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Preface

Solid state physics is a branch of condensed matter physics that is mainly concerned with the study
of crystals. Crystals are considered to be systems of atoms arranged in particular and infinitely
repeatable patterns. These patterns are responsible for much of the electrical and magnetic charac-
teristics of many materials. Furthermore, the concepts learned in solid state physics and the way
such concepts are used play an important role in treating systems that deviate away from the solid
state, namely, glasses and perhaps even liquids for those who pursue such condensed matter top-
ics. Thus the subject of solid state physics is a significant tool in the physicist’s arsenal to help
tackle many different problems. As such, solid state physics deals with the properties of materi-
als. These properties can be in the electrical as well as in the magnetic regimes. Many problems
in solid state physics begin with simple physical ideas for which whatever analytical expressions
can be obtained under special circumstances help to gain insight into the problem of interest. How-
ever, it is the use of computer programs, as applied to solid state problems, that enable much of
the subject in helping us learn about nature’s secrets. Furthermore, the efficient use of computers
has led to breakthroughs in the studies of materials which, in turn, has led us to a deeper under-
standing of materials. In this text, we use computers to calculate, visualize, animate, and simulate
electronic and magnetic properties of the solid state. In that regard, throughout the text, we make
use of MATLABr (https://www.mathworks.com/) and, as part of the various concepts and their
applications, we present programs or scripts to perform sophisticated calculations. The scripts are
basically computer code that is interpreted by MATLAB to perform computations. The usefulness
of MATLAB is realized quickly in the speed and simplicity of the code. Also open source software
that is compatible with the MATLAB code is widely available, such as, for example, OCTAVE
(https://www.gnu.org/software/octave/) and SCILAB (https://www.scilab.org/). The text’s reader
will benefit from the code that is part of this text and be able to modify it for further purposes
of interest.
The text contains 14 chapters. Chapter 1 concentrates on the overall periodicity in the atomic ar-
rangement found in crystals. It is in this chapter that we begin to learn that it is the interactions of
the atomic electrons with the ions in a crystal that make the crystal act the way it does. In Chapter
2 we learn that the information gathered from the scattered particles can be analyzed to learn about
the crystal plane spacing as well as the kind of atoms that compose the crystal system. Also we
learn about the difference between standard light diffraction and crystal diffraction. Chapter 3 is
concerned with what holds a crystal together. Energy is what makes crystal binding possible. In this
regard, two kinds of energy terms are in general use to describe the binding energy. One is the cohe-
sive energy, and the other is the lattice energy. Chapter 4 deals with lattice vibrations or collective
excitations of a crystal. The atoms in crystals oscillate about their equilibrium positions in a similar
way that a mass at the end of a spring oscillates about its equilibrium position. In a crystal, however,
its periodicity plays a role in the behavior of the vibration. In Chapter 5 we discuss the free electron
gas, which refers to the electrons in a crystal whose behavior is treated as if they were free from the
binding forces that keep them confined to the crystal. These are the same as the valence electrons
associated with the atoms in a crystal. In Chapter 6 we go beyond the free electron picture in order
to begin in earnest the process of accounting for the difference between different materials such as
metals, semimetals, semiconductors, and insulators; and various properties such as hall coefficients,
the relationships between conduction electrons in metals and valence electrons in free atoms, etc.

xiii
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Here energy bands is a term used to describe the electronic energies of electrons in crystalline mate-
rials. The energy bands in crystals are the analogue of electronic energy levels in atoms. Chapter 7
deals with semiconductor materials characterized by electronic conductivity values between metals
and insulators and which have carrier concentrations that depend on temperature. We also talk about
the effect of impurities on their electronic properties. Chapter 8 deals with band structure calcula-
tions in a simple way; that is, using the tight binding method. This method is based on the idea of a
collection of isolated atoms which are slowly brought closer together in order to form a crystal. The
wave function is a linear combination of atomic orbitals, but the only orbitals considered are those
of the valence electrons. In Chapter 9 we build on previous chapters to discuss impurities in a deeper
way, such as, the conductivity, and also discuss some disordered systems’ properties. For example,
random alloys in which at least two atomic species take random positions in a crystal’s lattice sites
fall within the realm of disordered systems. In Chapter 10 we begin by introducing the basic ideas of
magnetism. The discussion begins at an elementary level such that readers with knowledge of elec-
tricity and magnetism from calculus based physics can follow. Wherever possible every term and
definition has been stated along with the discussion. The main focus of this chapter is to build the
foundation towards understanding the macroscopic physical properties of magnets. Throughout the
chapter we have provided computational examples including the associated MATLAB codes. The
chapter ends by providing an exposure to the very useful Monte Carlo simulation technique along
with a MATLAB GUI. The GUI is a very handy tool for initiating student exploration activities to
learn about classical Monte Carlo simulation techniques. It can also serve as a starting point for cre-
ating code for more complicated lattices and studying their behavior. The code could also be used as
part of a thermal physics course. In Chapter 11 we introduce the quantum theory of magnetism. We
discuss in detail the building blocks of magnetism and electron spin. We present the associated spin
algebra and its consequence on the arrangement of electrons within an electronic shell. We discuss
the origin and effect of spin-orbit interaction in a magnetic crystal, the concept of Hund’s rule, the
crystal field effect, diamagnetism, paramagnetism, and ferromagnetism. The chapter concludes by
discussing the quantum mechanical origins of exchange interaction, magnetic resonance (primar-
ily NMR), and Pauli paramagnetism. This chapter supplies codes that can be utilized to visualize
atomic orbitals. These codes should be useful for chemists also. The problems in this chapter are
more challenging compared to those in Chapter 10. In Chapter 12 we deal with the concept of super-
conductivity. The emphasis in this chapter has been on the qualitative aspects of superconductivity
as opposed to a quantitative treatment based on BCS theory. The focus has been on the explanation
of physical properties (at a qualitative level) such as zero electrical resistance, persistent current,
Meissner and London effects, and the thermodynamic properties of superconductors. Finally, the
chapter ends by motivating the various technological uses of superconductivity to the reader. Since
this textbook is for undergraduates, we feel one of our obligations is not just to show case complex
theory but also to expose the students to the areas where these ideas can be applied. We believe our
book can be used not only by senior physics majors, but also by chemists, engineers, and other prac-
titioners of science who want to gain a basic yet fundamental understanding of solid state physics.
In Chapter 13 we highlight the optical properties of solids. While undergraduates are routinely ex-
posed to various optical properties such as reflection, refraction, and transmission in their courses,
they are barely exposed to the solid state applications of those fundamental concepts. The goal of
this chapter has been to bring a synergy between their understanding of basic E&M concepts and
optical properties. Beginning with the concept of a complex refractive index and a dielectric con-
stant, the reader is initiated into the free electron Drude theory, the Drude-Lorentz dipole oscillator
theory, and a qualitative description of the optical properties of glass, metal, and semiconductors.
The chapter ends by providing a summary of the various commonly utilized optical spectroscopy
techniques that are currently available to the scientific community. The last section of this chapter
discusses the advanced concept of the Kramers-Kronig relationship, which may be skipped on a
first reading or for those students who have not been exposed to the ideas of complex analysis. In
Chapter 14 we discuss the transport properties of solids. The discussion in this chapter utilizes the
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Boltzmann transport equation formalism. This approach is slightly more advanced than any pre-
vious exposition on transport properties in earlier chapters. The theme of this chapter has been to
provide an overall comprehension and application of the various transport formalisms that are rou-
tinely utilized in modern condensed matter applications. The emphasis is more on the Boltzmann
transport formulation and its application to the Drude conductivity, effects of electric and tempera-
ture gradients, drift and diffusion currents, thermal conductivity, and the thermoelectric effect. We
finish the chapter with a brief discussion on the Landauer theory of transport. Finally, Appendix
A contains a MATLAB tutorial that should be useful in understanding, modifying, and develop-
ing scripts associated with the computational code found throughout the text. Appendix B includes
a discussion on the Boltzmann, the Fermi-Dirac, and the Bose-Einstein distribution functions. Fi-
nally, the MATLAB code listed throughout the text will be made available at the publisher’s website
(https://www.crcpress.com/), the author’s website (https://www.westga.edu/ jhasbun/osp/osp.htm),
and The MathWorks website (https://www.mathworks.com/academia/books).

MATLABr is a registered trademark of The MathWorks, Inc. For product information, please
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

https://www.crcpress.com/
https://www.westga.edu/
https://www.mathworks.com/
http://www.mathworks.com
mailto:info@mathworks.com
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1.1 What Is Solid State Physics?
Solid state physics is mainly concerned with the study of crystals. Crystals are considered to be
systems of atoms arranged in particular and infinitely repeatable patterns. The arrangement of the
atoms can be in one, two, or three dimensions as conceptually shown in Figure 1.1.1 for finite size
examples. It is the overall periodicity of the atomic arrangement that enables the understanding of
crystals. The interaction of the atomic electrons with the ions in a crystal is of primary interest.
Whereas Figure 1.1.1(c) is a three-dimensional example of a few atoms in a simple cubic system
(eg., polonium), a quantum wire is a system that closely resembles a one-dimensional system of
atoms (Ref. [1]), and a hexagonal lattice of atoms, or graphene sheet, is an example of a two-
dimensional crystal (Ref. [2]). Images of both the quantum wire and a graphene sheet are shown in
Figure 1.1.2.

1
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Figure 1.1.1: Examples of crystals in (a) one, (b) two, and (c) three dimensions. Here the black dots
represent atoms.

Figure 1.1.2: (a) A transmission electron microscope (TEM) image of a quantum wire (adapted
from Ref. [1], reprinted with permission), (b) a scanning transmission electron microscope (STEM)
image of a finite layer of graphene (adapted from Ref. [2]), and (c) a drawing of a finite size graphene
lattice with the filled circles representing the atoms.

As the understanding of crystal structures grew, physicists could later extend learned techniques
and begin to recognize the importance of amorphous systems, such as glass and liquids. In such
systems, however, the best one can hope for is the presence of short range order, as shown for dia-
mond in Figure 1.1.3, rather than the long range order that characterizes crystals. In Figure 1.1.3(a)
the carbon atoms are placed at standard crystalline positions, while in Figure 1.1.3(b), the atoms
are displaced by a small random deviation from the standard crystalline positions in order to sim-
ulate amorphous diamond. One can imagine going from the amorphous state to the liquid state by
adding more randomness to simulate a liquid’s atomic motion and thus averaging techniques are
developed to understand this state. It is therefore crucial to understand crystal structures and the
methods used to study them to be able to extend them to the more complex regimes. Studies of
crystals began when in 1912 Max von Laue pondered the behavior of short wavelength electromag-
netic radiation that interacts with crystals. He had the insight that x-rays, having wavelengths shorter
than the atomic spacing within crystals, would experience interference. Laue and coworkers sent an
x-ray beam through a copper sulfate crystal and observed a diffraction pattern on a photographic
plate as if the crystal behaved as a three-dimensional diffraction grating (Figure 1.1.4). The plate
recorded a large number of bright spots spread in a pattern of intersecting circles around the intense
central beam spot. This represented direct evidence that the atoms in crystals organize in regular
periodic structural units. Each structural unit contains one or more atoms in a particular arrange-
ment. The Bragg Law (discussed later) also proposed in 1913 can be applied to the diffracted waves
to obtain the interplanar crystal spacings. These advances were further aided by the serendipitous
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Figure 1.1.3: Examples of (a) crystalline diamond (Exercise 1.9.23) and (b) the simulated amor-
phous diamond for the same number of carbon atoms (Exercise 1.9.24).

X-Ray

Crystal
Sample

Photographic Plate

Figure 1.1.4: A simple x-ray Laue diffraction experiment.

Davisson-Germer (1927) experiment in which electrons showed diffraction peaks at certain scat-
tering angles indicative of crystalline patterns in a nickel metal crystal (Figure 1.1.5). Diffraction
peaks are absent in a disordered system, such as a liquid. The electrons’ kinetic energy was high
enough to enable them to have x-ray size de Broglie wavelength. Crystals are available naturally
or can be artificially made in several different ways. In the case of diamonds, for example, they
are formed of carbon atoms under high pressure and temperature deep inside Earth’s mantle and
brought to the surface through volcanic vents. They can be replicated in the laboratory under such
conditions in a constant environment. Crystals can also be grown an atom at a time in ultra-high vac-
uum chambers or they can be chemically formed through saturated solutions. When a crystal grows
in a constant environment, a form or shape develops as if identical blocks were added. These blocks
or groups of atoms, arranged in a particular pattern, when periodically and indefinitely assembled,
are responsible for the crystal structure; e.g., Figures 1.1.1(c) and 1.1.3(a).

1.2 Crystal Structure Basics
Following the above discussion, an ideal crystal is understood to be an infinite repetition of structural
units in space. In the simplest crystals, the structural unit is a geometric equivalent arrangement of
a single atom as in the metal crystals of aluminum, copper, silver, and gold. In iron, a different
structural unit, also with a single atom, leads to a metal crystal of different geometry. In diamond,
the structural unit is the single carbon atom arranged in as yet another different geometry. In a crystal
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Figure 1.1.5: Davisson and Germer (1927) showed that an annealed sample of nickel metal showed
electron diffraction.

of table salt, the structural unit is the diatomic molecule of NaCl organized in the same geometry
found in a copper crystal, but making a different crystal structure, as will be seen later.

1.2.1 The Lattice and the Basis

The structure of all crystals can be described by a lattice, with a group of atoms attached to every
lattice point. We make the following definitions. The lattice, in a particular dimension, is an indefi-
nitely extended array of points, each of which is surrounded in an identical way by its neighbors. By
definition, the lattice is a mathematical abstraction. A lattice point is referred to as each point that
makes up the lattice. The group of atoms is called the basis. The basis can be one, two, three, etc.
atoms. When the basis is repeated in space according to the lattice geometry, the crystal is formed.
As an example, consider the simple two-dimensional square lattice of equally spaced points shown
in Figure 1.2.6(a). Also consider the basis of a single atom shown in Figure 1.2.6(b). Finally, after
locating the atom basis onto every lattice point one gets Figure 1.2.6(c) which together make up the
crystal. For the same two-dimensional lattice, choosing a basis of two different atoms results in a
different crystal structure as shown in Figure 1.2.7.

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

(a) (c)(b)
.. . . . . . . .
.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

.. . . . . . . .

Figure 1.2.6: (a) A two-dimensional square lattice, (b) a basis of one atom, and (c) the crystal
formed when a replica of the basis is placed at every lattice point.
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(a) (c)(b)
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.. . . . . . .

.. . . . . . .

Figure 1.2.7: (a) The two-dimensional square lattice, (b) a basis of two atoms, and (c) the crystal
formed when a replica of the basis is placed at every lattice point.

1.2.2 The Lattice Translation Vector

In mathematical terms, a crystal lattice is constructed according to lattice translation vectors. A
general vector in a crystal is written as

~r′ =~r+~T , (1.2.1)

such that the atomic arrangement looks the same when viewed from~r′ as when viewed from~r. Here
~T is a translation vector

~T = u1~a1 +u2~a2 +u3~a3, (1.2.2)

or lattice translation vector, where u1, u2, and u3 are arbitrary integers and ~a1, ~a2, ~a3 are funda-
mental translation vectors. An example of fundamental vectors are the primitive translation vectors
discussed next.

1.2.3 Primitive Translation Vectors

Consider two points~r and~r′ in a crystal from which the atomic arrangement looks the same and
which satisfy Equation (1.2.1) with a suitable choice of u1, u2, and u3 (integers), then ~a1, ~a2, ~a3
(and therefore the unit cell so created) are primitive. This also means that ~T is a true lattice trans-
lation vector. It is possible to think of situations where one can use any set of vectors other than
the primitive vectors such that Equation (1.2.1) is also true. However, the volume enclosed by the
primitive lattice vectors is the smallest volume (building bock) that can be repeated in space to form
the crystal structure. Here we use primitive translation vectors to define axes; i.e., primitive crystal
axes, instead of Cartesian, for example, and which do not have to be orthogonal. Sometimes physi-
cists use non-primitive crystal axes when they have a simpler relation to the symmetry of the crystal
structure. The non-primitive crystal axes can also reproduce the crystal but the volume enclosed
by these axes may not necessarily be the smallest volume that can be repeated to form the crystal
structure.

Example 1.2.3.1
Consider a two-dimensional crystal on a rectangular lattice and let’s pick two points from the origin
described by~r and~r′ as shown in Figure 1.2.8(a) where the primitive vectors ~a and~b are also de-
picted. As we shall see, these vectors are not picked at random; they are actually related. Let’s obtain
the expression for ~T so that~r′ obeys Equation (1.2.1). We proceed as shown in Figure 1.2.8(b), an
observer at~r sees the same surroundings from~r′ as seen from~r and according to Equation (1.2.1),
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if ~T satisfies Equation (1.2.2), then for this two-dimensional example, ~T = u1~a+u2~b, with the ui′s
having integer values of u1 = −3 and u2 = 2. Finally, according to the definition of a lattice trans-
lation vector, with ~T = −3~a+ 2~b, the atomic arrangement viewed from ~r looks the same as that
viewed from~r′.

Figure 1.2.8: (a) A two-dimensional rectangular lattice showing position vectors~r and~r′. (b)~r′ =
~r+~T in this two-dimensional rectangular lattice (see Example 1.2.3.1).

In summary, to describe a crystal structure, we need the following:

1. What is the lattice?
2. Determine the best choice of~a1,~a2, and~a3, whether they are primitive or non-primitive.
3. What is the basis?

The above-mentioned translation operation ~T belongs to a class of operations called symmetry
operations. There are several symmetry operations: (a) translation, (b) rotation, (c) reflections, and
(d) compound operations of two or more of these. The symmetry operations are significant because
when performed they carry the crystal structure onto itself leaving it unmodified.

1.2.4 More on the Basis and the Crystal Structure

As pointed out before, a basis of atoms is attached to every lattice point, with every basis identical
in composition, arrangement, and orientation. Let’s do another but slightly different example with a
rectangular lattice.

Example 1.2.4.1
Here we wish to see the effect of symmetry on the rectangular lattice of Figure 1.2.9(a), where every
four adjacent lattice points form a rectangle. Consider the two atom basis of Figure 1.2.9(b). The
basis is such that every basis atom lies at exactly 1/2 this rectangle’s diagonal. Let the filled circles
be the A atoms and the empty circles be the B atoms. When this basis is added to the lattice, we get
the two-dimensional hypothetical crystal of Figure 1.2.9(c). Notice that in this case, the symmetry
is such that the A atoms are immediately and identically surrounded by four B atoms and that each
B atom is surrounded in an identical way by four A atoms as in Figure 1.2.9(d). Due to the perfect
order, this is an example of a compound. Were the A atoms surrounded by either A or B atoms in
a random way, the resulting crystal would be called a random alloy, a subject discussed much later
in the text. In that case, the B atoms would, in turn, be surrounded randomly by either A or B as
well. The basis would consist of a random basis of two atoms. Thus the basis is very important in
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determining the kind of crystal structure we end up dealing with. There is one caveat in what we
have said here; that is, alloys are not considered to have long range order and do not necessarily
follow the same rules that crystals do. We will come back to this issue in a later chapter.

(a) (c)(b) (d)

. . ..

. . ..

. . ..

. . ..

.

..

..

. . ..

. . ..

. . ..

. . ..

Figure 1.2.9: (a) The two-dimensional rectangular lattice, (b) a 2-atom basis with a separation of
1/2 the smallest lattice’s rectangle diagonal, (c) the crystal formed, and (d) the immediate surround-
ings seen by each type of atom (see Example 1.2.4.1).

As we have seen, the number of atoms in the basis may be more than one. The position of the center
atom j of the basis relative to the associated lattice point is given by

~r j = x j~a1 + y j~a2 + z j~a3, (1.2.3)

where j = 1,2, ... is an integer that runs over the number of atoms in the basis. The positions x j, y j,
and z j may be non-integers and are different from the quantities u1, u2, and u3 in Equation (1.2.1),
which take on integer values. The quantities~r j give the positions of all the atoms in a crystal, as we
show later. For simple structures, the origin can be rearranged so that the coefficients of the lattice
vectors in Equation 1.2.3 are fractions; that is, 0≤ x j,y j,z j ≤ 1. We can have a translation vector to
atom j in the form ~Tj = ~T +~r j with ~T as in Equation 1.2.2. This is done in the following example.

Example 1.2.4.2
Let’s work with Figure 1.2.10(a), where~r = 1

2~a+
1
2
~b for the ‘x’ atom in the basis (Figure 1.2.10(b))

and where~a,~b are the lattice vectors. If A is the origin atom, then atom B is located at~rB =~b, atom
C at~rC =~a+2~b, and atom D at~rD =~a+2~b+~r = 3

2~a+
5
2
~b and is equivalent to the atom at~r. Thus,

here~rD =~r′ and so~r′ = ~T +~r where ~T =~a+2~b as in Equation 1.2.1, and one also identifies ~TD ≡~r′
as the translation vector to atom D from the origin.

Figure 1.2.10: (a) Rectangular crystal lattice with (b) a two atom basis (see Example 1.2.4.2).
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1.2.5 Primitive Cell

The primitive cell is the minimum volume (or area in two dimensions and length in one dimension)
cell composed of primitive lattice vectors. It is a type of cell or a unit cell. A cell can fill all space by
the repetition of itself by suitable crystal symmetry operations. An example of a unit cell is shown
in Figure 1.2.11.

Figure 1.2.11: (a) Primitive unit cell with (b) primitive lattice vectors.

There are many ways of choosing the primitive axes and primitive cell of a given lattice. While
the number of atoms in a primitive cell or primitive basis can be more than one, it is always the
same for a given crystal structure. The areas or volumes defined by primitive axes are equal because
they all define the unit cell from which the crystal is created. As shown in Figure 1.2.12(a), in two
dimensions, the area enclosed by the primitive axes is

A = |~a1×~a2|= a1a2 sinθ . (1.2.4)

Note that for a different set of primitive axes, the magnitudes of ~a1 and ~a2 as well as the angle θ

between them may change to keep the primitive area constant. In three dimensions, the volume of a
parallelepiped (see Figure 1.2.12(b)) is

V = |(~a1×~a2) ·~a3|. (1.2.5)

For numerical calculation purposes, the MATLAB appendix describes ways to carry out the ‘×’ and
‘·’ operations in that environment.

Figure 1.2.12: (a) Area of a two-dimensional unit cell and (b) the volume of a three-dimensional
unit cell.

Let’s do an example of different primitive axes in a two dimensional lattice with a single atom basis
as shown in Figure 1.2.13.
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Example 1.2.5.1
Referring to Figure 1.2.13, in (a) we see that we can make translation vectors ~T1 =~a+~b, ~T2 =~a+2~b,
and the pair of vectors ~a,~b are primitive lattice vectors. The shaded area is the primitive cell. In (b)
~T1 = ~a′ +~b′, ~T2 = ~a′ + 2~b′, and ~T3 = ~a′ −~b′. The lattice vectors ~a′, ~b′ may be primitive if their
encompassed shaded area shown is equal to that of (a). In (c) the translation vector ~T2 = ~a′′+~b′′,
but ~T1 = ~a′′+ 1

2
~b′′, thus since ~T1 does not obey Equation 1.2.2, then the lattice vectors ~a′′,~b′′, are

not primitive.

Figure 1.2.13: (a) Primitive cell with translation vectors that can be written in terms of the primitive
axes. The primitive axes make up the primitive cell shaded area. (b) Here the translation vectors can
be expressed in terms of the axes ~a′ and~b′, and the shaded area may be a primitive cell if its area
is equal to that shaded in (a), in which case the axes may also be primitive. (c) Here the axes ~a′′,
~b′′ are not primitive because the translation vectors cannot be expressed as in Equation 1.2.2 (see
Example 1.2.5.1).

There is always one lattice point per primitive cell. To illustrate this, let’s do the following example.

Example 1.2.5.2
In Figure 1.2.14, suppose~a and~b in (a) are the primitive vectors associated with the starred primitive
cell shown in (b). Assuming a one atom basis then each point in the cell contains an atom. Let’s
count how many lattice points there are in this unit cell. Notice the cell is surrounded by 4 other unit
cells. This means that each of the 4 lattice points is shared with a total of 4 unit cells. Therefore, we
have (4 lattice points)/4 cells = total number o f lattice points per cell = 1 lattice point per cell.
This, of course, is not a general proof so that, formally, one uses the Wigner-Seitz method (discussed
below) to do it.

Every primitive cell has one lattice point. The reason the Wigner-Seitz method for finding unit cells
is important is that it clearly identifies the primitive cell without having to discuss the sharing of the
atoms.

Figure 1.2.14: (a) A two-dimensional crystal lattice with one atom basis, and (b) the starred cell
whose lattice points per cell we count in Example 1.2.5.2.
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1.2.6 The Wigner-Seitz Cell

The Wigner-Seitz method is a very accurate way of obtaining a primitive cell (Wigner-Seitz cell).
The method is as follows:

1. draw lines to connect a given lattice point to all nearby lattice points;
2. at the midpoint and normal to these lines, draw new lines (two-dimensions) or planes (three-

dimensions);
3. the smallest area (two-dimensions) or volume (three-dimensions) enclosed this way is the

Wigner-Seitz primitive cell.

As an example, let’s find the Wigner-Seitz cell for a two-dimensional rectangular lattice.

Example 1.2.6.1
In Figure 1.2.15, the dashed lines in (a) are drawn from the circled atom to every other atom in the
lattice. We then draw perpendicular solid bisectors lines as shown. The smallest area enclosing the
centered atom works out to be a rectangle as well. This is the Wigner-Seitz cell for this lattice. It
contains one lattice point. Further, this lattice has a one-atom basis but the same results apply to a
basis with more than one atom as shown in (b), for a two-atom basis, for instance.

Figure 1.2.15: (a) The Wigner-Seitz cell for a two-dimensional rectangular lattice, with one atom
basis (dots), is the rectangular box that surrounds the circled atom. Dashed lines are drawn from
the centered lattice point to every other lattice point. The bisectors are the solid lines. (b) The same
lattice as in (a) with a basis of two atoms (dots and stars). See Example 1.2.6.1.

1.3 Basic Lattice Types
Crystal lattices can be carried or mapped into themselves by lattice symmetry operations. A common
operation is that of rotation about a lattice point. Lattices can be found to have one (360◦), two
(180◦), three (120◦), four (90◦), and six (60◦) fold rotations corresponding to rotations by 2mπ/n,
where n = 1, 2, 3, 4, and 6 with m an integral multiple. The rotation axes are denoted by the
index n. Pentagon (n = 5) or heptagon (n = 7) lattices have not been found. There is, however,
a class of structures that contain some pentagons with hexagons mixed in; they are carbon-based
structures known as Buckminster Fullerines with soccer ball shapes composed of 20 hexagons and
12 pentagons. A carbon atom is at the vertex of each polygon. A single molecule can possibly have
x-fold rotations (x = 1,2, . . .), but an infinite crystal of these cannot. In the following example, we
show why a crystal of pentagons is not possible.
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Example 1.3.0.1
Referring to Figure 1.3.16, in (a) we see θ = 2π

5 = 72◦, and 2φ +θ = π so that φ = (π−θ)
2 = 3π/10=

54◦. Now, α = 2φ = 3π/5 = 108◦, and no matter how many rotations by amount α we make about
point A the result does not equal 360◦. In fact 360/108 = 3.33, which is not an integer. Thus, in
general, for a polygon lattice with internal angle α , one needs 2π/α = n, where n is an integer, to
be able to get an infinite crystal with no empty spaces. In (b), there is no waste of any space and an
infinite lattice of hexagons can quite well ensue.

A
.

(a) (b)

Figure 1.3.16: (a) A lattice of pentagons is impossible because 2π/α is not an integer. (b) A lattice
of hexagons has no empty spaces. See Example 1.3.0.1.

A lattice point group is the collection of symmetry operations which, applied to a lattice point, carry
the crystal into itself. We can have:

a) possible rotations (2π/n where n = 1, 2, 3, 6) about an axis and labeled Cn (C for cyclic) rota-
tions (e.g., Figure 1.3.17(a));

b) mirror reflections about a plane through a lattice point. Here the axis perpendicular to the mirror
plane changes sign (i.e., z→−z if the mirror plane is perpendicular to the z-axis). The operation
is labeled m or σ operations (e.g., Figure 1.3.17(b));

c) inversion, composed of rotations by π followed by reflection in a plane normal to the rotation
axis (here the rotation changes the sign of two axes, say x→−x, y→−y, if rotating about z,
then the mirror plane perpendicular to z causes z→−z), with the net effect that~r→−~r. The
label used is i for inversion or s4 for the combination of operations (e.g., Figure 1.3.17(c)).
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C2

(a)

Plane

(b)

x
z

y

-y

-z

-x

Inversion ( i)

(c)

x
y

z

-z

Figure 1.3.17: (a) Example of operation C2 or 180◦ rotation about the symmetry axis shown. (b)
Example of a mirror reflection about a plane. (c) Example of the inversion operation.

In two dimensions, the lattice types are listed in Figure 1.3.18 where we see that

1. in the oblique lattice, there is no restriction on the angle φ and ~a 6=~b, the rest are special cases
of this type;

2. the square lattice has φ = 90◦, and |~a|= |~b|;
3. the rectangular lattice has φ = 90◦, and |~a| 6= |~b|;
4. the hexagonal lattice has φ = 120◦ and |~a|= |~b|;
5. the centered rectangular also has φ = 90◦, and |~a| 6= |~b| with an added lattice point at the rect-

angle’s center.

These are also called Bravais lattices named after the French physicist Auguste Bravais (1811-1863).
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Figure 1.3.18: The two-dimensional Bravais lattices.

There are fourteen three dimensional Bravais lattice types, the triclinic is the general one and the
remaining thirteen are special cases of this type as shown in example cases of Figure 1.3.19. Notice
that the crystal axes ~a, ~b, and ~c are in general not orthogonal. Their associated angles with each
other, α , β , and γ are shown in (a). The crystal lattices are:

(b) one triclinic with~a 6=~b 6=~c, and α 6= β 6= γ;
(c-d) two monoclinic (simple and base-centered) with~a 6=~b 6=~c, and α = γ 6= β ;
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(e-h) four orthorhombic (simple, body-centered, base-centered, and face-centered) with~a 6=~b 6=~c,
and α = β = γ = 90◦;

(i-j) two tetragonal (simple and body-centered) with~a =~b 6=~c and α = β = γ = 90◦;
(k) one trigonal with~a =~b =~c and α = β = γ < 120◦ 6= 90◦;
(l) one hexagonal with~a =~b 6=~c and α = β = 90◦, γ = 120◦;

(m-o) and three cubic (simple, body-centered, and face-centered) with~a =~b =~c and α = β = γ =
90◦.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 1.3.19: Examples of the three-dimensional Bravais lattice types.

1.3.1 Crystal to Cartesian Coordinates

We have learned that the location of atoms in crystals is based on the crystal lattice vectors, which
are not necessarily orthogonal and which do not coincide with the x-y-z Cartesian coordinate sys-
tem. The examples of three-dimensional lattices of Figure 1.3.19 were made possible by the trans-
formation from crystal axes to Cartesian axes. We next demonstrate the process of locating the
x− y− z Cartesian atomic coordinates if we have their positions in terms of the crystal axes (Fig-
ure 1.3.19(a)). Consider the x−y− z orthogonal coordinate system, and let’s pick the vector~a to be
along x so that
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~a = ax̂; (1.3.6)

additionally, let~b lie on the x-y plane. Both situations are shown in Figure 1.3.20.

(a) (b)

Figure 1.3.20: (a) Superimposed on the Cartesian coordinate systems, the general~a is chosen along
the x̂ direction and~b lies on the plane as in (b).

We can write~b in the form

~b = b1x̂+b2ŷ = bcosγ x̂+bsinγ ŷ. (1.3.7)

The choice left is for~c to lie in a general direction; that is,

~c = c1x̂+ c2ŷ+ c3ẑ = ccosβ x̂+ c2ŷ+ c3ẑ. (1.3.8)

So that~a ·~c = accosβ = ax̂ · (c1x̂+ c2ŷ+ c3ẑ) = ac1, or

c1 = ccosβ . (1.3.9)

Similarly, we obtain~b ·~c = bccosα = (bcosγ x̂+bsinγ ŷ) · (c1x̂+ c2ŷ+ c3ẑ) = bc1 cosγ +bc2 sinγ,
which, using Equation 1.3.9 gives

~b ·~c = bccosα = bccosβ cosγ +bc2 sinγ, (1.3.10)

or

c2 =
c(cosα− cosβ cosγ)

sinγ
. (1.3.11)

Finally,

|~c|2 = c2 = c2
1 + c2

2 + c2
3, (1.3.12a)

and using Equations (1.3.9) and (1.3.11), we have

c3 =
√

c2− c2
2− c2

3 = c

√
1− cos2 β − (

cosα− cosβ cosγ

cosγ
). (1.3.12b)

Notice that, from Equations (1.3.6) to (1.3.8), we can write the following

( ~a ~b ~c ) = ( x̂ ŷ ẑ )




a bcosγ c1
0 bsinγ c2
0 0 c3


= ( x̂ ŷ ẑ )C, (1.3.13a)
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where

C ≡




a bcosγ c1
0 bsinγ c2
0 0 c3


 , (1.3.13b)

with c1, c2, and c3 given by Equations (1.3.9) to (1.3.12). Next, consider a vector~t which gives the
position of an atom in crystal coordinates, such as

~t = u~a+ v~b+w~c, (1.3.14)

where u, v, and w are integers. The question arises, what are the x, y, and z Cartesian coordinates of
this atom relative to the origin? The answer is found in rewriting~t as

~t = xx̂+ yŷ+ zẑ = u~a+ v~b+w~c. (1.3.15)

This, with the help of expression (1.3.13a) for the row vector ( ~a ~b ~c ), becomes

~t = ( x̂ ŷ ẑ )




x
y
z


= ( x̂ ŷ ẑ )C




u
v
w


 , (1.3.16)

or



x
y
z


=C




u
v
w


 , (1.3.17)

which are the sought Cartesian coordinate magnitudes in terms of the crystal axes magnitudes. Here
the matrix C is known as the conversion matrix. Let’s do an example.

Example 1.3.1.1
Consider an orthorhombic system as shown in Figure 1.3.21 in which α = 90◦ = β = γ; in addition,
given the vector magnitudes, a = 1Å, b = 1.5Å, and c = 2Å, find an atom’s x, y, and z coordinates
if its position is given by the crystal vector~t = 3~a+4~b−3~c.

Solution
In this example, the conversion matrix C works out to be diagonal with elements a= |~a|, b= |~a|, and
c = |~c|, where a = 1, b = 3/2, and c = 2. From the given~t, u = 3, v = 4, and w =−3 so that, from
Equations (1.3.16) and (1.3.17), we find~t = uax̂+vbŷ+wcẑ = 3x̂+4(3/2)ŷ−3(2ẑ) = 3x̂+6ŷ−6ẑ.

Figure 1.3.21: Orthogonal vectors~a,~b, and~c in an orthorhombic system.

It is helpful to create MATLAB code to make the conversion from crystal to Cartesian axes tasks
easier to perform. In the following example, useful code is listed for such purpose.
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Example 1.3.1.2
Below follows sample code for the purpose of obtaining the Cartesian axes coordinates from crystal
axes information and for which the input values have not yet been specified.

%Example code to carry out the conversion process from crystal

%axes to Cartesian axes.

clear %It is a good idea to clear the memory

a= %axes in angstroms

b=

c=

alpha= %angles

beta=

gamma=

%Define c1, c2, and c3 to compose the C matrix

c1= c*cos(beta)

c2= c*(cos(alpha)-cos(gamma)*cos(beta))/(sin(gamma))

c3= + sqrt((c^2 - (c1)^2 - (c2)^2))

C =[[a b*cos(gamma) c1] [0 b*sin(gamma) c2] [0 0 c3 ]] %C matrix

%The coefficients of the atoms in the crystal representation

u=

v=

w=

%Print the vector in the Cartesian representation

C*[u;v;w]

If we needed to plot the atoms’ locations in three-dimensions, we could create a two-dimensional
matrix, say, loc whose rows contain the atoms’ crystal’s u’s, v’s, and w’s and whose columns
correspond to different atoms. Let the result of the conversion be the matrix p=C*loc, and let
x=p(1,:), y=p(2,:), and z=p(3,:) be the coordinates for, say n atoms, where the colon ’:’

refers to all the columns in the array; we then place dots at their positions using the command
plot3(x,y,z,’k.’). If desired, lines can be added from each atom to its neighbors by using a
loop that runs over the atoms’ positions, the following loop, for example, will connect the first atom
to its neighbors with straight lines.

i=1; % current atom

n=3; % neighbors

for j=i+1:i+n

line([p(1,i),p(1,j)],[p(2,i),p(2,j)],[p(3,i),p(3,j)]);

end

1.4 Properties of the Cubics
The cubic system is the simplest three-dimensional lattice, and it is worth learning some details
about them. In general, the conventional cell of a lattice may not necessarily be the same as the
primitive cell. For the cubics, the conventional cell of each lattice is shown in Figures 1.3.19(m-o).
As we see below, for the simple cubic (SC) the conventional cell is the same as the primitive cell,
but that is neither the case for the body-centered cubic (BCC) nor the face-centered cubic (FCC).
The lattice constant defines the size of the cubic conventional cell and here we refer to it as just a.
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1.4.1 The Simple Cubic

In this lattice, the atoms’ primitive basis vectors are expressed in terms of the lattice constant a; that
is, ~a1 = aî, ~a2 = a ĵ, and ~a3 = ak̂. The primitive cell has volume V = |(~a1×~a2) ·~a3)| = a3. This is
more clearly shown in Figure 1.4.22(a).

Primitive Cell = Conventional Cell

a = Lattice
      constant

1
2

4
3

6
8

7
5

(a) (b)

x
y

z

dnn

dnn

(c)

Figure 1.4.22: (a) The conventional cell for the simple cubic is the same as its primitive cell. The
lattice constant is the length of a side. (b) The central atom is shared by 8 cells (numbered 1-8)
yielding one atom per cell in the simple cubic. Each atom has six nearest neighbors as seen here
for the central atom. (c) The packing fraction’s sphere diameter associated with an atom equals the
nearest neighbor distance dnn as depicted here.

As shown in Figure 1.4.22(b), the simple cubic (SC) has 1 atom at each of its 8 corners, but each
corner is shared by 8 cubes (numbered 1-8, 4 below and 4 above the central atom) to yield one
atom per cell. Each atom can be thought to be immediately surrounded by 6 nearest neighbors (±x,
±y, and ±z). The packing fraction is defined as the ratio of a sphere volume to that of the cell
volume. The sphere volume is taken as the volume of an atom whose radius is equal to one half the
nearest neighbor distance, dnn, as shown for the cube’s bottom plane in Figure 1.4.22(c). For the
SC system, dnn = a, so the sphere volume is 4

3 π(a/2)3, and the cell volume obtained above is a3

to get a packing fraction of 4
3 π(a/2)3/a3 = π/6 = 0.5236. It is useful to use the notation (u,v,w)a

to indicate the atomic positions, and sometimes even the lattice constant is omitted. For example,
the six SC nearest neighbors to, say the atom (000) at the origin, are (100), (010), (001), (1̄00),
(01̄0), and (001̄), in units of a of course. By making linear combinations of these (including self-
combinations) but keeping only those that lead to new but distinct positions, and whose distance
is the smallest possible, we can get the 2nd neighbors of the (000) atom. Doing this, we get the
positions (110), (101), (011), (1̄1̄0), (1̄01̄), (01̄1̄), (11̄0), (101̄), (1̄10), (011̄), (1̄01), and (01̄1).
Thus there are twelve 2nd neighbors. They are so recognized because they are equidistantly located
at a distance of d2nd =

√
12 +12 +02a =

√
2a from the origin. Repeating this process, using all

previously known distinct positions, and keeping those whose distance is the smallest possible we
can get the 3rd neighbors, and so on. All the atoms in the crystal lattice can be identified this way.
Finally, refer to Table 1.8.3 in Section 1.8 for systems that crystallize in this structure.

1.4.2 The Body-Centered Cubic

The body-centered cubic (BCC)’s conventional cell is shown in Figure 1.4.23(a), while (b) shows
it contains two atoms per cell and each atom has eight nearest neighbors (seen here for the central
atom). (c) Shows the BCC’s primitive unit cell’s rhombohedral shape based on its primitive vectors
shown in (a).
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Figure 1.4.23: (a) The conventional cell of the body-centered cubic with the lattice constant the
length of a side as in the SC. (b) The central atom is shared by 1 cell and corner atoms are shared by
8 cells each, yielding two atoms per cell for the BCC. Also each atom has eight nearest neighbors
as seen here for the central atom. (c) The BCC primitive cell is the shaded rhombohedron.

The primitive lattice vectors are ~a1 =
1
2 a(î+ ĵ− k), ~a2 =

1
2 a(−î+ ĵ+ k), and ~a3 =

1
2 a(î− ĵ+ k) as

measured from the body-centered atom position at (000). Its volume is V = |(~a1×~a2) ·~a3)|= a3/2.
Notice that the inverse of this number is the same as the number of atoms (and lattice points)
per conventional cell. The eight nearest neighbors to the central atom are located at positions
(111̄)a/2, (11̄1)a/2, (1̄11)a/2, (111)a/2, (11̄1̄)a/2, (1̄11̄)a/2, (1̄1̄1)a/2, and (1̄1̄1̄)a/2 with the

nearest neighbor distance of d = a
√
( 1

2 )
2 +( 1

2 )
2 +( 1

2 )
2 =

√
3

2 a. The BCC’s packing fraction is
4
3 π(

√
3

2 a/2)3/( a3

2 ) = π
√

3/8 = 0.6802. It is possible to run a script specifically designed to vi-
sualize the conventional cell, in addition to the primitive cell, of the BCC. The code follows in the
example below.

Example 1.4.2.1
In this example, when run, the script unit_cell_BCC.m requires the user to enter the number
of atoms as input. It builds the BCC translation vectors, and makes linear combinations of them
(some are repeated). Large dots are placed at the atom positions to show the structure, and the
nearest neighbors are connected with straight lines to simulate bonds. The conventional cell and
primitive cell are drawn separately based on the lattice vectors as indicated by the comments within.
Figure 1.4.24 is the output produced after running the script with a default input of 52 for the number
of atoms used (some repeat).

%copyright by J. E Hasbun and T. Datta

%unit_cell_BCC.m

%Here we plot the atomic positions for the BCC crystal

%and then plot its conventional and primitive unit cells.

clc

close all

clear all

a=1.0; %lattice constant

%The BCC smallest possible translation vectors

a0=[0;0;0]; a1=a*[1/2;1/2;-1/2]; a2=a*[1/2;-1/2;1/2]; a3=a*[-1/2;1/2;1/2];

a4=a1+a2; a5=a1+a3; a6=a2+a3; a7=a4+a3; %unit cell can be built now

%with 8 corner positions

%and also make some new ones for structure purposes

a8=a1-a2; a9=a1-a3; a10=a2-a3; a11=a4-a3;

a12=2*a1; a13=2*a2; a14=2*a3;

%First eight in T are to construct the primitive cell
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T=[a0,a1,a2,a3,a4,a5,a6,a7,-a1,-a2,-a3,a8,a9,a10,a11];

T=[T,-a4,-a5,-a6,-a7,-a8,-a9,-a10,-a11,a12,a13,a14,-a12,-a13,-a14];

%We should identify the cube positions too

b0=[0;0;0]; b1=a*[1;0;0]; b2=a*[0;1;0]; b3=a*[0;0;1];

b4=b1+b2; b5=b1+b3; b6=b2+b3; b7=b4+b3; %To locate cube position atoms

%plus new ones

b8=b1-b2; b9=b1-b3; b10=b2-b3; b11=b4-b3;

b12=2*b1; b13=2*b2; b14=2*b3;

Tb=[b0,b1,b2,b3,b4,b5,b6,b7,-b1,-b2,-b3,b8,b9,b10,b11];

Tb=[Tb,-b4,-b5,-b6,-b7,-b8,-b9,-b10,-b11,b12,b13,b14,-b12,-b13,-b14];

%final T

T=[T,Tb];

%

M=length(T); %number of possible smallest translation vectors

%N=52; %number of atoms desired some are repeated

N=input(’Enter the number of atoms to plot (some are repeated) [52] -> ’);

if(isempty(N)), N=52; end

%p= atomic positions in the diamond lattice

p0=a*[0;0;0]; %the atoms at the origin

p=zeros(3,N); %define the dimensions of atomic position matrix

jc=0;

for i=0:N-1

j=mod(i,M); %j can only go from 1 to M

if(j==0); jc=jc+1; end %counts number of times j goes through 0

%jc allows for reusage of previously obtained position vectors to

%which T can be added to obtain new position vectors, etc

p(:,i+1)=p0+T(:,j+1);

p0=p(:,jc);

end

rnn=norm(T(:,1)-T(:,2)); %bcc nn distance

x=p(1,:); y=p(2,:); z=p(3,:); %x, y, z coords of all atoms

%draw atoms

plot3(x,y,z,’ko’,’MarkerSize’,6,’MarkerFaceColor’,’k’)

hold on

%Draw bonds between near neighbors only

for i=1:N

for j=1:N

if(j ~= i)

rd=norm(p(:,i)-p(:,j)); %calculate the distance between atoms

%but draw lines between nn only

if(rd <= rnn)

line([p(1,i),p(1,j)],[p(2,i),p(2,j)],[p(3,i),p(3,j)],...

’Color’,’b’,’LineWidth’,1);

end

end

end

end

%----------

%The lines below work better here for the primitive cell

line([a0(1),a1(1)],[a0(2),a1(2)],[a0(3),a1(3)],’Color’,’b’,’LineWidth’,3);

line([a0(1),a2(1)],[a0(2),a2(2)],[a0(3),a2(3)],’Color’,’b’,’LineWidth’,3);
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line([a0(1),a3(1)],[a0(2),a3(2)],[a0(3),a3(3)],’Color’,’b’,’LineWidth’,3);

line([a1(1),a4(1)],[a1(2),a4(2)],[a1(3),a4(3)],’Color’,’b’,’LineWidth’,3);

line([a1(1),a5(1)],[a1(2),a5(2)],[a1(3),a5(3)],’Color’,’b’,’LineWidth’,3);

line([a2(1),a4(1)],[a2(2),a4(2)],[a2(3),a4(3)],’Color’,’b’,’LineWidth’,3);

line([a2(1),a6(1)],[a2(2),a6(2)],[a2(3),a6(3)],’Color’,’b’,’LineWidth’,3);

line([a3(1),a5(1)],[a3(2),a5(2)],[a3(3),a5(3)],’Color’,’b’,’LineWidth’,3);

line([a3(1),a6(1)],[a3(2),a6(2)],[a3(3),a6(3)],’Color’,’b’,’LineWidth’,3);

line([a4(1),a7(1)],[a4(2),a7(2)],[a4(3),a7(3)],’Color’,’b’,’LineWidth’,3);

line([a5(1),a7(1)],[a5(2),a7(2)],[a5(3),a7(3)],’Color’,’b’,’LineWidth’,3);

line([a6(1),a7(1)],[a6(2),a7(2)],[a6(3),a7(3)],’Color’,’b’,’LineWidth’,3);

%----------

%To show the cube positions too - not so thick lines

rnnb=norm(Tb(:,1)-Tb(:,2)); %cube position nn distances

for i=1:8

for j=1:8

if(j ~= i)

rd=norm(Tb(:,i)-Tb(:,j)); %calculate the distance between atoms

%but draw lines between nn only

if(rd <= rnnb)

line([Tb(1,i),Tb(1,j)],[Tb(2,i),Tb(2,j)],[Tb(3,i),Tb(3,j)],...

’Color’,’k’,’LineStyle’,’-.’,’LineWidth’,2);

end

end

end

end

%Make sure the cube corner atoms appear too

plot3(Tb(1,1:8),Tb(2,1:8),Tb(3,1:8),’ko’,’MarkerSize’,6,’MarkerFaceColor’,

’k’)

%----------

view(-156,12) %Angle for viewing purposes

box on

axis equal

xlabel(’X’), ylabel(’Y’), zlabel(’Z’)

title(’BCC, conventional cell (dashed black), primitive cell (thick blue)’)
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Figure 1.4.24: The output figure from the script unit cell BCC.m of Example 1.4.2.1 for the BCC
structure with the default input number of atoms (not all show).

You may also refer to Table 1.8.3 of Section 1.8 for systems that crystallize in this structure.

1.4.3 The Face-Centered Cubic

The face-centered cubic (FCC)’s conventional cell of Figure 1.4.25(a) shows it contains four atoms
per cell, while (b) shows each atom has twelve nearest neighbor (seen here for the central atom). (c)
Shows the FCC’s primitive unit cell’s rhombohedral shape based on its primitive vectors shown in
(a).

Figure 1.4.25: (a) The conventional cell of the face-centered cubic with the lattice constant the
length of a side as in the SC. Each of the eight corner atoms is shared by 8 cells, each of the six
face atoms is shared by 2 cells, yielding 1+ 3 = 4 atoms per cell for the FCC. (b) Each atom has
twelve nearest neighbors as seen here for the central atom. (c) The FCC primitive cell is the shaded
rhombohedron.

The primitive lattice vectors are ~a1 = 1
2 a(î+ ĵ), ~a2 = 1

2 a( ĵ + k), and ~a3 = 1
2 a(î+ k) as measured

from the origin atom at (000). Its volume (see exercises) works out to be V = a3/4. The nearest
neighbor distance is d = a√

2
. Finally, the FCC’s packing fraction is

√
2

6 π = 0.7405. Again, you may
also refer to Table 1.8.3 of Section 1.8 for systems that crystallize in this structure.
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1.5 Indexing of Crystal Planes (Miller Indices)
The Miller indices refer to the indices of a vector that is perpendicular to a plane. The plane’s
intercepts with the crystal axes can be used to obtain the Miller indices, commonly written in the
notation (hk l) (often no spaces are used). The Miller indices specify the orientation of a plane by
the following rules:

a) Find the intercepts of the plane with the axes in terms of the lattice constants~a1,~a2, and~a3. The
axes may be those of a primitive or non-primitive cell. The integer coefficients of each intercept,
u, v, and w are written with braces in the form {u,v,w} to indicate lattice point plane intercepts
u~a1, v~a2, and w~a3, respectively.

b) Take the reciprocals of the intercept coefficients ({u,v,w}) and reduce them to three integers
having the same ratio, usually the smallest three integers. What results, expressed in parenthesis
form, (hk l) are the crystallographic plane indices or Miller indices. That is,

(hkl) = (smallest number envenly divisible by u,v,w)

(
1
u
,

1
v
,

1
w

)
. (1.5.18)

The Miller indices are useful because parallel planes will have the same set of indices. The set of
planes so described is referred to as a crystallographic plane. Let’s follow with a simple example.

Example 1.5.0.1
Consider a crystal plane with intercepts {1,4,3}; obtain the plane’s Miller indices.

Solution
The smallest number evenly divisible by 4 and 3 is 12, we have 12(1/1,1/4,1/3) = (1234).

Associated with a crystal is the crystallographic direction. This is a vector between two lattice points
in which the direction is indicated in the bracketed form [uvw]. The integers u, v, and w (without
common factors) are the indices of the crystallographic direction and specify an infinite set of par-
allel vectors. If we consider the origin and a lattice point whose position is given by (for example)
the sum of the position vectors of Example 1.5.0.1 or~t = u~a1 + v~a2 +w~a3, since the u, v, and w
given do not contain common integer factors (except 1), the crystal direction is [143]. In crystals for
which ~a1, ~a2, and ~a3 are all equal, as in the case of cubic crystals, and if we consider a lattice point
at location {u,v,w} from the origin, with u = v = w, the direction to that lattice point [uvw] is per-
pendicular to the plane with Miller indices (hkl) where u = h, v = k, and w = l. Negative directions
have a bar over the index; that is, if the direction from the origin is in the direction of the vector
~t = −u~a1 + v~a2 +w~a3, the direction is [ū vw]. Further, if we have plane intercepts of {−1,4,3},
the plane’s Miller indices are (1̄234). A two-dimensional plane with intercepts {2,1,∞} has Miller
indices of (120), indicating that it’s an infinite plane that does not touch the third dimension. The
plane with Miller indices (100) has plane intercepts {1,∞,∞} because it is an infinite plane that
only touches the first dimension. Certain crystal directions are special and are in common use. The
direction from the origin to a lattice point at~t =~a1 is denoted as [100] which represents a vector
perpendicular to a plane with intercepts {1,∞,∞} and Miller indices (100). In a similar way, the
direction [110] is perpendicular to a plane with intercepts {1,1,∞} and whose Miller indices are
(110). Some of these and other examples are illustrated in Figure 1.5.26.
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Figure 1.5.26: (a)-(d) Examples of special crystal directions. The plane intercepts are given in curly
brackets ({}), the Miller indices in parenthesis, and the directions in square brackets ([]).

One of the interesting aspects of the Miller indices can be seen by looking at Figure 1.5.27. Consider
the plane shown in (a) with three intersecting points p1, p2, and p3 whose associated vectors are
~p1 =, ~p2, and ~p3. We next construct vectors along the edges of the plane given by ~v1 = ~p1−~p3,
~v2 = ~p2−~p1, and~v3 = ~p3−~p2. If we cross any two of these edge vectors in such a way as to obtain
a perpendicular vector that points away from the origin (right-hand rule [RHR]), its coefficients
(when reduced to the smallest integers with the same ratio) correspond to the plane’s Miller indices.
The following example illustrates this concept.

Example 1.5.0.2
Let’s obtain the vector that lies perpendicular to the plane shown in Figure 1.5.27(b) with inter-
secting points p1 = (6,0,0), p2 = (0,5,0), and p3 = (0,0,4). The edge vectors discussed above
become ~v1 = 6î− 4k̂, ~v2 = 5 ĵ− 6î, and ~v3 = 4k̂− 5 ĵ. Crossing any two of these a la RHR, say
~v1×~v2 = 20î+24 ĵ+30k̂, gives a vector that lies perpendicular to the given plane. Its coefficients
(202430), when reduced to the smallest integers with the same ratio, become (101215) = (hk l),
which are the Miller indices corresponding to the plane with intercepts {6,5,4}. (b) also shows the
direction vector [654] for illustration purposes.

Figure 1.5.27: (a) Shows the plane intercepts and the edge vectors which are crossed to obtain
the plane’s perpendicular. (b) Illustrates that the coefficients of the perpendicular vector, when re-
duced to the smallest integers with the same ratio, correspond to the Miller indices of the plane
with intercepts {6,5,4}. The direction vector [654] is also shown (see Example 1.5.0.2). Code
plane indices.m was used in the calculation of (b).

The MATLAB code, plane_indices.m, used to create Figure 1.5.27(b) is listed below for repro-
ducibility purposes. The run was made with the default input parameters.
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%copyright by J. E Hasbun and T. Datta

%plane_indices.m

%The script’s purpose is to visualize a plane whose intercepts

%are provided and shows their relatiosnship to the Miller indices

function plane_indices

clear

a1=1.0; %axes in angstroms

a2=1.0;

a3=1.0;

alph=90; %angles in degrees

bet =90;

gamm=90;

alpha=(pi/180)*alph; %angles in radians

beta =(pi/180)*bet;

gamma=(pi/180)*gamm;

%Define c1, c2, and c3 to compose the C matrix

c1= a3*cos(beta);

c2= a3*(cos(alpha)-cos(gamma)*cos(beta))/(sin(gamma));

c3= + sqrt((a3^2 - (c1)^2 - (c2)^2));

%plane’s intercepts are u*a1, v*a2, w*a3; u, v, w are the coefficients.

%u=6; v=5; w=4; %examples

cI=input(’Enter [u,v,w] as a row vector [6,5,4] -> ’);

if isempty(cI), cI=[6,5,4]; end

u=cI(1); v=cI(2); w=cI(3);

loc=[u 0 0

0 v 0

0 0 w];

%Conversion matrix

cM =[a1 a2*cos(gamma) c1

0 a2*sin(gamma) c2

0 0 c3 ];

%Transformed intercepts

p=cM*loc;

%x, y, z coords of all intercepts

x=p(1,:); y=p(2,:); z=p(3,:);

plot3(x,y,z,’ko’,’MarkerSize’,2,’MarkerFaceColor’,’w’)

view(155,32)

hold on

%The Axes a1, a2, a3 plotted in Cartesian coords

line([0,p(1,1)],[0,p(2,1)],[0,p(3,1)],’Color’,’b’,’LineWidth’,2)

line([0,p(1,2)],[0,p(2,2)],[0,p(3,2)],’Color’,’b’,’LineWidth’,2)

line([0,p(1,3)],[0,p(2,3)],[0,p(3,3)],’Color’,’b’,’LineWidth’,2)

%Vector u*a1+v*a2+w*a3 in Cartesian coords (crystal direction [uvw] from 0)

pmax=max([norm(p(:,1)),norm(p(:,2)),norm(p(:,3))]);

vC=p(:,1)+p(:,2)+p(:,3);

vC=bestDiv(vC,53,10); %vector with smallest integers

vCm=vC*pmax/norm(vC); %For plotting purposes, its size is moderated

h1=line([0,vCm(1)],[0,vCm(2)],[0,vCm(3)],’Color’,[0.6 0.3 0],

’LineWidth’,1.5);

%Now the vector vA perpendicular to the plane: Miller indices (hkl)

sg=sgn(u)*sgn(v)*sgn(w); %tricky trick to get the (hkl) sign right!
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v1=p(:,1)-p(:,3); %plane border vectors

v2=p(:,2)-p(:,1);

vA=sg*cross(v1,v2); %v1 X v2 gives a plane perpendicular

%v3=p(:,3)-p(:,2); %can create another border vector for some checking

%vB=sg*cross(v2,v3) %another perpendicular to the plane

%dot(v1,vA) %check: if 0, v1 & vB are perpendicular to each other

%dot(v1,vB) %check: if 0 also for v1 & vB

%We next use prime numbers to find a common divisor, up to number 53,

%to simplify further and plot the perpendicular

vA=bestDiv(vA,53,10); %vector with smallest integers (Miller indices)

pmax=max([norm(p(:,1)),norm(p(:,2)),norm(p(:,3))]);

vAm=vA*pmax/norm(vA); %moderate the size of vA for plotting purposes

h2=line([0,vAm(1)],[0,vAm(2)],[0,vAm(3)],’lineStyle’,’-.’,’Color’,’k’,

’LineWidth’,1.5);

%Make the 3-D polygon defined by the vector intercepts with color

h=fill3(p(1,:),p(2,:),p(3,:),[0.75 0.75 0.75]);

set(h,’EdgeAlpha’,[0.3],’FaceAlpha’,[0.5]) %edges, transparent]

axis equal, hb(1)=xlabel(’x’); hb(2)=ylabel(’y’); hb(3)=zlabel(’z’);

hl=legend([h1,h2],’[uvw]’,’(hkl)’,1);

set(hl,’FontSize’,14), set(hb,’FontSize’,14)

ti=’ ’;

alx=cat(2,’, \alpha=’,num2str(alph,’%3.1f’),’^\circ’);

bex=cat(2,’, \beta=’ ,num2str(bet ,’%3.1f’),’^\circ’);

gax=cat(2,’, \gamma=’,num2str(gamm,’%3.1f’),’^\circ’);

ax=cat(2, ’ a1=’,num2str(a1,’%4.2f’));

bx=cat(2,’, a2=’,num2str(a2,’%4.2f’));

cx=cat(2,’, a3=’,num2str(a3,’%4.2f’));

str1=cat(2,ti,’ (’,ax,bx,cx,alx,bex,gax,’ )’);

% ux=cat(2, ’ u=’,num2str(u,’%4.2f’));

% vx=cat(2,’, v=’,num2str(v,’%4.2f’));

% wx=cat(2,’, w=’,num2str(w,’%4.2f’));

ux=cat(2, ’ u=’,num2str(vC(1),’%4.2f’));

vx=cat(2,’, v=’,num2str(vC(2),’%4.2f’));

wx=cat(2,’, w=’,num2str(vC(3),’%4.2f’));

hx=cat(2, ’ h=’,num2str(vA(1),’%4.2f’));

kx=cat(2,’, k=’,num2str(vA(2),’%4.2f’));

lx=cat(2,’, l=’,num2str(vA(3),’%4.2f’));

str2=cat(2,’[’,ux,vx,wx,’]’,’, (’,hx,kx,lx,’)’);

title({str1;str2},’FontSize’,14)

function y=sgn(x)

%Returns the sign of x. If x=0, the result is > 0.

if(x >= 0.0), y=1.0; else y=-1.0; end

function V=bestDiv(V,Np,ipasses)

%This finds the largest common divisor among the numbers in V

%and returns the simplified V. The idea is based on dividing by

%prime integers until we have such as divisor. Then V is simplified.

%Prime numbers up to NP are used and several passes can be made.

%ipasses=number of passes to make for the simplification in case

%more simplification is possible and is needed
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lV=length(V);

p=primes(Np);

p0=1.0;

for ip=1:ipasses

p1=p0; %reset p1 and pp

pp=ones(1,lV);

for i=1:length(p) %go through the primes

iflag=1;

for j=1:lV

a=round(V(j)*1.e12)/1.e12; %to avoid small decimals

b=p(i);

c=mod(a,b);

if(c==0), pp(j)=p(i); end %keep a divisor if it works

end

%If we have a common divisor, all pp should be equal, let’s check

for m=2:lV

if(pp(m)~=pp(1)), iflag=0; break; end %not found, go to next

end

if(pp(1) > p1 & iflag==1), p1=pp(1); end %keep the largest divisor

end

V=V/p1;

end

1.6 Examples of Crystal Structures
Below, examples of commonly known simple crystal structures are illustrated. These are sodium
chloride, cesium chloride, close-packed, diamond, and zinc sulfide or zinc-blende.

1.6.1 Sodium Chloride (Salt)

The sodium chloride (NaCl) structure is an example of a FCC lattice. The lattice actually consists
of two FCCs interlocked. The Na atoms are located on one sublattice and the Cl atoms on the other.
Imagine creating a FCC lattice of Cl and another of Na, then bringing them together in such a way
that the Na sublattice ends up displaced from the Cl sublattice by 1/2 of the body diagonal of the
unit cube (

√
a2 +a2 +a2 = a

√
3). This is an example of an ionic system. The chlorine accepts an

electron from sodium, which is happy to give it up, and both reach the electronic configuration of
Neon. Thus, the system is held together by ionic bonding of which more will be said later in the text.
In Figure 1.6.28 notice that the Na atoms are surrounded by Cl atoms and vice versa; each has 6
nearest neighbors of the opposite type. The basis consists of one Cl atom and one Na atom separated
by the vector (1/2,1/2,1/2)a. The Cl atoms are located at (0,0,0), (1/2,1/2,0), (1/2,0,1/2), and
(0,1/2,1/2) while the Na atoms are at (1/2,1/2,1/2), (0,0,1/2), (0,1/2,0), and (1/2,0,0) in
units of the lattice constant, a.
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Figure 1.6.28: The NaCl structure consists of two FCC sublattices displaced by 1/2 a cube body
diagonal.

Table 1.6.1 contains system examples that crystallize in the NaCl structure.

1.6.2 Cesium Chloride

The cesium chloride (CsCl) structure is an example of a BCC lattice. This crystal has basis with
the molecule’s Cs atom located at (0,0,0) (cube center), and the Cl atom at (1/2,1/2,1/2) (cube
corner) in units of the lattice constant a. This is also an example of an ionic system as is NaCl, albeit
with a different structure because the Cs positive ion is larger than the positive Na ion. Each atom
may be viewed at the center of a cube of atoms of opposite type as, for example, Figure 1.6.29,
shows for the Cs atom at the body-center position.

Figure 1.6.29: The CsCl structure consists of the BCC lattice.

Table 1.6.1 contains system examples that crystallize in the CsCl structure.

1.6.3 Close-Packed: Hexagonal and Cubic

There are various ways to arrange atoms so as to minimize the packing fraction (how well they are
packed). One is the hexagonal close packed (HCP) and the other is the face-centered cubic close
packed (CCP). The fraction of the total volume occupied by the atomic spheres is the same as that
quoted in Section 1.4.3 with a value of about 0.74 (see also Exercise 1.9.11). Close packing occurs
for spherical atoms and it happens in two ways. Consider Figure 1.6.30. As indicated, we refer to
the solid spheres those on the 1st layer whose centers are located at A positions. The 2nd layer of
close packed spheres (cross-hatched) are placed over the B void positions of the first layer (small
dark circles). When a third atomic layer (crisscross-hatched) is added, there are two choices where
the atoms are placed, as shown in the middle part of the figure. If they are located over the A atomic



28 Introduction

positions, the layer arrangement is referred to as the ABABAB . . . stacking and leads to the HCP
structure shown in the upper right side of the figure. If the third layer of atoms is instead placed
over the C void positions of the first layer (small open circles), it leads to the ABCABC . . . stacking
associated with the CCP structure which is face centered cubic (FCC) and is shown at the lower
right side of the figure. The number of nearest neighbors for both structures is the same as the FCC;
i.e., twelve.
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Figure 1.6.30: Close packing starts with the first layer of solid atomic spheres, whose centers are
referred to as A positons, and a 2nd layer of spheres (cross-hatched) over the B void positions of the
first layer (small filled circles). There are two choices for the third layer of spheres (crisscrossed-
hatched). One is over the original A atoms which leads to the hexagonal close packed (HCP) of the
upper right; the other choice is for the third layer to go over the C void positions of the first layer
(small unfilled circles) and leads to the cubic close packed (CCP) of the lower right.

The FCC structure was discussed earlier in Section 1.4.3. For the HCP structure, Figure 1.6.31
shows the positions of the two basis atoms A and B along with the primitive lattice vectors. The
position of the B atom with respect to the A atom at the origin is given by~r = 2

3~a+
1
3
~b+ 1

2~c. On the
right side of the figure, notice that the positions of the A and B atoms are such as to be located at the
corners of a tetrahedron with sides |~a|= |~b|= |~r|. The ratio of the magnitudes between the c and the

a axes is given by c
a =

√
8
3 = 1.633, which is the ideal or theoretical ratio limit for close packing.

Figure 1.6.31: The two basis atoms A and B along with the primitive lattice vectors in the HCP
structure are shown. The positions of the A and B atoms are such that the four atoms are located at
each of the corners of a tetrahedron with sides |~a|= |~b|= |~r|. When the spheres are made to occupy
100% of their space, the tetrahedron structure is seen on the lower right.

Table 1.6.1 contains system examples of close packed (HCP and CCP) structures. Notice some
materials that crystalize in the HCP structure; i.e., He, have c/a ratios that are close to the ideal
value.
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Table 1.6.1: Examples of material systems that crystallize in the sodium chloride (NaCl), cesium
chloride (CsCl), cubic close packed (CCP) and hexagonal close packed (HCP) and their lattice
constants (in Angstroms) [3].

NaCl a(Å) CsCl a(Å) CCP a(Å) HCP a(Å) , c(Å), c/a
LiH 4.08 BeCu 2.70 Cu 3.61 He 3.50, 5.72, 1.63
MgO 4.20 AlNi 2.88 Ag 4.09 Be 2.29, 3.58, 1.56
MnO 4.43 CuPd 2.99 Au 4.08 Mg 3.21, 5.21, 1.62
NaCl 5.63 AgMg 3.28 Al 4.05 Ti 2.95, 4.68, 1.59
AgBr 5.77 LiHg 3.29 Ni 3.52 Zn 2.66, 4.95, 1.86
PbS 5.92 TlBr 3.97 Pd 3.89 Cd 2.98, 5.62, 1.89
KCl 6.29 CsCl 4.11 Pt 3.92 Zr 3.23, 5.15, 1.59
KBr 6.59 TlI 4.20 Pb 4.95 Os 2.74, 4.32, 1.58

1.6.4 Diamond

Materials that crystallize in the diamond structure are mainly insulators and semiconductors. Dia-
mond’s lattice has a primitive basis of two identical atoms at (000), and (1/4,1/4,1/4), in units of
the lattice constant a, associated with each point of an FCC space lattice. This structure has eight
atoms/cell because it has the conventional FCC with 4 atoms/cell and then there are 4 more atoms
inside the large cube that are not shared, as seen in Figure 1.6.32. In (a) one can see that each atom
can be thought to be surrounded by four nearest neighbors located at tetrahedral corners. The nearest
neighbor distance being

√
3

4 a. Four of the basic blocks in (a) can be combined to make up the larger
block shown in (b) with four additional atoms to occupy the cube corners (shown unbonded).

(a) (b)

(0,0,0)a

(1/4,1/4,1/4)a

a

Figure 1.6.32: (a) The basic block of the diamond structure which can be used to make up the larger
block shown in (b) with four additional atoms (shown unconnected) at the large cube corners.

The atoms at the tetrahedral corners in (a) form the standard FCC structure; the tetrahedron center
atom is characteristic to diamond and is part of another FCC. The diamond structure is thought of
two FCCs interlaced and displaced from each other by 1/4 of a body diagonal, which is somewhat
similar to the NaCl structure, albeit with a different displacement; also, in diamond, all the atoms
are of the same type. The diamond lattice is the result of the directional covalent bonding associated
with column IV of the periodic table. Table 1.6.2 contains examples of systems that crystallize in
the diamond structure. Typical diamond (carbon) is an insulator, silicon and germanium are typical
semiconductors, as is also tin (α-tin or grey tin).
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1.6.5 Zinc-Sulfide or Zinc-Blende

This structure is similar to the diamond structure, but instead of the atoms being all the same, the
zinc sulfide structure (or zinc blende) allows for two different species of atoms. The basis is again
two atoms displaced from each other by 1/4 a body diagonal. Thus the Zn atoms lie on one FCC
with coordinates (0,0,0), (0,1/2,1/2), (1/2,0,1/2), and (1/2,1/2,0) while the S atoms lie on the
other FCC with coordinates (1/4,1/4,1/4), (1/4,3/4,3/4), (3/4,1/4,3/4), and (3/4,3/4,1/4) in
units of a. Thus there are four molecules of ZnS per cell similar to diamond. Also, there are four
atoms surrounding the opposite atom at the corners of a tetrahedron as shown in Figure 1.6.33.

(a) (b)

(0,0,0)a

(1/4,1/4,1/4)a

a
Zn S

Figure 1.6.33: (a) The basic block of the zinc blende structure which can be used to make up the
larger block shown in (b) with four additional atoms (shown unconnected) at the large cube corners.
The structure is similar to diamond but with a basis of two different atomic species as indicated by
the filled and unfilled circles.

The zinc blende structure allows the formation of semiconducting and insulating compounds and
alloys. The compounds always have one atomic species as nearest neighbors to the other, while in
alloys the arrangement is such that the different atomic species can occupy either sublattice with a
certain probability that depends on the concentration. More will be said later in the text about alloys.
Table 1.6.2 contains examples of systems that crystallize in the zinc blende structure.

Table 1.6.2: Examples of material systems that crystallize in the diamond and the zinc blende and
their lattice constants (in Angstroms) [3].

Diamond a(Å) Zinc Blende a(Å)
C 3.57 SiC 4.35
Si 5.43 ZnS 5.41
Ge 5.67 AlP 5.45
Sn 6.49 GaP 5.45

ZnSe 5.65
GaAs 5.65
AsAl 5.66
InSb 6.46

Remember also to refer to Table 1.8.3 for systems that crystallize in various structures as well as to
see other properties listed.
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1.7 Atomic Surface Microscopes
It is possible to image the atomic surface of a solid, atom by atom, by methods such as atomic force
microscopy (AFM) and scanning tunneling microscopy (STM). The AFM was developed by Gerd
Binnig and Christopher Gerber in 1985. It uses a feedback signal from the detection of a laser beam
that reflects off a mirror. The mirror is mounted on a cantilever which is in contact with the sample.
The feedback signal is used to move the sample up or down to keep the cantilever force constant.
The sample movement traces the atomic sample contours thus providing an image of the surface
atoms as shown in Figure 1.7.34.

Cantilever

Laser

Photo sensor

Mirror

Tip path

Feedback loop

Sample

(a) (b)

Figure 1.7.34: (a) The basic atomic force microscopy (AFM) experimental setup. (b) A NaCl crystal
surface example of an AFM image from [4] (reprinted with permission).

The STM technique was developed also by Gerd Binnig in collaboration with Heinrich Rohrer
who were awarded the Nobel Prize in 1986 for their work. Here a constant bias voltage is applied
between a metal tip and the sample of interest. As the needle’s tip moves over the surface, sample
electrons tunnel across the gap (of width d) from the sample to the needle. The tunneling current
is proportional to the quantum mechanical tunneling probability as I ∼ |T |, where T is the ratio of
the absolute value squared of each of the transmitted electronic wavefunction through the barrier,
ψtransmitted , and the incident wavefunction on the barrier, ψincident , or

T =
|ψtransmitted |2
|ψincident |2

∼ exp(−2kd), (1.7.19a)

where

k =

√
2m
h̄2 (W −E), (1.7.19b)

with m, the electron mass; E the electron’s kinetic energy; and W , the sample electrons’ work
function (minimum energy to jump the gap). The electron’s kinetic energy can be related to the
applied voltage as E = eφapp; and by analyzing the tunneling current, the crystal sample’s surface
structure can thus be imaged. This is shown in Figure 1.7.35.
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(a) (b) (c)

A

Sample atoms

Tip of
atoms

gap

W

x

d d

V

E=e

Figure 1.7.35: (a) The quantum mechanical picture model of the scanning tunneling microscope
(STM). (b) The basic STM experimental setup. (b) A crystal surface example of an STM image.
Shown is Nickel FCC (110) surface (image originally created by IBM [5]).

For this model, electrons experience quantum mechanical tunneling. In one dimension, if we have
a quantum mechanical barrier of height V = V0 and width a, an electron carrying energy E has a
transmission probability given by

T =
|ψtransmitted |2
|ψincident |2

=
1

1+Dsinh2(αa)
, (1.7.20a)

where

D =
V 2

0
4E(V0−E)

, (1.7.20b)

and

α =

√
2m
h̄2 (V0−E). (1.7.20c)

In the limit of αa� 1, and taking V0 =W . Equations 1.7.20 become

T =
|ψtransmitted |2
|ψincident |2

≈ T0 exp(−2kd), (1.7.21a)

where

T0 =
16E(W −E)

W 2 , (1.7.21b)

which, by roughly approximating T0 ∼ 1, become equivalent to Equations 1.7.19. Let’s do a numer-
ical example using Equations 1.7.19.

Example 1.7.0.1
Consider a material whose atoms we wish to image has a work function of W = 4.3eV ; if the STM
probing needle is under a bias voltage of 3.0volts and is located at about 0.3nm from the sample,
use Equations 1.7.19 to estimate the percentage of electrons that tunnel.

Solution
We will use units of eV for energy and units of nm for distance. We write kd =

√
2mc2

(h̄c)2 (W −E)d2

where c is the speed of light, and use the fact that mc2 = 0.511× 106 eV for electrons, h̄c =
197eV ·nm, and since electronic charge times voltage is already in eV ’s, we have
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kd =
√

2×0.511×106 eV
(197eV ·nm)2 (4.3eV −3.0eV )(0.3nm)2 = 1.7553,

and exp(−2kd) = exp(−2∗1.7553) = 0.0299. That is, about 3% of the total electrons will be tun-
neling.

It is also useful to get a feeling for what this simple approximation (Equations 1.7.19) gives versus
the important parameters such as energy and gap width. We do this in Figure 1.7.36. (a) Shows the
tunneling probability versus applied voltage (in eV), while keeping the gap width constant, and (b)
shows it versus gap width while keeping the energy constant.

Figure 1.7.36: (a) Tunneling probability versus applied voltage for a gap width of 0.3nm and a work
function of W = 4.3volts. (b) Tunneling probability versus gap width for an energy of 0.5W with
W and in (a). Code tunnel0.m was used to do the calculation.

In Figure 1.7.36(a) notice that as the energy E increases, the higher does the tunneling probability
become. In (b), as the gap width increases, the tunneling probability decreases. The code used in
Figure 1.7.36’s calculation, tunnel0.m, is listed below. Be sure to run the code to reproduce the
results obtained.

%copyright by J. E Hasbun and T. Datta

%tunnel0.m

%Here we use the approximate tunneling formula with maximum

%amplitude of unity and plot it versus energy and spacing.

clear

hbC=197.0; %hbar*C in eV nm

V0=4.3; %example work function in eV

% ****** varying the applied voltage ******************

Va=0:V0/100.0:V0; %applied voltage in electron volts

E=Va; %energy in eV

mc2=0.511e6; %rest mass of the electon mc^2 in eV

k=sqrt(2*mc2*(V0-E)/hbC^2);

d=0.3; %gap width in nm

T1_approx=exp(-2.0*k*d); %approximation

subplot(1,2,1)

plot(E,T1_approx,’k--’,’LineWidth’,2)
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axis([0 1.1*V0 0 1])

text(0.1,0.8,’T(E)=e^{(-2.0*k(E)*d)}’,’FontSize’,16)

xlabel(’E (eV)’,’FontSize’,16), ylabel (’T’,’FontSize’,16)

title(’T vs E’,’FontSize’,16)

% ****** varying the gap width ******************

s=0:d/25:d;

EE=0.5*V0;

k=sqrt(2*mc2*(V0-EE)/hbC^2);

T2_approx=exp(-2*k*s); %approximation

subplot(1,2,2)

plot(s,T2_approx,’k--’,’LineWidth’,2)

axis([0 1.1*d 0 1])

text(d/4,0.4,’T(d)=e^{(-2.0*k*d)}’,’FontSize’,16)

xlabel(’d (nm)’,’FontSize’,16), ylabel (’T’,’FontSize’,16)

title(’T vs a’,’FontSize’,16)

1.8 Element Properties Table
In this section, a table is given that lists some properties of the elements that may become useful
throughout the text. This is followed by a standard periodic table.

Table 1.8.3: Some properties of the elements that may become useful throughout the text.

ElementalProperties0.txt

Z: Atomic number

Sy: Symbol

a,c: Lattice constant and c axis in Angstroms (A)

Str: Structure

D: Density in gr/cc (or g/l for gases) at a temperature of 20degC at 1 atm (p)

unless stated.

nn: Nearest neighbor distance

MP: Melting point in Kelvin (K)

BP: Boiling point in Kelvin (K)

EC: Electronic Configuration

CUB: Cubic

MCL: monoclinic

FCC: face centered cubic

DIA: diamond

BCC: body centered cubic

ORC: orthorhombic

HCP: HCPagonal close packed

RHL: rhombohedral

TET: tetragonal

SCB: simple cubic

Other data at room temperature or at the stated temperature (K)

Sources

1) Introduction to Solid State, Charles Kittel, 8th Ed. 13-19 (John Wiley, NY 2005).

2) Inorganic Crystal Structure Database (ICSD) online.

3) Curtesy of Matpack C++ Numerics and Graphics Library

(online http://www.matpack.de/Info/Nuclear/Elements/lattice.html)

4) http://physics.nist.gov/data, http://www.nist.gov/pml/data/periodic.cfm

http://www.matpack.de/
http://physics.nist.gov/
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Z Sy Name a[A] K Str c/a D (gr/cc) nn [A] MP [K] BP [K] EC

1 H Hydrogen 3.75 4 HCP 1.63 0.086 g/l 14.01 20.28 1s

2 He Helium 3.57 2 HCP 1.63 0.205(37p) 0.95 4.216 1s2

3 Li Lithium 3.49 78 BCC - 0.542 3.023 453.69 1590 [He] 2s

4 Be Beryllium 2.27 HCP 1.58 1.82 2.22 1551 3243 [He] 2s2

5 B Boron 8.73 TET 0.58 2.47 2573 2823 [He] 2s2 2p

6 C Carbon 3.57 DIA - 3.516 1.54 3823 5100 [He] 2s2 2p2

7 N Nitrogen(N2) 5.66 20 CUB - 1.03 63.29 77.4 [He] 2s2 2p3

8 O Oxygen 6.83 CUB - 1.33 g/l 54.75 90.188 [He] 2s2 2p4

9 F Fluorine MCL - 1.58 g/l 53.53 85.01 [He] 2s2 2p5

10 Ne Neon 4.46 4 FCC - 1.51 3.16 24.48 27.1 [He] 2s2 2p6

11 Na Sodium 4.23 5 BCC - 1.013 3.659 370.95 1165 [Ne] 3s

12 Mg Magnesium 3.21 HCP 1.62 1.74 3.20 921.95 1380 [Ne] 3s2

13 Al Aluminum 4.05 FCC - 2.70 2.86 933.52 2740 [Ne] 3s2 3p

14 Si Silicon 5.43 DIA - 2.33 2.35 1683 2628 [Ne] 3s2 3p2

15 P Phosphorus 7.17 CUB - 1.82 317.3 553 [Ne] 3s2 3p3

16 S Sulfur 10.47 ORC 2.34 2.06 386 717.824 [Ne] 3s2 3p4

17 Cl Chlorine 6.24 ORC 1.32 2.03 g/l 172.17 238.55 [Ne] 3s2 3p5

18 Ar Argon 5.31 4 FCC - 1.77 3.76 83.78 87.29 [Ne] 3s2 3p6

19 K Potassium 5.23 5 BCC - 0.910 4.525 336.8 1047 [Ar] 4s

20 Ca Calcium 5.58 FCC - 1.53 3.95 1112 1760 [Ar] 4s2

21 Sc Scandium 3.31 HCP 1.59 2.99 3.25 1812 3105 [Ar] 3d 4s2

22 Ti Titanium 2.95 HCP 1.59 4.51 2.89 1933 3533 [Ar] 3d2 4s2

23 V Vanadium 3.03 BCC - 6.09 2.62 2163 3653 [Ar] 3d3 4s2

24 Cr Chromium 2.88 BCC - 7.19 2.50 2130 2755 [Ar] 3d5 4s

25 Mn Manganese 8.89 CUB - 7.47 2.24 1517 2370 [Ar] 3d5 4s2

26 Fe Iron 2.87 BCC - 7.87 2.48 1808 3023 [Ar] 3d6 4s2

27 Co Cobalt 2.51 HCP 1.62 8.89 2.50 1768 3143 [Ar] 3d7 4s2

28 Ni Nickel 3.52 FCC - 8.91 2.49 1726 3005 [Ar] 3d8 4s2

29 Cu Copper 3.61 FCC - 8.93 2.56 1356.6 2868 [Ar] 3d10 4s

30 Zn Zinc 2.66 HCP 1.86 7.13 2.66 692.73 1180 [Ar] 3d10 4s2

31 Ga Gallium 4.51 ORC 1.70 5.91 2.44 302.93 2676 [Ar] 3d10 4s2 4p

32 Ge Germanium 5.66 DIA - 5.32 2.45 1210.55 3103 [Ar] 3d10 4s2 4p2

33 As Arsenic 4.13 RHL - 5.77 3.16 886 sublime [Ar] 3d10 4s2 4p3

34 Se Selenium 4.36 HCP 1.14 4.81 2.32 490 958.1 [Ar] 3d10 4s2 4p4

35 Br Bromine 6.67 ORC 0.67 3.14 265.9 331.93 [Ar] 3d10 4s2 4p5

36 Kr Krypton 5.64 4 FCC - 3.09 4.00 116.55 120.85 [Ar] 3d10 4s2 4p6

37 Rb Rubidium 5.59 5 BCC - 1.629 4.837 312.2 961 [Kr] 5s

38 Sr Strontium 6.08 FCC - 2.58 4.30 1042 1657 [Kr] 5s2

39 Y Yttrium 3.65 HCP 1.57 4.48 3.55 1796 3610 [Kr] 4d 5s2

40 Zr Zirconium 3.23 HCP 1.59 6.51 3.17 2125 4650 [Kr] 4d2 5s2

41 Nb Niobium 3.30 BCC - 8.58 2.86 2741 5200 [Kr] 4d4 5s

42 Mo Molybdenum 3.15 BCC - 10.22 2.72 2890 5833 [Kr] 4d5 5s

43 Tc Technetium 2.74 HCP 1.61 11.50 2.71 2445 5303 [Kr] 4d6 5s

44 Ru Ruthenium 2.71 HCP 1.58 12.36 2.65 2583 4173 [Kr] 4d7 5s

45 Rh Rhodium 3.80 FCC - 12.42 2.69 2239 4000 [Kr] 4d8 5s

46 Pd Palladium 3.89 FCC - 12.00 2.75 1825 3413 [Kr] 4d10

47 Ag Silver 4.09 FCC - 10.50 2.89 1235.08 2485 [Kr] 4d10 5s

48 Cd Cadmium 2.98 HCP 1.89 8.65 2.98 594.1 1038 [Kr] 4d10 5s2

49 In Indium 3.25 TET 1.52 7.29 3.25 429.32 2353 [Kr] 4d10 5s2 5p

50 Sn Tin(\alpha) 6.49 DIA - 5.76 2.81 505.118 2543 [Kr] 4d10 5s2 5p2

51 Sb Antimony 4.51 RHL - 6.69 2.91 903.89 2023 [Kr] 4d10 5s2 5p3

52 Te Tellurium 4.45 HCP 1.33 6.25 2.86 722.7 1263 [Kr] 4d10 5s2 5p4

53 I Iodine 7.27 ORC 0.66 4.95 3.54 386.65 457.55 [Kr] 4d10 5s2 5p5

54 Xe Xenon 6.13 4 FCC - 3.78 4.34 161.3 166.1 [Kr] 4d10 5s2 5p6

55 Cs Cesium 6.05 5 BCC - 1.997 5.235 301.55 963 [Xe] 6s

56 Ba Barium 5.02 BCC - 3.59 4.35 998 1913 [Xe] 6s2

57 La Lanthanum 3.77 HCP 1.62 6.17 3.73 1193 3727 [Xe] 5d 6s2

58 Ce Cerium 5.16 FCC - 6.77 3.65 1071 3530 [Xe] 4f2 6s2

59 Pr Praseodymium 3.67 HCP 1.61 6.78 3.63 1204 3485 [Xe] 4f3 6s2

60 Nd Neodymium 3.66 HCP 1.61 7.00 3.66 1283 3400 [Xe] 4f4 6s2

61 Pm Promethium - - - 7.22 1353 3000 [Xe] 4f5 6s2

62 Sm Samarium 9.00 RHL - 7.54 3.59 1345 2051 [Xe] 4f6 6s2

63 Eu Europium 4.58 BCC - 5.25 3.96 1095 1870 [Xe] 4f7 6s2
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64 Gd Gadolinium 3.63 HCP 1.59 7.89 3.58 1584 3506 [Xe] 4f7 5d 6s2

65 Tb Terbium 3.60 HCP 1.58 8.27 3.52 1633 3314 [Xe] 4f9 6s2

66 Dy Dysprosium 3.59 HCP 1.57 8.53 3.51 1682 2608 [Xe] 4f10 6s2

67 Ho Holmium 3.58 HCP 1.57 8.80 3.49 1743 2993 [Xe] 4f11 6s2

68 Er Erbium 3.56 HCP 1.57 9.04 3.47 1795 2783 [Xe] 4f12 6s2

69 Tm Thulium 3.54 HCP 1.57 9.32 3.54 1818 2000 [Xe] 4f13 6s2

70 Yb Ytterbium 5.48 FCC - 6.97 3.88 1097 1466 [Xe] 4f14 6s2

71 Lu Lutetium 3.50 HCP 1.59 9.84 3.43 1929 3588 [Xe] 4f14 5d 6s2

72 Hf Hafnium 3.19 HCP 1.58 13.20 3.13 2423 5673 [Xe] 4f14 5d2 6s2

73 Ta Tantalum 3.30 BCC - 16.66 2.86 3269 5698 [Xe] 4f14 5d3 6s2

74 W Tungsten 3.16 BCC - 19.25 2.74 3680 6200 [Xe] 4f14 5d4 6s2

75 Re Rhenium 2.76 HCP 1.62 21.03 2.74 3453 5900 [Xe] 4f14 5d5 6s2

76 Os Osmium 2.74 HCP 1.58 22.58 2.68 3318 5300 [Xe] 4f14 5d6 6s2

77 Ir Iridium 3.84 FCC - 22.55 2.71 2683 4403 [Xe] 4f14 5d7 6s2

78 Pt Platinum 3.92 FCC - 21.47 2.77 2045 4100 [Xe] 4f14 5d9 6s

79 Au Gold 4.08 FCC - 19.28 2.88 1337.58 3213 [Xe] 4f14 5d10 6s

80 Hg Mercury 2.99 RHL - 13.55 3.01 234.28 629.73 [Xe] 4f14 5d10 6s2

81 Tl Thallium 3.46 HCP 1.60 11.87 3.46 576.7 1730 [Xe] 4f14 5d10 6s2 6p

82 Pb Lead 4.95 FCC - 11.34 3.50 600.65 2013 [Xe] 4f14 5d10 6s2 6p2

83 Bi Bismuth 4.75 RHL - 9.80 3.07 544.5 1833 [Xe] 4f14 5d10 6s2 6p3

84 Po Polonium 3.34 SCB - 9.31 3.34 527 1235 [Xe] 4f14 5d10 6s2 6p4

85 At Astatine - - - 575 610 [Xe] 4f14 5d10 6s2 6p5

86 Rn Radon - FCC - 9.23 g/l 202 211.4 [Xe] 4f14 5d10 6s2 6p6

87 Fr Francium - BCC - 300 950 [Rn] 7s

88 Ra Radium - - - 5.50 973 1413 [Rn] 7s2

89 Ac Actinium 5.31 FCC - 10.07 3.76 1320 3470 [Rn] 6d 7s2

90 Th Thorium 5.08 FCC - 11.72 3.60 2023 5060 [Rn] 6d2 7s2

91 Pa Protactinium 3.92 TET 0.83 15.37 3.21 1827 4300 [Rn] 5f2 6d 7s2

92 U Uranium 2.85 ORC 1.74 18.97 2.75 1405.5 4091 [Rn] 5f3 6d 7s2

93 Np Neptunium 4.72 ORC 1.04 20.48 2.62 913 4175 [Rn] 5f4 6d 7s2

94 Pu Plutonium MCL - 19.74 3.1 914 3600 [Rn] 5f6 7s2

95 Am Americium 3.64 HCP - 11.87 3.61 1267 2880 [Rn] 5f7 7s2

96 Cm Curium - - - 13.51 1613 [Rn] 5f7 6d 7s2

97 Bk Berkelium - - - 13.25 1259 [Rn] 5f9 7s2

98 Cf Californium - - - 15.1 1173 [Rn] 5f10 7s2

99 Es Einsteinium - - - 1133 [Rn] 5f11 7s2

100 Fm Fermium - - - [Rn] 5f12 7s2

101 Md Mendelevium - - - [Rn] 5f13 7s2

102 No Nobelium - - - [Rn] 5f14 7s2

103 Lr Lawrencium - - - [Rn] 5f14 6d 7s2

104 Rf Rutherfordium - - - [Rn] 5f14 6d2 7s2

105 Db Dubnium - - - [Rn] 5f14 6d3 7s2

106 Sg Seaborgium - - - [Rn] 5f14 6d4 7s2

107 Bh Bohrium - - - [Rn] 5f14 6d5 7s2

108 Hs Hassium - - - [Rn] 5f14 6d6 7s2

109 Mt Meitnerium - - - [Rn] 5f14 6d7 7s2
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Figure 1.8.37: The standard periodic table (Courtesy of NIST - http://www.nist.gov)

http://www.nist.gov
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1.9 Chapter 1 Exercises
1.9.1. Write an expression for the total surface area and volume for the three-dimensional solid

displayed in Figure 1.9.38. (a) Assume that , ~a1, ~a2, and ~a3 are all different, and that α 6=
β 6= γ 6= 90◦. (b) Choosing your own values for each vector and each angle, give a numerical
answer.

Figure 1.9.38: Three-dimensional solid.

1.9.2. Referring to Figure 1.9.39, in (a) the lattice vectors ~a and~b of the oblique lattice are at the
angle θ from each other, where |~a| 6= |~b| and 0 ≤ θ ≤ 180◦ are shown. Here we chose an
angle of θ = 70◦, and |~a|= 1.75a, |~b|= 2.0a, with a being the unit distance. For this lattice,
(b) shows the resulting Wigner-Seitz cell. Reproduce the results of (b) and choosing your
own values of ~a and~b as well as their respective angle, obtain the Wigner-Seitz cell of your
oblique lattice.

Figure 1.9.39: (a) The oblique lattice showing ~a,~b, and their respective angle θ . (b) The resulting
Wigner-Seitz cell of the oblique lattice.

1.9.3. Two points are on a line, say ~r1 = (x1,y1)≡ p1 and~r2 = (x2,y2)≡ p2. The line’s perpendic-
ular bisector~r2 passes through points p0 and p3, where p0 = (x0,y0) is halfway between p1
and p2, while p3 = (x3,y3) is located at d = |~r2| away from p0. (a) Show that the coordinates
of point p3 are given by x3 = x0± d (y2−y1)

b and y3 = y0∓ d (x2−x1)
b with b ≡ |~r1|. (b) Using

these results write the code needed to make possible graphs such as those of Figure 1.2.15.
Below is a MATLAB code snippet to get you started.

clear

x1=0.0; y1=0.0; x2=1.0; y2=0.0; %inputs

p1=[x1;y1]; p2=[x2;y2]; %original points
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p0=(p1+p2)/2.; %point midway between p1, p2

r1=norm(p2+p1); %length of r1

l2=2.0*r1; %perpendicular line length desired

r2_hat=[-(p2(2)-p1(2)),+(p2(1)-p1(1))]/r1; %solved direction of r2

p3=p0+l2*r2_hat’; %output

line([p1(1) p2(1)],[p1(2) p2(2)],’Color’,’k’,’LineStyle’,’-’,

’LineWidth’, 2.0)

1.9.4. Refer to Example 1.3.0.1 and Figure 1.3.16. (a) Show why it is possible to have an infi-
nite lattice of hexagons. (b) What about heptagons? (c) Apply these concepts to your own
polygon and explain your conclusions.

1.9.5. Graphene forms a two-dimensional honeycomb lattice with atoms at the corners of a
hexagon separated by distance d (= 1.42Å). The primitive lattice vectors are shown in Fig-
ure 1.9.40. (a) Find the lattice vectors’ magnitude in terms of d. Call this magnitude a. (b)
Rewrite ~a1 and ~a2 in terms of a, and express them in Cartesian component form with unit
vectors î and ĵ. (c) Obtain the number of atoms/cell in graphene and justify your counting.

..
..

.
.

.
d

y

x

Figure 1.9.40: Graphene’s honeycomb lattice and primitive lattice vectors.

1.9.6. Consider a monoclinic system similar to that shown in Figure 1.3.19(c) but for which α =
γ = 90◦ and β = 75◦ with vector magnitudes, a = 1.50Å, b = 1.25Å, and c = 2.50Å, find an
atom’s x, y, and z coordinates if its position is given by the crystal vector~t = 3.5~a−2.25~b+
3.25~c. Hint: see Example 1.3.1.2.

1.9.7. Consider the monoclinic system of Exercise 1.9.6. Produce a structure plot of all the atoms
associated with its simple Bravais lattice, which is similar to that of Figure 1.3.19(c), albeit
with different parameters.

1.9.8. (a) Obtain all the third neighbor positions for the simple cubic lattice, how many are there?
(b) Identify them graphically. (c) What is the 3rd neighbor distance from the origin? (d) Can
you predict what is the 4th neighbor distance? What about the nth neighbor distance?

1.9.9. Find the angle between two body diagonals of the simple cubic system.

1.9.10. (a) Obtain the 2nd neighbor positions from the central atom in the BCC structure, how many
are there? (b) What is the 2nd neighbor distance from the central atom?

1.9.11. Work out the Section 1.4.3 details for the FCC’s (a) volume, (b) nearest neighbor distance,
(c) packing fraction, and (d) confirm that the number of nearest neighbors in the FCC struc-
ture is twelve, what are their positions with respect to the origin?

1.9.12. (a) Obtain the 2nd neighbor positions from the central atom in the FCC structure, how many
are there? (b) What is the 2nd neighbor distance from the central atom?
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1.9.13. Run the BCC code provided in Example 1.4.2.1 to reproduce Figure 1.4.24.

1.9.14. Modify the BCC code provided in Example 1.4.2.1 in order to repeat the process of drawing
the conventional cell as well as the primitive cell, and structure of the FCC lattice. Refer to
Section 1.4.3 for other details.

1.9.15. Find the Miller indices for a plane with intercepts {12,6,4}.

1.9.16. What is the crystallographic direction from the lattice point with coordinates {1,0,1} to one
with coordinates {2,3,5}?

1.9.17. Refer to Example 1.5.0.2, show that crossing vectors~v1 with~v3 and~v2 with~v3 according to
the RHR, as explained there, produces the same results.

1.9.18. Run the code associated with Example 1.5.0.2 and reproduce Figure 1.5.27(b).

1.9.19. Run the code associated with Example 1.5.0.2 using the plane intercepts of Exercise 1.9.15.
Comment on the results.

1.9.20. In the NaCl crystal structure, (a) what are the nearest neighbor and (b) second neighbor
distances?

1.9.21. Derive the expression for the theoretical packing limit of c
a =

√
8
3 = 1.633 in the close pack

systems. Hint: refer to Section 1.6.3.

1.9.22. Show that the nearest neighbor distance in the diamond structure is given by
√

3
4 a and obtain

the tetrahedral angles of the basic block shown in Figure 1.6.32(a).

1.9.23. Apply the concepts of Section 1.6.4 and reproduce the diamond structure of Figure 1.1.3(a).
Hint: it might help to start with the FCC’s smallest translation vectors.

1.9.24. After you have done Exercise 1.9.23, apply a random displacement to the C atomic posi-
tions in the diamond structure in order to simulate the amorphous diamond similar to Fig-
ure 1.1.3(b). Hint: in MATLAB random numbers between, say a and b, can be generated by
the command a+(b−a)∗ rand.

1.9.25. Repeat Example 1.7.0.1 but instead of using Equations 1.7.19 to estimate the percentage
of electrons that tunnel, use Equations 1.7.21; i.e., without approximating T0. Comment on
your answer.

1.9.26. (a) Show the details of how in the limit of αa� 1 as well as taking V0 =W , Equations 1.7.20
become those of Equations 1.7.21. (b) When is T0 ∼ 1 a good approximation? (c) For large
barrier heights, what could be a reasonable expression for the tunneling probability?

1.9.27. Modify the code associated with Figure 1.7.36; that is, tunnel0.m, in order to plot the three
forms of the tunneling probability of Equations 1.7.19, 1.7.20, and 1.7.21. Use a value of
d = 0.3nm when plotting versus energy, and a value of E = 0.5W when plotting versus gap
width. For the barrier height, use the value W = 4.3eV . Comment on your results.
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2.1 Introduction
Physicists study crystal structures using various forms of radiation, such as photons, neutrons, and
electrons. In this chapter we learn that the information gathered from the scattered particles can
be analyzed to learn about the crystal plane spacing as well as the kind of atoms that compose the
crystal system. What makes crystal diffraction different from ordinary light ray reflection/refraction
theory is the wavelength used. If the wavelength associated with the radiation is large compared to
the lattice constant, the result is simply standard reflection and refraction. In the case of standard
reflection, the reflected ray leaves at an angle that is equal to the angle of incidence or θi = θr, where
θi is the angle of incidence and θr is the angle of reflection, both measured from the sample’s normal
to the surface. In the case of refraction, the refracted ray obeys Snell’s law; that is, ni sinθi = nt sinθt
where ni and nt are the indices of refraction of the incident and transmission media, respectively,
and θt is the angle of transmission as measure from the normal. Both of these situations for ordinary
reflection and refraction are shown in Figure 2.1.1 as in the case of optical wavelengths (3900−
7500Å).

41
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(a) (b)

Figure 2.1.1: (a) Ordinary wave reflection and (b) refraction occur when the wavelength of radiation
is much greater than the lattice spacing (λ >> a).

When radiation wavelengths, on the order of the crystal lattice constant, undergo elastic scattering
from the crystal atoms, diffraction occurs in directions that are quite different from ordinary reflec-
tion. To see how this happens, we will look at the simple approach presented by William L. Bragg
(1890-1971) in Section 2.2. For now, let’s see what are the physical properties of the radiation that
affect the size of the wavelength. To this end, let’s recall the relativistic expression for the kinetic
energy of a particle,

Ek = E−mc2 =
√
(pc)2 +(mc2)2−mc2, (2.1.1)

and let’s use de Broglie’s relation for the momentum, p = h/λ , to solve for λ in terms of Ek. We
obtain

λ = hc/
√

(Ek +mc2)2− (mc2)2. (2.1.2)

From this result, we see that the wavelength of the radiation λ ∝ 1/Ek for a photon; that is, increasing
a particle’s kinetic energy decreases its wavelength. It is convenient to write this expression in units
that are more appropriate to the energy scale of the problem. If we use energy units of eV ′s, then
we can use the value hc = 12398eV · Å. Furthermore, keeping in mind that mc2 is to be expressed
in eV ′s as well, then the above equation for lambda becomes

λ (Å) = 12398eV · Å/
√

(Ek(eV )+mc2(eV ))2− (mc2(eV ))2. (2.1.3)

In the case of a photon with Ek = E, λ = hc/E and taking the natural log of both sides of this
equation we get ln(λ ) = ln(hc)− ln(E), which, on a logarithmic scale, describes a straight line
with a negative slope for λ versus E. This explains the photon wavelength behavior shown in the
log-log plot of Figure 2.1.2. Thus, in order to produce photons with wavelengths on the order of the
crystal spacing (about Angstrom size) we need energies such that λ (Å) = 12398eV Å/E(eV ) = 1Å
or E ≈ 1.2× 104eV , which lies in the X-ray regime. Figure 2.1.2 also contains the results from
Equation 2.1.3 for electrons (mc2 ≈ 0.51MeV ) and neutrons (mc2 ≈ 939.6MeV ) with the energy
units shown on the figure.
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Figure 2.1.2: A log-log plot of Equation 2.1.3 for photons, electrons and neutrons. The energy scale
is in units of eV ′s for photons, tenths of eV ′s for electrons, and tens of µeV ′s for neutrons as shown
in the legend.

Example 2.1.0.1
Listed below is a code example that will reproduce the photon line shown in Figure 2.1.2 and, with
a slight modification, it can be used to reproduce the electron as well as the neutron lines.

%Example for the calculation of a photon’s wavelength versus

%photon energy: a log-log plot

clear;

hc=12398; %h*c in eV-angstroms

N=100; %steps to use in the plot

%Ek = particles’ relativistic kinetic energy

Eki=5e2; Ekf=1e5; %photon E range (eV): initial, final

Eks=(Ekf-Eki)/(N-1); %step size

Ek=Eki:Eks:Ekf;

lambda=hc./Ek;

loglog(Ek,lambda,’k’) %log-log plot

axis tight

legend(’Photons (E_k in eV)’,0);

xlabel(’E_k’)

ylabel(’\lambda ()’)

2.2 Bragg’s Law
The English physicists William Lawrence Bragg (1890-1971) and William Henry Bragg (1862-
1942), a son-father team, exploited the wave nature of x-rays in 1913. They simplified Max von
Laue’s earlier proposed analysis of the scattering of x-rays by crystals. The Bragg team found that at
certain specific wavelengths and incident angles, the crystals’ reflected radiation produced diffrac-
tion peaks or Bragg peaks. Diffraction is an example of interference; whereas interference is the
result of the superposition of only a few waves, diffraction is the result of the superposition of a
large number of waves. The diffraction in a crystal is thus similar to the concept of the Young’s
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double slit interference experiment where waves passing through two slits, separated by a distance
d, cause light waves to interfere constructively if they arrive in phase at a point y from the center of
a screen located at a distance L away from the slits, as shown in Figure 2.2.3. The two rays reaching
point y on the screen produce a bright point if `2− `1 = d sinθ = nλ where n is the fringe order
integer (1, 2, . . . ). There is always a bright point at the center of the screen. For small angles, the
position of the bright points can be found using y = L tanθ . From these two equations and using the
small angle approximation tanθ ≈ sinθ , the position of the nth fringe is obtained as yn ≈ nλL/d.

d

L

Slits Screen

Figure 2.2.3: Young’s double slit diffraction experiment, where `2−`1 = d sinθ = nλ . The position
of the nth fringe is yn ≈ nλL/d. Shown is the case when n = 1, or y = y1.

In a similar manner, crystals are responsible for X-ray, neutron, and electron diffraction. William L.
Bragg imagined the crystal to be composed of parallel planes spaced from each other by amount d.
The crystal acts as a three-dimensional diffraction grating which causes diffraction peaks to occur
wherever the crystal reflected waves interfere constructively as shown in Figure 2.2.4.

d

To Detector

Figure 2.2.4: Experimental setup leading to crystal diffraction. Whenever Bragg’s Law is satisfied,
the detected rays give rise to diffraction intensity maxima known as Bragg peaks.

Thus, with d the spacing between planes, if λ <∼d; that is, small enough so as not to produce standard
reflection or refraction in a crystal, we suppose that the incident beams are reflected by the atomic
planes. The outgoing rays experience constructive interference if their path difference is a multiple
of the beam’s wavelength. From Figure 2.2.4, we have

2d sinθ = nλ , (2.2.4)

and diffraction peaks are obtained whenever this relation is satisfied. This is known as Bragg’s Law
of diffraction of waves by crystals. The angle θ is the angle between the incident radiation and the
atomic planes within the crystal; it is known as the Bragg angle. Twice the Bragg angle or 2θ is
known as the diffraction angle; that is, the angle between the incident and the diffracted radiation.
From Equation 2.2.4, since the maximum angle is 90◦, we notice that 2d < nλmax, so that, for n = 1,
one has to choose the wavelength of the beam wisely. In the present case we need λ ≤ 2d but one
has to search for the best angle that produces the maximum intensity of the bright points in order
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to obtain d correctly. In the experimental setup, the intensity of the reflected beam is plotted as a
function of angle. Example calculations of the Bragg intensity peaks for an Fe crystal with the BCC
structure is shown in Figures 2.2.5 (a) and (b).

Figure 2.2.5: Example calculations of Bragg peaks for Fe in the BCC structure using the (a) (222)
and (b) (111) planes. The lattice constant used is 2.87Å, and the interplanar distance is taken as
a/
√

h2 + k2 + l2 (see Example 2.4.4.1 discussed later), where (hkl) are the Miller indices, and where
we have used λ = d/3. The method used will be developed later in Section 2.4.2.

In (a) the peaks shown correspond to high intensity diffraction peaks from the (222) plane. Six
peaks (some with very low intensity) are discerned in the figure for each value of n = 0,1,2,3,4,5
whose angles are obtained from the solution of Equation 2.2.4 for a lattice constant of 2.87Å using
a plane separation of d = a

2
√

3
= 0.828Å. A similar calculation is shown in (b) for the (111) plane

with d = a√
3
= 1.657Å, but notice that only three Bragg peaks are shown here (including the n = 0

case). Both calculations assumed a radiation wavelength of λ = d/3 with d being the corresponding
interplanar distance value associated with each set of Miller indices. The method used in obtaining
the figures will be explained in Section 2.3. From the Bragg reflections, by analyzing the intensity
as a function of angle, we obtain information about the lattice points and, in particular, the distances
between the planes of atoms, thus gaining an understanding of the crystal structure. However, we
need to learn more about the beam’s scattered intensity and its relationship to the atoms in the
crystal, in particular their electron distribution. It is the electron distribution that identifies the atomic
species which the radiation interacts with.

2.3 Reciprocal Lattice Vectors
We will learn in this section that just as a crystal has unique lattice vectors or real space lattice
vectors which identify the unique crystal structure, there are reciprocal lattice vectors associated
with every set of real space lattice vectors. The reciprocal lattice vectors are vectors in the abstract
or the momentum space (k-space) of the crystal. When an electron diffraction image of a crystal is
made, a series of bright dots is seen as shown, for example, in Figure 2.3.6.
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Figure 2.3.6: An electron diffraction pattern obtained from the Al78Mn22 rapidly solidified alloy
(Ref. [9]).

The dots are thought of as the reciprocal space version of the real crystal. Reciprocal space is
also referred to as Fourier space. Each dot in reciprocal lattice space is connected to each other by a
reciprocal lattice translation vector denoted by ~G. Just as a real space translation vector ~T of Chapter
1 is represented in terms of real space fundamental lattice vectors; i.e.,

~T = u1~a1 +u2~a2 +u3~a3, (2.3.5)

the reciprocal lattice translation vector also has a similar representation. It is written in the form

~G = v1~b1 + v2~b2 + v3~b3, (2.3.6)

where the v′is are integers and ~b1, ~b2, ~b3 are fundamental reciprocal lattice vectors which are related
to the fundamental lattice vectors ~a1, ~a2, ~a3 of the real crystal as we will see later. We now proceed
to study how the reciprocal lattice vectors play an important role in exploiting crystal periodic
properties. In particular, we will employ the periodic property of the atomic electron concentration
in a crystal.

2.3.1 Electron Concentration and Reciprocal Lattice Vectors in 1-D

A crystal is invariant under any translation of the form of Equation 2.3.5. Similarly any local prop-
erty of the crystal is invariant under T . One example of this is the charge concentration or electron
number density. Let the electron number density be n(~r), which is a periodic function of ~r with
periods ~a1, ~a2, ~a3 in the direction of the crystal axes. We have

n(~r+~T ) = n(~r); (2.3.7)

that is, the electron concentration at position~r+~T is the same as that at position~r. Let’s work in
one-dimension first, later we will extend the results to three dimensions. Consider n(x) to be of
period a in the x-direction as shown in Figure 2.3.7.
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n(x)

aaa
-a/2 a/2

x

Figure 2.3.7: An anharmonic function of x is shown as a one-dimensional model of a crystal’s
electron distribution with period a. The electron distribution follows the periodic atomic distribution.
Here the model represents two different atomic species.

An anharmonic function of period a can be expanded in terms of a Fourier series. We do this using
the complex representation as follows,

n(x) = ∑
p

npeikpx, (2.3.8)

where p is an integer in the range −∞ < x < ∞, and np are the Fourier coefficients. The np’s are
obtained by inverting the Fourier series with the help of the Kronecker delta function representation
aδpp′ =

∫ a
0 eik(p−p′)x dx, where δpp′ takes on the value 1 if p = p′, else it is zero. In this way one

obtains

np =
1
a

∫ a

0
n(x)e−ikpx dx, (2.3.9)

We next probe to see what is the condition necessary for periodicity to occur in n(x); that is, we need
n(x+a) = n(x), which is the one-dimensional version of Equation 2.3.7. From the one-dimensional
Equation 2.3.8, let’s make the displacement x→ x+a to write

n(x+a) = ∑
p

npeikp(x+a) = ∑
p

npeikpxeikpa = ∑
p

npeikpx = n(x), (2.3.10)

where we see that in order for n(x+ a) = n(x) we have taken eikpa = 1 or that kpa = 2pπ , which
implies that k = 2π/a. In one dimension, from this we conclude that in order for the electron con-
centration to be periodic with period a, k must take on the special value

k = 2π/a. (2.3.11)

It is this special value of k that ensures the periodicity of the crystal properties, such as n(x) in the
present case. In the above, we think of the products kp = 2π

a p, for integer p, as special points in
Fourier space; i.e., points in reciprocal lattice space as shown in Figure 2.3.8.
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Figure 2.3.8: The anharmonic function of x of Figure 2.3.7 with the associated reciprocal lattice
points, kp, shown below the real space n(x) distribution. Later in Equation 2.3.13c, for one dimen-
sion, we define the product G≡ kp.

While on this subject and before moving any further, let’s discuss the properties of the Fourier
coefficients np in Equation 2.3.8. The electron number density is real, and so must be the case for
its complex Fourier representation; that is, n(x) = n∗(x). This implies that n∗(x) = ∑

p
n∗pe−ikpx =

∑
p

npeikpx. Since the sum is over all p (positive and negative), then if in the first of these sums we

replace p with −p we have

n∗(x) = ∑
p

n∗−peikpx = ∑
p

npeikpx, (2.3.12a)

from which we conclude that in order for n(x) to remain real, the Fourier coefficients, np, must
satisfy the relation

n∗−p = np. (2.3.12b)

Returning to Equation 2.3.8, and making use of Equation 2.3.11, we can write

n(x) = ∑
G

nGeiGx, (2.3.13a)

whose Fourier components (instead of Equation 2.3.9) are now written as

nG =
1
a

∫ a

0
n(x)e−iGx dx, (2.3.13b)

where we have defined the one-dimensional G in the form

G≡ kp = p
2π

a
, (2.3.13c)

with the integer p absorbed in the definition. Also notice that the nG now replaces np, and the sum
over the p’s has been replaced with a sum over the G’s. We next compare this G with the one-
dimensional version of Equation 2.3.6. If in one dimension we write ~G1D = v1~b1 = G1Db̂1, we see
that, b̂1 must be x̂, G1D is simply our G, b1 is our k = 2π/a, and v1 is our p. Thus, we have ob-
tained the one-dimensional version of the reciprocal lattice vector, ~b1 = (2π/a)x̂, as well as the
one-dimensional version of the reciprocal lattice translation vector, ~G1D = p(2π/a)x̂. In one dimen-
sion, the Gs (Equation 2.3.13c) correspond to a lattice of points in the one-dimensional reciprocal
lattice space of the one-dimensional real crystal as illustrated in Figure 2.3.8. With these findings
we notice that

Ga = 2pπ, (2.3.14a)
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and

b1a = 2π. (2.3.14b)

As we will see later, the behavior of the electron density, the reciprocal lattice translation vector ~G,
and the reciprocal lattice vectors ~b1, ~b2, ~b3 obey similar analogical properties in three dimensions.

2.3.2 Electron Concentration and Reciprocal Lattice Vectors in 3-D

By analogy with the one-dimensional Equations 2.3.13 for the electron density, the Fourier coeffi-
cients, and the reciprocal lattice points, we simply extend the expressions to three dimensions and
write

n(~r) = ∑
~G

nGei~G·~r, (2.3.15a)

whose Fourier components are now given by

nG =
1
Vc

∫

cell
n(~r)e−i~G·~r dV, (2.3.15b)

where, because the integral is now over the crystal cell volume, the denominator is the volume of
the cell. In addition, we have made use of the three-dimensional ~G defined as

~G≡~kp, (2.3.15c)

with p still an integer, and~k is a three-dimensional reciprocal lattice vector. The ~G’s so created span
all the special points of the three-dimensional reciprocal lattice space.
If in Equation 2.3.15b, we take ~G = 0, then nG=0 =

1
Vc

∫
cell n(~r)dV which corresponds to the number

of electrons per cell volume. In general nG is a measure of the density of electrons as a function of
~G. We will also see later that nG is related to the scattering amplitude of an electromagnetic wave
in a crystal, which through Equation 2.3.15b tells us that a diffraction experiment provides indirect
information about a crystal’s n(~r).
In analogy with Equation 2.3.10, in three dimensions, after a translation of the vectors ~a1, ~a2, or ~a3
any crystal property is to remain invariant. For example, in the case of the electron concentration if
in Equation 2.3.15a we make the displacement of~r→~r+~ai for i = 1,2,3, we also require that

n(~r+~ai) = ∑
~G

nGei~G·(~r+~ai) = ∑
~G

nGei~G·~rei~G·~ai = n(~r), (2.3.16)

which can only happen if ei~G·~ai = 1. In fact, if for any factor of the form

f (~r) = ei~G·~r, (2.3.17a)

we replace~r with~r+~ai we require that the condition

f (~r+~ai) = ei~G·(~r+~ai) = ei~G·~rei~G·~ai = f (~r)ei~G·~ai = f (~r), (2.3.17b)

be obeyed. Again, this can only happen if the phase factor ei~G·~ai takes on the value

ei~G·~ai = 1, (2.3.17c)

which guarantees that the crystal property under consideration remains invariant under a displace-
ment through a crystal translation vector. The condition of Equation 2.3.17c implies that for each of
the crystal lattice vectors ai=1,2,3 we must have

~G ·~ai = 2mπ, (2.3.18)
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where m is an integer. In a similar fashion this relation also applies in the case of a general translation
vector ~T of the form of Equation 2.3.5 such that ei~G·~T = 1.
Recall that the vector Equation 2.3.6 is the general form of ~G. The ~G’s are special reciprocal lattice
vectors. Points in reciprocal lattice space are described by the various possible values of ~G through
the vi integers along with the crystal specific fundamental reciprocal lattice vectors ~b1, ~b2, and ~b3.
This brings us directly to the root of the matter; i.e., which are the ~bi’s. Since we know ~G from
Equation 2.3.6, then if Equation 2.3.18 is to be true, it must also be that

~bi · ~a j = 2πδi j; (2.3.19)

that is, ~b1 · ~a1 = ~b2 · ~a2 = ~b3 · ~a3 = 2π and ~b1 · ~a2 = ~b1 · ~a3 = ~b2 · ~a1 = ~b2 · ~a3 = ~b3 · ~a1 = ~b3 · ~a2 = 0.
In three dimensions, given the ~ai’s, Equation 2.3.19 corresponds to 9 equations and 9 unknowns for
the components of the ~bi’s. We can, however, make an educated guess at their form. For example,
in order to have the vector equations ~b1 · ~a1 = 2π and ~b1 · ~a2 = ~b1 · ~a3 = 0, we could make the ansatz
~b1 ∝ ~a2× ~a3. In this way ~b1 is perpendicular to both ~a2 and , ~a3, which will produce a zero dot
product and solve two of the vector equations associated with ~b1. The last vector equation could be
used to solve for the constant of proportionality. If we know the crystal lattice vectors, ~ai=1,2,3, the
final result for the crystal reciprocal lattice vectors is

~b1 = 2π
~a2×~a3

Vc
, ~b2 = 2π

~a3×~a1

Vc
, ~b3 = 2π

~a1×~a2

Vc
, (2.3.20a)

where the real cell volume is written as

Vc ≡~a1 · (~a2×~a3). (2.3.20b)

We, therefore, find that every crystal structure has two lattices associated with it: the crystal lattice
(or real space lattice) and the reciprocal lattice (or the Fourier space lattice). Let’s do a simple
example.

Example 2.3.2.1
Use Equations 2.3.20 to obtain the simple orthorhombic system’s reciprocal lattice vectors.

Solution
From Chapter 1, the real space lattice vectors of the simple orthorhombic system are ~a1 = aî, ~a2 =
b ĵ, and~a3 = ck̂, so that Vc = abc. Furthermore,~a1×~a2 = abî× ĵ = abk̂, and similarly~a2×~a3 = bcî
and~a3×~a1 = ac ĵ, to obtain for the simple orthorhombic reciprocal lattice vectors

~b1 =
2π

a
î, ~b2 =

2π

b
ĵ, ~b3 =

2π

c
k̂. (2.3.21)

We will come back to this subject later in the chapter. The reciprocal lattice is crucial in understand-
ing a crystal structure because the diffraction pattern of a crystal is a map of its reciprocal lattice.
Equations 2.3.20 express the relationship between both of these lattices. It is worth remembering
that, working with wavelengths in the optical region of the electromagnetic spectrum, a microscope
image is a map of a structure in real space, since λ >> d, where d is the lattice spacing. However,
for λ <∼d the map is that of the crystal’s reciprocal lattice space.
Notice that while the real space lattice vectors have units of length, the reciprocal lattice vectors have
units of 1/length. Also, weavevectors as in, for example, e~k·~r are always drawn in Fourier space, and
carry momentum information in the description of a wave (e.g., h̄~k), but the reciprocal lattice vector
~G has a special significance. That is so because of the definitions in Equations 2.3.6 and 2.3.20, the
electron number density is invariant under a crystal translation of ~T ; that is n(~r+~T ) = n(~r).
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2.4 Revisiting Bragg’s Law
In this section we revisit Bragg’s Law. In particular we show that the radiation scattering intensity
from a crystal is related to the reciprocal lattice vectors ~G. We will show that the diffraction peaks
occur because Bragg’s Law is naturally embedded in the description of the scattering intensity from
a crystal. We begin with a discussion on an important property of the vector ~G.
Start

2.4.1 ~G and its perpendicularity to the (hkl) plane

One of the interesting aspects of the reciprocal lattice vector, Equation 2.3.6, is that if we consider
a crystal plane with Miller indices (hkl) and we use these integers to create the vector ~G; that is, we
pick v1 = h, v2 = k, and v3 = l, and write

~G(hkl) = h~b1 + k~b2 + l~b3, (2.4.22)

where ~b1, ~b2, and ~b3 are the crystal’s reciprocal lattice vectors, then it can be shown that this vec-
tor ~G(hkl) is perpendicular to the the crystal plane (hkl) as illustrated in Figure 2.4.9 (see Exer-
cise 2.6.10).

���

���

x

y

z

(n/l)

(n/k)

(n/h)

Plane (hkl)

Figure 2.4.9: Shown is the vector ~G(hkl) = h~b1 + k~b2 + l~b3, which is perpendicular to the the
plane with Miller indices (hkl), where ~b1, ~b2, and ~b3 are the crystal’s reciprocal lattice vectors,
and ~a1, ~a2, and ~a3 are the real space lattice vectors. Here the plane intercepts, n/h, n/k, and n/l,
are also shown.

This is an important property of vector ~G which we will exploit shortly below.

2.4.2 X-Ray Scattering Intensity from Crystals

In this Section we consider the scattering of waves from a crystal. We assign the wavevector~k to
the incident wave and the wavevector~k′ to the scattered wave. We think of a crystal volume element
dV ′ located at position~r′, as in Figure 2.4.10, and a detector of the scattered wave to be located at a
constant distance |~r−~r′| from the atom.
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plane ( hkl )

Figure 2.4.10: The scattering from volume element dV ′ of a crystal plane (hkl) is shown. The
angle of the incoming wave with weavevector ~k is θ . Similarly the angle of the scattered wave
with weavevector~k′ is angle θ or Bragg angle and 2θ is the diffraction angle. The ~G(hkl) vector,
associated with the hkl plane is shown ⊥ to it and at an angle φ from the incident wavevector~k.

Let the propagation vector of the scattered wave be~k′ and let’s write the scattered wave as a plane
wave of the form

ψ(~r, t) = Asei[~k′·(~r′−~r)−ωt]. (2.4.23)

Here As is the amplitude of the scattered wave which is taken proportional to the incident wave or
As = Aei~k·~r′ , we then write the contribution to the scattered wave from element of volume dV ′ as

ψ(~r,~r′, t)dV ′ = Aei~k·~r′ei[~k′·(~r−~r′)−ωt]dV ′

= Aei(~k′·~r−ωt)e−i(~k′−~k)·~r′dV ′

= Aei(~k′·~r−ωt)e−i~∆k·~r′dV ′,

(2.4.24)

where V ′ is the sample volume and ~∆k ≡~k′−~k. We also assume elastic scattering so that k = k′ =
2π/λ ; furthermore, referring to Figure 2.4.10, we have

|~∆k|= |~k′−~k|=
√

k′2 + k2−2kk′ cos2θ

=
√

2k2−2k2 cos2θ

=
√

2k
√

1− cos2θ

= 2k sinθ =
4π

λ
sinθ ,

(2.4.25)

where we have used 2sin2
θ = 1− cos2θ . We next consider the total scattering of X-rays by the

electrons in a crystal. We take n(r′) as the concentration of electrons at position~r′ and define the
total scattering as ψT,∆k(~r, t)≡

∫
ψ(~r,~r′, t)n(r′)dV ′, which with Equation 2.4.24 becomes

ψT,∆k(~r, t) = Aei(~k′·~r−ωt)
∫

e−i~∆k·~r′n(r′)dV ′. (2.4.26)

At this point, it is worth showing a particular property of this expression that involves the relation-
ship of ~∆k and the reciprocal lattice vector ~G. To see this, we expand n(r′) as in Equation 2.3.15a,
and rewrite Equation 2.4.26 as

ψT,∆k(~r, t) = Aei(~k′·~r−ωt)F, (2.4.27a)
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where the following definition has been made

F ≡∑
~G

nG

∫
ei(~G−~∆k)·~r′dV ′. (2.4.27b)

We notice that the function F in Equation 2.4.27a determines the strength of the scattering. The
largest term in the sum over G in F itself is the term for which

~∆k = ~G, (2.4.28)

see, for example, Exercise 2.6.11. As we will see below, this is a formal expression of Bragg’s
Law. It says that the lattice vectors ~G determine the possible x-ray reflections. The idea is that
Equation 2.4.26 gives the Bragg peaks whenever Equation 2.4.28 is satisfied.
We now go back to Equation 2.4.26 and incorporate the Bragg condition as expressed in Equa-
tion 2.4.28; that is,

ψT,G(~r, t) = Aei(~k′·~r−ωt)
∫

e−i~G·~r′n(r′)dV ′. (2.4.29)

If we let the nucleus of atom j be located at~r j and let the electron concentration around it be n j,
then we also let~r′′ be the displacement vector from the nucleus to the electron concentration (see
Figure 2.4.11(a)) or

~r′ =~r j +~r′′, (2.4.30)

so that Equation 2.4.29 becomes

ψT,G(~r, t) = Aei(~k′·~r−ωt)
all atoms

∑
j

e−~G·~r j

∫

atom
e−i~G·~r′′n(r′′)dV ′′. (2.4.31)

(a) (b)

Figure 2.4.11: (a) The jth atomic nucleus is located at~r j and~r′′ sweeps over its electron concen-
tration. (b) The vector~r is shown making an angle θ with the vector ~G.

The quantity with the integral is known as the form factor or

f j ≡
∫

atom
e−i~G·~r′′n(r′′)dV ′′. (2.4.32)

The contribution to the total scattering due to the electron concentration surrounding atom j in the
crystal finally becomes

ψT,G(~r, t) = Aei(~k′·~r−ωt)
all atoms

∑
j

e−i~G·~r j f j. (2.4.33)

As an example, we will do a calculation of the form factor under the approximation that the electron
concentration is constant or n(r) = n.
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Example 2.4.2.1
With constant n Equation 2.4.32 is f j = n

∫
atom e−i~G·~rdV . Using the volume element in spherical co-

ordinates dV = r2 sinθdrdθdφ , and carrying out the integration over φ get f j = 2nπ
∫ R

0 r2drIr,
where Ir ≡

∫
π

0 e−iGr cosθ sinθdθ and where we have taken ~G ·~r = Gr cosθ as shown in Fig-
ure 2.4.11(b). Performing the θ integration, find Ir = e−iGr cosθ |π0/(iGr) = 2

Gr sinGr and f j be-
comes f j =

4nπ

G
∫ R

0 r sin(Gr)dr, where R is taken as the atomic radius. Finally, using
∫

xsinax =

sinax/a2− xcosax/a, we get

f j =
4nπ

G3 (sinGR−GRcosGR) =
3Z

(GR)3 (sinGR−GRcosGR) , (2.4.34a)

where we have also used n = Z/(4πR3/3) with Z the atomic number associated with the j’th
crystalline atom. This expression for f j becomes more meaningful when we make use of Equa-
tions 2.4.25 and the Bragg condition, Equation 2.4.28, to obtain the reciprocal lattice vector magni-
tude in the form

G = |∆k|= 4π

λ
sinθ . (2.4.34b)

In the limit as GR→ 0, f j → Z. From this we see that the form factor bears information about
the atomic composition of the crystal. It actually measures the scattering contribution of the j’th
atom of the crystal as a function of G. Listed below is the script form factor n const.m which was
used to produce the plot of Equation 2.4.34a versus θ and which uses the above Equation 2.4.34b
for the Fe crystal with a BCC structure. We have used the atomic radius R = dnn/2 as in Chapter 1,
where the nearest neighbor distance in the BCC is dnn =

√
(3)a/2 with a lattice constant a = 2.87Å.

Finally, Figure 2.4.12 shows the decaying nature of the form factor away from the G = 0 value. The
oscillatory behavior depends on the electron concentration used and may not necessarily be there
for a more realistic model.
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e
 (Z=26), λ=1.000 Angstroms

θ (degrees)

f j

Figure 2.4.12: The form factor of Equation 2.4.34a versus θ for the Fe BCC structure, assuming a
constant electron concentration.

The code used the create Figure 2.4.12 follows.

%copyright by J. Hasbun and Trinanjan Datta

%form_factor_n_const.m
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%We use the constant n approximation:

%fj=3Zj*(sin(GR)-GR*cos(GR))/G^3 where Z=atomic number

%We do iron, with a BCC structure

clear

Z = 26; %Fe number of electrons for the j^th basis atom

lambda=1.0; %lambda in angstroms

a = 2.87; %Lattice constant (Angstroms) Iron (Fe),

%Radius of atom is neareast neighbor distance divided by 2

dnn=sqrt(3)*a/2; %BCC nearest neighbor distance

R=dnn/2; %atom Radius close packing model

thes=(80-0)/400; %angle range

thet =0:thes:80; %angle in degrees

theta = thet*pi/180; %angle in radians

for i = 1:length(theta)

thv=theta(i); if(thv==0), thv=1.e-6; end %prevent theta=0 problems

G = (4.0*pi/lambda)*sin(thv); %reciprocal lattice vector magnitude

fj(i) = 3*Z*(sin(G*R)-(G*R).*cos(G*R))./(G*R).^3; %constant n approx

end

str=cat(2,’Form factor for F_e (Z=26), \lambda=’,...

num2str(lambda,’%6.3f’),’ Angstroms’);

plot(thet,fj,’k’)

title (str)

xlabel (’\theta (degrees)’)

ylabel (’f_j’)

We will next make use of Equations 2.4.31, and 2.4.33 to obtain an expression for the scattered
intensity. In crystals, the atomic positions are given by~r j = n1~a1+n2~a2+n3~a3+~ρm where~a1, ~a2, ~a3
are fundamental lattice vectors, ~ρm is a basis vector, and n1, n2, n3 are integers that run over the
lattice points over N cells. With this, Equation 2.4.33 becomes

ψT,G(~r, t) = Aei(~k′·~r−ωt)
N

∑
n1=1

N

∑
n2=1

N

∑
n3=1

s

∑
m

fme−i~G·(n1~a1+n2~a2+n3~a3+~ρm)

= Aei(~k′·~r−ωt)SG

N

∑
n1=1

e−in1~G·~a1
N

∑
n2=1

e−in2~G·~a2
N

∑
n3=1

e−in3~G·~a3 ,

(2.4.35a)

where we have defined the structure factor

SG ≡
s

∑
m

fme−i~G·~ρm , (2.4.35b)

which gives the contribution to the intensity amplitude from electrons in a single cell due to s atoms
in the basis. Noticing that

N

∑
n=1

xn =
N−1

∑
n=0

xn =
1− xN

1− x
, (2.4.36a)

so that with x = e−i~G·~a1 we find

N−1

∑
n1=0

e−in1~G·~a1 =
1− e−iN~G·~a1

1− e−i~G·~a1
=

e−iN
~G·~a1

2

e−i
~G·~a1

2

sin(N
~G·~a1

2 )

sin(
~G·~a1

2 )
, (2.4.36b)
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where we have factored out e−iN~G·~a1/2 from the numerator and e−i~G·~a1/2 from the denominator.
Continuing with the process for the other two sums in Equation 2.4.35a, the result is

ψT,G(~r, t) =Aei(~k′·~r−ωt)SG
sin(N

~G·~a1
2 )

sin(
~G·~a1

2 )

sin(N
~G·~a2

2 )

sin(
~G·~a2

2 )

sin(N
~G·~a3

2 )

sin(
~G·~a3

2 )

e−iN
~G·~a1

2

e−i
~G·~a1

2

e−iN
~G·~a2

2

e−i
~G·~a2

2

e−iN
~G·~a3

2

e−i
~G·~a3

2

. (2.4.37)

Finally, the intensity at the detector is given by I = |ψT,G|2 or

I = |A|2|SG|2
(

sin(N
~G·~a1

2 )

sin(
~G·~a1

2 )

)2(
sin(N

~G·~a2
2 )

sin(
~G·~a2

2 )

)2(
sin(N

~G·~a3
2 )

sin(
~G·~a3

2 )

)2

. (2.4.38)

This intensity when plot versus G or equivalently, by Equation 2.4.34b, versus angle, gives rise to
large peaks whenever

~G ·~ai

2
= nπ, (2.4.39a)

where n is an integer and i = 1, 2, 3. The reason for the large peaks is that

lim
~G·~ai

2 →nπ

(
sin(N

~G·~ai
2 )

sin(
~G·~ai

2 )

)2

→ N2. (2.4.39b)

2.4.3 Laue Equations

We have seen that the scattered intensity, Equation 2.4.38, peaks at special values as indicated by
Equations 2.4.39. Thus in the process of varying ~G, if it should happen that ~G acquires the special
value of ~G(hkl) of Equation 2.4.22, where h, k, l are integers, then by Equation 2.3.19

~G ·~a1 = 2hπ, ~G ·~a2 = 2kπ, ~G ·~a2 = 2lπ, (2.4.40a)

in which case Equations 2.4.39 become relevant and peaks in the intensity are obtained. Together,
Equations 2.4.40a are known as the Laue condition. If we let si = h, k, l for i = 1, 2, 3 then the Laue
condition can be written as

~G ·~ai = 2siπ. (2.4.40b)

These equations are in fact another formal expression of Bragg’s Law. To demonstrate this, it
becomes useful to show the relationship between the interplanar spacing and the magnitude of
the reciprocal lattice vector. Using Equation 2.2.4 for the spacing between (h, k, l) planes we
have 2sinθ/λ = n/d(h,k, l), and from Equation 2.4.34b the same ratio is given by 2sinθ/λ =

|~G(h,k, l)|/2π . Equating these two expressions we see that

d(h,k, l) =
2nπ

|~G(h,k, l)|
, (2.4.41)

for integer n, which, when it equals 1, gives the shortest distance between two adjacent planes. For a
simple orthorhombic system, this expression, for the distance between two adjacent (h, k, l) planes
gives (see Exercise 2.6.15)

d(h,k, l) =
1√

(h/a)2 +(k/b)2 +(l/c)2
, (2.4.42)
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where a is the lattice constant. If we now use Equation 2.4.41 and write Ĝ = ~G/G = (d/2nπ)~G,
then with the use of the Laue condition Equation 2.4.40b, we find

Ĝ ·~ai =
d

2nπ
2siπ =

dsi

n
. (2.4.43a)

From this, and if we make use of the second form of G; that is, Equation 2.4.34b, as well as the
Laue condition again, Equation 2.4.40b, we see that

~G ·~ai = GĜ ·~ai =

(
4π

λ
sinθ

)(
dsi

n

)
= 2siπ, (2.4.43b)

or 2d sinθ = nλ ; i.e., the Bragg Law, Equation 2.2.4, as obtained from the Laue condition, and
shows the consistency between the two pictures.

2.4.4 Scattering Intensity Calculation

In this section we will perform the scattering intensity calculation alluded to before when we first
introduced Figure 2.2.5 in Section 2.2. We have all the necessary ingredients for the calculation,
except one; that is, the details regarding the structure factor Equation 2.4.35b. We will do an example
of the structure factor for the case of the BCC structure, which is the case of interest here.

Example 2.4.4.1
In this example, we obtain the structure factor for Fe with a BCC structure (see Chapter 1) with a
basis of s = 2 atoms and using a cubic symmetry. We work with the expression of Equation 2.4.35b,

which we rewrite as SG =
s=2
∑
j=1

f je−i~G·~r j where we take ~r j = x j~a1 + y j~a2 + z j~a3 and ~G = ~G(hkl) =

h~b1 + k~b2 + l~b3 as in Equation 2.4.22. This leads to SG =
2
∑
j=1

f je−i2π(hx j+ky j+lz j), where we have

used Equation 2.3.19. Letting (x1,y1,z1) = (0,0,0) for the first atom in the basis and (x2,y2,z2) =
(1/2,1/2,1/2) for the second basis atom, the final structure factor expression is

SG = f
(

1+ e−iπ(h+k+l)
)
, (2.4.44)

where we have let the form factor be f = f1 = f2 because the atoms are identical. The form factor,
itself a function of θ , is given in Equation 2.4.32, and a model in which the electron conentration is
constant is shown in Figure 2.4.12 of Example 2.4.2.1.
In Equation 2.4.44, the value 1 is due to the atom at the origin, and the second term inside the
parenthesis is due to the second basis atom. Notice that if the sum of indices h+ k+ l is an even
integer, SG = 2 f , but if the sum is an odd integer, SG = 0. Thus, looking at the reflected inten-
sity Equation 2.4.38 versus angle θ , for a particular direction (hkl) in the BCC lattice, as G(θ)
(see Equation 2.4.34b) varies and acquires the special value |~G(hkl)| there will be reflection from
planes whose Miller indices add up to an even integer, else Bragg peaks will be absent from planes
whose Miller indices add up to an odd integer. This happens to be the situation described in Fig-
ures 2.2.5(a) and (b), for the (222) and (111) planes, respectively. In (a) all the six expected peaks
are shown versus angle (Exercise 2.6.3), and in (b) only three peaks show up. The other three at
angles of about θ = 9.59, 30, and, 56.44degrees have been suppressed. Since for a general ~G, our
BCC structure factor is SG = f

(
1+ e−i~G·~r2

)
, we must have that e−i~G·~r2 =−1 or ~G ·~r2 = pπ , where

p is an odd integer. This must be so in order to produce SG = 0. We now show this is happen-
ing in our case for specific angles whenever (h+ k+ l) is odd as expected from Equation 2.4.44.
Let’s write ~G = GĜ whose direction is the same as the cubic system’s ~G(hkl) = (h,k, l)2π/a or
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Ĝ = (h,k, l)/
√
(h2 + k2 + l2) and with~r2 = (1/2,1/2,1/2)a we have

pπ = ~G ·~r2 = (4π sinθ/λ )Ĝ ·~r2 =
(4π sinθ/λ )a(h+ k+ l)

2
√
(h2 + k2 + l2)

. (2.4.45)

However, from Equation 2.4.41, the smallest interplanar distance in the BCC is

d = 2π/|~G(hkl)|= a/
√

h2 + k2 + l2, (2.4.46a)

then Equation 2.4.45 becomes

pπ = (2dπ sinθ/λ )(h+ k+ l). (2.4.46b)

Also, by Bragg’s Law we know that 2d sinθ/λ = n, then we finally have

p = n(h+ k+ l), (2.4.46c)

as the condition for the value of n used in Bragg’s Law to get the angles that produce no peaks given
odd (h+ k+ l). Since we know p is also odd, then we conclude n must also be odd. Putting this
in the above Bragg’s Law and using λ = d/3, as used in obtaining Figure 2.2.5(b), the angles for
which no peaks are seen in the figure for odd h+ k+ l are, therefore, given by

6sinθ = nodd, (2.4.47)

where nodd is an odd integer 1,3, ....

In the calculation of Figure 2.2.5, we have used N = 50 cells. The code employed in creating the
figure is scat intensity.m and is listed below.

%copyright by J. Hasbun and Trinanjan Datta

%scat_intensity.m

%We calculate the scattered intensity for an Fe BCC system

%For the form factor the approximation:

%fj=3Zj*(sin(GR)-GR*cos(GR))/G^3 where Zj=number, is used.

%Here, G=k*sin(theta), k=2*pi/lambda.

%The atom radius is the neareast neighbor distance divided by 2.

%For the BCC dnn=sqrt(3)a/2 with a the lattice constant in angstroms.

%We include the structure factor here as well as the total

%intensity from a crystal of N cells and we employ a cubic BCC crystal

%of Fe. The calculation of G.a, G.b, and G.c is done carefully

%for the BCC structure.

clear

%BCC - cubic crystal vectors used here

a = 2.87; %Lattice constant (Angstroms) Iron (Fe),

a1=a*[1,0,0]; %using the cubic cell vectors

a2=a*[0,1,0];

a3=a*[0,0,1];

%A=[h,k,l]; %the Miller indices, avoid zeros and infinities

A=input(’Enter [h,k,l] as a row vector [2,2,2] -> ’);

if isempty(A), A=[2,2,2]; end

h=A(1); k=A(2); l=A(3);

fprintf(’[h,k,l]=[%6.3f,%6.3f,%6.3f ]\n’,h,k,l)

%Reciprocal lattice vectors follow

Vt=dot(a1,cross(a2,a3)); %system’s unit cell volume
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b1=2*pi*cross(a2,a3)/Vt;

b2=2*pi*cross(a3,a1)/Vt;

b3=2*pi*cross(a1,a2)/Vt;

G_v=h*b1+k*b2+l*b3; %reciprocal lattice vector

G_m=norm(G_v); %magnitude of G

G_hat=G_v/G_m; %getting the G unit vector

%fprintf(’G_hat=[%6.3f,%6.3f,%6.3f ]\n’,G_hat)

d=2*pi/G_m; %plane distance

lambda=d/3; %lambda in angstroms as used here

themin=0; themax=80; %angle range

%

thes=(themax-themin)/400;

thet =themin:thes:themax; %angle in degrees

theta = thet*pi/180; %angle in radians

Z = 26; %Fe number of electrons for the j^th basis atom

%Radius of atom is neareast neighbor distance divided by 2

%for the BCC dnn=sqrt(3)a/2.

dnn=sqrt(3)*a/2; %BCC nearest neighbor distance

R =dnn/2; %atom Radius close packing model

N=50; %number of cells used in getting Rh, Rk, Rl below

Ga1=dot(G_hat,a1);

Ga2=dot(G_hat,a2);

Ga3=dot(G_hat,a3);

%basis atoms (BCC)

nb=2;

rb(1,:)=a*[0 0 0];

rb(2,:)=a*[1 1 1]/2;

%dot products of G_hat with the basis vectors

for j=1:nb

Gb(j)=dot(G_hat,rb(j,:));

end

for i = 1:length(theta)

%G = 2*k*sin(theta) where k is equal to 2*pi/lambda

thv=theta(i); if(thv==0), thv=1.e-6; end %prevent theta=0 problems

G = (4.0*pi/lambda)*sin(thv);

fj(i) = 3*Z*(sin(G*R)-(G*R).*cos(G*R))./(G*R).^3; %constant n approx

%G.a1/2, G.a2/2, G.a3/2 follow. The Laue condition is

%G.a_i/2=pi*s_i. where a_i=a1, a2, a3, and s_i=h,k,l, for i=1,2,3.

%Thus we need G*Ga_i/2/s_i=pi. This means that whenever

%G*Ga_i/2/s_i=pi we get Bragg peaks. We divide by that factor to

%work with the Laue condition.

betA=G*Ga1/2.0/h;

betB=G*Ga2/2.0/k;

betC=G*Ga3/2.0/l;

denoA=sin(betA);

denoB=sin(betB);

denoC=sin(betC);

%If the denominator=0, sin(N*0)/sin(0)->N

Rh(i)=N; Rk(i)=N; Rl(i)=N;

if(abs(denoA) >= 1.e-6), Rh(i)=sin(N*betA)/denoA; end

if(abs(denoB) >= 1.e-6), Rk(i)=sin(N*betB)/denoB; end
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if(abs(denoC) >= 1.e-6), Rl(i)=sin(N*betC)/denoC; end

%structure factor

%This way of calculating SG, it takes out reflections

%from BCC planes for which h+k+l odd. However, for this to happen

%G has to be the right magnitude such that G*Gb(j)=pi*(h+k+l)

%in which case exp(-zim*G*Gb(j))=-1 which cancels the the

%exp(0)=1 term producing zero reflection at that angle.

SG(i)=0.0;

zim=complex(0,1);

for j=1:nb

SG(i)=SG(i)+fj(i)*exp(-zim*G*Gb(j));

end

end

str=cat(2,’Form factor for F_e (Z=26), \lambda=’,...

num2str(lambda,’%6.3f’),’ Angstroms’);

plot(thet,fj,’k’)

title (str)

xlabel (’\theta (degrees)’)

ylabel (’f_j’)

%Structure Factor & Intensity BCC lattice - Note for iron fj is the same

%for each atom (BCC: 2 atom basis)

I0=abs(Rh.*Rk.*Rl).^2; %lattice sum intensity

SG=abs(SG).^2;

figure

plot(thet,SG,’k’) %structure factor vs theta

axis([0 max(thet) 0 1])

str=cat(2,’ BCC F_e (Z=26), [a, d, \lambda]=[’,...

num2str(a,’ %6.3f’),’, ’,num2str(d,’%6.3f’),’, ’,...

num2str(lambda,’%6.3f’),’] Angs, (hkl)=(’,num2str(h,’%4.0f’),...

’ ’,num2str(k,’%4.0f’),’ ’,num2str(l,’%4.0f’),’)’);

title (str)

xlabel (’\theta (degrees)’)

ylabel (’Structure Factor’)

%

figure

I=SG.*I0; %intensity at detector vs theta

plot(thet,I,’k’)

axis([0 max(thet) 0 1E9])

str=cat(2,’ BCC F_e (Z=26), [a, d, \lambda]=[’,...

num2str(a,’ %6.3f’),’, ’,num2str(d,’%6.3f’),’, ’,...

num2str(lambda,’%6.3f’),’] Angs, (hkl)=(’,num2str(h,’%4.0f’),...

’ ’,num2str(k,’%4.0f’),’ ’,num2str(l,’%4.0f’),’)’);

title (str)

xlabel (’\theta (degrees)’)

ylabel (’Calculated Bragg Peak Intensity’)

Notice the code, in addition to producing the scattered intensity graph, also produces a plot of the
form factor as well as the structure factor employed in the calculation. These extra figures are not
shown here.
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2.5 Brillouin Zones
At this point, it is important to have a visual representation of the scattering condition indicated by
Equation 2.4.28; i.e., ~∆k = ~G, which we rewrite as

~k′ =~k+ ~G, (2.5.48)

which says that whenever~k′ obeys this condition, an x-ray beam experiences diffraction. This brings
us directly into contact with the work of P. P. Ewald, namely, the Ewald construction.

2.5.1 The Ewald Sphere

The Ewald construction refers to a graphical representation of the conditions that lead to crystal
diffraction. This is represented by the so-called Ewald sphere shown in Figure 2.5.13 and illustrates
how Equation 2.5.48 is to be satisfied. For elastic scattering k = k′ = 2π/λ , so that the sphere radius
is determined through the radiation wavelength. When the Bragg diffraction condition ~∆k = ~G is
met, two reciprocal lattice points intersect the sphere’s perimeter so that~k′ and~k become connected
by a reciprocal lattice vector ~G as shown.

Figure 2.5.13: The Ewald construction shows how two reciprocal lattice points, intersecting the
sphere’s perimeter, are connected by a reciprocal lattice vector ~G while simultaneously satisfying
the Bragg diffraction condition Equation 2.5.48. The angle between~k′ and~k is the diffraction angle,
here labeled φ , which is twice the Bragg angle θ (see also Figure 2.4.10).

From Equation 2.5.48 and assuming elastic scattering, we also have that k′2 = k2 = (~k+~G) ·(~k+~G),
which results in 0 = 2~k · ~G+ ~G · ~G, or since if ~G is a reciprocal lattice vector, so is −~G, to write

~k ·
(
~G
2

)
=

(
|~G|
2

)2

. (2.5.49)

The significance of this result is that we can now ask about all the possible wavevectors that give
rise to Bragg reflections. The answer lies in regions of reciprocal lattice space known as Brillouin
zones (BZs).

2.5.2 The First Brillouin Zone

BZs are regions of reciprocal lattice space that exhibit all the wavevectors~k which can be Bragg
reflected by the crystal. They correspond to boundaries from which Bragg reflections take place.
While there are many BZs, the first BZ is the smallest region of reciprocal lattice space centered
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at the origin and bounded by perpendicular bisectors such as to satisfy the condition indicated by
Equation 2.5.49. This is similar to what we did in Chapter 1 when discussing real space primitive
cells or the Wigner-Seitz cell. In reciprocal lattice space, the first BZ is defined as the Wigner-Seitz
cell in reciprocal lattice space.
The Wigner-Seitz BZ construction method is as follows:

1. select a vector ~G from the origin to a reciprocal lattice point;
2. construct a plane normal to this vector ~G at its midpoint;
3. the plane so formed is part of the BZ;
4. the smallest geometric space, enclosed entirely by planes that are perpendicular bisectors of

the reciprocal lattice vectors drawn from the origin, is the first BZ.

An x-ray beam in the crystal will be diffracted if its wavector ~k has a magnitude and direction
required by Equation 2.5.49. The diffracted beam will be in the direction~k′ =~k± ~G. In this way
we find all vectors~k of the beam which will be Bragg-reflected; such vectors map the regions of
reciprocal lattice which we call BZs.
A simple two-dimensional example of a BZ is shown in Figure 2.5.14. Several vectors to various
reciprocal lattice points have been drawn, but the smallest enclosed area is the first BZ. Beyond the
first BZ, there will be a 2nd, a 3rd, etc., BZs.

Figure 2.5.14: Example of the first (square shape) and second (triangle shapes) Brillouin zones of
a two-dimensional square reciprocal lattice. More zones can be obtained by drawing more vectors
from the origin to the rest of the reciprocal lattice points and obtaining their perpendicular bisectors.

As another example, Figure 2.5.15 shows the case of two planes drawn perpendicular to ~G/2 as well
as how the Bragg condition, as written in Equation 2.5.49, is satisfied.
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Figure 2.5.15: Two Brillouin zone planes associated with the perpendicular bisectors of reciprocal
lattice vectors ~GA and ~GB are shown. In each case, the Bragg condition Equation 2.5.49 is obeyed;

that is,~k1 ·
(

~GA
2

)
=
(
|~GA|

2

)2
and~k2 ·

(
~GB
2

)
=
(
|~GB|

2

)2
.

