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    welcome

  


  Dear Reader,


  Welcome to Manning Early Access Program (MEAP) for “Math and Architectures of Deep Learning”. This membership will give you access to the developing manuscript along with the resources which includes fully functional python/PyTorch code downloadable and executable via Jupyter-notebook.


  Deep learning is a complex subject. On one hand, it is deeply theoretical with extensive mathematical backing. Indeed, without a good intuitive understanding of the mathematical underpinnings, one is doomed to merely running off the shelf pre-packaged models without understanding them fully. These models often do not lend themselves well to the exact problem one needs to solve and one is helpless if any change or re-architecting is necessary. On the other hand, deep learning is also intensely practical requiring significant Python programming skills on new platforms like Tensorflow and PyTorch. Failure to master those leaves one unable to solve any real problem.


  This author feels that there is a dearth of books that addresses both of these aspects of the subject in a connected fashion. That is what has led to the genesis of this book.


  The author will feel justified in his efforts if these pages help the reader to become a successful exponent in the art and science of deep learning.


   


  Sincerely,


  —Krishnendu Chaudhury


   


   


  
    Introduction: Importance of mathematical principles underlying deep learning

  


  Are you the type of person who wants to know why and how things work? Instead of feeling satisfied, even grateful, that a tool is solving the problem at hand - you try to understand what the tool is really doing, why it is behaving in a certain way and whether it will work under changed circumstances? If yes, you have my sympathies - life won’t be peaceful for you. You also have my best wishes - these pages are dedicated to you.


  The internet abounds with various pre-built deep learning models and training systems that hardly require one to understand the underlying principles. But practical problems often do not quite fit any of the publicly available models. These situations call for development of a custom model architecture. Developing these require one to understand the mathematical underpinnings of optimization and machine learning.


  A relevant question can be asked here. These (deep learning and computer vision) are, after all, very practical subjects. Is the mathematics really necessary? Shouldn’t one rather spend the time learning, say the python nuances of deep learning? Well, yes and no. Programming skills, in particular python, are mandatory. But without an intuitive understanding of the mathematics, the how and why and can I re-purpose this model will not be visible to the practitioner. In short, mathematics allows you to see the abstractions behind the implementation.


  In many ways, the ability to form abstractions is the essence of higher intelligence. It is abstraction that enabled early humans to divine a digging and defending tool in what was merely a sharply pointed stone to other animals. The abstraction of the description of where something is with respect to some other thing fixed in the environment (aka coordinate systems and vectors) has done wonders to human civilization. Mathematics is the language for abstractions, the most precise, succinct and unambiguous known to humankind.


  Having (hopefully) made a case for studying the underlying mathematical principles of deep learning and computer vision, we would hasten to add that mathematical rigor is not the goal here. Rather, the goal is to provide mathematical, in particular, geometrical, insights that make the subject more intuitive and indeed less of a black magic. At the same time, we will provide python coding exercises and visualization aids throughout - thus these pages can be regarded as learning mathematical foundations of deep learning via geometrical examples and python exercises.


  Fully functional detailed code backing the theory discussed in the book is provided via Jupyter-notebook at https://github.com/krishnonwork/mathematical-methods-in-deep-learning-ipython. Also, important snippets from the full code have been inserted in the body of the main book for illustration purposes - these are not fully functional.


  Mastery over the material presented in this book will enable the reader to


  ·   Understand state-of-the-art deep learning research papers. In fact, the book will attempt to provide in-depth, intuitive understandings of all the seminal papers of the day.


  ·   Study and understand a deep learning code-base


  ·   Directly lift off code snippets from the book to use in their tasks


  ·   Ace an interview for ML engineer/scientist


  ·   Determine whether a real life problem is amenable to machine/deep learning


  ·   Troubleshoot neural network quality issues


  ·   Identify the right neural network architecture to solve a real life problem


  ·   Quickly implement a prototype architecture and train a deep learning model for some real life problem


  A word of caution. We will often start at the basics but quickly move deeper. It is kind of important to read individual pieces end to end, even if one is familiar with the material presented at the beginning.


  Finally, the ultimate justification of an intellectual endeavor is that one had fun pursuing it.


  So, the author would consider himself successful if you enjoy reading these lines.


   


  1    An overview of machine learning and deep learning


  Deep learning has transformed computer vision, natural language and speech processing in particular and artificial intelligence in general. From a bag of semi-discordant tricks, none of which worked satisfactorily on a real life problem, artificial intelligence has become a formidable tool to solve real problems faced by industry, at scale. This is nothing short of a revolution going on under our very noses. If one wants to lead the curve of this revolution, it is imperative to understand the underlying principles and abstractions, rather than simply memorizing the “how to” steps of some hands on guide. This is where the mathematics comes in.


  In this first chapter we will give an overview of deep learning. This will require us to use some concepts that have been explained in subsequent chapters. The reader should not worry if there are some open questions at the end of this chapter. This chapter is aimed at orienting one’s mind towards this difficult subject. As individual concepts get clearer in subsequent chapters, the reader should consider coming back and giving this chapter a re-read.


  1.1   A first look at machine/deep learning - a paradigm shift in computation


  Making decisions and/or predictions is a central requirement of life. This essentially involves taking in a set of sensory or knowledge inputs and generating decisions or estimates by processing them.


  For instance, a cat’s brain is often trying to choose between the following options: run away from the object in front vs ignore the object in front vs approach the object in front and purr. It makes that decision by processing sensory inputs, like perceived hardness of the object in front, perceived sharpness of the object in front, etc. This is an instance of classification problem where the output is one out of a set of possible classes.


  Some other examples of classification problem in life:


  ·   buy vs hold vs sell a certain stock, from inputs like price history of this stock, change in price of this stock in recent times


  ·   object recognition (from an image), e.g.,:


  -   is this a car or a giraffe


  -   is this a human or a non-human


  -   is this an inanimate object or a living object


  -   face recognition - is this Tom or Dick or Mary or Einstein or Messi


  ·   action recognition from video, e.g.,:


  -   is this person running or not running


  -   is this person picking something up or not


  -   is this person doing something violent or not


  ·   Natural Language Processing aka NLP from digital documents, e.g.,:


  -   does this news article belong to the realm of politics or sports


  -   does this query phrase match a particular article in the archive


  etc.


  Sometimes life requires a quantitative estimation as opposed to classification. A lion brain needs to estimate what should be the length of a jump so as to land on the top of its prey, by processing inputs like speed of prey, distance to prey etc. Another instance of quantitative estimation is to estimate house price, based on inputs like current income, crime statistics for the neighborhood etc.


  Some other examples of quantitative estimations required by life


  ·   object localization from an image: identifying the rectangle bounding the location of an object


  ·   stock price prediction from historical stock prices and other world events


  ·   similarity score between a pair of documents


  Sometimes, a classification output can be generated from a quantitative estimate. For instance, the cat brain described above, can combine the inputs (hardness, sharpness etc) to generate a quantitative threat score. If that threat score is high, the cat runs away. If the threat score is near zero, the cat ignores the object in front. If threat score is negative, the cat approaches the object in front and purrs.


  Many of these examples are pictorially depicted in Fig 1.1.


  In each of these instances, there is a machine - viz., brain - that transforms sensory or knowledge inputs to decisions or quantitative estimates. The goal of machine learning is to emulate that machine.


  One must note that machine learning has a long way to go before it can catch up with the human brain. The human brain can single handedly deal with thousands, if not millions, of such problems. On the other hand, at its present state of development, machine learning can hardly create a single general purpose machine that makes a wide variety of decisions and estimates. We are mostly trying to make separate machines to solve individual tasks (stock picker, car recognizer etc).


  [image: ]


  Figure 1.1: Examples of Decision Making and Quantitative Estimations in Life


  At this point, one might ask, wait, converting inputs to outputs - isn’t that exactly what computers have been doing for last thirty or more years? What is this paradigm shift I am hearing about? The answer: it is a paradigm shift because we do not provide a step by step instruction set - viz., a program - to the machine to convert the input to output. Instead, we develop a mathematical model for the problem.


  Let us illustrate the idea with an example. For the sake of simplicity and concreteness, we will consider a hypothetical cat brain which needs to make only one decision in life - whether to run away from the object in front or ignore it or approach and purr. This decision, then, is the output of the model we will discuss. And, in this toy example, the decision is made based on only two quantitative inputs (aka features), perceived hardness of the object in front and its perceived sharpness. (as depicted in Fig 1.1). We do not provide any step by step instruction such as “if sharpness greater than some threshold then run away” etc. Instead, we try to identify a parameterized function that takes the input and converts it to the desired decision or estimate. The simplest such function is a weighted sum of inputs:


  y (hardness, sharpness) = w0 × hardness + w1 × sharpness + b


  The weights w0,w1 and the bias b are the parameters of the function. The output y can be interpreted as a threat score. If the threat score exceeds a threshold the cat runs away. If it is close to 0 the cat ignores. If the threat score is negative the cat approaches and purrs. For more complex tasks, we will use more sophisticated functions.


  Note that the weights are not known at first, we need to estimate them. This is done through a process called model training.


  Overall, solving a problem via machine learning has following stages:


  ·   We first design a parameterized model function (e.g., weighted sum) with unknown parameters (weights). This constitutes the model architecture. Choosing the right model architecture is where the expertise of the machine learning engineer comes into play.


  ·   Then we estimate the weights via model training.


  ·   Once the weights are estimated, we have a complete model. This model can take arbitrary inputs not necessarily seen before and generate outputs. The process, where a trained model processes an arbitrary real life input and emits an output is called inferencing.


  In the most popular variety of machine learning, called supervised learning, we prepare the training data before we commence training. Training data comprises example input items, each with its corresponding desired output.[1] Training data is often created manually, i.e., a human goes over every single input item and produces the desired output (aka target output). It is usually the most arduous part of doing machine learning.


  For instance, in our hypothetical cat brain example, some possible training data items are


  input: (hardness = 0.01, sharpness = 0.02)                          →threat = −0.90         → decision: “approach and purr”


  input: (hardness = 0.50, sharpness = 0.60)                          →threat = 0.01             → decision : “ignore”


  input: (hardness = 0.99, sharpness = 0.97)                          →threat = 0.90             → decision : “run away”


  where the input values of hardness and sharpness are assumed to lie between 0 and 1.


  What exactly happens during training? Answer: we iteratively process the input training data items. For each input item, we know the desired (aka target) output. On each iteration, we adjust the model weight values in a way that the output of the model function on that specific input item gets at least a little bit closer to the corresponding target output. For instance, suppose at a given iteration, the weight values are w0 = 20 and w1 = 10 and b = 50. On the input (hardness = 0.01, sharpness = 0.02), we get an output threat score y = 50.3 which is quite different from the desired y = −0.9. We will adjust the weights, for instance reduce the bias - so w0 = 20 and w1 = 10 and b = 40. The corresponding threat score y = 40.3 is still nowhere near the desired value, but it has moved closer. After doing this on many training data items, the weights would start approaching their ideal values. Note that how to identify the adjustments to the weight values is not discussed here. It needs somewhat deeper math and will be discussed later.


  As stated above, this process of iteratively tuning weights is called training or learning. At the beginning of learning, the weights have random values, so the machine outputs often do not match desired outputs. But with time, more training iterations happen and the machine “learns” to generate the correct output. That is when the model is ready for deployment in real world. Given arbitrary input, the model will (hopefully) emit something close to the desired output during inferencing.


  Come to think of it, that is probably how living brains work. They contain equivalents of mathematical models for various tasks. Here, the weights are the strengths of the connections (aka synapses) between the different neurons in the brain. In the beginning, the parameters are untuned, the brain repeatedly makes mistakes. E.g., a baby’s brain often makes mistake in identifying edible objects - anybody who has had a child will know what we are talking about. But each example tunes the parameters (eating green and white rectangular things with $ sign invites much scolding - should not eat them in future etc). Eventually this machine tunes its parameters to yield better results.


  One subtle point should be noted here. During training, the machine is tuning its parameters so that it produces the desired outcome - on the training data input only. Of course, it sees only a small fraction of all possible inputs during training - we are not building a lookup table from known inputs to known outputs here. Hence, when this machine gets released in the world, it mostly runs on input data it has never seen before. What guarantee do we have that it will generate the right outcome on never before seen data? Frankly, there is no guarantee. Only, in most real life problems, the inputs are not really random. They have a pattern. Hopefully, the machine will see enough during training to capture that pattern. Then, its output on unseen input will be close to desired value. The closer the distribution of the the training data is to real life, likelier that becomes.


