/u(−ω)} ≈ Sεε(ω)/Suu(ω).

For example,

E{ε(ω)ε(−ω)} = E{ 1
N

N∑
t=1

N∑
s=1

ε(t)ε(s)e−i(t−s)ω}

= E{
N−1∑

k=−(N−1)

e−ikω 1
N

N∑
t=k+1

ε(t)ε(t − k)}

≈
N−1∑

k=−(N−1)

e−ikωRεε(k) ≈ 2πSεε(ω).

To prove (10.16), the foregoing shows that Ĝ(eiω)−E(Ĝ(eiω)) ≈ ε(ω)/u(ω), so it
suffices to prove that, for k �= l and with N sufficiently large, E(ε(ωk)ε∗(ωl)) ≈ 0.
Now

E(ε(ωk)ε∗(ωl)) =
1
N

N∑
r=1

N∑
s=1

ei(ωls−ωkr)Rε(r − s)

=
1
N

N∑
r=1

ei(ωl−ωk)r
r−1∑

t=r−N

Rε(t)e−iωlt

= Sεε(eiωl)
1
N

N∑
r=1

ei(ωl−ωk)r − aN ,

where aN = 1
N

∑N
r=1 ei(ωl−ωk)r {∑r−N−1

t=−∞ Rε(t)e−iωlt +
∑∞

t=r Rε(t)e−iωlt}. Using
the fact that Rε(−t) = Rε(t) for t > 0 and collecting terms, one sees |aN | ≤
2
N

∑∞
k=−∞ |kRε(k)| and therefore aN → 0 for N → ∞.
Finally, for k �= l there holds ω = ωl − ωk = 2πm

N for some m ∈ {±1,±2, . . .,
±(N − 1)}, so that

∑N
r=1 ei(ωl−ωk)r =

∑N
r=1 eiωr = (1 − eiω)−1(eiω − eiω(N+1)) =

(1 − eiω)−1eiω(1 − e2πim) = 0. �

The expression (10.15) shows that the estimator has smaller variance for
frequencies which are relatively strongly present in the input signal. The variance
is inversely proportional to the signal-to-noise ratio. Consistency is obtained after
smoothing the periodograms Ŝyu and Ŝuu in (10.11), provided that the input is
sufficiently exciting in the sense that Suu(eiω) > 0 for all frequencies ω.
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In the foregoing we considered least squares estimation of the unrestricted
model (10.10). If the model is expressed in terms of finitely many parameters, then
these parameters can also be estimated in the frequency domain. As an example
we consider the ARMAX model (9.14), which in terms of the lag polynomials
α(z) = 1 −∑p

i=1 αiz
−i, β(z) =

∑q
i=0 βiz

−i and γ(z) = 1 +
∑r

i=1 γiz
−i can be

written as
α(z)y = β(z)u + γ(z)ε. (10.17)

Assume that the model is stationary and invertible, as defined in Section 6.3, and
that ε is Gaussian white noise.

Theorem 10.2.6. The maximum likelihood estimators of the ARMAX model (10.17)
are obtained, for N → ∞, as the minimum of∫ π

−π

| y(ω)
u(ω)

− β(eiω)
α(eiω)

|2 · | α(eiω)
γ(eiω)

|2 ·Suu(eiω)dω. (10.18)

Proof. Because ε is Gaussian white noise, ML corresponds to the minimization
of 1

N

∑N
t=1 ε2(t) = R̂εε(0) =

∫ π

−π
Ŝεε(eiω)dω = 1

2π

∫ π

−π
|ε̂(ω)|2dω, where ε̂(ω) is

the discrete Fourier transform defined in (10.12). It follows from the time do-
main equation (10.17), with z the lag operator, that (for N sufficiently large)
γ(eiω)ε̂(ω) ≈ α(eiω)y(ω)−β(eiω)u(ω). Therefore ε̂(ω) ≈ α(eiω)

γ(eiω)u(ω){ y(ω)
u(ω)− β(eiω)

α(eiω)}.
This shows (10.18). �

The interpretation is that the nonparametric estimator (10.13) is approxi-
mated by the transfer function β/α of the ARMAX model (10.17). Each frequency
has a weighting factor, determined by the inverse noise filter α/γ and the input
spectrum Suu. The approximation by the parametric model (10.17) will be most
accurate where the noise filter γ/α has smallest amplitude, as for these frequencies
|α(eiω)/γ(eiω)| is relatively large so that errors at these frequencies are heavily pe-
nalized. The approximation in certain frequency regions can be improved by giving
the inputs relatively larger power |u(ω)| for such frequencies. This will be at the
expense of worse approximations at other frequencies.