In Figure 2.5.15, notice that k1 cosθ = GA
2 so that~k1 ·

(
~GA
2

)
= k1 cosθ

GA
2 =

(
|~GA|

2

)2
, consistent with

Equation 2.5.49, and similarly for the wavector~k2 ·
(

~GB
2

)
=
(
|~GB|

2

)2
. At the point where the two

planes intersect, we have~k1 =~k2 ≡~k so that~k ·
(

~GB
2

)
=~k ·

(
~GA
2

)
=
(
|~GA|

2

)2
=
(
|~GB|

2

)2
, and are,

therefore, special points in the Brillouin zone.

Example 2.5.2.1
Consider a one-dimensional lattice with primitive lattice vector~a. (a) Obtain the associated recipro-
cal lattice vector~b. (b) Obtain the first Brillouin zone (BZ) of this one-dimensional lattice. (c) What
is the size of the BZ? (d) What is the value of the wavevector that makes possible Brag reflections
in this lattice?

Solution
(a) To obtain the reciprocal lattice vector ~b we employ the one-dimensional analogue of Equa-
tions 2.3.17c and 2.3.18 to write ~G =~b and require that ~G ·~a = 2π , which means that they are par-
allel in one dimension or b̂ = â. Additionally,~b ·~a = 2π = ba. This gives the magnitude b = 2π/a.
We can now write~b = (2π/a)b̂.
(b) Writing the reciprocal lattice translation vector ~G =~b = (2π/a)b̂, then |~G|/2 = π/a. This means
that we draw lines that are perpendicular bisectors at ±π/a. These lines become the Brillouin zone
boundaries in reciprocal lattice space. Figures 2.5.16 (a) and (b) contain the real and reciprocal lat-
tice spaces along with the first BZ boundaries (dashed lines), respectively.
(c) The BZ has length 2π/a, as shown in the figure.
(d) The Bragg wavevector is given by Equation 2.5.49 or since the only possible values of~k are
parallel to~b to write |~k||~G|/2 = (|~G|/2)2 or |k|= |~G|/2⇒ k =±π/2.
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Figure 2.5.16: Example 2.5.2.1’s (a) one-dimensional real space lattice, and (b) the corresponding
reciprocal lattice showing the size of the Brillouin zone is 2π/a.

2.5.3 Simple Cubic Reciprocal Lattice Vectors and BZ

The simple cubic’s primitive real lattice vectors of Chapter 1 are given by ~a1 = aî, ~a2 = a ĵ, and
~a3 = ak̂. The reciprocal lattice vectors can be obtained by the use of Equations 2.3.20 and the result
is similar to that of the simple orthorhombic system of Example 2.3.2.1, where we take a = b = c
to obtain

~b1 =
2π

a
î, ~b2 =

2π

a
ĵ, ~b3 =

2π

a
k̂. (2.5.50)

The reciprocal lattice is, therefore, itself a simple cubic and the reciprocal lattice unit cell volume
is VSC−rc = (2π/a)3. A general reciprocal lattice translation vector is given by ~G = v1~b1 + v2~b2 +

v3~b3 = (2π/a)(v1 î+ v2 ĵ+ v3k̂), where the v′is are ± integers. From the origin of reciprocal lattice
space we can draw ~G vectors to the nearest reciprocal lattice points and find bisector planes at
positions ±~b1/2 = ±(π/a)î, ±~b2/2 = ±(π/a) ĵ, and ±~b3/2 = ±(π/a)k̂. This corresponds to a
Brillouin zone bounded by six planes with a simple cubic shape of sides 2π/a and volume VSC−rc
as above. Figure 2.5.17 shows the simple cubic’s BZ in units of 2π/a. There are special points in
the cubic’s BZ that are of much significance in computations. These are the high symmetry points
Γ = [0,0,0], X = [1/2,0,0], R = [1/2,1/2,1/2], and M = [1/2,1/2,0] also in units of 2π/a. These
coordinates form a tetrahedron whose volume is the (1/48)th part of the total cube’s volume. This
tetrahedron is the smallest irreducible part of the simple cubic BZ from which the whole cube can
be reproduced with proper symmetry operations. The electronic properties of this irreducible part of
the zone bears the properties of the entire cube. Thus, performing computations on the irreducible
tetrahedron is much less time-consuming than performing them over the entire cube. Furthermore,
the results for the entire cube are obtained by multiplying the tetrahedron’s results by the factor of
48 in the present case. We will make use of this symmetric property of the cubic system in a later
chapter.
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Figure 2.5.17: The simple cubic BZ with plane boundaries at ±(π/a)î,±(π/a) ĵ,±(π/a)k̂. Also
shown is the irreducible part of the cube’s BZ; i.e., the tetrahedron, 48 of which make up the cube
and whose coordinates are high symmetry points in the cube’s BZ. These high symmetry points, in
units of 2π/a, are Γ = [0,0,0], X = [1/2,0,0],R = [1/2,1/2,1/2],M = [1/2,1/2,0], and are also
shown. The plotted coordinates are also in units of 2π/a.

Below the function code ScBZ.m employed to produce the BZ plot of Figure 2.5.17 is listed. A
“function” is used because it can make use of other functions within it which are needed in the
script.

%copyright by J. E Hasbun and T. Datta

%ScBZ.m

%Draws the Brillouin zone for the simple cubic and its irreducible

%tetrahedron and calculates the volume.

%Vectors in units of 2*pi/a

%

function ScBZ

clear

clc

Z=[0,0,0]; %zero point (gamma) - origin

X=[1/2,0,0]; %high symmetry points X, R, M

R=[1/2,1/2,1/2];

M=[1/2,1/2,0];

VSC=abs(dot(X,cross(R,M))/6); %tetrahedron volume

disp(’============ Simple Cubic ==============’)

fprintf(’SC: irreducible V=%s%s\n’,rats(VSC),’ of BZ volume’)

disp(’SC symmetry points (in units of 2*pi/a):’)

disp(’X=[1/2,0,0], R=[1/2,1/2,1/2], M=[1/2,1/2,0]’)

disp(’Known SC BZ volume: (2*pi/a)^3’)

view(150,20) %viewpoint longitude, latitude

grid on %show a grid

%Begin the tetrahedron

liner(Z,X,’-’,’k’,1.0) %lines to symmetry points

liner(Z,R,’-’,’k’,1.0)

liner(Z,M,’-’,’k’,1.0)

liner(X,R,’-’,’k’,1.0)

liner(X,M,’-’,’k’,1.0)
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liner(R,M,’-’,’k’,1.0)

hold on %Begin to fill tetrahedron faces

x = [0;X(1);R(1);]; y=[0;X(2);R(2);]; z=[0;X(3);R(3);];

setter(x,y,z,[0.70 0.60 0.70],0.3,0.5)

x = [0;X(1);M(1);]; y=[0;X(2);M(2);]; z=[0;X(3);M(3);];

setter(x,y,z,[0.70 0.60 0.70],0.3,0.5)

x = [0;R(1);M(1);]; y=[0;R(2);M(2);]; z=[0;R(3);M(3);];

setter(x,y,z,[0.70 0.60 0.70],0.3,0.5)

x = [X(1);R(1);M(1);]; y=[X(2);R(2);M(2);]; z=[X(3);R(3);M(3);];

setter(x,y,z,[0.70 0.60 0.70],0.3,0.5)

text(Z(1),Z(2),Z(3),’\Gamma’,’FontSize’,18)

text(X(1),X(2),X(3),’X’,’FontSize’,14)

text(R(1),R(2),R(3),’R’,’FontSize’,14)

text(M(1),M(2),M(3),’M’,’FontSize’,14)

title(’SC BZ & irreducible Brillouin Zone in units of 2\pi/a’)

%SC BZ next.

%Corners to which lines will be drawn

c1=[1/2,1/2,1/2]; c2=[-1/2,1/2,1/2]; c3=[-1/2,-1/2,1/2]; c4=[1/2,-1/2,1/2];

c5=[1/2,1/2,-1/2]; c6=[-1/2,1/2,-1/2]; c7=[-1/2,-1/2,-1/2];

c8=[1/2,-1/2,-1/2];

liner(c1,c2,’-’,’b’,1.0) %c1 top corner connectors

liner(c1,c4,’-’,’b’,1.0)

liner(c1,c5,’-’,’b’,1.0)

liner(c2,c6,’-’,’b’,1.0) %c2 top corner connectors

liner(c2,c3,’-’,’b’,1.0)

liner(c3,c4,’-’,’b’,1.0) %c3 top corner connectors

liner(c3,c7,’-’,’b’,1.0)

liner(c5,c6,’-’,’b’,1.0) %c5 bottom corner connectors

liner(c5,c8,’-’,’b’,1.0)

liner(c7,c6,’-’,’b’,1.0) %c7 bottom corner connectors

liner(c7,c8,’-’,’b’,1.0)

liner(c8,c4,’-’,’b’,1.0) %c8 bottom corner connectors

hold off

axis equal %helps to make the cube look like it

xlabel(’k_x’), ylabel(’k_y’), zlabel(’k_z’)

function liner(v1,v2,lin_style_txt,lin_color_txt,lin_width_num)

%Draws a line given initial vector v1 and final vector v2

%lin_style_txt: line style text format

%lin_color_txt: line color text format

%lin_width_num: line width number format

line([v1(1),v2(1)],[v1(2),v2(2)],[v1(3),v2(3)],...

’LineStyle’,lin_style_txt,’color’,...

lin_color_txt,’linewidth’,lin_width_num)

function setter(x,y,z,v,Edge_num,Face_num)

%fills a polygon according to coords x,y,z vectors

%v is a color vector like v=[0.70 0.70 0.40] for example

%Edge_num is a number like 0.3, and Face_num is also a number like 0.5

h=fill3(x,y,z,v); %fill face

set(h,’EdgeAlpha’,Edge_num,’FaceAlpha’,Face_num) %edges, transparent
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Notice that the code also takes advantage of the calculation to find and print the volume of the
tetrahedron which makes up the 1/48th part of the SC BZ.

2.5.4 Body Centered Cubic Reciprocal Lattice Vectors and BZ

The body centered cubic’s primitive lattice vectors of Chapter 1 are given by ~a1 = a(î+ ĵ− k̂)/2,
~a2 = a(−î+ ĵ+ k̂)/2, and~a3 = a(î− ĵ+ k̂)/2. The reciprocal lattice vectors can be obtained by the
use of Equations 2.3.20 and the result is

~b1 =
2π

a
(î+ ĵ), ~b2 =

2π

a
( ĵ+ k̂), ~b3 =

2π

a
(î+ k̂). (2.5.51)

The BCC BZ volume is, therefore, VBCC−rc = 2(2π/a)3. A general reciprocal lattice transla-
tion vector here is given by ~G = v1~b1 + v2~b2 + v3~b3 = (2π/a)

(
v1(î+ ĵ)+ v2( ĵ+ k̂)+ v3(î+ k̂)

)
.

Since the vi’s can take on ± integers, the first BZ is obtained by drawing planes that are the
perpendicular bisectors of ±~G or ±~b1,±~b2,±~b3; i.e., at the reciprocal lattice space locations
π(±î± ĵ)/a, π(± ĵ± k̂)/a, π(±î± k̂)/a. This corresponds to a BZ bounded by 4× 4× 4 = 12
planes. This has a rhombic dodecahedron shape with volume VBCC−rc as above. Figure 2.5.18 shows
the body centered cubic’s BZ in units of 2π/a. As in the simple cubic, there are special points in
the BCC’s BZ that are of much significance in computations. These are the high symmetry points
Γ = [0,0,0], P = [1/2,1/2,1/2], H = [1,0,0], and N = [1/2,1/2,0] also in units of 2π/a. These
coordinates form a tetrahedron whose volume is the (1/24)th part of the total BZ volume. This
tetrahedron is the smallest irreducible part of the BCC’s BZ from which the whole dodecahedron
can be reproduced with proper symmetry operations. The electronic properties of this irreducible
zone bear the properties of the entire BZ. Again, performing computations on the irreducible tetra-
hedron is much less time consuming than performing them over the entire BZ. Furthermore, the
results for the entire BZ are obtained by multiplying the tetrahedron’s results by the factor of 24.
This symmetric property of the BCC system is exploited in a later chapter.

Figure 2.5.18: The body centered cubic BZ with plane boundaries at π(±î± ĵ)/a, π(± ĵ ±
k̂)/a, π(±î± k̂)/a. Also shown is the irreducible part of the BCC’s BZ; i.e., the tetrahedron,
24 of which make up the dodecahedron and whose coordinates are high symmetry points in the
BCC BZ. These high symmetry points, in units of 2π/a are Γ = [0,0,0], P = [1/2,1/2,1/2], H =
[1,0,0], and N = [1/2,1/2,0] and are so labeled. The plotted coordinates are also in units 2π/a.
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2.5.5 Face Centered Cubic Reciprocal Lattice Vectors and BZ

The face centered cubic’s primitive lattice vectors of Chapter 1 are given by ~a1 = a(î + ĵ)/2,
~a2 = a( ĵ + k̂)/2, and ~a3 = a(î+ k̂)/2. The reciprocal lattice vectors can be obtained by the use
of Equations 2.3.20 and the result is

~b1 =
2π

a
(î+ ĵ− k̂), ~b2 =

2π

a
(−î+ ĵ+ k̂), ~b3 =

2π

a
(î− ĵ+ k̂). (2.5.52)

Notice that these FCC reciprocal lattice vectors look like the real space BCC primitive vec-
tors. This tells us that the BCC lattice is a reciprocal lattice to the FCC. The FCC recipro-
cal cell volume is, therefore, VFCC−rc = 4(2π/a)3. A general reciprocal lattice translation vector
here is given by ~G = v1~b1+v2~b2+v3~b3 = (2π/a)

(
v1(î+ ĵ− k̂)+ v2(−î+ ĵ+ k̂)+ v3(î− ĵ+ k̂)

)
=

(2π/a)
(
î(v1− v2 + v3)+ ĵ(v1 + v2− v3)+ k̂(−v1 + v2 + v3)

)
. Since the vi’s can take on ± inte-

gers, then their sum takes on ± integers as well. We, therefore, find BZ bisector planes at the
reciprocal lattice positions (~Gα/2) = (π/a)(±î± ĵ± k̂) with magnitude (Gα/2) =

√
3π/a. These

amount to a total of 2× 2× 2 = 8 planes. However, it has been noticed that, if one makes a
linear combination of any pair of the above reciprocal lattice vectors, it is possible to obtain ~G
bisectors whose magnitudes are slightly shorter than the intersection of two octahedron faces.
These are ~b1 +~b2 = 2π(2 ĵ)/a, ~b1 +~b3 = 2π(2î)/a, ~b2 +~b3 = 2π(2k̂)/a so that we have six ex-
tra bisector planes located at positions (~Gβ/2) =±π(2 ĵ)/a,±π(2î)/a,±π(2k̂)/a with magnitude
(Gβ/2) = 2π/a as described. Adding all these planes we get 8+ 6 = 14 planes. The first eight
planes form the faces of an octahedron, the second six planes cut through six of its corners and
thus we find that the FCC BZ is a 14-sided polyhedron (an octahedron truncated by a cube) as
shown in Figure 2.5.19 with the above volume VFCC−rc. There are several special points in the
FCC BZ that are of interest. These are, in units of 2π/a, Γ = [0,0,0], L = [1/2,1/2,1/2], K =
[3/4,3/4,0],W = [1,1/2,0],U = [1,1/4,1/4], and X = [1,0,0]. These symmetry points are en-
compassed by three different irreducible tetrahedrons (here labeled T1, T2, T3) with coordinates
Γ, L, K,W , for T1; Γ, L,U,W , for T2; and Γ, X ,U,W , for T3. Each of the T1, T2, and T3 occupy
the corresponding fraction of 1/32,1/32,1/48 part of the BZ, respectively. However, it is all three
together, which by proper symmetry operations, combine to make up the FCC BZ. Adding their
volumes, we see they make up 1/12th of the entire BZ. The three tetrahedrons correspond to the
irreducible zone of the FCC BZ. They are shown as they fit snugly together in their fractional part of
the BZ in Figure 2.5.19. As mentioned before, the electronic properties of this irreducible zone bear
the properties of the entire BZ. Computation on the irreducible zone is much less time-consuming
than performing them over the entire BZ. The results for the entire BZ are obtained by multiplying
the results for the three tetrahedrons by the factor of 12. As with the other cubics, this symmetric
property of the FCC system is exploited in a later chapter.
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Figure 2.5.19: The face centered cubic BZ with plane boundaries at (π/a)(±î± ĵ± k) as well as
±π(2 ĵ)/a,±π(2î)/a,±π(2k̂)/a is shown. Here the irreducible part of the FCC’s BZ is made up of
a group of three irreducible tetrahedrons, 12 of which (together) make up the 14-sided polyhedron.
The coordinates of each tetrahedron are high symmetry points in the FCC BZ. These high symmetry
points, in units 2π/a, are Γ = [0,0,0], L = [1/2,1/2,1/2], K = [3/4,3/4,0],W = [1,1/2,0],U =
[1,1/4,1/4], and X = [1,0,0] and are shown along with the tetrahedrons they share. The plotted
coordinates are in units 2π/a.



70 The Reciprocal Lattice

2.6 Chapter 2 Exercises
2.6.1. Modify the code of Example 2.1.0.1 in order to incorporate the calculation of Equation 2.1.3

for a particle of finite mass. Use the modified code to reproduce Figure 2.1.2.

2.6.2. (a) Is it necessary to perform calculations using the relativistic expression of Equation 2.1.2
for the behavior of wavelength versus energy? Analyze the expression and obtain its classical
limit version. (b) Modify your code of Exercise 2.6.1 in order to perform a comparison
between the classical and the relativistic results of part (a) for a particle of finite mass.
Apply your results to electrons as well as neutrons and show a comparison similar to that of
Figure 2.1.2.

2.6.3. Using the information provided in Figure 2.2.5 (a), use the Bragg Law to produce the values
of the angles at which the peaks from the (222) plane occur, thus confirming the positions
of the calculated reflection peaks.

2.6.4. Prove the Kronecker delta function relation aδpp′ =
∫ a

0 eik(p−p′)x dx where δpp′ is defined
such that it takes on the value 1 if p = p′, else it is zero.

2.6.5. Starting from Equation 2.3.8 for n(x), show the steps necessary in order to arrive at Equa-
tion 2.3.9 for the Fourier coefficients np.

2.6.6. Show that Equation 2.3.12b is condition enough for the Fourier representation of n(x) in
Equation 2.3.8 to be real.

2.6.7. Show that for a vector of the form of Equation 2.3.5, similar to Equation 2.3.18, ~G ·~T = 2mπ

so that, as in Equation 2.3.17c, ei~G·~T = 1 is also obeyed.

2.6.8. Use the non-rigorous procedure described above Equations 2.3.20 in order to derive the
expresions for the ~bi’s.

2.6.9. Show that the electron number concentration is invariant under a crystal translation of the
vector ~T .

2.6.10. Referring to Figure 2.4.9, consider a crystal plane with Miller indices (hkl). Show that
~G(hkl) = h~b1 + k~b2 + l~b3, where ~b1, ~b2, and ~b3 are the crystal’s reciprocal lattice vectors,
corresponds to a vector that lies perpendicular to the plane.

2.6.11. The largest term in the sum over G in the function F of Equation 2.4.27b occurs whenever
Equation 2.4.28 is satisfied. Show that a way to demonstrate this is to assume a spherical cell
geometry and write

(
~G− ~∆k

)
·~r′ = |~G− ~∆k|r′ cosθ ′ and to integrate over all space. While

doing so, notice that an integral over r′; i.e.,
∫

∞

0 dr′, can be approximated by N
∫ R

0 dr′, where
R is the radius of a crystal cell and N is the number of crystal cells.

2.6.12. Show the form factor, Equation 2.4.34a, of Example 2.4.2.1 does indeed give the atomic
number Z in the limit as GR→ 0.

2.6.13. It is possible to assume an exponential behavior for the electron concentration in Equa-
tion 2.4.32 rather than the constant value used in Example 2.4.2.1. Imagine a model for
which n(r) = n0e−br where n0 =

A0b3

8π
and b to be thought of as a parameter in such a way

that its value can be varied so as to moderate the oscillatory behavior of f j (for the constant
n case) shown in Figure 2.4.12. (a) Show that

∫
∞

0 n(r)d3r = A0. (b) Show that in order to
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have f j→ Z in the limit of G→ 0 the constant A0 =
2Z
b3I where I ≡ ∫ R

0 r2e−brdr. (c) Perform
the calculation of the form factor so described and modify the code of Example 2.4.2.1 to
do a comparison between both Fe form factors; i.e., the constant n case of Example 2.4.2.1
and the form factor that results when n(r) = A0b3

8π
e−br is used. Assume that b = p/R where p

is a dimensionless parameter in the range 0.01 · · ·5.0. For Fe, use other needed information
as provided in Example 2.4.2.1. In your comparison, discuss what happens when p is varied
from a small to a large value.

2.6.14. Show the correctness of Equation 2.4.39b.

2.6.15. (a) Obtain an expression for the reciprocal lattice vector magnitude G(h,k, l), associated with
planes with Miller indices (h, k, l), for a simple orthorhombic system. (b) Show that the
resulting interplanar distance is given by Equation 2.4.42. (c) If the lattice constant for Polo-
nium, with simple cubic system lattice, is 3.34 Å, what is the distance between two adjacent
(134) planes?

2.6.16. Use the ideas of Example 2.4.4.1 in order to obtain (a) the interplanar distance (in Å) for the
(222) and (111) Fe planes associated with Figures 2.2.5; and (b) obtain the angles at which
no reflections occur from the (111) plane, thus confirming their absence in the (b) part of
the figure.

2.6.17. Run the scat intensity.m code listed in Section 2.4.4 and reproduce the results shown in
Figures 2.2.5 (a) and (b).

2.6.18. Modify the scat intensity.m code listed in Section 2.4.4 and, rather than using the constant
electron concentration form factor, incorporate the form factor that results by the use of the
exponential model, n(r) = n0e−br, discussed in Exercise 2.6.13 for a value of p ≈ 5 where
b = p/R and R is the approximate atom radius. Give plots of the resulting form factor and
scattering intensity for the (222) plane. Comment on your results, especially as you contrast
with the results shown in Figure 2.2.5(a).

2.6.19. Referring to Figure 2.5.15, prove that the vector~k2 obeys the Bragg diffraction condition as
written in Equation 2.5.49.

2.6.20. Obtain the BCC reciprocal lattice vectors shown in Equations 2.5.51 and obtain the BZ
volume.

2.6.21. (a) Make the necessary modification to the simple cubic BZ code ScBZ.m of Section 2.5.3
in order to obtain the BCC BZ as described in Section 2.5.4 and as shown in Figure 2.5.18.
(b) When modifying the code, be sure to show that the volume of the involved tetrahedron
is 1/24th the volume of the BCC BZ.

2.6.22. In Section 2.5.5 it is mentioned that planes at bisector positions of magnitude (Gα/2) =√
3π/a create the faces of an octahedron in the FCC BZ; furthermore, that corners of the

octahedron are cut by six planes located at bisector positions of magnitude (Gβ/2) = 2π/a.
If this is the case, the distance from the center of the BZ to the intersection of two octahedron
faces must be greater than (Gβ/2). Show that this is in fact true.

2.6.23. (a) Make the necessary modification to the simple cubic BZ code ScBZ.m of Section 2.5.3 in
order to obtain the FCC BZ as described in Section 2.5.5 and as shown in Figure 2.5.19. (b)
When modifying the code, be sure to show that the volume of the three involved tetrahedrons
add up to 1/12th the volume of the FCC BZ as discussed in that section.



http://taylorandfrancis.com


3
Crystal Binding

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Inert Gas Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 van der Walls Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.3 Lennard-Jones Potential for Crystals . . . . . . . . . . . . . . . . . . . . . 87

3.3 Ionic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Ionic Crystal Potential and Madelung Energy . . . . . . . . . . . . . . . . 93

3.4 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.1 The Molecular Hydrogen Ion (H+

2 ) - An Analytical Calculation . . . . . . 98
3.4.2 The Hydrogen Molecule (H2) - A Numeric Calculation . . . . . . . . . . . 103
3.4.3 Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.5 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.6 Chapter 3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.1 Introduction
In this chapter we are interested in what holds a crystal together. Energy is what makes crystal
binding possible. In this regard, two kinds of energy terms are in general use to describe the binding
energy. One is the cohesive energy and the other is the lattice energy. The cohesive energy refers
to the total energy it takes to disassemble the crystal into its constituent neutral atoms at an infinite
separation, at rest, while retaining the same electronic configuration. The lattice energy term, used
in a discussion of ionic crystals, is analogous to the cohesive energy with the difference that the
component atoms are replaced with the component’s ions. In Table 3.1.1, the melting and boiling
points as well the bulk modulus, cohesive energies, and the first two ionization potentials are listed
for the elements of the periodic table.

Table 3.1.1: [3]. The elements’ physical properties. Where known, columns 1-8 list the elements
atomic number (Z), symbol, melting point (MP in Kelvin), boiling point (BP in Kelvin), bulk mod-
ulus (BM in 1011 N/m2), cohesive energy (CE in eV/atom), first ionization energy (IP1 in eV ), and
second ionization energy (IP2 in eV ), respectively.

Z: Atomic number

Sy: Symbol

MP: Melting point in Kelvin (K)

BP: Boiling point in Kelvin (K)

BM: Isothermal bulk modulus 10^11 (N/m^2) Source (1)

CE: Cohesive energy (eV/atom) at zero K. Note: 1 eV/atom=23.05 kcal/mole

IP1: First ionization energy (eV)

IP2: Second ionization energy (eV)

73
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Sources

(1) Introduction to Solid State, Charles Kittel, 8th Ed. 13-19 (John Wiley, NY 2005).

(2) Inorganic Crystal Structure Database (ICSD) online.

(3) Curtesy of Matpack C++ Numerics and Graphics Library

(online http://www.matpack.de/Info/Nuclear/Elements/lattice.html)

(4) http://physics.nist.gov/data, http://www.nist.gov/pml/data/periodic.cfm

Z Sy Name MP BP BM CE IP1 IP2

1 H Hydrogen 14.01 20.28 0.002 13.595

2 He Helium 0.95 4.216 0.00 24.58 78.98

3 Li Lithium 453.69 1590 0.116 1.63 5.39 81.01

4 Be Beryllium 1551 3243 1.003 3.32 9.32 27.53

5 B Boron 2573 2823 1.78 5.81 8.30 33.45

6 C Carbon 3823 5100 4.43 7.37 11.26 35.64

7 N Nitrogen(N2) 63.29 77.4 0.012 4.92 14.54 44.14

8 O Oxygen 54.75 90.188 2.60 13.61 48.76

9 F Fluorine 53.53 85.01 0.84 17.42 52.40

10 Ne Neon 24.48 27.1 0.010 0.020 21.56 62.63

11 Na Sodium 370.95 1165 0.068 1.113 5.14 52.43

12 Mg Magnesium 921.95 1380 0.354 1.51 7.64 22.67

13 Al Aluminum 933.52 2740 0.722 3.39 5.98 24.80

14 Si Silicon 1683 2628 0.988 4.63 8.15 24.49

15 P Phosphorus 317.3 553 0.304 3.43 10.55 30.20

16 S Sulfur 386 717.824 0.178 2.85 10.36 34.0

17 Cl Chlorine 172.17 238.55 1.40 13.01 36.81

18 Ar Argon 83.78 87.29 0.013 0.080 15.76 43.38

19 K Potassium 336.8 1047 0.032 0.934 4.34 36.15

20 Ca Calcium 1112 1760 0.152 1.84 6.11 17.98

21 Sc Scandium 1812 3105 0.435 3.90 6.56 19.45

22 Ti Titanium 1933 3533 1.051 4.85 6.83 20.46

23 V Vanadium 2163 3653 1.619 5.31 6.74 21.39

24 Cr Chromium 2130 2755 1.901 4.10 6.76 23.25

25 Mn Manganese 1517 2370 0.596 2.92 7.43 23.07

26 Fe Iron 1808 3023 1.683 4.28 7.90 24.08

27 Co Cobalt 1768 3143 1.914 4.39 7.86 24.91

28 Ni Nickel 1726 3005 1.86 4.44 7.63 25.78

29 Cu Copper 1356.6 2868 1.37 3.49 7.72 27.93

30 Zn Zinc 692.73 1180 0.598 1.35 9.39 27.35

31 Ga Gallium 302.93 2676 0.569 2.81 6.00 26.51

32 Ge Germanium 1210.55 3103 0.772 3.85 7.88 23.81

33 As Arsenic 886 sublime 0.394 2.96 9.81 30.0

34 Se Selenium 490 958.1 0.091 2.46 9.75 31.2

35 Br Bromine 265.9 331.93 1.22 11.84 33.4

36 Kr Krypton 116.55 120.85 0.018 0.116 14.00 38.56

37 Rb Rubidium 312.2 961 0.031 0.852 4.18 31.7

38 Sr Strontium 1042 1657 0.116 1.72 5.69 16.72

39 Y Yttrium 1796 3610 0.366 4.37 6.5 18.9

40 Zr Zirconium 2125 4650 0.833 6.25 6.95 20.98

41 Nb Niobium 2741 5200 1.702 7.57 6.77 21.22

42 Mo Molybdenum 2890 5833 2.725 6.82 7.18 23.25

43 Tc Technetium 2445 5303 2.97 6.85 7.28 22.54

44 Ru Ruthenium 2583 4173 3.208 6.74 7.36 24.12

45 Rh Rhodium 2239 4000 2.704 5.75 7.46 25.53

46 Pd Palladium 1825 3413 1.808 3.89 8.33 27.75

47 Ag Silver 1235.08 2485 1.007 2.95 7.57 29.05

48 Cd Cadmium 594.1 1038 0.467 1.16 8.99 25.89

49 In Indium 429.32 2353 0.411 2.52 5.78 24.64

50 Sn Tin(\alpha) 505.118 2543 1.11 3.14 7.34 21.97

51 Sb Antimony 903.89 2023 0.383 2.75 8.64 25.1

52 Te Tellurium 722.7 1263 0.230 2.19 9.01 27.6

53 I Iodine 386.65 457.55 1.11 10.45 29.54

54 Xe Xenon 161.3 166.1 0.16 12.13 33.3

55 Cs Cesium 301.55 963 0.020 0.804 3.89 29.0

56 Ba Barium 998 1913 0.103 1.90 5.21 15.21

http://www.matpack.de/
http://www.nist.gov/
http://physics.nist.gov/
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57 La Lanthanum 1193 3727 0.243 4.47 5.61 17.04

58 Ce Cerium 1071 3530 0.239 4.32 6.91

59 Pr Praseodymium 1204 3485 0.306 3.70 5.76

60 Nd Neodymium 1283 3400 0.327 3.40 6.31

61 Pm Promethium 1353 3000 0.35

62 Sm Samarium 1345 2051 0.294 2.14 5.6

63 Eu Europium 1095 1870 0.147 1.86 5.67

64 Gd Gadolinium 1584 3506 0.383 4.14 6.16

65 Tb Terbium 1633 3314 0.399 4.05 6.74

66 Dy Dysprosium 1682 2608 0.384 3.04 6.82

67 Ho Holmium 1743 2993 0.397 3.14

68 Er Erbium 1795 2783 0.411 3.29

69 Tm Thulium 1818 2000 0.397 2.42

70 Yb Ytterbium 1097 1466 0.133 1.60 6.2

71 Lu Lutetium 1929 3588 0.411 4.43 5.0

72 Hf Hafnium 2423 5673 1.09 6.44 7. 22.

73 Ta Tantalum 3269 5698 2.00 8.10 7.88 24.1

74 W Tungsten 3680 6200 3.232 8.90 7.98 25.7

75 Re Rhenium 3453 5900 3.72 8.03 7.87 24.5

76 Os Osmium 3318 5300 4.18 8.17 8.7 26.

77 Ir Iridium 2683 4403 3.55 6.94 9.

78 Pt Platinum 2045 4100 2.783 5.84 8.96 27.52

79 Au Gold 1337.58 3213 1.732 3.81 9.22 29.7

80 Hg Mercury 234.28 629.73 0.382 0.67 10.43 29.18

81 Tl Thallium 576.7 1730 0.359 1.88 6.11 26.53

82 Pb Lead 600.65 2013 0.430 2.03 7.41 22.44

83 Bi Bismuth 544.5 1833 0.315 2.18 7.29 23.97

84 Po Polonium 527 1235 0.26 1.50 8.43

85 At Astatine 575 610

86 Rn Radon 202 211.4 0.202 10.74

87 Fr Francium 300 950 0.020

88 Ra Radium 973 1413 0.132 1.66 5.28 15.42

89 Ac Actinium 1320 3470 0.25 4.25 6.9 19.0

90 Th Thorium 2023 5060 0.543 6.20

91 Pa Protactinium 1827 4300 0.76

92 U Uranium 1405.5 4091 0.987 5.55

93 Np Neptunium 913 4175 0.68 4.73

94 Pu Plutonium 914 3600 0.54 3.60

95 Am Americium 1267 2880 2.73

96 Cm Curium 1613 3.99

97 Bk Berkelium 1259

98 Cf Californium 1173

99 Es Einsteinium 1133

100 Fm Fermium

101 Md Mendelevium

102 No Nobelium

103 Lr Lawrencium

104 Rf Rutherfordium

105 Db Dubnium

106 Sg Seaborgium

107 Bh Bohrium

108 Hs Hassium

109 Mt Meitnerium

From the table we notice that the inert gas crystals have the lowest melting temperatures, bulk mod-
uli, and cohesive energies. The alkali atoms have intermediate values of these properties between the
noble gasses and the transition metals. In fact, these behaviors are more clearly seen in Figure 3.1.1
where the elements’ melting temperatures, their bulk moduli, and their cohesive energies are plotted
versus atomic number Z. We notice that the graphs of these properties bear similar shapes. The inert
gas crystals have the lowest values, the alkali metals are next, followed by the transition metals.
Also, notice that the group IV elements C, Si, and Ge, have respectable values for these properties
as well.
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Figure 3.1.1: The elements’ melting temperatures (top in Kelvin), the bulk moduli (middle in 1011

N/m2), and the cohesive energies (bottom in eV/atom) are plotted versus atomic number Z.

As mentioned, the above properties are correlated. For example, if we sort the elements according
to their cohesive energies, and we plot their melting temperatures and bulk moduli versus their en-
ergies, we find the results shown in Figure 3.1.2. A general trend emerges, and while there are large
deviations, as the cohesive energy increases so do the melting temperatures and the bulk moduli.
The dashed line is a simple 2nd-order polynomial fit to convey this understanding.
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Figure 3.1.2: Elements’ melting temperatures (top in Kelvin) and the bulk moduli (bottom in 1011

N/m2) versus cohesive energy (Ecoh in eV/atom). The dashed lines in both graphs are simple 2nd-
order polynomial fits that show a general increasing trend of the melting temperatures and the bulk
moduli with cohesive energies.

The attractive interaction between the positive ion cores and the negatively charged electrons is
responsible for the cohesion in solids. The cohesion is different for different elements in the periodic
table. The noble gas atoms bind through van der Walls forces which are associated with fluctuations
in their charge distributions. The alkali-halogen compounds are held together by ionic bonds, in
which atoms transfer electrons and electrostatic forces play a dominant role. The groups II, III, IV, V,
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and VI atoms and compounds bind through sharing of electrons. A pair of atoms, for example, share
electrons so that each atom fills its electronic subshells. The electronic distribution around the atoms
overlap with a high concentration of charge in between the atoms and thus producing the binding
between them. Alkali, alkaline, and transition metal atoms form metallic bonds. Here the valence
electrons form a Fermi sea (a uniform electron background) wherein the ions are embedded. The
attraction between the fixed ions and the uniformly distributed electrons is essentially responsible
for the bonding in these metals.

3.2 Inert Gas Solids
The inert gas crystals are held together by van der Walls forces. This interaction is responsible
for their low cohesive energies. In fact, the ionization potential of their free atoms is very high
compared to their cohesive energies in crystal form as can be seen for Table 3.2.2. In the solid form,
this means that the atomic electronic distributions are not significantly changed compared to that
of their free atom distributions. Crystals of these elements are possible because of the attractive
dipole-dipole interactions between the atoms. A general observation is that the noble gas crystals,
at low temperatures, are weakly bound transparent insulators, and they form cubic closed packed
(FCC) structures with lattice constants given by a =

√
2dnn (see Chapter 1).

Table 3.2.2: Inert gas crystal properties showing values for the nearest neighbor distance, dnn; the
experimental cohesive energy, Ecoh; the melting temperature, Tmelt ; the first ionization potential, Ip.
The parameters are all extrapolated to zero temperature and pressure [3]. †ε and σ are the parameters
for the Lennard-Jones potential of Equation 3.2.19a.

dnn(Å) Ecoh(eV/atom) Tmelt (K) Ip (eV) ε (10−22 J)† σ (Å)†
He 24.58 1.4 2.56
Ne 3.13 0.02 24.56 21.56 5.0 2.74
Ar 3.76 0.080 83.81 15.76 16.7 3.40
Kr 4.01 0.116 115.8 14.00 22.5 3.65
Xe 4.35 0.17 161.4 12.13 32.0 3.98

3.2.1 van der Walls Interaction

To get a flavor of this interaction, a two-springs system is commonly used to model two interacting
atoms and to study what happens as they are brought closer to each other. At the ends of each spring
is a positive and a negative charge, respectively. The charges on the same atom are themselves held
together by a spring of constant C. Referring to Figure 3.2.3, the idea being that when the atoms are
far away from each other, the negative charge is distributed fairly spherically around the positive
charges as shown in (a). In (b), as the atoms are brought closer to an equilibrium distance, the
charges interact, thereby creating a different charge distribution, one that is similar to that of two
interacting dipoles. Finally, in (c) the two-springs model replaces the interacting dipoles.
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Figure 3.2.3: (a) Shows two non-interacting atoms located far apart from each other. (b) Shows that
when the atoms are brought closer to each other, each develops a charge distribution much as that
of two interacting dipoles. (c) Shows the two-springs model of the interacting dipoles.

The one-dimensional unperturbed Hamiltonian for this uncoupled system consists of the free atoms,
modeled as two harmonic oscillators of equal energy, or

H0 =
p2

1
2m

+
1
2

Cx2
1 +

p2
2

2m
+

1
2

Cx2
2, (3.2.1a)

each oscillator with frequency and ground state quantum mechanical energy of

ω0 ≡
√

C
m
, E1 = E2 =

h̄ω0

2
≡ E0, (3.2.1b)

respectively, where m is the electronic mass and C is the spring constant associated with each atom.
The total system’s initial energy is

ETi = E1 +E2 = h̄ω0 = 2E0. (3.2.1c)

The above spring constant can possibly be estimated if we use a hydrogenic model and express the
potential between the atom’s + and − charges in the form of an effective potential that includes the
coulomb contribution as well as the electron’s rotational kinetic energy; i.e., Ve f f (r) = −Zke2/r+
L2/2mr2, where k = 1/4πε0, L is the angular momentum, and Z is the atomic number. Using a
Taylor expansion of this potential about an equilibrium position r0, we can find that C ≈ Zke2/r3

0
(see Exercise 3.6.2).
By letting the atoms approach each other and letting them interact, the perturbed system’s Hamilto-
nian becomes H = H0 +H1, where the interaction part of the Hamiltonian is

H1 =
ke2

R
+

ke2

R+ x1− x2
− ke2

R+ x1
− ke2

R− x2
, (3.2.2)

where the R is the equilibrium distance between the atoms as in Figure 3.2.3(c). The first term is due
to the ion-ion repulsion, the second term is the negative-negative charge repulsion, the third term
is the first ion-second-atom’s-negative-charge attraction, and the last term is the the second ion-
first-atom’s-negative-charge attraction. We see that H1 is complicated and it becomes convenient to
simplify it. We therefore expand the terms involving the negative charge coordinates, while taking
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R >> |x1− x2|, R >> x1, and R >> x2, to 2nd order in a Taylor series. We have

1
R+ x1− x2

=

(
1
R

)
1

1+(x1− x2)/R
=

1
R
(1− (x1− x2)/R+((x1− x2)/R)2 + · · ·)

≈ 1
R
(1− (x1− x2)/R+((x1− x2)/R)2);

−1
R+ x1

=−
(

1
R

)
1

1+ x1/R
=− 1

R
(1− x1/R+(x1/R)2 + · · ·)

≈− 1
R
(1− x1/R+(x1/R)2);

−1
R− x2

=−
(

1
R

)
1

1− x2/R
=− 1

R
(1+ x2/R+(x2/R)2 + · · ·)

≈− 1
R
(1+ x2/R+(x2/R)2).

(3.2.3)

Substituting these approximations into Equation 3.2.2, we get

H1 ≈
ke2

R
{1+[1− x1/R+ x2/R+(x2

1 + x2
2−2x1x2)/R2]

− [1− x1/R+ x2
1/R2]− [1+ x2/R+ x2

2/R2]}

=−2
ke2x1x2

R3 .

(3.2.4)

Combining this expression with H0 we write the approximation for the full Hamiltonian as

H = H0 +H1 ≈
p2

1
2m

+
1
2

Cx2
1 +

p2
2

2m
+

1
2

Cx2
2−2

ke2x1x2

R3 , (3.2.5)

and shows that the presence of the coupling between the atoms, H1, decreases the energy relative to
the free atoms Hamiltonian and we can expect some binding. We notice that H0 is diagonal, but H1
mixes the variables x1 and x2, we therefore write H in matrix form as

H =
1

2m

[(
p1 p2

)( 1 0
0 1

)(
p1
p2

)]
+

C
2

[(
x1 x2

)( 1 0
0 1

)(
x1
x2

)]

− ke2

R3

[(
x1 x2

)( 0 1
1 0

)(
x1
x2

)]
,

(3.2.6)

to notice that a transformation is needed in order to diagonalize the non-diagonal H1 matrix but
which leaves the diagonal H0 unmodified. This is not without cost. The matrix we seek transforms
the original coordinates to a space where H is diagonal. This process is actually very useful and we
employ it here. We first define the following

x≡
(

x1
x2

)
, p≡

(
p1
p2

)
, X ≡

(
Xs
Xa

)
, P≡

(
Ps
Pa

)
, (3.2.7)

and define the 2×2 matrix VE such that

x =VEX , p =VEP, V−1
E VE = I, (3.2.8)

where I is the 2×2 unit diagonal matrix. With these definitions, the Hamiltonian of Equation 3.2.6
can be rewritten as

H =
1

2m

[(
Ps Pa

)
V−1

E

(
1 0
0 1

)
VE

(
Ps
Pa

)]
+

C
2

[(
Xs Xa

)
V−1

E

(
1 0
0 1

)
VE

(
Xs
Xa

)]

− ke2

R3

[(
Xs Xa

)
V−1

E MVE

(
Xs
Xa

)]
,

(3.2.9)
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where we have also defined the non-diagonal matrix M ≡
(

0 1
1 0

)
. The matrix elements of the

VE matrix, or eigenvectors, are to be found such that

V−1
E MVE = D, (3.2.10)

where D is a diagonal matrix that contains the eigenvalues of M. Notice that VE does not affect
the already diagonal matrices of H since V−1

E IVE = V−1
E VE = I. Once VE and D are known, Equa-

tion 3.2.9 becomes diagonal and the system’s energies become transparent. To find the eigenvalues,
the procedure begins by noticing that MVE = DVE or (M−D)VE = 0 which means that |M−D|= 0,

and writing D =

(
λ 0
0 λ

)
, to solve for the eigenvalues λ as follows

|M−D|=
∣∣∣∣
(

0 1
1 0

)
−
(

λ 0
0 λ

)∣∣∣∣=
∣∣∣∣
(
−λ 1
1 −λ

)∣∣∣∣= λ
2−1 = 0, (3.2.11a)

or

λ =±1⇒ D =

(
1 0
0 −1

)
. (3.2.11b)

Having the eigenvalues, we can find the eigenvectors by solving and normalizing as follows

(M−λnI)VE n = 0, ∑
i

V 2
E in = 1, (3.2.11c)

where λn is the nth eigenvalue and VE n is the nth column or eigenvector of the VE matrix. Using the
first eigenvalue, λ = 1, we get
[(

0 1
1 0

)
−
(

1 0
0 1

)](
VE 11
VE 21

)
=

(
−1 1
1 −1

)(
VE 11
VE 21

)
=

(
−VE 11 +VE 21 = 0
VE 11−VE 21 = 0

)
.

(3.2.11d)

Similarly, using λ =−1
[(

0 1
1 0

)
−
(
−1 0
0 −1

)](
VE 12
VE 22

)
=

(
1 1
1 1

)(
VE 12
VE 22

)
=

(
VE 12 +VE 22 = 0
VE 12 +VE 22 = 0

)
.

(3.2.11e)

Equations 3.2.11d and 3.2.11e result in VE 11 = VE 21 and VE 22 = −VE 12, respectively. Finally, nor-
malizing the eigenvectors, as in Equation 3.2.11c, we have VE

2
11 +VE

2
21 = 1 = 2VE

2
11 or VE 11 =

1/
√

2 =VE 21. In a similar way we find that VE 12 = 1/
√

2 =−VE 22, so that the matrix VE takes the
form

VE =

(
1 1
1 −1

)

√
2

. (3.2.12)

It can be verified that VE satisfies the inverse property of a unitary matrix; i.e., VE = V−1
E and the

triple matrix product V−1
E MVE =D as it should be, in consistency with Equation 3.2.10. Substituting

D for the triple matrix product into Equation 3.2.9 and, again, using V−1
E IVE = I, find

H =
1

2m

[(
Ps Pa

)( 1 0
0 1

)(
Ps
Pa

)]
+

C
2

[(
Xs Xa

)( 1 0
0 1

)(
Xs
Xa

)]

− ke2

R3

[(
Xs Xa

)( 1 0
0 −1

)(
Xs
Xa

)]
,

(3.2.13)
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which, after multiplying the matrices through, leads to

H =
P2

s

2m
+

P2
a

2m
+

C
2

X2
s +

C
2

X2
a −

ke2

R3 X2
s +

ke2

R3 X2
a

=

(
P2

s

2m
+

1
2

CsX2
s

)
+

(
P2

a

2m
+

1
2

CaX2
a

)
,

(3.2.14a)

where we have made the following definitions for the spring constants associated with the trans-
formed coordinate space

Cs ≡C− 2ke2

R3 , Ca ≡C+
2ke2

R3 . (3.2.14b)

Once again, we see that the system consists of two springs whose energies are shifted with respect to
the unperturbed energies (Equation 3.2.1). Also, the interacting system is characterized by symmet-
ric and antisymmetric displacements and momenta which, according to Equation 3.2.8, are given in
terms of the unperturbed system’s coordinates by

(
Xs
Xa

)
=V−1

E

(
x1
x2

)
=

(
x1 + x2
x1− x2

)
/
√

2, (3.2.15a)

and
(

Ps
Pa

)
=V−1

E

(
p1
p2

)
=

(
p1 + p2
p1− p2

)
/
√

2. (3.2.15b)

We can, therefore, associate the transformed coordinates Xs, Ps and Xa, Pa symmetric and antisym-
metric modes of vibration, respectively, with frequencies given by

ωs =

√
Cs

m
=

√
C−2ke2/R3

m
, ωa =

√
Ca

m
=

√
C+2ke2/R3

m
, (3.2.16a)

and associated energies of

Es =
h̄ωs

2
, Ea =

h̄ωa

2
. (3.2.16b)

This shows that the symmetric mode is lower in energy than the initial single atomic unperturbed
system’s energy of h̄ω0/2 of Equation 3.2.1b; the antisymmetric mode is higher in energy. If we
expand the frequencies to 2nd order in the coupling term (using

√
1+ x≈ 1+x/2−x2/8)), we have

from Equation 3.2.16a

ωs,a =

√
C
m

√
1∓2ke2/CR3

≈ ω0

(
1∓ 1

2
2ke2

CR3 −
1
8

(
2ke2

CR3

)2
)
,

(3.2.17a)

Whereas we started with oscillator atoms at infinite separations, each with an energy of h̄ω0/2, as
they get nearer to each other their energies begin to split. Their coupling increases as they get closer
and we end up with the same two oscillators at two different energies Es and Ea. The symmetric
state is a bonding state and the antisymmetric state is an antibonding state. The splitting between the

energies is such that Ea−E0 ≈ E0

(
1
2

2ke2

CR3 − 1
8

(
2ke2

CR3

)2
)

, and E0−Es ≈ E0

(
1
2

2ke2

CR3 +
1
8

(
2ke2

CR3

)2
)

.

All this is illustrated in Figure 3.2.4.
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R=equilibrium

Figure 3.2.4: The energy levels of the two-springs model system are shown when the atoms (circles)
are at R = ∞ with an energy of E0 each. Also shown are the obtained energy level splittings Es and
Ea when the atoms are brought to an equilibrium distance. The approximate amount of splitting
between the levels is also shown as discussed in the text leading to this figure.

Example 3.2.1.1
Let’s produce a plot of the behavior of the level splitting described in Figure 3.2.4 versus the distance

between the atoms. Noticing that from Equation 3.2.17a ωs,a =
√

C
m

√
1∓2ke2/CR3, but ω0 =√

C/m and if we assume a simple hydrogen atom and let C ∼ ke2/r3
0 as mentioned earlier, then

we can write ωs,a = ω0

√
1∓2r3

0/R3. Further, if we define energy units of h̄ω0 and distance units

of r0, then Ēs,a ≡ Es,a/(h̄ω0) =
√

1∓2/x3, where we have also defined the dimensionless distance
x ≡ R/r0. In this way, it suffices to plot the dimensionless Ē versus x to get the plot we seek. Note
that as x→∞, Ēs,a→ 1 here as expected. For the equilibrium distance between the atoms, we take a
bond length of about 2.5Å and taking r0 ∼ 0.5Å, then xmin ∼ 2.5/0.5 = 5≡ d, but certainly no less
than 21/3 to keep Ēs real. The results are shown in Figure 3.2.5.
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Figure 3.2.5: The energy levels of the two-springs model system are shown as calculated according
to Example 3.2.1.1. When the two springs are far apart, each spring has energy E0 associated with
it. As the atoms (modeled as springs) are brought closer, their interaction splits the energy level into
a symmetric mode of energy Es and an antisymmetric mode of energy Ea. Here energy is in units of
E0 and distance R is in units of r0. In the example, the initial atom positions are ∓5d/2 for atoms
1 and 2, respectively, where we take their closest separation as d ≡ xmin = 5 in units of r0 such that
x = R/r0.

We can find the total approximate final energy of the coupled oscillator system as

ET f =
h̄
2
(ωs +ωa)≈ h̄ω0

(
1− 1

8

(
2ke2

CR3

)2
)
, (3.2.17b)

as well as the approximate change in energy between the coupled and the uncoupled systems of
oscillators

∆U = ET f −ETi ≈ h̄ω0

(
1− 1

8

(
2ke2

CR3

)2
)
− h̄ω0 =−

h̄ω0

8

(
2ke2

CR3

)2

∼− A
R6 , (3.2.17c)

where A≡ h̄ω0
8

(
2ke2

C

)2
, which vanishes in the limits when h̄→ 0, reflecting its quantum mechanical

nature. Equation 3.2.17c is a result of the attractive interaction between the two oscillating atoms and
varies as the inverse 6th power of their separation. This is the so-called van der Waals interaction or
London interaction or dipole-dipole interaction, which is the principal attractive interaction in inert
gas crystals.
A question that might be asked is: what causes atoms to have an equilibrium distance? In the above
Example 3.2.1.1, the calculation of the equilibrium separation between the two atomic systems was
not carried out. That requires a more sophisticated procedure than the one employed here, which
is left for later in the chapter. However, as two atoms get closer to each other, their electron distri-
butions begin to overlap. According to the Pauli exclusion principle, no two electrons can have the
same set of quantum numbers. As the electrons’ wavefunctions begin to overlap, the Pauli principle
prevents the atoms from coming too close. The competition between the attractive interaction and
the repulsive interaction establishes an equilibrium distance at which the pair of atoms coexist. We
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make no effort here to derive such repulsive interaction but a generally used, empirical form, of this
interaction, which seems to work well in the inert gasses, is

Urepulsive ∼
B

R12 . (3.2.18)

This repulsive part, which is proportional to the square of Equation 3.2.17c is generally considered
to be an empirical relation.
In Section 3.2.2 we make use of the above interactions; that is, Equations 3.2.17c and 3.2.18, for
the attractive and repulsive parts, respectively, of a potential between a pair of atoms originally
proposed by Sir John Edward Lennard-Jones.

3.2.2 Lennard-Jones Potential

If we combine the attractive interaction between two atomic dipoles, Equation 3.2.17c, with the
empirical relation of Equation 3.2.18, we get a potential for a pair of interacting atoms in the form

U(R) =
B

R12 −
A
R6 = 4ε

[(
σ

R

)12
−
(

σ

R

)6
]
, (3.2.19a)

with the definitions

A≡ 4εσ
6, B≡ 4εσ

12. (3.2.19b)

Because of the powers to which the parenthesized terms are raised to, the potential is also known as
the Lennard-Jones 6− 12 potential. For large R,

(
σ

R

)6 is the dominant term and the atoms attract,

but for small R,
(

σ

R

)12 takes over and the atoms repel. The force between the atoms is given by

F =−∂U(R)
∂R

. (3.2.20)

Let’s look at the Lennard-Jones (L-J) potential to get an understanding of how it works.

Example 3.2.2.1
Here we first find the point at which the minimum of the Lennard-Jones potential occurs. We do this
by setting the derivative of the force in Equation 3.2.20 to zero, which when solved for R gives

R = 21/6
σ ≡ Rnn ∼ 1.1225σ , (3.2.21a)

where Rnn is the nearest neighbor distance or bond length in this model. Evaluating U(R) of Equa-
tion 3.2.19a at R = Rnn, we get

U(R = Rnn)≡Umin =−ε, (3.2.21b)

which corresponds to the binding energy of the pair of atoms. Inputting this much energy into the
molecule would cause it to dissociate. Finally, let R0 be the distance below Rnn at which the potential
crosses the R axis. This location can be found as

U(R = R0) = 0 ⇒ R0 = σ . (3.2.21c)

A plot of this potential for an Argon pair of atoms, for which (using Table 3.2.2) ε = 0.0104eV and
σ = 3.40 Å, is shown in Figure 3.2.6 where the minimum energy and the bond length are identified
according to the results of this example.
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Figure 3.2.6: The Lennard-Jones potential for the solid Argon atom pair potential of Exam-
ple 3.2.2.1. The parameters used are ε = 0.0104eV and σ = 3.40 Å from Table 3.2.2. The bond
length obtained is Rnn = 21/6σ = 3.82 Å.

We now develop a Monte-Carlo version of the above example and verify its results by comparing to
the analytic result.

Example 3.2.2.2
In Example 3.2.2.1 the results for the minimum energy and the bond length were obtained ana-
lytically for Argon. We now repeat the same example within a Monte-Carlo framework. Here, the
idea is to work with the Lennard-Jones potential; however, we use random numbers to vary the
distance in between the two atoms and accept the distance if it leads to a lower minimum of the
potential than the previous saved value. When such minimum is not changing significantly within
a tolerance value of about tol = 1×−3 ε and the number of trials taken is not too large, say, less
than 500 iterations, the calculation is stopped. The random numbers, rn, are picked such that they
lie in the range −δ < rn < δ , where δ is a desired upper value (δ = 1 is an example). A new ran-
dom number is chosen for every iteration of the distance until the desired minimum is achieved. For
every random number, the atomic distance is varied according to Rnew = Rold(1+ cmodrn), where
cmod is a moderating parameter so that R does not vary too drastically. The simulation that follows
uses cmod = 0.5. To get started, the simulation uses a guess for the starting distance as shown in
the script LJ 1dMCsym.m listed below. The results obtained are shown in Figure 3.2.7. The bond
length obtained this way is Rnn = 3.821Å with Umin = −0.01039eV for the value of the minimum
potential. Comparing the converged simulation values to the analytic ones, they are in very close
agreement, where the analytic values are 21/6σ = 3.816 Å, and ε = 0.0104eV , respectively, as used
in Example 3.2.2.1.
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Figure 3.2.7: Result of the Lennard-Jones potential Monte-Carlo simulation for the solid Argon
atom pair potential of Example 3.2.2.2. The parameters used are ε = 0.0104eV and σ = 3.40 Å
from Table 3.2.2. The bond length obtained is Rnn = 3.821Å with Umin =−0.01039eV for the value
of the minimum potential.

The code LJ 1dMCsym.m used to create Figure 3.2.7 follows.

%copyright by J. E Hasbun and T. Datta

%LJ_1dMCsym.m

%Program to do a simulation of the distance between two

%particles in 1 d using the Lennard-Jones potential,

%where U=4*epsilon*((sigma/R)^12-(sigma/R)^6)

clear

%We work with Argon

eps=0.0104; %eV

sig=3.4; %Angstroms

%Define the LJ potential as an anonymous function

U=@(eps,sig,r) 4*eps*((sig./r).^12-(sig./r).^6);

Rguess=2.0*sig;

Rold=Rguess; %guess starting distance in terms of sigma

Uold=U(eps,sig,Rold); %starting energy

cmod=0.25; %moderator for the random number used below

tol=1.e-3*eps; %convergence tolerance

itermax=500; %maximum iterations

diffU=10*tol;

plot(0,0,’ko’,’MarkerSize’,5,’MarkerFaceColor’,’k’)

hold on

axis([-1 1.5*Rguess -1 1])

plot(Rold,0,’bo’,’MarkerSize’,5,’MarkerFaceColor’,’b’)

iter=0;

while (diffU > tol & iter < itermax)

iter=iter+1;

cla

h(1)=plot(0,0,’ko’,’MarkerSize’,5,’MarkerFaceColor’,’k’);

rn=-1.0+2.0*rand(); %random number -1 < r < 1

Rnew=Rold*(1+cmod*rn); %new R based on rand #, with moderation
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Unew=U(eps,sig,Rnew); %new energy

diffU=abs(Unew-Uold)/abs(Unew+Uold);

if (Unew < Uold)

Rold=Rnew;

Uold=Unew;

diffUold=diffU;

h(2)=plot(Rold,0,’ko’,’MarkerSize’,5);

pause(0.05)

end

end

h(2)=plot(Rold,0,’ko’,’MarkerSize’,5);

h(3)=line([0,Rold],[0,0],’LineStyle’,’--’,’Color’,’k’);

fprintf(’diffU=%8.3e, Min U=%9.6f (eV), R=%9.6f (A), iter=%6i\n’,...

diffUold,Uold,Rold,iter)

Ns=500;

rl=0.1*Rold;

ru=3.0*Rold;

rs=(ru-rl)/(Ns-1);

r=rl:rs:ru;

Ur=U(eps,sig,r);

Umin=min(Ur);

h(4)=plot(r,Ur,’k-’);

axis([-1 1.5*Rguess Umin abs(Umin)])

xlabel(’r (\AA)’,’interpreter’,’latex’)

ylabel(’U (eV)’)

str=cat(2,’Monte-Carlo Lennard-Jones U(r) Simulation:’,’ Umin=’,...

num2str(Umin,’%9.4g’),’eV, R=’,num2str(Rold,’%9.4g’),’ Angstroms’);

title(str)

legend(h,’origin atom’,’other atom’,’common bond’,’L-J: Potential’)

The Lennard-Jones 6−12 potential of Equation 3.2.19a has found much use in solid state physics
and other similar potentials have been proposed that replace the repulsive part with a slightly dif-
ferent form. Due to its mathematical simplicity, an alternate expression that is often used for the
repulsive interaction is

Urepulsive(R) = λ exp(−R/ρ), (3.2.22)

where λ and ρ are considered parameters. This will find use in a later section.

3.2.3 Lennard-Jones Potential for Crystals

We now extend the previous section’s Lennard-Jones (L-J) pair potential to the regime where there
are many noble gas atoms at equilibrium. It is also assumed that the ion cores are at rest and that
the total system’s energy is the result of adding all the energies between atomic pairs. Consider a
system of N atoms in a crystal, with each pair of atoms interacting through an L-J pair potential,
U(Ri j) = 4ε[(σ/Ri j)

12− (σ/Ri j)
6] for atoms i, j where i 6= j. By summing over distinct pairs of

atoms, and noting that U(Ri j) =U(R ji), the total cohesive energy of the system can now be written
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as

Utot =U(R12)+U(R13)+ . . .+U(R1N)+U(R23)+U(R24)+ . . .+U(R2N)

+U(R34)+U(R35)+ . . .+U(R3N)+U(R45)+U(R46)+ . . .+U(R4N)

+ . . .+U(RN−1N) =
N

∑
j,i

i> j

U(Ri j) =
1
2

N

∑
j,i

i6= j

U(Ri j),
(3.2.23)

where the factor of 1/2 prevents double counting. Since there are N pairs of identical atoms, using
the last equation, we can sit on the ith atom and carry one of the sums over j then multiply the result
by N to get the total energy; that is,

Utot =
N
2

N

∑
j

j 6=i

U(Ri j) = 4ε
N
2

N

∑
j

j 6=i

[(σ/Ri j)
12− (σ/Ri j)

6]. (3.2.24)

Letting the nearest neighbor distance be R and since from a given atom all the other atoms are at
multiples of this distance, we can write Ri j = pi jR. Here, pi j is a number which, when multiplied by
R, gives the separation between the reference atom i and the atom j of the crystal. The total cohesive
energy becomes

Utot = 4ε
N
2

N

∑
j

j 6=i

[(
σ

pi jR

)12

−
(

σ

pi jR

)6
]
= 4ε

N
2

[(
σ

R

)12
∑

j

′
(

1
pi j

)12

−
(

σ

R

)6
∑

j

′
(

1
pi j

)6
]
,

(3.2.25)

where the prime on the summation indicates that j 6= i. To see how the sums of the 1/pi j term are
carried out, we do the following example.

Example 3.2.3.1

Calculate the expression ∑
j

′
(

1
pi j

)12
for the simple cubic system.

Solution
From the origin atom, the simple cubic system has nearest neighbors at positions (100), (010),
(001), (1̄00), (01̄0), and (001̄), in units of the lattice constant a; that is, six nearest neighbors at 1R
where R = a so that p01 = 1. As discussed in Chapter 1, we can make linear combinations of these
vectors to obtain farther away neighbors from the origin atom. In this way we find there are twelve
2nd nearest neighbors (one instance is (110) in units of a) at a distance of

√
2R, so that p02 =

√
2.

Similarly, there are eight 3rd nearest neighbors at a distance
√

3R and so p03 =
√

3. Continuing
this way, there are six 4th nearest neighbors with p04 =

√
4. If we include only these contributions

to the sum, we get the approximate value 6(1/
√

1)12 + 12(1/
√

2)12 + 8(1/
√

3)12 + 6(1/
√

4)12 =
6.1999≈ 6.20, which is in common use.

Jones [11] showed that the exact value of the lattice sum ∑
j

′
(

1
pi j

)12
= 6.2021. To get close to

this value, we would have to include the next 24, 24, 12, and 30 numbers of 5th, 6th, 8th, and 9th
nearest neighbors, respectively, with diminishing contributions from the farther away neighbors.
Notice that there is no p07 to speak of that follows the above p0 j =

√
j rule. In the simple cubic, the

exact sum can be obtained from the expression

N

∑
i=−N

N

∑
j=−N

N

∑
k=−N

(
1

i2 + j2 + k2

)s/2

(i 6= 0, j 6= 0, k 6= 0), (3.2.26)
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which is a triple sum over all integral values of i, j, k with the exclusion of i = 0, j = 0, k = 0, and
where s is the Lennard-Jones exponent of interest, either 12 or 6. Due to the high exponent when
s = 12, the respective sum converges rapidly; the same cannot be said for the s = 6 exponent. From

Equation 3.2.26 we can, therefore, compute the exact value ∑
j

′
(

1
pi j

)6
= 8.4019 (see Exercise 3.6.7),

but the approximate value of 8.40 is often used.

For the FCC, ∑
j

′
(

1
pi j

)12
≈ 12.13 and ∑

j

′
(

1
pi j

)6
≈ 14.45; for the BCC ∑

j

′
(

1
pi j

)12
≈ 9.11 and

∑
j

′
(

1
pi j

)6
≈ 12.25. These sums involve slightly different formulas from that of Equation 3.2.26

and are not discussed here. For the HCP structure, the FCC values are to be used. Considering the
inert gas crystals, we substitute the FCC structure values into Equation 3.2.25 to get

Utot(R) = 4ε
N
2

[
(12.13)

(
σ

R

)12
− (14.45)

(
σ

R

)6
]
. (3.2.27)

Setting the derivative of Utot to zero, dUtot/dR=−2Nε
[
12(12.13)

(
σ12/R13

)
−6(14.45)

(
σ6/R7

)]

= 0, we obtain the FCC bond length at zero Kelvin as

σ6

R6

∣∣∣
R=R0

=
14.45

2(12.13)
, ⇒ R0

σ
=

(
2(12.13)

14.45

)1/6

≈ 1.09, (3.2.28)

which is the same for all the elements with FCC or HCP structures according to this approach.
Using the values for R0 = dnn and σ from Table 3.2.2 the following values for the R0/σ ratios
are obtained: Ne, 1.14; Ar, 1.11; Kr, 1.10; and Xe, 1.09. The theoretical value deviation from this
experimental value is greatest for the lightest elements. This deviation is attributed to the quantum
mechanical zero point motion; i.e., < p̂2 > /2m. Here, we use the quantum mechanical operator for
p̂ such that < p̂2 >= (h̄/i)(h̄/i)∗ < ψ(x)|∂ 2/∂x2|ψ(x) > and ψ(x) ≈ sin(2πx/λ ) so that < p̂2 >
/2m ∝ 1/mλ 2, where λ is the wavelength associated with the ground state. This implies a smaller
correction for the larger mass atoms as confirmed by isotope effect experiments. In the isotope effect
observations, for example, a crystal of the isotope Ne20 has been observed to have a larger lattice
constant than a crystal of Ne22.
The cohesive energy that results from Equation 3.2.27 when it is evaluated at the R0 bond length of
Equation 3.2.28 is

Utot(R0) = 4ε
N
2

[
(12.13)

(
1

1.0902

)12

− (14.45)
(

1
1.0902

)6
]
=−2.1517(4Nε). (3.2.29)

Using the values for ε in Table 3.2.2 the magnitude of the energies per atom that result based on
Equation 3.2.29 are: Ne, 0.027; Ar, 0.090; Kr, 0.121; and Xe, 0.172 all in eV/atom. Again, the
larger percent errors occur for the lighter elements due to the zero point motion that is unaccounted
for.
At this point, using Equation 3.2.27 for the potential in the FCC structure, we can obtain an expres-
sion for the bulk modulus, B =−V dP/dV at zero Kelvin. If we let αJ = 12.13 and βJ = 14.45, then

U(R) = 4ε
N
2

[
αJ

(
σ

R

)12
−βJ

(
σ

R

)6
]
. (3.2.30)

Using the thermodynamic expression dU =−PdV +T dS at zero Kelvin (with dS = 0) we have for
the bulk modulus

B =V
d2U
dV 2

∣∣∣
V=V0

, (3.2.31a)
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where V0 is the equilibrium volume. Since in the FCC structure the volume for N cells is V =Na3/4,
which in terms of the nearest neighbor distance (R = a/

√
2) becomes V = NR3/

√
2, then with

dV = 3NR2dR/
√

2, we can write for the FCC crystals

B =

√
2

9NR
d2U
dR2

∣∣∣
R=R0

, (3.2.31b)

where from Equation 3.2.28 and the above definitions, the equilibrium nearest neighbor distance
R0 = (2αJ/βJ)

1/6σ . Using Equation 3.2.30 we obtain

d2U
dR2 = 2Nε

[
(12)(13)αJ

σ12

R14 − (6)(7)βJ
σ6

R8

]
, (3.2.31c)

which when substituted into Equation 3.2.31b and simplified, the bulk modulus for the FCC inert
gas solids becomes

B =
4εβJ

5/2

σ3αJ
3/2 . (3.2.31d)

As a simple example, in the case of the argon solid crystal at zero Kelvin, this expression yields a
value of B = 4(16.7×10−22J)(14.455/2)/[(3.4×10−10m)3(12.133/2)]≈ 3.2×109N/m2.
In the next example, we apply Equation 3.2.23 in order to find the equilibrium distance among three
Neon particles in two dimensions.

Example 3.2.3.2
Use the Lennard-Jones potential to obtain the equilibrium distance between three Neon particles on
a two-dimensional x− y plane.
Solution
We use Equation 3.2.23 and write it in the form Utot =

3
∑
j,i

i> j

U(Ri j) = 4ε
3
∑
j,i

i> j

[(σ/Ri j)
12− (σ/Ri j)

6],

where we let Ri j =
√

(xi− x j)2 +(yi− y j)2. We then find the minimum of the potential with re-
spect to the variables x2, x3, y2, and y3, where the origin particle is fixed in space at x1 = 0, y1 = 0.
This is a numerical problem which we solve with the MATLAB script in the form of the function
LJ 2d min.m that is listed below. The potential is evaluated by the function LJ funNd(r,Np,Nd) that
is part of the entire script, where r holds the positions of the particles, N p is the number of particles,
and Nd is the number of dimensions. This function is used by the MATLAB minimizing routine
fminsearch with the parameters (@LJ funNd,r guess,[],np,nd). Besides making use of the potential
function, this minimizing routine needs an initial guess for the positions of the particles, held by the
array r guess. Once the function converges using MATLAB’s default tolerances (not being varied
in this example), the final positions are held by the array rnew and the minimum of the potential is
held by the variable Umin. The rest of the script basically plots the final positions of the particles
and connects them with a straight line as shown in Figure 3.2.8 where the final average distance
between the particles is dave = 3.076 Å organized in an equilateral triangle and with minimum of
the potential at an energy of Umin =−0.00936eV .
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Figure 3.2.8: Final result from the script LJ 2d min.m of Example 3.2.3.2. The thee Neon particles
(black dots) organize themselves on an equilateral triangle with an average side length of dave =
3.076Å and with a potential energy minimum of −0.00936eV .

The program listing follows.

%copyright by J. E Hasbun and T. Datta

%LJ_2d_min.m

%This program finds the equilibrium distance between three particles

%in 2d. It does so by minimizing the Lennard-Jones potential

%U=4*epsilon* [Sum of i,j > i of ((sigma/Rij)^12-(sigma/Rij)^6)]

function LJ_2d_min

clear

global eps sig

e=1.602176487e-19; %electronic charge

eps=5.0e-22; %for Neon in Joules

eps=eps/e; %for Neon in eV

sig=2.74; %in Angstroms

np=3; %Number of particles

nd=2; %number of dimensions

r_guess(1,1)=0; %x - origin particle is fixed

r_guess(1,2)=0; %y

r_guess(2,1)=2; %x - 2nd particle

r_guess(2,2)=0; %y

r_guess(3,1)=2; %x - 3rd particle

r_guess(3,2)=2; %y

[rnew,Umin]=fminsearch(@LJ_funNd,r_guess,[],np,nd);

%show the final positions of the particles

hold on

axis([-1*max(abs(rnew(:,1))) 2*max(abs(rnew(:,1))) ...

-2*max(abs(rnew(:,2))) 2*max(abs(rnew(:,2)))])

for i=1:np

plot(rnew(i,1),rnew(i,2),’ko’,’MarkerSize’,10,’MarkerFaceColor’,’k’)

end

fprintf(’Umin=%9.6g (eV)\n’,Umin)

%Final particle distances

rave=0.0;

icord=0;

for i=1:np
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fprintf(’ p#%2i x=%9.4f, y=%9.4f (A)\n’,i,rnew(i,1),rnew(i,2))

end

for i=1:np-1

for j=i+1:np

icord=icord+1;

rij=((rnew(i,1)-rnew(j,1))^2+(rnew(i,2)-rnew(j,2))^2)^(1/2);

rave=rij+rave;

fprintf(’ r(%2i,%2i)=%9.4f (A)\n’,i,j,rij)

line([rnew(i,1),rnew(j,1)],[rnew(i,2),rnew(j,2)],’LineStyle’,’--’,...

’Color’,’k’,’LineWidth’,3)

end

end

axis tight

rave=rave/icord;

fprintf(’ average r=%9.4f (A)\n’,rave)

xlabel(’x (\AA)’,’interpreter’,’latex’)

ylabel(’y (\AA)’,’interpreter’,’latex’)

str=cat(2,’3 atom Molecule 3D’,’ Umin=’,...

num2str(Umin,’%9.4g’),’eV, r_{ave}=’,num2str(rave,’%9.4g’),’A’);

title(str)

function U_LJ=LJ_funNd(r,Np,Nd)

%r is a Np x Nd vector

%Np equal number of particles and

%Nd=number of dimensions

global eps sig

%The Lennard-Jones potential evaluated at vector r

U_LJ=0.0;

sig12=sig^12;

sig6=sig^6;

for i=1:Np-1

for j=i+1:Np

rij=0.0;

for k=1:Nd

rij=(r(i,k)-r(j,k))^2+rij;

end

U_LJ=(sig12*(1./rij).^6-sig6*(1./rij).^3)+U_LJ;

end

end

U_LJ=4*eps*U_LJ;

3.3 Ionic Crystals
Ideal ionic crystals are those which are formed by the combination of atoms from groups I and V II
of the periodic table. Table 3.3.3 shows the electronic configuration for the elements involved. The
alkali metals have a noble gas electron configuration and an extra electron that is loosely bound to
the atom.
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Table 3.3.3: Most ionic crystals are formed by the combination of atoms from group I and group
V II shown here with their electronic configuration.

Group I electronic configuration Group V II electronic configuration
Li He+2s F Ne−2p
Na Ne+2s Cl Ar−3p
K Ar+2s Br Kr−4p
Rb Kr+2s I Xe−5p
Cs Xe+2s

The halide elements are shy of a single electron to be able to complete a noble gas electronic
configuration. The halogen’s high affinity for electrons and the alkali’s disposition to give up its
electron easily make the formation of ionic crystals possible. In this way, the halide atoms complete
their p-subshell and the alkali atoms retain a filled s-subshell. Under normal conditions, one of the
cations (positive ions) Li, Na, K, Rb, or Cs combines with one of the anions (negative ions) F, Cl,
Br, or I to crystallize in the NaCl structure, with the exception of CsCl, CsBr, and CsI which are
most stable in the CsCl structure.
In this section, we develop a potential that is commonly used to understand ionic systems. The
potential minimum is the lattice energy of the crystal system. To see the significance of the lattice
energy, consider the ionic NaCl system. The lattice energy (obtained later in Example 3.3.1.2) per
NaCl molecule in a crystal is about −7.9eV . Now, in order to form a single free standing NaCl
molecule from the neutral atoms, Na is first ionized with a cost of about 5.14eV , and the electron
given to Cl, which, because of its affinity, an energy of about 3.61eV is given off. The net energy
per free molecule is, therefore, about −7.9+ 5.4− 3.61 = −6.11eV . From this, it is seen that the
energy minimum per molecule in the crystal lattice is lower than that of a single molecule. This is
seen as reason enough for the separated ions to seek to lower their total energy and form the NaCl
crystal.
Suppose we use the Coulomb interaction between two already formed ions, one positive and one
negative, and calculate their interacting energy. We write −ke2/R0, and if we take R0 ≈ 2.81 Å for
NaCl, the result is about (−9×109Nm2/C2)(1.602×10−19C)2/(2.81×10−10m) =−8.22×10−19J
or−5.13eV , with about 35% error when compared to the above lattice energy of−7.9eV . The error
is due to the lack of accounting for the lattice contribution. The effort to improve on this simple
model brings us into the subject of the Madelung energy.

3.3.1 Ionic Crystal Potential and Madelung Energy

The Madelung energy helps us to do a better accounting for the interactions between a given ion
and the rest of the ions of an ionic crystal. We first consider a pair potential as we did with the
Lennard-Jones potential. Here, however, rather than using the 1/r12 repulsive term, we employ that
positive interaction of Equation 3.2.22. Furthermore, referring to a given crystal ion, depending on
the sign of the neighboring ions, there will be an ionic term of the form ±ke2/r. As in the Lennard-
Jones potential, there is also a van der Walls −1/r6 attractive interaction, which is neglected due
to its smallness compared to the ionic contribution. We thus have the following interaction energy
between ions i and j in the crystal

Ui j = λ exp
(
− ri j

ρ

)
± ke2

ri j
, (3.3.32)
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where the± sign is for like charges and unlike charges, respectively. Here k = 1/4πε0, and λ , ρ are
experimental parameters of the model. If we look at the total interaction energy associated between
the ith ion and the rest of the crystal ions, we have

Ui = ∑
′Ui j, (3.3.33a)

which is independent of whether the reference ion i is ± and where the prime indicates i 6= j.
Assuming the ion is not near the surface, the total energy for N molecules is

Utotal = NUi. (3.3.33b)

This total energy is also the lattice energy, which is the energy required to separate the crystal into
individual ions at an infinite distance apart. We next define ri j ≡ pi jR with pi j is, as before, the
number of times R that atom j is away from atom i, to obtain for the pair potential

Ui j =





λ exp
(
−R

ρ

)
− ke2

R

± ke2

pi jR

n.n.
otherwise , (3.3.34)

where we have ignored the repulsive term beyond nearest neighbors (n.n.) and λ is the strength of
the repulsive term for nearest neighbors. Substituting this into Equations 3.3.33, and carrying out
the sum, we get the expression

Utotal(R) = N
[

zλ exp
(
−R

ρ

)
− ke2α

R

]
(3.3.35a)

where z is the number of nearest neighbors, and where we have defined the Madelung constant

α ≡∑
j

′±1
pi j

, (3.3.35b)

where now the + sign is for unlike charges and the − sign is for like charges. We note that for
stability reasons it is necessary that α > 0. The Madelung constant plays an important role in the
theory of ionic crystals. We will come back to its evaluation later. We now use Equation 3.3.35a
to obtain the equilibrium distance, R = R0, between the nearest neighbor atoms. The potential is
minimized, dUtot/dR

∣∣∣
R=R0

= 0, to obtain the relation for the bond length

R2
0 exp(−R0/ρ) =

ke2ρα

zλ
, (3.3.36)

which, given ρ, λ , and α is to be solved self consistently for R0. Knowing this, we can then find
the lattice energy as U0 ≡Utotal(R = R0) from Equation 3.3.35a or, equivalently, we can substitute
zλ exp(−R0/ρ) = ke2ρα/R2

0 from Equation 3.3.36 into Utotal(R = R0) to get

U0 = N
[

ke2ρα

R2
0
− ke2α

R0

]

=−UM

(
1− ρ

R0

)
,

(3.3.37a)

where we have defined the Madelung energy

UM ≡
Nαke2

R0
. (3.3.37b)

We now have all the necessary ingredients to perform a crystal system’s lattice energy calculation.
Before doing so, however, in the following example, we go back and see how we might go about
calculating the Madelung constant for the NaCl crystal.
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Example 3.3.1.1
The Madelung constant for the NaCl contains factors similar to that of a simple cubic (see Exam-
ple 3.2.3.1). The nearest neighbor distance is R0 = a/2, where a is the lattice constant, so that there
are 6 of them (Cl surrounds Na), each with p01 = 1. Next, there are 12 Na 2nd neighbors at a distance
of
√

2R0, each with p02 =
√

2, and so on. From Equation 3.3.35b, including up to the 7th neighbors
we have alpha approximated as α ≈ 6− 12/

√
2+ 8/

√
3− 6/

√
4+ 24/

√
5− 24/

√
6+ 12/

√
8 =

4.3113, which is far from converging and does so very slowly. It turns out that for NaCl, all of the
terms can be obtained from the expression

αNaCl = lim
N→∞

N

∑
i=−N

N

∑
j=−N

N

∑
k=−N

(−1)(i+ j+k+1)
√

i2 + j2 + k2
(except i = j = k = 0)

= 1.747565.

(3.3.38)

Table 3.3.4 lists values of α for three different structures.

Table 3.3.4: Crystal structures Madelung constant values.

System α

Sodium chloride, NaCl 1.747565
Cesium chloride, CsCl 1.762675
Zinc blend, cubic ZnS 1.6381

Table 3.3.5 contains various properties and parameters for the alkali-halide crystals with the NaCl
structure. Using parameters from this table, we do the following example.

Example 3.3.1.2
Using appropriate parameters from Table 3.3.5 for NaCl, plot the ionic potential, obtain its lattice
energy and the equilibrium bond length.
Solution
We first solve for the equilibrium bond length by solving Equation 3.3.36 for R0 self con-
sistently. We define x = R0/ρ and we let c = ke2α/(zλρ) = (8.99 × 109Nm2/C2)(1.602 ×
10−19C)2(1.747)/(6553.59eV ·1.602×10−19J/eV ·0.321×10−10m)≈ 0.0120. We then solve the
dimensionless equation x2 exp(−x) = c iteratively. This equation has two solutions, we seek the
larger of the two. The simple iterative solution is such that xi+1 = −log(c/x2

i ) and we iterate this,
as i→ N for large N, until xN ≈ xN−1, assuming a reasonable initial guess of greater than 2, since
the larger root occurs beyond where the maximum of x2 exp(−x) occurs. A simple script for this
follows.

x=2.3; %the initial guess

c=0.0120; %the constant

for i=1:10 %the loop - 10 iterations do fine

x=-log(c/x^2) %the new guess, which will converge

end

Alternatively, one can apply the Newton-Raphson method, which is accomplished as
x=fzero(’x^2*exp(-x)-0.012’,2.3)

in MATLAB. In either case, the result is x ≈ 8.76, to obtain the bond length as R0 = xρ =
8.76 · 0.321Å ≈ 2.81Å. Having R0, we can find the Madelung energy per molecule from Equa-
tion 3.3.37b as UM/N = αke2/R0 = (1.747) · (8.99 × 109Nm2/C2)(1.602 × 10−19C)2/2.81 ×
10−10m = 1.4395× 10−18 J or UM/N ≈ 8.9eV/molecule. We are ready to obtain the lattice en-
ergy per molecule from Equation 3.3.37a as U0/N = −(UM/N)(1− ρ/R0) = −(UM/N)(1−
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1/x) = −(8.9eV )(1− 1/8.76) ≈ −7.9eV/molecule. This is the lattice energy per NaCl molecule
we referred to in the introductory part of Section 3.3. Since 1eV/molecule = Nae/4186J ≈
23.05kcal/mol, where Na is Avogadro’s number, we can express the lattice energy as U0 ≈
−181.7kcal/mol. The bond length, Madelung energy, and lattice energy found thus far are close to
the ones calculated more accurately by the script ionic NaCl.m listed below. The script’s theoretical
lattice energy result of −182.5kcal/mol for NaCl is shown in the last column of Table 3.3.5, which
is close to the quoted experimental value. Finally, the plot of the ionic potential for NaCl is shown
in Figure 3.3.9.
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Figure 3.3.9: The ionic NaCl system’s potential calculated by the script ionic NaCl.m using Equa-
tions 3.3.35 - 3.3.37. The calculated values for the bond length (R0), the Madelung energy (UM/N),
and the lattice energy (U0/N) are 2.8148Å, 8.9372eV/molecule, and −7.9180eV/molecule
(−182.5064kcal/mol), respectively.

The code ionic NaCl.m used in this example follows.

%copyright by J. E Hasbun and T. Datta

%ionic_NaCl.m

%This script performs the calculation of the potential

%U=z*lambda*exp(-R/rho)-UM*R0./R, where UM=alpha*k*e^2/R0 is

%the Madelung energy. The NaCl ionic system is done here.

%It makes use of the Madelung constant for the FCC structure.

%It calculates the minimum energy (lattice energy), U0,

%and the nearest neighbor distance, R0.

clear

Na=6.02214179e23; %Avogadro’s constant (1/mol)

JpK=4.186e3; %Joules per Kcal

e=1.602176487e-19; %electronic charge

eps0=8.854187817e-12; %Permittivity of free space (C^2/N/m^2)

k=1/4/pi/eps0; %constant (mks units)

alpha=1.747; %NaCl Madelung Constant parameter

rho=0.321e-10; %NaCl potential decay parameter (m)

Zlamb=6553.59; %NaCl z*lambda parameter (ev)

const=k*e^2*alpha/rho/(Zlamb*e); %dimensionless, to get R0

fR0=inline(’x.^2.*exp(-x)-c’,’x’,’c’); %function=0 to get R0

xg=2-log(2^2*exp(-2))-log(const); %rough guess for x
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[x,fval] =fzero(fR0,xg,[],const); %finds x as the zero of fR0

R0=x*rho; %R0 in meters

%R0=2.82e-10 %table value for R0 if desired (m) for NaCl

UM=alpha*k*e^2/R0/e; %Madelung energy per molecule in eV

U0=-UM*(1-rho/R0); %U0 in eV

U0_KpM=U0*e*Na/JpK; %U0(minimum energy)in Kcal per mol

%Define U_of_R per molecule in eV

U_of_R=@(R,Zlamb,rho,UM,R0) Zlamb*exp(-R/rho)-UM*R0./R;

Rl=0.6*R0; Ru=3*R0;

R=Rl:(Ru-Rl)/50:Ru; %R range

U=U_of_R(R,Zlamb,rho,UM,R0); %U(R) per molecule in eV

h=plot(R*1e10,U,’k’);

hold on

plot(R0*1e10,U0,’k*’)

xlabel(’R (Angstroms)’)

ylabel(’U (eV)’)

disp(’NaCl ionic system’)

fprintf(’Madelung energy=%8.4f eV, R0=%8.4f Angstroms\n’,UM,R0/1e-10)

fprintf(’Lattice energy=%9.4f eV =%10.4f Kcal/mol\n’,U0,U0_KpM)

str=cat(2,’NaCl potential: \rho = ’,num2str(rho/1e-10,’%6.4f’),...

’ Ang, z\lambda = ’,num2str(Zlamb,’%4.2f’),’ eV’);

title(str)

str2=cat(2,’R_0 = ’,num2str(R0/1e-10,’%7.2f’),...

’ Ang, U_0 = ’,num2str(U0,’%7.2f’),’ eV, =’,...

num2str(U0_KpM,’%8.2f’),’ Kcal/mol’);

legend(’U(R) for NaCl’,str2,0)

Minor modifications of this script should yield the theoretical lattice energies for all the systems
shown in Table 3.3.5. Based on Equations 3.3.35 - 3.3.37, the only inputs that vary from one system
to another are zλ and ρ .
Finally, we can write an expression for the bulk modulus of ionic crystals at zero Kelvin. We make
use of the FCC structure bulk modulus Equation 3.2.31b as well as Equations 3.3.35a, 3.3.36, and
3.3.37b to obtain

B =

√
2ke2α

9R3
0ρ
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1− 2ρ

R0
.

)
=

√
2
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)
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√
2

9ρ3x2
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(

1− 2
x

)
, (3.3.39)

where in the last expression, x = R0/ρ , as used in Example 3.3.1.2, and with the rest of the parame-
ters used there, for NaCl; that is, UM/N = 8.9eV = 1.4259×10−18J, x= 8.76, ρ = 0.321×10−10m,
one gets B≈ 6.8×1010 N/m2. This value is larger by a factor of about 2.8 from the room tempera-
ture experimental value shown in Table 3.3.5.

3.4 Covalent Bonding
Covalent bonding refers to the bonding that occurs when it is easier for interacting atoms to achieve
an outer electron configuration that will lead to a lowering of the total energy without necessarily
giving up any electrons. In so doing, each atom gains enough electrons so as to achieve a noble
gas atom outer electron configuration. The bonding that takes place leads to the creation of stable
molecules and crystals. It happens in such a way that the electrons belonging to the involved atoms
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Table 3.3.5: Properties and parameters for the alkali-halide crystals with the NaCl structure (at
room temperature and atmospheric pressure [3]) used in the theory. The theoretical results for the
lattice energy (U0) were obtained using Equations 3.3.35 - 3.3.37, as in Example 3.3.1.2.

Crystal R0 Bulk Modulus zλ ρ -Elattice −Elattice(−U0)

(Å) (1010N/m2) (eV ) (Å) (kcal/mol) (kcal/mol)
(Experiment) (Theory)

LiF 2.014 6.71 1847.49 0.291 242.3 245.9
LiCl 2.570 2.98 3058.34 0.330 198.9 196.4
LiBr 2.751 2.38 3688.73 0.340 189.8 184.7
LiI 3.000 1.71 3738.66 0.366 177.7 169.5
NaF 2.317 4.65 4000.81 0.290 214.4 219.0
NaCl 2.820 2.40 6553.59 0.321 182.6 182.5
NaBr 2.989 1.99 8301.21 0.328 173.6 172.9
NaI 3.237 1.51 9861.59 0.345 163.2 160.0
KF 2.674 3.05 8176.38 0.298 189.8 193.0
KCl 3.147 1.74 12795.09 0.326 165.8 165.3
KBr 3.298 1.48 14355.47 0.336 158.5 157.7
KI 3.533 1.17 17788.30 0.348 149.9 148.1
RbF 2.815 2.62 11109.89 0.301 181.4 183.8
RbCl 3.291 1.56 19910.42 0.323 159.3 158.9
RbBr 3.445 1.30 18911.77 0.338 152.6 152.0
RbI 3.671 1.06 24903.62 0.348 144.9 142.9

are shared. It takes two electrons to create a covalent bond, one from each atom, and whose spins are
antiparallel to each other. An example of covalent bonding is the hydrogen molecule (H2) as well as
methane (CH4). In the hydrogen molecule the s-shell electrons from each hydrogen atom are shared
by the two ions. In methane, the carbon atom shares its four (s, p)-shells valence electrons with
each of four hydrogen atoms. Semiconductor crystals involve covalent bonding and often include
elements in groups II, III, IV, V, and VI of the periodic table. For example, IIB-VIB compounds like
ZnS and CdTe form covalent bonding, as do IIIB-VB compounds such as GaAs and InSb. Group
IVB crystals of Si and Ge form covalent binding as well with respectable cohesive energies as shown
in Table 3.1.1. This is indicative of the covalent bond’s strength, especially that of group IVB such
as C, itself responsible for the diamond structure, one of the hardest substances known. Its stability
is due to the strength of the covalent bond formed among its neighbors. Covalent bonding is most
easily understood in terms of a simple quantum mechanical model of a molecule in which electrons
are shared among the protons. In this regard, the simplest such molecule that we can think of is that
of the single electron molecular hydrogen ion which we study next.

3.4.1 The Molecular Hydrogen Ion (H+
2 ) - An Analytical Calculation

The molecular hydrogen ion consists of two protons and one electron as shown in Figure 3.4.10.
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Figure 3.4.10: The H+
2 molecule with protons pi at positions ~Ri with i = 1,2 and a single electron

e− with coordinate~r.

We use the H+
2 system as the simplest example of covalent bonding. It is the simplest model of a

molecule in which a single electron is shared between two protons separated by a finite distance.
We begin by writing the Hamiltonian of the system as

Htotal = HH+
2
+Hions, (3.4.40a)

where HH+
2

refers to the electron part

HH+
2
=− h̄2~∇2

r

2m
− ke2

|~r−~R1|
− ke2

|~r−~R2|
, (3.4.40b)

and the Hions is the proton-proton repulsion

Hions =
ke2

|~R1−~R2|
. (3.4.40c)

The electron part, HH+
2

, consists of the electron kinetic energy and its electrical potential energy as-

sociated with each of two protons. The electron coordinate is~r, while ~Ri is the coordinate of the ith
proton with i = 1,2. The protons themselves are considered to be at rest, using the so-called Born-
Oppenheimer approximation. In order to treat this problem, it is helpful to recall results from the hy-
drogen atom. Its normalized ground state electronic wavefunction is s(r) = exp(−r/a0)/[

√
πa3/2

0 ],
where r is the electron coordinate from the origin where the proton is assumed to be located and
a0 = 4πε0h̄2/me2 = 0.529Å is the Bohr radius. This wavefunction is peaked around the proton. In
a similar fashion, for the case of the ground state of H+

2 , the electron distribution is thought to peak
around each proton with associated normalized wavefunction

si(r) =
1

√
πa3/2

0

exp(−|~r−~Ri|/a0), (3.4.41a)

for proton i with i = 1,2. Exponential wavefunctions of this type are also known as Slater orbitals.
Note, though, that the electron is shared by both protons so that the total wavefunction is better
represented as a linear combination of the two wavefunctions, or

ψs,a(r) = N[s1(r)± s2(r)], (3.4.41b)

where s,a stand for symmetric (+) and antisymmetric (−) combinations, respectively. The sym-
metric combination is associated with the bonding or equilibrium state of the molecule, while the
antisymmetric state is associated with the antibonding state, as shown in Figure 3.4.11. The factor
of N in Equation 3.4.41b is the new wavefunction’s normalization constant.
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Bonding Antibonding

Figure 3.4.11: Symmetric (bonding) and antisymmetric (antibonding) electronic wavefunction
combinations described by Equations 3.4.41. The dots represent the equilibrium positions of the
two protons.

If in Equation 3.4.40b we refer to the terms T ≡− h̄2~∇2
r

2m , Vi ≡− ke2

|~r−~Ri|
, and using the Dirac notation

for the wavefunctions of Equation 3.4.41b, |si >≡ si(r), the symmetric state can now be written as
|ψs >≡ ψs(r) = N(|s1 >+|s2 >). With these definitions and the fact that < si|si >= 1 for i = 1,2;
that is, the wavefunctions are normalized, we have

< s1|T +V1|s1 >=< s2|T +V2|s2 >= E1s, (3.4.42a)

where E1s = ke2/2a0 = 13.606eV is the electronic ground state energy of atomic hydrogen, which
is an energy unit known as a Rydberg. Another unit of energy that is often used is the Hartree
(27.211eV ), which is equivalent to two Rydbergs. We further define

∆≡< s1|s2 >=< s2|s1 >,

A≡−< s2|V1|s2 >=−< s1|V2|s1 >,

and
B≡−< s1|V1|s2 >=−< s2|V2|s1 > .

(3.4.42b)

Also since < ψs|ψs >= 1 = N2 < s1 + s2|s1 + s2 >= 2N2(1+∆) then

N = 1/
√

2(1+∆). (3.4.42c)

The ground or bonding state energy of the H+
2 molecule, associated with the symmetric state, is

Es =
< ψs|HH+

2
|ψs >

< ψs|ψs >
= N2(< s1 + s2|HH+

2
|s1 + s2 >)

= N2(< s1|HH+
2
|s1 >+< s2|HH+

2
|s2 >+2 < s1|HH+

2
|s2 >).

(3.4.43)

With the use of Equations 3.4.42, Es can be simplified. We make use of the terms

< s1|HH+
2
|s1 >=< s1|T +V1|s1 >+< s1|V2|s1 >= E1s−A,

< s2|HH+
2
|s2 >=< s2|T +V2|s2 >+< s2|V1|s2 >= E1s−A,

and
< s1|HH+

2
|s2 >=< s1|V1|s2 >+< s1|T +V2|s2 >=−B+E1s < s1|s2 >=−B+E1s∆,

(3.4.44)

which when substituted back into Equation 3.4.43, we obtain the final expression for the electronic
ground state energy of H+

2 in the form

Es = 2N2(E1s(1+∆)−A−B) = E1s−
A+B
1+∆

, (3.4.45)



Covalent Bonding 101

where we have also used Equation 3.4.42c. A similar calculation, using the antisymmetric wave-
function |ψa >≡ψa(r) = N(|s1 >−|s2 >) leads to a normalization constant N = 1/

√
2(1−∆) and

an antibonding electronic state energy of

Ea = 2N2(E1s(1−∆)−A+B) = E1s−
A−B
1−∆

. (3.4.46)

The total energy of the H+
2 molecule is obtained by adding the electronic energy and the ionic

energy from Equation 3.4.40 or

Etotals,a = Es,a +
ke2

R
, (3.4.47)

where R≡ |~R1−~R2|. To calculate the above energies, the only remaining detail are the expressions
for the integrals of Equation 3.4.42b. They are indeed available [12], [13] as follows

∆≡< s1|s2 >=

[
1+

R
a0

+
R2

3a2
0

]
e−R/a0 ,

A =−< s2|V1|s2 >=
ke2

a0

[a0

R
−
(a0

R
+1
)

e−2R/a0
]
,

and

B =−< s1|V1|s2 >=
ke2

a0

[
R
a0

+1
]

e−R/a0 .

(3.4.48)

In the following example, we perform a calculation based on the analytic formulas of both energy
states discussed above for the H+

2 molecule.

Example 3.4.1.1
Before starting on the calculation of the bonding and antibonding state energies of Equation 3.4.45,
3.4.46, 3.4.47, and 3.4.48, let’s define the units we wish to employ. For distance we will use a0,
and for energy we will employ Hartree units (εb = 2E1s = ke2/a0) mentioned in connection with
Equation 3.4.42a. These units seem natural here for the above equations have the same form except
that the quantities k, e, and a0 do not need to appear in the actual calculations. These units are also
known as atomic units. In this example, we plot the electronic H+

2 energy from Equation 3.4.45, the
total energy from Equation 3.4.47, and also the ion-ion energy (last term of the total energy) versus
R (|~R1− ~R2|). From the minimum of the energy, we find the bond length as well as the total bonding
energy. For comparison purposes, the energy with the neutral hydrogen atom is superimposed on
the plot (-1/2 Hartree). Figure 3.4.12(a) shows that the minimum energy occurs at a bond length
of about Rb = 2.493a0 = 1.319 Å and a minimum energy value of about Emin =−0.565 Hartree =
−15.370eV . The magnitude of the difference between the hydrogen atom’s ground state, E1s, and
Emin is referred to as the dissociations energy, whose value is E1s−Emin = 0.0650 Hartree= 1.77eV
for H+

2 . The experimental value of the dissociation energy is known to be about 2.78eV with a bond
length of about 1.06 Å [13] and corrections to the present calculation is beyond our scope.
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Figure 3.4.12: (a) The bonding state energy for the H+
2 molecule in Hartree units (εb) versus proton-

proton separation, R, in units of the Bohr radius (a0). The ionic energy is 1/R, the electronic energy
is < E > from Equation 3.4.45, the total energy is from Equation 3.4.47, and the hydrogen atom
energy corresponds to E1s =−1/2 Hartree =−13.6eV . The minimum of the total energy occurs at
Rb = 2.493a0 = 1.319 Å, with a minimum of Emin =−0.565 Hartree=−15.370eV . The molecule’s
dissociation energy corresponds to E1s−Emin = 0.0650 Hartree= 1.77eV . (b) The results are shown
for the antibonding state using Equations 3.4.46 and 3.4.47. Its total energy value at the equilibrium
position is −0.289Hartree =−7.871eV .

The code employed in the calculation of the bonding state is hydro mol ion sym.m whose listing
follows.

%copyright by J. E Hasbun and T. Datta

%hydro_mol_ion_sym.m

%This program incorporates the analytic solution to the

%singly ionized hydrogen molecule.

%

clear

e=1.602176487e-19; %electronic charge

h=6.62606896e-34; %Planck’constant (J.s)

eps0=8.854187817e-12; %Permittivity of free space (C^2/N/m^2)

k=1/4./pi/eps0; %Electrical constant (N.m^2/C^2)

hbar=h/2./pi; %hbar

me=9.10938215e-31; %electron mass (kg)

a0=hbar^2/me/e^2/k; %Bohr radius (m)

Eb=2*hbar^2/(2*me*a0^2); %Hartree energy unit

%Analytic result

R=0.25:0.001:5; %plotting range in unit of a0

Ab=1./R-(1./R+1.0).*exp(-2*R); %A in units of Eb

Bb=(R+1).*exp(-R); %B in units of Eb

Del=(1+R+R.^2/3).*exp(-R); %overlap, R in a0 units

E1s=-1.0/2.0; %Bohr energy in Eb units

Eions=1./R; %Ion-Ion repulsion energy

Ebo=E1s-(Ab+Bb)./(1.0+Del); %Bonding energy

Etotbo=Ebo+Eions; %Total energy for bonding

[Etmin,index_ymin]=min(Etotbo); %total energy minimum & its array index

Rf=R(index_ymin); %equilibrium bond length at min of energy

Ebomin=Ebo(index_ymin); %bonding energy at equilibrium
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Eimin=Eions(index_ymin); %ion energy at equilibrium

%Plots follow

plot(R,Ebo,’k-.’)

hold on

plot(R,Eions,’k:’)

plot(R,Etotbo,’k-’)

line([0 max(R)],[E1s E1s],’Color’,’k’,’LineStyle’,’--’) %H atom energy

xlabel(’R(a_0)’), ylabel(’E(\epsilon_b)’)

axis([0 max(R) min(Ebo) -min(Ebo)])

legend(’<E>’,’E_{ions}’,’E total’,’atomic: E1s’)

title(’Ionized hydrogen molecule: bonding state’)

hold off

%

disp(’H2+ molecule analytic Results - bonding state’)

fprintf(’R_equilibrium=%9.4f, (a0) or %9.6f (Angs)\n’,Rf,Rf*a0/1e-10)

fprintf(’<E>=%9.6f (Hartree) or %9.6f (eV)\n’,Ebomin,Ebomin*Eb/e)

fprintf(’Eions=%9.6f (Hartree) or %9.6f (eV)\n’,Eimin,Eimin*Eb/e)

fprintf(’Etotal=%9.6f (Hartree) or %9.6f (eV)\n’,Etmin,Etmin*Eb/e)

A slight modification of this code, using the obtained equilibrium bond length, produces the results
of the antibonding state as shown in Figure 3.4.12(b). At the bond length, the total energy of this
state is −0.289Hartree =−7.871eV (see Exercise 3.6.15).

The calculation performed in this section has been based on the analytic results for the H+
2 or singly

ionized hydrogen molecule. In the Section 3.4.2, we work with the hydrogen molecule and perform
a fully numeric calculation of its bonding and antibonding states based on the simplest wavefunction
possible.

3.4.2 The Hydrogen Molecule (H2) - A Numeric Calculation

Here we seek to extend the idea started in the previous section to describe the sharing of electrons
among two protons. The hydrogen molecule, having two electrons, is considerably more compli-
cated than the single electron H+

2 molecule. The reason is that as in H+
2 an electron can be consid-

ered to have a wavefunction associated with the probability of being found around each of the two
protons, but now, in H2, we have two electrons, so one might consider a total wavefunction that is
a product of such wavefunctions similar to those of Equation 3.4.41b around both protons, but one
for each electron. For concreteness, let’s start with the symmetric state and define the wavefunction

φ0(r) =
s1(r)+ s2(r)√

2
, (3.4.49a)

where the si(r) are the Slater type orbitals as in Equation 3.4.41a for an electron with coordinate~r
around the ith proton. For the two electrons we, therefore, assume a product of such wavefunctions
to form the total wave function

ψ
H
0 (r1,r2) = φ0(r1)φ0(r2), (3.4.49b)

for the bonding state. Similarly for the case of the antibonding state we have

φ1(r) =
s1(r)− s2(r)√

2
, and ψ

H
1 (r1,r2) = φ1(r1)φ1(r2). (3.4.49c)
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This is indeed what Hartree proposed [14]. The product of two one-electron probabilities is known
as an uncorrelated wavefunction. Thus, the above Hartree wavefunctions ψH

i (r) for i = 1,2 are un-
correlated. Furthermore, in general, products of one-electron wavefunctions are known as Hartree
products. Such products are not in line with the quantum mechanical principle that electrons are
indistinguishable under the exchange of coordinates. Also, according to the Pauli exclusion princi-
ple, electrons are characterized by antisymmetric wavefunctions in such a way that the probability
of finding them at the same position at the same time is zero. For simplicity, and for example, let’s
consider a totally hypothetical situation in which we build a two-electron wavefunction ξa(r1,r2) =
χ1(r1)χ2(r2). Next, exchanging the electron coordinates leads to ξa(r2,r1) = χ1(r2)χ2(r1) which is
already different from ξa(r1,r2) because χ1(r) 6= χ2(r) and χi(r1) 6= χi(r2) for i = 1,2. However, if
we had instead constructed the wavefunction ξb(r1,r2) = χ1(r1)χ2(r2)− χ1(r2)χ2(r1), we see that
if we exchange coordinates we get the wavefunction ξb(r2,r1) = χ1(r2)χ2(r1)− χ1(r1)χ2(r2) =
−ξb(r1,r2) and thus ξb(r1,r2) is antisymmetric under the exchange of coordinates; furthermore,
|ξb(r1,r2)|2 = |ξb(r2,r1)|2, and the so constructed ξb maintains the indistinguishability of the elec-
trons while obeying the Pauli principle (also if r1 = r2 = r, ξb vanishes as required). Notice that the
way in which ξb(r1,r2) has been constructed is such that it is not a simple product of one-electron
wavefunctions, so that ξb(r1,r2) is correlated.
In our present discussion, we have not mentioned the intrinsic spin of the electrons which also plays
a role in correlations and in determining the kind of wavefunction we use. In the case of the Hartree
wavefunction Equation 3.4.49b, ψH

0 (r1,r2) corresponds to the space part in the total wavefunction

ψ(x1,x2) = ψspaceψspin = ψ
H
0 (r1,r2)

α1β2−α2β1√
2

, (3.4.50)

where the variables x1, x2 contain the position and spin coordinates and where αi,β j stand for the
ith electron with spin-up and the jth electron with spin-down, respectively. The spin part being anti-
symmetric under exchange makes the total wave function antisymmetric so that the space part must
be symmetric. Since we do not include spin in our H2 Hamiltonian (below), the spin coordinates do
not appear in our discussion any further. For the hydrogen molecule we write the Hamiltonian as

Htotal = Hions +HH2(r1,r2), (3.4.51a)

with

Hions =
ke2

|~R1−~R2|
,

HH2(r1,r2) = HH+
2
(r1)+HH+

2
(r2)+h(r1,r2).

(3.4.51b)

The ions term is a repulsive interaction and we assume they are fixed as before. The electron part
HH2(r1,r2) contains the kinetic term for each electron as well as each electron interacting with each
ion; for each electron, there is a term with the same form as the singly ionized hydrogen molecule
Hamiltonian. The last term is the electron-electron interaction. These terms are given by

HH+
2
(r) =− h̄2

2m
~∇2

r −
ke2

|~r−~R1|
− ke2

|~r−~R2|
, (3.4.51c)

and

h(r1,r2) =
ke2

|~r1−~r2|
. (3.4.51d)

As mentioned before, the Hartree wavefunction is not the best assumption, but for the present case,
the main disadvantage in using Equations 3.4.49 lies in the description of what happens for large ion
separation. In such case, we should end up with two separate hydrogen atoms, yet that is not what
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Equations 3.4.49b and 3.4.49c describe. A better wavefunction would be a symmetric wavefunc-
tion that has terms like ψL(r1,r2) ≈ s1(r1)s2(r2) or s1(r2)s2(r1) or a linear combination of them.
Such wavefunction is separable, in the sense that in the absence of the electron-electron interaction,
for large ion separation, the Hamiltonian HH2(r1,r2)→ HL(r1,r2) ≡ H1(r1)+H2(r2), since each
electron would only interact with a single ion in this limit, and where Hi(r) = − h̄2

2m
~∇2

r − ke2

|~r−~Ri|
is the hydrogen atom Hamiltonian associated with the ith ion. In this limit, HL(r1,r2)|ψL >=
(E1s +E1s)|ψL >, which is what one expects. We will come back to the better wavefunction later.
For now, in spite of these disadvantages, we seek to find the ground state energy of the electronic
bonding state associated with HH2(r1,r2) in Equation 3.4.51b acting on the wavefunction of Equa-
tion 3.4.49b with the definition in Equation 3.4.49a. While we might guess what the wave-function
behaves like, we do not know its exact form; for this reason, we will use the variational method.
In the variational method, the wavefunction guess depends on one or more unknown parameters.
We find the best parameters by minimizing the energy. The idea of the variational principle is that
the resulting minimum energy is an upper bound to the exact ground state energy. In this way, we
calculate our estimate to the ground state for the H2 molecule by minimizing the quantity for the
total energy

Etotal =
ke2

|~R1−~R2|
+< HH2 >, (3.4.52a)

with respect to the variational parameters, where the first term is the ionic repulsive energy, and the
second term is the electronic energy given by the expectation value

< HH2 >=
< ψH

0 |HH2(r1,r2)|ψH
0 >

< ψH
0 |ψH

0 >
, (3.4.52b)

involving the variational wavefunction ψH
0 (r1,r2) of Equation 3.4.49b. This wavefunction depends

on the si(r) basis functions through Equation 3.4.49a and, as will be described later below, these
basis functions incorporate the variational parameters of interest here. Before considering what the
specific form of our variational wavefunctions si(r) look like, let’s do a simple analytic example to
illustrate the variational process.

Example 3.4.2.1
Assuming a variational wavefunction of shape ψ(r) = ce−αr, obtain an upper bound to the ground
state energy of the hydrogen atom.
Solution
Throughout this example, we will use the integral identity

∫
∞

0 rne−ardr = n!/an+1.
We first normalize the wavefunction < ψ|ψ >=

∫
π

0 sinθdθ
∫ 2π

0 dφ
∫

∞

0 |ψ(r)|2r2dr = 1 =

4πc2/(4α3), which gives c =
√

α3/π . Placing this constant back into the original wavefunction,
we have ψ(r) =

√
α3/πe−αr. The hydrogen atom Hamiltonian is

HH =−h̄2~∇2/2m− ke2/r, (3.4.53)

and using spherical symmetry we have that~∇2ψ(r)= 1
r2

d
dr

(
r2 d

dr ψ(r)
)
=
√

α3/πα
[
− 2

r +α
]

e−2αr.

Having normalized ψ , we then have that <ψ|HH |ψ>
<ψ|ψ> =< ψ|HH |ψ >= α4

π

h̄2

2m
∫ [− 2

r +α
]

e−2αrd3r−
ke2α3

π

∫ e−2αr

r d3r, where d3r = r2dr sinθdθdφ . As usual, the θ and φ integration gives a factor of 4π ,

and after performing the integration over r and simplifying, we get E0 =<ψ|HH |ψ >= h̄2
α2

2m −ke2α .
The obtained variational energy depends on the yet unknown variational parameter α . We find its
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value my minimizing E0, or setting dE0
dα

= α h̄2

m −ke2 = 0, which gives α = kme2

h̄2 ; however, one notices
that the inverse of this is exactly the definition of the Bohr radius. Thus α = 1/a0. Substituting this
α back into the obtained ground state, we see that E0 =

h̄2

2ma2
0
− ke2

a0
= ke2

2a0
− ke2

a0
or E0 =− ke2

2a0
. This

is in fact the ground state of the hydrogen atom. The assumed form of the variational wavefunction
happened to have the correct shape so as to lead to the exact result.

The above example has been carried out analytically and the wavefunction ansatz is a Slater type
of orbital; that is, a decaying exponential. This wavefunction happened to be exact for the ground
state of the hydrogen atom. In general, it is not a simple process to know what kind of ansatz will
work best, and sometimes more than one variational parameter is involved in the ansatz. We will do
the hydrogen molecule in a different way. As you probably have surmised, if we were to expand a
wavefunction in a larger basis to achieve better accuracy in the solution, more variational parameters
come into play. There are also more integrals to be done. The integrals involving exponential bases
are difficult and numerical methods have to be used to carry them out, which becomes a time-
consuming task, even for computers. While that is one option, it is also possible to employ an ansatz
that involves a Gaussian basis. We will use such bases for the hydrogen molecule’s wavefunction
expansion. One advantage in using a Gaussian bases is that there exist analytic formulas for the
integrals. Below are the known integrals between Gaussians [15] which will find use in our hydrogen
molecule problem. We first define a Gaussian function in the form

g1s,α(r−RA)≡ |1s,α,A >= exp[−α|~r−~RA|2], (3.4.54a)

and the product of two Gaussians as

g1s,α(r−RA)g1s,β (r−RB) = Kg1s,γ(r−RP), (3.4.54b)

where K = exp[−αβ |~RA−~RB|2/γ], γ = α +β , and ~RP = (α~RA +β~RB)/γ . The overlap integral is
given by

< 1s,α,A|1s,β ,B >=

(
π

α +β

)3/2

exp

[
−αβ |~RA−~RB|2

α +β

]
. (3.4.54c)

The kinetic integral is

< 1s,α,A|−~∇2|1s,β ,B>=
αβ

α +β

[
6−4

αβ

α +β
|~RA−~RB|2

](
π

α +β

)3/2

exp
[
− αβ

α +β
|~RA−~RB|2

]
.

(3.4.54d)

With rc ≡ |~r−~RC| and Z the atomic number, we have for the coulomb integral

< 1s,α,A|−Z/rc|1s,β ,B >=− 2Zπ

α +β
exp
[
− αβ

α +β
|~RA−~RB|2

]
F0

[
(α +β )|~RP−~RC|2

]
,

(3.4.54e)

where F0(t) = t−1/2 ∫ t1/2

0 e−y2
dy =

√
π ·Erf(

√
t)/(2

√
t), and Erf(x) = (2/

√
π)
∫ x

0 e−x′2dx′. Finally,
for the two-electron integral we have

< 1s,α,A;1s,β ,B| 1
|~r1−~r2|

|1s,γ,C;1s,δ ,D >=
(2π)5/2

(α + γ)(β +δ )(α +β + γ +δ )1/2

· exp
[
− αγ

α + γ
|~RA−~RC|2−

βδ

β +δ
|~RB−~RD|2

]

·F0

[
(α + γ)(β +δ )

(α +β + γ +δ )
|~RP−~RQ|2

]
,

(3.4.54f)
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where in this expression ~RP = (α~RA + γ~RC)/(α + γ) and ~RQ = (β~RB + δ~RD)/(β + δ ). To get a
good handle on the numerical solution process involving the Gaussian expansion of the ansatz, let’s
repeat the hydrogen atom Example 3.4.2.1 using this concept. After that, we will be ready to do the
hydrogen molecule.

Example 3.4.2.2
Assuming a variational wavefunction expanded in terms of Gaussian basis functions in the form
ψ(r) = c1e−α1r2

+ c2e−α2r2
, obtain an upper bound to the ground state energy of the hydrogen

atom.
Solution
We will work with atomic units as before; that is, distance in units of a0 and energy in Hartrees,
h̄2/(ma2

0) = ke2/a0. In these units, the hydrogen atom Hamiltonian of Equation 3.4.53 becomes

HH =−~∇2/2−1/r, (3.4.55)

In these units, we write the exact wave function as ψexact = exp(−r), which will be used to see how
well the given numeric solution compares to it. Both of the wavefunctions (exact and Gaussian-
expanded) will be normalized numerically by solving for N in N2 ∫ |ψ|2d3r = 1 and then multiplying
the unnormalized wavefunction by the resulting N. We seek to minimize the variational energy

E0 =
< ψ|HH |ψ >

< ψ|ψ >
=

2
∑

i=1

2
∑
j=1

c∗i c j < Gi|HH |G j >

2
∑

i=1

2
∑
j=1

c∗i c j < Gi|G j >

, (3.4.56)

where Gi = e−αir2
are the Gaussian functions. We also note that we will be working with real

coefficients so that we will take c∗i = ci. The overlap integrals < Gi|G j > are done through Equa-
tion 3.4.54c with ~RA = ~RB = 0 since we only have one ion and it is located at the origin. The matrix
elements of the Hamiltonian are

< Gi|HH |G j >=
1
2
< Gi|−~∇2|G j >+< Gi|−Z/rc|G j >, (3.4.57)

which are done through Equations 3.4.54d and 3.4.54e, respectively, with Z = 1 for hydrogen and
~RA = ~RB = ~Rc = 0. Since we now have four variational parameters; i.e., c1, c2, α, and β , we will
make use of MATLAB’s fminsearch function to minimize the numerical E0 of Equation 3.4.56. The
function fminsearch requires initial guesses for these parameters. We will use c1 = c2 = 1/2 and
α1 = 0.17792 and α2 = 1.9701 which were obtained by approximately fitting the exact exponential
function with two Gaussian functions, similar to the given ansatz. The script, in the form of a
function, used for the numerical solution is hydroGausGr0.m. The reason for making it as a function
is that, in MATLAB, other functions can be embedded within a function. The various integrals are
carried out by various functions as follows: function EneGroundFind2 calculates E0 and is called
by fminsearch for minimizing. To calculate E0, EneGroundFind2 calls function OverMatrix, which
does the overlap integrals; function DelsMatrix, which does the kinetic term integrals; and function
OrintsMatrix, which does the 1/r potential term integrals. After convergence, fminsearch returns the
final c′s and α ′s, which are used by the function WaveG in order to produce the exact analytic and
numeric wavefunctions which are then plotted. After running the script, the final values obtained
are: c1 = 0.47277, c2 = 0.65136, for the expansion coefficients; α1 = 0.20153, α2 = 1.3325 for the
Gaussian exponents; E0 =−0.485813 Hartrees or −13.219636eV , for the energy. The exact result
is − 1

2 Hartrees =−13.6057eV . The obtained two-Gaussian wavefunction is compared to the exact
ground state exponential wavefunction in Figure 3.4.13.
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Figure 3.4.13: The two-Gaussian expansion wavefunction is compared to the analytic hydrogen
atom ground state wavefunction. The obtained estimate of the error is 0.003694 as calculated by
Equation 3.4.58. The error can be made smaller by including more Gaussians (see Exercise 3.6.18).

For the wavefunction and after convergence is achieved, an estimate of the error is made using

error≈

√
N
∑

i=1

(
s(ri)−∑

j
c jG j(ri)

)2

N
, (3.4.58)

where s(ri) = exp(−ri) is the exact wavefunction (aside from normalization) and G j(ri) =
exp(−α jr2

i ) the numerical approximation. Thus calculated, the run produces an error estimate of
0.003694. The results can be improved by including more Gaussians (see Exercise 3.6.18). The
listing of the code used in this example, hydroGausGr0.m, follows.

%copyright by J. E Hasbun and T. Datta

%hydroGausGr0.m

%This script is set up for two gaussians.

%Program to find the ground state if Hydrogen based on expanding

%the ground state wavefunction with Gaussian orbitals

%(psi(r)=sum_i Ci*Gi(r)). The eigenvalue problem is

%[-(hbar^2/(2*m)) del^2 -ke^2/r]psi=E*psi. If we let r=rbar*a0 and

%E=Ebar*Eb, where a0=4pi*epsilon0*hbar^2/me^2 and

%Eb=2*hbar^2/(2m*a0^2)=1 Hartree (atomic units), the SE becomes

%[-del^2/2-1/r]psi=E*psi with E in units of Eb, and r in units of a0.

%The ground state <H>=<psi|H|psi>/<psi|psi> is calculated as

%<H>=sum(all of Ci*Hij*Cj)/sum (all Ci*Sij*Cj) or just multiply matrices

%once all matrix elements and overlaps have been found.

%Expected result is 1/2 a Hartree.

%Matlab’s fminsearch minimizes the energy & optimizes the Gaussian

%exponents, as well the C’s to have a total of 2*nG parameters to

%optimize, where nG is the number of Gaussians employed.

function hydroGausGr0

clear all

global Cg

e=1.602176487e-19; %electronic charge

h=6.62606896e-34; %Planck’constant (J.s)

eps0=8.854187817e-12; %Permittivity of free space (C^2/N/m^2)



Covalent Bonding 109

k=1/4./pi/eps0; %Electrical constant (N.m^2/C^2)

hbar=h/2./pi; %hbar

me=9.10938215e-31; %electron mass (kg)

a0=hbar^2/me/e^2/k; %Bohr radius (m)

Eb=2*hbar^2/(2*me*a0^2);

%The Gaussian exponents guesses (play with them)

%A way to guess them is to fit the Hydrogen ground state also.

alphaG(1)=1.7792e-001;

alphaG(2)=1.9701e+000;

nG=length(alphaG);

Cg(1:nG)=1/nG; %starting guesses for the C’s as similar weights

%Put the alphas into half of ParsG and the C’s in the other half

ParsG=zeros(1,2*nG); %declare the ParsG array size

ParsG(1:nG)=alphaG(1:nG);

ParsG(nG+1:2*nG)=Cg(1:nG);

%

opts =optimset(’TolFun’,1e-10,’TolX’,1.e-10,’MaxIter’,800);

[ParsF,Ene,Eflag,Output]=fminsearch(@EneGroundFind2,ParsG,opts);

disp(’Results’)

fprintf(’Energy=%9.6f (Hartree) or %9.6f (eV)\n’,Ene,Ene*Eb/e)

disp(’The alphas:’)

fprintf(’alpha_Guess=[’), fprintf(’%9.4e, ’,alphaG), disp(’]’) %the guesses

fprintf(’alpha_final=[’), fprintf(’%9.4e, ’,ParsF(1:nG)), disp(’]’)

%the final ones

disp(’The C’’s:’)

fprintf(’C_Guess=[’), fprintf(’%9.4e, ’,Cg), disp(’]’) %the guesses

fprintf(’C_final=[’), fprintf(’%9.4e, ’,ParsF(nG+1:end)), disp(’]’)

%the final ones

fprintf(’iterations=%4i\n’,Output.iterations)

%disp(Output.message)

%

%Plot the wave function expansion for the Ground state

%The ground state is psi(x)=exp(-x)=sum_over_n (C_n*Gaussian_PSI_n(x))

x=0:0.1:5;

[ana,numG,Error]=WaveG(x,ParsF(1:nG),ParsF(nG+1:end));

fprintf(’Estimate of the wavefunction error=%12.6f\n’,Error)

plot(x,ana,’k.’)

hold on

plot(x,numG,’bo’)

hold off

xlabel(’r (a_0)’)

ylabel(’\phi_{1s}(r)’)

str=cat(2,num2str(nG),’-Gaussian expansion’);

legend(’exp(-r)’,str)

axis([0 max(x) 0 max(max(numG),max(ana))])

function [ana,numG,Error]=WaveG(x,alpha,Coef)

nG=length(alpha);

ana=exp(-x);

for i=1:length(x)

numG(i)=0;
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for j=1:nG

numG(i)=Coef(j)*exp(-alpha(j)*x(i)^2)+numG(i); %Gaussian expansion

end

end

%Normalization

%Using N^2*4*pi*IntegralOf(r^2 * psi^2 dr), then

%N=1/sqrt(4*pi*IntegralOf(r^2 * psi^2 dr))

dx=(max(x)-min(x))/(length(x)-1);

Cana=1.0/sqrt(dx*trapz(x.^2.*abs(ana).^2))/2/sqrt(pi); %Ground state Norm

const

ana=ana*Cana;

CNG=1.0/sqrt(dx*trapz(x.^2.*abs(numG).^2))/2/sqrt(pi); %Gaussian Norm const

numG=numG*CNG;

Error=sqrt(sum(abs((ana-numG).^2)))/length(ana);

function EG=EneGroundFind2(pars)

%1st half of pars are the alphas, 2nd half are the C’s

nG=length(pars)/2;

Over=OverMatrix(pars(1:nG)); %Gaussian Overlap S matrix elements

Dels=DelsMatrix(pars(1:nG)); %-Del^2/2 Gaussian matrix elements

Orints=OrintsMatrix(pars(1:nG)); %1/r Gaussian matrix elements

HM=(Dels+Orints); %The total hamiltonian matrix

%easiest to do matrix products: (vector)*Hmatrix*(vector)’

hS=pars(nG+1:2*nG)*HM*pars(nG+1:2*nG)’;

OS=pars(nG+1:2*nG)*Over*pars(nG+1:2*nG)’;

EG=hS/OS; %ground state energy

function SM=OverMatrix(par)

%Gaussians overlap integrals

%See J. M. Thijssen’ "computational Physics", chapter 3 (H atom case)

nG=length(par);

for i=1:nG

for j=i:nG

SM(i,j)=(pi/(par(i)+par(j)))^1.5;

SM(j,i)=SM(i,j); %Hermitian

end

end

function DM=DelsMatrix(par)

%Gaussian integrals for the -Del^2/2 term

%%See J. M. Thijssen’ "computational Physics", chapter 3 (H atom case)

nG=length(par);

for i=1:nG

for j=i:nG

DM(i,j)=3.*par(i)*par(j)*pi^1.5/(par(i)+par(j))^(5./2.);

DM(j,i)=DM(i,j); %Hermitian

end

end

function OM=OrintsMatrix(par)

%Performs the Gaussian integrals for the -1/r term
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%%See J. M. Thijssen’ "computational Physics", chapter 3 (H atom case)

nG=length(par);

for i=1:nG

for j=i:nG

OM(i,j)=-2*pi/(par(i)+par(j));

OM(j,i)=OM(i,j); %Hermitian

end

end

For the hydrogen molecule of interest, we write the Hamiltonian Equations 3.4.51 in atomic units, as
before. This is equivalent to setting h̄2/m = ke2 = 1 in the actual equations, with the understanding
that distance is in units of a0 and energy in Hartrees. For the ground state Equation 3.4.52b takes
the form

< HH2 >= 2
< φ0(r)|HH+

2
(r)|φ0(r)>

< φ0(r)|φ0(r)>
+

< φ0(r1)φ0(r2)|h(r1,r2)|φ0(r1)φ0(r2)>

< φ0(r)|φ0(r)>2 , (3.4.59)

where we have used Equation 3.4.49b and HH+
2
(r) is the singly ionized hydrogen molecule Hamil-

tonian of Equation 3.4.51c. The first term is twice the energy of the HH+
2

in this model, which is
negative, while the second term is the contribution of the electron-electron interaction, which is
positive. By substituting the corresponding expressions and studying the form of the terms, we can
carry them out by using the integral expressions from Equations 3.4.54, since we assume a Gaussian
expansion for each of the si. As an example, the overlap term in the denominator takes the form

< φ0(r)|φ0(r)>=
2NG

∑
ν=1

2NG

∑
ν ′=1

c∗ν cν ′ < Gν(r)|Gν ′(r)>, (3.4.60)

where NG is the number of Gaussians used in the expansion

sn(ri) =
1√
πa3

0

∑
k

Gkn(ri), (3.4.61)

for i = 1,2 electrons, n = 1,2 ions, and where Gkn(ri) = exp [−αkni|~ri−~Rn|2]. In Equation 3.4.60,
the first NG terms in the sum refer to values associated with the Gaussian expansion of s1(r)
and the second NG terms refer to the terms for the Gaussian expansion of s2(r); that is, φ0(r) =

(s1(r)+s2(r))/
√

2 =
NG
∑

i=1
ci1Gi1(r)+

NG
∑

i=2
ci2Gi2(r) =

2NG
∑

ν=1
cν Gν(r). The overlaps have the correspond-

ing analytic values given by Equation 3.4.54c where, in the present case, the definition of Equa-
tion 3.4.54a is equivalent to g1s,αkn(ri−Rn) = Gkn(ri). In a similar way, the various terms in the
full expression of Equation 3.4.59 can be calculated. The process can be repeated for the antisym-
metric state if we replace φ0(r) with φ1(r) of Equation 3.4.49c while noting the sign change in the
coefficients of s2(r).
Figure 3.4.14(a) is the result of performing the hydrogen molecule numerical calculation using
the Hartree wavefunction discussed for the bonding and antibonding states, respectively, with a
two-Gaussian basis. The equilibrium α’s are [0.25532, 1.6428] which are the same for both ions
with expansion coefficients [0.39291, 6.7109], also the same for both ions. The bonding state total
energy (minimum) obtained is −1.098822Hartree =−29.900469eV at the equilibrium distance of
1.4027a0= 0.742301Å. Pauling and Wilsonc [13] quote experimental values of 0.74Å for the bond
length and a total energy of −31.92eV for H2. Thus there is room for improvement. The code used
for this calculation is hydro mol Hartree0.m, which due to its length is not listed but is available
on CD or is downloadable. (The code is similar in concept and composition as hydroGausGr0.m
for the hydrogen atom of Example 3.4.2.2, except that it incorporates the full integral formulas of
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Equations 3.4.54. Be sure to read the comments throughout the code.) The antibonding state total
energy obtained at the equilibrium bond length is 0.407476 Hartree= 11.087982eV . The script also
produces the wavefunctions φ0,1(r) for the bonding and antibonding states, respectively, as shown
in Figure 3.4.14(b).
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Figure 3.4.14: (a) Bonding and antibonding states results for the hydrogen molecule using the
Hartree approximation with a two-Gaussian basis. The code used is hydro mol Hartree0.m, which,
due to its length, is not listed but is available on CD or is downloadable. The various contributions
(see Equations 3.4.51, 3.4.52) shown are due to E1 =< HH+

2
(r) >, E2 =< h(r1,r2) >, the ions

(dash-dot), the total energy (thick dots), and the hydrogen atom ground state (dashed). The bonding
state energy minimum is −1.098822Hartree = −29.900469eV at the equilibrium bond length of
1.4027a0 = 0.742301Å. (b) Shown are the equilibrium bonding and antibonding states wavefunc-
tions φ0,1(r) as calculated by using the Hartree approximation with a two-Gaussian basis with code
hydro mol Hartree0.m.

We can improve on the equilibrium energy result slightly if we use a four-Gaussian basis (see
Exercise 3.6.19). However, ultimately, the Hartree ansatz has to be replaced with a better one. An
improvement exists over the Hartree wavefunctions employed here and which correct the flaws
discussed at the beginning of this section. The better ground state wavefunction is the so-called
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Hartree-Fock wavefunction. It makes use of the Heitler-London approximation for the ground state

ψ
HF
0 (r1,r2) =

1√
2
[s1(r1)s2(r2)+ s1(r2)s2(r1)], (3.4.62a)

and two other possible symmetric choices

ψ
HF
1 (r1,r2) = s1(r1)s1(r2), and ψ

HF
2 (r1,r2) = s2(r1)s2(r2), (3.4.62b)

to construct the improved ansatz for the total spatial part of the ground state wavefunction in the
form

ψGS(r1,r2) =
C1√

2
ψ

HF
0 (r1,r2)+

C2

2
[ψHF

1 (r1,r2)+ψ
HF
2 (r1,r2)], (3.4.62c)

whose study is beyond our scope.

3.4.3 Semiconductors

Earlier, in the introductory part of Section 3.4, it was mentioned that semiconductor crystals en-
gage in covalent bonding and they often involve elements in groups II, III, IV, V, and VI of the
periodic table. Compounds made of elements from these groups in the proper combination form
various kinds of semiconductors. Well-known semiconductor examples such as ZnS and CdTe are
IIB-VIB systems, while GaAs and InSb are IIIB-VB systems, and C, Si and Ge are group IVB
systems. The classic example of a diamond lattice, with carbon as the elemental unit, comes about
because of carbon’s 3s23p2 valence electron structure. When the carbon atoms approach themselves
to begin crystal formation, the 3s and 3p energy levels become close in energy and the electronic
wavefunctions mix and create the so-called hybrid orbitals. Carbon has two electrons in the 2s shell
and two electrons in the 2p shell, but during hybridization one of the 2s electrons is promoted to
a p state and the bonding occurs among the 3s,3px,3py, and 3pz orbitals. The mixing of the or-
bitals in this way is referred to a sp3 hybridization and the electronic structure of tetrahedral solids
may be understood in terms of it. These hybrids are directional and in diamond, for example, four
such bonds point from a given carbon atom to its four nearest neighbors, which gives the structure
its tetrahedral geometry. Diamond, therefore, has a coordination number of four. The coordination
number is the number of nearest neighbors. In tetrahedral structures, such as zinc-blende, diamond
(special case of zinc-blende), as well as wurtzite (with different translational symmetry compared to
zinc-blende), the electrons’ wavefunctions are written in terms of the sp3 hybrids. The “3” indicates
that the probability of finding the electron in the p-state is three times as much as the probability of
finding it in the s-state.
In semiconductors, therefore, the bonds are described in terms of a linear combination of atomic
orbitals (LCAO). The wavefunction associated with each electron in atom k located at ~Rk is written
as

χk(~r−~Rk) = ∑
n

Aknφkn(~r−~Rk), (3.4.63)

where the Akn’s are constants, and represents a particular combination of atomic orbitals; i.e., a
hybrid. Here the φkn(r)’s, for n = 1,2, . . . represent atomic orbitals such as sk, pkx, pkx, and pkz, . . .,
belonging to atom k. For a two-atom system we would construct the total wavefunction

ψ(r) =
2

∑
k=1

Ckχk(~r−~Rk) =C1χk(~r−~R1)+C2χk(~r−~R2), (3.4.64)



114 Crystal Binding

where the Ck’s are constants. A typical hybrid wavefunction involving s, p contributions has lobes
which point in a particular direction (n̂ = α î+β ĵ+ γ k̂) depending on the values of α,β , and γ in
the p character part of the wavefunction. That is, let’s assume s, p contributions only, and, from
Equation 3.4.63, for a given atom, let’s write the hybrid as

χ(~r) = Asφs(r)+Apφp(r), (3.4.65a)

where As,Ap are constants and where

φp(r)≡ n̂ ·~r f (r)
r

, (3.4.65b)

for some function f (r). Next, using~r = xî+ y ĵ+ zk̂ and, for constants α,β ,γ obeying the relation
α2+β 2+γ2 = 1, using n̂=α î+β ĵ+γ k̂, the lobe’s largest contribution is in the direction of n̂ (since
n̂ ·~r = nr cosθn,r with θn,r the angle between n̂ and~r). Substituting~r and n̂ into Equations 3.4.65
and simplifying, we have the more transparent form

χ(~r) = Asφs(r)+Ap
(
φpx(r)+φpy(r)+φpz(r)

)
= Asφs(~r)+Ap (αx+βy+ γz)

f (r)
r

, (3.4.66)

where we have used φpν
(r) = ν f (r)/r with ν = x,y, and z. Let’s do a simple example of this.

Example 3.4.3.1
Let’s write the wavefunction for a hybrid lobe that points toward a cube corner. One way to do this
is to take α = β = γ = 1/

√
3. We notice that α2 +β 2 + γ2 = 1 is satisfied and the wavefunction is

χ(~r) = Asφs(~r)+Ap(x+y+z) f (r)√
3r

. This wavefunction points in the direction of n̂ = î+ ĵ+ k̂, which
is the cube corner with all positive coordinates. We can obtain values for As and Ap by using the
orthonormality (orthogonality and normalization) of the hybrid functions. We use the fact that the
p orbital wave functions, φpν

(r) = ν f (r)/r for ν = x,y,z, as well as φs(r), are also orthonormal.
So that we must have < χ(r)|χ(r) >= 1 = A2

s +A2
p = 1. Furthermore, since there is only one s

orbital that must be shared among all four bond orbitals, we let 4A2
s = 1→ As = 1/2. Similarly,

since three p orbitals are to be shared with four bonds, we also have 4A2
p = 3→ Ap =

√
3/2. The

condition A2
s +A2

p = 1 is also satisfied; therefore, making these substitutions, the final wavefunction

is χ(~r) =
(

φs(~r)+(x+ y+ z) f (r)
r

)
/2.

Notice that in Example 3.4.3.1 we could just as easily have picked other sign combinations for α , β ,
and γ and in all cases α2 +β 2 + γ2 = 1. However, in tetrahedral semiconductors, we are restricted
to combinations that lead to four bonds in a tetrahedral geometry. Each atom creates four bonds,
each bond has two shared electrons. Whereas, in the tetrahedral crystal systems, each atom alone
has only four valence electrons, by hybridization and sharing, each atom ends up with a total of
eight electrons, completing its s and p shells, and achieving a noble atom’s electronic configuration.
This, in turn, accounts for the strength of the tetrahedral bond. In summary, we have the following
four hybrid orbitals for the semiconductors with the tetrahedral geometry.

χa(~r) =
1
2

(
φs(r)+(x+ y+ z)

f (r)
r

)
,

χb(~r) =
1
2

(
φs(r)+(−x− y+ z)

f (r)
r

)
,

χc(~r) =
1
2

(
φs(r)+(x− y− z)

f (r)
r

)
,

χd(~r) =
1
2

(
φs(r)+(−x+ y− z)

f (r)
r

)
,

(3.4.67)
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and is straightforward to show they are normalized and orthogonal to each other. A more general
description of the hybrid χ’s associated with atom k located at ~Rk is

χi(~r−~Rk) =
1
2

(
φs(~r−~Rk)+(~r−~Rk) · n̂i

f (|~r−~Rk|)
|~r−~Rk|

)
, (3.4.68a)

where the index i runs over each of the hybrid lobes (a,b,c,d) and where the n̂i’s are the hybrid lobe
directions

n̂a = î+ ĵ+ k̂, n̂b =−î− ĵ+ k̂, n̂c = î− ĵ− k̂, n̂d =−î+ ĵ− k̂. (3.4.68b)

Example 3.4.3.2
Write an sp3 hybrid wavefunction associated with two identical atoms, one located at the origin and
the other located at a distance d away in the [1,1,1] direction.
Solution
Here we are dealing with one hybrid lobe, the one labeled χa with direction n̂a given by Equa-
tion 3.4.68b. For bookkeeping, we will use the atom’s label 1,2 as well. The first atom is located at
the origin (~R1 = 0), and, from Equation 3.4.68a, the hybrid associated with the first atom is

χ1a(~r−~R1) =
1
2

(
φs(r)+~r · n̂a

f (r)
r

)
=

1
2

(
φs(r)+(x+ y+ z)

f (r)
r

)
. (3.4.69a)

The second atom is located at the corners of a cube. Assume the cube has sides a, so that ~R2 =
aî+a ĵ+ak̂ and R2 =

√
3a = d; that is, a = d/

√
3. Thus the hybrid associated with the second atom

is

χ2a(~r−~R2) =
1
2

(
φs(|~r−~R2|)+(~r−~R2) · n̂a

f (|~r−~R2|)
|~r−~R2|

)

=
1
2

(
φs(|~r−~R2|)+((x−a)î+(y−a) ĵ+(z−a)k̂) · n̂a

f (|~r−~R2|)
|~r−~R2|

)

=
1
2

(
φs(|~r−~R2|)+(x+ y+ z−3a)

f (|~r−~R2|)
|~r−~R2|

)

=
1
2

(
φs(|~r−~R2|)+(x+ y+ z−

√
3d)

f (|~r−~R2|)
|~r−~R2|

)
.

(3.4.69b)

With the above understanding, using Equation 3.4.64 to make a linear combination, we can write
the total wavefunction for the identical atoms. We take C1 =C2 =C as the normalization constant.
The wavefunction we seek is

ψ(r) =
C
2

[(
φs(r)+(x+ y+ z)

f (r)
r

)
+

(
φs(|~r−~R2|)+(x+ y+ z−

√
3d)

f (|~r−~R2|)
|~r−~R2|

)]
.

(3.4.70)

In the next example, we work to produce a concrete example of the hybrid orbitals described by
Equation 3.4.67.

Example 3.4.3.3
In order to produce a visual representation of the hybrid bonds associated with an atom in a tetrahe-
dral geometry, let’s use hydrogenic 2s and 2p orbitals for the φs(r) and φpν

(r)’s of Equations 3.4.67.
For the normalized 2s state we have

φ2s(r) =
(

Z3

32πa3
0

)1/2(
2− Zr

a0

)
e−

Zr
2a0 , (3.4.71a)
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and for the 2p states using

φ2pm(r) =
(

3
4π

)1/2( Z
2a0

)3/2

νm
Zr√
3a0

e−
Zr

2a0

r
, (3.4.71b)

where νm = x,y,z for m = 1,−1,0 respectively. These φ2pm functions are normalized and the last
two factors represent f (r)/r of Equation 3.4.65b.
Here, we will take the atomic number Z = 1 and for distance we will use units of a0. The wave-
function will be plotted in units of (1/(32πa3

0))
1/2. With this arrangement, the 2s state can be written

as

φ2s(r) = (2− r)e−r/2, (3.4.72a)

and each of the 2p states is

φ2pm(r) = νme−r/2, (3.4.72b)

where again νm takes the coordinate x,y,z for m = 1,−1,0, respectively, but now in units of a0.
The actual hybrid bonds to be plotted, are obtained from these equations and Equation 3.4.67 in the
present units; that is,

χa(~r) =
1
2
(2− r+ x+ y+ z))e−r/2,

χb(~r) =
1
2
(2− r− x− y+ z)e−r/2,

χc(~r) =
1
2
(2− r+ x− y− z)e−r/2,

χd(~r) =
1
2
(2− r− x+ y− z)e−r/2.

(3.4.72c)

We next use MATLAB’s isosurface command (plots the constant value surfaces of the Equa-
tions 3.4.72c) to visualize the bonds as shown in Figure 3.4.15.

Figure 3.4.15: The hybrid functions from Equations 3.4.72c are shown as constant value surfaces.

The following code (hybrid one bond.m) shows how to reproduce one of the bonds shown in Fig-
ure 3.4.15 (see Exercise 3.6.22 for the rest of the hybrid bonds).
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%copyright by J. E Hasbun and T. Datta

%hybrid_one_bond.m

%hybrid wavefunctions plotted in units of sqrt(1/[32*pi*a0^3])

%versus distance in units of a0. We work with the 2s, 2p hybridization

%

clear;

N=128; %grid points

ul=1.0; us=2.*ul/N; %range and step size

[x,y,z]=meshgrid(-ul:us:ul,-ul:us:ul,-ul:us:ul);

r=sqrt(x.^2+y.^2+z.^2); %distance

fr=0.5*exp(-r/2.0); %fp(r)/r/2 - needed throughout

% One of the hybrids plot follows

figure

ff1=(2.0-r+x+y+z).*fr; %one hybrid

s=0.95; %isosurface value plotted

isosurface(x,y,z,ff1,s);

colormap(gray)

lighting gouraud %lighting control type for smooth looks

az=110; el=14;

camlight (az,el) %camera light from azimuth, elevation

view(az,el)

box on

axis ([-0.25 0.25 -0.25 0.25 -0.25 0.25])

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

title(’sp^3 Hybrid Orbitals’)

3.5 Metals
Metals are characterized by a high electrical conductivity. In these materials, a large number of
electrons are free to move about, typically one, two, or more per atom. These electrons are often
referred to as conduction electrons. The binding in metals comes from the interaction between
the ion cores and the conduction electrons. The attraction between the fixed ions and the uniformly
distributed electrons is responsible for the bonding in metals. Metallic materials come in a variety of
structures, such as FCC, HCP, or BCC. Alkali (group IA), alkaline (group IIA), and transition metal
atoms (Groups IIIA-VIIIA, IB, IIB) of the periodic table form metallic bonds. Here the valence
electrons form a Fermi sea (an uniform electron background) wherein the ions are embedded.
Individual atoms in a metal contribute one or more valence electrons to the metallic crystal. These
electrons interact weakly with all the atoms in the crystal. The electronic wavefunction in metals
extends throughout the material with nearly the same amplitude all over. One can think of the wave-
function of the electrons as being nearly plane waves. An example is to write the wavefunction for
an electron in a metal as

ψk(~r) = ei(~k·~r)
φ(~r), (3.5.73)

where φ(~r) is an atomic wavefunction which is periodic over the metal crystal lattice; i.e., φ(~r) =
φ(~r+~T ), with ~T a lattice translation vector. Here~k is a wavevector in the Brillouin zone and is asso-
ciated with the electron momentum. As we will see later in the text, ψk(~r) is called a Bloch function
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which has certain periodic properties. The wavefunction is a crystal eigenstate with an eigenvalue
that depends on ~k. This k-dependent eigenvalue is more properly called an energy band. In the
present case, the energy band is obtained from −h̄2~∇2ψk(~r)/(2m) = Ekψk(~r) or Ek = h̄2k2/(2m)
within which the electrons are not restricted to gain energy since the band resembles that of a free
electron. Thus, electrons can move easily under an applied voltage which is responsible for the low
resistance properties of metals. Electrons, which are actually loosely bound to the ion cores, are,
therefore, thought of as being nearly free. They behave as if they were particles in an infinite ocean.
This is, in fact, the reason for the term “Fermi sea” that is used to describe electrons in metals.
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3.6 Chapter 3 Exercises
3.6.1. Use Table 3.1.1 to collect the atomic numbers and the boiling points of the elements. (a)

Make a plot of the boiling points versus their corresponding atomic numbers. Repeat for
the cohesive energies versus the corresponding atomic numbers. Comment on your obser-
vations. (b) For every element, let its cohesive energy and its boiling point represent a data
pair. Sort these pairs for all the elements in the table according to energy and produce a plot
of the boiling point versus cohesive energy. Comment on your observations.

3.6.2. In the unperturbed Hamiltonian of Section 3.2.1, the constant C can be estimated in a hy-
drogenic model by writing the effective potential seen by the electron in the presence of a
positive charge Ze in the form Ve f f (r) = −Zke2/r+L2/2mr2. (a) Show that if we write a
Taylor expansion of this potential about the equilibrium position; i.e., Ve f f (r)−Ve f f (r0) =
V ′e f f (r0)(r−r0)+V ′′e f f (r0)(r−r0)

2/2!+ . . ., then, for small displacements from equilibrium,
we can make the approximation Ve f f (r)−Ve f f (r0)≈C · (r− r0)

2/2 to obtain C ≈ Zke2/r3
0.

(b) Taking Z = 1 give an estimate for the numerical value of this force constant and the
associated vibrational frequency of the isolated atom, assuming an energy equivalent to the
hydrogen ground state.

3.6.3. Verify that the eigenvector matrix VE of Equation 3.2.12 satisfies the inverse property of a
unitary matrix and that V−1

E MVE = D.

3.6.4. Proceed as described in Example 3.2.1.1 and write a script that reproduces Figure 3.2.5.

3.6.5. Show the necessary steps to obtain the values of (a) Rnn, (b) Umin, and (c) R0 described in
Example 3.2.2.1. (d) Reproduce the graph of Figure 3.2.6 for U(R) versus R.

3.6.6. Run the code LJ 1dMCsym.m listed in Example 3.2.2.2 to reproduce Figure 3.2.7.

3.6.7. After reading Example 3.2.3.1 for the simple cubic system, (a) show that, including con-

tributions up to the 4th nearest neighbors, we get ∑
j

′
(

1
pi j

)6
≈ 7.89. (b) Write a simple

script that incorporates the calculation of Equation 3.2.26 and obtain the exact values of

∑
j

′
(

1
pi j

)s
= 6.2021 and 8.4019 for s = 12 and 6, respectively.

3.6.8. (a) Use the values of dnn and σ from Table 3.2.2 and confirm the obtained ratios of R0/σ dis-
cussed in Section 3.2.3. (b) Do the same for the obtained cohesive energies associated with
Equation 3.2.29 and find the percent errors of these values compared to the experimental
energies of Table 3.2.2. (c) Use a wavefunction of the form ψ = Asin(kx), where k = 2π/λ

and A =
√

2/λ , to calculate the quantity < p̂2 > /2m over a one-dimensional box of size λ .
Take p̂ to be the x component of the quantum mechanical linear momentum.

3.6.9. (a) Starting from Equation 3.2.31a, confirm Equation 3.2.31b. (b) Starting from Equa-
tion 3.2.30, confirm Equation 3.2.31c. (c) Finally, starting from Equation 3.2.31b, show
the missing steps in obtaining Equation 3.2.31d. (d) What is the value of the bulk modulus
for Xe?

3.6.10. (a) Read Example 3.2.3.2 and run the associated code LJ 2d min.m to reproduce Fig-
ure 3.2.8. (b) Modify the code in order to find the Lennard-Jones potential’s minimum energy
configuration of four Neon particles in three dimensions. What is their minimum energy?
What is the average nearest neighbor distance of the particles? Display their final minimum
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energy configuration on a graph similar to that of the example. What is the structural shape
described by the final particle arrangement?

3.6.11. According to Example 3.3.1.1, the Madelung constant for NaCl can be calculated using
Equation 3.3.38. Incorporate this formula into a simple program and have it run with N = 10,
20, 30, 40, 50, 100, 500, and 1000. Does the value of α seem to be converging to the expected
exact value?

3.6.12. Using the method of Example 3.3.1.2, you should be able to modify the code provided in
order to carry out calculations for other systems. Obtain the theoretical bond lengths, not
shown in Table 3.3.5, as well as reproduce the theoretical energies of all the ionic systems
shown in the table.

3.6.13. (a) Show all the missing steps needed in obtaining Equation 3.3.39. (b) Calculate the zero
Kelvin bulk modulus for the LiF ionic system and comment on your result.

3.6.14. Use the Hamiltonian of Equation 3.4.40b for the ionized hydrogen molecule along with
the antisymmetric wavefunction |ψa >= N(|s1 > −|s2 >) to obtain (a) the normalization
constant N = 1/

√
2(1−∆) where ∆ is defined in Equation 3.4.42b, and (b) the antibonding

electronic state energy of Equation 3.4.46. Hint: the process is similar to that which leads to
Equation 3.4.45.

3.6.15. Study code hydro mol ion sym.m from Example 3.4.1.1 and, after running it to reproduce
Figure 3.4.12 (a), modify it to reproduce the results shown in Figure 3.4.12(b) for the anti-
bonding state of Equations 3.4.46 and 3.4.47.

3.6.16. Using atomic units, obtain a plot of the symmetric and antisymmetric wavefunctions for the
H+

2 molecule as indicated by Equations 3.4.41. Hint: set one proton at the origin and the
other at the equilibrium bond length R as obtained in Example 3.4.1.1. The total wavefunc-

tion may be plotted in units of
√

1/[πa3
0].

3.6.17. After studying Example 3.4.2.1 and using ψ(r) = ce−αr in addition to the integral identity∫
∞

0 rne−ardr = n!/an+1 verify the following results from the example:
(a) < ψ|ψ >= 4πc2/(4α3),
(b) ~∇2ψ(r) =

√
α3/πα

[
− 2

r +α
]

e−2αr, and

(c) E0 =< ψ|H|ψ >= h̄2
α2

2m − ke2α .

3.6.18. (a) Read Example 3.4.2.2 and run the code hydroGausGr0.m to reproduce the quoted results.
(b) By modifying this code and assuming a variational wavefunction expanded in terms of
four Gaussian basis functions, obtain an upper bound ground state energy of the hydrogen
atom. How do the results compare to that of the example?