  1.2   A Function Approximation View of Machine Learning: Models and their Training


  As stated in section 1.1, to create a brain-like machine that makes classifications or estimations, we have to find a mathematical function (model) that transforms inputs into corresponding desired outputs. Sadly however, in typical real life situations, we do not know that transformation function. For instance, we do not know the function that takes in past prices, world events etc and estimates the future price of a stock - something that stops us from building a stock price estimator and getting rich. All we have is the training data - a set of inputs on which the output is known. How do we proceed then? Answer, we will try to model the unknown function. This means, we will create a function that will be a proxy or surrogate to the unknown function. Viewed in this way, machine learning is nothing but function approximation - we are simply trying to approximate the unknown classification or estimation function.


  Let us briefly recapitulate the main ideas from the previous section. In machine learning, we try to solve problems that can be abstractly viewed as transforming a set of inputs to an output. The output is either a class or an estimated value. Since we do not know the true transformation function, we try to come up with a model function. We start by designing – using our physical understanding of the problem - a model function with tunable parameter values that could serve as a proxy for the true function. This is the model architecture and the tunable 7 parameters are also known as weights. The simplest model architecture is one where the output is a weighted sum of the input values. Determining the model architecture does not fully determine the model - we still need to determine the actual parameter values (weights). That is where training comes in. During training, we find an optimal set of weights that would transform the training inputs to outputs that match the corresponding training outputs as closely as possible.


  Then we deploy this machine in the world - now its weights are estimated and the function is fully determined - on any input, it simply applies the function and generates an output. This is called inferencing. Of course, training inputs are only a fraction of all possible inputs, so there is no guarantee that inferencing will yield a desired result on all real inputs. The success of the model depends on the appropriateness of the chosen model architecture and the quality and quantity of training data.


  In this context, the author would like to note that after mastering machine learning, the biggest struggle faced by a practitioner turns out to be procurement of training data. It is common practice, when one can afford it, to use humans to hand generate the outputs corresponding to the training data inputs (these target outputs are sometimes referred to as ground truth). This process, known as human labeling or human curation, involves an army of human beings looking at a substantial number of training data inputs and producing the corresponding ground truth output. For some well researched problems, one maybe lucky enough to get training data on the internet, else it becomes a daunting challenge. More on this later.


  Now, let us study the process of model building with a concrete example, the cat brain machine shown in Fig 1.1.


  1.3   A simple machine learning model - the cat brain


  [2] For the sake of simplicity and concreteness, we will deal with a hypothetical cat which needs to make only one decision in life - whether to run away from the object in front or ignore it or approach and purr. And it makes this decision based on only two quantitative inputs pertaining to the object in front of the cat (shown in Fig 1.1).


  Input Features


   i) x0 signifying Hardness


  ii) x1 signifying Sharpness .


  Without loss of generality, we can normalize the inputs. This is a pretty popular trick, whereby the input values ranging between a minimum possible value vmin and a maximum possible value vmax are transformed to values between 0 and 1. To transform an arbitrary input value v to a normalized value vnorm we use the formula


  
    
      	
        [image: ]

      

      	
        (1.1)

      
    

  


  In mathematical parlance, transformation via equation 1.1, v ∈ [vmin, vmax] → vnorm ∈ [0, 1] maps the values v from the input domain [vmin, vmax] to the output values vnorm in the range [0, 1].


  A 2 element vector [image: ]represents a single input instance succinctly.


  Output Decisions


  The final output is multi-class, which can take one of three possible values


    i) 0: Implying run away from the object in front


   ii) 1: Implying ignore the object in front


  iii) 2: Implying approach and purr.


  It is possible in machine learning to compute the class directly. However, in this example we will have our model estimate a threat score. It is interpreted as follows:


    i) threat high positive – run away


   ii)           threat near zero - ignore


  iii) threat high negative - approach and purr (negative threat is attractive) .


  We can make a final multi-class run/ignore/approach decision based on threat score by comparing the threat score y against a threshold δ as follows
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  Model Estimation


  Now for the all important step. We need to estimate the function which transforms the input vector to the output. With slight abuse of terms, we will denote this function as well as the output by y. In mathematical notation, we want to estimate y([image: ]).


  Of course, we do not know the ideal function. We will try to estimate this unknown function from the training data. This is accomplished in two steps:


  1. Model Architecture Selection: Designing a parameterized function that we expect is a good proxy or surrogate for the unknown ideal function.


  2. Training: Estimating the parameters of that chosen function such that the outputs on training inputs match correspond outputs as closely as possible.


  Model Architecture Selection


  This is the step where various machine learning approaches differ from one another. In this toy cat brain example, we will use the simplest possible model. Our model has 3 parameters, w0, w1, b - they can be represented compactly with a single 2 element vector  [image: ] and and a constant bias b ∈ ℝ (here ℝ denotes the set of all real numbers, ℝ2 denotes the set of 2D vectors with both elements real, etc). It emits the threat score, y, which is computed as
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  Note that b is a slightly special parameter. It is a constant, that does not get multiplied with any of the inputs. It is common practice in machine learning to refer to it as bias while the other parameters that get multiplied with inputs as weights.


  Model Training


  Once the model architecture is chosen, we know the exact parametric function we are going to use to model the unknown function y([image: ]) that transforms inputs to outputs. We still need to estimate the function’s parameters. Thus, we have a function with unknown parameters and the parameters are to be estimated from a set of inputs with known outputs (training data). We will choose the parameters so that the outputs on the training data inputs match the corresponding outputs as closely as possible.


  It should be noted that this problem, has been studied by mathematicians and known as a function fitting problem in mathematics. What changed with the advent of machine learning however is the sheer scale. In machine learning, we deal with training data comprising millions and millions of items. This changed the philosophy of the solution. Mathematicians used a “closed-form solution”, where the parameters are estimated by directly solving equations involving all the training data items together. In machine learning, one goes for iterative solutions, where one deals with a few, perhaps a single, training data item at a time. In the iterative solution, there is no need to hold the entire training data in the computer’s memory. One simply loads small portions of it at a time and deals with only that portion. We will exemplify this with our cat brain example.


  Concretely, the goal of the training process is to estimate the parameters w0, w1, b or equivalently the vector [image: ] along with constant b from equation 1.3 in such a way that the output y (x0, x1) on training data input (x0, x1) matches the corresponding known training data outputs (aka ground truth or GT) as much as possible.


  Let the training data comprise N + 1 inputs [image: ] (0), [image: ] (1), …, [image: ] (N). Here each [image: ] (i) is a 2 × 1 vector denoting a single training data input instance. The corresponding desired threat values (outputs) are ygt(0), ygt(1), ···ygt(N), say (here the subscript gt denotes ground truth). Equivalently, we can say training data comprises N + 1 (input, output) pairs:


  [image: ]


  Supposing [image: ] denotes the (as yet unknown) optimal parameters for the model. Then, given an arbitrary input [image: ] the machine will estimate a threat value of [image: ]. On the ith training data pair, ([image: ](i), ygt(i)) the machine will estimate


  [image: ]


  while the desired output is ygt(i). Thus the squared error (aka loss) made by the machine on the ith training data instance is[3]


  [image: ]


  The overall loss on the entire training data set is obtained by adding the loss from each individual training data instance


  [image: ]


  The goal of training is to find the set of model parameters (aka weights), [image: ], that minimizes the total error E. Exactly how we do this will be described later. In most cases, it is not possible to come up with a closed-form solution for the optimal [image: ], b.


  Instead, we take an iterative approach depicted in Algorithm 1. In algorithm 1, we start with random parameter values and keep tuning parameters so that the total error goes down at least a little bit. Keep doing this until the error becomes sufficiently small.


  
    Algorithm 1 Training a supervised model

  


  Initialize parameters [image: ], b with random values


  ▷iterate while error not small enough


  While ([image: ]) do


  ▷ iterate over all training data instances


  for ∀i ∈ [0, N] do


  ▷ details provided in section 3.3 after gradients are introduced


          Adjust [image: ], b so that E2 is reduced


  end for


  end while


  ▷ remember the final parameter values as optimal


  [image: ]* ← [image: ] b* ← b


  
     

  


  In a purely mathematical sense, one continues the iterations until the error is minimal. But in practice, one often stops when the results are accurate enough for the problem being solved. It is worth re-emphasizing that error here refers only to error on training data.


  Inferencing


  Finally, a trained machine (with optimal parameters [image: ]∗, b∗ is deployed in the world. It will receive new inputs [image: ] and will infer ypredicted ([image: ]) = [image: ]∗T [image: ] + b∗. Classification will happen by thresholding ypredicted as shown in equation 1.2.


  1.4   Geometrical View of Machine Learning


  Each input to the cat’s brain model is an array of 2 numbers: x0 (signifying hardness of the object), x1 (signifying sharpness of the object) or equivalently a 2 × 1 vector [image: ]. A good mental picture here is to think of the input as a point in a high dimensional space. The input space is often called the feature space - a space where all the characteristic features to be examined by the model are represented. The feature space dimension is two here but in real life problems it will be in hundreds or thousands or more. The exact dimensionality of the input changes from problem to problem, but the intuition that it is a point remains.


  The output y should also be viewed as a point in another high dimensional space. In this toy problem the dimensionality of the output space is 1, but in real problems it will be higher. Typically, however, number of output dimensions is much smaller than the number of input dimensions.


  Geometrically speaking, a machine learning model essentially maps a point in the feature space to a point in the output space. It is expected that the classification or estimation job to be performed by the model is easier in the output space than the feature space. In particular, for a classification job, input points belonging to separate classes are expected to map to separate clusters in output space.


  Let us continue with our example cat’s brain model to illustrate the idea. As stated earlier, our feature space is 2D, with two coordinate axes X0 signifying hardness and X1 signifying sharpness[4]. Individual points in this 2D space will be denoted by coordinate values (x0, x1), in lower case. This is depicted in Fig 1.2. As shown in the diagram, a good way to model the threat score is to measure distance from line x0 + x1 = 1.


  From coordinate geometry, in a 2D space with coordinate axes X0 and X1, the signed distance of a point (a, b) from the line x0 + x1 = 1 is  [image: ]  Examining the sign of y we can determine which side of the separator line the input point belongs to.


  [image: ]


  Figure 1.2: Geometrical View of Machine Learning: 2D input point space for cat brain model. The bottom left corner shows low hardness and low sharpness objects (’-’ signs) while top right corner shows high hardness and high sharpness objects (’+’ signs). The intermediate values are near the diagonal (’$’ signs). In this simple situation, mere observation tells us that the threat score can be proxied by the signed distance, y, from the diagonal line x0 + x1 − 1 = 0. One can make the run/ignore/approach decision by thresholding y. Values close to zero imply ignore, positive values imply run away and negative values imply approach and purr. From high school geometry, the distance of an arbitrary input point (x0 = a, x1 = b) from line  x0 + x1 − 1 = 0 is [image: ]. Thus, the function [image: ] is a possible model for the cat brain threat estimator function. Training should converge to [image: ], [image: ]  and [image: ].


  Thus, our simplified cat brain threat score model is
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  It maps the 2D input points, signifying hardness and sharpness of the object in front, to a 1D value corresponding to the signed distance from a separator line. This distance, physically interpretable as threat score, makes it possible to separate the classes (negative threat, neutral, positive threat) via thresholding as shown in equation 1.2. The separate classes form distinct clusters in the output space, depicted by +, − and $ signs in the output space. Low values of inputs produce negative threats (the cat will approach and purr), e.g., y (0, 0) = −1/√2.. High values of inputs produce high threat (cat will run away), e.g., y (1, 1) = −1/√2. Medium values of input produce near zero threat (cat will ignore), e.g., y (0.5, 0.5) = 0. Of course, because the problem is so simple, here we could come up with the model parameters via simple observation. In real life situations, this will need training.


  The geometric view holds in higher dimensions too. In general, a n-dimensional input vector [image: ] is mapped to a m-dimensional output vector (usually m < n) in such a way that the problem becomes much simpler in the output space. An example with 3D feature space is shown in Figure 1.3.


  [image: ]


  Figure 1.3: Geometrical View of Machine Learning: A model maps the points from input (feature) space to an output space where it is easier to separate the classes. For instance, in this figure, input feature points belonging to two classes, red and green, are distributed over the volume of a cylinder in a 3D feature space. The model unfurls the cylinder into a rectangle. The feature points get mapped onto a 2D planar output space where the two classes can be discriminated with a simple linear separator.


  1.5   Regression vs Classification in Machine Learning


  As briefly outlined in section 1.1, there are two types of machine learning models: regressors and classifiers.


  In a regressor, the model tries to emit a desired value given a specific input. For instance, the first stage (threat score estimator) of the cat brain model in section 1.3 is a regressor model.


  Classifiers on the other hand have a set of pre-specified classes. Given a specific input, they try to emit the class to which the input belongs. For instance, the full cat brain model has 3 classes: (i) run away (ii) ignore (iii) approach and purr. Thus, it takes an input (hardness and sharpness values) and emits an output decision (aka class).