10.3 Trends

For many time series the trending pattern is the most dominant characteristic.
For purposes of forecasting and control, it is crucial to take appropriate account
of the trend. The two main approaches are data transformation and explicit trend
modelling. In the first case the data are transformed to obtain stationarity, and
the identified model for the stationary data can be transformed into a model for
the original data. In the second case the model contains, apart from a stationary
part, also variables that model the trend explicitly.

In order to remove the trend by transforming the data we need a model
for the trend component. For instance, if an economic variable is expressed in
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nominal terms, then it often shows exponential growth over time because of price
inflation. This can be removed by expressing the variable in real terms, by dividing
it by a price index series. Also in real terms, many series still exhibit exponential
growth. By taking the logarithm this transforms into a more linear trend pattern.
In this case the trend can be estimated as the local average of the series. This is
called smoothing. If y denotes the observed series and T the trend, then T (t) =∑∞

k=−∞ βky(t − k) with βk ≥ 0 and
∑∞

k=−∞ βk = 1. The current trend can only
be estimated if the filter is causal, that is, if βk = 0 for all k < 0. A popular
method is exponential smoothing with coefficients βk = β(1−β)k, k ≥ 0, for some
0 < β < 1. This assigns a larger weight to more recent observations, and the trend
can be expressed recursively as

T (t) = T (t − 1) + β(y(t) − T (t− 1)). (10.19)

The parameter β is called the forgetting factor. If β is small this produces smooth
trends, and if β is nearly 1, then the trend follows the fluctuations in the process
very rapidly. If the time series shows a relatively stable trend, that is, if y(t) −
T (t − 1) is more or less constant over time, then (10.19) can be written as the
deterministic linear trend

T (t) = µ1 + µ2t. (10.20)

This can be extended to other time functions, for instance a quadratic trend
T (t) = µ1 + µ2t + µ3t

2 or a trend with saturation T (t) = µ1(1 + µ2e
−µ3t)−1.

The parameters µi of these time functions can be estimated, for instance by least
squares, replacing T (t) by the observed series y(t).

Another type of trend is expressed by stochastic models, for instance the
random walk with drift

y(t) = µ + y(t − 1) + ε(t), (10.21)

where ε is a stationary process. For such processes the trend can be removed by
taking the first difference ∆y(t) = y(t) − y(t − 1). The process y in (10.21) is
called integrated of order 1. More general, y is an ARIMA(p, d, q) process if ∆dy
is a stationary ARMA(p, q) process, whereas ∆d−1y is nonstationary. This process
can therefore be described as

α(z)(1 − z−1)dy = β(z)ε (10.22)

with ε white noise and where α(z) and β(z) have all their roots inside the unit disc.
To estimate an ARIMA model, we can follow the procedures described in Chapter
9 once the order of integration d has been selected. In practice, often d = 0 (so that
there are no trends) or d = 1. A simple method to test whether d = 0 or d = 1 is
to consider the autocorrelations ρ(k) = R(k)/R(0) of the process. If the process is
a stationary ARMA process, then the autocorrelations tend exponentially to zero
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for k → ∞. On the other hand, if y is a random walk process (10.21) without drift
(µ = 0) and with y(0) = 0, then ρ(t, k) = [Ey(t)y(t − k)][Ey2(t)Ey2(t − k)]−

1
2 =

(1− k
t )

1
2 . The sample autocorrelations will decrease only slowly, as for small k there

holds (1− k
t )

1
2 ≈ 1− k

t which gives a linear decline instead of an exponential one.
The order of integration d can be chosen such that ∆d−1y has a linear decline but
∆dy has an exponential decline of the autocorrelations. Alternatively, one can also
test for the unit coefficient of y(t− 1) in (10.21) against the stationary alternative
that y(t) = µ + αy(t − 1) + ε(t) with |α| < 1. By defining ρ = α − 1, this can be
written as

∆y(t) = µ + ρy(t − 1) + ε(t), H0 : ρ = 0. (10.23)
The so-called Dickey–Fuller test is the t-statistic of ρ obtained from the regression
in (10.23). If ε is not a white noise process, the model can be extended, for example,
to

∆y(t) = µ1 + µ2t + ρy(t − 1) +
k∑

i=1

γi∆yt−i + ε(t), H0 : ρ = 0. (10.24)

The null hypothesis of a stochastic trend (ρ = 0) is rejected for values of ρ = α−1
that are significantly smaller than zero. Because the regressor y(t−1) in (10.24) is
not stationary under the null hypothesis, the standard regression theory does not
apply in this case. This is because assumption A1* in Chapter 9 is not satisfied, as
plim( 1

N

∑N
t=2 y2(t − 1)) = ∞. Critical values for the t-statistic of ρ can therefore

not be obtained from the t-distribution. For example, at 5% significance level the
critical value (for N → ∞) of the t-distribution is −1.65, whereas for the test in
(10.24) it is −3.41.

