
Learn Java
with Math

Using Fun Projects and Games
—
Ron Dai

Learn Java with Math
Using Fun Projects and Games

Ron Dai

Learn Java with Math: Using Fun Projects and Games

ISBN-13 (pbk): 978-1-4842-5208-6 ISBN-13 (electronic): 978-1-4842-5209-3
https://doi.org/10.1007/978-1-4842-5209-3

Copyright © 2019 by Ron Dai

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint,
paperback, or audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484252086. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Ron Dai
Seattle, WA, USA

https://doi.org/10.1007/978-1-4842-5209-3

To Angela, Henry, and Hanson,
who always brighten my world

v

Part I: Java Basic ���1

Chapter 1: Introduction���3

Problems ���7

Chapter 2: Number Basics ��9

What Is a Numeral System? ��9

Why Do People Use Decimal Numbers, While Computers Use
Binary Numbers? ��10

How to Convert a Number Between Different Numeral Systems ������������������������11

What Is Bit, Byte, KB, MB, GB, TB, and PB? ��17

What Is Bitwise? ��17

Problems ���18

Chapter 3: Java Basics ���19

What Features Does Java Have? ���19

Object-Oriented ���19

Class-Based���20

Java Bytecode ���20

Table of Contents

About the Author ���xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

Preface ��xix

vi

Chapter 4: Start Playing with Java ���23

What Is the Difference Between the JRE and the JDK? ��������������������������������������24

What Are a Workspace, Source, and Package? ���25

What Are Edit, Compile, and Execute? ��25

Creating Your First Program ��26

Exploring Class and main() ���29

Why Is It “public static void main(String[] args)”? ��30

Problems ���31

Chapter 5: Variables ���33

Defining a Variable Name ��34

Example ���34

Different Types of Variables in Java ���35

Assigning a Value to a Variable ���37

Lab Work ��37

Chapter 6: First Algorithm ��39

Swapping Values Between Variables ��40

Other Approaches ���41

Chapter 7: Input and Output ���43

Importing java�util�Scanner ���43

Getting Input ���44

Producing Output ��44

Lab Work ��45

Example ���45

Example ���46

Lab Work ��46

Problems ���47

Table of ConTenTsTable of ConTenTs

vii

Chapter 8: Loop Structure – for Loop ���49

Example ��49

Lab Work ���50

The for Loop Formula ��50

Finding the “for Loop” Formula for an Arithmetic Sequence ������������������������������51

Math: Counting Strategically ���51

Lab Work ���53

Example ��53

Lab Work ���54

Problems ���54

Chapter 9: Loop Structure – while Loop ���57

Example ��58

Example ��58

The do-while Loop ��60

Lab Work ���60

Problems ���61

Chapter 10: Logical Control Structures ��63

Conditional Operators ���64

Lab Work ��66

Logical Operators ��67

Math: Logical Operators ��67

Math: Analyzing Logical Problems ���69

Lab Work ��69

Problems ���70

Table of ConTenTsTable of ConTenTs

viii

Chapter 11: Errors and Tips ��73

Programming Tips ���75

Handling Exceptions ���76

Problems ���77

Chapter 12: Java Basics Summary ���79

General Rules ��79

How to Define a Variable Name ���79

How to Output in Console ��79

How to Listen to Input in Console ��80

How to Repeat an Operation ��80

How to Control a Conditional Operation ���80

Basic Coding Structure ���81

Curly Braces ��82

Lab Work ���82

Chapter 13: Java Basics Projects ���85

Chapter 14: Java Basics Solutions ���89

Part II: Java Intermediate ��91

Chapter 15: Wright Brothers’ Coin Flip Game �������������������������������������93

Chapter 16: Pythagorean Triples ��97

Math: Pythagorean Triples ���97

Problems ���101

Math: Pythagorean Primes ��101

Chapter 17: Strong Typed Programming ��103

Type Casting ��103

Math: Slope of a Line ��105

Math: Collinearity ��107

Table of ConTenTsTable of ConTenTs

ix

Chapter 18: Conditional Statements ���109

Math: Hypothesis and Conclusion ���109

Math: Quadrants ��114

Problems ���116

Chapter 19: Switch Statement ��119

Problem ���125

Chapter 20: Tracing Moving Objects ���127

Math: Bouncing Ball ��127

Chapter 21: Counting ��131

Problems ���146

Chapter 22: Factorization ���147

Math: Finding Factors ���147

Math: Halving the Problem ��149

Math: Using the Square Root ��150

Chapter 23: Exploratory Experimentation of Pi ��������������������������������155

Math: Calculating a Population ���155

Example ��156

Math: Pi from Probability Theory ���156

Problem ���161

Chapter 24: Classes in Object- Oriented Programming ���������������������163

Lab Work ���166

Lab Work ���166

Lab Work ���167

Problems ���167

Table of ConTenTsTable of ConTenTs

x

Chapter 25: Interface – Total Abstraction ���171

Chapter 26: Inheritance – Code Reuse ���177

Problems ���179

Chapter 27: Encapsulation and Polymorphism ���������������������������������181

Encapsulation ���181

Polymorphism ���183

Problems ���183

Chapter 28: Array – a Simple and Efficient Data Structure ��������������185

Lab Work ���187

Problems ���187

Chapter 29: Common Pitfalls ��189

Lab Work ���189

Chapter 30: Design Considerations ��193

Practical Case 1 ��193

Practical Case 2 ��195

Practical Case 3 ��197

Approach A ��197

Approach B ��198

Practical Case 4 ��198

Chapter 31: IOU Computation ���203

Chapter 32: Projects ���211

Project A ��211

Step 1 ��211

Step 2 ��212

Project B��213

Table of ConTenTsTable of ConTenTs

xi

Project C ��213

Project D ���214

Project E ��214

Project F ��214

Project G��215

Chapter 33: Java Intermediate Solutions ���217

For 16� Pythagorean Triples ��217

For 17� Strong Typed Programming ��217

For 18� Conditional Statements ���218

For 19� Switch Statement ���219

For 21� Counting ��220

For 23� Exploratory Experimentation of Pi ��221

For 24� Classes in Object-Oriented Programming ���221

For 26� Inheritance – Code Reuse ���221

For 27� Encapsulation and Polymorphism ���222

For 28� Array – a Simple and Efficient Data Structure ��������������������������������������223

For 29� Common Pitfalls ��223

Index ���227

Table of ConTenTsTable of ConTenTs

xiii

About the Author

Ron Dai is a software engineer and

data scientist at Microsoft. He is also

a mathematics and computer science

instructor at NWCS (Northwest Chinese

School, http://www.nwchinese.org) located

in Bellevue, Washington. He enjoys teaching

computer science using math. He has written

a book titled Cool Math – Scenarios and

Strategies, which is available on amazon.com.

http://www.nwchinese.org

xv

About the Technical Reviewer

Jeff Friesen is a freelance teacher and software

developer with an emphasis on Java. In addition

to authoring Java I/O, NIO and NIO.2 (Apress,

2015), Java Threads and the Concurrency Utilities

(Apress, 2015), and the first edition of this

book, Jeff has written numerous articles on Java

and other technologies (such as Android) for

JavaWorld (JavaWorld.com), informIT (InformIT.

com), Java.net, SitePoint (SitePoint.com), and

other web sites. Jeff can be contacted via his web

site at JavaJeff.ca or via his LinkedIn (LinkedIn.

com) profile (www.linkedin.com/in/javajeff).

http://www.linkedin.com/in/javajeff

xvii

Acknowledgments

I am grateful for my wife, Angela, who has always been supportive of my

technical research and teaching work in so many ways. I am also thankful

to my two lovely and intelligent sons, Henry and Hanson, who have

provided me firsthand feedback and inspired me when I created the idea

of this book. I can never forget about what I have learned from Mr. Bangfu

Mo and Mr. Jim Pierson, who have provided me with guidance on how to

elaborate the creative ideas in a book. I also want to take this opportunity

to send my sincere gratitude for their invaluable advice that they have

given me in the past. My special thanks go to everyone on the Apress

editorial team, who are all world-class professionals.

 (Designed by Hanson Dai)

xix

Preface

Congratulations on finding out about this book. I am writing this book to

help beginners learn Java programming effectively and with plenty of fun.

The book is designed to simplify the complexity and guide the learner to

explore and discover things under the hood. I hope the instructions inside

this book are intuitive enough for beginners to follow through with hands-

on practice.

Having a good foundation of math skills is undoubtedly super powerful

when learning programming. In the meantime, it is a good opportunity

to practice mathematical problem solving when you study programming.

With this motivation, I have included some math practice problems

applicable to programming-related concepts.

The more practice you do, the more effectively you will be able to

produce results. It requires intensive and extensive problem solving

exercises for anyone to master coding skills. In this book, I have included

quite a few interesting coding problems for practice. I hope you will have an

enjoyable learning experience. Source Code for this book is accessible via the

Download Source Code button located at www.apress.com/9781484252086.

http://www.apress.com/9781484252086

PART I

Java Basic

3© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_1

CHAPTER 1

Introduction
There are many good Java programming books on the market, but it is

not easy to find one fit for a beginner who is new to Java and has minimal

programming knowledge.

This book will help beginners learn how to effectively program in Java.

My intent is to simplify the more complex aspects of Java and to guide the

learner in exploring things “under the hood.” I hope the instructions inside

this book are intuitive enough for readers to follow through with hands-on

practice.

People who have experience with programming understand that

mathematical knowledge plays a crucial role in programming design.

So having a good foundation of math skills is undoubtedly super helpful

when learning programming. This book provides a good opportunity to

practice mathematical problem solving in a programming context. With

this motivation in mind, I have included some math practice problems

applicable to programming-related concepts.

Learning with deliberate practice enhances your understanding of new

concepts on a deeper level. Actively participating in hands-on projects

is a critical part of the learning process. And more practice will lead to

producing results more quickly. I hope this will be an enjoyable learning

experience for you.

4

Programming work involves designing and writing code using a certain

computer language. Correctly executed code will perform repetitive tasks

and accomplish expected goals. Nowadays, as high- technology products

are being integrated into our daily lives, computer programming skills are

becoming indispensable almost everywhere. Many daily computation

jobs have already been replaced by programmed devices–you don’t need

to look further than the self-checkout line at your local supermarket or

the ever-increasing number of products purchased online. Reoccurring

events are increasingly controlled by automated systems, such as building

security system, thermostats mounted on the walls inside your house, and

a plethora of other examples.

Another example is gaming software, which has such a rich user

interface that many of us—from teenagers to adults—are already addicted

to it. All these products and services are essentially built by computer

programming.

As the beauty of artificial intelligence emerges, we can already see

and feel the power of applications of computer technology more than

ever before. If you have watched Hollywood movies like Arrival or

Passengers (both released in 2016), I am sure you were fascinated by the

amazingly intelligent robots depicted in the movies. If you are curious

how a computer can precisely recognize an object with an activity in

any picture, I suggest you listen to an exciting TED Talk named “How We

Teach Computers to Understand Pictures” All of these amazing things are

empowered by software, which is written in programming language(s).

To become a good programmer, you need to understand logical control

and basic counting methods. It will require more sophisticated math

knowledge if you want to develop a system to control objects’ activities.

There are quite a lot of famous but unsolved problems in math history.

As computer technology improves, we can leverage computers’ talents to

solve some of these problems.

Chapter 1 IntroduCtIon

5

For example, the Collatz conjecture states that if you randomly pick a

positive integer N, and if it is even, divide it by 2; if it is odd, multiply it by

3 and add 1. And if you repeat this procedure long enough, eventually the

end result of N will always be 1.

Mathematicians and data researchers have tried millions of numbers.

No exception has been found, but no one has found a way to prove all

integers following this rule.

Using simple Java programming, we can prove the Collatz conjecture

for any positive integer up to N. In the following short program, I will test

the conjecture with every integer and find out its sequence length, which is

the number of operations for it to reach the result “1.”

public class ProveIt {

 public static void main(String[] args) {

 // representation of a million

 final long N = 1000 * 1000;

 for(long i = 1; i <= N; i++) {

 System.out.println("i=" + i + " - " +

 GetCollatzSequenceCount(i));

 }

 System.out.println("DONE!");

 }

 private static long GetCollatzSequenceCount(long n) {

 if (n <= 0) return 0;

 long count = 0;

 while(true) {

 if (n == 1) return count;

 if (n % 2 == 0) {

 n /= 2;

Chapter 1 IntroduCtIon

6

 } else {

 n = n * 3 + 1;

 }

 count++;

 }

 }

}

Guess what? To test up to 1,000,000 integers, it completes executions

and reports results back within several seconds on a normal work

laptop. Don’t worry about understanding or running this code now; just

appreciate that this short program can churn through 1,000,000 iterations

in only a few seconds.

The last part of the output is:

i=999991 - 165

i=999992 - 113

i=999993 - 165

i=999994 - 113

i=999995 - 258

i=999996 - 113

i=999997 - 113

i=999998 - 258

i=999999 - 258

i=1000000 - 152

DONE!

One last thing to mention about notation in this book:

Math: describes a specific math concept.

Problems: provides a list of follow-up exercises. You

can find hints for some problems.

Chapter 1 IntroduCtIon

7

Hint: suggests ideas for references to solve the

problem.

Finally, students are encouraged to try Lab Work,

after learning Answer and Example.

 Problems

 1. List an example that you have observed about

something satisfying both (a) and (b) described as

below.

 (a) There is no programming feature associated with it now.

 (b) It will function much more efficiently if there is a program

built in it.

 2. How do we exchange different types of water

between the two cups?

You are not allowed to mix the water.

 3. I am thinking about an integer between 1 and 100.

You may ask me questions in order to identify the

integer, but you are not allowed to ask questions like

“what is this integer?”

What is your strategy to ask the minimum number

of questions in order to figure out the number?

Chapter 1 IntroduCtIon

8

 4. There are 27 ping pong balls. All of them look

identical and weigh the same, except that

one of them is lighter. Using a balance scale, how

do you quickly find the one that is not the same as

the others?

 5. How do you use the following four numbers with

basic operators (“+” , “-” , “x” , and “/”) to create a

math formula which equals 24? You may use each

number only once, but you can use parentheses.

Chapter 1 IntroduCtIon

9© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_2

CHAPTER 2

Number Basics
 What Is a Numeral System?
Many different numeral systems exist because there are specific uses

where a certain numeral system is more convenient to use and offers

advantages over others. For example:

• Weight: 1 pound = 16 ounces

• Length: 1 yard = 3 feet, 1 foot = 12 inches

• Babylonian numeral: Base 60

(from Wikipedia)

10

• In Ancient China: Ying/Yang – “binary,” Ba Gua – 8

trigrams

(from Wikipedia)

• Decimal counting

• Ten symbols: 0 – 9

• Binary counting

• Two symbols: 0 and 1

• Time measurement

One day = 24 hours

One hour = 60 minutes = 3600 seconds

 Why Do People Use Decimal Numbers, While
Computers Use Binary Numbers?
A simple answer is that human beings have ten fingers and ten toes, but a

computer has only two states.

Joking aside, a computer is built with many connections and

components (parts) that are used to transfer and store data, as well as to

communicate with other components. Most of the storing, transferring,

Chapter 2 Number basiCs

11

and communicating events happen with digital electronics. Digital

electronics use the binary system (ON or OFF). A signal with a series of

ON/OFF pulses is equal to a binary number.

 How to Convert a Number Between
Different Numeral Systems
[Math] Conversion between Decimal and Binary:

 (1) Convert a decimal number to a binary number

[Example]

Convert 350 in base 10 number, to a binary number

(base 2)

[Answer]

In base 10, we can write 350 with this equation:

350 = 3 *102 + 5 * 101 + 0 * 100

Notice each coefficient (i.e., 3, 5, and 0) is less than

10, and there is no coefficient for 103 or above.

Chapter 2 Number basiCs

12

Now we want to change it to something like this:

350 = a * 28 + b * 27 + c * 26 + d * 25 + e * 24 + f * 23 +

g * 22 + h * 21 + i * 20

Notice there is no 29 or above, because we

know 350 < 512=29

350 – 1 * 256 (i.e., 28) = 94 < 128 = 27 a = 1, b = 0;

94 – 1 * 64 (i.e., 26) = 30 < 32 = 25 c = 1, d = 0;

30 – 1 * 16 (i.e., 24) = 14 e = 1;

14 – 1 * 8 (i.e., 23) = 6 f = 1;

6 – 1 * 4 (i.e., 22) = 2 g = 1;

2 – 1 * 2 (i.e., 21) = 0 h = 1, i = 0;

Therefore, 350 = 1 * 28 + 0 * 27 + 1 * 26 + 0 * 25 + 1 * 24 +

1 * 23 + 1 * 22 + 1 * 21 + 0 * 20

Which means (350)10 = (101011110)2

The subscript number (10 and 2) indicates its

number base.

 (2) Convert a binary number to a decimal number

[Example]

Convert binary number 11001001 to a decimal

number

[Answer]

We rewrite the expression of the binary number as

shown below.

Chapter 2 Number basiCs

13

(11001001)2

= 1 * 27 + 1 * 26 + 0 * 25 + 0 *24 + 1 * 23 + 0 * 22 +

0 * 21 + 1 * 20

= 128 + 64 + 8 + 1

= (201)10

To practice conversion between decimal and binary,

I recommend this online game: http://games.

penjee.com/binary-numbers-game/

[Math] Fractions in Decimal and Binary

 (3) Convert a decimal point number (base 10) to a

binary number

We need to understand how we identify each digit

after the decimal point. For example, 4.3256

Remove integer part “4,” so we have 0.3256.

0.3256 x 10 = 3.256 3 is the 1st digit after the

decimal point

Remove integer part “3,” so we now have 0.256

0.256 x 10 = 2.56 2 is the 2nd digit after the

decimal point

Remove integer part “2,” so we now have 0.56

0.56 x 10 = 5.6 5 is the 3rd digit after the

decimal point

Remove integer part “5,” so we now have 0.6

0.6 x 10 = 6 6 is the 4th digit after the

decimal point

Chapter 2 Number basiCs

http://http
http://http

14

Remove integer part “6,”and we are done.

The same process applies when we convert a

fraction from a decimal to a binary.

Integer part of “4.3256” is “4,” which is 100 in binary.

From now on, we only look at the decimal part.

0.3256 x 2 = 0.6512 0 is the 1st digit after the

decimal point

0.6512 x 2 = 1.3024 1 is the 2nd digit

0.3024 x 2 = 0.6048 0 is the 3rd digit

0.6048 x 2 = 1.2096 1 is the 4th digit

0.2096 x 2 = 0.4192 0 is the 5th digit

0.4192 x 2 = 0.8392 0 is the 6th digit

0.8392 x 2 = 1.6784 1 is the 7th digit

……

Repeat until we finally get 0, or we see a repeating

pattern.

(100.0101001…)2 is the final answer.

[Math] Binary arithmetic: Addition, Subtraction,

Multiplication, Division, Square root

Binary addition and subtraction operations follow

rules such as these:

0 + 0 = 0 0 - 0 = 0

0 + 1 = 1 1 - 0 = 1

1 + 0 = 1

1 + 1 = 0 (carry one) = 10 10 - 1 = 1

Chapter 2 Number basiCs

15

Note as opposed to the decimal numeral system (a.k.a. base 10
numbers) that we are familiar with, a binary number has 2 as its base
and has only 0 or 1 as its representation for every digit. in an addition
operation, when any digit reaches 2, it becomes “carry one” to its
left digit. however, in a subtraction operation, a digit 0 will need to
borrow 2 from its left digit to subtract 1. however, this is the opposite
direction of the operation to the “carry one.”

Binary multiplication and division operations follow rules as the following:

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1

This is an example of division between binary numbers.

 11__
11) 1011
 −11_
 101
 −11
 10 remainder (r)

Conversion between binary and other numeral systems:

• Hexadecimal – base 16 number system

Mapping between decimal and hexadecimal:

Hexadecimal: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chapter 2 Number basiCs

16

Since every four digits in a binary forms one

hexadecimal digit, to convert a binary number to

its hexadecimal, we group every four digits in the

binary from the right.

For example, 100 in binary equals 4 in hexadecimal

and 1011 in binary is 8 + 2 + 1 = B in hexadecimal.

Therefore, 1001011 in binary is 4B in hexadecimal.

• Octal – base 8 number system

Every three digits in a binary forms one octal digit.

We can group every three digits in a binary from the

very right and convert it to its octal form.

For example,

To convert 10111011 in binary to its octal result:

Step 1 - group it by every three digits from the right:

(10)2(111)2(011)2;

Step 2 - convert every group of up to three digits

(0 to 1) to an octal digit (0 to 7): (2)8(7)8(3)8;

Step 3 - the converted octal result is 2738.

Inversely, to convert 273 in octal to its binary format,

we convert each octal digit to a three-digit binary

number:

2738 = (2)8(7)8(3)8 = (010)2(111)2(011)2 = 0101110112

Chapter 2 Number basiCs

17

 What Is Bit, Byte, KB, MB, GB, TB, and PB?
Bit means a binary digit, 0 or 1. It is the smallest unit of data.

Byte is a sequence of eight bits.

1 Byte (= 8 Bit), KB, MB, GB, TB, PB

1,024 bytes = 1 Kb Kb: Kilobyte

1,024 Kb = 1 mb mb: megabyte

1,024 mb = 1 Gb Gb: Gigabyte

1,024 Gb = 1 tb tb: terabyte

1,024 tb = 1 pb pb: petabyte

 What Is Bitwise?
In computers, an integer number is represented as a sequence of bits in

memory. We usually interact with decimal numbers in display through a

computer’s graphic user interface. However, its binary forms carry out the

actual calculations inside the computer. Bitwise is just a level of operations

that involves working with individual bits.