  In this example, we convert a regressor into a classifier by thresholding the output of the regressor (see equation 1.2. It is also possible to create models that directly output the class without having an intervening regressor.


  1.6   Linear vs Nonlinear Models


  [image: ]


  Figure 1.4: The two classes (indicated by ’+’ and ’-’) can not be separated by a line. Curved separator needed. In 3D, this is equivalent to saying no plane can separate the surfaces, a curved surface is necessary. In still higher dimensional spaces, this is equivalent to saying no hyper-plane can separate the classes. A curved hyper-surface is needed.


  In Fig. 1.2 we faced a rather simple situation where the classes could be separated by a line (hyper-plane in higher dimensional surfaces). This often does not happen in real life. What if the points belonging to different classes are as shown in Fig. 1.4? In such cases, our model architecture should no longer be a simple weighted combination. It will be a non-linear function. For instance, check the curved separator in Fig. 1.4. Another example is shown in Figure 1.5 - classifying the points in the 2D plane into the two classes indicated in blue and red requires non-linear models.


  Non-linear models make sense from the function approximation point of view as well. Ultimately, our goal is to approximate very complex and highly non-linear functions that model the classification or estimation processes demanded by life. Intuitively, it seems better to use non-linear functions to model them.


  A very popular non-linear function in machine learning is the sigmoid function, so named because it looks like the letter ’S’ in the alphabet. The sigmoid function is typically symbolized by the Greek letter s. It is defined as


  
    
      	
        [image: ]

      

      	
        (1.5)
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  Figure 1.5: The two classes (indicated by blue and red colors respectively) can not be separated by a line. Non-linear (curved) separator needed.
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  Figure 1.6: The sigmoid graph


  The graph of the sigmoid function is shown in Fig. 1.6. Thus we can use the following model architecture


  
    
      	
        y = σ ([image: ]T [image: ]+ b)

      

      	
        (1.6)

      
    

  


  Thus, a popular model architecture (still kind of simple) is that we take sigmoid (without parameters) of the weighted sum of the inputs. The sigmoid imparts the non-linearity. This architecture will be able to handle relatively more complex classification tasks than the weighted sum alone. In fact, equation 1.6 depicts the basic building block of a neural networks.


  1.7   Higher Expressive Power through multiple non-linear layers: Deep Neural Networks


  In section 1.6 we stated that adding non-linearity to the basic weighted sum yielded a model architecture that is able to handle more complex tasks. In machine learning parlance, the nonlinear model has more “expressive power”.


  Now consider a real life problem, say building a dog recognizer. The input space comprises pixel locations and pixel colors (x, y, r, g, b where r, g, b denotes red, green, blue components of a pixel color). The input dimensionality is large (proportional to the number of pixels in the image). Table 1.1 gives a small glimpse into possible variations in background and foreground that a typical deep learning system, say, a dog image recognizer has to deal with.


  Table 1.1: A glimpse into background and foreground variations a typical deep learning system (here a dog image recognizer) has to deal with


  [image: ]


  We need a machine with really high expressive power here. How do we create such a machine in a principled way?


  Instead of generating the output from input in a single step, how about taking a cascaded approach? We will generate a set of intermediate or hidden outputs from the inputs, where each hidden output is essentially a single logistic regression unit. Then we add another layer which takes the output of the previous layer as input. And so on. Finally, we will combine the outermost hidden layer outputs into the grand output.


  We describe the system in the following equations. It should be noted that we have added a superscript to the weights to identify layer (layer 0 is closest to the input, layer L is the last layer furthest from input). We also have made the subscripts two dimensional (so that the weights for a given layer becomes a matrix). The first subscript identifies the destination node and the second subscript identifies the source node (see Fig 1.7).


  The astute reader might notice that the following equations do not have an explicit bias term. That is because, for simplicity of notation, we have rolled it into the set of weights and assumed that one of the inputs, say x0 = 1 and the corresponding weight, e.g., w0 is the bias.


  Layer 0: generates n0 hidden outputs from n + 1 inputs


  
    
      	
        [image: ]

      

      	
        (1.7)

      
    

  


  Layer 1: generates n1 hidden outputs from n0 hidden outputs from layer 0
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        (1.8)

      
    

  


  Final Layer (L): generates m + 1 visible outputs from nL-1 previous layer hidden outputs
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        (1.9)

      
    

  


  The above equations can be pictorially depicted in Fig 1.7.
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  Figure 1.7: Multi Layered Neural Network


  This machine, depicted in Fig 1.7, can be incredibly powerful, with huge expressive power. We can adjust its expressive power systematically to fit the problem at hand. This then is a neural network. We will devote the rest of the book to studying this.


  1.8   Summary


  In this chapter we gave an overview of machine learning leading all the way up to deep learning. The ideas were illustrated with a toy cat brain example. Some mathematical notions (e.g., vectors) were used in this chapter without proper introduction. The reader is encouraged to revisit this chapter after vectors and matrices have been introduced.


  The author would like to leave the reader with the following mental pictures from this chapter


  ·   Machine learning as a fundamentally different paradigm of computing. In traditional computing, one provides a step by step instruction sequence to the computer, telling it what to do. In machine learning, one builds a mathematical model that tries to approximate the unknown function that generates a classification or estimation from inputs.


  ·   The mathematical nature of the model function is stipulated from the physical nature and complexity of the classification or estimation task. Models have parameters. Parameter values are estimated from training data - inputs with known outputs. The parameter values are optimized so that the model output is as close as possible to training outputs on training inputs.


  ·   An alternative geometric view of a machine is a transformation that maps points in the multi-dimension input space to a point in the output space.


  ·   More complex the classification/estimation task, the more complex the approximating function. In machine learning parlance, complex tasks need machines with higher expressive power. Higher expressive power comes from non-linearity (e.g., the sigmoid function, see 1.5) and layered combination of simpler machines. This takes us to deep learning, which is nothing but a multi-layered non-linear machine.


  ·   Complex model functions are often built by combining simpler basis functions.


  Tighten your seat belts, the fun is about to get more intense.


  
    


    
      [1] If you have some experience with machine learning, you will realize that I am talking about “supervised” learning here. There are also machines that do not need known outputs to learn - the so called “unsupervised” machines – we will talk about them later.

    


    
      [2] This chapter is a lightweight overview of machine/deep learning. As such, it mildly relies upon mathematical concepts that we will introduce later. The reader is encouraged to read this chapter now, nonetheless, and perhaps re-read after the chapters on vectors and matrices have been digested.

    


    
      [3] In this context, it should be noted that it is a common practice to square the error/loss to make it sign independent. If we desired an output of, say 10, we are equally happy/unhappy if the output is 9.5 or 10.5. Thus, error of +5 or − 5 is effectively the same, hence we make the error sign independent.

    


    
      [4] We use X0, X1 as coordinate symbols instead of the more familiar X, Y so as not to run out of symbols when going to higher dimensional spaces.

    

  


   


  2    Introduction to Vectors, Matrices and Tensors from Machine Learning and Data Science point of view


  At its core, machine learning, indeed all computer software, is about number crunching. One inputs a set of numbers to the machine and gets back a different set of numbers as output. However, this cannot be done randomly. It is important to organize these numbers appropriately, group them into meaningful objects that go in and come out of the machine. This is where vectors and matrices come in. These are concepts that mathematicians have been using for centuries – we are simply reusing them in machine learning. In this chapter, we will study vectors and matrices, primarily from a machine learning point of view. Starting from the basics, we will quickly graduate to advanced concepts, restricting ourselves to topics that have relevance to machine learning.


  We provide Jupyter notebook based python implementations for most of the concepts discussed in this and other chapters. Complete fully functional code that can be downloaded and executed (after installing python and Jupyter notebook) can be found at https://github.com/krishnonwork/mathematical-methods-in-deep-learning-ipython. The code relevant to this chapter can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learning-ipython/tree/master/python/ch2/.


  2.1   Vectors and their role in Machine Learning and Data Science


  Let us revisit the machine learning model for cat brain that was introduced in 1.3 . It takes two numbers as input: representing the hardness and sharpness of the object in front of the cat. Cat brain processes the input and generates an output threat score which leads to run away or ignore or approach and purr decision. Now the two input numbers usually appear together and it will be handy to group them together into a single object. This object will be an ordered sequence of two numbers, the first one representing hardness and the second one representing sharpness. Such an object is a perfect example of a vector.


  Thus, a vector can be thought of as an ordered sequence of two or more numbers, also known as an array of numbers[5]. Vectors constitute a compact way of denoting a set of numbers that together represent some entity. In this book, vectors will be represented by lower case letters with an overhead arrow and arrays by square brackets. For instance, the input to the cat brain model in 1.3 was a vector [image: ]where x0 represented hardness and x1 represents sharpness.


  Outputs to machine learning models too are often represented as vectors. For instance, consider an object recognition model that takes an image as input and emits a set of numbers indicating the probabilities that the image contains a dog, human or cat respectively. The output of such a model will be a 3 element vector[image: ] where the number y0 denotes the probability that the image contains a dog, y1 denotes the probability that the image contains a human and y2 denotes the probability that the image contains a cat. Table 2.1 shows some possible input images and corresponding output vectors.


  Table 2.1: Input images and corresponding output vectors denoting probabilities that the image contains a dog and/or human and/or cat respectively: possible output vector for top left image - [0.9 0.01 0.1], possible output vector for top right image- [0.9 0.01. 0.9], possible output vector for bottom left image - [0.01 0.99 0.01] possible output vector for bottom right image - [0.88 0.9. 0.001]


  [image: ]


  In multi-layered machines like neural networks, the input and output to each layer will be vectors. We also typically represent the parameters of the model function (see 1.3) as vectors. This is illustrated below in 2.3.


  One particularly significant notion in machine learning and data science is the idea of a feature vector. This is essentially a vector that describes various properties of the object being dealt with in a particular machine learning problem. We will illustrate the idea with an example from the world of Natural Language Processing (NLP). Suppose we have a set of documents. We want to create a document retrieval system where, given a new document, we have to retrieve “similar” documents in the system. This essentially boils down to estimating similarity between documents in a quantitative fashion. We will study this problem in detail later, but for now we want to note that the most natural way to approach this is to create feature vectors for each document that quantitatively describe the document. Later, in section 2.5.6 we will see how to measure the similarity between these vectors, for now let us focus on simply creating descriptor vectors for the documents. A popular way to do this is to choose a set of interesting words – we typically exclude words like “and”, “if”, “to” which are present in all documents from this list - count the number of occurrence of interesting words in each document and make a vector of these. Table 2.2 shows a toy example with 6 documents and corresponding feature vectors. For simplicity, we have considered only two (“gun” and “violence” in plural or singular, upper or lower case) of the possible set of words.


  Table 2.2: Example Toy Documents and corresponding Feature Vectors describing them. Words eligible for the Feature Vector are colored in red. The first element of the feature vector indicates the number of occurrences of the word “gun”, the second “violence”.


  
    
      	
        docid

      

      	
        Document

      

      	
        Feature Vector

      
    


    
      	
        d0

      

      	
        Roses are lovely. Nobody hates roses.

      

      	
        [0 0]

      
    


    
      	
        d1

      

      	
        Gun violence has reached an epidemic proportion in America.

      

      	
        [1 1]

      
    


    
      	
        d2

      

      	
        The issue of gun violence is really over-hyped. One can find many instances of violence where no guns were involved.

      

      	
        [2 2]

      
    


    
      	
        d3

      

      	
        Guns are for violence prone people. Violence begets guns. Guns beget violence.

      

      	
        [3 3]

      
    


    
      	
        d4

      

      	
        I like guns but I hate violence. I have never been involved in violence. But I own many guns. Gun violence is incomprehensible to me. I do believe gun owners are the most anti violence people on the planet. He who never uses a gun will be prone to senseless violence.

      

      	
        [5 5]

      
    


    
      	
        d5

      

      	
        Guns were used in a armed robbery in San Francisco last night.

      

      	
        [1 0]

      
    


    
      	
        d6

      

      	
        Acts of violence usually involves a weapon.

      

      	
        [0 1]

      
    

  


  The sequence of pixels in the image can also be viewed as a feature vector. Neural networks in computer vision tasks usually expect this feature vector.


  2.1.1   Geometric View of Vectors and its significance in Machine Learning and Data Science


  Vectors can also be viewed geometrically. The simplest example is a 2-element vector [image: ]. Its 2 elements can be taken to be x and y, Cartesian coordinates in a 2-dimensional space. Then the vector will correspond to a point in that space. Vectors with n elements will represent points in an n-dimensional space. The ability to see inputs and outputs of machine learning models as points allows us to view the model itself as a geometric transformation that maps input points to output points in some high dimensional space. We have already seen this once in section 1.4. It is an enormously powerful concept that we will keep utilizing throughout the book.