3.6.19. (a) Download the code hydro mol Hartree0.m or copy it from a CD and reproduce the results
of Figure 3.4.14 and associated discussion. (b) Modify the script to make it work with a
four-Gaussian basis. Use the following values for the initial guesses of the α’s: [1.7792e−
001,1.9701e+000,1.9994e+001,7.0674e−001], both of these being identical for each of
the ions. For the coefficients of the expansion, start all four of them off with the same value
of 0.25. Comment on the results.

3.6.20. If we use the Dirac representation, we can write the first of Equations 3.4.67 as |χa >=
1
2 (|s >+ |px >+|py >+|pz >), where |s > represents the orthonormal s orbital φs(r), and
where |px >= Cx f (r)/r, |py >= Cy f (r)/r, |pz >= Cz f (r)/r are the three p orthonormal
orbitals with normalization constant C (Note: for the orthonormal properties of the s and p
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orbitals, see Exercise 3.6.21). (a) In a similar fashion, with appropriate signs, write the rest
of the hybrid wavefunctions. (b) Show that because the s and p orbitals obey orthonormality
conditions, the four hybrid orbitals are also orthonormal.

3.6.21. Show that the functions |s >= φ2s(r) and |pm >= φ2pm(r) of Equations 3.4.71 are
orthonormal.

3.6.22. Modify the code provided for one hybrid bond (hybrid one bond.m) of Example 3.4.3.3 and
reproduce Figure 3.4.15.
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4.1 Introduction
Lattice vibrations are collective excitations of a crystal. They come about due to the interaction
among the atoms in crystals planes. The atoms in crystals oscillate about their equilibrium positions
in a similar way that a mass at the end of a spring oscillates about its equilibrium position. In a
crystal, however, its periodicity plays a role in the behavior of the vibration. Whereas the single
mass-spring system is characterized by a specific frequency, in a crystal the frequency is a func-
tion of the propagation wavevector~k that describes the crystal wave associated with the vibration.
This gives rise to frequency bands. Vibrations in crystals are quantized and are known as phonons.
Whereas a photon is a quantum of light, a phonon is a quantized crystal vibration.
Let us recall the simplest quantized vibration that we are familiar with; i.e., the vibration associated
with the one-dimensional spring-mass system from introductory quantum mechanics. In that system
the classical Hamiltonian is Ĥ = p̂2/2m+mω2x2/2 and with the replacement p̂ = −ih̄d/dx, the
Schrodinger equation of the system, Ĥψn = Enψn, is

− h̄2

2m
d2ψn(x)

dx2 +
1
2

mω
2x2

ψn(x) = Enψn(x), (4.1.1)

where m is the vibrating mass and ω is the natural vibration frequency related to the spring stiffness
constant C; that is, ω =

√
C/m. If we make the substitutions x = y

√
h̄/(mω) and En = h̄ωεn/2 into

the above equation, we get the dimensionless form

−d2ψn(y)
dy2 + y2

ψn(y) = εnψn(y), (4.1.2a)

123
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where now the harmonic potential is dimensionless; i.e., V (y) = y2. In these units, the wavefunction
solutions and eigenvalues are

ψn(y) = AnHn(y)exp(−y2

2
), εn = 2n+1, (4.1.2b)

where An = ( 1
n!2n√π

)
1/2

for ψn(y) is normalized over y. Here Hn(y) are the Hermite polynomials,
the first two of which are H0(y) = 1 and H1(y) = 2y, the rest can be obtained through the recursion
formula Hn+1(y) = 2yHn(y)−2nHn−1(y). Using the previously mentioned relation between En and
εn, the quantized energy levels for the simple one-dimensional harmonic oscillator are given by

En = (n+
1
2
)h̄ω. (4.1.3)

The first four wavefunctions along with their associated energy levels from Equation 4.1.2b are
shown in Figure 4.1.1.
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Harmonic Oscillator Potential and Wavefunctions

Figure 4.1.1: The harmonic potential (short dashes) is shown in dimensionless units. Also shown
are the first four wavefunctions (n = 0,1,2, and 3), each displaced by an amount corresponding to
its respective eigenvalue (2n+1) in dimensionless units.

The sample code qholev.m listed below shows how to reproduce part of the figure. As is, it plots the
potential and the wavefunction for the third quantum state.

%copyright by J. E Hasbun and T. Datta

%qholev.m

%Plots the harmonic oscillator potential and a quantum

%mechanical wavefunction for n=2.

%Dimensionsless unit y is used, such that x=sqrt(hbar/(m*w))y,

%Energy is in units of hbar*omega/2. Omega is the natural frequency.

clear;

dy=2*3/100; %step size

y=-3:dy:3; %range

H(0+1,:)=ones(1,101); %Hermite polynomials for n=0,1

H(1+1,:)=2*y;

H(2+1,:)=2*y.*H(1+1,:)-2*1*H(0+1,:); %recursion formula

Expo=exp(-y.^2/2);
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V=@(y) y.^2; %potential function in dimensionless units

plot(y,V(y),’k:’)

hold on

eps=2*2+1;

A=1/sqrt(2^2*factorial(2)*sqrt(pi));

psi=A*H(2+1,:).*Expo;

plot(y,psi+eps,’k’) %add energy level to psi

xlabel(’y’)

ylabel(’\psi(y),V(y)’)

In a similar way to Equation 4.1.3 for a simple harmonic oscillator, a crystal phonon has a vibration
frequency that is a function of the wavevector~k. If we write it as ω~k, the energy associated with the
phonon spectrum is

E~k = h̄ω~k. (4.1.4)

4.2 Phonons: One Atom Per Primitive Cell (Linear Chain I)
In this section we consider elastic vibrations in a crystal with one atom per cell. We wish to find the
frequency of an elastic wave in terms of the wavevector and the elastic constants of the solid. Math-
ematically, waves that propagate in the [100], [110], and the [111] cube directions (see Figure 4.2.2)
are the simplest to work with. Here, entire planes of atoms move in phase with displacements either
parallel or perpendicular to the direction of the wavevector,~k, where we recall that the momentum
and the wavevector are related through ~p = h̄~k.

[100]
[110]

[010]

[111]

Figure 4.2.2: Shown are some particularly convenient cube directions.

Waves whose amplitude vary parallel or antiparallel to the propagation direction are referred to as
longitudinal waves. Those waves whose amplitudes vary perpendicularly to the direction of prop-
agation are called transverse waves. For each wavevector~k, or direction of propagation, there are
three modes of vibration, one longitudinal and two transverse as shown in Figure 4.2.3. Notice that
the longitudinal wave can be understood in terms of a transverse wave with the same frequency. The
amplitude being positive for compressions and negative for rarefactions.
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Figure 4.2.3: The top drawing illustrates the longitudinal wave’s vibrational mode in the ±~k di-
rection. It can be understood in terms of the superimposed transverse wave (dashed). The bottom
illustration corresponds to the transverse wave, which consists of two vibrational modes, both per-
pendicular to the~k direction of motion. Altogether, the waves consist of a total of three vibrational
modes.

Figure 4.2.4, illustrate how it is possible to obtain longitudinal (a) and transverse phonons (b) in
crystals. In both figures, the s+ p crystal plane’s displacement, us+p, away from the equilibrium
position is shown, a is the lattice constant, and, again,~k is the direction of propagation; the index
p = ± integer. Both cases can be understood by the same set of equations treated in terms of a
one-dimensional problem. The actual position of the s+ p plane is given by r = (s+ p)a relative to
the origin, but we only make use of the displacements us+p from equilibrium.

s-2 s+1s-1 s s+2

aaaa

(a) Longitudinal Crystal Wave

s-2 s+1s-1 s s+2

aaaa

(b) Transverse Crystal Wave

Figure 4.2.4: (a) Shows an instantaneous longitudinal wave in a crystal with us+p denoting a parallel
displacement, away from the dashed equilibrium positions, of the s+ p plane parallel to the direction
of motion. Here p = ± integer. (b) A transverse wave in a crystal with us+p denoting a transverse
displacement, away from the circled equilibrium positions, of the s+ p plane perpendicularly to the
direction of motion. The dashed curve in (b) illustrates a section of the transverse wave at a particular
instant in time. In both cases, the lattice constant a is shown. Both situations can be understood in
terms of a one-dimensional crystal wave. The arrows illustrate the magnitude of the displacements
in the shown direction.

Here, all the atoms in the crystal are identical and we assume that the force on an atom, of mass M,
on plane s due to all the atoms in atomic planes p, for 1≤ |p| ≤∞, is proportional to the sum of the
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differences of the s+ p plane’s displacement and that of plane s; that is,

Fs = ∑
p

Cp(us+p−us) = M
d2us

dt2 , (4.2.5)

which is a form of Hooke’s Law where Cp represents the stiffness constant associated with plane p.
Here us+p−us is the displacement difference of the s+ p plane and that of the s plane. Equation 4.2.5
represents interactions between plane s and the rest of the planes in the crystal. Notice that if we
consider that the main contribution comes from the nearest neighbors, then it suffices to keep the
terms involving p =±1 only so that Equation 4.2.5 becomes

Fs =C(us+1−us)+C(us−1−us) = M
d2us

dt2 , (4.2.6)

where we have used C−1 =C1 =C, for nearest neighbors. For now, we will continue the calculations
using Equation 4.2.5 and later specialize to nearest neighbors. We notice that the sum over p in
Equation 4.2.5 includes ±p integers because there are atoms to the left and right of the s plane.
Next, recall that a traveling wave of wavevector~k and frequency ω in the form

E(~r, t) = E0 exp [i(~k ·~r−ωt)] (4.2.7)

is a solution of the wave equation

1
v2

∂ 2E

∂ t2 = ~∇2E, (4.2.8)

where ω = vk; that is, it is linear in k with k =
√

k2
x + k2

y + k2
z . Here for convenience and to be

consistent with our picture, we pick ~r = sak̂ where a is the lattice constant and k̂ is one of the
directions of interest; i.e., [111], [110], or [100]. Further, with~k =Kk̂, where K is now the magnitude
of the wavevector, we have~k ·~r = ska. We thus assume traveling wave solutions of Equation 4.2.5
in the form

us+p = uexp [i((s+ p)Ka−ωt)], (4.2.9)

with the case of p= 0 corresponding to us = uexp [i(sKa−ωt)]. Substituting us and us+p into Equa-
tion 4.2.5 as well as using d2us/dt2 =−ω2us, we get

Mω2ue[i(sKa−ωt)] =−∑
p

Cp

[
e[i((s+p)Ka−ωt)]− e[i(sKa−ωt)]

]
,

which simplifies to

Mω
2 =−∑

p
Cp(eipKa−1), (4.2.10)

with the sum over all planes p =±1,±2, . . .. Separating the positive and negative values of p in this
expression we have

Mω2 =− ∑
p>0

Cp(eipKa−1)− ∑
p>0

C−p(e−ipKa−1)

but, due to translational symmetry, Cp =C−p, to obtain

Mω2 =− ∑
p>0

Cp(eipKa + e−ipKa−2),
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which, using cosθ = (exp(iθ)+ exp(−iθ))/2, gives

ω
2 =

2
M ∑

p>0
Cp[1− cos(pKa)]. (4.2.11)

This equation expresses the general relationship between ω , the wavevectors K, and the force con-
stant Cp. We are interested in what happens to ω versus K. However, K is a wavevector in k−space,
as such, we recall the Brillouin zone (BZ) in one dimension with boundaries at K = ±π/a (as-
sociated with ~G vectors at 2π/a). We would like to know what happens to the dispersion relation
Equation 4.2.11 at the BZ boundaries. Its derivative at the boundary

dω2

dK
=

2a
M ∑

p>0
pCp sin(pKa)]

∣∣∣
K=±π/a

= 0; (4.2.12)

that is, it vanishes for all integers p. This shows that the ω2 versus K relation has zero slope at
the BZ boundaries. Of special interest is the behavior of the dispersion relation Equation 4.2.11 for
the case when p = 1; i.e., nearest neighbors. In which case the summation involves the p = 1 term
alone, to get

ω
2 =

2C
M

[1− cos(Ka)], (4.2.13)

where we have let C = C1. Since sin2(θ) = (1 − cos(2θ))/2, we can write this as ω2 =
(4C/M)sin2(Ka/2) or for positive ω

ω =

√
4C
M

∣∣∣sin
(

Ka
2

)∣∣∣. (4.2.14)

As found in Equation 4.2.12, ω has a vanishing derivative at the BZ boundaries for which K =
±π/a with a value of ω = 2

√
C/M at those points. The zero derivative tells us that the dispersion

approaches the BZ boundary perpendicularly. For small K; i.e., large λ , where K = 2π/λ , we can
write Equation 4.2.14 as

ω = lim
K→ small

2

√
C
M

Ka
2

sin(Ka
2 )

Ka
2

≈
√

Ca2

M
K. (4.2.15)

If in this expression we let v =
√

Ca2/M be the wave speed, then the dispersion relation for small K
is linear or ω ≈ vK, which is the long wavelength limit, as found in connection with Equation 4.2.8.
It, of course, vanishes at K = 0; these behaviors are evident in Figure 4.2.5 where the plot of the
dispersion relation of Equation 4.2.14 is shown.
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Figure 4.2.5: The dispersion relation (ω/
√

4C
M ) for the one atom per cell of Equation 4.2.14. The

region −π/a ≤ K ≤ π/a corresponds to the first Brillouin zone (BZ). The dotted lines indicate its
periodic behavior beyond the first BZ.

The function of K dispersion relation of Figure 4.2.5 is also known as a frequency band. Its structure
is due to the crystal contribution. It is a band in the sense that there exists a continuous frequency
spectrum ω(K) as opposed to one frequency that results from a single spring-mass system. It is thus
possible for a phonon in the crystal to acquire a frequency value based on the value of K in the BZ.
One of the aspects regarding the plot of Figure 4.2.5 that needs to be asked about is, why do we
look at ω(K) mainly in the first Brillioun zone (BZ)? Let’s see why that is. From Equation 4.2.9 we
see that the ratio

us+p

us
=

ue[i((s+p)Ka−ωt)]

ue[i(sKa−ωt)]

∣∣∣
p=1

= e[iKa], (4.2.16)

and the range of −π ≤ Ka ≤ π covers all the independent values of exp [iKa]; therefore, two atoms
cannot be out of phase by more than a factor of π because exp [iKa] has a period of 2π , so that all
values of the exponential are contained within the first BZ. In one dimension, the extreme values of
K are Kmax = ±π/a. The concept that crystal properties at K values outside of the extreme values
can be evaluated within the first BZ is illustrated in the following example.

Example 4.2.0.1
Show that the value of the expression e[iKa] at Ka = 3π , which lies outside of the first BZ in one-
dimension, is contained within the first BZ.
Solution
We notice that e[iKa]|Ka=3π = e[3πi] = e[i(2π+π)] = e[2πi]e[iπ] = e[iπ], since e[2πi] = 1. We see the value
of e[iKa] at Ka = 3π is the same as the value at Ka = π , which happens to be the first BZ boundary in
this case. In this particular example, notice that we could have also written e[iKa]|Ka=3π = e[i(4π−π)] =
e[4πi]e[−iπ] = e[−iπ]. The value of e[iKa]|Ka=3π is the same at the equivalent points within the first BZ;
those points occur at Ka =±π , which happen to be the boundaries.

More generally, the idea of Example 4.2.0.1 is that an exponential exp(iKa), whose phase, Ka, lies
outside the first BZ, can be expressed in term of a phase K′a which lies within the first BZ. This is
possible because K and K′ are related according to the similar concept of a previous chapter; i.e., the
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Bragg condition, according to which ∆~k = ∆~G. Here this condition translates to (K−K′) = 2nπ/a.
If K is outside the first BZ, a translation is carried out, such that K = K′+2nπ/a, where the factor
2nπ/a is a multiple of the smallest one-dimensional reciprocal lattice vector G= 2π/a for an integer
n. In one dimension, Equation 4.2.16 is summarized as

e[iKa] = e[2nπi]e[iK
′a] = e[iK

′a] =
us+p

us
, (4.2.17)

where, as usual, exp [2nπi] = 1 has been used, and K′ lies in the range −π/a ≤ K′ ≤ π/a of the
first BZ. The important point to remember here is that what enables the translation operation is the
general reciprocal lattice vector 2nπ/a. In vector form, the above comments are written as

~K = ~K′+ ~G, (4.2.18)

which is the Bragg condition. An interesting aspect of the traveling wave solution Equation 4.2.9,
at the BZ boundaries, can be illustrated if we look at us(K = Kmax) = uexp [i(sKa−ωt)]|Ka=±π =
uexp [±isπ]exp [−iωt]. This can be written as

us(K = Kmax) = u(ω)(−1)s, (4.2.19)

where u(ω) = exp [−iωt] and where we used exp [iπ] =−1. As can be seen, this equation is not of
the general traveling wave form f (kx−ωt) (see Exercise 4.9.3). However, the wave does oscillate
in time. It is a standing wave. It moves neither to the right nor to the left. This is analogous to the
Bragg condition; when satisfied, the wave cannot propagate in a lattice except through successive
reflections back and forth and a standing wave is set up. The critical value of K = Kc with Kc =
±π/a satisfies the Bragg condition. This can be seen by recalling that 2d sin(θ) = nλ and that the
wavevector is related to the wavelength through K = 2π/λ . We now consider a beam incident on
a sample, perpendicular to the atomic planes with lattice constant d = a; when a standing wave is
set up, its nodes occur on each plane. So from Figure 4.2.6, we learn that the standing wave has
λ = 2a. In our case, we can set up the equality |Kc|= |±π/a|= 2π/λ which also gives λ = 2a and
confirms that Kc satisfies the Bragg condition.

Figure 4.2.6: A standing wave showing the Bragg condition being satisfied at an incident angle of
θ = π/2.

4.2.1 Linear Chain of N+1 Atoms Simulation

Here consider a linear chain of N +1 atoms connected by springs in a similar way as in the above
linear chain; however, we restrict ourselves specifically to one dimension. Consider the force on
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atom i according to Equation 4.2.6, which we write here as

fi =C(yi+1− yi)+C(yi−1− yi) =C(yi+1−2yi + yi−1) = mi
dvi

dt
, (4.2.20)

where now yi±1− yi takes the place of the displacement difference between the i±1 atom and that
of the ith atom whose mass is mi as shown in Figure 4.2.7.

 L
 a

yi-2
yi-1 yi+2

yi yi+1

Figure 4.2.7: The one-dimensional linear chain of atoms connected by springs. The equilibrium
position is the lattice constant a, and the chain length is L = Na, where N is the number of cells
associated with N +1 atoms in the chain. The atoms’ displacements occur in the y direction.

The acceleration of the ith particle is written as

dvi

dt
=

C
M
(yi+1−2yi + yi−1), (4.2.21a)

where, since all the atoms have the same mass, M = mi. For the particle’s velocity we write

dyi

dt
= vi = ẏi. (4.2.21b)

The idea is to solve this coupled system of equations (4.2.21) for the displacement, yi(t), of each
atom as a function of time. In order to do so, we will assume initial conditions for yi(t = 0) and
vi(t = 0). Considering the one-dimensional phonon, a vibrational mode exists for a given wavevector
K with frequency ω and energy E = h̄ω . The values of allowed K depend on the number of cells of
the system. For the N+1 atom system discussed here, there are N cells, each of width a, as shown in
Figure 4.2.7. If we consider periodic boundary conditions, then from Equation 4.2.9, at a particular
time, we have that the vibration of atom s is the same as that of the s+N atom, or

eisKa = ei(s+N)Ka, or NKa = 2nπ, =⇒ K =
2nπ

L
, (4.2.22)

where L = Na; i.e., the length of the atomic chain of N+1 atoms. Thus, in the range where−π/a≤
K ≤ π/a (or 0≤ K ≤ 2π/a) there exists n = N values of K or n = N/2 values in the range 0≤ K ≤
π/a. In this way, we refer to the pth mode of vibration the value of

K = Kp =
pπ

L
=

pπ

Na
, (4.2.23)

such that p = 1 corresponds to the first vibrational mode, p = 2 is the second, etc., and p = N is
the Nth vibrational mode which happens at K = Kp=N = Kmax = π/a; i.e., the zone boundary value.
Therefore, the simulation employs the initial condition

yi,p(t = 0) = Asin(Kpxi), (4.2.24)

for the ith atom located at xi = ia for 0 ≤ i ≤ N in the pth vibrational mode with Kp given by
Equation 4.2.23. Here we take A = 1Å. In the simulation that follows, we let the lattice spacing be
the same as for a copper crystal or a = 2.56Å, with the mass of each atom of copper having the
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value M = 1.05× 10−25kg. We let the initial conditions be as in Equation 4.2.24 with p = 1 and
with the particles at rest (vi(t = 0) = 0). The solution to the coupled differential equation system
is carried out using the MATLAB ’ode23’ solver for time in the range [t0, t f ], where t0 = 0 and
t f = 3.75ps. Starting with the initial conditions, the solver makes use of the derivatives; i.e., the
right-hand sides of Equations 4.2.21 and advances the solution yi(t) for the position of each atom.
The function ’derivs’, in the listing below, stores the positions of the N+1 particles in the first N+1
array locations of the ’der’ array, while the last N +1 locations contain the speeds of the particles.
The ’der’ array being used has, therefore, 2(N +1) locations. The simulation plots the new position
of ith particle, yi(t) for i = [0,N], as a function of time, while pausing for a short period at each time
step taken, before the next position is plotted. In this way, the simulation of the particle motion is
carried out. The running time can also be seen printed on the screen for which a snapshot is shown
in Figure 4.2.8.

0 1 2 3 4 5 6

x 10
−9

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
t=3.75e−012 sec

x (m)

y 
(A

ng
st

ro
m

s)

Oscillator Chain Model

Figure 4.2.8: Snapshot of the linear chain simulation. This simulation makes use of N + 1 = 26
particles.

The printed time can be used to obtain the atomic chain’s oscillation period, which can be confirmed
to obey the condition of Equation 4.2.14, here written as

ωp = 2

√
C
M

sin
(

Kpa
2

)
= 2

√
C
M

sin
( pπa

2L

)
= 2

√
C
M

sin
( pπ

2N

)
, (4.2.25)

for the pth vibrational mode (see Exercise 4.9.8) and where N is the number of cells. In the foregoing
simulation, we work with N + 1 = 26 copper atoms with the spring constant obtained from the
product of Cu’s bulk modulus and its lattice constant, or

C = Ba, (4.2.26)

where B ≈ 1.42× 1011N/m2. Below is a listing of the code linear chain.m which can be used to
reproduce Figure 4.2.8 and to carry out Exercises 4.9.8 and 4.9.9.

%copyright by J. E Hasbun and T. Datta

%linear_chain.m

%simulation of the time dependent motion of N+1 particle
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%oscillator chain model. We use copper atoms equidistantly displaced

%from each other by the lattice constant a.

%We take initial distribution as yA*sin[j*pi/L], where L=N*a to be the

%initial distribution of particles. Use M=1.05e-25kg for the mass of a

%Copper atom, and run the simulation for a short time enough to

%determine the oscillation period from which w can be determined.

function linear_chain

clear

global yA L C Np1 M;

a=2.56e-10; %lattice constant in Copper in m

yA=1.0; %amplitude in Angstroms

N=25; %number of cells;

Np1=N+1; %number of particles

L=N*a; %length over which particles are spread

B=1.42e11; %Bulk modulus for Copper in N/m^2

C=B*a; %spring constant in Copper

if(Np1<3), return; end; %no less than three particles allowed

x0=0:a:L; %x positions for N particles, evenly space

M=1.05e-25; %Copper atom mass in kg

nm=1; %the nm-th mode

t0=0.0; %set time range

tf=3.75e-12; %seconds

range=[t0;tf];

y0=profile(x0,nm); %Np1 particles y initial position (row vector)

ymax=max(y0);

v0=zeros(1,Np1); %particle not moving initially (row vector)

ic=[y0’;v0’]; %the initial conditions, as columns

%opt=odeset(’AbsTol’,1.e-7,’RelTol’,1.e-7); %if needed use this line

%[t,y]=ode23(@derivs,range,ic,opt); %with this one, but comment the

%next one

[t,y]=ode23(@derivs,range,ic);

%Plot the height of the particles at each x position every time

for i=1:length(t)

%fprintf(’t=%5.2f\n’,t(i));

%fprintf(’%6.2f’,y(1:N,i));

%disp(’ ’);

clf

plot(x0,y(i,1:Np1),’k.’,’MarkerSize’,5)

axis([x0(1) x0(Np1) -ymax ymax])

str1=cat(2,’t=’,num2str(t(i),’%5.2e sec’));

text((x0(Np1)-x0(1))*0.01,ymax*(1-0.1),str1,’FontSize’,14);

pause(0.05)

end

xlabel(’x (m)’,’FontSize’,14)

ylabel(’y (Angstroms)’,’FontSize’,14),

title(’Oscillator Chain Model’,’FontSize’,14)

function y=profile(x,nm)

global yA L;

%Possible initial height profile of the particles
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y=yA*sin(nm*x*pi/L); %nth vibrational mode

function [der]=derivs(t,y)

global C Np1 M;

%This function evaluates all the components of the

%derivative vector, putting the results in the array ’der’.

%y(1:Np1): y positions for the N+1 particles

%y(Np1+1:2*Np1): velocities for the N+1 paricles

der=zeros(2*Np1,1); %initialize der as a column vector

for i=2:Np1-1

der(i) =y(Np1+i); %velocities

end

der(1)=0.0; %end particles are fixed,so

der(Np1)=0.0; %their y velocities are zero.

for i=Np1+2:2*Np1-1

der(i)=C*(y(i-Np1-1)+y(i-Np1+1)-2*y(i-Np1))/M; %accelerations

end

der(Np1+1)=0.0; %end particles don’t move, so

der(2*Np1)=0.0; %their accelerations are zero

4.2.2 Phase and Group Velocities

Consider two one-dimensional waves of the same amplitude, A, traveling in space and time, each
described by

yi(x, t) = Asin(kix−ωit), (4.2.27)

where i = 1, 2 for each wave, respectively. We introduce the small wavevector δk such that k1 =
k+ δk and k2 = k− δk; similarly, we introduce the small frequency δω so that ω1 = ω + δω and
ω2 = ω − δω . Letting φ be the phase of the wave, the waves’ phase velocities can be obtained by
the expression

vph =−
(∂φ/∂ t)|x
(∂φ/∂x)|t

, (4.2.28)

while keeping x constant in the numerator and t constant in the denominator. For the waves of
Equation 4.2.27, each wave’s phase is φi = (kix−ωit), and we see that the corresponding phase
velocity is vphi = ωi/ki. We next add the two waves, and after simplifying we get the expression for
the resulting wave in the form

yt(x, t) = 2Acos [δk(x− vGt)]sin(kx−ωt), (4.2.29)

where δk = (k1− k2)/2, k = (k1 + k2)/2, δω = (ω1−ω2)/2, ω = (ω1 +ω2)/2, and where we
have used vG = δω/δk. This resulting wave, by Equation 4.2.28 and letting φ be the phase of the
sin part, has a phase velocity of vph = ω/k and an amplitude 2Acos [δk(x− vGt)] whose maximum
value is twice the amplitude of the initial waves; i.e., 2A. This amplitude is modulated by the term
cos [δk(x− vGt)] which explains the behavior of the envelope of the wave, itself traveling with a
velocity known as the group velocity, vG as described above. In one dimension it is usually writ-
ten as vG = dω/dk, consistent with the above definition. This definition can be extended to three
dimensions as

~vG = ~∇kω(~k), (4.2.30)
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where ω(~k) is a crystal’s dispersion frequency which, more generally, is a function of the wavevector
~k. Figure 4.2.9 illustrates what we have described. Two waves, one being the solid line and the
other being the dotted line, are added. By the superposition principle, the resulting wave is that of
Equation 4.2.29 (circles) and moves with the phase velocity vph. Additionally, the envelope (dashed
line) of yt(x, t) is shown to be moving at vG. The parameters used in the calculation are shown on
the figure and in its caption.
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Figure 4.2.9: Two waves y1(x, t) (solid) and y2(x, t) (dotted) are superimposed to obtain the
resulting wave yt(x, t) (circled). The parameters used for the waves are A = 1, ω1 = 51.0Hz,
k1 = 3.0m−1, ω2 = 50.8Hz, k2 = 2.76m−1, with phase velocities vph1 = ω1/k1 = 17.0m/s,
vph2 = ω2/k2 = 18.406m/s. The resulting wave (Equation 4.2.29) has ω = 50.9Hz, k = 2.88m−1,
dω = 0.1Hz = δω , and dk = 0.12m−1 = δk. The phase velocity is vph = ω/k = 17.674m/s, while
the envelope (dashed line) moves with vG = dω/dk = 0.833m/s.

The following starter code group phase vel example.m can be modified to simulate wave motion as
well as to calculate the phase and group velocities shown in Figure 4.2.9 (see Exercise 4.9.10). As
is, the code animates a traveling wave.

%copyright by J. E Hasbun and T. Datta

%group_phase_vel_example.m

%This code simulates the displacent the wave y1=A*sin(k1*x-w1*t)

%as a function of space and time.

clear;

A=1.0;

N=401; %x points

w1=10; %frequency

k1=0.1; %wavevector

tau1=2*pi/w1; %period

tmax=tau1; %maximum time

lambda1=2*pi/k1; %wavelength

lmax=2*lambda1; %maximum distance

vph1=w1/k1;

fprintf(’w1=%5.3f, k1=%5.3f, vph1=w1/k1=%5.3f\n’,w1,k1,vph1)
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x=0:lmax/N:lmax; %position array

t=0:0.01:2*tmax; %time array

for i=1:length(t) %loop over the time array

clf %clear figure before replotting

y1=A*sin(k1*x-w1*t(i)); %calculate the wave over all space

plot(x,y1,’k’); %replot y1 for each time

axis([0 lmax -A A])

pause (0.05) %pause momentarily to see figure

end

xlabel(’x (m)’)

ylabel(’y_1(x,t)’)

For the one atom per primitive cell nearest neighbor model of a phonon, from Equation 4.2.14
we can obtain the associated group velocity. Writing ω(K) =

√
4C/M sin(Ka/2), and using Equa-

tion 4.2.30, we have

vG =
√

Ca2/M cos(Ka/2). (4.2.31)

For small K this is a constant, and, in fact, it gives the long wavelength result that is obtained from
the small K behavior of Equation 4.2.15. In that limit, ω(K)≈

√
Ca2/MK and vG = dω(K)/dK =√

Ca2/M. At large K; that is, K = ±π/a, vG → 0, since at the BZ boundaries, the wave, as men-
tioned earlier, is no longer a traveling wave but rather a standing wave. These behaviors are dis-
played in Figure 4.2.10.

  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 π/a
K

ω
/
√
4
C
/M
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Ca2/M) versus K from Equation 4.2.31 for the one atom
per cell phonon dispersion.

4.3 Phonons: Two Atoms Per Primitive Cell (Linear Chain II)
In this section we work with a system of two atoms per cell. For each polarization mode in a
given direction, the dispersion relation ω(K) develops two types of branches. These branches are
acoustic and optical. Each branch can have longitudinal as well as transverse modes. We can have
the following types of branches: one longitudinal acoustic (LA), two transverse acoustic (TA),
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one longitudinal optical (LO), and two transverse optical (TO). If there are p atoms per primi-
tive cell and f degrees of freedom per atom, then for a given value of K there are a total of f p
branches. Of the f p branches, f are acoustic branches and the remaining f p− f branches are op-
tical. In the monatomic one-dimensional case of the previous section, p = 1, f = 1 so that we
had a total of f p = 1 branches with f = 1 acoustic and f p− f = 1− 1 = 0 optical. This is the
reason we only had the acoustic branch, and it can be recognized because its dispersion relation
vanishes as K → 0. The number of degrees of freedom depends on the dimension of the prob-
lem, f = 1, 2, 3 for one, two, and three dimensions, respectively. As another example, in a three-
dimensional system, with two atoms per cell, f = 3 and p = 2 so that there are f p = 6 branches
with f = 3 acoustic (one LA, two TA) and the rest f p− f = 3 optical (one LO, and two TO).
As mentioned at the beginning, below we work with a one-dimensional system with p = 2 atoms
per cell. We will have f = 1 acoustic (TA or LA) and p f − f = 1 optical (TO or LO). Since the
above counting is for every value of K, in the BZ and there are N values of K, then the com-
plete total number of branches is N f p with N f acoustical and the remaining N f (p− 1) are op-
tical. One might think of N f p as the total number of degrees of freedom in a crystal; that is,
total degrees of freedom=(total number of cells)(atoms/cell)(degrees of freedom/atom).
Below we work with a phonon in a structure with two atoms per cell (p = 2) and a symmetry
direction is chosen so as to convert the problem to one dimension. The system is NaCl with K along
the [111] direction as shown in Figure 4.3.11.

a
[111]

(000)

(111)

Na

Cl

z

x
y

(a) NaCl motion planes due to a phonon

[111]

a

(b) Atomic displacements due to a phonon

Figure 4.3.11: (a) The NaCl crystal vibrational planes (dashed) are shown as the phonon travels with
~K = [111], a high symmetry direction. (b) The Cl and Na atomic planes’ displacements are shown
as the phonon passes by in the [111] direction.

As the phonon travels along the ~K = [111] direction, it sees the one-dimensional rows of alternating
atoms as shown in Figure 4.3.11 (b). Notice there are Cl atoms between the corners (000) and (111)
of the cube. The K direction [111] lies along the line connecting these two atoms. Below, we let m1
represent the mass of the Cl atom, with displacement represented by u, while m2 is the mass of the
Na atom with associated displacement v. As before, the force on the atoms is proportional to the
sum of the difference of the displacements, and we concentrate on the nearest neighbor contributions
only. We have, therefore, from Figure 4.3.11 (b)

F1 = m1
d2us

dt2 =C[vs−us]+C[vs−1−us] =C[vs + vs−1−2us],

F2 = m2
d2vs

dt2 =C[us− vs]+C[us+1− vs] =C[us +us+1−2vs].

(4.3.32)
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As done previously (see Equation 4.2.9), we assume traveling wave solutions for each plane in the
form

us = uexp(i[sKa−ωt]), vs = vexp(i[sKa−ωt]), (4.3.33)

which when substituted into Equations 4.3.32 give

−m1ω
2uei(sKa−ωt) =C[vei(sKa−ωt)+ vei((s−1)Ka−ωt)−2uei(sKa−ωt)],

−m2ω
2vei(sKa−ωt) =C[uei(sKa−ωt)+uei((s+1)Ka−ωt)−2vei(sKa−ωt)],

(4.3.34)

and which, after canceling the exp [i(sKa−ωt)] term and reorganizing, give

−m1ω
2u =C[v+ ve−iKa−2u] =Cv[1+ e−iKa]−2Cu,

−m2ω
2v =C[u+ueiKa−2v] =Cu[1+ eiKa]−2Cv,

(4.3.35)

where we have assumed the same stiffness constants throughout. We can write these equations in
matrix form as follows

(
−m1ω2 0

0 −m2ω2

)(
u
v

)
=

(
−2C C(1+ e−iKa)

C(1+ eiKa) −2C

)(
u
v

)
, (4.3.36)

which is of the form DX = MX , where the left- and right-hand side 2x2 matrices are labeled D and
M, respectively, while X is the single column vector. As in Chapter 3, we seek the eigenvalues; here,
these translate to the vibrational frequencies of the system. They can be found from the zeros of the
determinant |D−M| or

∣∣∣∣
2C−m1ω2 −C(1+ e−iKa)
−C(1+ eiKa) 2C−m2ω2

∣∣∣∣= 0. (4.3.37)

The determinant is (2C−m1ω2)(2C−m2ω2)−C2(1+ eiKa)(1+ e−iKa) = 0 or
m1m2ω4−2Cω2(m1 +m2)+2C2[1− cos(Ka)] = 0, from which solving for ω2 gives

ω
2 =

C(m1 +m2)

m1m2
±
√(

C(m1 +m2)

m1m2

)2

− 2C2

m1m2
[1− cos(Ka)]. (4.3.38)

Notice that there are two values of ω2, but the lower root is the acoustic branch because as K→ 0,
the branch tends to zero. Looking at the maximum values of K, the cos(Ka)|Ka=±π =−1, so that

ω2 = C(m1+m2)
m1m2

±
√(

C(m1+m2)
m1m2

)2
− 4C2

m1m2
,

which after simplification, becomes

ω
2 =

C(m1 +m2)

m1m2
± C(m1−m2)

m1m2
=

{
2C/m2 = ω2

O
2C/m1 = ω2

A
(4.3.39)

From this equation, since Cl’s mass is greater than that of Na, or m1 > m2, then at Ka =±π we see
that ω2

O = 2C/m2 > ω2
A = 2C/m1, the higher frequency result is the optical branch (ω2

O); the lower
is the acoustic branch (ω2

A). For small Ka, and writing [1− cos(Ka)]) ≈ (Ka)2/2 and substituting
this into Equation 4.3.38 we get

ω2 = C(m1+m2)
m1m2

±
√(

C(m1+m2)
m1m2

)2 [
1− m1m2(Ka)2

(m1+m2)2

]
,

or

ω2 = C(m1+m2)
m1m2

± C(m1+m2)
m1m2

√
1− m1m2(Ka)2

(m1+m2)2 .
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Since Ka is small and after using
√

1− x≈ 1−x/2 for small x, this (with x = m1m2(Ka)2/(2(m1 +
m2)

2)) becomes,

ω2 = C(m1+m2)
m1m2

± C(m1+m2)
m1m2

(
1− m1m2(Ka)2

2(m1+m2)2

)
,

after simplifying and taking the limit as K→ 0, get

ω
2
∣∣∣
K→0

=





(
2C(m1+m2)

m1m2
− C(Ka)2

2(m1+m2)

)
|K→0 =

2C(m1+m2)
m1m2

= 2C
(

1
m1

+ 1
m2

)
= ω2

O
C(Ka)2

2(m1+m2)
|K→0 = 0 = ω2

A

(4.3.40)

The lower frequency dispersion, which vanishes as K→ 0 is the acoustic branch (ω2
A). The higher

frequency dispersion is the optical branch (ω2
O) and it is a constant at K = 0. Putting together these

results, we see that the acoustic frequency dispersion starts from zero at Ka = 0 and reaches the
value of 2C/m1 at Ka =±π as seen from Equation 4.3.39; similarly, the optical branch frequency,
begins from the value 2C(1/m1 + 1/m2) at Ka = 0 and reaches the value 2C/m2 at Ka = ±π .
Overall, ω2

O > ω2
A throughout the BZ. These results are illustrated in Figure 4.3.12, where a plot of

ωO,A√
C/m2

=

√√√√ (1+m)

m
±
√(

(1+m)

m

)2

− 2
m
[1− cos(Ka)] (4.3.41)

with m = m1/m2, is shown and which is obtained from Equation 4.3.38; the positive (negative) root
is the optical (acoustic) frequency dispersion.
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Figure 4.3.12: The optical (short dashed) and acoustic (solid line) frequency dispersions from Equa-
tions 4.3.41 are shown in units of

√
C/m2. The frequency spectrum is that of a NaCl crystal phonon

traveling in the [111] direction, where m1 is the Cl atomic mass, and m2 is the atomic mass of Na.

Notice that at the maximum value of K in the BZ, there exists a gap between the acoustical and
optical branches. The gap value is obtained from Equation 4.3.39, we have

ωg = ωO|Ka=π −ωA|Ka=π =
√

2C/m2−
√

2C/m1 =
√

2C(1/
√

m2−1/
√

m1) (4.3.42a)

or

ωg√
C/m2

=
√

2
(

1− 1√
m

)
, (4.3.42b)
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where, again, we have used m = m1/m2. Notice that if m1 = m2, then this gap is zero. That corre-
sponds to a system of identical atoms and we need to consider only one branch as in the previous
section (see Exercise 4.9.12). This frequency gap is an energy region of quantum mechanically for-
bidden energies (see Equation 4.1.4) at the BZ boundaries where the waves are damped out. In order
for an acoustic phonon to continue to propagate at higher energy than its value at the BZ boundary,
it has to gain enough energy to jump the gap. If it does so, through phonon collision or by means
of photon absorption, its vibrational mode changes; it becomes an optical mode with higher energy
than the acoustic mode.
To obtain a better understanding of the atomic motion for both acoustic and optical modes, we pick
a convenient value of K for which we know the frequency. For concreteness, let’s work with K = 0
for which from Equation 4.3.40 ω2

O = 2C(1/m1 + 1/m2), for the optical mode, and ω2
A = 0 for

the acoustic mode. The idea is to substitute one of these frequency mode values into either of the
Equations 4.3.35 and obtain a relation between u and v. For example, using the first of the equations
with the optical mode frequency at K = 0 we get

−2Cm1

(
1

m1
+

1
m2

)
u = 2Cv−2Cu, or m2u+m1u = m2u−m2v⇒ u

v
=−m2

m1
. (4.3.43)

Repeating this process with the acoustic mode frequency gives

0 = 2Cv−2Cu or
u
v
= 1⇒ u = v. (4.3.44)

Equation 4.3.43 says that in the optical mode at K = 0, the atoms vibrate proportional to the negative
of the ratio of their masses. That is, they move 180◦ out of phase or against each other with a
displacement for which |u|< |v| because m2 < m1. Since u is associated with the Cl atom here and v
is associated with the Na atom, then Cl displaces less than Na. In the acoustic mode, Equation 4.3.44
implies that the atoms vibrate in phase with each other or in the same sense and displace by the same
amount. The expressions for general K are complex (see Exercise 4.9.14).

4.4 Phonon Momentum
A phonon is a quantized vibration which, as mentioned before, has energy according to Equa-
tion 4.1.4. While a phonon does not carry physical momentum due to its coordinates being relative
coordinates of the atoms, the phonon acts as if it had a momentum given by

~p = h̄~K. (4.4.45)

In crystals, there are wavevector selection rules for allowed transitions between quantum states. In
a previous chapter we considered the elastic scattering of photons (x-rays) for which we had

~k′ =~k+ ~G, (4.4.46)

where~k′ is the final photon momentum,~k is the initial photon momentum, and ~G is a crystal recipro-
cal lattice vector. This expression states that we can create a photon of momentum~k′ only if there is
a ~G (reciprocal lattice vector) which can be added to the initial photon momentum. As one can see,
the phonon is not involved in this elastic scattering situation. However, if a photon is inelastically
scattered, due to the interaction with a phonon, Equation 4.4.46 is replaced with

~k′±~K =~k+ ~G, (4.4.47)
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where we have modified Equation 4.4.46 to include a phonon with associated wavector ~K. This
equation states that a photon of momentum ~k′ can be created with the simultaneous absorption
(− sign) or emission (+ sign) of a phonon, given that an initial photon interacted with the crystal
through a reciprocal lattice vector ~G. This process occurs in such a way that the crystal acts as if it
had a momentum h̄~G.
Inelastic scattering of neutrons by phonons can be used to obtain information about the frequency
dispersion relation in crystals. Neutrons interact with a crystal by the scattering from the atomic
nuclei and thus carry information about the vibrational properties of the crystal. If we let~k be the
wavevector of the initial neutron,~k′ the wavevector of the scattered neutron, then by momentum
conservation

~k+ ~G =~k′±~K, (4.4.48)

so that the inelastic interaction of the neutron with the crystal (~G) gives rise to the creation or
destruction of a phonon (~K). By energy conservation we expect

h̄ω~K =
h̄2k2

2mn
− h̄2k′2

2mn
. (4.4.49)

Therefore, by detecting the neutron properties, from Equation 4.4.48 one obtains ±~K =~k+ ~G−~k′;
i.e., the phonon wavevector, and from Equation 4.4.49 the dispersion relation value at the corre-
sponding wavevector is obtained.

4.5 Phonon Heat Capacity
The change in the internal energy (U) per unit temperature is referred to as the heat capacity. Theo-
retically, the heat capacity is studied at constant volume,

CV = (∂U/∂T )V , (4.5.50)

while experimentally the heat capacity is obtained at constant pressure, CP = (∂U/∂T )P. The two
are related through the expression CV −CP = 9α2BV T , where α is the coefficient of linear expan-
sion, V is the crystal volume, B is the bulk modulus, and T is the temperature. For small enough tem-
peratures, assuming α and B remain constant, the difference between CV and CP is negligibly small.
Here we work with the heat capacity at constant volume, Equation 4.5.50, which is also referred to
as the lattice heat capacity. We will let the energy associated with the temperature be τ ≡ kBT , with
kB = 1.38065×1023 J/K the Boltzmann constant, so that at a given temperature the total energy due
to the phonons in a crystal is a sum of the energies over all modes, indexed by wavevector ~K and
polarization p; where, as mentioned before, there are three polarization modes, two transverse and
one longitudinal. We also let UK,p be the average energy associated with a phonon of wavevector ~K
and polarization mode p. We have the total phonon contribution to the internal energy as

U = ∑
K

∑
p

UK,p = ∑
K

∑
p
< nK,p > h̄ωK,p, (4.5.51)

where < nK,p > is the average thermal equilibrium occupancy for wavevector K and polarization p;
i.e., the number of phonons at temperature τ . Phonons are similar to photons in that they are both
bosons, so that < nK,p > is given by the Planck distribution or

< nK,p >=
1

exp
(

h̄ωK,p
τ

)
−1

. (4.5.52)
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This distribution has the following behavior for small and large τ

< nK,p >≈
{

e−
h̄ω
τ τ → 0

τ

h̄ω
− 1

2 τ → ∞
, (4.5.53)

where we have temporarily used ω = ωK,p. This behavior of < n > is shown in Figure 4.5.13.

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x = τ/h̄ω

<
n>

 

 

x−1/2
1/[exp(1/x)−1]
exp(−1/x)

Figure 4.5.13: The Planck distribution, Equation 4.5.52 (solid line), along with its approximations,
Equation 4.5.53, for low temperature (dots) as well as for high temperature (dashed). The variable
x represents the dimensionless quantity h̄ω/τ , where τ = kBT .

Substituting Equation 4.5.52 into Equation 4.5.51 the internal energy becomes

U = ∑
K

∑
p

h̄ωK,p

exp
(

h̄ωK,p
τ

)
−1

. (4.5.54)

Before we proceed any further with Equation 4.5.54 for the energy and then obtaining an expression
for the phonon heat capacity, we need to enumerate the normal modes of vibration in order to convert
the sum over K into an integral.

4.5.1 Normal Mode Enumeration - Density of States

In order to obtain the number of modes at a given frequency range, we consider phonon modes to
be similar to vibrational modes on a one-dimensional string at a particular frequency as shown in
Figure 4.5.14.



Phonon Heat Capacity 143

0 0.2 0.4 0.6 0.8 1
0

0.5

1

L=2λ

Modes on a String of length L

0 0.2 0.4 0.6 0.8 1
−1

0

1

L=λ

0 0.2 0.4 0.6 0.8 1
−1

0

1

2L=3λ

x

Figure 4.5.14: Examples of wave modes on a one-dimensional string of length L at a particular
frequency. The fundamental or first mode has wavelength λ = L/2, the next second and third modes
have λ = L and λ = 2L/3, respectively. In general, the nth mode has λ = 2L/n.

Waves on a string obey the one-dimensional form of the wave equation with a one-dimensional
solution in the form Aexp [i(Kx−ωt)] with phase velocity v=ω/K and group velocity vg = dω/dK
(see Exercise 4.9.7). As shown in Figure 4.5.14, the nth mode has a wavelength λ = 2L/n; however,
K = 2π/λ and we can think of n as the number of modes at a given frequency (since also K = ω/v)
or

n =
KL
π

, (4.5.55a)

and

dn =
L
π

dK ≡ D1D(ω)dω, (4.5.55b)

where dn here is thought of as the number of modes per unit frequency ω in one dimension. We
have also introduced the quantity D1D(ω)dω which can be rewritten as

D1D(ω)dω =
L
π

dω

dω/dK
=

L
π

dω

vg
. (4.5.55c)

Here D1D(ω) is defined as the density of modes per unit frequency in one dimension and is also
commonly referred to as the density of states. In three dimensions, we think of a sphere with
Kx ,Ky ,Kz > 0 which means that the wave vector spans one octant of the sphere, as in Figure 4.5.15.
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Figure 4.5.15: Three-dimensional modes are shown within one octant of a sphere. The dots are
representative examples of vibrational modes; i.e., values of ~K, for which kx ,ky ,kz > 0.
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We, therefore, write the analog of Equation 4.5.55b as

dn3d(KxKyKz) =
1
8 dnxdnydnz =

1
8

Lx
π

Ly
π

Lz
π

dKxdKydKz,

and if we consider spherical symmetry, we have Lx = Ly = Lz = L and dKxdKydKz = K2dK sinθdφ

so that dn3d(KxKyKz) becomes

dn3d(θ ,φ)≡ 1
8

( L
π

)3 K2dK sinθdφ .

Integrating this over θ |π0 and over φ |2π
0 get

dn3d =
∫

π

0

∫ 2π

0
dθdφdn3d(θ ,φ) =

4π

8

(
L
π

)3

K2dK =
L3

2π2 K2dK. (4.5.56)

In analogy to the one-dimensional case of Equation 4.5.55b, we set

dn3d =
L3

2π2 K2dK =
L3

2π2 K2 dω

(dω/dK)
= D3D(ω)dω, (4.5.57a)

so that we write the three-dimensional density of states

D3D(ω) =
L3

2π2 K2 dK
dω

=
V

2π2 K2 dK
dω

, (4.5.57b)

where we have used V = L3. The total number of modes is obtained by summing over the possible
values of ~K in three dimensions (see Figure 4.5.15); that is, ∑

K
(1). However, the development we

have elaborated on allows us to integrate Equation 4.5.57a or

N = ∑
K
(1)→

∫
dn3d =

V
2π2

K3

3
=

(
L

2π

)3

4π
K3

3
, (4.5.58)

where the “→” indicates the replacement. The idea is that if we have a sum over K in the form ∑
K

f~K

where f~K is any function of ~K then, by the above method, we can carry it out as

∑
K

f~K =
∫

dn3d f~K =
∫

D3D(ωK) fωK dωK . (4.5.59)

In this fashion, Equations 4.5.51 and 4.5.54 become

U = ∑
p

∫
D(ωp)

h̄ωp

exp
(

h̄ωK,p
τ

)
−1

dωp = ∑
p

∫
D(ωp)< np > h̄ωpdωp = ∑

p
Up, (4.5.60)

where we have suppressed the “3D” subscript for D(ω) and defined

Up ≡
∫

D(ωp)< np > h̄ωpdωp, (4.5.61)

with D(ω) given by Equation 4.5.57b. In the next section, the calculation of Equations 4.5.60 and
4.5.61 are carried out using the so-called Debye model.

4.5.2 Debye Theory

In 1912 Peter Debye developed a method of carrying out the integral of Equation 4.5.61 by assuming
a frequency spectrum for an elastic medium with a high frequency cut-off known as the Debye
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frequency ωD to be determined below. In this respect, we work with the relation ω = vK so that
dω/dK = v or dK/dω = 1/v with v the speed of sound in the medium. The associated density of
states, using Equation 4.5.57b, is written as

D(ω) =
V

2π2

(
ω

v

)2 1
v
=

V ω2

2π2v3 . (4.5.62)

Notice that Equation 4.5.61 does not have a restriction in the integral, so that 0 ≤ ω < ∞, which
is not appropriate because a crystal system can support only so many modes. The total number of
modes is actually given by Equation 4.5.58

N =
V

2π2
K3

3
=

V
2π2

ω3

3v3 , (4.5.63)

which means that the frequency must lie in the interval 0≤ ω ≤ ωmax. We let ωmax = ωD, obtained
by solving for it from Equation 4.5.63, or

ω
3
∣∣∣
ω=ωD

= ω
3
D ≡ 6π

2v3 N
V
, (4.5.64)

which defines the Debye frequency ωD and N is the number of allowed wavectors. This N is also
equal to the number of primitive cells in the crystal; i.e., V/Vc with Vc the primitive cell volume
and V the crystal volume. Associated with the Debye frequency, since K = ω/v there is a Debye
wavector which, with the use of Equation 4.5.64, is given by

KD ≡
ωD

v
=

(
6π2N

V

)(1/3)

. (4.5.65)

By incorporating the Debye concepts, we now rewrite Equation 4.5.61 as

Up ≡
ωD∫

0

dωpD(ωp)
h̄ωp

exp
(

h̄ωp
τ

)
−1

=

ωD∫

0

dωp
V ω2

p

2π2v3
p

h̄ωp[
exp
(

h̄ωp
τ

)
−1
] (4.5.66)

where use has been made of the D(ω) from Equation 4.5.62 and the above understanding for the
value of K. Since there are three polarization modes possible for each value of K in one dimension
(two transverse and one longitudinal and it so remains in three dimensions along certain special
directions), we assume that all modes are equivalent; that is, independent of the subscript p, to write
from Equation 4.5.60 U = ∑

p
Up ≈ 3Up or

U =
3V h̄

2π2v3

ωD∫

0

dω
ω3

[
exp
( h̄ω

τ

)
−1
] . (4.5.67)

To work with this expression, we let x = h̄ω/τ , where we recall that τ = kBT , and so dx = (h̄/τ)dω

and by the same token xD = h̄ωD/τ ≡ θ/T where we have defined the so-called Debye temperature
θ ≡ h̄ωD/kB. The Debye temperature is a measure of the maximum vibrational energy of a crystal.
It can be calculated from

θ =
h̄ωD

kB
=

h̄v
kB

(
6π

2 N
V

)1/3

, (4.5.68)

where we have used Equation 4.5.64. With the above definitions, we can rewrite Equation 4.5.67 as

U =
3V h̄

2π2v3

(
τ

h̄

)4
xD∫

0

dx
x3

[ex−1]
. (4.5.69)
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Notice that from Equation 4.5.68 h̄3v3/k3
B = θ 3/(6π2(N/V )) so that Equation 4.5.69 can be written

in terms of the Debye temperature as

U = 9NkBT
(

T
θ

)3 xD∫

0

dx
x3

[ex−1]
. (4.5.70)

Also for large T , since x is small in this limit, we approximate the integrand’s denominator as ex−
1≈ x+x2/2 and 1/(x+x2/2)≈ (1/x)(1−x/2); the integrand becomes x3(1−x/2)/x= x2(1−x/2)

and the integral is
xD∫
0

x2(1−x/2)dx = x3
D/3−x4

D/8 = (x3
D/3)(1−3xD/8) = θ 3[1−3θ/(8T )]/(3T 3)

so that in the high temperature limit we get

U
∣∣∣
large T

≈ 9NkBT
(

T
θ

)3
θ 3

3T 3

(
1− 3θ

8T

)
= 3NkBT

(
1− 3θ

8T

)
. (4.5.71a)

For very large T, this expression gives the expected classical result

U
∣∣∣
large T

→UlargeT ∼ 3NkBT =UlargeT . (4.5.71b)

for N vibrators in three dimensions. The lattice heat capacity is obtained from Equations 4.5.50 and
4.5.67 to obtain

CV =
3V h̄

2π2v3
h̄

kBT 2

ωD∫

0

ω4 exp
( h̄ω

τ

)
dω

[
exp
( h̄ω

τ

)
−1
]2 =

3V h̄
2π2v3

1
kBT 2

(
τ

h̄

)5
xD∫

0

exx4dx

(ex−1)2 = 9NkB

(
T
θ

)3 xD∫

0

exx4dx

(ex−1)2 ,

(4.5.72)

where we have again used the variable x = h̄ω/τ as well as the definition of Equation 4.5.68. For
large T we expect x to be small so that x4ex/(ex−1)2 ≈ x4(1+x)/(1+x−1)2 = x4(1+x)/x2 ≈ x2.
Thus for the high T limit we write

CV largeT ≈ 9NkB

(
T
θ

)3 xD∫

0

x2dx = 9NkB

(
T
θ

)3

x3
D/3 = 3NkB

(
T
θ

)3(
θ

T

)3

= 3NkB. (4.5.73)

This is the classical result for CV and is, of course, the same that one gets by taking d/dT of Equa-
tion 4.5.71b. This limit is known as the Dulong-Petit law. For a mole of a substance, N is replaced
with Avogadro’s number NA = 6.02214× 1023 mol−1 then with NAkB = R = 8.31447J/mol ·K,
the ideal gas constant, the classical result for the molar heat capacity of a solid is CV m = 3R =
24.94J/mol ·K.

4.5.3 Debye T 3 Law

It is of interest to obtain analytic expressions for U and CV for small T (<< θ ). In the case of U ,
this is carried out by noting that in Equation 4.5.70, the upper limit is large for low T ; that is, we
make the replacement xD = h̄ωD/τ → ∞, and write

UlowT ≈ 9NkBT
(

T
θ

)3 ∞∫

0

dx
x3

[ex−1]
. (4.5.74a)
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By consulting a mathematical handbook [19] we find that
∞∫
0

dx xn−1

[ex−1] = n!∑
s
(1/sn) = n!π4/90. Sub-

stituting these results into UlowT , we get for the low temperature limit

UlowT ≈ 9NkBT
(

T
θ

)3 6π4

90
=

3π4NkBT 4

5θ 3 . (4.5.74b)

The low temperature expression for the heat capacity of the solid can be obtained by taking d/dT
of UlowT , to get

CV lowT ≈
12π4NkBT 3

5θ 3 ∼ 233.78NkB

(
T
θ

)3

, (4.5.75)

which is the so-called Debye T 3 law. The evaluation of the general form of U from Equation 4.5.70
has to be done numerically and the results are shown in Figure 4.5.16(a) along with its low and high
temperature behaviors from Equations 4.5.74b and 4.5.71a, respectively, assuming a Cu crystal.
For very large temperatures, the classical limit of Equation 4.5.71b will be reached. Similarly, the
numerical results for CV from Equation 4.5.72 as well as the low and high temperature behaviors,
from Equations 4.5.75 and 4.5.73, are shown in Figure 4.5.16 (b), respectively. Notice how well the
Debye T 3 law describes the low temperature behavior of CV .
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Figure 4.5.16: (a) Shows the numerically calculated U (dash-dot) using Equation 4.5.70, and its low
(diamonds, Equation 4.5.74b) and high (open circles, Equation 4.5.71a) temperature behaviors. (b)
shows the numerically calculated CV (dash-dot) using Equation 4.5.72, and its low (open circles,
Equation 4.5.75) and high (dots, Equation 4.5.73) temperature behaviors. The low temperature CV
follows the Debye T 3 law. The calculation has been carried out for the copper crystal.

The results shown in Figure 4.5.16 (a) for U on a copper crystal has been carried out using the script
phonon U.m. The script finds the Debye frequency using Equation 4.5.64. Here the speed of sound
used is obtained by v =

√
Y/ρ with a Young’s modulus of Y = 76×109 N/m2; N/V = ρNA/Mw =

ρ/(uMw) with Cu density ρ = 8890kg/m3; molecular weight Mw = 63.546gr/mol; and atomic
mass unit u ≈ 1.6605× 10−27 kg/(gr/mol). The respectively calculated values of sound speed,
N/V , Debye frequency, and Debye temperature are v = 2923.9m/s, N/V = 8.43× 1028 1/m3 ωD =
4.99× 1013 s−1, and θ = 381.6Kelvin. In the code below the numerical integration is done by the
MATLAB function “quad” which uses the function definition “Uint=@(x) x.^3./(exp(x)-1)”
for the integrand, but there are other ways to define functions also. The listing of the script follows.

%copyright by J. E Hasbun and T. Datta

%phonon_U.m

%Calculates the phonon internal energy for a Copper crystal

%based on the Debye Model.
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clear;

h=6.62606896e-34; %Planck’constant (J.s)

hbar=h/2./pi; %hbar

kB=1.3806504e-23; %Boltzmann Contant (J/K)

u=1.660538782e-27; %atomic mass unit

Na=(1/u)*1.e-3; %Avogadro’s number

Mw=63.546; %Cu gr/mol. Note 1 gr/mol=1u

Y=0.76e11; %Cu (cast) Young’s mod. in Pa (M. Marder’s text)

rho=8890; %Cu density kg/m^3

vs=sqrt(Y/rho); %speed of sound

nv=rho/u/Mw; %N/V

omD=vs*(6*pi^2*nv)^(1/3); %Debye frequency

thD=hbar*omD/kB; %Debye temperature

fprintf(’N/V=%6.3e 1/m^3, vs=%6.3f m/s\n’,nv,vs)

fprintf(’Debye freq.=%6.3e 1/m^3, Debye Temp=%6.3f m/s\n’,omD,thD)

Uint=@(x) x.^3./(exp(x)-1); %U integrand

Tol=1.e-3; %small number for lowest T

T=0:5:thD; %T variable of U

T(1)=1000*Tol; %use this value instead of T=0 low limit;

for i=1:length(T)

xD=thD/T(i);

%integrate; use small number for lower limit; upper limit is xD

U(i)=9*Na*kB*T(i)*(T(i)/thD)^3*quad(Uint,Tol,xD);

UlT(i)=3*pi^4*Na*kB*T(i)^4/thD^3; %Low T approx

UhT(i)=3*Na*kB*T(i)-9*Na*kB*thD/8; %High T approx

end

plot(T,U,’k-.’,’LineWidth’,2)

hold on

plot(T,UlT,’kd’,’MarkerSize’,4)

plot(T,UhT,’ko’,’MarkerSize’,4)

legend(’Numeric’,’Low T Approx’,’High T Approx’,4);

axis([0 max(T) -100 max(U)])

xlabel(’T (Kelvin)’)

ylabel(’U (J/mol)’)

Notice that the above theoretically obtained Debye temperature is off when compared to the exper-
imental value for Cu shown in Table 4.5.1 and gives an error of about 10%. The theoretical result
can be improved by doing a better calculation of the sound velocity, see reference [21].
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Table 4.5.1: Experimental Debye temperatures (in Kelvin) for the elements

Element Θ Element Θ Element Θ Element Θ

Am 121 Eu 118 Na 157 Sm 169
Ar 92 Fe 477 Nb 276 Sn 199
Ag 227 Ga 325 Nd 163 Sr 147
Al 433 Ge 373 Ne 74.6 Ta 245
As 282 Gd 182 Ni 477 Tb 176
Au 162 H 122 Np 259 Te 152
Ba 111 He 34-108 Os 467 Th 160
Be 1481 Hf 252 Pa 185 Ti 420
Bi 120 Hg 72 Pb 105 Tl 78.5
B 1480 Ho 190 Pd 271 Tm 200
C(graphite) 412 I 109 Pr 152 U 248
C(diamond) 2250 In 112 Pt 237 V 399
Ca 229 Ir 420 Pu 206 W 383
Cd 210 K 91.1 Rb 56.5 Xe 64.0
Ce 179 Kr 71.9 Re 416 Y 248
Co 460 La 150 Rh 512 Yb 118
Cr 606 Li 344 Ru 555 Zn 329
Cs 40.5 Lu 183 Sb 220 Zr 290
Cu 347 Mg 403 Sc 346
Dy 183 Mn 409 Se 153
Er 188 Mo 423 Si 645
Source:[20]

In the following example, we will use some material data obtained at low temperature and extract
the associated Debye temperature of the material.

Example 4.5.3.1
It is possible to obtain low temperature CV data for solid argon from reference [3]. Some of the data
has been digitized and copied here in the form of MATLAB lines that can be incorporated into a
script. The lines are

%TData is the array of temperature values cubed

TData=[0.13,0.33,0.60,0.89,1.14,1.45,1.65,2.03,2.30,...

2.56,2.92,3.41,3.57,3.99,4.12,4.59,5.04,5.26,5.39,...

6.13,6.29,7.07,7.09,7.20,7.47,7.87];

%CvData is the array of specific heat values in mJ/mol/K

CvData=[0.49,1.00,1.58,2.31,2.96,3.76,4.19,5.21,5.87,...

6.45,7.39,8.70,9.21,10.37,10.59,11.68,12.84,13.57,...

13.86,15.82,15.96,17.85,18.21,18.36,19.09,20.10];

Since the low temperature behavior of CV is given by Equation 4.5.75, plotting the experimental data
versus the temperature raised to the third power has a straight line shape. Applying linear regression
to the data pairs xi and yi, where i runs through the N data points. Here note that xi and yi are stand-
ins for the experimental value pairs of T 3 and CV , respectively. With this understanding, the best
line fit, y = mx+b, has coefficients given by

m =
N ∑xiyi−∑xi ∑yi

N ∑x2
i − (∑xi)2 , (4.5.76a)

for the slope, and

b =
∑yi−m∑xi

N
, (4.5.76b)

for the intercept. However, since CV → 0 as T → 0, we need to force the line to have an intercept
that coincides with the origin and set b in Equation 4.5.76b to zero. In which case we have that
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∑yi = m∑xi. By substituting this expression into the 2nd term of the numerator of Equation 4.5.76a
and solving for m, we find that the slope of the best line fit is given by

m =
∑xiyi

∑x2
i
, (4.5.77a)

with units of J/K4. This is the slope of the line that is based on the experimental data. It enables us
to write

CV lowT = mT 3, (4.5.77b)

and which, when compared to Equation 4.5.75, allows us to extract the experimental value of a ma-
terial’s Debye temperature by setting m= 233.78NkB/θ 3 so that for Avogadro’s number of particles
θ = (233.78R/m)1/3, where once again R = NAkB = 8.31447J/(mol ·K). Figure 4.5.17 shows the
above data and a superimposed plot of the fit according to Equation 4.5.77 in the low temperature
range of the data. The extracted Debye temperature is θ = 91.3K. Comparing this with the value
of 92K for solid argon (Ar) from Table 4.5.1, we get an absolute value of the percent error of about
0.76% and is a testament of how well the Debye T 3 law describes the low temperature behavior of
the experimental specific heat data.
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Figure 4.5.17: Shown is a plot of the solid Ar data (dots) from Example 4.5.3.1 with CV in units
in mJ/mol/K. The line is the best fit whose slope m = 2.5568mJ/K4 and with R = 8.3145×
103mJ/(mol · K), the extracted Debye temperature is θ = (233.78 ·8.3145×103/2.5568)1/3 ≈
91.3K.

4.5.4 The Einstein Model

In 1907 Albert Einstein had carried out a simpler derivation of the above internal energy (U) and
heat capacity (CV ). He did it by assuming a simple form of the density of states. Regarding Equa-
tion 4.5.60, he reasoned that if all oscillator modes are assumed to have the same frequency, ωE (the
Einstein characteristic frequency), one can thus write the density of states as a delta function, or

Dp(ωp) = Nδp(ωp−ωE), (4.5.78)

for mode p and N atoms in one dimension. Here ωE is supposedly the single frequency value at
which the delta function is most representative of the density of states (see Figure 4.6.20). This
assumption is in stark contrast to Equation 4.5.62. Following Equation 4.5.61, we thus write the
Einstein U for the one mode as

UE = N
∫

δp(ωp−ωE)
h̄ωp

eh̄ωp/τ −1
dωp = N

h̄ωE

eh̄ωE/τ −1
. (4.5.79)
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The heat capacity that follows from this expression is

CV E = (∂UE/∂T )V = NkB

(
h̄ωE

τ

)2 h̄ωE(
eh̄ωE/τ −1

)2 . (4.5.80)

In three dimensions, N is to be replaced by 3N since there are three modes per oscillator in that
case. If we let x = h̄ωE/τ , for high T , exp(x) ≈ 1+ x so that in this limit exp(x)/(exp(x)− 1)2 ≈
(1 + x)/x2 ∼ 1/x2 so that CV E ∼ NkB[h̄ωE/τ]2[τ/(h̄ωE)]

2 = NkB in one dimension and 3NkB
in three dimensions, which is the Dulong and Petit value. At low temperature x is large so that
exp(x)/(exp(x)−1)2 ≈ exp(x)/(exp(x))2 = exp(−x), to obtain the expression for the Einstein heat
capacity at low temperature as

CV E lowT = NkB

(
h̄ωE

τ

)2

e−h̄ωE/τ = NkB

(
θE

T

)2

e−θE/T , (4.5.81)

where θE ≡ h̄ωE/kB, is the Einstein characteristic temperature. Again, in three dimensions, we
replace N with 3N. As is evident, this expression goes to zero exponentially and does not follow the
Debye T 3 behavior that so well describes the experimental data. Both the Einstein and the Debye
models produce the expected behavior at height T . The following example illustrates the differences
between the Debye model and the much simpler Einstein model for the heat capacity.

Example 4.5.4.1
We now use some CV data for diamond from Touloukian and Buyco (1970) [22] as digitized from
reference [20]. The digitized data is listed below in the form of MATLAB lines that can be incorpo-
rated into a script. (The temperature is in Kelvin and the heat capacity was converted to J/(mol ·K).
The lines are

%Temperature in K

T_exp=[15.94,16.52,17.33,17.75,18.84,19.76,20.49,22.54,23.93,...

25.71,27.29,29.66,31.88,33.44,36.35,39.98,41.94,43.48,46.70,...

48.41,51.38,55.20,59.30,63.71,68.45,72.67,77.16,80.94,85.93,...

89.10,91.27,98.04,100.43,106.63,107.94,113.24,123.10,126.13,...

133.88,135.51,138.81,147.35,152.75,162.15,178.42,182.80,201.05,...

213.46,221.31,232.11,252.30,264.70,284.38,335.99,369.58,401.74,...

468.92,497.76,547.43,623.94,686.32,782.17,829.99,912.82,1003.74];

%Constant volume specific heat in J/mol/K

Cv_exp=[0.001696,0.001872,0.002136,0.002436,0.002779,0.003169,...

0.003615,0.004551,0.005365,0.006324,0.007961,0.008503,0.01143,...

0.01262,0.01439,0.01696,0.01935,0.02207,0.02518,0.02872,0.03067,...

0.03736,0.04404,0.05544,0.06754,0.07961,0.1002,0.1181,0.1393,...

0.1812,0.2067,0.2281,0.2689,0.3275,0.3736,0.4551,0.5191,0.6535,...

0.7454,0.7961,0.9081,1.036,1.221,1.393,1.812,2.207,2.436,2.968,...

3.615,3.861,4.404,5.365,6.535,8.227,9.384,10.7,12.21,13.93,14.87,...

16.42,18.72,20,20,21.36,21.36];

In the upper graph of Figure 4.5.18, the calculation of the Debye heat capacity from Equation 4.5.72
(dashed) is compared with the above diamond data (dots). The solid line is the Einstein heat capacity
from Equation 4.5.80.
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Figure 4.5.18: The Debye formula for the heat capacity is shown as a dashed curve (Equa-
tion 4.5.72). The Einstein formula is the solid curve (Equation 4.5.80), and the diamond data of
Touloukian and Buyco (1970), as digitized from reference [20], are the solid dots. The lower graph
is a log-log plot (based 10) version of the upper graph and illustrates the deviation of the Einstein
model in the low temperature regime. The Debye (θ ) and Einstein (θE ) temperature values used
are 1706.0K and 1305.943K, respectively, with corresponding frequencies ωD = 2.234e+014s−1

and ωE = 1.710e+014s−1. Here ωE has been taken to be proportional to ωD such that it is slightly
adjusted to improve the comparison with the data.

Notice that the Einstein heat capacity does very well through most of the entire range of temperature.
The largest discrepancy occurs at the very low temperature regime. This is best seen in the lower
part of the figure where the same plots are presented on a log-log scale (based 10) using MATLAB’s
l̈oglogp̈lot command. Here the linear behavior of the data is most evident and the resulting graph is
representative of the definitive Debye T 3 law.

4.6 General Density of States
The success of the Debye model over the Einstein model is due to the use of a better model of
the density of states (DOS). It therefore becomes of interest to have a general expression for the
number of states or modes available per frequency ω , given a frequency dispersion ωK ; i.e., D(ω).
The number of allowed ~K values in a phonon frequency range between ω and ω +dω is written as

D(ω)dω =

(
L

2π

)3 ∫

shell
d3K, (4.6.82)

which is an integral over the volume of a “shell” in K space bounded by two surfaces on which the
phonon frequency is constant as depicted in Figure 4.6.19.
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Figure 4.6.19: Element of the shell volume with surface dSω and thickness dK⊥ discussed in con-
nection with Equation 4.6.82.

This volume element is written as d3K = dSω dK⊥. However, notice that in one dimension dK⊥ =
dω/(dω/dK⊥) and in three dimensions this becomes dK⊥ = dω/|~∇Kω|, so that Equation 4.6.82
becomes

D(ω)dω =

(
L

2π

)3 ∫

shell
dSω

dω

|~∇Kω|
, or D(ω) =

V
(2π)3

∫

shell

dSω

vG
, (4.6.83)

where we have used the definition for the group velocity ~vG from Equation 4.2.30 and made the
substitution V = L3 for the volume. In the following example, we show how this equation for the
DOS yields the Debye model’s DOS discussed before.

Example 4.6.0.1
To obtain the Debye DOS from Equation 4.6.83, we assume the free particle energy dispersion E =
h̄2k2/(2m) = h̄ω or ω = h̄k2/(2m) so that dω = (h̄k/m)dk. We also have that vG = dω/dk = h̄k/m
and for the surface element we write dSω = k2 sinθdθdφ to obtain from Equation 4.6.83

D(ω)dω = V
(2π)3

∫
θ ,φ k2 sinθdθdφ

h̄(k/m)dk
h̄(k/m) = 4π

V
(2π)3 k2dk,

and leads to D(ω) = V
2π2 k2 dk

dω
. Once again, as we did in the Debye model of Section 4.5.2, we

take the sound velocity in the medium as ω = vk or k = ω/v and dk/dω = 1/v, which when
substituted into the above expression we get D(ω) = V

2π2
ω2

v3 , which is the Debye model result of
Equation 4.5.62. This DOS has a quadratic shape and ω is restricted to the range of 0 < ω < ωD as
shown in Figure 4.6.20 (solid line). In contrast, the Einstein model’s DOS corresponds to a single
peak at the frequency, ω = ωE (dashed line) as in Equation 4.5.78. A DOS similar to the short-
dashed curve is characteristic of a real crystal’s DOS. The discontinuities it contains are due to
singular points associated with a crystal’s band structure.
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Figure 4.6.20: Density of states for the Debye model (solid), the Einstein model (dashed), and a
possible crystal (short dashed).

4.7 Thermal Expansion
The general tendency of materials to expand when heated is referred to as thermal expansion. A
deep understanding of this property of materials can be gained by means of the crystal potential. In
an earlier chapter, the Lennard-Jones (LJ) potential was used in connection with the cohesive energy
of noble gas crystals. Here, further below, we will apply it to obtain a grasp for thermal expansion.
Although the potential is not as realistic as we wish, it affords us the opportunity to experiment with
it in trying to predict thermal expansion. Recall that, for small displacements from equilibrium, it
is possible to expand a potential in a power series. Here we write an approximation to the potential
that includes up to fourth order in x; that is,

U(x) = cx2−gx3 + f x4, (4.7.84)

where x is measured from the equilibrium bond length. Given a potential, a crystal’s average atomic
displacement versus temperature can be estimated classically through a Boltzmann distribution to
write for the average atomic distance

< x >=

∫
∞

−∞
xe−βU(x)dx

∫
∞

−∞
e−βU(x)dx

, (4.7.85)

where β ≡ 1/(kBT ). If the last two terms of Equation 4.7.84 are ignored and the resulting harmonic
potential is used into Equation 4.7.85, the result is < x >= 0 because

∫
∞

−∞
xe−βcx2

dx = 0 since the
integrand is odd. We see, therefore, that a harmonic potential is incapable of describing thermal
expansion. The symmetry of the potential about the equilibrium position leads to a zero average po-
sition at any temperature. Thus, in order to explain thermal expansion, terms beyond the harmonic
approximation are needed. The extra terms in Equation 4.7.84, beyond the quadratic, are anharmonic
terms and produce the appropriate potential antisymmetry needed to obtain a nonzero average dis-
placement versus temperature. To see this, for small displacements, we write the integrand in the nu-
merator of Equation 4.7.85 as e−βU(x) = e−βcx2

e−β (−gx3+ f x4)≈ e−βcx2
(1−β (−gx3 + f x4)). For the

denominator, we only keep the harmonic term and let the integrand take the form e−βU(x) ≈ e−βcx2
.
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With these approximations Equation 4.7.85 becomes

< x >=

∫
∞

−∞
e−βcx2

(x+βgx4−β f x5)dx
∫

∞

−∞
e−βcx2dx

. (4.7.86)

The integrals can be carried out using
∫

∞

0 xme−ax2
dx = Γ[(m + 1)/2]/(2a(m+1)/2), where Γ(m +

1/2) = 1 ·3 ·5 · . . . · (2m−1)
√

π/2m given that Γ(1/2) =
√

π . We have

∫
∞

−∞
e−βcx2

dx =
√

π√
βc
,

∫
∞

−∞
xe−βcx2

dx = 0

βg
∫

∞

−∞
x4e−βcx2

dx = 3g
√

π

4c5/2β 3/2 , f β
∫

∞

−∞
x5e−βcx2

dx = 0
. (4.7.87)

Substituting these results into Equation 4.7.86, we find

< x >=
3gkBT

4c2 , (4.7.88)

indicating a linear dependence of the lattice displacement with temperature. Albeit different, this
is reminiscent of the simple linear relation ∆L = αL0∆T commonly used to describe changes in
length, ∆L, with changes in temperature, ∆T , where α is a coefficient of linear expansion, L0 is the
initial length. In our present approach, we can identify the coefficients in the fourth order expansion
of Equation 4.7.84 if we make use of the Lennard-Jones (L-J) potential, with parameters ε and σ ,
for an FCC crystal (see Chapter 3), which we write in the form

ULJ(r)≡
Utot(r)

N
= 2ε

[
(12.13)

(
σ

r

)12
− (14.45)

(
σ

r

)6
]
, (4.7.89)

for the total energy per atom. Expanding this to fourth order about R0 we have

ULJ(r)≈ULJ(R0)+U ′LJ(R0)(r−R0)+
1
2!

U ′′LJ(R0)(r−R0)
2 +

1
3!

U ′′′LJ(R0)(r−R0)
3

+
1
4!

U iv
LJ(R0)(r−R0)

4, (4.7.90a)

where, as in Chapter 3, since U ′LJ(R0) = 0, the equilibrium position is R0 = ασ with α =

(2(12.13)/14.45)1/6 ≈ 1.09. By the same token, recall that when R0 is substituted into Equa-
tion 4.7.89, ULJ(R0) =− 14.452

2(12.13)ε ≈−8.61ε . The rest of the derivatives are

U ′′LJ(R0) = 2ε

[
(12.13)(12)(13)

σ12

R14
0
− (14.25)(6)(7)

σ6

R8
0

]
≈ 2ε(260.699)

σ2 ,

U ′′′LJ(R0) = 2ε

[
−(12.13)(12)(13)(14)

σ12

R15
0

+(14.25)(6)(7)(8)
σ6

R9
0

]
≈−2ε(5021.752)

σ3 ,

U iv
LJ(R0) = 2ε

[
(12.13)(12)(13)(14)(15)

σ12

R16
0
− (14.25)(6)(7)(8)(9)

σ6

R10
0

]
≈ 2ε(81,377.812)

σ4 .

(4.7.90b)

If we let x = r−R0 and compare the effective potential; that is, Ue f f (r) ≡ULJ(r)−ULJ(R0) from
Equation 4.7.90a to that of Equation 4.7.84, we can identify the coefficients as follows

c =
U ′′LJ(R0)

2!
≈ 2ε(260.699)

2!σ2 , g =
−U ′′′LJ(R0)

3!
≈ 2ε(5021.752)

3!σ3 , f =
U iv

LJ(R0)

4!
≈ 2ε(81,377.812)

4!σ4 .

(4.7.91)
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In Figure 4.7.21, a comparison is made between the Lennard-Jones (LJ) potential of Equation 4.7.89,
its fourth order expansion, according to the above discussion - Equations 4.7.84 and 4.7.91, where
we have included the potential minimum ULJ(R0) ≈ −8.61ε - and the harmonic approximation
for energy in units of ε and distance in units of σ . As mentioned above in connection with Equa-
tions 4.7.90, the minimum of the potential occurs at R0 = ασ , so that in units of σ it happens at
r(σ) = α ≈ 1.09.
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Figure 4.7.21: The Lennard-Jones (LJ) potential (Equation 4.7.89) is shown compared with its
fourth order expansion (Equations 4.7.84 and 4.7.91) as well as the harmonic approximation. Here
energy is in units of ε and distance in units of σ .

In particular, notice the asymmetry caused by the anharmonic terms as one compares with the
quadratic form of the potential. The listing of the script, thermal potential.m, that reproduces the
figure follows. Notice that we defined three “functions” within the MATLAB script to calculate the
potentials.

%copyright by J. E Hasbun and T. Datta

%thermal_potential.m

%The script plots the Lennard-Jones (LJ) potential and it’s expanded

%approximation to 4rth order in (r-R). We use energy/atom in

%units of epsilon, and distance in units of sigma.

%It also calculates the average

function thermal_potential

clear

global alpha U0

alpha=(2*12.13/14.45)^(1/6); %LJ bond length in Sigma units

U0=14.45^2/2/12.13; %LJ min energy magnitude in epsilon units

rl=0.1; rs=0.001; ru=15;

r=rl:rs:ru;

plot(r,ULJ(r),’k’,’LineWidth’,2)

hold on

plot(r,ULJexp(r,0),’k:’,’LineWidth’,2)

plot(r,ULJexp(r,1),’k--’)

h=legend(’Lennard-Jones’,’4th-Order Approx’,’Harmonic’,’Location’,’North’);

set(h,’FontSize’,14)

axis ([alpha-0.4 alpha+0.4 -U0*(1+0.4) 5*U0])
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xlabel(’r (\sigma)’,’FontSize’,14)

ylabel(’U(r) (\epsilon)’,’FontSize’,14)

function Ut=ULJ(x)

%Lennard-Jones potential function.

%Energy in units of epsilon, distance in units of sigma.

Ut=2*(12.13./x.^12-14.45./x.^6);

function Ua=ULJexp(x,k)

global alpha U0

%Fourth order Lennard-Jones potential expanded function.

%Energy in units of epsilon, distance in units of sigma.

Cpp=12.13*12*13/alpha^14-14.45*6*7/alpha^8;

Cppp=-12.13*12*13*14/alpha^15+14.45*6*7*8/alpha^9;

Cpppp=12.13*12*13*14*15/alpha^16-14.45*6*7*8*9/alpha^10;

if (k==0) %up to 4rth order in x-alpha

Ua=-U0+2*Cpp*(x-alpha).^2/2+2*Cppp*(x-alpha).^3/6+...

2*Cpppp*(x-alpha).^4/24;

else

Ua=-U0+2*Cpp*(x-alpha).^2/2; %the quadratic case only

end

Essentially, as the temperature increases and the atoms vibrate away from equilibrium, the average
distance increases with temperature. The fourth order expansion of Equation 4.7.88 predicts a linear
behavior. Since the constants for this approximation are given by Equations 4.7.91, we can actually
plot it and compare with real data. To do so, we will plot the lattice constant for argon. The relation
is as before, if we have the average nearest neighbor distance, < r >, the lattice constant for the
FCC structure, from Chapter 1, is < a >=

√
2 < r >. In the case of the simple analytic fourth order

approximation result, Equation 4.7.88, since < x > is measured from the equilibrium value at T = 0,
we have < r >= R0+< x >. We can also perform the full one-dimensional calculation numerically
for < r > using the actual potential through Equation 4.7.85 rather than the approximate expression,
Equation 4.7.86, with x replaced by r; that is,

< r >=

∫
∞

−∞
re−βU(r)dr

∫
∞

−∞
e−βU(r)dr

, (4.7.92)

where, for U(r), we can use the fourth order expansion, Equations 4.7.90, as well as the full LJ
potential of Equation 4.7.89. We will be comparing the three results against experimental data [23]
for solid Ar. The data is also used to extract the value of σ needed in the LJ potential; that is, at T = 0
we have aT=0/

√
2 = R0 = ασ which yields σ ≈ 3.438 Å. The Debye temperature of TD = 92K for

Ar is used to get ε . We do this by setting ε = kBTD, so that ε ≈ 0.00793eV . This is essentially
the energy units in which the potentials are calculated. Figure 4.7.22 shows the experimental data
(circles) for Ar’s lattice constant versus temperature, < r > from Equation 4.7.92 with U(r) from
Equation 4.7.89 (solid) as well as from Equations 4.7.90 (long dashes), and the result from < r >=
R0+< x > (short dashes), where < x > is from the analytic Equations 4.7.88 and 4.7.91.
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Figure 4.7.22: The lattice constant versus temperature for solid Ar. The open circles are the exper-
imental data [23]. The calculated lattice constants are from

√
2 < r >, where < r > is calculated

using Equation 4.7.92 through the LJ potential of Equation 4.7.89 (solid), as well as the fourth or-
der approximation Equations 4.7.90 (long dashes). The short-dashed curve is due to the simpler
approximation for which < r >= R0+< x > where < x > is from Equation 4.7.88.

Except for very low temperatures, the experimental data shows a non-linear behavior with temper-
ature. The approximations seem to break down at around 40K. Although the full LJ potential tends
to explain the curving effect with temperature, it also needs improvement since the data does not
bow as rapidly.
The script thermal latt const.m, listed below, contains the main ingredients needed to obtain the
results shown in Figure 4.7.22, except for the incorporation of the LJ potential, which is left as an
exercise. We note that the actual calculation is done in dimensionless units. So that energy is in units
of ε , and length is in units of σ , but in the end distance is converted to Å by multiplying by σ . The
extrapolation to obtain σ , as mentioned above, is carried out in the script by first using MATLAB’s
‘polyfit’ function, which finds the polynomial of order 1 coefficient, based on eight data pairs near
T = 0. Then MATLAB’s function ‘polyval’ is used to extrapolate the value of the lattice constant
at T = 0 from which σ is obtained. Also, note that the quantity < x > from Equation 4.7.88 can
be expressed in units of σ where we write kBT = kBTD(T/TD) = (T/TD)ε . This factor of ε cancels
similar factors in the constants of Equations 4.7.91. Finally, notice that in this script, the integration
is numerically carried out by MATLAB’s simple “trapz” function. Feel free to try other methods as
well as to vary the range of integration to improve the comparison.

%copyright by J. E Hasbun and T. Datta

%thermal_latt_const.m

%This script calculates the average lattice constant for Argon

%and compares with the experimental values.

function thermal_latt_const

clear

global alpha U0 %variables to be recognized by functions

e=1.602176487e-19; %electronic charge

kB=1.3806504e-23; %Boltzmann Contant (J/K)

%Data for solid Argon digitized from

%"Measurements of X-Ray Lattice Constant,

%Thermal Expansivity, and Isothermal Compressibility

%of Argon Crystals" O. G. Peterson, T D. N. Batchelder,

%& R. O. Simmons, Phys. Rev. vol. 150, No. 2 (1966)
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%T_e is in Kelvin, a_e is Argon’s lattice constant converted to angs.

T_e=[4.516,14.837,19.802,20.881,24.762,27.999,29.727,...

34.910,39.665,49.405,49.627,59.586,60.446,61.750,...

62.631,63.476,66.961,69.123,70.862,74.976,79.097,...

79.966,83.006];

a_e=[5.311,5.310,5.317,5.318,5.322,5.327,5.329,5.337,...

5.346,5.370,5.372,5.397,5.397,5.402,5.410,5.404,...

5.420,5.425,5.432,5.442,5.455,5.458,5.469];

alpha=(2*12.13/14.45)^(1/6); %LJ bond length in Sigma units

U0=14.45^2/2/12.13; %LJ min energy magnitude in epsilon units

%Let the extrapolated value at T=0 be the a0 for Argon, then

%R0=a0/sqrt(2) and since R0/sigma=alpha, we find that sigma=R0/alpha

p=polyfit(T_e(1:8),a_e(1:8),1); % fit low T data with a quadratic

a0=polyval(p,0); %extrapolate to get the T=0 lattice constant;

R0=a0/sqrt(2); %T=0 bond length for Argon (fcc nearest neighbor)

sigma=R0/alpha; %our sigma - Lennard-Jones distance parameter

TD=92; %argon Debye temperature

eps=kB*TD/e; %energy unit (eV) - Lennard-Jones energy parameter

fprintf(’[a0,R0]=[%6.3f, %6.3f]Angs, sigma=%6.3f Angs\n’,a0,R0,sigma)

fprintf(’Debye-T=%6.2f K, epsilon(eV)=%6.3g eV\n’,TD,eps)

%Integrals are evaluated for energy units of epsilon, distance in

%units of sigma and temperature in units of argon’s Debye temperature.

%After integration the conversion is done for temperature and distance

rl=0.1; rs=0.001; ru=15; %integration range in units of sigma

r=rl:rs:ru;

T=0.02:0.01:0.9;

for i=1:length(T)

%integral based on the fourth order expansion

yLJexp1=rs*trapz(r,r.*Boltz(ULJexp(r),T(i)));

yLJexp2=rs*trapz(r,Boltz(ULJexp(r),T(i)));

raveLJexp(i)=yLJexp1/yLJexp2; %4rth order approx average bond length

end

%Simple analytic approx

Cpp=12.13*12*13/alpha^14-14.45*6*7/alpha^8;

Cppp=-12.13*12*13*14/alpha^15+14.45*6*7*8/alpha^9;

const=abs(Cppp/Cpp^2)/4;

%for the simple approx add alpha: the equilibrium point in sigma units

r_simple=const*T+alpha;

%For the FCC: lattice constant=sqrt(nearest neighbor distance)

raveLJexp=raveLJexp*sqrt(2);

r_simple=r_simple*sqrt(2);

%Convert temperature to Kelvin and distance to angstroms

T=T*TD;

raveLJexp=raveLJexp*sigma;

r_simple=r_simple*sigma;

hold on

plot(T,raveLJexp,’k--’) %Full fourth order expansion case

plot(T,r_simple,’k:’) %Simple analytic result

plot(T_e,a_e,’ko’) %Ar data

legend(’<r> (4rth order)’,’<r> (simple approx)’,’Ar Data’,2)

axis ([0 T(end) a_e(1)*(1-0.005) a_e(end)*(1+0.005)])
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xlabel(’T (Kelvin)’,’FontSize’,14)

ylabel(’Lattice Constant (Angstroms)’,’FontSize’,14)

str=cat(2,’Argon: \epsilon=’,num2str(eps,’%6.3g’),...

’eV, \sigma=’,num2str(sigma,’%6.3f’),’ Angstroms’);

title(str,’FontSize’,14);

function y=Boltz(x,T)

%The Boltzmann factor

y=exp(-x/T);

function Ua=ULJexp(x)

global alpha U0

%Fourth order Lennard-Jones potential expanded function.

%Energy in units of epsilon, distance in units of sigma.

Cpp=12.13*12*13/alpha^14-14.45*6*7/alpha^8;

Cppp=-12.13*12*13*14/alpha^15+14.45*6*7*8/alpha^9;

Cpppp=12.13*12*13*14*15/alpha^16-14.45*6*7*8*9/alpha^10;

%up to 4rth order in x-alpha

Ua=-U0+2*Cpp*(x-alpha).^2/2+2*Cppp*(x-alpha).^3/6+...

2*Cpppp*(x-alpha).^4/24;

4.8 Thermal Conductivity
Thermal conductivity refers to the ability of a substance to permit thermal energy flow. Thermal
energy flow has contributions from phonons and electrons. In this section, we discuss the flow of
thermal energy due to phonons. In steady state, the flow of heat within a substance or thermal
energy flux per unit volume is proportional to the temperature gradient within the substance. It can
be written as

jph =−K
dT
dx

, (4.8.93)

where K is the thermal conductivity coefficient in Watts/(meter·K). The minus sign in this expres-
sion indicates that flow of heat happens in the direction of decreasing temperature - from hot to cold.
It is possible to obtain an approximation for the thermal conductivity coefficient if we consider the
temperature difference, ∆T , between two points in a crystal, with cross-sectional area dA, at dif-
ferent temperatures, so that ∆T = dT

dx ∆x. We also let ∆x be the average distance of travel between
collisions; i.e., the mean free path a particle travels with a speed of sound in a time τ between col-
lisions. Here τ is an average time, and we write ∆x ≈ vxτ , where vx is the speed in the x-direction.
Thus we can write

∆T =
dT
dx

vxτ. (4.8.94)

The net flux of particles through ∆x is nvx, where n is the number of particles per volume passing
area dA per second. We thus have that the unaveraged energy flux is given by
(

number of particles
area sec

)
(energy per particle) = nvx∆Q = j ≡ energy flux.
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However, ∆Q = c∆T , with c the heat capacity, so that with Equation 4.8.94

j =−nvxc∆T =−nv2
xcτ

dT
dx ,

where we have put in a minus sign to account for the direction of heat flow; i.e., from high to low
T . Defining the average energy flux jph ≡< j >= −n < v2

x > cτdT/dx and using the relation that
v2

x + v2
y + v2

z = v2, with v2
x ≈ v2

y ≈ v2
z , then < v2

x >≈< v2 > /3, and we get the result that

jph =−
ncτ < v2 >

3
dT
dx

. (4.8.95)

If the phonon velocity v is approximately constant, then < v2 >≈ v2. We also let C = nc be the heat
capacity per volume in units of J/(m3K) and let `= vτ be the mean free path. With these definitions
Equation 4.8.95 becomes

jph =−
1
3

Cv`
dT
dx

. (4.8.96)

Finally, comparing this expression with that of Equation 4.8.93, we see that the thermal conductivity
coefficient is given by

K =
1
3

Cv`, (4.8.97)

in units of J/(m ·K · sec). Peter Debye was the first person to use this formula and obtain crystal
values of K. For example, NaCl has C = (1.00,1.88)× 106J/(m3 ·K), K = (27,7)W/(m ·K), and
`= (100,23) Å at temperatures of (83,273) Kelvin, respectively.
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4.9 Chapter 4 Exercises
4.9.1. (a) Substitute the quantum harmonic oscillator wavefunction of Equation 4.1.2b for n = 0

into Equation 4.1.2a and show that the resulting energy state agrees with the expected value.
(b) Repeat for the n = 1 state.
(c) Using the fact that the wave function is normalized

∫ |ψ(y)|2dy = 1 =
∫ |ψ(x)|2dx write

the wavefunction of Equation 4.1.2b in terms of x, where x is in standard units of distance.
Hint: recall that x and y are related by a certain factor; in addition, consult a quantum me-
chanics text to be sure the obtained wavefunction has the correct form.

4.9.2. Reproduce Figure 4.1.1 by modifying code qholev.m.

4.9.3. (a) Show that E(~r, t) = E0 exp [i(~k ·~r−ωt)] is a solution of the wave Equation 4.2.8. (b)
Repeat for the general expression E(~r, t) = f (~k ·~r−ωt).

4.9.4. Write a program that reproduces Figure 4.2.5.

4.9.5. The value of the expression e[iKa] at Ka = 1.6π is equivalent to that which is evaluated at
what value of Ka in the range −π ≤ Ka ≤ π? Hint: refer to Example 4.2.0.1.

4.9.6. Show that when the two waves, each represented by Equation 4.2.27 for i = 1, 2, are added,
the resulting wave is given by Equation 4.2.29.

4.9.7. Show that in one dimension Equation 4.2.8 becomes (1/v2)d2y/dt2 = d2y/dx2 with so-
lution y(x, t) = y0 exp [i(kx−ωt)]. Show that, in the present case, Equation 4.2.30 for the
group velocity takes on the one-dimensional expression vg = dω/dk and equals v. Also
show that Equation 4.2.28 for the phase velocity yields the same result.

4.9.8. Run the code linear chain.m in order to reproduce Figure 4.2.8 and confirm that the p = 1
vibrational mode has a frequency that obeys Equation 4.2.25.

4.9.9. Modify the code linear chain.m of Subsection 4.2.1 in order to perform a linear chain vi-
bration for the 3rd mode with 57 Cu atoms and confirm that its vibrational frequency is
consistent with that predicted by Equation 4.2.25.

4.9.10. Write a script that reproduces Figure 4.2.9. Hint: use starter example code group phase vel
example.m provided in Subsection 4.2.2.

4.9.11. Give the small K limit of Equation 4.2.31 to second order in K. What is the limit of the
resulting expression as K→ 0?

4.9.12. Show that in the limit of m1 = m2 = m, Equation 4.3.38 gives the one atom per cell result of
Equation 4.2.13. Beware of the fact that the lattice constant in the two atoms per cell system
is twice that of the one atom per cell system.

4.9.13. Write the code that reproduces Figure 4.3.12 and numerically confirm the graphical magni-
tudes of the optical and acoustic dispersion frequencies for both values of the wavevector at
K = 0, π . What is the expected numerical value of the frequency gap?

4.9.14. In Equations 4.3.43 and 4.3.44, the traveling wave atomic amplitudes were obtained at K =
0. Use Equations 4.3.35 in order to obtain a general expression for u/v versus K. After
checking the K = 0 limits for consistency, obtain the limiting values of u/v for the optical
and acoustic mode frequencies at K = π/a. Obtain a plot of u/v in the range of 0 < K < π .
Explain your results. Hint: you will need to incorporate Equation 4.3.41 in your calculations.
It helps if you have already worked out Exercise 4.9.13.
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4.9.15. (a) Starting with Equation 4.5.52, using the proper limits show how the expressions in Equa-
tion 4.5.53 result. (b) Reproduce the plot of Figure 4.5.13.

4.9.16. In one dimension, the classical result for the internal energy associated with an oscillator
can be obtained by using the classical expression for the average of E

U =< E >=

∞∫
0

dEE exp(− E
kBT )

∞∫
0

dE exp(− E
kBT )

.

By performing the indicated integrations and extending the result to N oscillators in three-
dimensions, show that the classically expected Equation 4.5.71b is obtained.

4.9.17. Show all the steps involved in obtaining the three expressions for CV of Equation 4.5.72.

4.9.18. Study the script phonon U.m associated with Figure 4.5.16 (a) and modify it in order to
reproduce the results for CV shown in Figure 4.5.16 (b).

4.9.19. After reading Example 4.5.3.1, incorporate the provided lines of data into a script to do the
fitting procedure described there and reproduce Figure 4.5.17 regarding solid Ar’s Debye
temperature.

4.9.20. After reading Example 4.5.4.1, incorporate the provided lines of data into a script in order to
reproduce Figure 4.5.18 for the Debye and Einstein’s heat capacities and their comparison
with the experimental data.

4.9.21. Run the script thermal potential.m in Section 4.7 to reproduce Figure 4.7.21.

4.9.22. Study script thermal latt const.m in Section 4.7. Modify it in order to incorporate the calcu-
lation of Equation 4.7.92, using the Lennard-Jones potential of Equation 4.7.89, and repro-
duce Figure 4.7.22.
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5.1 Introduction
A free electron gas refers to the electrons in a crystal whose behavior is treated as if they were
free from the binding forces that keep them confined to the crystal. These are the same as the
valence electrons associated with the atoms in a crystal. They are also the same as the conduction
electrons that move about freely within the crystal volume. The “free electron gas” model is used
to understand the physical properties of metals. The simplest of which are the alkali metals such as
lithium, sodium, potassium, cesium, and rubidium. In the case of lithium, for example, the valence
electron is in the 2s state, which becomes a conduction electron in the associated energy band of the
crystal. A crystal of lithium is monovalent. It contains N electrons and N positive lithium cores. Each
lithium core contains 2 electrons occupying the 1s shell. The extra electron in the 2s state becomes
part of the so-called Fermi sea or free electron gas. The electrons in the Fermi sea are described
quantum mechanically and obey the Pauli exclusion principle. Below, we start off by describing a
free one-dimensional electron gas quantum mechanically.

5.2 Free One-Dimensional Electron Gas
Following the introduction, consider an electron of mass m, in a box of length L. The box is de-
scribed by the potential

V (x) =
{

0, 0≤ x≤ L,
∞, x < 0 and x > L , (5.2.1)

165
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where the electron is confined to be free only within the boundaries of the one-dimensional box.
The Schrodinger equation in one dimension is

Hψn(x) =−
h̄2

2m
d2ψn(x)

dx2 = εnψn(x), (5.2.2)

to be solved in the region of existence of ψ; i.e., 0 ≤ x ≤ L. The wave function does not exist
outside the box because of the infinitely hard walls that are impossible to penetrate, even quantum
mechanically. The index n is a level index associated with the nth electron orbital energy, εn, and
wavefunction ψn(x). Consistent with the above picture, we have the boundary conditions (BCs)
ψn(0) = 0 = ψn(L), so that a particular solution that satisfies Equation 5.2.2 and the stated BCs is

ψn(x) = Asin(knx), (5.2.3a)

where A is the normalization constant and

kn =
nπ

L
. (5.2.3b)

One also notes that if we set kn = (nπ/L) = 2π/λn, then L = nλn/2; i.e., the length of the box is
equal to a multiple of half wavelengths associated with the nth state and we can also write

ψn(x) = Asin
(

2π

λn
x
)
= Asin

(nπ

L
x
)
. (5.2.3c)

Since the particle exists within the box, the wavefunction obeys the normalization condition

∫ L

0
|ψn(x)|2dx = 1, (5.2.4a)

which with the use of Equation 5.2.3c yields the normalization constant value of

A =

√
2
L
. (5.2.4b)

From Equation 5.2.3a, it is seen that −(h̄2/2m)d2ψn(x)/dx2 = −(h̄2/2m)k2
nψn, which when com-

pared to Equation 5.2.2, gives the eigenvalues

εn =
h̄2

2m
k2

n =
h̄2

2m
4π2

λ 2
n

=
h̄2

2m
n2π2

L2 , (5.2.5)

for the one-dimensional particle in a box of size L. Figure 5.2.1 shows four such levels with their
associated wavefunctions and wavelengths.
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Figure 5.2.1: The first four levels, wavefunctions, and wavelengths for a one-dimensional particle
in a box. The box width is L = 0.5nm, the x coordinate is in units of nm, and the energy unit is
in electron volts (eV ). The wavefunctions, as plotted, have been displaced by their corresponding
energy eigenvalue for visualization purposes.

A starter code that does one level and wavefunction for the one-dimensional particle in the box
and which can be modified to reproduce Figure 5.2.1 is one d particle in box one level.m, whose
listing follows.

%copyright by J. E Hasbun and T. Datta

%one_d_particle_in_box_one_level.m

%One-dimensional particle in a box wavefunction solution

%and energy level.

clear

L=0.5; %well width in nm

h=6.62606896e-34; %Planck’constant (J.s)

hbar=h/2./pi; %hbar

e=1.602176487e-19; %electronic charge

hbar_eV=hbar/e; %hbar in eV.s

c=299792458; %speed of light (m/s)

cnm=c*1e9; %speed of light (nm/s)

me=0.511003e6/cnm^2; %electron mass eV.s^2/nm^2

N=301; %number of x points to plot

dx=L/(N-1); %step size for the x variable

%Wave function and energy level follow

hold on %overlays plots

line([0 0],[0 10],’Color’,’k’) %left potential wall

line([L L],[0 10],’Color’,’k’) %right potential wall

E1=pi^2*hbar_eV^2/(2*me*L^2); %1st energy level in eV

x=0:dx:L; %x as an array
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psi=sqrt(2/L)*sin(pi*x/L); %wavefunction versus x array

plot(x,psi+E1,’k’) %wavefunction plot displaced by En

axis([-0.1 L+0.1 0 10]) %window plot view

xlabel(’x (nm)’)

ylabel(’V (eV), \psi(x)’)

title(’One-Dimensional Particle in a Box’)

Equation 5.2.5 refers to the ground state electronic energy levels in the one-dimensional system. It
is of interest to find out how N electrons would be organized in the electronic configuration. Since
electrons obey the Pauli exclusion principle, which states that no two electrons can have identical
quantum numbers, then the way the electronic energy levels are occupied with electrons depends
on their quantum numbers. In the present system, the electrons have two quantum numbers. These
are the orbital quantum number, n, and the intrinsic spin quantum number ms = ±1/2, depending
on the orientation, up or down. Thus for a given index n, we can place two electrons in each level,
one chosen with spin up and the other with spin down while still obeying the Pauli exclusion prin-
ciple. Since the energy levels are independent of the spin quantum number, the pair of electrons are
degenerate. Degeneracy is the property associated with orbitals of the same energy. If, for example,
we had 5 electrons in the system, in the ground state we would place the first two electrons in the
n = 1 state with opposite spins; similarly, the second two electrons would go in the n = 2 state, and
the last electron would go in the n = 3 state with either spin up or down. From Equation 5.2.5, for a
given orbital energy, we can find the nth orbital number with energy εn as

n =

√
2mεnL2

π2h̄2 . (5.2.6)

Knowing this, we can find the number of electrons that occupy energies up to this orbital quantum
number. Thus in the ground state, at T = 0K, the number of electrons occupying states up to the
nth orbital is 2n, since there are two ms values for each n due to spin. Therefore, if we consider a
system with N electrons in it, the total number of occupied orbitals in the ground state is the Fermi
orbital number; i.e.,

n→ νF = N/2, (5.2.7)

which is to be understood as the orbital quantum number associated with the maximum filled orbital
that is possible. Again, following Equation 5.2.5, associated with the Fermi orbital is the Fermi
energy

εF =
h̄2

2m

(
Nπ

2L

)2

, (5.2.8)

which is the highest filled energy level of the N electron system in the ground state.

Example 5.2.0.1
Use the density of states concept discussed in a previous chapter to obtain the Fermi energy for a
free one-dimensional electron gas.
Solution
We start from the three-dimensional formula of the previous chapter

D(ω)dω =

(
L

2π

)3 ∫

shell
d3k, (5.2.9)

and notice that there is factor of L/2π for each dimension. In one dimension, the integral over the
shell is replaced with a single k-space point so that in the one-dimensional case we have

D(ω)dω = 2
(

L
2π

)
dk, (5.2.10)
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where the factor of 2 has been inserted to take electron spin into account. Performing the integration,
we have

∫ ωF
0 D(ω)dω = 2

( L
2π

)∫ kF
0 dk = L

π
kF = νF ,

to obtain the Fermi wavevector kF = νF π/L. The Fermi energy is then εF = h̄2k2
F/2m =

(h̄2/2m)(νF π/L)2. For N electrons, the number of occupied states at T = 0K is given by νF = N/2,
and the final result agrees with Equation 5.2.8. Finally, the Fermi frequency, ωF , alluded to in the
above integral, while not used, is given by ωF = εF/h̄.

5.3 The Fermi-Dirac Distribution
Above T = 0K, all the electrons that would normally lie below the Fermi energy or Fermi edge
experience thermal excitation to higher levels by an energy that is on the order of kBT . Electrons
within kBT below the Fermi edge can jump to states that are about kBT above the Fermi edge. The
distribution of electrons for T > 0, therefore, changes as a function of temperature. The occupation
probability is given by the Fermi-Dirac distribution function (or Fermi function for short)

f (ε) =
1

exp[(ε−µ)/kBT ]+1
, (5.3.11)

which is a function of temperature. At T = 0K, µ is equal to the Fermi energy εF . This distribution
applies to spin 1/2 particles referred to as Fermions, to which category the electron belongs, and
takes into consideration their quantum nature. A few of the limits of f (ε) follow. At T = 0K

f (ε) =
{ 1

0+1 = 1, if ε < µ,
1

∞+1 = 0, if ε > µ
, (5.3.12a)

which means that all electrons lie below the Fermi level and none above it at T = 0K. The oc-
cupation probability has a value between 0 and 1. It takes the value of 1/2 whenever ε = µ , at
any temperature. It means that the probability of finding an orbital occupied at the chemical po-
tential is always 1/2, which is the average of the probability of being occupied and being unoccu-
pied. This information can be used to find the value of µ . For large energy; i.e., ε − µ >> kBT ,
exp[(ε−µ)/kBT ]>> 1 so that

f (ε)≈ exp[−(ε−µ)/kBT ]≈ exp[−ε/kBT ] = fB(ε), (5.3.12b)

where µ can be ignored in this limit. This limiting case is the Boltzmann distribution function or
the classical limit. All these features can be seen in Figure 5.3.2 where we plot the Fermi-Dirac
distribution versus energy in units of εb = 1.602×10−19J; i.e., 1eV . We let µ take on the value of
2.5εb and the temperature is in units of Tb = εb/kB ≈ 1.16×104 K.
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Figure 5.3.2: The Fermi-Dirac distribution versus energy in units of εb = 1eV for various tempera-
tures in units of Tb = 1.16×104 K. The chemical potential, µ = 2.5eV , corresponds to the energy at
which f (ε) = 0.5. The dashed curve corresponds to the Boltzmann expression of Equation 5.3.12b
keeping the same value of µ .

5.4 Free Three-Dimensional Electron Gas
The three-dimensional electron gas description follows that of the one-dimensional analogue we
saw in Section 5.2. We write the Schrodinger equation in the vector form for a three-dimensional
cubical box as

− h̄2

2m

(
∂ 2

∂x2 +
∂ 2

∂x2 +
∂ 2

∂x2

)
ψ~k(~r) = ε~kψ~k(~r), (5.4.13)

where we have used~k which is a three-dimensional vector that involves indices for each dimension
as we will see below. The solution to Equation 5.4.13 is similar to that of the one-dimensional case
and we write it as

ψ~k(~r) = Asin
(nxπ

L
x
)

sin
(nyπ

L
y
)

sin
(nzπ

L
z
)
, (5.4.14)

where nx, ny, nz are positive integers and A = (2/L)3/2. We think of the electrons in a crys-
tal lattice being described by this wavefunction. Furthermore, this wavefunction obeys the peri-
odicity of the lattice, which can be shown if, for example, we look at one of the coordinates,
ψ(x + L,y,z) = ψ(x,y,z). In which case, looking at the only affected part of the wavefunction,
sin(nxπx/L+nxπ) = sin(nxπx/L)cos(nxπ) + cos(nxπx/L)sin(nxπ) = sin(nxπx/L), if nx is an
even integer in this example. A more convenient way to guarantee periodicity is to assume plane
wave solutions in the form

ψ~k(~r) = exp(i~k ·~r), (5.4.15)

with~k = kx î+ky ĵ+kzk̂ and~r = xî+y ĵ+zk̂. This plane wave already satisfies Equation 5.4.13 since
−(h̄2/2m)~∇2ψ~k(~r) = (h̄2/2m)k2ψ~k(~r) = ε~kψ~k(~r), where ε~k = (h̄2/2m)k2 with k2 = k2

x +k2
y +k2

z . In
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order to have periodicity with the plane wave solution, we can do a simple example displacement
along the x direction to write

ψ~k(~r+ îL) = ei~k·~r+ikxL = ei~k·~reikxL = ei~k·~r, (5.4.16)

where we have taken eikxL = 1 so that kxL = 2nxπ or kx = 2nxπ/L. Similarly, we can find that
ky = 2nyπ/L and kz = 2nzπ/L with nx, ny, and nz integers. With these definitions we rewrite

ε~k =
h̄2

2m
k2 =

h̄2

2m

(
k2

x + k2
y + k2

z
)
=

h̄2

2m

(
4π2

L2

)(
n2

x +n2
y +n2

z
)
, (5.4.17)

which is the energy of an electron with wavevector~k. The quantum mechanical momentum of an
electron is obtained by using the momentum operator

~p =
h̄
i
~∇ =

h̄
i

(
î

∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂ z

)
, (5.4.18)

and obtaining its expectation value with the wavefunction of Equation 5.4.15. Using
~∇ψ~k = i

(
kx î+ ky ĵ+ kzk̂

)
ψ~k = i~kψ~k, we see that

~pψ~k(~r) = h̄~kψ~k(~r), (5.4.19)

and the expectation value of the momentum is < ~p >=< ψ~k|~p|ψ~k >= h̄~k < ψ~k|ψ~k >= h̄~k, since
< ψ|ψ >= 1. The particle velocity is given by~v =<~p > /m or

~v = h̄~k/m. (5.4.20)

We can also obtain the Fermi energy using

εF =
h̄2k2

F
2m

, (5.4.21)

where kF is the magnitude of a three-dimensional wavevector that is characteristic of the number of
electrons up to the highest occupied orbital at T = 0K, as discussed in Section 5.2. Given that there
are N electrons up to the Fermi level (εF = h̄ωF ), we work with the three-dimensional density of
states expression

∫
ωF

0
D(ω)dω =

∫
εF

0
D(ε)dε = N, (5.4.22a)

which determines the Fermi level and where we have defined D(ε) = D(ω)/h̄. From Equation 5.2.9
we have

D(ω)dω = 4π
2V

(2π)3 k2dk, (5.4.22b)

where the factor of 4π is due to the shell integral, the factor of 2 is due to the electron spin, and V is
the volume. For specificity, let NF be the number of electrons up to the Fermi level at T = 0K with
wavevector kF , so that from Equations 5.4.22 we have

4π
2V

(2π)3

∫ kF

0
k2dk = NF =

V k3
F

3π2 . (5.4.23)

From this we can solve for the Fermi wavevector

kF =

(
3π2NF

V

)1/3

, (5.4.24)
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which when substituted into Equation 5.4.21 we get the Fermi level energy

εF =
h̄2

2m

(
3π2NF

V

)2/3

=
h̄2

2m

(
3π

2nF
)2/3

, (5.4.25)

where nF ≡ NF/V is the material’s free electron density. The associated Fermi velocity is

vF =
h̄kF

m
=

h̄
m

(
3π

2nF
)1/3

. (5.4.26)

Example 5.4.0.1
Estimate the Fermi energy, the Fermi velocity, and the Fermi temperature for copper.
Solution
Copper is a transition metal with one 4s valence electron per Cu atom available for conduction.
Write the density of electrons as n = N/V = ρCu/mCu where mCu = 63.546u, 1u∼ 1.66×10−27kg,
and ρCu = 8.93×103kg/m3 to get n = 8.47×1028 m−3. The Fermi energy is h̄2/(2m)(3π2n)2/3 ≈
(1.055×10−34)2/(2 ·9.11×10−31)(3π2 ·8.47×1028)2/3 = 1.128×10−18J ≈ 7.03eV . The Fermi
velocity is vF = (h̄/m)(3π2n)1/3 ≈ (1.055× 10−34/9.11× 10−31)(3π2 · 8.47× 1028)1/3 = 1.57×
106 m/s ≈ 0.005c, where c is the speed of light. The Fermi temperature is TF = εF/kB ≈ 1.128×
10−18/1.38×10−23 = 8.16×104 K. In general, the calculation of these quantities for other metals is
similar; however, the number of electrons available for conduction is equal to the number of atoms
per volume (N/V ) multiplied by the number of valence electrons per atom. For the copper metal
done here, the number of valence electrons is unity. For other metals, as in the case of aluminum, it
is 3. See Table 5.4.1 for other example elements.

Table 5.4.1: Free electron calculated values of the Fermi energy, Fermi velocity, and Fermi temper-
ature for example elements. The density, atomic mass, and valence electrons (val e’s) used in the
calculations are shown.

Element ρ(103kg/m3) m(u) val e’s εF (eV ) vF (106m/s) TF (104K)
Cu 8.93 3.55 1.00 7.03 1.57 8.16
Al 2.70 6.98 3.00 11.66 2.03 13.5
Li 0.53 6.94 1.00 4.70 1.29 5.45
Na 0.97 2.99 1.00 3.14 1.05 3.65
K 0.86 9.10 1.00 2.04 0.848 2.37
Ag 10.50 107.87 1.00 5.50 1.39 6.39
Au 19.28 196.97 1.00 5.52 1.39 6.41
Zn 7.14 65.39 2.00 9.43 1.82 10.9

Note that given the Fermi level, from Equation 5.4.25 we can also solve for the number of electrons
that fill the states up to the Fermi level; that is, NF = (V/3π2)(2mεF/h̄2)3/2 or for ε ≤ εF and
N ≤ NF , we can write

N =
V

3π2

(
2mε

h̄2

)3/2

. (5.4.27)

From Equations 5.4.22b and 5.4.24 we have D(ω) = 4π(2V/(2π)3)k2dk/dω and k =
(
3π2N/V

)1/3

so that dk/dω = (3π2/V )1/3(N−2/3/3)dN/dω . By substituting these quantities into D(ω) we get

D(ω) = 4π
2V

(2π)3

(
3π2N

V

)2/3(3π2

V

)1/3(1
3

N−2/3
)

dN
dω

=
dN
dω

. (5.4.28)
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As in Equations 5.4.22, if we now define D(ε) = D(ω)/h̄ = (1/h̄)dN/dω ≡ dN/dε , with the use
of Equation 5.4.27 we can get the density of states per energy ε or density of orbitials

D(ε) =
dN
dε

=
V

2π2

(
2m
h̄2

)3/2

ε
1/2. (5.4.29)

Multiplying the density of states (D(ε)) by the probability of finding an electron at this energy
( f (ε)), at a particular temperature, gives the number of occupied states or orbitals per energy; that
is,

density of occupied orbitals = D(ε) f (ε). (5.4.30)

At T = 0K, f (ε) = 1 so that the density of occupied orbitals per energy equals the density of states,
which are all filled up to the Fermi level.

Example 5.4.0.2
To illustrate the behavior of the density of occupied orbitals versus energy and temperature, we
will plot Equation 5.4.30 in dimensionless units. First though, in Equation 5.4.29, we write V = L3

and let ε be in units of Eb ≡ h̄2/2mL2 = 1.602×10−19J or 1eV so that L =
√

h̄2/2mEb = 1.95×
10−10m or 1.95Å. We then write ε = ε̄Eb and simplify the density of states of Equation 5.4.29
as D(ε) = D̄(ε̄)/Eb, with the dimensionless density of states in the form D̄(ε̄) ≡

√
ε̄/2π2. The

Fermi function can also be written in dimensionless form if, in addition to writing ε in Eb units,
we also let µ = µ̄Eb and T = T̄ TB where kBTB ≡ Eb so that TB = Eb/kB = 1.16× 104K is the
temperature unit. Thus all the barred quantities are dimensionless. In these units, Equation 5.3.11 for
the Fermi function becomes f (ε) = {exp[(ε̄− µ̄)/T̄ ]+1}−1

= f (ε̄) and the density of orbitals of
Equation 5.4.30 is f (ε̄)

√
ε̄/2π2. Using these units, Figure 5.4.3 shows plots of the Fermi function,

the three-dimensional density of states, and the density of orbitals for two different temperatures.
At very low temperature (left side of the figure), the density of orbitals and the density of states are
equal up to the Fermi level (εF = µ at T = 0K) due to the vanishing of the Fermi function above εF .
For a higher temperature (right side of the figure), the density of orbitals spreads out past µ due to
thermal activation on the order of kBT and electrons occupy higher states with a probability dictated
by the Fermi function.
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Figure 5.4.3: A plot of the Fermi function Equation 5.3.11, the density of states Equation 5.4.29,
and the density of orbitals Equation 5.4.30 versus energy in Eb units, where Eb = 1eV as described
in Example 5.4.0.2. The left figure is for a temperature near zero and the right figure is for a temper-
ature of 0.5Tb where Tb = Eb/kB = 1.16×104K is the unit of temperature. The chemical potential
used is µ = 2.5Eb. The density of states and the density of orbitals were enhanced by the factor of
2π2 for visualization purposes.

The MATLAB script orbitals vs energy.m listed below can be used to reproduce Figure 5.4.3’s plots
and shows how the units were incorporated for future purposes.

%copyright by J. E Hasbun and T. Datta

%orbitals_vs_energy.m

%The number of orbitals per energy versus energy

%as the product of the 3-Dim dos times the Fermi-Dirac

%distribution function is plotted versus energy.

clear

h=6.62606896e-34; %Planck’constant (J.s)

hbar=h/2./pi; %hbar

me=9.10938215e-31; %electron mass (kg)

e=1.602176487e-19; %electronic charge

Eb=e; %energy in Joules (=1eV)

kB=1.3806504e-23; %Boltzmann Constant (J/K)

Tb=Eb/kB; %temperature unit

Lb=(hbar^2/2/me/Eb)^(1/2); %length unit

fprintf(’Energy unit: %3.2f eV,\n’,Eb/e)

fprintf(’Temperature unit: %4.3g K\n’,Tb)

fprintf(’Length unit: %4.3g m\n’,Lb)

%temperature variable in units of Tb

Tv=[0.01,0.5];

Emax=4;

Emin=0;

Es=(Emax-Emin)/500;

mu=2.5;
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eps=0:Es:Emax;

fe= @(eps,mu,T) 1./(exp((eps-mu)./T)+1); %FD distribution definition

De= @(eps) eps.^(1/2)/2/pi^2; %Density of states 3D definition

for j=1:length(Tv)

T=Tv(j);

subplot(1,2,j)

hold on

for i=1:length(eps)

fd(i)=fe(eps(i),mu,T);

dos(i)=De(eps(i));

ne(i)=fd(i)*dos(i); %orbitals/energy

end

plot(eps,fd,’k-.’)

plot(eps,2*pi^2*dos,’k:’,’LineWidth’,2)

plot(eps,2*pi^2*ne,’k-’)

legend(’f(\epsilon)’,’2\pi^2D(\epsilon)’,...

’2\pi^2f(\epsilon)D(\epsilon)’,0)

xlabel(’\epsilon (eV)’,’Fontsize’,14)

str1=’f(\epsilon), 2\pi^2D(\epsilon), 2\pi^2f(\epsilon)D(\epsilon)’;

ylabel(str1,’Fontsize’,14)

str2=cat(2,’\mu=’,num2str(mu,’%3.1f’),’\epsilon_b, T=’,...

num2str(T,’%3.1f’),’ T_b’);

title(str2)

end

As we have seen, the density of occupied orbitals depends on energy and temperature and this is
related to the number of electrons. Integrating the density of occupied orbitals over the energy gives
the number of electrons. Therefore, it becomes natural to replace Equation 5.4.22a with

∫
∞

0
D(ε) f (ε)dε = N, (5.4.31)

where the upper limit is ∞ due to non-zero contributions from the Fermi function with energy.
Evidently, this equation says that at temperatures higher than zero, the chemical potential changes in
such a way that this expression is consistent with the conservation of electron number. If the number
of electrons is known, it determines the position of the chemical potential at a given temperature. At
T = 0K, µ→ εF , f (ε < εF)→ 1 else it vanishes, and Equation 5.4.31, therefore, becomes equal to
Equation 5.4.22a. We illustrate this concept with the following example.

Example 5.4.0.3
In dimensionless units Equation 5.4.31 has the same form N =

∫
∞

0 D(ε̄) f (ε̄)dε̄ . If we know the

Fermi level, at T = 0K the number of electrons is N =
∫ εF

0 D(ε)dε = 1/(3π2)
(
2mV 2/3/h̄2)3/2

ε
3/2
F ,

which, as expected, is consistent with Equation 5.4.27. With V = L3 and using the same units de-
veloped in Example 5.4.0.2, this becomes N = Ē3/2

F /(3π2), which with a value of ĒF = 2.5, it gives
N ≈ 0.134 and electron density of N/V = N/L3 = 1.795× 1028m−3 where L = 1.95Å. We next
let the value of N be constant and inquire about what the value of the chemical potential is at a
temperature other than zero. To find µ we write Equation 5.4.31 (in dimensionless units for conve-
nience) as Fµ̄ = N− ∫ ∞

0 D̄(ε̄) f (ε̄)dε̄ . For a given temperature and the correct µ̄ , the result of the
integral equals N, in which case Fµ̄ = 0. There exists a well-known scheme to obtain the argument
of a function whose value causes the vanishing of the function that depends on the said argument.
The method is referred to as the Newton-Raphson method. The idea is that for a function of x, say
F(x), the value of x that causes F(x) = 0 is approximated by the iteration xi+1 = xi−F(xi)/F ′(xi)
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where x0 is a close enough starting guess to the root of the function, xi→∞. If the derivative of the
function, F ′(x), is not known, the approximate expression F ′(x)≈ (F(x+∆)−F(x))/∆, for small
∆ can be used. In this manner, for the above-mentioned electron density of N/V = 1.795×1028m−3

(here Fµ̄ = 0 for the correct µ̄), at a temperature of 0.5Tb, we get µ̄ ≈ 2.4 or µ ≈ 2.4Eb which is
about 0.1Eb lower than the corresponding value of εF at T = 0K. The following function listing of
chem pot at T.m performs this calculation.

%copyright by J. E Hasbun and T. Datta

%chem_pot_at_T.m

%Chemical potential at a given temperature. The integral

%of the density of orbitals is integrated over energy.

%The Newton-Raphson method is used to get the chemical potential

%self-consistently. The integration is done by the trapezoidal rule.

function chem_pot_at_T

clear

global fe De

h=6.62606896e-34; %Planck’constant (J.s)

hbar=h/2./pi; %hbar

me=9.10938215e-31; %electron mass (kg)

e=1.602176487e-19; %electronic charge

Eb=e; %energy in Joules (=1eV)

kB=1.3806504e-23; %Boltzmann Constant (J/K)

Tb=Eb/kB; %temperature unit

Lb=(hbar^2/2/me/Eb)^(1/2); %length unit

fprintf(’Energy unit: %3.2f eV,\n’,Eb/e)

fprintf(’Temperature unit: %4.3g K\n’,Tb)

fprintf(’Length unit: %4.3g m\n’,Lb)

Ef=2.5; %Fermi level at T=0 (in Eb units)

N=Ef^(3/2)/3/pi^2; %Electron number corresponding to T=0

N_over_V=(2*me/hbar^2)^(3/2)*(Ef*Eb)^(3/2)/3/pi^2; %actual N/V

fe= @(eps,mu,T) 1./(exp((eps-mu)./T)+1); %FD distribution definition

De= @(eps) eps.^(1/2)/2/pi^2; %Density of states 3D definition

fprintf(’T=0 case: Ef=%3.2g, N=%4.3f\n’,Ef,N)

N_iter=0; %iteration counter

N_iterMax=5; %maximum iteration number

mu_old=Ef; %initial guess is the Fermi level at T=0

mu_new=mu_old;

del=1.e-3;

mu_corr=10*del; %use the correction for tolerance

mu_max=8.0*Ef; %use a large number for the integral’s upper limit

Es=(mu_max-0)/500; %even divisions=> odd variables

eps=0:Es:mu_max;

%Let’s find how the Fermi level changes with temperature next

%temperature variable in units of Tb

T=0.5; %temperature variable

while (abs(mu_corr) > del & N_iter < N_iterMax)

mu1=mu_new;

mu2=mu1+del; %vary mu by small ammount

y1=norb(eps,mu1,T); %calculate with mu

y2=norb(eps,mu2,T); %calculate with mu+del

%For integration use the trapezoidal
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N1=trapz(eps,y1); %integral=> occupied states with mu

N2=trapz(eps,y2); %integral=> occupied states with mu+del

ff=N-N1; %function whose zero we seek at mu

ffd=N-N2; %function at mu+del

%Newton Raphson: x(i+1)=x(i)-f(xi)/f’(xi), where f’~(f(x+del)-f(x))/del

%or x(i+1)=x(i)-del/(f(x+del)/f(x)-1)

N_iter=N_iter+1;

mu_corr=del/(ffd/ff-1.0);

mu_new=mu_old-mu_corr; %Newton-Raphson step

mu_old=mu_new;

end

fprintf(’T (Tb)=%4.2f, N_iter=%3i\n’,T,N_iter)

fprintf(’ff=%3.2g, mu_corr=%3.2g, result_N=%4.3f\n’,ff,mu_corr,N1)

fprintf(’N/V (1/m^3)=%5.3e, final mu (eV)=%5.3f\n’,N_over_V,mu_new)

function y=norb(eps,mu,T)

global fe De

for i=1:length(eps)

y(i)=fe(eps(i),mu,T)*De(eps(i));

end

In this function, we have made use of the “global” statement so that the defined Fermi distribution
and the density of states can be recognized by other functions that invoke the same global statement
without the need to repeat the definitions. Also this function can be suitably modified to obtain the
behavior of the chemical potential versus temperature as shown in Figure 5.4.4. Here, µ drops as the
temperature increases due to the antisymmetry of the Fermi-Dirac distribution about ε = µ . As the
temperature increases, µ must decrease to keep the number of electrons constant. In addition to the
numeric chemical potential, the figure also shows the behavior of a low temperature approximation
developed further below (see Equation 5.4.39b).
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Figure 5.4.4: The numerically obtained (solid curve) chemical potential versus temperature (from
Equation 5.4.31) for an electron density of N/V = 1.795× 1028m−3 as in Example 5.4.0.3. The
dashed curve is the low temperature approximation for the chemical potential of Equation 5.4.39b.

One aspect to notice from the relation expressed in Equation 5.4.27 is that one can write
lnN = (3/2) lnε + const, where const = ln

(
V (2m/h̄2)3/2

)
. We can, therefore, write

∫
(dN/N) =
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(3/2)
∫
(dε/ε) which, by lifting the integrals, becomes dN/N = (3/2)dε/ε or

dN
dε

=
3N
2ε

= D(ε), (5.4.32)

which is also consistent with Equations 5.4.27 and 5.4.29.
It is possible to obtain an analytic approximation for µ at low temperature. To this end, we define

h(ε) =
ε∫

0

∂D(ε)

∂ε
dε, (5.4.33)

such that as ε → 0, h(ε)→ 0, also we see that h′(ε) = D(ε). By substituting h′(ε) into Equa-
tion 5.4.31 and integrating by parts, we get

N = f (ε)h(ε)
∣∣∞
0 −

∫
∞

0
h(ε)

∂ f (ε)
∂ε

dε =−
∫

∞

0
h(ε)

∂ f (ε)
∂ε

dε, (5.4.34)

where we used the fact that f (∞) = 0 and h(0) = 0. Since f (ε) is nearly constant everywhere except
at ε = µ and, therefore, ∂ f (ε)/∂ε is close to zero everywhere except near ε = µ , we can expand
h(ε) in a Taylor series about µ . We do so to second order; i.e.,

h(ε)≈ h(µ)+(ε−µ)h′(µ)+
1
2
(ε−µ)2h′′(µ). (5.4.35)

Substituting this approximation for h(ε) into Equation 5.4.34, we find

N =−h(µ)I1−h′(µ)I2−
1
2

h′′(µ)I3, (5.4.36a)

where

I1 =
∫

∞

0

∂ f (ε)
∂ε

dε = f (ε)
∣∣∞
0 = (0−1) =−1. (5.4.36b)

For integrals I2 and I3, since f ′(ε) is mostly non-zero near ε = µ we can replace the integration
limits; that is,

∫
∞

0 ≈
∫

∞

−∞
. Furthermore, the integrand in I2 is odd so that

I2 =
∫

∞

0
(ε−µ)

∂ f (ε)
∂ε

dε ≈
∫

∞

−∞

(ε−µ)
∂ f (ε)

∂ε
dε = 0. (5.4.36c)

Similarly for I3 and, in addition, we will use the transformation x = (ε − µ)/kBT for integration
purposes to write

I3 =
∫

∞

0
(ε−µ)2 ∂ f (ε)

∂ε
dε =− 1

kBT

∫
∞

−∞

(ε−µ)2e
(ε−µ)
kBT

(
1+ e

(ε−µ)
kBT

)2 dε

=−(kBT )2
∫

∞

−∞

x2ex

(1+ ex)2 dx =−π2

3
(kBT )2,

(5.4.36d)

where the derivative of the Fermi function was also carried out. The integration was done by
parts from which one gets 4

∫
∞

0 x/(1+ ex) = π2/3 using standard mathematical tables [25]. Equa-
tion 5.4.36a simplifies to

N = h(µ)+
π2

6
h′′(µ)(kBT )2. (5.4.37)
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Recalling the definition of h(ε) in Equation 5.4.33, h′(ε) = D(ε) and h′′(ε) = D′(ε); furthermore,

we also know that at T = 0K, N =
εF∫
0

D(ε)dε , then Equation 5.4.37 gives

N =

µ∫

0

D(ε)dε +D′(µ)
π2

6
(kBT )2 =

εF∫

0

D(ε)dε. (5.4.38a)

Letting D(ε) take on a roughly constant value; i.e., D(ε)≈D(εF), in addition to D(µ)≈D(εF) and
similarly D′(µ)≈ D′(εF) then

N ≈ D(εF)

µ∫

0

dε +D′(εF)
π2

6
(kBT )2 = D(εF)

εF∫

0

dε (5.4.38b)

or

D(εF)µ +D′(εF)
π2

6
(kBT )2 = D(εF)εF . (5.4.38c)

The result of Equation 5.4.38c can be used to obtain a low temperature approximation for the chem-
ical potential if we solve for µ to get

µ ≈ εF −
π2

6
(kBT )2 D′(εF)

D(εF)
. (5.4.39a)

Finally, using the free electron gas density of states of Equation 5.4.29 we see that D′(ε) =
D(ε)/(2ε), so that

µ ≈ εF −
π2

12
(kBT )2

εF
. (5.4.39b)

The comparison between this low temperature approximation and the full numerical calculation
(Equation 5.4.31) for the chemical potential is shown in Figure 5.4.4. For the parameters used in the
calculation, the low temperature approximation seems to do very well in the range between 0K and
about 0.4Tb (approximately 4600K).

5.5 Electron Gas Heat Capacity
The heat capacity of a metal has a contribution due to the phonons, which we studied in a previous
chapter, as well as the contribution due to the electrons studied here. As it turns out, only those
electrons in orbitals with an energy range kBT of the Fermi energy are thermally excited and these
are the ones that contribute to the electronic heat capacity. To see this, we consider the average
energy associated with the electron gas defined as

Uel =
∫

∞

0
ε f (ε)D(ε)dε, (5.5.40a)

where f (ε) is the Fermi-Dirac distribution Equation 5.3.11, and D(ε) is the density of states of
Equation 5.4.29. The electronic heat capacity follows from this expression as

Cel =
dUel

dT
. (5.5.40b)
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The analytical scheme we follow below parallels the development of the previous section, in partic-
ular Equations 5.4.33-5.4.36. Again we define the function h(ε)

h(ε) =
ε∫

0

εD(ε)dε, (5.5.41)

so that h′(ε) ≡ εD(ε), where as ε → 0, h(ε) =→ 0. With this understanding, we can write Equa-
tion 5.5.40a as

Uel =
∫

∞

0
f (ε)h′(ε)dε. (5.5.42)

This expression is integrated by parts to obtain

Uel = f (ε)h(ε)
∣∣∞
0 −

∫
∞

0
h(ε)

∂ f (ε)
∂ε

dε =−
∫

∞

0
h(ε)

∂ f (ε)
∂ε

dε, (5.5.43)

Even though in Equation 5.5.41 we have defined h(ε) in a different way from that defined in Equa-
tion 5.4.33, the operations in carrying out the integrals shown in the last of Equation 5.5.43 are
identical to those of Equations 5.4.34-5.4.36d. Thus, in analogy to Equation 5.4.37, we, therefore,
have the result

Uel ≈ h(µ)+
π2

6
h′′(µ)(kBT )2. (5.5.44)

From Equation 5.5.41 we see that we can write

h(µ) =

εF∫

0

εD(ε)dε +

µ∫

εF

εD(ε)dε, (5.5.45a)

in which if we approximate εD(ε)≈ εF D(εF) in the range of εF and µ for low temperature, we get

h(µ)≈ h(εF)+ εF D(εF)(µ− εF), (5.5.45b)

where we have used the definition of Equation 5.5.41 for h(ε) and
µ∫

εF

dε = µ− εF . Substituting the

result from Equation 5.4.39a for (µ− εF) into h(µ) we get

h(µ)≈ h(εF)−
π2

6
(kBT )2D′(εF)εF . (5.5.45c)

From Equation 5.5.41, h′(ε) = εD(ε) and h′′(ε) = D(ε)+ εD′(ε), so that by substituting h′′(µ)≈
D(εF)+εF D′(εF), in addition to substituting Equation 5.5.45c, into Equation 5.5.44 for the internal
energy, we get

Uel ≈ h(εF)−
π2

6
(kBT )2D′(εF)εF +

π2

6
(D(εF)+ εF D′(εF))(kBT )2

= h(εF)+
π2

6
(kBT )2D(εF).

(5.5.46a)

From this result, Equation 5.5.40b, for the heat capacity, yields

Cel =
π2

3
D(εF)k2

BT. (5.5.46b)
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Finally, from Equation 5.4.32 we also have D(εF) = 3N/2εF , to write

Cel ∼
π2

3

(
3N
2εF

)
k2

BT =
π2

3

(
3N

2kBTF

)
k2

BT =
π2

2

(
T
TF

)
NkB, (5.5.46c)

where we have used εF = kBTF . This result shows a linear temperature dependence. It also shows
that only a small fraction (T/TF ) of the total electrons are thermally excited and which contribute
to the electronic heat capacity; i.e., those electrons in an energy range kBT of the Fermi energy.
In contrast, classically and incorrectly, one would have expected an energy of Ucl = NkBT so that
Ccl = NkB.
It is possible to calculate Uel numerically from Equation 5.5.40a, which we do in the dimensionless
energy units of the previous section; that is, Uel = ŪelEb where Ūel =

∫
∞

0 ε̄ f (ε̄)D(ε̄)dε̄ . The heat
capacity becomes Cel = dUel/dT = (Eb/Tb)dŪel/dT̄ = C̄elkB where C̄el = dŪel/dT̄ . The derivative
can be approximately calculated numerically using the formula d f (x)/dx∼ ( f (x+∆)− f (x))/∆. In
doing this exercise, we bear in mind that it is important to consider whether the temperature depen-
dence of the chemical potential makes a difference in the calculations. In this respect, Figure 5.5.5
shows the results of two sets of calculations for both Uel and Cel . In one set, the constant Fermi
energy is used with a value of εF = 2.5eV . In the other set, the approximate temperature dependent
µ of Equation 5.4.39b has been employed with the same εF . Furthermore, in dimensionless units,
the analytic expression works out to C̄el = π2D̄(ĒF)T̄/3 = π2(T̄/T̄F)N/2 also in units of kB.
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Figure 5.5.5: The left panel shows the average electronic energy (Equation 5.5.40a) versus temper-
ature for an electron density of N/V = 1.795× 1028m−3, a constant εF = 2.5eV (solid line). The
dashed line corresponds to a similar calculation but making use of µ(T ) from Equation 5.4.39b
rather than εF . Both calculations use the dimensionless units of Section 5.4. The right panel is the
comparison of the numerical and the analytic approximation for the electronic heat capacity, also in
dimensionless units (see text). The calculation employing the constant εF corresponds to the solid
line. The dashed line is the calculation that makes use of µ(T ) (Equation 5.4.39b) instead. The low
temperature analytic approximation (Equation 5.5.46c) is best at very low temperature but the lin-
ear temperature behavior is evident (dotted line). Refer to Examples 5.4.0.2 and 5.4.0.3 for further
details regarding the units employed.

In Figure 5.5.5 we see that the effect of incorporating the temperature dependence of the chemical
potential resulted in an improved comparison between the heat capacities at low temperature. The
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calculated heat capacity that makes use of µ (dashed curve) is in better agreement (in magnitude and
in shape) with the behavior of the analytic low temperature Cel than the case for which the constant
εF is used (solid). At higher temperature, the numerical heat capacity (dashed curve) begins to
deviate from the low temperature approximation, as should be expected. In summary, this exercise
has been very instructive in conveying the significance of including the temperature dependence of
the chemical potential in calculations carried out over a large temperature range.
To conclude this section, altogether, a material’s heat capacity naturally involves the contribution
due to phonons, as discussed in a previous chapter, as well as the contribution due to electrons,
given above. In a metal at low temperature, therefore, the experimental heat capacity is often fitted
with an expression of the form C = γT +AT 3, where γ and A are fit coefficients. The term linear
with T is due to the electronic contribution and the cubic term in T is the phonon’s Debye’s T 3 law
contribution.

5.6 Electrical Conductivity (Drude Model)
Electrons are subject to external forces due to electric and magnetic fields. The total force on a
charged particle in the presence of these fields is given by the so-called Lorentz force

~F = m
d~v
dt

= q(~E +~v×~B) =−e(~E +~v×~B), (5.6.47)

where for electrons we have taken q = −e. In what follows, we will ignore the presence of the
magnetic field whose contribution will be discussed in a later section. In general, electrons in solids
experience scattering due to collisions with impurities, phonons, and lattice imperfections. In its
simplest form, under an electric field alone (in a specific direction), we could describe the force
experienced by an electron in a solid with the one-dimensional expression

m
dv
dt

=−eE−m
v
τ
, (5.6.48)

where one thinks of 1/τ as the scattering collision rate (due to impurities, phonons, etc.). The term
−v/τ acts as a resistive force to the motion. Furthermore, if τ is taken as a constant, and assuming
the electrons begin from rest, this differential equation has the solution

v(t) =−eEτ

m

(
1− e−t/τ

)
, (5.6.49a)

which after a long time has passed gives the steady state value of the electronic speed or drift speed

v(t→ ∞)≡ v∞ =−eEτ

m
. (5.6.49b)

Thus, according to this simple model, the maximum velocity achieved by electrons is v∞ which is
limited by τ; i.e., the collision time or time between collisions. For n electrons per unit volume, the
steady state current density is

j = nqv∞ =−nev∞ =
ne2Eτ

m
. (5.6.50)

According to Ohm’s law the current density is proportional to the electric field or

j = σE, (5.6.51)
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where σ is the proportionality constant known as the conductivity. Equating these last two expres-
sions, we find the electric conductivity as

σ =
ne2τ

m
. (5.6.52)

Other quantities of interest are the electrical resistivity defined as

ρ ≡ 1
σ

=
m

ne2
1
τ
, (5.6.53a)

and the electronic mobility µ defined as the constant of proportionality in the expression v∞ ∝ E;
that is, v∞ = µE. Comparing this with Equation 5.6.49b we see that

µ =−eτ

m
. (5.6.53b)

The idea is that electrons travel for a time τ between collisions and therefore have associated with
them a mean free path given by ` = v∞τ . For electrons with an energy on the order of the Fermi
energy, with speeds on the order of the Fermi speed v∞ = vF the mean free path is obtained from
`= vF τ . For pure copper at low temperature τ ∼ 2×10−9 s and from Table 5.4.1 we have that vF =
1.57× 106 m/s so that ` ∼ 3.14× 10−3m/s = 3.14mm. This value is smaller at room temperature
because, in general, τ is a function of temperature and tends to decrease as the temperature rises.
Again, from Example 5.4.0.1, for copper n = 8.47× 1028 m−3 so that, using the electronic charge
and mass, we get σ = 4.77×1012 (Ω ·m)−1, ρ = 2.09×10−13 Ω ·m and |µ|= 352m2/(Volt · sec).
(See Exercise 5.10.12 for a room temperature estimate.)
Experimentally, the analysis of metal resistivity data involves obtaining the scattering rate; i.e., 1/τ ,
which involves the contributions from the various mechanisms. If we restrict ourselves to impurities
and phonons, we would write the scattering rate as a sum of the individual scattering rates or

1
τ
=

1
τi
+

1
τph

, (5.6.54a)

where τi and τph are the collision times associated with impurities and phonons, respectively. The
resistivity becomes

ρ = ρi +ρph =
m

ne2

(
1
τi
+

1
τph

)
, (5.6.54b)

which is known as Matthiessen’s rule. Since at T = 0 the phonon contribution ρph → 0 then
ρ
∣∣
T→0 → ρi(T = 0) is the extrapolated value of the resistivity at T = 0K and the resistivity ra-

tio ρ(T )/ρi(0)
∣∣
T=TRT

is a measure of the sample purity, where TRT is the room temperature. In
solids, phonons can experience scattering from other phonons as well, and this leads to the so-
called thermal resistivity of a material. One could have a three-phonon process in which momentum
is conserved, such as ~K1+ ~K2 = ~K3; that is two phonons interact with the creation of a third phonon.
Another mechanism is the so-called umklapp process in which the three-phonon scattering occurs
with the additional creation of a reciprocal lattice vector; that is, ~K1 + ~K2 = ~K3 + ~G. In both of these
processes, energy is conserved; however, the most important contribution to thermal resistivity is
the umklapp process.

5.7 Electronic Motion in Magnetic Fields and the Classical Hall Effect
Within solids, electrons are made to flow by subjecting them to electric fields to which they readily
respond. Electrons also respond to magnetic fields and it seems natural to investigate their motion in
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the presence of both of these fields. Notwithstanding such responsivity to electromagnetic fields, the
electronic motion is damped by scattering mechanisms inherent within the materials through which
they move. Here we consider the motion of electrons within a solid in the presence of an electric
and a magnetic field with the additional contribution due to scattering. In this regard, we consider
Equation 5.6.47 and add the simple resistive force similar to that of Equation 5.6.48; i.e.,

m
d~v
dt

=−e(~E +~v×~B)−m
~v
τ
, (5.7.55)

where we now perform the analysis in three dimensions. We let the electric field take the form ~E =
(Ex,Ey,Ez) and, for simplicity, we let the magnetic field lie along the z−direction or ~B = (0,0,Bz)

so that with~v = (vx,vy,vz),~v×~B = (vyBz,−vxBz,0) and Equation 5.7.55 becomes

m
(

d
dt

+
1
τ

)
(vx,vy,vz) =−e(Ex + vyBz,Ey− vxBz,Ez). (5.7.56)

As in the previous section, our interest lies in the steady state behavior of the electrons. To this end,
we set d~v/dt = 0 on the left side of these equations to obtain

m vx
τ
=−e(Ex + vyBz)

m vy
τ
=−e(Ey− vxBz)

m vz
τ
=−eEz.

(5.7.57)

Thus, in the steady state, the z component of the velocity is determined by the Ez component of the
electric field. However, the x and y components of the velocity are coupled. For example, if from
the second of these we solve for vy =−e(Ey−vxBz)τ/m and substituting this back into the first, we
get the equation −eEx− eBz(−eEy + evxBz)τ/m = mvx/τ or solving for vx get,

vx =−
eτ

m

(
Ex−ωcτEy

1+(ωcτ)2

)
, (5.7.58a)

where ωc = eBz/m is the cyclotron frequency. From this expression, one notices that the presence
of Bz decreases the terminal speed in the x-direction. A similar process for the y component of the
velocity gives

vy =−
eτ

m

(
Ey +ωcτEx

1+(ωcτ)2

)
. (5.7.58b)

One of the applications of the above result is the classical Hall effect. Referring to Figure 5.7.6, we
consider a Hall bar; that is, a sample material with current along the x direction and whose width
and height are along the y, z directions.

x
y

z
Bz

jx (Ex)

Ey

jy

Figure 5.7.6: Hall Bar illustration of a sample used in a typical Hall effect experiment. The electric
field component (Ex) is due to an applied voltage. The magnetic field (Bz) is perpendicular to the
applied electric field. The shown Ey component of the electric field is the so-called Hall field.
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When electric (Ex) and magnetic (Bz) fields are present as shown in the figure, the x direction
flowing current, jx, due to Ex, interacts with the magnetic field, Bz (through vx×Bz). The magnetic
interaction is responsible for inducing a current in the y direction and thereby a transverse electric
field Ey with associated current jy. Since the Hall bar is finite in the y direction, the current jy flows
until the setup Ey field, due to charge pile-up, equalizes the magnetic force responsible for jy. At
this point, the transverse current stops and vy = 0. From Equation 5.7.58b, we see that this happens
when

Ey =−
eτ

m
ExBz, (5.7.59a)

which is referred to as the Hall field, named after Edwin Hall who discovered the effect in 1879.
Also note that when vy = 0 Equation 5.7.57 gives vx =−eExτ/m so that jx =−nevx = ne2Exτ/m.
From Equation 5.7.59a, we see that Ey/Bz =−eτEx/m and one can define the ratio

RH ≡
Ey/Bz

jx
=
−eτEx/m
ne2Exτ/m

=− 1
ne

, (5.7.59b)

known as the Hall coefficient. In an experiment, since jx and Bz are both known, the idea is to
measure Ey to obtain the Hall coefficient. If RH < 0 as in Equation 5.7.59b, the charge carriers re-
sponsible for jx are electrons, else if RH > 0, the charge carriers are holes, which are charge carriers,
similar to electrons, but with positive charge. Such charge carriers are found in semiconductor ma-
terial systems and are created when electrons are excited from the valence band to the conduction
band. The empty space left after the electron is excited is the hole, which, in the presence of a field,
moves in the opposite direction to the motion of the electron. From Equation 5.6.51, since ρ = 1/σ ,
Ohm’s law can be expressed as Ex = jxρL; that is

ρL = Ex/ jx, (5.7.60a)

where we have used the notation ρL to denote the longitudinal resistivity here. Since it does not
depend on the magnetic field, the classical longitudinal resistivity is therefore constant. In the case of
the Hall effect experiment, there is a similar definition for the transverse resistivity or Hall resistivity,
which using the above definitions, is written as

ρH ≡
Ey

jx
=
−eτExBz/m
ne2Exτ/m

=−Bz

ne
= RHBz. (5.7.60b)

This expression shows that the classical Hall resistivity of a Hall bar is linear with the magnetic
field and that the slope is positive (RH > 0) for holes and negative (RH < 0) for electrons as shown
in Figure 5.7.7.
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Figure 5.7.7: The classical Hall resistivity versus the applied magnetic field for electrons and holes
for which the particle density is assumed to be the same as in Cu (8.47×1028 m−3).

5.8 The Quantum Hall Effect
The quantum Hall effect pertains to Klaus von Klitzing’s discovery [26] that for very clean samples
and large magnetic fields, the transverse or Hall resistivity exhibits plateaus at specific field values.
The 1985 Nobel prize in physics was awarded to him for the achievement. These plateaus represent
deviations from the expected classically linear behavior of the Hall resistivity with the magnetic
field. The plateaus in the Hall resistivity are also followed by the concomitant disappearance of the
longitudinal resistivity at the same field values. This is illustrated in Figure 5.8.8.