Bitwise operators contain three basic ones:

& AND

0 & 0 = 0 & 1 = 1 & 0 = 0

1 & 1 = 1

A logical AND (&) of each bit pair results in a 1, if the

first bit is 1 AND the second bit is 1. Otherwise, the

result is zero.

Examples:

01 & 00 = 00

11111111 & 01100101 = 01100101

Chapter 2 Number basiCs

18

| OR

0 | 0 = 0

0 | 1 = 1 | 0 = 1 | 1 = 1

A logical OR (|) of each bit pair results in a 1,

 (1) if the first bit is 1 OR the second bit is 1.

 (2) or, if both the first and the second bit are 1.

Otherwise, the result is zero.

Examples:

0101 | 0011 = 0111

0010 | 1000 = 1010

^ NOT

A unary operation performs a logical negation on

each bit.

In other words, after this operation, a 1 bit is flipped

to a 0 bit and a 0 bit is flipped to a 1 bit.

Examples:

^ 0011 = 1100

^ 01010110 = 10101001

 Problems

 1. Why do computers use binary numbers?

 2. What do Hexadecimal, Octal, and Bitwise mean?

Chapter 2 Number basiCs

19© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_3

CHAPTER 3

Java Basics
Today, computers use so many different kinds of programming languages.

Each of them plays an essential role in a certain area to solve a specific

type of problem. Java was invented and developed by Sun Microsystems

in the early 1990s; it was then acquired by Oracle, Inc. After 20 years of

development, Java has now become one of the most popular programming

languages in the world.

Java is a typical OOP, a.k.a. object-oriented programming language,

which deals with a bunch of “objects.” These objects contain data and

operations. Operations are about what can be done to data within the

object.

In the Java world, there is an open source development tool called

Eclipse. It has rich features, and it is free to use. Eclipse is also a suitable

tool for beginners. We will be using Eclipse to start exploration of the Java

world.

 What Features Does Java Have?
 Object-Oriented
An object is a “thing” that has some attributes (a.k.a. Properties). The

object performs a set of operations (a.k.a. Methods). The operations define

behaviors of the object.

20

Object

Property
(Attribute, State)

Method
(Function, Action)

 Class-Based
A class is simply a representation of a type of object. It is a template that

describes details of an object. A class is composed of three elements: a

name, attributes, and operations.

 Java Bytecode
Java bytecode is the machine language of the Java virtual machine (JVM).

Java bytecode will be translated to a machine-specific native code by the

JVM, when it runs on that machine. So, on a Windows computer, the JVM

bytecode is translated into Windows-specific native code; and on a Linux

computer, it is translated into Linux-specific native code. This is called

write once, run anywhere (shown in Figure 3-1).

Java code Java bytecode Native code for
specific platforms

Java
Compiler JVM

Figure 3-1. Write once, run anywhere

Chapter 3 Java BasiCs

21

When a JVM loads a class file, it gets one stream of bytecodes for each

method in the class. The bytecodes for a method are executed when that

method is invoked during the execution of the program.

Although it might be overwhelming to beginners, we also want to

introduce some of the other powerful features built into the Java language

as well as its runtime engine.

• Multi-threading

Java language supports multi-threading capabilities,

which enable multiple tasks running at the same

time. This feature boosts up the computing power

of the Java code and makes Java applications highly

responsive.

• Secure code

Java doesn’t use pointers like in other languages

(i.e., C or C++). This has avoided a traditional

security loophole. In addition to runtime checking,

Java does static-type checking using strict rules

during compilation. Java has its exception handling

to catch unexpected errors. Java provides a

cryptographic security mechanism when users

are getting code across networks and so on. These

security functionalities make Java a more secure

programming language than other ones.

• Garbage collection

Java has its own uniquely designed memory-

management mechanism. Unlike C/C++ language,

Java doesn’t require developers to take care of

Chapter 3 Java BasiCs

22

memory management in terms of when to register

or free the memory. It will automatically collect

and free up the unused memories. This has made

development work much easier.

The last but not least powerful feature to mention is Java’s super-rich

open source libraries. This is one of the big reasons why Java is increasingly

so popular among developers. And, because Java’s developer community

is getting bigger and stronger, Java will evolve to be an even more powerful

programming language over time.

Chapter 3 Java BasiCs

23© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_4

CHAPTER 4

Start Playing
with Java
Download and install a Java runtime environment (choose the right

version based on your computer’s operating system): https://www.java.

com/en/download/manual.jsp

Download and install Eclipse (look for the most recent stable version):

http://www.eclipse.org/downloads/

After installation, you should see an icon as shown—the “Neon”

version—as an example on your desktop.

Once you launch Eclipse, you will need to specify the Workspace

(Figure 4-1).

https://www.java.com/en/download/manual.jsp
https://www.java.com/en/download/manual.jsp
http://www.eclipse.org/downloads/

24

 What Is the Difference Between the JRE
and the JDK?
The JRE is the “Java Runtime Environment.” It is where your Java programs

run. The JDK is the “Java Development Kit,” which is the full-featured

software development kit for Java, including JRE, the compiler, and tools

(e.g., JavaDoc, Java debugger) to create and compile programs.

When you only want to run Java programs on your browser or

computer, you will install the JRE. But if you want to do some Java

programming, you will also need to install the JDK.

Figure 4-2 shows the clear relationship between the JRE and JDK, as

well as their basic feature areas.

Figure 4-1. Specifying the workspace

Chapter 4 Start playing with Java

25

 What Are a Workspace, Source,
and Package?
“Workspace” is used to group a set of related projects together. Usually

these projects will make up an application.

“Source” means source code, that is, the Java program and related

code.

“Package” indicates a collection of files.

 What Are Edit, Compile, and Execute?
“Edit” writes code in a Java language.

“Compile” converts Java source code to Java bytecode.

“Execute” runs the program.

• Edit create “*.java” file

• Compile generate “*.class” file

JDK
java language

java debugger
javadoc
etc.

javac (compiler)
JRE
java virtual machine

java standard API
etc.

java plug-in

Figure 4-2. JDK and JRE compared

Chapter 4 Start playing with Java

26

 Creating Your First Program
Let’s get started:

 1. Once Eclipse is launched, left-click on “File” in

the top menu bar and left-click on “New” in the

drop-down menu. Then select “Java Project” from

another drop-down menu as shown in Figure 4-3.

Figure 4-3. Before we create a Java project or a Java class

 2. Now create a Java project named MyFirstProgram,

as shown in Figure 4- 4. Click “Finish.”

Chapter 4 Start playing with Java

27

Figure 4-4. Creating a Java project

Chapter 4 Start playing with Java

28

 3. Select File ➤ New ➤ Class to create a Java class

(name: “Welcome”), as shown in Figure 4-5.

Make sure you select “public static void

main(String[] args).” Click on “Finish.”

Figure 4-5. Creating a Java class

Chapter 4 Start playing with Java

29

 4. The Welcome class and the public static void

main(String[] args) methods are automatically

created, as shown in Figure 4-6. Then manually add

the following output line:

System.out.println("Hello, friend,

you are welcome!");

 5. Click on “Run” from the top menu bar, and then

click on “Run” from its drop-down menu, we will

see output text in the Console window as shown in

Figure 4-6.

Figure 4-6. Running the application

 Exploring Class and main()
As you saw in Chapter 3, a “class” is a template that describes the behavior

that an object is supposed to show. You can create individual objects from

the class. This is called “class instantiation.” A class has local variables,

instance variables, class variables, and a number of methods.

Chapter 4 Start playing with Java

30

main() is a method name. When your Java program is executed, the

runtime starts your program by calling its main() method first. The main()

method is an entry point of your Java program.

 Why Is It “public static void main(String[]
args)”?
This is a convention designed by Java language and JVM (don’t worry if

some of this doesn’t make sense, we’ll come back to it later in the book).

• main is the name of the method;

• String[] args is the main() method input parameters

as String array data type; the string values passed into

the main() method are called arguments; they can be

used as optional values to send to the program when it

is started;

• void means there is no return data from the main()

method call;

• public means the main() method is available for the

JVM to call in order to start the execution of the whole

program;

• static indicates that the main() method cannot be

called with an object instance; in other words, the JVM

can call it directly and does not have to create extra

structures to call it.

If you change public to private, you will see the following error

during runtime.

Chapter 4 Start playing with Java

31

Error: Main method not found in class <your class name>, please

define the main method as:

 public static void main(String[] args)

or a JavaFX application class must extend javafx.application.

Application

 Problems

 1. What is the difference between the Something.java

file and the Something.class file?

 (a) A .java file is a much larger binary file and a .class file is a

smaller compressed version.

 (b) The .class file is for object-oriented programming and the

.java file is for procedural programming.

 (c) A .java file contains code written in the Java language, and a

.class file contains code written in the C++ language.

 (d) The programmer writes the .class file first, and the .java

file is generated automatically later.

 (e) Something.java is a source code file typed by the

programmer, and Something.class is a compiled executable

class file that is run by the computer.

 2. Which of the following method headers is correct?

 (a) public static foo void[]

 (b) public static void foo()

 (c) public void static foo{}

 (d) public void static foo()

 (e) public static foo()

Chapter 4 Start playing with Java

33© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_5

CHAPTER 5

Variables
A variable is:

 – the location of storage

 – a container to store some kind of information for use

at a later time

 – retrievable by referring to a name that describes

said information

There are different types of variables:

• Local variables

They are variables only valid in local scope, such as

inside a method or within a block of code.

• Class variables and instance variables

We will see examples when we study basic class

concepts in the later chapters. Class variables define

data types for class fields and properties. When an

object is created from a class, the class variables of

the object become instance variables. Both class

variables and instance variables are declared inside

a class, but they don’t belong to any method of the

class.

34

• Method parameters

Parameters are also variables used to pass values

into a method from outside that method.

 Defining a Variable Name
Variable names:

 – cannot start with a number, or some special symbol,

such as a quotation mark ("), or parentheses like ")",

etc., but can start with an underscore (_) or dollar

sign ($).

 – cannot be any keyword that is already being used in

the language, a.k.a. reserved word, for instance, if,

else, and etc.

 Example
Which of the following can be used in a Java program as identifiers? There

is more than one answer.

 1. ABC

 2. B4

 3. 24isThesolution

 4. "hello"

 5. AnnualSalary

 6. _average

 7. for

 8. sum_of_data

Chapter 5 Variables

35

 9. first-name

 10. println

Answer: 1, 2, 5, 6, 8, and 10

You may type simple code as shown in Figure 5-1 to check which

strings are not qualified for variable names, because in Eclipse’s Java code

editor, all syntax errors are underlined in red.

Figure 5-1. Highlighting errors

 Different Types of Variables in Java
The types of variables will define the types of data as well as their size when

stored in a variable. Java provides eight primitive types of data. Java also

supports reference or object data types that are non-primitive types of data.

Primitive types:

• int

• long

• short

Chapter 5 Variables

36

• float

• double

• char

• byte

• boolean

Reference types:

• String

• Object, Array, and so on

When we declare a variable in a program, we are actually reserving

room in the computer’s memory for operations. It is necessary to

understand common data types and the memory space they occupy. This

table shows a list of data types, their sizes in bits (and bytes), and the types

of value they represent.

Type Number of bits Value

int 32 bits (= 4 bytes) integer

short 16 bits (= 2 bytes) integer

long 64 bits (= 8 bytes) integer

byte 8 bits (= 1 byte) integer

float 32 bits (= 4 bytes) floating-point

double 64 bits (= 8 bytes) floating-point

char 16 bits (= 2 bytes) unicode character

boolean see below true / false

Chapter 5 Variables

37

There are only two different values, true or false, for a Boolean data

type. A single bit of room seems to be just a good fit. In fact, Java actually

prepares for at least one byte’s room for the Boolean data type, even

though it only uses one bit of room. Put precisely, it is not clearly defined

because it will be dependent on the virtual machine of the platform.

 Assigning a Value to a Variable
Here is how to assign value or content to a specific type of variable:

int number1 = 3;

int number2 = 7;

int total = number1 + number2;

boolean flag = true;

String a = "welcome";

String b = "my friend";

String c = a + b;

You may then use the following method to display and validate the

current values of the variables. For example, this line will display the

current value of the string variable c:

System.out.println(c);

 Lab Work
Referring to the first program we have created, utilize the System.out.

println() statement as described; compile and run it; and then from

the console window, verify the resulting value in each variable after each

operation.

Chapter 5 Variables

38

Basic math operation:

int number = 9 / 8;

double number = 9 / 8;

Math operations with order:

int number = 6 + 8 * 5;

int number = (6 – 8) * (5 + 3);

Chapter 5 Variables

39© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_6

CHAPTER 6

First Algorithm
Today there are many different types of algorithms running on computers.

An algorithm defines a set of instructions that a computer needs to follow

to solve a specific problem. A smart and performant algorithm leads to an

accurate and efficient working result.

Next is an example of creating an algorithm using real-world objects.

Here we will look at how to exchange different kinds of water (fresh water

and ocean water) between two containers of the same size. From common

sense, we know to use a third empty container with the same size. Here is a

series of actions you take to get this job done:

 1. Pour fresh water from container A to container C

(empty);

 2. Pour ocean water from container B to container A;

 3. Pour fresh water from container C to container

B. Mission is accomplished.

40

You can see how water in each container was changed after each step

from this table.

Operation Container A Container B Container C

Start Introduce C Fresh water Ocean water Empty

After step 1 A C Fresh water ->

empty

Ocean water Empty -> fresh

water

After step 2 B A Empty ->

Ocean water

Ocean water ->

empty

Fresh water

After step 3 C B Ocean water Empty -> fresh

water

Fresh water ->

empty

In many programs we will often run into situations when we need to

set the value of a variable to that of another one. Let’s apply the same logic

we have learned from the last example to exchange values between two

variables. In other words, we’ll implement the algorithm we defined earlier.

 Swapping Values Between Variables
Assume two integers, a = 5 and b = 4. We want to switch their values so

that it will become a = 4 and b = 5. Following the order of operations

listed in the next table, values in variables a and b will be switched over.

Step Operation a b c

0 int a = 5; int b = 4; 5 4

1 int c = a; 5 4 5

2 a = b; 4 4 5

3 b = c; 4 5 5

ChAptEr 6 FIrSt AlgOrIthm

41

 Other Approaches
You may use other methods to swap values between the two integers

without using a temporary variable. One method is by utilizing

the + and – operators to exchange values:

a = a + b; now a = 9, b = 4

b = a – b; now a = 9, b = 5

a = a – b; now a = 4, b = 5

Successfully done!

ChAptEr 6 FIrSt AlgOrIthm

43© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_7

CHAPTER 7

Input and Output
During runtime of a computer program, the program can ask the user to

input data, read the user’s input, and then show the user an output result.

Scanner is the tool we use to implement the user interaction feature on the

console window.

 Importing java.util.Scanner
The Scanner utility class and its methods have been predefined in a

package. We use the import statement to integrate the Scanner class with

the program we are creating.

• Approach 1. Add line import java.util.Scanner; at

the top of your Java code, and then add the following in

your main() class:

Scanner input = new Scanner(System.in);

• Approach 2. Type code Scanner input = new

Scanner(System.in); in your Java code directly, and

then use Eclipse’s IntelliSense to choose the right fix.

In other words, Eclipse will suggest that you add the

import statement because it spots that you might

need it.

As a result, import java.util.Scanner; will be

added at the top of the class.

44

 Getting Input
There are several ways to read user input data from a program:

 – nextLine(): read a string input

 – next(): read a string input

 – nextInt(): read an integer input

 – nextFloat(): read a float number input

What is the difference between nextLine() and next()?

 – next() reads the input only until the space.

 It cannot read two words separated by a space. And it

places the cursor at the same line after reading the

input stream, meaning it doesn’t change the line.

 – nextLine() reads the input until the end of

the line (‘\n’).

 It will automatically move the scanner down after

returning the current line.

 Producing Output
System.out.println is a common way to display text in the console

window. Developers often use it to read a user’s input, provide general

information to the user, and log information (to the console) during

runtime in order to find out what is going on with key variables.

We often use the following special characters (i.e., escape characters)

to control the output format:

+: concatenates two strings;

\n: a newline character;

Chapter 7 Input and Output

45

\t: a tab key character that aligns text at the tab

width;

\\: a backslash character;

\r: a carriage return character;

\" and \": double quote characters.

Here is an example:

System.out.println("This demonstrates " + "\"how to display a

table format\".\n");

System.out.println("123\t45\t6789\nab\tcde\tf");

This generates the following output:

This demonstrates "how to display a table format".

123 45 6789

ab cde f

 Lab Work
Practice using the statement System.out.println() to:

 1. display the string concatenation between two

substrings “I am” and “a developer” using +

 2. display a new line

 3. display quotes using \" and \"

 Example
Which of the following is the correct syntax to output a message?

 1. System.out.println("Hello, world!");

 2. System.println.out('Hello, world!');

Chapter 7 Input and Output

46

 3. System.println("Hello, world!");

 4. System.println(Hello, world!);

 5. Out.system.println"(Hello, world!)";

Answer: 1

 Example
What is the output from the following statements?

System.out.println("\"Quotes\"");

System.out.println("Forward slashes \\//");

System.out.println("How '\"profound' \"\\\" it is!");

Answer:

"Quotes"

Forward slashes \//

How '"profound' "\" it is!

 Lab Work
What is the output from the following program? What if we replace the

next() with nextLine()?

public class TestScanner {

 public static void main(String arg[]) {

 Scanner sc=new Scanner(System.in);

 System.out.println("enter string for c");

 String c=sc.next();

 System.out.println("c is "+c);

 System.out.println("enter string for d");

Chapter 7 Input and Output

47

 String d=sc.next();

 System.out.println("d is "+d);

 }

}

 Problems

 1. What is the output produced from the following

statements?

System.out.println("name\tage\theight");

System.out.println("Anthony\t17\t5'9\"");

System.out.println("Belly\t17\t5'6\"");

System.out.println("Bighead\t16\t6'");

 2. What is the output produced from the following

statements?

System.out.println("\ta\tb\tc");

System.out.println("\\\\");

System.out.println("'");

System.out.println("\"\"\"");

 3. Write a program in Java to print the following:

\/

\\//

\\\///

Chapter 7 Input and Output

49© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_8

CHAPTER 8

Loop Structure – for
Loop
Simply put, the loop structure repeatedly does something until the state is

changed (see Figure 8-1).

Is the state
changed?

No

Do something

Yes
Exit

Figure 8-1. The for loop structure

 Example
Here is an example:

 for (int i = 0; i < 100; i++) {

 <do something>

 }

50

There are three key elements in the for statement:

• int i = 0: declare a counter variable and assign an

initial value to it;

• i < 100: define the condition to continue with the for

loop; as long as this condition is true the loop will run,

when it is not true, we stop and exit from the for loop;

• i++: increment the counter value; i++ is the same thing

as i = i + 1.

So, how many times will the “<do something>” be repeated in the code

above?

 Lab Work

 1. Use the for loop to output “Hello!” 10 times.

 2. Use the for loop to print out all integers from 1 to

25, inclusive.

 3. Print out all integers from 1 to 25.

 4. Output all even numbers from 3 to 99.

 The for Loop Formula
The math model behind the for loop is actually an arithmetic sequence:

for (int counter=firstTerm;

 counter <= lastTerm;

 counter=counter + difference) {

}

Chapter 8 Loop StruCture – for Loop

51

The nth term in the counter series is equal to:

firstTerm + difference × (n – 1)

 Finding the “for Loop” Formula
for an Arithmetic Sequence
As an example, here is a list of numbers:

-4, 5, 14, 23, 32, 41, 50, 59, 68, 77, 86.

It follows an arithmetic sequence.

firstItem = -4

lastItem = 86

difference = 5 – (-4) = 9

Translate this to a for loop:

for(int i=-4; i <= 86; i=i+9) { }

It will iterate through every single number in the list.

 Math: Counting Strategically
You may finger count, but that will not work when you have an extremely

large amount of numbers in the series. The right approach is to prepare

these numbers by reorganizing them. The purpose is to find a good pattern

so that we can count systematically.

Finding a pattern here is to figure out a basic formula representing

every number in the series.

Chapter 8 Loop StruCture – for Loop

52

Look at this example: 3, 4, 5, 6,, 100, so we know the total count of

numbers is:

100 – 3 + 1 = 98.

A common method is to convert the number series to something

more straightforward. If we subtract 2 from every number in the series,

we get 1, 2, 3, 4,, 98. We now know the count is 98. And, the formula

representing every number will be x(i) = i + 2, (i=1, 2,,98).

What about 5, 8, 11, 14,, 101? How do you use the “for loop” to

print it out?

It looks more complicated than the previous one, but you can try the

same approach.

 1. Subtract 5 from every number; it becomes 0, 3, 6,

9,, 96

 2. Divided by 3, it then becomes 0, 1, 2, 3,, 32

 3. It is not hard to count from 0, one by one up to 32.

The total count is 33.

 4. The general term for the i-th number in the series

will be x(i) = 3 * i + 5, (i=0, 1, 2,, 32).

Now, go back to the for loop construction, and it is obvious the answer

should be something like this:

 for (i=0; i <= 32; i++) {

 System.out.println(3 * i + 5);

 }

Chapter 8 Loop StruCture – for Loop

53

 Lab Work
• Write a for loop to produce the following list of

numbers:

 1 4 9 16 25 36 49 64 81 100

(Hint: watch for a common pattern.)

 Example
What is the output of the following sequence of loops?

It prints out the following:

****!****!****!

****!****!****!

The external for loop (marked as “1”) has two iterations, so the output

will have two lines, by println().

The middle for loop (marked as “2”) has three iterations, so it will

print out 2 x 3 = 6 “!” in total by print().

The internal for loop (marked as “3”) has four iterations, so it will print

out 2 x 3 x 4 = 24 “*” in total by print().