  We will briefly touch upon a subtle issue here. A vector represents the position of a point with respect to another. Furthermore, an array of coordinate values, like [image: ]describes the position of one point, in a given coordinate system. See Figure 2.1 to get a intuitive understanding of this. For instance, consider the plane of a page of this book. Suppose we want to reach the top right corner point of the page from the bottom left corner. Let us call the bottom left corner O and the top right corner P. We can travel the width (8.5 inches) rightwards to reach the bottom left corner and then travel the height (11 inches) upwards to reach the top right corner. Thus, if we choose a coordinate system with the bottom left corner as origin and the X axis along the width and the Y axis along the height, point P corresponds to the array representation [image: ]But we could also have traveled along the diagonal from bottom left to top right corner to reach P from O. Either way, we end up at the same point P. Thus we have a conundrum. The vector [image: ] represents the abstract geometric notion, position of P with respect to O independent of our choice of coordinate axes. On the other hand, the array representation depends on the choice of coordinate system. E.g., the array [image: ]represents the the top right corner point P only under a specific choice of coordinate axes (parallel to the sides of the page) and a reference point (bottom left corner). Ideally, we should specify the coordinate system along with the array representation to be unambiguous. How come then we never do so in machine learning? The answer: in machine learning, it does not matter what exactly the coordinate system is, as long as we stick to any fixed coordinate system.


  There are explicit rules (which we will study below) that state how the vector transforms when the coordinate system changes. We will invoke them when necessary. All vectors used in a machine learning computation must consistently use the same coordinate system or must be transformed appropriately.


  One other point. Planar spaces, e.g., the plane of the paper on which this book is written, are 2-dimensional (abbreviated 2D). The mechanical world we live in is 3-dimensional 3D). Human imagination usually fails to see higher dimensions. In machine learning and data science, we often will talk of spaces with thousands of dimensions. You may not see those spaces in your mind. But that is not a crippling limitation. You will use 3 dimensional analogues in your head. They work in a surprisingly large variety of cases. However, it is important to bear in mind that this is not always true. Some examples where the lower dimensional intuitions fail at higher dimensions will be shown later.


  [image: ]


  Figure 2.1: A vector describing the position of point P with respect to point O. The basic mental picture to have is an arrowed line. This agrees with the definition of vector we learnt in high school: vector has a magnitude (length of the arrowed line) and direction (indicated by the arrow). On a plane, this is equivalent to the ordered pair of numbers x, y, where the geometric interpretations of x and y are as shown in Figure. In this context, it is worthwhile to note that only the relative positions of the points O and P matter. If both the points are moved, keeping their relationship intact, the vector does not change.


  2.2   Python code to create and access vectors and sub-vectors, slice and dice vectors, via Numpy and PyTorch parallel code


  In this book, we will try to familiarize the the reader with numpy, PyTorch and similar programming paradigms alongside the relevant mathematics. Knowledge of python basics will be assumed. The reader is strongly encouraged to try out all code snippets in this book – after installing appropriate packages like numpy, PyTorch etc.


  All the python code in this book is produced via jupyter-notebook. A summarized recapitulation of the theoretical material presented in code is provided right above the code snippet. The fully functional code demonstrating how to create vectors and access its elements, in Python Numpy as well as PyTorch can be found oat https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch2/2.2-vector-numpy-pytorch-intro.ipynb.


  2.2.1   Python Numpy code for introduction to Vectors


  Numpy stands for Numerical Python. It is an inalienable part of practical machine learning.


  Listing 2.1: Introduction to vectors via numpy.
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  2.2.2   PyTorch code for introduction to Vectors


  Pytorch is an open-source machine learning library developed by Facebook’s artificial intelligence group. It is one of the most elegant practical tools for developing deep learning applications at present.


  Listing 2.2: Introduction to vectors via PyTorch
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  2.3   Matrices and their role in Machine Learning and Data Science


  Sometimes, it is not sufficient to group a set of numbers into a vector. We have to collect several vectors into another group. For instance, consider the input to training a machine learning model. Here we have several input instances, each comprising of a sequence of numbers. As seen in section 2.1, the sequence numbers belonging to a single input instance can be grouped into a vector. How do we represent the entire collection of input instances? This is where the concept of matrices, from the world of mathematics, come in handy. A matrix can be viewed as a rectangular array of numbers, arranged in a fixed count of rows and columns. Each row of a matrix is a vector, so is each column. Thus a matrix can be thought of as a collection of row vectors. It can also be viewed as a collection of column vectors. We can represent the entire set of numbers that constitute the training input to a machine learning model as a matrix, with each row vector corresponding to a single training instance.


  Consider our familiar cat-brain problem again. As stated earlier, single input instance to the machine is a vector [image: ] where x0 describes hardness of the object in front of the cat . Now consider a training dataset with many such input instances, each with a known output threat score. You might recall from section 1.1 that the goal in machine learning is to create a function that maps these inputs to their respective outputs with as little overall error as possible. Our training data may look as shown in Table 2.3 below (it should be noted that in real life problems the training dataset is usually large in size, often runs into millions of input-output pairs, however in this toy problem we will have 15 training data instances). From Table 2.3, we can collect the columns corresponding to hardness and sharpness into a matrix as shown in equation 2.1 - this is a compact representation of the training dataset for this problem.[6]


  Table 2.3: Example Training Dataset for our Toy Machine Learning Based Cat Brain


  
    
      	
         

      

      	
        input value: hardness

      

      	
        input value: sharpness

      

      	
        output: threat score

      
    


    
      	
        0

      

      	
        0.11

      

      	
        0.09

      

      	
        -0.8

      
    


    
      	
        1

      

      	
        0.01

      

      	
        0.02

      

      	
        -0.97

      
    


    
      	
        2

      

      	
        0.98

      

      	
        0.91

      

      	
        0.89

      
    


    
      	
        3

      

      	
        0.12

      

      	
        0.21

      

      	
        -0.68

      
    


    
      	
        4

      

      	
        0.98

      

      	
        0.99

      

      	
        0.95

      
    


    
      	
        5

      

      	
        0.85

      

      	
        0.87

      

      	
        0.74

      
    


    
      	
        6

      

      	
        0.03

      

      	
        0.14

      

      	
        -0.88

      
    


    
      	
        7

      

      	
        0.55

      

      	
        0.45

      

      	
        0.00

      
    


    
      	
        8

      

      	
        0.49

      

      	
        0.51

      

      	
        0.01

      
    


    
      	
        9

      

      	
        0.99

      

      	
        0.01

      

      	
        0.009

      
    


    
      	
        10

      

      	
        0.02

      

      	
        0.89

      

      	
        -0.07

      
    


    
      	
        11

      

      	
        0.31

      

      	
        0.47

      

      	
        -0.23

      
    


    
      	
        12

      

      	
        0.55

      

      	
        0.29

      

      	
        -0.14

      
    


    
      	
        13

      

      	
        0.87

      

      	
        0.76

      

      	
        0.65

      
    


    
      	
        14

      

      	
        0.63

      

      	
        0.74

      

      	
        0.36

      
    

  


   


  
    
      	
        [image: ]

      

      	
        (2.1)

      
    

  


  Each row of matrix X is a particular input instance. Different rows represent different input instances. Thus, moving along a row, one encounters successive elements of a single input vectors. Moving along a column, one encounters elements of different input instances. Notice that an individual element is now indexed by 2 numbers, as opposed to 1 in a vector. Thus the 0th row is the vector [x00 x01] representing the 0th input instance.


  Matrix representation of Digital Images


  Digital images too are often represented as matrices. Here, each element represents the brightness at a specific pixel position (x, y coordinate) of the image. Typically, the brightness value is normalized to an integer in the range 0 to 255. 0 is black and 255 is white and 128 is gray etc[7]. Following is an example of a tiny image, 9 pixel in width and 4 pixel in height.


  
    
      	
        [image: ]

      

      	
        (2.2)

      
    

  


  The brightness increases gradually from left to right and also top to bottom. I00 represents the top left pixel which is black. I3,8 represents the bottom right pixel which is white. The intermediate pixels are various shades of gray in between black and white. The actual image looks as shown in Figure 2.2.


  [image: ]


  Figure 2.2: Image corresponding to matrix I4,9 in equation 2.2


  2.4   Python Code: Introduction to Matrices, Tensors and Images via Numpy and PyTorch parallel code


  For programming purposes, one can think of tensors as multi-dimensional arrays. Scalars are 0-dimensional tensors. Vectors are 1-dimensional tensors. Matrices are 2-dimensional tensors. RGB images are 3-dimensional tensors (colorchannels × height × width). A batch of 64 images is a 4-dimensional tensor (64 × colorchannels × height × width).


  2.4.1   Python Numpy code for introduction to Tensors, Matrices and Images


  Listing 2.3: Introduction to matrices via numpy.


  [image: ]


   


  Listing 2.4: Slicing and dicing matrices.
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  Listing 2.5: Tensors and Images in numpy
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  Figure 2.3: Tensors and images in numpy


  [image: ]


  Figure 2.4: Cropped image of dog


  2.4.2   PyTorch code for introduction to Tensors and Matrices


  Listing 2.6: Tensors in PyTorch.


  [image: ]


  2.5   Basic Vector and Matrix operations in Machine Learning and Data Science


  In this section we will introduce several basic vector and matrix operations along with examples to demonstrate their significance in image processing, computer vision and machine learning. It is meant to be an application-centric introduction to linear algebra. But it is not meant to be a comprehensive review of matrix and vector operations, for which the reader is referred to a textbook on linear algebra.


  2.5.1   Matrix and Vector Transpose


  In equation 2.2 we encountered the matrix I4,9 depicting a tiny image. Suppose we want to rotate the image by 90°, so that it looks like Figure 2.5.


  [image: ]


  Figure 2.5: Image corresponding to transpose of matrix I4,9,shown in equation 2.3. This is equivalent to rotating the image by 90° angle


  The original matrix I4,9 and its transpose IT4,9 = I9,4 are shown below


  
    
      	
        [image: ]

      

      	
        (2.3)

      
    

  


  By comparing equation 2.2 and equation 2.3 one can easily see that one can be obtained from the other by interchanging the row and column indices. This operation is generally known as matrix transposition.


  Formally, the transpose of a matrix Am,n with m rows and n columns is another matrix with n rows and m columns. This transposed matrix, denoted ATn,m is such that ATij = Aji. Like the value at row 0 column 6 in matrix I4,9 is 48. In the transposed matrix the same value will appear in row 6 and column 0. In matrix parlance I4,9[0, 6] = I9,4T [6, 0] = 48.


  Vector transposition is really a special case of matrix transposition (since all vectors are matrices - a column vector with n elements is a n × 1 matrix). For instance, an arbitrary vector and its transpose are shown in equation


  
    
      	
        [image: ]

      

      	
        (2.4)

      
    


    
      	
        [image: ]

      

      	
        (2.5)

      
    

  


  2.5.2   Dot Product of two vectors and its role in Machine Learning and Data Science


  In section 1.3 we saw the simplest of machine learning models where the output is generated by taking a weighted sum of the inputs (and then adding a constant bias value). This model/machine is characterized by the weights w0, w1 and bias b. Take the rows of Table 2.3. E.g., for row 0, input values are: hardness of approaching object = 0.11 and softness = 0.09. The corresponding model output will be  y = w0 × 0.11 + w1 × 0.09 + b. In fact, goal of training is to choose w0, w1 and b such that model outputs are as close as possible to the known outputs: i.e., y = w0 × 0.11+ w1 × 0.09+b should be as close to −0.8 as possible, y = w0 ×0.01+w1 ×0.02+b should be as close to −0.97 as possible etc. In general, given an input instance  [image: ] the model output is y = x0w0 + x1w1 + b.


  We will keep returning to the above model throughout the chapter. But in this subsection, let us consider a different question. In this toy example we have only 2 values per input instance. That implies we have only 3 model parameters: 2 weights, w0, w1 and 1 bias b. Hence it is not very messy to write the model output flat out as y = x0w0 + x1w1 + b. Is there a compact way to represent the model output on a specific input instance, irrespective of the size of the input?


  Turns out the answer is yes - we can use an operation called dot product from the world of mathematics. We have already seen in section 2.1 that an individual instance of model input can be compactly represented by a vector, say [image: ] (it can have any number of input values). We can also represent the set of weights as vector [image: ] - it will have the same number of items as input vector. The model output is obtained via the dot product operation of vectors. Dot product is simply the point wise multiplication of the two vectors [image: ] and [image: ] as shown below.