Figure 5.8.8: Experimental curves for the Hall resistivity ρH (upper curve) and the longitudinal
resistivity ρL (lower curve) of a heterostructure as a function of the magnetic field at a fixed carrier
density corresponding to zero gate voltage. The temperature of the experiment is about 8mK [26].
This figure is that of Figure 14 from von Klitzing’s work, which has been reprinted with permission
[26].
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In this experiment, a very thin Hall bar sample is prepared in which the electrons within it are
thought of as a two-dimensional electron gas as shown in Figure 5.8.9.
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Figure 5.8.9: An illustration of a two-dimensional sample setup (heterostructure) for measuring the
transverse or Hall voltage (VH ) due to Ey under an applied voltage (VL) due to Ex and a magnetic
field Bz. In this case, the Hall bar is very thin (h is very small). Here the sample area is A = wL.

The magnetic field through the sample (Bz) is expressed as multiples of the electron number times
a minimum flux value or quantized flux unit, φ0 = h/e, in units of webers. Thus, for N electrons on
a sample of area A, the ratio of the number of floxoids (Nφ0) to the total flux through the sample
(BzA), where we have ignored the electron spin, is written as

ν =
Nφ0

BzA
=

N
BzA

h
e
. (5.8.61)

Here ν is known as the Landau level filling factor. It is a number that is large at small Bz and small at
large Bz. For example, from Equation 5.8.61 we see that BzA=Nh/(eν) and from Equation 5.7.60b,
for positive charges q = |e|, and replacing the volume density (n) with N/A, for two dimensions, we
have that

ρH =
BzA
Nq

=
Nh

Ne2ν
=

1
ν

h
e2 , (5.8.62)

which becomes quantized in units of h/e2 whenever ν takes on integer values with a simultaneous
disappearance of ρL. By the way, notice that in two-dimensions the unit of resistivity is now in
Ohms. The experimental positions of the plateaus are accurate enough to enable the refinement of
the fundamental ratio of h/e2.
To illustrate the concept, below is a listing of the simple-minded script hall example.m for which
we have picked a sample area A = 1×10−4m2 with N = 3×1010 electrons. We vary the magnetic
field in the range between 0 and 10 tesla. Whenever the value of ν is an integer, we place a square.
This indicates the plateau position for the transverse quantum mechanical resistivity as shown in
Figure 5.8.10.
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Figure 5.8.10: The results of the simple script hall example.m to illustrate the quantum mechanical
behavior of the Hall resistivity plateaus (squares) compared to the classical behavior (solid line).
The zeros of the longitudinal resistivity at the integer values of the Landau level filling factor (ν)
are indicated by the open circles. The classical value of the longitudinal resistivity is chosen to be
an arbitrary constant.

Simultaneously, at the position of every plateau, a circle is placed at the same field value to indicate
the vanishing of the quantum mechanical longitudinal resistivity. The classical transverse resistivity
is the expected straight line behavior with the magnetic field and, finally, some constant is chosen for
the classical longitudinal resistivity. Here, it should be understood that for small magnetic fields, the
value of ν becomes high and the integer values become closer to each other to indicate the classical
regime in this simple-minded example. This can be seen by running the script with an increasing
value of electrons. However, a more realistic and quantitative description of the entire process is
beyond the scope of this text. Below follows the script listing.

%copyright by J. E Hasbun and T. Datta

%hall_example.m

%Simple illustration of the classical transverse and

%logitudinal resistivities along with their quantum mechanical

%versions.

clear

e=1.602176487e-19; %electronic charge

h=6.62606896e-34; %Planck’constant (J.s)

fxQ=h/e; %quantized unit of flux (webers)

rhoQ=fxQ/e; %quantized resistivity (ohm) (in 2D)

A=1.e-4; %sample area m^2

N=3.e10; %number of electrons

Bmin=0; Bs=0.25; Bmax=10; %range of B

B=Bmin:Bs:Bmax;

nB=length(B);

for i=1:nB

rhoH(i)=B(i)*A/N/e; %classical rho_H in Ohm (classical)

end

rhoL=0.015*rhoH(nB); %class. rho_L in Ohm - let it be some constant

%Quantized Hall resistance

%Need nu (the Landau level fill factor), use N=nu*e*B*A/h=nu*B*A/fxQ
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nu_min=N*fxQ/Bmax/A; %minimum value of nu

nu_max=N*fxQ/Bs/A; %maximum value of nu

nu_low=ceil(nu_min); %round the value

nu_high=ceil(nu_max); %highest nu for rho to reach rhoH(nB)

nu=nu_low:1:nu_high; %vary nu in integer values

nNu=length(nu);

for j=1:nNu

rhoHQ(j)=rhoQ/nu(j); %quantum rho_H=(h/e^2)/nu

%Find the B field values of rho_L=0, use def: BA=N*(h/e)/nu

BQ(j)=N*fxQ/A/nu(j);

end

plot(B,rhoH/1e4,’k’) %classical rho_H

hold on

%classical rho_L

line([B(1) B(nB)],[rhoL/1e4 rhoL/1e4],’Color’,’k’,’LineStyle’,’:’,...

’LineWidth’,2)

xlabel(’B_z (Tesla)’)

ylabel(’\rho (10^4 \Omega)’)

plot(BQ,rhoHQ/1e4,’ksq’) %quantum rho_H

plot(BQ,0.0,’ko’) %quantum rho_L zero positions

for j=1:nNu

str=cat(2,’ \nu=’,num2str(nu(j),’%i’));

text(BQ(j),rhoHQ(j)/1e4,str)

end

axis([0 6*BQ(nNu) 0 6*rhoHQ(nNu)/1e4])

legend(’Classical \rho_H’,’Classical \rho_L’,’Quantum \rho_H

plateau positions’,... ’Quantum \rho_L zero positions’,0)

str=cat(2,’Classical, Integer Quantum Hall Effect Example: ’,...

’N_s=’,num2str(N/(A*1e4),’%6.2e’),’cm^{-2}’);

title(str)

The story of the quantum Hall effect does not end with the quantized integer values of ν . In fact,
the 1998 Nobel prize in physics was awarded to Robert B. Laughlin, Horst L. Störmer, and Daniel
C. Tsui for their work on the fractional quantum Hall effect. The description of the prize reads “The
three researchers are being awarded the Nobel Prize for discovering that electrons acting together in
strong magnetic fields can form new types of ‘particles’, with charges that are fractions of electron
charges.” That is, the workers were awarded the prize for their discovery of a new form of a quantum
fluid with fractionally charged excitations. In the fractional quantum Hall effect, the Landau level
filling factor, ν , takes on fractional values such that ν = p/q where p and q are integers with no
common factors. Some examples are ν = 1/3, 2/5, 3/7, etc.

5.9 Electronic Thermal Conductivity of Metals
From the thermal conductivity Section 4.8 in Chapter 4, we had that the coefficient of thermal
conductivity for particles with velocity v, heat capacity C, and mean free path ` is

K =
1
3

Cv`, (5.9.63)
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where C is the electronic heat capacity per volume. For pure metals, the greatest contribution to the
thermal conductivity is due to the electrons; therefore, for our purpose, we consider the electronic
contribution here as given by Equation 5.5.46c. We let C = Cel/V , v = vF , kBTF = mv2

F/2, and
`= vF τ , to obtain for the coefficient of thermal conductivity

K =
1
3

Cv`=
1

3V
π2

2

(
N

kBTF

)
k2

BT vF`=
π2

3 ·2V
Nk2

BT
mv2

F/2
v2

F τ = n
π2

3
k2

BT τ

m
(5.9.64)

where n = N/V . A quantity of interest is the ratio of the electronic thermal conductivity to that of
the electrical conductivity; i.e.,

K
σ

=
π2k2

BnT τ

3m(ne2τ/m)
=

π2

3

(
kB

e

)2

T. (5.9.65)

This linear behavior of the ratio K/σwith T is known as the Wiedeman-Franz law. Furthermore, the
ratio

L≡ K
σT

=
π2

3

(
kB

e

)2

= 2.44×10−8 WΩ

K2 , (5.9.66)

is known as the Lorentz number and whose experimental values helped confirm the free electron
theory of metals. For example, Cu has experimental values of L equal to 2.23× 10−8WΩ/K2 and
2.33× 10−8WΩ/K2 at 273K and 373K, respectively, which are in good agreement with Equa-
tion 5.9.66.
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5.10 Chapter 5 Exercises
5.10.1. Apply the normalization condition Equation 5.2.4a to the expression of Equation 5.2.3c

and show that the normalization constant is given by Equation 5.2.4b.

5.10.2. Modify the starter script one d particle in box one level.m of Subsection 5.2 to reproduce
Figure 5.2.1.

5.10.3. Write a script that reproduces the plots of the Fermi-Dirac distribution function as shown
in Figure 5.3.2.

5.10.4. Proceed as in Equation 5.4.16, but make a three-dimensional displacement instead and
show the periodicity of the plane wave Equation 5.4.15.

5.10.5. Use Equation 5.2.9 appropriately for a three-dimensional electron gas to obtain the expres-
sion of Equation 5.4.22b.

5.10.6. After reading Example 5.4.0.1, calculate the Fermi level, the Fermi velocity, and the Fermi
temperature for aluminum.

5.10.7. Write a script to reproduce the calculations of the Fermi level, the Fermi velocity, and the
Fermi temperature shown in Table 5.4.1.

5.10.8. Show that by integrating Equation 5.4.29 over ε as shown in Equation 5.4.22a, there results
a Fermi energy consistent with that of Equation 5.4.25.

5.10.9. Modify the function chem pot at T.m of Example 5.4.0.3 in order to reproduce the results
of µ versus T shown in Figure 5.4.4.

5.10.10. Write a script whose purpose is to reproduce the plots shown in Figure 5.5.5 for the nu-
merical average energy and heat capacity of an electron gas versus temperature shown
in Equations 5.5.40a and 5.5.40b, respectively. One set of calculations involves obtaining
Uel and Cel using εF , the other set employs µ as given by the approximation in Equa-
tion 5.4.39b. Be sure to compare the numerical heat capacities with the analytic approxi-
mation of Equation 5.5.46c.

5.10.11. Letting v(t = 0) ≡ v0, show the steps that lead to the solution of the Equation 5.6.48 and
show how it gives Equation 5.6.49a under the appropriate conditions.

5.10.12. Read Subsection 5.6 and use copper’s room temperature collision time value of τ ∼ 2.46×
10−14 s to obtain copper’s mean free path, conductivity, resistivity, and mobility. Repeat
the calculation for aluminum whose room temperature τ ∼ 7.16×10−15 s. Feel free to use
the information provided in Table 5.4.1, Example 5.4.0.1, and also see Exercise 5.10.6.
Finally, assume Fermi energy values for the materials’ drift speeds.

5.10.13. Show the necessary steps to obtain Equation 5.7.58b.

5.10.14. Show that, in two-dimensions, the classical unit of the Hall resistivity is Ohms and that
this is also the case for the quantum unit of resistivity h/e2.

5.10.15. Run the code example hall example.m to reproduce Figure 5.8.10 of Subsection 5.8. Rerun
the code for a higher number of electrons and explain your observations.



http://taylorandfrancis.com


6
Introduction to Electronic Energy Bands

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.2 Nearly Free Electron Model - Gaps at the Brillouin Zone Boundaries . . . . . . . 194
6.3 Bloch Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.4 The Kronig-Penney Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.5 Electron in a General Periodic Potential - the Central Equation . . . . . . . . . . . 204
6.6 Empty Lattice Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.7 Solution of the Central Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.8 Counting Band Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.9 Chapter 6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.1 Introduction
Picturing the electrons in crystals as free electrons, to a certain extent, is quite useful, but the picture
fails to account for the difference between different materials such as metals, semimetals, semicon-
ductors, and insulators; and various properties such as hall coefficients, the relationships between
conduction electrons in metals and valence electrons in free atoms, etc. Energy bands is a term used
to describe the electronic energies of electrons in crystalline materials. The energy bands in crys-
tals are the analogue of electronic energy levels in atoms. Atoms have electronic level structures,
whereas crystals have electronic band structures. Associated with the electronic energy bands in
crystals are the energy gaps. The energy bands and the energy gaps are similar to the frequency
dispersion and frequency gaps discussed in Chapter 4 regarding phonons in one and two atoms per
primitive cell. The energy gaps in crystals correspond to energy regions in the band structures where
electrons are forbidden to propagate. These gaps are the equivalent of electronic level separation in
atoms. Thus, solutions to the crystal form of the Schrodinger equation exist only within the allowed
energy regions for which propagation occurs; i.e., within the energy bands. The atomic orbitals in
atoms can either be empty or occupied. The atomic behavior depends on the occupational state of the
orbitals. In a similar manner, the amount of band filling determines the crystalline behavior as well.
Figure 6.1.1 shows a simplified energy band model of an insulator, a metal, and a semiconductor.
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Insulator Metal
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F

Semiconductor

E
g E

g

Figure 6.1.1: Simplified energy band model of an insulator, a metal, and a semiconductor. The
insulator has filled (shaded region) valence and a large energy gap (Eg) exists to the nearest energy
band. The metal has a band that is not completely filled and electrons can gain energy easily and
are good conductors. Metals are also characterized by their Fermi energy, EF . Semiconductors have
a nearly full valence band and a small energy gap exists to the next nearest band and are poor
insulators.

The insulator has filled valence and a large energy gap exists to the nearest empty conduction energy
band. The metal has a band that is not completely filled. The electrons occupy energies up to the
Fermi level (EF ) and can gain energy easily, within the limits allowable by the band, under an
applied voltage. These are generally good conductors. Semiconductors have a nearly full valence
band (shaded region) and a small energy gap exists to the nearest empty conduction band. These
are poor insulators and they can conduct electricity if the voltage applied is large enough to excite
electrons across the energy gap to the nearest conduction band. To account for the above-mentioned
possible behaviors of the electronic properties of materials, the free electron model needs to be
extended to include the crystal lattice periodicity. This involves the interaction of the electrons with
all the crystal atoms.

6.2 Nearly Free Electron Model - Gaps at the Brillouin Zone Boundaries
Figure 6.2.2 contains a one-dimensional illustration of a crystal potential with bound energy levels
and nearly free electron energy levels. The deeply bound energy levels are called core levels and
the electrons found in those states are referred to as core electrons. As the energies of the electrons
increase, the electronic wavefunctions begin to delocalize. Thus the upper bound levels sample
more of the rest of the crystal’s atomic potential than the core electrons. Finally, the nearly free
electrons sample the collective crystal’s potential due to all the ions. The electronic wavefunctions
are delocalized and are more like plane waves throughout the crystal.
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Core Bound Levels

Upper Bound Levels

Nearly Free Electrons

r (atomic positions)

V(
r)

Figure 6.2.2: The crystal potential (dotted) created by the ions (black dots) is shown to be respon-
sible for having electrons in bound levels as well as nearly free electrons at higher energies near the
potential maxima. The bound levels are localized in the vicinity of their parent atoms. The nearly
free electrons are bound to the crystal but are delocalized, sample the entire crystal’s collective
potential due to the atoms, and their wavefunctions are plane waves.

In the free electron model of a crystal, the allowed energy values are given by

εk =
h̄2

2m
|~k|2 = h̄2

2m

(
k2

x + k2
y + k2

z
)
, (6.2.1)

with associated wavefunction ψk(r) ≈ ei~k·~r and momentum ~p = h̄~k. For periodic boundary condi-
tions on a cube of sides L, we have ψk(r+L) = ei~k·~rei~k·~L = ψk(r) so that ei~k·~L = eikxLeikyLeikzL = 1
or kxL = kyL = kzL = 2nπ with integer n. Thus kx,ky,kz take on the values {0,±2π,±4π, etc.}/L.
The allowed energies are in this way illustrated in one dimension by the dots in Figure 6.2.3.

k

E
k

Free Electron Model

−20π/L 20π/L

Figure 6.2.3: One-dimensional free electron energy eigenvalues for −2nπ/L < k < 2nπ/L for
n = 1,2...,10. The black dots correspond to the allowed values of the wavevector k. The short-
dashed curve shows the quadratic behavior of εk versus k.

In the nearly free electron model, the Bragg condition (see Chapter 2) is incorporated; that is,

k2 = (~k+ ~G) · (~k+ ~G) = |~k+ ~G|2, (6.2.2)

which, as seen before, leads to Brillouin zone (BZ) boundaries at k =±G/2. Also as seen in Chap-
ter 2, for a cubic solid of lattice constant L = a, the wavevectors k work out to be ±π/a so that the
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reciprocal lattice vectors are G = 2nπ/a for integer n. X-ray reflections occur at the BZ boundaries
and, at these special values of the wavevectors k, the wavefunctions are not traveling waves, in-
stead they are standing waves. We, therefore, consider a one-dimensional case and look at the zone
boundaries. Let k = kx =±π/a, and let’s write left and right traveling plane waves

ψL = e−iπx/a, ψR = eiπx/a, (6.2.3)

respectively, at the BZ boundaries. Standing waves are set up within the BZ as waves get reflected
back and forth. We form symmetric and antisymmetric linear combinations of these waves to get

ψ+ ≡ A(ψR +ψL) = A
(

eiπx/a + e−iπx/a
)
= 2Acos

πx
a

=

√
2
a

cos
πx
a
,

and

ψ− ≡ A(ψR−ψL) = A
(

eiπx/a− e−iπx/a
)
= 2Aisin

πx
a

= i

√
2
a

sin
πx
a
,

(6.2.4)

respectively, where we have used A = 1/
√

2a as a normalization constant such that
∫ a

0 |ψ±(x)|2dx =
1. The charge pile up associated with each of these wavefunctions is proportional to their probability
densities ρ±. We define these densities as

ρ+(x)≡ |ψ+(x)|2 =
2
a

cos2 πx
a

and ρ−(x)≡ |ψ−(x)|2 =
2
a

sin2 πx
a
. (6.2.5)

The energy corresponding to each probability density is approximated by averaging the crystal
potential, u(x), over a unit cell or

U± =
∫ a

0
u(x)ρ±(x)dx. (6.2.6)

Since the ions are located at periodic positions of period a, we can approximate the crystal potential
with a function that has the lattice periodicity and whose maxima occur at the ionic positions; that
is,

u(x) = u0 cos
2πx

a
, (6.2.7)

where u0 is a constant. The probability densities and the potential are plotted in Figure 6.2.4. Notice
that the symmetric probability, ρ+, peaks at the ion positions indicating charge pile up associated
with bonding. In contrast, the antisymmetric probability, ρ−, has minima at the ion positions and
correspond to charge depletion or antibonding. The crystal potential u(x) in plotted in units of u0
versus distance in units of a as well.
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Figure 6.2.4: The probability densities, ρ+ (solid) and ρ− (short dashed), of Equation 6.2.5 for a
lattice constant a of unit length. The ion positions correspond to the black dots. The crystal potential
of Equation 6.2.7 is the dashed curve with maxima at the ion positions and minima in between.

Using
∫ a

0 cos2(πx/a)cos(2πx/a)dx = a/4 and
∫ a

0 sin2(πx/a)cos(2πx/a)dx = −a/4, we see that
Equations 6.2.6 along with 6.2.5 and 6.2.7 yield

U± =±u0

2
, and U+−U− ≡ Eg =

u0

2
−
(
−u0

2

)
= u0, (6.2.8)

which indicates that there exists an energy gap between the symmetric and antisymmetric states at
the BZ boundaries, as shown in Figure 6.2.5; that is, at k =±π/a = G/2.

U+=u0/2

U-=-u0/2
Eg=u0

Figure 6.2.5: The symmetric and antisymmetric states’ energies and resulting gap at the Brillouin
zone boundaries k =±π/2.

The above treatment has been fruitful because of the use of standing waves at the zone boundaries.
In this way, the nearly free electron model modifies the free electron model by incorporating the
Bragg condition, which leads to gaps at the zone boundaries. This is shown in Figure 6.2.6.
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Electron
Model

Free
Electron
Model

Figure 6.2.6: Comparison between the free and nearly free electron models. In the nearly free
electron model, energy gaps open up at the zone boundaries with the incorporation of the Bragg
condition.

The nearly free electron model also assumes the potential seen by the electrons is weak compared
to that seen by the more deeply bound electrons. However, in general, we need to find a treatment
that would lead us to understand the behavior of the energies versus the wavevector k. We will come
back to this later below.

6.3 Bloch Functions
In 1928 Felix Bloch discovered the theorem that for a realistic periodic potential the Schrodinger
equation must have solutions of the form

ψ~k(~r) = u~k(~r)e
i~k·~r, (6.3.9a)

which is referred to as a Bloch function. Here the atomic function, u~k, obeys the lattice periodicity
condition

u~k(~r) = u~k(~r+~T ), (6.3.9b)

where ~T is a lattice translation vector. The idea is that the eigenfunctions of the wave equation for
a periodic potential are the product of a plane wave ei~k·~r multiplied by a function u~k(~r) that has
the periodicity of the crystal lattice. A simple illustration of Bloch’s theorem for a simple non-
degenerate case (no two wavefunctions with the same energy exist) can be carried out for a one-
dimensional crystal. Consider a periodic chain of N atoms as shown in Figure 6.3.7 where the n = 0
atom is equivalent to the Nth atom.
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n=0 n=1 n=N-1...

Periodic chain of N atoms

a

Figure 6.3.7: Periodic chain of N atoms with period a. The n = 0 atom is equivalent to the Nth
atom.

The chain has period a and a possible lattice translation vector is T = ma, where m is an integer
in the range [0,N − 1]. Let’s consider a translation T = a and write the translated wavefunction
as ψk(x+ a) = uk(x+ a)eik(x+a) = uk(x)eikxeika, where we have used Equation 6.3.9b. Similarly,
for a translation of T = 2a, we have that ψk(x+ 2a) = uk(x+ 2a)eik(x+2a) = uk(x)eikxei2ka. Fur-
thermore, continuing this way and, in fact, for a full translation around the chain (recall that the
Nth atom is equivalent to the zeroth atom) we have ψk(x+Na) = ψk(x). This shows, therefore,
that for a translation of T = Na, ψk(x+Na) = uk(x+Na)eik(x+Na) = uk(x)eikxeiNka = ψk(x). This
also implies that eiNka = 1 or, for integer n, Nka = 2nπ which results into k = 2nπ/(Na) in or-
der to guarantee periodicity. With k known, our wavefunction solution for the one-dimensional
crystal becomes ψk(x) = uk(x)ei2nπx/(Na) which is of the Bloch form as in Equation 6.3.9a. We
can see that if we go back and repeat the translation T = a, for example, we get ψk(x + a) =
uk(x)eikxeika =ψk(x)eika =ψk(x)ei2nπ/N ; similarly, the translation of T =Na results in ψk(x+Na)=
uk(x)eikxeiNka = ψk(x)eiN2nπa/(Na) = ψk(x), since ei2nπ = 1. In this way we know the wavefunction
throughout the one-dimensional crystal. Note that because of the Bloch theorem, when describing
the properties of the crystal, we restrict ourselves to the range 0 < x < a since one does not need
a larger range. One unit cell is enough to describe the crystal wavefunction. We next move on to a
more realistic but still one-dimensional model of a crystal and study its energy structure.

6.4 The Kronig-Penney Model
In 1930 Ralph Kronig and William Penney developed a one-dimensional model of a crystal in the
form of an array of square quantum wells. The centers of the wells represent the ionic positions
and the barriers occur in between the ions. The model is seen in Figure 6.4.8 and it is known as the
Kronig-Penney model. We will work with this model in this section.
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u(x)

x
-(a+b) -b 0 a (a+b)

u0

Figure 6.4.8: The array of square quantum wells that represents the one-dimensional Kronig-Penney
model of a crystal. The wells are of width a and the barriers are of height U0 and thickness b.

We first write the one-dimensional Schrodinger equation for this model as

− h̄2

2m
d2ψ(x)

dx2 +u(x)ψ(x) = εψ(x), (6.4.10)

where u(x) is the periodic potential energy and ε is the energy eigenvalue. In the region 0 < x < a
we have that u(x) = 0 and the wavefunction is a linear combination of plane waves traveling to the
right and to the left or

ψI(x) = Aeikx +Be−ikx, (6.4.11)

where the wavevector k is related to the energy as k =
√

2mε/h̄2. In the region −b < x < 0 where
u = u0, we have exponential solutions

ψII(x) =Ceqx +De−qx, (6.4.12)

with the quantity q bearing information about the potential height as q =
√

2m(u0− ε)/h̄2. Because
crystals are periodic, the solution in the region a < x < a+b is related to the solution in the −b <
x < 0 region by Bloch’s theorem; that is,

ψIII(x) = ψ(a < x < a+b) = ψ(−b < x < 0)eik′(a+b) = ψII(x)eik′(a+b), (6.4.13)

where a+b = T is a one-dimensional lattice translation vector. Here k′ will be determined later. At
this point, all the ingredients to solve the problem have been stated. The constants A,B,C, and D
are to be chosen such that ψ(x) and ψ ′(x) are continuous at x = 0 and x = a. The x = 0 boundary
condition leads to

ψI(0) = ψII(0) =⇒ A+B =C+D

ψ
′
I(0) = ψ

′
II(0) =⇒ ikA− ikB = qC−qD

(6.4.14a)

and the x = a boundary condition leads to

ψI(a) = ψIII(a) =⇒ Aeika +Be−ika = (Ce−qb +Deqb)eik′(a+b)

ψ
′
I(a) = ψ

′
III(a) =⇒ ik(Aeika−Be−ika) = q(Ce−qb−Deqb)eik′(a+b)

(6.4.14b)
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where we have used ψIII(x = a) = ψII(x =−b)exp [ik′(a+b)] and similarly for the derivatives. The
above Equations 6.4.14 can be organized in matrix form as follows




1 1 −1 −1
ik −ik −q q
eika e−ika −e−qbeik′(a+b) −eqbeik′(a+b)

ikeika −ike−ika −qe−qbeik′(a+b) qeqbeik′(a+b)







A
B
C
D


=




0
0
0
0


 . (6.4.15)

A solution of this matrix equation exists if the determinant of the coefficients matrix on the left
also vanishes. The vanishing of the determinant provides a condition for the allowed values of k
which in turn are related to the allowed values of ε . Separating the real and imaginary parts of the
determinant and setting each to zero leads to the eigenvalue equation

(
q2− k2

2qk

)
sinkasinhqb+ coskacoshqb = cosk′(a+b), (6.4.16)

and, in the following example, we investigate its possible solutions.

Example 6.4.0.1
In order to obtain the energy solutions contained in Equation 6.4.16, referring to the left panel of
Figure 6.4.9, notice that they must exist within a region of space where the right-hand side (RHS)
of the equation is real. That happens between the extreme values of the cosine function; i.e., ±1
(dashed lines). The idea then is to solve the equation self-consistently for all the values of k for
which the left-hand side (LHS) of the equation is between±1 as k′ is varied. The quantity q contains
information about the potential height and, for visualization purposes, given a value of q we can
actually plot the LHS versus k (solid line) and show the energy solutions that lie within the expected
region (dots). These solutions are responsible for the band structure in the Kronig-Penney model. We
can obtain accurate energy solutions versus k′ and plot them on a separate graph. Here k′ happens to
be a Brillouin zone (BZ) wavector variable and its range is −nπ/(a+b)< k′ < nπ/(a+b), where
n is an integer. Whenever (a+ b)k′/π takes on an integer value, a new band is formed. Thus the
band structure for the Kronig-Penney model is obtained as shown on the right panel of Figure 6.4.9.
In particular, notice the gaps that occur at the BZ boundaries. The energies have been obtained for
positive values of k′ and symmetry was used to plot them for−k′. The calculations have been carried
out using dimensionless units. That is, we employ distance units of ab = 1Å and let the wavevectors
have units of kb = 1/ab so that k = k̄kb. Here, the dimensionless units are the ‘barred’ quantities
and a = āab, b = b̄ab. The specific values of ā and b̄ are properties of the potential well and barrier
widths, respectively, in Angstroms. We also let the energy take on dimensionless units such that
ε = h̄2k̄2/(2ma2

b) = k̄2εb = ε̄εb. We see that, in these units, ε̄ = k̄2 or k̄ =
√

ε . With the above value
of ab, the energy unit is εb = h̄2/(2ma2

b) = 3.81eV shown on the figure’s title. In the calculation,

u0 = ū0εb and the very important quantity q =
√

2m(u0− ε)/h̄2 =
√

2mεb/h̄2√ū0− ε̄ = kbq̄; so
that, q̄ =

√
ū0− ε̄ . With these definitions the numerical form of Equation 6.4.16 remains the same

except that the variables are all dimensionless as explained above. In this way, the results of the
calculation shown in Figure 6.4.9 are for a potential height of u0 = 150εb = 571.5eV , with well and
barrier widths of 2.0 and 0.025 Å, respectively.
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Figure 6.4.9: The left panel shows the possible energy solutions within the allowed region; that is,
within a maximum and minimum range of the RHS of Equation 6.4.16 of ±1, respectively (dashed
line). In the plot of the LHS of Equation 6.4.16, the solid dots are the source of the energy solutions
that lead to the band structure. The smooth solid line is the full plot of the LHS. The right panel
shows the actual band structure associated with Kronig-Penney model, for the shown range, for the
potential parameters of u0 = 150εb = 571.5eV , a = 2 Å and b = 0.025 Å.

The code employed in obtaining Figure 6.4.9 is Kronig Penney model numeric whose listing fol-
lows below. The program is written as a MATLAB function; i.e., it employs other defined functions.
In particular, notice that there is a ‘searchguess’ function. Its purpose is to seek new bands when-
ever (a+ b)k′/π takes on an integer value. The search’s energy step depends on the potential and,
like many programs, it may need tweaking as needed. The roots of Equation 6.4.16 are done by
MATLAB’s built-in ‘fzero’ function as shown. The LHS and RHS of the equation are conveniently
defined as ‘fL’ and ‘fR’, respectively, for use throughout the program.

%copyright by J. E Hasbun and T. Datta

%Kronig_Penney_model_numeric.m

%Solves for the energy eigenvalues versus k’ in the kronig-Penney

%model of a one dimensional crystal

function Kronig_Penney_model_numeric

clear

global fL fR u0 a b

h=6.62606896e-34; %Planck’constant (J.s)

hbar=h/2./pi; %hbar (J.s)

me=9.10938215e-31; %electron mass (kg)

e=1.602176487e-19; %electronic charge

ab=1e-10; %1 angstom unit of distance

kb=1/ab; %wevevector unit

Eb=hbar^2*kb^2/2/me; %energy unit in joules

Eb_eV=Eb/e; %energy unit in eV

u0=150; %potential height in Eb units

a=2; b=0.025; %well, barrier widths in ab units

kp=(0:0.005:3.0)*pi/(a+b); %vary k’

k=(-6:0.05:6)*pi/a; %vary k (associated with energy)

%right hand side of energy equation (x=a, y=b)
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fR=@(kv,x,y) cos(kv*(x+y));

%left hand side of energy equation (x=a, y=b)

fL=@(xE,V,x,y) ((V-2*xE)./(2*sqrt(u0-xE).*sqrt(xE))).*...

sinh(sqrt(V-xE)*y).*sin(sqrt(xE)*x)+cosh(sqrt(V-xE)*y).* ...

cos(sqrt(xE)*x);

%Evaluation and plotting (yR=RHS, yL=LHS)

yR=fR(kp,a,b);

yL=fL(k.^2,u0,a,b); %Note: in dimensionless units energy=k^2

subplot(1,2,1) %LHS and min(RHS), max(RHS) plotted versus k

line([min(k*a) max(k*a)],[max(yR), max(yR)],’Color’,’k’,...

’LineStyle’,’--’) %min(RHS)

hold on

plot(k*a,yL,’k’) %LHS

for i=1:length(k)

if ((yL(i) <= max(yR)) & (yL(i) >= min(yR)))

plot(k(i)*a,yL(i),’k.’,’MarkerSize’,5)

end

end

legend(’RHS’,’LHS’,’roots’,1)

line([min(k*a) max(k*a)],[min(yR), min(yR)],’Color’,’k’,...

’LineStyle’,’--’) %max(RHS)

xlabel(’ka’,’FontSize’,14)

ylabel(’LHS, RHS’,’FontSize’,14)

str1=cat(2,’Kronig-Penney Model: u0=’,num2str(u0,’%5.2f’),...

’ \epsilon_b’,’, a=’,num2str(a,’%5.3f’),’ a_b’,’, b=’,...

num2str(b,’%5.3f’),’ a_b, ’);

title([’ ’,str1])

axis tight

hold off

%

subplot(1,2,2) %Energy eigenvalues versus k_prime

%find the lowest energy guess for the first kp point

eps_guess=searchguess(1.e-3,kp(1));

nr=0; %root counter

test_old=0.0; %variable to check when kp*pi/(a+b)=integer

for i=1:length(kp)

yRi=fR(kp(i),a,b);

if (yRi <= 1 & yRi >= -1) %if solutions exist

nr=nr+1; %root counter

kr(nr)=kp(i); %store the related k’

%find the energies for which FofE=fL-fR=0, for each k’

eps(nr) = fzero(@(xE) FofE(xE,kp(i)),eps_guess);

eps_guess=eps(nr); %use this as next guess

test_new=mod(kp(i)*(a+b)/pi,1); %to check if k’=integer

%There is an energy gap when kp*pi/(a+b)=integer, so we need

%to search for a higher energy guess at those points

if (test_new < test_old)

eps_guess=searchguess(eps_guess,kp(i));

%fprintf(’ ********** xguess=%8.3f\n’,xguess);

end

test_old=test_new;
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end

end

%

%use the calculated values and apply symmetry to get the whole

%BZ plot for the energy bands

kp_a=kr*(a+b); %k’ variable where a root was found

ep_a=eps; %corresponding found energy root

kp_b=kp_a-kp_a(end); %get the reflection of k’

ep_b=ep_a(end:-1:1); %use reflection on energy also

plot(kp_a,ep_a,’k.’,’MarkerSize’,1)

hold on

plot(kp_b,ep_b,’k.’,’MarkerSize’,1)

xlabel(’k{’’}(a+b)’,’FontSize’,14)

ylabel(’\epsilon(k’’) (\epsilon_b)’,’FontSize’,14)

str2=cat(2,’\epsilon_b=’,num2str(Eb_eV,’%5.2f’),...

’ eV’,’, a_b=’,num2str(ab/1e-10,’%3.2f’),...

’ Angs’);

title([’ ’,str2])

function [y]=searchguess(x,kk)

%This function does a simple search for a root by tracking

%a sign change in the FofE function

global u0 a

del=13.2e-3*u0/a+0.2*x; %step size to search for a root

%notice it depends on u0, a - may tweek

xi=x;

xf=xi;

for i=1:50*del

xf=xf+del;

if(FofE(xi,kk)*FofE(xf,kk) <= 0.0)

y=xf; %root exits, so return as guess

return

end

xi=xf;

end

function [y]=FofE(eps,kk)

global fL fR u0 a b

%This function is the difference of left and right functions

y=fL(eps,u0,a,b)-fR(kk,a,b);

6.5 Electron in a General Periodic Potential - the Central Equation
In this section, we consider a general but unspecified one-dimensional periodic potential u(x) for a
crystal lattice of constant a. It builds on the concept of the nearly free electron model of Section 6.2,
but it is not limited to the BZ boundaries. We first recall that, for a periodic potential, u(x) is trans-
lationally invariant; i.e., u(x+a) = u(x). Such potential may be expanded as a Fourier series in the
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reciprocal lattice vectors G. That is,

u(x) = ∑
G

uGeiGx, (6.5.17)

for −∞ < G < ∞ and where uG is the Fourier transform of u(x). To point out a property of the
potential, we note that if we let uG = u−G and we neglect uG=0, then the sum can be written as

∑
G

uGeiGx = ∑
G<0

uGeiGx + ∑
G>0

uGeiGx = ∑
G>0

u−Ge−iGx + ∑
G>0

uGeiGx = ∑
G>0

uG
(
e−iGx + eiGx

)
,

or

u(x) = 2 ∑
G>0

uG cosGx, (6.5.18)

which also ensures u(x) is real and symmetric about x = 0. We will come back to this form of the
potential later but in what follows we continue to use the form given by Equation 6.5.17. We are
ready to set up the Schrodinger equation for the periodic potential u(x) in the case of one electron
per atom. We write

(
p2

2m
+u(x)

)
ψ(x) = εψ(x). (6.5.19)

We will let k be the allowed wavevectors, according to the boundary conditions, and expand ψ(x)
as a Fourier series in those wavevectors or

ψ(x) = ∑
k

Ckeikx. (6.5.20)

With the above definitions, we have
(

p2

2m

)
ψ(x) = − h̄2

2m
d2

dx2 ψ(x) = h̄2

2m ∑
k

k2Ckeikx, and u(x)ψ(x) =

∑
G

∑
k

uGeiGxCkeikx, so that Equation 6.5.19 becomes

∑
k

h̄2k2

2m
Ckeikx +∑

G
∑
k

uGCkei(k+G)x = ε ∑
k

Ckeikx. (6.5.21)

We will now use the integral property
∫ a

0
ei(k−k′)xdx = aδk,k′ , (6.5.22a)

where

δk,k′ ≡
{

1 if k = k′

0 if k 6= k′ , (6.5.22b)

is the Kronecker delta function. Multiplying Equation 6.5.21 by e−ik′x, integrating over x on [0,a],
and using the Kronecker delta function property we get

a
h̄2k′2

2m
Ck′ +a∑

G
uGCk′−G = aεCk′ . (6.5.23a)

Dividing this by a, replacing the symbol k′ back to k, and using λk ≡ h̄2k2/2m, we find the equation

(λk− ε)Ck +∑
G

uGCk−G = 0, (6.5.23b)
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for each value of k. This is the central equation. The idea is to find the Ck−G’s, and then, by Equation
6.5.20, the wavefunction ψ(x). In order for Equation 6.5.23b to be satisfied, the determinant of the
coefficients is set to zero. In turn, this gives the energy bands versus the wavevector k. Before
considering this equation in greater detail, we return to the wavefunction ψ(x) of Equation 6.5.20
and verify that it obeys Bloch’s theorem. First we rewrite it as a sum over the G’s as

ψk(x) = ∑
G

Ck−Gei(k−G)x = ∑
G

Ck−Ge−iGxeikx (6.5.24a)

and define Ψk(x) ≡ ∑
G

Ck−Ge−iGx to write ψk(x) = Ψk(x)eikx. Displacing x by a translation T we

have that

ψk(x+T ) = Ψk(x+T )eik(x+T ); (6.5.24b)

however, Ψk(x+T ) = ∑
G

Ck−Ge−iG(x+T ) = ∑
G

Ck−Ge−iGxe−iGT = Ψk(x)e−iGT . But, from Chapter 2,

we know that e−iGT = 1 due to GT = 2nπ , and Equation 6.5.24b becomes

ψk(x+T ) = Ψk(x)eikxeikT = ψk(x)eikT , (6.5.24c)

which is of the Bloch form as in Equation 6.3.9. Here, eikT is the phase factor by which the Bloch
function is multiplied when a crystal lattice translation T is made, as discussed in Section 6.3.

Example 6.5.0.1
In this example, we show how Equation 6.5.23b is used to get the free electron result. In such case
we know that the potential of Equation 6.5.17 is zero and we set uG = 0 then Equation 6.5.23b gives
(λk− ε)Ck = 0 and all Ck−G = 0 except for Ck. Thus from Equation 6.5.20 we have ψ(x) =Ckeikx;
i.e., a single plane wave, where we can take Ck as a constant. Also, here we see that ε = λk =
h̄2k2/2m, which is what we expect for the free electron case.

We will come back to this section later, but before that we discuss what is referred to as the reduced
Brillouin zone (BZ) scheme. We introduce this concept next.

6.6 Empty Lattice Approximation
Whenever we ignore the crystal potential in Equation 6.5.23b, the energy band structure is essen-
tially that of a free electron as in Example 6.5.0.1. This is what is termed as the empty lattice
approximation. The general expression for the free electron energy in three dimensions is

εk =
h̄2~k2

2m
, −∞ < k < ∞. (6.6.25)

This expression is referred to as the extended BZ scheme and represents a parabolic behavior for εk
versus~k for all~k. However, band structures are for the most part conveniently plotted in terms of εk
versus~k in the first BZ. If the wavevectors fall outside the first BZ, they are carried back into the
first BZ by subtracting a suitable reciprocal lattice vector. In the expression of Equation 6.6.25,~k
can take on any value, except that we would like to make the replacement

~k→~k+ ~G, (6.6.26)

and restrict the new~k to the first BZ. With this replacement, the energy becomes

εk =
h̄2

2m

(
~k+ ~G

)2
~k on 1st BZ, (6.6.27a)
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with ~G taking on appropriate reciprocal lattice points so as to keep~k in the first BZ. This method of
plotting the energy is referred to as the reduced BZ scheme. More specifically, knowing the specific
~G’s for a particular structure and restricting the components of~k to the first BZ we work with

εk =
h̄2

2m

(
(kx +Gx)

2 +(ky +Gy)
2 +(kz +Gz)

2) . (6.6.27b)

Example 6.6.0.1
In this example we obtain a plot of the free electron energy bands for the simple cubic system in the
reduced zone scheme in the [100] direction; that is, we take [kx,ky,kz] = [kx,0,0] in Equation 6.6.27b.
The energy becomes εk = (h̄2/2m)

(
(kx +Gx)

2 +G2
y +G2

z
)
. For the simple cubic the reciprocal lat-

tice vectors are ~b1 = 2π

a î, ~b2 = 2π

a ĵ, and ~b3 = 2π

a k̂. The first BZ has boundaries at kx = ±~b1/2,
ky =±~b2/2, and kz =±~b3/2, so that the range of kx is [−π/a,π/a]. The reciprocal lattice points lie
at the reciprocal lattice vectors given by ~G = v1~b1 + v2~b2 + v3~b3 = (2π/a)(î+ ĵ+ k̂), where v1, v2,
and v3 are ± integers, including zero. There is a band of energy for each set of v1,v2, and,v3 values
as shown in Table 6.6.1.

Table 6.6.1: A few examples of the different energy bands associated with the empty lattice approx-
imation for the simple cubic structure. Bands for which εk(kx) is identical are degenerate bands. For
example, bands 2, 3 are degenerate, and similarly are bands 4, 5, 6, and 7, etc.

v1 v2 v3 2mεk(kx)/h̄2 2mεk(0)/h̄2 Band
0 0 0 k2

x 0 1
1 0 0 (kx +2π/a)2 4(π/a)2 2
1̄ 0 0 (kx−2π/a)2 4(π/a)2 3
0 1 0 k2

x +(2π/a)2 4(π/a)2 4
0 1̄ 0 k2

x +(2π/a)2 4(π/a)2 5
0 0 1 k2

x +(2π/a)2 4(π/a)2 6
0 0 1̄ k2

x +(2π/a)2 4(π/a)2 7
1 1 0 (kx +2π/a)2 +(2π/a)2 8(π/a)2 8
1 0 1 (kx +2π/a)2 +(2π/a)2 8(π/a)2 9
1 1̄ 0 (kx +2π/a)2 +(2π/a)2 8(π/a)2 10
1 0 1̄ (kx +2π/a)2 +(2π/a)2 8(π/a)2 11
1̄ 1 0 (kx−2π/a)2 +(2π/a)2 8(π/a)2 12
1̄ 0 1 (kx−2π/a)2 +(2π/a)2 8(π/a)2 13
. . . . . . . . . . . . . . . . . .

Degenerate bands have the same energy.

We will use our previous units for which a = āab with ab = 1Å and energy ε = ε̄kEb with
Eb = h̄2/(2ma2

b) = 3.81eV we can write ε̄k = (k̄x + Ḡx)
2 + Ḡ2

y + Ḡ2
z . The results are shown in Fig-

ure 6.6.10.
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Figure 6.6.10: The free electron energy bands along the [100] direction for the simple cubic system
in the reduced zone scheme as discussed in Example 6.6.0.1 and for which some energy band
examples are listed in Table 6.6.1.

In the present case we have that Ḡx = v12π/ā, Ḡy = v22π/ā and Ḡz = v32π/ā. For the calculations
we let k̄ lie in the range ±π/ā. We have let ā = 2 and carried out the calculations outlined above
using the script empty lattice SC.m whose listing follows below. Notice that the variable “vmax”,
currently set to 1, determines the bands calculated; the variable “dir” is currently set to perform the
calculations in the [100] direction.

%copyright by J. E Hasbun and T. Datta

%empty_lattice_SC.m

%The empty lattice approximation is used for the

%simple cubic system in the reduced zone scheme

clear

%SC

h=6.62606896e-34; %Planck’constant (J.s)

hbar=h/2./pi; %hbar (J.s)

me=9.10938215e-31; %electron mass (kg)

e=1.602176487e-19; %electronic charge

ab=1e-10; %1 angstom unit of distance

kb=1/ab; %wavevector unit

Eb=hbar^2*kb^2/2/me; %energy unit in joules

Eb_eV=Eb/e; %energy unit in eV

%fprintf(’Energy unit Eb=%5.3g J, or %5.3f eV\n’,Eb,Eb_eV)

a = 2; %Lattice constant in ab units,

a1=a*[1,0,0]; %using the cubic cell vectors

a2=a*[0,1,0];

a3=a*[0,0,1];

%Reciprocal lattice vectors follow

Vt=dot(a1,cross(a2,a3)); %system’s unit cell volume

b1=2*pi*cross(a2,a3)/Vt;

b2=2*pi*cross(a3,a1)/Vt;

b3=2*pi*cross(a1,a2)/Vt;

vmax=1; %max v integer (determines bands)

dir=[1,0,0]; %BZ direction chosen
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%max k’s on the first BZ - Simple Cubic

Gs=b1+b2+b3; %make a small G

kx_max=Gs(1)/2; %max kx from Gs bisector

ky_max=Gs(2)/2; %max ky " "

kz_max=Gs(3)/2; %max kz " "

kmax=[kx_max,ky_max,kz_max];

%chosen k direction

dirk=[dir(1)*kmax(1),dir(2)*kmax(2),dir(3)*kmax(3)];

x=-1:0.1:1; %direction step size

hold on

for v1=-vmax:vmax

for v2=-vmax:vmax

for v3=-vmax:vmax

G=[v1*b1+v2*b2+v3*b3]; %reciprocal lattice vector

for i=1:length(x)

kdir=x(i)*dirk; %step in the chosen direction

eps(i)=((kdir(1)+G(1))^2+(kdir(2)+G(2))^2+(kdir(3)+G(3))^2);

end

plot(x,eps,’k’)

end

end

end

epm=(Gs(1)^2+Gs(2)^2+Gs(3)^2); %for plotting purposes

axis([-1 1 0 0.75*epm])

xlabel(’k_x’,’FontSize’,14)

ylabel(’\epsilon (\epsilon_b)’,’FontSize’,14)

str=cat(2,’Reduced BZ Scheme, a=’,num2str(a,’%3.2f’),’ Angs, ’,...

’\epsilon_b=’,num2str(Eb_eV,’%3.2f’),’ eV’);

title(str,’FontSize’,13)

set(gca,’XTick’,[-1,1])

set(gca,’XTickLabel’,’’)

set(gca,’XTickLabel’,{’-pi/a’,’pi/a’})

6.7 Solution of the Central Equation
In this section, we go back to study Equation 6.5.23b and consider a possible solution. This equation
actually represents a set of equations for the Ck’s for all reciprocal lattice vectors G. It has a solution
if the determinant of the Ck coefficients vanishes. We now recall the special form of the potential
u(x) as expressed in Equation 6.5.18. Suppose that we approximate it with

u(x) = 2uG cosgx; (6.7.28)

that is, only one component of G is kept, G = g, with g the shortest possible value of G. We can
enumerate the G’s as G1 = g, G2 = 2g, G3 = 3g, and so on. Since only one value of G is retained in
the u’s, Equation 6.5.23b becomes

(λk− ε)Ck +ugCk−g +ugCk+g = 0, (6.7.29)

where, as before, we have used ug = u−g. This equation is to be solved for all k, and there is only
one of these equations for each value of k. If in this equation we make the replacement k→ k− g
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we get
(
λk−g− ε

)
Ck−g +ugCk−2g +ugCk = 0; (6.7.30a)

replacing k→ k+g we have,
(
λk+g− ε

)
Ck+g +ugCk +ugCk+2g = 0; (6.7.30b)

continuing this way and replacing k→ k+2g we have
(
λk+2g− ε

)
Ck+2g +ugCk+g +ugCk+3g = 0; (6.7.30c)

and so on. There is an infinite set of these equations and, starting with Equation 6.7.29, we can
organize them in matrix form as follows




. . .
...

...
...

...
... . . .

. . .
(
λk−g− ε

)
ug 0 0 0 . . .

. . . ug (λk− ε) ug 0 0 . . .

. . . 0 ug
(
λk+g− ε

)
ug 0 . . .

. . . 0 0 ug
(
λk+2g− ε

)
ug . . .

. . .
...

...
...

...
... . . .







...
Ck−g
Ck
Ck+g
Ck+2g
Ck+3g
...




=




...
0
0
0
0
0
...




.

(6.7.30d)

The vanishing of the determinant of this matrix yields the eigenvalues and, while the matrix is
infinitely long, only a small block, whose determinant is to vanish, is needed to be considered
here. The eigenvalues versus k produce the energy bands. Each band is characterized by an index n;
therefore, εnk is the nth energy band versus k. The bands result because each determinant has various
roots for every k point and each root falls on a particular band. The bands are usually sorted from
lowest to highest values. The order of the coefficients’ matrix determines the number of eigenvalues
per k point. Bands with the same energy are said to be degenerate.

Example 6.7.0.1
In this example we consider a smaller block from the matrix of Equation 6.7.30d. We limit the
coefficients’ coupling to Ck−g and Ck to obtain the 2×2 block

( (
λk−g− ε

)
ug

ug (λk− ε)

)(
Ck−g
Ck

)
= 0, (6.7.31a)

where the determinant of the coefficients is set to zero to obtain
∣∣∣∣
(
λk−g− ε

)
ug

ug (λk− ε)

∣∣∣∣= 0 = (λk−g− ε)(λk− ε)−u2
g. (6.7.31b)

Solving this equation for ε results in the two energy bands as a function of k

εk =
λk +λk−g

2
±
√(

λk−λk−g

2

)2

+u2
g. (6.7.31c)

In this expression the value of ug determines the gap splitting that occurs at the BZ boundary.
To see this, in the calculations that follow, we let g = 2π/a and let k lie parallel to g. We then
consider the BZ boundary at k = ±g/2, to get λk = h̄2k2/2m, λk−g = h̄2|(~k−~g)|2/2m = h̄2(k2 +
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g2 − 2|k||g|cos(0))/2m. At the zone boundary k = ±g/2 so that λk = λk−g = h̄2g2/8m and the
energies of Equation 6.7.31c become εk=±g/2 = λk±ug. The gap value at the zone boundary is thus
εgap = ε+− ε− = 2ug. If we continue with these zone boundary energy values, we can go back to
Equation 6.7.31a and see that, for example, at k = g/2, k− g = −g/2 and (λ−g/2− εg/2)C−g/2 +
ugCg/2 = ±ugC−g/2 + ugCg/2 = 0, where we have used λk − εk=±g/2 = ±ug as found above. We
thus have that Cg/2 =±C−g/2. If we next let C−g/2 = A then Cg/2 =±A and from Equation 6.5.20,
since there are only two allowed wavevectors, ψ(x) =Cg/2eigx/2±Cg/2eigx/2, so that with g = 2π/a
the wavefunctions correspond to the symmetric and antisymmetric standing wave combinations of
Equations 6.2.4 of Section 6.2 where A=

√
2/a. If we compare Equation 6.2.7 with Equation 6.7.28

we also see that u0 = 2uG. Finally, as found above, near the zone boundary λk ∼ λk−g and we can
approximate the bands’ behavior near g/2 with

εk ∼
λk +λk−g

2
±ug =

h̄2(k2 + k2 +g2−2kg)
4m

±ug, (6.7.32a)

so that we find that in the limit as k→ g/2

lim
k→g/2

dεk

dk
∼ lim

k→g/2

h̄2(4k−2g)
4m

→ 0. (6.7.32b)

We see, therefore, that the bands approach the zone boundaries with zero slope. This will be evident
later when we perform the calculations of the bands as the next example demonstrates.

Example 6.7.0.2
Example 6.7.0.1 obtained the analytic energy bands for the case when a 2× 2 block of Equa-
tion 6.7.30d is considered. In this example, we consider the same case except that it will be car-
ried out numerically. This has the advantage that it can be modified to carry out the bands of an
N×N block. The idea is that rather than obtaining the eigenvalues analytically through the zero of
the determinant (as in Equation 6.7.31b), we solve for the eigenvalue problem. That is, we rewrite
Equation 6.7.31a as

(
λk−g ug
ug λk

)(
Ck−g
Ck

)
=

(
εk 0
0 εk

)(
Ck−g
Ck

)
, (6.7.33)

and search for the eigenvalue of the coefficients’ matrix on the left for every value of k, sorted from
lowest to highest. These eigenvalues are the energy bands εnk for each band n. Plotting these values
versus k for the 2×2 system should yield the same results as in Example 6.7.0.1. As we have done
before, we make use of distance units of ab = 1Å and let the wavevector have units of kb = 1/ab
so that k = k̄kb. Similarly, g = 2π/a = ḡkb, so that ḡ = 2π/ā. The energy unit εb = h̄2/(2ma2

b) =
3.81eV . In this way we write λk = k̄2εb, ug = ūgεb. The calculations have been carried out with
the script central eq bands.m using ā = 1 and ūg = 2 as shown in Figure 6.7.11. As in the previous
example, we let k lie parallel to g and vary k in the range −g/2 ≤ k ≤ g/2. Also, recall that the
gap at the zone boundary is 2ug. Further, notice that the bands approach the zone boundaries with
zero slope, as expected. The condition of ug = 0 is gapless and corresponds to the empty lattice
approximation. The results shown here are identical to the analytic bands found in Example 6.7.0.1
(see Exercise 6.9.7).
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Figure 6.7.11: The numerical results for the bands corresponding to the 2× 2 system of Exam-
ple 6.7.0.2, obtained by finding the numerical eigenvalues of Equation 6.7.33 versus k . The energy
unit is εb = h̄2/(2ma2

b) = 3.81eV , the wavevector unit is kb = 1Å−1, and the value of potential used
is ug = 2εb.

The code listing, central eq bands.m, used in obtaining Figure 6.7.11 follows. It can be modified
to do a larger block of equations which would yield more bands. Notice that the eigenvalues are
obtained through the use of MATLAB’s internal eigenvalue solver, “eig()”.

%copyright by J. E Hasbun and T. Datta

%central_eq_bands.m

%Plots the numeric solutions for the central equation

%for an Nb band system. The eigenvalues are obtained here

%after setting up the matrix of the coefficients.

clear;

clear all;

h=6.62606896e-34; %Planck’s constant (J.s)

hbar=h/2./pi; %hbar (J.s)

me=9.10938215e-31; %electron mass (kg)

e=1.602176487e-19; %electronic charge

ab=1e-10; %1 angstom unit of distance

kb=1/ab; %wavevector unit

Eb=hbar^2*kb^2/2/me; %energy unit in joules

Eb_eV=Eb/e; %energy unit in eV

%fprintf(’Energy unit Eb=%5.3g J, or %5.3f eV\n’,Eb,Eb_eV)

a=1.0; %lattice constant in ab units

g=2*pi/a;

ak=-g/2:0.01:g/2; %k will be chosen parallel to g

ug=2; %potential magnitude in Eb units

Nb=2; %number of bands to do

%mg is the value of m in (k-(i-m)g) in the matrix elements

%The mg value chosen seems to work well for symmetry reasons.
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if(mod(Nb,2)==0), mg=Nb/2; else mg=(Nb+1)/2; end

aM=zeros(Nb,Nb); %define the matrix of coefficients

for ik=1:length(ak)

for i=1:Nb

%diagonal terms

if(abs(i-mg) <= 1.e-3)

aM(i,i)=ak(ik)^2;

else

thkg=acos(dot(ak(ik),g)/abs(ak(ik)*g)); %angle between k and g

aM(i,i)=ak(ik)^2+((i-mg)*g)^2-2*ak(ik)*((i-mg)*g)*cos(thkg);

end

end

for i=1:Nb-1

aM(i,i+1)=ug; %complete the tridiagonal matrix

aM(i+1,i)=ug;

end

%get eigenvalues from smallest to highest for each k. Apparently,

%there is no sorting needed here.

Eiv(:,ik)=eig(aM);

end

hold on

for i=1:Nb

plot(ak,Eiv(i,:),’k’)

end

xlabel(’-g/2 < k < g/2’,’FontSize’,14)

ylabel(’\epsilon (\epsilon_b)’,’FontSize’,14)

str=cat(2,num2str(Nb,’%2.0f’),’ bands - numeric: a=’,...

num2str(a,’%2.1f’),’ Angs, \epsilon_b=’,...

num2str(Eb_eV,’%3.2f’),’ eV, g=’,num2str(g,’%3.2f’),...

’ Angs^{-1}, u_g=’,num2str(ug,’%3.1f’),’ \epsilon_b’);

title(str,’FontSize’,12)

axis tight

We conclude this section by summarizing our findings. In the absence of a crystal potential, the
energy bands are gapless and we have the empty lattice approximation. With the inclusion of a crys-
tal potential, the resulting energy bands experience gaps that depend on the value of the potential.
Finally, the energy bands approach the BZ boundaries with zero slope.

6.8 Counting Band Orbitals
For a one-dimensional lattice of lattice constant a, there are N primitive cells so the values of the
electron wavevector, k = 0,±2π/L,±4π/L, . . . ,Nπ/L, are all allowed because there are N cells in a
lattice of length Na. This is so because the zone boundary lies at Nπ/L=Nπ/Na= π/a. Since there
are N cells, each cell contributes one independent value of k to each band. Taking into account the
two possible orientations of the electron spin, then each band can sustain 2N orbitals. For example,
if a given crystal has 1 atom per cell, each band would be half-filled, as is the case of a metal. This
is the reason why metals are commonly modeled in terms of one atom per cell. If there were two
electrons per cell, then for N cells, the associated band would be full, as is the case for an insulator.
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The same would be the case for a crystal with two atoms per cell with each atom contributing one
valence electron to the band. Crystals with even number of valence electrons can be insulators.
However, one has to consider if the bands overlap. If they overlap, the crystal is a metal because
in that case the bands are not full. For diamond, silicon, and germanium, each has 2 atoms per cell
with four valence electrons. This means that there are eight electrons per primitive cell. There will
be four valence bands which at T = 0K will be occupied by the eight electrons, because each band
is occupied by two electrons (up and down spin). These systems will thus be insulators at T = 0K.
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6.9 Chapter 6 Exercises
6.9.1. Show that the Bragg condition Equation 6.2.2 leads to the special k-space values k =±G/2

associated with Brillouin zone boundaries.

6.9.2. (a) Run code Kronig Penney model numeric of Example 6.4.0.1 to reproduce Figure 6.4.9.
(b) Modify the program in order to calculate the Kronig-Penney model band structure for a
potential with u0 = 80εb, a = 4 Å, and b = 0.025 Å.

6.9.3. Work out the details of the assertion of Equation 6.5.22.

6.9.4. Show that uG is the Fourier transform of u(x), where u(x) is the potential of Equation 6.5.17.
Also, show that uG=0 corresponds to the crystal potential average over a unit cell (0 < x < a).

6.9.5. After reading Subsection 6.5, start with Equation 6.5.21 and show all the steps necessary to
achieve Equation 6.5.23b.

6.9.6. After reading Example 6.6.0.1, reproduce Figure 6.6.10 for the [100] direction. By modify-
ing the provided script, repeat the calculations along the [111] direction in the simple cubic
system.

6.9.7. Read Examples 6.7.0.1, 6.7.0.2 and run the script central eq bands.m to reproduce Fig-
ure 6.7.11. Using the same parameters of Example 6.7.0.2, write a script that will perform
the calculations of the analytic energy bands of Equation 6.7.31c. Investigate what happens
as you vary the value of the potential ug. Comment on your observations.

6.9.8. After reproducing Figure 6.7.11 using the script central eq bands.m of Example 6.7.0.2,
modify it to enable it to do a 4× 4 block system of equations. Run your new script for a
value of ūg = 5. Comment on your observations, especially the splitting at k = 0 as well as
at the zone boundaries.
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7.1 Introduction
In solid state physics there are generally four categories of crystalline materials: metals, semimetals,
semiconductors, and insulators. They are so categorized based on their electrical properties such as
the conductivity (σ ) or resistivity (ρ = 1/σ ) and the electron concentration. Metallic crystals are
characterized by their high electron concentration (n) and high σ (low ρ); insulators have associ-
ated low n and low σ (high ρ). Semimetals and semiconductors lie in between the metals and the
insulators. For the most part, metallic materials have σ > 105 (Ω ·m)−1 with high electron or charge
carrier concentrations as, for example, Cu and Na. Semimetals have slightly smaller conductivities
and lower electron concentrations as, for example, As and Sb. Semiconductors are characterized
by 10−6 < σ < 105 (Ω ·m)−1 with carrier concentrations that depend on temperature, as for exam-
ple, elemental solids of Si and Ge as well as compound solids of InAs, and GaAs. Insulators have
σ < 10−6 (Ω ·m)−1. The carriers in metals are the electrons, but in semiconductors the carriers can
be electrons or holes depending on the type of impurity or dopant the semiconductor is doped with.
When a semiconductor is pure; i.e., it contains no dopants, the semiconductor is referred to as in-
trinsic, else it is an extrinsic semiconductor. We thus see that the material conductivities are closely
tied with the carrier concentrations as shown in Figure 7.1.1.
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Figure 7.1.1: A few illustrative room temperature conductivity values (circles) for metals and semi-
conductors versus their corresponding carrier concentration, assuming no impurities. The metals
and semimetals are found above the dashed line, while semiconductors lie approximately between
the dotted and the dashed lines. The region below the dotted line is presumably the insulator region.

The following code listing, mat sigmaVs conc.m, can be used to reproduce most of Figure 7.1.1.

%copyright by J. E Hasbun and T. Datta

%mat_sigmaVs_conc.m

%plots the data of some materials’ conductivities vs their carrier

%concentrations

clear

%Using typical conductivity values and intrinsic carrier concentrations

mat={’GaAs’ ’Si’ ’Ge’ ’InSb’ ’Sb’ ’As’ ’Na’ ’Cu’};

sig=[2.55e-07 4.59e-04 2.23 2.00e+04...

2.56e6 3.85e6 2.11e+07 5.88e+07];

nv=[1.79e+12 1.45e+16 2.4e+19 1.60674e+22...

7e25 3e26 2.60e+28 8.45e+28];

%

loglog(nv,sig,’ko’,’MarkerSize’,5)

hold on

nm=length(mat);

text(nv*(1-0.99),sig*2,mat,’FontSize’,10)

line([nv(1) nv(end)],[1e5 1e5],’Color’,’k’,...

’LineStyle’,’--’,’LineWidth’,2); %metals above this line

line([nv(1) nv(end)],[1e-6 1e-6],’Color’,’k’,...

’LineStyle’,’:’,’LineWidth’,2); %insulators below this line

xlabel(’Carrier Concentration (m^{-3})’,’FontSize’,14)

ylabel(’Conductivity ( \Omega\cdot m)^{-1}’,’FontSize’,14)

Semiconductor materials contain elements from groups IV, such as Si and Ge; groups III-V, such
as GaAs and GaSb; and groups II-VI, such as ZnSe and CdTe. At T = 0K, semiconductors are
characterized by an electronic band structure scheme as shown in Figure 7.1.2.



Introduction 219

Energy Band Gap Eg

Filled Valence Band

Empty Conduction Band

Conduction band edge Valence band edge

Figure 7.1.2: A typical T = 0K valence and conduction band structure scheme for semiconductors,
including the band gap, Eg.

The conduction band edge (Ec) refers to the bottom of the conduction band. Similarly, the valence
band edge (Ev) is associated with the top of the valence band. The band gap, Eg = Ec−Ev, repre-
sents an energy barrier between the valence and conduction bands. It is the difference between the
conduction and valence band edges. At T = 0K, the valence bands are filled with electrons. There
are two electrons per band. Since semiconductors have four valence electrons per atom and two
atoms per cell, it takes eight electrons to fill the four valence bands. As the temperature increases
from T = 0K, the electrons are thermally excited from the valence to the conduction band; in the
process, the empty orbitals left by the excited electrons become holes. Both electrons and holes con-
tribute to the electrical conductivity. Holes are similar to electrons, but they have a positive charge.
We will discuss their mass later below.

7.1.1 Band Gap Significance

The importance of the band gap stems from the observation that in intrinsic semiconductors, as we
will see later, the charge carrier concentration n ∝ exp(−Eg/2kBT ) and that the conductivity σ ∝ n
so that σ ∝ exp(−Eg/2kBT ) or ln(σ/σ0) = −Eg/2kBT , where σ0 is taken to be the conductivity
value when Eg = 0. Thus the intrinsic semiconductor carrier concentration and thereby the conduc-
tivity is largely controlled by the ratio Eg/2kBT . If the band gap is large, the conductivity is small,
whereas if the band gap is small, the conductivity is large. Experimentally, band gaps can be found
by studying the temperature dependence of the conductivity (see later below) as well as by means
of optical absorption. Semiconductors can have direct or indirect absorption processes. One refers
to direct or indirect band gap materials whenever the shortest energy difference between the valence
and conduction bands occurs at BZ wavevector values of k = 0 or k 6= 0, respectively, as shown
in Figure 7.1.3. Recall from a previous chapter that a hole is the absence of an electron, so that
the process of exciting an electron from the valence band to the conduction band simultaneously
creates a hole in the valence band. Thus, in (a) the absorbed photon produces an electron hole pair,
with opposite momenta, and energy equal to the direct semiconductor band gap Eg = h̄ωg. In (b)
the absorbed photon produces an electron hole pair with opposite momenta as well as a phonon
with momentum kΩ = −kc, due to momentum conservation, where kc is the value of the wavevec-
tor where the indirect conduction band minimum occurs. In both cases, the electron ends up in the
conduction band (CB), while the hole ends up in the valence band (VB).
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Figure 7.1.3: (a) Direct band gap photon absorption process with the formation of an electron-hole
pair with opposite momenta. Here, the photon energy equals the band gap energy Eg = h̄ωg. (b)
Indirect band gap photon absorption with the creation of a phonon of energy h̄Ω and an electron hole
pair with opposite momenta. The photon energy is now h̄ω = Eg + h̄Ω and the phonon momentum
is kΩ =−kc.

For direct band gap semiconductors electrons and holes can recombine, which leads to photon emis-
sion. Direct electron and hole recombination does not occur for indirect materials. Band gap infor-
mation can be obtained through optical absorption. The onset of photon absorption in direct band
gap materials occurs sharply and this can be used to identify the band gap. In indirect semiconductor
materials, the transition is not as sharp since the onset of photon absorption is accompanied with
phonon emission or absorption as shown in Figure 7.1.4.

Direct optical absorption

(a)

Indirect optical absorption

(b)

Figure 7.1.4: (a) Illustration of the optical absorption process. The onset of optical absorption occurs
at h̄ωg for the direct gap system. The region before optical absorption is transparent. (b) The onset
of optical absorption, h̄ω = Eg + h̄Ω, is illustrated for an indirect gap material.

Values of some semiconducting material band gaps are listed in Table 7.1.1. The band gap can also
be deduced from the temperature dependence of the conductivity or the intrinsic carrier concentra-
tion through measurements of the Hall voltage versus temperature.
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Table 7.1.1: Examples of energy band gaps (i=indirect, d=direct) for a few semiconducting crystals
(Source: [3]).

Crystal Type Eg (eV at 0K) Eg (eV at 300K)
Diamond i 5.4
Si i 1.17 1.11
Ge i 0.744 0.66
InSb d 0.24 0.17
InAs d 0.43 0.36
InP d 1.42 1.27
GaP i 2.32 2.25
GaAs d 1.52 1.43
GaSb d 0.81 0.68
AlSb i 1.65 1.6
CdS d 2.582 2.42
CdSe d 1.840 1.74
CdTe d 1.607 1.44

7.2 Electron and Hole Motion under Electromagnetic Fields
In semiconductors, a hole is the absence of an electron; therefore, its energy is the negative of the
electron energy or εh(kh) =−εe(ke), where the momentum wavectors are ke and kh for the electron
and hole, respectively. By momentum conservation kh = −ke and we assume that by symmetry
εe,h(−ke,h) = εe,h(ke,h). Using the previous definition for group velocity, from Chapter 4, ~vG =
~∇kω(~k), and with ω(~k)= ε(~k)/h̄, we have for both electrons and holes the group velocity expression

~vh,e(~k) =
1
h̄
~∇kεh,e(~k). (7.2.1)

Note, however, that for an electron, viewing it as a wave in one dimension for example, ve =
(1/h̄)dεe/dke and for the hole vh = (1/h̄)dεh/dkh = (1/h̄)d(−εe)/d(−ke) = (1/h̄)dεe/dke = ve

and thus, in three dimensions, we can safely conclude that ~∇kεh(~kh) = ~∇kεe(~ke) = ~∇kε(~k) or more
generally~vh(~kh) =~ve(~ke) =~v(~k). The Lorentz force for a charge q is ~F = q(~E +~v×~B); if we let the
electron charge be −e, the hole charge be e, the force be ~F = d~p/dt = h̄d~k/dt, and using the above
relations, we can write

d~k
dt

=− e
h̄
(~E +~ve(~ke)×~B) =− e

h̄
(~E +

1
h̄
~∇kε(~k)×~B), (7.2.2a)

for the electron, and

d~k
dt

=
e
h̄
(~E +~vh(~kh)×~B) =

e
h̄
(~E +

1
h̄
~∇kε(~k)×~B), (7.2.2b)

for the hole. We then see that each of these equations is identical to that seen by a charge q with
q =−e for the electron and q = e for the hole. An interesting aspect of Equation 7.2.2 can be seen if,
for example, we set ~E = 0, in which case the term~∇kε(~k)×~B is perpendicular to both~∇kε(~k) and ~B,
which implies that the charges move in a direction that is perpendicular to both the gradient of ε(~k)
and the magnetic field, and this motion describes a surface of constant energy. This is illustrated in
the following example.
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Example 7.2.0.1
We next consider the hole motion from Equation 7.2.2b in the absence of an electric field and as-
suming that the magnetic field is given by ~B = Bzk̂. Let’s also assume that ε(~k) = (h̄2/2m)(k2

x +k2
y).

This leads to ~∇kε(~k) = (h̄2/m)(kx î+ ky ĵ) and ~∇kε(~k)×~B = (h̄2/m)Bz(ky î− kx ĵ) so that, ignoring
the z component in Equation 7.2.2b, we get the equations of motion as
dkx
dt î+ dky

dt ĵ = e
m Bz

(
ky î− kx ĵ

)
, or dkx

dt = e
m Bzky and dky

dt =− e
m Bzkx,

which are two coupled sets of equations. We can solve these if we take the derivative of the first and
substitute the second into the result; that is,
d2kx
dt2 = e

m Bz
dky
dt =− e2

m2 B2
z kx,

so that, with ωc ≡ eBz/m, we can write the solution as kx(t) = Asin(ωct), where A is a constant.
Repeating this process for ky, we can similarly write ky(t) = Acos(ωct). These results are consistent
with the above expressions for dkx/dt and dky/dt. Furthermore, we notice that k2

x(t)+ k2
y(t) = A2;

that is, the motion is a circle of constant radius, which implies a constant energy surface.

7.3 Electron and Hole Effective Masses
In semiconductors the concept of effective mass is tied to the curvature of the valence band (for
holes) or the conduction band (for electrons) near a band edge. To see how this works, we recall the
example of the analytic solutions to the 2× 2 block of the central equation in Chapter 6. We write
those solutions for λk−λk−g << ug as

εk =
λk +λk−g

2
±ug

√
1+
(

λk−λk−g

2

)2 1
u2

g

∼ λk +λk−g

2
±ug

(
1+

1
2

(
λk−λk−g

2

)2 1
u2

g

)
,

(7.3.3)

where, as before, λk = h̄2k2/2m and λk−g = h̄2(k−g)2/2m. In this example, the band edge of interest
occurs when k ≈ g/2; i.e., near the zone boundary. To that end, we write

λk =
h̄2

2m
(k−g/2+g/2)2 =

h̄2

2m
(K +g/2)2 =

h̄2

2m
(K2 +Kg+(g/2)2), (7.3.4a)

where we have introduced the definition K ≡ k−g/2. In a similar way, we have

λk−g =
h̄2

2m
(K−g/2)2 =

h̄2

2m
(K2−Kg+(g/2)2), (7.3.4b)

so that

λk +λk−g

2
=

h̄2

2m
(K2 +(g/2)2) and

λk−λk−g

2
=

1
2

h̄2

2m
(2Kg). (7.3.4c)

If we let λ ≡ h̄2(g/2)2/2m and substitute Equations 7.3.4c into Equation 7.3.3, we get

εk ≈
h̄2

2m
(K2 +(g/2)2)±ug±

h̄2

2m
K2
(

2λ

ug

)
=

h̄2

2m
(g/2)2±ug +

h̄2

2m
K2
(

1±
(

2λ

ug

))

= ε±+
h̄2

2m
K2
(

1±
(

2λ

ug

))
≡ εK±,

(7.3.5)
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where we have defined ε± ≡ h̄2(g/2)2/2m± ug; i.e., the upper (+) and lower (−) band values at
the BZ boundary when k = g/2 or K = 0. The quantity εk thus obtained represents the behavior of
the bands edges versus k near the BZ boundary value of g/2, where g = 2π/a. We can incorporate
these approximations into the script central eq bands.m of Chapter 6 to obtain the plot shown in
Figure 7.3.5 in the same units previously defined there.

2.6 2.7 2.8 2.9 3 3.1
6

7

8

9

10

11

12

13

14

2g/5 < k < g/2

ε 
(e

V
)

2 bands − numeric: a=1.0 Angs, ε
b
=3.81 eV, g=6.28 Angs−1, u

g
=2.0 ε

b

 

 
ε
K+

 approx

ε
K−

 approx

Full solutions

Figure 7.3.5: The approximations from Equations 7.3.5 for the upper (dotted) and lower (dashed)
bands are shown compared to the numerical results from Chapter 6 near the BZ boundary of k = g/2.

An interesting aspect regarding Equation 7.3.5 can be observed if we take the second derivative of
εk with respect to k. Since dnεk/dkn = dnεk/dKn we can, in fact, see that

1
h̄2

d2εk

dk2 =

(
1±
(

2λ

ug

))

m
≡ 1

m∗e,h
; (7.3.6)

that is, the curvature of the upper or lower band near the band edge is associated with an electron or
hole effective mass, respectively, and labeled as m∗ with corresponding subscripts. Later below we
will use a slightly more convenient notation for the carrier effective mass. The electron has a positive
effective mass which is consistent with the curvature of the conduction band; however, the valence
band curvature is negative near the band edge, so that a negative value is usually introduced in order
to have a positive hole mass. While the effective mass formula obtained above is an observation
that results from looking at the simple two-band case near the band edges, it can be made more
general as shown in Exercise 7.7.4. In semiconductors or materials with similar band properties,
in the presence of a force acting on them, the charge carriers move as if their mass were equal
to the effective mass. The above Equation 7.3.6 can be generalized to the three-dimensional case
when the energy surface is anisotropic. The expression is written as elements of a tensor matrix (see
Exercise 7.7.5); that is,

(
1

m∗

)

µν

=
1
h̄2

∂ 2

∂kµ ∂kν

ε~k, (7.3.7)

where µ and ν span the xyz coordinates.
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7.3.1 Effective Masses for Various Semiconductors

For semiconductors with isotropic energy surfaces with direct band gaps, an electron energy near
the conduction band edge can be described by

εk = Eg +
h̄2k2

2mc
; (7.3.8a)

that is, an electron near the conduction band minimum will behave as if it were a free electron in
vacuum, albeit with the electron mass replaced by the electron effective mass, m∗ = mc. Similarly,
a hole near the valence band maximum can be described by the expression

εk =−
h̄2k2

2mh
, (7.3.8b)

where the zero of energy is taken to be at the top of the valence band edge, the hole effective mass
is m∗ = mh, and the minus sign reflects the curvature of the band. However, the valence band edges
in semiconductors involve hole effective masses such as mhh (heavy hole), mlh (light hole), and
msoh (split-off hole). These are associated with two bands derived from the p3/2 states, of the parent
atoms, for the heavy and light holes, respectively, and the splitting that occurs for the p1/2 states,
due to spin-orbit coupling, for the split-off hole. The light hole mass tends to be the smaller of the
three due to its related band’s greater curvature.
The carrier effective mass can be measured by exposing a semiconductor sample to a magnetic field.
Assuming a field perpendicular to the direction of motion, the interaction of the charge carriers with
the field; i.e., FB = qvB = m∗v2/r leads to v = qBr/m∗ = rωc, where

ωc =
qB
m∗

(7.3.9)

is the cyclotron frequency. If the sample is further exposed to an oscillating field, the carriers will
exhibit resonant absorption at the cyclotron frequency. Knowing the magnitude of B and the ab-
sorption frequency enables the measuring of the effective carrier mass. Table 7.3.2 shows typical
effective mass values for some direct-gap semiconductor materials.

Table 7.3.2: Values of carrier effective masses (mc ,mhh ,mlh , and msoh for the electron, the heavy
hole, the light hole, and the split-off hole, respectively, in units of the electron mass m) for some
direct-gap semiconductors. (Source: [3]).

Crystal mc/m mhh/m mlh/m msoh/m
InSb 0.015 0.39 0.021 0.11
InAs 0.026 0.41 0.025 0.08
InP 0.073 0.4 0.078 0.15
GaSb 0.047 0.3 0.06 0.14
GaAs 0.066 0.5 0.082 0.17

Example 7.3.1.1
Here, let’s obtain the value of the cyclotron frequency of electrons in InSb in a magnetic field of
1T . Since m = 0.5×106 eV/c2 and using the fact that 1T = 1V · s/m2, we have that ωc = eB/mc =
1(eV · s/m2)c2/(0.015 ·0.5×106 eV ) or ωc = 1.2×1013rad/s or 1.9×1012 Hz.
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7.4 Intrinsic Carrier Concentration
In the absence of any dopants (impurities that donate electrons or holes), the number of electrons
available for conduction depends on the temperature through the Fermi function

fe(ε) =
1

e(ε−µ)/τ +1
, (7.4.10a)

which gives the probability that a conduction electron orbital is occupied and where τ ≡ kBT . How-
ever, for the temperatures of interest here we take ε−µ >> τ so that exp[(ε−µ)/τ]>> 1 and we
can approximate the Fermi function with

fe(ε)≈ e(µ−ε)/τ . (7.4.10b)

Assuming a simple parabolic behavior, and measuring from the bottom of the conduction band (Ec)
we write the conduction electron energy as

ε = Ec +
h̄2k2

2mc
. (7.4.11)

where mc is the electron effective mass. In order to obtain the number of electrons versus energy,
we use the density of states from Chapter 5 as regards to the three-dimensional electron gas. Also,
measuring from Ec, we have the expression (for ε ≥ Ec)

De(ε) =
V

2π2

(
2mc

h̄2

)3/2

(ε−Ec)
1/2 . (7.4.12)

As discussed before, we find the number of electrons in the conduction band by integrat-
ing the product of De(ε) fe(ε) over ε . Here, we look for the electron concentration n =
number of electrons per volume or

n =
1
V

∫
∞

Ec

De(ε) fe(ε)dε ≈ 1
2π2

(
2mc

h̄2

)3/2

eµ/τ

∫
∞

Ec

(ε−Ec)
1/2 e−ε/τ dε. (7.4.13)

If we let x = (ε−Ec)/τ the integral term in this expression takes the form
∫

∞

Ec

(ε−Ec)
1/2 e−ε/τ dε = e−Ec/τ

τ
3/2
∫

∞

0
x1/2e−xdx = e−Ec/τ

τ
3/2√

π/2,

where we have used the integral result
∫

∞

0 xne−axdx = Γ(n + 1)/an+1 with Γ(3/2) =
√

π/2 for
n = 1/2. Substituting this back into Equation 7.4.13 gives

n = n0e(µ−Ec)/τ , (7.4.14a)

where we have defined

n0 = 2
(

mckBT
2π h̄2

)3/2

, (7.4.14b)

a quantity that will be used later. In these expressions, the electron concentration is determined once
µ is known. We can perform a similar calculation for holes in the valence band. The analogue of
Equation 7.4.11 for the holes, measuring from the top of the valence band (Ev), is

ε = Ev−
h̄2k2

2mh
. (7.4.15)
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Since a hole is the absence of an electron, the hole occupation probability is

fh(ε) = 1− fe(ε) = 1− 1
e(ε−µ)/τ +1

=
e(ε−µ)/τ

e(ε−µ)/τ +1
=

1
1+ e(µ−ε)/τ

≈ e(ε−µ)/τ , (7.4.16)

assuming µ − ε >> τ for holes, similar to what we did in Equation 7.4.10b for electrons. The
density of states for the holes becomes (for ε ≤ Ev)

Dh(ε) =
V

2π2

(
2mh

h̄2

)3/2

(Ev− ε)1/2 . (7.4.17)

The hole concentration (p = number of holes per volume) in the valence band is obtained by inte-
grating the product of Dh(ε) fh(ε) over ε; that is,

p =
1
V

∫ Ev

−∞

Dh(ε) fh(ε)dε ≈ 1
2π2

(
2mh

h̄2

)3/2

e−µ/τ

∫ Ev

−∞

(Ev− ε)1/2 eε/τ dε. (7.4.18)

The integral in this expression is similar to that of Equation 7.4.13 and is carried out in a similar
way to obtain

p = p0e(Ev−µ)/τ , (7.4.19a)

with the definition

p0 = 2
(

mhkBT
2π h̄2

)3/2

. (7.4.19b)

As for electrons, once µ is known, the hole concentration can be determined. Multiplying Equa-
tions 7.4.14 and 7.4.19 together, one finds that their product

np = n0 p0e(Ev−Ec)/kBT = 4
(

kBT
2π h̄2

)3

(mcmh)
3/2e−Eg/kBT (7.4.20)

is independent of the chemical potential µ and, as before, Eg = Ec−Ev. This result is significant
because it is an expression of the law of mass action at a given temperature. It says that if the
number of electrons (holes) increases the number of holes (electrons) must decrease in such a way
as to keep the product constant, which, in turn, points to mass conservation. This expression also
applies to the case when impurities are present in extrinsic semiconductors. The only assumption
employed was that µ is far from the band edges. Because the product np= constant(T ), independent
of impurity concentration, introducing impurities to increase n (p) must simultaneously decrease p
(n). In this way, impurities are used to affect the electronic properties of semiconductors. For an
intrinsic semiconductor where no impurities are present, the number of electrons (n = ni) equals the
number of holes (p = pi) so that from Equation 7.4.20 we can write

ni = pi =
√

ni pi =
√

n2
i = 2

(
τ

2π h̄2

)3/2

(mcmh)
3/4e−Eg/2τ ; (7.4.21)

that is, the intrinsic carrier concentration depends exponentially on −Eg/2τ . Additionally, by hav-
ing n = p, in this case, from Equations 7.4.14 and 7.4.19 we can also write n0 exp [(µ−Ec)/τ] =
p0 exp [(Ev−µ)/τ] or exp(2µ/τ) = (p0/n0)exp [(Ev +Ec)/τ], which yields the chemical potential
as

µ =
Ev +Ec

2
+

τ

2
ln
(

p0

n0

)
= Ev +

Eg

2
+

3τ

4
ln
(

mh

mc

)
, (7.4.22)
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where we have used Ec =Ev+Eg. From this expression, recalling that τ = kBT , we see that at T = 0,
the chemical potential reaches the value of Ev +Eg/2 = EF ; i.e., in semiconductors, the Fermi level
lies in the middle of the gap. This is illustrated in Figure 7.4.6. The chemical potential µ = EF at
T = 0K and varies with temperature, as long as the electron and hole effective masses are not equal.

Eg

Ec

Ev

E
F

Figure 7.4.6: Illustration of the Fermi level, EF , position in the middle of the semiconductor gap.
Also shown is the conduction band edge, Ec; the valence band edge, Ev; and the band gap, Eg =
(Ec−Ev).

Figure 7.4.7 contains a plot of the electron concentration, Equation 7.4.14, with the help of Equa-
tion 7.4.22, versus temperature (see Exercise 7.7.8).
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Figure 7.4.7: Electron concentration (1/m3) for a system with Ev = 0eV , Ec = 1eV , mc = 0.05m,
and mh = 0.025m, where m is the electron mass (see Exercise 7.7.8). Both, vertical and horizontal,
scales are logarithmic.

7.4.1 Intrinsic Carrier Mobility

We have discussed the electronic mobility and the electronic conductivity before in Chapter 5.
Recall that for a simple model of electron transport, the electronic conductivity is written as
σ = ne2τcoll/m, where n is the electron concentration, τcoll the time between collisions (1/τcoll
is the scattering rate), and m is the electron mass. Here we can generalize this expression a bit
further by including the hole motion; that is, the total intrinsic carrier conductivity is a collective
contribution from electrons and holes; that is,

σi =
nie2τe

mc
+

pie2τh

mh
, (7.4.23)
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where we have assigned different collision times for each carrier type (τe for electrons and τh for
holes) and included their appropriate effective masses. We also notice from Equation 7.4.21 that be-
cause the intrinsic carrier concentrations are dependent on temperature, the conductivity is similarly
affected by temperature. We will come back to this later. Also in Chapter 5, we had written the elec-
tronic mobility as µE = vE/E, where vE is the terminal speed reached by an electron in a material
under the action of an electric field E, and in the presence of a scattering force that is proportional
to the speed. For this simple electron drift model, we had found that vE = −eEτcoll/m so that
µE =−eτcoll/m. However, as mentioned above, for a single carrier type, σ = ne2τcoll/m =−neµE ,
which is positive. Thus, it suffices to define the intrinsic mobility as

µi = |v|/E, (7.4.24a)

which, for the simple electron drift model, becomes, for each semiconductor carrier type,

µe =
eτe

mc
(electrons) and µh =

eτh

mh
(holes), (7.4.24b)

with all quantities: the electron charge, the collision times, and the effective masses taking on posi-
tive values. Combining these expressions with Equation 7.4.23, we define the intrinsic conductivity
as

σ = nieµe + pieµh. (7.4.24c)

There exists a connection between the mobility and the diffusion constant in a material. To be clear,
according to Fick’s 1st law of diffusion, particles diffuse from a region of high concentration to a
region of low concentration; that is, for a one-dimensional case,

J =−D
dC
dx

, (7.4.25a)

where J is the particle flux (particles that diffuse per area per second), C is the concentration of
particles (number of particles per volume) and D is the diffusion constant here expressed as

D =
v̄2τcoll

3
, (7.4.25b)

with v̄ the average velocity of the particles. Letting the particles be electrons, for example, and,
using the equipartition theorem, v̄2 = 3kBT/2mc, we see that

D = kBT
τcoll

mc
=

µekBT
e

, (7.4.25c)

and describes a relationship between mobility and diffusivity. This expression is a simple version
of what is known as Einstein’s drift-diffusion relation. As mentioned before, the intrinsic carrier
concentrations are functions of temperature (Equation 7.4.21); we thus notice that according to
Equation 7.4.24c, one could make the approximation

σi ≈ Ae−Eg/2kBT , (7.4.26)

so that a knowledge of the experimental intrinsic σi versus temperature contains information about
the energy gap Eg of a material.

Example 7.4.1.1
Figure 7.4.8 shows the natural logarithm of the experimental electrical conductivity of intrinsic
germanium versus the inverse of the temperature (dots). We can take the natural logarithm of Equa-
tion 7.4.26 and obtain ln(σ) = ln(A)−Eg/2kBT which is of the form y = mx+ b; i.e., a straight
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line with y≡ ln(σ), x ≡ 1/T , intercept b≡ ln(A), and slope m =−Eg/2kB. This indicates that the
natural logarithm of the experimental σ plotted versus 1/T behaves as a straight line whose slope
yields the band gap or Eg = −2mkB. The data used in the figure are provided in the code snippet
listing below. The straight line fit was carried out using the MATLAB internal commands ‘polyfit’
and ‘polyval’, and used here in a similar way as we did in Chapter 4. The former obtains the fit
coefficients, and the latter calculates the theoretical line fit shown in the figure.
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Germanium: σ vs 1/T, E
g
=0.7826 eV

 

 
ln(σ) (experimental)
Theoretical fit

Figure 7.4.8: The logarithm of the experimental σ for germanium versus 1/T (dots). The straight
line fit analysis described in Example 7.4.1.1 yields a band gap of Eg ∼ 0.78eV (Data from [27]).

From the graph, a slope of −4.54×103 K is obtained. This results into a band gap for semiconduct-
ing Ge of ∼ 0.78eV , which is close to the value of ∼ 0.74eV from Table 7.1.1 at low temperature.
The data used in the analysis described in this example follows (see Exercise 7.7.9).

%x0 in 1/T (inverse Kelvin)

x0=[0.001041,0.001190,0.001237,0.001300,0.001457,0.001535,...

0.001606,0.001629,0.001708,0.001739,0.001794,0.001880,...

0.002029,0.001943,0.002163,0.002296,0.002406,0.002524,...

0.002610,0.002680,0.002735,0.002751,0.002814,0.002829,...

0.002931,0.003018,0.003049,0.003245,0.003190,0.003331,...

0.003425,0.003378,0.003527,0.003551,0.003606,0.003661,0.003770];

%y0 in 1/(ohm-centimeter)) - conductivity

y0=[342.405943,203.074316,145.019614,124.955666,57.005514,...

45.581777,37.834939,28.039634,28.078411,19.307971,17.270054,...

12.341431,5.844582,8.178657,2.982614,1.836023,1.264278,...

0.555157,0.396723,0.354948,0.210164,0.161683,0.168048,...

0.107177,0.079539,0.059012,0.048949,0.022346,0.021503,...

0.013238,0.008144,0.008771,0.005202,0.004828,0.004006,...

0.002756,0.001970];

7.5 Impurities in Semiconductors
The act of adding impurities in semiconductors is referred to as doping and the impurities doing the
doping are called dopants. As an example, let’s consider a silicon atom, a group IV element of the
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periodic table with an outer valence electron configuration of 3s23p2. In a Si crystal each silicon
atom is tetrahedrally bonded to each of its four nearest neighbors through the sharing of electrons
as shown in Figure 7.5.9.

-Si

Figure 7.5.9: Illustration of silicon’s tetrahedral bonds with its nearest neighbors. Silicon’s valence
electron configuration is 3s23p2. Each electron is shared with each of its neighbors and thus Si
forms four sp3 hybridized or covalent bonds.

Now imagine that an atom from group V of the periodic table, with outer electron configuration of
3s23p3, replaces the center Si atom. The group V element, acting as an impurity and having one
more electron, will make the same four bonds with its Si nearest neighbors, but the extra electron
will be free to contribute to the electronic properties of the semiconductor. Impurities with extra
electrons are known as electron donors or simply donor impurities. Should the impurity atom be
one that belongs to group III of the periodic table, with a valence electron configuration of 3s23p
and lacking an electron compared to Si, will act as an impurity that will accept an electron or donate
a hole. Such impurities are known as electron acceptors or simply acceptor impurities.

7.5.1 Impurity States and Conductivity

Impurities are atoms that are present in crystals, naturally or deliberately, and are different from the
atoms that make up a pure crystal. Impurities tend to be present as a minority in number compared
to the host atoms. It has been argued [28] that an estimate of what is a high impurity concentration
can be obtained by considering a semiconductor cube with a volume whose sides are related to an
electron’s de Broglie wavelength or about 100 Å. Considering further that a statistically meaningful
high number of impurity atoms is about 1000 within this quantum box. The impurity concentration
here is about 1000/(100Å)3 or ∼ 1×1021/cm3 = 1×1027/m3.
By virtue of losing an electron, donor impurities are slightly positive and a donated electron tends to
interact with the ionized donor, albeit within a crystal. There exists, therefore, a Coulomb interaction
between the electron and the donor. This interaction is written as

V (r) =−ke2

r
, k =

1
4πε

, ε = Kε0, (7.5.27)

where, as is evident, the interaction is a modified version of the standard Coulomb interaction. There
is an extra factor in the denominator; i.e., the constant K that accounts for the crystal’s contribution
to the interaction and is the material’s dielectric constant. Some dielectric constant values are given
in Table 7.5.3.
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Table 7.5.3: Dielectric constant values for a few semiconducting crystals (Sources: when available
[3], else [16]).

Crystal K
Diamond 5.5
Si 11.7
Ge 15.8
InSb 17.88
InAs 14.55
InP 12.37
GaP 9.1
GaAs 13.13
GaSb 15.69
AlSb 10.3
CdS 5.2
CdSe 5.8
CdTe 7.2

The problem of the binding energy associated with the donated electron bound to the donor through
the potential of Equation 7.5.27 is similar to the hydrogen atom binding energy modified by the
dielectric constant as well as by the electronic effective mass within the crystal. We thus write the
impurity binding energy as

ED =
mc(ke2)2

2K2h̄2 =
mc

mK2 E0, (7.5.28a)

where in the hydrogen Bohr ground state (E0 = 13.6eV ) we have replaced the electron mass (m)
with the effective mass, mc, as well as replaced k with k/K. Similarly, we have for the donor’s Bohr
radius

aD =
Kh̄2

mcke2 =
mK
mc

a0, (7.5.28b)

where a0 = 0.529 Å is the hydrogen Bohr radius. The donor orbital is depicted in Figure 7.5.10(a).
Notice that it may encompass many host atoms depending on the dielectric constant and the effective
mass. The energy ED is the energy it takes to ionize the donor impurity. Once ionized, the impurity
electron becomes available for conduction. This is the reason why the donor ionization energy is
located at ED below the conduction band as shown in Figure 7.5.10(b). The case of acceptor states is
similar in that the negative charged impurity interacts with the hole. The acceptor ionization energy
is obtained as

EA =
mh(ke2)2

2K2h̄2 =
mh

mK2 E0. (7.5.29a)

When ionized, the acceptor hole becomes available for conduction in the valence band. The associ-
ated acceptor Bohr radius is

aA =
Kh̄2

mhke2 =
mK
mh

a0. (7.5.29b)

Both, the donor and acceptor levels are depicted in Figure 7.5.10(b).
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(a) (b)
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Figure 7.5.10: (a) A depiction of a donor impurity (dark circle) and the orbit of the donated electron
bound to it (dashed). The orbit may encompass many host atoms (open circles). (b) The position of
the donor level (ED) with respect to the conduction band to where the bound electron goes if ionized
is shown. Similarly, the acceptor level (EA) is shown with respect to its associated valence band to
where the bound hole goes if ionized.

Example 7.5.1.1
If we assume an electron effective mass of mc ≈ 0.2m in Si, with the use of K = 11.7 from Ta-
ble 7.5.3, Equations 7.5.28 give for this system ED ≈ 20meV and aD = 31 Å.

If donors are present in considerably higher amounts than acceptors, the material will contain an
excess of electrons and it is referred to as an n-type material. However, if the acceptors are present
to higher amounts than donors, the material will contain an excess of holes and it is referred to as a
p-type material. The sign of the Hall voltage is a possible way to test whether the material is n-type
or p-type. Another possible test is the sign of the thermoelectric potential (discussed later below).
The impurity levels can be shallow or deep depending on their location within the semiconductor
gap. Shallow donors are those whose levels lie within about 10% of Eg from the conduction band
edge. Similarly, shallow acceptors lie within about 10% of Eg from the valence band edge. From
Table 7.1.1, in the case of Si for which the indirect band gap is about 1.2eV, the shallow states lie
within about 100meV of the respective band edge. Deep levels lie closer to the middle of the gap.
One aspect about the effect of impurities in semiconductors is how they can affect the electronic con-
ductivity of a semiconductor. This can be seen by recalling the law of mass action (Equation 7.4.20),
the product np is a constant at a given temperature and is independent of impurity concentration,
we can thus write np = pini = n2

i , where we have also used Equation 7.4.21. If we then assume that
in the presence of a concentration ND of donor impurities, with ND� ni, then the concentration of
electrons is n≈ ND to obtain that the concentration of holes is p = n2

i /ND, which will be much less
than ni. This can be seen by letting ND = C · ni with C >> 1 so that p = n2

i /ND = n2
i /Cni = ni/C,

which is much smaller than ni, which is itself much smaller than ND. With these results, the conduc-
tivity of Equation 7.4.24c in the presence of a high concentration of donor impurities can be written
as

σ = neµe + peµh = NDeµe +

(
n2

i
ND

)
eµh ≈ NDeµe, (7.5.30)

which indicates that the conductivity is mostly due to the donated electrons. If in contrast to the
above excess of donors we have a large concentration (NA) of acceptors, with NA � ni; that is, at
a temperature when all the acceptors have been ionized, then the concentration of holes is p ≈ NA.
The electron concentration is obtained from np = n2

i or n ≈ n2
i /NA which is much smaller than ni,

which is itself much smaller than NA, similar to the above high concentration of donor arguments.
In this way for a high concentration of acceptor impurities we have

σ = neµe + peµh =

(
n2

i
NA

)
eµe +NAeµh ≈ NAeµh, (7.5.31)

which is mostly due to the excess of holes.
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7.6 Extrinsic Carrier Concentration
In this section we discuss the behavior of extrinsic semiconductors; that is, when there are impurities
present, it is possible for them to become ionized by thermal means so that the number of carriers
(electrons or holes) become much higher than the intrinsic carrier concentration. When acceptors
and donors are present, the chemical potential µ is found by the requirement that the entire crystal
remain neutral. The neutrality condition is based on ensuring that the total concentration of electrons
equals the total concentration of holes, or

n+N−A = p+N+
D , (7.6.32)

where N−A is the concentration of ionized acceptors which gives rise to extra holes, and N+
D the

concentration of ionized donors which gives rise to extra electrons. We next seek the electron occu-
pation probability of a donor. This is done through the thermodynamical statistical expression for
the average electron number [10]

< n >=

∑
j

N j exp [−(ε j−µN j)/τ]

∑
j

exp [−(ε j−µN j)/τ]
, (7.6.33)

where a donor impurity could be empty, or contain one electron of either spin (assuming the same
energy). The two-electron case is prohibited due to a high coulomb electron interaction. The one-
electron case is taken to be εd ≡Ec−ED (see Figure 7.5.10) higher than the empty case. The electron
donor occupation probability becomes

f0D(εd)≡< ndonor >=
0e[−(0−0µ)/τ]+1e[−(εd−1µ)/τ]+1e[−(εd−1µ)/τ]

e[−(0−0µ)/τ]+ e[−(εd−1µ)/τ]+ e[−(εd−1µ)/τ]

=
2e[−(εd−µ)/τ]

1+2e[−(εd−µ)/τ]
=

1
1+ 1

2 e[(εd−µ)/τ]
.

(7.6.34)

Here note that εd is the donor level energy, which is ED lower than the conduction band edge. For the
electron acceptor occupation probability, we can have two electrons (zero holes), one electron (one
hole) of either spin, but not zero electrons (two holes for the acceptor is the analog of two electrons
for a donor) due to high coulomb hole repulsion. Here the two-electron state is εa ≡ Ev +EA (see
Figure 7.5.10) higher than the one-electron state. We have for the electron acceptor occupation
probability

< nacceptor >=
1e[−(0−1µ)/τ]+1e[−(0−1µ)/τ]+2e[−(εa−2µ)/τ]

e[−(0−1µ)/τ]+ e[−(0−1µ)/τ]+ e[−(εa−2µ)/τ]

=
2e[µ/τ]+2e[−(εa−2µ)/τ]

2e[µ/τ]+ e[−(εa−2µ)/τ]
=

1+ e[−(εa−µ)/τ]

1+ 1
2 e[−(εa−µ)/τ]

.

(7.6.35a)

However, the number of holes is the maximum number of electrons (2) minus the mean electron
acceptor number (< nacceptor >) or

f0A(εa)≡ 2−< nacceptor >= 2− 1+ e[−(εa−µ)/τ]

1+ 1
2 e[−(εa−µ)/τ]

=
1

1+ 1
2 e[−(εa−µ)/τ]

. (7.6.35b)

Again, we note that εa is the acceptor level energy, which is EA higher than the valence band edge.
The neutrality condition, Equation 7.6.32 requires the concentration of ionized impurities. To this
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end, the concentration of ionized donors is the concentration of donors (ND) minus the concentration
of occupied donors (ND f0D(εd)) or

N+
D = ND(1− f0D(εd)) = ND

(
1− 1

1+ 1
2 e(εd−µ)/τ

)
=

ND

1+2e(µ−εd)/τ
. (7.6.36a)

Similarly, for the ionized acceptors we have

N−A = NA(1− f0A(εa)) = NA

(
1− 1

1+ 1
2 e[−(εa−µ)/τ]

)
=

NA

1+2e(εa−µ)/τ
. (7.6.36b)

It is worth mentioning that for Ge, Si, and GaAs the factor of 2 in the denominator of Equa-
tion 7.6.36b is replaced by a factor of 4 because each acceptor impurity level in these systems,
in addition to possibly containing no holes or accepting one hole of either spin, is doubly degen-
erate as a result of two degenerate valence bands at~k = 0 [29]. Here this complication is ignored.
Because the chemical potential’s position in semiconductors changes based on the concentration of
impurities. Its position can be found through the neutrality condition Equation 7.6.32 with the use
of Equations 7.4.14, 7.4.19, and 7.6.36; that is,

2
(

mcτ

2π h̄2

)3/2

e(µ−Ec)/τ +
NA

1+2e(εa−µ)/τ
= 2

(
mhτ

2π h̄2

)3/2

e(Ev−µ)/τ +
ND

1+2e(µ−εd)/τ
. (7.6.37)

The idea is that, for a given system (that is Ec and Ev are known), given the concentration of ac-
ceptors (NA and εa) and donors (ND and εd) the chemical potential is found from Equation 7.6.37
self-consistently for a given temperature (τ = kBT ). Once µ is obtained, we can go back to Equa-
tions 7.4.14 and 7.4.19 to obtain the concentrations of electrons (n) and holes (p). Incidentally,
notice that if in Equation 7.6.37 we take NA = ND = 0, the result for µ is identical to that of Equa-
tion 7.4.22.

Example 7.6.0.1
Assuming that NA = 0 in Equation 7.6.37, what is the approximate concentration of electrons, also
assuming that µ− εd � τ?
Solution
From Equation 7.6.37, we first notice that, for µ − εd � τ , 1

1+2e(µ−εd )/τ
∼ (1/2)e(εd−µ)/τ , so that

N+
D ≈ (ND/2)e(εd−µ)/τ . We can also ignore the hole concentration or p ∼ 0 and write n ∼ N+

D .
This also implies that nN+

D = n2 or n2 = n0e(µ−Ec)/τ(ND/2)e(εd−µ)/τ , where we have also used
Equation 7.4.14. Taking the square root of n2, get

n≈
√

n0ND

2
e(εd−Ec)/2τ =

√
n0ND

2
e−ED/2τ , (7.6.38a)

where we recall that ED is the donor impurity binding energy. Furthermore, the chemical potential
for this case is given by (see Exercise 7.7.11)

µ = Ec−
ED

2
+

τ

2
ln
(

ND

2n0

)
. (7.6.38b)

To obtain the full solution for µ from Equation 7.6.37 we need to do it in a self-consistent way as
mentioned above. That is, vary µ until the left- and right-hand sides are equal for a given donor and
acceptor concentrations. The left panel of Figure 7.6.11 contains the obtained chemical potential µ

versus ND (NA) for small NA (ND). Using the converged value of µ the electron (hole) concentration,



Extrinsic Carrier Concentration 235

n (p), versus ND (NA) for small NA (ND) from Equations 7.4.14 and 7.4.19 have been calculated.
These are shown on the right panel of the figure. We have also added the approximation results
from Equation 7.6.38 for µ versus ND and n versus ND when NA = 0 on the left and right panels,
respectively, for illustration purposes.
Referring to the left panel of Figure 7.6.11, for low impurity concentrations, notice that µ starts
off with the value of µ0 (the intrinsic value) which lies near the middle of the gap and, as the
donor concentration increases (for a fixed low value of NA), it travels upward toward the conduction
band. Similarly (for a fixed low value of ND) µ moves toward the valence band as the acceptor
concentration is increased. The right panel shows that n increases as ND increases (for a fixed low
value of NA), but p decreases. In a similar fashion, n decreases as NA is increased (for a fixed low
value of ND) while p increases. The approximations of µ (left panel) and n (right panel) that result
from Equations 7.6.38 versus ND become closer to the full results when ND is quite high, which is
consistent with the conditions of the approximation.
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Figure 7.6.11: The left panel shows the chemical potential µ versus ND (NA) with NA = 1×1014 m−3

(ND = 1× 1014 m−3). The flat lines correspond to the valence (0eV ) and conduction (1eV ) band
values used. The approximation for µ from Equation 7.6.38b, when NA is assumed zero is also
shown as indicated by the legend. The right panel shows n (p), versus ND (NA) for when NA = 1×
1014 m−3 (ND = 1×1014 m−3) from Equations 7.4.14, using the converged values of µ shown on the
left panel. The effective masses used are mc = 0.05me, mh = 0.025me, the temperature is T = 300K,
the donor binding energy is ED = 0.05eV , and the acceptor binding energy is EA = 0.025eV . In the
figure, the value µ0 = 0.487eV corresponds to the intrinsic value of the chemical potential which
was used as an initial guess for low impurity concentrations.

The details of the process of performing the µ , n, and p caculations discussed in Figure 7.6.11
are encompassed by a simplified version of the plotting code. The following code charge neutral.m
is a simple example of the calculations. The code finds the value of µ self-consistently using the
MATLAB function “fzero” with an initial guess of µ0 for values of ND and NA. The “fzero” routine
varies µ as it searches for a value of zero in the function “FN”, which corresponds to the difference
of the left- and right-hand sides of Equation 7.6.37. When the condition is satisfied, a converged
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value of µ has been found. Using the converged value of µ the code proceeds to obtain n. The energy
units used in the actual calculations are in eV and the distance units are in nm. The concentrations in
units of m−3 are obtained by conversion from nm to m as explained in the code’s comments. After
the calculations, the results are printed. The listing of the code follows.

%copyright by J. E Hasbun and T. Datta

%charge_neutral.m

%It uses the charge neutrality condition to obtain the chemical

%potential (mu) self-consistently based on the donor (ND) and

%acceptor (NA) concentration. Once mu is obtained, the electron

%concentration (n) and the hole (p) concentration can be calculated

%at a given temperature.

clear;

hbarC=197; %hbar*c in units of eV*nm

kB=8.6174e-5; %Boltzmann constant in units of eV/K

Ev=0.0; %valence band edge in eV

Ec=1.0; %conduction band edge in eV

Eg=Ec-Ev; %band gap

ED=0.050; %donor binding energy in eV

EA=0.025; %acceptor binding energy in eV

epsd=Ec-ED; %donor impurity level

epsa=Ev+EA; %acceptor impurity level

mh=0.025; %hole effective mass value in units of me

mc=0.05; %electron effective mass value in units of me

meCs=0.5e6; %electron mass in eV

T=300; %Kelvin

tau=kB*T;

ND=1e24; %donor concentration in 1/m^3

NA=1e14; %acceptor concentration in 1/m^3

%Actual calculations use units of distance in nm

NDnm=ND*(1e-9)^3; %converting 1/m^3 to 1/nm^3

NAnm=NA*(1e-9)^3; %as used here in the FN formula

mu0=Ev+Eg/2+(3/4)*tau*log(mh/mc); %intrinsic mu - use as guess

%Based on the neutrality condition, the function FN must be

%zero for the correct chemical potential mu (variable x).

n0=2*(mc*meCs*tau/hbarC^2/2/pi)^(3/2);

p0=2*(mh*meCs*tau/hbarC^2/2/pi)^(3/2);

FN =@(x) n0*exp((x-Ec)/tau)+NAnm/(1+2*exp((epsa-x)/tau))- ...

p0*exp((Ev-x)/tau)-NDnm/(1+2*exp((x-epsd)/tau));

%

mu=fzero(FN,mu0); %solve for mu using mu_0 as guess

%use the new mu to get the electron and hole concentrations

nnm=n0*exp((mu-Ec)/tau); %electron conc.

pnm=p0*exp((Ev-mu)/tau); %hole conc.

n=nnm/(1e-9)^3; %converting to 1/m^3

%The approximations for when NA=0

n_D_app=sqrt(n0*NDnm/2)*exp(-ED/tau/2); %elect. conc.

n_D_approx=n_D_app/(1e-9)^3; %converting to 1/m^3

mu_approx=Ec-ED/2+(tau/2)*log(NDnm/2/n0);%chem. pot.

fprintf(’mh=%6.3f me, mc=%6.3f me, T=%6.2f K\n’,mh,mc,T)

fprintf(’Ev=%6.3f eV, Ec=%6.3f eV, mu0=%6.3f eV\n’,Ev,Ec,mu0)
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fprintf(’NA=%6.3g 1/m^3, ND=%6.3g 1/m^3, mu=%6.3f eV\n’,NA,ND,mu)

fprintf(’n=%6.3g 1/m^3\n’,n)

disp(’Next are the approximate results assuming NA=0’)

fprintf(’n_approx=%6.3g 1/m^3, mu_approx=%6.3f eV\n’,n_D_approx,mu_approx)

The above script charge neutral.m can be modified in order to reproduce the results shown in Fig-
ure 7.6.11 (see Exercise 7.7.12).

7.6.1 Ohmic Contacts

An ohmic contact is a kind of a junction between a metal and a semiconductor whose resistance is
low enough as not to limit the current flow. The semiconductor’s resistance is what limits the flow
of current instead. The ohmic contact term itself does not necessarily involve the I−V relation nor-
mally associated with a device’s ohmic behavior. An example of an ohmic contact’s band structure
is shown in Figure 7.6.12 where the left panel shows the metal’s work function, φm, and Fermi level,
EFM , as well as an n-type semiconductor’s work function, φn, with its Fermi level, EFn. The right
panel shows what happens after contact is made. The band bending that occurs is due to electron
transfer from the metal to the semiconductor side.

m

n

nm
EFm

Ec

EFn

Ev

EFm
Ec

EFn

Ev

Before Contact After Contact

Vacuum Level
CB

VB

Metal Semiconductor

Figure 7.6.12: Metal-n-type semiconductor before contact (left panel) and after contact (right
panel). The metal and semiconductor Fermi levels are EFm and EFn, respectively. Similarly, φm and
φn are the corresponding materials’ work functions. The band bending (right panel) occurs because
the Fermi level becomes uniform throughout the system.

The work function, φ , of a material is the energy difference between the vacuum level and the Fermi
level. The vacuum level is the energy position where the electron, having no kinetic energy left, is
free from the solid. In the ohmic contact between a metal and an n-type semiconductor, the metal’s
work function is less than the semiconductor’s work function. Because φm < φn, there are more
energetic electrons in the metal than in the semiconductor’s conduction band (CB). As the electrons
from the metal’s side at EFm tunnel to the semiconductor’s CB, they pile up near the junction as
shown by the filled circles until equilibrium is reached in such a way that the accumulated electrons
prevent any more electrons from tunneling from the metal to the semiconductor; in other words,
the Fermi level becomes uniform across the whole metal semiconductor junction system. We next
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suppose that there is a DC current flowing from the semiconductor to the metal; that is, electrons
flow from the metal to the semiconductor. In that case the electrons’ energy will change from EFm to
EC+3kBT/2, where 3kBT/2 is an average kinetic energy gained. The energy difference corresponds
to ∆E = Ec +3kBT/2−EFm per electron in the contact region, which is an energy gain. This gain
in energy means that the electron must absorb heat from its environment (lattice vibrations). The
energy flux associated with the electron charge flux is

jue = n
(

Ec−EFm +
3
2

kBT
)

v, (7.6.39a)

where for electrons v = −µEE. This thermoelectric process that occurs at a junction between two
dissimilar materials is known as the Peltier effect. The Peltier coefficient Π is defined by the relation

jue = Πe jqe, (7.6.39b)

where for, electrons, jqe = −nev. With this quantity, we can find the Peltier coefficient for the
electrons as

Πe =
jue

jqe
=−Ec−EFm + 3

2 kBT
e

, (7.6.39c)

which is negative because jue is opposite in sign to jqe. Here, the current direction is from the n-type
semiconductor to the metal (electrons move from the metal to the n-type semiconductor), but heat
is absorbed at the junction. In the case of holes (metal and p-type semiconductor junction), heat is
absorbed by the current flowing from the metal to the p-type semiconductor junction. The current
density is jqh = pev and the energy flux are

juh = n
(

EFm−Ev +
3
2

kBT
)

v, (7.6.40a)

The Peltier coefficient is obtained as in Equation 7.6.39b or through the definition

juh = Πh jqh, (7.6.40b)

to obtain

Πh =
juh

jqh
=

EFm−Ev +
3
2 kBT

e
, (7.6.40c)

which is positive because juh has the same sign as jqh. The hole current is from the metal to the
p-type semiconductor (the same as the direction of the current) and heat is absorbed at the junction.
Measuring the voltage associated with the Peltier effect, in which one end of the junction is heated, is
one way to determine what type of semiconductor material is present in the sample. This is because
the sign of the voltage will be different depending on whether the sample is n-type or p-type. It
is also possible to combine the above effects in such a way as to create practical thermoelectric
cooling devices. Finally, it should be mentioned that the Peltier effect is different from the Joule
heating (I2R) that is associated with the electrical resistance of a material and which is due to the
collisions suffered by the moving particles through that material. Such collisions also give rise to
temperature changes in the sample.
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7.7 Chapter 7 Exercises
7.7.1. If during an optical absorption experiment in a Si semiconductor at low temperature a photon

of ω = 1.8×1015 rad/sec emits an acoustic phonon, what is the phonon’s energy and radial
frequency and wavevector, given that the phonon phase velocity is ≈ 4× 103 m/s? Hint:
assume a linear dispersion.

7.7.2. In Example 7.2.0.1, (a) show that the solutions for kx(t) and ky(t) are consistent with the
initial equations of motion for the wavevectors. (b) What is the value of the constant A in
the solutions for kx(t) and ky(t) and how is it related to the constant energy surface referred
to in the example?

7.7.3. Modify the code of script central eq bands.m from Chapter 6 to incorporate the band edge
approximations of Equation 7.3.5 in order to reproduce Figure 7.3.5 keeping the same units
of distance and energy as previously employed.

7.7.4. Treating a particle as a wave packet moving with speed vg in one dimension and considering
a force acting on it, show that an expression for the mass of the particle in terms of its energy
has the form of Equation 7.3.6.

7.7.5. Show that Equation 7.3.7 results by repeating Exercise 7.7.4 and considering a three-
dimensional version of the problem including a more general energy surface, ε~k.

7.7.6. Obtain the resonant frequency of band edge electrons in a sample of GaAs in a magnetic
field of 940G.

7.7.7. Beginning with Equation 7.4.18 obtain Equation 7.4.19.

7.7.8. Reproduce Figure 7.4.7. You might find it useful to employ the following constants in ap-
propriate units: h̄c = 197eV · nm, kB = 8.6174× 10−5 eV/K, and the mass of the electron
mc2 = 0.5×106 eV .

7.7.9. Write the code necessary to reproduce the plots and the analysis of Figure 7.4.8 as described
in Example 7.4.1.1. Feel free to use the code starter provided in the example.

7.7.10. Calculate the energy state, the radius, and the de Broglie wavelength associated with a donor
state in Ge, assuming an electron effective mass of mc ≈ 0.1m.

7.7.11. After reading Example 7.6.0.1, show the steps to obtain Equation 7.6.38b for µ in the pres-
ence of a donor concentration ND.

7.7.12. Run the code charge neutral.m provided in Section 7.6 to be sure it runs correctly. The
printed calculations should match the following results:

mh= 0.025 me, mc= 0.050 me, T=300.00 K

Ev= 0.000 eV, Ec= 1.000 eV, mu0= 0.487 eV

NA=1e+014 1/m^3, ND=1e+024 1/m^3, mu= 0.981 eV

n=1.31e+023 1/m^3

Next are the approximate results assuming NA=0

n_approx=1.4e+023 1/m^3, mu_approx= 0.983 eV

Modify the code in order to reproduce the results shown in Figure 7.6.11.
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8.1 Introduction
One of the general goals of solid state theory is to be able to obtain the electronic energy levels
and wave functions in crystal systems. Such knowledge, in turn, enables the calculation and, there-
fore, the prediction of solid state crystal properties. This is not a simple task to accomplish, for it
involves solving the Schrodinger equation for many electrons interacting with themselves as well
as all the ions in a crystal. One of the stumbling blocks in tackling this problem exactly is often a
computational limitation; that is, if a sample contains N1 atoms and each atom contains N2 elec-
trons, then there are N1N2 particles. Since each particle has its own coordinates and each of the N1
atoms interacts with each of the N2 electrons, the actual problem involves NN2

1 variables. For exam-
ple, if there are two atoms and each contains four electrons, there are 16 variables associated with

241
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their interactions due to each atom’s interaction with each of the total of eight electrons available;
this counting does not include the ions’ interactions among themselves nor the electrons interacting
among themselves for that matter.
Approximate band structure calculation methods, therefore, have often been developed in order to
minimize the computational demand and the computational time required in meeting such demands.
One of the universal approximations made in tackling this problem is to apply the so-called Born-
Oppenheimer approximation, according to which the nuclei are assumed to be static. In this way, one
solves the electronic problem without worrying about the nuclei. As far as the nuclei are concerned,
the idea is that since the electrons are very light compared to the nuclei and move more rapidly
than the nuclei, they can follow the slower moving nuclei quite well. In this manner, the electron
distribution determines the potential in which the nuclei move.
Furthermore, all band structure calculations operate within the single-electron approximation; that
is, the electronic behavior of solids is considered to be that of a single electron moving in the
presence of a crystal potential. Finding the potential itself is one of the tasks of the approximation.
By doing so, the number of variables of the problem is shortened from NN2

1 to N1N2.
Popular sophisticated approaches to obtain the electronic energies and wavefunctions are among
the Hartree-Fock and density functional methods. In the Hartree-Fock theory, the main computa-
tional obstacle in performing the electronic calculations lies in the coulomb interaction between the
electrons; i.e., the so-called electron-electron (e-e) interaction. Thus, in this approximation the e-e
interaction is replaced by an effective potential in such a way that each electron moves in a field
produced by the sum over all the other electrons. While obeying the Pauli exclusion principle, this
method is self-consistent in that iterations are performed so as to vary the wave functions while
minimizing the total electronic system energy. A simplified version of this method, the Hartree
approximation, was employed in Chapter 3 for the hydrogen molecule.
In the density functional theory (DFT), rather than obtaining the wavefunction explicitly, the method
seeks to find the electron density so that, once found, one can deduce the potential in which the
electrons move. Knowing the potential allows for the solution of the Schrodinger equation to the
many body problem. This is also a self-consistent approach, since the electron density is varied
while seeking a minimum of the total system energy.
Approximations may make use of pseudo-potentials to approximate the atomic potentials. They may
also use wavefunction approximations such as the linear combination of atomic orbitals method, the
plane wave method, and the linear augmented plane wave approach.
The pseudo-potential method may play a role in the above approximations in that rather than trying
to find the exact potential associated with each atom in the crystal, the electrons’ contribution to the
potential is separated into two parts. One part is for the core electrons and another is for the valence
electrons. Ultimately, the core electrons are considered to be rigid and part of the core, while the
outer valence electrons are dealt with explicitly. The resulting wavefunctions or basis functions are
considered pseudo-wavefunctions, associated with the pseudo-potential, in the sense that they are
approximations to the real wavefunctions of the crystal. The basis functions thus obtained describe
the electrons in a given atom. These basis functions may be used to obtain crystal wavefunctions.
The concept of the linear combination of atomic orbitals (LCAO) method is based on the idea that
once the atomic pseudo-potentials are known, a wavefunction for a particular state of the crystal is a
quantum mechanical superposition of component atomic wavefunctions, each centered on a partic-
ular atom and weighted by an appropriate coefficient. This method was actually used in obtaining
the molecular hydrogen ground state wavefunction in Chapter 3 for the hydrogen molecule, albeit
using the Hartree approximation.
The plane wave method is based on the idea that the crystal is a periodic array of atoms, so that
one can create crystal wavefunctions that involve plane wave expansions due to the fact that such
approach automatically obeys Bloch’s theorem. However, plane wave expansions do not converge
readily in the interior of an atomic cell. This disadvantage leads to the improved linear augmented
plane wave (LAPW) method where the basis set (used in the expansion) is made to behave like a



The Single Band Tight Binding Model 243

plane wave outside the atomic cell but obeys a spherically symmetric Schrodinger equation inside
the cell. The atomic cell is modeled using the so-called muffin tin potential.
In contrast to the above-mentioned methods, there exists an approach that is simple to apply and
has been used in semiconductors to various degrees of success. This is the so-called tight binding
method. The tight binding method is based on the idea of a collection of isolated atoms which are
slowly brought closer together in order to form a crystal. The wave function is a linear combination
of atomic orbitals, but the only orbitals considered are those of the valence electrons. In this method,
the crystal potential is written as a sum of identical atomic potentials, so that the atomic orbitals of
the individual atoms are also identical. The entire crystal wavefunction obeys Bloch’s theorem but
matrix elements used in the solution of the energy eigenvalues have been tabulated a priori or are
obtained by variational methods that improve the comparison with experiment. Due to its simplicity,
here we concentrate on calculations based on the tight binding model.

8.2 The Single Band Tight Binding Model
In this section, we study the tight binding model for crystal systems with one electron per atom. The
electron is assumed to be in the “s” state moving in the presence of a crystal potential U(r) of an
isolated atom and whose wavefunction is φ(r). This assumes that the other crystal atoms’ influence
is small. The crystal wavefunction is written as

ψ~k(~r) = ∑
j

C~k jφ(~r−~r j), (8.2.1)

where the sum is over all N lattice points~r j. If the coefficients of the expansion, C~k j are taken to
have the plane waveform,

C~k j =
1√
N

ei~k·~r j , (8.2.2)

then Equation 8.2.1 is of the Bloch form. This can be seen if in Equation 8.2.1 we make the dis-
placement~r→~r+~T to get

ψ~k(~r+~T ) = ∑
j

C~k jφ(~r+~T −~r j)

= ei~k·~T 1√
N ∑

j
ei~k·(~r j−~T )φ(~r− (~r j−~T ))

= ei~k·~T 1√
N ∑

i
ei~k·~riφ(~r−~ri) = ∑

i
C~kiφ(~r−~ri)

= ei~k·~T
ψ~k(~r),

(8.2.3)

where we used ~ri =~r j −~T ; i.e., another equivalent lattice point with identical wavefunction. The
last equation is the Bloch condition discussed in Chapter 3. We next use the Dirac notation and write
the wavefunction of Equation 8.2.1 as

|~k >=
1√
N ∑

j
ei~k·~r j | j), (8.2.4)

where |~k > represents the normalized crystal wavefunction ψ~k(~r) and | j) = |φ j) represents the basis
function φ(~r−~r j). Notice that the functions |~k > are automatically normalized because the basis
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functions | j) are orthonormal (see Exercise 8.8.1). In the tight binding approximation one calculates
the first order energy of the crystal by finding the diagonal matrix elements of the Hamiltonian as

<~k|Ĥ|~k >=
1
N ∑

j
∑
m

ei~k·(~r j−~rm)(m|Ĥ| j), (8.2.5a)

where the (m|Ĥ| j) ≡ ∫ dV φ(~r−~rm)Ĥφ(~r−~r j); i.e., a Hamiltonian volume integral between two
basis functions, one on site m and the other on site j. If we let ~ρm ≡~rm−~r j so that φ(~r−~rm) =
φ(~r−~ρm−~r j). The energy becomes

<~k|Ĥ|~k >=∑
m

e−i~k·~ρm
1
N ∑

j

∫
dV φ(~r−~ρm−~r j)Ĥφ(~r−~ρ j) =∑

m
e−i~k·~ρm

∫
dV φ(~r−~ρm)Ĥφ(~r),

(8.2.5b)

where we have taken ∑
j

∫
dV φ(~r−~ρm−~r j)Ĥφ(~r−~ρ j) = N

∫
dV φ(~r−~ρm)Ĥφ(~r), since all sites are

identical. If we next neglect all integrals except those that involve the same atom (ρm=0 = ρ0) and
those between nearest neighbors (nn) connected by ρ ≡ ρm, we have

<~k|Ĥ|~k >= ∑
m=0,nn

e−i~k·~ρm

∫
dV φ(~r−~ρm)Ĥφ(~r)

= e−i~k·~ρ0

∫
dV φ(~r−~ρ0)Ĥφ(~r)+ ∑

m=nn
e−i~k·~ρm

∫
dV φ(~r−~ρ)Ĥφ(~r)

=−α− γ ∑
m=nn

e−i~k·~ρm ≡ εk,

(8.2.5c)

where we have defined α ≡ −∫ dV φ(~r−~ρ0)Ĥφ(~r), γ ≡ −∫ dV φ(~r−~ρ)Ĥφ(~r), and we have let
ρ0 = 0. Here εk corresponds to a single energy band. It can be specialized to particular systems once
the crystal structure is identified. Later, we will consider the simple cubic structures. In the above
equations, α is the diagonal energy associated with each atomic electron, also referred to as the on-
site energy; γ is the overlap or off-diagonal energy, which also goes by the name of hopping energy
because it connects one site to another. While often α and γ are treated as parameters (variables
whose values are changed to fit a given experiment), for the case of hydrogen in the 1s state, the
diagonal energy is α = (me4k2/2h̄2) = ke2/(2a0) = 13.606eV or one Rydberg (Ry). Similarly, the
off-diagonal energy is that between two hydrogen atoms in the 1s state, ρ apart, and is given by
γ = (me4k2/h̄2)(1+ ρ/a0)exp(−ρ/a0), where the Bohr radius is a0 = h̄2/(me2k). The quantity
me4k2/h̄2 is the same as 2Ry = 27.212eV or one Hartree.
Often the single band tight binding Hamiltonian for a crystal is written as

Ĥ = ∑
p
|p)(−α)(p|+∑

pq

′|p)(−γ)(q|= ĤD + ĤOD, (8.2.6a)

where the prime indicates that p 6= q, and ĤD, ĤOD are the diagonal and off-diagonal parts of Ĥ,
respectively. Using Equation 8.2.4, we see that the diagonal energy is

<~k|ĤD|~k >=
1
N ∑

p
∑
j′

∑
j

e−i~k·~r j′ ei~k·~r j( j′|p)(p| j)(−α)

=
1
N ∑

p
∑
j′, j

e−i~k·(~r j−~r j′ )δ j′,pδp, j(−α)

=
1
N ∑

p
(−α) =

1
N

N(−α) =−α,

(8.2.6b)
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where we have used the orthonormality of the basis; i.e., (p| j) = δp, j, which equals unity for j = p,
else it vanishes. Similarly, repeating the process for the off-diagonal term of Ĥ (see Exercise 8.8.2),
we get <~k|ĤOD|~k >=−γ ∑

m=nn
e−i~k·~ρm . So by adding these two results one gets the expected energy

εk =<~k|ĤD + ĤOD|~k >=−α− γ ∑
m=nn

e−i~k·~ρm , (8.2.6c)

as in Equation 8.2.5c.

8.2.1 The Simple Cubic (SC)

Here we obtain the simple cubic (SC) system’s tight binding band based on Equation 8.2.6c.
The SC structure has six nearest neighbors associated with it. They are located at ~ρm =
(±a,0,0), (0,±a,0), (0,0,±a); so that, with~k = kx î+ ky ĵ+ kzk̂,

∑
m=nn

e−i~k·~ρm = e−ikxa+eikxa+e−ikya+eikya+e−ikza+eikza = 2cos(kxa)+2cos(kya)+2cos(kza).

(8.2.7a)

The simple cubic band is, therefore,

ε~k,SC =−α−2γ (cos(kxa)+ cos(kya)+ cos(kza)) . (8.2.7b)

In Figure 8.2.1, the simple cubic band E~k = (ε~k,SC +α)/(2γ) is plotted versus kx and ky for a value
of kz = 0.0 for a lattice constant of a = 1 in arbitrary units.

Figure 8.2.1: The simple cubic tight binding band E~k = (ε~k,SC +α)/(2γ) for kz = 0.0. The range of
kx and ky is between ±2π/a with a = 1 in arbitrary units.

The script used to create Figure 8.2.1 is TBbandSC.m whose listing follows.

%copyright by J. E Hasbun and T. Datta

%TBbandSC.m

%Tight binding model band for the simple cubic system
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clear, clc;

a=1.0;

q=2*pi/a; %range of k

kz=0.0; %Keep kz fixed

[kx,ky]=meshgrid(-q:0.1:q,-q:0.1:q); %variables for the 2D plot

E=-cos(kx*a)-cos(ky*a)-cos(kz*a); %SC energy band

figure;

surfl(kx,ky,E); %2D plot

colormap(gray)

shading interp

xlabel(’kx’), ylabel(’ky’), zlabel(’E (kx,ky,kz)’)

str=cat(2,’SC Energy Band E_k=-cos(kx*a)-cos(ky*a)-cos(kz*a) vs kx, ky at

kz=’,... num2str(kz,’%4.3f’));

title(str)

axis([-q q -q q min(min(E)) max(max(E))])

view(115,70) %viewpoint azimuth, elevation

8.2.2 The Body Centered Cubic

The body centered cubic (BCC) structure has eight nearest neighbors associated with it. They are lo-
cated at ~ρm = (±a/2,±a/2,±a/2) = (a/2)[(1,−1,1),(1,1,1),(1,−1,−1),(1,1,−1),(−1,−1,1),
(−1,1,1),(−1,−1,−1),(−1,1,−1)]. We have

∑
m=nn

e−i~k·~ρm =eia(−kx+ky−kz)/2 + eia(−kx−ky−kz)/2

+ eia(−kx+ky+kz)/2 + eia(−kx−ky+kz)/2

+ eia(kx+ky−kz)/2 + eia(kx−ky−kz)/2

+ eia(kx+ky+kz)/2 + eia(kx−ky+kz)/2

=8cos(
kxa
2

)cos(
kya
2

)cos(
kza
2

).

(8.2.8a)

Substituting this into Equation 8.2.6c, the BCC band becomes

ε~k,BCC =−α−8γ cos(
~kxa

2
)cos(

kya
2

)cos(
kza
2

). (8.2.8b)

In Figure 8.2.2, the BCC band E~k = (ε~k,BCC +α)/(8γ) is plotted versus kx and ky for a value of
kz = π/(2a) with a = 1 in arbitrary units.
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Figure 8.2.2: The body centered cubic tight binding band E~k = (ε~k,BCC +α)/(8γ) for kz = π/(2a).
The range of kx and ky is between ±2π/a with a = 1 in arbitrary units.

8.2.3 The Face Centered Cubic

The face centered cubic (FCC) structure has twelve nearest neighbors associated with it. They are
located at ~ρm = (a/2)[(1,−1,0),(1,1,0),(−1,−1,0),(−1,1,0),(0,−1,1),(0,1,1),(0,−1,−1),
(0,1,−1),(1,0,1),(−1,0,1),(1,0,−1),(−1,0,−1)]. After performing ∑

m=nn
e−i~k·~ρm and using

Equation 8.2.6c, the FCC resulting band is

ε~k,FCC =−α−4γ

(
cos(

kxa
2

)cos(
kya
2

)+ cos(
kya
2

)cos(
kza
2

)+ cos(
kxa
2

)cos(
kza
2

)

)
. (8.2.9)

In Figure 8.2.3, the FCC band E~k = (ε~k,FCC +α)/(4γ) is plotted versus kx and ky for a value of
kz = π/(2a) with a = 1 in arbitrary units.
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Figure 8.2.3: The face centered cubic tight binding band E~k = (ε~k,FCC +α)/(4γ) for kz = π/(2a).
The range of kx and ky is between ±3π/a with a = 1 in arbitrary units.

8.3 The Density of States and the Fermi Surface
As discussed in Chapter 5, given N electrons, the Fermi energy is the energy of the highest filled
orbital at T = 0. For a spherical electron energy dispersion, the Fermi energy is

εF =
h̄2k2

F
2m

, (8.3.10a)

where kF is the magnitude of a three-dimensional wavevector that is characteristic of the number of
electrons up to the highest occupied orbital at T = 0K. For a more general energy dispersion, the
Fermi energy is obtained through the expression (See Chapter 5)

N =
∫

εF

0
D(ε)dε. (8.3.10b)

Where D(ε) is the density of states. As regards to the density of states, we will now define the way
in which we will use it. For a function of~k, each wavevector~k is associated with a Brillouin zone
volume of

VBZ ≡ (2π/L)3 = (2π)3/Vc, (8.3.11a)

for a system with unit cell volume Vc = L3. Thus, similar to Chapter 5 (see the normal mode enu-
meration section), a sum of a function f~k over the wavevectors~k is expressed in integral form as

∑
~k

f~k =
1

VBZ

∫

all k space

d~k f~k =
N

VBZ

∫

VBZ

d~k f~k, (8.3.11b)
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where we have used the fact that, due to periodicity, for a crystal, the total k-space volume is N
times the Brillouin zone volume (see Exercise 8.8.8) or

Vk−space =
∫

all k space

d~k = N
∫

VBZ

d~k = NVBZ . (8.3.11c)

Ignoring the spin of the electron, for the density of states definition, a function of energy εk can be
written as

1
N ∑

~k

f (ε~k) =
1

VBZ

∫

VBZ

d~k f (ε~k) =
1

VBZ

∫
dε

∫

VBZ

d~kδ (ε− ε~k) f (ε) =
∫

dε f (ε)D(ε), (8.3.12a)

where we have defined the density of electron states as

D(ε)≡ 1
VBZ

∫

VBZ

δ (ε− ε~k)d~k. (8.3.12b)

Similarly, if the electron spin is included (signified by σ ), we have

1
N ∑

~k,σ

f (ε~k) =
2

VBZ

∫

VBZ

d~k f (ε~k) =
∫

dε f (ε)DΣσ (ε)

with

DΣσ (ε)≡
2

VBZ

∫

VBZ

δ (ε− ε~k)d~k,

(8.3.12c)

where we have defined DΣσ (ε) ≡ 2D(ε) to include the factor of 2 due to the electron spin. This
density of states expression can be used in conjunction with Equation 8.3.10b in order to find the
Fermi level EF . Incidentally, Equations 8.3.12b and 8.3.12c are sometimes referred to as differ-
ential density of states. The total density of states (or integrated density of states) is a version of
Equation 8.3.10b but the integral is a function of energy; that is,

N(ε) =
∫

ε

−∞

D(ε ′)dε
′, (8.3.13)

and it gives the total number of states as a function of ε . The lower limit is chosen to be−∞ because
the energy band has ε < 0 contributions. If the electron spin is included, the proper form of D(ε) is
to be used to multiply by a factor of 2.

Example 8.3.0.1
Let’s use Equation 8.3.12c to obtain the three-dimensional free electron gas density of states. Due
to spherical symmetry, we first write

∫
d~k =

∫
k2dk

∫
sinθdθ

∫
dφ = 4π

∫
k2dk, so that from Equa-

tion 8.3.12c we get
D f ree(ε) = 4π

2
VBZ

∫
k2δ (ε− ε~k)dk.

For a free electron gas, the energy band is εk = h̄2k2/2m or 2kdk = 2mdεk/h̄2 and k2dk =

(m/h̄2)
√

2mεk/h̄2dεk

The density of states becomes

D f ree(ε) =
8π

VBZ

∫
( m

h̄2 )
√

2mεk
h̄2 δ (ε− ε~k)dεk =

8π

VBZ
m
h̄3

√
2mε = 8πV

(2π)3
m
h̄3

√
2mε = V

2π2

(
2m
h̄2

)3/2√
ε ,

which is the density of states of a three-dimensional electron gas obtained in Chapter 5.
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The Fermi surface for a three dimensional electron gas is a sphere. This can be seen from Equa-
tion 8.3.10a by writing 2mεF/h̄2 = k2

x +k2
y +k2

z . Thus, for a given value of εF , the wavevector values
that solve this equation describe a sphere of radius 2mεF/h̄2. For a more general energy band, the
shape of the Fermi surface can be solved numerically by finding all wavevectors~k that satisfy the
equation ε~k = EF . The number of electrons N involved in Equation 8.3.10b determines the value of
EF associated with the Fermi surface. In the case of the single band cubic systems considered in
Section 8.2, only two electrons can be placed in each band, one for each spin (up and down). A band
with a single electron is referred to as a half-filled band. Below we consider these systems with a
Fermi energy value such that the band has a single electron.

8.3.1 The Simple Cubic Fermi Surface

From Equation 8.2.7b, the simple cubic band we plotted in Figure 8.2.1 is written as

E~k,SC ≡ (ε~k,SC +α)/(2γ) =−cos(kxa)− cos(kya)− cos(kza) (8.3.14)

This band is symmetric with a range of −3 ≤ ε~k,SC ≤ 3, so that the middle of the band lies at
ε~k,SC = 0 = EF . At this value of the Fermi level, the band is half-filled. Figure 8.3.4 shows the
simple cubic’s Fermi surface thus obtained.

Figure 8.3.4: The Fermi surface for half-filled (EF = 0) simple cubic tight binding band in the
nearest-neighbor approximation. The first BZ is shown (connected with solid lines).

The simple cubic’s first Brillouin zone (BZ) (see Chapter 2) has been superimposed onto the Fermi
surface in Figure 8.3.4 as well. The code employed in creating the figure is TBfermiIsoSurfBzSc.m,
whose listing follows below. Notice that we have used the “isosurface” MATLAB command in
conjunction with “meshgrid” to create the constant energy surface.

%copyright by J. E Hasbun and T. Datta

%TBfermiIsoSurfBzSc.m, Simple Cubic

%To find the full Fermi surface, we use MATLAB’s isosurface

%command for a given Fermi energy value.

%The obtained Fermi Surface is superimposed with the Brillouin Zone.

%Given kx, ky, and kz, surfaces of contant energy E=Ef are sought.

function TBfermiIsoSurfBzSc
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clear,clc

a=1.0;

q=pi/a;

qq=(7./5.)*q;

Ef=0.0; %half filled band

[kx,ky,kz]=meshgrid(-qq:0.1:qq,-qq:0.1:qq,-qq:0.1:qq);

E=-cos(kx*a)-cos(ky*a)-cos(kz*a); %SC energy band

hf=figure;

%isosurface connects points that have the specified value

%much the way contour lines connect points of equal elevation.

isosurface(kx,ky,kz,E,Ef); %the isosurface to get the Fermi surface

colormap(gray)

xlabel(’kx’,’FontSize’,14), ylabel(’ky’,’FontSize’,14)

str=cat(2,’Fermi Energy Surface and 1st BZ - Simple Cubic Ef=’,...

num2str(Ef,’%4.2f’));

zlabel(’kz’,’FontSize’,14), title(str,’FontSize’,14)

%Let’s draw the first BZ

%SC BZ - with volume: (2*pi/a)^3

set(hf,’Position’,[90 78 560 420])

view(130,20) %viewpoint azimuth, elevation

grid on

axis([-qq qq -qq qq -qq qq])

%corners

c1=[1/2,1/2,1/2]; c2=[-1/2,1/2,1/2]; c3=[-1/2,-1/2,1/2]; c4=[1/2,-1/2,1/2];

c5=[1/2,1/2,-1/2]; c6=[-1/2,1/2,-1/2]; c7=[-1/2,-1/2,-1/2];

c8=[1/2,-1/2,-1/2];

c1=c1*2*q; c2=c2*2*q; c3=c3*2*q; c4=c4*2*q; c5=c5*2*q; c6=c6*2*q;

c7=c7*2*q; c8=c8*2*q;

%c1 top corner connectors

liner(c1,c2,’-’,’k’,1.0)

liner(c1,c4,’-’,’k’,1.0)

liner(c1,c5,’-’,’k’,1.0)

%c2 top corner connectors

liner(c2,c6,’-’,’k’,1.0)

liner(c2,c3,’-’,’k’,1.0)

%c3 top corner connectors

liner(c3,c4,’-’,’k’,1.0)

liner(c3,c7,’-’,’k’,1.0)

%c5 bottom corner connectors

liner(c5,c6,’-’,’k’,1.0)

liner(c5,c8,’-’,’k’,1.0)

%c7 bottom corner connectors

liner(c7,c6,’-’,’k’,1.0)

liner(c7,c8,’-’,’k’,1.0)

%c8 bottom corner connectors

liner(c8,c4,’-’,’k’,1.0);

function liner(v1,v2,lin_style_txt,lin_color_txt,lin_width_num)

%Draws a line given initial vector v1 and final vector v2
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%lin_style_txt: line style text format

%lin_color_txt: line color text format

%lin_width_num: line width number format

line([v1(1),v2(1)],[v1(2),v2(2)],[v1(3),v2(3)],...

’LineStyle’,lin_style_txt,’color’,...

lin_color_txt,’linewidth’,lin_width_num)

8.3.2 The Body Centered Cubic Fermi Surface

The body centered cubic’s band plotted in Figure 8.2.2 is

E~k,BCC ≡ (ε~k,BCC +α)/(8γ) =−cos(
kxa
2

)cos(
kya
2

)cos(
kza
2

), (8.3.15)

which is symmetric with a range of −1 ≤ ε~k,BCC ≤ 1. Thus, the Fermi energy of EF = 0 = ε~k,BCC
yields a Fermi surface for a half filled band as well. This along its first BZ (see Chapter 2) are shown
in Figure 8.3.5.

Figure 8.3.5: The Fermi surface for half-filled (EF = 0) body centered cubic tight binding band in
the nearest-neighbor approximation. The first BZ is shown (connected with solid lines).

8.3.3 The Face Centered Cubic Fermi Surface

The face centered cubic’s band plotted in Figure 8.2.3 is

E~k,FCC≡ (ε~k,FCC+α)/(4γ)=−
(

cos(
kxa
2

)cos(
kya
2

)+ cos(
kya
2

)cos(
kza
2

)+ cos(
kxa
2

)cos(
kza
2

)

)
,

(8.3.16)

and is symmetric with a range of −3 ≤ ε~k,FCC ≤ 3. Again, the Fermi energy of EF = 0 = ε~k,FCC
yields a Fermi surface for a half-filled band. This and its first BZ (see Chapter 2) are shown in
Figure 8.3.6.
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Figure 8.3.6: The Fermi surface for half-filled (EF = 0) face centered cubic tight binding band in
the nearest-neighbor approximation. The first BZ is shown (connected with solid lines).

8.4 Green’s Function and the Density of States
A convenient way to introduce the concept of Green’s function is to consider a particle that is located
at site j described by the basis function | j) at time t = 0. If we now wish to write the probability
amplitude of finding the particle at site j associated with basis function |i) at time t, one writes [20]

(i|Ĝ(t)| j) = (i|e−iĤt/h̄| j), (8.4.17a)

where Ĝ(t)≡ e−iĤt/h̄ is the time dependent Green’s function operator, Ĥ is the energy or Hamilto-
nian operator with eigenfunctions |εn > and eigenvalues εn; i.e., Ĥ|εn >= εn|εn >. Here, we work
with the Fourier transform of Ĝ(t), defined as

Ĝ(ε) =
1
ih̄

∫
∞

0
dteiεt/h̄Ĝ(t). (8.4.17b)

Assuming that ε has a small positive imaginary part, after substituting for Ĝ(t), this expression (see
Exercise 8.8.9) gives

Ĝ(ε) = (ε− Ĥ)−1, (8.4.17c)

which is the energy dependent Green’s function operator. If Green’s function operator of Equa-
tion 8.4.17c acts on the |~k > state of Equation 8.2.4, we have

Ĝ(ε)|~k >= (ε− Ĥ)−1|~k >= (ε− ε~k)
−1|~k >= G~k(ε)|~k >, (8.4.18a)

where we have used Equation 8.2.5c along with the expansion (1−x)−1 =
∞

∑
n=0

xn so that (ε−Ĥ)−1 =

(1/ε)
∞

∑
n=0

(Ĥ/ε)n (see Exercise 8.8.10). Since <~k|~k >= 1, we thus obtain the single band~k-space

Green’s function

G~k(ε) =<~k|Ĝ(ε)|~k >= (ε− ε~k)
−1, (8.4.18b)
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where, once again, ε contains a small positive imaginary part. This is often incorporated by replacing
ε with ε + i∆ where ∆ is a small real number. At this point, we will make use of the identity

lim
∆→0

1
x+ i∆

= P
(

1
x

)
− iπδ (x), (8.4.19)

where P stands for the principle value and δ (x) is a Dirac delta function. With this expression, we
can write the~k-space Green’s function of Equation 8.4.18b as

G~k(ε) = P
(

1
ε− ε~k

)
− iπδ (ε− ε~k), (8.4.20a)

or

δ (ε− ε~k) =−
1
π

Im
(
G~k(ε)

)
, (8.4.20b)

where “Im(F)” stands for the “imaginary part of F”. Comparing Equation 8.4.20b with Equa-
tions 8.3.12b, we see that the~k-space Green’s function can be used to obtain the density of states as

D(ε) =− 1
πVBZ

Im



∫

VBZ

G~k(ε)d
~k


=− 1

π
Im

(
1
N ∑

~k

G~k

)
. (8.4.21a)

If we include the electron spin, the density of states is

DΣσ (ε) = 2D(ε) =− 2
πVBZ

Im



∫

VBZ

G~k(ε)d
~k


=− 2

π
Im


 1

N ∑
~k,σ

G~k


 . (8.4.21b)

8.5 The Site Green’s Function
In this section we obtain the site Green’s function, show its relationship with the k-space Green’s
function, and also relate it to the density of states. To this end, we start with the eigenfunctions in
the Dirac notation. In~k-space we have from Equation 8.2.4

|~k >=
1√
N ∑

i
ei~k·~ri |i), (8.5.22a)

and its Fourier transform

|i) = 1√
N ∑

~k

e−i~k·~ri |~k > . (8.5.22b)

We note that

( j|~k >=
1√
N ∑

i
ei~k·~ri( j|i) = 1√

N
ei~k·~r j , (8.5.22c)

since by orthogonality ( j|i) = δ ji. Similarly <~k| j) = ( j|~k >†. Furthermore, the states |~k > are
normalized; that is <~k|~k >= 1 and obey the completeness condition

∑
~k

|~k ><~k|= 1. (8.5.23)
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We next work with the Green’s function operator, Equation 8.4.17c, and act on the completeness
condition, to write

Ĝ(ε) =(ε− Ĥ)−1
∑
~k

|~k ><~k|= ∑
~k

(ε− Ĥ)−1|~k ><~k|= ∑
~k

|~k > 1
ε− ε~k

<~k|

=∑
~k

|~k > G~k(ε)<
~k|,

(8.5.24)

where we have used the~k-space Green’s function of Equation 8.4.18b. The site Green’s function is
now calculated from this equation as

Gi j ≡ (i|Ĝ| j) = ∑
~k

(i|~k > G~k <
~k| j) = 1

N ∑
~k

ei~k·(~ri−~r j)G~k, (8.5.25)

where Equation 8.5.22c has been used. Equation 8.5.25 expresses the relationship between the real-
space and the~k-space Green’s functions. The site Green’s function Gi j is sometimes referred to as
the propagator between initial site i and final site j. If the initial and final real space states are equal,
say |0), the diagonal site Green’s function is

G00 = (0|Ĝ|0) = 1
N ∑

~k

G~k =
1

VBZ



∫

VBZ

G~k d~k


 . (8.5.26a)

By comparing this expression with Equation 8.4.21a, we see that the density of states is related to
the site diagonal Green’s function as

D(ε) =− 1
π

Im(G00) =−
1
π

Im

(
1
N ∑

~k

G~k

)
=− 1

πVBZ
Im



∫

VBZ

G~k(ε)d
~k


 , (8.5.26b)

which is also known as the local density of states. If we include the electron spin, this expression
is to be multiplied by a factor of 2, as in Equation 8.4.21b. Finally, recall that once D(ε) has been
obtained, the integrated or total density of states can be calculated using Equation 8.3.13.

Example 8.5.0.1
If in the simple cubic band Equation 8.2.7b the parameter α = 0 and considering only one dimen-
sion, the band energy for a one-dimensional tight binding model of a one-dimensional crystal in the
nearest neighbor approximation is obtained. The resulting band is

εk =−2γ cos(ka), (8.5.27)

where only a one-dimensional momentum variable is needed; i.e., k. We wish to calculate G00(ε)
here, to write

G00 =
1
N ∑

k
Gk =

L
2π

2π/a∫

0

dk
1

ε +2γ cos(ka)
, (8.5.28)

where the one-dimensional version of Equation 8.5.26a has been used with the Brillouin zone vol-
ume being replaced as VBZ→ 2π/L for one dimension and where 0 < k < 2π/a (also L = a below).
Because the Green function integrand above has singularities whenever ε = −2γ cos(ka), we will
more conveniently transform the integral to a contour integral about the unit circle. To this end, let
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z= exp(ika) and we see that |z|= 1, dz= iaexp(ika)dk or dk = dz/(iaz), and cos(ka) = (z+1/z)/2
so that

G00 =
a

2aπi

∮ dz
z(ε +2γ(z+1/z)/2)

=
1

2πiγ
I, (8.5.29a)

where

I =
∮ dz

z2 + zε/γ +1
. (8.5.29b)

We first consider the region where ε < 0 or ε =−|ε| in which case

I =
∮ dz

(z− z+)(z− z−)
, (8.5.30)

where z+ = |ε|/(2γ)+

√
(|ε|/(2γ))2−1 and z− = |ε|/(2γ)−

√
(|ε|/(2γ))2−1. Since z+z− = 1 =

|z|, and |z−| < |z+|, we see that |z−| must lie within the unit circle over which we are performing
the contour integration, and |z+| lies outside. Thus we only consider the pole at z = |z−| and by the
residue theorem we thus obtain

I = 2πi lim
z→z−

(z− z−)
(z− z+)(z− z−)

=
2πi

(z−− z+)
=− πi√

(|ε|/(2γ))2−1
. (8.5.31a)

Substituting this back into Equation 8.5.29a, we get for ε < 0

G00,ε<0 =−
1

2πiγ
πi√

(|ε|/(2γ))2−1
=− 1√

ε2−4γ2
. (8.5.31b)

Repeating this process for the case of ε > 0 or ε = |ε|, we find

I =
πi√

(|ε|/(2γ))2−1
, (8.5.32a)

which when substituted into Equation 8.5.29a gives

G00,ε>0 =
1

2πiγ
πi√

(|ε|/(2γ))2−1
=

1√
ε2−4γ2

. (8.5.32b)

The results of Equations 8.5.31b and 8.5.32b can be combined into a single result for both ±ε in
the form

G00 =
ε

|ε|
1√

(ε + i∆)2−4γ2
, (8.5.33a)

and where we have added the small positive imaginary part, ∆, to ε to enable the density of
states calculation, as mentioned before. The density of states could simply be obtained using Equa-
tion 8.5.26b; that is,

D(ε) =− 1
π

Im(G00) . (8.5.33b)

Assuming that γ is on the order of Hartrees (Ha), we use such energy units and letγ = 1/2, we can
obtain a plot of the real and imaginary parts of G00 as shown in Figure 8.5.7.
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Figure 8.5.7: Shown are the real (dashed) and imaginary (dotted) parts of the Green function
(1/Ha) of Equation 8.5.33a versus energy (Ha) for the one-dimensional tight binding band of Equa-
tion 8.5.27 of Example 8.5.0.1.