In models like (10.19), (10.20) and (10.21) the trend is modelled directly in
terms of the observations. An alternative is a model with latent trend variable, for
example

T (t + 1) = ϕT (t) + ε1(t), y(t) = T (t) + ε2(t). (10.25)
Assume that ε = (ε1, ε2)T is a Gaussian white noise process with mean zero and

covariance matrix
(

σ2
1 0
0 σ2

2

)
. If |ϕ| < 1 then y is a stationary process, if ϕ = 1

then y is integrated of order d = 1, and if ϕ > 1 then y grows exponentially.
This is a stochastic state space model of the form (7.8), (7.9), with parameters
A = ϕ, B = 0, C = 1, D = 0, F = (σ1, 0) and G = (0, σ2). The trend acts as a
state variable that can be estimated by the Kalman filter, see Theorem 7.3.1. Let
T̂ (t + 1) = E(T (t + 1)|y(s), 0 ≤ s ≤ t), then

T̂ (t + 1) = ϕT̂ (t) + k(t)(y(t) − T̂ (t)). (10.26)

This is of the form (10.19) with forgetting factor k(t) computed by the Kalman
filter equations (7.13), (7.14). In particular, for ϕ = 1 the process y has a stochastic
trend. In Example 9.3 it was shown that, for t → ∞, the forgetting factor k is
small if the signal-to-noise ratio σ2

1/σ2
2 is small, and k is nearly 1 if this ratio is

large.
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10.4 Seasonality and Nonlinearities

Seasonal variation may occur for time series that are observed, for example, every
quarter or every month. For ease of exposition we will assume that the data consists
of quarterly observations, but the following can be generalized to other observation
frequencies. A deterministic model is given by

S(t) = µ1 + µ2D2(t) + µ3D3(t) + µ4D4(t), (10.27)

where Di(t) = 1 if the t-th observation falls in quarter i and Di(t) = 0 otherwise.
A stochastic model is

y(t) = y(t − 4) + ε(t). (10.28)

This is a nonstationary AR(4) process with polynomial α(z) = 1 − z−4 that
has four roots on the unit circle. A seasonal ARIMA model is of the form
α(z4)(1−z−4)dy = β(z4)ε, and mixtures of ARIMA and seasonal ARIMA models
are also possible. A model with a latent seasonal component is

S(t) = S(t − 4) + ε1(t), y(t) = S(t) + ε2(t). (10.29)

The seasonal component S(t) of this model can be estimated by the Kalman filter.
It can also be estimated by smoothing, for example

S(t) =
1
4
(y(t) + y(t − 1) + y(t − 2) + y(t − 3)). (10.30)

If the time series contains trends and seasonals, then an additive model for this is
given by

y(t) = T (t) + S(t) + R(t), (10.31)

where T denotes the trend component, S the seasonal and R a stationary process.
If trend and seasonal are proportional to the level of the series this can be expressed
by the multiplicative model y(t) = T (t)S(t)R(t), which gives a model of the form
(10.31) by taking logarithms. If T̂ (t) and Ŝ(t) are estimates of the trend and
seasonal, then R̂(t) = y(t)− T̂ (t)− Ŝ(t) is called the detrended and deseasonalized
series. In many cases the series R̂ is related to the original data y by means of
a linear filter. The effect of this filter can be analysed in the frequency domain,
where the data transformation is described in terms of spectra.

Proposition 10.4.1. Let y be a stationary process with spectrum S, and consider
the process y(t) =

∑∞
k=−∞ β(k)y(t− k) with

∑∞
k=−∞ β2

k < ∞. Then the spectrum
S of y is given by S(eiω) =| β(eiω) |2 S(eiω).
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Proof. Straightforward computation gives:

S(eiω) =
1
2π

∞∑
t=−∞

e−itω
∞∑

j=−∞

∞∑
k=−∞

βjβkE{y(t − j)y(t − k)}

=
1
2π

∞∑
j=−∞

βje
−ijω

∞∑
k=−∞

βkeikω
∞∑

t=−∞
R(t − j + k)e−i(t−j+k)ω

=| β(eiω) |2 S(eiω).
�

So the effect of a filter is to reduce the importance of certain frequencies
and to increase that of others. This is very useful in engineering applications, for
example in communication where the low frequency signal is enhanced and the
high frequency noise is suppressed. In economics this is of use to remove trends
and seasonal effects. For example, if the observed time series is integrated as in
(10.21), then the trend is removed by the transformation ∆y(t) = y(t) − y(t −
1). This corresponds to the filter c = 1 − e−iω, and the resulting spectrum is
S∆y(eiω) = 2(1 − cosω)S(eiω). For frequency ω = 0 the filter has value zero, so
that the long term component is removed. In a similar way, the stochastic seasonal
(10.28) can be removed by the transformation ∆4y(t) = y(t) − y(t − 4), so that
S∆4y(eiω) = 2(1 − cos(4ω))S(eiω).