Chapter 8 Loop StruCture – for Loop

54

 Lab Work
• Write a method exp() to compute an exponential

result, given the input of a base number and a power

(a.k.a. an exponent number). For example, exp(3, 4)

returns 81. The restriction is that the base and exponent

numbers are non-negative.

 Problems

 1. What is the output of the following sequence of

loops?

for (int i = 1; i <= 2; i++) {

 for (int j = 1; j <= 3; j++) {

 System.out.print(i + ""*"" +

j + ""= "" + i * j + ""; ");

 }

 System.out.println();

}

 2. Write a for loop to produce the following list of

numbers:

5 10 17 26 37 50

 3. Write a for loop to produce the following list of

numbers:

1 8 27 64 125

 4. Write a for loop to produce the following list of

numbers:

-1 0 7 26 63 124

Chapter 8 Loop StruCture – for Loop

55

 5. Use for loops to produce the following output:

 6. Write for loop code to output the following:

1

22

333

4444

Chapter 8 Loop StruCture – for Loop

57© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_9

CHAPTER 9

Loop Structure –
while Loop
This is another way for the loop structure (Figure 9-1).

 while(i == 0) {

 <do something>; //the variable "i" may be

updated in this code block.

 }

Is the state
changed?

No

Do something

Yes Exit

Figure 9-1. The while loop

58

The state may be updated within the “Do something” process.

Question: What will happen if the state is never changed?

Answer: it will be an “infinite loop,” meaning the program will run

forever until it crashes or is terminated by the user.

Note You may have noticed the // next to the <do something>
line. This identifies a comment left by the developer. You should use
comments to annotate your code so it’s easier to understand for future
readers (who could be you, so be kind to your future self). The compiler
will ignore all comments when compiling your Java programs.

 Example
How many times will the loop execute its body?

int x = 1;

while (x < 100) {

 System.out.print(x + " ");

 x += 10;

}

Answer: ten times (when x = 1, 11, 21, 31, 41, 51, 61, 71, 81, 91)

 Example
How many times will the loop execute its body?

int max = 10;

while (max < 10) {

 System.out.println("count down: " + max);

 max--;

}

Answer: zero.

ChapTer 9 Loop STruCTure – whiLe Loop

59

Both the for loop and while loop are loop structures to accomplish a

repetitive job (i.e., <do something>). The for loop has provided an easy

way to assign an initial counter value and to define how the counter value

is incremented (or decremented) within the same line of code, while the

while loop requires the user to define them in separate lines. The following

two examples have an equivalent functionality.

for(int i = 0; i < 10; i++) {

 <do something>

}

int i = 0;

while(i < 10) {

 <do something>

 i++;

}

There is a good reason why we need the while loop option, in addition

to the for loop. This example shows one of many circumstances when we

prefer the while loop over the for loop.

 boolean flag = true;

 while(flag) {

 < commit planned operations, during which time

the flag may be updated upon a certain codition

change, e.g. the operation is completed, or

failed for some reason.>

 }

ChapTer 9 Loop STruCTure – whiLe Loop

60

 The do-while Loop
Java also provides a do-while loop structure:

do {

 <do something>

} while (expression);

The difference between do-while and while is that do-while evaluates

its Boolean expression at the bottom of the loop instead of the top.

Therefore, the statements within the do block (a.k.a. <do something>) are

always executed at least once. You may try the following program to see a

demo.

class DoWhileDemo {

 public static void main(String[] args){

 int count = 1;

 do {

 System.out.println("Count is: " + count);

 count++;

 } while (count < 1);

 }

}

 Lab Work

 1. Use the while loop to output “Hello!” 10 times.

 2. Use the while loop to print out all integers from 1 to

25, inclusively.

ChapTer 9 Loop STruCTure – whiLe Loop

61

 3. Explain what the following code snippet is trying to

do.

int n = 5;

while (n == 5) {

 n = n + 1;

 System.out.println(n);

 n--;

}

 Problems

 1. How many times will the loop execute its body?

int x = 250;

while (x % 3 != 0) {

 System.out.println(x);

}

 2. How many times will the loop execute its body?

int x = 2;

while (x < 200) {

 System.out.print(x + " ");

 x *= x;

}

 3. How many times will the loop execute its body?

String word = "a";

while (word.length() < 10) {

 word = "b" + word + "b";

}

System.out.println(word);

ChapTer 9 Loop STruCTure – whiLe Loop

62

 4. How many times will the loop execute its body?

int x = 100;

while (x > 1) {

 System.out.println(x / 10);

 x = x / 2;

}

 5. Given the static method runWhileLoop(), what is

its output when x = 10? You may want to copy this

method to your test class to try.

public static void runWhileLoop(int x) {

 int y = 1;

 int z = 0;

 while (2 * y <= x) {

 y = y * 2;

 z++;

 }

 System.out.println(y + " " + z);

}

ChapTer 9 Loop STruCTure – whiLe Loop

63© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_10

CHAPTER 10

Logical Control
Structures
Very similarly to how we describe it verbally when there is a logical

conversation, the if and the if/else in programming languages

are common structures to make conditional decisions and choose

corresponding execution paths (Figure 10-1).

a = 3 ?
No

Yes

Figure 10-1. The if structure

if (a == 3) {

 <do something>

}

This is similar to, but not completely the same, as:

if (a == 3) {

 <do something>

} else {

 <do something else>

}

64

Figure 10-2 is the whole workflow of the if/else logical control structure.

 Conditional Operators
The conditional operators listed in the next table are frequently used

in conditional statements. For example, we use a == 3 to evaluate “is a

equal to 3?” in a conditional statement. Java uses six different conditional

operators to express a relationship between two operands. The results of

the expressions are either true or false, a Boolean value, which determines

the “yes” or “no” path of execution.

Conditional Operators Description

== Is equal to

> Is greater than

>= Is greater than, or equal to

< Is less than

<= Is less than, or equal to

!= Is not equal to

a = 3 ?

Start

Do something

Do something else
No

Yes

Figure 10-2. The if/else structure

Chapter 10 LogICaL ControL StruCtureS

65

Example
Which of the following if statement headers uses the correct syntax?

 (a) if x = 10 then {

 (b) if (x equals 42) {

 (c) if (x => y) {

 (d) if [x == 10] {

 (e) if (x == y) {

Answer
e

Example
Given the following method, what is the output from whatIsIt(9, 4)?

public static void whatIsIt(int x, int y) {

 int z = 4;

 if (z <= x) {

 z = x + 1;

 } else {

 z = z + 9;

 }

 if (z <= y) {

 y++;

 }

 System.out.println(z + " " + y);

}

Answer

10 4

Chapter 10 LogICaL ControL StruCtureS

66

 Lab Work

 1. Define an integer variable and assign value “3” to it.

 2. Use an if statement to output “Hello” when the

integer variable is assigned number 3.

 3. Use an if/else statement to output “Goodbye”

when any number other than 3 is assigned to the

integer variable.

 4. Is there anything wrong with the following code?

int n = 4;

if (n >= 3) {

 System.out.println("Hello!");

}

if (n == 4) {

 System.out.println("Hello again!");

}

 5. Use an if/else statement to implement the

following requirements:

• Output “less than 3” when the number is smaller

than 3

• Output “equals 3” when the number is 3

• Output “greater than 3” when the number is bigger

than 3

 6. Input an integer number, and then,

• Output “The number is greater than 6” when the

input number is bigger than 6

• Output “The number is smaller than 6” when the

input number is smaller than 6

Chapter 10 LogICaL ControL StruCtureS

67

 7. Explain what the following code snippet is trying

to do:

Scanner scan = new Scanner(System.in);

int n = scan.nextInt();

if (n > 6) {

 if (n > 8) {

 System.out.println("n is greater

than 8");

 }

 else {

 System.out.println("n is greater

than 6, but n is smaller than 9");

 }

}

Sometimes you may need to use a logical combination of multiple

“true or false” conditions. Let’s introduce another concept here, in terms of

“Logical Operators.”

 Logical Operators

 Math: Logical Operators
Logical operators and logical operations:

&& AND relation

|| OR relation

! NOT relation

A && B indicates only when both A and B are

true, the result is true. For example, in (x > 3 && x < 5),

A is “x > 3”, B is “x < 5”.

Chapter 10 LogICaL ControL StruCtureS

68

A || B indicates when either A or B is true, the

result is true.

!A indicates when A is true, the result is false;

when A is false, the result is true. In the example of

“!(x > 0)”, A is “x > 0”.

In all of these examples, A and B are expressions or Boolean variables.

(a && B) a=true a=false

B=true true False

B=false False False

Summary - Result is true, only when both A and B are true. Otherwise,

result is false.

(a || B) a=true a=false

B=true true true

B=false true False

Summary - Result is false, only when both A and B are false. Otherwise,

result is true.

A final example of some properties of these operators:

• (x < 0 || x > 0) (x != 0)

• !(x == 0 || y == 0) is equivalent to (x != 0 && y != 0)

• !(x > 3 && x < 5) is equivalent to (x >= 5 || x <=3)

Using a Venn diagram will help us analyze some type of logical

problems.

Chapter 10 LogICaL ControL StruCtureS

69

 Math: Analyzing Logical Problems
A Venn diagram is a visualization method to reveal logical relations among

data sets.

In Figure 10-3, the overlap area between circle A and circle C is in

area B.

if we define A = { x , y | x = 0 }, C = { x, y | y = 0 }, then B = { x=0; y=0 }.

A B C

Figure 10-3. A Venn diagram

 Lab Work

 1. Figure out the output of the following program.

public class LogicalOperation {

 public static void main(String args[]) {

 boolean a = true;

 boolean b = false;

 System.out.println("a && b = "

+ (a&&b));

 System.out.println("a || b = "

+ (a||b));

Chapter 10 LogICaL ControL StruCtureS

70

 System.out.println("!(a && b) = "

+ !(a && b));

 }

}

 2. Write a static method called quadrant that takes as

parameters a pair of integer numbers representing

an (x, y) point on the Cartesian coordinate system.

It returns the quadrant number (i.e., 0,1,2,3,4, see

picture) for that point.

Below are sample calls on the method.

Call Value Returned

quadrant(12, 17) 1

quadrant(-2, 3) 2

quadrant(-15, -3) 3

quadrant(4, -42) 4

quadrant(0, 3) 0

 Problems

 1. Translate the following English statements into

logical expressions:

 (a) z is odd.

 (b) x is even

 (c) y is positive.

 (d) Either x or y is even.

Chapter 10 LogICaL ControL StruCtureS

71

 (e) y is a multiple of z.

 (f) z is not zero.

 (g) y is a positive number, and y is greater in magnitude than z.

 (h) x and z are of opposite signs.

 (i) y is a nonnegative one-digit number.

 (j) z is nonnegative.

 2. Given the following variable declarations: int x = 4;

int y = -3; int z = 4;

What are the results (True or False) of the following

expressions?

x == 4 x == y

x == z y == z

x + y > 0 x - z != 0

y * y <= z y / y == 1

x * (y + 2) > y - (y + z) * 2

Chapter 10 LogICaL ControL StruCtureS

73© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_11

CHAPTER 11

Errors and Tips
The following is a list of common coding mistakes that beginners can

easily make. It will help you overcome initial coding barriers if you are

mindful of these error patterns.

• Missing half of curly braces {}.

 (It should always come with a pair.)

• Missing half of parentheses ().

 (It should always come with a pair too.)

• Missing semicolon ; at the end of each line.

• Use one = signs in a condition check.

 (Correct way is ==.)

• Assigning a value to a variable that is not defined.

 (Correct way is assigning a value to the variable only

after it has been defined.)

• Defining the same variable more than once.

int i;

......

int i = 3;

......

74

• Forgetting to increment/decrement the counter inside

a loop structure.

• Incorrect signature of main function.

 It should be public static void main(String[]

args, so pay attention to public static void main,

and String[] args).

• No output on console window – missing output line, for

example, System.out.println().

• Differences between the variable name and the string:

• Variable name a is a string.

string a;

• Variable name a is a string with value “a”.

string a = "a";

• Mistakenly resetting value in an aggregator:

for (int i=1; i<n; i++) {

 int sum = 0;

 sum += i;

}

This program is to sum up all numbers from 1 up to n. To correct the

mistake, the line int sum = 0 needs to be moved out of the loop structure,

right before the for line.

Chapter 11 errors and tips

75

 Programming Tips
• How to increase/decrease the font size on text editors:

Use Ctrl + or Ctrl -.

On macOS that would be ⌘+ and ⌘-

Setting: Preferences => General => Keys

• How to comment out a code section in Eclipse:

Select code block

Press CTRL and “/” (simultaneously)

On macOS, it is Command + “/”

• How to make comments in a code block:

You may use the Java Comments feature to briefly

explain what a specific line of code or a code block

in your program is doing so that other people can

understand your implementation ideas. There are

basically two ways you can write Java Comments

among lines of code.

 1. Use “//” as a prefix to write a statement in one

line, for example:

// count is a variable to track the total number

of clicks

int count = 0;

Chapter 11 errors and tips

76

 2. Use “/∗” and “∗/” to write multiple lines of

comments, for example:

/∗

This block of code tries to find a maximum

price value (in dollars) from the specified group

of products:

∗/

• Watch out “for the colored underline” when coding:

Red line – error message: syntax, etc.

Orange line – warning message

 Handling Exceptions
So far in this chapter we have explained how to avoid making mistakes

that will be caught by the compilation error detection process. What

about those errors during runtime? In Java, we use the following structure

to capture them and handle these conditions separately. This is called

exception handling.

 try {

 <main instruction code to execute>

 } catch(IllegalArgumentException ex) {

 <exception handling steps>

 }

The code that could cause an error at runtime goes in the try

block, and the code to respond to an error at runtime goes in the catch

block. Here the catch block responds only to errors that throw an

Chapter 11 errors and tips

77

IllegalArgumentException. You can specify multiple catch blocks to

respond to different types of exceptions thrown at runtime because you

may want to respond differently to different types of runtime errors.

Finally, you can throw an error on purpose if your code detects some

problem at runtime. You’ll see how to do this in Chapter 17.

 Problems

 1. The following program contains three errors.

Correct the errors and submit a working version of

the program.

public MyProgram {

 public static void main(String[]

args) {

 System.out.println("This is a test

of the")

 System.out.Println("alarming system.");

 System.out.printLn("Thank you for your

attention!")

 }

}

 2. The following program contains four errors. Correct

the errors and submit a working version of the

program.

public class FriendMessage {

 public static main(string[] args) {

 System.out.println("Speaking plum");

 System.out.println("and eat);

}

Chapter 11 errors and tips

78

 3. The following program contains at least 10 errors.

Correct the errors and submit a working version of

the program.

public class Many Errors {

 public static main(String args) {

 System.println(Hello, buddy!);

 message()

 }

 public static void message {

 System.out println("This program

cannot ";

 System.out.println("have any

"errors" in it");

 }

Chapter 11 errors and tips

79© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_12

CHAPTER 12

Java Basics Summary
In this chapter we will summarize what we have learned so far in the Java

basics area and point out some common mistakes.

 General Rules
 How to Define a Variable Name
Variable name string

• case-sensitive

• okay to include numbers 0 to 9

• okay to have underscore _ or dollar sign $

Variable name string:

• cannot start with number

• cannot use reserved words, such as for, class, void,

if, else, etc.

 How to Output in Console
• System.out.print(<string + value>);

• System.out.println(<string + value>);

80

 How to Listen to Input in Console
Scanner input = new Scanner(System.in);

input.nextLine();

input.next();

input.nextInt();

input.nextFloat();

 How to Repeat an Operation
for(<initial state>; <condition check>; <increment/decrement

count>) {

 <do something>;

}

while(<condition check>) {

 <do something>

}

or,

do {

 <do something>

}

while(<condition check>)

 How to Control a Conditional Operation
if (<condition check>) {

 <do something>;

}

Chapter 12 Java BasiCs summary

81

if (<condition check>) {

 <do something>;

} else {

 <do something else>;

}

if (<condition check>) {

 <do something>;

}

else {

 <do something else with the nested if/else statement(s)>;

}

 Basic Coding Structure
public class MyClass {

 public static void main(...) {

 myMethod();

 }

 private static void myMethod(...) {

 for (... ; ... ; ...) {

 ;

 }

 if (...) {

 ;

 }

 else {

 ;

 }

 }

}

Chapter 12 Java BasiCs summary

82

 Curly Braces
• Always come with a pair of curly braces: “{......}”

• Always come first with: “{” , and then “}”

• Common patterns (two pairs of open/close as an

example)

• { { } } open, open, close, close

• { } { } open, close, open, close

• { } } { wrong!

• } { } { wrong!

• What is the basic rule of these patterns?

• At beginning, start with “{”

• Finally, end with “}”

• Never has more “}” than “{”

 Lab Work

 1. What is the output produced from the following

program?

public class StoryOfMethods {

 public static void main(String[] args) {

 method1();

 method2();

 System.out.println("Done with main.");

 }

Chapter 12 Java BasiCs summary

83

 public static void method1() {

 System.out.println("This is from

method1.");

 }

 public static void method2() {

 System.out.println("This is from

method2.");

 method1();

 System.out.println("Done with method2.");

 }

}

 2. What is the output produced from the following

program?

public class OrderOfFunctions {

 public static void main(String[] args) {

 second();

 first();

 second();

 third();

 }

 public static void first() {

 System.out.println("Inside

the first function.");

 }

 public static void second() {

 System.out.println("Inside the

second function.");

 first();

 }

Chapter 12 Java BasiCs summary

84

 public static void third() {

 System.out.println("Inside the third

function.");

 first();

 second();

 }

}

Chapter 12 Java BasiCs summary

85© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_13

CHAPTER 13

Java Basics Projects
 A. Write code to print out the following graph.

 B. Write code to draw the following shape.

86

 C. Write code to make this triangle.

 D. Write a function to check if an integer is divisible by

another integer.

For example:

(1) Given input 10, 5, output is “yes, 2”;

(2) Given input 11, 2, output is “no”;

 E. Write Java code to draw the Christmas tree.

Chapter 13 Java BasiCs proJeCts

87

 F. Write code to find all factors for a given positive

integer.

For example, when a user inputs “10,” your program

should output 1, 2, 5, 10

 G. Write a method that accepts a month (i.e., an integer

between 1 and 12) as a parameter and returns the

number of days in that month in the current year.

 H. Write code to produce a product of two numbers

that are inputs from the console:

Please enter two numbers for multiplication

Next number --> 7

Next number --> 15

Product = 105

 I. Write a method to examine whether a positive

integer is a prime number or not.

 J. Write a method to convert an integer number to a

string of that number's representation in binary. For

example, given a parameter “19,” it should return

“10011”.

Chapter 13 Java BasiCs proJeCts

89© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_14

CHAPTER 14

Java Basics Solutions
Here are the solutions from the previous chapters in the Java Basics part of

the book.

Chapter 5: Variables

 (1) Signal (on/off) of the digital electronics

 (2) OOP; Class-based; WORA

 (3) (e)

 (4) (b)

Chapter 7: Input and Output

 (1)

name age height

Anthony 17 5'9"

Belly 17 5'6"

Bighead 16 6'

 (2)

a b c

\\

'

"""

90

Chapter 8: Loop Structure –For Loop

 (1) Inner loop has three iterations without carriage

return; Outer loop has two iterations.

 (2) After subtracting one, you will find a clear pattern.

 (3) Cubic number pattern

 (4) Adding one to all numbers

 (5) Nested loops

Chapter 9: Loop Structure – While Loop

 (1) Forever (dead loop)

 (2) Three times, x = 2, 4, 16

 (3) Five times, final output is “bbbbbabbbbb”

 (4) Six times, when x = 100, 50, 25, 12, 6, 3

 (5) 8 3 ← There is a space in the middle

Chapter 10: Logical Control Structures

 (1)

 (a) z % 2 == 1

 (b) x % 2 == 0

 (c) y > 0

 (d) (x % 2 == 0) || (y % 2 == 0)

 (e) y % z == 0

 (f) z != 0

 (g) (y > 0 && y > z && z >= 0) || (y > 0 && y > -z && z < 0)

 (h) (x > 0 && z < 0) || (x < 0 && z > 0)

 (i) (y >= 0 && y < 10)

 (j) z >= 0

Chapter 14 Java BasiCs solutions

PART II

Java Intermediate

Readers should have completed Part I: Java Basic prior to this part.

Part II focuses on how we learn Java programming and integrates basic

mathematical concepts.

Also in Part II, we demonstrate how to apply Java programming to

math problem solving through many practical examples.

Readers will have the opportunity to witness how Java programming

becomes a powerful tool in our experimental work.

I am sure you will be excited to find many intriguing examples of

applications throughout this part. Although this book doesn't touch every

single detail, it will cover the basic concepts of class and object-oriented

programming so that beginners are able to build a good foundation.

93© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_15

CHAPTER 15

Wright Brothers’ Coin
Flip Game
Programming helps us to understand and explain many complicated

problems. You can find an interesting online video, “The coin flip

conundrum,” which tells a historic story and explains a probability

problem solution using an analytic approach. The story is about the Wright

brothers, Orville and Wilbur, who played a coin flip game to determine

who should start the new flight experimentation first. They flipped a coin

continuously, until Orville got double heads consecutively, or Wilbur

received a head and a tail in a “neighboring” sequence. While the video

used probability plus algebraic concepts to calculate the winning edge

for the Wright brothers, we are going to try the experimentation with Java

programming. The following method simulates the Wright brothers’ game

and analyzes their results (note the helpful comments, marked by //, so

we can read the code more easily).

private static int count_a, count_b, count_ab = 0;

private static int totalsteps_a, totalsteps_b = 0;

/// whoever gets below pattern first wins, or tie if both of

them reach targeted patterns at the same round

/// a: HH wins; b: HT wins; Use boolean 'true': head, 'false':

tail

94

public static void flipCoin()

{

 Random r = new Random();

 /// initial value, or first round result

 boolean current_a = r.nextBoolean();

 boolean current_b = r.nextBoolean();

 boolean win_a = false;

 boolean win_b = false;

 int round = 1;

 while(true) {

 round++;

 boolean next_a = r.nextBoolean();

 boolean next_b = r.nextBoolean();

 if (current_a && next_a) {

 win_a = true;

 }

 if (current_b && !next_b) {

 win_b = true;

 }

 if (win_a && win_b) {

 System.out.println("Both WIN!