The density of states will have a similar shape as the imaginary part of G00, except that it will be
opposite in sign and decreased in magnitude by a factor of π as mentioned above. The density of
states band has a width of 2(2γ), which is consistent with Equation 8.5.27 since the cosine function
has a total width of 2 units. With γ = 1/2, the total width is, therefore, 2Ha in our units. The code
used in obtaining Figure 8.5.7 is Green 1D.m, which is listed below.

%copyright by J. E Hasbun and T. Datta

%Green_1D.m

%It calculates the real and imaginary parts of a one-dimensional

%Green’s function for a nearest neighbor tight binding model

%where the band energy Ek=-2*gamma*cos(ka)

clear

el=-2;

eu=2;

Ne=100;

es=(eu-el)/(Ne-1);

gam=1/2; %band energy parameter (in Ha)

zim=complex(0.,1.0);

delta=1.e-3; %for the small imaginary part

for i=1:Ne

e0(i)=el+(i-1)*es;

g00(i)=e0(i)/(sqrt((e0(i)+zim*delta)^2-4*gam^2)*abs(e0(i)));

end

plot(e0,real(g00),’k-.’)

hold on

plot(e0,imag(g00),’k:’,’LineWidth’,2)

axis tight

legend(’Real(G_{00})’,’Im(G_{00})’,0)
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xlabel(’E (Ha)’,’FontSize’,12)

ylabel(’G_{00} (1/Ha)’,’FontSize’,12)

title(’One-Dimensional Green’’s Function’,’FontSize’,12)

Example 8.5.0.2
It is often the case when the integration of the~k dependent Green’s function over~k cannot be carried
out analytically. In such situations a numerical method is applied that enables its calculation. Since,
in general, the Green function contains singularities (due to poles at the eigenvalues of the problem),
standard methods of carrying out its integration are not appropriate. In Section 8.8 of this chapter,
we present the method we use to perform the numerical integration. Here we show how the numeric
method is incorporated in order to reproduce the analytic calculation of Example 8.5.0.1; however,
this time, we concentrate on the real part of G00 as well as on the density of states D(ε). So doing
provides the testing ground of the numerical method used. Figure 8.5.8 contains the comparison
between the analytic and the numerical results.
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Figure 8.5.8: Shown is a comparison of the analytic (solid line) and numerical (dotted line) results
for the real part (left panel) of the Green function (1/Ha) and the density of states (right panel) from
Equation 8.5.33 versus energy (Ha) for the one-dimensional tight binding band of Equation 8.5.27
of Example 8.5.0.1. Example 8.5.0.2 details the code used (Green 1DdosCalc.m) in performing
these calculation.

As mentioned in Example 8.5.0.1, the density of states, expectedly, resembles the imaginary part of
G00, except that it is opposite in sign and decreased in magnitude by a factor of π . The listing of
the code, Green 1DdosCalc.m, employed in this example follows below. Notice how the function
singInt.m of Section 8.8 is called upon to carry out the integration for every energy value.

%copyright by J. E Hasbun and T. Datta

%Green_1DdosCalc.m

%In addition to calculating the one-dimensional Green’s function in

%the nearest neighbor tight binding model analytically, a comparison

%is made with the purely numerical calculation. The numerical

%calculation uses the Roth’s integration scheme for singular

%functions; i.e., singint.m (separate listing in the Appendix).

function Green_1DdosCalc

clear

el=-2; %upper energy value

eu=2; %lower energy value
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Ne=100; %number of energy points

es=(eu-el)/(Ne-1); %energy step

gam=1/2; %band energy parameter (in Ha)

zim=complex(0.,1.0); %imaginary number

delta=1.e-4; %small part for plotting, integrating

for i=1:Ne

e0(i)=el+(i-1)*es;

g00(i)=e0(i)/(sqrt((e0(i)+zim*delta)^2-4*gam^2)*abs(e0(i)));

dosa(i)=-imag(g00(i))/pi; %analytic density of states

end

%The plots are done below

%Numerical calculation follows

a=1;

kl=0; %upper limit

ku=2*pi/a; %lower limit

Nk=301; %number of k-points

dk=(ku-kl)/(Nk-1);

factor=a/2.0/pi; %factor for the numerical integral

for j=1:Nk

k(j)=kl+(j-1)*dk;

Ek(j)=-2*gam*cos(k(j)*a); %the band energy defined only once

top(j)=1.0; %the numerator for integration

end

%Integration over k for each energy value

for i=1:Ne

for j=1:Nk

deno(j)=e0(i)-Ek(j)+zim*delta; %the denominator

end

ge(i)=factor*singInt(top,deno,dk); %ge is the numerical integral

dosn(i)=-imag(ge(i))/pi; %numerical density of states

end

%

%Plotting

subplot(1,2,1)

plot(e0,real(g00),’k’); %Real part of g00 - analytic

hold on

plot(e0,real(ge),’ko’,’MarkerSize’,2) %numeric

legend (’analytic’,’numeric’,0)

xlabel(’E (Ha)’)

ylabel(’Real(G_{00}) (1/Ha)’)

title(’Real part of Green’’s function (1D)’)

%

subplot(1,2,2)

plot(e0,dosa,’k’) %density of states - analytic

hold on

plot(e0,dosn,’ko’,’MarkerSize’,2) %numeric

xlabel(’E (Ha)’)

ylabel(’D(E) (1/Ha)’)

title(’Density of States (1D)’)

legend (’analytic’,’numeric’,0)
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Finally, an example related to the total density of states (see Equation 8.3.13) follows.

Example 8.5.0.3
In this example, we perform a total density of states calculation for the one-dimensional density of
states of the Example 8.5.0.2 using Equation 8.3.13. Thus, here we will use D(ε) and integrate it
over the energy to get the total density of states. Taking spin into account, we expect that a single
band contains 2 electrons, so that we multiply by a factor of 2 in order to show the total electron
count for the one-dimensional band. The results obtained are shown in Figure 8.5.9.
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Figure 8.5.9: The total density of states (dotted line) and the density of states (solid line) are shown.
The total or integrated density of states is obtained using Equation 8.3.13. It has been multiplied by
a factor of 2 to include electron spin.

In the total density of states (2 ∗N(E)), notice that by the end of the energy covering the width of
the D(E) band, the number of electrons is 2, which, as expected, shows the number of electrons
per band. The code used in obtaining Figure 8.5.9 is Green 1Totdos.m which is listed below. The
code makes use of the Romberg numerical integration approach because it tends to do better than
other methods, such as Simpson’s rule, for example. This is indicated by the line using the func-
tion “rombergInt”. In order to use the Romberg integration scheme, however, an interpolator has
been employed in order to interpolate the density of states, that is used as input. The array “e0”
corresponds to the energy values at which the density of states (array “dosa”) has been calculated.
The interpolator used is indicated by the handle “@fForRomb” in the call to the Romberg method;
i.e., “rombergInt(el,eT(nt),@fForRomb)”. Here “el” and “eT(nt)” are the lower and upper energy
integration limits, respectively. The function “fForRomb” is part of the code listed below, and the
interpolating function is interpFunc.m which is listed in Section 8.8 of this chapter. The Romberg
integration function, rombergInt.m, is also listed in this appendix. They are listed separately for later
use in other programs.

%copyright by J. E Hasbun and T. Datta

%Green_1Totdos.m

%Uses the density of states from the analytic Green’s function

%for the one-dimensional tight binding model and integrates it

%to obtain the total density of states N(E). The Romberg method

%is used to perform the integration over the density of states D(E).

%Romberg uses the interpolated D(E) to produce N(E).

function Green_1Totdos

clear
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global e0 dosa %needed for interpolation

el=-2; %upper energy value

eu=2; %lower energy value

Ne=100; %number of energy points

es=(eu-el)/(Ne-1); %energy step

gam=1/2; %band energy parameter (in Ha)

zim=complex(0.,1.0); %imaginary number

delta=1.e-4; %small part for plotting, integrating

for i=1:Ne

e0(i)=el+(i-1)*es;

g00=e0(i)/(sqrt((e0(i)+zim*delta)^2-4*gam^2)*abs(e0(i)));

dosa(i)=-imag(g00)/pi; %analytic density of states

end

%Total density of states and plots. Integrate with Romberg’s method.

x=0.1; %energy step

eT=el:x:eu; %energy range (using previous e1, eu limits)

for nt=1:length(eT)

intdos(nt)=rombergInt(el,eT(nt),@fForRomb); %integrate on [el,eT]

fprintf(’E0=%9.4f, integrated dos=%14.6e\n’,eT(nt),intdos(nt));

end

%density of states (dosa)

plot(e0,dosa,’k’)

hold on

%total dos multiplied by 2 to include electron spin

plot(eT,2*intdos,’k:’,’LineWidth’,2)

legend (’D(E)’,’2*N(E)’,’Location’,’North’)

xlabel(’E (Ha)’)

ylabel(’D(E) (1/Ha) and 2*N(E)’)

title(’Density of States and 2*Total Density of States’)

function y=fForRomb(p)

%Function used by rombergInt integration and which interpolates

%the density of states versus e0.

global e0 dosa %variables passed from the main program

y=interpFunc(p,e0,dosa); %the Langrange interpolator for Romberg

In the Example 8.5.0.3, we used the analytic density of states in order to carry out the integrated
density of states as a simplified computation. Often, the density of states is also calculated numeri-
cally, as in Example 8.5.0.2; in such cases, more computer time is consumed when both D(ε) and
N(ε) are computed numerically.

8.6 Density of States for the Cubics
As we have seen, the process of obtaining the density of states of a crystal system requires knowl-
edge of its band structure; it also helps to have the Green function, if the methods employed here
are used. In Example 8.5.0.2, a one-dimensional integration over k is all that was needed to obtain
the D(ε). In three dimensions, in the absence of analytical results, an integration over~k is ultimately
needed. In this section we discuss the method used to carry out such calculations with minimal
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numerical effort. The density of states for the cubic systems are fortunately known analytically and
they provide a way to assess whatever numerical methods we employ. It is important to realize that
obtaining the density of states of a crystal system enables the study of other properties associated
with the crystal’s electronic properties. The reason is that the density of states provides knowledge
as to the distribution of electron states per unit energy in a particular system. Below we will delve
deeper into the cubic systems and, in doing so, we gain knowledge that will later be employed in
obtaining semiconducting systems’ band structures for which analytical results are not known.

8.6.1 The Simple Cubic Density of States

We will work with the simple cubic (SC) band discussed in Section 8.2.1 and refer to the energy
band in the form E~k = (ε~k,SC +α)/(2γ) or since γ is usually on the order of Hartree (Ha) units, we
write

E~k,SC =−(cos(kxa)+ cos(kya)+ cos(kza)) , (8.6.34a)

with associated~k-space Green function

G~k,SC(E) =
1

E−E~k,SC + i∆
, (8.6.34b)

and with ∆ taking a small positive value. The density of states involves an integral over the SC’s
Brillouin zone (BZ); that is,

D(E) =− 1
πVSC−BZ

Im
(∫

VSC−BZ

G~k,SC(E)d
~k
)
, (8.6.35)

where, from Chapter 2, VSC−BZ = (2π/a)3, with a the lattice constant. The simple cubic’s Fermi sur-
face and BZ have been described in Section 8.3.1. Here, we see that the integral of Equation 8.6.35
can be simplified if symmetry considerations are taken into account. The simple cubic BZ has
cubic shape and contains four special symmetry points, discussed previously in Chapter 2, and
which describe the four corners of a tetrahedron. The tetrahedron so depicted is known as an ir-
reducible tetrahedron. These symmetry points are Γ, X , R, and M. The tetrahedron has volume
VSC,IBZ = |~X · (~R× ~M)|/6 =VSC−BZ/48, so that 48 times the simple cubic’s irreducible BZ tetrahe-
dron, or irreducible BZ (IBZ), volume equals the simple cubic’s first BZ volume. By performing
symmetry operations of the IBZ, the entire SC first BZ can be reconstructed. Similarly, one per-
forms calculations on the IBZ to minimize the computational effort. In this manner, for the simple
cubic, multiplying the density of states calculated within the IBZ by 48 is equivalent to performing
the density of states calculation on the entire BZ. Still, carrying out integrations of density of states
over three-dimensional~k-space is a time-consuming process. The reason is that to get accurate re-
sults, one has to employ many points in momentum space for each dimension. Fortunately, methods
have been developed to minimize this effort as well. Here we employ the ray method [33] which is
detailed in Section 8.8. Thus using Equations 8.6.34, 8.6.35 and including the ray method details of
Section 8.8, the density of states is written as

D(E) =− 1
πVBZ

Im
∫

VBZ

G~k(E)d
~k≈− 3VT

πVBZ
NSC−IBZ ∑

i
δiIm

{ 1∫

0

dα α
2G[E,α(~q1+~vai)]

}
, (8.6.36a)

where NSC−IBZ = 48; i.e., the number of irreducible tetrahedrons in the simple cubic’s BZ and where
the specific form of the Green function is

G[E,α(~q1 +~vai)] = lim
∆→0

1
E−E (α(~q1 +~vai))+ i∆

, (8.6.36b)
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since the wavevector became replaced with~k = α(~q1 +~va) in the ray method. Essentially, the entire
~k-space integral (using the energy band of Equation 8.6.34a) has been transformed to a sum over
one-dimensional integrals. These integrals are the ones that involve singularities and they will be
handled by the methods of Section 8.8 (see Example 8.5.0.2). The quantities VT , δi = ∆si/S, S and
the vectors ~q1 as well as ~va are detailed in Section 8.8. The total density of states is carried out as
in Example 8.5.0.3, though we do not worry about the electron spin factor of 2 at this time. For
completeness, we will also carry out a comparison between the numeric and the exact results for the
simple cubic density of states [34]. In this way, the density of states (numeric and exact) as well as
the total density of states are shown in Figure 8.6.10.
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Figure 8.6.10: The exact (solid) [34], numeric (circles) density of states, D(E), for the simple cubic.
The integrated density of states (dots), N(E), is shown without including electron spin into account.

The numeric density of states, D(E), appears to do very well compared to the exact results. This is
fortunate because our numeric method (discussed above) is the one that will be used for the semi-
conductor band structure calculations later in the chapter. The total density of states, N(E), shows
that the band is filled with one state when the energy reaches the band width. If one includes the
factor of 2 for spin, the result is that two electrons occupy the entire band. The entire calculational
approach explained in this section has been incorporated into the script sc dos.m that is listed below
and which reproduces Figure 8.6.10.

%copyright by J. E Hasbun and T. Datta

%sc_dos.m

%Density of states for the single band, simple cubic system

%according to the ray approach for the tetrahedron method of

%An-Ban Chen, Phys Rev. B V16, 3291 (1977). We also use the

%singInt integration method for the Green’s function.

%For the ray method, the 2D vectors on the faces of the thin

%tetrahedrons are obtained from the TTareas function. These vectors are

%average vectors.

function sc_dos

clear, clc;

global e0 dos

delta=1.5e-2;
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im=complex(0.0,1.0);

x=0.1; %energy step

e2=3.0;

e1=-e2;

e0=e1:x:e2; %energy range

ntmax=length(e0);

a=1.0; %lattice constant

tpa=2*pi/a;

VBZ=tpa^3; %total SC BZ volume

%SC case tetrahedron (only one needed) in units of 2*pi/a;

X=[1/2,0,0]; R=[1/2,1/2,1/2]; M=[1/2,1/2,0]; %tetrahedron symmetry points

%Tetrahedron q vectors according to the method of An-Ban Chen & B. I. Reser.

q(1,:)=R*tpa; q(2,:)=(X-R)*tpa ; q(3,:)=(M-X)*tpa;

%total tetrahedron volume

VSC_t=abs(dot(X,cross(R,M))/6)*VBZ;

lim=9; lom=lim-1; %lim must be odd

%number of divisions along q2, and q3 => total number of TT’s is n^2

n=25;

%VSC_t is the standard tetrahedron volume, and there are 48 of them in

%the SC cube’s total BZ

factor=VSC_t*48; %initital factor used in the full integral result

%TT=thin tetrahedron, T=tetrahedron

DD=1/n^2; %ratio of TT area to T area (since all thin triangles are the

same)

factor=3.0*DD*factor; %factor is modified further by 3*DD

par1=0.0;

par2=1.0;

dk=(par2-par1)/lom;

al=par1:dk:par2; %alpha range to integrate (main TT axis)

dv=1/n; %TT division size

be=0:dv:1; %beta

ga=be; %gamma

%The function TTareas produces the average vectors "va" on the faces of

%the TT’s. Notation: va(ith TT vector,coordinate(x,y,z))

%Ntt=number of TT’s, areas(ith TT area)

[Ntt,areas,va]=TTareas(q(2,:),q(3,:),n,be,ga);

terr=0.0; %total error

dos=zeros(1,ntmax);

for nt=1:ntmax

dos(nt)=0.0;

for it=1:Ntt %Ntt TT’s

for ko=1:lim %loop over alpha

for v=1:3 %build the k vector, kx=k(1), ky=k(2), kz=k(3)

%The va vectors are average vectors on the TT faces

k(v)=al(ko)*(q(1,v)+va(it,v)); %va vectors used here

end

top(ko)=al(ko)*al(ko);

deno(ko)=e0(nt)+cos(k(1))+cos(k(2))+cos(k(3))+im*delta;

end

gy=singInt(top,deno,dk);

dos(nt)=-imag(gy)/pi+dos(nt); %single TT dos, add all n^2 TT’s
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end

dos(nt)=factor*dos(nt)/VBZ; %numeric dos

ge(nt)=jelittoScDos(e0(nt))/VBZ; %exact dos

err=abs(dos(nt)-ge(nt)); %the error per energy

terr=terr+err; %cumulative error

fprintf(’E0=%9.4f, dos=%9.4f, ge=%9.4f, err=%14.6e\n’,...

e0(nt),dos(nt),ge(nt),err)

end

terr=terr/ntmax;

fprintf(’Total error=%14.6e\n’,terr)

%Total integrated density of states, and plot

fprintf(’Integrated Density of States for the simple cubic’)

intdos=zeros(1,ntmax);

for nt=1:ntmax

intdos(nt)=rombergInt(e1,e0(nt),@fForRomb); %integrate on [e1,e0]

fprintf(’E0=%9.4f, integrated dos=%14.6e\n’,e0(nt),intdos(nt));

end

plot(e0,ge,’k’), hold on %exact dos

plot(e0,dos,’ko’,’MarkerSize’,5) %numeric dos

%Next we do the total density of states without the factor of 2 for spin.

plot(e0,intdos,’k:’,’LineWidth’,2);

xlabel(’E (Hartrees)’), ylabel(’D(E) (states/energy), N(E) (states)’)

str=cat(2,’D(E) and N(E) for the simple cubic (no spin)’);

title(str, ’Fontsize’,12)

legend(’Exact D(E)’,’numeric D(E)’,’N(E)’,0)

function ge=jelittoScDos(ee)

%Jelitto’s DOS for the simple cubic (exact)

eaa=abs(ee);

if (eaa <= 3.) & (eaa >= 1.)

a1=3.-eaa;

a2=a1^2;

a=sqrt(a1);

b=80.3702-16.3846*a1;

d=0.78978*(a2);

f=-44.2639+3.66394*a1;

h=-0.17248*(a2);

ge=a*((b+d)+(f+h)*sqrt(eaa-1.));

else

if(eaa < 1.)

ge=70.7801+1.0053*(ee^2);

else

ge=0.;

end

end

function y=fForRomb(p)

%function used by romberg integration and which interpolates

%tdos versus e0

global e0 dos

y=interpFunc(p,e0,dos);
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8.6.2 The Body Centered Cubic Density of States

We now work with the body centered cubic (BCC) band discussed in Section 8.2.2 and refer to the
energy band in the form E~k = (ε~k,BCC +α)/(8γ). In Hartree (Ha) units we write

E~k,BCC =−cos(
kxa
2

)cos(
kya
2

)cos(
kza
2

), (8.6.37a)

with associated~k-space Green function

G~k,BCC(E) =
1

E−E~k,BCC + i∆
, (8.6.37b)

with, as before, ∆ small and positive. The density of states integral over the Brillouin zone (BZ) is

D(E) =− 1
πVBCC−BZ

Im
(∫

VBCC−BZ

G~k,BCC(E)d
~k
)
, (8.6.38)

where, from Chapter 2, VBCC−BZ = 2(2π/a)3, with a the lattice constant. The body centered cubic’s
Fermi surface and BZ have been described in Section 8.3.2. The integral of Equation 8.6.38 can be
simplified with symmetry considerations. The body centered cubic’s BZ is a rhombic dodecahedron
and, similar to the simple cubic, contains four special symmetry points that describe the four corners
of an irreducible tetrahedron. The symmetry points are Γ, P, H, and N, which were discussed in
Chapter 2. This tetrahedron has volume VBCC,IBZ = |~P · (~H×~N)|/6 =VBCC−BZ/24, so that 24 times
the body centered cubic’s irreducible BZ tetrahedron volume equals the BCC’s first BZ volume.
Multiplying the density of states calculated within the IBZ by 24 is equivalent to performing the
density of states calculation on the entire BZ. Using the same approach as in Section 8.6.1, the
density of states is obtained using Equations 8.6.36 with the band of Equation 8.6.37a. We again
compare the numeric and the exact results for the BCC density of states [34]. The density of states
(numeric and exact) as well as the total density of states are shown in Figure 8.6.11.
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Figure 8.6.11: The exact (dots) [34] and numeric (circles) density of states, D(E), for the body
centered cubic are shown. The integrated density of states (dotted line), N(E), is shown without
taking electron spin into account.
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Again, as in the simple cubic, the numeric density of states, D(E), appears to do very well compared
to the exact results. The total density of states, N(E), shows that the band is filled with one state
when the energy reaches the band width and if we include spin, two electrons occupy the entire band.
The script used in this calculation is bcc dos.m, listed below, and which reproduces Figure 8.6.11.

%copyright by J. E Hasbun and T. Datta

%bcc_dos.m

%Density of states for the single band, body centered cubic system

%according to the ray approach for the tetrahedron method of

%An-Ban Chen, Phys Rev. B V16, 3291 (1977). We also use the

%singInt integration method for the Green’s function.

%For the ray method, the 2D vectors on the faces of the thin

%tetrahedrons are obtained from the TTareas function. These vectors are

%average vectors.

function bcc_dos

clear, clc;

global e0 dos

delta=1.5e-2;

im=complex(0.0,1.0);

x=0.04; %energy step

e2=1.0;

e1=-e2;

eminl=-0.05; eminr=-eminl;

e0a=e1:x:eminl; e0b=eminr:x:e2; %not to do in between eminl and eminr

e0=[e0a,e0b]; %energy range, but skip small e range

ntmax=length(e0);

a=1.0; %lattice constant

tpa=2*pi/a;

VBZ=2*tpa^3; %total BCC BZ volume

%BCC case tetrahedron (only one needed) in units of 2*pi/a;

P=[1/2,1/2,1/2]; H=[1,0,0]; N=[1/2,1/2,0]; %tetrahedron symmetry points

%Tetrahedron q vectors according to the method of An-Ban Chen & B. I. Reser.

q(1,:)=P*tpa; q(2,:)=(H-P)*tpa ; q(3,:)=(N-H)*tpa;

%total tetrahedron volume

VBCC_t=abs(dot(P,cross(H,N))/6)*VBZ;

lim=9; lom=lim-1; %lim must be odd

%number of divisions along q2, and q3 => total number of TT’s is n^2

n=25;

%VBCC_t is the standard tetrahedron volume part, and there are 24 of them in

%the body center cube’s total BZ

factor=VBCC_t*24; %initital factor used in the full integral result

%TT=thin tetrahedron, T=tetrahedron

DD=1/n^2; %ratio of TT area to T area (since all thin triangle are the

same)

factor=3.0*DD*factor; %factor is modified further by 3*DD

par1=0.0;

par2=1.0;

dk=(par2-par1)/lom;

al=par1:dk:par2; %alpha range to integrate (main TT axis)

dv=1/n; %TT division size

be=0:dv:1; %beta
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ga=be; %gamma

%The function TTareas produces the average vectors "va" on the faces of

the TT’s

%Notation: va(ith TT vector,coordinate(x,y,z))

%Ntt=number of TT’s, areas(ith TT area)

[Ntt,areas,va]=TTareas(q(2,:),q(3,:),n,be,ga);

terr=0.0; %total error

dos=zeros(1,ntmax);

for nt=1:ntmax

dos(nt)=0.0;

for it=1:Ntt %Ntt TT’s

for ko=1:lim %loop over alpha

for v=1:3 %build the k vector, kx=k(1), ky=k(2), kz=k(3)

%The va vectors are average vectors on the TT faces

k(v)=al(ko)*(q(1,v)+va(it,v)); %va vectors used here

end

top(ko)=al(ko)*al(ko);

deno(ko)=e0(nt)+cos(k(1)/2)*cos(k(2)/2)*cos(k(3)/2)+im*delta;

end

gy=singInt(top,deno,dk);

dos(nt)=-imag(gy)/pi+dos(nt); %single TT dos, add all n^2 TT’s

end

dos(nt)=factor*dos(nt)/VBZ;

ge(nt)=jelittoBccDos(e0(nt))/VBZ;

err=abs(dos(nt)-ge(nt));

terr=terr+err;

fprintf(’E0=%9.4f, dos=%9.4f, ge=%9.4f, err=%14.6e\n’,...

e0(nt),dos(nt),ge(nt),err)

end

terr=terr/ntmax;

fprintf(’Total error=%14.6e\n’,terr)

%Total integrated density of states, and plot

fprintf(’Integrated Density of States for the body centered cubic’)

intdos=zeros(1,ntmax);

for nt=1:ntmax

intdos(nt)=rombergInt(e1,e0(nt),@fForRomb); %integrate on [e1,e0]

fprintf(’E0=%9.4f, integrated dos=%14.6e\n’,e0(nt),intdos(nt));

end

plot(e0,ge,’k.’), hold on %exact dos

plot(e0,dos,’ko’,’MarkerSize’,5) %numeric dos

%Next we do the total density of states without the factor of 2 for spin.

plot(e0,intdos,’k:’,’LineWidth’,2);

xlabel(’E (Hartrees)’), ylabel(’D(E) (states/energy), N(E) (states)’)

str=cat(2,’D(E) and N(E) for the body centered cubic (no spin)’);

title(str, ’Fontsize’,12)

legend(’Exact D(E)’,’numeric D(E)’,’N(E)’,0)

function ge=jelittoBccDos(ee)

%Jelitto’s DOS for the body centered cubic (exact)

eaa=abs(ee);

if (eaa < 1.)
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ge=2.0*sqrt(1.-eaa)*(log(5.845/eaa))^2;

ge=ge*(16.6791+3.6364*eaa+2.4880*eaa^2);

else

ge=0.0;

end

function y=fForRomb(p)

%function used by romberg integration and which interpolates

%tdos versus e0

global e0 dos

y=interpFunc(p,e0,dos);

8.6.3 The Face Centered Cubic Density of States

We now work with the face centered cubic (FCC) band discussed in Section 8.2.3 and refer to the
energy band in the form E~k = (ε~k,FCC +α)/(4γ). In Hartree (Ha) units we write

E~k,FCC =−
(

cos(
kxa
2

)cos(
kya
2

)+ cos(
kya
2

)cos(
kza
2

)+ cos(
kxa
2

)cos(
kza
2

)

)
, (8.6.39a)

with associated~k-space Green function

G~k,FCC(E) =
1

E−E~k,FCC + i∆
, (8.6.39b)

with, as before, ∆ small and positive. The density of states integral over the Brillouin zone (BZ) is

D(E) =− 1
πVFCC−BZ

Im
(∫

VFCC−BZ

G~k,FCC(E)d
~k
)
, (8.6.40)

where, from Chapter 2, VFCC−BZ = 4(2π/a)3, with a the lattice constant. The face centered cu-
bic’s Fermi surface and BZ have been described in Section 8.3.3. The integral of Equation 8.6.40
can be simplified with symmetry considerations. The face centered cubic’s BZ is a fourteen-sided
polyhedron and, similar to the other two cubics, contains symmetry points that describe three ir-
reducible tetrahedrons. The symmetry points are Γ, K, U , L, W , and X which were also dis-
cussed in Chapter 2. The tetrahedrons’ vertices are Γ,L,K,W ; Γ,L,U,W ; and Γ,X ,U,W . They
have respective volumes VT 1 = L · (K×W )/6 =VFCC−BZ/32, VT 2 = L · (U×W )/6 =VFCC−BZ/32,
and VT 3 = X · (U ×W )/6 = VFCC−BZ/48, so that the tetrahedrons have a collective volume of
VFCC,IBZ =VFCC−BZ/12. Thus 12 times the face centered cubic’s irreducible BZ tetrahedrons’ vol-
ume equals the FCC’s first BZ volume. In a similar way to what we have done with the other cubics,
multiplying the density of states calculated within the IBZs by 12 is equivalent to performing the
density of states calculation on the entire BZ. Using the same approach as in Section 8.6.1, the
density of states is obtained using Equation 8.6.36 with the band of Equation 8.6.39a. We again
compare the numeric and the exact results for the FCC density of states [34]. The density of states
(numeric and exact) as well as the total density of states are shown in Figure 8.6.12.
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Figure 8.6.12: Shown are the exact (dots) [34] and numeric (circles) density of states, D(E), for the
face centered cubic. The integrated density of states (dotted line), N(E), is shown without taking
electron spin into account.

The numeric density of states, D(E), for the FCC is a bit more challenging and, to improve it, it is
necessary to increase the number of thin tetrahedrons used (variable n) and the number of k-points
in the integration (variable lim) within the program code described below. This would demand
computational time, of course, and the user is welcome to try. Overall, the agreement between
the numerical and the exact results is acceptable. The total density of states, N(E), shows that the
band is filled with one state when the energy reaches the band width and if we include spin, two
electrons occupy the entire band. The script used in this calculation is fcc dos.m, listed below, and
it reproduces Figure 8.6.12.

%copyright by J. E Hasbun and T. Datta

%fcc_dos.m

%Density of states for the single band, face centered cubic system

%according to the ray approach for the tetrahedron method of

%An-Ban Chen, Phys Rev. B V16, 3291 (1977). We also use the

%singInt integration method for the Green’s function.

%For the ray method, the 2D vectors on the faces of the thin

%tetrahedrons are obtained from the TTareas function. These vectors are

%average vectors.

function fcc_dos

clear, clc;

global e0 dos

delta=1.5e-3;

im=complex(0.0,1.0);

x=0.05; %energy step

e2=-3.0;

e1=1.0-delta; %not to go too close to 1.0

e0=e2:x:e1; %energy range

ntmax=length(e0);

a=1.0; %lattice constant
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tpa=2*pi/a;

VBZ=4*tpa^3; %total FCC BZ volume

%FCC case tetrahedrons (three needed) in units of 2*pi/a;

%points used in units of 2*pi/a

L=[1/2,1/2,1/2]; K=[3/4,3/4,0]; U=[1,1/4,1/4]; W=[1,1/2,0]; X=[1,0,0];

%1st tetrahedron (Vectors in units of 2*pi/a)

A(1,:)=L; B(1,:)=K; C(1,:)=W; %L, K, W points

%tetrahedron volume = 1/32 of the total BZ vol, so use in corresp. integral

VFCC_t1=abs(dot(A(1,:),cross(B(1,:),C(1,:)))/6);

factor(1)=VFCC_t1;

%2nd tetrahedron (Vectors in units of 2*pi/a)

A(2,:)=L; B(2,:)=U; C(2,:)=W; %L, U, W points

%tetrahedron volume = 1/32 of the total BZ vol, so use in corresp. integral

VFCC_t2=abs(dot(A(2,:),cross(B(2,:),C(2,:)))/6);

factor(2)=VFCC_t2;

%3rd tetrahedron (Vectors in units of 2*pi/a)

A(3,:)=X; B(3,:)=U; C(3,:)=W; %X, U, W points

%tetrahedron volume = 1/48 of the total BZ vol, so use in corresp. integral

VFCC_t3=abs(dot(A(3,:),cross(B(3,:),C(3,:)))/6);

factor(3)=VFCC_t3;

lim=21; lom=lim-1; %lim must be odd

%number of divisions along q2, and q3 => total number of TT’s is n^2

n=10;

%VFCC_t=(VFCC_t1+VFCC_t2+VFCC_t3) %total volume=sum of 3 tetrahedrons

%VFCC_t is the standard tetrahedron volume part, and there are 12 VFCC_t’s

%in the face center cube’s total BZ (1/32+1/32+1/48=1/12)

factor_t=12*VBZ; %to be used in the full integral result

%TT=thin tetrahedron, T=tetrahedron

DD=1/n^2; %ratio of TT area to T area (since all thin triangles are the

same)

factor_t=3.0*DD*factor_t; %factor is modified further by 3*DD

par1=0.0;

par2=1.0;

dk=(par2-par1)/lom;

al=par1:dk:par2; %alpha range to integrate (main TT axis)

dv=1/n; %TT division size

be=0:dv:1; %beta

ga=be; %gamma

%Tetrahedron q vectors according to the method of An-Ban Chen & B. I. Reser.

%Notation: q(tetrahedron(1,2,3),coordinate(x,y,z),vector(1,2,3))

q(:,:,1)=A*tpa; q(:,:,2)=(B-A)*tpa; q(:,:,3)=(C-B)*tpa;

%The function TTareas produces the average vectors "va" on the faces of the

TT’s

%Notation: va(ith TT vector,coordinate(x,y,z),tetrahedron(1,2,3))

%Ntt=number of TT’s, areas(tetrahedron(1,2,3),ith TT area)

for tet=1:3 %the fcc has three tetrahedrons

[Ntt(tet),areas(tet,:),va(:,:,tet)]=TTareas(q(tet,:,2),q(tet,:,3),

n,be,ga);

end

terr=0.0; %total error

dos=zeros(1,ntmax);
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for nt=1:ntmax

dos(nt)=0.0;

for tet=1:3 %the fcc has three tetrahedrons

dos_tet(tet)=0.0;

for it=1:Ntt(tet) %Ntt TT’s for the tet tetrahedron

for ko=1:lim %loop over gamma

for v=1:3 %build the k vector, kx=k(1), ky=k(2), kz=k(3)

%The va vectors are average vectors on the TT faces

k(v)=al(ko)*(q(tet,v,1)+va(it,v,tet)); %va vectors used here

end

top(ko)=al(ko)*al(ko);

deno(ko)=e0(nt)+cos(k(1)/2)*cos(k(2)/2)...

+cos(k(1)/2)*cos(k(3)/2)...

+cos(k(2)/2)*cos(k(3)/2)+im*delta;

end

gy=singInt(top,deno,dk);

dos_tet(tet)=-imag(gy)/pi+dos_tet(tet); %single TT dos, add all n^2

TT’s

end

%weigh the corresponding tetrahedron contribution by its factor

dos(nt)=factor(tet)*dos_tet(tet)+dos(nt); %dos=sum over 3 tetrahedrons

end

%finally, multiply by the total three-tetrahedon contribution factor

dos(nt)=factor_t*dos(nt)/VBZ;

ge(nt)=jelittoFccDos(e0(nt))/VBZ;

err=abs(dos(nt)-ge(nt));

terr=terr+err;

fprintf(’E0=%9.4f, dos=%9.4f, ge=%9.4f, err=%14.6e\n’,...

e0(nt),dos(nt),ge(nt),err)

end

terr=terr/ntmax;

fprintf(’Total error=%14.6e\n’,terr)

%Total integrated density of states, and plot

fprintf(’Integrated Density of States for the face centered cubic’)

intdos=zeros(1,ntmax);

for nt=1:ntmax

intdos(nt)=rombergInt(e2,e0(nt),@fForRomb); %integrate on [eL,e0]

fprintf(’E0=%9.4f, integrated dos=%14.6e\n’,e0(nt),intdos(nt));

end

plot(e0,ge,’k.’), hold on %exact dos

plot(e0,dos,’ko’,’MarkerSize’,5) %numeric dos

%Next we do the total density of states without the factor of 2 for spin.

plot(e0,intdos,’k:’,’LineWidth’,2);

xlabel(’E (Hartrees)’), ylabel(’D(E) (states/energy), N(E) (states)’)

str=cat(2,’D(E) and N(E) for the face centered cubic (no spin)’);

title(str, ’Fontsize’,12)

legend(’Exact D(E)’,’numeric D(E)’,’N(E)’,0)

function ge=jelittoFccDos(ee)

%Jelitto’s DOS for the face centered cubic (exact)

if((ee > -3.0)) & (ee < 0.0)
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eaa=abs(ee);

a1=3.0+ee;

a2=a1^2;

a=sqrt(a1);

b=-85.9325+101.103*a1;

d=-16.2885*(a2);

f=56.8683-47.1215*a1;

h=2.9045*(a2);

ge=4.*a*((b+d)+(f+h)*sqrt(eaa));

else

if((ee >= 0.0) & (ee <= 1.0))

b11=122.595-19.4100*ee+1.76011*ee^2;

b22=(-44.8100+7.18628*ee)*log(1.-ee);

ge=4.0*(b11+b22);

else

ge=0.;

end

end

function y=fForRomb(p)

%function used by romberg integration and which interpolates

%tdos versus e0

global e0 dos

y=interpFunc(p,e0,dos);

8.7 Simple Tight Binding Semiconductor Multiband Structures
Here we extend the tight binding method employed in the single band Section 8.2 to semiconducting
systems. In particular, we work with a multiband system which arises from the interactions between
the valence electrons in the s and p orbitals. Semiconducting systems characterized by these in-
teractions include crystals involving group IV elements, such as C, Si, Ge, and Sn. Additionally,
compounds made of groups III and V elements have band structures that arise from the interaction
of electrons in the s and p orbitals; some of these compounds are GaAs, InSb, AlP, etc. The purpose
of the approach we follow below is meant to be instructive rather than accurate. For example, it does
not produce accurate band gaps, nor does it produce inderect band gaps, as is the case for Si and
Ge. However, the method illustrates the important features associated in obtaining bands structures,
namely, the interaction between the valence electrons that ultimately leads to solutions of the eigen-
value problem versus wavevector. These types of semiconductors have the zinc-blende structure in
common, but in order to treat compounds, we work with two species, which we refer to as cations
and anions as shown in Figure 8.7.13.
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Figure 8.7.13: (a) The standard zinc-blende unit cell. (b) Each cation is surrounded by four nearest
neighbor anions and, similarly, each anion is surrounded by four nearest neighbor cations. The
standard diamond unit cell structure is obtained by letting the atoms be identical.

The cation is the positive species (the metalic atom which holds electrons more loosely) and the
anion is the negative species (the non-metalic atom which has high electron affinity). For III-V
compounds, the cation is the group III species, while the group V species is the anion. In the case of
group IV elements, there is only one species. As mentioned in Chapter 1, the zinc-blende structure
is considered to be two interlaced FCC structures. It has eight atoms per cell, four cations and
four anions. The anions occupy one sublattice and the cations occupy the other as illustrated in
Figure 8.7.13. We next develop the tight binding Hamiltonian that will be used to obtain the band
structures. We will later develop Green’s function which will allow us to obtain the density of states.

8.7.1 The Band Structure

Let’s begin by defining the symbols used throughout, then the method applied in obtaining the band
structures is described. We first let the letter µ represent an atomic orbital, such as s or px,y,z, and
let ν represent the sublattice (anion or cation). We then write the Bloch function of orbital µ for
sublattice ν as a linear combination of atomic orbitals (LCAO) on each sublattice site as

|µν~k >=
1√
N ∑

i
ei[~k·(~Ri+~τν )]|µν~Ri). (8.7.41)

Here |µν~k > is a Bloch function with the periodicity of the lattice and the |µν~Ri) are atomic
functions with orbital µ (s, px, py, pz), lattice vector ~Ri, sublattice vector ~τν (for the cation, say,
~τc = (0,0,0)a, and for the anion~τa = (1,1,1)a/4, with a the lattice constant), and N is the number
of wavevectors in the BZ. (N is also the number of cells in the crystal.) The position of the cation
is taken as ~Ri = (0,0,0)a = ~τc. In this way, the cation is surrounded by four anions at positions
~d1 = (1,1,1)a/4, ~d2 = (1, 1̄, 1̄)a/4, ~d3 = (1̄,1, 1̄)a/4, and ~d4 = (1̄, 1̄,1)a/4. The eigenvalues are
obtained from the equation

Ĥ|~kn >= E~kn|~kn >, (8.7.42)

where Ĥ is the crystal Hamiltonian, n is a band index, and E~kn are the eigenvalues of the crystal
wavefunction |~kn >. A plot of the energy eigenvalues E~kn versus ~k produces the crystal energy
bands. To obtain these energies, the crystal wave function is expanded as a linear combination of
Bloch functions, |µν~k >, by writing

|~kn >= ∑
µν

|µν~k >< µν~k|~kn > (8.7.43a)
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where we have used the completeness condition

∑
µν

|µν~k >< µν~k|= 1. (8.7.43b)

In a similar fashion, the Bloch functions of band index n are thought to obey ∑
n
|~kn ><~kn| = 1, so

that one can write |µν~k >= ∑
n
|~kn ><~kn|µν~k >. In Equation 8.7.43a, the quantities < µν~k|~kn >

are the eigenvectors. So with the help of Equation 8.7.43b, muliplying Equation 8.7.42 by < µ ′ν ′~k|
from the left, we obtain

∑
µν

< µ ′ν ′~k|Ĥ|µν~k >< µν~k|~kn >= E~kn ∑
µν

< µ ′ν ′~k|µν~k >< µν~k|~kn > . (8.7.44)

This expression can be reorganized by making use of the orthogonality of the Bloch functions

< µ ′ν ′~k|µν~k >= δµµ ′δνν ′, (8.7.45)

to yield the secular equation

∑
µν

(
µµ ′Hνν ′

~k
−E~knδµµ ′δνν ′

)
< µν~k|~kn >= 0, (8.7.46)

which we employ to obtain the energy bands and where we have defined µµ ′Hνν ′
~k
≡<

µ ′ν ′~k|Ĥ|µν~k >. Equation 8.7.46 says that, given the matrix elements of the Hamiltonian between
two atomic functions; i.e., µµ ′Hνν ′

~k
, then by performing a diagonalization procedure we can obtain

the energy bands E~kn as a function of~k as well as the eigenvectors. Here, we do not intend to solve
for the matrix elements of Ĥ: however, instead we think of µµ ′Hνν ′

~k
as parameters in a similar way

that Harrison proposed [16]. To this end, the total Hamiltonian that we use has diagonal matrix ele-
ments between s and p orbitals for the anion and the cation as well as off-diagonal matrix elements.
The Hamiltonian is, therefore, an 8×8 matrix with a 2×2 block notation in the form

H~k =

(
Hcc Hca

Hac Haa

)

~k
(8.7.47)

where each Hνν ′ block is a 2× 2 matrix containing s, px, py, and pz interatomic matrix elements
and ν is the sublattice index (a = anion, c = cation). The full 8× 8 Hamiltonian matrix of Equa-
tion 8.7.47 is shown in Table 8.7.1.

Table 8.7.1: The full nearest neighbor tight binding 8×8 matrix Hamiltonian model for semicon-
ductors with zinc-blende structure, which is referred to hereafter as the Harrison model (Source:
[16]).

sc sa pc
x pc

y pc
z pa

x pa
y pa

z
sc εc

s Essg0 0 0 0 Espg1 Espg2 Espg3
sa Essg∗0 εa

s −Espg∗1 −Espg∗2 −Espg∗3 0 0 0
pc

x 0 −Espg1 εc
p 0 0 Exxg0 Exyg3 Exyg2

pc
y 0 −Espg2 0 εc

p 0 Exyg3 Exxg0 Exyg1
pc

z 0 −Espg3 0 0 εc
p Exyg2 Exyg1 Exxg0

pa
x Espg∗1 0 Exxg∗0 Exyg∗3 Exyg∗2 εa

p 0 0
pa

y Espg∗2 0 Exyg∗3 Exxg∗0 Exyg∗1 0 εa
p 0

pa
z Espg∗3 0 Exyg∗2 Exyg∗1 Exxg∗0 0 0 εa

p
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The Hamiltonian matrix elements shown in the table include nearest neighbor interactions only and
the model assumes that the diagonal energies of the p orbitals are equal. According to the approach,
the energy parameters shown are given by the following expressions.

Ess =Vssσ , Esp =
Vspσ√

3
, Exx =

Vppσ+2Vppπ

3 , Exy =
Vppσ−Vppπ

3 , (8.7.48a)

where the V ’s are given by ([16])

V``′g = n``′g
h̄2

md2 , (8.7.48b)

with the orbital index taking on values of ` = s, p, the bond index is g = σ ,π , and d is the bond
length. Depending on these indices, the nll′g parameter takes on the values

nssσ =−1.40, nspσ = 1.84, nppσ = 3.24, nppπ =−0.81. (8.7.48c)

As mentioned before and associated with Equation 8.7.41, the nearest neighbor anion positions, to
the cation at the center, are the vectors ~d1 = (1,1,1)a/4, ~d2 = (1, 1̄, 1̄)a/4, ~d3 = (1̄,1, 1̄)a/4, so that
the~k dependence of the Hamiltonian comes in through the sum over the nearest neighbor sites; that
is,

g0(~k) = ei~k·~d1 + ei~k·~d2 + ei~k·~d3 + ei~k·~d4 , g1(~k) = ei~k·~d1 + ei~k·~d2 − ei~k·~d3 − ei~k·~d4 ,

g2(~k) = ei~k·~d1 − ei~k·~d2 + ei~k·~d3 − ei~k·~d4 , g3(~k) = ei~k·~d1 − ei~k·~d2 − ei~k·~d3 − ei~k·~d4 .
(8.7.49)

At this point all parameters of the model have been specified and the energy bands can be obtained
versus ~k by diagonalizing the matrix shown in Table 8.7.1. The model consists of four diagonal
energies (εc

s ,ε
c
p,ε

a
s ,ε

a
p), four off-diagonal energies (Ess,Esp,Exx,Exy), and the bond length (d), which

make this a nine-parameter band model for semiconductor band structures. While the entire band
structure can be obtained versus~k, usually along symmetry directions. For example, the ∆ direction
is from the Γ point (~k = (0,0,0)2π/a) to the X symmetry point ((1,0,0)2π/a); the Λ direction is
from the Γ point to the L symmetry point ((1/2,1/2,1/2)2π/a); and the Σ direction is from the Γ

point to the K symmetry point ((3/4,3/4,0)2π/a). The symmetry points are shown in Figure 8.7.14.

Figure 8.7.14: The zinc-blende system’s BZ is the same as the FCC with volume 4(2π/a)3. Here
the irreducible part of the FCC’s BZ is shown with the three irreducible tetrahedrons, 12 of which
(together) make up the 14-sided polyhedron. The coordinates of each tetrahedron are high sym-
metry points in the FCC BZ. These high symmetry points, in units 2π/a, are Γ = [0,0,0], L =
[1/2,1/2,1/2], K = [3/4,3/4,0],W = [1,1/2,0],U = [1,1/4,1/4], and X = [1,0,0] and are shown
along with the tetrahedrons whose positions they share.
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For calculation purposes, below in Table 8.7.2 we provide some energy parameter values and bond
lengths for various elements in groups III, IV, and V of the periodic table.

Table 8.7.2: Some diagonal energies and bond lengths for groups II, IV, and V elements of the
periodic table. Note that in the zinc-blende system the lattice length, a, is obtained from the nearest
neighbor distance, d (or bond length), relation d =

√
3a/4. (Source: [16]).

atom −εs(eV ) −εp(eV ) System d(Å)
C 17.52 8.97 C 1.54
Al 10.11 4.86 Si 2.35
Si 13.55 6.52 AlP 2.36
P 17.10 8.33 Ge 2.44
S 20.80 10.27 GaAs 2.45
Ga 11.37 4.90 InSb 2.81
Ge 14.38 6.36
As 17.33 7.91
In 10.12 4.69
Sb 14.80 7.24

With the above parameters, we are ready to obtain the energy bands. From Equation 8.7.46, we
diagonalize the Hamiltonian matrix which corresponds to setting the determinant of the coefficients
to zero and solving for the eigenvalues E versus~k; that is,

∣∣∣∣∣∣∣∣∣




H11 H12 · · · H18
H21 H22 · · · H28
...

...
... H18

H81 H82 · · · H88


−




E 0 · · · 0
0 E · · · 0
...

...
. . . 0

0 0 · · · E




∣∣∣∣∣∣∣∣∣
= 0, ⇒ E~k,n=1...8. (8.7.50)

We do this along previously mentioned symmetry directions and obtain the energy eigenvalues,
which, when sorted from the lowest to highest, yield the energy bands E~k,n=1...8. Before proceeding

with the outline above, let’s consider diagonalizing the matrix at~k = 0; that is, at the Γ point. In this
case, the gi’s of Equation 8.7.49 take on the values of g1 = g2 = g3 = 0, and g0 = 4. In this case,
all off-diagonal matrix elements in Table 8.7.1 vanish except those that couple sc with sa, as well as
those that couple pc

i with pa
i for i = x,y,z. This means that at the Γ point, the system collapses to

two 2×2 matrices with determinants in the form

∣∣∣∣
(

εc
s 4Ess

4Ess εa
s

)
−
(

E 0
0 E

)∣∣∣∣= 0, (8.7.51a)

for the s states and
∣∣∣∣
(

εc
p 4Exx

4Exx εa
p

)
−
(

E 0
0 E

)∣∣∣∣= 0, (8.7.51b)

for the p states, and since this is identical for all pi for i = x,y,z, the p states are triply degenerate at
the Γ point. Equation 8.7.51a results in

E2−E(εc
s + ε

a
s )+(εc

s ε
a
s −16E2

ss) = 0⇒ E =
εc

s + εa
s

2
±
√(

εc
s − εa

s

2

)2

+(4Ess)2 (8.7.52a)

for the s states and Equation 8.7.51b yields

E2−E(εc
p + ε

a
p)+(εc

pε
a
p−16E2

xx) = 0⇒ E =
εc

p + εa
p

2
±
√(

εc
p− εa

p

2

)2

+(4Exx)2, (8.7.52b)
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for the p states. Based on this model, we can use these energy solutions in order to obtain the band
gap of a semiconductor, which we do in the next example.

Example 8.7.1.1
Using parameters suitable for Si, from Table 8.7.2, since in pure Si the anion and the cation are the
same species, we have (in eV) εa

s = −13.55, εa
p = −6.52, εc

s = εa
s , εc

p = εa
p , and d = 2.35Å. With

Equation 8.7.48, we also get (in eV) Ess− 1.9317, Esp = 1.4658, and Exx = 0.7451. Using these
parameters, the bottom of the conduction band is obtained from the upper root of Equation 8.7.52a,
or Ec = −5.8231eV . The top of the valence band is given by the lower root of Equation 8.7.52b,
to obtain Ev =−9.5004eV . The resulting band gap is Eg = Ec−Ev =−5.82− (−9.50) = 3.68eV .
In this model, Si comes out as a direct band gap material, whereas in reality it is an indirect gap
solid. Furthermore, actually, Si’s band gap is about 1eV , so that the Harrison model is meant to be
qualitative rather than quantitative. However, from this example, we learn that the conduction band
has s-like character, while the valence band is of p-like character, which is quite illuminating!

In Figure 8.7.15, the above Harrison model’s band obtained band structure for Si is compared to the
more sophisticated pseudo-potential method’s results from reference [35].
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Energy Band structure versus wavevector k for the Si system
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Eg=3.6773 eV
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(a) Harrison Model Si Band Structure (b) Empirical Pseudo-Potential Method Si Band
Structure [35] (reprinted with permission)

Figure 8.7.15: (a) The Harrison model obtains a large direct band gap with a value of about 3.68eV
(see Example 8.7.1.1). The parameters of the model are from Table 8.7.2. (b) Reference [35]’s band
structure uses the top of the valence band as the zero of energy. The indirect band gap is between
the Γ and the X points with a value of about 1eV .

All the bands are split at the K point, but three valence bands become degenerate at the Γ point as
mentioned in Example 8.7.1.1. Also, the system’s valence band structure, having four valence bands,
with each band being occupied by two electrons (spin up and down), can hold eight electrons. This
is consistent with the structure’s eight atoms per cell. Each atom has four valence electrons, but
each atom shares them among four neighbors, thus each atom contributes a total of one electron
to each band, and in this way we have eight electrons per cell. This can also be viewed from the
bonding perspective; i.e., the tetrahedral nature of each atom’s neighbors. Since each atom makes
a bond with each of its four neighbors and each bond takes two electrons, a total of eight electrons
are involved in the tetrahedral bonds.
The code used to produce the Si band structure shown in Figure 8.7.15(a) is band structure Si.m
and is listed below. The functions it makes use of; that is, initialize Si.m, which provides the sys-
tem’s parameters; diagHamil.m, for setting the diagonal energies; offDiagHamil.m for setting the
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off diagonal matrix elements; and sorter.m, which sorts the eigenvalues and eigenvectors; are listed
in Section 8.8 of this chapter.
The script band structure Si.m that follows calculates the eigenvalues of the 8×8 Harrison matrix
versus~k along the Λ,∆, Σ, and X to K symmetry points directions. After building the Hamiltonian
matrix, the eigenvalues are found by the MATLAB command ‘eig’, then sorted and placed into the
‘bandEnergy’ array suitable for plotting along the various directions.

%copyright by J. E Hasbun and T. Datta

%band_structure_Si.m

%This program uses Harrison’s parametrized scaling approach.

%Off diagonal elements scale 1/(bond length)^2

%This is a nearest neighbor tight binding method.

%It’s an s-p parametrized approach for 3-5 semiconductors.

%

function band_structure_Si

global H zim NB

%*********** constants ***********

NB=8; %number of bands (hamiltonian dimension =NBxNB also)

Ns=12; %number of k steps to do in a given direction

zim=1i; %the complex number i by itself

H=zeros(NB,NB);%initilize the hamiltonian

%Initialize energies, compound: c=cation, a=anion, es=s-energy, ep=p-energy

%The compound is "system"

[a,esc,esa,epc,epa,ess,esp,exx,exy,system]=initialize_Si();

diagHamil(esc,esa,epc,epa) %diagonal elements of H

%Note: symmetry directions (points): Lambda (L),delta (X), Sigma (K)

sympt=[’L’;’X’;’K’]; %symmetry points

ba0=2*pi/a; %reciprocal lattice vector magnitude

bkpt=ba0*[1/2,1,3./4.]; %corresponding maximum k point

% *******************************************************

% *************** four different directions --loop *******

% *******************************************************

direction=[’Lamb’;’Delt’;’Sigm’;’XtoK’]; %chosen directions for calculations

for idir=1:4

%reset maximum k value when the direction is changed

if strcmp(direction(idir,:),’Delt’) %Delta direction

a1=1.;

b1=0.;

c1=0.;

ba=ba0; %X point

else

if strcmp(direction(idir,:),’Sigm’) %Sigma direction

a1=1.;

b1=1.;

c1=0.;

ba=ba0*(3./4.); %K point

else

if strcmp(direction(idir,:),’Lamb’) %Lambda direction

a1=1.;

b1=1.;

c1=1.;

ba=ba0/2.; %L point
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else

%the vector direction from X to K=[(1,1,0)(3/4)-(1,0,0)](2*pi/a)

%=[-1/4,3/4,0](2pi/a) we will need to start at X, and move in

%this direction to end up at the U point

if strcmp(direction(idir,:),’XtoK’) %direction toward K point

a1=-1./4.;

b1=3/4;

c1=0;

ba=ba0;

else

break

end

end

end

end

st=ba/Ns;

fprintf(’system: %s\n’,system)

fprintf(’k-direction a1=%6.3f, b1=%6.3f, c1=%6.3f, (%s)\n’,a1,b1,c1,...

direction(idir,:))

fprintf(’upper limit ba=%5.2f, step size st =%5.2f\n’,ba,st)

% *******************************************************

% *************** k--loop ****************

% *******************************************************

%the first direction set of bands are done from high k value to zero

%the second direction set of bands are done from zero to high k value

if strcmp(direction(idir,:),’Lamb’)

bkL=ba;

bkS=-st;

bkU=0.0;

else

bkL=0.0;

bkS=st;

bkU=ba;

end

kc=0; %reset counter for each direction

for bk=bkL:bkS:bkU

kc=kc+1;

%Notice bx,by,bz includes a factor of 2*pi/a here (see definition of

ba above)

if strcmp(direction(idir,:),’XtoK’) %in the XtoK direction, start at

X(2pi/a)[1,0,0]

bx=ba0+bk*a1;%and continue in the XtoK direction (2pi/a)[-1/4,3/4,0]

in steps of bk

by=0+bk*b1;

bz=0+bk*c1;

else

bx=bk*a1;

by=bk*b1;

bz=bk*c1;

end
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%Tight binding interations - nearest neighbors

offDiagHamil(bx,by,bz,a,ess,esp,exx,exy) %off-diagonal elements of H

[z,w]=eig(H); %z=eigenvectors, w=eigenvalues

%let ww contain the sorted eigenvalues and zz contain the sorted

eigenvectors

[ww,zz]=sorter(diag(w),z);

kval(kc,idir)=bk;

bandEnergy(:,kc,idir)=ww;

fprintf(’eig.val. at %6.2f %6.2f %6.2f with direction: %s\n’,bx,by,bz,

direction(idir,:))

fprintf(’%8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n’,ww(1:NB))

end

end

[tvb,kiv]=max(bandEnergy(NB/2,:,2)); %top of the valence band

[bcb,kic]=min(bandEnergy(NB/2+1,:,2)); %bottom of the conduction band

Eg=bcb-tvb; %band gap

fprintf(’Top Val. Band tvb =%8.4f %s, and occurs at k=%i\n’,tvb,’eV’,

kval(kiv,2))

fprintf(’Bot. Cond. Band bcb =%8.4f %s, and occurs at k=%i\n’,bcb,’eV’,

kval(kic,2))

fprintf(’Band gap Eg=bcb-tvb =%8.4f %s\n’,Eg,’eV’)

%Next, check with Harrison’s formulas for the top of the VB and bottom of

the CB

%Most of the time, Ev=Ev1 and Ec=Ec1 for 3-5 semiconductors.

%To make Carbon work, Ev2 can be lower than Ec1 so we fixed that here as

%follows:

Ev1=(epc+epa)/2-sqrt(((epc-epa)/2)^2+(4*exx)^2); %Top of VB

Ev2=(epc+epa)/2+sqrt(((epc-epa)/2)^2+(4*exx)^2); %Top of VB

Ec1=(esc+esa)/2+sqrt(((esc-esa)/2)^2+(4*ess)^2); %Bottom of CB

Ec2=(esc+esa)/2-sqrt(((esc-esa)/2)^2+(4*ess)^2); %Bottom of CB

fprintf(’Ev1,Ev2,Ec1,Ec2=%8.4f %8.4f %8.4f %8.4f\n’,Ev1,Ev2,Ec1,Ec2)

Ev=max(Ev1,Ec2); %highest of these two roots

Ec=min(Ec1,Ev2); %lowest of these two roots

EgH=Ec-Ev; %based on Harrison’s formulas at the gamma (k=0) point

fprintf(’Harrison formulas of the top of the VB and Bottom of the CB, and

gap:\n’)

fprintf(’Ev=%8.4f %s, at Gamma\n’,Ev,’eV’)

fprintf(’Ec%8.4f %s, at Gamma\n’,Ec,’eV’)

fprintf(’Eg=Ec-Ev =%8.4f %s\n’,EgH,’eV’)

%Below we shift k by reciprocal lattice vector mag (ba0) to plot correctly

plot(ba0-kval(:,1),bandEnergy(:,:,1),’k’) %Lamda direction

hold on

plot(ba0+kval(:,2),bandEnergy(:,:,2),’k’) %Delta direction

plot(3.5*ba0-kval(:,3),bandEnergy(:,:,3),’k’) %Sigma direction

%max k value at the K point is (3/4)*(2pi/a)+, and shift by recip. lat.

%to plot correctly

plot(2*ba0+(3./4.)*kval(:,4),bandEnergy(:,:,4),’k’) %XtoK direction

str1=cat(2,’Energy Band structure versus wavevector k for the ’,system,’

system’);

title(str1,’Fontsize’,12)

ylabel(’Energy (eV)’,’Fontsize’,12)
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%xlabel(’(k-space)’,’Fontsize’,8)

emin1=min(bandEnergy(1,:,1));

emin2=min(bandEnergy(1,:,2));

emin3=min(bandEnergy(1,:,3));

emin4=min(bandEnergy(1,:,4));

emax1=max(bandEnergy(NB,:,1));

emax2=max(bandEnergy(NB,:,2));

emax3=max(bandEnergy(NB,:,3));

emax4=max(bandEnergy(NB,:,4));

xmin1=min(ba0-kval(:,1));

xmin2=min(ba0+kval(:,2));

xmin3=min(3.5*ba0-kval(:,3));

xmin4=min(2*ba0+(3./4.)*kval(:,4));

xmax1=max(ba0-kval(:,1));

xmax2=max(ba0+kval(:,2));

xmax3=max(3.5*ba0-kval(:,3));

xmax4=max(2*ba0+(3./4.)*kval(:,4));

emin=min([emin1,emin2,emin3,emin4]); emax=max([emax1,emax2,emax3,emax4]);

xmin=min([xmin1,xmin2,xmin3,xmin4]); xmax=max([xmax1,xmax2,xmax3,xmax4]);

axis ([xmin xmax emin emax])

str2=cat(2,’Eg=’,num2str(Eg),’ eV’);

text(ba0+0.05,tvb*(1-0.05),str2)

text(ba0,min(emin1,emin2)*(1+0.075),’\Gamma’)

text(ba0-bkpt(1),emin*(1+0.075),sympt(1,:)) %L point

text(ba0+bkpt(2),emin*(1+0.075),sympt(2,:)) %X point

text(3.5*ba0-bkpt(3),emin*(1+0.075),sympt(3,:)) %K point

text(3.5*ba0,emin*(1+0.075),’\Gamma’)

line ([ba0 ba0],[emin emax],’LineStyle’,’-’,’Color’,’k’) %Gamma line

line ([ba0+bkpt(2) ba0+bkpt(2)],[emin emax],... %X line

’LineStyle’,’-’,’Color’,’k’)

line ([3.5*ba0-bkpt(3) 3.5*ba0-bkpt(3)],[emin emax],... %K line

’LineStyle’,’-’,’Color’,’k’)

8.7.2 The Density of States

It should be mentioned here that while we continue working with Harrison’s eight-band semicon-
ductor model which obtains a large gap, improvements to it exist (see the ten-band sp3s∗ model
of Vogl. et al. [36] as regards to the gap - direct and indirect), but are beyond our present scope.
Having obtained the energy bands E~kn of a crystal system, the Green function for the crystal is
obtained when we let the Green function operator of Equation 8.4.17c act on the crystal state of
Equation 8.7.43a for band n, to write

Ĝ(ε)|~kn >= (ε− Ĥ)−1|~kn >= (ε−E~kn)
−1|~kn >= G~kn(ε)|~kn >, (8.7.53a)

and in a similar way to what was done in Equation 8.4.18b, since <~kn|~kn >= 1 we have

G~kn(ε) =<~kn|Ĝ(ε)|~kn >= (ε−E~kn)
−1, (8.7.53b)

where, as before, ε contains a small positive imaginary part. For the density of states, as in Equa-
tion 8.4.21a, adding the contribution from all the bands, the differential density of states is written
as

D(ε) =− 1
πVBZ

Im


∑

n

∫

VBZ

G~kn(ε)d
~k


 , (8.7.54)
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where the VBZ is the same as the BZ volume of the FCC crystal previously discussed. The factor of 2
for spin has not been included. For our Harrison model, there are eight bands, so that Equation 8.7.54
involves eight integrals over the BZ, one for each band. Fortunately, the machinery to carry out the
integration already exists, as it was detailed in Section 8.6.
The total density of states is written as in Equation 8.3.13 or

N(ε) =
∫

ε

−∞

D(ε ′)dε
′. (8.7.55)

Figure 8.7.16 contains the results of the calculation for the density of states. The left panel is based
on the Harrison model, while the right panel is due to Chelikowsky et al. [35] and is included for
comparison purposes.
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Figure 8.7.16: (a) The Harrison model obtained density of states for the Si system. The parameters
are as in Figure 8.7.15(a). (b) Reference [35]’s obtained density of states for Si.

Harrison’s model density of states again shows the large band gap. Additionally, the top of the va-
lence band in the right panel of Figure 8.7.16 starts at the zero of energy. Aside from the expected
differences, the shapes of the curves do bear resemblance, which makes the eight-band model in-
structively interesting. The resulting total density of states is shown in Figure 8.7.17.
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Figure 8.7.17: The total density of states obtained by integrating the Harrison model density of
states of Figure 8.7.16(a).

We notice that the number of states reached when ε = Ev + Eg/2 is 4, so that since each state
can hold two electrons (spin up and down), a total of 8 electrons fill the valence bands, as ex-
pected. The Fermi level lies, therefore, in the middle of the gap. This is in line with what was
pointed out in Chapter 7’s, Section 7.4, Intrinsic Carrier Concentration for semiconductors. The
code used in obtaining both, the density of states of Figure 8.7.16(a) and the integrated density of
states of Figure 8.7.17 is band total dos Si.tex which makes use of all the functions (initialize Si.m,
diagHamil.m, offDiagHamil.m, sorter.m, TTareas.m, singInt.m, interpFunc.m, and rombergInt.m)
listed in the appendices for this chapter. The listing of the script follows. It first finds the band struc-
ture as in band structure Si.m, and proceeds to obtain the density of states by integrating over each
band’s Green function (which involves the three tetrahedrons of the FCC BZ). After the density of
states from each band is summed up, the script performs a final integration over the density of states
(D(ε)) to obtain the total integrated density of states (N(ε)).

%copyright by J. E Hasbun and T. Datta

%band_total_dos_Si.m

%Here, we also find the total integrated density of states

%versus energy. This program uses Harrison’s s-p parametrized

%scaling approach for 3-5 semiconductors. Off diagonal elements

%scale 1/(bond length)^2. This is a nearest neighbor tight binding

%method.

function band_total_dos_Si

global H zim NB

global e0 tdos

%*********** constants ***********

NB=8; %number of bands (hamiltonian dimension =NBxNB also)

H=zeros(NB,NB);%initialize the hamiltonian

delta=1.5e-2;

zim=complex(0.0,1.0);

%a=lattice constant

%Initialize energies, compound: c=cation, a=anion, es=s-energy, ep=p-energy

%The compound is "system"

[a,esc,esa,epc,epa,ess,esp,exx,exy,system]=initialize_Si();
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%x=0.25; %energy step

%eL=-23.0; eU=5.0; %lowest and highest energy from the band structure

disp(’Return to accept the default values within brackets’)

disp(’Once the calculation begins, wait for the results’)

eL =input(’ low energy limit [-23] = ’);

if(isempty(eL)), eL=-23.0; end

eU =input(’ high energy limit [5] = ’);

if(isempty(eU)), eU=5.0; end

x =input(’ energy step [0.25] = ’);

if(isempty(x)), x=0.25; end

e0=eL:x:eU; %energy range

ntmax=length(e0);

diagHamil(esc,esa,epc,epa) %diagonal elements of H

tpa=2*pi/a;

VBZ=4*tpa^3; %total FCC BZ volume

%FCC case tetrahedrons (three needed) in units of 2*pi/a;

%points used in units of 2*pi/a

L=[1/2,1/2,1/2]; K=[3/4,3/4,0]; U=[1,1/4,1/4]; W=[1,1/2,0]; X=[1,0,0];

%1st tetrahedron (Vectors in units of 2*pi/a)

A(1,:)=L; B(1,:)=K; C(1,:)=W; %L, K, W points

%tetrahedron volume = 1/32 of the total BZ vol, so use in corresp. integral

VFCC_t1=abs(dot(A(1,:),cross(B(1,:),C(1,:)))/6);

factor(1)=VFCC_t1;

%2nd tetrahedron (Vectors in units of 2*pi/a)

A(2,:)=L; B(2,:)=U; C(2,:)=W; %L, U, W points

%tetrahedron volume = 1/32 of the total BZ vol, so use in corresp. integral

VFCC_t2=abs(dot(A(2,:),cross(B(2,:),C(2,:)))/6);

factor(2)=VFCC_t2;

%3rd tetrahedron (Vectors in units of 2*pi/a)

A(3,:)=X; B(3,:)=U; C(3,:)=W; %X, U, W points

%tetrahedron volume = 1/48 of the total BZ vol, so use in corresp. integral

VFCC_t3=abs(dot(A(3,:),cross(B(3,:),C(3,:)))/6);

factor(3)=VFCC_t3;

lim=21; lom=lim-1; %lim must be odd

%number of divisions along q2, and q3 => total number of TT’s is n^2

n=10;

%VFCC_t=(VFCC_t1+VFCC_t2+VFCC_t3) %total volume=sum of 3 tetrahedrons

%VFCC_t is the standard tetrahedron volume part, and there are 12 VFCC_t’s

%in the face center cube’s total BZ (1/32+1/32+1/48=1/12)

factor_t=12*VBZ; %to be used in the full integral result

%TT=thin tetrahedron, T=tetrahedron

DD=1/n^2; %ratio of TT area to T area (since all thin triangles are the

same)

factor_t=3.0*DD*factor_t; %factor is modified further by 3*DD

par1=0.0;

par2=1.0;

dk=(par2-par1)/lom;

al=par1:dk:par2; %alpha range to integrate (main TT axis)

dv=1/n; %TT division size

be=0:dv:1; %beta

ga=be; %gamma
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%Tetrahedron q vectors according to the method of An-Ban Chen & B. I. Reser.

%Notation: q(tetrahedron(1,2,3),coordinate(x,y,z),vector(1,2,3))

q(:,:,1)=A*tpa; q(:,:,2)=(B-A)*tpa; q(:,:,3)=(C-B)*tpa;

%The function TTareas produces the average vectors "va" on the faces of

the TT’s

%Notation: va(ith TT vector,coordinate(x,y,z),tetrahedron(1,2,3))

%Ntt=number of TT’s, areas(tetrahedron(1,2,3),ith TT area)

for tet=1:3 %the fcc has three tetrahedrons

[Ntt(tet),areas(tet,:),va(:,:,tet)]=TTareas(q(tet,:,2),q(tet,:,3),

n,be,ga);

end

%Initialize arrays

dos=zeros(NB,ntmax);

dos_tet=zeros(NB,3);

top=zeros(1,lim);

deno=zeros(NB,lim);

gy=zeros(1,NB);

tdos=zeros(1,ntmax);

%Main Loop

fprintf(’system: %s\n’,system)

for nt=1:ntmax

for nB=1:NB %initialize each band dos at each energy

dos(nB,nt)=0.0;

end

for tet=1:3 %the fcc has three tetrahedrons

for nB=1:NB %initialize each tetrahedron dos for each band

dos_tet(nB,tet)=0.0;

end

for it=1:Ntt(tet) %Ntt TT’s for the tet tetrahedron

for ko=1:lim %loop over gamma

for v=1:3 %build the k vector, kx=k(1), ky=k(2), kz=k(3)

%The va vectors are average vectors on the TT faces

k(v)=al(ko)*(q(tet,v,1)+va(it,v,tet)); %va vectors used here

end

top(ko)=al(ko)*al(ko);

%Tight binding interations - nearest neighbors

offDiagHamil(k(1),k(2),k(3),a,ess,esp,exx,exy) %off-diagonal

els of H

[z,w]=eig(H); %z=eigenvectors, w=eigenvalues

%ww contains the sorted eigenvalues and zz the sorted eigenvectors

[ww,zz]=sorter(diag(w),z);

deno(:,ko)=e0(nt)-ww(:)+zim*delta; %w-Ek for the NB energy bands

end

for nB=1:NB

gy(nB)=singInt(top,deno(nB,:),dk); %integrate each band over k

dos_tet(nB,tet)=-imag(gy(nB))/pi+dos_tet(nB,tet);%single TT dos,

TT’s

end

end

%for each band weigh the corresponding tetrahedron contribution by its

factor
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for nB=1:NB

dos(nB,nt)=factor(tet)*dos_tet(nB,tet)+dos(nB,nt); %dos=sum over

tetraheds

end

end

%finally, for each band multiply by the three-tetrahedon contribution

factor

for nB=1:NB

dos(nB,nt)=factor_t*dos(nB,nt);

%fprintf(’E0=%9.4f, dos=%9.4f\n’,e0(nt),dos(nB,nt)

end

end

%

%total dos sum over all the bands

fprintf(’Density of States for the system: %s\n’,system)

for nt=1:ntmax

tdos(nt)=0.0;

for nB=1:NB

tdos(nt)=tdos(nt)+dos(nB,nt);

end

%Total dos=integral of d^3k over the BZ / BZ volume

tdos(nt)=tdos(nt)/VBZ;

fprintf(’E0=%9.4f, tdos=%14.6e\n’,e0(nt),tdos(nt));

end

%

%For the Harrison model, we know the band edges, and gap

Ev1=(epc+epa)/2-sqrt(((epc-epa)/2)^2+(4*exx)^2); %Top of VB

Ev2=(epc+epa)/2+sqrt(((epc-epa)/2)^2+(4*exx)^2); %Top of VB

Ec1=(esc+esa)/2+sqrt(((esc-esa)/2)^2+(4*ess)^2); %Bottom of CB

Ec2=(esc+esa)/2-sqrt(((esc-esa)/2)^2+(4*ess)^2); %Bottom of CB

disp(’Energies in eV ’)

fprintf(’Ev1,Ev2,Ec1,Ec2=%8.4f %8.4f %8.4f %8.4f\n’,Ev1,Ev2,Ec1,Ec2)

Ev=max(Ev1,Ec2); %highest of these two roots

Ec=min(Ec1,Ev2); %lowest of these two roots

EgH=Ec-Ev; %gap - based on Harrison’s formulas at the gamma (k=0) point

fprintf(’Ev=%9.4f, Ec=%9.4f, Eg=%9.4f\n’,Ev,Ec,EgH);

indEv=1+floor((Ev-eL)/x);

indEc=1+floor((Ec-eL)/x);

strv=cat(2,’Val. band edge: Ev=’,num2str(Ev,’%9.4f’),’ eV’);

strc=cat(2,’Cond. band edge: Ec=’,num2str(Ec,’%9.4f’),’ eV’);

strg=cat(2,’Eg=’,num2str(EgH,’%9.4f’),’ eV’);

mxd=max(tdos);

%

%plot the total density of states versus energy

figure(1)

p0(1)=plot(e0,tdos,’k-’);

hold on

%

% %Back to figure 1 and add the new information

% figure(1)
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%place a line at Ev and Ec

p0(2)=line([Ev Ev],[0 mxd*0.1],’LineStyle’,’--’,’color’,’k’,’LineWidth’,2);

p0(3)=line([Ec Ec],[0 mxd*0.1],’LineStyle’,’-.’,’color’,’k’,’LineWidth’,2);

pL=legend(p0,’DOS’,strv,strc,0);

set(pL,’FontSize’,9);

text(Ev-abs(Ev)*0.1,mxd*0.5,strg,’FontSize’,9)

xlabel(’E(eV)’), ylabel(’DOS (eV^{-1})’)

str=cat(2,’Density of States for the ’,system,’ system’);

title(str)

hold off

pause(1)

%

%Total integrated density of states, and plot

fprintf(’Integrated Density of States for the system: %s\n’,system)

intdos=zeros(1,ntmax);

for nt=1:ntmax

intdos(nt)=rombergInt(eL,e0(nt),@fForRomb); %integrate on [eL,e0]

fprintf(’E0=%9.4f, integrated dos=%14.6e\n’,e0(nt),intdos(nt));

end

%

figure(2)

hold on

p1(1)=plot(e0,intdos,’k-’);

%place a line at Ev and Ec of respective heights tdos(indEv) & tdos(indEc)

p1(2)=line([Ev Ev],[0 intdos(indEv)],’LineStyle’,’--’,’color’,’k’,

’LineWidth’,2);

p1(3)=line([Ec Ec],[0 intdos(indEc)],’LineStyle’,’-.’,’color’,’k’,

’LineWidth’,2);

pL=legend(p1,’integated DOS’,strv,strc,0);

set(pL,’FontSize’,9);

text(Ec+0.1*abs(Ec),intdos(indEc)*(1-0.3),strg,’FontSize’,9)

xlabel(’E (eV)’), ylabel(’Integrated DOS (number of states)’)

str=cat(2,’Integrated Density of States for the ’,system,’ system’);

title(str)

hold off

function y=fForRomb(p)

%function used by romberg integration and which interpolates

%tdos versus e0

global e0 tdos

y=interpFunc(p,e0,tdos);
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8.8 Chapter 8 Exercises
8.8.1. Show that the states |~k > of Equation 8.2.4 are normalized.

8.8.2. Using the tight binding Hamiltonian described in Equation 8.2.6a, follow the procedure
described in obtaining Equation 8.2.6b and show that <~k|HOD|~k >= −γ ∑

m=nn
e−i~k·~ρm , so

that εk of Equation 8.2.6c results.

8.8.3. Show all the missing details in obtaining the energy bands of the (a) BCC, Equation 8.2.8b,
and (b) that of the FCC, Equation 8.2.9.

8.8.4. Run the script TBbandSC.m of Section 8.2.1 to reproduce Figure 8.2.1 for the SC energy
band. Modify the script in order to reproduce Figure 8.2.2 for the BCC energy band.

8.8.5. Run the script TBbandSC.m of Section 8.2.1 to reproduce Figure 8.2.1 for the SC energy
band. Modify the script in order to reproduce Figure 8.2.3 for the FCC energy band.

8.8.6. Run the script TBfermiIsoSurfBzSc.m of Section 8.3.1 to reproduce Figure 8.3.4 for the
SC Fermi surface. Modify the script in order to reproduce Figure 8.3.5 for the BCC Fermi
surface for a half-filled band as discussed in the text. For the Brillouin zone details, refer to
Chapter 2.

8.8.7. Run the script TBfermiIsoSurfBzSc.m of Section 8.3.1 to reproduce Figure 8.3.4 for the
SC Fermi surface. Modify the script in order to reproduce Figure 8.3.6 for the FCC Fermi
surface for a half-filled band as discussed in the text. For the Brillouin zone details, refer to
Chapter 2.

8.8.8. In one dimension, the k-space variable takes on N values; i.e., k = 2nπ/(NL), for integer

n = 0 · · ·N−1, and L is the unit cell dimension. Show that 1
N ∑

k
f (k) = L

2π

2π/L∫
0

f (k)dk, where

periodic boundary conditions for f (k) are used. What do you get if this result is extended to
three dimensions?

8.8.9. By assuming that ε has a small positive imaginary part in Equation 8.4.17b, show that the
result is Equation 8.4.17c.

8.8.10. Show that when the Green function operator of Equation 8.4.17c acts on the single band
state |~k > of Equation 8.2.4, the result is the~k-space single band Green’s function of Equa-
tion 8.4.18b.

8.8.11. Prove the identity of Equation 8.4.19.

8.8.12. Referring to Section 8.5, (a) use Equation 8.5.22 to show that the |~k > states are normalized;
that is, <~k|~k >= 1. (b) By using the orthogonality of the states | j), show the consistency of
the expression for the completeness condition, Equation 8.5.23.

8.8.13. Read Example 8.5.0.1 and after working through the steps in obtaining Equation 8.5.31 for
ε < 0, repeat the process and obtain the results shown in Equation 8.5.32 for ε > 0.

8.8.14. After reading Examples 8.5.0.1 and 8.5.0.2, run the codes Green 1D.m and
Green 1DdosCalc.m (which uses singInt.m of 8.8) to reproduce Figures 8.5.7 and 8.5.8.

8.8.15. After reading Example 8.5.0.3, run the code Green 1Totdos.m for the total density of states
of the one-dimensional tight binding band and reproduce Figure 8.5.9.
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8.8.16. After reading Section 8.6.1, run the script sc dos.m and reproduce Figure 8.6.10.

8.8.17. Read Example 8.7.1.1 and write suitable code that incorporates Equations 8.7.48 and 8.7.52
as well as parameters from Table 8.7.2 in order to reproduce the quoted results for Si.

8.8.18. (a) Run the script band structure Si.m associated with silicon’s band structure; that is, Fig-
ure 8.7.15(a) and reproduce it. (b) Modify the script and obtain the band structure for the
GaAs system. What is the GaAs band gap obtained by the model and how does it compare
with the actual one? Comment on the results.

8.8.19. (a) Run the script band total dos Si.tex associated with silicon’s density of states; that is,
Figures 8.7.16(a), 8.7.17 to reproduce them. (b) Modify the script and obtain the corre-
sponding plots for the GaAs system. Comment on the results.



Appendix A: Singular Function Integration Using
SingInt.m

In this appendix, we detailed the scheme used in order to carry out the numerical integration of
functions that contain singularities (see Example 8.5.0.2). Such is the case that arises in the integra-
tions of Green’s functions. Roth’s approach [32] for obtaining numerical values of nearly singular

integrals uses a method similar to the Simpson’s integration rule for the integral
b∫
a

f (x)dx, except

that, rather than a single function, the integral of interest involves two functions; i.e., a numerator
and a denominator, each approximated by quadratic functions. The idea is that after identifying the
numerator and the denominator of the integrand, one separates them and treats them as detailed
below in order to obtain a numerical value for the integral of interest. When the integration region
is divided into N subintervals, we have

I =
b∫

a

f (x)
g(x)

dx =
N−2

∑
n=1,3,5,...

In ≈
N−2

∑
n=1,3,5,...

Sn. (8.1)

where In is the value of the integral in the subinterval [xn,xn+2] with xn+2 = xn + 2h, h = (b−
a)/(N − 1), and Sn the numerical approximation. An integrand may become singular due to the
denominator g(x) passing through a zero. Thus, the idea is to approximate In as the ratio of two
quadratic functions in x, written in a normalized fashion, as

In ≈ Sn ≡ h
h∫

−h

dnx2 + enx+ fn+1

anx2 +bnx+gn+1
dx; (8.2)

that is, on each subinterval, both functions, the numerator f (x) and the denominator g(x), have been
approximated by respective quadratic functions, where fn = f (xn) and similarly gn = g(xn). In the
above expression
an = (gn+2 +gn−2gn+1)/2, bn = (gn+2−gn)/2,
and
dn = ( fn+2 + fn−2 fn+1)/2, en = ( fn+2− fn)/2.
If for any reason an integrand were to become singular, by separating it into a ratio of two functions,
the denominator would pass through a small value and it would be natural that the analytic result of
Equation 8.2 would approximate the integral closely. Performing the integration of the ratio of the
quadratics analytically, the result for each n subinterval is

Sn =
h
3

[
3
2

fn(I3n− I2n)+
3
2

fn+2(I3n + I2n)+3 fn+1(I1n− I3n)

]
, (8.3)

where
I1n =

1
an(xn+−xn−)

ln
{

(1−xn+)(1+xn−)
(1−xn−)(1+xn+)

}
,

I2n =
1

2an
ln
{

an+bn+gn
an−bn+gn

}
− bn

2an
I1n,

and
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I3n =
2
an
− bn

an
I2n− gn

an
I1n,

with
xn± ≡ −bn±

√
b2

n−4angn
2an

.
This completes the numerical approximation to the integral involving an integrand that is expected
to contain singularities; i.e., Equation 8.1. In the event that the denominator is not expected to
pass through a zero, the function g(x) is replaced by unity and the above method is equivalent to
Simpson’s rule. Below is a listing of the code singInt.m that incorporates the above Roth’s algorithm.
Example 8.5.0.2 illustrates the use of this method in carrying out the numerical calculation analog
of the Green function and density of states of Example 8.5.0.1.

%copyright by J. E Hasbun and T. Datta

%singInt.m

function y=singInt(cnum,cden,h)

%Estimates the integral of f(x)/g(x) dx on [-h,h]

%where h=(b-a)/(n-1) and n=number of function evaluations.

%The program sums all the contributions on interval [a,b]

%This is Roth’s method of integrating singular functions

%[L. M. Roth Phys. Rev. B Vol. 7, p4321-4337 (1973)]

%as implemented by J. E. Hasbun.

%

n=length(cnum); %cden must be the same length as well

y=complex(0.0,0.0);

for k=1:2:n-2

f0=cnum(k); f1=cnum(k+1); f2=cnum(k+2);

g0=cden(k); g1=cden(k+1); g2=cden(k+2);

a=abs(g0+g2-2.0*g1);

%The amount added to g1 in the next line is slightly adjustable

if(a < 1.e-7), g1=g1+1i*1.e-7; end

a=(g0+g2-2.0*g1)/2.0;

b=(g2-g0)/2.0;

c=g1;

q=sqrt(b*b-4.0*a*c);

xp=(-b+q)/a/2.0;

xm=(-b-q)/a/2.0;

xpmxm=xp-xm;

i1=log((1-xp)*(1+xm)/(1-xm)/(1+xp))/xpmxm/a;

i2=(log(g2/g0)-b*i1)/a/2.0; %note: a+b+c=g2, a-b+c=g0

i3=(2.0-b*i2-c*i1)/a;

y=y+3.0*(f0*(i3-i2)+f2*(i3+i2))/2.0+3.0*f1*(i1-i3);

end

y=y*h/3.0;

Supporting Functions for Semiconductor Band Structures
The program initialize Si.m discussed in Section 8.7.1 in relation to Figure 8.7.15 makes use of
the functions initialize Si.m, which provides the system’s parameters; diagHamil.m, for setting the
diagonal energies; offDiagHamil.m for setting the off diagonal matrix elements; and sorter.m, which
sorts the eigenvalues and eigenvectors. Their listings follow.
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%copyright by J. E Hasbun and T. Datta

%initialize_Si.m

function [a,esc,esa,epc,epa,ess,esp,exx,exy,system]=initialize_Si()

system=’Si’;

%The off diagonal coefficients

esssig=-1.40;

espsig=1.84;

eppsig=3.24;

epppi=-0.81;

h=6.626075e-34; %Planck’s constant in J-sec

hbar=h/2/pi;

me=9.1093897e-31; %electron mass (kg)

e=1.60217733e-19; %electron charge (C). Also recall 1 Joule=(1/e)eV

const=(hbar^2/me)*(1/e)*(1e10)^2; %hbar^2/me in eV-Angtrom^2=7.62eV-Angs^2

%=============== semiconductor parameters ===========================

%Paramaters from Harrison’s Electronic Structures and the Properties of solids

%Elements: cation=anion (eV), bond length (angstroms) inputs

%c=cation, a=anion, es=s-energy, ep=p-energy

esa=-13.55; epa=-6.52; esc=esa; epc=epa; d=2.35; %Silicon

a=4*d/sqrt(3); %Lattice constant

%zinc-blende ion near neighbor positions are located at

%{[1,1,1]a/4, [1,-1,-1]a/4, [-1,1,-1]a/4, [-1,-1,1]a/4, so let scale=a/4

scale=a/4; %near neighbor position vector magnitudes

ro=scale*sqrt(3.); %internuclear or bond length=sqrt(1^2+1^2+1^2)*a/4

r1=ro^2;

vsssig=const*esssig/r1;

vspsig=const*espsig/r1;

vppsig=const*eppsig/r1;

vpppi=const*epppi/r1;

ess=vsssig;

esp=vspsig/sqrt(3);

exx=vppsig/3.+(2./3.)*vpppi;

exy=(vppsig-vpppi)/3.;

%copyright by J. E Hasbun and T. Datta

%diagHamil.m

function diagHamil(esc,esa,epc,epa)

%c=cation, a=anion, es=s-energy, ep=p-energy

%builds the diagonal part of the 8x8 Harrison hamiltonian

global H

H(1,1)=esc;

H(2,2)=esa;

H(3,3)=epc;

H(4,4)=epc;

H(5,5)=epc;

H(6,6)=epa;

H(7,7)=epa;

H(8,8)=epa;
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%copyright by J. E Hasbun and T. Datta

%offDiagHamil.m

function offDiagHamil(bx,by,bz,dasb,ess,esp,exx,exy)

%c=cation, a=anion, es=s-energy, ep=p-energy

%builds the off-diagonal part of the 8x8 Harrison hamiltonian

%bx,by,bz are the wavevector directions

global H zim NB

do=dasb/4.; %scale for anion positions is lattice contant/4

cx=cos(bx*do);

cy=cos(by*do);

cz=cos(bz*do);

sx=sin(bx*do);

sy=sin(by*do);

sz=sin(bz*do);

go=4.*(cx*cy*cz-zim*(sx*sy*sz));

g1=4.*(-cx*sy*sz+zim*(sx*cy*cz));

g2=4.*(-sx*cy*sz+zim*(cx*sy*cz));

g3=4.*(-sx*sy*cz+zim*(cx*cy*sz));

H(1,2)=ess*go;

H(1,6)=esp*g1;

H(1,7)=esp*g2;

H(1,8)=esp*g3;

H(2,3)=-esp*conj(g1);

H(2,4)=-esp*conj(g2);

H(2,5)=-esp*conj(g3);

H(3,6)=exx*go;

H(3,7)=exy*g3;

H(3,8)=exy*g2;

H(4,6)=exy*g3;

H(4,7)=exx*go;

H(4,8)=exy*g1;

H(5,6)=exy*g2;

H(5,7)=exy*g1;

H(5,8)=exx*go;

for i=1:NB-1

for j=i+1:NB

H(j,i)=conj(H(i,j)); %hermitian matrix

end

end

%copyright by J. E Hasbun and T. Datta

%sorter.m

function [ww,zz]=sorter(ww,zz)

%sorts eigenvalues and eigenvectors

%On input ww=unsorted eigenvalues, zz=unsorted eigenvectors

%On output ww=sorted eigenvalues, zz=sorted eigenvectors

NB=length(ww);

for io=1:NB
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for jo=io:NB-1

if ww(jo+1) < ww(io)

wo=ww(jo+1);

ww(jo+1)=ww(io);

ww(io)=wo;

z0=zz(:,jo+1);

zz(:,jo+1)=zz(:,io);

zz(:,io)=z0;

end

end

end



http://taylorandfrancis.com


Appendix B: Romberg Integration (rombergInt.m)
and the Interpolating Function (interpFunc.m)

The code for the Romberg integration scheme, rombergInt.m, as well as the interpolating function,
interpFunc.m (see Example 8.5.0.3) are listed below. To learn more details about Romberg inte-
gration as well as interpolation methods see DeVries and Hasbun [17], where much of the code
concepts were obtained from.

%copyright by J. E Hasbun and T. Datta

%rombergInt.m

function [result]=rombergInt(a,b,funcInt)

T=zeros(15,5); %Initial T

error=9999; %start with a large error

N = 1;

h = (b-a)/N;

m = 1;

T(m,1) = 0.5*h*(funcInt(a)+funcInt(b));

%fprintf(’m=%2.0f, T=%15.10f\n’,m,T(m,1))

while ( (m < 15 & abs(error) > 1.e-8) | (m <= 3)) %require a min # of steps

m = m + 1;

N = 2*N;

h =(b-a)/N;

extra = 0.0;

for i=1:2:N-1

extra = extra + funcInt(a+i*h);

end

T(m,1) = 0.5*T(m-1,1)+h*extra;

T(m,2) = (4.0*T(m,1) - T(m-1,1) )/ 3.0;

if(m>=3), T(m,3) = (16.0*T(m,2) - T(m-1,2)) / 15.0; end

if(m>=4), T(m,4) = (64.0*T(m,3) - T(m-1,3)) / 63.0; end

if(m>=5), T(m,5) =(256.0*T(m,4) - T(m-1,4)) /255.0; end

%fprintf(’m=%2.0f, T=%15.10f,%15.10f,%15.10f,%15.10f,%15.10f\n’,...

% m,T(m,1),T(m,2),T(m,3),T(m,4),T(m,5))

%Use error to check convergence...

%add a small part ot the denominator to avoid division by zero

error =(T(m,min(m,5))-T(m,min(m,5)-1))/sqrt(T(m,min(m,5))^2+1.e-12^2);

end

result = T(m,min(m,5));

%copyright by J. E Hasbun and T. Datta

%interpFunc.m
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function y=interpFunc(rho,x,fx)

%Interpolates the function fx using Lagrange interpolation

%at point rho given the function values fx at x in array form

%search the index of x where rho lies

no=3; %interpolator type, 1=linear, 2=quadratic, 3=cubic, etc.

xlen=length(x);

xmin=min(x); xmax=max(x);

dx=(xmax-xmin)/xlen;

i0=1+floor((rho-xmin)/dx);

if(i0 >= xlen-no),i0=xlen-no; end

y = 0.;

for j = i0:i0+no

%Evaluate the j-th coefficient

Lj = 1.0;

for k =i0:i0+no

if(j ~= k)

Lj = Lj * (rho-x(k) )/( x(j)-x(k) );

end

end

%Add contribution of j-th term to the polynomial

y = y + Lj * fx(j);

end



Appendix C: The Ray Method For K-Space Density
of States Integration (TTareas.m)

The ray integration method [33], discussed in Section 8.6, for performing~k-space integrations over
an irreducible tetrahedron (T) is based on subdividing it into thin tetrahedrons (TT) as shown in the
figure below.

G

A

B
C

(TT-centroid)

Thin tetrahedrons
(TT)

Rays

Tetrahedron (T)

This figure shows how the larger tetrahedron (T) is subdivided into the thin tetrahedrons (TT) shown.
Each ray is drawn from the origin to the center of a TT face; that is, its centroid.

In this manner, the integral J(E) =
∫

f~kd~k can approximately be carried out over each TT and then
summing over all the TTs to get the total value of J(E). We thus have the integral for the entire (T)
as

J(E) =
∫

VT

f~kd~k ≈∑
i

Ii, (8.1a)

where Ii is the integral over each TT, given by

Ii = 3VT δi

1∫

0

dα α
2 f [α(~q1 +~vai)]. (8.1b)

In these expressions VT is the T volume, δi =∆si/S, where ∆si is the TT face area, and S is the T face
area. The vectors~q1 and~va are shown in the figure. The function TTareas.m (listed below) produces
the average vectors ~va on the faces of the TT’s associated with the ray method of integration and
which are used to carry out the main integral in the calling program.

%copyright by J. E Hasbun and T. Datta

%TTareas.m

function [Ntt,areas,va]=TTareas(q2,q3,n,be,ga)

%Trangles based on the ray method of An-Ban Chen, Phys Rev. B V16, 3291

(1977)

%Divides a large triangular area into smaller triangles and finds their

%twodimensional vector directions and the smaller triangles areas
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%finds the areas of the thin tetrahedron triangles according to how it’s

%described in the Chen paper

%Here is an example of how the vertices 1,2,3,4,5,6 of a triangle are

%constructed. Example, we divide a large triangle in 2^2 smaller triangles

%1=(beta1*q2,gamma1*q3): (1,1) /1\

%2=(beta2*q2,gamma1*q3): (2,1) / \

%3=(beta3*q2,gamma1*q3): (3,1) /2---4\

%4=(beta2*q2,gamma2*q3): (2,2) / \ * / \

%5=(beta2*q2,gamma2*q3): (2,3) / \ / \

%6=(beta3*q2,gamma3*q3): (3,3) 3-----5-----6

%On the first loop pass, v1=1, v2=2, v3=4. On the next pass, v1=2

%v2=3, v3=5, v4=4 (extra triangle). On the last pass, we only have

%one triangle v1=4, v2=5, and v3=6.

%The triangle with the * is referred here to as an extra triangle.

%Once the vertices are found, the areas of each triangle can be found

%The numbers in parenthesis are the indices of the beta and gamma

%coefficients

%Inputs

%3D vectors q2, q3,

%arrays beta and gamma made according to be=0:dv:1 and ga=be

%number of subtriangles desired n.

%Output

%Nt: number of triangles

%areas: their areas

%va: average vector positions of these triangles based on the

% gamma and beta as in Chen’s paper

Ntt=0;

for io=1:n %gamma loop

for jo=io:n %beta loop

Ntt=Ntt+1;

v1=be(jo)*q2+ga(io)*q3; %small triangle vertices 1,2,3

v2=be(jo+1)*q2+ga(io)*q3;

v3=be(jo+1)*q2+ga(io+1)*q3;

va(Ntt,:)=(v1+v2+v3)/3; %average vertix vector (triangle centroid)

vv1=v2-v1; vv2=v3-v2; %small triangle vectors

areas(Ntt)=norm(cross(vv1,vv2)/2); %area of little triangle

if(jo > io) %extra triangle, with indices of v1, v3, v4

%[jo,io]

%[jo+1,io+1]

%[jo,io+1]

Ntt=Ntt+1;

v4=be(jo)*q2+ga(io+1)*q3;

va(Ntt,:)=(v1+v3+v4)/3; %average vertix vector (triangle centroid)

vv1=v3-v1; vv2=v4-v3; %its associated vectors

areas(Ntt)=norm(cross(vv1,vv2))/2; %area of little triangle

end

end

end



Appendix D: Supporting Functions for
Semiconductor Band Structures

The program initialize Si.m discussed in Section 8.7.1 in relation to Figure 8.7.15 makes use of
the functions initialize Si.m, which provides the system’s parameters; diagHamil.m, for setting the
diagonal energies; offDiagHamil.m for setting the off diagonal matrix elements; and sorter.m, which
sorts the eigenvalues and eigenvectors. Their listings follow.

%copyright by J. E Hasbun and T. Datta

%initialize_Si.m

function [a,esc,esa,epc,epa,ess,esp,exx,exy,system]=initialize_Si()

system=’Si’;

%The off diagonal coefficients

esssig=-1.40;

espsig=1.84;

eppsig=3.24;

epppi=-0.81;

h=6.626075e-34; %Planck’s constant in J-sec

hbar=h/2/pi;

me=9.1093897e-31; %electron mass (kg)

e=1.60217733e-19; %electron charge (C). Also recall 1 Joule=(1/e)eV

const=(hbar^2/me)*(1/e)*(1e10)^2; %hbar^2/me in eV-Angtrom^2=7.62eV-Angs^2

%=============== semiconductor parameters ===========================

%Paramaters from Harrison’s Electronic Structures and the Properties of solids

%Elements: cation=anion (eV), bond length (angstroms) inputs

%c=cation, a=anion, es=s-energy, ep=p-energy

esa=-13.55; epa=-6.52; esc=esa; epc=epa; d=2.35; %Silicon

a=4*d/sqrt(3); %Lattice constant

%zinc-blende ion near neighbor positions are located at

%{[1,1,1]a/4, [1,-1,-1]a/4, [-1,1,-1]a/4, [-1,-1,1]a/4, so let scale=a/4

scale=a/4; %near neighbor position vector magnitudes

ro=scale*sqrt(3.); %internuclear or bond length=sqrt(1^2+1^2+1^2)*a/4

r1=ro^2;

vsssig=const*esssig/r1;

vspsig=const*espsig/r1;

vppsig=const*eppsig/r1;

vpppi=const*epppi/r1;

ess=vsssig;

esp=vspsig/sqrt(3);

exx=vppsig/3.+(2./3.)*vpppi;

exy=(vppsig-vpppi)/3.;
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%copyright by J. E Hasbun and T. Datta

%diagHamil.m

function diagHamil(esc,esa,epc,epa)

%c=cation, a=anion, es=s-energy, ep=p-energy

%builds the diagonal part of the 8x8 Harrison hamiltonian

global H

H(1,1)=esc;

H(2,2)=esa;

H(3,3)=epc;

H(4,4)=epc;

H(5,5)=epc;

H(6,6)=epa;

H(7,7)=epa;

H(8,8)=epa;

%copyright by J. E Hasbun and T. Datta

%offDiagHamil.m

function offDiagHamil(bx,by,bz,dasb,ess,esp,exx,exy)

%c=cation, a=anion, es=s-energy, ep=p-energy

%builds the off-diagonal part of the 8x8 Harrison hamiltonian

%bx,by,bz are the wavevector directions

global H zim NB

do=dasb/4.; %scale for anion positions is lattice contant/4

cx=cos(bx*do);

cy=cos(by*do);

cz=cos(bz*do);

sx=sin(bx*do);

sy=sin(by*do);

sz=sin(bz*do);

go=4.*(cx*cy*cz-zim*(sx*sy*sz));

g1=4.*(-cx*sy*sz+zim*(sx*cy*cz));

g2=4.*(-sx*cy*sz+zim*(cx*sy*cz));

g3=4.*(-sx*sy*cz+zim*(cx*cy*sz));

H(1,2)=ess*go;

H(1,6)=esp*g1;

H(1,7)=esp*g2;

H(1,8)=esp*g3;

H(2,3)=-esp*conj(g1);

H(2,4)=-esp*conj(g2);

H(2,5)=-esp*conj(g3);

H(3,6)=exx*go;

H(3,7)=exy*g3;

H(3,8)=exy*g2;

H(4,6)=exy*g3;

H(4,7)=exx*go;

H(4,8)=exy*g1;

H(5,6)=exy*g2;

H(5,7)=exy*g1;

H(5,8)=exx*go;

for i=1:NB-1
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for j=i+1:NB

H(j,i)=conj(H(i,j)); %hermitian matrix

end

end

%copyright by J. E Hasbun and T. Datta

%sorter.m

function [ww,zz]=sorter(ww,zz)

%sorts eigenvalues and eigenvectors

%On input ww=unsorted eigenvalues, zz=unsorted eigenvectors

%On output ww=sorted eigenvalues, zz=sorted eigenvectors

NB=length(ww);

for io=1:NB

for jo=io:NB-1

if ww(jo+1) < ww(io)

wo=ww(jo+1);

ww(jo+1)=ww(io);

ww(io)=wo;

z0=zz(:,jo+1);

zz(:,jo+1)=zz(:,io);

zz(:,io)=z0;

end

end

end
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9.1 Introduction
From what we have seen in the previous chapters, studies of solid state crystalline materials have
been made possible by their inherent periodicity. Indeed, Bloch’s theorem has enabled us to carry
out calculations on infinite or bulk systems that would otherwise be an impossibility. However, pure
systems are ideal systems and, unless there exist machines that are capable of producing 100% pure
crystals of any size, we need to understand real systems. Real systems often contain atoms that
are different from the host atomic species. Depending on the concentration of the foreign species
(say less than about 1 for every 100,000 host atoms) we refer to them as impurities; for large
concentrations of foreign atoms, a system becomes so heavily doped that they could be considered
disordered systems. In some cases, that which we would call impurity becomes a major component
and we refer to such a system as an alloy. Impurities play a noticeable role in a system’s electrical
properties, such as the conductivity, and thus are of interest in solid state physics. A similar situation
exists for disordered systems. Random alloys in which at least two atomic species take random
positions in a crystal’s lattice sites fall within the realm of disordered systems.
Real crystals contain imperfections or defects associated with a crystal’s geometry and affect its
electrical properties and mechanical strength. Defects can be of several types. One type is the kind
which is localized within a crystal region of atomic dimensions such as point defects. An impurity
atom is of this kind. Impurity atoms can be substitutional or interstitial. A substitutional impurity
replaces a host atom at the normal lattice site, while an impurity at an interstitial position occupies
the space between normal lattice site positions. Both situations are depicted in Figure 9.1.1. The
vicinity around the substitutional or the interstitial impurities is accompanied by a lattice distortion.
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(a) (b)

Figure 9.1.1: (a) A crystal of atoms (filled circles) with a substitutional impurity (open circle). (b)
The crystal as in (a) with an interstitial impurity (open circle).

A point defect may involve the absence of a host atom due to its motion to another substitutional
position leaving behind what is termed as a vacancy. This is known as a Schottky defect; however,
a Frenkel defect is a vacancy that exists due to a host atom moving from a lattice site to an intersti-
tial position. Some point defects are associated with impurities with magnetic moments that could
interact with a passing electron’s spin.
Another type of defect is a dislocation which is a line defect of displaced atoms. Color centers are
defects that result from the irradiation of crystals with x-rays, γ-rays, neutrons, or electrons. Such
radiation causes the crystal to change color. Stacking faults are defects due to the out-of-sequence
organization of atomic layers of what would otherwise be a perfect crystal. For example, if a cubic
close packed (CCP) crystal (see Chapter 1) with atomic layers ABCABC . . . stacking were to
deviate from that order as in ABABCA..., it would lead to a stacking fault. Grain boundaries are
another kind of defect due to the randomly oriented crystallites found at the junctions of most solids
that are not single crystals.
Compound systems such as, for example, zinc sulfide are not considered disordered systems because
the zinc atom is immediately surrounded by four sulfur atoms and each sulfur atom is similarly
surrounded by four zinc atoms in a zinc-sulfide or zinc-blende structure (see also Chapter 1). This
is, therefore, a compound crystal system and is not considered a disordered system. However, if we
had a system such as Si1−xGex in which x is the concentration of the Ge atomic species, the system
is referred to as a binary alloy and it is considered a disordered system. In this case, if x = 0, the
system is a silicon crystal; however, if x = 1, the system is a germanium crystal. Additionally, if x
is other than zero or one, the Si and Ge atoms take lattice sites at random and this is the reason why
we refer to Si1−xGex as a random alloy as shown in Figure 9.1.2.
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- Ge or Si - Si -Ge

(f)

(b) (c)

(d) (e)

(a)

Figure 9.1.2: (a) The basic block of the zinc-blende structure (see Chapter 1) in which each atom is
surrounded by four nearest neighbors in a tetrahedral geometry. (b)-(f) The five possible tetrahedral
configurations (at random) that Ge and Si can take in the structure of a random Si1−xGex alloy and
where the center atom can be either Si or Ge with x the concentration of Ge.

If Ge is a substitutional impurity in a Si crystal, it so happens to be an isoelectronic or compensated
impurity because it belongs to the same group in the periodic table. Impurities such as donors and
acceptors (discussed in Chapter 7) are uncompensated impurities. In this chapter, we consider a
single isoelectronic substitutional impurity in what would otherwise be a perfect crystal and discuss
the theory for obtaining the associated impurity level. We also consider a popular theory for studying
the electronic properties of binary alloys. The tight binding method and Green’s function approach,
introduced in previous chapters, will be employed.

9.2 The Single Impurity Level
In this section, we study a simple theory that can be applied in order to obtain the energy level
associated with a substitutional isoelectronic impurity in a crystal system. The model used is very
useful in investigations of scattering. It is a classic example of what is generally known as a single
impurity scattering. We start with a single band tight binding crystal Hamiltonian (considered before
in Chapter 8) with a single substitutional impurity placed at site `,

Ĥ = ∑
n
|n)ε0(n|+∑

nm

′|n)Vnm(m|+ |`)εµ(`|, (9.1)

where εµ = εI− ε0; that is, if εµ is set to zero, we have the pure crystal, else a host site is replaced
with the impurity at the `th site. The prime in Equation 9.1 indicates that n 6= m and we assume
that the off-diagonal matrix elements Vnm remain unmodified and that the only effect of adding the
impurity is to change the diagonal energy for the `th site from ε0 to εI . To illustrate the idea of this
concept, imagine a one-dimensional crystal modeled as quantum barriers whose heights (ε0) are
all the same, except for one, where the impurity is located with a height of εI . The off-diagonal or
hopping term corresponds to the separation width between the barriers, which are taken to be all
identical. This is what is shown in Figure 9.2.3.
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V V V V

Figure 9.2.3: A single impurity in a crystal is similar to a barrier potential whose height is different
from the rest of the barriers that compose the crystal.

As in the previous chapter, we will be working with a nearest neighbor model and write the total
Hamiltonian of Equation 9.1 as

Ĥ = Ĥ0 + ĤI (9.2a)

where the unperturbed Hamiltonian is that of the crystal; that is,

Ĥ0 = ∑
n
|n)ε0(n|+∑

nm

′|n)Vnm(m|, (9.2b)

while the impurity Hamiltonian is considered to be the perturbation

ĤI = |`)εµ(`|. (9.2c)

As we did in Chapter 8, we make use of the crystal wavefunction

|~k >=
1√
N ∑

j
ei~k·~r j | j), (9.3)

and, for specificity, we will work with the simple cubic system in the nearest neighbor approxima-
tion for which, from Chapter 8, we already know the matrix element of the unperturbed Hamiltonian
(with ε0 =−α and Vnm =−γ)

ε~k =<~k|Ĥ0|~k >=−α−2γ (cos(kxa)+ cos(kya)+ cos(kza)) . (9.4)

The Green function associated with the above unperturbed system Hamiltonian is similar to the
previous chapter result; that is,

Ĝ0 = (E− Ĥ0)
−1 (9.5a)

and whose diagonal matrix element is

G0~k(E)≡<~k|Ĝ0|~k >=
1

E−E~k
(9.5b)

where, as before, E is assumed to contain a small positive imaginary part and where we have made
use of the usual definition E~k = (ε~k +α)/(2γ) =−(cos(kxa)+ cos(kya)+ cos(kza)), so that since
γ is on the order of Hartrees (Ha), the energy is in these units. This corresponds to taking a diagonal
site energy of ε0 = −α = 0 and Vnm = −γ = −1/2 in the present units. We next consider Green’s
function with the inclusion of the perturbing Hamiltonian, ĤI . We have

Ĝ = (E− Ĥ)−1 = (E− Ĥ0− ĤI)
−1 = (Ĝ−1

0 − ĤI)
−1, (9.6a)
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or

(Ĝ−1
0 − ĤI) Ĝ = 1 ⇒ Ĝ = Ĝ0 + Ĝ0ĤIĜ, (9.6b)

as the Green function associated with the perturbation. We seek the matrix elements of this perturbed
Ĝ and write

<~k|Ĝ|~k′ >=<~k|Ĝ0|~k′ >+<~k|Ĝ0ĤIĜ|~k′ >
=<~k|Ĝ0|~k′ >+<~k|Ĝ0 ∑

~k′′
|~k′′ ><~k′′|ĤI ∑

~k′′′
|~k′′′ ><~k′′′|Ĝ|~k′ >, (9.7)

where we have used the state |~k >’s completeness condition. With the use of Equations 9.2c and
9.3, notice that

<~k′′|ĤI |~k′′′ >=
1√
N ∑

n
e−i~k′′·~rn(n|`)εµ

1√
N ∑

n′
ei~k′′′·~rn′ (`|n′) = εµ

N
ei(~k′′′−~k′′)·~r` =

εµ

N
, (9.8)

where we have used the orthogonality condition (`|n) = δ`n and taken the impurity to be located at
the origin; i.e.,~r` = 0, in the last step. Substituting Equation 9.8 back into Equation 9.7, get

G~k~k′ = G0~k~k′ +
εµ

N ∑
~k′′

G0~k~k′′∑
~k′′′

G~k′′′~k′ (9.9a)

where we have defined G~k~k′ ≡<~k|Ĝ|~k′ > and similarly G0~k~k′ ≡<~k|Ĝ0|~k′ >. With the further defi-
nitions

∑
~k′

G0~k~k′ ≡ G0~k, ∑
~k

G~k~k′ ≡ G~k′ , (9.9b)

we can write Equation 9.9a as

G~k~k′ = G0~k~k′ +
εµ

N
G0~kG~k′ . (9.9c)

Summing this expression over~k, while making use of the definition of Equation 9.9b, we get

G~k′ = G0~k′ + εµ

1
N ∑

~k

G0~kG~k′ = G0~k′ + εµ F0G~k′ . (9.9d)

where

F0 ≡
1
N ∑

~k

G0~k =< 0|Ĝ0|0 >=
1

VBZ

(∫

VBZ

1
E−E~k

d~k
)
, (9.9e)

is the site diagonal matrix element of the unperturbed crystal’s Green function of Equation 9.5b with
the integration as discussed in Chapter 8. Finally, replacing~k′→~k in Equation 9.9d, one obtains the
perturbed Green function in momentum space as

G~k(E) = G0~k(E)+ εµ F0(E)G~k(E), (9.9f)

where we show its explicit dependence on energy E in a similar way that G0~k(E) does, which is
evident from Equation 9.5b. Equation 9.9f can be solved for G~k to obtain

G~k(E) =
G0~k(E)

1− εµ F0(E)
, (9.10a)
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which is an important result. It shows the perturbed system contains a pole whenever the energy has
a value that satisfies the relationship

εµ =
1

F0(E)

∣∣∣
E=Ebo

, (9.10b)

for the real part of F0(E), and which allows us to identify the impurity bound state energy Ebo. Thus,
the impurity acts as an electron trap with this energy level. The density of states associated with the
impurity is

DI(E) =−
1
π

Im

(
1
N ∑

~k

G~k(E)

)
=− 1

π
Im
(

F0(E)
1− εµ F0(E)

)
, (9.10c)

where Equation 9.9e has been used. Notice that if the impurity perturbation were to be taken as
εµ = 0, Equation 9.10c reduces to

D(E) =− 1
π

Im(F0(E)) , (9.10d)

which is the unperturbed crystal’s density of states. Before we apply the above concepts regarding
the single impurity, in order to obtain the impurity bound state Ebo, we need to perform a search
for the energy E in such a way that when Equation 9.10b is satisfied E = Ebo. The search involves
varying E and, in doing so, the function F0(E) from Equation 9.9e may have to be evaluated several
times until the solution is found. The integration over the 3-dimensional~k-space takes much more
effort. It is, therefore, worthwhile to find an efficient way to carry out such integrations. This is the
subject of the following section.

9.3 Repeated Integrations Over 3-dimensional~k-space - An Efficient Way
In this section, we develop the approach that will be used throughout the rest of the chapter in order
to carry out repeated integrations of functions such as that of Equation 9.9e for different energies E.
Notice that the integrations we are referring to are over 3-dimensional~k-space. For simplicity, we
work with a single band and recall that the density of states in such a crystal system is given by

D(E) =
1
N ∑

~k

δ (E−E~k) =
1

VBZ

∫

VBZ

δ (E−E~k)d~k

=− 1
πVBZ

Im



∫

VBZ

G0~k(E)d
~k


=− 1

πVBZ
Im



∫

VBZ

1
E−E~k

d~k


 ,

(9.11)

where G0~k(E) is the unperturbed Green function from Equation 9.5b. The above result is made
possible by the relationship between Green’s function and the density of states discussed in Chapter
8. In this vein, notice that the function F0 of Equation 9.9e can be written as

F0 =
1

VBZ

∫

VBZ

1
E−E~k

d~k =
1
N ∑

~k

1
E−E~k

=
1
N ∑

~k

∫
dE ′

δ (E ′−E~k)
E−E ′

=
∫ dE ′

E−E ′
1
N ∑

~k

δ (E ′−E~k) =
∫ D(E ′)dE ′

E−E ′
,

(9.12)
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where the density of states definition of Equation 9.11 has been used. This expression effectively
shows how to convert an integration over 3-dimensional~k-space to a one-dimensional energy inte-
gral. The integral that remains to be done is one that involves singularities, however, as is usually the
case insofar as Green functions are involved. This of course is made possible if the density of states
of the crystal system of interest is known a priori. In the following example, we do a calculation of
F0(E) versus E.

Example 9.3.0.1
Let’s calculate F0(E) versus E for the simple cubic system and show its real and imaginary parts.
From Equation 9.12, we will be carrying out the integral, F0 =

∫ D(E ′)dE ′
E−E ′+i∆ , for small ∆. For the

density of states, D(E), we will use the exact analytic result from [34], as discussed in Chapter 8.
The integration is to be carried out using our function singInt.m for singular integrals developed in
the previous chapter. The results from the above integration are shown in Figure 9.3.4. The simple
cubic’s density of states is also included in the plot.
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Figure 9.3.4: The real (dashed) and imaginary (solid) parts of the function F0(E) from Exam-
ple 9.3.0.1. The simple cubic’s density of states (dos) used in the calculation is also shown (dotted).

Notice that the imaginary part of F0(E) resembles the density of states. This is no accident as shown
in Exercise 9.8.1. The code used to do the present calculation is F0 simple cubic.m listed below.
Notice that the function singInt.m (from Chapter 8) has to be available in the path to complete the
calculation. Additionally, we have created a separate function to do the analytical density of states;
i.e., jelittoScDosAnal.m and must be available in the path as well. It is also listed below.

%copyright by J. E Hasbun and T. Datta

%F0_simple_cubic.m

%f0=(1/N)sum_over_k (1/(E0-Ek)) where

%Ek=-cos(kx*a)-cos(ky*a)-cos(kz*a). If we use the density of states

%corresponding to the simple cubic, then

%f0(E)=int(g(E’) dE’/(E-E’+im*delta))

function F0_simple_cubic

clear, clc;

delta=1.5e-2;

im=complex(0.0,1.0);

e2=4.0; %range for energy E

e1=-e2;
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ntmax=101;

es=(e2-e1)/(ntmax-1); %energy step

a=1.0; %lattice constant

tpa=2*pi/a;

VBZ=tpa^3; %total SC BZ volume

for nt=1:ntmax

e0(nt)=e1+(nt-1)*es; %energy E

ge(nt)=jelittoScDosAnal(e0(nt))/VBZ; %exact SC dos

end

plot(e0,ge,’k:’,’LineWidth’,2), hold on %exact dos plot

xlabel(’E (Hartrees)’), ylabel(’D(E), F_0(E)’)

str=cat(2,’D(E) and F_0 for the simple cubic (no spin)’);

title(str, ’Fontsize’,12)

%Repeat the e loop

e2p=3.0; %range for E’

e1p=-e2p;

ntpmax=201;

esp=(e2p-e1p)/(ntpmax-1); %E’ step

for nt=1:ntmax

%Integrate over the e’ loop

for ntp=1:ntpmax

if(nt==1) %calculate this part only once

e0p(ntp)=e1p+(ntp-1)*esp; %energy E’

top(ntp)=jelittoScDosAnal(e0p(ntp))/VBZ; %use SC density of states

%as the numerator

end

deno(ntp)=e0(nt)-e0p(ntp)+im*delta; %the denominator

end;

f0(nt)=singInt(top,deno,esp); %F0 at the energy E integration

end

plot(e0,real(f0),’k--’) %real part of F0 vesus E

hold on

plot(e0,imag(f0),’k-’) %imaginary part of f0 versus E

axis tight

legend(’Jelitto-dos’,’real(F_0)’,’Im(F_0)’,0)

%copyright by J. E Hasbun and T. Datta

%jelittoScDosAnal.m

function ge=jelittoScDosAnal(ee)

%Jelitto’s DOS for the simple cubic (exact)

eaa=abs(ee);

if (eaa <= 3.) & (eaa >= 1.)

a1=3.-eaa;

a2=a1^2;

a=sqrt(a1);

b=80.3702-16.3846*a1;

d=0.78978*(a2);

f=-44.2639+3.66394*a1;

h=-0.17248*(a2);

ge=a*((b+d)+(f+h)*sqrt(eaa-1.));
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else

if(eaa < 1.)

ge=70.7801+1.0053*(ee^2);

else

ge=0.;

end

end

9.4 The Single Impurity Level Calculation
We are ready to carry out the calculation of the impurity level using Equation 9.10b. The general
idea is to find the energy E at which the real part of F0(E) = 1/εµ ; that is,

εµ =
1

Re(F0(E))

∣∣∣
E=Ebo

, (9.13)

where εµ = εI−ε0 with εI the diagonal energy associated with the foreign atom and ε0 the diagonal
energy of the host site, which in the present case it is−α = 0. Referring to Figure 9.3.4 and looking
at the real part of F0, we notice there could be various solutions at which F0(E) = 1/εµ . Depending
on the sign of εµ , there could be two solutions for E < 0 and two solutions for E > 0. For each pair
of solutions, there could be one inside the band and one outside. Impurity solutions inside the band
are referred to as resonances, and solutions outside the band are generally known as deep levels,
depending on how far they lie from the band. Generally, if an impurity level lies a few meV ’s to tens
of meV ’s away from the band, they are referred to as shallow impurities (donors or acceptors follow
this rule also). The deep levels lie far from a band and perhaps are a few hundred meV ’s away
from a single band or they are between bands; i.e., near the middle of a band gap. Provided the
approximations made are applicable, the method developed here could be suitable for both shallow
and deep levels. This is reflected in the way we search for the solution to Equation 9.13. We normally
begin with a guess to the solution and then we iterate the equation until we reach convergence. For
deep levels of interest here, we start with a guess that lies outside the band and whose sign depends
on the sign of εµ . We will employ the Newton-Raphson technique to locate the solution. We used
this method before, in Chapter 5, when we sought the chemical potential versus temperature. Here,
though, the energy is to be varied so we write

Ei+1 = Ei−
F(Ei)

F ′(Ei)
, (9.14)

where F(E) ≡ 1/Re(F0(E))− εµ ; i.e., the function whose zero we seek, and F ′(E) is its deriva-
tive. Because F0(E) involves an integration, every time E is varied, a new integration has to be
made and the process repeated to convergence. For this reason, it is important to choose an ef-
ficient method of seeking the solution. The Newton-Raphson method happens to be one of the
best methods in this regard. The derivative can be evaluated numerically using the approximation
F ′(E) ∼ (F(E +∆)−F(E))/∆ for small enough ∆, which involves an extra evaluation of the in-
tegral, but it is a worthwhile effort here. The following example considers a certain impurity in a
simple cubic system.

Example 9.4.0.1
Here we consider an impurity with diagonal energy εI = 3.25Ha (where in our units 2γ = 1Ha).
Since we have taken the host diagonal energy ε0 = 0Ha then εµ = 3.25Ha. We seek the bound state
associated with the perturbation. This calculation has to be carried out numerically but can also be
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illustrated graphically. First, by running the script impurity simple cubic.m which carries out the
procedure described above, in this section, prior to this example, the bound state is found according
to Equation 9.13 at Ebo = 3.75Ha. The listing of the script follows.

%copyright by J. E Hasbun and T. Datta

%impurity_simple_cubic.m

%Here we obtain f0=(1/N)sum_over_k (1/(E0-Ek))

%from the density of states. That is,

%f0(E)=int(g(E’) dE’/(E-E’+im*delta)) then calculate the

%impurity level from 1/Real(f0)-Emu=0

function impurity_simple_cubic

clear;

delta=1.e-3;

im=complex(0.0,1.0);

a=1.0; %lattice constant

tpa=2*pi/a;

VBZ=tpa^3; %total SC BZ volume

e2p=3.0;

e1p=-e2p;

ntpmax=251;

esp=(e2p-e1p)/(ntpmax-1);

%Get the simple cubic density of states to be reused

for ntp=1:ntpmax

e0p(ntp)=e1p+(ntp-1)*esp; %E prime

top(ntp)=jelittoScDosAnal(e0p(ntp))/VBZ; %integration numerator

end

%Search for the impurity bound state

%Use Newton-Raphson x(i+1)=x(i)-dE/(F(E+dE)/F(E)-1), where

%F(E)=1/f0(E)-E_mu is the function whose zero we seek

tol=1.e-3; %convergence tolerance

Ei=3.25; E_0=0; %impurity and host diagonal energies

Emu=Ei-E_0; %The perturbation Emu=E_i-E_0

Eguess=1.2*Emu; %initial guess (for a deep level)

iFg=10*tol; %convergence check variable

iter=0;

maxiter=30; %maximum iterations

%Iteration loop

while(abs(iFg) >= tol & iter < maxiter)

iter=iter+1; %iteration counter

de=max(0.5,abs(Eguess)); %energy variation

Eguess_de=Eguess+de; %vary the energy guess

for ntp=1:ntpmax

denog(ntp)=Eguess-e0p(ntp)+im*delta; %1st denominator

denog_de(ntp)=Eguess_de-e0p(ntp)+im*delta; %2nd denominator

end;

f0g=real(singInt(top,denog,esp)); %integration

f0g_de=real(singInt(top,denog_de,esp)); %integration

iFg=1/f0g-Emu; %The function whose zero is seek

iFg_de=1/f0g_de; %the varied function

Ecorr=de/(iFg_de/iFg-1.0); %Newton-Raphson correction
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Eguess=Eguess-Ecorr; %new guess

end

Ebo=Eguess; %bound state due to the impurity

disp(’Results: note that Ecorr is small at convergence’)

fprintf(’iter=%4i, Ecorr=%6.4g, 1/f0g=%6.4g, iFg=%6.4g\n’,iter,...

Ecorr,1/f0g,iFg)

fprintf(’Peturbation: Emu=%6.4f, Bound state found: Ebo=%6.4f\n’,Emu,Ebo)

The way the solution has been found can be explained graphically as shown in Figure 9.4.5. The
inverse of εµ intersects the real part of F0(E) at an energy of E = Ebo on the horizontal axis. The
intersection is marked by a circle and corresponds to a graphical solution of the problem.
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Figure 9.4.5: The impurity bound state Ebo = 3.75Ha associated with εµ = 3.25Ha and which leads
to the solution of Equation 9.13 is shown by the circle, which marks the intersection between the
real part of F0(Ebo) and 1/εµ . The real part of F0(E) is as in Figure 9.3.4.

The perturbation affects the density of states, and the impurity contribution to it is shown by a large
peak at the impurity bound state. If we ignore spin, integrating the areas under the density of states,
the result ought to be unity, since in each case the obtained band holds one electron. The plot in
Figure 9.4.6 shows the DOSs for the unperturbed and the perturbed cases. The area under each
curve is closed to unity (see Exercise 9.8.4)
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Figure 9.4.6: The density of states of the unperturbed system (solid, see Equation 9.10d) is com-
pared to the perturbed density of states (dotted, see Equation 9.10c). The area under each curve
amounts to a single electron (ignoring spin).

9.5 The Coherent Potential Approximation (CPA) for Disordered Systems
The previous sections have made use of the Green function to study the effects of an impurity in
a crystal system. In this section, we delve into the regime of systems for which the number of
impurities is so high that the system is not a pure crystal but is rather an alloy. An alloy falls into
the class of systems known as disordered systems. The disorder comes from the presence of atoms
in the material whose particular arrangement is not necessarily repeatable throughout the system.
Thus, the important property of periodicity is lost in such systems and the standard idea of Bloch’s
theorem does not apply. We say the system does not have long range order. The study of disordered
systems may sound like a difficult task, and it is; however, there are techniques that can be applied
and still be able to use the methods we have learned from studying periodic systems. The Green
function technique we have developed thus far goes by the name of multiple scattering. We will
continue here with that approach and adopt the operator symbol v̂, which is more standard, to refer
to the perturbing part of the Hamiltonian. In this way, Equation 9.2a is rewritten as

Ĥ = Ĥ0 + v̂. (9.15a)

We still let the unperturbed system be described by the Green function of Equation 9.5. The per-
turbed system, however, is similar to Equation 9.6b; that is,

Ĝ = Ĝ0 + Ĝ0v̂Ĝ ⇒ Ĝ = [1− Ĝ0v̂]−1Ĝ0. (9.15b)

This quantity Ĝ can be related to another quantity T̂ known as the scattering matrix. The relationship
is such that we can write

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0, (9.16a)

which when compared with the first of Equation 9.15b, we see that

T̂ Ĝ0 = v̂Ĝ, (9.16b)
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and, therefore, we can write an equation for the T -matrix as

T̂ = v̂+ v̂Ĝ0T̂ ⇒ T̂ = [1− v̂Ĝ0]
−1v̂, (9.16c)

where Equation 9.16a has been used. Equations 9.16(a-c) are very convenient for describing prop-
erties of random system. In particular, the coherent potential approximation (CPA) [38] for random
alloys was originally formulated using the above-mentioned multiple scattering approach in con-
junction with a tight binding model. Here we work with the simplest of alloys, namely those which
consist of two species of atoms, A and B, substitutionally located in random site positions with
respective concentrations x and y = 1− x. We can represent such alloys in the form AxBy. To cap-
ture the concept, in what follows we will refer to Figure 9.5.7. In panel (a) an alloy is illustrated
composed of atomic species A and B located at random in substitutional sites.

A BA

A

AA

B B

B

(a) (b) (c)

Figure 9.5.7: (a) A random substitutional alloy of A and B species; (b) a crystal of coherent poten-
tials; (c) replacing site 0 with a random site εr that can take on values of either εA or εB.

The idea of the CPA is to replace all these alloy sites by coherent sites as shown in panel (b). The
tight binding Hamiltonian associated with such a crystal is

Ĥ0 = ∑
n
|n)Σ(n|+∑

nm

′|n)Vnm(m|; (9.17)

that is, the disorder is assumed to be diagonal, and where, as before, the prime indicates n 6=m. Here,
the actual diagonal energies that normally take on values of εA and εB have been replaced by the,
as yet, unknown coherent potentials Σ. The off-diagonal terms are taken to be independent of the
alloy species. Notice that by doing this, the crystal so described remains translationally invariant.
The Green function corresponding to the Hamiltonian of Equation 9.17 is

Ĝ0 = (E− Ĥ0)
−1. (9.18)

Using the Bloch function

|~k >=
1√
N ∑

m
ei~k·~rm |m), (9.19)

in the nearest neighbor approximation, the matrix elements of Ĥ0 and, thereby, the alloy system’s
Ĝ0 are

< k|Ĥ0|k >= Σ+V~k (9.20a)

and

< k|Ĝ0|k >= (E−Σ−V~k)
−1 ≡ G0~k (9.20b)
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with

V~k =
nn

∑
m6=0

V0m exp(i~k ·~Rm), and FΣ0(E)≡ (0|Ĝ0|0) =
1
N ∑

~k

1
E−Σ−V~k

, (9.20c)

where in the sum’s upper limit nn stands for nearest neighbors. Also, as before, the density of states
for the alloy according to the CPA is

DΣ(E) =−
1
π

Im[FΣ0(E)]. (9.20d)

As mentioned above, the Σ is unknown and we need a way to determine it. The CPA procedure is,
first, to take out one of the coherent potentials of Figure 9.5.7(b), and in its place put in an actual
atom whose diagonal energy is εr as shown in panel (c) of the figure, where r can be either A or B.
This is tantamount to considering a single impurity in the alloy crystal. We thus think of this as a
perturbation (similar to Section 9.2) of the form

Ĥr = |0)(εr−Σ)(0|, (9.21)

where the supposed impurity has been located at the zeroth site. The idea is that εr can take on
diagonal energy values of the original alloy atoms; i.e., εA or εB with respective concentrations x
and y = 1− x. The total system’s Hamiltonian is, therefore, that of Equation 9.15a where we make
the identification

v̂ = Ĥr. (9.22)

This means that the perturbed Green function of the system is similar to that of Equation 9.15b; that
is, for the atom r

Ĝr ≡ [1− Ĝ0Ĥr]
−1Ĝ0. (9.23a)

Taking the site diagonal elements of this, while using Equations 9.20 and 9.21 as reference, we have

Fr ≡ (0|Ĝr|0) = [1−FΣ0(E)(εr−Σ)]−1FΣ0(E), (9.23b)

where use has also been made of the site wavefunctions’ completeness condition, ∑
n
|n)(n| = 1,

as well as their orthonormality property, (n|m) = δnm (see Exercise 9.8.6). The first step in the
process of obtaining Σ has been achieved. The second and final step entails the averaging of the
function Fr of Equation 9.23b over the atomic species A and B, which are thought to be present
with concentrations x and y, respectively. The CPA recipe sets this average equal to the function
FΣ0(E) of Equation 9.20c; that is,

< Fr >Ave=
xFΣ0(E)

1−FΣ0(E)(εA−Σ)
+

yFΣ0(E)
1−FΣ0(E)(εB−Σ)

= FΣ0(E), (9.24)

and represents an equation to obtain Σ self-consistently. This averaging can be expressed graphically
and is shown in Figure 9.5.8.
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=
Ave

Figure 9.5.8: The CPA’s approach to obtain the coherent potential Σ self-consistently entails the
averaging over the zeroth site in such a way as to be consistent with a crystal of coherent potentials.

If we define the quantity

ε = xεA + yεB, (9.25a)

we can rearrange Equation 9.24 for Σ as

Σ = ε− (εA−Σ)FΣ0(E)(εB−Σ) (9.25b)

where we restate the Σ dependent FΣ0 and the density of states from Equation 9.20

FΣ0(E) =
1
N ∑

~k

1
E−Σ−V~k

, DΣ(E) =−
1
π

Im[FΣ0(E)]; (9.25c)

that is, once Σ, which is a function of energy E, converges from Equation 9.25b, a final evalua-
tion of FΣ0(E) is made in order to obtain the final density of states, DΣ(E), in the alloy system.
One immediate approximation for Σ is the so-called virtual crystal approximation (VCA), which is
obtained if the second term of Equation 9.25b is ignored; in which case, Σ ≈ ε . In that case, the
system’s diagonal energy is simply a mixture of the original alloy components’ diagonal energies
weighted by their respective concentrations. As a rule of thumb, the VCA seems to be a reasonable
approximation if the alloy diagonal energies εA and εB are close enough. In contrast, if the diagonal
energies differ markedly from each other, the CPA is the better approximation to employ.
It is interesting to observe that the self-consistent expression for Σ expressed in Equation 9.25b can
also be obtained using the T -matrix of Equation 9.16c. The steps are as follows. If as in Equa-
tion 9.22, v̂ = Ĥr, we have for the corresponding operator

T̂r = [1− ĤrĜ0]
−1Ĥr. (9.26a)

Taking the site-diagonal matrix element of this, in a similar way to how we arrived at Equation 9.23b
(see Exercise 9.8.7), we get for the T -matrix associated with site r

Tr ≡ (0|T̂r|0) =
εr−Σ

1−FΣ0(E)(εr−Σ)
. (9.26b)

The final step is to average (denoted by < · · · >) this T -matrix over the atomic species A and B
according to their concentrations then to set the result to zero. This gives

< Tr >= 0 =
x(εA−Σ)

1−FΣ0(E)(εA−Σ)
+

y(εB−Σ)

1−FΣ0(E)(εB−Σ)
, (9.26c)

and this also gives the self-consistent condition for Σ expressed in Equation 9.25b (see Exer-
cise 9.8.8). Based on the above, the physical interpretation of the CPA is that one replaces the
exact system by an average effective system; that is, each site in the alloy sees an effective potential
or coherent potential. This potential is determined by the requirement that when one replaces it by
an actual alloy site, either εA or εB, there is no further scattering on the average.
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9.6 The Coherent Potential Calculation
In this section, the calculation of the coherent potential, Σ, discussed in the previous sec-
tion will be carried out. As in Section 9.2, we will work with the simple cubic host system
band in the tight binding approximation. This is given by Equation 9.4; that is, ε~k = −α −
2γ (cos(kxa)+ cos(kya)+ cos(kza)). However, in FΣ0(E) of Equation 9.20c, Σ replaces−α and we
let V~k =−(cos(kxa)+ cos(kya)+ cos(kza)) so that, as before, we are working in units of 2γ ≈ 1Ha.
Furthermore, since the density of states for the simple cubic is known, the function FΣ0(E) from
Equation 9.25c is calculated by the method of Section 9.3; that is,

FΣ0(E) =
1
N ∑

~k

1
E−Σ−V~k

=
1
N ∑

~k

∫
dE ′

δ (E ′−V~k)
E−E ′−Σ

=
∫ D(E ′)dE ′

E−E ′−Σ
,

(9.27a)

where the energy E, once again, is assumed to contain a small positive imaginary part and where
we have used the definition of the density of states as we have calculated it for the cubics in the
previous chapter; i.e.,

D(E) =
1
N ∑

~k

δ (E−V~k). (9.27b)

The final aspect about the calculation we are about to perform is that Σ in Equation 9.25b is a self-
consistent expression, meaning that it must be solved for numerically in an iterative manner until
the left and right sides of the equation are equal; i.e., consistent with each other. As it stands, starting
from an initial guess, the equation does not yield to a rapid and efficient convergence. We, therefore,
rearrange it so as to improve the iteration process. By multiplying through and rearranging terms,
one obtains

Σ =
ε− (εAεB− εΣ)FΣ0(E)

1− (xεB + yεA−Σ)FΣ0(E)
(Full Alloy), (9.28)

and is the form we employ in this section. This expression is useful because in the event that εA ∼ εB
≈ ε then

Σ≈ ε (VCA Limit), (9.29)

which is the energy result that the VCA, mentioned earlier in connection with Equation 9.25, would
give. This is seen to work well for the case when the alloy species are nearly the same and when it
corresponds to the crystal limit when εA = εB. There is an interesting limiting form of Σ that one
can obtain directly from Equation 9.28; i.e., when the species are very different. This is called the
split-band limit. The limit is obtained by assuming, for example, that εA → ∞ and εB → 0, so that
ε = xεA, then the above expression gives

Σ≈−xεA(1+ΣFΣ0)

(yεA−Σ)FΣ0
, (9.30a)

where since εA is assumed large, the 1 has been ignored in the denominator of Equation 9.28.
Furthermore, since in this limit εA >> Σ, we can ignore the Σ in the denominator as well, and
multiplying through by (yεA)FΣ0, remembering that x+ y = 1, while finally solving for Σ, we get

Σ =− x
FΣ0(E)

=− (1− y)
FΣ0(E)

(Split Band Limit), (9.30b)
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which represents a self-consistent equation for Σ in the split-band limit and corresponds to a strong
scattering regime. One final limiting form of Σ is the so-called dilute alloy in which one of the alloy
components is considered very dilute. For example, let’s assume that x, the concentration of the A
species is very small, then we expect that Σ∼ εB, so that we can replace FΣ0 of Equation 9.27a with
FεB0, where FεB0(E) ≡ 1

N ∑
~k

1
E−εB−V~k

. In this case, Equation 9.25b becomes Σ ≈ xεA +(1− x)εB +

(εA− Σ)FεB0(Σ− εB) = x(εA− εB) + εB + (εA− Σ)FεB0(Σ− εB), or (Σ− εB)[1− (εA− Σ)FεB0] =
x(εA− εB), which results in

Σ∼ εB +
xδ

1−δFεB0(E)
(Dilute Alloy Limit), (9.31)

where δ ≡ εA− εB. This expression for Σ is not self-consistent, but it remains a function of E and
the density of states is still given by Equation 9.27.

Example 9.6.0.1
In this example, we consider a hypothetical alloy consisting of two species A and B whose struc-
ture is that of a simple cubic with a single band in the tight binding approximation. We wish to
obtain the density of states (DOS) of the alloy system AxB1−x and take the diagonal energies as-
sociated with the atomic species as εA = −2.5 and εB = 2.5 in units of Ha. When calculating the
density of states, we will use the expressions from Equations 9.27 and 9.28 for concentrations of
x= 1.0, 0.9, and 0.5. The case for x= 1.0 corresponds to the pure crystal composed of the A species
and the associated density of states is that of a simple cubic band centered at εA = −2.5 as can be
seen in Figure 9.6.9(a). The pure crystal DOS contains sharp edges or the so-called Van Hove sin-
gularities associated with pure crystal band structures, whereas in the alloy density of states such
singularities tend to be smoothed out. This is evident in the results shown in panels (b) and (c).
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Figure 9.6.9: The alloy AxB1−x density of states as obtained using the coherent potential approxi-
mation (CPA) for (a) the A crystal (x = 1.0), (b) the case with concentration x = 0.1, and (c) the
case with concentration x = 0.5. Here the diagonal energies are εA =−2.5Ha, εB = 2.5Ha, and the
energy E is in units of Hartrees (Ha).
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We notice that as the concentration x of the A species decreases, the density of states develops
the band associated with the B species with concentration y = 1− x. This band is centered about
εB = 2.5Ha. The density of states associated with the B species increases as y increases. What
do you expect will happen in the limit as x→ 0? The code employed in obtaining Figure 9.6.9 is
CPA.m whose listing follows (recall that some of the functions used in the code have been discussed
previously).

%copyright by J. E Hasbun and T. Datta

%CPA.m

%We calculate the coherent potential approximation (CPA) sigma.

%The virtual crystal approximation (VCA) is used as guess

%The resulting sigma is used to obtain the density of states

%for the alloy.

function CPA

clear; clc;

delta=1.e-3;

im=complex(0.0,1.0);

Ea=-2.5; %alloy system species 1 diagonal energy

Eb=2.5; %alloy system species 2 diagonal energy

scbw=3.0; %simple cubic known band width

x=1;

y=1-x; %y=concentration of Eb species

e2=Ea-scbw; %energy range to work with

e1=-e2;

ntmax=201;

es=(e2-e1)/(ntmax-1);

a=1.0; %lattice constant

tpa=2*pi/a;

VBZ=tpa^3; %total SC BZ volume

e2p=3.0;

e1p=-e2p;

ntpmax=251;

esp=(e2p-e1p)/(ntpmax-1);

Evca=x*Ea+y*Eb; %VCA energy

sig_guess=Evca; %initial sigma guess - VCA energy

cv=0.85; %new guess helper parameter

ncmax=25; %maximum iterations

tol=1.e-4;

str1=cat(2,’nt=%4i, e0=%4.2f, nc=%2i, sig=%5.4g, drs=%5.4g’);

str2=cat(2,’, dis=%5.4g, dos=%5.4f\n’);

str=cat(2,str1,str2);

for nt=1:ntmax %Main energy loop

nc=0;

converge=0;

drs=10*tol;

dis=10*tol;

e0(nt)=e1+(nt-1)*es; %the energy E

sig(nt)=sig_guess; %use former sigma guess

while (converge==0 & nc < ncmax)

nc=nc+1;

if(drs < tol & dis < tol)
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converge=1; %use the converged sigma as guess

sig_guess=sig(nt); %for next energy

end

%Integrate over the E’ loop

for ntp=1:ntpmax

if(nt==1) %calculate this part only once

e0p(ntp)=e1p+(ntp-1)*esp;

top(ntp)=jelittoScDosAnal(e0p(ntp))/VBZ;

end

deno(ntp)=e0(nt)-e0p(ntp)-sig(nt)+im*delta;

end;

f0(nt)=singInt(top,deno,esp);

%CPA rule for sigma’s next guess. The 2nd form converges better.

%signew=Evca-(Ea-sig(nt))*f0(nt)*(Eb-sig(nt));

signew=(Evca-(Ea*Eb-Evca*sig(nt))*f0(nt))/...

(1-(y*Ea+x*Eb-sig(nt))*f0(nt));

%The actual guess we make is a mixture between new and old

sig(nt)=cv*signew+(1-cv)*sig(nt);

drs=abs(real(sig(nt)-signew)); %use for convergence criteria

dis=abs(imag(sig(nt)-signew));

end

dos(nt)=-imag(f0(nt))/pi;

fprintf(str,nt,e0(nt),nc,sig(nt),drs,dis,dos(nt));

end

str=cat(2,’Coherent Potential Approximation (CPA), \epsilon_A=’,...

num2str(Ea,’%5.2f’),’H_a, \epsilon_B=’,num2str(Eb,’%5.2f’),...

’H_a, x=’,num2str(x,’%4.2f’));

title(str)

plot(e0,dos,’k’)

xlabel(’E (H_a)’), ylabel(’D(E) (states/energy)’)

title(str)

It is interesting to see how the self-consistent energy Σ behaves versus E, and this can most simply
be illustrated with the split-band limit of Equation 9.30b. The result is shown on the left panel of
Figure 9.6.10 for a concentration of x = 0.5. The right panel of the figure contains the density of
states for the single band associated with the B species, shown to be centered at zero. The band
associated with the A species is presumably centered at ∞.
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Figure 9.6.10: The left panel shows the AxB1−x split-band limit results for the real and imaginary
parts of Σ from Equation 9.30b with εB = 0 and x = 0.5. The right panel shows the corresponding
density of states.

The dilute alloy case can be computed using the approximate self-energy Σ of Equations 9.27 and
9.31. The main difference is that we do not have to worry about iterating Σ in this case. The results
for the density of states are shown in Figure 9.6.11. Here we take εA = −2.5Ha, εA = 2.5Ha, and
x = 0.05, since the approximation applies for small x.
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Figure 9.6.11: The AxB1−x dilute alloy density of states with εA = −2.5Ha, εA = 2.5Ha, and x =
0.05.

Notice the sharp peak to the left of the main B band. The peak is associated with the dilute concen-
tration of the A atoms and resembles an impurity band. Finally, the CPA has been found to be very
successful in calculations involving real multisubband systems as illustrated in Figure 9.6.12 for a
Si1−xGex alloy.
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(a) Si1−xGex: Theory - CPA calculation [39] (b) Si1−xGex: Comparison between theory and experiment [39]

Figure 9.6.12: (a) The density of states (solid lines) for Si1−xGex alloy for concentrations of
x = 0.4, 0.3, 0.2 and including the pure Ge and Si results [39]. (b) Comparison between theory
(dashed) and experiment (solid) for concentrations of x = 0.2, 0.3, 0.4 as indicated by the labels
A,B,C respectively [39]. Reproduced with permission.

9.7 An Insight into an Effective Medium
The coherent potential approximation described above falls into a class of approaches to study
disordered systems. A more general term is an effective medium theory. It is interesting that if we
apply the same concept to a random mixture of metal wires and treat them as if they were resistors,
as is shown below, the exact result is obtained. Let’s work in one dimension and consider a wire of
length ` and cross-sectional area A made of a random mixture of different metal wires, where each
individual metal wire has a respective conductivity gi with i denoting metals 1 and 2. We write the
Ohm’s voltage across the metal mixture as

V =
I`

ge f f A
, (9.32a)

where ge f f is the effective conductivity of the random wire mixture, which is to be estimated through
the CPA. The effective wire is illustrated in Figure 9.7.13(a). We next remove a section of the effec-
tive wire of length a and replace it by a segment of wire 1 with conductivity g1 as in Figure 9.7.13(b).
The conductivity of the resulting wire is given by

V1 =
Ia

g1A
+

I(`−a)
ge f f A

. (9.32b)

The process is repeated as in Figure 9.7.13(c) with wire 2 to obtain the voltage

V2 =
Ia

g2A
+

I(`−a)
ge f f A

. (9.32c)
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��

��

(a)

(b)

(c)

A

Figure 9.7.13: (a) An effective wire of length `, cross-sectional area A, current I, voltage V and
effective conductivity ge f f . (b) A wire of cross-sectional area A, current I, voltage V1 with effective
conductivity ge f f for the section of length `−a and conductivity g1 for the section of length a. (c) A
wire of cross-sectional area A, current I, voltage V2 with effective conductivity ge f f for the section
of length `−a and conductivity g2 for the section of length a.

An approximate value of the conductivity of the effective wire is ge f f ≈ ḡ where

ḡ = xg1 + yg2, (9.33)

with x and y the fractional compositions of metal 1 and 2, respectively, and where x+y = 1. This is
the virtual crystal approximation version (VCA) for the present system. To go beyond the VCA, it
has been pointed out that the CPA, for the configuration considered here, is equivalent to setting the
average voltage fluctuation equal to zero [40]. To this end we have

<Vi−V >= xV1 + yV2−V = 0. (9.34a)

By substituting the corresponding Equations 9.32 into this, straightforward algebra leads to

1
ge f f

=
x
g1

+
y
g2

, (9.34b)

which is the CPA result for the system and it is also the expected exact result since resistances (which
are inversely proportional to conductivities) in series add arithmetically. If we make the definition
δ ≡ (g2−g1) we can express the effective conductivity in the form

ge f f = ḡ− xyδ 2

g1(1− x δ

g1 )
, (9.35)

so that for small δ , we can ignore the δ 2 term and we see that the CPA gives ge f f ∼ ḡ, which is the
VCA limit result of Equation 9.33. Glancing at the VCA, one notices that the expression acts as a
linear interpolation between the pure metal values g1 and g2 versus concentration x. The effective
medium result goes beyond the linear interpolation. The best way to assess how well this effective
medium describes actual observation is to make a comparison with real data. This is accomplished
with the use of the resistivity as recommended from Ho et al. [41] based on experimental data.
The resistivity can be inverted to obtain the conductivity and Equation 9.34b can be used to obtain
the g values versus x. We will work with the CuxNi1−x alloy for this comparison. We will let g1
be the conductivity of Cu when x = 1 and g2 be the conductivity of Ni when x = 0. According
to the data g1 = 0.596× 108(Ω ·m)−1 and g2 = 0.144× 108(Ω ·m)−1. Figure 9.7.14 shows the
recommended room temperature data (circles) along with the calculations from the VCA (dashed) of
Equation 9.33 and the effective medium theory (solid) of Equation 9.35 versus the Cu concentration
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x. Notice the linear behavior of the VCA as mentioned earlier. The effective medium theory does
show more bowing and is an improvement but it still lacks information for a better comparison. A
more sophisticated version of the theory appears to be needed in this case; Ho et al. [41] use the
Bloch-Grüneisen formula, which is beyond the scope of the present text.
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Figure 9.7.14: The CuxNi1−x alloy recommended room temperature data [41] (circles) along with
the calculated conductivity using the VCA (dashed line), of Equation 9.33, and the effective medium
theory (solid line), of Equation 9.35, versus x.