The seasonal smoother (10.30) has filter β(z) = 1 + z−1 + z−2 + z−3 =
(1−z−4)/(1−z−1), so this corresponds to the spectral transformation 1

16
1−cos(4ω)
1−cos(ω) .

As a comment on the difference between the filters corresponding to (10.28) and
(10.30): the filter (10.28) models the short run fluctuations (high frequencies) and
(10.30) the long run trend (low frequencies). The filter (10.28) is therefore called
high pass, and (10.30) is called low pass.

In practice, the modelling of time series often proceeds in two steps. First
the data are filtered to obtain stationarity, and then a model is estimated for the
filtered data. As an example, suppose that an ARMAX model (10.17) is estimated
for filtered input-output data y∗(t) =

∑
k fky(t − k) and u∗(t) =

∑
k fku(t − k).

According to Theorem 10.2.6 it follows that, in terms of the original input series
u(t) and output series y(t), the criterion is given by∫ π

−π

|y(ω)
u(ω)

− β(eiω)
α(eiω)

|2 · |α(eiω)
γ(eiω)

|2|f(eiω)|2Suu(eiω)dω,

because Su∗u∗(eiω) = |f(eiω)|2Suu(eiω) according to Proposition 10.4.1. That is,
prefiltering the data can be seen as a method to assign weights to the different
frequencies in the identification criterion.

Trends and seasonals can also be seen as specific examples of time-varying
parameters. For example, the models (10.20) and (10.27) describe time variations
of the mean level of the series. For regression models, for example the ARX model
(9.13), possible parameter variations can be analysed by recursive least squares.
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Let the regression model be written in the form y(t) = xT (t)β + ε(t) and let β̂(t)
be the least squares estimate of β based on the observations {y(s), x(s), s ≤ t}.
Theorem 10.4.2. The recursive least squares estimates β̂(t) satisfy

β̂(t) =β̂(t − 1) + K(t)(y(t) − xT (t)β(t − 1)),

K(t) =P (t)x(t)/(1 + xT (t)P (t)x(t)),

P (t + 1) =P (t) − P (t)x(t)xT (t)P (t)/(1 + xT (t)P (t)x(t)),

where P (t + 1) = var(β̂(t)). If β has k components, then the starting values are
given by β̂k = (XT

k Xk)−1XT
k yk and P (k + 1) = (XT

k Xk)−1, where yk and Xk

contain the observations for t = 1, . . . , k.

Proof. The regression model can be written in state space form, with constant
state vector β(t + 1) = β(t) and with output equation y(t) = xT (t)β(t) + ση(t),
where η(t) = ε(t)/σ is standard white noise. In terms of the Kalman filter model
(7.8), (7.9) the parameters are given by A = I, B = 0, F = 0, D = 0, G = σ, and
with C = xT (t) known but time-varying. The Kalman filter equations of Theorem
7.3.1 also apply for nonstationary and time-varying systems. The given expressions
then follow by the result in Chapter 9 (for the starting values), dividing P (t) in
these formulas by σ2, and noting that β̂(t) = E(β|y(s), x(s), s ≤ t) is x̂(t + 1) in
the notation of Theorem 7.3.1. �

If the coefficients are constant, then the variance of the recursive residuals
ω(t) = y(t) − xT (t)β̂(t − 1) follows from Proposition 7.3.3. Therefore, ω∗(t) =
ω(t)/(1+xT (t)P (t)x(t)) should be a white noise series. Several tests on parameter
constancy have been developed that are based on the series ω∗(t). If the parameters
turn out to be time varying, a possible model is the random walk β(t + 1) =
β(t) + η(t), with η white noise. For given values of the regression variance σ2 =
E(ε2(t)) and parameter variance V = var(η(t)), the parameters β(t) can then be
estimated recursively by the Kalman filter (Theorem 7.3.1) now with F = V

1
2 . The

parameters σ2 and V can be estimated by maximum likelihood. An alternative
way to deal with time-varying parameters is to apply weighted least squares, for
example, with the criterion

∑N
t=1 α−tε2(t) with 0 < α < 1. This assigns more

weight to recent observations.
Time-varying parameters are one example of nonlinearity in observed time

series. One of the possible causes is local linearization as shown in (1.21). As shown
above, the estimates react more quickly to variations by applying weighted least
squares. This can be generalized to local regression methods, where only the more
recent observations are used in estimation. An alternative is to incorporate explicit
nonlinear terms in the model. That is, an ARMAX model like (10.17) is linear in
the observed inputs and outputs and in the disturbances ε. Nonlinear models are
of the type

y(t) = f(y(s − 1), u(s), ε(s), s ≤ t). (10.32)
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Higher order Taylor expansions of f may be useful, but in general the resulting
number of parameters is too large for practical purposes. An alternative is to
expand f in other basis functions that provide a more parsimonious description
of the involved nonlinearities. Examples are neural networks and wavelets. Such
models can be estimated, for instance, by nonlinear least squares methods. Theo-
retical knowledge on the general shape of the function f in (10.32) may be helpful
in choosing an appropriate basis.