- round: " + round);

 count_ab++;

 totalsteps_a += round;

 totalsteps_b += round;

 break;

 }

 if (win_a && !win_b) {

 System.out.println("A WIN! - round: "

+ round);

 count_a++;

Chapter 15 Wright Brothers’ Coin Flip game

95

 totalsteps_a += round;

 break;

 }

 if (!win_a && win_b) {

 System.out.println("B WIN!

- round: " + round);

 count_b++;

 totalsteps_b += round;

 break;

 }

 current_a = next_a;

 current_b = next_b;

 }

}

Using the following main method, we can collect samples and get the

statistical summary.

public static void main(String[] args) {

 final int MAX = 10000;

 for(int i=0; i < MAX; i++) {

 flipCoin();

 }

 System.out.println("Summary");

 System.out.println("Total samples: " + MAX);

 System.out.println("Winning counts: a - " + count_a + ";

b - " + count_b + "; ab - " + count_ab);

 int probability_a = count_a * 100 / (count_a + count_b);

 int probability_b = count_b * 100 / (count_a + count_b);

 System.out.println("Winning probability: HH=" +

probability_a + "%; HT=" + probability_b + "%.");

 double average_a = totalsteps_a / (count_a + count_ab);

Chapter 15 Wright Brothers’ Coin Flip game

96

 double average_b = totalsteps_b / (count_b + count_ab);

 System.out.println("Average rounds to win: HH=" +

average_a + "; HT=" + average_b + ".");

}

After we run many experiments with different parameters, we learn

what is actually going on and can then reach the conclusion that Wilbur

would have a significantly higher chance (roughly 62% vs. 37%) to win the

bet. The output should look similar to what follows.

.........

B WIN! - round: 3

A WIN! - round: 2

A WIN! - round: 3

B WIN! - round: 2

B WIN! - round: 4

A WIN! - round: 4

B WIN! - round: 2

B WIN! - round: 2

B WIN! - round: 3

B WIN! - round: 2

A WIN! - round: 2

A WIN! - round: 2

Both WIN! - round: 2

B WIN! - round: 3

Summary

Total samples: 10000

Winning counts: a - 3213; b - 5386; ab - 1401

Winning probability: HH=37%; HT=62%.

Average rounds to win: HH=2.0; HT=3.0.

Chapter 15 Wright Brothers’ Coin Flip game

97© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_16

CHAPTER 16

Pythagorean Triples
The Pythagorean Theorem is well known among elementary to middle

school students, given its elegantly looking equation that applies to all

right triangles.

 Math: Pythagorean Triples
Inside a right triangle, a and b are the two legs, and c is the hypotenuse.

a2 + b2 = c2

When a, b, and c are positive integers satisfying the Pythagorean

Theorem, (a, b, c) are called “Pythagorean Triples.”. Obviously (3, 4, 5) is the

first Pythagorean triple, followed by (5, 12, 13), (6, 8, 10), and so forth. The

number of Pythagorean triples is infinite.

Example
So, how do we find all the Pythagorean triples below 100?

Answer
We can multiply (3, 4, 5) with any integer number to get (6, 8, 10),

(9, 12, 15), …, (57, 76, 95). We can use (5, 12, 13) as another base triple to

get (10, 24, 26), …, (35, 84, 91). And so on.

But this approach will require us to first find out all the base

Pythagorean triples. Thus, we would essentially have to check every

positive integer below 100 for a, and then figure out b and c, assuming

a < b < c. By the way, a = b will not be possible. However, with a

programming approach, it is no longer a challenging math problem.

98

This is the method to find out all the possible triples (a, b, c) satisfying

the Pythagorean Theorem.

 private static int allPythagoreanNumbers(int upperBound) {

 int count = 0;

 for(int a = 1; a < upperBound; a++) {

 for(int b = a; b < upperBound; b++) {

 for(int c = b; c < upperBound; c++) {

 if (a * a + b * b == c * c) {

 System.out.println

("("+a+", "+b+",

"+c+")");

 count++;

 }

 }

 }

 }

 return count;

 }

 public static void main(String[] args) {

 System.out.println("Total count: " +

allPythagoreanNumbers(100));

 }

It will output something like what follows:

(3, 4, 5)

(5, 12, 13)

(6, 8, 10)

(7, 24, 25)

(8, 15, 17)

Chapter 16 pythagorean triples

99

(9, 12, 15)

(9, 40, 41)

(10, 24, 26)

(11, 60, 61)

(12, 16, 20)

(12, 35, 37)

(13, 84, 85)

(14, 48, 50)

(15, 20, 25)

(15, 36, 39)

(16, 30, 34)

(16, 63, 65)

(18, 24, 30)

(18, 80, 82)

(20, 21, 29)

(20, 48, 52)

(21, 28, 35)

(21, 72, 75)

(24, 32, 40)

(24, 45, 51)

(24, 70, 74)

(25, 60, 65)

(27, 36, 45)

Chapter 16 pythagorean triples

100

(28, 45, 53)

(30, 40, 50)

(30, 72, 78)

(32, 60, 68)

(33, 44, 55)

(33, 56, 65)

(35, 84, 91)

(36, 48, 60)

(36, 77, 85)

(39, 52, 65)

(39, 80, 89)

(40, 42, 58)

(40, 75, 85)

(42, 56, 70)

(45, 60, 75)

(48, 55, 73)

(48, 64, 80)

(51, 68, 85)

(54, 72, 90)

(57, 76, 95)

(60, 63, 87)

(65, 72, 97)

Total count: 50

Chapter 16 pythagorean triples

101

This is just one of many demonstrations of how we can use programs

to solve problems.

 Problems
 1. In the example, we used three for-loops to iterate

a, b, c from 1 through 99. How do you improve it by

reducing to two for-loops?

 2. Using the idea from the example, how do we find

out all the Pythagorean primes smaller than 100?

Pythagorean primes are explained below.

 Math: Pythagorean Primes
Pythagorean primes are the sum of two squares. And, it needs to be in form

of 4n + 1, where n is a positive integer. Examples of Pythagorean primes are

5, 13, 17, 29, 37 and 41.

Hine take advantage of the example code and see how to make
small changes to find a solution.

Chapter 16 pythagorean triples

103© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_17

CHAPTER 17

Strong Typed
Programming
As we have learned at the beginning of this book in Part I, the Java

programming language has defined the integer, double, Boolean, String,

etc., as basic types. In Java, we cannot assign any value to a variable

without defining the variable with a type beforehand. Only after a variable

has been defined clearly by a type—for example, integer—are we then

allowed to assign an integer value to it and start using it as an integer in

the calculation. Once a variable’s type is defined, it cannot be assigned a

value with a different type, logically speaking. For instance, if a variable is

defined as Boolean, it cannot be assigned an integer value. Otherwise, we

will get a type mismatch compilation error.

 Type Casting
However, if a variable is defined as a double, how do we assign an integer

value to it? Let’s do some experimentation.

 public static void main(String[] args) {

 double a = 5;

 System.out.println(a);

 double b = 3 * 5;

 System.out.println(b);

104

 double x = 5 / 3;

 System.out.println(x);

 double y = (double)(5 / 3);

 System.out.println(y);

 double z = (double)5 / 3;

 System.out.println(z);

 double t = 5.0 / 3;

 System.out.println(t);

 double u = 5 / 3d;

 System.out.println(u);

 }

This is the output:

The following patterns are those we have learned from this

experiment:

• When the integer 5 is assigned to a double typed

variable, the variable will get an equivalent value with a

decimal point presentation, that is, double value 5.0.

• When an integer is divided by another integer, the

result follows the same integer type, for example,

5 / 3 = 1. But when the fraction “5 / 3” is assigned to

a double typed variable, the resulting value will be

automatically converted to double value 1.0.

Chapter 17 Strong typed programming

105

• (double)(5 / 3) converts an integer result of (5/ 3)

to a double value. This is called type casting. The result

is 1.0, a double value.

How do we produce a precise value from 5 / 3? The trick is to use

(double)5 / 3, instead of 5 / 3. The outcome of (double)5 / 3 is a

double value. Or, you may use 5.0 / 3 to generate the same outcome.

Another way is 5d / 3, or 5 / 3d. The outcomes of both expressions are

the same double value.

 Math: Slope of a Line
In the x-y 2D Cartesian coordinates system, the slope of a line between

points (x1, y1) and (x2, y2) is equal to (y2 - y1) / (x2 - x1).

Example
Implement a public method called double getSlope(), which

returns the slope of a line. If the two points have the same x-coordinates,

the denominator is zero and the slope is undefined, so you should throw

an IllegalArgumentException in this case. This will stop your program

running and show the specified error message.

Answer
In a Line class, we define two points and a constructor:

 private Point p1;

 private Point p2;

 public Line(Point p1, Point p2) {

 this.p1 = p1;

 this.p2 = p2;

 }

Chapter 17 Strong typed programming

106

The Point class is designed as:

public class Point {

 private int x;

 private int y;

 public Point() {

 }

 public void setX(int x) {

 this.x = x;

 }

 public int getX() {

 return x;

 }

 public void setY(int y) {

 this.y = y;

 }

 public int getY() {

 return y;

 }

}

Now we add a method called getSlope() inside the Line class.

public double getSlope() {

 if (this.p1.getX() == this.p2.getX()) {

 throw new IllegalArgumentException("Denominator

cannot be 0");

 }

 return (double)(this.p2.getY() - this.p1.getY()) /

(this.p2.getX() - this.p1.getX());

}

Chapter 17 Strong typed programming

107

The method looks easy, but the tricky part is where we convert the

result of division between two integers to a double value, that is,

(double)(this.p2.getY() - this.p1.getY()) / (this.p2.getX() -

this.p1.getX())

 Math: Collinearity
Points are collinear if a straight line can be drawn to connect them. Two

basic examples are when three points have the same x- or y-coordinate.

The more general case can be determined by calculating the slope of the

line between each pair of points and checking whether the slope is the

same for all pairs of points.

We use the formula (y2 - y1) / (x2 - x1) to determine the slope between

two points (x1, y1) and (x2, y2).

Add the following method to your Line class:

public boolean isCollinear(Point p)

It needs to return true if the given point is collinear with the points of

this line.

Chapter 17 Strong typed programming

109© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_18

CHAPTER 18

Conditional
Statements
How do you identify and express the bigger number between the two

numbers, x and y?

 Math: Hypothesis and Conclusion
In a mathematical formula, we have to introduce the absolute sign to form

an expression:

The bigger number between x and y
x y x y

2

+()+ –

Recall the if/else structure:

if (x >= y) {

 // x is the bigger number

} else {

 // y is the bigger number

}

It is very straightforward and fairly easy to read!

The if/else structure follows a common experimentation of

hypothesis-to-conclusion.

110

 if (<Hypothesis>) {

 <Conclusion>

 } else { // the hypothesis is NOT valid

 <Different conclusion>

 }

The <Hypothesis> part needs to be a Boolean value, which may

contain one variable or multiple variables in a math expression.

There are several types of structures for the conditional statements

(some you’ve seen, some that will be new to you).

• Simple if, or if/else clause.

• A little more complicated if/else if ladder.

if (...) {

} else if (...) {

} else if (...) {

} else {

}

• Nested if/else statement.

if (...) {

} else {

 if (...) {

 } else {

 }

}

Chapter 18 Conditional StatementS

111

The final pattern is used to implement a tree-like structure. It will

depend on the type of problems we solve when we decide which pattern

to use.

Example
Is there anything wrong with the following block of code?

 if (i > 50) {

 <do something...>

 } else if (i > 100) {

 <do something...>

 } else {

 <do something...>

 }

Answer
When i <= 50, it will never be i > 100, so the else if branch in

the middle is actually a dead path. An easy correction should be to just

exchange the position of “50” and “100” in the code. And pay attention to

this, when it says else if (i > 50) {...} in the following code block,

it actually means 50 < i <= 100.

 if (i > 100) {

 <do something...>

 } else if (i > 50) {

 <do something...>

 } else {

 <do something...>

 }

Example
Create a method to map a student’s grades (0 to 100 integers) to a

standard GPA score.

Chapter 18 Conditional StatementS

112

Answer
The first solution (v0) uses several if clauses. The problem is, for

example, when the marks are 69, it has to execute all four if clauses.

This is not an efficient approach.

 public static char getGpaScore_v0(int points) {

 if (points > 89) {

 return 'A';

 }

 if (points < 90 && points > 79) {

 return 'B';

 }

 if (points < 80 && points > 69) {

 return 'C';

 }

 if (points < 70 && points > 64) {

 return 'D';

 }

 // if (points < 65) <-- this line can be omitted

 return 'F';

 }

The second solution (v1) utilizes a nested "if / else" statement.

It solves the problem observed from an earlier version - v0.

 public static char getGpaScore_v1(int points) {

 if (points > 89) {

 return 'A';

 } else {

 if (points > 79) {

 return 'B';

 } else {

Chapter 18 Conditional StatementS

113

 if (points > 69) {

 return 'C';

 } else {

 if (points > 64) {

 return 'D';

 } else {

 return 'F';

 }

 }

 }

 }

 }

To provide better readability into the code structure, the third solution

(v2) is introduced as shown.

 /*

 * 90 to 100 --- A

 * 80 to 89 --- B

 * 70 to 79 --- C

 * 65 to 69 --- D

 * below 65 --- F

 */

 public static char getGpaScore_v2(int points) {

 if (points > 89) {

 return 'A';

 } else if (points > 79) {

 return 'B';

 } else if (points > 69) {

 return 'C';

Chapter 18 Conditional StatementS

114

 } else if (points > 64) {

 return 'D';

 } else {

 return 'F';

 }

 }

 Math: Quadrants
On the Cartesian coordinate system, a quadrant is determined by

whether the x and y coordinates are positive or negative numbers. There

are four quadrants, separated by the x-axis and the y-axis. Specifically,

all the points (x > 0, y > 0) belong to quadrant I (or 1st quadrant); all the

points (x < 0, y > 0) belong to quadrant II (or 2nd quadrant); all the points

(x < 0, y < 0) belong to quadrant III (or 3rd quadrant); and all the points

(x > 0, y < 0) belong to quadrant IV (or 4th quadrant)

Example
Can you write a method to identify which quadrant on the coordinate

system that any given point (x, y) belongs to? Both x and y are real

numbers. If a point falls on the x-axis or the y-axis, then the method should

return 0.

Answer
There are two variables, x and y, in this example. Define x and y as

float type of numbers. Do case work analysis as shown below:

Case 1: When a point falls on either x-axis or y-axis y = 0 or x = 0

Case 2: When a point falls in the 1st quadrant x > 0 and y > 0

Case 3: When a point falls in the 2nd quadrant x < 0 and y > 0

Case 4: When a point falls in the 3rd quadrant x < 0 and y < 0

Case 5: When a point falls in the 4th quadrant x > 0 and y < 0

Chapter 18 Conditional StatementS

115

Combining case 2 and case 5 to a category of x > 0, case 3 and case 4 to

a category of x < 0 produces a code structure as:

 private static int quadrant(float x, float y) {

 if (x == 0 || y == 0) {

 return 0;

 }

 else if (x > 0) // x > 0 and y <> 0

 {

 if (y > 0) {

 return 1;

 }

 return 4;

 }

 else // x < 0 and y <> 0

 {

 if (y > 0) {

 return 2;

 }

 return 3;

 }

 }

It uses float to hold x and y values, although it could also use double

to do so. Both float and double are numeric data types that are used for

storing floating-point numbers. The double type requires twice as much

space as the float type, as every float type of data is represented in 32

bits while one double type of data uses 64 bits

Chapter 18 Conditional StatementS

116

TERNARY OPERATOR

Java enables you to assign a value directly from a Boolean expression (true or

false). this is called a ternary operator. For example:

 int a, b, max;

 max = a < b? b : a;

this implies, when a < b, max = b; otherwise max = a.

this syntax saves an if/else statement. For example, we may use the

following method to get an absolute value:

 public int getAbsolutionValue(int a) {

 if (a < 0) {

 return -a;

 }

 else {

 Return a;

 }

 }

But by using the ternary operator, we will get it done by one line of code:

 a = a < 0 ? -a : a;

 Problems
 1. Please rewrite the code as below to improve its logic

and readability (num is an integer value).

 if (num < 10 && num > 0) {

 System.out.println("It's an one digit

number");

 }

Chapter 18 Conditional StatementS

117

 else if (num < 100 && num > 9) {

 System.out.println("It's a two digit

number");

 }

 else if (num < 1000 && num > 99) {

 System.out.println("It's a three digit

number");

 }

 else if (num < 10000 && num > 999) {

 System.out.println("It's a four digit

number");

 }

 else {

 System.out.println("The number is not

between 1 & 9999");

 }

 2. Take the following three if statements:

if (a == 0 && b == 0) {...}

if (a == 0 && b != 0) {...}

if (a != 0 && b != 0) {...}

Please simplify the code logic and combine them together.

Chapter 18 Conditional StatementS

119© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_19

CHAPTER 19

Switch Statement
Utilizing a switch conditional statement instead of an if statement can

sometimes present clearer code logic. When we have a variable or an

expression containing variables that may have different resulting values

followed by different actions, it is a good opportunity to use switch.

switch (<expression>) {

 case <result 1>:

 <action 1>;

 break;

 case <result 2>:

 <action 2>;

 break;

 case <result n>:

 <action n>;

 break;

 default:

 <other action>;

 break;

}

120

A simple application of a switch statement is when you take different

action under the case of x = 1, or x = 2, or x = 3, …, as below:

 switch (x) {

 case 1: ...;

 case 2: ...;

 case 3: ...;

 default: ...;

 }

Example
Write a method to print out the month in an English word expression

given an integer value input.

Answer
We can use if/else ladder statements to translate an integer to a name

of the month.

 public static void tellNameOfMonthByIfElse(int month) {

 if (month == 1) {

 System.out.println("January");

 } else if (month == 2) {

 System.out.println("February");

 } else if (month == 3) {

 System.out.println("March");

 } else if (month == 4) {

 System.out.println("April");

 } else if (month == 5) {

 System.out.println("May");

 } else if (month == 6) {

 System.out.println("June");

 } else if (month == 7) {

 System.out.println("July");

 } else if (month == 8) {

 System.out.println("August");

Chapter 19 SwitCh Statement

121

 } else if (month == 9) {

 System.out.println("September");

 } else if (month == 10) {

 System.out.println("October");

 } else if (month == 11) {

 System.out.println("November");

 } else if (month == 12) {

 System.out.println("December");

 } else {

 System.out.println("Unknown month");

 }

 }

If we take advantage of the switch conditional statement to do the

same translation, it will work well too.

public static void tellNameOfMonthBySwitch(int month) {

 String nameOfMonth;

 switch (month) {

 case 1: nameOfMonth = "January";

 break;

 case 2: nameOfMonth = "February";

 break;

 case 3: nameOfMonth = "March";

 break;

 case 4: nameOfMonth = "April";

 break;

 case 5: nameOfMonth = "May";

 break;

 case 6: nameOfMonth = "June";

 break;

 case 7: nameOfMonth = "July";

 break;

Chapter 19 SwitCh Statement

122

 case 8: nameOfMonth = "August";

 break;

 case 9: nameOfMonth = "September";

 break;

 case 10: nameOfMonth = "October";

 break;

 case 11: nameOfMonth = "November";

 break;

 case 12: nameOfMonth = "December";

 break;

 default: nameOfMonth = "Unknown month";

 break;

 }

 System.out.println(nameOfMonth);

}

There is an even better way. How about we define an array to store a

list of name strings representing all months in English, that is, the array

nameOfMonth. We are essentially building a mapping table between integer

numbers (from 0 to 12) and month name strings. Since an array starts with

the index 0, we intentionally assign "none" to the first element in the array.

 private static String[] nameOfMonth = new String[] {

 "none", "January", "February", "March",

"April", "May", "June",

 "July", "August", "September", "October",

"November", "December"

 };

 public static void main(String[] args) {

 System.out.println(nameOfMonth[1]); // January

 System.out.println(nameOfMonth[8]); // August

 }

Chapter 19 SwitCh Statement

123

Example
Write a method to return the number of days in a month, given two

integer inputs: year and month.

Answer
Using the switch conditional statement:

 public static int tellNumberOfDaysByYearMonth(int year,

int month) {

 int numOfDays = 0;

 switch (month) {

 case 1: case 3: case 5:

 case 7: case 8: case 10:

 case 12:

 numOfDays = 31;

 break;

 case 4: case 6:

 case 9: case 11:

 numOfDays = 30;

 break;

 case 2:

 if ((year % 4 == 0 && year % 100

!= 0) || year % 400 == 0) {

 numOfDays = 29;

 } else

 numOfDays = 28;

 }

 break;

 default:

 break;

 }

 return numOfDays;

 }

Chapter 19 SwitCh Statement

124

Notice that it has a special logic to handle February for leap years.