The partial code alloy CuNi cond.m listed below will reproduce the data as well as the VCA con-
ductivity of Figure 9.7.14 and can be modified to include the effective medium calculation to repro-
duce the entire figure (see Exercise 9.8.14).

%copyright by J. E Hasbun and T. Datta

%alloy_CuNi_cond.m

%Case of 293 K

%To use the effective medium conductivity formula to obtain

%the conductivity versus concentration.

%We work with the Cu(x)Ni(1-x) alloy.

%Cu(x)Ni(1-x) - g in units of 10^8/(ohm-meter)

clear, clc

%recommended data from C. Y. Ho et al.,

%J. Phys. Chem. Ref. Data V12 (2) 183 (1983)

x1d=[0.000,0.005,0.010,0.030,0.050,0.100,0.150,0.200,...

0.250,0.300,0.350,0.400,0.450,0.500,0.550,0.600,0.650,...

0.700,0.750,0.800,0.850,0.900,0.950,0.970,0.990,0.995,1.000];

g1d=[0.144,0.133,0.124,0.097,0.080,0.056,0.043,0.035,0.028,...

0.024,0.022,0.021,0.020,0.020,0.021,0.022,0.024,0.027,...

0.032,0.039,0.050,0.072,0.129,0.188,0.351,0.448,0.596];

Nd=length(x1d);

plot(x1d,g1d,’ko’)

hold on

g1=g1d(Nd); %pure copper g

g2=g1d(1); %pure nickel g
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x=0:0.05:1;

Nx=length(x);

for i=1:Nx

y=1-x(i);

gbar(i)=x(i)*g1+y*g2; %VCA

end

plot(x,gbar,’k--’) %VCA Cu-Ni
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9.8 Chapter 9 Exercises
9.8.1. After reading Example 9.3.0.1, running the script F0 simple cubic.m, and reproducing Fig-

ure 9.3.4, modify the code in order to show that the imaginary part of F0 is related to the
density of states D(E). Why?

9.8.2. Use the code impurity simple cubic.m of Example 9.4.0.1 and after confirming the result
for the stated value of Ebo given a perturbation energy of εµ = 3.25Ha, modify the code to
seek the bound level for a value of εµ =−3.25Ha. What is the result?

9.8.3. Modify the code impurity simple cubic.m of Example 9.4.0.1 and obtain the impurity lev-
els (Ebo) corresponding to perturbation energies εµ in the range [3.25,5.25] in steps 0.1.
Produce a plot of Ebo versus εµ and describe your observations.

9.8.4. Write a script to calculate the density of states of the unperturbed simple cubic system
from Equation 9.10d and that of the perturbed system of Equation 9.10c for the impurity of
Example 9.4.0.1. In your code, include a calculation of the total density of states in order
to show the conservation of electron number; i.e., the area should be unity (ignoring spin)
for each case. You will need a large energy array due to the impurity contribution. For
this exercise, you may use the Romberg integration function rombergInt.m along with its
associated interpolator, interpFunc.m, both introduced in Chapter 8. This exercise should
effectively reproduce Figure 9.4.6.

9.8.5. Make use of the definitions of Equations 9.16a and 9.16b to obtain the T -matrix relation of
Equation 9.16c.

9.8.6. Show the intermediate steps that lead from Equation 9.23a to Equation 9.23b.

9.8.7. Starting from Equation 9.26a, show the steps that lead to the expression for Tr shown in
Equation 9.26b.

9.8.8. Starting from Equation 9.26c, show the steps that lead to the self-consistent expression for
Σ shown in Equation 9.25b.

9.8.9. Give the steps that lead from Equation 9.25b to Equation 9.28, thus showing that they are
equivalent.

9.8.10. Read Example 9.6.0.1 and reproduce the results shown in Figure 9.6.9. Run the code CPA.m
for the case of when x = 0 and explain your observations.

9.8.11. Modify the code CPA.m of Example 9.6.0.1 in order to reproduce the results shown in
Figure 9.6.10 for the split-band limit of the Alloy AxB1−x density of states.

9.8.12. Modify the code CPA.m of Example 9.6.0.1 in order to reproduce the results shown in
Figure 9.6.11 for the dilute Alloy AxB1−x density of states.

9.8.13. Starting from Equation 9.34b, show the steps leading to Equation 9.35.

9.8.14. Modify the code alloy CuNi cond provided in Section 9.7 in order to include the effective
medium calculation for the conductivity to reproduce Figure 9.7.14 in its entirety.
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10.1 Introduction
As a young child, Albert Einstein was fascinated by the magnetic compass. The instrument mes-
merized him so much that many years later he wrote, “That experience made a deep and lasting
impression on me. Something deeper had to be hidden behind things.” A lodestone, a naturally
magnetized piece of magnetite with the chemical composition Fe3O4, was used as an early form
of magnetic compass (see Figure 10.1.1). Shen Kuo, the polymathic Chinese scientist, was the first
person to explicitly document the use of the compass as a tool for navigation purposes. Later, the
compass played an instrumental role in the discovery of North America by Christopher Columbus.
While magnetism as an effect was much valued in the ancient times for its utilitarian purposes,
the reason behind its origin was not well understood. Michael Faraday’s formulation of electrody-
namics provided an explanation for the origin of electromagnetic radiation, but could not offer an
explanation for the existence of spontaneous magnetism in nature.
At present, magnetic materials and their properties form the backbone of modern technological
applications ranging from motors, generators, electromagnets, transformers, and loud speakers to
magnetic resonance imaging (MRI) machines, sensors, giant magnetoresistance (GMR) read heads,
and data storage in the form of magnetoresistive random-access memory (MRAM) to name a few.
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In this chapter you will learn the basics of magnetism. We will assume the existence of magnetic
moments and provide explanations for the various phenomena displayed by dia-, para-, and ferro-
magnetism. You will learn about hysteresis, domain formation, the magnetocaloric effect utilized
for refrigeration purposes, mean field theories of paramagnetic-ferromagnetic phase transition, and
the Monte Carlo simulation method to study the magnetic phase transition in a ferromagnetic Ising
model. Finally, you will learn that magnetism is purely quantum mechanical. The intrinsic spin
angular momentum of an electron, the Coulomb electrostatic repulsion, and the Pauli exclusion
principle are the key ingredients to unraveling the origins of magnetism. More will be said on the
quantum origins of magnetism in Chapter 11.

(a)                                 (b)

Figure 10.1.1: (a) Lodestone; (b) the naturally occurring magnetite lodestone is ferrimagnetic in
nature. The ordering pattern is as shown. The unequal magnetic moments in the two sublattices give
rise to a net residual magnetization.

10.2 Bohr Magneton

r

Figure 10.2.2: Bohr model of
H atom.

The basic building block of a magnet is its magnetic dipole mo-
ment, ~µ . In classical electromagnetism, this can be visualized as
a current carrying loop where an electron revolves around the nu-
cleus, Figure 10.2.2. The orbital motion generates an atomic mag-
netic dipole moment with a north and a south pole. Since the elec-
tron undergoes circular motion in an orbit, the generated magnetic
moment can be related to the orbital angular momentum, ~L. This
fact can be utilized to estimate the size of~µ . The basic definition of
~µ is

~µ = IAn̂, (10.1)

where I is the current in Amperes, A is the area enclosed within the
loop, and n̂ is the unit normal vector to the loop according to the right-hand rule. For a circular orbit
of radius r we have

µ = πr2I. (10.2)

The current from the circulating electron is given by

I =
charge
time

=
−e

(2πr/v)
, (10.3)
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where v is its tangential velocity. Using Equations (10.1) and (10.3), we have

µ = πr2I =
(−e)vr

2
. (10.4)

From a classical physics perspective, all possible values of angular momentum, in principle, should
be allowed. However, we know from the atomic Bohr model that this is not the case and only
certain quantized energy levels are allowed. Moving forward, we assume the angular momentum of
the electron to be h̄. This gives

L = h̄ = mevr. (10.5)

Utilizing a mixture of classical and quantum mechanics arguments to solve a physics problem is
known as a semi-classical approach. Based upon this we have

h̄
me

= vr, (10.6)

which substituted into Equation (10.4) gives for the dipole moment

µ =
(−e)h̄
2me

≡−µB. (10.7)

In the above equation we introduced the Bohr magneton

µB =
eh̄

2me
= 9.274×10−24A ·m2, (10.8)

as a convenient and natural unit for describing atomic sized magnetic moments. We can estimate
the z−component of the magnetic dipole moment arising from the orbital motion. We have using~L
instead of h̄

~µL =− e
2me

~L, (10.9)

where the z−component is given by

~µLz =−
e

2me
Lz ==− e

2me
ml h̄ =−ml µB. (10.10)

In the above, we have used the relation Lz = ml h̄ where ml is the angular momentum quantum
number.

Example 10.2.0.1
Swedish chemist Georg Brandt is credited with the discovery of cobalt, which is a silver-grey transi-
tion metal with ferromagnetic properties at room temperature. Minerals containing cobalt were used
by ancient Egyptian and Mesopotamian civilizations to give glass its deep blue color. The ground
state electronic configuration of cobalt is [Ar]3d74s2 as shown in Figure 10.2.3. Assuming that each
unpaired electron contributes one µB, what is the net magnetic moment of an isolated Co atom?

3d
7

4s
2

Figure 10.2.3: Electronic configuration of cobalt.
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Solution
From the ground state electronic configuration of cobalt, we see that there are three unparied elec-
trons. Since each electron contributes one Bohr magneton, based on our assumption, the net mag-
netic moment will be 3µB. However, in reality the true value of the magnetic moment per atom
of cobalt is 1.72µB. This discrepancy can be attributed to the assumption of a localized-moment
picture, which does not hold for the ferromagnetic metals. To explain the observed experimental
value, we need to use concepts of band theory introduced earlier in Chapter 6. A full treatment of
the itinerant magnetic behavior is beyond the scope of this introductory textbook.
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10.3 Magnetization, Susceptibility, and Hysteresis
10.3.1 Magnetization and Susceptibility

Table 10.3.1: The various common magnetic ordering types along with examples and magnetic
ordering pattern. Range of dimensionless magnetic susceptibility values χ for the different types of
magnets are also listed. Figure 10.8.22 lists the magnetic state of elements in the periodic table.

Type of Magnet Examples Magnetic Susceptibility
Ordering Pattern (χmol , m3kg−1)

(a) Diamagnet
Cu, Au, Pb,

Ti4+, Sc3+, Al2O3

No ordering
pattern

10−5 − 10−8

(Negative)

(b) Paramagnet

Al, Gd, Pt,

U4+ , TiO2,

(NH4)2Mn(SO4)2.2H2O

10−2 − 10−5

(Positive)

(c) Ferromagnet Fe, Ni, Co,

Fe2O3, ZrZn2, MnNiSb

103 − 105

(Positive)

(d) Ferrimagnet

Fe3O4, TbFe2,

Y3Fe5O12(YIG),

BaFe12O19,

10 − 103

(Positive)

(e) Antiferromagnet Cr, FeCl2, MnF2,

MnO, NiO, CoO

10−2 − 10−5

(Positive)

A magnetic solid consists of a large number of atoms, each with net magnetic dipole moment. In
general, magnetic moments in a solid are randomly oriented and the net dipole moment sum is equal
to zero. However, in the presence of an externally applied magnetic field, the dipoles may align
themselves in the direction of the field. In such a case, the solid acquires a net magnetic moment
and becomes magnetized. The sum total of these moments, averaged over the sample volume, can
be used to define a quantity called

Magnetization(~M) =
Net magnetic moment( ~M )

Volume(V )
. (10.11)
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The net magnetic moment ~M is equal to the sum of all the dipole moments ~µ in the magnet.
The magnetic field vector ~B and the auxilliary field vector ~H provide a means to analyze magneto-
static behavior of magnetic materials. The units of ~B are Tesla (T). The units of ~H are Am−1. In free
space (vacuum), where there is no magnetization, ~B and ~H are linearly related by

~B = µo~H, (10.12)

where µ0 = 4π×10−7 N/A2 is the permeability of vacuum. The response of a magnetic system to
an external magnetic field, ~B, can be classified into three categories. They are

1. Magnetic dipole moments align opposite to the field (diamagnetism)
2. Magnetic dipole moments align in the direction of the field (paramagnetism)
3. Magnetic dipole moments align with the field and retain their orientation even after the

external magnetic
4. field has been removed (ferromagnetism).

The classification of magnet-isms does not just end with the above three. There is, in addition to
the above: ferrimagnetism, antiferromagnetism, helimagnetism, asperomagnetism, sperimagnetism,
speromagnetism, and superparamagnetism. Table 10.3.1 lists examples of material compounds and
elements for some of these magnetic types. A periodic table of magnetic elements at room temper-
ature is provided at the end of the chapter in Figure 10.8.22.
In a magnetic solid, the relation between ~B and ~H is modified due to the magnetization, ~M, of the
medium. In the case of a linear, isotropic, and homogeneous magnetic media, Equation (10.12) is
modified to

~B = µo(~H + ~M). (10.13)

The magnetization is given by

~M = χ~H, (10.14)

where χ is the dimensionless magnetic susceptibility. The unit for ~M is Am−1. From the above, we
have

~B = µo(1+χ)~H = µoµr~H (10.15)

where µr = 1+ χ is the relative permeability. In Equation (10.14) the magnetization response is
stated in relation to ~H and not ~B. The reason for this choice is rooted in the fact that ~B is sensitive
to the total current density (conduction and amperian magnetization) of the medium, whereas ~H
is related to the conduction current density only. Since there is no viable experimental method to
measure the bound circulating atomic currents giving rise to the amperian current density, it is
practical to express the magnetization response of a system as a function of ~H, which is controlled
by the current in the circuit. The relationship between ~M and ~H will be explored further in Section
10.3.2 by analyzing hysteresis curves in magnetic media.
Bulk magnetic susceptibility can be measured using a variety of experimental methods. Classical
susceptibility measurement techniques involving forces exerted on a magnetized specimen are uti-
lized in the Faraday’s balance and Gouy’s balance setup. The main difference between the two
methods is in the use of an inhomogeneous (Faraday) and homogeneous (Gouy) magnetic field. In
Exercise 10.9.4 you will obtain a relationship between the magnetic susceptibility and the force ex-
perienced by a magnetic specimen in a Gouy balance method. These methods are suitable for finely
divided solids and liquids. Presently, Superconducting QUuantum Interference Device (SQUID)
magnetometers, sensitive to the detection of a magnetic flux quantum, allow for an accurate mea-
surement of the magnetic moment of a sample, from which the magnetization and magnetic suscep-
tibility can be obtained. SQUID magnetometers can perform both DC and AC magnetic moment
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measurement and is especially useful for low temperature studies. Magnetic resonance methods
involving Nuclear Magnetic Resonance (NMR) can also be used to measure the paramagnetic sus-
ceptibility of solutions (see Chapter 11).
The susceptibility curves for a dia-, ferro-, and antiferromagnet are displayed in Figure 10.5.13. Ta-
ble 10.3.1 lists the range of dimensionless magnetic susceptibility values along with their magnetism
classification scheme. In general magnetic susceptibility of crystals is not isotropic, and can depend
on the spatial direction. In that case we define a susceptibility tensor, χi j, which takes into account
the anisotropy such that the magnetization response can occur in directions other than the direction
of the applied field. Magnetic susceptibility data for materials may be stated as a dimensionless
number χ , as a molar susceptibility χmol m3 mol−1 value

χmol = χVmol, (10.16)

where Vmol is the molar volume, or as a mass susceptibility χg m3 kg−1 value

χg =
χ

ρ
, (10.17)

where ρ is the density. Since mass is easier to measure, mass susceptibility measurements are typ-
ically reported. However, for materials which are in a gaseous state, molar susceptibility is a more
convenient choice of unit. Therefore, for practical purposes, it is important to know how to convert
between the various forms of susceptibility values.

Example 10.3.1.1
Spanish general Antonio de Ulloa is credited with the discovery of platinum (Pt) which is a highly
unreactive precious silvery white metal with excellent resistance to corrosion. The metal is used
in catalytic converters, electrodes, platinum resistance thermometers, and even in jewelry. It has a
dimensionless magnetic susceptibility of χ = 2.61 × 10−4. What is the mass susceptibility of Pt?
The density of platinum is ρ =21450 kg m−3 and its relative atomic mass is 0.19509 kg mol−1.
Solution
Mass susceptibility is defined as

χg =
χ

ρ
. (10.18)

in units of m3 kg−1. We then have for Pt

χg =
2.61×10−4

21450
= 1.22×10−8m3 kg−1. (10.19)

Mass susceptibilities are generally three to four orders of magnitude less than the dimensionless
susceptibility.

10.3.2 Hysteresis

Magnetic moments in a ferromagnetic solid, such as Fe, are all aligned in the same direction only
within a small region of space called a magnetic domain (Figure 10.3.4). A typical domain is 100µm
in size, separated by a domain wall of width ≈ 0.1µm. In general, formation of domains and their
eventual size depends on a delicate magnetic (free) energy minimization process. Once formed, a
set of randomly oriented domains give rise to a net zero magnetization. However, if the ferromagnet
is subjected to an applied external field, ~Ha, the domains can grow and reorganize to align as best as
possible with the external field to give rise to an overall net magnetization.
Figure 10.3.4 shows a typical hysteresis loop plotted as function of ~M vs. ~H. Initially, the magne-
tization response of the material follows a non-linear curve when the field is increased from a zero
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Figure 10.3.4: (a) Hysteresis loop. Remnant magnetization is denoted by the letter Mr. The intrinsic
coercivity of the sample is given by Hci. (b) Hysteresis loop of a hard and soft magnet. (c) The area
within a hysteresis loop is a direct measure of the energy loss per unit volume of the material per
hysteresis cycle. B-H curve used in the computation of the energy product.

field value, path o→ a. Upon increasing the field further, those domains which are in the direction
of field grow, while others shrink. At higher values of the field, domain rotation and alignment with
the crystallographic easy axis occurs leading to magnetic saturation +Ms. If the driving field is now
decreased and eventually removed, the ferromagnetic material retains a considerable amount of its
magnetization. This is known as remnant magnetization or remnance which is typically of the same
order of magnitude as the spontaneous magnetization. It is indicated by the letter Mr on the M(H)-
axis. The applied field can be reversed even further to drive the value of the residual magnetization
to zero. The field at which this happens is known as the intrinsic coercive field, Hci, and is labelled
on the negative H-axis. Coercive fields can range from less than 1 Am−1 in soft magnets to 106

Am−1 in hard magnets. As the field is further increased in the opposite direction, the material is
fully saturated in the opposite direction, -Ms. The entire process is known as hysteresis. In general,
hysteresis1 means to lag behind. In the context of magnetic materials, the resulting magnetization
tends to lag behind the external applied field giving rise to a hysteresis loop as the external field is
repeatedly cycled back and forth. Hysteresis curves are displayed by ferromagnets. Paramagnets do
not show any hysteresis plots.

Example 10.3.2.1
The maximum possible magnetization of a ferromagnetic material is called saturation magneti-
zation Ms − equal to the product of the net magnetic moment for each atom and the number of
atoms present. With this definition in mind, calculate (a) the saturation magnetization and (b) the
corresponding saturation magnetic field Bs for Co. The net magnetic moment per atom of cobalt is
1.72µB. The room temperature density is ρ=8.9 g/cm3 and atomic weight ACo is 58.92 g/mol.
Solution
(a) The saturation magnetization is obtained from

Ms = 1.72µBN, (10.20)

where N is the number of atoms per m3 calculated as

N =
ρNA

ACo
,

=
(8.9×106 g/m3)(6.023×1023 atoms/mol)

58.93 g/mol
,

= 9.10×1028atoms m−3. (10.21)

1The word hysteresis originates from the Greek word husterein.
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Using N, the value of the saturation magnetization is

Ms = (1.72)(9.27×10−24 Am2)(9.10×1028),

= 1.45×106 Am−1. (10.22)

(b) The corresponding saturation magnetic field is given by

Bs = µoMs,

= (4π×10−7)(1.45×106) = 1.82 T. (10.23)

The key to understanding hysteresis behavior is to study the growth and motion of magnetic do-
mains. As domains grow, they push across the domain walls. Metallurgical properties of the magnet
dictate the level of strain and impurity that can pin the motion of the domain walls. Pinning increases
the coercivity of the material which is a desirable trait in hard magnets. Permanent magnets, used in
generators and motors, are made from hard magnets. The thick loop in Fig. 10.3.4(b) corresponds
to a hard magnetic material. Rare earth magnets form high quality permanent magnets. In contrast,
materials with high purity have few dislocations or dopants. They offer less resistance to the motion
of domain walls and are easily magnetized and demagnetized. These materials are good candidates
for soft magnets which are used in electromagnets and transformer cores, where they are able to
reverse the direction of their magnetization rapidly. The thin hysteresis loop in Fig. 10.3.4 corre-
sponds to a soft magnetic material. Table 10.3.2 lists examples and applications of hard and soft
magnets used in modern-day technology.

Table 10.3.2: Examples of hard and soft magnetic materials and their technological applications.

Type Materials Applications

Hard

Alnico Electric motors, loudspeakers
SrFe12O19 Magnetic recording

SmCo5 Sensors, computer hard drives
Nd2Fe14B Magnetic resonance imaging (MRI)

Voice coil motors (VCMs)

Soft

Fe-Co (permendur) Electromagnets, relays
Si steel Transformers, motors, generators

Fe-Si-Al powder (sendust) Inductors
Yttrium iron garnet (YIG) Microwave isolaters, phase shifters

An important parameter estimating the strength of a hard magnet is given by the energy prod-
uct (~B · ~H)max in units of kJ/m3 related to the B(H) loop. Consider the hysteresis loop shown in
Figure 10.3.4(c). The energy product corresponds to the area of the largest B−H rectangle that is
constructed within the second quadrant of the hysteresis curve. The energy product value is rep-
resentative of the energy required to demagnetize a permanent magnet and gives a measure of the
energy made available by the magnet to perform work in outer space. The larger this value is, the
harder is the magnet. The theoretical upper bound for the energy product is given by µoM2

s /4 where
Ms is the saturation magnetization. See Exercise 10.9.6.
Domain formation is an energy balancing act between the demagnetizing field energy (which helps
to minimize the magnetostatic energy) and the cost of creating a domain wall. The size of the domain
wall itself is a competition between exchange and anisotropy energy. We will not dwell on all the
details of domain theory; rather, we focus on highlighting the important energy terms which occur
in the magnetic free energy, F . The main constitutents are

F = Eex +Eanis +Ed +Em−s +Ez +Estress, (10.24)
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where the symbols stand for

• Eex: Exchange energy,
• Eanis: Magnetocrystalline anisotropy energy,
• Ed : Demagnetizing field energy,
• Em−s: Magnetostriction energy,
• Ez: Zeeman energy,
• Estress: Applied stress energy.

In the next chapter, you will learn about the exchange energy. In this chapter we will focus on the
demagnetizing field energy, the Zeeman energy term, magnetocrystalline anisotropy energy, and
magnetostriction term. You will learn about the applied stress energy term in Exercise 10.9.13.
Figure 10.3.5 highlights the processes through which domains arise. A uniformly magnetized sam-
ple possesses substantial magnetostatic (demagnetizing) field energy (Section 10.3.2). To minimize
this contribution, Figure 10.3.5(a), the sample splits into two domains, Figure 10.3.5(b) at the cost
of creating a domain wall, but reducing the overall magnetostatic energy. This process continues
further in step (c), but field lines still exist outside the magnetic sample. To remove this, in step
(d) we see the formation of a set of closure domains where the energy cost due to the demagnetiz-
ing field is zero, the magnetization component at each domain wall boundary is continous, and the
energy is minimized. Iron forms domain patterns such as this.

Figure 10.3.5: Origin of domains via minimization of magnetic free energy. Dashed lines represent
domain walls. Arrows represent the direction of magnetization with a domain.

Experimentally, magnetic domains are visualized by photomicrographs of domain boundaries ob-
tained either by the technique of magnetic powder patterns or by optical studies using Faraday
rotation. The powder pattern technique was developed by F. Bitter and consists of placing a drop
of colloidal suspension of finely divided ferromagnetic material such as magnetite on the surface of
the ferromagnetic crystal. The colloidal particles strongly concentrate about the boundaries between
domains where strong local magnetic fields exist which attract magnetic particles. In the next few
sections, you will learn the details of the individual energy constituents which help create a domain.

Demagnetizing field

In a ferromagnetic body, the magnetization vector abruptly terminates at the surface resulting in a
non-zero divergence. Recall from basic electrodynamics that

~B = µo(~H + ~M); ~∇ ·~B = 0. (10.25)



Magnetization, Susceptibility, and Hysteresis 341

These two equations imply that

~∇ · ~H =−~∇ · ~M. (10.26)

Hence, a vanishing magnetization value at the surface results in negative divergence of the auxilliary
field ~H, directed opposite to the magnetization inside the magnetic medium, see Figure 10.3.6(c).
The ~H field manifests itself as a demagnetizing field, ~Hd , within the sample and outside the sample
~H is known as the stray field. The relationship between ~H and ~M is given by

~Hd =−N ~M, (10.27)

where the unitless factor N is known as the demagnetizing factor. The value of N , in general,
depends on different directions. So we often express the demagnetization factors as a demagneti-
zation tensor N. In this case, Equation (10.27) should be generalized to

~Hd =−N · ~M, (10.28)

where the dot represents matrix−vector multiplication. Demagnetization factors for some common
shapes are listed in Table 10.3.3. In an ellipsoidal sample, if the semiaxes of the ellipsoid coincide
with the axes of the coordinate system, the tensor becomes diagonal. Typically, associate three
demagnetization factors along the principal axes as Na, Nb, and Nc. These factors can be arranged
in a matrix form known as the demagnetization tensor

(
N
)
=




Na 0 0
0 Nb 0
0 0 Nc


 , (10.29)

which obey the general constraint

Na +Nb +Nc = 1. (10.30)

Table 10.3.3: Examples of demagnetization factor N for various geometries.

Shape Magnetization direction N

Sphere Any direction 1
3

Long needle Parallel to the axis 0
Perpendicular to the axis 1

2
Thin film Parallel to the plane 0

Perpendicular to the plane 1

Example 10.3.2.2
Calculate the demagnetization energy of a long needle.
Solution
The energy contribution Ed of the demagnetizing field is defined by

Ed =−µo

2

∫

V
~M · ~HddV. (10.31)

From Table 10.3.3 we can write down the demagnetization tensor for a long needle as

N =




1
2 0 0
0 1

2 0
0 0 0


 , (10.32)
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so that with ~M = Mx î+My ĵ+Mzk̂, ~Hd =− 1
2 Mx î− 1

2 My ĵ, and using Equation (10.31) we can com-
pute the demagnetization energy as

Ed =
µo

4

∫

V
~M · (Mx î+My ĵ)dV,

=
1
4

µoV (M2
x +M2

y ). (10.33)

Using Mx = Ms sinθ cosϕ , My = Ms sinθ sinϕ , and Mz = Ms cosθ (see Figure 10.3.7). The az-
imuthal angle is given by ϕ and polar angle is given by θ . We can write the final form for the energy
as

Ed =
1
4

µoV M2
s sin2

θ . (10.34)

(a) 

(c) (b) 

Figure 10.3.6: Demagnetization field effect in an infinite flat plate. (a) When the magnetization
lies in the plane of the plate, no magnetic poles are created at the surface. However, when the
magnetization ~M is perpendicular to the plane of the plate, as shown in (b), surface magnetic poles
are created due to the discontinuity. This sets up an opposing demagnetizing field Hd displayed in
(c).

Experimentally, magnetization M is measured in response to an applied field Ha. However, a de-
magnetizing field is set up within the medium in response to the externally applied field giving rise
to a net internal field Hi. The value of this net internal field and the corresponding magnetic field can
vary within the magnet. For the special case of a spherical or ellipsoidal sample, we have Hi = Ha =
-N M. Using Equation (10.25) we see that this gives the internal magnetic field as ~Bi = µo(~Hi+ ~M).

Example 10.3.2.3
Calculate the demagnetization energy of a spheroid.
Solution
In this example, we compute the demagnetization energy of a spheroid. To do so, we first define

~M = Mx î+My ĵ+Mzk̂. (10.35)

Utilizing the demagnetization tensor, Equation (10.29) and Equation (10.35), we can write

~Hd =−NaMx î−NbMy ĵ−NcMzk̂. (10.36)

Using Equations (10.35) and (10.36) in the definition for Ed (Equation (10.31)) and integrating we
obtain

Ed =
µo

2
(NaM2

x +NbM2
y +NcM2

z )V, (10.37)
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where V is the sample volume. In the case of a spheroid with a = b 6= c, we define Na = Nb = N⊥
and Nc = N‖. This implies we can write the expression for the demagnetization energy as

Ed =
µo

2
[N⊥(M2

x +M2
y)+N‖M

2
z ]. (10.38)

The above equation can be further rewritten in terms of the angle θ subtended by the magnetization
vector with respect to the easy axis (polar) direction, see Figure 10.3.7. Using Mx = Ms sinθ cosϕ ,
My = Ms sinθ sinϕ , and Mz = Ms cosθ , we can write

Ed =
µo

2
M2

s [N⊥ sin2
θ +N‖ cos2

θ ]V, (10.39)

where N‖ and N⊥ are demagnetization factors along the polar and equatorial axis, respectively. For
a prolate (elongated) sphere N⊥ > N‖ and for an oblate (flattened) sphere N⊥ < N‖. Using these
parameters, demagnetization energy can be rewritten as

Ed =
µo

2
M2

s V [N‖+(N⊥−N‖)sin2
θ ]. (10.40)

From Equation (10.40) we see that for a prolate spheroid when θ = 0, the energy is a minimum,
and when θ= π

2 it is a maximum. The converse holds true for an oblate spheroid. The dependence
of the demagnetization energy on the geometrical shape of the body gives rise to shape anisotropy
(Exercise 10.9.12). Shape anisotropy is homogeneous for uniformly magnetized ellipsoidal bodies.
For non-ellipsoidal samples, it is position dependent.

Zeeman energy

A magnetic body in an external field has an interaction energy given by

Ez =−µo

∫

V
~M · ~HadV, (10.41)

where ~Ha is the applied external field. For example, a dipole moment of magnitude µ oriented at an
angle θ to the external magnetic field Ha applied along the z-axis, will have a Zeeman energy given
by -µoµH cosθ , where we have used the definition of magnetization given in Equation (10.11).

Easy axis (z)

M

Figure 10.3.7: Ellipsoidal prolate shaped single domain magnetic particle. The magnetization vector
~M makes an angle θ with the easy axis (taken as the z-axis direction) and an angle φ with the
applied field Ha. The angle between the applied field and the easy axis is Θ. Uniaxial anisotropy is
a characteristic feature of elongated particles.
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Magnetocrystalline (crystal) anisotropy

The dependence of magnetic properties on the direction in which they are measured gives rise to
magnetic anisotropy. Consider a single ferromagnetic domain where the magnetization is oriented
at an angle θ to the z-axis taken to be along the principle axis of crystal symmetry. For crystals with
a single axis of high symmetry the uniaxial anisotropy energy expression is written as

Eanis = Ku sin2
θ , (10.42)

where θ is the angle between the polar z-axis and the magnetization vector as shown in Figure
10.3.7 and Ku is the uniaxial anisotropy energy constant. If you compare the form of this uniaxial
anisotropy energy with Equation (10.34), you will find that they have a similar angular symmetry
dependence. In the most general case, the multiplicative anisotropy constant Ku can be either pos-
itive or negative. For Ku > 0, minimization of Eanis with respect to the angle θ gives zero, which
implies that the z-axis is a direction of easy magnetization. In this case the z-axis is known as the
easy axis. For Ku < 0, θ = π/2 the direction of easy axis magnetization lies in the xy (basal) plane
of the crystal. Such a ferromagnet is known as the easy-plane type. Similarly there are directions
along which the magnetization is difficult to align and are known as the hard axis. In magnetic
domains, the net magnetization direction tends to align along an easy axis. Different materials have
different easy axis, see Figure 10.3.8.

Hard axis 

Intermediate axis

Easy axis

Figure 10.3.8: Easy, intermediate, and hard axis for a unit cell of bcc iron.

Example 10.3.2.4
The anisotropy field, Hanis, is defined as the applied field needed to saturate the magnetization of
a uniaxial crystal in a hard direction. Calculate the anisotropy field for a single-domain ellipsoidal
particle as shown in Figure 10.3.7 with the magnetization directed at an angle θ with respect to the
easy axis.
Solution
Supplementing our anisotropy energy expression Equation (10.42) with a Zeeman energy term due
to the external field H we have

E = Ku sin2
θ −µoMsH cos(

π

2
−θ), (10.43)

where we have chosen Θ= π

2 and θ is the angle made by the magnetization vector with the anisotropy
axis. To obtain the anisotropy field, Hanis, we first minimize the energy by setting ∂E/∂θ=0. This
gives

Hanis =
2Ku

µoMs
sinθ . (10.44)
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Since the hard axis is at θ = π/2, we obtain Hanis = 2K/µoMs. Typical anisotropy field ranges from
less than 2 kAm−1 to greater than 20 MAm−1.

Magnetocrystalline anisotropy is an intrinsic property of a material dictated by crystal symmetry.
Expressions for anisotropy energies can be stated either in terms of the magnetization vector di-
rection cosines (∗θ1,θ2, and θ3) or in terms of a set of orthonormal spherical harmonics (θ ,φ).
Magnetocrystalline anisotropy expression for the hexagonal, tetragonal, and cubic crystal systems
are given by

Hexagonal : Eanis = K0 +K1 sin2
θ +K2 sin4

θ +K3 sin6
θ +K

′
3 sin6

θ sin6φ ,

Tetragonal : Eanis = K1 sin2
θ +K2 sin4

θ +K
′
2 sin4

θ cos4φ +K3 sin6
θ +K

′
3 sin6

θ sin4φ ,

Cubic : Eanis = K0 +K1(α
2
1 α

2
2 +α

2
2 α

2
3 +α

2
3 α

2
1 )+K2(α

2
1 α

2
2 α

2
3 ).

where the angle ϕ is with respect to the x-axis in the basal plane (azimuthal angle), the polar angle
θ is measured with respect to the z-axis, and the explicit expressions for the magnetization direction
cosines in terms of spherical harmonic variables are given by α1 = sinθ cosφ , α2 = sinθ sinφ , and
α3 = cosθ . All the anisotropy constants have dimensions of energy per unit volume. In Table 10.3.4
we list the K1 and K2 values for the three common ferromagnetic elements with cubic anisotropy.
Values of the other anisotropy parameters may be found in materials science data book.

Table 10.3.4: Anisotropy constant values for Fe, Co, and Ni.

Anisotropy Constant
[J/m3] Fe(bcc) Co(hcp) Ni(fcc)

K1 54800 760000 -126300
K2 1960 100500 57800

In the absence of any anisotropy energy term, the magnetization vector does not choose any partic-
ular direction in space. The energy cost associated with the orientation of the ferromagnetic vector
is equal for all possible orientations in space. But, with the introduction of anisotropy the spher-
ical symmetry of the system is broken. In general, the magnetocrystalline energy equation is a
complicated function of anisotropy parameters and angles. To concisely display and extract useful
information concerning anisotropy, it is often customary to draw what is known as a magnetization
anisotropy energy surface, for example as shown in Figure 10.3.9. Consider the example shown
below.

Example 10.3.2.5
Using the expression for cubic magnetic anisotropy energy, write a MATLAB code to display the
magnetic anisotropy energy surface of an isotropic cubic crystal in (i) the absence and (ii) the pres-
ence of a magnetic field.
Solution
Since we are dealing with a cubic system, we use the energy expression below with an appropriate
magnetic field term

Eanis = K0 +K1
(
α

2
1 α

2
2 +α

2
2 α

2
3 +α

2
3 α

2
1
)
+K2

(
α

2
1 α

2
2 α

2
3
)
+

h√
3
(α1 +α2 +α3) , (10.45)

where α1 = sinθ cosφ , α2 = sinθ sinφ , and α3 = cosθ . Since we are concerned with an isotropic
system K1 = K2 = 0. We choose K0 = 1. The magnetic field parameter h = 1.5 the code. The
MATLAB code displaying the anisotropy energy surface is given by

%copyright by J. E Hasbun and T. Datta

%ch10_magnetic_anisotropy_iso.m
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% ch10_magnetic_anisotropy.m - by J. Hasbun and T. Datta

% code to simulate the magnetic anisotropy energy surface

% for an isotropic cubic crystal - with and without magnetic field

clear;

% declaring the anisotropy constants

% isotropic case

K0 = 1; K1 = 0;

% definining the anisotropy energy surface projections along x,y, and z

ecubic = @(x,y,K0,K1,H) (K0+ K1*(((sin(x).*cos(y)).^2).*...

((sin(x).*sin(y)).^2 + ((cos(x)).^2).*((sin(x).*sin(y)).^2)+...

((cos(x)).^2).*((sin(x).*cos(y)).^2)))+ ...

(H/sqrt(3))*(sin(x).*cos(y)+sin(x).*sin(y)+cos(x)));

fcubicx = @(x,y,K0,K1,H) (sin(x).*cos(y)).*ecubic(x,y,K0,K1,H);

fcubicy = @(x,y,K0,K1,H) (sin(x).*sin(y)).*ecubic(x,y,K0,K1,H);

fcubicz = @(x,y,K0,K1,H) (cos(x)).*ecubic(x,y,K0,K1,H);

rotate3d on;

colormap(copper);

subplot(1,2,1)

ycubic = ezsurf(@(x,y) fcubicx(x,y,K0,K1,0),@(x,y) ...

fcubicy(x,y,K0,K1,0),@(x,y) fcubicz(x,y,K0,K1,0),[0 pi],[0 2*pi]);

title(’H = 0 (Zero field)’);

% view(45,45)

% plot with magnetic field for the simple cubic lattice

rotate3d on;

colormap(copper);

subplot(1,2,2)

ycubich = ezsurf(@(x,y) fcubicx(x,y,K0,K1,1.5),@(x,y) ...

fcubicy(x,y,K0,K1,1.5),@(x,y) fcubicz(x,y,K0,K1,1.5),[0 pi],[0 2*pi]);

title(’H = 1.5 (Strong field)’)

% view(45,45)

The output from the code is shown below
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Figure 10.3.9: Magnetic anisotropy energy surface for a cubic crystal. The spherical shape in the
absence of anisotropy demonstrates the energy insensitivity of the system to any preferrred mangeti-
zation direction. However, with the introduction of a magnetic field, the surface starts to get pinched
with the evolution of a preferred orientation axis.

In Problem 10.9.12 we will plot the magnetic anisotropy energy surface for a FCC and a HCP
crystal. In Figure 10.3.10 we display the anisotropy energy surface of a BCC cubic crystal.
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Figure 10.3.10: Magnetic anisotropy energy surface for Fe, a BCC cubic crystal, both in the pres-
ence and absence of an external magnetic field H. For a large magnetic field, there is only preferred
direction. Parameter choice: K0 = 1, K1 = 2, and K2 = 0.

The microscopic origin of magnetocrystalline anisotropy is either due to crystal field interaction and
spin-orbit coupling or due to interatomic dipole−dipole interaction. An intuitive understanding of
the spin-orbit coupling effect origin of anisotropy can be obtained by considering the fact that ini-
tially all the dipoles are pointed in the z-direction. Upon application of the field, they are eventually
rotated to point in the x-direction. Orienting the direction also implies that the electronic orbit has
to be rotated. But the orbit is intimately coupled to the lattice. Any attempt to rotate the electron
charge cloud implies that these bonds will have to be twisted, which is is met with stiff resistance.
For materials in which spin-orbit coupling is weak, twisting the orbits does not cost much. However
in rare earth magnets−where spin orbit coupling is substantial− this sets up a strong magnetocrys-
talline anisotropy. As mentioned earlier, hard magnets require strong anisotropy. Rare earths with
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their strong magnetocrystalline anisotropy, therefore, make good permanent magnets. Soft magnets
have weak anisotropy; they make good temporary magnets.

Magnetostriction

Magnetostriction is the change in the size of the ferromagnetic material due to magnetoelastic cou-
pling. The change is small, but present. Consider a point in an unstrained crystal

x = xo +A11xo +A12yo +A13zo,

y = yo +A21xo +A22yo +A23zo,

z = zo +A31xo +A32yo +A33zo. (10.46)

We define the direction cosines of the vector in the unstrained crystal by β1, β2, and β3 given by

β1 =
xo

ro
; β2 =

yo

ro
; β3 =

zo

ro
. (10.47)

Using (Equation 10.47), we can rewrite Equation (10.46) as

x = ro

(
β1 +

3

∑
j=1

A1 jβ j

)
; y = ro

(
β2 +

3

∑
j=1

A2 jβ j

)
; z = ro

(
β3 +

3

∑
j=1

A3 jβ j

)
.

We can then write the length vector (Exercise 10.9.9) as

r = ro

(
1+∑

i j
2Ai jβiβ j

)1/2

, (10.48)

where we have neglected higher order terms that involve products of the Ai j. Thus the approximate
change in length in a certain direction in terms of the direction cosines is given by (Exercise 10.9.9)

δL

L
≡ r− ro

ro
= ∑

i j
Ai jβiβ j. (10.49)

To proceed further, we need to make the assumption that the crystal strain depends on the direction
of the spontaneous magnetization with respect to the crystal axes. This implies that it depends on the
direction cosines α1, α2, and α3 of the magnetization vector when it changes from the demagnetized
state to saturation along that direction. For our purpose, we will consider the following dependence

Aii = a+bα
2
i and Ai j = cαiα j. (10.50)

Substituting these coefficients into Equation (10.49), we obtain

δL

L
= a+b(α2

1 β
2
1 +α

2
2 β

2
2 +α

2
3 β

2
3 )+2c(α1α2β1β2 +α2α3β2β3 +α3α1β3β1), (10.51)

where in expanding the summation in Equation (10.49) we have used the fact that Ai j = A ji. This
introduces the factor of two in Equation (10.51). For a demagnetized specimen δL

L =0. Then since
ᾱ2

i = 1
3 and ¯αiα j=0, we obtain

δL

L
= h1(α

2
1 β

2
1 +α

2
2 β

2
2 +α

2
3 β

2
3 −

1
3
)+h2(α1α2β1β2 +α2α3β2β3 +α3α1β3β1). (10.52)
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where -3a = b = h1 and 2c = h2. The saturation magnetostriction measured along the [100]- and
[111]- directions is given by

λ[100] =
2
3

h1 and λ[111] =
2
3

h2. (10.53)

Substituting Equation (10.53) into Equation (10.51), we finally obtain

δL

L
=

3
2

λ[100](α
2
1 β

2
1 +α

2
2 β

2
2 +α

2
3 β

2
3 −

1
3
)+3λ[111](α1α2β1β2+α2α3β2β3+α3α1β3β1) (10.54)

The above expression is appropriate for the description of the experimental data for cubic crystal
systems. For an isotropic saturation magnetostriction λ[100] = λ[111] = λs, we have

δL

L
=

3
2

λs(cos2
θ − 1

3
), (10.55)

where θ = cos−1
(

∑
i j

αiβ j

)
is the angle between the spontaneous magnetization and the direction

in which the δL
L is measured.

10.3.3 Stoner-Wohlfarth Model of Hysteresis

In 1948 E. C. Stoner and E. P. Wohlfath developed a hysteresis model for single-domain particles.
When the size of the domain is small enough that there are no domain walls, one needs to consider
a coherent rotation of the domains only. Referring back to Figure 10.3.7, the energy density E with
uniaxial anisotropy energy and the Zeeman energy is given by (also see Example 10.3.2.4)

E = Ku sin2(Θ−φ)−µoHMs cosφ , (10.56)

where we have used the relation Θ = θ + φ . The angle Θ is defined between the easy axis and
the externally applied magnetic field H; φ is the angle between the magnetization vector and the
magnetic field as shown in Figure 10.3.7. For a given value of the applied magnetic field, the above
equation can be minimized to obtain

Ẽ
′
=

1
2Ku

dE

dφ
=

1
2

sin[2(φ −Θ)]+hsinφ = 0, (10.57)

where we have used the trigonometric identity sin2A = 2cosAsinA, normalized the energy density
expression with respect to the uniaxial anisotropy energy Ku, and defined h=µoHMs/2Ku. Solutions
to the above equation do not guarantee an energy minimum unless the second derivative of Equation
(10.56) is positive. Equation (10.56) is actually a torque equation stating that equilibrium is achieved
when the rotational forces due to an external field are balanced out from those caused by the uniaxial
anisotropy misalignment. We solve Equation (10.57) and its derivative numerically to obtain the
hysteresis loop. The derivative of Equation (10.57) is given by

Ẽ
′′
=

d
dφ

= cos[2(φ −Θ)]+hcosφ . (10.58)

Now, using the MATLAB code provided below, we simultaneously solve Equations (10.57) and
(10.58).

%copyright by J. E Hasbun and T. Datta

%ch10_hysteresisloop.m
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clear;

%here x=phi, y=theta, z=h

fH =@(x,y,z) 0.5*sin(2*(x-y))+z*sin(x); % define fH(x,y,z)

dfH =@(x,y,z) cos(2*(x-y))+z*cos(x); % define dfH(x,y,z) (the derivative)

y=pi/4;

z1=-2; z2=2; Nz=40; zs=(z2-z1)/(Nz-1); %h range to work with

z=z1:zs:z2;

x1=-pi; x2=pi; Nx=20; xs=(x2-x1)/(Nx-1);%seek roots using this range of

guesses

x=x1:xs:x2;

k=0;

for ic=1:length(z)

%seek all the aeros of fH and collect all the one that make dfH >=0

for ix=1:length(x) %let’s sweep through many guesses to find many roots

xx=fzero(@(x) fH(x,y,z(ic)),x(ix));

if(dfH(xx,y,z(ic)) >=0) %collect all the roots for which dfH is >=0

k=k+1;

phi(k)=xx;

h(k)=z(ic);

end

end

end

plot(h,cos(phi),’k*’)

xlabel(’h’)

ylabel(’Cos(\phi)’)

Results from the code are displayed in Figure 10.3.11. In the case when the field is applied perpen-
dicular to the direction of the easy axis no hysteresis occurs, Figure 10.3.11(b). When the field is
applied along the polar axis the jump in magnetization occurs at h = 1.

(a) (b) (c)

Figure 10.3.11: Hysteresis plot generated from Stoner-Wohlfarth model of hysteresis. (a) Θ=0, (b)
Θ= π

2 , and (c) Θ= π

4 .

10.4 Diamagnetism
Diamagnets are materials that repel any externally applied magnetic field. Diamagnetism is an in-
duced effect and primarily arises due to the response of a magnetic system to an externally applied
magnetic field. Classic examples of diamagnets include bismuth, antimony, gold, noble gases, and
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alkali halides. Almost all organic molecules and many inorganic molecules are diamagnetic. Super-
conductors, below their critical temperature, have a diamagnetic susceptibility of χ = −1 and are
considered to be perfect diamagnets, since they expel magnetic flux from the bulk by a mechanism
known as the Meissner effect (see Chapter 12). The expulsion of magnetic flux is characterized by a
negative susceptibility. Diamagnetism in insulators (Larmor diamagnetism) is different from that in
metals (Landau diamagnetism). In Chapter 11 we will discuss at length the physics of diamagnetism
from a quantum physics perspective.

10.5 Paramagnetism
In contrast to diamagnetic materials, paramagnets have unpaired electrons which give rise to a net
magnetic moment. These moments are weakly coupled to each other and thermal agitation prevents
the moments from aligning in the same direction. In the presence of an external magnetic field, the
moments can overcome the randomization effects of temperature to line up in the direction of the
field and give rise to a net magnetization. The magnitude of the resulting magnetization depends
on the strength of the external field. This behavior results in a positive susceptibility typically in
the range of 10−2-10−5. The susceptibility varies inversely with temperature, χ ∼ C/T , and the
dependence is known as Curie’s law. In the next section, we will derive an expression for Curie’s
law and the constant C based on a semi-classical approach. For metallic (Pauli) paramagnets, the
susceptibility is temperature independent. Table 10.3.1, as well as Figure 10.8.22, lists examples of
paramagnetic materials.

Example 10.5.0.1
A quick test to figure out whether a particular element is diamagnetic or paramagnetic is to count
the number of unpaired electrons. Based on this rule, predict whether the following elements and
ions are diamagnetic or paramagnetic? (a) Cu, (b) Sc3+, and (c) Gd (Gadolinium).
Solution
(a) From the periodic table in Chapter 1 we find the electronic configuration of Cu atom to be [Ar]
3d104s1. The presence of the unpaired electron makes Cu atom to be paramagnetic. However, if
you look at Table 10.3.1 you will find that Cu is listed under diamagnets. Why? This is because
we are obtaining the electronic configuration of a copper atom. In the case of copper metal, the
odd electron is shared with the sea of other electrons forming the metallic bond, giving rise to a
diamagnetic contribution, and hence the metal is diamagnetic. Cu2+ salts, which have an electronic
configuration of [Ar]3d9, are paramagnetic. The lesson is, while it is generally true that counting
unpaired electrons will allow you to predict diamagnetic or paramagnetic behavior, one has to be
aware of the physical and chemical state of the atom to make the correct prediction.
(b) The electronic configuration of Sc3+ is 1s2 2s2 2p6 3s2 3p6, which is the same as Argon. All the
shells are filled and Sc3+ is diamagnetic. No tricks here!
(c) Gadolinium has an electronic configuration of [Xe] 4f75d16s2. The unpaired electron suggests
that an atom of Gd is a paramagnet. However, in its metallic state, Gd is a paramagnet above 293
K. Below this transition temperature, it undergoes a magnetic phase transition to a ferromagnet. In
Sections 10.5.2, 10.7, and 10.7.2, you will study the physics of the paramagnetic−ferromagnetic
phase transition. In Section 10.6 you will learn that gadolinium is used as a magnetocaloric material
which has applications in magnetic refrigeration technology.
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Figure 10.5.12: (a) Randomly oriented magnetic moments of magnitude µ form a paramagnet, (b)
each individual magnetic moment sweeps out a disc of area dA between angle θ and θ+dθ .

10.5.1 Langevin Theory of Paramagnetism

The Langevin theory of paramagnetism explains the temperature dependence of paramagnetic sus-
ceptibility by assuming N non-interacting magnetic moments of magnitude µ in a volume V that
are randomly oriented as a result of thermal excitation. In the Langevin formulation, we ignore the
quantization of magnetic moments, see Figure 10.5.12. We first calculate the number of moments
lying between angles θ and θ+dθ with respect to the field ~H, by noting that it is proportional to the
fractional surface area surrounding the sphere. We have

dA = 2πr2 sinθdθ . (10.59)

This implies the overall probability, p(θ ), of an atomic magnetic moment making an angle between
θ and θ+dθ is

p(θ) =
eµoµH cosθ/kBT 2πr2 sinθdθ∫
π

0 eµoµH cosθ/kBT 2πr2 sinθdθ
. (10.60)

where we have used the Zeeman energy expression for a dipole in a magnetic field given by

Edip =−µoµH cosθ , (10.61)

in the Boltzmann factor exp(−Edip/kBT ). Also, note that in the denominator we sum over all possi-
ble angular orientations ranging from 0 to π . Since each moment contributes an amount µz = µ cosθ

parallel to the magnetic field, the average magnetization of the whole system is

〈µz〉=
∫

π

0

µ cosθeµoµH cosθ/kBT sinθdθ∫
π

0 eµoµH cosθ/kBT sinθdθ
. (10.62)

Carrying out the substitution y = µoµH/kBT and defining x = cosθ we have

〈µz〉=
µ
∫ 1
−1 xeyxdx
∫ 1
−1 eyxdx

. (10.63)
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Using integration by parts for the numerator and a regular integration for the denominator, we obtain
the result (Exercise 10.9.17)

〈µz〉
µ

= cothy− 1
y
≡ L(y), (10.64)

where L(y) is the Langevin function. If we now make the following approximation

cothy≡ 1
y
+

y
3
+O(y3), (10.65)

then

L(y) =
y
3
+O(y3). (10.66)

If N/V denotes the number of magnetic moments per unit volume; then, the magnetization can be
written as

M =
N
V
〈µz〉. (10.67)

Using the expressions from Equations (10.64) and (10.66) for 〈µz〉 in the limit of small fields we
have

M ≈ Nµy
3V

=
Nµoµ2

3V kBT
H, (10.68)

which can be rearranged for the susceptibility as

χ =
M
H

=
Nµoµ2

3V kBT
. (10.69)

So the magnetization is given by

M =
Nµoµ2

3V kB

H
T

=C
H
T
. (10.70)

This is known as Curie’s law. As mentioned earlier, we find that the susceptibility, M/H, of a para-
magnet is inversly proportional to temperature with the Curie constant C = Nµoµ2

3V kB
. Figure 10.5.13

shows a plot for Curie’s law for a paramagnet, ferromagnet, and an antiferromagnet.

Example 10.5.1.1
Using the Langevin theory of paramagnetism, compute the Curie constant for a crystal of copper
sulfate, CuSO4.5H20. The density and relative molar mass of pentahydrate CuSO4 is 2286 kg m−3

and 249.7 g mol−1, respectively.
Solution
The Curie constant is given by C = Nµoµ2

3V kB
. We first compute the number of atoms per m3 n,

n≡ N
V

=
(6.023×1023 atoms/mol)(2.286×10−6 g cm−3)

249.7 g mol−1 ,

= 5.51×1027atoms m−3. (10.71)

With the value of n from above, setting µ equal to µB and using the expression for the Curie constant
we have C = 0.014 K.
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10.5.2 Curie-Weiss Law

Paramagnets can arise from ferromagnetic materials above a critical temperature known as the Curie
temperature, Tc. Thermal energy can disrupt the alignment of the magnetic moments leading to a
destruction of net magnetization. The Curie law as derived above is not obeyed; rather, a modified
version known as the Curie-Weiss law is used

χ =
C

T −θCW
, (10.72)

where θCW could be positive (ferromagnet) or negative (antiferromagnet) based on the type of mag-
netic ordering. The Curie-Weiss law was obtained by Pierre Weiss in 1906 to explain the origins of
ferromagnetism and to describe the ferromagnetic-paramagnetic phase transition where the Curie
constant C = 9.8× 10−5 m3 K mol−1. To explain the unusually large transition temperatures, he pos-
tulated the existence of an internal interaction energy between localized magnetic moments which
he termed to be the molecular field, ~Hm. He assumed what amounts to a mean-field approximation
in which any one magnetic moment feels an identical average field generated by all the other neigh-
boring moments. Within such a scheme, Weiss considered the internal molecular field responsible
for orienting the dipoles to be directly proportional to magnetization

~Hm =Cm ~M, (10.73)

where Cm is the Weiss coefficient (internal molecular field constant). Weiss’s assumption of the
internal molecular field was not non-sensical, rather quite intuitive. In Chapter 11 you will learn
that his assumption can be attributed to the interplay of the interatomic Coulomb interaction and
quantum mechanics (Pauli exclusion principle) which give rise to magnetic exchange interactions.
More on this later. For now we consider the total field ~Ht acting on and in the magnet as

~Ht = ~H + ~Hm. (10.74)

From Curie’s law we have

χ =
M
H

=
C
T
, (10.75)

in which if we replace the H with Ht we have

M
H +CmM

=
C
T
. (10.76)

Solving for the new M/H ratio, we obtain the susceptibility as

χ =
M
H

=
C

T −Tc
, Tc =CCm, (10.77)

where the critical temperature Tc ≡ θCW signifies the paramagnetic-ferromagnetic transition as
shown in the susceptibility plot of Figure 10.5.13(b). A positive value of θCW corresponds to the
molecular field helping to align the moments in the same direction as the field. This is the case in
ferromagnets. A negative value corresponds to the opposite case where the moments are discour-
aged from aligning in the same direction. This is the case in antiferromagnets where there are two
oppositely directed magnetic sublattices as shown in Table 10.3.1. Curie-Weiss temperatures for
ferromagnetic elements Fe, Ni, and Co are 1043 K, 627 K, and 1388 K, respectively. Similar to
the Curie-Weiss temperature, we can define the Néel temperature, TN , as the temperature below
which an antiferromagnetic material becomes paramagnetic. Typical examples of Néel temperature
for antiferromagnets are NiO (525K) and MnO (116K). Within the scope of the Weiss molecular
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field theory θ = −TN . In practice typical values of Curie-Weiss temperature for antiferromagnets
are larger. For example, we have NiO (2000K) and MnO (610K). The discrepancy arises due to a
neglect of further neighbor interactions.

Curie law

T0 T0 TC TTN

Curie-Weiss law

- 0

 (a) Paramagnet             (b) Ferromagnet                      (c) Antiferromagnet

Figure 10.5.13: Susceptibility (χ) versus temperature (T) plots for paramagnet, ferromagnet, and
antiferromagnet. Tc refers to the Curie temperature for a paramagnet-ferromagnet transition. TN
refers to the paramagnet-antiferromagnet Néel transition temperature, named after Louis Néel.

10.6 Magnetocaloric Effect
The magnetocaloric effect is the heating or cooling of magnetic materials when subjected to an in-
crease or decrease in magnetic field. Magnetic refrigeration technology relies on the magnetocaloric
effect, originally discovered in iron by Emil Warburg in 1881. Early research on the magnetocaloric
effect in paramagnets was carried out because of the drive to reach ultra-low temperature by adia-
batic demagnetization cooling. Using adiabatic demagnetization, temperatures as low as 1K to 1mK
were reached in electron paramagnets and in the micro Kelvin range in nuclear paramagnets. In
1976, Gerald V. Brown developed a magnetic refrigerator using metallic gadolinium as a magnetic
refrigerant. Renewed interest in the magnetocaloric effect came in 1997 when V. Pecharsky and K.
Gschneidner, Jr., discovered the giant magnetocaloric effect in the compound Gd5Si2Ge2 and its re-
lated Gd5(Si1−xGex)4 alloys. Below you will learn the theory behind the adiabatic demagnetization
cooling process.
a. Isothermal magnetization: The first step in a typical experiment utilizing a paramagnetic salt
such as cerium magnesium nitrate is to isothermally magnetize an already cooled sample. The sam-
ple is surrounded by helium which provides a means to extract the energy away and keep the process
isothermal (constant temperature). This step is represented by a→ b on the S-T diagram in Figure
10.6.14. From the TdS equation (see Exercise 10.9.11) for a magnetic system we have

T dS =CHdT +µoT
(

∂M
∂T

)

H
dH, (10.78)

where CH is the heat capacity at constant field H. For an isothermal process, dT = 0, we then have

T dS = ∆Q = µoT
(

∂M
∂T

)

H
∆H. (10.79)
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Since paramagnetic salts obey Curie’s law

χ =
C
T
, (10.80)

the slope of χ with temperature is always negative and we have using Equation (10.14)

∆Q = µoT H
(

∂ χ

∂T

)

H
∆H < 0. (10.81)

The above change in temperature is the phenomenon of magnetocaloric effect.
b. Adiabatic demagnetization: In the second step, b→ c on the S-T diagram, the system is ther-
mally insulated by extracting the helium. For this isentropic (constant entropy) process dS=0. Using
the TdS Equation (10.78) for the adiabatic process we have

CHdT = −µoT
(

∂M
∂T

)

H
dH, (10.82)

or,

∆T = − T H
µoCH

(
∂ χ

∂T

)

H
∆H. (10.83)

Negative slope of Curie’s law implies that in this step as the external field is dialed down, the
temperature drops, as is clearly evident from Equation (10.82). As the field is turned down, the
entropy of the moments increase since they begin to point in random directions. But this increase is
balanced by a decrease in the entropy of the lattice vibrations (phonons), thereby keeping the overall
process isentropic. Conversely, if the field were to be adiabatically increased, the temperature would
increase. Such a coupling between thermal and magnetic properties gives rise to the magnetocaloric
effect.

S

T

a

b
c

Figure 10.6.14: Entropy (S) versus temperature (T) diagram demonstrating the isothermal mag-
netization (step a → b) and the adiabatic demagnetization (step b → c) processes utilized in the
magnetocaloric effect.

Example 10.6.0.1
Gadolinium sulfate, Gd2(S04)3.8H20, was used by American chemist William F. Giauque and his
graduate student D.P. MacDougall in 1933 to reach temperatures below 1 K. Consider gadolinium
sulftate obeying Curie’s law present in a magnetic field of 0.64 × 106 A/m at a temperature of 1.5
K. What is the final temperature if the field is reduced reversibly and adiabatically to zero? The
Curie constant is 9.80 × 10−5 m3Kmol−1 and the heat capacity at constant magnetization could be
modeled as CM=A/T2 where A = 2.91 J K−1 mol−1.
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Solution:
The TdS equation for a magnetic system (see Exercise 10.9.11) can be written as

T dS =CMdT −T µo

(
∂H
∂T

)

M
dM, (10.84)

where CM is the heat capacity at constant magnetization. Based on Curie’s law, Equation (10.70)
we have

(
∂H
∂T

)

M
=

M
C
. (10.85)

Using the expression for CM , Curie’s law, and setting dS = 0 in Equation (10.84) for an adiabatic
process we have

0 =
A
T 2 dT −T µo

M
C

dM,

or,

A
∫ Tf

Ti

dT
T 3 =

µo

C

∫ M f

Mi

MdM,

where the subscripts i and f denote the initial and final states, respectively. Performing the integra-
tion and using Curie’s law, we have

1
T 2

f
− 1

T 2
i
=

µoC
A

(
H2

i

T 2
i
−

H2
f

T 2
f

)
, (10.86)

from which rearranging for the final to initial temperature ratio gives

Tf

Ti
=

√
µo(C/A)H2

f +1

µo(C/A)H2
i +1

(10.87)

Now when the field is reversibly and adiabatically reduced to zero, we can set H f = 0, to obtain

(
Ti

Tf

)2

= 1+
µoC
A

H2
i . (10.88)

Inserting the appropriate numbers, we find that for an initial temperature of 1.5 K, the final temper-
ature will be 0.35 K. Giaque and McDougall in their 1933 experiment reached a final temperature
of 0.25 K.

10.7 Ferromagnetism
At room temperature, metals such Fe, Ni, and Co are spontaneously magnetic. These materials are
different from the paramagnets that we studied in Section 10.5 where magnetization does not survive
in the absence of a field. Table 10.3.1 lists examples of ferromagnetic materials. In ferromagnets
the magnetic dipoles all line up in the same direction and a residual magnetic moment survives
even after the removal of the external applied magnetic field. However, thermal effects can cause a
ferromagnet to transition to a paramagnet at the Curie-Weiss point.



358 Magnetism I

Figure 10.7.15: (a) Ising model magnetic ordering pattern. (b) Hypothetical spin flip in the circled
region. In both cases, the nearest neighbors (NN) magnetic moments are shown by the dashed line.

To analyze the ferromagnetic phase, one needs an appropriate model. The Ising model, proposed by
Wilhelm Lenz and solved by his student Ernst Ising, is the simplest model of ferromagnetism. The
Ising model is to the study of magnetism what the simple harmonic oscillator is to quantum mechan-
ics and classical mechanics problems. The model consists of binary variables utilized to represent
the two possible orientations, ↑ (+1) and ↓ (-1), of magnetic dipole moments. In the simplest nearest
neighbor version, see Figure 10.7.15, the Ising Hamiltonian is given by

H =−J ∑
〈i, j〉

Sz
i S

z
j, (10.89)

where Sz
i is the classical dimensionless Ising variable at site i taking the values± 1. It is inherently a

classical model. The sign on the energy J of the interacting dipoles (which you will learn in Chapter
11 is called the exchange energy) decides the type of magnetic ordering. For J > 0, ferromagnetic
interaction, all the magnetic moments line up in the same direction to give rise to a ferromagnet.
For J < 0, antiferromagnetic interaction, the magnetic moments anti-align to give rise to an anti-
ferromagnetic order. Some authors prefer not to include the overall negative sign. In that case, a
negative (positive) value of J will give rise to a ferromagnet (antiferromagnet). In this chapter, we
will focus on the ferromagnetic model. You will later learn in Chapter 11 that the z superscript
in the model stands for the z-component of the electronic spin. The Ising model can be solved
exactly in only one and two dimensions using the transfer matrix method. In this chapter, we will
focus on solving the model using a mean field description (analytical) and a Monte-Carlo simulation
(computational) approach. In Exercise 10.9.19 you will analyze the model using another mean field-
like approach called the Landau theory of phase transition.

10.7.1 Mean Field Theory of Ising Model

The central idea behind a mean field description is to assume an average interaction experienced by
any and every magnetic moment due to their surrounding magnetic dipoles. Mean field theories are
the simplest type of theory that can be constructed to study phase transitions. Results from mean
field theories should be taken with caution since they ignore correlations and fluctuations which
become important near Tc the critical transition temperature. To carry out a mean field analysis let
us first define M̄, as the net magnetization of the lattice. The Hamiltonian can be rewritten in terms
of the magnetization deviation at each site of the lattice as δSz

i = Sz
i − M̄

H =−J ∑
〈i, j〉
{M̄+(Sz

i − M̄)}{M̄+(Sz
j− M̄)}. (10.90)
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Expanding we have

H =−J ∑
〈i, j〉
{M̄2 + M̄(Sz

j− M̄)+ M̄(Sz
i − M̄)+(Sz

i − M̄)(Sz
j− M̄)}. (10.91)

Notice that the last term δSz
i δSz

j is the square of the fluctuation variable (which is already small)
and can be neglected. Mathematically, neglecting these contributions constitutes the mean field
approximation. We then have,

H = J ∑
〈i, j〉
{M̄2− M̄(Sz

i +Sz
j)}. (10.92)

Here are a few words about how to carry out the summation, though. Note, you will have to perform
a summation over the nearest-neighbor bonds. To do so, realize that

∑
〈i, j〉

= ∑
i

∑
~δ

, (10.93)

where ~δ are the nearest neighbor vectors taking values ±î and ± ĵ. Breaking down the summation
this way, we are essentially saying that we will consider a lattice site − one at a time − count the
energy contribution from all its nearest neighbors and repeat this process till every site on the lattice
has been accounted for. To carry out the summation we define a nearest neighbor coordination
number, z, for the lattice. For a square lattice, the coordination number is 4. Then using the strategy
for the summation just mentioned, we have

H = J ∑
i

∑
~δ

M̄2− J ∑
i

∑
~δ

M̄(Sz
i +Sz

j).

Since i and j are dummy variables, in the second summation we can replace j with i to obtain

H = J ∑
i

∑
~δ

M̄2−2JM̄∑
i

∑
~δ

Sz
i ,

H =
J
2

M̄2Nz−2JM̄z∑
i

Sz
i ,

where N is the number of sites and the 1
2 -factor in the first term removes any double counting.

The purpose of embarking on a mean field description was to understand the origin of the Curie
temperature. The mean field approximation provides a simplistic view on how to analyze the ferro-
magnetic transition. To proceed any further, we now need to obtain an average value of the magne-
tization at any temperature T. To obtain the average magnetization, we use the standard definition
from statistical mechanics

M̄ =
1
N ∑
{Sz

i }

e−βH
∑i Sz

i

∑{Sz
i } e−βH

, (10.94)

where the notation ∑{Sz
i } implies that the summation has to be carried out for Sz

i =±1 in the Hamil-
tonian. If you compare Equations (10.94) and (10.62), you can see that we are using the same
definition for computing the average magnetization. The only difference is in the angular orienta-
tion of the spins, which in the case of the Ising model includes only two choices - up and down,
hence discrete; whereas, in the semi-classical Langevin model, the spins were free to point in any
direction and was continuous.

M̄ =
1
N ∑
{Sz

i }

e−β
J
2 M̄2Nz−2JM̄z∑i Sz

i ∑i Sz
i

∑{Sz
i } e−β

J
2 M̄2Nz−2JM̄z∑i Sz

i
,

=
1
N ∑
{Sz

i }

e2βJM̄z∑i Sz
i ∑i Sz

i

∑{Sz
i } e2βJM̄z∑i Sz

i
. (10.95)
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Now, using the fact that the sum of exponentials can be written as a product, we can rewrite the
above equation as

M̄ =
1
N ∑
{Sz

i }

∏i e2βJM̄zSz
i ∑i Sz

i

∑{Sz
i }∏i e2βJM̄zSz

i
. (10.96)

If we define the parameter ξ = 2βJM̄z, then the partition function can be written as

Z = ∑
{Sz

i }

N

∏
i=1

eξ Sz
i , (10.97)

and the magnetization expression as

M̄ =
1
N ∑
{Sz

i }

∏i eξ Sz
i ∑i Sz

i

∑{Sz
i }∏i eξ Sz

i
. (10.98)

Inspecting Equations (10.97) and (10.98), we find the following relation

M̄ =
1
N

∂ lnZ
∂ξ

. (10.99)

Hence, if we can obtain an expression for the partition sum, we can compute the magnetization. To
do so, observe that {Sz

i}=±. Therefore,

Z = ∑
{Sz

i }

N

∏
i=1

eξ Sz
i ,

=
N

∏
i=1

(eξ + e−ξ ), (10.100)

= [2cosh(2βJM̄z)]N . (10.101)

where we have used the identity cosh(x) = (exp(x)+ exp(−x))/2. Now using Equations (10.99)
and (10.100) above we obtain the self-consistency equation for M̄ as

M̄ = tanh
(

Tc

T
M̄
)
= tanh

(
M̄
T̄

)
, (10.102)

where we define Tc = 2Jz/kB with kB as the Boltzmann constant. Also T̄ = T/Tc. A solution to the
above transcendental equation can be obtained graphically as shown in Figure 10.7.16. In Exercise
10.9.18(b), you will learn how to solve this equation using an iterative (computational) approach,
see Figure 10.7.17 for the final solution.
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Figure 10.7.16: Graphical solution of the Ising model mean field self-consistency Equation (10.102).
At low temperature when T < Tc there are three solutions. Discarding the trivial zero magnetization
solution, we find that the system is magnetized. As the temperature is increased to reach the critical
value at T = Tc and higher T > Tc there is only one solution at the origin indicating that the system
has lost its magnetization. Hence there are two regions, the low temperature ferromagnetic phase
and the high temperature paramagnetic phase. In Exercise 10.9.18(a) you will write a MATLAB
code to verify these solutions.
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Ising model mean field solution

Figure 10.7.17: Magnetization versus temperature solution of mean field Equation (10.102). In
Exercise 10.9.18(b) you will write a MATLAB code to plot this figure. At low temperatures the
magnetization of the system is saturated with the maximum value being attained at T = 0. At tem-
peratures higher than the critical temperature Tc the system loses all its ferromagnetism to transition
into a paramagnet state.

10.7.2 Monte Carlo Simulation of Ising Model

In the previous two sections, we learned how a ferromagnet can undergo a phase transition to a
paramagnet and vice versa. The technique that we utilized to study the transition was analytical.
In this section we will discuss a popular computational technique used to study the magnetic phase
transition. You will learn about the Monte Carlo method using the Metropolis algorithm to simulate
the Ising model. The Metropolis algorithm was introduced in 1953 by Nicholas Metropolis and his
co-workers in their paper on the simulation of hard-sphere gases. The method relies on two very
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important concepts: Markov chain and detailed balance. But before we get into those details, let us
first understand what is meant by a Monte Carlo method.
The name Monte Carlo originates from the famous European gambling center Monte Carlo Casino
located in Monte Carlo, Monaco. The method used to be known as statistical sampling and the idea
behind the technique is much older than the name or even before its use in a computer simulation.
The use of a random number to decide the next move (similar to tossing a coin to make a decision)
makes it a Monte Carlo technique. Initially it was a numerical method for estimating integrals which
could not be performed by other analytical or standard numerical integration schemes. Use of the
idea was made popular by its application to the hard sphere problem.
The conceptually tricky and challenging part of performing a Monte Carlo simulation is the genera-
tion of an appropriate random set of microstates according to the Boltzmann probability distribution.
Metropolis and his co-workers introduced the idea of a Markov chain to generate the states. In their
approach each new state is directly generated from the preceding state. In a Monte Carlo simulation
a Markov process is repeatedly utilized to generate a Markov chain of states. The process is cho-
sen specially so that when it is run for a long enough time starting from any state of the system, it
will eventually produce a succession of states which appear with probabilities that are given by the
Boltzmann distribution. In order to achieve this, two further conditions will have to be placed on the
Markov process: ergodicity and detailed balance. Ergodicity is the idea that all possible microstates
of the system should be attainable. The Markov chain of states which are being used to generate the
states should allow for one state of the system to be reached from another. For the Metropolis al-
gorithm the single-spin flip dynamics ensures that the algorithm obeys ergodicity since one can go
from any one state to another on a finite lattice by flipping each of the spins, one at a time. The other
condition of detailed balance ensures that the Boltzmann probability distribution is the equilibrium
distribution for our problem; that is, when the system has reached equilibrium. The most important
definition is the fact that

∑
i

PiW (i→ j) = ∑
i

P jW ( j→ i) (10.103)

where i, j denote the states, W denotes the transition probabilities between the states, and Pi is the
probability of the state i at time t. This is the detailed balance equation. All it is saying is that the
rate at which the system makes a transition into and out of any state i must be equal. The probability
of the ith state with energy Ei at temperature T is given by Boltzmann factor

Pi =
e−Ei/kBT

Z
, (10.104)

where Z is the partition function. In a typical simulation, this probability is not exactly known.
However, this difficulty is avoided since the states are being generated in a Markovian process. In
that case, only the energy difference ∆E matters. That is why in Steps 3a & 3b of the algorithm
(shown below) the energy difference plays a role. To proceed further, we will call each magnetic
dipole a spin. The single spin-flip Metropolis algorithm described below is implemented in the Ising
model code ch10 ising.m, in the MATLAB GUI, see Figure 10.7.18, and summarized in the flow
chart in Figure 10.7.19. The algorithm is outlined as follows:

Step 1. Start with any state of the lattice, choose a lattice site randomly (a random number
generator can be used for this purpose), and consider a hypothetical flip of a single-spin.
Step 2. Compute the energy difference ∆E for this hypothetical single-spin flip (Example
10.7.2.1).
Step 3a. If ∆E ≤ 0, accept the hypothetical flip.
Step 3b. Metropolis algorithm: If the ∆E > 0 for the hypothetical flip, then the system’s en-
ergy increases. In this case we need to decide whether to flip the spin or not by comparing the

Boltzmann factor e−
∆E

kBT to a random number, r, generated in the interval [0,1]. If r < e−
∆E

kBT we
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accept the move and flip the spin. If r > e−
∆E

kBT we do not make any changes to the current state
of the system and move on to Step 4.
Step 4. Steps 1, 2, 3a, & 3b are repeated until the entire lattice with N points is swept through
once, giving every spin an equal opportunity to flip at least once. This completes one Monte
Carlo sweep and is known as a Monte Carlo step per site (MCSS). This is an artifical time in a
Monte Carlo simulation and is considered as a standard measure of time.
Step 5. Upon completion of one MCSS, the data for that step is saved, the loop is advanced to
the next MCSS step, Step 4 repeated, and the simulation continued till a predecided number of
MCSS steps have been completed.
Step 6. For a given temperature and a set of thermodynamic variables affecting the system,
the system takes a while before equilibration is reached. Typically the choice of MCSS is large
enough so that the system reaches equilibrium before any measurements are made of the thermo-
dynamics variables of interest, as shown in Figure 10.7.20. The average over the magnetization
(or energy) is computed over the last 10% or 20% of the accumulated data to obtain the average
energy and magnetization.
Step 7. The temperature loop is then incremented and Steps 1 - 7 repeated.
Step 8. Finally, the data points are plotted as shown in Figure 10.7.20.

The MATLAB code which simulates the Ising model is provided below.

Figure 10.7.18: MATLAB interface for Ising model GUI. By clicking either Magnetization & Sus-
ceptibility or Equilibration, we can run the simulation. The Monte Carlo simulation code (without
the GUI) is provided in the chapter. The GUI code is available for download separately from the
publisher’s weblink. In Exercises 10.9.20 and 10.9.21 you will utilize the GUI to study equilibration
and finite size effects.



364 Magnetism I

Initialize
Lattice

Temperature
Exchange energy

Figure 10.7.19: Metropolis algorithm for Monte Carlo simulation of 2nd nearest neighbor Ising
model.
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Figure 10.7.20: Initial fluctuations of the magnetization stabilize as higher MCSS steps are reached.
The final state of the magnet where all the spins point in the same direction is displayed on the left
square panel. The settings allow the user to choose the intial and final temperature, temperature step
size, lattice size, and Monte Carlo Step per site (MCSS).

Example 10.7.2.1
In the algorithm for simulating the Ising model, an important step is to carry out various tests on the
energy change ∆E after carrying out the hypothetical spin move, see steps 3 & 4. One can obtain
a simple and nice expression for this ∆E. To do so, consider the spin arrangement shown in Figure
10.7.15(a) with the orientation of the circled spin flipped as shown in Figure 10.7.15(b). For this
two spin arrangement we can define an initial energy

Einitial =−Jsi(si+1, j + si−1, j + si, j+1 + si, j−1), (10.105)

and a final energy after the hypothetical spin flip as

E f inal = Jsi(si+1, j + si−1, j + si, j+1 + si, j−1). (10.106)

Therefore the change in energy, ∆E = E f inal−Einitial , between the two configurations is given as

∆E = 2Jsi(si+1, j + si−1, j + si, j+1 + si, j−1). (10.107)

This is precisely the expression we use in our Monte Carlo simulation code to decide whether or not
a spin flips.

The MATLAB code which simulates the Ising model is below.

%copyright by J. E Hasbun and T. Datta

% ch10_ising.m - by William D. Baez, CurtisLee Thornton, and T. Datta

% GUI implementation by - CurtisLee Thornton and Alexander Price

% Monte Carlo GUI code is available from the publisher separately
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% Ising model code

clearvars;

close all

%{

VARIABLE DEFINITIONS:

latsize-----------(scalar) Length of lattice edges

N-----------------(scalar) Number of sites in the Lattice

initT-------------(scalar) Initial Temperature

finT--------------(scalar) Final Temperature

Tdt---------------(scalar) Temperature Step Size

Temp--------------(array) Temperature Array

MCSS--------------(scalar) Monte Carlo Steps per Site

MCS---------------(scalar) Monte Carlo Steps

M-----------------(array) Initial magnetization (all up)

magnetization-----(array) Magnetization for each MCSS

Emagnetization----(array) Magnetization for Equilibrium

average_mag-------(array) Average Magnetization

susceptibility----(array) Susceptibility Array

Ediff-------------(scalar) Total Energy Contribution from

Nearest-neighbor

expect_mag--------(scalar) Expectation Value for Magnetization

expect_magsqr-----(scalar) Expectation Value for Magnetization Squared

mag_sumsqr--------(scalar) Sum of the Squared Magnetization

initH-------------(scalar) Magnitude of External Magnetic Field

NOTE: Comment or uncomment as need for magnetization and susceptibility or

equilibration study.

%}

% % % % User Input Variables % % % %

latsize = input(’Enter 2-D Lattice Dimension:’);

MCSS = input(’Enter the number of Monte Carlo Steps per Site:’);

initH = input(’Enter the Magnetic Field Strength:’);

initT = input(’Enter the initial Temperature:’);

finT = input(’Enter the final Temperature:’);

Tdt = input(’Enter the Temperature Step Size:’);

% % % % Generates initial lattice with all spins up % % % %

M = ones(latsize);

% % Random Initial State (USED FOR EQUILIBRATION STUDY ONLY) % % % %

% Comment this block if not running equilibration study else uncomment.

for ix = 1:latsize

for iy = 1:latsize

if rand < 0.5

M(ix,iy) = 1;

else

M(ix,iy) = -1;

end
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end

end

% % % % Temperature Array % % % %

Temp = initT:Tdt:finT;

% % % % Total Number of Lattice Sites % % % %

N = latsize*latsize;

% % % % Total Number of Monte Carlo Steps % % % %

MCS = MCSS*N;

% % % % Initilize Arrays % % % %

magnetization = zeros(1,MCSS);

Emagnetization = zeros(1,MCS);

average_mag = zeros(1,length(Temp));

susceptibility = zeros(1,length(Temp));

% % % % Start Stop Watch % % % %

tstart = tic;

% % % % Temperature Step % % % %

for t = 1:length(Temp)

% % % % Prints the Current Temperature at Every Step % % % %

fprintf(’Current Temp: %g\n’,Temp(t))

% % % % Starts the counter % % % %

count = 0;

countE = 0;

% % % % Montecarlo Step % % % %

for montecarlosteps = 1:MCS

% % % % Select a Random Lattice Site % % % %

a = floor(rand*latsize + 1); % row number

b = floor(rand*latsize + 1); % column number

% % % % Energy for the Spin ABOVE the Lattice Point % % % %

if a == 1

Edifftop = M(latsize,b);

else

Edifftop = M(a-1,b);

end

% % % % Energy for the Spin BELOW the Lattice Point % % % %

if a == latsize

Ediffbottom = M(1,b);

else

Ediffbottom = M(a+1,b);

end
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% % % % Energy for the Spin LEFT of the Lattice Point % % % %

if b == 1

Ediffleft = M(a,latsize);

else

Ediffleft = M(a,b-1);

end

% % % % Energy for the Spin RIGHT of the Lattice Point % % % %

if b == latsize

Ediffright = M(a,1);

else

Ediffright = M(a,b+1);

end

% % % % Total Energy Difference % % % %

Ediff = 2*M(a,b)*(Edifftop + Ediffbottom + Ediffleft + Ediffright)...

+ (2*M(a,b)*initH);

% % % % Spin Flip Decision % % % %

if Ediff <= 0

M(a,b) = -M(a,b);

elseif rand < exp(-Ediff/Temp(t))

M(a,b) = -M(a,b);

end

% % % % Magnetization Tracker per FLIP % % % %

countE = countE + 1;

Emagnetization(countE) = abs((sum(sum(M))))/N;

% % % % Magnetization Tracker per SWEEP % % % %

if mod(montecarlosteps,N) == 0

count = count + 1;

magnetization(count) = abs((sum(sum(M))));

end

end

% % % % Calculations % % % %

average_mag(t)= abs(((sum(magnetization(((0.90)*MCSS+1):MCSS))/

(0.10*MCSS))))/N;

expect_mag = sum(magnetization)/length(magnetization);

expect_magsqr = expect_mag^2;

mag_sumsqr = sum(magnetization.^2)/length(magnetization);

susceptibility(t) = ((mag_sumsqr - expect_magsqr)/Temp(t))/N;

end

% % % % End Stop Watch % % % %

telapsed = toc(tstart);
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fprintf(’Total Calculation Time: %g seconds\n’,telapsed)

% % % % Plots % % % %

% USED FOR MAGNETIZATION AND SUSCEPTIBILITY STUDY ONLY

% Comment block if not running equilibration study, uncommented for

% magnetization and susceptibility study

% Select the block of code below and use Ctrl + R to comment

% Select the block of code below and use Ctrl + T to uncomment

figure(’Name’,’Plots’,’NumberTitle’,’off’)

subplot 121

title(’Magnetic Phase Diagram’)

plot(Temp(2:length(Temp)),average_mag(2:length(Temp)),’-bo’)

xlabel(’Temperature (K)’);

ylabel(’Average Magnetization per Spin (M/N)’);

subplot 122

title(’Susceptibility’);

plot(Temp(2:length(Temp)),susceptibility(2:length(Temp)),’-bo’)

xlabel(’Temperature (K)’);

ylabel(’Susceptibility per Spin (S/N)’);

% USED FOR EQUILIBRATION STUDY ONLY

% Comment block if not running equilibration study, else uncomment

% Select the block of code below and use Ctrl + R to comment

% Select the block of code below and use Ctrl + T to uncomment

% figure(’Name’,’Equilibration’,’NumberTitle’,’off’)

% plot(Emagnetization,’-b*’)

% title(’Equilibration’)

% ylim([0 1])

% xlabel(’MCS (Monte Carlo Steps)’)

% ylabel(’Magnetization per Spin (M/S)’)

In addition to the Metropolis algorithm, there are several other algorithms called Glauber, Wolff,
Swendsen-Wang, and Wang-Landau each with its own pros and cons which incorporate both single
spin-flip and cluster-flip processes to simulate the thermal physics system. For further details, refer
to the excellent textbooks listed in References [46, 47].

10.8 Bohr-van Leeuwen Theorem
In Section 10.2 you learned that orbital motion of electrons gives rise to a microscopic current loop,
and in turn, a magnetic dipole moment. Intuitively one may envision the collection of these dipoles
to add up to give rise to a net magnetic moment. Unfortunately, this physical picture is incorrect
as shown by Niels Bohr and Hendreka J. van Leeuwen. The Bohr-van Leeuwen theorem, based
on classical statistical mechanics, states that at any finite temperature and in all finite electric and
magnetic fields, the net magnetization of a collection of electrons in thermal equilibrium vanishes



370 Magnetism I

identically. Therefore it is impossible for electrons within the realm of classical physics to give rise
to magnetism. To gain some intuition into the contents of the theorem, realize that in the absence of
an applied electric field, an electron moves in a straight line. However, with a magnetic field present,
the electrons move in curved cyclotron orbits as shown in Figure 10.8.21.

Figure 10.8.21: Cancellation of edge and bulk orbital currents associated with the motion of elec-
trons in a magnetic field. The Bohr-van Leeuwen theorem forbids the existence of magnetism within
a classical physics description.

The orbital currents generated from the partially complete skipping orbit at the edges cancel the
orbital currents generated inside the bulk of the material. If the net orbital current is cancelled, there
can be no magnetization! The conceptual idea discussed in this section can be justified by computing
the effects of the magnetic field on the free energy, see Exercise 10.9.23. Hence, magnetism is
inherently a quantum phenomenon and can be accounted for only using quantum mechanics.
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Figure 10.8.22: Periodic table of magnetic elements. At room temperature only Fe, Co, and Ni are
ferromagnetic. Note, Cr is antiferromagnetic. The bulk of the elements are either paramagnets or
diamagnets.
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10.9 Chapter 10 Exercises
10.9.1. Similar to the Bohr magneton, the unit of nuclear magnetism is the nuclear magneton µN

= eh̄
2mp

where mp is the mass of the proton. Calculate the value of µN?

10.9.2. In Example 10.3.1.1 we computed the mass susceptibility of platinum. What is the molar
susceptibility of Pt? The density of platinum is ρ=21450 kg m−3 and its relative atomic
mass is 0.19509 kg mol−1.

10.9.3. Oxygen has a dimensionless paramagnetic susceptibility of 0.19 × 10−5. Convert this to
χmol. The relative atomic mass of oxygen is 0.016 kg mol−1 and its gaseous phase density
is 1.429 kg m−3.

10.9.4. Figure 10.9.23 shows the set-up for a Gouy balance method for measuring susceptibility
devised by the French physicist Louis Georges Gouy. A finely powdered sample contained
in a cylindrical quartz tube is partially suspended between the poles of a magnet with
homogeneous magnetic field. The bottom portion resides in the presence of the magnetic
field, Hxb, and the top portion is in a region beyond the poles where the field Hxt is weak.
This creates a magnetic field gradient of dHx/dz. Show that the sample experiences a force,
Fz, whose magnitude is given by

Fz =
1
2

µoχA(H2
xb−H2

xt), (10.108)

where A is the cross-section of the sample in the z-direction and χ is the magnetic suscep-
tibility.

z

Figure 10.9.23: Gouy balance. Magnetic sample is supsended between the poles of a magnet creat-
ing a homogeneous magnetic field. The top of the sample is in a magnetic field free zone, the bottom
is not. This creates a gradient in the field in the z-direction, hence a force.

10.9.5. Calculate (a) the saturation magnetization Ms and (b) the corresponding saturation mag-
netic field for Ni which has 0.60 µB. The room temperature density is ρ=8.908 g/cm3 and
atomic weight ANi is 58.69 g/mol.
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10.9.6. (a) Show that the theoretical upper bound for the energy product is given by 1
4 µoM2

s where
Ms is the saturation magnetization. (b) Using the saturation magnetization value from Prob-
lem 10.9.5 compute the energy product value for Ni.

10.9.7. What are the expressions for Hi and Bi in terms of Ha and M for a sphere which has
N = 1/3?

10.9.8. Show that the shape anisotropy constant of a prolate spheroid is given by

Ksh =
1
4

µoM2
s (1−3N‖) (10.109)

10.9.9. In Section 10.3.2 we obtained an expression for the fractional change in length, Equation
(10.54). Verify Equations (10.48) and (10.49) used as part of the derivation.

10.9.10. Show that if the magnetization is measured along the direction of magnetization we have
for the change in length

δL

L
=

2
3

h1 +2(h2−h1)(α
2
1 β

2
1 +α

2
2 β

2
2 +α

2
3 β

2
3 ), (10.110)

where h1 and h2 are related to the magnetostriction constants.

10.9.11. Derive (a) Equation (10.78) and (b) Equation (10.84) used in Section 10.6.

10.9.12. Write a MATLAB code to plot the generic magnetic anisotropy energy surface for a (i)
BCC (e.g., Fe, choose K0 = 1, K1 > 0, and K2 = 0) , (ii) FCC (e.g., Ni, choose K0 = 1,
K1 < 0, and K2 = 0), and (iii) HCP (e.g., Co, choose K0 = 0.1, K1 = 2 or K0 = 1.1, K1 =
−1) crystal lattice. For the HCP crystal lattice, identity the anisotropy constant parameter
combination which produces easy axis and easy plane anisotropy.

10.9.13. The application of a stress σ to a ferromagnetic material can change the direction of sponta-
neous magnetization. This is inverse of the magnetostriction effect we discussed in Section
10.3.2 and is known as the Villari effect. Using thermodynamics, show that
(a) magnetostriction and stress are related by the following relation
(

∂λ

∂H

)

σ

=

(
∂M
∂σ

)

H
(10.111)

(b) Using the definition of the applied stress energy

Estress =−σ

∫
dλ , (10.112)

show that,

Estress =−
3
2

λsσ cos2
θ , (10.113)

where λs is the magnetostriction constant. Is the stress energy a minimum or a maximum
when λs < 0.

10.9.14. In Example (10.3.2.4) we computed the anisotropy field required to saturate the magneti-
zation of a uniaxial crystal in a hard direction. In this problem you will compute the de-
pendence of the magnitude of this critical field on the orientation of the applied magnetic
field. Using Equation (10.56) show that

sin2θ =
1

H̄2

(
4− H̄2

3

)3/2

, (10.114)
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where H̄ = Ho/(Ku/µoMs). Write a MATLAB code to make a plot of the critical field (H̄)
versus the orientation of the applied field (θ ).

10.9.15. Consider a single-domain ellipsoidal particle as shown in Figure 10.3.7. Compute the Ms
versus Ha curve when the field is applied at 10◦ to the polar axis. What is the value of the
coercive field in this case.

10.9.16. Based on the number of unpaired electrons, predict whether the following elements and
ions are diamagnetic or paramagnetic? (a) Au, (b) Xe, (c) Cu+, (d) Ti4+, (e) Gd3+, and (f)
Fe3+.

10.9.17. Derive the Langevin function L(y) given in Equation (10.64).

10.9.18. (a) Write a MATLAB code to validate the graphical solution of the transcendental Ising
model mean field equation shown in Figure 10.7.16. Consider both the low (Tc > T ), criti-
cal (Tc = T ), and high (Tc < T ) temperature limit. (b) Write a MATLAB code to reproduce
the magnetization versus temperature plot from the mean field solution Equation (10.102)
as shown in Figure 10.7.17.

10.9.19. Lev Davidovich Landau was a prominent Soviet physicist who made fundamental contri-
butions to many areas of theoretical condensed matter physics. One of his contributions
was to construct a mean field-like approach to study the ferromagnetic-paramagnetic phase
transition. He constructed a free energy functional which depends on the order parameter
(magnetization), M̄, and can be expressed as,

F(M,T ) = F0(T )+a(T )M2 +
1
2

bM4 + · · ·−HM, (10.115)

where a(T ) = ao(T −Tc) with ao > 0 and b > 0. Using the condition that

∂F
∂Ms

= 0, (10.116)

show that the critical exponents in zero field is given by

Ms ≈ (Tc−T )−1/2, (10.117)

and for the susceptibility

χ ≈ (T −Tc)
−1, (10.118)

where Tc is the critical temperature. Since the order parameter is small near a phase tran-
sition, to a good approximation the free energy of the system can be approximated by
the first few terms as shown above. Based on mean field theory approximation the critical
exponents are

Table 10.9.5: Mean field critical exponents of the ferromagnetic Ising model.
Physical quantity Exponent

Specific heat, CM ∼ |T −TC|α α = 0
Magnetization, M ∼ (T −TC)

β β = 1
2

Susceptibility, χ ∼ (T −TC)
−γ γ=1

Critical isotherm, M ∼ H−1/δ δ=1/3
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(a) Derive the mean field exponents for magnetization and susceptibility and plot the quan-
tities versus temperature. (b) Plot the mean field solution of magnetization and susceptibil-
ity versus temperature within the Landau free energy approach.

10.9.20. Recall from our Monte Carlo simulation discussion that for a given temperature and set of
thermodynamic variables, the system takes a while before equilibration is reached. This is
similar to inserting a thermometer and waiting for a while before you take the measurement.
In a Monte Carlo simulation where we are trying to mimic thermal effects of a system, we
need to allow for this process. In this exercise you will utilize the MATLAB GUI to learn
about how equilibration is achieved. To do so, download the GUI code from the publisher’s
website and click on the file named ch10 Ising Mode Main Menu.m. This should open
up the interface as shown in Figure 10.7.18. On this interface, click on the Equilibration
tab to display the interface as shown in Figure 10.7.20. Now make the following choices:
Temperature = 0.3, lattice size L = 8, and MCSS = 100. Then hit run.

(a) In words, explain what you observe, both for the state of the magnet and in the magne-
tization per spin versus MCSS plot?
(b) Now keeping the temperature and MCSS fixed, change the lattice size to L = 16, 32, 48,
and 64, successively. Before running each set of new trial, click on the Reset to clear the
GUI plots and calculations. For each choice of the run explain in words what you observe?
Do you reach equilibrium for all the lattices for the MCSS choice of 100? If not, which
parameter can you change to get the desired state?

Note: If you do not have access to the GUI, you can still carry out the exercise by running
the ch10 isingmontecarlo.m code. Make sure to uncomment the equilibration portion of
the code.

10.9.21. In this exercise you will utilize the MATLAB GUI to observe finite size effects in lattice
simulation. Following the instructions in Exercise 10.9.20 open up the interface and click
on the Magnetization & Susceptibility tab. In the box for choices successively choose L =
8,16,20,24,32 and 64 with MCSS = 5000. Set the initial temperature to 0.01 and the
final temperature to 8.0. Keep in mind that the temperature is in scaled units, that is, T/J.
With a choice of J = 1, when we choose the temperature in the GUI simulation to be 3.0,
we are actually choosing T/J = 4.0. Before running each set of new trial, click on the
Reset to clear the GUI plots and calculations. In words explain how the shape of both the
magnetization and susceptibility curve changes. With larger lattice sizes, the simulation
will run somewhat slower, so be patient.

Note: If you do not have access to the GUI you can still carry out the exercise by run-
ning the ch10 isingmontecarlo.m code. Make sure to uncomment the magnetization and
susceptibility portion of the code.

10.9.22. Macroscopic systems contain a large number of degrees of freedom. This is true in the case
of an Ising model also where each site has two possible states (up or down). Thus on a
lattice of size L we have 2L states, which with increasing lattice size becomes larger. To
simulate such systems we typically choose a lattice which is much smaller in size than the
actual model and/or is discretized. This approximation introduces systematic errors which
are called finite size effects. In Exercise 10.9.21 you saw how finite lattice size affects
the outcome of the magnetization and susceptibility. In order to reliably predict the exact
nature of the phase transition point, we have to develop a systematic procedure which will
allow us to extrapolate the finite size data to that of an infiinte system. Such an analysis
is termed finite size scaling. From thermal physics we know that a true phase transition
occurs only in the L→ ∞ limit.
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Near the critical transition point, spins of an Ising model bunch up together to form clusters
of a typical size ξ called the correlation length. The correlation length typically diverges as
the temperature approaches the critical value of Tc. Let us define a dimensionless parame-
ter, t, called the reduced temperature which measures the deviation from Tc,

t =
T −Tc

Tc
. (10.119)

For the Ising model we can safely assume that the correlation length varies as ξ ∼ |t|−ν

where ν is called a critical exponent. The absolute value of |t| ensures that the reduced
temperature expression can be utilized both above and below the critical temperature re-
gion. A remarkable fact about the critical exponents is that this is a property of the Ising
model itself and is independent of the details (e.g., coupling strength or the type of lat-
tice that is being studied, square or triangular, in a particular dimension). This property is
known as universality. Within a given universality class, all models have the same crit-
ical exponents. We can also define a critical exponent for the magnetic susceptibility as
χ ∼ |t|−γ and m∼ |t|β . Since critical exponents carry information on the nature of critical
phenomena and phase transition, the question is how we should measure these exponents.
In this problem you will learn about the finite size scaling strategy which will be used to
measure the exponent γ .

The finite size scaling method is a way of extracting values for critical exponents by observ-
ing how measured quantities vary as the size L of the system changes. To implement the
method, let us express the susceptibility in terms of the correlation length by eliminating
temperature, as χ ∼ ξ γ/ν (in the vicinity of a phase transition). In a Monte Carlo simulation
where simulations are performed on a finite lattice of size L, the correlation length is cut
off as it approaches the system size. This implies that the susceptibility χ will be cut off.
Mathematically, this cutoff can be expressed as

ξ ∼ L; χ ∼ Lγ/ν , (10.120)

where as long as ξ � L, the value of χ should be the same as that for the infinite system.
For the Ising model ν is equal to one. Thus χ ∼ Lγ . At the critical transition temperature,
the susceptibility attains a maximum value, χmax, and we can choose this value to make a
plot of χmax versus lnL, the slope of which is the exponent γ .

Using the concept of finite size scaling and the Ising model code (ch10 isingmontecarlo.m)
obtain a value for the susceptibility exponent γ . In two dimensions the exact value is known
to be 7/4, which is 1.75.

10.9.23. Use the ideas of statistical mechanics to prove the Bohr-van Leeuwen theorem. Keep in
mind that in the presence of a magnetic field ~p is replaced with the canonical momentum
~p−q~A.
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11.1 Introduction
Magnetism can arise both from localized and delocalized electrons. While the delocalized electron
picture is appropriate when describing the effects of magnetism in metals, alloys and their conduct-
ing compounds, the localized models are more suitable for describing the magnetism of insulating
ionic 3d transition metal compounds and 4 f electrons from the rare-earth series. In the localized
limit, strong Coulomb interaction prevents the transfer of electrons from one atomic site to another.
This is the regime of insulating magnets. In the opposite limit, weak Coulomb correlations allow
the electrons to be delocalized with kinetic energy as the most dominant energy term and Coulomb
interactions acting as a perturbation. This is the metallic regime. In this chapter you will learn the
basics of both types of magnetism. First, we will begin with the atomic description.

11.2 The Building Blocks of Atomic Magnetism
Magnetic properties of localized electrons in an atom or a crystalline solid are dictated by the nature
of orbitals (shells) occupied by the electrons around the nucleus. A permanent magnetic moment in
atoms (ions) arise from incompletely filled shells. The quantum state of an electron in an atom is
specified by a set of four quantum numbers:

377
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• n: Principal quantum number − defines the energy levels of the atomic orbital. Electrons with
the same n are said to be in the same shell. n can take values of 1, 2, 3, · · ·
• l: Orbital quantum number− defines the angular momentum of the orbital. This number divides

the shells into subshells with l ranging from 0 to n−1. It determines the shape of an orbital and
its angular distribution. Electrons with l values of 0,1,2,3, ... are termed to be in s, p,d, f , ...
orbitals.

• ml : Magnetic quantum number− specifies the orientation in space of a given orbital. For a given
subshell number l, there are 2l+1 orbitals which range from −l to l.

• ms: Component of the spin quantum number specifying the orientation of the intrinsic angular
momentum s − with values ranging from −s, −s+1, · · · , s−1, +s.

Example 11.2.0.1
For n = 3 what are the possible (a) l values and (b) the corresponding ml values?
Solution
(a) For n = 3, l = 0,1,2. These are the s, p, and d orbitals.
(b) For a given l value, ml ranges from -l to +l. So we have

l = 0 =⇒ ml = 0; (11.1)
l = 1 =⇒ ml =−1,0,1; (11.2)
l = 2 =⇒ ml =−2,−1,0,1,2. (11.3)

A given quantum state is typically denoted by the abstract 〈bra| and |ket〉 notation. In this termi-
nology an atomic state can be specified by |n, l,ml ,s,ms〉. For example, |3,2,0, 1

2 ,− 1
2 〉 corresponds

to an electron in a n = 3 principal quantum number shell, with orbital angular momentum l = 2, an
orbital projection of ml = 0, for an electron spin 1

2 in a - 1
2 (down) projection state.

The atomic orbitals are populated with electrons in the order of increasing energy. For example
atomic iron, with atomic number Z = 26, has an electronic configuration given by [Ar]3d64s2. The
4s shell has two paired electrons (up and down spin states) leading to a net cancellation of the spin
quantum number. The 3d shell has four unpaired electrons giving rise to a non-zero spin quantum
number of 2h̄. The unpaired electron spins cause iron to possess an overall magnetic moment. Recall
from Chapter 10 that not all unpaired electron systems are spontaneously magnetic. For example,
paramagnetic systems have weakly cooperating interaction mechanisms and possess a magnetiza-
tion only in the presence of an applied external magnetic field.

s
(a)

sz

1

2

3

2

1

2

(b)

Figure 11.2.1: (a) Visualizing the electron spin as an arrow. (b) The two possible orientation pro-
jections of the spin angular momentum along the z-axis. For a spin quantum number state with s =
1
2 the magnitude of the spin angular momentum is

√
3h̄/2 (see Equation (11.8)).
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11.2.1 Spin, Orbital, and Total Angular Momentum

A fundamental characteristic of an electron, besides its mass and charge, is its inherent magnetic
moment − a purely quantum mechanical attribute which has no classical analogue. This intrinsic
magnetic moment gives rise to an angular momentum which is termed the electron spin. In the lan-
guage of quantum mechanics, spin angular momentum is a vector operator denoted by the symbol ~̂s,
where the hat denotes the operator nature. The existence of the electron spin was established by the
Stern-Gerlach experiment and justified by Paul Dirac’s relativistic quantum theory. The eigenvectors
and eigenvalues for a given spin state are

ŝ2|s,ms〉 = s(s+1)h̄2|s,ms〉, (11.4)
ŝz|s,ms〉 = msh̄|s,ms〉. (11.5)

For an electron which has a spin angular momentum of s = 1/2 and a spin projection of sz =−1/2
we can write

ŝ2|1
2
,−1

2
〉 =

3
4

h̄2|1
2
,−1

2
〉, (11.6)

ŝz|
1
2
,−1

2
〉 = −1

2
h̄|1

2
,−1

2
〉. (11.7)

The magnitude of the spin angular momentum, S, is given by the expression

S =
√

s(s+1)h̄ =
√

3h̄/2, (11.8)

as shown in Figure 11.2.1. The quantum numbers ms=+ 1
2 (spin−up state) or ms=− 1

2 (spin−down
state) are denoted with up (down) arrows ↑ (↓), respectively. This is the reason why we used arrows
in the previous chapter to denote magnetic dipoles. Similar to the spin angular momentum, one can
define the eigenstates and eigenvalues of the orbital angular momentum ~̂l as

l̂2|l,ml〉 = l(l +1)h̄2|l,ml〉, (11.9)
l̂z|l,ml〉 = ml h̄|l,ml〉. (11.10)

In Chapter 10, based on a semiclassical derivation, we arrived at the following expression relating
the orbital magnetic dipole moment ~̂µl with the orbital angular momentum of an electron

~̂µl =−
e

2me
~̂l, (11.11)

where we have explicitly included the operator notation on the angular momentum symbol. The
above equation is almost correct except that we need to include the appropriate orbital g-factor

~̂µl =−gl µB
~̂l
h̄
≡ γl~̂l; (11.12)

where we recall that µB = eh̄
2me

is the Bohr magneton and γl = − gl µB
h̄ is the orbital gyromagnetic

ratio. The gyromagnetic ratio is essentially the magnetic moment per unit angular momentum. It
turns out that the gl factor is exactly equal to one. So fortunately the semiclassical and the quantum
expressions agree. In general, the g-factor is a dimensionless proportionality constant that relates
the observed magnetic moment ~µ of a particle to the appropriate angular momentum. In a similar
spirit, we may write down an expression relating the spin magnetic dipole moment and the spin
angular momentum of an electron by

~̂µs =−gsµB
~̂s
h̄
≡ γs~̂s, (11.13)
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where we have introduced the spin g-factor gs and γs =− gsµB
h̄ is the spin gyromagnetic ratio . The

spin g-factor is not equal to one, rather gs= 2.002319304. Since spin is an intrinsic quantum object,
we cannot expect a semi-classical derivation to yield the correct answer. This is reflected in the
g-value not being equal to one. The above equation implies that the z-component of the electron’s
spin magnetic moment is given by

µsz =−gsµB
sz

h̄
=−gsµBms =−

1
2

gsµB, (11.14)

where ms =
1
2 for a spin-up state and similarly

µsz =−gsµBms =+
1
2

gsµB, (11.15)

with ms =- 1
2 for a spin-down state.

The gyromagnetic ratio and the g-factor can be measured using the Einsten−de Haas effect or
using ferromagnetic resonance experiments. In Exercise 11.11.1 you will derive the equation which
governs this experiment.

Example 11.2.1.1
What is the numerical value of the spin magnetic dipole moment?
Solution
Considering the spin-up state we have

µsz =−gsµBms =−
1
2
(2.002319304)(9.274×10−24) Am2 =−9.285×10−24 Am2. (11.16)

Note if we had approximated gs ≈ 2, we would have gotten −µB for the up-state. The negative
charge on the electron causes the magnetic moment to be antiparallel to the angular momentum,
hence the flipped sign in Equation (11.14).

In addition to the spin and the orbital magnetic dipole moments, one can define a total angular
momentum ~̂j given by,

~̂j =~̂l +~̂s, (11.17)

with a corresponding total magnetic dipole moment of an electron given by

~̂µ j = ~̂µl +~̂µs =−
µB

h̄
(gl~̂l +gs~̂s) =−

µB

h̄
(~̂l +2~̂s), (11.18)

where we have taken gs ≈ 2 and let gl = 1 as stated above. Similar to ml and ms, the components
of the total angular momentum, m j, range from − j, − j+ 1, · · · , j− 1, + j. The 2 j+ 1 degeneracy
of the energy states can be lifted in the presence of a magnetic field and is known as the Zeeman
effect. The eigenstates and eigenvalues of the ĵ2 and ĵz operator can be defined as

ĵ2| j,m j〉 = j( j+1)h̄2| j,m j〉, (11.19)
ĵz| j,m j〉 = m jh̄| j,m j〉. (11.20)

Henceforth, it will be understood that the angular momentum variables defined here are operators,
so in all the discussions in the remaining sections we will suppress the hat notation.
In Chapter 10, Section 10.3.2.2, we discussed how the bulk magnetization ~M interacts in the pres-
ence of an applied external magnetic field ~Ha. In this section, we consider the Zeeman interaction
from the perspective of the quantum angular momentum. The Zeeman energy, for a magnetic field
applied along the z-axis, using Equation (11.13) is given by

Ez =−~µ ·~B =
(gsµBsz

h̄

)
Bz = gsµBmsBz. (11.21)
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The Zeeman interaction is another source for splitting atomic orbital degeneracy as shown in Figure
11.2.2. The Zeeman effect was first observed in 1896 by the Dutch physicist Pieter Zeeman as a
broadening of the yellow D-lines of sodium in a flame held between strong magnetic poles. The
Zeeman splitting is given by ∆z.

z

B = 0

ms = 1/2

B = B0

ms = -1/2

Figure 11.2.2: Zeeman interaction energy of an electron in an external magnetic field.

Example 11.2.1.2
Obtain an expression for the Zeeman splitting ∆z as shown in Figure 11.2.2. Compute (a) the level
splitting energy ∆z in eV and in Kelvin, (b) the frequency of electromagnetic radiation required
to excite an electron from the lower energy level to the upper one in the presence of an external
magnetic field of 0.5 Tesla.
Solution
Using Equation (11.21) and the spin projection components ms =± 1

2 , we have

∆z =
1
2

gsµBBz−
(
−1

2

)
gsµBBz = gsµBBz. (11.22)

(a) Using the numerical values for gs,µB,Bz and the conversion between joules and eV we have

∆
eV
z = (2.002319304)(9.274×10−24)(0.5)/(1.6021765710−19) = 0.12 meV. (11.23)

In the Kelvin temperature scale we have,

∆
K
z ≡ ∆

K
z /kB = (2.002319304)(9.274×10−24)(0.5)/(1.380710−23) = 0.67 K, (11.24)

where kB is the Boltzmann constant = 1.3807 × 10−23 J/K.
(b) To obtain a numerical value of the exciting electromagnetic radiation we equate ∆z = hν , where
h is the Planck constant and ν is the frequency. We then have ν ≈ 14 GHz. Inducing transitions
from the lower to the upper electronic level in the presence of an external magnetic field is a well-
established method in the field for electron paramagnetic resonance (EPR). The computed frequency
in this example lies in the microwave range and is a typical choice in EPR experiments. Two com-
mon frequencies used lie in the X-band frequency range (9.5 GHz) or the Q-band frequency range
(35 GHz). In Section 11.9, we will discuss in further details the basic concepts of magnetic reso-
nance.

11.2.2 Atomic Orbitals

In general atomic orbitals participate in chemical bonding. The resulting coordination chemistry
dictates the ensuing chemical and physical properties, including magnetism. Before we discuss the
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effect of atomic orbitals on the origins of magnetism, it is worthwhile to visualize the shape of the
orbitals participating in the bonding process. Spherical harmonic solutions of the angular part of
the hydrogen atom problem provides the Y ml

l (θ ,φ) functions. Below we list the solution for the
wavefunction

ψnlm(r,θ ,φ) = Rnl(r)Y m
l (θ ,φ), (11.25)

where the normalized radial wavefunction for the bound states of one-electron atom is written as,

Rnl =

√(
2Z
nao

)3 (n− l−1)!
2n[(n+ l)!]3

e−ρ/2
ρ

lL2l+1
n−l−1(ρ), (11.26)

where Z is the atomic number, ao is the Bohr radius, ρ = 2r/nao, and L2l+1
n−l−1is an associated La-

guerre polynomial. The orthonormal spherical harmonic angular wavefunction Y m
l (θ ,φ) of degree

l and order m is given by

Y m
l (θ ,φ) = (−1)m

√
(2l +1)

4π

(l−|m|)!
(l + |m|)!Pm

l (cosθ)eimφ , (11.27)

where Pm
l (cosθ) is the associated Legendre polynomial of degree l and order m. In Tables 11.10.4

and 11.10.5, we list the explicit expressions for the radial and angular part of the wavefunction up
to n = 4. Combining the radial and the angular solutions, we obtain

ψnlm(r,θ ,φ) =

√(
2Z
nao

)3 (n− l−1)!
2n[(n+ l)!]3

e−ρ/2
ρ

lL2l+1
n−l−1(ρ)Y

m
l (θ ,φ), (11.28)

with the normalization defined by

∞∫

0

r2dr
π∫

0

sinθdθ

2π∫

0

dφ ψ
∗
n1l1m1

(r,θ ,φ)ψn2l2m2(r,θ ,φ) = δn1,n2δm1,m2δl1,l2 . (11.29)

In practice, to visualize the atomic orbitals we often use a spherical harmonics real basis. These real
basis wavefunctions are defined in terms of the linear combination of Y ml

l (θ ,φ) functions as

Ylm =





i√
2

(
Y m

l − (−1)mY−m
l

)
if m < 0,

Y 0
l if m = 0,

1√
2

(
Y−m

l +(−1)mY m
l

)
if m > 0.

(11.30)

Example 11.2.2.1
Write a MATLAB code to generate the radial wavefunction and radial distribution function for
n = 3, as shown in Figure 11.2.3.
Solution
Using the exressions for the radial wavefunction from Table 11.10.4 we can write the following
MATLAB code

%copyright by J. E Hasbun and T. Datta

% ch11_dorbital_radial.m
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Figure 11.2.3: Radial hydrogenic wavefunctions and radial distribution function for n = 3 orbitals.
The MATLAB code used to produce this figure is shown in Example 11.2.2.1.

% Hydrogenic radial wavefunction code

% Creating the grid points

rho = linspace(0,20,100);

% Defining the expressions for the radial wavefunction using Table 11.10.4

% in Chapter 11

% Note: Radial wavefunctions scaled by rho = r/a_o

% Note: Atomic nunmber Z is set to one

Rthreezero = ((2/(3^(3/2))))*(1 - (2/3)*rho + ...

(2/27)*(rho.*rho)).*exp(-rho/3); % R_30(r)(3s)

Rthreeone = (4*sqrt(2)/9)*((1/(3^(3/2))))*...

(1 - rho/6).*rho.*exp(-rho/3); % R_31(r)(3p)

Rthreetwo = (4/(27*sqrt(10)))*((1/(3^(3/2))))*rho.*rho...

.*exp(-rho/3); % R_32(r)(3d)

% Radial distribution function. Note the multiplicative r^2 factor in front

% of Rnl(r).

Rthreezerosq = rho.*rho.*Rthreezero.*Rthreezero; % r^2 R^2_30(r)

Rthreeonesq = rho.*rho.*Rthreeone.*Rthreeone; % r^2 R^2_31(r)

Rthreetwosq = rho.*rho.*Rthreetwo.*Rthreetwo; % r^2 R^2_32(r)

% Plotting the n = 3 radial wavefunction

subplot(2,1,1);

plot(rho,Rthreezero,’-k’,rho,Rthreeone,’--r’,rho,Rthreetwo,’-xb’,

’LineWidth’,2);

xlabel(’\rho = r/a_{o}’)

ylabel(’R_{nl}(\rho)’)

legend(’R_{30}(\rho)’,’R_{31}(\rho)’,’R_{32}(\rho)’)

title(’Hydrogenic Radial Wavefunction, n = 3, l = 0, 1, 2’)
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% Plotting the radial distribution functions

subplot(2,1,2)

plot(rho,Rthreezerosq,’o--g’,rho,Rthreeonesq,’-r’,rho,Rthreetwosq,’-xb’,...

’LineWidth’,2);

xlabel(’\rho = r/a_{o}’)

ylabel(’r^2 R^{2}_{nl}(\rho)’)

legend(’r^2 R_{30}(\rho)’,’r^2 R_{31}(\rho)’,’r^2 R_{32}(\rho)’);

title(’Radial distribution function’)

Example 11.2.2.2
Using the expressions for the d orbital spherical harmonics from Table 11.10.5 and the definition of
the conversion from the complex to the real basis, Equation (11.30), derive (a) the real form expres-
sions for the five d-orbitals and (b) convert the real form to their equivalent Cartesian expressions.
Solution
For each of the choice of orbital combinations, we will first derive the real form expression and then
use the conversion from polar to Cartesian form

x = r sinθ cosφ ; y = r sinθ sinφ ; z = r cosθ , (11.31)

to derive the Cartesian expressions for the orbitals. We will also use the Euler identity eiθ = cosθ +
isinθ to express the exponentials in terms of cosines and sines as

cosθ =
eiθ + e−iθ

2
; sinθ ==

eiθ + e−iθ

2i
. (11.32)

1. l = 2; m =−2

dm=−2
l=2 ≡ i√

2

(
Y−2

2 −Y 2
2
)
=

i√
2

√
15

32π
sin2

θ
(
e−2iφ − e2iφ) ,

=

√
15

16π
sin2

θ(−2isin2φ),

=

√
15

16π
sin2

θ sin2φ . (11.33)

Now, to convert to Cartesian form, we write using Equation (11.31)

dm=−2
l=2 = 2

√
15
4π

sin2
θ sinφ cosφ =

√
15
4π

xy
r2 ≡ dxy. (11.34)

2. l = 2; m =−1

dm=−1
l=2 ≡ i√

2

(
Y−1

2 +Y 1
2
)
=

i√
2

√
15
8π

sinθ cosθ
(
e−iφ − eiφ) ,

=
i√
2

√
15
8π

sinθ cosθ(−2isinφ),

=

√
15
4π

sinθ sinφ cosθ . (11.35)

Now, to convert to Cartesian form, we write using Equation (11.31)

dm=−1
l=2 =

√
15
4π

sinθ sinφ cosθ =

√
15
4π

yz
r2 ≡ dyz. (11.36)
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3. l = 2; m = 1

dm=1
l=2 ≡ i√

2

(
Y−1

2 −Y 1
2
)
=

1√
2

√
15
8π

sinθ cosθ
(
e−iφ + eiφ) ,

=
1√
2

√
15
8π

sinθ cosθ(2cosφ),

=

√
15
4π

sinθ cosφ cosθ . (11.37)

Now, to convert to Cartesian form, we write using Equation (11.31)

dm=1
l=2 =

√
15
4π

sinθ cosφ cosθ =

√
15
4π

xz
r2 ≡ dxz. (11.38)

4. l = 2; m = 2

dm=2
l=2 ≡ 1√

2

(
Y 2

2 +Y−2
2
)
=

1√
2

√
15

32π
sin2

θ
(
e2iφ + e−2iφ) ,

=
1√
2

√
15

32π
sin2

θ (2cos2φ) ,

=

√
15

16π
sin2

θ cos2φ . (11.39)

Now, to convert to Cartesian form, we write using Equation (11.31)

dm=2
l=2 ≡

√
15

16π
sin2

θ
(
2cos2

φ −1
)
,

=

√
15

16π
(sin2

θ cos2
φ − sin2

φ sin2
θ) =

√
15

16π

(x2− y2)

r2 ,

≡ dx2−y2 . (11.40)

5. l = 2; m = 0

dm=0
l=2 ≡ Y20 =

√
5

16π

(
3cos2

θ −1
)
,

=

√
5

16π

(
3cos2

θ − sin2
θ − cos2

θ
)
,

=

√
5

16π

2z2− x2− y2

r2 ,

=

√
5

16π

3z2− x2− y2− z2

r2 ,

≡ d3z2−r2 , (11.41)

where we have used r2 = x2 + y2 + z2 above.

In Section 11.5 you will learn how the shape of these atomic orbitals and their relative orientations
play a crucial role in lifting the degeneracies of atomic levels and lead to crystal field splitting. For
now, consider the MATLAB code below which generates the 3d atomic orbital. In Figure 11.2.4 we
have shown the boundary surface (isosurface) representation of the five 3d orbitals. The boundary
surface method of representing orbitals assumes that the surface encloses some substantial portion,
say 90%, of the total electron density for the orbital. Consider the example shown below.
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Figure 11.2.4: Boundary surface representation of atomic 3dxy, 3dyz, 3dxz, 3dx2−y2 , and 3d3z2−r2 or-
bitals in real basis. The MATLAB code used to generate these orbitals is given in Example 11.2.2.3.

Example 11.2.2.3
Write a MATLAB code to generate the atomic 3dxy, 3dyz, 3dxz, 3dx2−y2 , and 3d3z2−r2 orbitals shown
in Figure 11.2.4.
Solution

%copyright by J. E Hasbun and T. Datta

% ch11_dorbitals.m

% Boundary (isosurfaces) of atomic d orbitals

% A substantial portion (say 90%) of the total electron density of the

% orbital is enclosed within the boundary surface

% Wavefunctions defined below

% Normalized wave functions of hydrogen atom

% NOTE: Z =1, a0 = 1, 0<= l < n %-l<= m <=l

% d orbital

% ylm choice for d orbitals

ylm_20 = @(theta,phi) (3*cos(theta).^2 - 1.0)*sqrt(5/pi)/4;

ylm_21 = @(theta,phi) sqrt(2).*sin(theta).*cos(theta).*cos(phi)...

*sqrt(15/pi)/2;

ylm_22 = @(theta,phi) (sin(theta).^2).*(cos(2*phi))*sqrt(15/pi)/4;

% 3d

psi_3dz2 = @(r,theta,phi) exp(-(1/3)*r).*(r.^2).*(3*cos(theta).^2 - 1.0)...

/(81*sqrt(6*pi));

psi_3dxz = @(r,theta,phi) exp(-(1/3)*r).*(r.^2).*sqrt(2).*sin(theta)...

.*cos(theta).*cos(phi)/(81*sqrt(pi));

psi_3dyz = @(r,theta,phi) exp(-(1/3)*r).*(r.^2).*sqrt(2).*sin(theta)...

.*cos(theta).*sin(phi)/(81*sqrt(pi));

psi_3dx2y2 = @(r,theta,phi) exp(-(1/3)*r).*(r.^2).*(sin(theta).^2)...

.*(cos(2*phi))/(81*sqrt(2*pi));

psi_3dxy = @(r,theta,phi) exp(-(1/3)*r).*(r.^2).*(sin(theta).^2)...

.*(sin(2*phi))/(81*sqrt(2*pi));

%configuring the range

[x, y , z] = meshgrid(-30:0.5:30,-30:0.5:30,-30:0.5:30);
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% Cartesian to spherical coordinates conversion

R=sqrt(x.^2+y.^2+z.^2);

THETA=acos(z./R);

PHI=atan2(y,x);

% Plotting orbtials

figure

subplot(1,5,1);

colors = ylm_22(THETA,PHI); psi = psi_3dxy(R,THETA,PHI); psisq = psi.^2;

set(gcf,’color’,[1 1 1]);

daspect([1 1 1]); axis off; view(3);

camlight(’left’); camzoom(0.75); lighting phong;

axis vis3d; colormap jet; rotate3d on; brighten(1);

isosurface(psisq,1E-5,colors);

title(’(a) 3d_{xy}’,’FontName’,’Times’,’FontSize’,12)

subplot(1,5,2)

colors = ylm_21(THETA,PHI); psi = psi_3dyz(R,THETA,PHI); psisq = psi.^2;

set(gcf,’color’,[1 1 1]);

daspect([1 1 1]); axis off; view(3);

camlight(’left’); camzoom(0.75); lighting phong;

axis vis3d; colormap jet; rotate3d on; brighten(1);

isosurface(psisq,1E-5,colors);

title(’(b) 3d_{yz}’,’FontName’,’Times’,’FontSize’,12)

subplot(1,5,3);

colors = ylm_21(THETA,PHI); psi = psi_3dxz(R,THETA,PHI); psisq = psi.^2;

set(gcf,’color’,[1 1 1]);

daspect([1 1 1]); axis off; view(3);

camlight(’left’); camzoom(0.75); lighting phong;

axis vis3d; colormap jet; rotate3d on; brighten(1);

isosurface(psisq,1E-5,colors);

title(’(c) 3d_{xz}’,’FontName’,’Times’,’FontSize’,12)

subplot(1,5,4)

colors = ylm_22(THETA,PHI); psi = psi_3dx2y2(R,THETA,PHI); psisq = psi.^2;

set(gcf,’color’,[1 1 1]);

daspect([1 1 1]); axis off; view(3);

camlight(’left’); camzoom(0.75); lighting phong;

axis vis3d; colormap jet; rotate3d on; brighten(1);

isosurface(psisq,1E-5,colors);

title(’(d) 3d_{x^2 - y^2}’,’FontName’,’Times’,’FontSize’,12)

subplot(1,5,5)

colors = ylm_20(THETA,PHI); psi = psi_3dz2(R,THETA,PHI); psisq = psi.^2;

set(gcf,’color’,[1 1 1]);

daspect([1 1 1]); axis off; view(3);

camlight(’left’); camzoom(0.75); lighting phong;
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axis vis3d; colormap jet; rotate3d on; brighten(1);

isosurface(psisq,1E-5,colors);

title(’(e) 3d_{3z^2 - r^{2}}’,’FontName’,’Times’,’FontSize’,12)

11.3 Spin-orbit Interaction
Spin-orbit interaction plays an important role in dictating the fate of the atomic ground state in
addition to being the key microscopic reason for several interesting phenoma in magnetism such
as magnetocrystalline anisotropy and magnetostriction. To learn the basic concepts of spin-orbit
coupling, let us begin by asking the question: What is the connection between an electric field and
a magnetic field?

electron

nucleus

Figure 11.3.5: Spin orbit coupling interaction.

A field is perceived either as electric or magnetic based on the motion of the reference frame rel-
ative to the sources of the field. As shown in Figure 11.3.5, in an atom both the nucleus (which
is positively charged) and the electron (which is negatively charged) are in relative motion to each
other. Since the electron is the system of interest, we choose a coordinate system attached to the
inertial rest frame of the electron. The orbiting nucleus generates at the position of the electron both
an electric field ~En and a magnetic field (in SI units)

~Be =−
~ve×~En

c2 , (11.42)

where ~ve is the velocity of the electron (relative to the nucleus) and the subscript n(e) stands for
nucleus (electron). The innocent looking relationship relating ~Be with ~En expresses a profound idea
in physics: The Biot-Savart law for the magnetic field of a moving point charge is nothing other
than the Coulomb electric field of a stationary point charge transformed into a moving frame of
reference. The speed of light squared factor c2 in ~Be is a consequence of the Lorentz transformation
equations between the two frames of reference.
The Zeeman Hamiltonian of an electron magnetic dipole moment ~µs interacting with the magnetic
field created by the nucleus at the position of the electron is given by

Hso =−~µs ·~Be, (11.43)
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where Hso is termed the spin-orbit interaction energy. Using Equation (11.13) with µB = eh̄
2me

and
gs ∼ 2 for the net spin angular momentum and Equation (11.42) we have

Hso = −
(
− |e|

me
~s
)
·
(
−~ve×~En

c2

)
, (11.44)

Hso = −
|e|~s ·

(
~ve×~En

)

mec2 (11.45)

where me is the mass of the electron. To proceed further we need to utilize an expression for the
electric field. In general the electric field can be expressed as ~E =−~∇V (r), where V (r) is the electric
potential. For a solid if we make the central field approximation then the electrostatic potential is
spherically symmetric and is only a function of radius. We can then write

~En =−~∇Vn(~r) =
1
|e|

∂U(r)
∂ r

~r
r
, (11.46)

where we utilized U(r) =−|e|Vn(r). Vn(r) is the Coulomb potential of the nucleus and U(r) is the
Coulomb potential energy of interaction between the electron and the nucleus. For hydrogen-like
atoms with Z-protons we can write

U(r) =−Z|e|2
4πεo

1
r

(11.47)

Utilizing Equation (11.46) in Equation (11.45), we obtain

Hso = − 1
mec2r

∂U(r)
∂ r

~s · (~ve×~r) , (11.48)

Hso =
1

m2
ec2r

∂U(r)
∂ r

(~r×~pe) ·~s, (11.49)

Hso =
1

m2
ec2r

∂U(r)
∂ r

~l ·~s (11.50)

The above equation is almost correct except for the inclusion of an overall 1
2 factor. Even though

we considered the electron to be stationary, in reality it is not. We derived our spin-orbit inter-
action in the instantaneous rest frame of the electron. The rotation of the electron rest frame has
kinematic consequences since any instantaneous rest frame is obtained from the previous one by a
non-collinear Lorentz boost. When the kinematics of the electron motion is properly accounted for
using the special theory of relativity, it leads to the Thomas precession 1

2 factor. We then obtain

Hso =
1

2m2
ec2r

∂U(r)
∂ r

~l ·~s. (11.51)

For the special case of a spherically symmetric Coulomb potential, Equation (11.47), we can write
down the following expression for spin-orbit interaction,

Hso =
1

4πεo

Z|e|2
2m2

ec2r3 (
~l ·~s) = ξso(r)~l ·~s, (11.52)

where ξso(r) = 1
4πεo

Z|e|2
2m2

ec2r3 is the one-electron spin-orbit coupling.

Example 11.3.0.1
Obtain an expression for the spin-orbit coupling energy and the spin-orbit coupling constant.
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Consider taking the quantum mechanical average over Equation (11.52). We then have

Eso = 〈Hso〉=
1

4πεo

Z|e|2
2m2

ec2

〈
~l ·~s
r3

〉
. (11.53)

For a given quantum state~l and ~s are well defined. To obtain the expectation value, we square the
total angular momentum operator ~j as

~j
2
=~l

2
+~s 2 +2~l ·~s, (11.54)

so the scalar product of~l ·~s may be written as

~l ·~s = 1
2

[
~j

2−~l 2−~s 2
]
=

1
2

[
j( j+1)− l(l +1)− 3

4

]
h̄2. (11.55)

for s = 1
2 . The spin-orbit energy is thus given by

Eso =
1
2

ζso

[
j( j+1)− l(l +1)− 3

4

]
, (11.56)

where the spin-orbit coupling constant ζso ≡ h̄2〈ξso(r)〉, or

ζso =
1

4πεo

Z|e|2h̄2

2m2
ec2

〈
1
r3

〉
. (11.57)

A detailed quantum mechanical evaluation of
〈

1
r3

〉
is beyond the scope of the present textbook.

However, calculations show that
〈

1
r3

〉
∼ Z3. This implies that the spin-orbit interaction energy

depends on the fourth power of the atomic number Z. Hence, the heavier the element, the stronger is
the spin-orbit coupling effect. We will explore the consequences of this statement in the next section
on Hund’s rules. In summary, spin-orbit interaction is an intrinsic effect generated by the interaction
between spin and the orbital degrees of freedom of an electron.

11.4 Ground State of an Ion: Hund’s Rules
In contrast to the hydrogen atom or a hydrogen-like ion (e.g., Be3+) which has a single electron,
atoms are multi-electron systems. The presence of multiple electrons cause several interaction en-
ergy terms: Coulomb interaction, spin-orbit interaction, and crystal-field effects, to compete in dic-
tating the final ground state configuration. Partially filled electron shells which give rise to a net
magnetic moment can be found in the first row 3d transition metals (Sc→ Zn), second row 4d tran-
sition metals (Y→ Cd), the 4 f lanthanides (La→ Lu), and the 5 f actinides (Ac→ Lr). The 3d, 4 f ,
and 5 f electrons can give rise to localized magnetic moments. Interestingly, for the rare earths (4 f )
and the actinides (5 f ), even though the f -electrons could be in an insulating state, these materials
can be in a metallic state.
To obtain the ground state term, level, and state of an ion, we begin with the assumption that
spin-orbit coupling is a small perturbation. In this case the net values of orbital and spin angular
momentum are given by the sum total of the individuals

L = ∑
i

li; ML = ∑
i

mli; S = ∑
i

si; MS = ∑
i

msi; (11.58)

The above way of combining the orbital and spin angular momentum is known as the Russell-
Saunders scheme or LS coupling scheme (after astronomers Henry Norris Russell and Frederick
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Albert Saunders). However, for the heavier elements such as the third row transition metals and the
actinides, we need to introduce a j j-coupling scheme where the J values are computed first since
neither L nor S are good quantum numbers. The expression for the total angular momentum J is
given by

~J =~L+~S, (11.59)

where MJ values range from −J,−J+1, ...,J−1,J.
In the vector model of the atom, the addition of ~L and ~S is represented by a vector summation as
shown in Figure 11.4.6. From the figure we can clearly observe that the presence of the spin g-factor
causes the net magnetic dipole moment, ~µ , to have an orientation different from ~J. Nevertheless
we can ask the following question: is it possible to express the net magnetic dipole moment ~µ as
proportional to ~J? To do so, we consider the following equation

~µJ =−gJ µB
~J
h̄
, (11.60)

where gJ is the Landé g-factor . An explicit expression for the Landé gJ factor can be obtained by
taking the dot product with ~J on both sides of Equation (11.60). This leads to

gJ =−(~µJ · ~J/µB)/(|~J|2/h̄). (11.61)

S

J

L

S

L 2S+

L 2S+

Figure 11.4.6: Vector model of atom displaying the addition of orbital angular momentum (~L), spin
angular momentum (~L), the net angular momentum (~J), and the net magnetic dipole moment (~µ).

The orbital and spin angular momenta can combine in (2L + 1)(2S + 1) ways. This is the total
number of available choices of the z component of the~L which ranges from −L,−L+1, ...,L−1,L
multiplied by the (2S+1) choices for spin projection. Recalling Equation (11.18), the total magnetic
dipole moment is written as

~µJ = ∑
i
~µi =−

µB

h̄ ∑
i
(~li +2~si),

which utilizing the definition of the total angular momentum variables~L and ~S, shown in Equation
(11.58), gives

~µJ =−
µB

h̄
(~L+2~S). (11.62)
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In the next step, invoking the definitions for ~J and ~̂µJ from Equations (11.59) and (11.62), respec-
tivley we can compute

~̂µJ · ~J = −(µB/h̄)[(~L+2~S) · (~L+~S)],

~̂µJ · ~J = −(µB/h̄)[(~L+2~S) · (~L+~S)],

~̂µJ · ~J = −(µB/h̄)[(~L2 +3~L ·S+2~S2)],

~̂µJ · ~J = −(µB/h̄)[(~L2 +(3/2)(~J2−~L2−~S2)+2~S2)],

~̂µJ · ~J = −(µB/h̄)[(3/2)J(J+1)− (1/2)L(L+1)+(1/2)S(S+1)]. (11.63)

To complete the derivation, we insert Equation (11.63) into the expression for gJ (Equation (11.61)),
and noting that |~J|2 = J(J+1)h̄2, the final expression for the Landé gJ factor becomes

gJ =
3
2
+{S(S+1)−L(L+1)}/{2J(J+1)}. (11.64)

Example 11.4.0.1
Using the values of L, S, and J from Tables 11.4.1 and 11.4.2 compute the Landé gJ factor and µeff
for the following ions (a) Ni2+ (b) Nd3+. Also compute, only the Landé gJ factor for an ion which
has (c) S = 0 and (d) L = 0.
Solution
(a) From Table 11.4.1 for Ni2+ we have S = 1,L = 3, and J = 4. Using Equation (11.64) and
inserting numbers we have

gJ =
3
2
+
{(1)(1+1)−3(3+1)}
{2(4)(4+1)} =

5
4

and µeff =

(
3
2
+
{(1)(1+1)−3(3+1)}
{2(4)(4+1)}

)√
4(4+1) = 5.59 (11.65)

where we used the definition µe f f = gJ
√

J(J+1) (in µB units). Note, this value agrees exactly with
the number reported in Table 11.4.1.
(b) From Table 11.4.2 for Nd3+ we have S = 3

2 ,L = 6, and J = 9
2 . Using Equation (11.64) and

inserting numbers we have

gJ =
3
2
+

{
( 3

2 )(
3
2 +1)−6(6+1)

}
{

2( 9
2 )(

9
2 +1)

} =
8

11
,

and µeff =

(
3
2
+

{
( 3

2 )(
3
2 +1)−6(6+1)

}
{

2( 9
2 )(

9
2 +1)

}
)√(

9
2

)(
9
2
+1
)

(11.66)

= 3.618 = 3.62 (in µB units). (11.67)

Once again, note, this value agrees exactly with the number reported in Table 11.4.2.
(c) When S = 0, J = L. This implies gJ = 1. This is the result one would expect for the purely orbital
case.
(d) When L = 0, J = S. This implies gJ = 2. This is the result one would expect for the purely spin
case.



Ground State of an Ion: Hund’s Rules 393

Table 11.4.1: 3d transition metal ions with ground state term symbols. For shells which are less
than half-filled we compute J as J = |L−S| and if they are greater than half-filled, J = |L+S|.

ion 3dn S L J Term symbol µe f f = gJ
√

J(J+1) µexp µe f f = g
√

S(S+1)
(in µB units) (in µB units)

Ti3+,V4+ 3d1 1
2 2 3

2
2D3/2 1.55 1.70 1.73

V3+ 3d2 1 3 2 3F2 1.63 2.61 2.83
Cr3+, V2+ 3d3 3

2 3 3
2

4F3/2 0.77 3.85 3.87
Mn3+, Cr2+ 3d4 2 2 0 5D0 0 4.82 4.90
Fe3+, Mn2+ 3d5 5

2 0 5
2

6S5/2 5.92 5.82 5.92
Fe2+ 3d6 2 2 4 5D4 6.70 5.36 4.90
Co2+ 3d7 3

2 3 9
2

4F9/2 6.63 4.90 3.87
Ni2+ 3d8 1 3 4 3F4 5.59 3.12 2.83
Cu2+ 3d9 1

2 2 5
2

2D5/2 3.55 1.83 1.73
Zn2+ 3d10 0 0 0 1S0 0 0 0

Table 11.4.2: 4 f lanthanide ions with ground state term symbols. For shells which are less than
half-filled we compute J as J = |L−S| and if they are greater than half-filled, J = |L+S|.

ion 4fn S L J Term symbol µe f f = gJ
√

J(J+1) µexp
(in µB units)

Ce3+ 4f1 1
2 3 5

2
2F5/2 2.54 2.51

Pr3+ 4f2 1 5 4 3H4 3.58 3.56
Nd3+ 4f3 3

2 6 9
2

4I9/2 3.62 3.3 − 3.7
Pm3+ 4f4 2 6 4 5I4 2.68 −
Sm3+ 4f5 5

2 5 5
2

6I5/2 0.85 1.74
Eu3+ 4f6 3 3 0 7F0 0.0 3.4
Gd3+ 4f7 7

2 0 7
2

8S7/2 7.94 7.98
Tb3+ 4f8 3 3 6 7F6 9.72 9.77
Dy3+ 4f9 5

2 5 15
2

6H15/2 10.65 10.63
Ho3+ 4f10 2 6 8 5I8 10.61 10.4
Er3+ 4f8 3

2 6 15
2

4I15/2 9.58 9.5
Tm3+ 4f9 1 5 6 3H6 7.57 7.61
Yb3+ 4f10 1

2 3 7
2

2F7/2 4.53 4.5
Lu3+ 4f10 0 0 0 1S0 0 0

The angular momentum combinations of ~J, ~L, and ~S play an important role in determining how
the electronic shells are filled up. For multi-electron systems, atomic orbitals are filled up in an
order that minimizes the overall energy. An empirical set of rules were devised by the German
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physicist Friedrich Hund (1896–1997) that obey the minimum energy principle. The three Hund’s
rules ([HR]), in order of relative importance, are stated as follows:

HR 1: A given electronic configuration of electrons are arranged to maximize the value of S. This
rule helps to minimize the Coulomb electrostatic interaction consistent with the Pauli exclu-
sion principle.

HR 2: For a given spin multiplicity, L is maximized consistent with S. The second rule also arises
in an effort to minimize Coulomb interaction effects.

HR 3: The combined effects of L and S are considered by computing the J value. For shells which
are less than half-filled J = |L−S| and if they are greater than half-filled J = |L+S|. The third
rule is an attempt to minimize the effects of spin-orbit coupling energy, given by Equation
(11.52) and discussed further below.

Competition between spin-orbit coupling energy and crystal field energy has important implications.
Based on their relative strengths, [HR3] will either be obeyed (as in rare-earth ions) or invalidated
(as in transition metal ions) where spin-orbit energy is not significant, see Tables 11.4.1 and 11.4.2.
For a given atom, once the S, L, and J values are decided, the ground state term symbol is labeled
in the form

2S+1LJ (11.68)

where the spin multiplicity is given by 2S + 1. The multiplicity number tells us how many atomic
spin configurations are energetically degenerate. In the presence of a magnetic field this degeneracy
can be broken. In the above spectroscopic terminology the L symbol is written in

L 0 1 2 3 4 5 6 · · ·
S P D F G H I · · ·

capital letters to indicate that we are dealing with the sum total values of the angular momentum.
The assignment of the letters S,P,D,F, ... is historic. It has its origin in spectroscopists terminology
who used Sharp, Principal, Diffuse, Fundamental, ... to characterize spectral lines. Let us consider
some Hund’s rule examples.

Example 11.4.0.2
What is the ground state term symbol of V3+?
Solution
Consider the free transition metal ion, V3+, which has an outer shell configuration 3d2 as shown in
Figure 11.4.7. The free ion assumption implies that its spectrum and magnetic moment will not be
affected by the surrounding atoms, ions, or molecules (compared to the opposite limit, see Section
11.5). The d electrons have l=2, so the angular momentum multiplicity is 2l+1 = 5, where they
are all spin-up (maximizing spin angular momentum, [HR 1]). This gives a total spin value of S =
2
( 1

2

)
= 1 with a spin multiplicity of 2(1)+1 = 3. The orbital momentum ranges from ml =−2, · · · ,2,

with the spins occupying ml=2 and 1 (maximizing orbital angular momentum, [HR 2]). Thus L = 2 +
1 = 3 (F). Now, for a shell which is less than half-filled following rule [HR 3] we get J = 3−1 = 2.
Thus, the ground state term symbol is 3F2 (compare this with the term symbol for V3+ in Table
11.4.1).
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3d
2

Figure 11.4.7: Electronic configuration of transition metal ion Vanadium 3+ ion. Vanadium has
applications in the steel industry where it is used as an additive (ferrovanadium) to increase strength
and anti-corrosive properties. Compounds of vanadium were discovered in Mexico by the Spanish-
Mexican mineralogist Andrés Manuel del Rio in 1801.

Example 11.4.0.3
What is the ground state term symbol of Gd3+?
Solution
Consider the free rare earth ion, Gd3+, which has an outer shell configuration 4 f 7 as shown in

Figure 11.4.8. The f electrons have l=3, so the angular momentum multiplicity is 2l+1 = 7, where
they are all spin-up (maximizing spin, [HR 1]). This gives a total spin value of S = 7

2 with a spin
multiplicity of 2(7/2)+1 = 8. The electrons do not give rise to a net orbital momentum since the spins
give rise to an exactly half-filled shell. Thus ml = −3, · · · ,3 sum up to zero. So, J = 7/2+ 0=7/2.
This gives the ground state term symbol as 8S7/2 (compare this with the term symbol result for Gd3+

in Table 11.4.2).

4f
7

Figure 11.4.8: Electronic configuration of rare-earth Gadolinium 3+ ion. Gadolinium has applica-
tions in magnetic refrigeration technology (see Section 10.6 in Chapter 10).

Example 11.4.0.4
What is the ground state term symbol of Dy3+?
Solution
Consider the free transition metal ion, Dy3+, which has an outer shell configuration 4 f 9. The f
electrons have l=3, so the angular momentum multiplicity is 2l+1 = 7, where they are arranged as
shown in Figure 11.4.9 [HR 1, HR 2]. This gives a total spin value of S = 7

( 1
2

)
−2
( 1

2

)
= 5/2 with

a spin multiplicity of 2(5/2)+1 = 6. The orbital momentum ranges from ml = −3, · · · ,3, with the
spins maximizing the orbital angular momentum to give L = 3(2) + 2(2)+1(1)+0(1)-1(1)-2(1)-3(1) =
5 (H). Now, for a shell which is more than half-filled following rule [HR 3] we get J = 5+5/2=15/2.
Thus, the ground state term symbol is 6H15/2 (compare this with the term symbol for Dy3+ in Table
11.4.2).

4f
9

Figure 11.4.9: Electronic configuration of transition metal ion Dysprosium 3+ ion. Dysprosium has
applications in control rods in nuclear reactors for its high thermal neutron absorption cross-section.
It also finds applications in data storage industry for its high magnetic susceptibility. Dysprosium
was first identified in 1886 by the French chemist Paul Émile Lecoq de Boisbaudran.
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The net effective magnetic moment per atom can be deduced experimentally from susceptibility
measurements. Tables 11.4.1 and 11.4.2 summarize the comparison between theoretical and exper-
imental data. In Section 11.7 we will utilize the concepts and ideas developed on atomic orbitals,
net orbital and spin angular momentum, and Hund’s rules on evaluating the ground state of atoms
and ions to explain the paramagnetic properties and compute the magnetic susceptibility based on a
quantum mechanical approach. For now, let us consider another example.

Example 11.4.0.5
Utilizing Hund’s rule, in Example 11.4.0.3, we obtained only the ground state term symbol of a
free ion for a multi-electron configuration (seven to be precise). In this example, you will learn how
to obtain all the possible term symbol configurations for an ion with multiple electrons. To keep
the discussion tractable, we choose the case of a carbon atom in its excited state whose electronic
configuration is given by 1s22s22p13d1 configuration.
First, note that the filled shells have zero contribution to both the total L and S values since all their
ml and ms values add up to zero. Second, the two unpaired electrons in the p and d shells contribute
individually an angular momentum value of l1 = 1 and l2 = 2. Using the vector model discussed in
Equation (11.58) the resultant l-values can be combined as

L = l1 + l2, l1 + l2−1, · · · , |l1− l2|, (11.69)
L = 3,2,1. (11.70)

Therefore, the total orbital angular momentum combination can give rise to term symbols L =
P,D,F . Now, corresponding to each of these angular momentum values there is an associated total
spin angular momentum. In this particular example, because the two electrons are occupying the p
and the d orbitals separately they can combine with all possible combinations of s = ± 1

2 values.
The Pauli exclusion principle does not block them from forming a particular quantum state. Hence,
the resultant values range from

S = s1 + s2,s1 + s2−1, · · · , |s1− s2|, (11.71)
S = 1,0. (11.72)

The spin-multiplicity associated with each of the total S values is 2(1) + 1 = 3 and 2(0) + 1 =1.
The corresponding term symbols are 1P, 1D, 1F, 3P, 3D, and 3F. Now, a word of caution: Hund’s
rules do not predict the excited states or how close the excited states are to the ground state. The
rule is useful only to obtain the ground state term symbol. While we can be fairly certain that the
ground state term symbol is given by 3F, the hierarchy of states as shown in Figure 11.4.10 will not
be experimentally accurate.

Similar to the above example, we can also pose the following question: what are all the possible term
symbols for electrons occuyping the same orbital, say in a 2p2 , 3d4, or 4 f 3 state? In such cases, we
cannot simply combine all possible total angular momentum states with all possible spin angular
momentum states. The Pauli principle will forbid certain configurations in which the electrons share
the same quantum numbers.

Example 11.4.0.6
Assuming a jj-coupling scheme, obtain all the term symbols for n1s1n2 p1, where n1 and n2 represent
the level numbers.
In the case of jj-coupling, we will use ( j1, j2)J as notation to denote the term symbols. For a s
electron we have j = 1/2 . While for a p electron we have j = 1/2,3/2. If j1 = 1/2 and j2 = 1/2,
the possible J values are J = 0,1. But, for j1 = 1/2 and j2 = 3/2 the allowed values of J are
J = 1,2. Hence, the possible term symbols are

(1/2,1/2)0, (1/2,1/2)1, (1/2,3/2)1,(1/2,1/2)2 (11.73)

Note, both the LS- and the j j-coupling represent extreme cases. Many atoms are described by some
of form of intermediate coupling; for example, Ge and Sn.
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Figure 11.4.10: Schematic illustration of the level splitting of a 2p3d electronic configuration for
the excited state of carbon in Example 11.4.0.5. To begin with, the free-ion is in a spherically
symmetric environment. With the inclusion of electron−electron interactions, the energy levels split
based on the singlet (S = 0) and triplet (S = 1) spin configurations and the total orbital momentum
combinations (P,D,F). When the effects of spin-orbit interaction are included, further splitting
occurs. Those split energy levels are distinguished by the J angular momentum quantum numbers
in the term symbol, for example, 3F2. Therefore, corresponding to a 3F term we have a 3F2 level.
These energy levels can be further split into states. For example, corresponding to J = 2 and MJ = 2
we have the state 3F2. The arrangement of the energy levels shown in the figure is based on Hund’s
rule (comparison of actual energy level arrangement with actual experiments will show deviation).
Also note, the size of the energy level splitting is not to scale.
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11.5 Crystal Field Theory
The term symbols in the previous section were obtained for a metal ion in a free environment. By
a free environment we mean a situation where the surrounding ions or molecules have no influence
on the metal ion, or the atom is simply not surrounded by any charges. In reality, when a transition
metal ion participates in a bonding process with an ion or a molecule (known as a ligand) the effect
of electrostatic repulsion plays an important role in lifting the degeneracy of the atomic orbitals
for a given local geometrical arrangement of the surrounding ligands. The purely ionic effect of
the electrostatic field of the ligands on the transition metal ion is the crystal field effect and the
theory describing it is known as the crystal field theory. The foundation of crystal field theory was
developed by physicists Hans Bethe (1906−2005) and John Hasbrouck van Vleck (1899−1980).
The historic importance of this theory was in its ability to qualitatively explain the spin only value
paramagnetism of the first row transition metal ions and also the ability to explain the colors of
transition metal complexes.

x

z

y
TM

Ligand

(a) (b)

x

z

y

Figure 11.5.11: (a) A transition metal ion, such as Cu2+, is located at the central position surrounded
by six oxygen ligand atoms. (b) A transition metal ion, such as Xn+, is located at the central position
surrounded by ions.

First, let us consider Figure 11.5.11(a) to understand the basic principle. We have a transition metal
ion surrounded by six oxygen atoms (ligands) arranged in an octahedral arrangement. As the transi-
tion metal ions and ligands approach each other, electrostatic repulsion causes some of the d orbitals
(dz2 and dx2−y2 ) which have a strong overlap with the p orbitals, Figure 11.5.12(b), to be raised in
energy. This is different from the − dxy, dyz, and dxz orbitals which lie midway as seen in Fig-
ure 11.5.12(a). In this way, the degeneracies of the d-orbitals are broken leading to crystal field
splitting as shown in Figure 11.5.13. For an octahedral environment, the splitting is denoted as
∆ ≡ 10Dq. The split d-orbitals can be divided into two classes and labeled as − t2g: dxy, dyz, and
dxz and eg: dz2 and dx2−y2 orbitals.
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dxy

(a)

dx2 - y2  

(b)y

x

y

x

Figure 11.5.12: In the dxy arrangment of orbitals, shown in (a), the d-orbitals lie midway leading to
minimal repulsion with the p-orbitals. However, the dx2−y2 orbital, shown in (b), directly overlaps
with the p-orbitals thereby increasing the interaction energy. Eventually this leads to crystal field
splitting as shown in Figure 11.5.13.