Chapter 11

Further Developments

We close this book with a few sections that provide glimpses of further develop-
ments in the area of systems and control theory. In all sections we shall give a
pointer to further literature on the subject.

11.1 Continuous Time Systems

In this book we have focussed our attention on systems in discrete time. The reason
for this was that discrete time systems are in many ways easier to understand than
continuous time systems, in particular this holds true for stochastic systems. We
shall return to this issue in a later section.

Causal, linear, time-invariant input-output systems in continuous time can
be modelled by a system of differential equations of the type

ẋ(t) =Ax(t) + Bu(t),
y(t) =Cx(t) + Du(t),
x(0) =x0.

(11.1)

Here, as in Chapter 2, A, B, C and D are matrices of appropriate sizes. Most of the
theory of Chapters 2, 3, and 4 holds in more or less the same way for continuous
time systems. Obviously, there are differences as well: stability will hold in case A
has all its eigenvalues in the open left half plane (instead of the open unit circle).
Also, the Stein equations of Chapter 4 have to be replaced by Lyapunov equations
of the type

A∗P + PA = −C∗C,

AQ + QA∗ = −BB∗.
(11.2)

Continuous time systems have traditionally been very important in applica-
tions in engineering, where models are usually built from first principles, that is,
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from the description of physical components in mathematical models that involve
differential equations (such as in mechanics and electronics). The theory is well
explained in many standard textbooks in systems theory, see for instance [25], [59],
[49], [33].

Other approaches to continuous time systems, using more the transfer func-
tion and input-output operator, rather then state space models, have also been
influential. See for instance the book [15].

In certain applications the state is not only subject to differential equations,
but also to algebraic equations. Situations like that can be modelled by so-called
descriptor systems, of the type

Eẋ(t) =Ax(t) + Bu(t),
y(t) =Cx(t) + Du(t),
x(0) =x0.

Descriptor systems have been studied in detail in the literature, a good source is
[38].

Time varying and periodic systems also occur in many applications. In par-
ticular periodicity has been studied in connection with technical applications that
require a periodical behaviour. Such systems are usually modelled as in (11.1)
where instead of fixed matrices A, B, C and D, these matrices are taken to be
time-varying or periodic.

In recent decades the view of systems has changed from an input-output view
to a view using only external and internal variables. This point of view is particu-
larly useful in certain applications, and we have tried to show some of this point of
view in our first chapter when we discussed the system behaviour. Systems theory
developed from this point of view is sometimes called the behavioural approach,
see [51].

11.2 Optimal Control

Optimal control as outlined in Chapters 5 and 8 has been one of the topics that
most influenced the development of control theory. The program of missions to
the moon and to the planets would not have been possible without substantial
developments in optimal control theory. It is precisely in these applications that
optimal control in state space terminology was so successful. Besides LQ-optimal
control the topic of time-optimal control is well studied and well described in
the literature. In the time-optimal control problem the problem is to reach a
given target state from a given initial state in the shortest possible time, under
restrictions on the size of the input. See [44, 27] for good elementary treatments.

There are many different approaches to optimal control theory. One is the use
of dynamic programming, as we have done here. Others make use of the Pontryagin
optimality principle. See [1, 39, 44, 27].
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For optimal control of stochastic systems we refer to [6, 7].
As an example of results in this area, let us state here the main result of the

infinite horizon LQ-optimal control for a continuous time system of the form

ẋ(t) = Ax(t) + Bu(t),
x(0) = x0,

(11.3)

with cost function given by

J(x0, u) =
∫ ∞

0

x(t)∗Qx(t) + u(t)∗Ru(t) dt. (11.4)

As in the discrete time case we shall assume that (A, B) is stabilizable, Q is positive
semidefinite and R is positive definite. The goal is to find the minimum of J(x0, u)
over all stabilizing input functions u(t), and to find the minimizing input function.
As in the discrete time case, there is a matrix equation to be solved, in this case
too it is called the (continuous) algebraic Riccati equation. The result is as follows.