  Formally, given two vectors [image: ] and [image: ] dot product of the two vectors is defined as


  
    
      	
        [image: ]⋅[image: ]= x0w0 + x1w1 +⋅⋅⋅ xnwn

      

      	
        (2.6)

      
    

  


  In other words, sum of the products of corresponding elements of the two vectors is called dot product of the two vectors, denoted [image: ]·[image: ].


  Note that the dot product notation can compactly represent the model output as y=[image: ]·[image: ]+b.


  The representation does not increase in size even when the number of inputs and weights are large.


  Consider our (by now familiar) cat brain example again. Suppose the weight vector is [image: ] and the bias value b = 5. Then the model output for the 0th input instance from Table 2.3 will be [image: ].


  It is another matter that these are bad choices for weight and bias parameters, since the model output 5.51 is a far cry from the desired output −0.89. We will soon see how to obtain better parameter values. For now, we just need to note that the dot product offers a neat way to represent the simple weighted sum model output.


  The dot product is defined only if the vectors have the same dimensions.


  Sometimes the dot product is also referred to as inner product, denoted ⟨[image: ], [image: ]⟩. Strictly speaking, the phrase inner product is a bit more general, it applies to infinite dimensional vectors as well. In this book, we will often use the terms interchangeably, sacrificing mathematical rigor for enhanced understanding.


  2.5.3   Matrix Multiplication and Machine Learning, Data Science


  Matrix-Vector Multiplication: In section 2.5.2 we saw that given a weight vector, say [image: ] and the bias value b = 5, the weighted sum model output upon a single input instance, say [image: ] can be represented using a vector-vector dot product [image: ]. Now, as depicted in equation 2.1, during training we are dealing with many training data instances at the same time. In fact, in real life, we typically deal with hundreds of thousands of input instances, each having hundreds of values. Is there a way to represent this compactly, such that it is independent of the count of input instances and their sizes?


  Again turns out the answer is yes. We can use the idea of matrix-vector multiplication from the world of mathematics. The product of a matrix X and column vector [image: ] is another vector, denoted X[image: ]. Its elements are the dot products between the row vectors of X and the column vector [image: ]. E.g.,given the model weight vector [image: ] and the bias value b = 5, the outputs on the toy training dataset of our familiar cat-brain model (equation 2.1) can be obtained via the following steps


  
    
      	
        [image: ]

      

      	
        (2.7)

      
    

  


  Adding the bias value of 5, the model output on the toy training dataset is
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        (2.8)

      
    

  


  In general, matrix column-vector multiplication works as follows.
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        (2.9)

      
    

  


   


   


  Matrix-Matrix Multiplication: Generalizing the notion of matrix times vector, we can define a matrix times matrix. A matrix with m rows and p columns, say, Am,p can be multiplied with another matrix with p rows and n columns, say Bp,n to generate a matrix with m rows and p columns, say Cm,n, e.g., Cm,n = Am,p Bp,n. Note that the number of columns of the left matrix must match the number of rows in the right matrix. Element i, j of the result matrix - Ci,j is obtained by point-wise multiplication of the elements of the ith row vector of A and jth column vector of B. The following example illustrates the idea


  [image: ]


  The computation for C2,1 is shown via highlights by way of example. It is worthwhile to note that matrix multiplication is not commutative, in general, AB ≠ BA.


  At this point, the astute reader may already have noted that the dot product is a special case of matrix multiplication. For instance, the dot product between two vectors [image: ]


  And [image: ] is equivalent to transposing either of the two vectors and then doing a matrix multiplication with the other. In other words,


  [image: ]


  The idea works in higher dimensions too. In general, given two vectors [image: ] and [image: ], dot product of the two vectors is defined as
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        (2.10)

      
    

  


  Another special case of matrix matrix multiplication is row-vector matrix multiplication, e.g.,


  [image: ]


  Transpose of Matrix Products: Given two matrices A and B where the number of columns of A matches the number of rows of B (i.e., it is possible to multiply them) the transpose of the product is the product of the individual transposes, in reversed order. The rule also applies to matrix vector multiplication. The following equations capture this rule


  
    
      	
        [image: ]

      

      	
        (2.11)

      
    

  


  2.5.4   Length of a Vector aka L2 norm and its role in Machine Learning


  Suppose a machine learning model was supposed to output a target value [image: ] y but it outputted y instead. We are interested in the error made by the model. The error is the difference between the target and the actual outputs.


  We would like to make one important note here. During computing errors, we are only interested in how far away from ideal the computed value is. We do not care whether the computed value is bigger or smaller than ideal. For instance, if the target (ideal) value is 2, the computed values 1.5 and 2.5 are equally in error - we are equally happy or unhappy with either of them. Hence, it is common practice to square error values. Thus for instance, if the the target value is 2 and the computed values 1.5 the error is (1.5 − 2)2 = 0.25. If the target value is 2.5, the error is (2.5 − 2)2 = 0.25. The squaring operation essentially eliminates the sign of the error value. We can then follow it up with a square root, but it is OK not to. One might ask, but wait, squaring alters the value of the quantity, don’t care about the exact values of the error? Answer is, we usually don’t, we only care about relative values of errors. If the target is 2, all we want that the error for an output value of, say, 2.1 is less than the error for output value of 2.5, the exact values of the errors do not matter.


  Let us now continue with our discussion of machine learning model error. As seen earlier in section 2.5.3, given a model weight vector, say [image: ]and the bias value b = 5, the weighted sum model output upon a single input instance, say, [image: ] is [image: ]


  The corresponding target (ideal) output, from Table 2.3, is −0.8. The squared error


  e2 = (−0.8 − 5.51)2 = 39.82 gives us an idea of how good or bad the model parameters 3, 2, 5 are. For instance, if instead, we use a weight vector [image: ] and bias value −1, we get model output [image: ] The output is exactly same as the target. The


  corresponding squared error e2 = (−0.8 − (−0.8))2 = 0. This (zero error) immediately tells us that 1, 1, −1 is a much better choice of model parameters than 3, 2, 5.


  What happens when we have multiple inputs, as during training a model? In equation 2.8 we have seen that given the toy training dataset from Table 2.3, a simple weighted sum model with weights 3, 2 and bias 5 will generate the output vector


  [image: ]


  From Table 2.3 we also see that the target output vector is


  [image: ]


  The differences between target and model output over the entire training set can be expressed as a vector


  [image: ]


  We can square the individual elements of the difference vector to obtain a squared error vector. However, to get a proper feel for the overall error during training, we would like to obtain a single number. What we would really like to do is to square each term of the difference vector and then add those elements to yield a single number. Recalling equation 2.10, this is exactly what would happen if we take the dot product of the difference vector with itself. That happens to be the definition of the squared magnitude or length or L2-Norm of a vector: dot product of the vector with itself. In the above example, the overall training (squared) error would be


  [image: ]


  Formally, the length of a vector [image: ], denoted [image: ], is defined as  [image: ] This quantity is sometimes called L2 norm of the vector. In particular, given a machine learning model with output vector [image: ] and a target vector [image: ], the error is same as the magnitude or L2-norm of the difference vector


  [image: ]


  2.5.5   Geometric intuitions for Vector Length - Model Error in Machine Learning


  For a 2D vector [image: ], as seen in Figure 2.1, the L2 norm  [image: ] is nothing but the hypotenuse of the right angled triangle whose sides are elements of the vector.


  The same intuition holds in higher dimensions, e.g., if [image: ],  then [image: ] established from Pythagoras Theorem.


  An unit vector is a vector whose length is 1, e.g.,[8] [image: ] Unit vectors typically represent a direction.


  In machine learning, the goal of training is often to minimize the length of the error vector (difference between model output vector and the target ground truth vector).


  2.5.6   Geometric intuitions for the Dot Product - Feature Similarity in Machine Learning and Data Science


  Consider the document retrieval problem depicted in Table 2.2 one more time. We have a set of documents, each described by its own feature vector. Given a pair of such documents, we have to find the “similarity” between them. This essentially boils down to estimating similarity between two feature vectors. In this section, we will see that the dot-product between a pair of vectors can be used as a measure of similarity between them.


  For instance, consider the feature vectors corresponding to d5 and d6 in Table 2.2. They are  [image: ] and [image: ] The dot-product between them is 1×0+0×1 = 0, low. Indeed there is no common word of interest between them and hence the documents are very dissimilar. On the other hand, the dotproduct between feature vectors of d3 and d4 is [image: ], high. Indeed they have much commonality in words of interest and are similar documents. We will keep revisiting this problem and solve it with more and more finesse. Now we will study in greater detail how dot-products measure similarities between vectors in this sub-section. First we will show that the component of a vector along another is yielded by the dot product. Using this, we will show that the “similarity/agreement” between a pair of vectors is can be estimated using the dot product between them.


  Dot Product measures component of one vector along another


  [image: ]


  Figure 2.6: 2D Vector Components


  [image: ]


  Figure 2.7: Dot Product as component of one vector along another.  [image: ] · [image: ] = [image: ]T [image: ] = axbx + ayby = ||[image: ]|| ||[image: ]||cos(θ)


  Let us examine a special case first - the component of a vector along a coordinate axis. The components of a vector along a coordinate axis can be obtained by multiplying the length of the vector with the cosine of the angle between the vector and the relevant coordinate axis. This is shown for 2D in Figure 2.6. As shown there, a vector [image: ] can be broken into two components along X and Y axes, as


  [image: ]


  Note, how the length of the vector is preserved:


  [image: ]


  Now let us study the more general case of the component of one vector in the direction of another arbitrary vector. The component of a vector [image: ] along another vector [image: ], is [image: ] · [image: ] = [image: ]T [image: ]. This is equivalent to ||[image: ]|| ||[image: ]||cos(θ) where θ is the angle between the vectors [image: ] and [image: ]. This has been proved for the 2-dimension case in Appendix 5.1. The serious reader should read it for deeper intuitions.


   


  Dot Product measures agreement between two vectors


  The dot product can be expressed using the cosine of the angle between the vectors. Given two vectors [image: ] and [image: ], if θ is the angle between them we have (see Figure 2.7)


  
    
      	
        [image: ] · [image: ] = axbx + ayby                    for two dimensions


        [image: ] · [image: ] = [image: ]T [image: ] = ||[image: ]|| ||[image: ]||cos(θ) for all dimensions

      

      	
        (2.12)

      
    

  


  Expressing the dot product using cosines makes it easier to see that it measures the agreement (aka correlation) between two vectors. If the vectors have the same direction, the angle between them is 0 and the cosine is 1 implying maximum agreement. The cosine progressively becomes smaller as the angle between the vectors increases until the two vectors become perpendicular to each other when the cosine becomes zero, implying no correlation - vectors are independent of each other. If the angle between them is 180° the cosine is -1 implying vectors are anti-correlated. Thus, the dot-product of two vectors is proportional to the directional agreement between them.


  What role does the vector lengths play in all this? The dot product between two vectors is also proportional to the lengths of the vectors. This means agreement scores between bigger vectors will be higher (agreement between US president and German Chancellor counts more than agreement between you and me).


  If one wants the agreement score to be neutral to the vector length, one can use a normalized dot product - between unit length vectors along same directions.


  [image: ]


  The normalized do product (aka cosine similarity measure) indicates pure directional agreement. It is often used in document processing. Suppose we have some query text which we want to match against various archive documents. We want to retrieve archived documents rank ordered by their similarity to the query text. We will have descriptor vector corresponding to the query text as well as each archive document. We can use dot product between descriptor vectors as a measure of similarity, but we do not want longer documents to automatically score higher in similarity. Rather we want the similarity score to be independent of the length of the document. Cosine similarity is often used here. Document retrieval and cosine similarity are discussed in detail in section 4.5.1.


  Dot Product and Difference between two unit vectors


  To obtain further insight into how the dot product indicates agreement or correlation between two directions, consider two unit vectors [image: ] , and [image: ] the difference between them [image: ]


  Note that, since they are unit vectors, [image: ] The length of difference vector


  [image: ]


  From the last equality, it is evident that larger dot product implies a smaller difference, i.e., more agreement between the vectors.


  2.6   Orthogonality of Vectors and its physical significance


  Try moving an object at right angles to the direction in which you are pushing it. You will find it is impossible. In fact, the larger the angle, the less effective your force vector becomes (finally becoming totally ineffective at 90° angle). This is the reason why it is easy to walk on a horizontal surface (you are moving at right angles to the direction of gravitational pull, gravity vector is ineffective) but harder on an upwards incline (gravity vector is having some effect against you). These physical notions are captured mathematically in the notion of dot product. The dot product between two vectors [image: ] (say the push vector) and [image: ] (say the displacement of the pushed object vector) is ||[image: ]|| ||[image: ]||cos(θ) where θ is the angle between the two vectors. When θ is 0 - the two vectors are aligned - cosθ = 1, maximum possible value of cosθ - push is maximally effective. As θ increases, cosθ decreases, push becomes less and less effective. Finally, at θ = 90°, cosθ = 0 and push becomes completely ineffective.