Crystal field theory comes with a caveat − the interaction between the metal ion and the ligand is
assumed to be purely electrostatic (ionic) in nature. The ligands are treated as point charges and
are credited with producing a steady crystalline field only. There is no admixture of the transition
metal and ligand wavefunction. The mixing of orbitals is treated within ligand field theory which is
beyond the scope of the present textbook.

(a)
(b)
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ion

3 /5
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t2g

eg

free 
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2 /5
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eg

octahedral tetrahedral

d orbital

d orbital

Figure 11.5.13: (a) Crystal field splitting arrangement of eg and t2g orbitals in (a) octahedral arrang-
ment and (b) tetrahedral arrangement.

We can write down a mathematical model of the neighboring atoms or ions as negative point charges
and qualitatively discuss some features. The Hamiltonian can be written as

H = Hion +Hee +Hso +Hc f , (11.74)

H =
n

∑
i=1

[
~pi

2

2me
− Ze2

4πεo

1
ri

]
+∑

i< j

e2

4πεo

1
ri j

+∑
i

ξso(~ri)~li ·~si +
n

∑
i=1

eV (~ri), (11.75)
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Table 11.5.3: Typical energy values for competing interactions in magnetic solids containing 3d
and 4 f ions in eV scale. The energy contribution arising from the Coulomb interaction between
electron−nuclei (Hion) and electron−electron (Hee) is denoted by HCoul , where HCoul = Hion +
Hee. The spin-orbit coupling energy is given by Hso, the crystal field energy by Hc f , and finally the
Zeeman energy by Hz. The Hamiltonian, which considers these important interaction contributions,
is given in Equation (11.74). See the section on Crystal Field Theory for a full account of how
electrons behave in a crystalline field environment.

HCoul Hso Hc f Hz

3d 0.86 − 4.31 8×10−3 − 0.086 0.862 − 8.625 8×10−5

4 f 0.86 − 5.71 0.86 − 4.31 ≈ 0.026 8×10−5

where the first bracketed term is the ionic part, the second term is the electron−electron interaction,
the third term is spin-orbit coupling, and the fourth term is the contribution of the crystal fields. The
summation is taken over all the electrons and V (~ri) is the crystal field potential produced by the
ligands at the site~ri. The electron-electron part of the Hamiltonian dictates the exchange splittings
into the triplet and singlet states, with competition from the spin orbit and crystal field interactions.
The kinetic energy and nuclear potential energy is ∼ 1 − 10 eV. Typical energy range estimates
for crystal field strength and spin-orbit interaction is stated in Table 11.5.3. In general, solving the
above many-particle Hamiltonian is a formidable task. Nevertheless, we can distinguish three broad
cases:

Case I: Weak crystal field effect − exchange splittings (Hion +Hee) > spin-orbit coupling
(Hso) > crystal fields (Hc f ). This situation arises in the 4 f electrons of rare-earth based
solids. Electron-electron repulsion, which is the dominant interaction, dictates the splitting
of the energy levels, but spin-orbit coupling mixes up the orbital and spin angular momen-
tum such that J is the valid quantum number. In such a situation, j− j coupling is the
appropriate way to combine the total angular momentum and Hund’s third rule becomes
important.

Case II: Intermediate crystal field effect − exchange splittings (Hion +Hee) > crystal fields
(Hc f )> spin-orbit coupling (Hso). The 3d transition metal ions are a good example of this
case. L and S are valid quantum numbers. In this situation we have to determine how a given
LS coupling scheme is split by the octahedral or tetrahedral field.

Case III: Strong crystal field effect − crystal fields (Hc f ) & exchange splittings (Hion +
Hee) > (Hso). In this situation, which is possible in 4d and 5d transition metal ions the
crystal field strength is comparable to or larger than exchange splittings. There is substan-
tial mixing of the orbitals such that the ionic treatment of crystal field theory is no longer a
good approximation. In this case the covalency of the participating orbitals becomes impor-
tant, which is within the scope of ligand field theory.

The size of the crystal field splitting plays a crucial role in distinguishing between two different
magnetic ground states − high spin and low spin states of transition metal complexes. Intuitively,
the high spin and the low spin states can be explained by comparing the pairing energy U and crystal
field splitting strength ∆. The pairing energy is the electrostatic cost of repulsion from placing two
spins together. When U > ∆, it is favorable for the spins to stay as far apart as possible and they
do so by occupying the orbitals in an all-up state, see Figure 11.5.14(a), before filling the lower t2g
state. On the other hand for U < ∆, it is beneficial for the system to pair up in the orbital states rather
than occuping the higher eg orbitals to form a low spin state as shown in Figure 11.5.14(b).
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Figure 11.5.14: (a) High spin and (b) low spin configurations of Co3+

ion. Both are experimentally observed.

Example 11.5.0.1
Compute the electromagnetic frequency range required to probe crystal field splitting energy which
lies in the range from 12.5 meV to 2.5 eV.
Solution
Using the conversion 1 eV = 1.6×10−19 J, E = hν , where h = 6.626×10−34m2kg/s is the Planck’s
constant and ν is the frequency we can compute the required electromagnetic frequency. Thus we
have

ν =
(12.5×10−3)(1.6×10−19)

6.626×10−34 = 3.02×1012Hz≡ 3.02 THz, (Far Infrared),

ν =
(2.5)(1.6×10−19)

6.626×10−34 = 6.04×1014Hz≡ 604 THz, (Near Infrared).

Before concluding this section, let us revisit the question: why is it possible to describe the elec-
tronic state of the 3d transition metal ions in terms of the spin-only contribution? To do so, we
must first realize that in 3d transition metal oxides, the electronic states are well localized due
to strong Coulomb interactions. The localized electronic states can be described in terms of the
crystal-field states, such as the triply degenerate t2g (xy,yz,zx) orbitals and the doubly degenerate eg
(x2− y2,3z2− r2) orbital states for the octahedral environment. The energy scale of the level split-
ting of the t2g (eg) orbital states is typically ∼ 0.1 eV, which is much larger than that of spin-orbit
coupling (∼ 20 meV). Therefore, in 3d transition metal oxides, the orbital angular momentum is
completely quenched by degeneracy lifting, and the electronic state can be described in terms of the
spin-only Hamiltonian. This is opposite to the 4 f rare-earths where the electrons are screened by
inner shell electrons, such that crystal field effects are not important, although Sm and Eu do show
a discrepancy.
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11.6 Diamagnetism
The starting point will be the Hamiltonian of an ion in a homogenous magnetic field. Ignoring
relativistic effects such as spin-orbit coupling and assuming the ion is in a spherically symmetric
ligand environment

H = Hion +Hee +Hz, (11.76)

H =
1

2me

Ne

∑
i=1

[
~pi + e~A(~ri)

]2
− Ze2

4πεo

Ne

∑
i=1

1
ri
+

e2

4πεo
∑
i< j

1
ri j

+2
µB

h̄
~S ·~B, (11.77)

where the total spin ~S =
n
∑

i=1
si and Ne is the number of electrons. The kinetic energy term has been

modified, from Equation (11.74), to include the effects of electromagnetic field through the replace-
ment of the momentum operator with its canonical version pi→ pi+e~A(~ri). The last term represents
the Zeeman interaction contribution in the presence of the external magnetic field. In order to per-
form any calculations with the above Hamiltonian, we first need to make a choice of the vector
potential ~A. To do so, we pick the Coulomb gauge which is defined as

~B = ~∇×~A; ~∇ ·~A = 0. (11.78)

A solution to the above equation is given by

~A(~r) =
1
2
~B×~r. (11.79)

For a magnetic field directed along the z− axis ~B = (0,0,B), using Equation (11.79), we have
~A = B

2 (−y,x,0). Let us now focus on the kinetic energy term K and expand

ˆK =
1

2me

Ne

∑
i=1

[
~pi + e~A(~ri)

]2
, (11.80)

ˆK =
1

2me

Ne

∑
i=1

[
~pi

2 + e
{
~pi ·~A(~ri)+~A(~ri) ·~pi

}
+ e2~A(~ri)

2
]
. (11.81)

where we have displayed the hat to be explicity clear that the kinetic energy expression above is a
quantum mechanical operator. The second line needs an explanation. First, both ~p and~A are quantum
mechanical operators, so we must be careful in how they are ordered. Second, these operators will
act on a wavefunction. Utilizing the vector identity

~∇ ·
(

ψ~A
)
= ψ~∇ ·~A+~A ·~∇ψ (11.82)

we have in the Coulomb gauge

~pi ·~A(~ri)ψ =
h̄
i

∇i ·
(
~A(~ri)ψ

)
=

h̄
i

(
ψ~∇i ·~A(~ri)+~A(~ri) ·~∇iψ

)
= ~A(~ri) ·~piψ, (11.83)

where we have used ~pi = −ih̄~∇i with the subscripted i on the gradient operator ~∇ denoting the
electron index. In operator notation, the above equation implies

~pi ·~A(~ri)≡ ~A(~ri) ·~pi. (11.84)

The kinetic energy is re-written as

ˆK =
1

2me

Ne

∑
i=1

~pi
2 +

e
me

Ne

∑
i=1

~A(~ri) ·~pi +
e2

2me

Ne

∑
i=1

~A(~ri)
2. (11.85)
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The second term can be further rewritten if we notice that

~A(~ri) ·~pi =
B
2
(−yi pxi + xi pyi) =

1
2

Bliz =
1
2
~B ·~li. (11.86)

where we have used the definition of angular momentum~L = ∑
i
~ri×~pi = ∑

i
~li. Thus Equation (11.85)

becomes

ˆK =
1

2me

Ne

∑
i=1

~pi
2 +

µB

h̄
~L ·~B+

e2

2me

Ne

∑
i=1

~A2(~ri). (11.87)

Combining Equations (11.76) and (11.87) we have

H =
1

2me

Ne

∑
i=1

[
~pi

2 + e~A(~ri)
]2
− Ze2

4πεo

Ne

∑
i=1

1
ri
+

e2

4πεo
∑
i< j

1
ri j

+2
µB

h̄
~S ·~B, (11.88)

H =
1

2me

Ne

∑
i=1

[
~pi

2− Ze2

4πεo

1
ri

]
+

e2

4πεo
∑
i< j

1
ri j

+
µB

h̄

(
~L+2~S

)
·~B+

e2

2me

Ne

∑
i=1

~A2(~ri), (11.89)

H =
1

2me

Ne

∑
i=1

[
~pi

2− Ze2

4πεo

1
ri
+

1
2

e2

4πεo

1
ri j

]
+

µB

h̄

(
~L+2~S

)
·~B+

e2B2

8me

Ne

∑
i=1

(x2
i + y2

i ), (11.90)

where the half factor in the third term avoids double counting. The first three terms are independent
of the magnetic field and constitute the unperturbed Hamiltonian. The fourth and fifth terms are
dependent on the external magnetic field. The magnetic moment can be evaluated by taking the
derivative of Equation (11.90) with respect to B. This leads to

~µ =−∂H

∂B
=−µB

h̄

(
~L+2~S

)
− e2

4me

Ne

∑
i=1

(x2
i + y2

i )~B. (11.91)

Equation (11.91) perfectly summarizes the conceptual aspects of magnetism. The dipole moment
operator is composed of two pieces − one containing the angular momentum operators and the
other the effects of an external magnetic field (the diamagnetic term). In atoms, ions, or molecules
which have a partially filled shell the total orbital and spin angular momentum operators do not van-
ish. In these cases, we have a permanent magnetic moment which can give rise to paramagnetism,
ferromagnetism, antiferromagnetism, or ferrimagnetism. However, for completely filled shells the
orbital and spin terms vanish since~L = 0 and ~S = 0. In this situation, the diamagnetic term contain-
ing the effects of an induced magnetic moment become important and we have a diamagnet. Note
the presence of the negative sign in front of the diamagnetic contribution. This is what causes the
susceptibility to become negative. Since diamagnetism is a small effect, it is observable only when
the other forms of magnetism are not present. To make further progress, we will focus solely on the
diamagnetic term from Equation (11.90)

Hdia =
e2B2

8me

Ne

∑
i=1

(x2
i + y2

i ). (11.92)

In a spherically symmetric crystal field environment

〈0|x2
i |0〉= 〈0|y2

i |0〉= 〈0|z2
i |0〉=

1
3
〈0|r2

i |0〉 ≡
1
3
〈r2

i 〉, (11.93)

where |0〉 is the ground state wave function. Utilizing Equations (11.91) and (11.93) and the fact
that magnetization is the magnetic moment per unit volume we obtain an expression for the magne-
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tization Mz as

Mz =
N
V
〈0|µz|0〉,

Mz = −Ne2B
4meV

Ne

∑
i=1
〈0|(x2

i + y2
i )|0〉,

Mz = −Ne2B
4meV

Ne

∑
i=1

2
3
〈0|r2

i |0〉=−
Ne2B
6meV

Ne

∑
i=1
〈r2

i 〉. (11.94)

By differentiating Equation (11.94) with respect to the magnetic field (at constant temperature T),
we obtain the quantum mechanical expression for the diamagnetic susceptibility

χ
dia =

(
∂Mz

∂H

)

T
= µo

(
∂Mz

∂B

)

T
=−µoNe2

6meV

Ne

∑
i=1
〈r2

i 〉. (11.95)

Diamagnetism is present in all materials, either as a weak effect which can be ignored or as a small
correction to a larger effect.

Example 11.6.0.1
Calculate the dimensionless diamagnetic susceptibility in the 1s state of the hydrogen atom with a
number density of 1027 m−3 .
Solution
To compute the diamagnetic susceptibility in the 1s state we first compute

Ne
∑

i=1
〈r2

i 〉 in Equation

(11.95). In this summation Ne = 1 since there is only one electron in a hydrogen atom. Note,
for atoms with Ne electrons the summation would have yielded Ne〈r2

i 〉. However, for our problem
Ne
∑

i=1
〈r2

i 〉 = 〈r2〉. The expectation value for the 1s state wavefunction is computed as follows. Using

Equation (11.25) we have

ψ100(r,θ ,φ) = R10(r)Y 0
0 (θ ,φ). (11.96)

Inserting the expressions for R10(r) and Y 0
0 (θ ,φ) from Tables 11.10.4 and 11.10.5, respectively,

gives

ψ100(r,θ ,φ) =

(
2
(

1
ao

)3/2

exp(−Zr/ao)

)(
1√
4π

)
=

1√
πa3

o
exp(−r/ao) . (11.97)

where we have used Z = 1 for the atomic number. Now to compute the expectation value of r2 we
write for the single electron present in the hydrogen atom

〈r2〉 = 〈ψ100(r,θ ,φ)|r2|ψ100(r,θ ,φ)〉,

〈r2〉 =

∞∫

0

π∫

0

2π∫

0

ψ
∗
100(r,θ ,φ)r

2
ψ100(r,θ ,φ)r2 sinθdrdθdφ ,

〈r2〉 =
1

πa3
o

∞∫

0

r4 exp(−2r/ao)dr
π∫

0

sinθdθ

2π∫

0

dφ ,

Carrying out the angular integrations give a factor of 4π . We then write

〈r2〉= 4π

πa3
o

∞∫

0

r4 exp(−2r/ao)dr. (11.98)
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To compute the above integral we make the substitution w = 2r/ao. With this change of variables
we can rewrite the above integral as

〈r2〉 =
4π

πa3
o

∞∫

0

(aow
2

)4
exp(−w)

ao

2
dw,

where using dw =
2
ao

dr we have,

〈r2〉 =
4π

πa3
o

a5
o

32

∞∫

0

w5−1 exp(−w)dw.

Thus 〈r2〉 =
a2

o

8
Γ(5) =

a2
o

8
4! = 3a2

o. (11.99)

In the above derivation we used the definition of the Gamma function, Γ(n) = (n−1)!, when n is an
integer. Note, our final answer confirms our intuition in Equation (11.93). Thus the expression for
the diamagnetic susceptibility is given by

χ
dia =−µoNe2

6meV
3a2

o =−
N
V

µoe2a2
o

2me
. (11.100)

Now inserting N/V = 1027m−3, ao = 0.53× 10−10 m, µo = 4π × 10−7A/m2, me = 9.1× 10−31

kg, and e = 1.6×10−19 C yields a value of χdia = 4.97×10−8. Note, the computed dimensionless
diamagnetic susceptibility is in the range quoted in Table 10.1 of Chapter 10.

11.7 Quantum Theory of Paramagnetism
The semi-classical theory of paramagnetism was discussed at length in Chapter 10. In this section
we will refine the theoretical approach to a quantum version. The splitting of energy levels into
its constituent non-degenerate energy levels can be used to build the theory of quantum paramag-
netism. The experimental evidence for energy level splitting comes from Electron Spin Resonance
experiments (ESR), discussed in Section 11.9.

11.7.1 S= 1
2

In this section we wish to compute the thermal average of the net magnetic moment given by 〈µJ〉=
〈gJ µBmJ〉where gJ µBmJ is the net magnetic dipole moment, see Equation (11.60). Assuming L= 0,
we have J = 1

2 and gJ = 2. Therefore, the Zeeman energy is given by

Ez = gJ µBmJB = 2µB

(
±1

2

)
B =±µBB, (11.101)

where the plus (minus) refers to the up (down) electronic spin state. Note µJ↑ = −µB (for ms =
1
2 ) and µJ↓ = +µB (for ms = − 1

2 ). From the basic definition of average quantities in statistical
mechanics we have

〈µJ〉= ∑
ν

µJν Pν

∑
ν

Pν

, (11.102)
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where Pν = e−Eν/kBT ; i.e., the Boltzmann factor. Using Equation (11.101) in the above equation we
have

〈µJ〉 =
(µJ↑)e−EzJ↑B/kBT +(µJ↓)e−EzJ↓B/kBT

e−EzJ↑B/kBT + e−EzJ↓B/kBT ,

=
(−µB)e−µBB/kBT +(µB)e+µBB/kBT

e−µBB/kBT + e+µBB/kBT ,

= µB tanh
(

µBB
kBT

)
. (11.103)

For N/V electrons per unit volume, assuming a non-interacting theory, we have the total magneti-
zation M = N

V 〈µ〉 given by

M =
N
V
〈µJ〉,

M =
N
V

µB tanh
(

µBB
kBT

)
,

M = Ms tanh(y), (11.104)

where in the last step we defined Ms =
N
V µB and y = µBB/kBT . In the limit of small magnetic fields,

tanh(y)≈ y. Therefore we obtain

M =
N
V

µBB
kBT

=
N
V

µ2
BB

kBT
=

N
V

µoµ2
BH

kBT
. (11.105)

Thus, from the above equation we obtain the susceptibility as

χ =
∂M
∂H

=
N
V

µoµ2
B

kBT
. (11.106)

11.7.2 General J Value

The goal in this section is to compute 〈µJ〉 = 〈gJ µBmJ〉 = gJ µB〈mJ〉 in the case of any general J
value. In this case the partition function sum is given by

Z =
J

∑
mJ=−J

e−mJgJ µBB/kBT . (11.107)

Introducing the variable x = gJ µBB/kBT , we can write 〈mJ〉 as

〈mJ〉=

J
∑

mJ=−J
mJe−mJx

J
∑

mJ=−J
e−mJx

=
1
Z

∂Z
∂x

. (11.108)

The net magnetization is given by

M =
N
V

gJ µB〈mJ〉=
N
V

gJ µB

Z
∂Z
∂B

∂B
∂x

=
N
V

kBT
∂ lnZ
∂B

, (11.109)

where we have used

∂B
∂x

=
kBT
gJ µB

. (11.110)
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The partition sum Z can be written as a geometric series using the well-known formula

a+ar+ar2 + · · ·+arM−1 =
M

∑
j=1

ar j−1 =
a(1− rM)

1− r
(11.111)

Now, comparing this with the partition function we can identify a = e−Jx and r = ex. Substituting
and simplifying yields

Z =
sinh[(2J+1) x

2 ]

sinh[ x
2 ]

. (11.112)

If we define a variable y = xJ = gJ µBJB/kBT , we can rewrite the magnetization as

M = MsBJ(y), (11.113)

with Ms =
N
V gJ µBJ and where we have now introduced the Brillouin function BJ(y) given by

BJ(y) =
2J+1

2J
coth

(
2J+1

2J
y
)
− 1

2J
coth

y
2J

. (11.114)

In the limit J→ ∞, B∞(y) = L(y), thus, recovering the Langevin function introduced in Chapter 10.
This makes sense, because in the limit that J → ∞ we are approaching the classical limit. In the
opposite quantum limit when J = 1

2 it reduces to the tanh function

B1/2(y) = tanh(y) (11.115)

where we have used the identity

tanh(2y) =
2tanh(y)

1+ tanh2(y)
. (11.116)

Example 11.7.2.1
Estimate a value for the variable y introduced in the above derivation for a hydrogen atom at room
temperature in the presence of earth’s magnetic field. Assume the earth’s field to be 5×10−5 T.
Solution
The hydrogen atom has a single electron in a s-orbital. Thus J = 0+ 1/2 = 1/2 [using Equation
(11.17)] and gJ = 2 [using Equation (11.64)]. Inserting values for µB = 9.27× 10−24 A ·m2 and
kB = 1.38×10−23J/K we have

y = gJ µBJB/kBT =
2(9.27×10−24)(0.5)(5×10−5)

2(1.38×10−23)
= 1.12×10−8, (11.117)

which is much smaller than 1. Except at low temperatures, large magnetic fields, or both it is appro-
priate to use Equation (11.119). Of course, to be absolutely sure about the validity of the approxi-
mation you should explicitly compute the value of y as we have done in this example.

For small y we have an expansion, coth(y) ≈ 1/y+ y/3. Using this leads to the following approxi-
mate expression for the Brillouin function (see Exercise 11.11.17)

BJ(y) =
(J+1)y

3J
+O(y3), (11.118)

Thus, χ =
M
H

=
µoM

B
≈ N

V

µoµ2
e f f

3kBT
, (11.119)
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with the effective value of the magnetic moment defined as

µe f f = gJ µB
√

J(J+1), (11.120)

with the Landé g-value given by Equation (11.64).

Example 11.7.2.2
Using Equations (11.64) and (11.114) write a MATLAB code to generate the plot for Brillouin
function versus B/T for the combination of L and S values shown in Figure 11.7.15. The choice of
L and S is made keeping in mind that we want to study the Brillouin function’s trend in the limit
that J→ ∞. Here B represents magnetic field and T is the temperature.
Solution
The MATLAB script which reproduces the plot is below.

%copyright by J. E Hasbun and T. Datta

% ch11_brillouin.m

% This script plots the Brillouin function for different values of

% the total angular momentum J. The paramagnetic magnetization follows

% the Brillouin function curve.

% Constants

mub = 9.27*10^-24; kb = 1.38*10^-23;

% defining x = B/T (magnetic field/temperature ratio)

% Function definitions

landeg = @(L,S) 1.5 + (S*(S+1) - L*(L+1))/(2*(L+S)*(L+S+1));

brillouinJ = @(x,L,S)((2*(L+S)+1)/(2*(L+S)))*coth(((2*(L+S)+1)/...

(2*(L+S)))*landeg(L,S)*(mub/kb)*(L+S)*x)-(1/(2*(L+S)))

*coth((landeg(L,S)*...(mub/kb)*(L+S)*x)/(2*(L+S)));

% Printing Landeg values

fprintf(’landeg(0.0,0.5)= %0.3f\n’,landeg(0.0,0.5));

fprintf(’landeg(1.0,0.5)= %0.3f\n’,landeg(1.0,0.5));

fprintf(’landeg(2.0,0.5)= %0.3f\n’,landeg(2.0,0.5));

fprintf(’landeg(3.0,0.5)= %0.3f\n’,landeg(3.0,0.5));

fprintf(’landeg(3.0,3.5)= %0.3f\n’,landeg(3.0,3.5));

fprintf(’landeg(6.0,2.0)= %0.3f\n’,landeg(6.0,2.0));

fprintf(’landeg(5.0,10.0)= %0.3f\n’,landeg(5.0,10.0));

% Plotting the Brillouin function curves for different J values

xmax = 4;

hold on;

fplot(@(x)brillouinJ(x,0.0,0.5),[0,4],’LineWidth’,2,’-k’);

fplot(@(x)brillouinJ(x,1.0,0.5),[0,4],’--r’);

fplot(@(x)brillouinJ(x,2.0,0.5),[0,4],’-g’);

fplot(@(x)brillouinJ(x,3.0,0.5),[0,4],’--b’);

fplot(@(x)brillouinJ(x,3.0,3.5),[0,4],’-c’);

fplot(@(x)brillouinJ(x,6.0,2.0),[0,4],’--m’);
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fplot(@(x)brillouinJ(x,5.0,10.0),[0,4],’LineWidth’,5,’-k’);

xlabel(’B/T’);ylabel(’Brillouin Function’);

legend(’J=0.5’,’J=1.5’,’J=2.5’,’J=3.5’,’J=6.5’,’J=8.0’,’J=15.0’);

hold off;
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Figure 11.7.15: Brillouin function plots, BJ(y). For magnetic systems with large values of J, the
system saturates more rapidly in response to an external magnetic field. Note, the horizontal axis
represents the ratio of B/T and the vertical axis is the Brillouin function. From Equation (11.113)
we see that the magnetization is proportional to BJ(y). Thus these curves also display the trend in
magnetization variation as the magnetic field to temperature ratio is changed.

11.8 Exchange Interaction
In Section 10.8 of Chapter 10 we mentioned the Bohr van Leeweun theorem which suggested that
magnetism is purely a quantum phenomenon. Until now, even though we have discussed at length
the building blocks of atomic magnetism we have not provided an explanation for the microscopic
(quantum mechanical) origins of the interactions which generate spontaneous magnetization. To
understand the issue at a deeper level, consider the following example.

Example 11.8.0.1
Calculate the interaction energy of (a) two magnetic dipoles of strength 1 µB lying along the x-axis
and separated by 1 Å, (b) two electrons separated by 1 Å.
Solution
(a) From basic electrodynamics, we know that two magnetic dipoles interact via the dipole interac-
tion energy via the equation

E =
µo

4πr3

[
~µ1 · ~µ2−

3
r2 (~µ1 ·~r)(~µ2 ·~r)

]
, (11.121)
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where~r is the separation between the dipoles. Since the dipoles point along the x-axis and are of
the same magnitude we can write

E =
µo

4πr3

[
µ

2
B−

3
r2 µ

2
Br2
]
, (11.122)

E = −2
µo

4πr3 µ
2
B.

Inserting numbers, µB = 9.274×10−24A ·m2 and r= 1 Å, we have |E| = 1.7×10−23 J. Dividing by
the Boltzmann constant the temperature scale is given by 1.25 K. This energy scale is low compared
to the Curie transition temperatures of ferromagnets such as Fe, Ni, and Co!
(b) The Coulomb interaction energy of a pair of electrons is given by

U =
1

4πεo

q2

r
, (11.123)

U =
1

4π(8.85×10−12)

(1.6×10−19)2

1×10−10 ,

U = 2.3×10−18J.

The temperature scale corresponding to this energy is 1.67×105K!

So what does the above example teach us? It clearly demonstrates that magnetic dipole−dipole in-
teractions cannot explain the very high Curie-Weiss temperatures of Fe, Ni, and Co of 1043 K, 1400
K, and 627 K. Rather, consider the following scenario where two atoms with unpaired electrons in-
teract with each other. If the spins of these two electrons are antiparallel to each other, the electrons
can approach each other as close as possible, thereby raising the Coulomb interaction energy. How-
ever, if the states are parallel, the Pauli exclusion principle causes the electrons to stay as far away
as possible leading to a reduction of the Coulomb interaction energy. The order of magnitude of this
Coulomb interaction was estimated to be at 105 K in the above example. So even for a small change
of 1%, the cost associated with the process would be of the order of 1000 K, an order of magni-
tude similar to the Curie-Weiss temperature of the aforementioned ferromagnetic materials. Thus,
the key to explaining magnetism is the combined effect of Coulomb interaction energy and Pauli
exclusion principle. These two basic ideas give rise to what is known as the exchange interaction.
The exchange interaction was introduced by the german theoretical physicist Werner Heisenberg in
1926 to interpret the origin of the large Curie-Weiss transition temperature.
To derive a quantum mechanical expression for the exchange interaction energy, consider two elec-
trons, for example, in the 3d2 state. The state of each electron is specified by the product of the
orbital wavefunction ψ(~r) and spin wavefunction (spinor, χ(~s)). It will be assumed that the one-
electron problem has been solved and the orbital wavefunctions of the two electrons are given by
the two orthonormal eigenstates ψa(~r)) and ψb(~r)). For the ↑ (↓) spin electron state, we choose the
normalized spinor wavefunctions as α(s)(β (s)). The Hamiltonian for the two-electron problem is
given by

Hel = H0(~r1)+H0(~r2)+
e2

|~r1−~r2|
, (11.124)

consisting of two spin independent one-electron Hamiltonian H0(~r) and the Coulomb interaction.
The one-electron eigenenergies Ea and Eb are given by

H0ψa(~r) = Eaψa(~r), (11.125)
H0ψb(~r) = Ebψb(~r). (11.126)

To proceed further we will diagonalize the two-electron Hamiltonian Hel in the subspace of the
3d2 state where orbital character is fixed to d-orbitals, but the spins can vary. We then have four
possible wavefunction combinations. Two with parallel spins and two with antiparallel spins. Now,



Exchange Interaction 411

quantum mechanics informs us that for electrons, which are fermions, the overall wavefunction must
be antisymmetric in order to satisfy the Pauli principle. The easiest way to ensure this condition is
to construct the Slater determinant. When both spins point up, we can write

Ψ↑↑ =
1√
2

∣∣∣∣
ψa(~r1)α(s1) ψa(~r2)α(s2)
ψb(~r1)α(s1) ψb(~r2)α(s2)

∣∣∣∣ , (11.127)

Ψ↑↑ =
1√
2

α(s1)α(s2) [ψa(~r1)ψb(~r2)−ψa(~r2)ψb(~r1)] . (11.128)

With both spins pointing down, we can write

Ψ↓↓ =
1√
2

∣∣∣∣
ψa(~r1)β (s1) ψa(~r2)β (s2)
ψb(~r1)β (s1) ψb(~r2)β (s2)

∣∣∣∣ , (11.129)

Ψ↓↓ =
1√
2

β (s1)β (s2) [ψa(~r1)ψb(~r2)−ψa(~r2)ψb(~r1)] . (11.130)

For the antiparallel combinations we have

Ψ↓↑ =
1√
2

∣∣∣∣
ψa(~r1)β (s1) ψa(~r2)β (s2)
ψb(~r1)α(s1) ψb(~r2)α(s2)

∣∣∣∣ , (11.131)

Ψ↓↑ =
1√
2
[ψa(~r1)ψb(~r2)β (s1)α(s2)−ψb(~r1)ψa(~r2)α(s1)β (s2)] , (11.132)

and

Ψ↑↓ =
1√
2

∣∣∣∣
ψa(~r1)α(s1) ψa(~r2)α(s2)
ψb(~r1)β (s1) ψb(~r2)β (s2)

∣∣∣∣ , (11.133)

Ψ↑↓ =
1√
2
[ψa(~r1)ψb(~r2)α(s1)β (s2)−ψb(~r1)ψa(~r2)β (s1)α(s2)] , (11.134)

We now diagonalize the Hel in the subspace of

|Ψ〉= |Ψ↑↑,Ψ↓↑,Ψ↑↓,Ψ↓↓〉 (11.135)

Using the above definition we construct the 4 × 4 matrix obtained by taking the expectation value
of the two-electron Hamiltonian, Hel

Eel = 〈Ψ↑↑,Ψ↓↑,Ψ↑↓,Ψ↓↓|Hel |Ψ↑↑,Ψ↓↑,Ψ↑↓,Ψ↓↓〉 (11.136)

We now need to compute each and every possible combination of matrix element. Since it is a
4 × 4 matrix, we have sixteen possible choices. In Exercise 11.11.19 you will derive Equation
(11.137) and the solutions for the singlet (Es) and triplet (Etr) eigenenergy states. The singlet state
is characterized by a state with only one eigenenergy (since total S = 0, mS can take only one value)
and the triplet state by three (since total S = 1, mS can take three values 0, ±1), hence their names.
For the moment we will simply state the solution of the two-electron energy matrix and focus on
the physical interpretation of the solution. The solution is given by the expression

Eel = (Ea +Eb)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+




Kab− Jab 0 0 0
0 Kab −Jab 0
0 −Jab Kab 0
0 0 0 Kab− Jab


 , (11.137)

with Es and Etr given by

Es = Ea +Eb +Kab + Jab, (11.138)
Etr = Ea +Eb +Kab− Jab. (11.139)
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In the above equations, we have introduced the definitions

Ea = 〈Ψ |H0(~r1)|Ψ〉=
〈
Ψ↑↑,Ψ↓↑,Ψ↑↓,Ψ↓↓ |H0(~r1)|Ψ↑↑,Ψ↓↑,Ψ↑↓,Ψ↓↓

〉
, (11.140)

Eb = 〈Ψ |H0(~r2)|Ψ〉=
〈
Ψ↑↑,Ψ↓↑,Ψ↑↓,Ψ↓↓ |H0(~r2)|Ψ↑↑,Ψ↓↑,Ψ↑↓,Ψ↓↓

〉
, (11.141)

Kab =
∫ ∫

d~r1d~r2|ψa(~r1)|2
e2

|~r1−~r2|
|ψb(~r2)|2, (Coulomb integral) (11.142)

and

Jab =
∫ ∫

d~r1d~r2ψ
∗
a (~r1)ψ

∗
b (~r2)

e2

|~r1−~r2|
ψb(~r1)ψa(~r2). (Exchange integral) (11.143)

Example 11.8.0.2
Show that the energy for the singlet and triplet state can be combined into a single expression as

E =
Es +Etr

2
± Es−Etr

2
. (11.144)

Solution
Adding the two eigenenergy expressions we get

Ea +Eb +Kab =
Es +Etr

2
, (11.145)

and subtracting the two eigenenergies we have

Jab =
Es−Etr

2
. (11.146)

Thus we can write

E = Ea +Eb +Kab± Jab =
Es +Etr

2
± Es−Etr

2
. (11.147)

Inspecting the singlet and triplet energies we observe that since Jab > 0, the energy of the triplet
energy state will always be lower than the singlet. For orthogonal orbitals participating in a direct
exchange process, we find that a S= 1 state is favored over S= 0 . Direct exchange operates between
spins which are close enough to have sufficient overlap of their wavefunctions. It gives a strong but
short range coupling which decreases rapidly as the ions are separated. What does this mean? It
implies that ferromagnetism is always the choice of ground state. Intuitively, this makes sense if we
keep in mind that two parallel electrons because of the Pauli exclusion principle will try to avoid
each other as much as possible to try and reduce the Coulomb repulsion between them. However,
with antiparallel spins, such as in the singlet state, quantum mechanics does not forbid the electron
spins to get closer to each other thereby raising the Coulomb repulsion energy. There is a techni-
cal name for this − it is called the exchange hole effect. Note, that with non-orthogonal orbitals
either the singlet or the triplet state can be favored based on the degree of overlap. In fact, in na-
ture antiferromagnetism (anti-aligned spin configuration) is seen more often than the ferromagnetic
arrangement we just discussed.
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Example 11.8.0.3
Show that for two electron spin operators ~S1 and ~S2 we have

2~S1 ·~S2 +
1
2
=
(
~S1 +~S2

)2
−1. (11.148)

Evaluate the above expression for the case of (i) a singlet and (ii) a triplet state.
Solution
We start off by noting that S = 1/2 for an electron. For two electrons the total spin is given by
~S =~S1 +~S2. Squaring both sides gives

~S2
1 +~S2

2 +2~S1 ·~S2 =
(
~S1 +~S2

)2
. (11.149)

Now, using Equation (11.9) for both the spin 1/2 operators we have

2S(S+1)+2~S1 ·~S2 =
(
~S1 +~S2

)2
,

2
1
2

(
1
2
+1
)
+2~S1 ·~S2 =

(
~S1 +~S2

)2
,

⇒ 2~S1 ·~S2 +
1
2

=
(
~S1 +~S2

)2
−1. (11.150)

For a singlet the total S = 0. Thus we have

2~S1 ·~S2 +
1
2
=
(
~S1 +~S2

)2
−1 =−1. (11.151)

For a triplet state S = 1. Thus

2~S1 ·~S2 +
1
2

=
(
~S1 +~S2

)2
−1

= S2−1 = S(S+1)−1 = 1(1+1)−1 = 1. (11.152)

Let us pause here for a moment and make the following observations. From Example 11.8.0.2 we
know that the two-electron energy can be combined into a single expression involving the total
singlet and triplet energies and the relative singlet and triplet energies, with a ±1 factor in between.
But note from Example 11.8.0.3 we learned we could generate a ± simply out of the space of two
spins interacting with each other. Thus we could in principle mimic the energy expression simply
out of a set of spin operators and not worry about the space components. This remarkable connection
was put forward by Paul A. M. Dirac (1902−1984). His brilliant insight allows us to combine all
these facts into a single Hamiltonian expression dependent only on spin operators and now popularly
known in the magnetism community as the Heisenberg exchange Hamiltonian Hex. The explicit
expression for a pair of electron spins is given by

H12 =
Es +Etr

2
− Es−Etr

2

(
2~S1 ·~S2 +

1
2

)
, (11.153)

= const.−2J12~S1 ·~S2. (11.154)

Finally, dropping the constant energy term, absorbing the factor of two in the definition of the
exchange constant, and generalizing the interaction to act between any two electron pairs in the
magnetic solid we have

Hex =−∑
i, j

Ji j~Si ·~S j, (11.155)
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where Ji j is the exchange constant generalized to include the interaction between any two pairs of
spins in the system. In practice the interactions are usually truncated at the nearest neighbor or next-
nearest neighbor level. The value of the exchange constant can be computed using the exchange in-
tegral Equation (11.143) for orthonormal orbitals (for non-orthogonal orbitals the expression needs
to be modified). Typical values of exchange energies range from meV to eV.

Example 11.8.0.4
Assuming that exchange interaction acts only between any two pairs of nearest neighbor z compo-
nent of spin on a lattice and a constant J, write down an expression for the magnetic Hamiltonian of
the system.
Solution
With only the z component of the nearest neighbor interacting spin and a constant J, the Heisenberg
exchange Hamiltonian reduces to

H =−J ∑
〈i, j〉

Sz
i S

z
j. (11.156)

The expression above should be familiar to you from the ferromagnetism section of Chapter 10.
It is the celebrated Ising Hamiltonian! So, it appears that everything has come full circle. While
in Chapter 10 we simply postulated a classical magnetic model, in this chapter using quantum
mechanics we were able to derive the general magnetic Heisenberg exchange Hamiltonian. We were
also able to show how it reduces to the special case of an Ising model and the Ising Hamiltonian!

Yet, in another version of the model, if we completely ignore the z component of spin interaction and
preserve only the x and y components we end up with what is known as the XY model. Interestingly
enough, phase transition studies of the classical XY model in two lattice dimensions led by Vadim
Berezinskii, John M. Kosterlitz, and David J. Thouless predicted a vortex binding−unbinding tran-
sition. Studies of topological excitations such as vortices and topological phases of matter were
recognized by the 2016 Nobel Prize in physics. The award went to David J. Thouless (1934−),
F. Duncan M. Haldane (1951−) and J. Michael Kosterlitz (1943−) “for theoretical discoveries of
topological phase transitions and topological phases of matter”.

11.9 Magnetic Resonance
From Section 11.5 we know that the local crystalline environment and applied external magnetic
field can affect the energy levels of a magnetic system. To probe excitations, experimentalists of-
ten use parmagnetic resonance spectroscopy. While the electronic version is known as electron
spin resonance (ESR), the nuclear variety is termed nuclear magnetic resonance (NMR). Magnetic
resonance phenomena come in a variety of other flavors: nuclear quadrupole resonance (NQR), fer-
romagnetic resonance (FMR), spin wave resonance (SWR), antiferromagnetic resonance (AFMR),
and conduction electron spin resonance (CESR).
The characteristic frequencies employed in the resonance experiments are known as Larmor fre-
quencies. Conceptually, from a semi-classical perspective, this frequency is the same as that of a
magnetic moment (originating from either the electron or the proton) experiencing a torque in the
presence of a magnetic field. The magnetic field can originate either due to the presence of an
external field or due to its crystalline environment. The frequency of precession is the Larmor fre-
quency. ESR transitions among the energy levels can be detected by monitoring the power absorbed
from an alternating magnetic field, just as ordinary atomic transitions are detected by absorption of
light. Comparing the observed transitions with model calculations allow us to deduce features of
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the environment around the magnetic moment. ESR experiments have several applications. They
are used to study free radicals, ions of the transition metals, solid bodies with defects, metals and
semiconductors.

M

B

M Bx

(a)

B = 0

ms = -1/2

B = B0

ms = +1/2

(b)

n

Figure 11.9.16: (a) Precession of a magnetic moment in an external magnetic field. (b) Two-state
energy level diagram for a nucleus of spin I = 1

2 . The hydrogen atom would be an example of a two-
state system. Note, the relative difference in the relative location of the up ( 1

2 ) and down (- 1
2 ) spin

nuclear state in comparison to the Zeeman split energy level diagram of an electronic spin shown in
Figure 11.2.2. The difference arises from the sign on the charge of the electron and the proton.

Similar to ESR, in NMR experiments two different energy states with nuclear spin, say I = 1
2 ,

arise from the alignment of the nuclear magnetic moments relative to the applied field, see Fig-
ure 11.9.16(a). However, subsequent transitions between the levels are induced by electromagnetic
waves in the radio (Larmor) frequency range. This difference is due to the lower gyromagnetic ratio
of the proton relative to an unpaired electron. In analogy with the electronic Zeeman effect, the
nuclear Zeeman interaction energy is written as

En
z =−~µn ·~Ba, (11.157)

where ~Ba is the applied external magnetic field and ~µn is the nuclear magnetic moment. To pro-
ceed further, we need an expression for the nuclear magnetic moment ~µn. If we recognize that the
electronic moment should be negative since the electron is negatively charged, then the nuclear
magnetic moment must be positively charged since the proton has a positive charge. Hence, with a
field applied along the z-direction and using~I as the symbol for angular momentum of the nuclear
spin, we have

~µn = γn~I = gnµN
~I
h̄
. (11.158)

The interaction energy can be written as

En
z =−µ

z
nBz =−gnµN

Iz

h̄
Bz =−gnµNmIBz, (11.159)

where gn is the nuclear g-factor, µN is the nuclear magneton (see Chapter 10, Exercise 10.1), and
the nuclear spin Iz = mI h̄ admits projections mI =−I, I−1, ..., I. The energy level splitting for I = 1

2
is given by

∆n =−
(
−1

2
gnµNBz

)
−
(
−1

2
gnµNBz

)
= gnµNBz. (11.160)
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The above expression implies that the nuclear down spin projection of mI = − 1
2 occupies a higher

energy level compared to mI =
1
2 in the presence of an external field, as shown in Figure 11.9.16.

In Example 11.2.1.2, we will compute the Larmor frequency for ESR from a quantum mechanical
perspective.

Example 11.9.0.1
In 1939 Isidor I. Rabi and collaborators detected the NMR phenomenon in hydrogen molecules
in the Stern−Gerlach setup. For his studies on the magnetic properties of atomic nuclei, Rabi was
awarded a Nobel Prize in 1944. In 1952 Felix Bloch and Edward M. Purcell were awarded the No-
ble Prize in physics for their development of new methods for NMR precision measurements. While
Purcell et al. measured the NMR absorption spectra in paraffin wax, Bloch et al. investigated NMR
in water. At present, the National High Magnetic Field Laboratory (NHMFL) located in Tallahas-
see, Florida uses a 21.1 Tesla magnet to peform NMR research and magnetic resonance imaging
(MRI) scanning. For this magnetic field strength compute (a) the level splitting energy ∆n in eV and
Kelvins, (b) the frequency of electromagnetic radiation required to excite transitions between the
two-state energy levels of a hydrogen proton.
Solution
(a) Using Equation (11.160), gn = 5.59 (for a proton), µN = 5.051× 10−27 Am2, Bz= 21.1 T and
the conversion between joules and eV we have

∆
eV
n = (5.59)(5.051×10−27)(21.1)/(1.6021765710−19) = 3.7 µeV. (11.161)

In the Kelvin temperature scale we have,

∆
K
n =

∆n

kB
= (5.59)(5.051×10−27)(21)/(1.380710−23) = 43 mK. (11.162)

Compared to room temperature, the 43 mK splitting energy is tiny. Hence, thermal effects will
overpower the alignment energy of the external field and randomize the orientation of the nuclear
spins to destroy any net magnetization.
(b) To obtain a numerical value of the exciting radio frequency (rf) we equate

ν = ∆n/h = ((5.59)(5.051×10−27)(21))/(6.62610−34) = 894 MHz≈ 900 MHz, (11.163)

where h is the Planck constant and ν is the frequency. Within the NMR community it is typical to
refer to a 21 T magnet NMR set-up as a 900 MHz NMR magnet. Other typical magnetic field range
includes 12−15 T fields for which the rf range is between 500−650 MHz. The MHz frequency lies
in the radio wave range. By supplying the nucleus with the appropriate energy, it is possible to flip
the proton from one orientation to the other. The flipping of the proton from one magnetic alignment
to the other by the radio waves is known as the resonance condition.

For spin− 1
2 nuclei at thermal equilibrium the energy difference between the up and the down states

prevents these states from being equally populated. Similar to the S= 1
2 case in the quantum theory

of paramagnetism, Section 11.7, we can utilize the Boltzman factors to write down an expression
for either the up- or the down-states

NmI

N
=

exp(−EmI/kBT )
mI=+I

∑
mI=−I

exp(−EmI/kBT )
, (11.164)

where NmI is the population number for the spins in state mI and EmI the corresponding energy.
Using the above equation, the relative population of the down- to the up-states can be written as

N↓
N↑

= exp
(
− ∆n

kBT

)
= exp

(
−gnµNBz

kBT

)
. (11.165)
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Example 11.9.0.2
Calculate the population imbalance ratio between the down to the up spins at 300 K for (a) 14.1 T
(600 MHz) and (b) 21.1 Tesla (900 MHz) NMR setup.
Solution
Using Equation (11.165) for both cases we have

N↓
N↑

= exp
(
− ((5.59)(5.051×10−27)(14.1))

(300)(1.3807×10−23)

)
= 0.999904 (11.166)

N↓
N↑

= exp
(
− ((5.59)(5.051×10−27)(21.1))

(300)(1.3807×10−23)

)
= 0.999856. (11.167)

Since NMR transition energies are very small, the up and the down states are nearly equally pop-
ulated. From quantum mechanics we know that for net absorption of radiation to occur there must
be more particles in the lower-energy state than in the higher one. If no net absorption is possi-
ble, a condition called saturation is attained. If there are equal numbers of spin up and spin down
nuclear moments, the net rf absorption will be zero because equal numbers of rf photons will be ab-
sorbed and emitted. The population difference is accentuated by working with the highest possible
magnetic field. This small difference in parts per million is sufficient to cause an NMR signal.

Originally, NMR experiments were utilized for accurate measurement of nuclear magnetic moments
in condensed matter systems. Subsequently NMR found widespread applications in the studies of
chemical structure and dynamics. Presently, a popular application of NMR is in the domain of
magnetic resonance imaging (MRI) utilized primarily for medical diagnosis. Magnetic resonance
imaging has become an essential diagnostic tool worldwide due to its ability to non-invasively depict
and distinguish soft tissues within the body. At the most basic level, it utilizes an induced magnetic
field and a pulsed radio frequency wave to create detailed images of a patient. The human body is
composed primarily of hydrogen atoms (63%) and most of our tissues contain roughly 75% water.
MRI machines that are currently used for clinical diagnostic purposes make use of this fact through
what is known as the chemical shift. The chemical shift is defined as the difference in resonant
frequency between isolated hydrogen and its value when bound to a specific site within a molecule.
Different tissues will contain diverse chemical compositions/environments, and therefore different
chemical shifts, allowing for discernible contrast between them. In the next few paragraphs, we
focus on deriving the basic equations for NMR spectroscopy.
To understand the time evolution of the magnetic moments in NMR, the first step is to write down
the equation of motion describing the torque experienced by the ith individual nuclear magnetic
moment ~µn,i in the presence of an applied magnetic field ~Ba. The torque induces precession at the
Larmor frequency appropriate to the ith nuclear moment and is related to the rate of change of its
angular nomentum as

d~Ii

dt
=~µn,i×~Ba, or

d~µn,i

dt
= γn~µn,i×~Ba, (11.168)

where we have used the relation (see Equation 11.158)

~µn,i = γn~Ii. (11.169)

The gyromagnetic ratio γn is a constant. For a bulk sample, we sum over all the individual magnetic
moments ~µn,i to obtain the nuclear magnetization

~M= ∑~µn,i, (11.170)

in a unit volume. The torque equation then becomes

d~M
dt

= γ~M×~Ba. (11.171)
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Further advancement of NMR theory came in 1946 when Felix Bloch formulated a set of equations
that described the behavior of nuclear spin in the presence of both a static field and an oscillating
radio-frequency (rf) field. Bloch modified Equation (11.171) to account for the observation that
nuclear spins relax to equilibrium values following the application of rf pulses. Relaxation refers
to the process by which the spins return to equilibrium due to interactions with their surroundings.
Bloch assumed that the spin relaxation rates along the z-axis and the x-y plane occur at different
rates, but following first-order kinetics. He introduced the T1 time scale called the longitudinal or
spin-latice relaxation that originates from the interaction between spins and the lattice. Additionally,
the spin-spin relaxation that arises from the interaction between different parts of the spin system is
modeled by T2. If we combine both the effects of thermal equilibrium and torque, we have the set
of Bloch equations shown below in vector form

d~M(t)
dt

= γn(~M(t)×~B(t))︸ ︷︷ ︸
precession

− 1
T2

(Mx î+My ĵ)
︸ ︷︷ ︸
spin-spin relaxation

− 1
T1

(Mz−Mz0)k̂
︸ ︷︷ ︸
spin-lattice relaxation

, (11.172)

or, in component form

dMx

dt
= γn(~M×~Ba)x−

Mx

T2
, (11.173)

dMy

dt
= γn(~M×~Ba)y−

My

T2
, (11.174)

dMz

dt
= γn(~M×~Ba)z−

Mz−Mz0

T1
. (11.175)

Let us consider the solution of the Bloch equations in the presence of a static external magnetic
field ~Ba = B0k̂ and initial condition ~M(t = 0) = (Mx(0),My(0),Mz(0)). Using Equations (11.173)
− (11.175) and expanding the vector cross-product, we then obtain

dMx

dt
= ωoMy−

Mx

T2
, (11.176)

dMy

dt
= −ωoMx−

My

T2
, (11.177)

dMz

dt
=

1
T1

(Mz0−Mz) , (11.178)

where ωo = γnB0 and Mz0 is the equilibrium value which obeys the Curie law. We will solve the
above system of differential equations beginning with Equation (11.178). We rearrange the equation
to obtain

Mz∫

Mz(0)

dMz

Mz0−Mz
=

t∫

0

dt
T1

. (11.179)

Integrating both sides of the equation and keeping in mind that the saturation magnetization Mz0 is
greater than Mz(t) or Mz(0) we obtain

− ln |Mz0−Mz|
∣∣∣∣∣

Mz(t)

Mz(0)

=
t

T1
, (11.180)

or

− ln
∣∣∣∣
Mz0−Mz(t)
Mz0−Mz(0)

∣∣∣∣=
t

T1
, (11.181)
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which can be rearranged to give the final solution as

Mz(t) =Mz(0)exp(−t/T1)+Mz0[1− exp(−t/T1)] (11.182)
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Figure 11.9.17: Decay of the transverse magnetization components in the x-y plane and relaxation
of Mz component of magnetization to the z-axis.

To solve Equations (11.176) and (11.177), we will employ a trick that will eliminate the relaxation
terms. Let us assume the solutions are of the form

Mx(t) =−mx exp(−t/T2) ; My(t) =my exp(−t/T2) , (11.183)

where mx and my are functions of time. With the above choice, it is easy to show (Exercise 11.11.20)
that

d2mx

dt2 +ω
2
omx = 0, (11.184)

d2my

dt2 +ω
2
omy = 0. (11.185)

Explicit expressions for mx(t) and my(t) which solve Equations (11.184) and (11.185) are given by

Mx(t) = −e−t/T2(Mx(0)cosωot−My(0)sinωot), (11.186)

My(t) = e−t/T2(My(0)cosωot +Mx(0)sinωot), (11.187)
Mz(t) = Mz(0)exp(−t/T1)+Mz0[1− exp(−t/T1)], (11.188)

where we have assumed an initial condition of ~M(0) = (Mx(0),My(0),Mz(0)).
In Figures 11.9.17 and 11.9.18 we display the solutions of the Bloch equations obtained using
a computational approach. As expected, the computational solution agrees well with the analytical
solutions obtained above in Equations (11.186) - (11.188). From these equations we observe that the
general time-dependent solution for the transverse components, Mx(t) and My(t), have a damped
solution. The damping is created by the presence of the exponential decay term multiplying the
sinusoidal component. The sinusoidal terms correspond to the precessional motion of the magnetic
dipole moment. Note, the magnitude of |~M| is not fixed.

Example 11.9.0.3
By executing the Bloch equations simulation code below, can you explain why the z-component of
magnetization is called the relaxation term?
Below is the MATLAB code for simulating the Bloch equations.



420 Magnetism II

%copyright by J. E Hasbun and T. Datta

% ch11_blocheqsim.m

% This script simulates the Bloch equations in the presence of

% longitudinal and transverse relaxation

% Solving the Bloch equations

% dMx_dt(1) = write all components

% dMy_dt(2) = write all components

% dMz_dt(3) = write all components

%initial conditions

Xo = [1;0;0];

%timespan

tspan = [0,5];

% defining simulation parameters

omega= 50;tone=1;ttwo=1;mzero=1;

%set an error for solving coupled ODE

options=odeset(’RelTol’,1e-6);

magparam = @(t,x)mag(t,x,omega,tone,ttwo,mzero);

%call the solver

[t,X] = ode45(magparam,tspan,Xo,options);

%plot the results

figure(1)

hold on;

plot(t,X(:,1),’r’);plot(t,X(:,2),’:’);plot(t,X(:,3),’k-’);

legend(’M_x(t)’,’M_y(t)’,’M_z(t)’);ylabel(’x’);xlabel(’t’)

figure(2)

plot(X(:,1),X(:,2));

% Create a separate function file ch11_mag.m

function dm = mag(~,m,omega,tone,ttwo,mzero)

%a function which returns a rate of change vector

dm = zeros(3,1);

dm(1)= omega*m(2)- m(1)/ttwo;

dm(2)= -omega*m(1)- m(2)/ttwo;

dm(3)= (mzero - m(3))/tone;

As mentioned earlier, relaxation refers to the process by which the spins return to equilibrium by
interacting with their surroundings. Changing the initial condition in the Bloch simulation code
shows that the z-component, irrespective of the choice of the initial magnetization value, always
returns to the initial value. A similar behavior is observed in Figures 11.9.17 and 11.9.18 also for an
initial condition of ~M(t = 0) = (1,0,0).
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Figure 11.9.18: Dephasing of the transverse magnetization components Mx(t) and My(t) displaying
the damped nature of the solution.

11.10 Pauli Paramagnetism
We will finish this chapter by briefly discussing the effects of magnetic field on the spin polarization
of an itinerant electron system − the free electron gas (see Chapter 5 for an introduction). Since the
electron possesses a permanent magnetic moment, a classical electron gas should exhibit a response
to an external magnetic field. Consider the free electron band structure in the absence of a magnetic
field shown in Figure 11.10.19(a). With an applied external magnetic field B0 acting along the z
axis, the electron subbands n↑ and n↓ separate out as shown in Figure 11.10.19(b). Thus electrons
in one half band find themselves in states lying above the empty states, and the others below. This
population imbalance gives rise to magnetization

Mel = µB[N(↑)−N(↓)] (11.189)
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(a) No magnetic field (b) In magnetic field

     (band splitting)

(c) Equilibrium restored

g(E)
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g(E)
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Figure 11.10.19: Plot of energy E versus density of states g(E). Arrows represent magnetic mo-
ments. The dashed line corresponds to the highest occupied energy level (in the absence of a field)
known as the Fermi energy. (a) In the absence of a magnetic field the electron energy levels (bands)
are degenerate. (b) In the presence of an external field, splitting occurs with a relative shift between
the up and down magnetic moments. (c) Eventually, equilibirum is restored when some of the down
magnetic moments flip their orientation to occupy the available empty energy levels shown in (b).
Finally, the up band population is in excess of the down giving rise to a magnetization.

The subbands are displaced by the Zeeman interaction energy of−µBB0. If we define the density of
states as g(E), then we can rewrite the magnetization expression Mel as

Mel =
µB

2




EF+µBB0∫

0

g(E)dE−
EF−µBB0∫

0

g(E)dE


 (11.190)

Since µBB0� EF , we can write

EF±µBB0∫

0

g(E)dE =

EF∫

0

g(E)dE±µBB0g(EF). (11.191)

Using the above we finally obtain for the magnetization

Mel = µ
2
Bg(EF)B0 (11.192)

We see from the above equation that the susceptibility is independent of temperature and propor-
tional to the density of states. This is Pauli paramagnetism.
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Table 11.10.4: Radial wavefunction.

n l Radial Wavefunction Rnl(r)

1 0 R10(r) = 2
(

Z
ao

)3/2
exp(−Zr/ao)

2 0 R20(r) = 2
(

Z
2ao

)3/2(
1− Zr

2ao

)
exp(−Zr/2ao)

1 R21(r) = 1√
3

(
Z

2ao

)3/2(
Zr
2ao

)
exp(−Zr/2ao)

3 0 R30(r) = 2
(

Z
3ao

)3/2(
1− 2Zr

3ao
+ 2Z2r2

27a2
o

)
exp(−Zr/3ao)

1 R31(r) = 4
√

2
9

(
Z

3ao

)3/2(
1− 2Zr

6ao

)
exp(−Zr/3ao)

2 R32(r) = 4
27
√

10

(
Z

3ao

)3/2(
Zr
ao

)2
exp(−Zr/3ao)

4 0 R40(r) = 2
(

Z
4ao

)3/2(
1− 3Zr

4ao
+ Z2r2

8a2
o
− Z3r3

192a3
o

)
exp(−Zr/4ao)

1 R41(r) = 5
2
√

15

(
Z

4ao

)3/2(
1− Zr

4ao
+ Z2r2

80a2
o

)(
Zr
ao

)
exp(−Zr/4ao)

2 R42(r) = 1
8
√

5

(
Z

4ao

)3/2(
1− Zr

12ao

)(
Zr
ao

)2
exp(−Zr/4ao)

3 R43(r) = 1
96
√

35

(
Z

4ao

)3/2(
Zr
ao

)3
exp(−Zr/4ao)



424 Magnetism II

Table 11.10.5: Spherical Harmonics for l = 0,1,2,3,4.

l m Spherical Harmonic Ylm(θ ,φ)

0 0 Y 0
0 (θ ,φ) =

1
(4π)1/2

1 0 Y 0
1 (θ ,φ) =

( 3
4π

)1/2
cosθ

±1 Y±1
1 (θ ,φ) =∓

( 3
8π

)1/2
sinθe±iφ

2 0 Y 0
2 (θ ,φ) =

( 5
16π

)1/2
(3cos2 θ −1)

±1 Y±1
2 (θ ,φ) =∓

( 15
8π

)1/2
sinθ cosθe±iφ

±2 Y±2
2 (θ ,φ) =

( 15
32π

)1/2
sin2

θe±2iφ

3 0 Y 0
3 (θ ,φ) =

( 7
16π

)1/2
(5cos3 θ −3cosθ)

±1 Y±1
3 (θ ,φ) =∓

( 21
64π

)1/2
sinθ(5cos2 θ −1)e±iφ

±2 Y±2
3 (θ ,φ) =

( 105
32π

)1/2
sin2

θ cosθe±2iφ

±3 Y±3
3 (θ ,φ) =∓

( 35
64π

)1/2
sin3

θe±3iφ

4 0 Y 0
4 (θ ,φ) =

( 9
256π

)1/2
(35cos4 θ −30cos2 θ +3)

±1 Y±1
4 (θ ,φ) =∓

( 45
64π

)1/2
sinθ(7cos3 θ −3cosθ)e±iφ

±2 Y±2
4 (θ ,φ) =

( 45
128π

)1/2
sin2

θ(7cos2 θ −1)e±2iφ

±3 Y±3
4 (θ ,φ) =∓

( 315
64π

)1/2
sin3

θ cosθe±3iφ

±3 Y±4
4 (θ ,φ) =

( 315
512π

)1/2
sin4

θe±4iφ
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11.11 Chapter 11 Exercises
11.11.1. The Einstein−de Haas effect experiment can be used to measure the gyromagnetic ratio

and the g-factor. The basic idea behind the experiment is to use conservation of angular
momentum. Consider a magnetized iron bar, in the presence of an external magnetic field,
suspended from a thin elastic fiber and free to rotate. If the orientation of the magnetiza-
tion is changed by reversing the direction of the external magnetic field, then the associated
magnetic moments must also change direction. However, the system is isolated mechan-
ically. Therefore the total angular momentum must be conserved. To do so, the crystal
lattice must rotate to compensate for the change in angular momentum of the magnetic
atoms. For this experimental set-up show that

~Mbar =
gµB

h̄
~L (11.193)

where ~Mbar is the magnetization of the bar and~L the angular momentum of the electron.
By measuring ~Mbar and angular momentum ~L from the torsion vibrations of the string,
the gyromagnetic ratio and the g-factor can be obtained. Typically,~L is measured using an
optical set-up based on deflection of light as shown in the experimental set-up in Figure
11.11.20.

Light ray

Mirror

Figure 11.11.20: Boundary surface electron-density representation of atomic 2px, 2py, and 2pz
orbitals in real basis.

11.11.2. Using the expressions for the p orbital spherical harmonics from Table 11.10.5 and the
definition of the conversion from the complex to the real basis, Equation (11.30), derive
(a) the real form expressions for the three p-orbitals, (b) convert the real form to their
equivalent Cartesian expressions, and (c) write a MATLAB code to generate the 2p orbitals
shown in Figure 11.11.21.
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Figure 11.11.21: Boundary surface electron-density representation of atomic 2px, 2py, and 2pz
orbitals in real basis.

11.11.3. The Lanthanides (atomic numbers 57−71) and Actinides (atomic numbers 89−103) be-
long to the f -block of elements where the electrons occupy the 4 f and 5 f electron shells,
respectively. The Lanthanides and Actinides are also referred to as Rare Earth metals. As
mentioned in Chapter 10, rare earth neodymium (NdFeB) and samarium−cobalt (SmCo)
magnets form good quality permanent magnets (which you can buy at Lowes or Home
Depot). Using the expressions for the f orbital spherical harmonics from Table 11.10.5
and the definition of the conversion from the complex to the real basis, Equation (11.30),
derive (a) the real form expressions for the seven f -orbitals, (b) convert the real form to
their equivalent Cartesian expressions, and (c) write a MATLAB code to generate the 4f
orbitals shown in Figure 11.11.22.

Figure 11.11.22: Boundary surface representation of atomic 4fxz2 , 4fxz2 , 4fyz2 , 4fy(3x2−y2),
4fx(x2−3y2), 4fxyz, and 4fz(x2−y2) orbitals in real basis.
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11.11.4. By calculating the sum of squares of the wavefunctions given by ml = 0,±1,±2, and ±3
for the 4 f 7 f -orbital electron shell show that it is spherical.

11.11.5. Derive the Cartesian expressions for the spherical harmonics Y 4
4 ,Y

0
4 , and Y−4

4 to show that

Y±4
4 =

√
315

512π

(x± iy)4

16r4 ,

Y 0
4 =

√
9

256π

(
3r4−30r2z2 +35z4

)

r4 . (11.194)

11.11.6. Confirm the following ground state term symbols: (a) Cu2+, 2D5/2 ; (b) Co2+, 4F9/2; (c)
Sm3+, 6H5/2; (d) Ho3+, 5I8

11.11.7. Using the values of L, S, and J from Tables 11.4.1 and 11.4.2, compute the Landé g-factor
and µe f f = g

√
J(J+1) (in µB units) for the following ions (a) V4+, (b) Fe2+, (c) Gd3+,

(d) Dy3+.

11.11.8. Assuming the LS (Russell−Saunders) coupling scheme, obtain all the possible term sym-
bols for electrons occupying orbitals (a) 2p13p1 and (b) 2p5?

11.11.9. Assuming j j-coupling scheme, obtain all the possible term symbols for electrons occu-
pying orbitals np1 nd1?

11.11.10. The mineral perovskite has a general stoichiometry of ABX3 where A and B represent the
cations and X is the anion. The original perovskite material CaTiO3 was discovered in the
Ural Mountains in 1839 by Gustav Rose. The name perovskite is attributed to the Rus-
sian mineralogist Count Lev Aleksevich von Perovski who first characterized its structure.
Present interest in these materials originates from their wide range of applicability rang-
ing from solid-state ionics, sensors, fuel cells, electrooptical devices to memory devices
(RAM), amplifiers, high temperature superconductors, and multiferroic materials. In Fig-
ure 11.5.11 we show a typical cubic perovskite crystal structure arrangement. An ideal
cubic perovskite is realized in SrTiO3 which has applications in microelectronics technol-
ogy due to its high charge storage capacity (large dielectric constant). In the octahedral
arrangement, eight Ti atoms reside at the cube corners, one Ti atom sits in the centre of
the cube, and six oxygen atoms are located at the centre of the faces. In this problem, you
will derive the crystal field potential experienced by the Ti ion at the center of the octa-
hedra. For this purpose, consider equal point charges of value eZ, where Z is the atomic
number, placed on each of the six corners of an octahedron. Choosing the origin of the
Cartesian coordinates to be at the centre of the octahedron, show that the potential close
to the centre is given by

V oct
c f =

eZ
4πεoa

[
6+

35
4a4

(
x4 + y4 + z4− 3

5
r4
)
+O

(
r6

a6

)]
, (11.195)

where e is the magnitude of each charge and a is the distance between the origin and
each charge. The constant term is the contribution if we treated each charge as point-like
objects. The spatial part is the crystal field potential contribution.

11.11.11. The Legendre polynomials Pl(cosθ)) can be used to generate a multipole expansion
in electrodynamics which relates the potential at point r created by a unit point charge
located at r′ by

1
|r− r′ | =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosγ), (11.196)
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where r<(r>) is the smaller (larger) distance of r and r′ . Equation (11.196) then can be
taken a step further if we utilize the addition theorem for spherical harmonic functions
which can relate two coordinate vectors r and r′ with spherical coordinates (r,θ ,φ) and
(r
′
,θ
′
,φ
′
) respectively, which have an angle γ in between by

1
|r− r′ | =

∞

∑
l=0

l

∑
m=−l

4π

2l +1
rl
<

rl+1
>

Y m∗
l (θ

′
,φ
′
)Y m

l (θ ,φ). (11.197)

The mathematical advantage of the above equation is that it completely factorizes the

r'

r
θ

θ

φ

φ

x
y

z

Figure 11.11.23: Spherical harmonics addition theorem.

source (primed variable) and environment (unprimed variable) charge coordinates.
(i) In Figure 11.5.11(a) an octahedral arrangement of ligand ions of charge Ze is shown
surrounding a central transition metal ion where Z is the atomic number and e is the
electronic charge. By considering only the l = 0 and l = 4 terms in Equation (11.197),
show that the octahedral crystal field potential V oct

c f (r,θ ,φ) can be written in terms of the
spherical harmonics Y l

m(θ ,φ) as

V oct
c f (r,θ ,φ) =

eZ
4πεoa

[
6+

7
√

π

3
r4

a5

{
Y 0

4 +

√
5

14
(
Y 4

4 +Y−4
4
)
}]

. (11.198)

Hint: To solve the problem, identity the spherical polar coordinates of the ligands. Note,
in your problem r< = r and r> = a, where a is the distance of the ligand ion along the
axis in any of the three directions of the octahedral arrangement.
(ii) Show that the above form reduces to the Cartesian expression derived in Equation
(11.195).

11.11.12. The ideal cubic perovskite structure in the previous problem is usually distorted result-
ing in an orthorhombic perovskite crystal structure, as seen for example in Lanthanum
Manganite (LaMnO3) − a compound which exhibits colossal magnetoresistance effect.
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Show that for an orthorhombic structure the crystal field potential is given by

V ortho
c f =

eZ
4πεoa

[
2
a
+

2
b
+

2
c
+ x2

(
2
a3 −

1
b3 −

1
c3

)
+ y2

(
2
b3 −

1
a3 −

1
c3

)

+z2
(

2
c3 −

1
a3 −

1
b3

)]
, (11.199)

where e is the magnitude of each charge and a,b, and c is the distance between the origin
and each charge. The constant term is the contribution if we treated each charge as point-
like objects. The spatial part is the crystal field potential contribution.

11.11.13. As mentioned in Section 11.5, it is customary to denote the crystal field splitting value
as ∆ = 10Dq. In this problem we will use concepts from quantum mechanics to obtain
an expression for the 10Dq splitting. Since the crystal field splitting is an energy differ-
ence, we will compute the expectation value of the crystal field Hamiltonian (energy).
Beginning with Equation 11.195, derived in Exercise 11.11.11,

(a) Show that the crystal field perturbation can be written as

Vm,m′ =
∫

d~rψ
∗
nlm(~r)V

oct
c f ψnlm =




Dq 0 0 0 5Dq
0 −4Dq 0 0 0
0 0 6Dq 0 0
0 0 0 −4Dq 0

5Dq 0 0 0 Dq



. (11.200)

(b) Diagonalize the matrix in Equation 11.200 to obtain the eigenvalues. By inspecting
the eigenvalues, can you explain the origin of the t2g and the eg orbital levels in Figure
11.5.11?

11.11.14. Show that the susceptibility computed in Example 11.6.0.1 is dimensionless.

11.11.15. If U is the internal energy of a statistical mechanical system at temperature T and Z the
partition sum thenshow that

U =−d lnZ
dβ

, (11.201)

where β = 1/T.

11.11.16. Derive the approximate expression for the Brillouin function given in Equation (11.112).

11.11.17. Prove the expression for the partition function Z used in Equation (11.118).

11.11.18. In Section 11.7 we introduced the idea of a two-level quantum system. Considering
the splitting to be given by ∆, compute (a) the heat capacity CV , (b) heat capacity, (c)
Helmholtz-free energy, and (d) entropy for this system. For each quantity, express them
in terms of suitably scaled dimensionless variable and plot the temperature variation as
shown in Figure 11.11.24.

11.11.19. Derive the two-electron energy matrix, Equation (11.137), and the eigenenergy solution,
Equations (11.138) and (11.139), for the singlet and triplet state. In the process of your
derivation, also introduce the appropriate definition of the Coulomb integral and the Ex-
change integral expressions. Below are some useful hints to help you with the derivation.

(a) When considering two orbitals, we can have both the spins to be the same or different.

(b) Within different spin combinations, we could have the case where Ψ↑↓ can overlap
with Ψ↑↓ or Ψ↓↑.
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Figure 11.11.24: Plot of internal energy, heat capacity, Helmholtz-free energy, and entropy.

(c) The rest of the two-electron energy matrix elements are zero.

(d) The wavefunctions that we need to consider are stated in Equations (11.128) –
(11.134).

11.11.20. In the section on magnetic resonance, you have learned how the Bloch equations can
simulate magnetic resonance phenomena. Utilizing the proposed solution in that section,
Equation (11.183), derive the differential equation system shown in Equations (11.184)
and (11.185).

11.11.21. In magnetic materials, a disturbance of a spin excitation is carried in the form of spin
waves. Ferromagnetic resonance (FMR), is a standard spectroscopic technique which is
utilized to probe the magnetization of ferromagnetic materials, gyromagnetic ratio, spin
waves, and spin dynamics. Historically, FMR was discovered (unknowingly) in 1911 by
V. K. Arkadýev when he observed the absorption of ultra high frequency (UHF) radiation
(300 MHz to 3 GHz) by ferromagnetic materials. Subsequently, in a 1935 paper published
by Lev Landau and Evgeny Lifshitz, a prediction of ferromagnetic resonance of the Lar-
mor precession was made. The prediction of this theory was confirmed independently
by experiments on FMR by J. H. E. Griffiths and E. K. Zavoiskij in 1946. Considering
an ellipsoidal sample with demagnetization factors (Nx,Ny, Nz), obtain the shape ef-
fects of specimen on the resonance frequency. Show that in the absence of any relaxation
processes within the sample the equation for resonance frequency is given by

ω
2
o = γ

2 [B0 +(Ny−Nz)µoM] [B0 +(Nx−Nz)µoM] , (11.202)

where B0 is the static external field and ωo is called the frequency of the uniform mode.
In the uniform mode, all the magnetic moments precess together in phase with the same
amplitude. Shape effects in FMR were studied by Charles Kittel in 1948.
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12.1 Introduction
In 1908 Dutch physicist Heike Kamerlingh Onnes (1853–1926) was the first person to achieve he-
lium liquefaction through a series of compression and expansion cycles. Onnes’s primary motivation
to liquefy helium was driven by a fundamental question of how metals behave when cooled to near
absolute zero. Using liquid helium as a refrigerant, he was able to lower the temperature down to
1.5 K. In the process of experimenting with various metals at the Kamerlingh Onnes Laboratory, on
April 8th 1911, it was observed that when the temperature was lowered below 4.2 K the resistance
of mercury suddenly vanished and was restored when warmed back up. Kamerlingh Onnes wrote
in his notebook, “The temperature measurement was successful. [The resistivity of] Mercury practi-
cally zero”. He had discovered the phenomenon of superconductivity (although he preferred to call
it supraconductivity). Later, in 1913, he was awarded a Nobel Prize in physics. The Nobel Prize
citation read, “his investigations on the properties of matter at low temperatures which led, inter
alia, to the production of liquid helium”. For a historical account of the history of superconductivity
read reference [52]. Following Kamerlingh Onnes discovery, several other elemental metals were
found to display a vanishing resistance when the temperature was lowered below a characteristic
temperature, called the critical temperature Tc.
Twenty-two years following the discovery of superconductivity, in 1933 Fritz W. Meissner (1882–
1974) and Robert Ochsenfeld (1901–1993) found that a bulk superconductor in a weak mag-
netic field will act as a perfect diamagnet, with a zero magnetic induction in the interior. Sim-
ilar to the phenomenon of a Faraday cage which acts as a shield to block electric field lines,
Meissner−Ochsenfeld observed that magnetic field lines are expelled from the interior by a su-
perconducting sample of tin. The physical principle underlying the Meissner−Ochsenfeld effect is
the reason behind magnetic levitation, see Figure 12.1.1. An explanation of the flux exculsion ef-
fect and perfect diamagnetic behavior of superconductors soon followed in the form of the London
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equations. In 1935, using electrodynamics, brothers Fritz London (1900–1954) and Heinz London
(1907–1970) proposed a phenomenological theory which explained both perfect conductivity and
flux exclusion.

Rare Earth magnet

Ceramic Superconductor

YBa2Cu3O7
(

Liquid Nitrogen
Petri Dish

Figure 12.1.1: A levitated neodymium magnet on top of a ceramic high temperature superconductor
Yttrium barium copper oxide (YBa2Cu3O7 or YBCO). The critical temperature of YBCO is 93 K,
thus allowing liquid nitrogen to be used as the cooling agent. The above picture was taken at the
2016 Department of Physics Augusta University Science Show.

Inspired by London, in 1950, Lev Landau (1908–1968) and Vitaly Lazarevich Ginzburg (1916–
2009) formulated another phenomenological approach to understand superconductivity. The ap-
proach based on thermodynamic arguments constructed the Ginzburg−Landau free energy func-
tional. They introduced the idea of a superconducting order parameter and using their theoreti-
cal approach were able to explain the behavior of a superconductor depending on the temperature
and the magnetic field. Further application of the Ginzburg−Landau approach prompted Alexei
Abrikosov (1928–2017 [Source: Wikipedia]) in 1952 to predict the existence of a periodic lattice
structure of magnetic flux in a class of superconductors called Type II. In such superconductors there
is a range of magnetic fields in which the system is permeable to magnetic field lines in tubes of
circulating supercurrents known as vortices. Abrikosov predicted that these vortices would arrange
themselves in triangular networks in 1957, a fact which was experimentally confirmed twelve years
later. Simultaneously, in 1957 John Bardeen (1908–1991), Leon Cooper (1930–), and John Robert
Schrieffer (1931−) proposed the celebrated microscopic theory of superconductivity now popularly
known as the BCS theory. They introduced the idea of a Cooper pair and subsequent condensation
of these pairs to provide the first successful comprehensive quantum (microscopic) theory of low
temperature superconductors. Now, for more than half a century, BCS theory has been successfully
applied to most low temperature superconductors. In 1972 Bardeen, Cooper, and Schrieffer won the
Nobel Prize in physics.
Progress in superconductivity has not stalled since BCS theory, rather, the field has been bolstered
by several key discoveries listed in Table 12.1.1. In Table 12.2.2 we list some of the popular su-
perconducting materials discovered to date. In this chapter you will learn about the basic equations
and physical concepts which explain low temperature superconductivity. As the search for an ul-
timate room temperature superconductor continues, hopefully, after reading this chapter you will
be inspired to pursue one of the most challenging unsolved issues of condensed matter physics −
“A comprehensive understanding of the physical mechanism which gives rise to high temperature
superconductivity” and “the quest for a room temperature superconductor”.
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Table 12.1.1: Milestones in experimental and theoretical discoveries in superconductivity. Conven-
tional superconductors are materials that display superconductivity as described by the BCS theory
or its extensions. However, non-BCS (unconventional) superconductors such as cuprates cannot be
described by BCS theory. Conventional superconductors can be of either Type I or Type II. Nio-
bium and vanadium are Type II, while most other elemental superconductors are Type I. The most
commonly used conventional superconductor in applications is a niobium-titanium alloy; this is a
type-II superconductor with a superconducting critical temperature of 11 K. The highest critical
temperature so far achieved in a conventional superconductor is 39 K (-234degC) in magnesium
diboride.

1908 Liquefaction of 4He at 4.2 K
1911 Superconductivity discovered in mercury (Hg) at 4.15 K
1933 Meissner−Ochsenfeld effect
1935 Shubnikov phase in Type II superconductivity observed
1950 Ginzburg−Landau theory of superconductivity
1957 Bardeen Cooper Schrieffer (BCS) theory

of low temperature superconductivity
1957 Abrikosov flux lattice
1962 Josephson effect

1963/1964 Anderson−Higgs mechanism
1979 Heavy fermion superconductivity discovered

in the magnetic material CeCu2Si2
1980 Organic superconductivity discovered
1986 Cuprate high temperature superconductivity (HTS)

discovered by Bednorz−Müller (LBCO, 35 K)
1991 Superconductivity in alkali metal fullerides discovered
2001 Superconductivity of MgB2 discovered, Tc = 39K
2006 Pnictide superconductivity discovered in LaFePO, Tc = 4K, (Hosono group)
2008 Pnictide superconductivity discovered in LaFeAsO, Tc = 26K, (Hosono group)

12.2 Basic Properties of a Superconductor
Much like magnetism, superconductivity is a distinct phase of matter. Most superconductors satisfy
certain basic properties. Below we summarize these features.

1. Zero electrical resistance: An obvious and popular characteristic of a superconductor
is vanishing DC electrical resistance at zero magnetic field in the superconducting state.
Above the critical temperature Tc, the DC resistivity is finite in zero magnetic field, see
Figure 12.2.2.
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Table 12.2.2: Historically important low (1−4) and high-temperature (5−23) superconductors with
their critical transition temperature at ambient pressure. Material 5 is an unconventional Heavy
fermion superconductor and material 6 is an organic superconductor. Cuprate high temperature su-
perconductors are listed from 7 to 11. Material 13 is an example of alkaline fulleride superconductor.
The newly discovered iron based superconductors are listed from 15 to 20.

Material Tc (Kelvin)

1. Mercury (Hg) 4.15
2. Aluminum (Al) 1.1
3. Lead (Pb) 9.25
4. Niobium (Nb) 9.25
5. CeCu2Si2 0.7
6. (TMTSF)2PF6 1.1

Bechgaard salt
7. Lanthanum Barium Copper Oxide 35

LaBaCuO (LBCO)
8. Lanthanum Strontium Copper Oxide 37

La2−xSrxCuO2 (LSCO)
9. Yttrium Barium Copper Oxide 91

YBa2Cu3O7 (YBCO)
10. Bismuth Strontium Calcium Copper Oxide 89

Bi2Sr2CaCu2O8 (BSCCO)
11. Hg−Ba−Ca−Cu−O 134

HgBa2Ca2Cu3O8
12. Barium Bismuthate 30

Ba1−xKxBiO3
13. K3C60 19
14. MgB2 39
15. LaFePO 4
16. LaFeAsO0.89F0.11 26
17. SmFeAsO0.9F0.1 55
18. Ba1−xKxFe2As2 38
19. LaFeAs 18
20. FeSe 8

2. Persistent currents: A sensitive test to display the absence of any resistance in a supercon-
ducting state is to generate a current in a superconducting ring and observe if there is any
decay or not. Such a set-up is shown in Figure 12.2.3. For example, a metallic ring in the
presence of an external magnetic field will enclose a quantized trapped flux when cooled
below its superconducting transition temperature. If the field is now decreased to zero, the
trapped flux remains and is maintained by a persistent current which flows around the ring
(read Section 12.4 for a mathematical explanation). Experiments on persistent currents, also
known as supercurrents, show that both the magnetic field and the persistent superconduct-
ing current is stable for several years. The supercurrent persists with zero applied voltage.
The resistivity of a superconductor based on such measurements is shown to be less than
10−26 Ω m. Just for comparison, note that copper has a resistivity value of 1.68×10−8 Ωm.
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Figure 12.2.2: Schematic plot comparing resistivity versus temperature of a regular metal and a
superconductor. At zero temperature, a non-superconducting normal metal attains a finite residual
resistivity value ρo controlled by the concentation of impurities. For a pure metal, the resistivity
vanishes at zero temperature. But, for a superconductor, the resistivity abruptly disappears below
the critical transition temperature Tc even if the metallic sample may have impurities. In 1911,
Kamerlingh Onnes observed such an effect in mercury.

3. Meissner−Ochsenfeld effect (flux expulsion): In 1933 Meissner and Ochsenfeld discov-
ered that magnetic fields in superconducting tin (Sn) and lead (Pb) do not penetrate into the
bulk of a superconductor, rather the current is confined to a surface layer of thickness λ ,
called the London penetration depth. The penetration depth is typically on the scale of
tens to hundreds of nanometers.

4. Critical fields: Superconductivity can be destroyed by a magnetic field. The breakdown
of superconductivity can happen in two possible ways. In a Type I superconductor, the
Meissner effect exists only for T < Tc with the applied field being smaller than the critial
magnetic field Hc(T ). When the applied field is greater, H > Hc(T ), the system abruptly
goes to the normal state. Examples of type I materials are Hg, Pb, Nb, and Sn. In a type II
superconductor, there are two critical fields, Hc1(T ) and Hc2(T ). For H < Hc1, we have
flux expulsion and the system is in the Meissner phase. For H > Hc2 we have uniform flux
penetration and the system is in a normal state. For Hc1(T )< H < Hc2(T ), the system is in
a mixed state in which quantized vortices of flux Φ penetrate the sytem. In Figure 12.2.4 we
display the two possible scenarios in a field versus temperature diagram. In Table 12.3.3 we
list the critical temperature and critical field values of some superconducting materials. The
critical magnetic field is temperature dependent, decreasing with increasing temperature.

5. Specific heat jump: There is a jump in the specific heat at the critical transition temperature
Tc. This jump is a deviation from the linear temperature dependence contribution expected
from an ideal gas. Rather, there is an exponential suppression of heat capacity at low temper-
ature (Type I superconductors). The jump is consistent with a second order (or continuous)
phase transition. The presence of the exponential heat capacity behavior C ≈ exp(−∆/T )
points to the existence of an energy gap Eg in the excitation spectrum. In fact, the energy
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Figure 12.2.3: Persistent current in a superconducting ring.

gap is twice as large as ∆. Energy gaps in Type I superconductors are of the order of meV,
compared to electron volts in semiconductors or metals.

6. Tunneling and Josephson effect: Ivar Giaever (Norway, 1929−) and Brian Josephson
(Great Britain, 1940 −) studied the effects of tunneling and superconductivity. Tunneling
is a quantum mechanical phenomenon that allows particles to access classically forbidden
regions. Using the idea of tunneling, Giaever measured the energy gap in superconductors.
Developing upon the ideas of Giaever, Josephson, during his PhD in Cambridge at the age
of only 22, proposed that supercurrents can also appear in the tunnel barrier. The tunnel
barrier is the thin piece of insulation that appears in between two metals, a metal and a su-
perconductor, or even two superconductors. Josephson predicted that in the case of a weak
link between two superconductors, current can flow at zero bias voltage, a situation known
as the Josephson effect. These effects have now been experimentally verified and led to the
creation of the superconducting quantum interference device (SQUID).

12.3 Zero Electrical Resistance
In Figure 12.2.2 we displayed the resistivity behavior difference of a metal and a superconductor.
In general the electrical resistivity of metals and alloys decreases when cooled. Upon cooling a
specimen of the metal or alloy, the lattice vibrations subside and the conduction electrons experience
less scattering. For a perfectly pure sample, the resistivity should approach zero as the temperature
tends towards zero Kelvin. Note, this is not the phenomenon of superconductivity. In reality, there
are no perfect samples and most specimens will have some impurities. In this case the electrons will
be scattered by impurities leading to a residual resistivity as shown in Figure 12.2.2. However, there
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Figure 12.2.4: Field versus temperature plot of type I and type II superconductor.

are certain metals which display the remarkable behavior that their resistivity first decreases and then
completely vanishes below a critical temperature value. The phase transition to the superconducting
state occurs even if the metal is impure, which from our previous discussion would have resulted in
a large residual resistivity. Thus, the superconducting state is not just a metal with zero resistance,
but, is a distinct electronic phase of matter.

Table 12.3.3: Critical temperatures and critical fields (Hc(0) or Hc2(0)) at T = 0 K for some elemen-
tal Type I and Type II superconductors. For Type II superconductors, the upper critical field value is
stated. Source: [57]

Superconductor Type Tc (Kelvin) Critical field (MA m−1)

Hg I 4.15 0.033
Pb I 7.19 0.064
Nb I 9.25 0.158

NbTi II 9.6 11.94
Nb3Al II 18.7 25.78

Nb3(AlGe) II 21 35.01

12.4 Persistent Current
The most convincing evidence that superconductors have zero resistivity is the observation of a
persistent current. In experiments carried out in a coil of Nb0.75Zr0.25 with magnetically induced
persistent currents and observed via NMR, it was estimated that the decay time is greater than 105

years! To provide a description of persistent currents based on the laws of electrodynamics, consider
the closed loop of superconducting wire shown in Figure 12.2.3. The flux Φ for the system is defined
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by the surface integral

Φ =
∫
~B ·d~S, (12.1)

where d~S is an infinitesimal area vector element enclosed by and perpendicular to the plane of the
ring. Using one of Maxwell’s equation

~∇×~E =−∂~B
∂ t

, (12.2)

in Stoke’s theorem
∫ (

~∇×~E
)
·d~S =

∮
~E ·d~r, (12.3)

we can write

∫ (
−∂~B

∂ t

)
·d~S =

∮
~E ·d~r.

Now, using Equation (12.1) and interchanging the order of integration and the time derivative we
have

−∂Φ

∂ t
=
∮
~E ·d~r. (12.4)

The line integral in the above equation around any closed path is equal to the negative rate of
change of the magnetic flux Φ through the loop. Since ~E = 0 everywhere inside the superconductor,
the integral over any closed path circling inside the superconductor is zero. Thus the integral over
any closed path is equal to zero. Thus we have

∂Φ

∂ t
= 0,

⇒ Φ = const., (12.5)

thereby demonstrating the fact that the magnetic flux in the supeconductor is constant with time.
This implies that the magnetic field must also remain constant inside the superconductor.
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T > Tc , B = 0

T < Tc , B = 0

Initial state

perfect metal

(Path 1)

Figure 12.4.5: A perfect metal is sensitive to the presence or absence of a magnetic field as it is
cooled across its transition temperature. In one scenario, path 1, it returns to its unmagnetized state.
Whereas in another case, path 2, it traps the magnetic field inside it.

12.5 Meissner Effect
In Section 12.4 we argued that persistent currents around a closed loop of a superconducting sample
ensure that flux remains constant with time. In this section we will expand upon this effect further by
drawing analogy between a perfect conductor and a superconductor. By highlighting the difference
between a perfect conductor and a superconductor, we can truly realize that this is indeed a true new
phase of matter.
Consider the situation depicted in Figure 12.4.5. Let us assume that a sample of a metal loses its
resistance in the absence of any magnetic field. We call such a specimen a perfect metal. Subse-
quently a magnetic field is applied (path 1). Since the metal is resistanceless, the flux density in
the metal cannot change. Thus it must remain zero even after the application of the magnetic field.
Thus field lines travel around the metal without penetrating it. Physically what happens is that the
application of magnetic field induces resistanceless currents which circulate on the surface of the
specimen. These surface currents generate a flux density that exactly cancels the flux density of the
applied magnetic field everywhere inside the metal. These surface currents are often referred to as
screening currents. If we now switch off the applied magnetic field to zero, the specimen is left in
its original unmagnetized condition, as shown in the last step of path 1 in Figure 12.4.5.
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Now, consider a different sequence of events as shown in path 2 of Figure 12.4.5. In path 2 we
expose the sample to a magnetic field above its transition temperature, then cool the sample down
so that it loses its resistance, before finally removing the applied magnetic field. It turns out this
sequence of operations has a different effect on the final state of the metal. As shown in the last
step of path 2, this brings about a different outcome. Since, the flux density inside the perfectly
conducting metal cannot change, and persistent currents are induced on the specimen to maintain
the flux inside, this leaves the specimen behind as being permanently magnetized. We conclude
that the state of magnetization of a perfect conductor is not uniquely determined by the external
conditions but depends on the sequence by which these conditions were arrived at.

T > Tc , B = 0

T > Tc , B ≠ 0T < Tc , B = 0

Initial state

Intermediate state

(superconductor)

(Path 1)

Flux expulsion

T < Tc , B ≠ 0

Figure 12.5.6: Demonstration of Meissner effect in a superconductor. A superconductor always
expels flux irrespective of when it was exposed to the applied external magnetic field. Additionally,
upon removing the field, it does not trap any magnetic field lines inside it.

However, in 1933 Meissner and Ochsenfeld discovered something remarkable when they repeated
the same experiments with a superconducting material. They found that no matter what the path was,
at the transition temperatures the specimens spontaneously became perfectly diamagnetic, expelling
all flux inside, as in Figure 12.5.6. This experiment conclusively demonstrated that superconductors
are more than just perfect metals! To compare the two systems, as shown in Figure 12.5.7, we can
succinctly state that a perfect metal is a flux conserving system, whereas a superconductor is a flux
expelling system. A superconductor is more than a perfect conductor, it is a perfect diamagnet.
As described above in the Meissner effect in superconductors, magnetic fields cannot be frozen in,
rather, they are expelled as soon as the conductor transitions from the normal to the superconducting
state. Magnetic fields can decay due to resistive losses or dissipation, both of which are irreversible
processes. However, in a superconductor the screening currents flow without resistance and there is
no dissipation. Furthermore, the Meissner effect in a superconductor is reversible.
The Meissner effect has an important consequence: magnetic levitation. Note, a permanent mag-
net has magnetic field lines emerging from the north pole to the south pole and loops around to
enter the magnet. We know from our science show demo picture in Figure 12.1.1 that a magnet
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hovering over a superconducting material will levitate. The reason of course being that its magnetic
field lines are repelled away from the superconducting material because the material is diamagnetic
(flux expulsion). In Figure 12.5.8, we provide a step-by-step graphical explanation of the Meissner
effect. In situation (a) we simply have a bar magnet in free space. This magnet is then placed on
a superconducting material which is above its critical temperature and thus not superconducting.
Upon cooling, by pouring liquid nitrogen on top of the YBCO sample, since the field lines emerg-
ing from the north pole of the permanent magnet cannot penetrate the diamagnetic superconductor
to complete the field line loop, the magnet is forced to rise above the supercondcutor to allow for
the magnetic field lines to return to the south pole. That is it! It is this effect that leads to magnetic
levitation. Wonderful practical technological applications in the form of superconducting magnetic
levitation technology, which can minimize heating issues, to run high speed trains is in fact a reality.
So, now you can see why we should learn about solid state physics and its properties. You never
know when a material becomes useful for the next technological advancement.

Initial state

Final state

T < Tc  

B = 0

T > Tc  

B ≠ 0

T < Tc  

B ≠ 0

Intermediate state

Figure 12.5.7: Differences between a perfect metal and a superconductor. The two paths yield strik-
ingly different results. The perfect conductor is a flux preserving medium, but, the superconducting
is not!

In order to preserve a zero magnetic field inside the sample, the screening currents flowing around
the edges of the sample flow in a direction so as to create a magnetic field opposite to the applied
external field, leaving zero total field. From Chapter 10, Equation (10.13), we know that

~B = µo

(
~H + ~M

)
. (12.6)

Now imposing the Meissner condition ~B = 0 in the above equation we have ~M = −~H. Thus using
the definition from Chapter 10, the magnetic susceptibility χ for a superconductor is given by

χ =
dM
dH
|H=0 =−1. (12.7)
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Figure 12.5.8: Meissner effect explanation.

Now recall from Chapter 10 that solids with a negative value of χ are called perfect diamagnets.
From the above, we find that superconductors are perfect diamagnets. Note, it is possible to destroy
the state of superconductivity with an applied magnetic field called the thermodynamic critical field
Hc. A stronger applied field H > Hc will destroy superconductivity.
In its perfectly diamagnetic flux expelling superconducting state, electric currents cannot flow
through the body of the material. But, the currents cannot be confined entirely to the surface ei-
ther. With a zero thickness sheet or layer of surface the current density would seem to be infinite,
which is unphysical. In reality currents flow within a very thin surface layer whose thickness is of
the order of µm - nm. This depth within which the currents flow is termed the penetration depth.
It is typically denoted by the symbol λ . Simply speaking, it is the depth to which the flux of the
applied magnetic field appears to penetrate. Drawing analogy with electrodynamics, this phenemon
is similar to the concept of a “skin depth” whereby a high frequency alternating field is unable to
penetrate the bulk of a metal, thereby residing only on a thin layer of the surface. The penetration
depth in a superconducting metal depends on the purity, with the depth increasing as the metal
becomes more impure. The existence of this flux leakage depth ensures that the flux density does
not abruptly fall to zero at the boundary of the metal, but, dies away within the region where the
screening currents are flowing. In Figure 12.5.9 we display this concept pictorially via a decaying
magnetic field profile. In Example 12.6.0.1 you will calculate a mathematical expression for this
field profile using one of the London equations.

12.6 London Equation
We have learned about two important properties of a superconductor. First, it is a perfect conductor.
Second, it expels magnetic flux. In 1935, using electrodynamics, brothers Fritz London and Heinz
London proposed a phenomenological theory of superconductivity which explained both the perfect
conductivity and the flux exclusion. Their theory, inspired by the two-fluid model of superfluid 4He,
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Figure 12.5.9: Variation of magnetic field strength (B) and number density of superconducting elec-
trons (ns) in the region of a boundary between normal and superconducting regions. The symbols
N and SC stand for normal and superconducting, respectively. The penetration depth (λ ) and the
coherence length (ξ ) concepts are explained in the text.

postulated the existence of a (i) normal fluid with concentration nn which has a finite resistivity and
(ii) a superelectron fluid of concentration ns. The theory also assumed that as temperature increases
up to the critical value, the superfluid density drops to zero. In Figure 12.5.9 we show a profile of
how the superelectron density gradually (not abruptly) changes inside a superconductor. This fact
was later recognized by the British physicist Sir Alfred Brian Pippard (1920−2008) by analyzing
the shortcomings of the London theory. The length scale associated with the gradual buildup of this
superelectron density has a special name, it is called the coherence length and is denoted by the
symbol ξ . Note, the coherence length in a superconductor is temperature dependent. It typically is
of the order of 1−100 nm.
Initally the idea of the superfluid superelectron density was not well understood conceptuallly. It
was difficult to explain how electrons could combine to form a superfluid. But, regardless of that
fact the London brothers’ intuition put forward a theory which was successful in explaining (with
some shortcomings) the basics of the observed superconducting phenomena. If we define the cor-
responding normal and superfluid current densities as ~jn and ~js, respectively, then the total number
density n and the total current density ~j are written as

n = nn +ns, (12.8)
~j = ~jn +~js. (12.9)

The normal fluid which carries an ohmic current is governed by

~jn = σn~E, σn =
e2nnτ

m
. (12.10)

The normal fluid conductivity σn is given by the Drude formula as shown in Equation (12.10). Now
recall from Chapter 5, the Drude equation for conductivity

m
d~v
dt

=−e~E−m
~v
τ
. (12.11)

where m is the mass of the electron (or the effective mass of the charge carriers), e the charge, τ is
the mean free collision time, and ~E is the electric field. In a superconductor, there is no scattering
term. Thus (τ → ∞) makes the second term on the right-hand side of the Drude equation drop off
to zero. We can then replace the velocity of the charge carriers with a superfluid velocity vs. The
equation becomes

m
d~vs

dt
=−e~E, (12.12)
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Table 12.6.4: Summary of the four Maxwell Equations displaying both the equation and its phys-
ical meaning. These fundamental equations are utilized in the text to derive important formulae
within the context of superconductivity. The symbols have the standard meaning: ~E (electric field),
~B (magnetic field), ~J (current density), ρ (charge density), ε0 (permittivity), and µo (permeability).

Law Maxwell Equation Physical Meaning

Gauss’s Law (Electric field) ~∇ ·~E = ρ

ε0
Electric flux is proportional

to charge inside volume.

Gauss’s Law (Magnetic field) ~∇ ·~B = 0 Magnetic flux is zero
in an enclosed volume.

Faraday’s Law of Induction ~∇×~E =− ∂~B
∂ t Induced electric field is

(Maxwell−Faraday Law) proportional to
changing magnetic flux.

Ampére’s law ~∇×~B = µo

(
~J+ εo

∂~E
∂ t

)
Magnetic field is

proportional to electric
and displacement currents.

or,
d~vs

dt
=− e

m
~E. (12.13)

Assuming that the superfluid electron density ns is constant in space and time, we multiply both
sides of Equation (12.12) by (−nse) to recast the equation in terms of current density (for superfluid
electrons) defined by

~js =−nse~vs, (12.14)

to obtain
d(−nse~vs)

dt
=

nse2

m
~E,

∂~js
∂ t

=
nse2

m
~E. (12.15)

Equation (12.15) is referred to as the first London equation which provides a phenomenological
explanation of perfect conductivity in superconductors.
The second London equation follows from the perfect diamagnetism condition, or the Meissner
effect. To derive this equation, take the curl of Equation (12.15) to obtain

∂ (~∇×~js)
∂ t

=
nse2

m
~∇×~E, (12.16)

which using the third Maxwell equation (Faraday’s Law of Induction) from Table 12.6.4 becomes

∂ (~∇×~js)
∂ t

=−nse2

m
∂~B
∂ t

. (12.17)
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Integrating the above with respect to time yields

~∇×~js =−
nse2

m
~B+~C(~r), (12.18)

where the last term represents a constant of integration at each point~r inside the superconductor. For
a superconducting sample in zero applied magnetic field, we have ~js =~0 and ~B =~0. This implies
~C(~r) = 0. For the Meissner-Ochsenfeld effect to be explained we have to consider the case when
the body becomes superconducting in a non-zero applied field. However, within the first London
equation we have assumed a constant superfluid density. To account for flux expulsion, the London
theory postulated that ~C(~r) = 0 regardless of the history of the system. Thus we have

~∇×~js =−
nse2

m
~B, (12.19)

which gives the second London equation.
Combining Equation (12.19) and the fourth Maxwell relation for the case of static fields (that is
ignoring the displacement current term) we have

~∇× (~∇×~B) = µo~∇×~js =−
µonse2

m
~B =− 1

λ 2
~B, (12.20)

where λ has the dimensions of length and is called the London penetration depth defined by

λ =

√
m

µonse2 . (12.21)

Now using the vector identity

~∇× (~∇×~B) = ~∇
(
~∇ ·~B

)
−~∇2~B, (12.22)

and the second Maxwell equation ~∇ ·~B = 0, we obtain a simple form of the second equation,

~∇2~B =
1

λ 2
~B. (12.23)

Now consider the example below as an application of the second London equation.

Example 12.6.0.1
Let us consider a slab (see Figure 12.6.10) of superconductor filling the half space x> 0. A magnetic
field ~Ba is applied parallel to the surface. Using the second London equation, obtain a profile for the
field versus spatial dependence.
Solution
To obtain the magnetic field profile inside the superconductor, we apply the London Equation
(12.23) in the x-direction. We then have the one-dimensional form of the London equation as

∂ 2B(x)
∂x2 =

1
λ 2 B(x), (12.24)

where B(x) is the magnetic field inside the superconducting metal. Let us assume that the solution
is of the form

B(x) =C1 exp(C2x). (12.25)

Then differentiating and substituting into the one-dimensional form of the London equation, we
have

(
C2

2 −
1

λ 2

)
C1 exp(C2x) = 0. (12.26)
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Figure 12.6.10: A superconducting slab with an external field applied parallel to its surface. N
represents the normal outside region. SC refers to superconducting.

Since the exponential cannot be zero, we must set the term inside the bracket equal to zero to obtain

C2 =±
1
λ
. (12.27)

Thus the two possible solutions are

B(x) =C1 exp(x/λ ) or B(x) =C1 exp(−x/λ ). (12.28)

We know from our knowledge of Meissner effect that the magnetic field inside the superconductor
does not increase. Thus the first expression cannot be a solution. Hence, the correct form of the
solution must be B(x) = C1 exp(−x/λ ). To obtain the unknown constant C1, note the boundary
condition B(0) = Ba. Thus, the magnetic field profile inside the superconductor must be of the form

B(x) = Ba exp(−x/λ ). (12.29)

The above solution agrees with our intuition of flux expulsion. Furthermore, it clearly demonstrates
that the magnetic penetration depth length is set by λ . The London equation predicts, therefore, an
exponential decay of the flux density at the surface of a superconductor. The London penetration
depth can also be rewritten in another fashion where we can express it as the ratio, that is,

λ =

√
mεoc2

nse2 =
c

ωps
, (12.30)

where we have used c = 1√
εoµo

and defined the plasma frequency in the superconducting state ωps =√
nse2

mεo
. For electron concentrations of a typical metal, the penetration depth is of the order of 102-

103 Å.
The London equation can also be rewritten in terms of the magnetic vector potential ~A defined by

~B = ~∇×~A. (12.31)

Thus we can write

~∇×~js = −nse2

m
~B,

~∇×~js = −nse2

m

(
~∇×~A

)
,
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or,

~js =−
nse2

m
~A =− 1

µoλ 2
~A, (12.32)

where we have used Equation (12.21). The above equation works only if we make an appropriate
choice of gauge. A gauge is similar to an unrestricted degree of freedom. For example, from Equa-
tion (12.31) we observe that any choice of ~A =~A+~∇θ would equally well satisfy ~B since the curl of
a gradient is zero. Thus ~A is not uniquely defined and the ~∇θ (the gauge degree of freedom) would
allow for different possible functions to satisfy the magnetic field expression. We conclude that ~A
is not gauge invariant. But, note that the current density is gauge invariant. It obeys the continuity
equation given by

∂ρ

∂ t
+~∇ ·~j = 0, (12.33)

where ρ is the charge density. Thus using Equation (12.32) the only valid choice of a gauge is one
that satisfies the condition

~∇ ·~A = µoλ
2 ∂ρ

∂ t
. (12.34)

In the case of a time-independent situation the charge density is independent of time and we have
the familiar form of the London gauge

~∇ ·~A = 0. (12.35)

12.7 Thermodynamics of Superconductors
This section is devoted to understanding the normal to superconducting phase transition region
and the specific heat jump in superconductors. We begin the discussion by writing the first law of
thermodynamics of a magnetic system system as

dU = T dS+µoV HdM, (12.36)

where V is the volume, M is the magnetization, S is the entropy, and H is the auxilliary field. As in
Chapter 10 we define the Helmholtz and Gibbs-free energy of a superconductor in a magnetic field
as

F(T,M) =U−T S, (12.37)
G(T,H) =U−T S−µoV HM. (12.38)

Since there is no entropy meter to measure entropy change (dS), directly we cannot conveniently
analyze internal energy to study the nature of the superconducting phase transition. Also, in a circuit
the free current establishes the auxilliary field over which we have direct control and not magnetiza-
tion. Thus, amongst the thermodynamic variables, temperature and auxilliary field can be controlled.
We thus focus on Gibbs free energy and its change given by

dG =−SdT −µoV MdH. (12.39)

To compute the free energy difference between the superconducting and the normal state we begin
by considering the energy difference in the superconducting state itself. For a Type I superconductor
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which exhibits the Meissner−Ochsenfeld effect (flux expulsion) we know that M =−H. Using the
condition for perfect diamagnetism, we integrate Equation (12.39) along the vertical path shown in
Figure 12.2.4(a). Since dT = 0, using Equation (12.39), we have in the superconducting phase

Gs(T,Hc(T ))∫

Gs(T,0)

dG = −
Hc(T )∫

0

µoV MdH,

Gs(T,Hc(T ))−Gs(T,0) = −
Hc(T )∫

0

µoV (−H)dH,

Gs(T,Hc(T ))−Gs(T,0) =
1
2

µo[Hc(T )]2V. (12.40)

Now, in the normal state magnetization is zero (ignoring any negligible weak metallic paramag-
netism and diamagnetism contribution). Thus, if we had carried out the above analysis for the nor-
mal state below the critical field, we would have obtained

Gn(T,Hc)−Gn(T,0) = 0. (12.41)

Additionally, note that at the critical field the normal state and the superconducting state are in
thermodynamic equilibrium. Thus

Gs(T,Hc) = Gn(T,Hc). (12.42)

Combining Equations (12.40), (12.41), and (12.42), we find that at zero applied external field

Gs(T,0)−Gn(T,0) =−
1
2

µo[Hc(T )]2V. (12.43)

The Gibbs energy for the superconducting state is lower at zero field making it the more stable phase.
The quantity 1

2 µo[Hc(T )]2V is referred to as the condensation energy. The condensation energy is
a measure of the gain in free energy in the superconducting state compared with the normal state at
the same temperature.

Example 12.7.0.1
Calculate the condensation energy per unit volume of mercury (Hg) at T = 0 K.
Solution
The formula for condensation energy per unit volume at T = 0 K is given by 1

2 µo[Hc(0)]2. From
Table 12.3.3, we find that the critical field is given by 0.033 M A m−1. Thus, inserting values for
the permeability µo = 4π×10−7NA−2 into the formula we find 0.67 KJ m−3.

The concept of condensation energy can be extended to include Type II superconductors. However,
as evident from Figure 12.2.4, the field Hc has no meaning since the real transitions occur at Hc1
and Hc2. In the remainder of this section, we will derive an expression for the heat capacity jump
which was earlier listed as one of the basic properties.

Example 12.7.0.2
Using Equation (12.39), derive an expression for the difference in entropy between the normal and
the superconducting state of a Type I superconductor at the critical field Hc(T ) phase boundary.
Solution
Using Equation (12.39) in the Type I superconducting phase for dT = 0 and integrating up to a field
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H less than Hc we have
Gs(T,H)∫

Gs(T,0)

dG = −
H∫

0

µoV MdH,

Gs(T,H)−Gs(T,0) = −
H∫

0

µoV (−H)dH,

Gs(T,H)−Gs(T,0) =
1
2

µoH2V. (12.44)

Similarly, for the normal state we can write as in Equation (12.41), Gn(T,H) =Gn(T,0). Now, using
the expression for Gs(T,0) from Equation (12.43) in Equation (12.44) we have

Gs(T,H) = Gn(T,0)−
1
2

µo[Hc(T )]2V +
1
2

µoH2V, (12.45)

which can be rearranged to give

Gs(T,H)−Gn(T,H) =
1
2

µoV
{

H2− [Hc(T )]2
}
, (12.46)

where we have used the condition Gn(T,H) = Gn(T,0).
Finally, to derive the expression for entropy, we resort back to Equation (12.39) from which we have

S =−
(

∂G
dT

)
. (12.47)

Using the above entropy formula at H = Hc(T ) and applying to Equation (12.46) we have

−
(

∂

dT
[Gs(T,H)−Gn(T,H)]

)

H=Hc(T )
= −1

2
µoV

∂

dT

{
H2− [Hc(T )]2

}
,

Ss(T,Hc)−Sn(T,Hc) = µoV Hc(T )
dHc(T )

dT
,

Sn(T,Hc)−Ss(T,Hc) = −µoV Hc(T )
dHc(T )

dT
. (12.48)

Since dHc
dT is negative (see Figure 12.2.4), the entropy of the normal state is always greater than that

of the superconducting state. This implies that the there is more ordering in the superconducting
phase than in the normal state.

Using Example 12.7.0.2, we can compute the difference ∆C in heat capacity in the superconducting
and normal states to be given by

∆C =Cs−Cn = T
d

dT
(Sn−Ss) = µoV T Hc

d2Hc

dT 2 +µoV T
[

dHc

dT

]2

, (12.49)

which for T = Tc and Hc = 0 we have

∆C = µoV Tc

(
dHc

dT

)2

. (12.50)

Note, the above equation holds for zero applied field. From the entropy expression, Equation
(12.48), we find that at Hc = 0 there is no latent heat of transition, that is ∆S = 0. From Equa-
tion (12.50) we find that there is a discontinuity in the heat capacity. Thus the transition at T = Tc
(with Hc = 0) is of second order, but away from Tc, the phase transition has a latent heat and is a
first-order phase transition.



450 Superconductivity

12.8 Type I and Type II Superconductors
In Section 12.2 we stated that there are some superconductors called Type II where in the interme-
diate state the system allows partial penetration of the magnetic field. That such materials existed
was known experimentally for a while although without proper theoretical understanding. The first
inkling towards the existence of such a class of superconductors was provided by the behavior of
superconductivity, in alloys and impure metals, which could not be explained within the traditional
Type I theory. In 1957 Alexei A. Abrikosov (1928–2017) published a theoretical proposal precisely
predicting the existence of a mixed state superconductor with inherent physical properties now
classified as Type II superconductivity. After Abrikosov’s insightful theory, it was realized that the
anomalous properties of these second-class superconductors is not just a trivial impurity effect. In
the next few paragraphs using our understanding of the thermodynamics equations in the supercon-
ducting state (see Section 12.7), the concept of coherence length, and the idea of penetration depth,
we will formulate a conceptual understanding of how and why exactly such a mixed state can occur.
The key to explaining the occurrence of Type I or Type II superconductivity lies in examining how
the free energy varies at the surface between the normal and the superconducting state. We know
from our discussions in Sections 12.5 and 12.6 that the system does not abruptly change from being
normal to fully superconducting when the magnetic field starts to enter the sample. Rather, the field
leaks into the material over a distance governed by the penetration depth and the corresponding
superconducting electron density builds up in the region over a distance spanning the coherence
length. Thus, there is a delicate energy balance at the surface dictated by the rate of growth of the
coherence length ξ and the penetration depth λ . Hence the surface free energy Fs is given by

Fs =
1
2

µo[Hc(T )]2(ξ −λ )V, (12.51)

where the condensation energy contribution Equation (12.43) is multiplied with the spatially depen-
dent ξ . Furthermore, the magnetic energy contribution is modulated by λ . Note, if superelectrons
are formed close to the surface, then an amount of energy corresponding to the condensation energy
is gained by the superconducting system. However, if normal electrons are present, the system loses
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(a) Positive free energy contribution at the surface supports Type I superconductivity.
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(b) Negative free energy contribution at the surface supports Type II superconductivity.

Figure 12.8.11: Free energy profile of a positive and negative surface energy state at the normal (N)
and superconductor (SC) boundary.
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this energy to the surface which corresponds to a gain in the surface energy term. Thus the first
expression in Equation (12.51) has a positive contribution. On the other hand, the magnetic field
contribution leads to a lowering of the condensation energy at the interface. Thus it is subtracted.
The difference

δ = ξ −λ , (12.52)

is called the wall-energy parameter.

Table 12.8.5: Coherence length ξ and penetration depth λ for various types of superconductors.
Data compiled from chapter 9 of Handbook of Superconductivity [58].

Superconductor Tc (Kelvin) ξ (nm) λ (nm) κ (GL parameter)

Al 1.18 1550 45 0.03
Sn 3.72 180 42 0.23
Nb 9.25 39 52 1.3

NbTi 9.6 3.8 130 27
UPt3 < 1 11.1 600 54

K3C60 19.4 2.8 240 92
La2−xSrxCuO2 37 2.0 200 100
YBa2Cu3O7−δ 91 1.65 156 95

Bi2Sr2CaCu2O8 89 1.8 250 139

In Figure 12.8.11(a) we show the case when the coherence length builds up slowly compared to the
penetration length. From the figure it is clearly evident that there is a positive free energy contribu-
tion at the surface when ξ > λ . Thus under this condition if a normal state was created inside the
superconducting sample, the free energy would increase. Hence, a normal region is not possible.
But, there exists another scenario where ξ < λ , in which case the free energy becomes negative as
shown in Figure 12.8.11(b). Under this scenario the surface free energy is negative and the system
can gain energy by allowing for the existence of the normal state within the superconducting vol-
ume. Thus by applying an external magnetic field, energy would be released when the interfaces
are formed and the magnetic flux could penetrate the material. This is what gives rise to Type II
superconductivity with a mixed state, see Figure 12.8.12. The former condition gives a Type I su-
perconductor. Typical examples of Type I materials are Hg, Al, Sn, and In. Type II superconductors
include Nb3Sn, NbTi, all high Tc cuprates, fullerenes, MgB2, and iron-based superconductors. In
Table 12.8.5 we list a collection of Type I and Type II superconductors.
In most pure metals, the coherence length is quite large compared to the penetration depth. Thus,
they are of Type I. However, impurities in a metal can reduce the coherence range making it sub-
stantially less than the penetration depth, thereby creating the negative surface energy possibility.
Before Abrikosov’s prediction, the possibility of a negative surface energy normal superconductor
boundary was never appreciated. Alloys or sufficiently impure metals are thus typically Type II
superconductors. The arguments presented above were mainly conceptual, derived from a purely
thermodynamic perspective. A more comprehensive approach, beyond the scope of this textbook,
to understanding the origins of the two different classes of superconductivity is provided by the
Ginzburg-Landau theory of superconductivity. You may recall from Chapter 10, Problem 10.19,
about the Landau theory of phase transition. The Ginzburg-Landau theory is a more advanced ap-
plication of the same concept. The theory introduces a Ginzburg-Landau parameter κ defined as

κ = λ/ξ , (12.53)
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which classifies the two types of superconductors as

Superconductor Type :

{
κ < 1/

√
2, Type I

κ > 1/
√

2, Type II
(12.54)

Figure 12.8.12: Mixed state in a Type II superconductor. The superconducting state is penetrated
by an array of vortices. Around the vortex core, the system is in its normal state allowing for flux
penetration. Beyond a certain length, the system expels flux as in the Meissner state.

The physical effects of magnetic field penetration and its subsequent effects on magnetization of the
superconducting material is shown in the magnetization (M) versus field (H) plots in Figure 12.9.13.
For a Type I superconductor the slope of the line is negative one, displaying (perfect) diamagnetic
behavior. In reality a long, thin needle-like specimen, which has a zero demagnetization factor (re-
call from Chapter 10), with an applied field parallel to its axis can display this perfectly diamagnetic
behavior. The magnetization can be tracked experimentally using a pickup coil. But, for a Type
II superconductor, the Meissner state exists only up to a lower critical field value of Hc1. Beyond
this point as the magnetic field lines begin to partially penetrate the sample, the magnetization is
reduced before being completely destroyed above the upper critical field of Hc2(T ). The mixed
normal-superconducting state that exists between Hc1 ¡ H ¡ Hc2 is called the Shubnikov phase in
honor of the Russian physicist Lev V. Shubnikov (1901−1937), who along with his collaborators
discovered this phenomenon experimentally in 1935.

12.9 Vortices in Superconductors
We have learned that in the mixed state of a Type II superconductor a mixture of normal and su-
perconducting zones is energetically favored due to the formation of a negative surface energy, see
Figure 12.8.12. These normal regions allow the magnetic field penetration in the form of thin fila-
ments usually called flux lines, fluxons, fluxoids or vortices. The vortices, also known as Abrikosov
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vortices, which can be visualized as a swirl of electrical current associated with this state. Within the
vortex state the material surrounding these normal regions can have zero resistance and have par-
tial flux penetration. In the center of each vortex, superconducting behavior does not exist. As the
strength of the external field increases, the number of vortex filaments increase until the field reaches
the upper critical value Hc2. At this transition point, the filaments crowd together and amalgamate
so that the entire material goes into a normal state.

Figure 12.9.13: (a) Type I and (b) Type II superconductors.

Abrikosov predicted that each vortex or flux line carries a single fixed quantized flux number given
by

Φ0 = h/2e = 2.07×10−15 T m2, (12.55)

where h is the Planck’s constant and e is the magnitude of the electronic charge. In a homogeneous
superconductor, these vortices are typically arranged in the form of a triangular lattice. Magnetic flux
lines can be imaged using neutron diffraction, magneto-optical methods, and decoration techniques.
In fact, the very first experimental detection of the fluxoid pattern was done by Essmann and Träuble
using a decoration technique.

12.10 Technological and Scientific Applications of Superconducting Materials
To create a strong magnetic field which permeates a large volume of space such as in superconduct-
ing wires and does not decay in space, we need to use electromagnets with large values of current.
But, a high value of current in the coil comes with a price − loss of energy due to Joule heating.
One way to avoid this problem, for example, is to cool the wire with water, but, this approach is
expensive and not very convenient. However, the use of a superconducting wire which does not
resist the flow of current and hence curbs joule dissipation is the perfect way to tackle the issue of
heating. The superconducting wires are often made from niobium and titanium alloys (NbTi) or nio-
bium and tin (Nb3Sn). Using coils with several thousand turns of superconducting wires, plunged in
liquid helium, strong magnetic fields can be created which are used for Magnetic Resonance Imag-
ing (MRI) devices in hospitals; for Nuclear Magnetic Resonance (NMR) experiments in chemistry
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and in physics; in particle accelerators to make particles deflect; or even on board a magnetically
levitated train called a Maglev.
One of the most obvious application of superconductivity is for low-loss electrical power transmis-
sion. Since a substantial amount of electrical energy is lost during transmission of current through
normal conductors, by replacing the cables with superconductors, in principle all the dc losses could
be eliminated. This is one of the pursuits that still keeps research in the area of superconductivity
alive. The concept of magnetic levitation has been used to test superconducting Maglev (magnetic
levitation) trains. At present, the fastest train in the world is found in Japan, which does not touch
the tracks and uses superconductors. The Maglev train levitates a few inches above the tracks based
on technology that uses strong magnetic fields created by superconducting coils located and cooled
on board. Although not marketed yet, the prototype has been tested with a record speed of 581 km/h.
Economic issues limit the development and wide-scale deployment of superconducting Maglevs.
As mentioned earlier, a SQUID is an electronic system that uses a superconducting ring in which
one or two small insulating layers have been inserted. This device based on the Josephson effect
in the superconductor-insulator-superconductor sandwich and on the flux quantization in the ring
makes it ultra-sensitive to any magnetic field. Squids are hence the most efficient systems to mea-
sure magnetic fields with great accuracy, even the weaker ones. For instance, squids are sensitive
enough to measure the magnetic activity of the human brain in real time, enabling very precise
magnetoencephalographic measurements. Squids are used whenever very powerful magnetometers
are needed: in physics, archaeology, and geology. The exceptional properties of Josephson junction
circuits might some day replace silicon transistors, enabling computers to reach processing rates of
100 GHz. There are theoretical proposals to use superconductivity to build a quantum computer,
enabling massively parallel processing.
Superconductivity has had a profound effect in the field of medical applications. Currently, there are
a couple of devices, Magnetic Resonance Imaging (MRI) and MagnetoEncephaloGraphy (MEG)
which are based on the use of superconducting properties. Using MRI, it is possible to view inside
the human body with virtually no ill effect, contrary to x-ray scanners for instance. At present,
MRIs are routinely used to diagnose tumours, sclerosis and oedemas. To do that, the Nuclear MRI
machine is helped by the NMR effect described in detail in Chapter 10 of this book. To generate
strong magnetic fields, with minimal heating effects, the coil is made of a superconducting wire
plunged in a very cold liquid such as helium. There is no electric resistance, hence no heating. In
addition to that, once the magnetic field has been created, the coil can be closed. The current (and
hence the magnetic field) keeps flowing since there is no resistance. In addition to visualizing the
organs, superconductors can assist with mapping brain activity. Due to the electrical activity of the
brain, it generates magnetic fields of the order of picotesla. However, it is possible to use a MEG
to measure and probe these fields to obtain “real time” brain activity data. In order to achieve that,
SQUIDS which are ultrasensitive magnetic sensors are placed on the surface of the patient’s brain.
MEGs can be used to study normal and abnormal behaviours of the brain with a time resolution
of about a millisecond. Similar to MRI, it is a non-invasive and harmless approach to medical
diagnoses. It can be used to diagnose normal and abnormal areas of the brain, thereby helping to
treat, for example, epilepsy.
The electric field that accelerates beams of charged particles (electrons, protons, ions) in a particle
accelerator is produced by radio-frequency resonant cavities. The magnetic field that guides and
focuses the charged objects is produced by electromagnets. Since superconducting cables cut down
on transmission lose the large hadron collider (LHC) of the CERN in Geneva uses several thou-
sand superconducting magnets spread on the 27-km circumference to produce a magnetic field four
times higher than classical electromagnets, with an electric intake ten times smaller (considering the
power consumed by the cryogenic cooling device). At present, superconductivity has become a key
technology for particle accelerators. In addition, superconductors are often used in radiation sen-
sors called bolometers. These sensors work at a very low temperature and are very sensitive tools
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to study extremely weak radiations, such as the background radiation of the Universe at 3 K, for
instance. Bolometers are used in many astrophysics and astroparticle physics experiments. Finally,
experiments conducted in search of dark matter in the universe make use of thermometers made of
superconducting materials.
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12.11 Chapter 12 Exercises
12.11.1. In words, explain the concepts of critical temperature and critical field as applied to su-

perconductors.

12.11.2. What does the London penetration depth in a superconductor mean?

12.11.3. What is the fundamental difference between a perfect conductor and superconductor both
of which can have zero resistance?

12.11.4. What is the physical property of a superconductor that causes magnetic levitation?

12.11.5. The first London equation provides a phenomenological explanation of which property
of a superconductor?

12.11.6. The superelectron density inside a superconductor builds up gradually rather than
abruptly at the normal-superconductor interface. What is the name given to this length
scale?

12.11.7. In Example 12.6.0.1 we calculated the magnetic field profile of a superconductor occupy-
ing half the space. Using the expression for the calculated field, Equation (12.29), obtain
an expression for the surface supercurrent. Such currents are also known as Meissner
currents.

12.11.8. Calculate (a) the magnetic field profile and (b) the Meissner current of a superconducting
slab of finite thickness d, see Figure 12.11.14. Recall, in Example 12.6.0.1 we calculated
the magnetic field profile of a semi-infinite superconductor occupying half the space.

SCN

y

z

x

N

z

d

BaBa

Figure 12.11.14: A superconducting slab of finite thickness d surrounded by a non-superconducting
region. The magnetic field is applied along the z axis. The slab is oriented along the y direction.

12.11.9. Why does a Type II superconductor allow flux penetration?

12.11.10. Experiments on lead (Pb) suggest that it has a ξ = 87 nm and a λ = 39 nm. Is Pb a Type
I or Type II superconductor?
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13.1 Introduction
Have you ever wondered why metals are opaque but glass is transparent when we shine a light
on it? Why are some objects translucent? How does a light-emitting diode (LED) which uses
electroluminescence work? In this chapter we will provide a conceptual framework to understand
the response of a material to visible light, which is part of the electromagnetic spectrum (EMS),
see Figure 13.1.1. You will also learn how optical phenomena can be utilized for technological
benefit. The EMS spans a wide range of radiation ranging from γ-rays, through x-rays, to ultraviolet,
visible, infrared, microwaves, and finally to radio waves.
Visible light occupies a narrow part of the EMS with wavelength that ranges from 0.4 µm to 0.7
µm. When light is incident on an optical medium, metallic or nonmetallic, it can undergo reflec-
tion, propagation, or transmission, see Figure 13.1.2. The propagating part of the light within the
medium undergoes further interaction with potential processes including refraction, absorption,
luminescence, and scattering.
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Figure 13.1.1: Electromagnetic spectrum.
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Figure 13.1.2: The three different processes (1) reflection, (2) propagation, and (3) transmission by
which light can interact with an optical medium. The propagating light beam could further undergo
scattering (process 2a), absorption/ luminescence (process 2b), and refraction (process 2c).

Electromagnetic radiation consists of fluctuating electric and magnetic fields. In the frequency range
of the visible light spectrum, the electrical field component interacts with the charge cloud surround-
ing each atom to displace and separate the positive and negative charge centers to create electronic
polarization. The polarized medium then subsequently either absorbs some of the energy or leads
to a retardation of the light wave velocity as it passes through the medium, thereby causing refrac-
tion. Absorption by electronic polarization is important only at frequencies in the vicinity of the
relaxation frequency of the constituent atoms.
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Besides polarization, electron energy transition is another important interaction that allows us to
explain optical properties of solid state matter. When a photon (packet of light energy) is absorbed
by an atom, the atom gains the energy of the photon, and electrons may jump to a higher energy
level. The atom is then said to be in an excited state. Absorption occurs when the photon’s energy,
hν , matches the energy difference, ∆E, between two energy levels (see Figure 13.1.3). Thus, we
have

∆E = hν , (13.1)

where the frequency ν , the wavelength λ , and the speed of light c are related by

c = νλ . (13.2)

ΔE = hν

absorption emission

Figure 13.1.3: Atomic level description of electromagnetic radiation absorption and emission.
In an absorption process the incident radiation hν , where h is the Planck’s constant and ν is the
frequency, can be tuned to match the energy level difference ∆E to promote an electron from a
lower energy level to a higher one. When the atom re-emits light via spontaneous emission, known
as luminescence, those processes can be further classified into fluorescence and phosphorescence
based on the timescale of deexcitation.

When the electron deexcites to a lower energy level, the energy of the atom is lowered, and the
excess energy of the electron is emitted in the form of a photon. Such absorption–emission processes
are routinely exploited in spectroscopic techniques which experimentally measure optical properties
of materials. Extending this atomic level description to the domain of solid state physics, we can say
that an electron from the nearly filled valence band transitions across the band gap into an empty
state within the conduction band. In Section 13.6 we use such mechanisms to qualitatively explain
the optical properties of glass, metals, and other non-metallic materials. In Section 13.7 we list the
various spectroscopic and technological applications that use optical properties.

Example 13.1.0.1
The acronym LASER, Light Amplification by Stimulated Emission of Radiation, was coined by the
American physicist Gordon Gould (1920-2005). He introduced this common worldwide household
name as a graduate student at Columbia university. Although controversial, the construction of the
first laser in 1960 is credited to Theodore H. Maiman (1927-2007). A LASER is a device that emits
light which is both spatially and temporally coherent. Spatial coherence allows for the laser to be
focused in a tight region allowing for technological applications such as laser pointer, laser cutting,
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and lithography. The temporal coherence aspect enables the device to emit monochromatic light or
light restricted to a narrow spectrum. The red laser operates at a wavelength of about 650 nm. What
is the frequency corresponding to this?
Solution
Using Equation (13.2) we have

3×108 = ν(350×10−9). (13.3)

Thus we get ν = 8.57×1014 Hz. Comparing with Figure 13.1.1, we find that the answer correctly
lies in the visible light region.

In Table 13.1.1 we list the frequency range description within the optical part of the EMS. The
typical wavelength in the optical zone varies between a nanometer to a millimeter, which is usually
larger than the atomic dimensions of the underlying crystal lattice being probed. We can study the
optical properties of a solid state material from two different physical perspectives. In the classical
treatment of electromagnetic radiation, a phenomenological description using Maxwell equations
considers the solid to be a dielectric media characterized by optical constants. To provide a mi-
croscopic description, the optical constants can be related to the dielectric constant and the optical
conductivity using a quantum mechanical approach (beyond the scope of this chapter). In an even
more advanced treatment, the radiation field is considered to be quantized and their interaction with
the elementary excitations in the solids (phonons, magnons) needs to be considered.

Table 13.1.1: Frequency (ν), wavelength (λ ), and energy (eV) range of different regions in the
optical part of the electromagnetic spectrum.

Region ν (THz) λ (µm) Energy (eV)
Far infrared (FIR) 0.1 – 10 25 – 1000 5×10−4 – 0.05
Mid infrared (MIR) 10 – 120 2.5 – 25 0.05 – 0.5
Near infrared (NIR) 120 – 400 0.8 – 2.5 0.5 – 1.6
Visible 400 – 800 0.4 – 0.8 1.6 – 3
Ultraviolet (UV) 800 – 32000 0.010 – 0.4 3 – 120

Optical methods form an important branch of experimental techniques that can be used to probe
the internal structure of solid state materials. At the beginning of the 20th century, the study of
interactions between light with matter (blackbody radiation) laid the foundations of quantum the-
ory. The traditional use of optical materials for windows, antireflection coating, lenses, and mirrors
have been extended to include fiber optics technology and optoelectronic devices. Further applica-
tions such such as waveguides, photodetectors, lasers, LEDs, and flat-panel displays have had an
important technological societal impact.
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Table 13.1.2: The origins of the various spectral regions can be generally classified as shown in the
table above. To probe the corresponding transitions at the microscopic level, an appropriate form of
spectroscopy needs to be applied. For example, the resonant and recoil-free emission and absorption
of gamma radiation by atomic nuclei bound in a solid is called Mössbauer effect. It is a physical
phenomenon discovered by the German physicist Rudolf Mössbauer (1929-2011) in 1958 and its
main application is in Mössbauer spectroscopy. In physics this particular spectroscopic technique
has been used to demonstrate gravitational red-shift, measurement of gamma-ray line width, test of
lattice dynamical models, and hyperfine interactions. It also finds widespread use in the fields of
geology and bioinorganic chemistry.

Radiation Type of Transition
Gamma rays Nuclear
X-rays Inner electrons
Ultraviolet light Outer electrons
Visible light Outer electrons
Infrared light Vibration
Microwaves Rotation
Radiowaves Spin flips

The optical response can be described by a set of quantities called the optical constants. In this
chapter we will be studying and exploring the various interconnected relationships amongst these
constants (which can vary based on wavelength) and highlight their importance. Some of the im-
portant quantities that you will learn about include the dielectric constant (ε), the refractive index
(n), the extinction coefficient (κ), the electromagnetic skin depth (δ ), and the surface impedance
(Z). Knowledge of optical constants and interaction is useful for designing lasers, LEDs, non-linear
optical crystals, photovoltaic cells, and materials characterization of electronic band structure, im-
purity levels, lattice vibrations, and magneto-optical behavior. In the next section, we will introduce
some of the basic concepts in Maxwell’s equations related to our study of optical phenomena.

13.2 Basic Concepts in Electrodynamics
A dielectric material is by nature electrically insulating and exhibits a structure composed of an
electric dipole. An electric dipole constitutes a spatially separated positive and negative charge cen-
ter at the molecular or atomic level. The bonding in an electric dipole originates from the Coulomb
attraction between the opposite charges. A dipole could be created by a temporary short-lived dis-
tortion (vibration of a molecule) of an otherwise symmetrically shaped molecule or it could be a
permanent dipole originating from an asymmetrical arrangement of charge centers. Irrespective of
its origins, when a dielectric material is exposed to an external electric field, its behavior can be
characterized by three macroscopic vectors – the electric field strength (~E), the polarization (~P), and
the electric displacement vector (~D).
The microscopic response of a dielectric substance is determined primarily by its polarization. Polar-
ization is defined as the net electric dipole moment per unit volume. The application of an electric
field tends to polarize symmetric charge centers to create polar molecules which produce micro-
scopic dipoles aligned parallel to the direction of the external field. This generates an overall net
electric dipole moment within the material and hence an electric polarization. Assuming an isotropic
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medium where the polarization response to the electric field is linear, we can write

~P = εoχel~E, (13.4)

where εo is the electric permittivity of free space and χel is the electric susceptibility of the
medium. The assumption of isotropic medium and linear response does not hold in real materials.
Using the above relation, we can write the following expression betwen the electric displacement ~D
of the medium, the electric field ~E, and the polarization ~P of the medium as

~D = εo~E +~P, (13.5)

We can combine Equations (13.4) and (13.5) to write

~D = εoεr~E = ε~E, (13.6)

where εr = 1+χel is the relative dielectric constant of the medium. The parameter εr provides us
with insight on how light propagates through dielectrics. The electric permittivity of the medium
is given by ε . The electric displacement vector is the systems response to an external electric field
which causes the bound charges in the material to separate. This induces a local electric dipole
moment leading to the polarization ~P term. Conceptually, it is important to recognize that the electric
displacement vector is related to the free charge density of the medium, whereas the electric field
includes the response of both the bound and free charges.
Changing the topic of discussion to magnetic fields, recall from Chapter 10, that in a magnetic
solid the relation between ~B and ~H is modified due to the magnetization, ~M, of the medium in a
spirit much similar to Equation (13.6). In the case of a linear, isotropic, and homogeneous magnetic
media, we had defined

~B = µo(~H + ~M). (13.7)

The magnetization in this case is given by

~M = χmag~H, (13.8)

where χmag is the dimensionless magnetic susceptibility and the magnetization ~M is in units of
Am−1. From the above we have

~B = µo(1+χmag)~H = µoµr~H = µ~H, (13.9)

where µr = 1+ χmag is the relative magnetic permeability and µ is the magnetic permeability of
the medium. Using the above definitions we can rewrite Maxwell’s equations of electromagnetism
in a medium as displayed in Table 13.2.3. Using the redefined expressions, it is possible to show that
wave-like solutions are consistent in a medium with no free charges (ρ f = 0) or currents (~J f = 0).
To derive the equations for light that propagates in a uniform optical medium, we have to further
satisfy the following conditions:

• uniform (homogeneous): the permittivity and permeability have the same values at all points
in space,

• isotropic: the permittivity and permeability do not depend on the direction of propagation,

• non-dispersive: permeability and permittivity are frequency independent.

Using the above-stated assumptions and Equations (13.6) and (13.9), we can write

~∇×~E = −µoµr
∂ ~H
∂ t

, (13.10)

~∇× ~H = εoεr
∂~E
∂ t

. (13.11)
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Table 13.2.3: Summary of the four Maxwell Equations displaying both the equation and its physical
meaning. These fundamental equations are utilized in the text to derive important formulae within
the context of superconductivity. The symbols have the standard meaning: ~D (displacement vector),
~B (magnetic field), ~J f (free current density), and ρ f (free charge density).

Law Maxwell Equation (medium) Physical Meaning

Gauss’s Law (Electric field) ~∇ ·~D = ρ f Electric flux is proportional
to free charge inside volume.

Gauss’s Law (Magnetic field) ~∇ ·~B = 0 Magnetic flux is zero
in an enclosed volume.

Faraday’s Law of Induction ~∇×~E =− ∂~B
∂ t Induced electric field is

(Maxwell−Faraday Law) proportional to
changing magnetic flux.

Ampére’s Law ~∇× ~H = ~J f +
∂~D
∂ t Magnetic field is

proportional to electric
and displacement currents.

Now consider taking the curl of Equation (13.10) and eliminate the auxilliary field using Equation
(13.11) to obtain

~∇×
(
~∇×~E

)
=−µoµrεoεr

∂ 2~E
∂ t2 . (13.12)

Next, we use the vector identity

~∇×
(
~∇×~E

)
= ~∇

(
~∇ ·~E

)
−~∇2~E, (13.13)

to simplify the left-hand side of the equation. Furthermore, the zero-free charge condition tells us
that ~∇ ·~E = 0, thus yielding

~∇2~E = µoµrεoεr
∂ 2~E
∂ t2 = µε

∂ 2~E
∂ t2 . (13.14)

To proceed further, we draw comparison between Equation (13.14) and the general wave equation
given by the expression

∂ 2y
∂x2 =

1
v2

∂ 2y
∂ t2 , (13.15)

where v is the propagation speed which can be identified as

1
v2 = µoµrεoεr = µε. (13.16)
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Note, in free space εr = µr = 1. Thus we obtain for the speed of electromagnetic radiation (which
includes light) in vacuum as

v =
1√
µoεo

= 3×108m/s≡ c (speed of light). (13.17)

To obtain an expression for the velocity of light in a medium, we use Equation (13.16) to obtain

v =
1√
µrεr

c, (13.18)

which can be used to define the refractive index n (or slowness) of the medium as

n =
c
v
. (13.19)

Microscopically, the electric dipoles are excited by the incoming electric field component and ra-
diate back with retardation. This results in a permittivity which is different from unity. However,
the magnetic dipoles in the medium interact extremely weakly with the oscillating magnetic field
component of the EMS spectrum. Hence we set the relative magnetic permeability equal to one to
obtain

v =
1√
µrεr

c =
1√
εr

c. (13.20)

Thus, using Equation (13.19) we can write

n =
√

εr. (13.21)

Equation (13.21) is worth reflecting upon. Starting with the fundamental laws of electromagnetism
we are able to relate the refractive index to the dielectric constant, which is pretty remarkable. Now
combining all the above concepts, we can write the wave equation, Equation (13.14), for the electric
field as

~∇2~E =
1
v2

∂ 2~E
∂ t2 . (13.22)

Eliminating ~E instead of ~B from Maxwell’s equations, we obtain the magnetic field wave equation
(Exercise 13.9.6)

~∇2~B =
1
v2

∂ 2~B
∂ t2 . (13.23)

Equations (13.22) and (13.23) belong to a class of partial differential equations named the
Helmholtz equations after the German physicist Hermann Ludwig Ferdinand von Helmholtz
(1821-1894). Solution to the electric or magnetic field wave equations plays an important role in
how we analyze light–matter interaction such as reflection, refraction, or propagation through a
medium. The simplest solution, called the plane wave solution, is given by the expression

~E(~r, t) = ~Eo exp
(

i~k ·~r− iωt
)
, (13.24)

where ~Eo is the wave amplitude,~k is the propagation wave vector,~r is the position vector, and ω

is the angular frequency. Inserting the solution into the wave equation and evaluating the spatial
derivative gives us

∇
2~E = ~Eo∇

2 exp
(

i~k ·~r− iωt
)
,

= ~Eo~∇ ·
{
+i~k exp

(
i~k ·~r− iωt

)}
,

= −k2~Eo exp
(

i~k ·~r− iωt
)
=−k2~E. (13.25)
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Computing the time derivative we find

µε
∂ 2~E
∂ t2 =−ω

2
µε~E. (13.26)

Equating the time and space derivatives, Equations (13.25) and (13.26), we now have a couple of
important relations

k = ω
√

µε =
ω

v
=

2π

λ
, (13.27)

First, the above equation relates the wave vector to frequency and speed of propagation as

ω = vk, (13.28)

which is known as the dispersion relation. Second, we have the relationship

k =
2π

λ
, (13.29)

where we have used the fact that

v = νλ =
ω

2π
λ , (13.30)

where ω is the angular frequency measured in rad s−1. This equation relates the propagation wave
vector with the wavelength of light. Just the way the frequency counts the number of oscillations
based on time period, f = 1/T , the wave vector (or wave number) counts how many waves of
wavelength λ fit in an interval of “2π”, where the 2π originates due to the cyclic nature of the oscil-
lations. Further information on the properties of wave propagation (in free space) can be extracted
from Maxwell’s equation. For example,

~∇ ·~E = 0. (13.31)

Taking the divergence we obtain

~∇ ·
{
~Eo exp

(
i~k ·~r− iωt

)}
= ~Eo ·∇

{
exp
(

i~k ·~r− iωt
)}

,

= −i~k ·~Eo exp
(

i~k ·~r− iωt
)
. (13.32)

Equating the last line of the above equation to zero

~k ·~E = 0, (13.33)

we obtain the condition that the electric field is transverse to the direction of propagation since the
zero dot condition implies orthogonality. A similar equation holds for the magnetic field. On the
other hand, if we take the curl of the electric field, it can be shown (Exercise 13.9.7) that

~k×~E = ω~B. (13.34)

Thus, based on Equation (13.34) we can conclude that~k,~E, and ~B are mutually perpendicular to
each other. The magnitude of the magnetic field can be related to the electric field as

|~B|= |
~k|
ω
|~E|= n

c
|~E|, (13.35)
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where we have used Equation (13.27). Thus we can consider either the electric or the magnetic field
equation. From Equation (13.35) we can infer that

k =
n
c

ω, (13.36)

which is consistent with Equation (13.27). Often it is useful to consider the auxilliary field ~H (be-
cause it relates to the free current) in which case the equation becomes

|~E|
|~H|

= µ
|~E|
|~B|

=

√
µ

ε
= Z. (13.37)

The quantity Z has units of Ω and is called the impedance of the medium.

Example 13.2.0.1
What is the impedance of free space?
Solution

Zo =

√
µo

εo
= 377 Ω (13.38)
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Figure 13.2.4: Reflection and transmission of electromagnetic wave at normal incidence.

In the next few paragraphs we will apply our knowledge of plane wave solutions to obtain expres-
sions for the reflection and transmission coefficients at the boundary of two non-conducting media
with normal incidence. Consider Figure 13.2.4 where an electromagnetic wave strikes the interface
of two media with refractive indices n1 and n2. We consider the incident electromagnetic waves
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(~E i
1,
~H i

1) in medium 1, the reflected electromagnetic waves (~Er
1,
~Hr

1) in medium 1, and the trans-
mitted electromagnetic waves (~Et

2,
~Ht

2) in medium 2. The electromagnetic waves are assumed to
propagate along the z axis with the waves impinged on the x–y plane. Assuming linearly polarized
waves in the x direction, we can define

~E i
1 = E i

1x exp(k1z−ωt) î, (13.39)
~Er

1 = −Er
1x exp(−k1z−ωt) î, (13.40)

~Et
2 = Et

2x exp(k2z−ωt) î, (13.41)

where the incident and transmitted propagation vectors have the same magnitude, but the reflected
wave vector has a negative sign. Using the relations

k1 =
n1

c
ω; k2 =

n2

c
ω (13.42)

and combining with Equations (13.34) and (13.36) we obtain the relation

~B =
n
c

ˆ̃k×~E, (13.43)

where ˆ̃k = k̂ for the incident and transmitted waves and ˆ̃k = −k̂ for the reflected wave. Since the
magnetic field is constrained to obey the above equation, we can write for the magnetic field com-
ponents in the above process

c~Bi
1 = n1E i

1x exp(k1z−ωt) ĵ, (13.44)
c~Br

1 = n1Er
1x exp(−k1z−ωt) ĵ, (13.45)

c~Bt
2 = n2Et

2x exp(k2z−ωt) ĵ, (13.46)

For the case of normal incidence that we are considering here, the electric and magnetic components
of all three electromagnetics waves are parallel to the boundary surface between the two dielectric
media. Thus, the boundary conditions for the total fields which apply in this case at z = 0 are given
by

E‖,1 = E‖,2, (13.47)
H‖,1 = H‖,2. (13.48)

Since we are considering non-magnetic media µ1 = µ2 = µo, the second condition for the total fields
can be rewritten as

E‖,1 = E‖,2, (13.49)
B‖,1 = B‖,2 (13.50)

Application of the boundary conditions from Equations (13.49) and (13.50) and keeping in mind
Equations (13.39-13.41) and (13.44-13.45) implies

E i
1−Er

1 = Et
2, (13.51)

n1
(
E i

1 +Er
1
)

= n2Et
2 (13.52)

The above equations can now be solved to obtain

Er
1 =

n2−n1

n2 +n1
E i

1, (13.53)

Et
2 =

2n1

n1 +n2
E i

1. (13.54)
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We now introduce the Fresnel coefficients r12 and t12 for normal incidence reflection and transmis-
sion, respectively. We have

r12 =
n2−n1

n2 +n1
, (13.55)

t12 =
2n1

n1 +n2
. (13.56)

The Fresnel conditions (or equations) were derived by the French civil engineer and physicist
Augustin-Jean Fresnel (1788-1827). These equations capture the reflected and transmitted am-
pltiudes of the light wave. Since amplitude can be related to power, an alternate way of capturing
the optical behavior at the interface is by using the concept of reflectance R for normal incidence
as

R = r2
12 =

(
Er

1
E i

1

)2

=

(
n2−n1

n2 +n1

)2

, (13.57)

and transmittance T , defined as

T =
n2

n1
t2
12 =

n2

n1

(
Et

1
E i

1

)2

=
n2

n1

(
2n1

n2 +n1

)2

. (13.58)

Reflectance is the fraction of the incident power that is reflected from the interface. Transmittance
is the fraction of transmitted power through the interface. Using Equations (13.57) and (13.58) we
note that R+ T = 1 for any pair of non-conducting media which is essentially an expression of
energy conservation at the interface.
What are the real-life implications of the R and the T values? For example, if we consider an
air–glass interface with n1 = 1 (air–incidence) and n2 = 1.5 (glass–transmittance) we have, using
Equations (13.57) and (13.58), R = 4% and T = 96%, respectively. The 4% reflectance show up
as lens flare in photography. Fresnel equations also play a role in crime solving. One-way mirrors
used by police become partial reflectors due to a very thin layer of aluminum coating applied to
one side of the mirror in the interrogation room. With a brightly lit interrogation room the suspect
only sees their reflection in the mirror. But, the investigating crime officers waiting outside in a
dimly lit room that does not allow transmission of enough light. Other popular applications are
antireflective coatings applied to prescription lenses, optical surfaces, and photographic lenses to
reduce reflection.

13.3 Complex Refractive Index and the Dielectric Constant
We will now venture beyond the description of propagating electromagnetic waves in free space to
develop an understanding of how light interacts within a conducting medium. Maxwell’s equations
provide a definition of the fields that are generated by currents and charges in matter. But, they do not
describe how these currents and charges are generated. Thus, to find a set of self-consistent solutions
to the electromangetic field, Maxwell’s equations need to be supplemented by the behavior of the
material under the influence of the fields. These material–field relationship equations are known as
the constitutive relations. For a linear and isotropic medium they are given by

~D = εoεr~E = ε~E, (~P = εoχel~E) (13.59)
~B = µoµr~H = µ~H, (~M = χmag~H) (13.60)
~J = σ~E. (13.61)
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Note, Equations (13.59) and (13.60) have been reported earlier. In a conducting medium with no
free charges, we can use the third constitutive Equation (13.61) in Maxwell’s equations to obtain
the wave equation (Exercise 13.9.12)

∇
2~E = µε

∂ 2~E
∂ t2 +µσ

∂~E
∂ t

. (13.62)

Next, inserting the plane wave solution, Equation (13.24), into Equation (13.62) we obtain

∇
2~E(~r)+ω

2
µ

(
ε +

iσ
ω

)
~E(~r) = 0. (13.63)

We can define the complex dielectric constant given by

ε̃ = ε +
iσ
ω
, (13.64)

where both ε and σ are real within the current formulation. From the above we have the equation

∇
2~E(~r)+ k̃2~E(~r) = 0, (13.65)

where the complex wave vector can be expressed in terms of the complex refractive index ñ given
by

k̃ = ω

√
µ

(
ε +

iσ
ω

)
=

ñω

c
. (13.66)

Note, Equation (13.66) is a complex generalization of the previously introduced wave vector Equa-
tion (13.27). We can further rewrite ñ as

ñ = n+ iκ, (13.67)

where n is the real part of the refractive index and the imaginary part κ is called the extinction
coefficient. From Equation (13.21) we know that it is possible to relate the dielectric constant with
the refractive index. Thus if n is the complex refractive index the dielectric constant must also be
complex and is defined as

ε̃r = ε1 + iε2, (13.68)

where ε̃r = ε̃/εo is the complex relative dielectric constant. Thus we can write

ñ2 = ε̃r. (13.69)

In the above we have set the relative permeability µr = 1 since we are concerned with optical fre-
quencies. Using the definition of ñ, ε̃ , and after some simple algebra equating the real and imaginary
parts we can obtain the following relations (Exercise 13.9.13)

ε1 = n2−κ
2, (13.70a)

ε2 = 2nκ. (13.70b)

It is possible to solve Equations (13.70a) and (13.70b) to obtain explicit expressions for n and κ as
(Exercise 13.9.14)

n =
1√
2

(
ε1 +(ε2

1 + ε
2
2 )

1/2
)1/2

, (13.71a)

κ =
1√
2

(
−ε1 +(ε2

1 + ε
2
2 )

1/2
)1/2

. (13.71b)
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The choice of positive square roots ensures that both n and κ themselves are real and positive as
required from physical consideration. The introduction of a complex refractive index has implica-
tions. Consider a plane wave propagating in the z > 0 direction in a medium described by a complex
refractive index. Introducing the skin depth parameter 1/δ we have

~E(~r) = ~Eo exp
(
+ik̃z

)
= ~Eo exp

(
+in

ω

c
z
)

exp
(
− z

δ

)
(13.72)

This shows that a non-zero extinction leads to an exponential decay of the wave in the medium.
The real part of the complex refractive index determines the phase velocity of the wave front. From
Equation (13.66) we can identifty the real and imaginary parts of the complex wave vector k̃. Then
using the expressions for the real and imaginary parts in Equations (13.71a) and (13.71b) we can
write

k̃ = ω

√
µε

2



(

1+

√
1+

σ2

ω2ε2

)1/2

+ i

(√
1+

σ2

ω2ε2 −1

)1/2

 . (13.73)

Thus the propogation vector k and the attenuation factor α is given by

k = ω

√
µε

2

(√
1+

σ2

ω2ε2 +1

)1/2

, (13.74)

α = ω

√
µε

2

(√
1+

σ2

ω2ε2 −1

)1/2

. (13.75)

The ratio of σ/ωε determines whether a material is a good conductor or otherwise. For a good
conductor we have σ � ωε . For this case, we have

k = α =

√
ωµσ

2
. (13.76)

The speed of electromagnetic wave is given by

v =
ω

k
=

√
2ω

σ µ
. (13.77)

The electric field amplitude diminishes exponentially with distance as exp(−αz). The distance to
which the field penetrates before its amplitude diminishes by a factor e−1 is known as the skin depth
(mentioned earlier), which is given by the equation

δ =
1
α

=

√
2

ωµσ
. (13.78)

Thus we find that the wave does not penetrate much inside the conductor. This effect is known as
the skin effect. From a commercial perspective, this has financial implications. It is evident from
the skin depth equation that with increasing frequency, currrent conduction is limited exclusively to
the outer surface since the penetration depth starts to decrease. As a cost-saving measure, when skin
depth is shallow, a solid conductor can be replaced with a hollow tube with no loss of performance,
thereby saving hundreds of dollars in production and manufacturing cost.