Theorem 11.2.1. Assume that (A, B) is stabilizable and that (A, Q) is detectable.
Then the minimum of (11.4) subject to (11.3) is given by x∗

0Xx0, where X is the
unique solution of the algebraic Riccati equation

XBR−1B∗X − XA − A∗X − Q = 0 (11.5)

for which the closed loop matrix A−BR−1B∗X is asymptotically stable. In this case
the minimizing input is given by the static state feedback u(t) = −R−1B∗Xx(t).

Note that here we fix the endpoint, that is, we fix limt→∞ x(t) to be zero.
Optimal control problems with indefinite cost (that is with Q and R possibly
indefinite) and with free endpoint and with endpoint constrained to be in a given
subspace have also been considered, both in the continuous time case, see [61, 58],
and in the discrete time case [52].

11.3 Nonlinear Systems

Nonlinear systems are typically studied in the form of a system of nonlinear differ-
ential equations coupled to an output equation. In wide generality such systems
can be described as follows:

ẋ(t) =f(x(t), u(t), t),
x(0) =x0,

y(t) =g(x(t), u(t), t).

Stability of equilibrium solutions can then be discussed using methods from the
theory of ordinary differential equations. A common approach to studying such
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systems would be to linearize around the equilibrium solutions, and for each equi-
librium solution one arrives at a linear system.

In many examples the control variable u enters in a linear way, and the
functions f and g are time invariant. That leads to systems of the form

ẋ(t) =f(x(t)) + h(x(t)) · u(t),
x(0) =x0,

y(t) =g(x(t)) + k(x(t)) · u(t).

As a simple example, consider the pendulum of the following figure.

θ
l

F

F1

A pendulum of length l, mass m hangs on an axis. We suppose friction plays no
role (that is why we call this the “mathematical” pendulum). Denote by θ(t) the
deviation of the pendulum from the downward vertical. The differential equation
for θ(t) that governs the motion of the pendulum under influence of gravity is
given by

θ′′(t) = −g

l
sin(θ(t)).

As initial conditions we take θ(0) = θ0, θ
′(0) = θ′0. This has two equilibrium

solutions, the stable equilibrium being the restposition in the downward position,
the unstable one being the upright position. Now suppose that on the axis we can
put a torque.

u=F
motor

ϕ

This torque is viewed as an input. In terms of φ(t) = π − θ(t) the differential
equation becomes

φ′′(t) =
g

l
sin(φ(t)) + c · u(t),

where c is a constant. The goal is to show that it is possible to find a control
function that will bring the pendulum in upright position for small deviations of
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that equilibrium position. This example is one of the most commonly used ones
in courses on mathematical systems theory.

Nonlinear systems theory has many important applications. In engineering
we mention applications in robotics. But also recent activity in bio-medical sciences
has led to interesting applications of nonlinear systems. For instance, metabolical
pathways in the cell can now be modelled by large scale systems of (relatively
simple) nonlinear differential equations of the Michaelis–Menten type, coming from
reaction kinetics. Understanding the system as a whole is then a formidable task,
as there are really many equations involved, and it is at this point that systems
theory may help by considering methods of reducing the model to a smaller one
(model reduction), and still keep the most salient behaviour.

There are many excellent books on nonlinear systems theory. We mention
here [48, 36, 31, 32, 59, 55, 62].

An important issue in some control problems, both linear and nonlinear, is
positivity. Several applications, notably those where the states are concentrations
of substances, require state variables to be always nonnegative. This is a very
difficult issue that is still under research. See for instance [5, 28].

11.4 Infinite Dimensional Systems

Much of the theory described in the first five chapters of this book, i.e., the deter-
ministic part, has a counterpart in continuous time, infinite dimensional, systems.
For example, systems that require a physical description using a partial differential
equation (like the equation for a vibrating string, or the heat equation), or systems
with a delay in the time argument, can usually be modelled quite well in the form
(11.1), where A is the generator of a C0-semigroup on a Banach or Hilbert space,
and B and C are linear (possibly also unbounded) operators acting between the
input and state space, respectively, the state space and the output space.

Continuous time systems that are only observed at regular time intervals
(sampled) and controlled at the same time intervals, after which the control is
kept constant until the next sampling time, are commonly known as sampled data
systems. Such systems can be modelled fruitfully in terms of a discrete time system
with an infinite dimensional state space.

Obviously, the theory of infinite dimensional systems requires a solid back-
ground in functional analysis. An excellent place to start when learning this subject
is the book [12]. This book deals with both a state-space approach and a frequency
domain approach (i.e., using the transfer function as the main tool for the study
of the system). We also mention the two books [3, 4]. A different approach is to
study the systems entirely from the point of view of partial differential equations.
For this point of view, see e.g., [41].
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As a sample of the kind of systems that are studied in the theory of infinite
dimensional systems consider the following delay system:

ẋ(t) = ax(t) + bx(t − 1) +
∫ t

t−1

u(τ) dτ.