Because of the complexity in figuring out the total number of days in

February, when we apply the static array approach mentioned earlier to

this situation, we will have to do the following:

private static int[] numberOfDaysByMonth = new int[] {

 0, // none

 31, // January

 28, // February

 31, // March

 30, // April

 31, // May

 30, // June

 31, // July

 31, // August

 30, // September

 31, // October

 30, // November

 31 // December

};

Before we use the integer array, we need to modify the value for

February according to the year value during runtime:

 if ((year % 4 == 0 && year % 100 != 0) ||

year % 400 == 0) {

 numberOfDaysByMonth[2] = 29;

 }

Chapter 19 SwitCh Statement

125

 Problem
Use a switch conditional statement to write the following code.

char color ='C';

 if (color=='R') {

 System.out.println("The color is red");

 }

 else if(color=='G') {

 System.out.println("The color is green");

 }

 else if(color=='B') {

 System.out.println("The color is black");

 }

 else {

 System.out.println("Some other color");

 }

Chapter 19 SwitCh Statement

127© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_20

CHAPTER 20

Tracing Moving
Objects
Java provides a basic coding framework, such as for or while loops and if

or switch conditional statements. We can make use of them to keep track

of moving objects versus its times. First, we’ll work with a popular math

problem - bouncing ball scenario.

 Math: Bouncing Ball
In a pure math approach, we’d build a table to record the height after each

bounce. It is not that hard, but if we change the height value in the original

problem setting, we will have to recalculate the values in the same table by

hand.

Example
A ball is dropped from a height of 3 meters. On its first bounce it rises

to a height of 2 meters. It keeps falling and bouncing to 2/3 of the height it

reached in the previous bounce. On which bounce will it rise to a height

less than 0.5 meters? This problem is selected from past AMC 8 (American

Mathematics competitions for up to 8th grade)

128

Answer
The programming approach will largely reduce repetitive manual work.

 public static void main(String[] args) {

 System.out.println(ballBouncing(3.0));

 }

 private static int ballBouncing(double originalHeight) {

 double currentHeight = originalHeight;

 int count = 0;

 while(currentHeight > 0.5) {

 currentHeight = currentHeight * 2 / 3;

 count++;

 System.out.println("Bounce No=" + count +

 "; current height=" +

currentHeight);

 }

 return count;

 }

When you execute it, the output shows the current height after each

bounce.

Bounce No=1; current height=2.0

Bounce No=2; current height=1.3333333333333333

Bounce No=3; current height=0.8888888888888888

Bounce No=4; current height=0.5925925925925926

Bounce No=5; current height=0.3950617283950617

5

Changing the parameter originalHeight and re-executing the same

program will promptly output the detailed result. This is much more

efficient than solving it on paper in a traditional mathematical approach.

Chapter 20 traCing Moving objeCts

129

Example
A snail tries to get out of a well. Each day it climbs up the side of the

well 4 feet and each night it slides down the well 2 feet and 6 inches. If

the snail starts 40 feet down inside in the morning, how many days will it

take the snail take to get out of the well? This problem is selected from a

MathIsCool competition.

Answer
In order to keep using an integer value, we convert feet to inches by

calculation. Notice that we set the depth of the well as a constant variable

by utilizing the keyword final. We check if the snail has reached the top of

the well, after it climbs up every day, and before it slides down.

 private static void snail() {

 final int DEPTH = 12 * 40;

 int currentHeight = 0;

 int numOfDays = 0;

 while (currentHeight < DEPTH) {

 currentHeight += 12 * 4;

 numOfDays++;

 if (currentHeight >= DEPTH) {

 break;

 }

 currentHeight -= 12 * 2 + 6;

 System.out.println("No. " + numOfDays + "

day - " +

 (DEPTH - currentHeight) + "

inches to the top.");

 }

 System.out.println("No. " + numOfDays + " day -

at the top.");

 }

Chapter 20 traCing Moving objeCts

130

This is partial output from the program runtime:

............

No. 1 day - 462 inches to the top.

No. 2 day - 444 inches to the top.

No. 3 day - 426 inches to the top.

No. 4 day - 408 inches to the top.

No. 5 day - 390 inches to the top.

No. 6 day - 372 inches to the top.

No. 7 day - 354 inches to the top.

No. 8 day - 336 inches to the top.

No. 9 day - 318 inches to the top.

No. 10 day - 300 inches to the top.

No. 11 day - 282 inches to the top.

No. 12 day - 264 inches to the top.

No. 13 day - 246 inches to the top.

No. 14 day - 228 inches to the top.

No. 15 day - 210 inches to the top.

No. 16 day - 192 inches to the top.

No. 17 day - 174 inches to the top.

No. 18 day - 156 inches to the top.

No. 19 day - 138 inches to the top.

No. 20 day - 120 inches to the top.

No. 21 day - 102 inches to the top.

No. 22 day - 84 inches to the top.

No. 23 day - 66 inches to the top.

No. 24 day - 48 inches to the top.

No. 25 day - at the top.

Chapter 20 traCing Moving objeCts

131© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_21

CHAPTER 21

Counting
We have learned many mathematical methods to solve counting problems.

Some of these problems require a deep understanding of permutation

and combination. In this chapter, we will learn examples of how to use

programming to solve counting problems.

Example
Tickets on a bus were $4.00 and $6.00. A total of 45 tickets were

sold and $230 was earned. How many $4.00 tickets were sold? (2007/

MathIsCool problem at http://academicsarecool.com)

Answer
This can be solved by a single loop. We set the variable tickets as

the number of $4.00 tickets. Because the total number of tickets is 45, the

number of $4.00 tickets cannot be greater than 45. Therefore, tickets is an

integer under 46.

private static void calculateBusTickets() {

 for(int tickets = 0; tickets < 46; tickets++) {

 int totalMoney = 4 * tickets + 6 * (45 - tickets);

 if (totalMoney == 230) {

 System.out.println(tickets + " $4.00

tickets were sold.");

 break;

 }

 }

}

http://academicsarecool.com

132

Example
A chair has 4 legs, a stool has 3 legs, and a table has 1 leg. At a birthday

party, there are 4 chairs per table and a total of 18 pieces of furniture. One

of the children counts 60 legs total. How many stools are there? (2016/

MathIsCool problem at http://academicsarecool.com)

Answer
In the following method, the variable tables represents number of

tables. Then, the number of chairs is 4 × tables, and the number of stools

is (18 – tables – 4 * tables).

private static void countFurniture() {

 for(int tables = 0; tables < 19; tables++) {

 if (tables + 4 * 4 * tables + 3 * (18 - tables -

4 * tables) == 60) {

 System.out.println((18 - tables) + "

stools.");

 break;

 }

 }

}

Example
A multiple-choice examination consists of 20 questions. The scoring

is +5 for each correct answer, -2 for each incorrect answer, and 0 for each

unanswered question. John’s score on the examination is 48. What is the

maximum number of questions he could have answered correctly? (1987/

AMC8 problem at https://artofproblemsolving.com/wiki/index.

php/1987_AJHSME)

Answer
Unlike the previous two examples, in this one we will use two variables,

c and w, in the loop. Let’s assume the number of correct answers is c,

and the number of wrong answers is w. Their sum cannot be greater than

Chapter 21 Counting

http://academicsarecool.com
https://artofproblemsolving.com/wiki/index.php/1987_AJHSME
https://artofproblemsolving.com/wiki/index.php/1987_AJHSME

133

20 – the total number of problems. Because it may have more than one

solution, we don’t use break to exit the program right after it finds the first

solution. This is a different approach from in the previous examples.

private static void scoring() {

 for(int c = 0; c < 20; c++) {

 for(int w = 0; w < 20 - c; w++) {

 if (5 * c - 2 * w == 48) {

 System.out.println("Correct

answers: " + c

 + "; wrong answers:

" + w);

 }

 }

 }

}

The output is:

 Correct answers: 10; wrong answers: 1

 Correct answers: 12; wrong answers: 6

Example
How many distinct four-digit numbers are divisible by 3 and

have 23 as their last two digits? (2003/10B AMC problem at https://

artofproblemsolving.com/wiki/index.php/2003_AMC_8)

Answer
We need to pay attention to the wording, “distinct four-digit numbers,”

in this problem. The strategy is to separate all conditions into two parts.

 − The 4-digit number is divisible by 3 and its last two

digits are “23”.

 − All the four digits are different.

Chapter 21 Counting

https://artofproblemsolving.com/wiki/index.php/2003_AMC_8
https://artofproblemsolving.com/wiki/index.php/2003_AMC_8

134

private static void countNumbers() {

 int totalCount = 0;

 for(int i = 1000; i < 10000; i++) {

 if (i % 3 == 0 && i % 100 == 23) {

 int firstDigit = i / 1000;

 int secondDigit = i / 100 % 10;

 if (firstDigit != secondDigit &&

 firstDigit != 2 &&

 firstDigit != 3 &&

 secondDigit != 2 &&

 secondDigit != 3) {

 totalCount++;

 System.out.println(i);

 }

 }

 }

 System.out.println("Total count = " + totalCount);

}

Its output is:

1023

1623

1923

4023

4623

4923

5823

6123

6423

6723

7023

Chapter 21 Counting

135

7623

7923

8523

9123

9423

9723

Total count = 17

We use one if clause to validate that all four digits are distinct.

Alternatively, we may create a general method to check it.

 if (isDistinct(firstDigit, secondDigit, 2, 3)) {

 }

This is the implementation of isDistinct(...).

 private static boolean isDistinct(int a, int b, int c,

int d) {

 if (a == b) {

 return false;

 } else if (a == c) {

 return false;

 } else if (a == d) {

 return false;

 } else if (b == c) {

 return false;

Chapter 21 Counting

136

 } else if (b == d) {

 return false;

 } else if (c == d) {

 return false;

 } else {

 return true;

 }

 }

An improved version in countNumbers2() will be:

private static void countNumbers2() {

 int totalCount = 0;

 for(int i = 1000; i < 10000; i++) {

 if (i % 3 == 0 && i % 100 == 23) {

 int firstDigit = i / 1000;

 int secondDigit = i / 100 % 10;

 if (isDistinct(firstDigit, secondDigit,

2, 3)) {

 totalCount++;

 System.out.println(i);

 }

 }

 }

 System.out.println("Total count = " + totalCount);

}

Example
Ruthie has 10 coins, all either nickels, dimes, or quarters. She has N

nickels, D dimes, and Q quarters, where N, D, and Q are all different, and

are each at least 1. Amazingly, she would have the same amount of money

if she had Q nickels, N dimes, and D quarters. How many cents does Ruthie

have? (2012 MathIsCool problem at http://academicsarecool.com)

Chapter 21 Counting

http://academicsarecool.com

137

Answer
Two for-loops are to be used in the following solution.

private static void countCoins() {

 for(int n = 1; n < 9; n++) {

 for(int d = 1; d < 10 - n; d++) {

 int q = 10 - n - d;

 if (5*n + 10*d + 25*q == 5*q + 10*n + 25*d){

 System.out.println((5*n+10*d+25*q)+

" cents.");

 System.out.println("N="+n+";

D="+d+"; Q="+q);

 }

 }

 }

}

Output is:

155 cents.

N=1; D=5; Q=4

Example
Three friends have a total of six identical pencils, and each one has at

least one pencil. In how many ways can this happen? (2004 AMC8 problem

at https://artofproblemsolving.com/wiki/index.php/2004_AMC_8)

Answer
We use two for-loops to simulate how we distribute the six identical

pencils to three people represented by variables, first, second, third.

private static void countWays() {

 int count = 0;

 for(int first=0; first <= 6; first++) {

Chapter 21 Counting

https://artofproblemsolving.com/wiki/index.php/2004_AMC_8

138

 for(int second = 0; second <= 6 - first;

second++) {

 int third = 6 - first - second;

 if (first > 0 && second > 0 && third > 0) {

 count++;

 System.out.println("first="

+ first + "; second=" +

second + "; third=" +

third); }

 }

 }

 System.out.println("Total count=" + count);

}

The output is:

first=1; second=1; third=4

first=1; second=2; third=3

first=1; second=3; third=2

first=1; second=4; third=1

first=2; second=1; third=3

first=2; second=2; third=2

first=2; second=3; third=1

first=3; second=1; third=2

first=3; second=2; third=1

first=4; second=1; third=1

Total count=10

Example
Seven distinct pieces of candy are to be distributed among three bags.

The red bag and the blue bag must each receive at least one piece of candy;

the white bag may remain empty. How many arrangements are possible?

(2010/10B AMC problem at https://artofproblemsolving.com/wiki/

index.php/2010_AMC_10B)

Chapter 21 Counting

https://artofproblemsolving.com/wiki/index.php/2010_AMC_10B
https://artofproblemsolving.com/wiki/index.php/2010_AMC_10B

139

Answer
First, we design an experiment. In this experiment, we want to put

seven distinct strings (“A, ” “B, ” “C, ” “D, ” “E, ” “F, ” “G”) into three String

arrays. The seven strings represent seven distinct pieces of candy.

The three arrays represent red, blue, and white bags. The order of the

placement doesn’t matter, but we need to make sure only the last array can

be empty after the placement is made. The goal is to find the number of

different placements.

When we place “A” in one of the three arrays, we need a for-loop for

three different arrays. Then we need another for-loop to place “B,” and

so on; in total we will need seven for-loops. In each for-loop, we append

the string to the existing array, that is, bag[i]. But after it is done, we need

to remove it from the tail of the array string in order for it to try the next

option. This is why we use bag[i].replace("A", ""). The same applies to

the other six strings.

We come up with a “straightforward” but ugly-looking version as what

follows.

Note Bag – red: 0, blue: 1, white: 2; 3 in the loops represent the
three string arrays, that is, the three bags.

/// BAG - red: 0, blue: 1, white: 2

private static void distributeCandy() {

 int count = 0;

 String[] bag = { "", "", "" };

 for(int i=0; i < 3; i++) {

 bag[i] += "A";

 for(int j=0; j < 3; j++) {

 bag[j] += "B";

 for(int k=0; k < 3; k++) {

Chapter 21 Counting

140

 bag[k] += "C";

 for(int l=0; l < 3; l++) {

 bag[l] += "D";

 for(int m=0; m < 3; m++) {

 bag[m] += "E";

 for(int n=0; n < 3; n++) {

 bag[n] += "F";

 for(int p=0; p < 3; p++) {

 bag[p] += "G";

 if(bag[0].length() > 0 && bag[1].length()

> 0) {

 count++;

 System.out.println("Red=" + bag[0] + "

Blue=" + bag[1] + " White=" + bag[2]);

 }

 bag[p] = bag[p].replace("G", ""); }

 bag[n] = bag[n].replace("F", ""); }

 bag[m] = bag[m].replace("E", ""); }

 bag[l] = bag[l].replace("D", ""); }

 bag[k] = bag[k].replace("C", ""); }

 bag[j] = bag[j].replace("B", ""); }

 bag[i] = bag[i].replace("A", ""); }

 System.out.println("Total count: " + count);

}

The code structure looks too complicated. There are too many nested

for-loops. A better idea is to apply a recursive approach to improve its

simplicity. Now see a new version:

private static int count = 0;

private static String[] bag = { "", "", "" };

private static String[] CANDY = new String[] { "A", "B", "C",

"D", "E", "F", "G" };

Chapter 21 Counting

141

private static String RemoveLastChar(String s) {

 if (s == null && s.length() < 1) {

 System.out.println("Input string is invalid!");

 return "";

 }

 return s.substring(0, s.length() - 1);

}

private static void distributeCandies_Recursive(int pointer) {

 for(int i=0; i < 3; i++) {

 bag[i] += CANDY[pointer];

 if (pointer == CANDY.length - 1) {

 if (bag[0].length() > 0 && bag[1].

length() > 0) {

 count++;

 System.out.println("Red=" + bag[0]

+ " Blue=" + bag[1] + " White=" +

bag[2]);

 }

 }

 else {

 distributeCandies_Recursive((pointer + 1));

 }

 bag[i] = RemoveLastChar(bag[i]);

 }

}

We then include two following lines in the main function for execution.

distributeCandies_Recursive(0);

System.out.println("Total count: " + count);

Chapter 21 Counting

142

Example
A palindrome between 1000 and 10000 is chosen at random. What

is the probability that it is divisible by 7? (2010/10B AMC problem at

https://artofproblemsolving.com/wiki/index.php/2010_AMC_10B)

Answer
A palindrome number is a number that reads the same from its left to

right as from its right to left.

In the isPalindrome() method, we reverse the number string and

compare it with the original number string. If the reversed string turns out

to be the same as the original one, it is identified as a palindrome string.

For “8558.” its reversed string “8558” is the same as itself.

We introduce StringBuffer class to leverage its reverse() method.

Every number within the range [1000, 10000] is converted to a string type,

before it is passed to the isPalindrome() method. The solution can be

applied to any range of integer numbers.

public static void main(String[] args) {

 countDivisibility();

}

private static boolean isPalindrome(String numberStr) {

 String reversed = new StringBuffer(numberStr).reverse().

toString();

 return reversed.equals(numberStr);

}

private static void countDivisibility() {

 int count = 0;

 int total = 0;

 for(int i = 1000; i < 10001; i++) {

 if(isPalindrome(Integer.toString(i))) {

 total++;

 if (i % 7 == 0) {

 count++;

 System.out.println(i);

Chapter 21 Counting

https://artofproblemsolving.com/wiki/index.php/2010_AMC_10B

143

 }

 }

 }

 System.out.println("Probability=" + count + "/" + total);

}

There is a different way in the method isPalindrome2(), which

contains the same functionality as what the isPalindrome() method has.

Instead of using StringBuffer, you may simply compare each character

from the leading half of one with the trailing half of the original string.

private static boolean isPalindrome2(String s) {

 int len = s.length();

 for(int i = 0; i < len / 2; i++) {

 if (s.charAt(i) != s.charAt(len - i - 1)) {

 return false;

 }

 }

 return true;

}

Example
A base-10 three-digit number n is selected at random. What is the

probability that the base-9 representation and the base-11 representation

of n are both three-digit numbers? (2003/10A AMC problem at https://

artofproblemsolving.com/wiki/index.php/2003_AMC_10A_Problems)

Answer
The total count of base-10 three-digit numbers is 900. A three-digit

number 124 in base-10 is 147 in base-9, and 103 in base-11; 720 in base-10,

880 in base-9, and 5A5 in base-11.

The crucial method is countBase10Numbers():

private static void countBase10Numbers() {

 int count = 0;

 for(int i = 100; i < 1000; i++) {

Chapter 21 Counting

https://artofproblemsolving.com/wiki/index.php/2003_AMC_10A_Problems
https://artofproblemsolving.com/wiki/index.php/2003_AMC_10A_Problems

144

 String base9Number = convertToBaseN(i, 9);

 String base11Number = convertToBaseN(i, 11);

 if (base9Number.length() == 3 &&

 base11Number.length() == 3) {

 count++;

 System.out.println(i + " -> " +

base9Number +

 "; " + base11Number);

 }

 }

 System.out.println(count + " out of " + (1000 - 100));

}

The supporting method is convertToBaseN().

private static String convertToBaseN(int base10, int n) {

 if(n < 2 || n > 16) {

 return "";

 }

 String baseN = myOneDigit[base10 % n];

 base10 = base10 / n;

 while(base10 > 0) {

 baseN = myOneDigit[base10 % n] + baseN;

 base10 = base10 / n;

 }

 return baseN;

}

The myOneDigit array is:

private static String[] myOneDigit =

{ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B",

"C", "D", "E", "F" };

Chapter 21 Counting

145

It is actually equivalent to a method with implementation of the

switch conditional statement:

private static String convertDigit(int digit) {

 String s = "";

 switch(digit) {

 case 10:

 s = "A";

 break;

 case 11:

 s = "B";

 break;

 case 12:

 s = "C";

 break;

 case 13:

 s = "D";

 break;

 case 14:

 s = "E";

 break;

 case 15:

 s = "F";

 break;

 default:

 s = Integer.toString(digit);

 break;

 }

 return s;

}

Obviously, the approach using a string array is simpler.

Chapter 21 Counting

146

 Problems
 1. Richa and Yashvi are going to Jamaica with their

school. They plan on attending a fair where the

admission for children is $1.50 and $4.00 for adults.

On a specific day, 2,200 people enter the fair and

$5,050 is collected. How many children attended?

(2017 MathIsCool)

 2. In a mathematics contest with 10 problems, a

student gains 5 points for a correct answer and loses

2 points for an incorrect answer. If Olivia answered

every problem and her score was 29, how many

correct answers did she have? (2002 AMC8)

 3. How many positive integers not exceeding 2001 are

multiples of 3 or 4 but not 5? (2001 AMC10)

 4. How many positive three-digit numbers contain

exactly two distinct digits (e.g., 343 or 772, but not

589 or 111)? (2006 MathIsCool)

 5. Rebecca goes to the store where she buys five plants.

If the store sells three types of plants, how many

different combinations of plants can she buy?

(2005 MathIsCool)

Chapter 21 Counting

147© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_22

CHAPTER 22

Factorization
In school math, we usually follow a procedure to find all factors for any

given positive integer number. This process is called factorization, and it

takes quite a lot of calculation depending on how big the integer number

is. With the Java programming environment, let’s create a simple program

to do the same job for us. We’d like to write code to find all factors of any

positive integer. When a user inputs “10,” the program is supposed to

output: 1, 2, 5, and 10. As the first step, we need to define the procedure

and then implement it by Java code.

 Math: Finding Factors
Recalling how we found factors manually in school, we used an integer

number from the smallest (i.e., “1”) up to the largest (i.e., the given integer

itself), one by one, to check if it is divisible by the given number. When

the answer was yes, we knew it was a factor. Otherwise, we skipped it and

moved to the next number.