Example 13.3.0.1
Compare the skin depths of copper and titanium at 1 GHz. The resistivity ρ of copper and titanium
are 1.69 × 10−8 Ω–m and 54 × 10−8 Ω–m at 20◦C, respectively.
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Solution
Using Equation (13.78), ρ = 1/σ , the resistivity values, and the conversion 1GHz = 109 Hz we find
for the skin depth of each metal

δCu = 2.07 µm and δTi = 11.7 µm. (13.79)

In general Equations (13.70a) and (13.70b) are complicated to analyze. But, it is possible to create
three categories of approximations which allow us to infer useful information. The real and imag-
inary parts of the complex dielectric constant ε̃ can then be used to analyze the propagation of
electromagnetic waves in insulators and conductors.

(i) Insulator: ω � σ/ε; ε2� |ε1|, ε1 > 0⇒ n≈√ε1, κ = ε2/2n� n.

(ii) Metals (in upper infrared): ω� σ/−ε; ε2� |ε1|, ε1 < 0⇒ κ ≈√−ε1, n = ε2/2k� k.

(iii) Metals (at or below microwave frequencies): ω � σ/|ε|; ε2� |ε2|, n≈ κ ≈
√

ε2/2.

The first condition above is for a weakly absorbing medium where κ is very small. We can conclude
that the refractive index is determined by the real part of the dielectric constant. But, the absorption
is mainly determined from the imaginary part.

13.4 The Free Electron Drude Theory of Optical Properties
The Drude free electron theory of metals is based on a theoretical construct that treats the valence
electrons of the atoms as if they are free. Since free electrons are not bound to a particular atom,
there is no resonant restoring force. But, in the presence of an applied electric field, the free elec-
trons are subjected to an electrical force. Subsequently, these electrons undergo a collision with
a scattering time given by τ . Taking into account the scattering processes, the Drude model for
conductivity can be generalized to include alternating-current (ac) effects to study how metals and
doped semiconductors interact with light. Applying Newton’s second law gives

m
(

d~v
dt

+
v
τ

)
=−e ~E(t) =−e ~Eoe−iωt , (13.80)

where we have introduced a velocity dependent damping term and τ is a relaxation time. We intro-
duce a complex notation to describe the time dependent electric field, with the understanding that
only the real part of this expression has a direct physical meaning. Assuming there is a steady state
solution of the form

~v(t) =~vo exp(−iωt) , (13.81)

we can show (Exercise 13.9.15) that the amplitude is given by

~vo =−
e
m

(
~Eo

−iω +1/τ

)
. (13.82)

Next, we define the time dependent current density vector as

~J(t) = ~Jo exp(−iωt) . (13.83)

Combining the above definition with current density we can write

~Jo = −ne~vo, (13.84)
= σ(ω)~Eo, (13.85)
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where the frequency dependent AC conductivity can be identified with

σ(ω) =
σo

1− iωτ
, (13.86)

where

σo = εoω
2
pτ. (13.87)

In the above we have introduced the definition of the plasma frequency as

ω
2
p ≡

ne2

mεo
. (13.88)

The expression in Equation (13.88) represents the oscillation frequency of a neutral gas of charged
particles known as plasma. Both metals and doped semiconductors can be physically modeled as
an equal collection of positive ions and free electron charges, i.e., a plasma. For ordinary metals,
typical plasma energy values range from 3 – 17 eV. The relaxation times are typically of the order of
10−14 s and the damping constant arising from the relaxation time is of the order of 0.1 eV. Equation
(13.87) for the complex conductivity expression can be realized by multiplying the numerator and
denominator with the complex conjugate 1+ iωτ to obtain

σ(ω) =
ne2

m
τ

1− iωτ
, (13.89)

=
ne2

m
τ

1− iωτ

1+ iωτ

1+ iωτ
, (13.90)

=

(
ne2τ

m

)
1+ iωτ

1+ω2τ2 . (13.91)

Notice from Equation (13.91) that as ω → 0, the ℜe[σ(ω)] reduces to the Drude conductivity (or
DC conductivity) formula

σ =
ne2τ

m
. (13.92)

Thus, in the low frequency limit, ℑm[σ(ω)]→ 0 as ω→ 0. The complex dielectric constant and the
complex AC conductivity are related to each other. This can be shown by using the fourth Maxwell
equation (see Ampére’s Law, Table 13.2.3) and substituting the expression for the frequency depen-
dent electric field in the right-hand side of the equation to give

~∇×~B = µo

(
~J+ εo

∂~E
∂ t

)
,

= µo

(
σ(ω)~Eoe−iωt +(−iω)εo~Eoe−iωt

)
,

= µo

(
εo +

iσ(ω)

ω

)
(−iω)~Eoe−iωt ,

= µo
∂

∂ t
ε(ω)~E(t), (13.93)

where we have identified

ε(ω) = εo +
iσ(ω)

ω
. (13.94)
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Figure 13.4.5: Reflectance variation against frequency for a metal.

We can conclude from Equation (13.94) that optical measurements of ε(ω) are equivalent to mea-
surements of AC conductivity. Now substituting Equation (13.89) in Equation (13.94) we derive the
frequency-dependent relative dielectric function εr(ω)

εr(ω) =
ε(ω)

εo
,

=
1
εo

(
εo +

iσ(ω)

ω

)
,

=
1
εo

(
εo +

i
ω

ne2

m
τ

1− iωτ

)
,

= 1+
i
ω

ne2τ

mεo

1
(1− iωτ)

,

= 1+
i
ω

ne2τ

mεo

1
(−iτ)

1
(ω + i/τ)

,

= 1−
ω2

p

ω(ω + i/τ)
. (13.95)

For future analysis we will extract the real and imaginary parts from Equation (13.95); that is,

ℜe[εr(ω)] = 1−
ω2

p

γ2 +ω2 , (13.96)

ℑm[εr(ω)] =
ω2

pγ

ω(γ2 +ω2)
, (13.97)
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where γ ≡ 1/τ is the damping frequency. Let us analyze Equation (13.95) in the case of a weakly
damped system whereby we set 1/τ → 0. This leads to the following expression

εr(ω) = 1−
ω2

p

ω2 . (13.98)

We know from Equation (13.69) that the complex dielectric function and the complex refractive
index are related. In Equation (13.57) we had derived a relationship for reflectance. It is possible
to apply this equation to an air-metal interface. We note in this case n1 = 1 (real, air) and n2 =
ñ = n+ iκ (imaginary, metal). Thus, substituting into Equation (13.57) we can define the plasma
reflectivity expression R as

R =

∣∣∣∣
ñ−1
ñ+1

∣∣∣∣
2

, (13.99)

where ñ =
√

ε̃r. Inserting the frequency dependent refractive index expression into R we obtain
Figure 13.4.5. Let us now analyze this plot. When ω < ωp, ñ is imaginary. But for ω > ωp it is real
and positive. At ω = ωp the refractive index is zero. For ω < ωp, R = 1 and decreases for ω > ωp.
In simple terms this implies that the reflectivity of a free electron gas (plasma) is 100% up to plasma
frequencies. Thus, most metals are shiny up to plasma frequency and will reflect visible light and
infrared. This is the reason why metals such as silver and aluminum have been utilized for centuries
to make mirrors. Beyond the plasma frequency some of the light can be transmitted through the
metal. This implies that metals will eventually become transparent for frequencies which extend
into the ultraviolet for which ω > ωp. This phenomenon is known as the ultraviolet transparency
of metals. In passing, we should note that some metals such as gold and copper appear colored
since they selectively absorb particular wavelength ranges. This effect is in addition to the plasma
reflectivity effects.

Example 13.4.0.1
Using Equation (13.98) for the frequency dependent dielectric function for a weakly damped system
write a MATLAB code to generate Figure 13.4.5. Scale the expression with respect to the plasma
frequency ωp.
Solution
The MATLAB code to generate the figure is below.

%copyright by J. E Hasbun and T. Datta

% ch13_metalR.m

% This script plots the reflectance from a metal below, at, and above

% the plasma frequency using the Drude free electron theory for a weakly

% damped system.

% Function definitions

% Equation (13.98)

% The imaginary part is zero in the limit of weak damping.

% The function is scaled w.r.t to the plasma frequency.

epsr = @(w) (1 - 1/w^2);

% Refractive index, Equation (13.69)

nrefr = @(w) sqrt(epsr(w));
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% Reflectance, Equation (13.99)

refl = @(w) (abs((nrefr(w)-1)/(nrefr(w)+1)))^2;

% Plots

figure1 = figure;

axes1 = axes(’Parent’,figure1,’YMinorTick’,’on’,...

’XTick’,[0 1 2 3 4 5 6 7 8 9 10 11 12],...

’XMinorTick’,’on’);

ylim(axes1,[0 1.2]);

hold(axes1,’all’)

hold on;

fplot(@(w)refl(w),[0,3],’LineWidth’,2,’-k’);

% Create xlabel

xlabel(’\omega/\omega_{p}’,...

’FontSize’,16,’FontName’,’Times New Roman’);

% Create ylabel

ylabel(’Reflectance (R)’,’FontSize’,16,...

’FontName’,’Times New Roman’);

hold off;

Example 13.4.0.2
Write a MATLAB script to generate Figure 13.4.6 which plots the refractive index (n), extinction
coefficient κ , and reflectance derived within the Drude theory for the case when damping is not
negligible.
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Figure 13.4.6: Frequency dependent refractive index, extinction coefficient, and reflectance varia-
tion of a metal with damping.

Solution
The MATLAB code to generate the figure is below.

%copyright by J. E Hasbun and T. Datta

% ch13_nwkappawmetal.m

% This script plots the refractive index (n), extinction coefficient

% kappa, and the reflectance derived within the Drude theory in the case

% when damping is not negligible. The plasma frequency and damping

% parameters are for Na (metal). Data sourced from Reference [13.3],

% Table 11.2.

% Constants

omp = 5.914; % Na plasma frequency (eV)

hgamma = 0.0198512; % Na damping frequency (eV)

% Function definitions

% Frequency dependent real part of the dielectric function.

% Compare with Equation (13.96).

realpart = @(w) 1 - omp^2/(hgamma^2 + w^2);

% Frequency dependent imaginary part of the dielectric function.

% Compare with Equation (13.97).

impart = @(w) (omp^2)*hgamma/((w)*(w^2 + hgamma^2));

% Refractive index (n) and extinction coefficient (\kappa)

nw = @(w) sqrt(0.5*(sqrt((1+realpart(w))^2 + impart(w)^2) + 1 ...

+ realpart(w)));
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kappaw = @(w) sqrt(0.5*(sqrt((1+realpart(w))^2 + impart(w)^2)...

- 1 - realpart(w)));

% Reflectance, Equation (13.99)

refl = @(w) ((1 - nw(w))^2 + kappaw(w)^2)/((1 + nw(w))^2 + kappaw(w)^2);

% Plots

figure1 = figure;

axes1 = axes(’Parent’,figure1,’YMinorTick’,’on’,...

’XTick’,[0 1 2 3 4 5 6 7 8 9 10 11 12],...

’XMinorTick’,’on’);

ylim([0,2]);

hold(axes1,’all’)

hold on;

fplot(@(w)nw(w),[0,10],’LineWidth’,2,’--k’);

fplot(@(w)kappaw(w),[0,10],’LineWidth’,2,’-or’);

fplot(@(w)refl(w),[0,10],’LineWidth’,2,’-b’);

% Create xlabel

xlabel(’Energy,(eV)’,...

’FontSize’,16,’FontName’,’Times New Roman’);

% Create ylabel

ylabel(’Optical Constants and Reflectance’, ’FontSize’,16,...

’FontName’,’Times New Roman’);

% % Create legend

legend1 = legend(’n(\omega)’,’\kappa(\omega)’,’R(\omega)’);

set(legend1,’FontSize’,14,’FontName’,’Times New Roman’,’show’);

hold off;

To study the optical properties of the free electron carriers in metals, we can classify the frequency
response into three regimes I, II, and III.

• Regime I: Non-relaxation Hagen–Rubens region (0 < ω � τ−1). In this regime Equation
(13.95) can be rewritten as

εr(ω) = 1−
ω2

p

ω(ω + i/τ)
≈ 1+ i

ω2
pτ

ω
, (13.100)

thus the real and imaginary parts are given by

ε1 = ℜe[εr(ω)] = 1; ε2 = ℑm[εr(ω)] =
ω2

pτ

ω
(13.101)

In the non-relaxation Hagen–Rubens region because ωτ � 1, the dielectric function becomes
using Equations (13.71a) and (13.71b) we obtain the frequency dependent refractive index as
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n(ω)≈ 1√
2






1+

(
ω2

pτ

ω

)2




1/2

+1


≈ 1√

2



1+

(
ω2

pτ

ω

)2




1/2

≈
(

ω2
pτ

2ω

)1/2

(13.102)

Similarly from Equation (13.95), we write for the absorption part

κ(ω)≈
(

ω2
pτ

2ω

)1/2

(13.103)

Thus in this regime n(ω)≈ κ(ω). We thus calculate the reflectivity using Equation (13.99) as

R(ω) =
{1−n(ω)}2 +κ2(ω)

{1+n(ω)}2 +κ2(ω)
,

=

{
1−
(
ω2

pτ/2ω
)1/2

}2
+ω2

pτ/2ω

{
1+
(
ω2

pτ/2ω
)1/2

}2
+ω2

pτ/2ω

,

≈
ω2

pτ/ω−2
(
ω2

pτ/2ω
)1/2

ω2
pτ/ω +2

(
ω2

pτ/2ω
)1/2 ,

≈ 1−4
(
ω/2ω

2
pτ
)1/2

,

= 1−
(
8ω/ω

2
pτ
)1/2

(13.104)

• Regime II: Relaxation regime (τ−1� ω� ωp). In this regime Equation (13.95) can be rewrit-
ten as

εr(ω) = 1+ i
ω2

pτ

ω

1
(1− iωτ)

≈ 1−
ω2

p

ω2
1

(1+ i/ωτ)
≈−

ω2
p

ω2

(
1− i

ωτ

)
, (13.105)

thus the real and imaginary parts are given by

ε1 = ℜe[εr(ω)] =−
ω2

p

ω2 ; ε2 = ℑm[εr(ω)] =
ω2

p

ω3τ
(13.106)

In this regime because ωτ� 1 we have ℑm[εr(ω)]� |ℜe[εr(ω)]|. Thus from Equation (13.95)
n(ω) and κ(ω) is approximately given by

n(ω) ≈ 1√
2

[
ω2

p

ω2

(
1+

1
ω2τ2

)1/2

−
ω2

p

ω2

]
≈ ωp

2ω2τ
, (13.107)

κ(ω) ≈ ωp

ω
. (13.108)

Thus, the reflectivity R(ω) from Equation (13.98) is then approximately given by

R(ω) ≈
(
1−ωp/2ω2τ

)2
+ω2

p/ω2

(1+ωp/2ω2τ)2 +ω2
p/ω2

,

≈
−ωp/ω2τ +ω2

p/ω2

ωp/ω2τ +ω2
p/ω2 =

1−1/ωpτ

1+1/ωpτ
= 1− 2

ωpτ
(13.109)
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• Regime III: High frequency regime (ω � ωp) and ωτ � 1, thus

εr(ω) = 1+ i
ω2

pτ

ω

1
(1− iωτ)

≈ 1−
ω2

p

ω2
1

(1+ i/ωτ)
≈ 1−

ω2
p

ω2

(
1− i

ωτ

)
, (13.110)

thus the real and imaginary parts are given by

ε1 = ℜe[εr(ω)] = 1−
ω2

p

ω2 ; ε2 = ℑm[εr(ω)] =
ω2

p

ω3τ
(13.111)

In this case ℑm[εr(ω)]�ℜe[εr(ω)] and we can approximate the refractive index and absorption
by

n(ω) ≈ 1√
2
{2ℜe[εr(ω)]} ≈ 1−

ω2
p

2ω2 , (13.112)

κ(ω) ≈
ω2

p

2ω3τ
. (13.113)

The reflectivity R(ω) is then approximately given by (Exercise 13.9.17)

R(ω) =
(

ωp

2ω

)4
(13.114)

13.5 The Drude–Lorentz Dipole Oscillator Theory of Optical Properties

Figure 13.5.7: Drude–Lorentz oscillator model of the optical properties of an insulator.

In the previous section, we developed a theory of optical properties for metals where the partici-
pating electrons are itinerant (unbound to any particular atom and free to move). In this section we
will discuss a generalization of the free electron Drude theory, called the Drude–Lorentz theory of
a dipole oscillator that explains reasonably well the optical properties of an insulator where elec-
trons are bound to an atom. For a realistic model of an insulator, the Drude–Lorentz model needs to
take into consideration the fact that an insulator is a collection of Lorentz oscillators with different
frequencies. But, we proceed with a simplifed model that considers the interaction between light
waves and an atom of a single resonant frequency ωo due to the bound electrons, see Figure 13.5.7.
Since dipoles can lose energy by collisional processes, in a realistic scenario, we must also consider
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damping. This effect is treated using a damped harmonic oscillator system. In solids thermally ex-
cited phonons can give rise to such losses. The oscillating electric field of the light wave (part of the
electromagnetic wave) induces forced oscillations of the atomic dipole through the driving forces
exerted on the electrons. Thus, we have a damped driven harmonic oscillator system that is typically
studied as part of a standard theoretical mechanics course, see Reference [64]. We can ignore the
motion of the nucleus by applying the Born-Oppenheimer approximation. We write for the time
dependent displacement x(t) of the electron the equation

me
d2x
dt2︸ ︷︷ ︸

acceleration

+meγ
dx
dt︸ ︷︷ ︸

damping

+ meω
2
o x︸ ︷︷ ︸

restoring force

=−e E (t), (13.115)

where me is the electron mass, e is the magnitude of the electron charge, γ is the damping rate, and
E (t) is the time dependent electric field of the incident light wave. Monochromatic light wave of
angular frequency ω can be mathematically described as

E (t) = Eo cos(ωt +Ω) = Eoℜe [exp(−iωt−Ω)] , (13.116)

where Eo is the amplitude and Ω is the phase of the light. For convenience of solving the differential
equation, we choose a complex form for the electric field. The AC electric field will drive oscilla-
tions at its own frequency ω . Thus using the standard approach of solving differential equations we
adopt the displacement solutions of the time-dependent type given by

x(t) = Xoℜe [exp(−iωt−Ω)] . (13.117)

Now substituting Equations (13.116) and (13.117) into Equation (13.115), and cancelling the com-
mon complex phase factors we obtain an expression of the form

−meω
2Xo− imeγωXo +meω

2
o Xo =−e Eo, (13.118)

from which we can solve for the amplitude Xo as

Xo =
−e Eo/me

ω2
o −ω2− iγω

. (13.119)

The time-dependent displacement of the electrons from their equilibirium position induces a time
varying dipole moment p(t) given by

p(t) =−ex(t). (13.120)

A resonant contribution to the macroscopic polarization, defined as dipole moment per unit volume,
of the medium is given by

Pres = np(t),

= −ne x(t),

=

(
ne2

me

)
1

ω2
o −ω2− iγω

E , (13.121)

where n represents the number of atoms per unit volume and Pres is the resonant polarization. As it is
clearly evident from Equation (13.121), the polarization amplitude response is small unless ω ≈ωo;
hence, the use of the qualifier resonant.
As we have learned in previous sections, optical properties are intimately related to dielectric con-
stants. Equation (13.121) can be used to obtain the complex relative dielectric constant εr. The
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electric displacement ~D of the medium is related to the electric field ~E and polarization ~P through
(see Equation 13.5)

~D = εo~E +~P. (13.122)

Since we are interested in resonant phenomenon, we can split the polarization into two contributing
parts, referred to as bound (~Pb) and resonant (~Pres). Using Equation (13.121) we can write

~D = εo~E +~Pb +~Pres,

= εo~E + εoχ ~E +~Pres,

= εoεrE , (13.123)

where εr(ω) is defined as

εr(ω) = 1+χ +

(
ne2

εom

)
1

ω2
o −ω2− iγω

, (13.124)

= 1+χ +χ(ω),

where χ(ω) is the frequency-dependent susceptibility. Realizing Equation (13.124), we write the
real and imaginary parts as

ℜe [ε(ω)r]≡ ε1(ω) = 1+χ +

(
ne2

εom

)
ω2

o −ω2

(ω2
o −ω2)2 +(γω)2 , (13.125)

ℑm [ε(ω)r]≡ ε2(ω) =

(
ne2

εom

)
γω

(ω2
o −ω2)2 +(γω)2 , (13.126)
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Figure 13.5.8: Frequency dependence of the real and imaginary parts of the dielectric constant.
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In Figure 13.5.8 we notice that the real part increases as the frequency is increased. This trend is
refered to as normal dispersion, where dispersion here refers to the dependence of the refractive
index on the wavelength and frequency. But, there is a region near the resonant frequency where the
real part decreases with increasing frequency. Historically, this is called anomalous dispersion. The
anomaly arose due to neglecting the imaginary part of the susceptibility function. This in turn would
make the real part singular (infinite) as it approached ωo. However, experiments did not observe any
such trend. This inconsistency between theory and experiment was dubbed anomalous dispersion.
From a conceptual perspective, the non-inclusion of the imaginary part implies violation of the
principle of causality. The complex nature of the susceptibility cures the causality issue making
the theory of optical spectroscopy consistent with the principle of relativity. We also notice the
following symmetry properties of the susceptibility function

ℜe [χ(−ω)] = ℜe [χ(ω)] , (13.127)
ℜe [χ(ω)] = −ℜe [χ(ω)] . (13.128)

The above relations imply that the real part is symmetric about the origin, but, the imaginary part is
asymmetric.

Example 13.5.0.1
Using the expressions for the frequency dependent real and imaginary parts of the dielectric function
shown in Equations (13.125) and (13.126), write a MATLAB code to generate Figure 13.5.8. Take
the static contribution χ = 0 (which produces a constant shift) and ignore the one in Equation
13.125) for simplicity.
Solution
The dielectric function involves three different energy scales – resonant frequency ωo of the mate-
rial, the plasma frequency ωp, and the damping rate γ . When multiple energy scales are involved, it
is typically a good idea to scale them with respect to each other. This allows for an easy comparison
and discussion of how the system behaves since it is the relative competition of all the energy scales
that ultimately decides how the material will respond optically. We choose ωo as the scale relative
to which we plot the optical constants. Why ωo? Well, it is a natural frequency of the system. The
two dimensionless frequencies are

ωp =
ωp

ωo
, (13.129)

γ =
γ

ωo
. (13.130)

%copyright by J. E Hasbun and T. Datta

% ch13_drudelorentz.m

% This script plots the real and imaginary parts of the susceptibility

% derived within the Drude-Lorentz theory.

% Constants

ompscl = 2; % scaled plasma frequency, \omega_p/\omega_o

gammascl = 0.25; % scaled damping rate, \gamma/\omega_o

% Function definitions

% Frequency dependent real part of the susceptibility (scaled).

% Compare with Equation (13.125). The frequency w is scaled w.r.t omega_{o}

realpart = @(w) (ompscl^2)*(1 - w^2)/((1 - w^2)^2+gammascl^2*w^2);
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% Frequency dependent imaginary part of the susceptibility (scaled).

% Compare with Equation (13.126).

impart = @(w) (ompscl^2)*(gammascl*w)/((1 - w^2)^2+gammascl^2*w^2);

% Plots

figure1 = figure;

axes1 = axes(’Parent’,figure1,’YMinorTick’,’on’,...

’XTick’,[0 1 2 3 4 5 6 7 8 9 10 11 12],...

’XMinorTick’,’on’);

hold(axes1,’all’)

hold on;

fplot(@(w)realpart(w),[0,3],’LineWidth’,2,’-k’);

fplot(@(w)impart(w),[0,3],’LineWidth’,2,’--r’);

% Create xlabel

xlabel(’Scaled frequency, \omega/\omega_{o}’,...

’FontSize’,14,’FontName’,’Times New Roman’);

% Create ylabel

ylabel(’Susceptibility, \epsilon(\omega)’,’FontSize’,14,...

’FontName’,’Times New Roman’);

% Create legend

legend(’\Ree[\epsilon(\omega)] - 1 \equiv \epsilon_{1}(\omega)’,...

’\Imm[\epsilon(\omega)]\equiv \epsilon_{2}(\omega)’);

legend(axes1,’show’);

% Create textbox

annotation(figure1,’textbox’,...

[0.378380952380953 0.602947368421053 0.0489999999999994 0.118],...

’String’,{’\gamma’},...

’FontSize’,30,...

’FontName’,’Times New Roman’,...

’FitBoxToText’,’off’,...

’EdgeColor’,[1 1 1]);

% Create doublearrow

annotation(figure1,’doublearrow’,[0.353571428571429 0.417857142857143],...

[0.632 0.634]);

% Create line

annotation(figure1,’line’,[0.354761904761905 0.361904761904762],...

[0.924 0.108],’LineStyle’,’:’,’LineWidth’,2);

% Create line

annotation(figure1,’line’,[0.388095238095238 0.383333333333333],...

[0.107270676691729 0.926],’LineStyle’,’--’,’LineWidth’,2);

% Create line
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annotation(figure1,’line’,[0.416666666666667 0.415476190476191],...

[0.11 0.924],’LineStyle’,’:’,’LineWidth’,2);

% Create line

annotation(figure1,’line’,[0.131897711978466 0.909825033647376],...

[0.377594249201278 0.381789137380192],’LineWidth’,2);

% Create line

annotation(figure1,’line’,[0.129761904761905 0.907142857142857],...

[0.409 0.414],’LineStyle’,’--’,’LineWidth’,2);

hold off;

When frequencies are close to resonance, we can carry out a resonance approximation. Under this
condition ω ≈ωo� γ , we can approximate ω2

o−ω2 by 2ωo∆ω , where the detuning from resonance
is defined as ∆ω = (ω−ωo). Applying the resonance approximation, we find that

ℜe [ε(ω)]≡ ε1(ω) = 1+χ +
ω2

p

2ωo

ωo−ω

(ωo−ω)2 +(γ/2)2 , (13.131)

ℑm [ε(ω)]≡ ε2(ω) =
ω2

p

2ωo

γ/2
(ωo−ω)2 +(γ/2)2 , (13.132)

where γ is the full width at half maximum (FWHM) of the imaginary part of the dielectric function,
which has a Lorentzian functional form. In the resonance approximation, note that the imaginary
part of the susceptibility function is symmetric about ωo, but, the real part is antisymmetric. This is
opposite of what we found earlier.
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Figure 13.5.9: n(ω), κ(ω), and reflectance R plot for representative points (see Exercise 20).
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The relative dielectric constant in the low and the high frequency limits of εr(ω) has simple forms.
Using Equation (13.124) we have in each limit

εr(0) ≡ εlow = 1+χ +
ω2

p

2ωo

ωo−ω

(ωo−ω)2 +(γ/2)2 , (13.133)

εr(∞) ≡ εhigh = 1+χ. (13.134)

We have mentioned at the beginning of this section that atoms and molecules have several reso-
nances, not just a single one as in our model. Quantum mechanically, there are multiple electronic
resonances and molecules that may exhibit vibrational and rotational levels. If one takes into con-
sideration these effects quantum mechanically it can be shown that the susceptibility becomes a sum
over various oscillator strengths

χ(ω) = ω
2
p ∑

j

f j

ω2
j −ω2− iγ jω

, (13.135)

where ω j is the frequency for a transition between two electronic states with energy difference h̄ω j.
γ j is the decay rate for the final state and f j is the oscillator strength which obeys the Thomas–
Reich–Kuhn sum rule

∑
j

f j = Z, (13.136)

for an atom with Z electrons.This tells us that the total absorption, integrated over all frequencies is
dependent only on the atomic number Z.

(a) (b) (c)

Figure 13.5.10: Light scattering diagram for materials. (a) Transmission, (b) transluscency, and
(c) opacity occur as a result of light that is allowed to pass through, be partially scattered, or be
completely absorbed.

13.6 Optical Behavior of Glass, Metals, and Semiconductors
Light incident on a material can be either reflected, absorbed or transmitted exclusively or a combi-
nation of all these phenomena might occur, see Figure 13.5.10. If light passes through the material
easily, then the material is capable of transmitting light with minimal absorption or reflection. Such
materials are called transparent, for example, optical glass as shown in Figure 13.5.10(a). If the
material transmits light diffusively, then light is scattered within the material and objects are not
clearly visible. Such materials are called translucent. For example, frosted glass or thin sheets of



486 Optical Properties of Solids

plastic, as in Figure 13.5.10(b). Finally, if the light is completely blocked so that the material is
impervious to the transmission of visible light, then it is called opaque, as in Figure 13.5.10(c).
For example, metals and wood. Opacity or transparency of a material is based upon its absorption
and transmission properties. The material’s composition dictates whether a specific wavelength or a
range of wavelength has enough energy to transfer an electron from the ground state to the excited
state and in turn for that wavelength to get absorbed. The material thus appears as opaque to that
wavelength. If the material transmits most of the incident light, it appears as transparent with respect
to the incident light.
The material composition of ordinary glass consists of silica and aluminates. Ultraviolet light pos-
sesses adequate energy to excite electrons from the occupied to unoccupied energy levels. Thus
incident UV light gets absorbed by glass. However, the energy of visible and infrared light is not
enough to excite electrons. In this case most of the incident light gets transmitted. Thus glass appears
transparent to visible and infrared light. Transparent materials can appear colored as a consequence
of specific wavelength ranges of light that are selectively absorbed; the color discerned is a result
of the combination of wavelengths that are transmitted. If the absorption is uniform for all visible
wavelengths, the material appears colorless. For example high-purity inorganic glasses and high-
purity and single-crystal diamonds and sapphire.

(a) Sheesh Mahal (exterior)

(b) Sheesh Mahal ceiling (interior)

Figure 13.6.11: (a) & (b) The house of mirrors or Sheesh Mahal is located in the palatial premises
of Amer Fort of Jaipur, Rajasthan, India. It was built by Raja Man Singh I in the 16th century and
completed by 1727. The walls and ceilings of this entire mahal or palace are decorated with glass
inlaid panels and multi-mirrored ceilings such that even a solitary ray of light can create the effects
of thousands of candles. The entire palace is decorated by exquisite mosaics, colored glasses, and
fine quality convex-shaped mirrors. Personal collection of author (T. Datta).

The color of a material is determined by the frequency distribution of both transmitted and reemitted
light beams resulting from electronic transitions. For example, high-purity single-crystal sapphire
(Al2O3) is colorless. But, if only 0.5-2.0% of Cr2O3 is added, the material looks red. This red-
colored material is popularly known as the ruby gemstone. From a solid state physics perspective,
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the presence of Cr which substitutes for the Al, introduces impurity levels in the band gap of sap-
phire. These levels allow for strong absorption between the 560 nm-520 nm (green) to 490 nm-450
nm (blue) range. Thus, only red is transmitted. Glasses have played a vital role in history including
one of displaying opulence, see Figure 13.6.11.
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Figure 13.6.12: Schematic light absorption–emission process in metals. The optical properties of
light can be explained by considering the fact that metals have a set of available unoccupied energy
levels into which the electrons can be excited upon absorption of a light photon. Based on this
simple energy level picture, metals thus appear opaque.
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Figure 13.6.13: Schematic light absorption–emission process in insulators. As described in the text,
the size of the band gap controls the optical properties.

Metals are opaque because visible light excites electrons into unoccupied energy states above the
Fermi energy, as demonstrated in Figure 13.6.12. Total absorption is within a very thin outer layer,
usually less than 0.1 µ thus only metallic films thinner than 0.1 µm are capable of transmitting visi-
ble light. In fact, metals are opaque to all electromagnetic radiation on the low end of the frequency
spectrum, from radio waves, through infrared, the visible, and into about the middle of the ultra-
violet radiation. Metals are transparent to high-frequency (x- and γ-ray) radiation. All frequencies
of visible light are absorbed by metals because of the continuously available empty electron states,
which permit electron transitions. Most of the absorbed radiation is reemitted from the surface in the
form of visible light of the same wavelength, which appears as reflected light. Aluminum and silver
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are two metals that exhibit this reflective behavior. Copper and gold appear red-orange and yellow,
respectively, because some of the energy associated with light photons having short wavelengths is
not reemitted as visible light. Nonmetallic materials may be opaque or transparent to visible light;
and, if transparent, they often appear colored. Every nonmetallic material becomes opaque at some
wavelength, which depends on the magnitude of its bandgap.
The visual appearance and the color of a material depends on the interaction of the electrons with
light. A white object reflects all wavelengths of light in equal amounts. Our eyes detect this entire
range of wavelengths, thus making it appear white. But, an object which is black absorbs all the
wavelengths of light. Thus we do not see any color making the object appear black. A colorless
object does not reflect the light, nor does it absorb any wavelength, rather it simply allows the wave-
lengths to pass through. We can say the colourless object is transparent to light. As a general rule of
thumb, we find metals (high conductivity) have a metallic luster and are opaque. Insulators (high re-
sistivity or low conductivity materials) are usually transparent, see Figure 13.6.13. Semiconductors
which are in between metals and insulators with their conducting properties can be both opaque or
transparent. Their color depends on the size of the band gap. If the energy of the incident photon is
greater than the band gap, then all the photons will be absorbed. Consequently, it will appear black.
If the photon energy is less than the gap, then the photons will be transmitted. For photon energies
that lie within the energy gap range, only those with energy higher than the band gap will be ab-
sorbed. The rest are allowed to pass through (transmitted). If all the colors are transmitted, then the
perceived light is white in color. For example, Si has an energy gap of 1.11 eV, see Table 13.6.4.
Given that visible light has photons in the energy range of approximately 1.8 eV to 3.1 eV, all the
energy from visible light can be absorbed. Thus, silicon appears black.

Table 13.6.4: The energy gap between the valence and the conduction band is referred to as the
band gap. The size of the band gap dictates the potential solid state device application of the semi-
conducting material. Low band gap materials require less radiative energy for transition across the
gap. The process of photon energy transfer is used in light emitting diodes. GaAs and GaPs are used
in LEDs. Semiconductor band gaps can range from very small values to all the way up to 6 eV.
Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/bandgap.html.

Material Band Gap (eV)
Si 1.11
GaAs 1.43
CdTe 1.58
AlAs 2.16
GaP 2.26
Diamond 5.5

Example 13.6.0.1
Diamond, a solid form of carbon with a diamond cubic crystal structure, is created when carbon is
subjected to extremely high pressures and temperatures found at the earth’s lithosphere (the rigid
outer part of the earth, consisting of the crust and upper mantle). The earliest diamonds have been
known to be found in India. A majority of these early stones were transported along the network of
trade routes that connected India and China, commonly known as the Silk Road. Currently, South
Africa, Russia, Botswana, and Australia are some of leading producers of gem and industrial dia-
mond, respectively. Diamond has the highest hardness and thermal conductivity of any bulk mate-
rial. These properties make it useful in cutting and polishing tools and in scientific applications such
as diamond knives and diamond anvil cells. Explain why diamond is transparent?

http://hyperphysics.phy-astr.gsu.edu/
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Solution
From Table 13.6.4 we know that diamond has a band gap of 5.5 eV. Since visible light lies between
1.8 eV to 3.1 eV, a diamond due to its large band gap will allow all of visible light to pass through
making it transparent.

Depending on the material structure, light may be scattered so that it is not coherently transmitted.
Even after the light has entered the material, it will undergo internal scattering. Thus a beam of
light will spread out or the image will become blurred. In extreme cases, the material could become
opaque due to excessive internal scattering. Scattering can come from obvious causes such as grain
boundaries in poly-crystalline materials. In highly pure materials, scattering still occurs and an
important contribution comes from Rayleigh scattering. This is due to small, random differences in
refractive index from place to place. In amorphous materials such as glass this is typically due to
density or compositional differences in the random structure.
In the preceding paragraphs we discussed light scattering through solid state materials. It is possi-
ble for light to scatter from molecular aggregates, polymers, colloids, or gases during the process of
transmission with subsequent reemission that has no preferential propagation direction. In Rayleigh
scattering a photon interacts with orbiting electron and is deflected without any change in photon
energy (elastic scattering). This is significant for high atomic number atoms and low photon ener-
gies. For example, the blue color in the sunlight gets scattered more than other colors in the visible
spectrum and thus making the sky look blue. In contrast, in the Tyndall effect, the scattering oc-
curs from particles much larger than the wavelength of light thereby giving clouds the whitelike
appearance. In contrast to elastic scattering, one can also have inelastic light scattering of light by
molecules excited to higher vibrational or rotational energy levels. This form of scattering is called
Raman scattering. It was discovered by the Indian Nobel Laureate Sir Chandrasekhara Venkata
Raman (1888-1970) and his student K. S. Krishnan (1898-1961) who demonstrated the effect to
occur in solids, liquids, and vapors. It is also widely accepted that G. Landsberg (1890-1957) and L.
Mandelstam (1879-1944) disovered this effect independently. It was predicted theoretically by the
Austrian theoretical physicist Adolf Smekal (1895-1959).

13.7 Optical Spectroscopy
Spectroscopy is the analysis of the interaction between matter and any part of the EMS. For exam-
ple, visible light passing through a prism produces a rainbow pattern. The decomposition of white
light into its constituents allows us to infer the composition of visible light. In this section we are
concerned with optical spectroscopy which plays a crucial role in physics, chemistry, and biology.
In Table 13.7.5 we list the many commonly applied spectroscopic techniques spanning across the
entire EMS.
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Table 13.7.5: Common spectroscopic techniques (beyond optical) utilized at present to study inter-
actions in solid state materials. This chapter is focused on a tiny portion of this vast spectrum. UV,
visible, and infrared all use optical materials to disperse and focus the radiation. Thus, the term opti-
cal spectroscopy is typically associated with spectrometers used to study the interaction of all these
three forms of radiation. The frequency, wavelength, and energy of these regions are mentioned in
Table 13.1.1.

Energy Frequency Wavelength Spectroscopy Information
1 µeV – 1 meV 1 GHz – 1 THz 1 m – 1 mm NMR nuclear spin

ESR electron spin
≈ 1 eV < 1 PHz ≈ 1 µm Raman molecular

(near IR) vibrations
phonon dispersion

1 eV – 10 eV ≈ PHz 1 µm – 1 nm Optical band electrons
(VIS – UV) interband

transitions
plasmon, magnon

≈ 1 keV (soft) ≈ 1 EHz ≈ 1 – 0.1 nm XAS, XES core electron
> 1 keV (hard) (X–ray) EXAFS, RIXS magnon, bimagnon

XANES, EXAFS trimagnon
Particle beam ≈ 0.1 nm neutron magnon excitation
0.1 meV exchange
– 500 meV interaction
100 eV ARPES band structure

Spectroscopic approaches can be broadly classified into two categories. In one category, energy is
transferred between the sample and the photon. Within this class, in absorption spectroscopy a
photon is absorbed by an atom or molecule, which undergoes a transition from a lower-energy state
to a higher energy, or excited state. An electron inside a solid state material may end up in an excited
state by exchanging energy via thermal means, by absorption of a photon, or by a chemical reaction.
In all these cases, the number of photons passing through the sample decreases. The measurement
of this decrease in photons, which we call absorbance, is a useful analytical signal. Based along
these lines of reasoning we can derive a formula for the intensity.
Consider a monochromatic electromagnetic radiation passing through an infinitesimally thin layer
of sample thickness dz. Let us take the intensity I(z), which is the optical power per unit area, to be
z dependent. Then the decrease in intensity dI after passing through the dz layer can be related to
the thickness and concentration as

dI =−αCdzI(z), (13.137)

where α is the absorptivity, C is the concentration, and z the path length. Integrating the above
equation we get the Beer–Lambert (or more commonly Beer’s) law to obtain

I(z) = Ioe−αCz, (13.138)

where Io is the optical intensity at z = 0.
Historically speaking this law was first discovered by the French mathematician Pierre Bouger (1698
– 1758). Later the Swiss polymath Johann Heinrich Lambert (1728-1777) and the German chemist
August Beer (1825-1863) reintroduced it in different forms that relate to the sample thickness and
concentration, respectively. The modern version of the law, Equation (13.138), incorporates both
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these effects. A plot of absorbance as a function of the photon’s energy is called an absorbance
spectrum. The optical properties described in the previous paragraphs lead to various optical spec-
troscopic techniques. Below we list and qualitatively describe a select few of them.

i. UV–Vis spectroscopy: The instrument used for UV–Vis spectroscopy is called a spectropho-
tometer. A spectrophotometer is an optical instrument which measures absorbance or trans-
mittance from the UV range to the visible range (sometimes in the NIR also) relative to the
wavelength of light. This particular type of spectroscopy reveals information on electronic tran-
sitions which can provide valuable clues to the structure of a molecule and molecular properties
such as color. The first commercially available UV–Vis spectrophotometer was introduced in
1940 by Arnold O. Beckman, Howard Cary, and colleagues from the National Technologies
Laboratories. UV–Vis spectroscopy finds routine use in analytical chemistry and biochemistry.

ii. Atomic absorption (AA) spectroscopy: The electronic configuration of each atom is unique to
itself. Thus every atom has a distinct energy fingerprint where only specific energies will be ab-
sorbed. During the mid-19th century, a German physicist Gustav Robert Kirchoff (1824 – 1887)
and a German chemist Robert Wilhelm Eberhard Bunsen (1811-1899) utilized this fundamental
concept to introduce atomic absorption as a spectroscopic procedure. Moving forward, in 1953
the Australian physicist Sir Alan Walsh (1916-1998) demonstrated that atomic absorption could
be used as a quantitative analytical tool for the determination of single elements in compounds.
The first commercial atomic absorption spectrometer was introduced in 1955.

In AA the sample, which could be a liquid or a solid, is atomized in either a flame or a graphite
furnace to create gas–phase atoms. Upon the absorption of ultraviolet or visible light, the free
atoms undergo electronic transitions from the ground state to excited electronic states. The
incident light beam is attenuated by atomic vapor absorption according to Beer’s law (at the
most simple level of description). In order to tell how much of a known element is present in a
sample, one must first establish a basis for comparison using known quantities. It can be done
producing a calibration curve. For this process, a known wavelength is selected, and the detector
will measure only the energy emitted at that wavelength. However, as the concentration of the
target atom in the sample increases, absorption will also increase proportionally. Thus, one runs
a series of known concentrations of some compound, and records the corresponding degree of
absorbance, which is an inverse percentage of light transmitted. A straight line can then be drawn
between all of the known points. From this line, one can then extrapolate the concentration of the
substance under investigation from its absorbance. The uniqueness of energy level arrangement
of each atom allows for the qualitative analysis of a pure sample. This particular spectroscopy
finds widespread use in nanoscience, biophysical applications, food technology, petrochemical
industry and forensic sciences to name a few.

iii. Infrared spectroscopy: Infrared was discovered in 1800 by the German astronomer Sir Freder-
ick William Herschel (1738-1822), who discovered a type of invisible radiation in the spectrum
lower in energy than red light, by means of its effect on a thermometer. Infrared spectroscopy
(IR spectroscopy or vibrational spectroscopy) involves the interaction of infrared radiation with
matter. In contrast to UV spectroscopy, the infrared spectrum provides a rich array of absorption
bands which can provide a wealth of structural information about a molecule. The information
contained in the IR spectrum originates from molecular vibrations. The method or technique
of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or
spectrophotometer) which produces an infrared spectrum. As in the case of the other absorp-
tion spectroscopy techniques, an IR spectrum can be visualized in a graph of infrared light
absorbance (or transmittance) on the vertical axis vs. frequency or wavelength on the horizon-
tal axis. The energies are affected by the shape of the molecular potential energy surfaces, the
masses of the atoms, and the associated vibrational modes.
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In emission spectroscopy an atom, molecule, or electrons inside a solid state material can be pro-
moted to an excited state. When the system deexcites spontaneously the excess energy is then re-
leased as a photon, a process we call emission. In luminescence the material absorbs energy and
then immediately emits visible or near-visible radiation in the range 1.8 eV < hν < 3.1 eV. Emis-
sion following the absorption of a photon is also called photoluminescence, and that following
a chemical reaction is called chemiluminescence. Sometimes the reemission of radiation occurs
within nanoseconds after the excitation, in which case the luminescence is called fluorescence, and
if it takes longer than nanoseconds, such as micro- or milliseconds then it is known as phospho-
rescence. If it takes of the order of seconds, then it is called an afterglow. Special materials called
phosphors have the capability of absorbing high-energy radiation and spontaneously emitting lower-
energy radiation (remember the green CRT screens in oscilloscopes?). Sulfides (ZnS), oxides (ZnO
with surplus Zn), tungstates, rare earth elements such as Eu3+ or Tb, and a few organic materials
exhibit phosphorescence. Ordinarily, pure materials do not display these phenomena and, to induce
them, impurities in controlled concentrations must be added.
Luminescence can be classified based on the energy source for electron excitation. Photolumines-
cence occurs in fluorescent lamps. Arc between electrodes excites electrons within mercury lamp
to higher energy levels. Electrons fall back emitting UV light. Fluorescent lamps consist of a glass
housing, coated on the inside with specially prepared tungstates or silicates. Ultraviolet light is
generated within the tube from a mercury glow discharge, which causes the coating to fluoresce
and emit white light. Cathode-luminescence is produced by an energized cathode which gener-
ates a beam of high-energy bombarding electrons. Applications of this include electron microscope;
cathode-ray oscilloscope; and color television screens. Spontaneous light emission can also occur
in candles or incandescent bulbs. In these two cases the electrons are excited to a higher state by
heat energy and the process is called thermoluminescence.
Electroluminescence occurs in devices with p–n rectifying junctions which are stimulated by an
externally applied voltage. When a forward biased voltage is applied across the device, electrons
and holes recombine at the junction and emit photons in the visible range (monochromatic light,
i.e., singe color). These diodes are called light emitting diodes (LEDs). LEDs emit light of many
colors, from red to violet, depending on the composition of the semiconductor material used. For
example, GaAs, GaP, GaAlAs, and GaAsP are typical materials for LEDs.
The optical properties described in the emission spectroscopy type lead to the atomic emission
spectroscopy, fluorescence spectroscopy, and phosphorescence spectroscopy.
In the second broad class of spectroscopic techniques, the electromagnetic radiation undergoes a
change in amplitude, phase angle, polarization, or direction of propagation as a result of its re-
fraction, reflection, scattering, diffraction, or dispersion by the sample. X-ray diffraction is a prime
example of such a technique. Other techniques in the UV–V is domain include refractometry, neph-
elometry, turbidimetry, and optical rotatory dispersion. Some of the other forms of spectroscopy
that we have not discussed (since they are not optical) include Mössbauer, x-ray absorption, atomic
fluorescence, and chemiluminescence spectroscopy.

13.8 Kramers-Kronig Relationship
** This section is optional and can be skipped.
Susceptibility is a complex variable, see Equation (13.124). Thus we can apply the concepts of
complex analysis to extract useful information about it. Such an approach was formulated by the
collective efforts of a Dutch physicist Hendrik Anthony Hans Kramers (1894-1952) and a German
American physicist Ralph Kronig (1904-1995). We will utilize two basic theorems of complex
analysis to initiate our discussion. The first is the Cauchy integral theorem which states that if we
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define a close path in the complex plane, then for a function f (z) that is analytic everywhere inside
the path we have

∮ f (z)
z− z′

=

{
2πi f (z′), if z′ lies inside the closed path,
0 otherwise.

(13.139)

The second equation is the Dirac formula

1
x− x′− iε

= P
1

x− x′
+ iπδ (x− x′), (13.140)

where ε is an infinitesimal, real number, and P is the principal value.
A generic complex form of the susceptibility can be written as

χ(ω) =C
1

(ω2
o −ω2)+ iΓω

(13.141)

The above function is strongly peaked around ω = ωo. With the approximation |ω−ωo| � ωo, we
can rewrite the above equation as

χ(ω) = C
1

(ωo−ω)(ωo +ω)+ iΓω
,

≈ 1
2ωo

C
1

ωo−ω + iΓ/2
. (13.142)

We find that there is a pole at ω = ωo + iΓ/2 in the upper half of the complex plane. Causality
requires that the susceptibility cannot have a pole in the lower half of the complex plane, irrespective
of the physical details of the system. It is possible to reason this fact using mathematics as follows.
We know that

~P(ω) = χ(ω)εo~E(ω). (13.143)

Now consider ~E to be given by a δ -function in time which amounts to a short impulse. Since
this corresponds to a constant electric field in space, we can write ~Ei. If we now take the Fourier
transformation of ~P(ω) to get ~P(t), we obtain

~P(t) =
Cεo~Ei

4πωo

∞∫

−∞

dω eiωt 1
ωo−ω + iΓ/2

,

=
Cεo~Ei

2πωo
iΘ(t)ei(ωo−Γ/2)t , (13.144)

where we used the contour integral definitions as in Equation (13.139). The Heavyside (step) func-
tion Θ(t) is defined as

Θ(t) =

{
1 t > 0,
0 t > 0.

(13.145)

Interestingly enough, if the sign on the exponential were negative, rather than a decay we would
have a growth of the polarization preceding the impulse, thereby violating the principle of casuality.
We observe that the total susceptibility χ(ω) of a medium is simply equal to the sum of the suscep-
tibilities of all the individual resonances with different relative weight factors C. Based on the above
properties, we can deduce some useful formula. Since causality requires that χ(ω) cannot have a
pole in the lower half of the complex plane, the function

f (ω) =
χ(ω)

ω ′−ω + iε
, (13.146)
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is analytic in the entire lower half-plane, where ε is an infinitesimal real, positive number. Since
f (ω) decreases as 1

ω2 , we can use the standard trick in analytical calculus of creating a loop in the
complex plane by taking the real axis as one part of the loop and completing the loop somewhere
very far away in the lower-halfplane. Then we can use the theorem stated in Equation (13.139) to
perform the integral in the real axis to obtain

∞∫

−∞

dω
χ(ω)

ω ′−ω + iε
= 0. (13.147)

Now using the Dirac Delta function definition from Equation (13.140), we get

P

∞∫

−∞

dω
χ(ω)

ω ′−ω
+ iπ χ(ω ′) = 0. (13.148)

If we interchange the ω and ω ′, we can write

χ(ω) =
1
iπ

P

∞∫

−∞

dω
′ χ(ω ′)

ω ′−ω
. (13.149)

Since the susceptibility is a complex number, we write

χ(ω) = ℜeχ(ω)+ iℑmχ(ω), (13.150)

and insert it into Equation (13.149) to obtain the Kramers–Kronig relations as

ℜe[χ(ω)] =
1
π

P

∞∫

−∞

dω
′ℑm[χ(ω ′)]

ω ′−ω
, (13.151)

ℑm[χ(ω)] = − 1
π

P

∞∫

−∞

dω
′ℜe[χ(ω ′)]

ω ′−ω
, (13.152)

The relation between the ℜeχ(ω) and the ℑmχ(ω) is known mathematically as a Hilbert transform,
analogous to the Fourier transform but with the 1

(x−y) replaced with exy.
The Kramers–Kronig relations can be recast in a useful form if we assume that the susceptibility
has the following symmetry properties

ℜe[χ(−ω)] = ℜe[χ(ω)], (real function), (13.153)
ℑm[χ(−ω)] = −ℑm[χ(ω)], (odd function). (13.154)

To utilize the above properties, we break Equation (13.149) into two parts, as follows

χ(ω) =
1
iπ

P

∞∫

0

dω
′ χ(ω ′)

ω ′−ω
+

1
iπ

P

0∫

−∞

dω
′ χ(ω ′)

ω ′−ω
. (13.155)

Now using the properties that the ℜeχ(ω) is even and ℑmχ(ω), we have

ℜe[χ(ω)]+ iℑm[χ(ω)] =
1
iπ

P

∞∫

0

dω
′

ℜe χ(ω ′)
(

1
ω ′−ω

− 1
ω ′+ω

)
,

+
1
π

P

∞∫

0

dω
′

ℑm χ(ω ′)
(

1
ω ′−ω

+
1

ω ′+ω

)
, (13.156)
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Combining the common terms we have

ℜe[χ(ω)]+ iℑm[χ(ω)] =
1
iπ

P

∞∫

0

dω
′

ℜe χ(ω ′)
(

2ω

ω ′2−ω2

)
,

+
1
π

P

∞∫

0

dω
′

ℑm χ(ω ′)
(

2ω ′

ω ′2−ω2

)
. (13.157)

Finally, equating the real and imaginary parts we have on each side, we have

ℜe[χ(ω)] =
2
π

P

∞∫

0

dω
′ℑm[χ(ω ′)]ω ′

ω ′2−ω2 , (13.158)

ℑm[χ(ω)] = − 2
π

P

∞∫

0

dω
′ℜe[χ(ω ′)]ω

ω ′2−ω2 (13.159)

The physical implications of the Kramers–Kronig relations are as follows. With knowledge of the
real part of the susceptibility over the entire frequency range, we can compute the imaginary part,
or vice versa. This means that if we know the absorption spectrum of a material, we can compute
the index of refraction over the entire wavelength range without any additional measurements, and
vice versa. Thus even from a mathematical point of view we recover the fact that absorption and
refraction are not independent properties of a material, but, rather come from the same underlying
physical mechanism.
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13.9 Chapter 13 Exercises
13.9.1. What is the wavelength and frequency range for the visible part of the electromagnetic

spectrum?

13.9.2. Terahertz radiation has applications ranging from medical imaging, national security, to
scientific imaging in submillimeter astronomy. What is the wavelength of electromagnetic
radiation corresponding to terahertz waves of frequency 1012 Hz?

13.9.3. What are the three different processes that light can undergo when interacting with an optical
medium?

13.9.4. What microscopic process within a material causes light waves to refract? What is the speed
of light traveling through a medium of refractive index of 1.33.

13.9.5. The band gaps of some common semiconductors are listed in Table 13.6.4. What frequency
of radiation will cause a transition across the band gap for GaAs?

13.9.6. Derive Maxwell’s wave Equation (13.23) relating the space and time derivatives of ~B.

13.9.7. Derive Equation (13.34).

13.9.8. In Figure 13.9.14 we show electromagnetic wave {~Ei,~Bi,~ki} incident on the interface of two
media with refractive indices n1 and n2.

Figure 13.9.14: Transverse electric (TE) mode scattering, also known as S or σ scattering. The
scattering is of the transverse type because the incident electric field is perpendicular to the plane of
incidence. For an electric field parallel to the plane of incidence the scattering is called transverse
magnetic (TM), P, or π type. In the TM case, the magnetic field sticks out of the plane of incidence.

The reflected and transmitted waves are denoted by {~Er,~Br,~kr} and {~Et ,~Bt ,~kt}, respectively.
The angle of incidence, reflection, and of the transmitted ray is given by θi, θr, and θt , in
that order. At the interface of two media, the parallel and perpendicular components of the
electric and magnetic fields obey boundary conditions (in the absence of free charges and
free currents) given by
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ε1E⊥1 = ε2E⊥2 , (13.160a)

E‖1 = E‖2 , (13.160b)

B⊥1 = B⊥2 , (13.160c)
1
µ1

B‖1 =
1
µ2

B‖2. (13.160d)

Using the boundary conditions, derive the law of reflection which states that θi = θr.

13.9.9. For the TE wave set-up of Problem 13.9.8 derive the law of refraction which states that
ni sinθi = nt sinθt .

13.9.10. For the TE wave set-up of Problem 13.9.8 derive the Fresnel reflection (rT E) and transmis-
sion (tT E) coefficients.

13.9.11. For the TE wave set-up of Problem 13.9.10 show that the result reduces to Equation (13.99)
for normal incidence.

13.9.12. Derive Maxwell’s wave Equation (13.62) in a conducting medium with no free charges.

13.9.13. Derive Equations (13.70a) and (13.70b) relating the real and imaginary parts of the com-
plex dielectric constant with the refractive index.

13.9.14. Derive Equations (13.71a) and (13.71b).

13.9.15. Derive Equation (13.86).

13.9.16. (a) Calculate the plasma frequency in Hz for (i) Li (ii) Na, and (iii) K. The free electron
density for these metals are n = 4.70×1028,2.65×1028, and 1.40×1028 per m3, respec-
tively. The experimentally observed plasma frequency (in ×1014 Hz) are 14.6, 14.3, and
9.52, see Reference [61].
(b) The effective number of free electrons, Ne f f is a parameter that provides us with infor-
mation on how many free electrons per atom contribute to the electron gas. This parameter
appears in several nonoptical equations such as Hall constant and superconductivity. Thus
it is important to get a sense of its numerical value. We can define Ne f f as

Ne f f =

(
ωp(observed)
ωp(calculated)

)2

. (13.161)

Calculate Ne f f for (i) Li (ii) Na, and (iii) K.

13.9.17. Derive the reflectivity Equation (13.114) in the high frequency regime governed by the
conditions ω � ωp and ωτ � 1.

13.9.18. Gallium phosphide (GaP) is a compound semiconducting material that has been used in the
manufacture of low-cost red, orange, and green light-emitting diodes (LEDs) with low to
medium brightness since the 1960s. Pure GaP LEDs emit green light at a wavelength of 555
nm. Nitrogen-doped GaP emits yellow-green (565 nm) light, zinc oxide doped GaP emits
red (700 nm). Gallium phosphide has applications in optical systems, also. The biological
pigments of the cones in the human eye have maximum absorption values at wavelengths
of about 420 nm (blue), 534 nm (bluish-green), and 564 nm (yellowish-green). Given that
the human eye is more sensitive to yellow than it is to red, what color will we perceive GaP
to exhibit?

13.9.19. Write a MATLAB code to reproduce Figure 13.5.9 of the refractive index, kappa, and
reflectance within the Drude–Lorentz theory.
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14.1 Introduction
Our current technological revolution relies heavily on our knowledge of electrical conduction in
solids. Electrical conduction is part of a broader class of phenomena known as transport properties.
Transport of mass leads to diffusion, transport of energy leads to thermal conduction, and trans-
port of charge gives rise to electrical conduction. Broadly speaking, the electrical conductivity
values can be used to classify materials in three different categories: conductors, semiconductors,
and insulators. Electrical conductivity can range from 10−20 (Ω m)−1 (insulators) to 104 (Ω m)−1

(semiconductors), to 107 (Ω m)−1 (metals). In this chapter we will utilize a Boltzmann transport
equation formalism to develop a conceptual framework to treat the electric and thermal conduc-
tion behavior. We also discuss the physics of thermoelectric behavior such as the Seebeck effect,
Thomson effect and Peltier effect.
Transport theory can be formulated from two different perspectives, see Figure 14.1.1. In one con-
ceptual viewpoint, say framework A, the electrical current is generated due to an applied electric
field. Thus, in this scenario the field causes the current response. In another approach, say frame-
work B, the voltage builds up in response to the current flow. The current flux is thus determined by
the boundary conditions at the interface of the sample that is being investigated. An inhomogeneous
electric field is created across the sample as a consequence of the current flow. These two viewpoints
form the conceptual foundations of modern transport theory. In framework A, we have theories such
as Drude conductivity, Kubo formalism, and the Boltzmann equation approaches. In the second
framework B, we have the Landauer theory of transport, a conceptual framework for analyzing
transport in nano- or meso-scopic systems.
In simple metals, resistance to electrical motion arises due to impurities, phonon scattering, or both.
At low temperatures (relative to the Debye temperature) the impurity scattering dominates over

499
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Figure 14.1.1: Transport phenomena can exhibit two broad regimes of interest. (a) In the diffu-
sive regime, the electron scatters either elastically or inelastically from the scattering centers as it
traverses through the material. The Drude theory or the Boltzmann approach is an appropriate theo-
retical formulation to describe the associated transport behavior. (b) In the opposite ballistic regime,
the charge carrier traverses through the system without any scattering process. All the inelastic pro-
cesses are in the contacts or leads connected to the ballistic device. The Landauer theory of transport
is then the appropriate strategy.

the phonon scattering and at high temperatures (relative to the Debye temperature ΘD) it is the
opposite scattering mechanism. In 1900, the German physicist Paul Karl Ludwig Drude (1863–
1906) formulated a theory of electrical conduction in metals where he treated electrons as classical
particles, akin to gas molecules which can scatter off the localized ionic cores. The model assumed
the following conditions related to electronic collision:

• the electrons collide only with the heavy and relatively stationary ionic cores,

• in between collisions, the electrons do not interact with each other or with other ions. These two
approximations are known as the independent electron approximation and the free electron
approximation, respectively,

• the collisions are instantaneous and result in abrupt velocity changes,

• the collision probability per unit time is given by 1/τ , also known as the scattering rate,

• electrons achieve thermal equilibrium with their surroundings only through collisions.

Using the above assumptions, Drude was able to explain an empirical fact discovered in 1853 by
Wiedemann and Franz, which states that the ratio of electrical and thermal conductivities at a given
temperature is the same for all metals, see Equation (14.70) associated with the Wiedemann-Franz
law. This excellent agreement between theory and experiment was a short-lived success of the Drude
theory. It was soon realized that the Drude theory failed to account for the temperature dependence
of electrical and thermal conductivities. Furthermore, if one uses Drude’s ideas and treats electrons
as classical particles and applies the above argument to the electron gas, then the heat capacity per
unit volume turns out to be 3

2 NekB where Ne is the number of electrons in the unit volume, and kB is
the Boltzmann constant. This result implies that the electrons should have a substantial contribution
to the heat capacity (on the order of lattice heat capacity, 3NkB, where N is the number of atoms).
This electronic contribution was never observed in experiments.
The discrepancies of the Drude-Lorentz theory were resolved by Arnold Sommerfeld (1868–1951)
in 1927 and 1928, who analyzed the Drude-Lorentz theory and replaced the Maxwell-Boltzmann
distribution with the Fermi-Dirac distribution. His approach immediately led to a successful account
of the Lorentz number and the electronic heat capacity. Assuming the existence of a relaxation time
τ as a parameter, Sommerfeld obtained from the Drude-Lorentz approach the correct temperature
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dependence of the electronic heat capacity and also an excellent agreement with the Lorentz num-
ber, L. The Sommerfeld theory provided the correct order of magnitude for the electronic heat ca-
pacity which is negligibly small compared to its classical value. This supported Debye’s observation
that the heat capacity of metals at ordinary temperatures is predominately due to phonons. While
Sommerfeld’s theory resolved the electronic heat capacity issue, it did not offer any explanation of
the problems associated with the temperature dependencies of electrical and thermal conductivities.
The solution of this problem was resolved by Bloch in 1928 when he investigated the scattering of
electrons by lattice vibrations based on his Bloch wave approach applied to the Boltzmann transport
equation. By considering an electron-phonon scattering mechanism, he correctly explained the elec-
trical conductivity in the high temperature limit (above the Debye temperature). The Wiedemann-
Franz law was also correctly reproduced. In 1933, the German physicist Eduard Grüneisen (1877 –
1949) performed a theoretical calculation which explained the temperature dependence of resistivity
ρ both above and below the Debye temperature and obtained as

ρ =

{
T T �ΘD

T 5 T �ΘD.
(14.1)

Improvements to transport theory have been ongoing and the literature is vast. In this chapter we will
focus on a couple of basic conceptual frameworks to get you started. These include the Boltzmann
transport equation and the Landauer theory of transport. For further studies, you are recom-
mended to consult the list of excellent references listed at the end of this chapter. To motivate for
you why these two regimes can exist, let us consider the various transport length scales and regimes.
Transport length scales serve a very useful purpose to classify the various transport regimes by
comparing with the dimension L of the sample and the Fermi wavelength λF , see Table 14.1.1. The
three important length scales are:

1. Elastic mean free path, le: The distance between elastic scattering events experienced by
the carrier, in this case an electron, is called the elastic mean free path. Due to lattice im-
perfections, such as impurities or dislocations, the electrons can scatter without any loss of
energy. This is possible if we imagine an impurity atom which is more massive than an elec-
tron. Minimal energy is transferred because of the large mass difference, but the momentum
changes drastically. The elastic mean free path can be calculated from the scattering time τ

between successive events as le = τvF , where vF is the Fermi velocity. For semiconductors
τ can be obtained from the electron mobility defined in Equation (14.62).

2. Inelastic mean free path, lin: The lattice irregularties which lead to scattering events could
be dynamical or non-stationary. For example, quantized lattice vibrations called phonons
can scatter an electron. It is also possible that an electron could excite lattice vibrations and
lose energy. Thus, these processes lead to an inelastic scattering event. Further examples of
inelastic scattering processes include electron-electron or even electron-magnon interaction.

3. Phase coherence length, lφ : This parameter measures the distance an electron travels before
its phase is randomized. Elastic scattering events do not randomize the phase, but inelastic
collisions do. The elastic process modifies the phase of the electron by the same amount for
the same path. But, in an inelastic process, the nature of the scattering target evolves with
time. Thus the phase shift is different with the passage of time.

When the elastic mean free path is less than the sample size, many elastic scattering events are
possible. Thus the carrier randomly diffuses through the crystal. This diffusive regime of transport
phenomena can be described via the Drude theory or the Boltzmann equation approach. The classi-
cal or quantum-ness of the situation is dictated by the comparison of the coherence length in relation
to the elastic mean free path. However, in the opposite end of this spectrum is the limit where the
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Table 14.1.1: Transport regime classification based on transport length scales.

Diffusive Classical le� L, lφ < le
Quantum le� L, lφ > le

Ballistic Classical λF � L < lφ , le
Quantum λF ,L < lφ < le

elastic mean free path length is larger than the sample length where the electron traverses through
the system without any scattering. This is the ballistic transport regime. The Landauer theory of
transport was formulated to describe this type of phenomenon which is widely prevelant in our
nanostructures.

14.2 The Boltzmann Transport Equation
In Chapter 5 the Drude model of conduction provided the simplest possible description of elec-
tric and heat current propogation in metals. Within the Drude model it was assumed that electrons
participate in elastic collision processes where the magnitude of the velocity is unchanged, but they
emerge with an average velocity that is randomly oriented. The average velocity assumption implies
that there are some electrons which are travelling either faster or slower compared to the average
speed, in general. Thus, an appropriate description of the transport problem should involve a dis-
tribution function which will provide a spatial, momentum, and temporal dependence of how the
electrons are distributed. Transport (matter or heat) is inherently a non-equilibrium process. Thus,
we wish to find the non-equilibrium distribution function that can describe transport phenomena.
Non-interacting electron at equilibrium with an external temperature bath T is described in momen-
tum space ~p by the Fermi-Dirac distribution f FD(~p) given by

f FD(~p) =
1

exp(ε(~p)−µ)
/

kBT +1
, (14.2)

where kB is the Boltzmann constant, ε(~p) is the dispersion relationship, and µ is the chemical po-
tential. In contrast, phonons which are bosonic would be described by the Bose-Einstein distribution
function. The classical explanation of the Drude model was improved upon using the quantum me-
chanical Sommerfeld model description which even though it is quantum mechanical in nature, it
has neglected electron-ion and electron-electron interactions. For strongly correlated electron sys-
tems, an exact quantum mechanical description is the most appropriate. But, if we are concerned
with material systems in which the mean free path of electrons is much larger than their de Broglie
wavelength, then the conduction electrons can be approximated as a semiclassical electron gas. In
the next few pages, we wish to derive the Boltzmann transport equation that will allow us to obtain
the non-equilibrium distribution function that can describe transport properties.
Consider the six-dimensional phase space of Cartesian coordinates~r and~k shown in Figure 14.2.2.
Let f (~r,~k, t) be the non-equilibrium distribution function, defined by the relationship

f (~r,~k, t)d~rd~k = number of particles in d~rd~k, (14.3)

where d~rd~k is the infinitesimal phase space volume dV~r,~k around the point ~r and ~k at time t. To
determine the non-equilibrium distribution function, we study the evolution of the particles within
the volume element dV~r,~k at a later time t around the region~r′ and~k′ with the volume element dV~r′,~k′ .
Since conservation of particle number holds, we have

f (~r+~̇rdt,~k+~̇kdt, t)d~rd~k = f (~r,~k, t)d~rd~k, (14.4)



The Boltzmann Transport Equation 503
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dV'r',k'

f(r,k,t)

f(r+dr,k+dk,t)

[I]
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Figure 14.2.2: Evolution of the non-equilibrium distribution function appearing in the Boltzmann
transport equation is tracked in the six-dimensional phase space of r−k and time. The Liousville
theorem guarantees that the volume element is preserved, thus dV~r′,~k′ = dV~r,~k. Here, [I]in,out

coll repre-
sents the collision processes.

where the dots denote the time derivative of position and wavevector. Now according to the Liou-
ville theorem of classical mechanics the phase space volume remains constant, see Figure 14.2.2,
implying

dV~r′,~k′ = dV~r,~k. (14.5)

Thus using Equation (14.5) in Equation (14.4) we have

f (~r+~̇rdt,~k+~̇kdt, t) = f (~r,~k, t). (14.6)

However, if collisions do occur during the dt time evolution, particles are scattered in- or out- of the
phase-space trajectory. Thus we modify Equation (14.4) with a collision term as

f (~r+~̇rdt,~k+~̇kdt, t)− f (~r,~k, t) =

(
∂ f (~r,~k, t)

∂ t

)

coll

dt, (14.7)

where

I[ f ]≡
(

∂ f (~r,~k, t)
∂ t

)

coll

dt =

(
∂ f (~r,~k, t)

∂ t

)

in

dt−
(

∂ f (~r,~k, t)
∂ t

)

out

dt, (14.8)

is a functional of the distribution function f (~r,~k, t) known as the collision integral or the scattering
operator. The subscripts coll, in, and out represent net, incoming, and outgoing collision integral
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terms, respectively. With the understanding that

∂

∂~r
≡ ∂

∂x
î+

∂

∂y
ĵ+

∂

∂ z
k̂, (14.9)

∂

∂~k
≡ ∂

∂kx
î+

∂

∂ky
ĵ+

∂

∂kz
k̂, (14.10)

for small time differences the linear-order Taylor expansion of the left-hand side equation gives us

∂ f
∂ t

+~̇r · ∂ f
∂~r

+~̇k · ∂ f

∂~k
=

(
∂ f (~r,~k, t)

∂ t

)

coll

, (14.11)

which is the famous Boltzmann transport equation formulated in 1872 by Ludwig Boltz-
mann (1844–1906). The above is a nonlinear integro-differential equation. The unknown non-
equilibrium distribution function is a probability density function in the six-dimensional phase space
of particle position and momentum. We can rewrite Equation (14.11) in terms of velocity~v and force
~F . If we ignore collision processes between the times t and t + dt, then~r and~k will change based
on the semiclassical equations of motion given by

~̇r =~v(~k); h̄~̇k = ~F(~r,~k). (14.12)

Using the above in Equation (14.11) we then have

∂ f
∂ t

+~̇r · ∂ f
∂~r

+
~F
h̄
· ∂ f

∂~k
=

(
∂ f (~r,~k, t)

∂ t

)

coll

, (14.13)

where the derivatives on the left-hand side of the equation are known as drift terms so that their
total sum equals collision term. The Boltzmann transport equation provides a powerful theoretical
approach to compute transport properties, but, when the sample dimension scales become of the
order of the de Broglie wavelength of the particle distribution the above equation fails, see Table
14.1.1. These shortcomings can be avoided by approaching the transport theory from the Landauer
approach described in Section 14.8. The semiclassical Boltzmann transport equation approach de-
scribed has its quantum generalization called the Quantum Boltzmann Equation. This approach
also goes by a different name known as the non-equilibrium Green’s function (NEGF) formalism
initiated by the works of Schwinger, Baym, Kadanoff, and Keldysh. The basic quantity in this the-
oretical approach is the correlation function (or electronic Green function) which plays the role of
the Boltzmann non-equilibrium distribution function, f (~r,~k, t).

14.3 Relaxation Time Approximation and Drude Conductivity
The presence of the collision term in the Boltzmann transport equation makes the problem of solving
for the non-equilibrium distribution function challenging. However, the relaxation time approxi-
mation provides a simple approach to recover some relevant information regarding the transport
properties. Within this approach, local thermodynamic equilibrium in the system is attained through
collisions where

1. the distribution of the electrons after the collision is not affected by the non-equilibrium
distribution just prior to it,
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Figure 14.3.3: The presence of an external electric field ~E (here denoted with boldface E) causes
the Fermi surface to be displaced. The external perturbation disturbs the equilibrium distribution
to change it to the non-equilibrium f function appearing in the Boltzmann formulation. τ is the
relaxation time and h̄ the reduced Planck’s constant.

2. the local equilibrium electronic distribution fo conforms to the local temperature, thereby
preventing any change in the form of the distribution function.

Based on these assumptions we can claim that the deviation of f from the thermal equilibrium
distribution fo is small. Thus, based on the relaxation time approximation we can approximate the
collision integral as

[
∂ f
∂ t

]

coll
=− f − fo

τ
, (14.14)

where τ is called the relaxation time. In general τ = τ(~k,~r) can depend on the energy ε(~k) and on
position, and is a semi-empirical parameter. Thus, in the relaxation time approximation the Boltz-
mann equation becomes

∂ f
∂~r
·~v+ ∂ f

∂~k
·
~F
h̄
+

∂ f
∂ t

=− f − fo

τ
(14.15)

The non-equilibrium distribution function f , evaluated with the Boltzmann Equation (14.15) permits
the evaluation of several transport phenomena coefficients. For example, electron current density ~J
and the energy flux density ~U can be computed from the definitions

~J =
1

4π3

∫
(−e)~v~k f d3~k, (14.16)

~U =
1

4π3

∫
ε(~k)~v~k f d3~k, (14.17)
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where spin degeneracy and density of allowed points in~k space per unit volume has been accounted
for by using 2/(2π)3 factor.
The static Drude conductivity of a metal can be derived using the Boltzmann approach within the
relaxation time approximation. For a homogeneous material in a uniform and steady electric field ~E,
the electric field distribution function f depends only on~k. The associated Fermi surface is displaced
as shown in Figure 14.3.3. Thus, the Boltzmann equation becomes

1
h̄

∂ f

∂~k
· (−e)~E =− f − fo

τ
(14.18)

For low electric fields, assuming that f − fo is linear in the field strength, we can approximate f ≈ fo
in the left-hand side of the above equation to obtain

f = fo +
eτ

h̄
∂ fo

∂~k
·~E, (14.19)

from which we identify the non-equilibrium distribution function as

f1 =
eτ

h̄
∂ fo

∂~k
·~E =

eτ

h̄
∂ fo

∂ε

∂ε(~k)

∂~k
·~E = eτ

∂ fo

∂ε
~v ·~E, (14.20)

where

~v =
1
h̄

∂ε(~k)

∂~k
, (14.21)

is the semi-classical expression of the velocity and ε(~k) is the single electron dispersion. Inserting
the above definition of f1 ( fo = 0 gives zero contribution) in Equation (14.16), we obtain

~J =
1

4π3

∫
(−e)~v f1d3~k =

e2

4π3

∫
τ

(
−∂ fo

∂ε

)
~v(~v ·~E)d3~k. (14.22)

For simplicity we will assume that ~J and ~E are parallel to each other such that ~J =σ~E. Thus defining
the unit vector ê = ~E/|~E|, dotting both sides of Equation (14.22) with ê, we can extract the static
conductivity expression as

σo =
e2

4π3

∫
τ(ê ·~v)2

(
−∂ fo

∂ε

)
d3~k. (14.23)

Based on our previous understanding, we know that for low temperature the Fermi-Dirac distribu-
tion function changes sharply from unity to zero within a small interval around the Fermi level of
the order of kBT . The distribution function changes significantly from zero in this same interval.
Furthermore, to estimate the conductivity given by Equation (14.23) we can replace (ê ·~v)2 with
v2/3 (assuming isotropic contributions from x, y, or z direction) and approximate the change in the
negative derivative of the distribution function with respect to ε with δ (ε(~k)− εF), where εF is the
Fermi energy. Thus we have

σo =
e2

12π3

∫
τv2

δ (ε(~k)− εF)d3~k. (14.24)

We can transform the integration variable in Equation (14.24) from d3~k to an integral calculated
over the Fermi surface FS. To do so, observe that between two isoenergy surfaces of ε and ε + dε

we can write

dε = ∇~kε(~k) ·d~k = |∇~kε(~k)|dk. (14.25)



Boltzmann Equation in Electric Field and Temperature Gradients 507

Then using Equation (14.25) we can express the volume element d3~k in terms of a surface integral
and energy integration variable as

d3~k = dS dk = dS
dε

|∇~kε(~k)|
. (14.26)

Using Equation (14.26) and invoking the Delta function energy constraint over the Fermi surface
(FS), we can write

σo =
e2

12π3

∫
τv2

δ (ε(~k)− εF)dε
dS

|∇~kε(~k)|

=
e2

12π3

∫

FS
τv2 dS

|~∇~kε(~k)|
(performing the Delta function integration)

=
e2

12π3h̄

∫

FS
τ v dS, (14.27)

where we have used |~∇~kε(~k)|= h̄v. Thus, for a parabolic conduction band ε(~k) with effective mass
m∗ the Fermi velocity vF is computed as

vF =
∂ε(~k)

∂~k

∣∣∣∣∣
k=kF

=
∂

∂~k

(
h̄2

2m∗
k2
)∣∣∣∣∣

k=kF

=
h̄kF

m∗
. (14.28)

Finally we perform the Fermi surface integration in Equation (14.27). To do so, we replace τ and v
with τF and vF , substitute the surface area integral over dS with 4πk2

F , and use the Fermi wavevec-
tor’s relationship to the electron density n given by

k3
F = 3π

2n, (14.29)

to obtain the static conductivity as

σo =
e2

4π3 τF vF 4πk2
F =

ne2τF

m∗
. (14.30)

Recall from Chapter 5 that Equation (14.30) is the well-known Drude formula for DC electrical
conductivity!

14.4 Boltzmann Equation in Electric Field and Temperature Gradients
Equation (14.13) will allow us to study transport effects due the presence of electric fields at uniform
temperature, that is isothermal (constant temperature) conditions. In this section we will further
generalize the Boltzmann transport equation derived in the previous section to take into account
temperature gradients. Consider a band of energy E(~k) in a crystal in thermal equilibrium at a
non-uniform temperature. We define the space and momentum dependent, but time independent
(stationary), local equilibrium distribution function fo(~r,~k) as

fo(~r,~k) =
1

exp
[(

ε(~k)−µ(~r))
)
/kBT (~r)

]
+1

, (14.31)
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where the local temperature T (~r) and chemical potential µ(~r) have spatial dependence. To solve for
f1 from Equation (14.13), we need the gradient of fo with respect to~k and with respect to~r. These
derivatives (see Problem 14.9.5) are given by

∂ fo

∂~r
=

∂ fo

∂ε
kBT

∂

∂~r

[
ε(~k)−µ

kBT

]
=

∂ fo

∂ε

[
−ε(~k)

T
∂T
∂~r
−T

∂

∂~r
µ

T

]
, (14.32)

and

∂ fo

∂~k
=

∂ fo

∂ε

∂ε(~k)

∂~k
=

∂ fo

∂ε
h̄~v. (14.33)

Within the relaxation time approximation, the Boltzmann equation for the stationary distribution
f (~r,~k) in the presence of an electric field ~E and temperature gradient we have

∂ f
∂~r
·~v+ (−e)

h̄
∂ f

∂~k
·~E =− f − fo

τ
=− f1

τ
, (14.34)

where we used ~F = −e~E. Assuming the electric field and temperature gradient are small, which is
usually the case, we can substitute f ≈ f0 in the left-hand side of Equation (14.34). This implies
that

∂ f0

∂~r
·~v+ (−e)

h̄
∂ f0

∂~k
·~E =− f1

τ
. (14.35)

Note, with this approximation we can solve for f1 as

f1 =−τ

{
∂ f0

∂~r
·~v+ (−e)

h̄
∂ f0

∂~k
·~E
}
. (14.36)

Now using Equations (14.32) and (14.33) in Equation (14.36) we obtain for the stationary non-
equilibrium distribution function as

f1 = τ

(
−∂ fo

∂ε

)[
−e~E−T~∇

(
µ

T

)]
·~v+ τ

(
−∂ fo

∂ε

)
(−ε(~k))

~∇T
T
·~v, (14.37)

where again~∇≡ ∂

∂~r is the gradient operator acting on the space dependent temperature and chemical
potential terms. To proceed further with the derivation, let us assume for simplicity that ~E is along
the x direction. Furthermore, assuming an isotropic system implies that ~J and ~U are parallel to the
x direction and ~∇≡ ∂x. Thus replacing the expression for f with the above f1 in Equations (14.16)
we can write for Jx as

Jx = 2
(−e)
2π

∫
vkx τ

(
−∂ fo

∂ε

){[
−eEx−T ∂x

(
µ

T

)]
vkx +(−ε(kx))

∂xT
T

vkx

}
dkx, (14.38)

= 2
(−e)
2π

τ

∫
v2

kx

(
−∂ fo

∂ε

){[
−eEx−T ∂x

(
µ

T

)]
+(−ε(kx))

∂xT
T

}
dkx, (14.39)

= e
{

2
2π

∫
τv2

kx
ε

0(kx)

(
−∂ fo

∂ε

)
dkx

}[
eEx +T ∂x

(
µ

T

)]
,

+ e
{

2
2π

∫
τv2

kx
ε

1(kx)

(
−∂ fo

∂ε

)
dkx

}
∂xT
T

, (14.40)

= eK0

[
eEx +T ∂x

(
µ

T

)]
+ e

K1

T
∂xT, (14.41)
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where we have identified the expressions within the integral as the kinetic coefficients K0 and K1.
Since the derivation is being performed in one dimension, the spin degeneracy and density of al-
lowed points in momentum space is taken to be 2/(2π) instead of 2/(2π)3 as in three dimensions.
The zero or one subscript for K follows the power on the dispersion relation ε(kx). Following a sim-
ilar strategy, we can derive the expression for Ux along x. But, now note the presence of the ε(kx) in
the definition of Equation (14.17). This will cause the kinetic coefficients to pick up another power
of ε(kx) to transform K0 to K1 and K1 to K2. Generalizing the above expressions for the current
density and the energy density to three dimensions along any arbitrary unit vector ê of the electric
field direction we have

~J = eK0

[
e~E +T~∇

(
µ

T

)]
+ e

K1

T
~∇T, (14.42)

~U = −K1

[
e~E +T~∇

(
µ

T

)]
− K2

T
~∇T, (14.43)

where the kinetic coefficient expression is given by

Kn =
1

4π3

∫
τ(ê ·~v)2

ε
n(~k)

(
−∂ fo

∂ε

)
d~k. (14.44)

The transport coefficients Kn can be evaluated replacing (ê ·~v)2 by v2/3 as we did with the evaluation
of the DC Drude conductivity calculation. Next, we can replace the three-dimensional integral in
d3~k as a 2D constant energy surface integral and an integration over the energy variable dε (same
trick as in the Drude conductivity calculation) to have

Kn =
1

12π3

∫ (
−∂ fo

∂ε

)
ε

n(~k)dε

∫

ε=const

τv2

|~∇kε(~k)|
dS, (14.45)

where |~∇kε(~k)| = h̄v. Keeping in mind Equation (14.30), we can define a generalized conductivity
σ(ε) as

σ(ε) =
e2

12π3h̄

∫

ε=const

τ v dS, (14.46)

where notice that σ(εF) = σo is the standard conductivity of the metal. Thus we have the form

e2Kn =
∫ (
−∂ fo

∂ε

)
ε

n(~k)σ(ε)dε. (14.47)

The integrals appearing in the above equation can be calculated using the Sommerfeld expansion
which is given by

∞∫

0

(
−∂ fo

∂ε

)
g(ε)dε = g(µ)+

π2

6
k2

BT 2
(

d2g
dε2

)∣∣∣∣∣
ε=µ

+O(T 4), (14.48)

with g(ε) = εnσ(ε). Hence, the transport coefficients to O(T 4) can then be written as (see Problem
14.9.7)

e2K0 ≈ σ(µ)+
π2

6
k2

BT 2
σ
′′(µ), (14.49a)

e2K1 ≈ µσ(µ)+
π2

6
k2

BT 2 [2σ
′(µ)+µσ

′′] , (14.49b)

e2K2 ≈ µ
2
σ(µ)+

π2

6
k2

BT 2 [2σ(µ)+4µσ
′(µ)+µ

2
σ
′′] , (14.49c)
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where the first and second derivatives of σ(ε) are calculated at the Fermi energy ε = µ .
We conclude this section by rewriting Equations (14.42) and (14.43) in a slightly different way
which renders an easier analysis of thermoelectric phenomena. To do so, notice that

~∇
(

µ

T

)
=

1
T
~∇µ− µ

T 2
~∇T. (14.50)

Next, substituting Equation (14.50) in Equations (14.42)–(14.43) and simplifying we can write the
basic transport equations for charge and energy flux as

~J = e2K0

[
~E +

1
e

∇µ−S(T )~∇T
]
, (14.51)

~U = −1
e

K1

K0
~J− ke~∇T , (14.52)

where we can identify σo = e2Ko (compare with the integral in the last line of Equation 14.27),
introduce the Seebeck coefficient (absolute thermoelectric power) definition, discussed further in
Section 14.7, to write

S(T ) =− 1
eT

(
K1

K0
−µ

)
≈ π2

3
k2

BT
(−e)

σ ′(µ)
σ(µ)

, (14.53)

and the thermal conductivity (electronic) definition (discussed further in Section 14.6) to have

ke =
1
T

(
K2−

K2
1

K0

)
≈ π2

3
k2

BT
e2 σo. (14.54)

In the above, we have kept the leading order term in the temperature expansions of e2Ko and also
neglected the second derivative terms. The explicit temperature dependence of the Seebeck coeffi-
cient and the thermal conductivity are evaluated using the Sommerfeld equations listed in Equations
(14.49a)–(14.49c), see Problems 14.9.8, 14.9.9, and 14.9.10.

14.5 Drift and Diffusion Current
As a first application of Equations (14.51) and (14.52), we consider the electron current density in
a metal in isothermal conditions (∇T = 0), but with a non-uniform carrier concentration ∇n 6= 0,
which implies ∇µ 6= 0. Thus inserting ∇T = 0 in Equation (14.51) we have

~J = σo

[
~E +

1
e
~∇µ

]
, (14.55)

from which we can identify two contributions, one for the drift current
~Jdrift = σo~E, (14.56)

and the other is the diffusion current
~Jdiff =

σo

e
~∇µ, (14.57)

We can apply the above equation to the case of a free-electron-like conduction band for a metal. We
have in this case, the conductivity and the T=0 Fermi energy εF as

σo =
ne2τ

m∗
, (14.58)

µ =
h̄2

2m∗
(3π

2n)2/3 ≡ εF . (14.59)
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Note, from Equation (14.59) we can obtain the relation

∇µ

µ
=

2
3

∇n
n
. (14.60)

We now rewrite Equation (14.56) as

~Jdrift = σo~E, (14.61a)

=

(
ne2τ

m∗

)
~E, (14.61b)

= neµe~E, (14.61c)

where we have introduced the electron mobility defined as

µe =
eτ

m∗
. (14.62)

Next, we rewrite Equation (14.57). To do so, we insert Equations (14.58), (14.59), and (14.60) into
Equation (14.57) to obtain

~Jdiff =
σo

e
~∇µ, (14.63a)

=

(
ne2τ

m∗

)
1
e
~∇µ, (14.63b)

=

(
ne2τ

m∗

)
1
e

2
3

~∇n
n

µ = ne
(eτ

m

) 1
ne

2
3

εF~∇n = eD~∇n, (14.63c)

where the diffusion coefficient, D, is given by

D =
2 εF

3 e
µe. (14.64)

Thus we can rewrite the current density in the metal as

~J = neµe~E + eD∇n (14.65)

In the case of the free electron gas which is non-degenerate and following the Boltzmann distribu-
tion, we have

εF =
3
2

kBT, (14.66)

based on the equipartition theorem which distributes 1
2 kBT amount of energy to each quadratic

degree of freedom, in this case the velocities along x, y, and z. Thus the diffusion coefficient can be
rewritten as

D =
kBT

e
µe. (14.67)

Equations (14.64) and (14.67) are the Einstein relations between the mobility and the diffusion
coefficient for the degenerate and non-degenerate electron gas, respectively.
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14.6 Thermal Conductivity of Metals
Consider a metal in the presence of a uniform temperature gradient ∇T and in open circuit situation
as shown in Figure 14.6.4. In this situation ~J =~0. Thus Equation (14.52) for the energy flux density
takes the form

~U =−ke~∇T (14.68)

with ke given by Equation (14.54),

ke =
π2

3
k2

B
e2 T σo. (14.69)

Thus the energy flows in the direction opposite to ~∇T as expected, i.e., from the hot to the cold
side. From the expression of the electron thermal conductivity ke, we see that the ratio of thermal
conductivity to the electrical conductivity is proportional to T (Wiedemann–Franz law), thus one
has the ratio

ke

T σo
= L≡ π2

3
k2

B
e2 , (14.70)

which is known as the Lorentz number L = 2.45× 10−8(V/K)2. The Lorentz number would ac-
tually be a universal constant (independent of the specific metal, temperature and relaxation time),
provided the approximations made in the transport equations are justified. The most vulnerable part
is the relaxation time approximation of the collision term. This approximation is justified above the
Debye temperature, where electron–phonon scattering is the dominant process, and also at very low
temperature, where the impurity scattering is dominant. In both temperature regimes, the Lorentz
number is approximately the same for all metals. At intermediate temperatures, however, significant
deviations may occur.

T1 T2

Figure 14.6.4: A bar of homogeneous material with a hot and a cold end (temperature gradient: this
gradient of T points from the cold side to the hot side).

14.7 Thermoelectric Phenomena
Thermoelectric effects are a manifestation of electrical current and heat flow interaction in mate-
rials. The coupling parameter, termed thermopower, provides a quantitative sense of the direct
conversion of heat into electricity and vice versa. In the reverse process, cooling is achieved by
the application of a voltage across a thermoelectric material. Thermoelectric materials have appli-
cations in green technologies, where waste heat from industrial applications or car engines can be
converted into usable power. Interestingly enough many of the topological insulators are excellent
thermoelectrics. Examples include Bi2Se3, Bi2Te3, and Sb2Te3.
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14.7.1 Seebeck Effect and Thermoelectric Power

In 1821 the Baltic German physicist Thomas Johann Seebeck (1770–1831) was credited with the
discovery that when two dissimilar metals such as copper and bismuth wires are joined at two
ends to form a loop, a voltage is developed in the circuit if the two junctions are kept at different
temperatures. The metal pair forms a circuit called a thermocouple. This is the Seebeck effect. The
existence of the current in the closed circuit can be confirmed in several ways, one of which includes
the deflection of a magnetic needle caused by the current flowing in the circuit (this is how Seebeck
performed his classic experiment). Although attributed to Seebeck, historical accounts have revealed

Figure 14.7.5: Standard bimetallic strip geometry used in Seebeck coefficient measurement setup.

that the first experiments on thermoelectricity were performed by the Italian physicist Alessandro
Giuseppe Antonio Anastasio Volta (1745–1827) in 1794. Additionally, Seebeck did not fully com-
prehend the underlying physical mechanism that caused the effect he measured. He called it “ther-
momagnetische Reihe” or “thermomagnetism”. The correct physical explanation was provided by
the Danish physicist and chemist Hans Christian Øersted (1777–1851) who recognized that it was
the heat that caused the electric current in the circuit. Øersted coined the term thermoelectricity.
The Seebeck voltage ∆V can be measured due to a temperature difference and is related to the
Seebeck coefficient via

∆V =−
T2∫

T1

[SA(T )−SB(T )]dT, (14.71)

where ∆V , as shown in Figure 14.7.5, measures the open circuit voltage difference across termi-
nal points a and b, T1 (T2) are the temperatures at the two metal junction points c(d), and SA(SB)
represent the thermoelectric power mentioned before or the Seebeck coefficient for the two met-
als forming the bimetallic strip. The SI unit of the Seebeck coefficient is volts per kelvin (V/K),
although it is customarily reported in 10−6µV/K. The term thermoelectric power is a misnomer
though since the Seebeck coefficient does not measure any power. Table 14.7.2 lists the Seebeck
coefficient for some standard materials.



514 Transport Properties of Solids

Table 14.7.2: The performance of a thermocouple is determined by the Seebeck coefficient of a pair
of metals. The chosen standard is platinum, which has a value of −5 µV/K. The room temperature
Seebeck values, relative to platinum, of some common materials are reported above. In conductors,
the Seebeck coefficient is negative for negatively charged carriers (such as electrons), and positive
for positively charged carriers (such as holes).

Material Seebeck Coefficient (µV/K)
Bismuth -72
Nickel -15
Silicon 440

Germanium 330
Selenium 900

Constantan
Alloy - Cu (55%), Ni (45%) -35

Bi2Te3 -270

Assuming that the S(T ) is temperature independent, we can rewrite Equation (14.71) as

S =−∆V
∆T

. (14.72)

The sign of the Seebeck coefficient could be positive or negative.

14.7.2 Thomson Effect

Lord Kelvin (William Thomson) found that when a current is passed through a wire of single ho-
mogeneous material along which a temperature gradient exists, heat must be exchanged with the
surroundings in order to preserve the original temperature gradient along the wire. This fact can
be understood if we recognize that the hot charge carriers will diffuse towards the cold end. The
charge separation sets up an electric field that opposes the motion of the carriers due to the ther-
mal effect. Thus, heat is released or absorbed reversibly at a rate depending on the current density
and the material specific properties. One important distinction between the Joule heating effect and
Thomson effect is that the latter is reversible. If the direction of the current is reversed, the Thomson
effect changes sign, but the irreversible Joule heating process does not. It is possible to show that
the Thomson coefficient, KT H , is related to the absolute thermoelectric power via the relationship

KT H(T ) = T
dS(T )

dT
, (14.73)

where T is the temperature in Kelvin.
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Figure 14.7.6: In additional to Joule heating, heat can also be reversibly released or absorbed when
current flows across the junction of two dissimilar metals. The french watchmaker turned physicist
Jean Charles Peltier discovered this thermoelectric effect in 1834.

14.7.3 Peltier Effect

In 1834 the French physicist Jean Charles Athanase Peltier (1785–1845) discovered that heat is
generated reversibly when a current flows in a given homogeneous material when current flows
across a junction between two conducting materials, see Figure 14.7.6. In contrast to the Joule
effect, but similar to the Thomson effect, this transport property exhibits reversibility. Thus, if the
direction of the current changes, the Peltier effect changes sign. The Peltier effect can be thought of
as a reverse Seebeck effect. In fact the Peltier coefficient, Π, is connected to the Seebeck coefficient
via the simple relationship

Π(T ) = T S(T ), (14.74)

where T is the temperature in Kelvin.
Applications of the Peltier effect are abundant. Thermoelectric coolers operating on the Peltier
effect are abundant. Applications range from portable coolers, cooling electronic components to
cooling of CCDs in telescopes and spectrometers.

14.7.4 Thermoelectric Figure of Merit, Z

The performance of a thermoelectric material is evaluated in terms of a dimensional figure of merit
ZT defined by

ZT =
S2σ

κl +κe
, (14.75)

where S is the Seebeck coefficient, σ is the electrical conductivity, κl is the lattice thermal conduc-
tivity, and κe is the electronic thermal conductivity, T is the temperature. The product S2σ is called
the power factor. A larger ZT leads to a high conversion efficiency. The denominator is mostly
determined by lattice thermal conductivity.
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The combination of transport properties that make up ZT, raises an interesting question: “What ma-
terial properties are needed for a high ZT?” Metals have high electrical conductivity, low Seebeck
coefficient, and high thermal conductivity. In contrast, insulators have low large Seebeck coefficient,
but extremely low electrical conductivity leading to a tiny power factor. Thus, the optimal thermo-
electric materials are those whose properties lie in between, that is semiconducting. This region, as
highlighted in [70] lies at the crossover region between semiconducting and metallic properties, see
Figure 14.7.7.

Insulator

S

S2
σ

S

Carrier concentrationCarrier concentration

Semiconductor

Metal Insulator

Semiconductor

Metal

ph

e

Figure 14.7.7: Carrier concentration variation of the Seebeck coefficient S, electrical conductivity
σ , and lattice (electronic) thermal conductivity κl(κe). The ratio of the power factor S2σ to κl +κe
decides the optimal thermoelectrical figure of merit ZT . The optimized carrier concentration is
around 1×1019 cm−1. Bi2Te3 is a good thermoelectric with ZT ≈ 1 and Silicon is poor with ZT ≈
0.01. Figure redrawn by the authors based on reference [70].

14.8 Landauer Theory of Transport
The modern human society experiences all the benefits of nanotechnology. At the heart of this
immense technological revolution lies a fundamental understanding of how electron transport in
devices which are really tiny (≈ 10−9 m) cannot be described by the diffusive transport equations
of the previous sections. Table 14.1.1 is an excellent reminder of the ballistic transport regimes that
have come to dominate the landscape of mesoscopic or nanophysics. In the 1980s experiments on
mesoscopic systems (those neither at the nano level nor macroscopic) revealed the important role
played by contacts.
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W

L

Ballistic conductor

Contact 1 Contact 2

E

Figure 14.8.8: A ballistic conductor between two contacts is a canonical set-up within which the
Landauer thory of transport can be examined. The electron injected into the ballistic conductor
moves through it without any scattering events to appear at the other contact.

The transport model introduced by the German-American physicist Rolf William Landauer (1927–
1999) provided a successful explanation of the phenomena observed in these devices. Within his
approach, Landauer considered that all the irreversibility and the dissipation originate in the con-
tacts, with the conductor itself being free from all interactions. Although this classification seems
artifical for large macroscale conductors (say a copper wire carrying current in our homes), at the
atomic/nano-scale (IC chips inside our laptop, cell phone) this is precisely the regime the conduc-
tors are in! In the next few paragraphs, we will develop the formalism that can adequately treat this
situation.
As mentioned earlier, electric current flow is often viewed as an electron (or the relevant charge
carrier) responding to an external electric field (or corresponding stimuli). Landauer conceptualized
the current flow as a transmission process or a consequence of carrier injection at the contacts and
the probability of the carriers to reach the other end. Consider an ideal one-dimensional sample of
length L, see Figure 14.8.8. The density of states between k and k+ dk including electron spin is
given by

g(k)dk = 2
1
L

L
2π

dk. (14.76)

Furthermore, we note that the electron group velocity is given by

v =
h̄k
m
, (14.77)

where m is the mass of the electron. Assuming the right (left) modes R(L) in the conductor are de-
scribed by the Fermi-Dirac distribution function fR(k)( fL(k)) occupied upto the chemical potential
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level µL(µR), the current I flowing through the system is then given by

I = e
∞∫

0

v(k)g(k) fR(k)dk− e
∞∫

0

v(k′)g(k′) fL(k′)dk′,

= e
∞∫

0

h̄k
m

1
π

fR(ε)
dk
dε

dε− e
∞∫

0

h̄k′

m
1
π

fL(ε
′)

dk′

dε ′
dε
′,

= e

µR∫

0

h̄k
m

1
π

dk
dε

dε− e

µL∫

0

h̄k′

m
1
π

dk′

dε ′
dε
′, (invoking the distribution function cut-off)

= e

µR∫

µL

h̄k
m

1
π

m
h̄k

dε, (reversing the limits on the second integral and combining the two)

=
2e
h
(µR−µL) =

2e2

h
V, (14.78)

where we have related the voltage bias to the chemical potential via the relation V = e(µR− µL).
Thus, the quantum of conductance G in units of Siemens (S) is given by

G =
2e2

h
= (12.9 kΩ)−1 = 77.4 µS, (14.79)

where we have used the well-known relation I = GV in Equation (14.78). Notice, the G replaces
the inverse of the resistance in Ohm’s law V = IR. It is the maximum conductance for a channel (in
this case the wire) with one energy level (also known as an energy mode) in the range of interest
µR > E > µL. Thus, only the most perfect contact can achieve this maximum value of conductance.
Additionally, this relationship implies that the contact resistance of a single-moded conductor is
not negligible, rather quite large and of the order of kΩ. Fo most samples, the transmission is not
ideal at 100%, but dependent on the scattering process. In addition, there could be more than one
mode or channel of conduction in the conductor. Thus, we modify our derived formula to rewrite
the Landauer formula as

G =
2e2

h
MT, (14.80)

where M represents the number of modes and T is the transmission which gives the average prob-
ability an electron injected into the right lead will be transmitted to the left lead. It is assumed that
the electron will exit from the conductor into the contacts without any reflection. The conductance
quantum 2e2

h can be measured in a quantum point contact (QPC) first reported in 1988 by two
research groups: Van Wees et al. [72] and Wharam et al. [73]. A QPC is a narrow constriction be-
tween two wide electrically conducting regions, of a width comparable to the electronic wavelength
(nano- to micrometer). A QPC can be formed in a two-dimensional electron gas heterostructure
such as GaAs/AlGaAs.
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14.9 Chapter 14 Exercises
14.9.1. In this problem you will generalize the results of the static Drude conductivity σo, Equation

(14.24), derived in Section 14.3 to the case of a wavevector (~q) and frequency (ω) depen-
dent conductivity σ(~q,ω). Using Equation (14.15) and assuming the metal is subject to an
electric field periodic in both space and time given by the expression

~E(~r, t) = ~Eoei(~q·~r−ωt), (14.81)

show that

σ(~q,ω) =
e2

4π3

∫
τ(~e ·~v)2

1− iτ(ω−~q ·~v)

(
−∂ fo

∂ε

)
d~k, (14.82)

where ε is the single electron dispersion.

14.9.2. Using Equation (14.82) obtain a general expression for the transverse conductivity σ(q,ω)
for a spherical energy band. Assume, the impinging electric field to be polarized along
the x-direction and propagating along the z-direction, thereby making the conductivity
response transverse since the electric field itself is transversely polarized. State the final
answer in terms of the static Drude conductivity σo and the parameter

ρ =
iqvF τ

1− iωτ
, (14.83)

14.9.3. Show that for |ρ| � 1 the general expression for σ(~q,ω) derived in the previous problem
reduces to the AC conductivity formula derived in Chapter 13, Equation (13.86). Also,
show that in the opposite anomalous regime where |ρ| � 1, the conductivity is real and
frequency independent.

14.9.4. Use the Boltzmann equation formalism within the relaxation time approximation to derive
the Hall effect current density equations

jx =
Ex−ωcτEy

1+(ωcτ)2 σo, (14.84)

jy =
Ey +ωcτEx

1+(ωcτ)2 σo, (14.85)

for an electric and magnetic field uniform in space and steady in time. The applied mag-
netic field points along the z direction and the electric field along the x direction. Model the
non-equilibrium distribution function as f = fo +akx +bky (Reference [69]). ωc = eB/m
is the cyclotron frequency and σo the static Drude conductivity.

14.9.5. Applying your knowledge of chain rule from calculus, derive Equation (14.32).

14.9.6. Electrical conductivity depends on the scattering time τ , see Equation (14.30). At very
low temperatures, assuming impurity scattering only, the scattering is roughly constant
or temperature independent. But, electrical conductivity (thus resistivity) can be and is
known to be temperature dependent. There are three main independent scattering pro-
cesses: scattering by impurities (imp), scattering by electron-electron interaction (el-el),
and by electron-phonon (el-ph) collisions via which temperature dependence can enter the
resistivity formula. For example, well below the Debye temperature threshold the el-ph
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scattering is ∝ T 5. But, far above the Debye temperature, it is T−1. The el-el scattering
scales as T 2. Calculation of these lifetimes are beyond the scope of the current textbook.

Inspired by the work of the British chemist and physicist Augustus Matthiessen (1831–
1870) it is possible to formulate a very crude empirical additive law of effective scattering,
which goes by the name of Matthiessen’s rule. It states that the effective scattering τe f f
is given by

1
τe f f

=
1

τimp
+

1
τel−el

+
1

τel−ph
. (14.86)

The rule fails to apply when the scattering processes are correlated with each other or if
they are wavevector dependent. Assuming these approximations and using the concept of
collision integral, Equation (14.14), restated below
[

∂ f
∂ t

]

coll
=− f − fo

τ
, (14.87)

demonstrates the validity of Matthiessen’s rule.

14.9.7. Derive Equations (14.49a)–(14.49c) using the Sommerfeld expansion. Hint: You will need
to differentiate the functions σ(E),Eσ(E), and E2σ(E) at E = µ .

14.9.8. Using the Sommerfeld expansion coefficients, derive the temperature dependence of the
Seebeck coefficient, Equation (14.53). Hint: Express e2K1 in terms of e2K0 and then sim-
plify, neglecting any temperature dependence above linear order.

14.9.9. Derive the e2K2 expression with g(E) = (E−µ)2σ(E−µ).

14.9.10. Using the Somerfeld e2K2 expansion coefficient derived in the previous problem, compute
the temperature dependence of the electronic thermal conductivity, Equation (14.54). Note,
for metals the K2

1/K0 ≈ T/TF is typically small and can be neglected. T is the temperature
and TF is the Fermi temperature.
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A.1 Introduction

The acronym MATLAB stands for matrix laboratory. MATLAB is a commercial software tool for
the purpose of performing numerical computation and data visualization. It can be obtained from
http://www.mathworks.com/. There are several versions available. The student version is the least
expensive. For the most part, this textbook makes use of the numerical capabilities of the bare
bones MATLAB. It is important to mention that there exist toolboxes available for needs beyond the
textbook, but at an additional cost. As employed in the text, MATLAB programs or scripts (m-files)
are run by means of the “command window.” The command window accepts simple calculator type
of commands which the MATLAB engine interprets after the user presses “Enter.” The scripts are
simple text documents written with the MATLAB language and which are run from the command
line. In this tutorial, we will give simple examples of how to run MATLAB and how to use the
scripts that accompany the text. For further help, refer to the text’s commented scripts as well as
other tutorials available throughout the web. Much of this tutorial as well as other example scripts
can be found in Hasbun’s classical mechanics [64] and DeVries-Hasbun’s computational physics
[18].

A.2 Tutorial Notation

Within the command window, MATLAB’s prompt “>>” indicates the place where the commands
are entered. Anything typed at the prompt is user input which the engine will try to act on once
the user presses Enter. MATLAB is case sensitive, which allows for many different ways to define
variables. For example, here is an example of addition of three different variables.

521
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>> a=2
a =
2
>> B=3
B =
3
>> b=4
b =
4
>> a+b+B
ans =
9
In the above example, we defined the variable and then added them. We could have also added the
three numbers together in one stroke as follows:
>> 2+3+4
ans =
9
Both answers are equivalent, but the first case enables the user to use and reuse variables without
the need to retype them.

A.3 General Features

MATLAB allows the use of comments. These are preceded by the percent sign “%” and can be
placed anywhere on a line within a MATLAB script or m-file. Here is an example.
>> a=3 %defines a
a =
3
We could have made the same definition and suppressed the output if a semicolon “;” had been
placed immediately after the command. Also more than one command can be placed on the same
line when separated by a comma or a semicolon. For example, the command
>> a=3; b=4; %define a and b
produces no output, but does define the variables. This can be checked by looking at the defined
variables:
>> who
Your variables are:
a b
To check on the value of a variable, just type its name and press Enter. For example,
>> a
a =
3
To clear the value of a variable, such as a, just type “clear a” after the prompt. To clear all the
variables, type “clear all” after the prompt. Typing “clear” also works, and typing “clc” and pressing
return clears the command window. The keyboard control sequence “ctrl-c” stops the execution of
a script (press the ctrl key while simultaneously pressing the c key.) MATLAB has a “workspace
window” that shows all the defined variables it recognizes during the current session. To view the
workspace window, choose that option under the “view” drop-down menu.
Define a row vector c with components 1,3, and 5, like this:
>> c=[1 2 3]
c =
1 2 3
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To define a column vector d with components 2,4, and 7 separate the elements with semicolons, as
for example,
>> d=[2;4;7]
d =
2
4
7
The matrix product of these two vectors is done according to the rules of matrices. For example c*d
should produce a single element 1x1, but the product d*c should produce a 3x3 matrix. Let’s see,
>> c*d
ans =
31
>> d*c
ans =
2 4 6
4 8 12
7 14 21
The transpose of this matrix is as follows.
>> (d*c)’
ans =
2 4 7
4 8 14
6 12 21
You can do the “transpose(d*c)” at the prompt. To learn about the details of the stored variable, type
“whos” at the prompt as follows.
>> whos
Name Size Bytes Class
ans 3x3 72 double array
c 1x3 24 double array
d 3x1 24 double array
e 1x3 24 double array
Grand total is 18 elements using 144 bytes
Yo can also ask for help at any time. For example, typing “help” at the MATLAB prompt gives a
list of all help topics available. Typing “help whos” at the prompt outputs the description for the
command “whos” and so on. MATLAB’s power lies in the way it uses arrays to perform numerical
tasks.
MATLAB has a unique multiplication feature. To see this, first, let’s create a square matrix.
>> A=[1 3 5;2 4 6; 7 9 1]
A =
1 3 5
2 4 6
7 9 1
If one desired to square the matrix, one would simply do,
>> Aˆ2
ans =
42 60 28
52 76 40
32 66 90
which is the simple matrix product of A*A. However, the multiplication operation preceded by a
dot has a different result.
>> A.*A
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ans =
1 9 25
4 16 36
49 81 1
This is NOT a matrix product; instead, it is a dot-multiplication. The result is a matrix that contains
each of the elements of A squared. The usefulness of this feature in MATLAB is realized when
plotting a function. Suppose you wanted a plot of the function y = 1/x on the interval [2, 6]. Since y
is a function of x, then first create an array containing the variable x from 2 to 7 in steps of say 0.25.
After that, invert an element of the array at a time and store it in y, then plot y versus x. MATLAB
does this as follows. First, use the “colon” loop idea for the x array
>> x=[2:0.25:6];
where the output has been suppressed, but basically an array for the variable x in the range from
2 to 6 in steps of 0.25 has been created for a total of 136 different values of x or array elements.
This is checked by looking at the workspace window or by typing “whos” at the prompt. Next use
MATLAB’s dot-division, which is similar to the dot-multiplication explained above. Place a “.”
before the “/” symbol as follows
>> y=1./x;
which is ready for MATLAB’s plot command.
>> plot (x,y)
The resulting graph is shown in Figure A.1.
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Figure A.1: Plot of y = 1/x.

It is possible to place labels on a graph as well, which is shown in many of the text’s scripts. The help
menu can also be accessed through MATLAB’s command window for further details as well. While
on the subject of vectors, it is useful to point out the vector dot and cross-products. For example,
let’s define the following vectors:
>> A=[1,2,3]
A =
1 2 3
>> B=[4,5,6]
B =
4 5 6
Next, let’s find the dot and cross-products of A and B,
>> dot(A,B)
ans =
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32
>> cross(A,B)
ans =
-3 6 -3
Let’s find the angle between A and B and convert it to degrees
>> dot(A,B)/(sqrt(dot(A,A))*sqrt(dot(B,B)))*180/pi
ans =
55.8423
Here, the operation dot(A,A) is identical to sum(A.*A). We can also draw and add these vectors in
three dimensions as done below.
>> axis([0,4,0,5,0,6]) %determines the axes ranges to use
>> line([0,1],[0,2],[0,3],’color’,’r’) % the A vector line in red
>> line([0,4],[0,5],[0,6],’color’,’b’) % the B vector line in blue
>> line([1,4],[2,5],[3,6],’color’,’k’) % the connecting vector between A and B in black
>> xlabel(’x’),ylabel(’y’),zlabel(’z’) % put labels for the axes
The graph obtained by the above operations is shown in Figure A.2.
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Figure A.2: The addition of two vectors and the resultant.

A.4 Operands

MATLAB’s full range of operands are listed below. These are important when you are writing a
script or when you are working in the command window during a MATLAB session.

Operand Description Operand Description Operand Description
+ addition ˜= not equal , separator
- subtraction > greater than ; end row
* Scalar multiplica-

tion
>= greater than or equal () subscript enclo-

sure, expression
precedence

/ scalar right division | or [] matrix
\ matrix left division & and Ctrl-c abort
ˆ scalar power ˜ not
.* array multiplication >> MATLAB prompt ; suppress output
./ array division ’ transpose
.ˆ array exponentiation % comment, format

specification
= assignment . decimal point
< less than ... line continuation
<= less than or equal \n new line format

specification
= = logical equal : vector generation
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A.5 M-Files and Functions

An m-file is a text file that contains MATLAB commands in a suitable sequence for it to interpret
and execute. Lines that do not refer to standard MATLAB language are commented (by preceding
a line with the % sign). A simple m-file can be created from the command window by typing the
command “diary test.m” followed by several commands wished to be included or tested. The file can
then be closed by typing “diary off” and be accessed through the MATLAB editor or any other text
editor. With the editor, MATLAB output lines, which are not standard commands, can be deleted
to keep just the basic typed commands and the file can be re-saved in the working directory. By
invoking the name of the file within the MATLAB command window; that is, by typing, “test”,
MATLAB’s engine will proceed to interpret it and produce the needed output. Any errors in the
script will be seen in the command window and can be fixed with the text editor. This textbook
contains scripts that are ready to run in the manner explained.
MATLAB has built-in functions as described in the next section; however, a user can also build
functions. A user function in MATLAB is also an m-file that a user builds in order to perform oper-
ations that are repetitive in nature. For example, suppose that you needed the numerical derivative
of the log(x) at x; you could create the script file “logder.m”, which is a function, as shown here.
function [F] = logder(x,Stateplacedel)
% logder.m calculates the derivative of the log(x) at x within an interval [x,x+Stateplacedel]
% where the value of Stateplacedel is provided by the user
F = (log(x+Statedel)-log(x))/Stateplacedel;
Once the text file with the above lines is saved with the name lodger.m, it can be invoked through the
MATLAB command window or through a line in a script file. For example, let’s do the derivative
of the log(x) at x = 5. Assuming the above file is saved in the working directory, type the line
“logder(5,1.e-3)” at the command window. The session would proceed as follows.
>> logder(5,1.e-3)
ans =
0.2000
Furthermore, typing “help logder” at the command window, produces the output:
“logder.m calculates the derivative of the log(x) at x within an interval [x,x+Stateplacedel]
where the value of placeStatedel is provided by the user”,
which are basically the lines that are commented within the user-built script itself. Thus it is im-
portant to write comments within the functions to recall their usage as well as to make sure that
such functions exist or are present in the working directory. The above is not the only way to create
functions. Another way is to create functions within a script with the help of the “inline” command.
For example f=inline(’exp(x)’) defines the function f(x)=exp(x) within a script.

A.6 Built-in Functions
Some of MATLAB’s built-in functions are listed below. These are important when performing com-
mands for mathematical operations in a script or in a command window’s working session.
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Function Description Function Description Function Description
sin trig sine ceil round towards posi-

tive infinity
diag extract diagonal of a

matrix or make a di-
agonal matrix

cos trig cosine max largest component triu upper triangular part
of a matrix

tan trig tangent min smallest component tril lower triangular part
of a matrix

asin inverse sine sign signum size size of a matrix
acos inverse cosine length length of a vector det determinant of a

square matrix
atan inverse tangent sort sort in ascending or-

der
inv inverse of a matrix

exp exponential sum sum of elements rank rank of a matrix
log natural logarithm prod product of elements rref reduced row echelon

form
abs absolute value median median value eig eigenvalues and

eigenvectors
sqrt square root mean mean value poly polynomial
rem remainder std standard deviation lu LU factorization
round round to nearest in-

teger
eye identity matrix qr QR factorization

floor round towards nega-
tive infinity

zeros matrix of zeros quad numerical integra-
tion

mod modulus ones matrix of ones fzero, roots zeros of functions
and roots of polyno-
mials

inline create a function on
the fly

rand randomly generated
matrix

ode23, ode45 differential equation
solvers

To use these functions, invoke the “help” command. For example, for help on the function “mean”,
type “help mean” in the command window to get help on that function. In this particular case, the
help command says that, for vectors, “mean(x)” is the mean value of the elements in the x array. An
example of this follows.
>> mean([1,2,3,4,5,6,7])
ans =
4
The help command is very useful in MATLAB and should be used as often as possible, at least until
you are familiar with it.

A.7 Plotting
Some of MATLAB’s plotting commands are listed below. These are useful in visualizing a function
in two or three dimensions. The textbook contains scripts that make use of most of these commands.

Command Description Command Description Command Description
plot 2- dimen-

sional plot
semilogx use log scale on the

x-axis
surfl 3-dimensional shaded surface with

lighting
subplot table of plots semilogy use log scale on the

y-axis
mesh 3-dimensional mesh plot

loglog use log-log
scales

surf 3-dimensional
shaded surface

grid Adds grid lines

Please refer to the scripts in the text for the various uses of these commands.

A.8 Programming

Programming refers to a set of commands in a script for the express purpose of performing tedious
calculations. Programming is most useful when loops and if-else statements are used in conjunction
with built-in or user-built functions as well as with command lines within m-files. Below are two
examples that involve a loop and an if-else statement.
Loops
A simple loop in MATLAB is as follows:
for i=1:1:101



528 Appendix A

x(i)=(i-1)*2*pi/(101-1);
y(i)=sin(x(i));
end

The above lines create a 101-element array for x between 0 and 2 for which the sin is evaluated
and stored in the array for y. Of course, in MATLAB there are other ways of doing the same thing,
but the above is an example of a loop. You could add an “if-else” statement, say, for the purpose of
converting half the above wave into a square box. This can be done as follows.
for i=1:1:101
x(i)=(i-1)*2*pi/(101-1);
if x(i)<=pi
y(i)=sin(x(i));
else
y(i)=sign(sin(x(i)));
end
end

Finally, you can perform a “plot(x,y)” command to visualize the results.

A.9 Zeros of Functions

The MATLAB built-in function “fzero” can be used to obtain the variable values at which a function
takes a zero value. One example of this is to find the value of x at which x=exp(-x) is satisfied. This
can be done as follows:
>> fzero(’x-exp(-x)’,.3)
ans =
0.5671
where we have used 0.3 as an initial guess. See the help command for a full function description.
You can also use built-in functions as well as user-built functions in place of the expression between
the single quotes, as explained before. Another example is to obtain roots of polynomials. The built-
in function “roots” can be employed for this purpose. If you needed to know the roots of the cubic
polynomial x3 +3x2−2x+5, for example, you could proceed as follows.
>> roots([1 3 -2 5])
ans =
-3.8552
0.4276 + 1.0555i
0.4276 - 1.0555i
which gives one real and two complex conjugate roots.

A.10 Numerical Integration

Numerical integration is possible with MATLAB. The built quad function can be used for that
purpose. One example for the integration of the sin function on [0,π] is as follows.
>> quad(@sin,0,pi)
ans =
2.0000
You could also replace the “sin” in the above line with the name of a user built-in function. Another
example is to create a function on the fly with the “inline” command
>> g=inline(’2*x.ˆ2+x.ˆ3.*sin(x)’);
>> quad(g,0,pi)
ans =



Appendix A 529

32.8276
Here the function 2x2 + x3 sin(x) was integrated on [0,π].

A.11 Differential Equations

MATLAB has the capability of solving differential equations with the use of the built-in function
“ode23” or the “ode45”. For example, to solve the problem y′ = (y− t2)exp(−t) for y(t) on the
interval [0,20] with the initial condition that at t = 0, y = 1, do it as follows.
f=inline(’(y-t.ˆ2).*exp(-t)’);
[t,y]=ode23(f,[0,20],1);
plot(t,y)
Other more complicated cases make use of user-built functions. See the textbook’s scripts for exam-
ples or type “help ode23” within the command window for further details. The “ode45” solver and
other more sophisticated methods of tackling differential equations are available as explained in the
MATLAB help facility.

A.12 Movies

Here we show how MATLAB makes movies and we use a traveling wave as an example. First make
a space and time array, plot the waves at every time step, save the plot frame into an array M, pause
for a short time to see the plot versus position on the screen, play the movie at 15 frames per second,
and finally save it as an avi file to be used later as the following demonstrates.
x=0:0.01:1; %space array
t=0:0.01:1; %time array
nt=length(t); %time steps
for j=1:nt
y=sin(2*pi*(x-t(j))); %a traveling wave
plot(x,y) %plot for every time step
M(j) = getframe; %make movie frames if desired
pause(0.05); %pause for a short time
end
movie(M,1,15) %play once, at 15 frames per second
%save the movie as wave.avi (at 15 frames per sec without compression)
movie2avi(M,’wave’,’fps’,15,’compression’,’None’);
According to the help command for code that is compatible with all versions of MATLAB, including
versions before MATLAB Release 11 (5.3), use the following lines in place of the above loop.
M = moviein(nt);
for j=1:nt
plot commands here
M(:,j) = getframe;
end
movie(M)

A.13 Publish Code to HTML

It is possible to publish written code on a website. To do so, one needs to convert the script and its
output into html format. To do so, let’s work with the script “file.m”. In the command line, type the
following line
>>publish(’file.m’)
which runs the script, waits for the output, and automatically converts the script and the output to
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html code in the subdirectory “html” under the main directory where the file.m is run from. Typing
“help publish” gives further information on this command.

A.14 Symbolic Operations

With the presence of the symbolic toolbox, MATLAB has symbolic functions capability. Typing
“help symbolic” within the command line gives a list of available functions if the Symbolic Math
Toolbox is available with the version of the software you have. A simple example of a symbolic
operation is to plot the function y = 2t. This is accomplished by typing the following lines:
>> syms t %defines the symbolic variable t
>> y=2*t
y =
2*t
>> ezplot(t,y)
Another example is to plot the function y = 2exp(−at2) and its derivative. This is accomplished as
follows:
>> syms t y f a
>> y=2*exp(-a*tˆ2)
y =
2*exp(-a*tˆ2)
>> f=diff(y,t)
f =
-4*a*t*exp(-a*tˆ2)
>> a=0.5
a =
0.5000
>> ezplot(t,eval(y),[-5 5])
>> hold on
>> ezplot(t,eval(f),[-5 5])
Other examples for symbolic operations are available within the textbook or within the help menu
within MATLAB.

A.15 Toolboxes

In MATLAB basic capabilities can be extended through the use of toolboxes and can be ordered
separately. Toolboxes are separate sets of scripts created by www.mathworks.com in order to solve
specific sets of problems. Currently, the toolboxes available include:
Parallel Computing

Parallel Computing Toolbox
MATLAB Distributed Computing Server

Math, Statistics, and Optimization
Symbolic Math Toolbox
Partial Differential Equation Toolbox
Statistics Toolbox
Curve Fitting Toolbox
Optimization Toolbox
Global Optimization Toolbox
Neural Network Toolbox
Model-Based Calibration Toolbox

http://www.mathworks.com
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Control System Design and Analysis
Control System Toolbox
System Identification Toolbox
Fuzzy Logic Toolbox
Robust Control Toolbox
Model Predictive Control Toolbox
Aerospace Toolbox

Signal Processing and Communications
Signal Processing Toolbox
DSP System Toolbox
Communications System Toolbox
Wavelet Toolbox
RF Toolbox
Phased Array System Toolbox

Image Processing and Computer Vision
Image Processing Toolbox
Computer Vision System Toolbox
Image Acquisition Toolbox
Mapping Toolbox

Test and Measurement
Data Acquisition Toolbox
Instrument Control Toolbox
Image Acquisition Toolbox
OPC Toolbox
Vehicle Network Toolbox

Computational Finance
Financial Toolbox
Econometrics Toolbox
Datafeed Toolbox
Database Toolbox
Spreadsheet Link EX (for Microsoft Excel)
Financial Instruments Toolbox
Trading Toolbox

Computational Biology
Bioinformatics Toolbox
SimBiology

Code Generation and Verification
MATLAB Coder
HDL Coder
HDL Verifier
Filter Design HDL Coder
Fixed-Point Designer

Application Deployment
MATLAB Compiler
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MATLAB Builder NE (for Microsoft .NET Framework)
MATLAB Builder JA (for Java language)
MATLAB Builder EX (for Microsoft Excel)
Spreadsheet Link EX (for Microsoft Excel)
MATLAB Production Server

Database Connectivity and Reporting
Database Toolbox
MATLAB Report Generator

Simulink Product Family
Simulink

Event-Based Modeling
Stateflow
SimEvents

Physical Modeling
Simscape
SimMechanics
SimDriveline
SimHydraulics
SimRF
SimElectronics
SimPowerSystems

Control System Design and Analysis
Simulink Control Design
Simulink Design Optimization
Aerospace Blockset

Signal Processing and Communications
DSP System Toolbox
Communications System Toolbox
Computer Vision System Toolbox

Code Generation
Simulink Coder
Embedded Coder
HDL Coder
Simulink PLC Coder
Fixed-Point Designer
DO Qualification Kit (for DO-178)
IEC Certification Kit (for ISO 26262 and IEC 61508)

Rapid Prototyping and HIL Simulation
xPC Target
xPC Target Embedded Option
Real-Time Windows Target
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Verification, Validation, and Test
Simulink Verification and Validation
Simulink Design Verifier
SystemTest
Simulink Code Inspector
HDL Verifier

Simulation Graphics and Reporting
Simulink 3D Animation
Gauges Blockset
Simulink Report Generator

More detailed information on these toolboxes can be obtained through http://www.mathworks.com.

A.16 MATLAB Websites, other Tutorials, and Clones

In addition to the help facility included within the MATLAB software, the MathWorks website
contains excellent sources of information, help, and code example such as:

1. http://www.mathworks.com/support/books/

2. http://www.mathworks.com/academia/student center/tutorials/index.html?link=body

3. http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?

Often the MATLAB clones’s websites are excellent sources of code examples that could be ported
into MATLAB.

1. http://www.octave.org/

2. http://www.scilab.org/

The MATLAB clones are open source software that is capable of running MATLAB code with some
minor, if any, modifications. The clones may be most useful if much of the code has been written
by the user. This is in contrast to the MATLAB dependence on its toolboxes for specific needs.

http://www.mathworks.com
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.octave.org/
http://www.scilab.org/
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B.1 The Boltzmann Distribution Function

The Boltzmann distribution is the result of studying the equilibrium configuration of an assembly
of N distinguishable (classical) particles subject to the constraints

Φ≡∑
j

N j = N, (14.1a)

where N j is the number of particles with single particle energy level ε j and

Ψ≡∑
j

Niεi =U, (14.1b)

with the total number of particles N and total energy U are constants. In these expressions, the sums
over j are to be carried out up to n energy levels. The idea is to find the occupation number of
each level when the thermodynamic probability is a maximum. For example, the number of ways
of selecting N1 particles from a total of N to be placed in the 1st level is

(
N
N1

)
=

N
N1!(N−N1)!

, (14.2a)

and if we consider that level 1 has g1 distinct states, then the number of ways to place N1 particles
into level 1 containing g1 options is

N!gN1
1

N1!(N−N1)!
. (14.2b)

For the second energy level, the counting is similar but there are only (N−N1) particles remaining,
to write

(N−N1)!g
N2
2

N2!(N−N1−N2)!
, (14.2c)

etc. Continuing this process for n energy levels and multiplying the results, we get the expression

ωB(N1,N2, . . . ,Nn) = N!
gN1

1 gN2
2 . . .gNn

n

N1!N2! . . .Nn!
= N!

n

∏
j=1

g
N j
j

N j!
, (14.3)

for the total number of ways that N distinguishable particles can be arranged if they are divided
into n groups, with N1 objects in the first group, N2 in the second, etc., and with level i having gi
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available states. Since ln(ωB) is an increasing function of ωB, maximizing ln(ωB) is equivalent to
maximizing ωB. Applying the method of Lagrange multipliers and maximizing with respect to the
number of particles N j, subject to the constraints of Equation 14.1, we have

∂

∂N j
ln(ωB)+α

∂Φ

∂N j
+β

∂Ψ

∂N j
= 0, (14.4)

where α and β are parameters related to the system’s properties. Using Equation 14.1, in addition to
applying Stirling’s formula (for large N, ln(N j!)≈ N j lnN j−N j) on Equation 14.3, and substituting
the results into Equation 14.4, find

N j

g j
= exp(α +βε j)≡ f jB(ε j) (14.5)

which is the equilibrium number of particles per quantum state, for every energy level. This is the
Boltzmann distribution function. Using entropy considerations (s = k ln(ω) where k is Boltzmann’s
constant and taking ω = ωB), in addition to the first law of thermodynamics (du = T ds− pdV
where u is energy, T is temperature, s is entropy, and p is pressure), it is possible (see Carter [74] or
Reif [75]) to solve for the constants α and β to obtain

eα =
N

∑
j

g j exp(βε j)
, β =− 1

kT
. (14.6)

Substituting these expressions back into Equation 14.5 gives

f jB(ε j) =
N j

g j
=

Ne−ε j/kT

Z
(14.7a)

which is the Boltzmann distribution function for discrete states and where Z is the partition function

Z = ∑
j

g je−ε j/kT . (14.7b)

In the case when the energy levels are very close to each other, we can make the replacement g j→
g(ε)dε , which is the number of states in the range of ε and ε +dε . We also make the replacements
ε j→ ε and N j→ N(ε)dε . With these changes, Equation 14.7b becomes

fB(ε) =
N(ε)

g(ε)
=

Ne−ε/kT
∫

g(ε)e−ε/kT dε
. (14.8)

If in this relation we substitute the free electron density of states from Chapter 5 (see the Free
Three-Dimensional Electron Gas Section) for g(ε); that is, if we let

g(ε) =
V

2π2

(
2m
h̄2

)3/2

ε
1/2, (14.9a)

we find that

Z =

∞∫

0

g(ε)e−ε/kT dε =
V
4

(
2mkT
π h̄2

)3/2

. (14.9b)

Substituting this result for the denominator of Equation 14.8 we see that

fB(ε) =
N(ε)

g(ε)
=

4N
V

(
π h̄2

2mkT

)3/2

e−ε/kT , (14.10)
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which is the Boltzmann distribution for continuous free electron energies. From Equation 14.8,
notice that for free electrons, the number of particles as a function of energy is given

N(ε) = g(ε) fB(ε) =
2N√

π

ε1/2

(kT )3/2 e−ε/kT , (14.11)

where we have used Equations 14.9a and 14.10 for g(ε) and fB(ε), respectively. Equation 14.11 is
known as the Maxwell-Boltzmann particle distribution, normalized to the total number of particles,
N, as can be seen directly from Equation 14.8. Finally, it should be noted that the exponential term
of Equations 14.10 and 14.11; i.e., e−ε/kT , is also known as the Boltzmann factor.

B.2 The Fermi-Dirac Distribution Function

This distribution is associated with indistinguishable (quantum, identical with 1/2 spin) particles
which obey the Pauli exclusion principle in which no quantum state can accept more that one par-
ticle with the same spin. Examples of spin 1/2 particles are electrons, positrons, protons, neutrons,
muons, etc. and are collectively known as fermions. Here an energy state can either be occupied
or unoccupied and we cannot have more particles than there are degenerate levels (spin included);
thus, for the jth level N j ≤ g j and the problem is similar to a binary system in which if we have g j
states, then there will be N j states occupied with one particle and (g j−N j) unoccupied states. Thus,
for the jth level, the number of ways to organize N j particles from g j available states is

ω j =
g j!

N j!(g j−N j)!
. (14.12)

The total number of microstates corresponding to an allowable configuration is the product of the
individual factors for all levels, or

ωFD(N1,N2, ...,Nn) =
n

∏
j=1

g j!
N j!(g j−N j)!

. (14.13)

Here, as in the previous subsection, the idea is to maximize ln(ωFD) with respect to N j subject to the
constraints of Equation 14.1. Again, the details have been worked out (see Carter [74] or Reif [75])
with the result

f jFD ≡
N j

g j
=

1
1+ e(ε j−µ)/kT

, (14.14)

which is the Fermi-Dirac distribution for a discrete system of energy levels, with chemical potential
µ . For a continuous energy spectrum, we make the replacements f j→ f (ε) and ε j→ ε , to write

fFD =
1

1+ e(ε−µ)/kT
, (14.15)

as the Fermi-Dirac distribution for a continuous energy spectrum.

B.3 The Bose-Einstein Distribution Function

This distribution refers to particles that do not obey the Pauli exclusion principle, such as photons
(spin zero) and other particles with integral spin (1, 2, etc.) which are collectively called bosons.
These are indistinguishable particles and any number of which can occupy a given quantum state.
For the jth energy level, there will be g j quantum states containing a total of N j identical particles
without any restriction on the number of particles in each state. Here, one pictures an arrangement of
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N j particles among g j states by placing them into (g j−1) partitions; new microstates are obtained
by shuffling the partitions and the particles while keeping the numbers N j and g j fixed. For the jth
level, the number of ways to arrange (N j + g j − 1) objects (particles and partitions) into (g j − 1)
partitions and N j particles is

ω j =
(N j +g j−1)!
N j!(g j−1)!

. (14.16)

Again, the total number of microstates is the product of individual factors for all levels, or

ωBE(N1,N2, ...,Nn) =
n

∏
j=1

(N j +g j−1)!
N j!(g j−1)!

. (14.17)

By following the maximization recipe discussed in the two previous subsections (see also Carter [74]
or Reif [75] for further details), subject to the constraints of Equation 14.1, the result is

f jBE ≡
N j

g j
=

1
e(ε j−µ)/kT−1 , (14.18)

which is the Bose-Einstein distribution for a discrete system of energies. As before, we can write
the continuous energies analogue as

f jBE(ε) =
1

e(ε−µ)/kT−1 . (14.19)
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central equation, 206, 209
cesium chloride structure, 27
charge neutrality condition, 233
chemical potential, 169, 175
chemical potential approximation, 178, 179
chemiluminescence, 492
close packed, 27
coercive field, 338

543
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coherence length, 443
coherent potential, 320, 325
Coherent Potential Approximation

(CPA), 316
cohesive energies, 73, 75
collision integral, 503
collision time, 182
color center, 306
colorless, 486
complex refractive index, 469
complex relative dielectric constant, 469
complex wave vector, 469
compound, 6
compound system, 306
compressions, 125
condensation energy, 448
conductivity-semiconductor,

experimental, 228
conductivity in semiconductors, intrinsic, 228
conductors, 499
constitutive relations, 468
conventional cell, 16
conversion matrix, 15
coordination number, 113
core electrons, 194
correlated wavefunction, 104
counting band orbitals, 213
Covalent Bonding, 97
CPA, 316, 320, 325
critical

temperature, 431
magnetic field, 435

critical exponent, 376
crystal axes, 5
Crystal Binding, 73
crystal field splitting, 398
crystal field theory, 398
crystal lattice vectors, 13
crystal limit - CPA, 320
crystal momentum, 141
crystal reciprocal lattice vectors, 50
Crystal Structures, 26
crystallographic direction, 22
crystallographic plane, 22
CsCl structure, 27
cubic close packed, 27
cubics - density of states, 261
Curie constant, 353
Curie’s law, 351, 353
Curie-Weiss law, 354
cyclotron frequency, 224

Davisson-Germer, 3
de Broglie, 3
de Broglie wavelength, 42, 230
Debye T 3 law, 146
Debye model, 144
Debye temperature, 145, 500
deep impurity level, 313
degeneracy, 168, 210
degenerate bands, 207
demagnetization factor, 341
demagnetizing field, 340, 341
density functional theory (DFT), 242
density of orbitals, 173
density of states, 142, 143, 154, 168, 173, 225,

248, 249, 253, 254, 282
depth

London penetration , 445
depth

penetration, 442
detailed balance, 362
diamagnet, 335
diamagnetism, 336, 402
diamond, 3
diamond structure, 29, 40
dielectric, 461
dielectric constant, 230
differential density of states, 249
diffraction, 2
diffraction angle, 44
diffusion, 499
diffusion coefficient, 511
diffusion current, 510
diffusive, 501
dilute alloy - CPA, 321
dipole-dipole interaction, 83
Dirac formula, 493
Dirac representation, 120
dislocation, 306
disordered system, 305
dispersion, 465
dissociation energy, 101
distribution function, 502, 535
distribution function - Boltzmann, 537
distribution function - Bose-Einstein, 537
distribution function - Fermi-Dirac, 537
domains, 339
donor impurities, 230
dopant, 217, 229
doping, 229
drift current, 510
drift speed, 182
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drift terms, 504
drift-diffusion relation - Einstein, 228
Drude conductivity, 182, 499
Dulong-Petit law, 146

easy axis, 344
effective mass, 222, 244
effective medium, 325
effective number of free electrons, 497
eigenvalues, 80, 138
eigenvectors, 80
Einstein characteristic frequency, 151
Einstein characteristic temperature, 152
Einstein model, 151
Einstein relations, 511
Einstein’s drift-diffusion relation, 228
elastic scattering, 52
electric

- permittivity, free, 462
- permittivity, medium, 462
- susceptibility, 462

electric dipole, 461
electrical conduction, 499
electrical conductivity, 182
Electroluminescence, 457, 492
electromagnetic spectrum, 457
electron concentration, 225
electron exchange, 104
electron gas three-dimensional, 170
electron mobility, 511
electron motion in electromagnetic fields, 183
electron-hole recombination, 220
electronic polarization, 458
elements’ properties, 34, 73
emission, 459, 492
emission spectroscopy, 492
Empty Lattice Approximation, 206
energy band gaps, 221
Energy Bands, 193
energy gaps, 193
energy product, 339
energy transition, 459
equipartition theorem, 228
ergodicity, 362
ESR, 414
Ewald construction, 61
exchange hole effect, 412
exchange interaction, 410
extended BZ scheme, 206
extinction coefficient, 469
extrinsic, 217

extrinsic carrier concentration, 233

face centered cubic - density of states, 269
Face Centered Cubic Brillouin Zone, 68
Face-Centered Cubic, 21
Faraday’s balance, 336
Fermi energy, 168
Fermi frequency, 169
Fermi orbital, 168
Fermi sea, 117, 165
Fermi Surface, 248
Fermi velocity, 172
Fermi wavevector, 169
Fermi-Dirac distribution, 169, 502, 535, 537
fermion, 169, 537
ferrimagnet, 335
ferromagnet, 335
ferromagnetism, 336
Fick’s 1st law of diffusion, 228
figure of merit, 515
finite size scaling, 375, 376
fluorescence, 459, 492
fluorescence spectroscopy, 492
form factor, 53, 71
form factor example, 54
free electron approximation, 500
Free Electron Gas, 165
Frenkel defect, 306
frequency gap, 139
Fresnel coefficients, 468

gauge, 447
Ge-Si alloy, 324
General Density of States, 153
grain boundaries, 306
graphene, 1, 39
Green’s function, 253, 254
group velocity, 134

half-filled band, 250
Hall coefficient, 185
Hall effect, classical, 184
Hall Effect, quantized, 186
Hall field, 185
Hall, Edwin, 185
hard axis, 344
hard magnets, 339
Harrison Hamiltonian, 275, 277
Harrison semiconductor model, 275, 278
Hartree, 100, 244
Hartree approximation, 242
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Hartree-Fock, 113
Hartree-Fock theory, 242
heat capacity for an electron gas, 179
Heisenberg exchange Hamiltonian, 413
Heitler-London, 113
Hermite polynomials, 124
hexagonal close packed, 27
high spin, 400
hole, 185, 219
hole concentration, 226
Hooke’s Law, 127
Hund’s rules, 394
hybrid orbitals, 113
Hydrogen Molecule, 103
hysteresis, 338

impurities, 305
impurities in semiconductors, 229
impurity, 305
impurity - compensated, 307
impurity - deep level, 313
impurity - isoelectronic, 307
impurity - resonance, 313
impurity - shallow level, 313
impurity - uncompensated, 307
impurity level, 307
impurity level calculation, 313
impurity scattering - single, 307
impurity states and conductivity, 230
independent electron approximation, 500
Inert Gas Solids, 77
Infrared spectroscopy, 491
insulators, 499
integrated density of states, 249, 255, 260
interpolating function, 297
interstitial impurity, 305
intrinsic, 217
intrinsic carrier concentration, 225
intrinsic carrier mobility, 227
Ionic Crystals, 92, 93
irreducible Brillouin Zone, 262
Ising model, 358
isotope effect, 89
iterative solution, 95

Josephson effect, 436
Joule heating, 238

Kramers–Kronig relation, 494
Kronecker delta function, 205
Kronig-Penney Model, 199

Kubo formalism, 499

Landé g-factor, 391
Landau level filling factor, 187
Landauer theory, 499, 501
Langevin function, 353
Langevin theory, 352
LAPW, 242
lattice, 4
lattice constant, 16
lattice energy, 73, 93, 94
lattice heat capacity, 141
lattice point, 4
lattice sum, 88
lattice translation vector, 5
Lattice Vibrations, 123
Laue, 2
Laue Equations, 56
law of mass action, 226
LCAO, 113, 242, 274
Lennard-Jones, 156
Lennard-Jones potential, 84, 87
level, 390
light-emitting diode (LED), 457
linear chain, 125, 130, 136
local density of states, 255
London equation, 442

- First, I, 444
- Second, II, 444

London interaction, 83
London penetration depth, 435
London

-gauge, 447
longitudinal wave, 125
Lorentz number, 190, 512
Lorentz number, L, 501
low spin, 400
luminescence, 457, 492

Mössbauer effect, 461
Mössbauer spectroscopy, 461
Madelung constant, 94
Madelung Energy, 93, 94
magnetic

- permeability, free, 462
- permeability, medium, 462

Magnetic Resonance Imaging (MRI), 454
magnetic anisotropy, 344
magnetic dipole moment, 332
magnetic levitation, 440
magnetization, 335
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magnetization anisotropy energy surface, 345
magnetocaloric effect, 355
magnetocrystalline anisotropy, 344
MagnetoEncephaloGraphy (MEG), 454
magnetostriction, 348
Markov chain, 362
mass susceptibility, 337
MATLAB, 38
MATLAB Tutorial, 521
Matthiessen’s rule, 183, 520
Maxwell-Boltzmann distribution, 537
mean field, 354, 358
mean free path, 183
Meissner currents, 456
melting temperatures, 75
Metals, 117
Metropolis algorithm, 361, 362
Microscopes, 31
Miller Indices, 22, 40
mixed state, 451
mobility in semiconductors, 227
mode enumeration, 142
molar susceptibility, 337
Molecular Hydrogen Ion, 98
Monte Carlo method, 361
muffin tin potential, 243
multiple scattering, 316
multipole expansion, 427

n-type material, 232
NaCl structure, 26
nearest neighbor distance, 17, 40
nearly free electron model, 194
Newton-Raphson method, 95, 175, 313
NMR, 414
non-equilibrium Green’s function, (NEGF), 504
nonlinear integro-differential equation, 504
normal dispersion, 482
number of orbitals in a band, 213

occupied orbitals, 173
occupied states, 173
Ohmic contact, 237
opaque, 486
optical constants, 461
orbital gyromagnetic, 379
orthonormality, 114

p-type material, 232
packing fraction, 17, 39, 40
paramagnet, 335

paramagnetism, 336, 351, 405
parameter

Ginzburg-Landau, 451
wall-energy, 451

Pauli exclusion principle, 83, 104, 165, 168,
537

Pauli Paramagnetism, 421, 422
Peltier coefficient, 515
Peltier effect, 238
perfect diamagnets, 442
periodic potential, 204
periodic table, 34
persistent current, 434, 437
perturbed Green’s function, 309
phase velocity, 134
phonon, 123
phonon heat capacity, 141
phonon momentum, 140
phosphorescence, 459, 492
phosphorescence spectroscopy, 492
Photoluminescence, 492
Planck distribution, 141
plasma, 472
plasma frequency, 472
plasma reflectivity, 474
point defect, 305
point group, 11
power factor, 515
primitive translation vectors, 5
propagation, 457
pseudo-potential, 242

quantum of conductance, 518
quantum point contact (QPC), 518
quantum wire, 1

radial wavefunction, 382
random alloy, 6
rarefactions, 125
Ray Method For K-Space Density of States, 299
real space lattice vectors, 45
Reciprocal Lattice, 41
reciprocal lattice vector magnitude, 54
Reciprocal Lattice Vectors, 45
rectangular lattice, 5
reduced BZ scheme, 207
reflectance, 468
reflection, 41, 457
refraction, 41, 457
refractive index, n, 464
relativistic kinetic energy, 42
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relaxation, 418
relaxation time, 505
relaxation time approximation, 504
remnance, 338
resonance-impurity level, 313
resonance approximation, 484
Romberg integration function, 297
Rydberg, 100, 244

saturation magnetization, 338
scanning tunneling microscopy, 31
scattered intensity, 60, 71
scattering, 457

- Raman, 489
- Rayleigh, 489

Scattering Intensity Calculation, 57
scattering operator, 503
scattering rate, 182
Schottky defect, 306
screening currents, 439
Seebeck voltage, 513
semi-classical, 333
semiconductor band structures, 292, 301
semiconductor band structures - tight binding,

273, 274
semiconductor crystal properties, 217
semiconductor density of states, 282
semiconductor effective masses (direct-gap),

224
semiconductor Hamiltonian, 275, 277
semiconductors, 499
semiconductors-hybrid orbitals, 113
shallow impurity level, 313
shape anistropy, 343
Si-Ge alloy, 324
Simple Cubic, 17
simple cubic-density of states, 262
Simple Cubic Brillouin Zone, 64
simple cubic Fermi surface, 250
simple orthorhombic reciprocal lattice vectors,

50
singular function integration, 258, 291
skin depth, 470
skin effect, 470
Slater determinant, 411
Slater orbital, 99
Snell’s law, 41
sodium chloride structure, 26
soft magnets, 339
spectrophotometer, 491
spectroscopy, 489

Spherical harmonic, 382
spin angular momentum, 379
spin gyromagnetic ratio, 380
spin magnetic dipole moment, 379
spin-orbit interaction, 389
split-band limit - CPA, 321
stacking fault, 306
state, 390
STM, 31
Stoner-Wohlfarth model, 349
strong anisotropy, 347
structure factor, 55, 57
substitutional impurity, 305
sum rule, 485
supercondcutor

Type I, 435, 436, 448, 451, 452
Type II, 448, 451, 452

superconductor
Type I, 435
Type II, 435

susceptibility, 336, 462
symmetric wavefunction, 99

term, 390
The First Brillouin Zone, 61
thermal conduction, 499
Thermal Conductivity, 161
thermal conductivity (electronic), 510
thermal conductivity, metals, 189
Thermal Expansion, 155
thermal resistivity, 183
thermocouple, 513
thermoelectric, 499

Peltier, 499
Seebeck effect, 499
Thomson, 499

Thermoelectric coolers, 515
thermoelectric process, 238
thermoluminescence, 492
thermopower, 512
Thomson coefficient, 514
tight binding method, 243, 254, 273
tight binding semiconductor band structures,

273, 274
topological insulators, 512
total angular momentum, 380
total density of states, 249, 255, 260
total magnetic dipole moment, 380
total semiconductor density of states,

283
translucent, 485
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transmission, 457
transmission probability, 32
transmittance, 468
transparent, 485
transverse wave, 125
tunneling probability, 31, 40
Tyndall effect, 489

ultraviolet transparency of metals, 474
umklapp process, 183
uniaxial anisotropy, 344
universality, 376
UV–Vis spectroscopy, 491

vacancy, 306
van der Waals interaction, 83
van der Walls, 76
van der Walls Interaction, 77
Van Hove singularities, 321
variational method, 105
variational principle, 105
VCA, 319, 320, 326

virtual crystal approximation (VCA),
319

vortices, 432, 452

wave equation, 127, 163
wave number, 465
wave vector, 465
wavefunction, 31
weak anisotropy, 348
Wiedeman-Franz law, 190, 500
Wigner-Seitz cell, 10, 38
Wigner-Seitz cell, reciprocal lattice, 62
work function, 237
wurtzite, 113

X-Ray Scattering Intensity from Crystals, 51
x-rays, 2

Zeeman energy, 343, 380
Zeeman interaction, 380
zinc blende, 30
zinc sulfide, 30
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