Clearly the initial condition for such an equation needs to be a function on the
interval [−1, 0], and hence equations of this type have a state space that must be
some function space over that interval. That may be the Banach space of contin-
uous functions on [−1, 0], or the Hilbert space of L2 functions on that interval, or
some other Banach space. For details, see [12, 21].

11.5 Robust and Adaptive Control

Uncertainty in systems has been described in this book largely in terms of stochas-
tic additive uncertainties. However, in practice issues like unmodelled dynamics
often lead to other types of uncertainties. For instance, one can think of the given
model as an approximation of the “true” model in a certain neighbourhood of the
true model. Robust control methods then strive to design a controller that not
only will stabilize the given model, but also all models in a given neighbourhood.
Also other design criteria, besides stabilizing the system, are considered.

Obviously, this all depends heavily on the way the model is given, and in
modern H∞ control the model is usually considered to be given as a transfer
function. This naturally leads to the fact that robust control theory is a theory in
the frequency domain to start with. See, e.g., [15, 47]. However, very nice results
have been obtained in the state space framework as well. See, e.g., [64, 16, 20] and
the later chapters in [25]. Most of this is developed for continuous time systems,
for discrete time systems, see also [60, 24, 30].

In a sense, also adaptive control does the same: its goal is to stabilize a large
class of systems with a single controller. The main idea is that this may be possible
using a nonlinear controller that adapts to the unknown parameters in the system.
For instance, in this way linear first order systems of the type ẏ = ay + bu, with
b �= 0 but otherwise unknown, can all be stabilized with a single control algorithm.
For more developments in this direction see, e.g., [46].

As a sample of results in the area of H∞ control, consider the following
problem: given is a continuous time system with two inputs (w and u) and two
outputs (y and z) as in the following figure.

w

u

z

y

We consider u as usual as the input that we can control, w as the disturbances, y
as the measurements we can take, and z as the output that we wish to control. In
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this section we study the full information case, that is we take y = x. The system
is then given by the equations

ẋ(t) = Ax(t) + B1w(t) + B2u(t),
z(t) = Cx(t) + Du(t),
y(t) = x(t).

The goal is to make the influence of w on z small in an appropriate measure, which
we shall make more precise below.

We consider state feedback u(t) = Kx(t), where K is a constant matrix.

P

K

y

z

u

w

Hence the closed loop system is determined by the following equations:

ẋ(t) = (A + B2K)x(t) + B1w(t),
z(t) = (C + DK)x(t).

Let GK(s) denote the transfer function from w to z, that is, GK(s) =
(C + DK)(sI − (A + B2K))−1B1. Then we want to find K such that the fol-
lowing two conditions hold: 1) for some pre-specified tolerance level γ we have

‖GK‖∞ := max
s∈iR

‖GK(s)‖ < γ

and 2) in addition K is a stabilizing feedback, that is,

A + B2K is stable.

We shall make the following assumptions:

1. the pair (C, A) is observable,

2. the pairs (A, B1) and (A, B2) are stabilizable,

3. DT C = 0 and DT D = I.

Note that the first two assumptions are not so unnatural, but that the third one
may seem a little strange. However, it can be proven that this can always be
achieved by applying a state feedback at the start, as long as we assume that D
has full column rank. Indeed, in that case DT D is invertible, and we can assume
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without loss of generality that DT D = I, as this only entails a change of bases in
the input space and in the output space. After that, consider applying a feedback
with feedback matrix K = −DT C, so that C is replaced by C+DK. Then we have
DT (C + DK) = DT C + K = 0. Under these assumptions we have the following
theorem.

Theorem 11.5.1. There exists a matrix K such that A+B2K is stable and ‖GK‖∞<
γ if and only if there exists a positive definite matrix X∞ for which the following
two conditions are met:

1. X∞ satisfies the algebraic Riccati equation

X(
1
γ2

B1B
T
1 − B2B

T
2 )X + XA + AT X + CT C = 0,

2. A + ( 1
γ2 B1B

T
1 − B2B

T
2 )X∞ is stable.

In that case one such state feedback is given by K = −BT
2 X∞.

It may be observed that if γ → ∞ then X∞, considered as a function of γ will go
to the solution of the LQ-optimal control problem.

11.6 Stochastic Systems

Most applications of stochastic systems in engineering and economics employ dis-
crete time models. This is because the data are often recorded at discrete time
instants and because stochastic processes in discrete time are somewhat simpler to
analyze and implement than processes that evolve in continuous time. Stochastic
systems in discrete time and their applications in system estimation and control
are discussed, for instance, in [10, 14, 37].