  Two vectors are orthogonal if their dot product is zero. Geometrically, this means the vectors are perpendicular to each other. Physically, this means the two vectors are independent, one cannot influence the other. One can say, there is nothing in common between orthogonal vectors. For instance, the feature vector for d5 is [image: ] and that for d6 is [image: ]


  in Table 2.2. These are orthogonal (dot-product is zero) and one can easily see that none of the feature words (“gun”, “violence”) are common to both the documents.


  2.7   Python code: Basic Vector and Matrix operations via Numpy


  In this section we will demonstrate python numpy code to illustrate many of the concepts discussed above.


  Fully functional code for this section, executable via Jupyter-notebook, can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch2/2.7-transpose-dot-matmul-numpy-pytorch.ipynb.


  2.7.1   Python numpy code for Matrix Transpose


  Listing 2.7: Transpose


  [image: ]


  2.7.2   Python numpy code for Dot product


  The dot product of two vectors [image: ] and [image: ] represents the component of one vector along the other.


  Consider two vectors [image: ]= [a1 a2 a3] and [image: ]=[b1 b2 b3]. Then [image: ].[image: ]= a1b1 + a2b2 + a3b3.


  Listing 2.8: Dot product


  1 a = np. array ([1 , 2, 3]) 2 b = np. array ([4 , 5, 6]) 3 a_dot_b = np. dot(a, b) 4 print ("Dot product of these two vectors is: " 5                "{}". format ( a_dot_b )) 6 7 # Dot product of perpendicular vectors is zero 8 vx = np. array ([1 , 0]) # a vector along X- axis 9 vy = np. array ([0 , 1]) # a vector along Y- axis 10 print (" Example dot product of orthogonal vectors :" 11               " {}". format (np.dot(vx , vy)))


  Output:


  1 Dot product of these two vectors is: 32 2 Example dot product of orthogonal vectors : 0


  2.7.3   Python numpy code for Matrix vector multiplication


  Consider a matrix Am,n with m rows and n columns which is multiplied with a vector [image: ]n with n elements.


  Below we show an example with m = 3 and n = 2.


  The resultant vector [image: ]m is:


  [image: ]


  [image: ]


  In general


  ci = ai1b1 + ai2b2 + … + ainbn


  Listing 2.9: Matrix vector multiplication


  [image: ]


  2.7.4   Python numpy code for Matrix Matrix Multiplication


  Consider a matrix Am,p with m rows and p columns. Let us multiply it with another matrix Bp,n with p rows and n columns. The resultant matrix Cm,n will contain m rows and n columns. Note that number of columns in the left matrix A should match the number of rows in the right matrix B.


  [image: ]


  [image: ]


  In general


  [image: ]


  Listing 2.10: Matrix matrix multiplication


  [image: ]


  2.7.5   Python numpy code for Transpose of Matrix Product


  Given two matrices A and B where the number of columns of A matches the number of rows of B, the transpose of their product is the product of the individual transposes in reversed order. (AB)T = BTAT


  Listing 2.11: Transpose of Matrix product


  [image: ]


  2.7.6   Python numpy code for Matrix Inverse


  Inverse of a matrix A is another matrix, denoted A−1 such that AA1 = A−1A = 𝕀. This equation is the peer of the scalar world equation aa−1 = 1 for any constant a, e.g., 77−1 = 1. 𝕀 is the counterpart of the scalar quantity 1 and inverse of matrix A is the counterpart of the scalar 45 operation raising to power −1.


  𝕀 is the so called identity matrix, defined as a matrix which has 1 in diagonal, 0 elsewhere. The 2 × 2 identity matrix is defined as [image: ] The 3 × 3 identity matrix is defined as [image: ]. The generic n × n identity matrix is [image: ]


  Why do we need the inverse?


  Let us say we want to solve a simultaneous equation with two variables x1 and x2, Such an equation can be written as


  a11x1 + a12x2 = b1


  a21x1 + a22x2 = b2


  This can be written using matrices and vectors as 


  A[image: ] = [image: ]


  where


  [image: ]


  Solution of A[image: ] = [image: ] is


  [image: ]=A−1[image: ]


  where A−1 is the matrix inverse, (assumed det(A) ≠ 0). Compare this with the scalar equation ax = b whose solution is x = a−1b.


  The determinant can be computed as


  det(A) = a11a22 − a12a21


  The inverse is


  [image: ]


  Although the above example is shown with a small 2× system of simultaneous equations, the code below is general and works for arbitrary sized linear systems.


  Listing 2.12: Matrix inverse for invertible matrix (non-zero determinant)


  [image: ]


  Listing 2.13: Singular matrix


  [image: ]


  2.8   Multidimensional Line and Plane Equations and their role in Machine Learning


  Geometrically speaking, what does a machine learning classifier really do? We provided the outline of an answer in section 1.4. The reader is invited to review that and especially Figures 1.2, 1.3.


  We will briefly recapitulate here.


  Inputs to a classifier are feature vectors. These vectors can be viewed as points in some multidimensional feature space. The task of classification then boils down to separating the points belonging to different classes. The points maybe all jumbled up in the input space. It is the job of the model to transform them to a different (output) space where it is easier to separate the classes. A visual example of this was provided in Figure 1.3.


  What is the geometrical nature of the separator? In a very simple situation, such as the one depicted in Figure 1.2 the separator is a line in 2D space. In real life situations, the separator is often a line or a plane in a high dimensional space. In more complicated situations, the separator is a curved surface, as depicted in Figure 1.4.


  In this section, we will study the mathematics and geometry behind two types of separators, lines and planes in high dimensional spaces, aka hyper-lines and hyper-planes.


  

2.8.1   Multidimensional Line Equation


  In high school geometry we learnt y = mx + c as the equation of a line. But this does not lend itself readily to higher dimensions. Here we will study a better representation for a straight line that works equally well for any finite dimensional space.


  [image: ]


  Figure 2.8: Any point [image: ] on the line joining two vectors [image: ], [image: ] is given by [image: ]= [image: ]+ α ([image: ] − [image: ]). By varying a, we can get any point on the line. α = 0 yields [image: ]. α = 1 yields [image: ]. Values of α in between 0 and 1 yields points in between [image: ] and [image: ]. Negative values of α yields points to the left of [image: ]. Greater than 1 values of α yields points to the right of [image: ]. This equation of line works for any dimension, not just 2.


  As shown in Figure 2.8, a line joining vectors [image: ] and [image: ] can be expressed as


  
    
      	
        [image: ]= [image: ]+ α ([image: ] − [image: ]) = (1− α) [image: ]+ α[image: ]

      

      	
        (2.13)

      
    


    
      	
        ⇔(1− α) [image: ] = 0

      

      	
        (2.14)

      
    

  


  What equation 2.14 is saying is this: any point on the line can be obtained by by varying a. Different ranges of a values yield different segments on the line. As shown in Fig 2.8, values of a in between 0 and 1 yields points in between [image: ] and [image: ]. Negative values of a yields points to the left of [image: ]. Greater than 1 values of a yields points to the right of [image: ]. This equation of line works for any dimension, not just 2.


  2.8.2   Multidimensional Planes and their role in Machine Learning


  In section 1.5 we encountered classifiers. Lets take another look at them. Suppose we want to create a classifier that helps us to make buy or no-buy decisions on stocks based on only 3 input variables: (i) Momentum - rate at which the stock price is changing. Positive momentum means stock price is increasing and vice versa. (ii) Dividend paid last quarter (iii) Volatility - how much price fluctuations have been seen in last quarter. Let us plot all training points in the feature space with coordinate axes corresponding to the variables momentum, dividend, volatility. It can be seen that the classes can be separated by a plane in the 3 dimensional feature space (Figure 2.9 ).


  Geometrically speaking, our model simply corresponds to this plane. Input points that are above the plane indicate buy decision (green circles) and input points below indicate no-buy decision (red circles). In general, one wants to buy high positive momentum stocks hence points at the higher end of the momentum axis are likelier to be buy. However, this is not the only indicator. For more volatile stocks, one demands higher momentum to switch from no-buy to buy. This is why the plane slopes upwards (higher momentum) as we move rightwards (higher volatility). Also, one demands less momentum for stocks with higher dividends. This is why the plane slopes downwards (lower momentum) as we go towards higher dividends.


  Real problems will of course have more dimensions (since many more inputs will be involved in the decision) and the separator will become a hyper-plane. Also, in real life problems, often the points will be too intertwined in the input space for any separator to work. We will first have to apply a transformation that maps the point to an output space where it is easier to separate. Given their significance as class separators in machine learning, we will study hyper-planes in this subsection.


  [image: ]


  Figure 2.9: A toy machine learning classifier for stock buy vs no-buy decision making. Red indicates no-buy, green indicates buy. The decision is made from 3 input variables: (i) Momentum (ii) Dividend(iii) Volatility.


  In high school 3D geometry we learnt ax + by + cz + d = 0 as the equation of a plane. Now we are going to study a version of it that works in higher dimensions. Geometrically speaking, given a plane (in any dimension), we will be able to find a direction, called normal direction, denoted  n̂, such that


  ·   If we take any pair of points on the plane: say [image: ]0 and [image: ]


  ·   The line joining [image: ] and [image: ]0, i.e., the vector [image: ] − [image: ]0, is orthogonal to n̂


  Thus, if we know a fixed point on the plane, say [image: ]0, then all points on the plane will satisfy


  n̂ ⋅ ([image: ] − [image: ]0) = 0 or


  n̂T ([image: ] − [image: ]0) = 0


  [image: ]


  Figure 2.10: The normal to the plane is same at all points on the plane.This is the fundamental property of a plane. n̂ depicts that normal direction. Let [image: ]0 be a point on the plane. All other points on the plane, depicted as [image: ] will satisfy the equation  ( [image: ] − [image: ]0·)  n̂ = 0. This physically says that the line joining [image: ]0 and [image: ] is at right angles to n̂. This formulation works for any dimension.


  Since n̂ and [image: ]0 are constants, −n̂T [image: ]0  is also a scalar constant, say b. Thus we can express the equation of a plane as


  
    
      	
        n̂T [image: ] + b = 0


         

      

      	
        (2.15)

      
    

  


  In section 1.3, equation 1.3, we encountered the simplest machine learning model - just a weighted sum of inputs along with a bias. Denoting the inputs as [image: ], the weights as [image: ] and the bias as b, this model was depicted as [image: ]T [image: ] + b. Comparing with equation 2.15, we get the geomeric significance - the simple model of equation 1.3 is nothing but a planar separator with the weight vector [image: ] corresponding to the plane’s normal. During training we are learning the weights - this is essentially learning the optimal plane that will separate the training inputs. In order to be consistent with the machine learning paradigm, henceforth we will write the equation of a hyper-plane as


  
    
      	
        [image: ]T [image: ] + b = 0


         

      

      	
        (2.16)

      
    

  


  for some constant [image: ] and b. Note that [image: ] need not be an unit length vector. Since the right hand side is zero, if necessary, we can divide both sides by ||[image: ]||    to convert to a form like equation 2.15.


  The sign of the expression [image: ]T [image: ]+ b  has special significance. All points [image: ] for which [image: ]T [image: ]+ b < 0 lie on the same side of the hyper-plane. All points [image: ] for which [image: ]T [image: ]+ b > 0 lie on the other side of the hyper-plane. And of course, all points [image: ] for which [image: ]T [image: ]+ b = 0 lie on the hyper-plane.


  It should be noted that the 3D equation ax + by + cz + d = 0 is a special case of equation 2.16 because


  ax + by + cz + d = 0 can be rewritten as


  [image: ]


  which is same as [image: ]T [image: ]+ b = 0 with [image: ] and [image: ]


  Incidentally, this tells us that in 3D, the normal to the plane ax + by + cz + d = 0 is


  [image: ]


  2.9   Linear Combination, Linear Dependence, Vector Span and Basis Vectors, their Geometrical Significance, Collinearity Preservation


  By now, it should be clear that machine learning and data science is all about points in high dimensional spaces. Consequently, it behooves us to have a decent understanding of these spaces. For instance, given a space, we may need to ask, would it be possible to express all points in the space in terms of a set of few vectors? What is the smallest set of vectors we really need for that purpose? This section is devoted to the study of these questions.


  Linear Dependence


  [image: ]


  Figure 2.11: Linearly dependent points in a 2D plane.