We create the following block of code to accomplish the procedure. We

label this version of code as “v1,” and we plan to make improvements from

here.

private static int listFactors_v1(int n) {

 int counter = 0;

 for (int i = 1; i <= n; i++) {

 if (n % i == 0) {

148

 if (counter > 0) {

 System.out.print(", ");

 }

 System.out.print(i);

 counter++;

 }

 }

 System.out.println();

 System.out.println("Number of factors: " + counter);

 return counter;

}

The main method will look like this:

public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 int iterations = 0;

 while (true) {

 iterations++;

 System.out.println("Enter an integer number:");

 int k = input.nextInt();

 if (k < 0) {

 k = -k;

 }

 }

 System.out.println("Number of factors: " +

listFactors_v1(k));

 input.close();

}

Chapter 22 FaCtorization

149

When you compile and execute the code, you will see an output as:

Enter an integer number:

2018

1, 2, 1009, 2018

Number of factors: 4

Don’t think that we have a perfect solution to the problem. Actually, it

is far from complete.

 Math: Halving the Problem
When we iterate every single number from 1 to n, in order to find all

possible divisors of n, we observe that any integer greater than n/2 will

not be a divisor of n. Therefore, we only need to check from 1 up to n/2,

instead of n. This change will save half of the iterations in the program. So,

we now have an immediate improvement in the following version 2.1.

private static int listFactors_v21(int n) {

 int counter = 0;

 for (int i = 1; i <= n / 2; i++) {

 if (n % i == 0) {

 if (counter > 0) {

 System.out.print(", ");

 }

 System.out.print(i);

 counter++;

 }

 }

 System.out.println(", " + n);

 counter++;

 System.out.println("Number of factors: " + counter);

 return counter;

}

Chapter 22 FaCtorization

150

In addition to the algorithm change, we will remove one if clause

to reduce the complexity by a little bit. Then we will come up with the

following version 2.2 with minor modifications.

private static int listFactors_v22(int n) {

 System.out.print("1"); // "1" is always the 1st factor

 int counter = 1;

 for (int i = 2; i <= n / 2; i++) {

 if (n % i == 0) {

 System.out.print(", " + i);

 counter++;

 }

 }

 System.out.println(", " + n); // n is always the last

factor

 counter++;

 System.out.println("Number of factors: " + counter);

 return counter;

}

Is it good enough? Actually not.

 Math: Using the Square Root
If we remember in math how to test whether a positive integer number is

prime or not, we only use integers from 2, 3, up to the square root of n. We

will apply the same logic here to find a pair of factors in order to reduce the

number of iterations.

private static int listFactors_v31(int n) {

 int counter = 0;

 for (int i = 1; i <= Math.sqrt(n); i++) {

Chapter 22 FaCtorization

151

 if (n % i == 0) {

 if (counter > 0) {

 System.out.print(", ");

 }

 System.out.print(i);

 counter++;

 if (i != n / i) {

 System.out.print(", " + n / i);

 counter++;

 }

 }

 }

 System.out.println();

 System.out.println("Number of factors: " + counter);

 return counter;

}

The current version 3.1 is obviously better, because it only checks

numbers up to the square root of n, instead of n/2. Using n=100 as an

example, now we check from 1 to 10, not from 1 to 50. Obviously, the

reduction of iterations is significant. But we quickly discover an issue with

it. The output from the current solution is:

The list of factors is not in ascending order as we hoped, simply

because it prints out factors by pairs. To resolve the issue, we will create

two strings. One string stores the smaller one from every pair of factors.

The other string stores the bigger one from each pair.

Chapter 22 FaCtorization

152

private static int listFactors_v32(int n) {

 String s1 = "1";

 String s2 = Integer.toString(n);

 int counter = 2;

 for (int i = 2; i <= Math.sqrt(n); i++) {

 if (n % i == 0) {

 s1 += ", " + i;

 counter++;

 if (i != n / i) {

 s2 = n / i + ", " + s2;

 counter++;

 }

 }

 }

 System.out.println(s1 + ", " + s2);

 System.out.println("Number of factors: " + counter);

 return counter;

}

Can we possibly make further improvements from the current version

3.2? The answer is still YES. Instead of storing the smaller number from

each pair of divisors to a string, we send it directly to the console. This

will save memory space of one string. It is another “little” change, but

potentially a big save, when we deal with a big number that may have a

huge list of factors. We finally landed on v3.3:

private static int listFactors_v33(int n) {

 String s = Integer.toString(n);

 int counter = 2;

 System.out.print("1");

 for (int i = 2; i <= Math.sqrt(n); i++) {

 if (n % i == 0) {

Chapter 22 FaCtorization

153

 System.out.print(", " + i);

 counter++;

 if (i != n / i) {

 s = n / i + ", " + s;

 counter++;

 }

 }

 }

 System.out.println(", " + s);

 System.out.println("Number of factors: " + counter);

 return counter;

}

Here is a summary of what we have done to solve this problem:

• We kept thinking about how to improve our

implementation according to three basic rules:

 (a) Adopt the best algorithm we know;

 (b) Optimize code to consume less memory and

run faster;

 (c) Write code that is easy to understand for future

maintenance.

• We reduced the actual upper bound of the integer

number from n to n/2, then to the square root of n.

• We avoided having to use an extra string for temporary

storage.

All these efforts have contributed to a well-optimized code. This is

indeed the art of programming.

Chapter 22 FaCtorization

155© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_23

CHAPTER 23

Exploratory
Experimentation of Pi
Scientists must always keep track of the population of fish in order to

monitor the impact on the fish life cycle from natural environmental

changes. There is a type of fish called AA in a lake for research. The

scientists set free a small group of labeled fish AA, whose total number

equals to #(total_labeled), to the lake. After a period of time, they capture

a number of fish AA randomly from the lake and use them as samples,

whose total number equals to #(total_captured). Among these sample

fish AA, they sort out the labeled fish AA, whose total number equals to

#(labeled_among_captured).

Math: Calculating a Population
Assuming all the fish, including the labeled and the unlabeled, are

distributed evenly in the lake, we use the following formula to figure out

the current population of fish AA in the lake.

 #(total_captured) * #(total_labeled) / #(labeled_among_captured)

The formula is expressed in a simple ratio form. The more evenly

distributed fish AA is in the lake, the more accurate result the formula will

produce. It is essentially a statistical idea that uses a small pool of sample

156

data to predict a possibly large total number in a big picture. It attempts

to make a measurement from the unmeasurable object with a minimized

error margin.

The nature of the fish experimentation is based on probability theory.

It also applies to many other interesting problem areas. One of them is to

compute Pi: 3.14159.........

Example
How can we do basic programming to calculate the value of Pi?

Math: Pi from Probability Theory
We inscribe a circle into a square that leans closely against the x-axis and

y-axis in a Cartesian coordinate plane. Say the length of the square, which

is the diameter of the circle, is n. The area of the circle can be presented in

a formula as:

p × (n/2)2

p is something to figure out, that is, Pi.

If one randomly selects a point within the square, what is the

probability that the point is exactly inside the circle?

We know the answer after having learned the basic geometric

probability. It should be the ratio of an area between the circle and the

square. Since the area of the square is n2, the ratio will be p/4.

Chapter 23 exploratory experimentation of pi

157

p × (n/2)2 : n2 = p : 4

n

0 n

Answer
The probability p/4 indicates that if we repeat the same point selection

process as many times as possible, the ratio of the number of points

selected inside the circle versus the number of points selected inside the

square will be approaching to (and eventually equal to) p/4. Therefore,

once we find out the ratio, we know an approximation of Pi. This is the

algorithm we will use in the program.

public static double computePi(int total, int n) {

 int count = 0;

 for(int i=0; i < total; i++) {

 double x = n * Math.random();

 double y = n * Math.random();

 if ((x - n/2) * (x - n/2) + (y - n/2) * (y - n/2)

 < (n/2) * (n/2)) {

 count++;

 }

 }

 return (double)count * 4 / total;

}

Chapter 23 exploratory experimentation of pi

158

In this method,

 − The integer parameter value total is the total number

of experiments (i.e., total number of the selected

sample points).

 − The integer parameter value n is the side length of the

square, or the diameter of the circle.

 − Math.random() is a Java built-in function from java.

util.Random package. It generates a random number

in double between 0 and 1. Multiplying it with n makes

the x and y coordinates’ values between 0 and n.

 − The inequality “(x - n/2)2 + (y - n/2)2 < (n/2)2” is to

check if the point lies inside the circle, whose center

point is at (n/2, n/2).

You may call the method by following lines from the

main method():

public static void main(String[] args) {

 int onehMillion = 100 * 1000 * 1000;

 for(int i=0; i < 10; i++) {

 System.out.println(computePi(onehMillion,

100));

 }

}

 − n = 100 is the side length. It doesn’t contribute to the

formula directly. You may use other numbers like 10

or 2 or any even numbers (due to the “n/2”) for an

extended experiment purpose.

Chapter 23 exploratory experimentation of pi

159

 − int onehMillion = 100 * 1000 * 1000 equals to 100

million. It indicates the total number of points we pick

in one exploratory test. The 100 * 1000 * 1000 is a

multiplication operation that will be executed during

the compilation time, prior to runtime. There is no

implication of extra computing time by the current

multiplicative expression in coding.

 − The for-loop() drives the same experiments by

multiple times, that is, 10 times.

The output on the console will be like this:

3.14150492

3.14166436

3.14157872

3.14143904

3.14174756

3.14153872

3.14161072

3.14155196

3.14198448

3.14158056

With less than 10 lines of code in the method, it takes about 5 seconds

to complete the execution and output the estimated Pi value.

Last but not least, we will need to change int to long if the values of

total and i are too big. Remember that int type of data can be up to

32 bits, which equals to 232. When the total is a larger number than that,

we will need to use long type, which supports 64 bits (equal to 264).

public static double computePi(long total, int n) {

 long count = 0;

 for(long i=0; i < total; i++) {

 double x = n * Math.random();

Chapter 23 exploratory experimentation of pi

160

 double y = n * Math.random();

 if ((x - n/2) * (x - n/2) + (y - n/2) * (y - n/2)

 < (n/2) * (n/2)) {

 count++;

 }

 }

 return (double)count * 4 / total;

}

The long value type of parameter needs to be passed as ...L as shown

next. However, it will take much longer to execute, unless it runs on a high-

computing power PC.

public static void main(String[] args) {

 long hugeNumber = 1000 * 1000 * 1000 * 1000L;

 for(int i=0; i < 10; i++) {

 System.out.println(computePi(hugeNumber, 100));

 }

}

If we increase the value of total, it will have more coverage of the area

by a larger number of points and return a more accurate result of Pi. For

the 100-million points we pick in this program, it almost guarantees to

find out Pi = 3.141..., at the thousandth precision level. To achieve more

precision, we will need a more powerful computing machine. At least we

know that with an ideal computing platform, we will be able to nail down

the Pi value at a designated precision level.

From this example, we have learned that we can apply the same ratio

and probability concepts to finding out an area surrounded by any curve,

as long as we know the functional model of the curve.

Chapter 23 exploratory experimentation of pi

161

Example
With the probability concept in mind, use Java programming to find

out the area among line x = 0, y = 0, and curve y = -2x2 + 12x -18.

Answer
This approach has helped us solve a problem, while a pure

mathematical solution originally requires knowledge of Calculus.

 public static double computeArea(int total) {

 int count = 0;

 for(int i=0; i < total; i++) {

 double x = Math.random() * 3;

 double y = Math.random() * -18;

 if (-2 * x * x + 12 * x - 18 < y) {

 count++;

 }

 }

 return (double)count * 54 / total;

 }

 Problem
Create a program to find out Euler’s number e.

Chapter 23 exploratory experimentation of pi

163© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_24

CHAPTER 24

Classes in
Object- Oriented
Programming
An object is essentially a representation of a thing. An object has some

attributes, just like everything has characteristics. However, a class in the

programming world is primarily a data structure designed for a specific

object. The class is also said to be a blueprint of an object. It keeps track of

a bundle of related things about the object. These related things are known

as fields, properties, and functions (or methods).

The fields are data members of a class. They must be declared and

initialized before they are used. They are mostly for class internal use.

Some fields may serve as properties, which are attributes of an object

(e.g., an employee’s name or a bank account’s balance).

The properties can be changed by setters, and they can be accessed by

getters from outside the class.

Getters and setters are methods to hide the internal implementations

of the class properties. This design enables developers to update some

of the existing implementations easily later on. It is an example of

encapsulation characteristics of object-oriented programming.

164

In the following example class Student,

 − firstName, lastName, age are all fields. Since all these

fields have getter/setters, for example, getAge(),

setAge(), they are also properties.

 − public Student() is the default constructor defined in

the Student class. It is like a method, and it is executed

when the object is created from the Student class, that is:

Student student = new Student();

 − public Student(String firstName, String

lastName) is another constructor of the Student

class. It instantiates (or creates) an object by directly

assigning firstName and lastName to the fields, that is:

Student student = new Student("John", "Doe");

 − public String getFirstName(), public String

getLastName(), and public int getAge() are

methods to query values of the private fields

firstName, lastName, age. They are getters.

 − public void setAge(int age) is a method to assign a

value to the private field age. It is a setter.

 − The keywords public and private in front of data types

(e.g., String, int), or method names, are called access

modifiers. The public means it is visible to all, while

the private is only open to the current class scope.

public class Student {

 private String firstName;

 private String lastName;

 private int age;

Chapter 24 Classes in ObjeCt- Oriented prOgramming

165

 public Student() {

 }

 public Student(String firstName, String

lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 public String getFirstName() {

 return this.firstName;

 }

 public String getLastName() {

 return this.lastName;

 }

 public int getAge() {

 return this.age;

 }

 public void setAge(int age) {

 this.age = age;

 }

}

A simple structural view is:

class Student {

 //fields, e.g. firstName, lastName, and age

 //constructor

 //setter/getter methods, e.g. get/set firstName,

lastName, and age

}

Chapter 24 Classes in ObjeCt- Oriented prOgramming

166

The keyword this inside the Student class is a reference to the

current object, whose fields (e.g., firstName, lastName, age) are being

used. By using this, the current object’s methods or constructors can be

invoked as well.

There are two kinds of so-called non-fields in a program.

 − local variables inside methods

 − parameters x1 and x2 in a method like: myMethod

(x1, x2)

Relationship between class and object:

 − Can I have an object without having a class? NO

 − Can I have a class without having an object? YES

 − Can I create multiple instances of a class? YES

 Lab Work
Create a class called Name that represents a person’s name. The class

should have fields named firstName representing the person’s first name,

lastName representing their last name, and middleInitial representing

their middle initial (a single character). Your class should contain only

fields for now.

 Lab Work
Create the outline of a public class named Vehicle.

 public class Vehicle {

 }

And then create a main program to operate the Vehicle object created.

Chapter 24 Classes in ObjeCt- Oriented prOgramming

167

 Lab Work
Add a constructor to the Point class shown next that accepts another

Point as a parameter and initializes the new Point to have the same (x, y)

values. Use the keyword this in your solution.

Then, add methods named setX and setY to the Point class. Each

method accepts an integer parameter and changes the Point object’s x- or

y-coordinate to be the value passed, respectively.

public class Point {

 int x;

 int y;

 // your code goes here

}

 Problems
 1. How is an object different from a class?

 a) Objects are used in object-oriented programming

and classes are used in class-oriented programming.

 b) An object is an entity that encapsulates related data

and behavior, while a class is the blueprint for a

type of object.

 c) An object is not encapsulated, and a class is

encapsulated, making classes more powerful and

reusable than objects.

 d) An object is a kind of class that does not contain

any behavior.

 e) A class is an instance of an object. One object can

be used to create many classes.

Chapter 24 Classes in ObjeCt- Oriented prOgramming

168

 2. Describe a real-world scenario about how the

concepts of class and object are being used.

 3. Design and write a class called Game. You will need

to think about what kind of fields this class should

have, and then add several methods to enrich the

class.

For example,

 (1) you may define the price of the game;

 (2) you may classify the game as “computer game” or

“video game”;

 (3) you may define the platform on which the

game can be used, such as “xbox,” “playstation,”

“nintendo,” etc.;

 (4) you may define a constructor with a parameter;

 (5) you may define methods to set/get any fields as

mentioned above;

 (6) anything you can think about a Game, when you

want to define it as a class.

 4. Given the following class, called NumberHolder,

write some code that creates an instance of the

class, initializes its two member variables, and then

displays the value of each member variable.

public class NumberHolder {

 public int anInt;

 public float aFloat;

}

Chapter 24 Classes in ObjeCt- Oriented prOgramming

169

 5. Which of the following are differences between a

field and a parameter? There might be multiple

answers to this question.

 (A) A field is a variable that exists inside of an object,

while a parameter is a variable inside a method

whose value is passed in from outside.

 (B) Fields can store many values while parameters

can store only a single value. Field syntax differs

because they can be declared with the private

keyword.

 (C) Parameters must be primitive types of values,

while fields can be objects.

 (D) A field’s scope is throughout the class, while a

parameter’s scope is limited to the method.

 (E) A field takes up more memory in the computer

than a parameter does.

 (F) You can only have one field per class, while you

can have as many parameters as you want.

 (G) Fields are constant and can be set only once,

while parameters change on each call.

 6. Suppose a method in the Account class is defined as:

public double computeInterest(int rate)

And suppose the client code has declared an

Account variable named acct. Which of the

following would be a valid call to the above method?

Chapter 24 Classes in ObjeCt- Oriented prOgramming

170

 (A) int result = Account.computeInterest(14);

 (B) double result = acct.computeInterest(14);

 (C) double result = computeInterest(acct, 14);

 (D) new Account(14).computeInterest();

 (E) acct.computeInterest(14, 15);

Chapter 24 Classes in ObjeCt- Oriented prOgramming

171© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_25

CHAPTER 25

Interface – Total
Abstraction
The concept of interface is a part of abstraction, one of the four OOP.

characteristics. Abstraction is about an abstract design of common

features, including operations of the object.

Interface is the blueprint of a class. However, it is neither a class nor

an object. All methods defined in an interface are abstract. There are no

implementation details allowed inside any method of the interface. The

class that is going to implement the interface will take care of the actual

implementation of the methods.

Let’s look at an example of an interface and classes implemented from

it. Auto is a general term representing vehicles. We use Auto to define an

interface.

public interface Auto {

 void start();

 void stop();

 void turn();

 void back();

 void park();

}

172

As two common types of automobiles, cars and buses are common

objects. Both cars and buses share the same type of behaviors defined

in Auto interface. When we create a class for cars and buses, we use the

keyword implements to implement car and bus from the same Auto

interface with different behavioral details.

We use class Car as an example:

public class Car implements Auto {

 private String maker;

 public void start() {

 // car starts its engine

 }

 public void stop() {

 // car stops its engine

 }

 public void turn() {

 // car turns left or right at a corner

 }

 public void back() {

 // car backs

 }

 public void park() {

 // car parks

 }

 public String getMaker() {

 return this.maker;

 }

Chapter 25 InterfaCe – total abstraCtIon

173

 public void setMaker(String maker) {

 this.maker = maker;

 }

}

As you probably have noticed,

 − An interface indicates what the object can do.

 − When a class implements the interface, it defines what

the object is doing with the necessary details.

The design of the interface allows developers to modify the underlying

classes without altering the callers’ implementations; this is sometimes

called coding to the interface. There are at least two circumstances when

we should consider adopting an interface design.

 − When we want to only specify the behavior of a

particular data type, without being concerned about

whoever implements its behavior.

For example:

We define an interface Auto that is an abstract

concept and a general term. In this interface, we

define several methods such as start, stop, turn,

back, and park by their signatures, without any

implementation details. We will add implement

details in these methods when we create Car or

Truck classes that implement the Auto interface.

Chapter 25 InterfaCe – total abstraCtIon

174

 − When all classes have the same structure, but they

totally have different functionalities.

For example:

Dogs and cats communicate in totally different

ways. A dog barks, but a cat meows. We may define

an interface Animal and create a class Dog and class

Cat, like shown here.

public interface Animal {

 public void communicate();

}

public class Dog implements Animal {

 public void communicate() {

 System.out.println("bark, bark!");

 }

}

public class Cat implements Animal {

 public void communicate() {

 System.out.println("meow, meow...");

 }

}

Java supports multiple interface implementation: for example, if we

define another interface, MovingObject as shown.

public interface MovingObject {

 void movingNorth();

 void movingSouth();

}

Chapter 25 InterfaCe – total abstraCtIon

175

Class Car can implement from both interfaces, Auto and MovingObject

as shown here.

public class Car implements Auto, MovingObject {

 ...

 public void movingNorth() {

 // car moves North

 }

 public void movingSouth() {

 // car moves South

 }

}

Chapter 25 InterfaCe – total abstraCtIon

177© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_26

CHAPTER 26

Inheritance – Code
Reuse
As one of the OOP principles, inheritance is designed to centralize the

common functionality of many different objects. As a result of that, it

reduces duplicated code in many classes.

Inheritance introduces two types of classes: “superclass” and

“subclass.” The subclass inherits from the superclass. The superclass

is the same thing as the “base class.” The subclass contains not only all

the methods and the fields inherited from the superclass, but also other

methods and fields defined by the subclass.

For example, we define a new class called Sedan that inherits from the

Car class we created earlier. The Car class implements an interface called

Auto. In the Sedan class, we define a Boolean field isFourDoorHatchback

and a method called isFourWheelDrive().

The keyword extends is used to describe the class that Sedan inherits

from class Car.

public class Sedan extends Car {

 public Boolean isFourDoorHatchback;

 public Boolean isFourWheelDrive(){

 return true;

 }

}

178

We then create a main method in a Driver class to play with the Sedan

class.

public class Driver {

 public static void main(String[] args) {

 Sedan sedan = new Sedan();

 sedan.start();

 sedan.stop();

 sedan.turn();

 sedan.back();

 sedan.park();

 sedan.setMaker("Toyota");

 sedan.getMaker();

 sedan.isFourDoorHatchback = true;

 sedan.isFourWheelDrive();

 }

}

As you see, the Sedan object (i.e., sedan) has all the methods and fields

inherited from its superclass Car. In addition to that, Sedan class has its

own method and field. In the same main method, we add more code:

 Car car = new Sedan();

 car.start();

 car.stop();

 car.turn();

 car.back();

 car.park();

 car.setMaker("Toyota");

 car.getMaker();

Chapter 26 InherItanCe – Code reuse

179

This example tells us that we can create an object from a superclass

(i.e., Car) instantiated from its subclass (i.e., Sedan). All the methods and

fields under its superclass are available as expected, but the methods and

fields under its subclass are not accessible.