Finite dimensional, continuous time, stochastic systems are described by a
set of stochastic differential equations of the form

dx(t) = Ax(t)dt + Bu(t)dt + Edε,

y(t) = Cx(t) + Du(t) + Fε(t),

where ε is a continuous time, white noise, process. This is the continuous time
analogue of the stochastic input-output system (6.36) described in Section 6.6,
obtained by adding a noise process to the deterministic continuous time system
(11.1) of Section 11.1. For given input trajectory u(t), the solution processes for
x(t) and y(t) of the above system of equations are defined in terms of stochastic
integrals.

Systems of this type are used in (continuous time) stochastic control. Another
area of application is mathematical finance, where price movements of financial
assets and derivatives are modelled in this way. For instance, the Black–Scholes
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formula for option prices is based on the assumption that stock prices follow a
Brownian motion, see e.g. [29]. The analysis and solution of such continuous time
stochastic systems is based on the theory of stochastic differential equations, see
e.g. [2] and [13] and for applications in mathematical finance [34, 56].

11.7 System Identification

System identification covers a very broad area, because modelling dynamical phe-
nomena from observed data is applied in numerous fields that are as diverse as
astronomy, microbiology, psychology, management, and so on. Therefore it is not
possible to provide a brief overview of even the main developments. However,
one common characteristic is that the development of more advanced methods
goes hand in hand with the tremendous growth in computing power. This allows
the modelling of very large data sets (for instance in biology and in finance and
marketing) and the development of more advanced (nonlinear) models.

We briefly mention some issues of particular interest in two application ar-
eas, engineering and economics. In engineering, nonlinear models are employed
to incorporate nonlinear response, e.g., due to saturation effects. For controlled
systems the issue of closed loop identification is of importance, as the applied regu-
lator affects the observed system dynamics. Further, apart from the more conven-
tional input-output based estimation methods, one sometimes also uses state space
models in (so-called) subspace identification techniques. For more background on
system identification in engineering we refer to [57] and [43].

In economics, the availability of large data sets in areas like finance and
marketing allows the estimation of more and more elaborate models to describe
the movements of economic variables like prices and sales. Recent developments
include the modelling of trending patterns and changes in volatility and risk. More
background on these and other issues in modern business and economics can be
found, e.g., in [9, 26, 50] and [63].
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AR-representation, 70
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asymptotic stability, 39

backward shift, 21
bang-bang control, 59
BIBO stable, 43

causal system, 12
certainty equivalence, 102
closed loop system, 46
consistent estimator, 116
controllability Grammian, 41
controllable, 25
controllable eigenvalue, 30
cost-to-go functions, 56

dead-beat controller, 46
detectable, 49
dilation, 31
dynamic compensator, 49
dynamic programming, 56

efficient estimator, 116
ergodic process, 69
exponentially bounded, 14
external matrix, 16
externally stable, 43

feedthrough matrix, 16
filter, 71
filtering, 83

finite support sequence, 21
frequency domain, 15

gain, 16

harmonic process, 71
Hautus test, 30

impulse, 13
impulse response, 13
infinite horizon LQ problem, 61
input matrix, 16
input trajectories, 12
input-output map, 12
instrumental variables, 125
invertible ARMA model, 73
invertible MA-representation, 70

Kalman gain, 92

linear system, 13
LQ-optimal control problem, 59
Lyapunov equations, 41

MA process, 70
minimal realization, 21
minimal stochastic realization, 78

neutrality, 102

observability Grammian, 41
observable eigenvalue, 30
observable realization, 27
observable system, 27
one-step ahead prediction, 84
output matrix, 16
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perfectly predictable process, 71
periodogram, 135
pole placement theorem, 46
prediction problem, 83
principle of optimality, 56
proper, 18

rational matrix function, 18
reachable, 25
realization, 20
reduction of a realization, 31
restricted shift realization, 23

sample covariances, 69
sample mean, 69
separation principle, 51
separation property, 102
similar realizations, 31
smoothing, 83
spectral factorization problem, 87
spectrum of a process, 79
stabilizable, 47
stabilizing dynamic feedback, 49
stabilizing feedback, 47
stable, 40
standard white noise, 69
state observer, 49
state process, 75
state space, 16
state space representation, 16
state transition matrix, 16
state variable, 17
static state feedback, 46
stationary ARMA model, 73
stationary process, 68
Stein equations, 41

time domain, 15
time-invariant system, 13
transfer function, 15

unbiased estimator, 116
uncontrollable eigenvalue, 30

unobservable eigenvalue, 30
unobservable state, 28
unrestricted smoothing, 83, 84

white noise process, 69

Yule–Walker, 122

z-transform, 14
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