  Consider the vectors (points) shown in Figure 2.11. The corresponding vectors in 2D are


  [image: ]


  We can find find 4 scalars α0 = 2, α1 = 2, α2 = 2 and α3 = −3 such that


  [image: ]


  If we can find such scalars, not all zero, we say the vectors [image: ]0, [image: ]1, [image: ]2, [image: ]3, are linearly dependent. The geometric picture to keep in mind is that points corresponding to linearly dependent vectors lie on a single straight line in the space containing them.


  Collinearity implies linear dependence


  Proof: Let [image: ], [image: ] and [image: ] be three collinear vectors. From equation 2.14 there exists some α ∈ ℝ such that


  [image: ] = (1 − α)[image: ] + α[image: ]


  The above equation can be rewritten as


  α1[image: ] + α2[image: ] + α3[image: ] = 0


  where α1 = (1 − α), α2 = α and α3 = −1. Thus we have proved that 3 collinear vectors [image: ], [image: ] and [image: ] must also be linearly dependent.


  Linear Combination


  Given a set of vectors [image: ]1, [image: ]2, …. [image: ]n  and a set of scalar weights α1,α2, ... αn, the weighted sum [image: ]1, [image: ]2, …. [image: ]n  is called a linear combination.


  Generic multi-dimensional definition of Linear Dependence


  A set of vectors [image: ]1, [image: ]2, …. [image: ]n are linearly dependent if there exists a set of weights α1,α2, ... αn, not all zeros, such that α1[image: ]1,α2[image: ]2, ... αn[image: ]n = 0. E.g., the row vectors [1 1] and [2 2] are linearly dependent, since −2[1 1] + [2 2] = 0.


  Span of a set of vectors


  Given a set of vectors  [image: ]1, [image: ]2, …. [image: ]n, their span is defined as the set of all vectors that are linear combinations of the original set . This includes the original vectors.


  E.g., Consider the 2 vectors [image: ]  and [image: ].


  The span of these 2 vectors is the entire plane containing these 2 vectors. For instance, the vector [image: ] can be expressed as a weighted sum 18[image: ]x⊥+97[image: ]y⊥ You can probably recognize that [image: ] and  [image: ]are the familiar Cartesian coordinate axes (X axis and Y axis respectively) in 2D plane.


  Vector Spaces, Basis Vectors and Closure


  We have been talking informally about vector spaces. It is time to define them more precisely. Vector Space: A set of vectors (points) in n dimensions form a vector space if and only if the operations of addition and scalar multiplication are defined on the set. In particular, the above implies that it is possible to take linear combinations of members of a vector space. Basis Vectors: Given a vector space, a set of vectors that span the space is called a basis for the space.


  For instance, for the space ℝ2, the two vectors [image: ] and  [image: ] are basis vectors. This essentially means that any vector in ℝ2 can be expressed as a linear combination of these two. The notion can be extended to higher dimensions. For ℝn, the vectors [image: ]


  form a basis.


  The alert reader has probably guessed by now that the basis vectors are related to coordinate axes. In fact, the basis vectors described above constitute the Cartesian coordinate axes. So far, we have only seen examples of basis vectors that are mutually orthogonal, e.g., the dot product of the two basis vectors in ℝ2 shown above [image: ].


  However, basis vectors do not have to be orthogonal. Any pair of linearly independent vectors forms a basis in ℝ2. That said, orthogonal vectors are most convenient, as we shall see later. Basis vectors, then, are by no means unique.


  Minimal and Complete Basis: Exactly n vectors are needed to span a space with dimensionality n. This means, the basis set for a space will have at least as many elements as the dimensionality of the space. That many basis vectors are also sufficient to form basis, that is we do not need any more to span the space. For instance, exactly n vectors are needed to form a basis in (i.e., span) ℝn.


  A related fact is that, in ℝn any set of m vectors, with m > n will be linearly dependent. In other words, the largest size of a set of linearly independent vectors in a n-dimensional space is n. Closure: A set of vectors is said to be closed under linear combination if and only if the linear combination of any pair of vectors in the set also belongs to the same set. Consider the set of points ℝ2. Recall, this is the set of vectors with 2 real elements. Take any pair of vectors, [image: ] and [image: ] in ℝ2. For instance, say, [image: ] and [image: ].


  Any linear combination of these two vectors will also comprise two real numbers, i.e., will belong to ℝ2. We say ℝ2 is a vector space since it is closed under linear combination.


  Consider the space ℝ2. Geometrically speaking, this represents a 2D plane. Let us take two points on this plane, [image: ] and [image: ]. A linear combination of them, geometrically corresponds to the line joining them. We know that if two points lie on a plane, all points on the line will also lie on the plane. This is the geometrical intuition behind the notion of closure on vector spaces. It can be extended to arbitrary dimensions.


  On the other hand, the set of points on the surface of a sphere is not closed under linear combination, because, the line joining an arbitrary pair of of points on this set will not wholly lie on the surface of that sphere.


  2.10   Linear Transforms - Geometric and Algebraic interpretations


  Inputs to a machine learning or data science system are typically feature vectors (introduced in section 2.1) in high dimensional spaces. Each individual dimension of the feature vector corresponds to a particular property of the input. The feature vector, thus, is a descriptor for the particular input instance. It can be viewed as a point in the feature space. We usually transform the points to a friendlier space where it is easier to perform the analysis we are trying to do. For instance, if we are building a classifier, we try to transform the input to a space where the points belonging to different classes are more segregated (see section 1.3 in general and Fig 1.3 in particular for simple examples). Sometimes we transform to simplify the data, eliminating axes along which there is scant variation in the data. Given their significance in machine learning, in this section we will study the basics of transforms.


  Consider the matrix


  [image: ]


  In section 2.14 we will see that this is a special kind of matrix called rotation matrix - for now simply consider it as an example of matrix. R can be thought of as a transformation operator that maps a point in 2D plane to another point in the same plane. In mathematical notation,  R : ℝ2 → ℝ2. In fact, as depicted in Figure 2.14, multiplication by this particular R rotates the position vector of a point in 2D plane by an angle 45°.


  The output and input points may belong to different spaces in a transform. For instance, consider the matrix


  [image: ]


  It is not hard to see that this matrix projects 3D points to the 2D X-Y plane.


  [image: ]


  We say the projection matrix P : ℝ3 → ℝ2.


  The transforms R and P share a common property - they preserve collinearity. This means, a set of vectors (points) [image: ], [image: ], [image: ]··· that originally lay on a straight line remain so after the transformation.


  Let us check this out for the rotation transformation, on the example from section 2.9. There we saw four vectors


  [image: ]


  These vectors all lie on a straight L : x = y. The transformed versions of these vectors are


  [image: ]


  It is trivial to see that the transformed vectors also lie on a (different) straight line. In fact, [image: ]’, [image: ]’ [image: ]’ [image: ]’ lie on the γ axis, which is the 45° rotated version of the original line y = x.


  The projection transform represented by matrix P also preserves collinearity. Consider four collinear vectors in 3D


  [image: ]


  The corresponding transformed vectors


  [image: ]


  also lie on a straight line in 2D.


  The class of transforms that preserve collinearity is known as linear transform. A more formal definition is provided below.


  Generic multi-dimension definition of Linear Transform


  A function ϕ is a linear transform if and only if it satisfies


  
    
      	
        ϕ(α[image: ] + β[image: ]) = αϕ([image: ]) + βϕ([image: ])   ∀ α, β ∈ ℝ

      

      	
        (2.17)

      
    

  


  In other words, a transform is linear if and only if the transform of the linear combination of two vectors is same as the linear combination (with same weights) of the transforms of individual vectors.


  Note: This can be remembered as “linear transform means transforms of linear combinations are same as linear combinations of transforms”.


  Multiplication with a rotation or projection matrix (shown above) are linear transforms.


  All Matrix Vector Multiplications are Linear Transforms


  Let us verify here that matrix multiplication satisfies the definition of linear mapping (equation 2.17). Let [image: ],[image: ] ∈ ℝn be two arbitrary n-dimensional vectors and Am,n be an arbitrary matrix with n columns. Then, following standard rules of matrix vector multiplication


  A(α[image: ] + β[image: ]) = α(A[image: ]) + β ϕ(A[image: ])


  which mimics equation 2.17 with ϕ replaced with matrix A. Thus we have proved that all matrix multiplications are linear transforms. The vice versa is not true. In particular, linear transforms that operate on infinite dimensional vectors are not matrices. But all linear transforms that operate on finite dimensional vectors are expressible as matrices. The proof is a bit more complicated and will be skipped.


  Thus, in finite dimensions, multiplication with a matrix and linear transformation are one and the same thing. In section 2.3 we saw the array view of matrices. The corresponding geometric view, that all matrices represent linear transformation was presented in this section.


  Let us finish this section by studying an example of a transform that is not linear. Consider the function


  ϕ([image: ]) = ||[image: ]||


  for [image: ]∈ ℝ . This function ϕ maps n-dimensional vectors to a scalar which is the length of the vector, ϕ: ℝn → ℝ. We will examine if it satisfies equation 2.17 with α1 = α2 = 1. For two specific vectors [image: ], [image: ]  ∈ ℝn


  [image: ]


  Now


  [image: ]


  and


  [image: ]


  Clearly these two are not equal and hence we have violated equation 2.17 - ϕ is a non-linear mapping.


  2.11   Multidimensional Arrays, Multi-linear Transforms and Tensors


  One often hears the term tensor in connection to machine learning. Google’s famous machine learning platform is called Tensorflow. In this section, we will introduce the reader to the concept of a tensor.


  2.11.1   Array View: Multidimensional arrays of numbers


  A tensor maybe viewed as a generalized n-dimensional array - although, strictly speaking, not all multi-dimensional arrays are tensors. We will learn more about the distinction between multi-dimensional arrays and tensors when we study multi-linear transforms. For now, we will not worry too much about the distinction. A vector can be viewed as a 1 tensor, a matrix is 2 tensor, a scalar is 0 tensor.


  In section 2.3, we saw that digital images are represented as 2D arrays (matrices). A color image, where each pixel is represented by 3 colors, R, G, B (Red, Green, Blue), is an example of a multi-dimensional array or tensor. This is because it can be viewed as a combination of 3 images, the R, G and B images respectively.


  The inputs and outputs to each layer in a neural network are also tensors.


  2.12   Linear Systems and Matrix Inverse


  Machine learning today is usually an iterative process. Given a set of training data, one wants to estimate a set of machine parameters that would yield target values (or close approximations to them) on training inputs. The number of training inputs and the size of the parameter set is often very large. This makes it impossible to have a closed-form solution - where one solves for the unknown parameters in a single step. Solutions are usually iterative. One starts with a guessed set of values for the parameters and iteratively improves the guess by processing training data. Having said that, one often encounters smaller problems in real life. One is better off using more traditional closed-form techniques here since they are much faster and more accurate. This section is devoted to studying these techniques.


  Let us go back to our familiar cat brain problem and refer to its training data in Table 2.3. As before, we are still talking about a weighted sum model with 3 parameters - weights w0, w1 and bias b. Let us focus on the top three rows from the table, repeated here for convenience.


  Table 2.4: Example Training Dataset for our Toy Machine Learning Based Cat Brain


  
    
      	
         

      

      	
        input value: hardness

      

      	
        input value: sharpness

      

      	
        output: threat score

      
    


    
      	
        0

      

      	
        0.11

      

      	
        0.09

      

      	
        -0.8

      
    


    
      	
        1

      

      	
        0.01

      

      	
        0.02

      

      	
        -0.97

      
    


    
      	
        2

      

      	
        0.98

      

      	
        0.91

      

      	
        0.89

      
    

  


  The training data says, with hardness value 0.11 and sharpness value 0.09, we expect the output of the system to match (or closely approximate) the target value −0.8 etc. In other words, our estimated values for parameters w0, w1, b should ideally satisfy


  0.11 w0 + 0.09 w1 + b = −0.8


  0.01 w0 + 0.02 w1 + b = −0.97


  0.98 w0 + 0.91 w1 + b = 0.89


  We can express this via matrix multiplication as the following equation


  [image: ]


  There exists formal methods (discussed below) to directly solve such equations for w0, w1, b (in this very simple example one might just “see” that w0 = 1,w1 = 1, b = −1 solves the equation. In many situations, solving a simple linear system is all one needs to do. It is important to recognize simple problems and use simple tools that can solve them. This section is devoted to closed-form solutions for unknown parameters.


  Let us say we want to solve a simultaneous equation with two variables, x1 and x2, we can easily write it as:


  a11x1 + a12x2 = b1


  a21x1 + a22x2 = b2


  This can be written using matrices and vectors as A[image: ] = [image: ] where


  [image: ]


  [image: ] and [image: ]


  The matrix formulation easily extends to multi-dimensions. An arbitrary linear system in n unknowns x1, x2, x3, ··· , xn,


  a11x1 + a12x2 + a13x3 + ··· + a1nxn = b1


  a21x1 + a22x2 + a23x3 + ··· + a2nxn = b2


     .