If we try to do:

 Sedan sedan2 = new Car();

We will get error message:

"Type mismatch: cannot convert from Car to Sedan".

This clearly tells us that we are not allowed to create a subclass object

(i.e., Sedan) instantiated from its superclass (i.e., Car).

In Java, however, it doesn’t support multiple inheritance. Instead, it

uses an interface to achieve the same goal as what multiple inheritance

attempts to do in other programming languages.

 Problems
 1. Which of the following is the correct syntax to

indicate that class A is a subclass of B?

 (a) public class A : super B {

 (b) public class B extends A {

 (c) public class A extends B {

 (d) public A(super B) {

 (e) public A implements B {

Chapter 26 InherItanCe – Code reuse

180

 2. Consider the following classes:

public class Vehicle {...}

public class Car extends Vehicle {...}

public class SUV extends Car {...}

Which of the following are legal statements?

 (a) Car c = new Vehicle();

 (b) SUV s = new SUV();

 (c) SUV s = new Car();

 (d) Car c = new SUV();

 (e) Vehicle v = new Car();

 (f) Vehicle v = new SUV();

Chapter 26 InherItanCe – Code reuse

181© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_27

CHAPTER 27

Encapsulation
and Polymorphism
In addition to “abstraction” and “inheritance,” there are another two

principles in OOP, “encapsulation” and “polymorphism.”

 Encapsulation
You may have heard the phrase “information hiding,” which intends to

conceal the detailed implementations of an object behind a higher level

of abstraction. Information hiding is mainly for security concerns, while

encapsulation is to keep data and class implementation details inside a

class for complexity concerns. However, encapsulation combines internal

data and methods and enables its internal data to be accessible from

outside through its public methods. And the class has private instance

variables that are only accessible by methods in the same class. This

helps managing code that is to be updated frequently. This is known

as: “encapsulate what varies,” which is one of the best practice design

principles.

182

In the Student class created in an earlier chapter, we have the

following private field and public methods.

private int age; only accessible from inside

class

public void setAge(int age); setter accessible

from outside

public int getAge(); getter accessible from

outside

This is a simple example of encapsulation, in terms of how we set a

student’s age value and how we access the age information.

public class TestStudent {

 public static void main(String[] args) {

 Student student = new Student("John", "Doe");

 /*

 student.age = 20;

 This line will give compiler error

 age field can't be used directly as it is

private

 */

 student.setAge(20);

 System.out.println("Student name: " + student.

getFirstName() + " " + student.getLastName() + ";

age: " + student.getAge());

 }

}

There is a difference between abstraction and encapsulation.

Abstraction is hiding complexity (i.e., implementation details) by using

interfaces, while encapsulation is wrapping code (i.e., implementation)

and data (i.e., value of variables) within the same class.

Chapter 27 enCapsulation and polymorphism

183

 Polymorphism
“Poly” means many. “Morph” indicates form or shape. “Polymorphism” is

an object’s ability to present the same interface with many different forms.

There are many examples of this in Java programming design.

 − With one interface, we can create multiple classes.

Each class implements the same method with different

details.

 − In the basic class design, we can create multiple

constructors with different input parameters.

 − Similarly, we can use the same method name with a

different set of input parameters in a class design. This

is also called “overloaded methods.”

 − In a subclass, we can “override a method” defined

originally in its superclass.

 Problems
 1. Write an interface called GeometricObject, which

declares two abstract methods: getPerimeter() and

getArea().

 2. Write the implementation class Circle, with a

protected variable radius, which implements the

interface GeometricObject.

Chapter 27 enCapsulation and polymorphism

185© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_28

CHAPTER 28

Array – a Simple and
Efficient Data Structure
When we are in a situation where we need to store and manipulate a

bunch of the same types of data, we need to think about the right data

structure to use. Let’s say we want to deal with data representing the same

category of things such as students’ names and ages in your school. The

data will need to be sorted, queried or searched, and accessed easily. And,

we sometimes may need to update or delete some of the data.

Java provides a simple data structure called an array to meet these

requirements. An array supplies a lot of storage space to accommodate our

data. The label of each element of the storage space is called the “index.” It

is an integer number that starts from 0. The data stored in an array can be

all integers, characters, or other types of data.

For example:

int[] numbers = new int[7]

 defines an integer array numbers with 7 elements

in total

char[] letters = new char[4]

 defines a character array letters with 4 elements

in total

186

There are different ways to assign or update element values in an array.

• If you have to assign different values to each element,

you will need to declare the array with its size and then

assign values to each element like shown here:

int[] numbers = new int[5];

numbers[0] = 1;

numbers[1] = 3;

numbers[2] = 2;

numbers[3] = 4;

numbers[4] = 5;

or:

int[] numbers = new int[] { 1, 3, 2, 4, 5 };

• If there is a clear pattern of values in the array elements,

you may assign the values in the following way:

int[] numbers = new int[7];

for (int i = 0; i < numbers.length; i++) {

 numbers[i] = 2 * i + 1;

}

The property of the array, numbers.length, stores

the size value of the array numbers.

We can define the size of the array from input during runtime as shown

here:

int k = scan.nextInt();

int[] numbers = new int[k];

Example
Which of the following choices is the correct syntax for declaring and

initializing an array of 8 integers?

Chapter 28 array – a Simple and effiCient data StruCture

187

 (a) int a[8];

 (b) []int a = [8]int;

 (c) int[8] a = new int[8];

 (d) int[] a = new int[8];

 (e) int a[8] = new int[8];

Answer
(d)

 Lab Work
 1. Write a line of code to declare and initialize an

integer array variable named data with the element

values as 7, -1, 13, 24, and 6.

 2. Write code that creates an array named odds that

stores all odd numbers between -16 and 48 into it

using a for loop. Make sure the array has exactly the

right capacity to store these odd numbers.

 Problems
 1. Which of the following choices is the correct syntax

for initializing an array of five integers with a list of

specific values?

 (a) int a { 14, 88, 27, -3, 2019 };

 (b) int[] a = new { 14, 88, 27, -3, 2019 } [5];

 (c) int[5] a = { 14, 88, 27, -3, 2019 };

Chapter 28 array – a Simple and effiCient data StruCture

188

 (d) int[] a = { 14, 88, 27, -3, 2019 };

 (e) int[] a = new int[] { 14, 88, 27, -3,

2019 };

 2. What element values do the array numbers have

after the following code is executed?

int[] numbers = new int[8];

numbers[1] = 4;

numbers[4] = 99;

numbers[7] = 2;

 int x = numbers[1];

numbers[x] = 44;

numbers[numbers[1]] = 11;

Chapter 28 array – a Simple and effiCient data StruCture

189© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_29

CHAPTER 29

Common Pitfalls
In this chapter, I want to share several pieces of code that expose

common issues in coding practice. Using these examples to diagnose

root causes will help improve your understanding. I recommend thinking

independently before seeking answers. You may find some hints in the

final chapter.

 Lab Work
 1. Anything wrong here?

String aAsString;

String bAsString;

Scanner user_input = new Scanner(System.in);

System.out.println("a=");

aAsString = user_input.next();

a = Integer.valueOf(aAsString);

System.out.println("b=");

bAsString = user_input.next();

b = Integer.valueOf(bAsString);

190

 2. Any errors here?

public class TestArray {

 public static void main(String[] args) {

 int[] myArray = new int[] { 11, 12, 13,

14, 15 };

 System.out.printf("%d\n", myArray[5]);

 }

}

 3. Understand what the following function is trying to

do and think about how to improve it.

public static int CountStrings(String[] stringsArray,

String countMe) {

 int occurences = 0;

 if (stringsArray.length == 0) {

 return occurences; // or, return 0;

 }

 for (int i = 0; i < stringsArray.length; i ++) {

 if (stringsArray[i].toLowerCase().

contains(countMe.toLowerCase())) {

 occurences ++;

 }

 }

 return occurences;

}

 4. Spot the defect:

public class Rectangle {

 public int width;

 public int height;

 public int getArea() {

Chapter 29 Common pitfalls

191

 return width*height;

 }

}

public class SomethingIsWrong {

 public static void main(String[] args) {

 Rectangle myRect;

 myRect.width = 40;

 myRect.height = 50;

 System.out.println("myRect's area is "

+ myRect.area());

 }

}

 5. Spot the defect:

Scanner newscanner = new Scanner(System.in);

System.out.print("Please enter today's date (month

day):");

int z = newscanner.nextInt();

int y = news scanner.netInt();

if (z > 12 || y > 31) {

 System.out.println("You have entered an invalid

number.");

 return;

} else if (y > 31 && z > 12) {

 System.out.println("Both numbers you have

entered are invalid.");

 return;

}

Chapter 29 Common pitfalls

192

 6. Spot the defect:

System.out.println("What month were you born in?

(1-12)");

Scanner sc = new Scanner(System.in);

String a = sc.nextLine();

Integer result = Integer.valueOf(a);

int al = result.intValue();

 7. Spot the defect:

if (numToTake >= 2 && numToTake< 3) {

 numToTake = 2;

} else if (numToTake > 2) {

 System.out.println("The number you have entered

is invalid.");

}

Chapter 29 Common pitfalls

193© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_30

CHAPTER 30

Design
Considerations
We have learned some fundamental concepts about classes and objects in

Java. Now let’s look at several examples from the class design perspective.

 Practical Case 1
The following is a design of a Rectangle class. It wants to compute a

rectangle’s area, perimeter, and diagonal, given its width and height values

as input parameters.

public class Rectangle {

 private int width;

 private int height;

 private int area;

 private double diagonal;

 private int perimeter;

 public Rectangle (int width, int height) {

 this.width = width;

 this.height = height;

 this.area = width*height;

194

 this.diagonal = Math.sqrt(width * width + height

* height);

 this.perimeter = (width + height) * 2;

 }

 public int getArea() {

 return this.area;

 }

 public double getDiagonal() {

 return this.diagonal;

 }

 public int getPerimeter() {

 return this.perimeter;

 }

}

The computations of area, parameter, and diagonal are being done

inside the Rectangle constructor, which is executed every time an object

of the Rectangle class is initialized. It works if we consistently want to get

the values of the area, perimeter, and diagonal of the rectangle. But when

we sometimes only want to query the area, perimeter, or diagonal of the

rectangle, some part of the computations become excessive. A much better

design approach is an “on-demand” implementation as shown here.

public class Rectangle {

 private int width;

 private int height;

 public Rectangle (int width, int height) {

 this.width = width;

 this.height = height;

 }

Chapter 30 Design ConsiDerations

195

 public int getArea() {

 return this.width * this.height;

 }

 public double getDiagonal() {

 return Math.sqrt(this.width * this.width

 + this.height * this.height);

 }

 public int getPerimeter() {

 return (this.width + this.height) * 2;

 }

}

 Practical Case 2
The following example is an implementation of a Game class design. It looks

good except for a couple of private field type design choices.

 – The price for goods is usually a small integer plus two

decimal places to the right of the decimal point. Neither

float types nor double types can accurately represent

this form of number used for money calculations

because of floating-point inaccuracies. It is recom-

mended to represent the dollar price in cents, so you

only need the program to take care of the integer

computations. On some occasions, computing money

in dollars may be good enough.

Chapter 30 Design ConsiDerations

196

 – The gameType should not be defined as a true/false

Boolean value. It should use “String” data type. (Or, we

may consider using enumeration, if we have a known

list of fixed names for the gameType.)

public class Game {

 private int price;

 private boolean gameType;

 private String platform;

 public Game() { }

 public int getPrice() {

 return this.price;

 }

 public int setPrice(int price) {

 return this.price=price;

 }

 public boolean getGameType() {

 return this.gameType;

 }

 public boolean setGameType(boolean gameType) {

 return this.gameType=gameType;

 }

 public String getPlatform() {

 return this.platform;

 }

 public String setPlatform(String platform) {

 return this.platform=platform;

 }

}

Chapter 30 Design ConsiDerations

197

 Practical Case 3
How do we test a class we have designed in Eclipse?

There are at least two simple approaches. Assume you have designed

a class called MyClass. It has one public integer data field - myNumber, and

one method to double its integer number value - doubleMe().

 Approach A
Both the original class and test code are contained in one Java file as

shown here:

public class MyClass {

 // class design part of code

 public int myNumber;

 public MyClass() { }

 public int doubleMe() {

 return this.myNumber * 2;

 }

 // test part of code

 public static void main(String arg[]) {

 // declare and initialize an object

 MyClass myObject = new MyClass();

 myObject.myNumber = 2019;

 int output = myObject.doubleMe();

 // output the resulting data and validate it

 System.out.println("My result is: " + output);

 }

}

Chapter 30 Design ConsiDerations

198

 Approach B
The following two classes are in separate Java files:

In MyClass.java:

public class MyClass {

 public int myNumber;

 public MyClass() {

 }

 public int doubleMe() {

 return this.myNumber * 2;

 }

}

In TestMyClass.java:

public class TestMyClass {

 public static void main(String arg[]) {

 MyClass myObject = new MyClass();

 myObject.myNumber = 2019;

 int output = myObject.doubleMe();

 System.out.println("My result is: " + output);

 }

}

 Practical Case 4
What are the differences between a static and a non-static field or method?

And, when do we use static fields and static methods?

In most of the code examples depicted earlier, we used non-static

fields and methods (a.k.a. instance fields and instance methods). Both an

instance field and an instance method belong to the object instantiated,

which means they are not activated until after the object has been created.

Chapter 30 Design ConsiDerations

199

However, static fields and static methods belong to the class level. They

can be accessed by class name, instead of by any object instantiated from

the class. The values stored in static fields and computed by static methods

are shared among all objects created from the same class.

The first and most familiar static method to us is “main()” method,

if you recall. It can reside in any public class. This method is a unique

entry point of any application. It has to be associated with a class. In other

words, it doesn’t live in any object instance.

In the Demo class example, there is a static field counter that tracks

the number of objects created during runtime. There is a non-static field

(i.e., instance field) - myNumber that is associated with an individual object

instance. The non-static method (i.e., instance method) - getNumber()

also belongs to the object created.

public class Demo {

 private static int counter;

 public static int getCounter() {

 return counter;

 }

 private int myNumber;

 public int getNumber() {

 return this.myNumber;

 }

 public Demo(int number) {

 this.myNumber = number;

 counter++;

 System.out.println("I am no. " + counter + "

object so far.");

 }

}

Chapter 30 Design ConsiDerations

200

The next is a test class to demonstrate how the static field (i.e.,

counter) and the static method (i.e., Demo.getCounter()) work, in

comparison to the non-static field (i.e., myNumber) and the non-static

method (i.e., getNumber()).

public class TestDemo {

 public static void main(String[] args) {

 Demo demo1 = new Demo(21);

 System.out.println("demo1 myNumber: " + demo1.getNumber());

 System.out.println("object counts: " + Demo.

getCounter());

 Demo demo2 = new Demo(57);

 System.out.println("demo2 myNumber: " + demo2.

getNumber());

 System.out.println("object counts: "

+ Demo.getCounter());

 Demo demo3 = new Demo(99);

 System.out.println("demo3 myNumber: " +

 demo3.getNumber());

 System.out.println("object counts: " + Demo.

getCounter());

 }

}

The output from the console is:

I am no. 1 object so far.

demo1's myNumber: 21

object counts: 1

I am no. 2 object so far.

Chapter 30 Design ConsiDerations

201

demo2's myNumber: 57

object counts: 2

I am no. 3 object so far.

demo3's myNumber: 99

object counts: 3

Chapter 30 Design ConsiDerations

203© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_31

CHAPTER 31

IOU Computation
IOU means “Intersection Over Union.” It is used as a metric in image

detection technology. This metric computes a ratio of the overlap area

between two rectangles over their union area. For simplicity, the two

rectangles are in the same direction, as you will see R1 and R2 in Figure 31- 1.

Figure 31-1. Two rectangles and their overlap

To figure out this ratio, we need to find out their overlap area named X.

If the areas for the two rectangles are R1.area and R2.area, then

IOU = X / (R1.area + R2.area – X)

We define the location of a rectangle by x_min, y_min, x_max, and

y_max. Its four vertices can be represented by the four coordinates: (x_min,

y_min), (x_min, y_max), (x_max, y_max), (x_max, y_min), started from the left

bottom vertex, going clockwise.

Let’s first find out under what circumstances there will be no overlap

area between R1 and R2, as shown in Figure 31-2.

204

It will be when:

R1.x_max <= R2.x_min, (1)

or R1.x_min >= R2.x_max, (2)

or R1.y_max <= R2.y_min, (3)

or R1.y_min >= R2.y_max (4)

If one of the conditions from (1) to (4) is valid, the overlap area is 0.

Next, we notice that the overlap area is actually surrounded by four

lines, as shown in Figure 31-3.

x = max(R1.x_min, R2.x_min), x = min(R1.x_max,

R2.x_max)

y = max(R1.y_min, R2.y_min), y = min(R1.y_max,

R2.y_max)

Figure 31-2. Two rectangles that are apart from each other

Figure 31-3. Two rectangles and their overlap areas

Chapter 31 IOU COmpUtatIOn

205

According to the mathematical inferences, we can come up with a

coding design solution as shown:

There are two classes, Rectangle and IntersectionOverUnion.

The Rectangle class defines a data model for a rectangle on an x-y

coordinate system.

public class Rectangle {

 public float x_min;

 public float x_max;

 public float y_min;

 public float y_max;

 public Rectangle(float xmin, float ymin, float xmax,

float ymax) {

 if (xmin >= xmax || ymin >= ymax) {

throw new IllegalArgumentException("Not a valid rectangle!");

 }

 this.x_min = xmin;

 this.y_min = ymin;

 this.x_max = xmax;

 this.y_max = ymax;

 }

 public float getWidth() {

 return this.x_max - this.x_min;

 }

 public float getHeight() {

 return this.y_max - this.y_min;

 }

}

Chapter 31 IOU COmpUtatIOn

206

The IntersectionOverUnion class contains the main() method, which

drives the execution.

public class IntersectionOverUnion {

 public static void main(String[] args) {

 // test case 1

 Rectangle r1 = new Rectangle(3f, 2f, 5f, 7f);

 Rectangle r2 = new Rectangle(4f, 1f, 6f, 8f);

 System.out.println("IOU=" + getIOU(r1, r2));

 // test case 2

 r1 = new Rectangle(3f, 2f, 5f, 7f);

 r2 = new Rectangle(1f, 1f, 6f, 8f);

 System.out.println("IOU=" + getIOU(r1, r2));

 // test case 3

 r1 = new Rectangle(3f, 2f, 5f, 7f);

 r2 = new Rectangle(6f, 1f, 7f, 8f);

 System.out.println("IOU=" + getIOU(r1, r2));

 }

 public static float getIOU(Rectangle r1, Rectangle r2) {

 float areaR1 = r1.getHeight() * r1.getWidth();

 float areaR2 = r2.getHeight() * r2.getWidth();

 float overlapArea = 0f;

 if (r1.x_min >= r2.x_max || r1.x_max <= r2.x_min ||

 r1.y_min >= r2.y_max || r1.y_max <= r2.y_

min) {

 return 0f;

 }

 overlapArea = computeOverlap(

 Math.max(r1.x_min, r2.x_min),

 Math.min(r1.x_max, r2.x_max),

Chapter 31 IOU COmpUtatIOn

207

 Math.max(r1.y_min, r2.y_min),

 Math.min(r1.y_max, r2.y_

max));

 System.out.println(overlapArea + " / (" + areaR1

 + " + " + areaR2 + " - " +

overlapArea + ")");

 return overlapArea / (areaR1 + areaR2 -

overlapArea);

 }

 private static float computeOverlap(

 float x1,

 float x2,

 float y1,

 float y2) {

 float w = x2 - x1;

 if (w < 0) w = -w;

 float h = y2 - y1;

 if (h < 0) h = -h;

 return w * h;

 }

}

We are not done yet. We need to always think about how to improve

our class design and optimize code. In the Rectangle class, there are

getWidth() and getHeight() methods. What if we add a method called

getArea() to the Rectangle class?

The Rectangle class is updated as:

public class Rectangle {

 public float x_min;

 public float x_max;

 public float y_min;

 public float y_max;

Chapter 31 IOU COmpUtatIOn

208

 public Rectangle(float xmin, float ymin, float xmax,

float ymax) {

 if (xmin >= xmax || ymin >= ymax) {

throw new IllegalArgumentException("Not a valid rectangle!");

 }

 this.x_min = xmin;

 this.y_min = ymin;

 this.x_max = xmax;

 this.y_max = ymax;

 }

 public float getWidth() {

 return this.x_max - this.x_min;

 }

 public float getHeight() {

 return this.y_max - this.y_min;

 }

 public float getArea() {

 return this.getWidth() * this.getHeight();

 }

}

And the rest of the code will look like:

import java.lang.Math;

public class IntersectionOverUnion {

 public static void main(String[] args) {

 // test case 1

 Rectangle r1 = new Rectangle(3f, 2f, 5f, 7f);

 Rectangle r2 = new Rectangle(4f, 1f, 6f, 8f);

 System.out.println("IOU=" + getIOU(r1, r2));

 // test case 2

Chapter 31 IOU COmpUtatIOn

209

 r1 = new Rectangle(3f, 2f, 5f, 7f);

 r2 = new Rectangle(1f, 1f, 6f, 8f);

 System.out.println("IOU=" + getIOU(r1, r2));

 // test case 3

 r1 = new Rectangle(3f, 2f, 5f, 7f);

 r2 = new Rectangle(6f, 1f, 7f, 8f);

 System.out.println("IOU=" + getIOU(r1, r2));

 }

 public static float getIOU(Rectangle r1, Rectangle r2) {

 float areaR1 = r1.getArea();

 float areaR2 = r2.getArea();

 float overlapArea = 0f;

 if (r1.x_min >= r2.x_max || r1.x_max <= r2.x_min ||

 r1.y_min >= r2.y_max || r1.y_max <= r2.y_

min) {

 return 0f;

 }

 overlapArea = computeOverlap(

 Math.max(r1.x_min, r2.x_min),

 Math.min(r1.x_max, r2.x_max),

 Math.max(r1.y_min, r2.y_min),

 Math.min(r1.y_max, r2.y_

max));

 System.out.println(overlapArea + " / (" + areaR1

 + " + " + areaR2 + " - " +

overlapArea + ")");

 return overlapArea / (areaR1 + areaR2 -

overlapArea);

 }

Chapter 31 IOU COmpUtatIOn

210

 private static float computeOverlap(

 float x1,

 float x2,

 float y1,

 float y2) {

 float w = x2 - x1;

 if (w < 0) w = -w;

 float h = y2 - y1;

 if (h < 0) h = -h;

 return w * h;

 }

}

The computation of area is now encapsulated inside the Rectangle

class. This change itself is not big, but we should get used to making small

changes at a time when we are still able to incrementally improve our

program design.

Chapter 31 IOU COmpUtatIOn

211© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_32

CHAPTER 32

Projects
I want to recommend a list of hands-on projects for you to practice

independently. Working through these projects will definitely help you

deepen your understanding of the basic Java programming concepts

described in this book.

 Project A
 Step 1
Write a class called Rectangle that represents a rectangular two-

dimensional region. The constructor creates a new rectangle whose top-

left corner is specified by the given coordinates and with the given width

and height.

public Rectangle(int x, int y, int width, int height)

Your Rectangle objects should have the following methods:

• public int getHeight() - Returns this rectangle’s

height.

• public int getWidth() - Returns this rectangle’s

width.

• public int getX() - Returns this rectangle’s

x-coordinate.

212

• public int getY() - Returns this rectangle’s

y-coordinate.

• public String toString() - Returns a string

representation of this rectangle, such as:

"Rectangle[x=1,y=2,width=3,height=4]"

 Step 2
Add the following accessor methods to your Rectangle class from the

previous exercises:

public boolean contains(int x, int y)

public boolean contains(Point p)

The Point class has been defined as shown:

public class Point {

 private int x;

 private int y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int getX() {

 return x;

 }

 public int getY() {

 return y;

 }

}

Chapter 32 projeCts

213

The two contains() methods return a Boolean state of whether the

given Point or coordinates lie inside the bounds of this Rectangle or not.

For example, a rectangle with [x=2, y=5, width=8, height=10] will return

true for any point from (2, 5) through (10, 15) inclusive, which means the

edges are included.

 Project B
Design a program to find the number of days between the current day and

the user’s birthday, given four input values.

The program prompts for the user’s birthday. The prompt lists the

range of values from which to choose. Notice that the range of days printed

is based upon the number of days in the month the user typed. The

program prints the absolute day of the year for the birthday. January 1st is

absolute day #1 and December 31st is absolute day #365. Last, the program

prints the number of days until the user’s next birthday. Different messages

appear if the birthday is today or tomorrow. The following are four runs of

your program and their expected output (user input data is right after the

‘?’ mark):

Please enter your birthday:

What is the month (1-12)? 11

What is the day (1-30)? 6

11/6 is day #310 of 365.

Your next birthday is in 105 days, counted from today.

 Project C
The game rule is this: you start with 21 sticks, and two players take turns

either taking one or two sticks. The player who takes the last stick loses.

Can you design a program to simulate one of the two players in the game?

One player is a user and the other player is the computer.

Chapter 32 projeCts

214

 Project D
Write a method named hasVowel() that returns whether a string has

included any vowel (a single-letter string containing a, e, i, o, or u, case-

insensitively).

 Project E
Write a method named gcd() that accepts two integers as parameters and

returns the greatest common divisor (GCD) of the two numbers. The GCD

of two integers a and b is the largest integer that is a factor of both a and b.

The GCD of any number and 1 is 1, and the GCD of any number and 0 is

the number.

One efficient way to compute the GCD of two numbers is to use

Euclid’s algorithm, which states the following:

GCD(A, B) = GCD(B, A % B)

GCD(A, 0) = Absolute value of A

For example:

• gcd(24, 84) returns 12

• gcd(105, 45) returns 15

• gcd(0, 8) returns 8

 Project F
Write a method named toBinary() that accepts an integer as a parameter

and returns a string of that number’s representation in binary. For

example, the call of toBinary(42) should return “101010”.

Chapter 32 projeCts

215

 Project G
Use the four numbers on the following cards to create a math expression

that equals 24. Each card can be used only once. Treat ace as a number

“1”. You may use +, -, *, /, (and) in the math expression. Please find all

possible answers.

Chapter 32 projeCts

217© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_33

CHAPTER 33

Java Intermediate
Solutions
For your reference, in this chapter I’ll provide you with answer hints to

some of the problems in the earlier chapters. For example, “For 16.” means

“Hints for problems in Chapter 16.”

 For 16. Pythagorean Triples

 1. Instead of using “c,” we may check whether (a2 + b2)

is a perfect square number, which is taking a square

root of it and validating if it is an integer value.

 2. Use the example code and check whether the

resulting value of (a2 + b2) matches the form

of “4n + 1”.

 For 17. Strong Typed Programming
 public boolean isCollinear(Point p) {

 if (p.getX() == p1.getX() && p1.getX() ==

p2.getX()) {

 return true;

 }

218

 if (this.getSlope(p) == this.getSlope()) {

 return true;

 }

 return false;

 }

public double getSlope(Point p) {

 if (this.p1.x == this.p.x) {

 throw new

IllegalStateException("Denominator cannot be 0");

 }

 return (double)(this.p.y - this.p1.y) / (this.p.x -

this.p1.x);

}

 For 18. Conditional Statements

 1. It is rewritten as shown here.

 if (num < 10 && num > 0) {

 System.out.println("It's a one-digit

number");

 }

 else if (num < 100) {

 System.out.println("It's a two-digit

number");

 }

 else if (num < 1000) {

 System.out.println("It's a three-digit

number");

 }

Chapter 33 Java IntermedIate SolutIonS

219

 else if (num < 10000) {

 System.out.println("It's a four-digit

number");

 }

 else {

 System.out.println("The number is not

between 1 & 9999");

 }

 2. A simplified version is shown here.

if (a == 0) {

 if (b == 0) {...}

 else {...}

} else {

 if (b != 0) {...}

}

 For 19. Switch Statement
switch(color) {

 case 'R':

 System.out.println("The color is red");

 break;

 case 'G':

 System.out.println("The color is green");

 break;

 case 'B':

 System.out.println("The color is black");

 break;

Chapter 33 Java IntermedIate SolutIonS

220

 case 'C':

 default:

 System.out.println("Some other color");

 break;

}

 For 21. Counting

 1. Define x as the number of children and (2200 – x)

is the number of adults, then 1.5 ∗ x + 4 ∗ (2200 – x)

 = 5,050. Iterate x = 0 up to 2200 to find a solution for x.

And it is obvious that there is no more than one

solution.

 2. Define x as the number of correct answers and

(10 – x) as the number of incorrect answers, then

5 ∗ x – 2 (10 – x) = 29. Iterate x from 0 up to 10 to find

a possible solution for x.

 3. Iterate a positive integer from 0 to 2001 and check its

divisibility with 3, 4, and 5.

 4. Iterate every three-digit integer number, from 100

up to 999, and check its digits.

 5. Use a recursive method (referring to the example)

to repeatedly pick a plant five times from the three

types of plants (defining three types as A, B, C).

And then remove duplicates from the combinations.

For example: {A, A, B, B, C} is a duplicate of {A, B, A,

B, C}.

Chapter 33 Java IntermedIate SolutIonS

221

 For 23. Exploratory Experimentation of Pi
Utilize the following formula with integer number “r” and approximate the

value of “e.”

e
r

= + + + +¼1
1

1

1

2

1

3

1

! ! ! !

 For 24. Classes in Object-Oriented
Programming

 1. a)

 2. b)

 3.

 NumberHolder nh = new NumberHolder();

 Nh.anInt = 5;

 Nh.aFloat = 3.2;

 System.out.printIn("anInt=" + Nh.anInt + "; aFloat=" +

Nh.aFloat);

 4. (A), (D)

 5. (B)

 For 26. Inheritance – Code Reuse

 1. (c)

 2. (b), (d), (e), (f)

Chapter 33 Java IntermedIate SolutIonS

222

 For 27. Encapsulation and Polymorphism

 1.

public interface GeometricObject {

public abstract double getPerimeter();

 public abstract double getArea();

}

 2.

 public class Circle implements GeometricObject {

 private final double PI = 3.14159;

 protected double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 // Implement methods defined in the interface

 @Override

 public double getPerimeter() {

 return 2 * PI * this.radius;

 }

 @Override

 public double getArea() {

 return PI * this.radius * this.radius;

 }

}

Chapter 33 Java IntermedIate SolutIonS

223

 For 28. Array – a Simple and Efficient Data
Structure

 1. (d)

 2. { 0, 4, 0, 0, 11, 0, 0, 2 }

 For 29. Common Pitfalls

 1. If you want to get an integer value, why not take an

integer input at the beginning?

This is a corrected version. It is significantly

simplified.

Scanner user_input = new Scanner(System.in);

System.out.println("a=");

int a = user_input.nextInt();

System.out.println("b=");

int b = user_input.nextInt();

 2. Does myArray[3] equal “13”?

Pay attention to the definition of the index of an

array element.

 3. Is it necessary to check stringsArray.length

= 0? And, is it a good approach to do countMe.

toLowerCase() inside the for-loop?

Chapter 33 Java IntermedIate SolutIonS

224

This is a recommended version:

public static int CountStrings(String[] stringsArray,

String countMe) {

 int occurences = 0;

 String keyword = countMe.toLowerCase();

 for (int i = 0; i < stringsArray.length; i ++) {

 if (stringsArray[i].toLowerCase().

contains(keyword)) {

 occurences ++;

 }

 }

 return occurences;

}

 4. Has the myRect ever been initialized?

There is an important line to update in the main()

method as shown here:

public class SomethingIsWrong {

 public static void main(String[] args) {

 Rectangle myRect = new Rectangle();

 myRect.width = 40;

 myRect.height = 50;

 System.out.println("myRect's area is

" + myRect.area());

 }

}

Chapter 33 Java IntermedIate SolutIonS

225

 5. Since the variable temp has been assigned with the

value of the first element in array1, do we need to

iterate from i=0 inside the for-loop?

The simple fix is to change from for (int i = 0;

... to for (int = 1; ... in the original function

as shown.

public static int getMaxLength(ArrayList<String>

array1) {

 if(array1.isEmpty()) {

 return 0;

 }

 else {

 String temp= array1.get(0);

 for (int i = 1; i < array1.size(); i++) {

 if (array1.get(i).length() >

temp.length()) {

 temp= array1.get(i);

 }

 }

 return temp.length();

 }

}

 6. Check the if/else clause.

The scope of “y > 31 && z > 12” is already covered

by the scope of “z > 12 || y > 31”. Therefore,

the “else if (...)” part in the original code is

meaningless.

Chapter 33 Java IntermedIate SolutIonS

226

 7. Review the actual usage of the Scanner.

Due to the same reason stated in 1, the code can be

corrected as shown:

System.out.println("What month were you born in?

(1-12)");

Scanner sc = new Scanner(System.in);

int al = sc.nextInt();

 8. Check the if/else clause

The scope of numToTake > 2 has included the scope

of numToTake >= 2 && numToTake < 3. The if and

else if conditional clauses need to be rewritten.

Chapter 33 Java IntermedIate SolutIonS

227© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3

Index

A
Abstraction, 171, 182
Algorithms

creation, real-world
objects, 39, 40

swap values, 40–41
Array, 223

character, 185
data types, 185
defined, 185
element values, 186
index, 185
size, 186

B
Basic projects, 85–87

C
class instantiation, 29
Class variables/instance

variables, 33
Coding mistakes, 73, 74
Coding structure, 81
Coin flip game, 93, 94, 96

Collatz conjecture
defining, 5
program, 5, 6

Collinearity, 107
Conditional operators, 64–67
Conditional statements, 218, 219

bigger number identification, 109
example, 111, 114
if clauses, 112
if/else if structure, 110
if/else structure, 109, 110
nested if/else structure, 110
quadrants, 114, 115
tree-like structure, 111

contains() method, 213
convertToBaseN() method, 144
countBase10Numbers() method, 143
Counting, 220

countNumbers2(), 136
for-loop, 137, 139, 140
isDistinct(…), 135
single loop, 131
switch statement, 145
tables, 132
tickets, 131

Curly braces, 82

https://doi.org/10.1007/978-1-4842-5209-3

228

D
Design considerations

Demo class, 199
Game class, 195, 196
main() method, 199
MyClass class, 197, 198
Rectangle class, 193–195
static fields, 199
test class, 200

double getSlope() method, 105
do-while loop, 60–61

E
Encapsulation, 181, 182, 222
Error correction, 77, 78
Exception handling, 76–77

F
Factorization

definition, 147
finding factors, 147, 148
iterations, 149
square root, 150–153

Fields, 163
for loop

arithmetic sequence, 51
counting strategy, 51, 52
example, 49, 50
formula, 50, 51
list of numbers, 54
Math

example, 53
exp() method, 54
list of numbers, 53

structure, 49

G
gcd() method, 214
General rules

conditional operation, 80, 81
input in console, 80
output in console, 79
repeat an operation, 80
variable name, 79

getSlope() method, 106
Getters method, 163
Greatest common divisor (GCD), 214

H
hasVowel() method, 214
Hexadecimal–base 16 number

system, 15

I
if/else structure, 64, 109, 120
if structure, 63
Inheritance, 221

Car class, 177
Driver class, 178
isFourWheelDrive() method, 177
Sedan class, 177, 178

Input, read user data, 44

INDEX

229

Integer to month name, example
if/else ladder, 120, 121
switch conditional

statement, 121, 122
Interface

Auto, 171
Car class, 172
circumstances, 173
definition, 171
design, 173
MovingObject, 174

Intersection over union (IOU)
getHeight() method, 207, 208
getWidth() method, 207, 208
IntersectionOverUnion

class, 206, 207
Rectangle class, 205, 207–210
rectangles, 203, 204

isPalindrome() method, 142, 143
isPalindrome2() method, 143

J, K
Java bytecode, 20–22
Java Development Kit (JDK), 24
Java, features

class, 20
bytecode, 20–22
object oriented, 19

Java program
class, 29
vs. class file, 31
creation

java class, 28

methods, 29
eclipse launched, 26
main(), 30
public static void main

(String[] args), 30
running application, 29

Java Runtime Environment
(JRE), 24, 25

Java virtual machine (JVM), 20, 30

L
Local variables, 33
Logical operators

operations, 67, 68
quadrant method, 70
Venn diagram, 69

M
main() method, 30
Math expression, 215

N
Number

binary to numeral system, 15
bit, 17
bitwise, 17, 18
decimal to binary, 11–14
hexadecimal–base 16 number

system, 15
octal–base 8 number system, 16

Numeral systems, 9, 10

INDEX

230

O
Object-Oriented programming, 221

access modifiers, 164
Account class, 169
characteristics, 163–165
class vs. object, 166, 167
field vs. parameter, 169
Game class, 168
Name class, 166
non-fields, 166
NumberHolder class, 168
Point class, 167
public int getAge() method, 164
public Student() method, 164
structural view, 165
public String getFirstName()

method, 164
public String getLastName()

method, 164
public void setAge(int age)

method, 164
Vehicle class, 166

Octal–base 8 number system, 16
Output

System.out.println, 44, 45
example, 45
problems, 47
special characters, 44

P, Q
Package, 25
Pi experimentation, 221

algorithm, 157
Calculus, 161
for-loop, 159
Java programming, 161
long value type, 159, 160
main method(), 158
Math.random() method, 158
population

calculation, 155, 156
Pitfalls, 189–191, 223–226
Point class, 106, 212
Polymorphism, 183, 222
Primitive types, 35–36
Programming tips, 75, 76
Properties, 163
Pythagorean

primes, 101
triples, 97–101, 217

R
Rectangle class, 211, 212
Reference types, 36
reverse() method, 142

S
Scanner utility class, 43
Setters method, 163
Slope of a line, 105, 106
Source, 25
Stick game, 213
StringBuffer class, 142

INDEX

231

Switch Statement, 219
days in month

example, 123, 124
integer to month name

example, 121, 122
structure, 119

System.out.println, 44

T
Ternary operator, 116
toBinary() method, 214
Tracing moving objects

bouncing ball, 127, 128
snail example, 129, 130

Type casting, 103–105

U
User’s birthday prediction

program, 213

V
Variables

assign value, 37
data types, 36, 37
definition, 33
name

defining, 34
example, 34, 35

primitive types, 35
reference types, 36
resulting value, 37, 38
types, 33

Venn diagram, 69

W, X, Y, Z
While loop

example, 58, 59
structure, 57

Workspace, 24, 25

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Part I: Java Basic
	Chapter 1: Introduction
	Problems

	Chapter 2: Number Basics
	What Is a Numeral System?
	Why Do People Use Decimal Numbers, While Computers Use Binary Numbers?
	How to Convert a Number Between Different Numeral Systems
	What Is Bit, Byte, KB, MB, GB, TB, and PB?
	What Is Bitwise?

	Problems

	Chapter 3: Java Basics
	What Features Does Java Have?
	Object-Oriented
	Class-Based
	Java Bytecode

	Chapter 4: Start Playing with Java
	What Is the Difference Between the JRE and the JDK?
	What Are a Workspace, Source, and Package?
	What Are Edit, Compile, and Execute?
	Creating Your First Program
	Exploring Class and main()
	Why Is It “public static void main(String[] args)”?

	Problems

	Chapter 5: Variables
	Defining a Variable Name
	Example
	Different Types of Variables in Java

	Assigning a Value to a Variable
	Lab Work

	Chapter 6: First Algorithm
	Swapping Values Between Variables
	Other Approaches

	Chapter 7: Input and Output
	Importing java.util.Scanner
	Getting Input
	Producing Output
	Lab Work
	Example
	Example
	Lab Work
	Problems

	Chapter 8: Loop Structure – for Loop
	Example
	Lab Work
	The for Loop Formula
	Finding the “for Loop” Formula for an Arithmetic Sequence
	Math: Counting Strategically
	Lab Work
	Example
	Lab Work
	Problems

	Chapter 9: Loop Structure – while Loop
	Example
	Example
	The do-while Loop
	Lab Work
	Problems

	Chapter 10: Logical Control Structures
	Conditional Operators
	Lab Work

	Logical Operators
	Math: Logical Operators
	Math: Analyzing Logical Problems
	Lab Work
	Problems

	Chapter 11: Errors and Tips
	Programming Tips
	Handling Exceptions
	Problems

	Chapter 12: Java Basics Summary
	General Rules
	How to Define a Variable Name
	How to Output in Console
	How to Listen to Input in Console
	How to Repeat an Operation
	How to Control a Conditional Operation

	Basic Coding Structure
	Curly Braces
	Lab Work

	Chapter 13: Java Basics Projects
	Chapter 14: Java Basics Solutions

	Part II: Java Intermediate
	Chapter 15: Wright Brothers’ Coin Flip Game
	Chapter 16: Pythagorean Triples
	Math: Pythagorean Triples
	Problems
	Math: Pythagorean Primes

	Chapter 17: Strong Typed Programming
	Type Casting
	Math: Slope of a Line
	Math: Collinearity

	Chapter 18: Conditional Statements
	Math: Hypothesis and Conclusion
	Math: Quadrants
	Problems

	Chapter 19: Switch Statement
	Problem

	Chapter 20: Tracing Moving Objects
	Math: Bouncing Ball

	Chapter 21: Counting
	Problems

	Chapter 22: Factorization
	Math: Finding Factors
	Math: Halving the Problem
	Math: Using the Square Root

	Chapter 23: Exploratory Experimentation of Pi
	Math: Calculating a Population
	Example
	Math: Pi from Probability Theory

	Problem

	Chapter 24: Classes in Object-Oriented Programming
	Lab Work
	Lab Work
	Lab Work
	Problems

	Chapter 25: Interface – Total Abstraction
	Chapter 26: Inheritance – Code Reuse
	Problems

	Chapter 27: Encapsulation and Polymorphism
	Encapsulation
	Polymorphism
	Problems

	Chapter 28: Array – a Simple and Efficient Data Structure
	Lab Work
	Problems

	Chapter 29: Common Pitfalls
	Lab Work

	Chapter 30: Design Considerations
	Practical Case 1
	Practical Case 2
	Practical Case 3
	Approach A
	Approach B

	Practical Case 4

	Chapter 31: IOU Computation
	Chapter 32: Projects
	Project A
	Step 1
	Step 2

	Project B
	Project C
	Project D
	Project E
	Project F
	Project G

	Chapter 33: Java Intermediate Solutions
	For 16. Pythagorean Triples
	For 17. Strong Typed Programming
	For 18. Conditional Statements
	For 19. Switch Statement
	For 21. Counting
	For 23. Exploratory Experimentation of Pi
	For 24. Classes in Object-Oriented Programming
	For 26. Inheritance – Code Reuse
	For 27. Encapsulation and Polymorphism
	For 28. Array – a Simple and Efficient Data Structure
	For 29. Common Pitfalls

	Index