     .


     .


  an1x1 + an2x2 + an3x3 + ··· + annxn = bn


  can be expressed as


  A[image: ]


  Although equivalent, the matrix depiction is more compact and dimension independent. In machine learning, we usually have many variables (say thousands). Then, this compactness makes a serious difference. Also, A[image: ] = [image: ] looks similar to the 1 variable equation we know so well: ax = b. In fact, many intuitions can be transferred from the 1D to higher dimensions.


  What is the solution of the 1D equation? One learnt it in grade 5 perhaps: Solution of ax = b is x = a−1b where a−1 = 1/a , a ≠ 0.


  We can use the exact same notation in all dimensions. Solution of A[image: ] = [image: ] is [image: ] = A−1[image: ] where A−1 is the matrix inverse, (assumed det(A) ≠ 0).


  How does one compute the matrix inverse? There are completely precise but tedious rules for computing matrix inverses. Despite the importance of the concept, one rarely needs to actually compute a matrix inverse in life. We will not describe the general method here. Instead we will only breeze through inverse computations of 2 × 2 and 3 × 3 matrices.


  Determinant of 2 × 2 and 3 × 3 matrices


  The determinant is always needed to compute the inverse of a matrix. For a 2 × 2 matrix


  [image: ]


  the determinant is


  det (A2×2) = a11a22 − a12a21


  For instance, the determinant of the 2 × 2 matrix [image: ] is 1 × 1 − 2 × 0 = 1.


  We will illustrate the 3 × 3 case with an example. Consider the matrix


  [image: ]


  The steps are described below in Algorithm 2:


  Inverse of 2 × 2 and 3 × 3 matrices


  For a 2 × 2 matrix


  [image: ]


  the inverse is


  [image: ]


  For our example matrix [image: ] The algorithm is exemplified in Algorithm 3.


  
    Algorithm 2 Computing determinant of the 3 × 3 matrix

  


  Choose any one row or column as pivot. Let us say the top row.


  Initialize: S = 0.


  for each element of the pivot row or column do


  ·   Block the row and column that intersects at that element. This uncovers a 2 × 2 sub-matrix.


  Compute its determinant. For instance, the uncovered sub-matrix for the top row middle column element, viz., 2 we get


  [image: ]


  The uncovered sub-matrix is  [image: ] and its determinant is 0 × 0 − 5 × 4 = −20.


  ·   Multiply the picked up element with the corresponding determinant, e.g., here −20×2.


  ·   Add the row and column indices of the element (indices start from 1). If the sum is odd, multiply the above product with −1, else +1. For instance, the top left element has row index = 1 and column index = 1, so the sum is 1 + 1 = 2, an even number. Hence the multiplier is +1. The top middle element has row index = 1 and column index = 2, their sum is 3, an odd number. Hence the multiplier is −1.


  ·   Add the product of - the element, sub-matrix determinant and sign - to S. E.g., here    2 ×(−20) ×(−1) = 40 gets added to S.


  end for


  .


  
    return S as determinant. For our example matrix A3×3, det (A3×3) = 1 ×(1 ×0 −×4 ×6) ×(+1) + 2 ×(0 ×0 −×4 ×5) ×(−1) + 3 ×(0 ×6 −×1 ×5) ×(+1) = −24 + 40 −×15 = 1

  


   


  
    Algorithm 3 Computing inverse of the 3 × 3 matrix

  


  for each matrix element do


  ·   Compute the determinant of the sub-matrix that is uncovered when one covers the row and column intersecting in that element - a la determinant computation.


  ·   Multiply the the above with the sign corresponding to the element as in determinant computation.


  end for


  ·   Replace each matrix elements with the corresponding value from the above for loop. For our example matrix A, this yields [image: ]


  ·   Transpose the above matrix. This yields the adjoint matrix. For our example matrix A3×3, this yields  [image: ]


  
    return [image: ]as inverse.

  


  One can easily verify the correctness of the inverse computation by multiplying the matrix and its computed inverse:


  [image: ]


  Multiplying the matrix and its inverse yields a special matrix called the identity matrix. These are discussed in the next section in more detail.


  Identity Matrices


  For any matrix A, whose determinant det(A) is not zero, we can compute another matrix A−1, following the steps outlined in algorithm 3 such that


  AA−1 = A−1A = I


  For instance A2×2A2×2 = I2×2 where [image: ]


  And A3×3A−13×3 = I3×3 where [image: ]


  In general, for any dimension n


  [image: ]


  (the diagonal terms are 1, all other terms are 0). When there is no subscript, the dimensionality is to be inferred from context.


  The identity matrix is the analog of 1 in higher dimensions. To get an intuition take note of the following facts


  ·   The matrix inverse is defined such that AA−1 = A−1A = I where A and I are square n×n matrices. Compare this to the scalar equation a×a−1 = a−1×a = 1.


  ·   For any matrix A, IA = AI = A. The reader is encouraged to verify this using standard matrix multiplication rules.


  ·   For any vector [image: ], I[image: ]= [image: ]TI = [image: ]. The reader is encouraged to verify this using standard matrix multiplication rules.


  Computing matrix inverse is not good programming practice however, because it is numerically unstable. Instead, one often uses Gaussian elimination or diagonalization (section 2.15.2) or singular value decomposition (section 4.4). Since Gaussian Elimination has little conceptual bearing upon machine learning we will not discuss it here.


  2.12.1   Linear Systems with zero or near zero Determinants; Ill Conditioned Systems


  We saw above that a linear system  A[image: ] = [image: ] has solution [image: ] = A−1[image: ]  Now, for all dimensions, A−1 will have [image: ]as a factor. What if the determinant is zero?


  The short answer: when the determinant is zero, the linear system cannot be exactly solved. We may still attempt to come up with an approximate answer (see subsection 2.12.2), but exact solution is not possible.


  Let us examine the situation a bit more closely, with the aid of an example. Consider the following system of equations:


  [image: ]


  It can be rewritten as a linear system with a square matrix, so:


  [image: ]


  But, one can quickly see that the system of equations cannot be solved. The second equation is really the same as the first. In fact, we can obtain the second by multiplying the first by a scalar,


  2. Hence, we do not really have 2 equations, we have only 1 and hence the system cannot be solved. Now examine the row vectors of matrix A. They are [1 1] and [2 2]. They are linearly dependent because −2 [1 1] + [2 2] = 0. Now examine the determinant of matrix A. It is 2 × 1 −1 × 2 = 0.


  The above is not a coincidence. Any one of them implies the other. In fact, the following statements about the linear system A[image: ] = [image: ]  (with a square matrix) are equivalent:


  ·   Matrix A has a row/column that can be expressed as a weighted sum of others


  ·   Matrix A has linearly dependent rows or columns.


  ·   Matrix A has zero determinant (such matrices are called singular matrices)


  ·   Inverse of matrix A, i.e., A−1, does not exist. A is called singular.


  ·   The linear system cannot be solved


  The system is trying to tell you that you have fewer equations than you think you have and you cannot really solve the system of equations.


  Sometimes, the determinant is not exactly zero, but close to zero. Such systems, although solvable is theory, are numerically unstable. Small changes in input causes the result to change drastically. For instance, consider the nearly singular matrix


  
    
      	
        [image: ]

      

      	
        (2.18)

      
    

  


  Its determinant is 0.002, close to zero. Let [image: ] be a vector.


  
    
      	
        [image: ]

      

      	
        (2.19)

      
    

  


  (note how large the elements of A−1 are, this is due to division by an extremely small determinant and this in turn causes the instability illustrated below). The solution to the equation A[image: ] = [image: ] is [image: ]. But if we change [image: ] just a little and make [image: ]  the solution changes to a drastically different [image: ]


  This is inherently unstable and arising from the near singularity of the matrix A. Such linear systems are called ill-conditioned.


  2.12.2   Over and Under Determined Linear Systems in Machine Learning and Data Science


  What if the matrix A is not square? This implies the number of equations do not match number of unknowns. Does such a system even make sense? Surprisingly, it does. There are two possible cases, assuming that the matrix A is m × n (m rows and n columns).


  ·   Case 1: m > n (More equations than unknowns - Overdetermined System)


  ·   Case 2: m < n (Fewer equations than unknowns - Underdetermined System)


  For instance, Table 2.3 leads to an over-determined linear system. Let us write down the system of equations.


  0.11w0 + 0.09w1 + b = −0.8


  0.01w0 + 0.02w1 + b = −0.97


  0.98w0 + 0.91w1 + b = 0.89


  0.12w0 + 0.21w1 + b = −0.68


  0.98w0 + 0.99w1 + b = 0.95


  0.85w0 + 0.87w1 + b = 0.74


  0.03w0 + 0.14w1 + b = −0.88


  0.55w0 + 0.45w1 + b = 0.00


  0.49w0 + 0.51w1 + b = 0.01


  0.99w0 + 0.01w1 + b = 0.009


  0.02w0 + 0.89w1 + b = −0.07


  0.31w0 + 0.47w1 + b = −0.23


  0.55w0 + 0.29w1 + b = −0.14


  0.87w0 + 0.76w1 + b = 0.65


  0.63w0 + 0.74w1 + b = 0.36


  yielding the overdetermined linear system


  
    
      	
        [image: ]

      

      	
        (2.20)

      
    

  


  This is a non-square 15 × 3 linear system. There are only 3 unknowns to solve for, w0,w1, b and there are 15 equations. Highly redundant, we needed only 3 equations and could have solved it via Gaussian Elimination (section 2.12. But the important thing to note is this: the equations are not fully consistent. There is no single set of values for the unknown that will satisfy all of them. In other words, the training data is not fully consistent - an almost universal occurrence in all real life machine learning systems. Consequently, we have to find a solution that is optimal (causes as little error as possible) over all the equations.


  We want to solve it such that the overall error, viz., ||A[image: ] = [image: ]|| is minimized. In other words, we are looking for [image: ] such that A[image: ] is as close to [image: ] as possible. This closed-form (i.e., non-iterative) method is an extremely important pre-cursor to machine learning and data science. We will revisit this multiple times, most notably in sections 2.12.3, 4.4.


  2.12.3   Moore Penrose Pseudo-Inverse of a Matrix: solving Over or Under Determined Linear Systems


  Suppose we have the overdetermined system with not-necessarily-square, m × n matrix A


  A[image: ] = [image: ]


  Since A is not guaranteed to be square, we can neither take determinant, nor inverse in general. So the usual A−1 [image: ] does not work. At this point, we observe that although inverse cannot be taken, transposing the matrix is always possible. Let us multiply both sides of the equation with AT:


  A[image: ] = [image: ] ⟺ AT A[image: ] = AT[image: ]


  Notice that ATA is a square matrix - its dimensions are (m × n) ×(n × m) = m × m. Let us assume, without proof for the moment, that it is invertible. Then


  A[image: ] = [image: ] ⟺ AT A[image: ] = AT[image: ] ⟺ [image: ] = (ATA)−1 AT[image: ]


  Hmmm, not bad, we seem to be on to something. In fact, we just derived the pseudo-inverse of matrix A, denoted A+ = (ATA)−1 AT. Unlike the inverse, the pseudo-inverse does not need the matrix to be square with linearly independent rows. Much like the regular linear system, we get the solution of the (possibly non-square) system of equations as  A[image: ] = [image: ] ⟺ [image: ] = A+[image: ].


  The pseudo-inverse based solution actually minimizes the error ||A[image: ] = [image: ]||. We will provide an intuitive proof of that in the next section 2.12.4. Meanwhile, the reader is encouraged to write the python code to evaluate (ATA)−1 AT [image: ] and verify that it approximately yields the expected answer [image: ] for equation 2.20.


  2.12.4   Pseudo Inverse of a Matrix: A Beautiful Geometric Intuition


  A matrix Am×n can be rewritten in terms of its column vectors as [[image: ]1,[image: ]2, …[image: ]n], where [image: ]1…[image: ]n are all m dimensional vectors. Then [image: ] we get  A[image: ]  = x1[image: ]1+x2[image: ]2+…xn[image: ]n   In other words, A[image: ] is just a linear combination of the column vectors of A with the elements of [image: ] as the weights (the reader is encouraged to write out a small 3 × 3 system and verify this). The space of all vectors of the form A[image: ], i.e., the linear span of the column vectors of A, is known as the column space of A.


  The solution to the linear system of equations, A[image: ] than any other vector in the column space of A. Mathematically speaking[9],


  
    
      	
        ||A[image: ] ∈  𝕽n


         

      

      	
        (2.21)

      
    

  


  From geometry, we intuitively know that the closest point to [image: ] in the column space of A is obtained


  [image: ]


  Figure 2.12: Solving a Linear System A[image: ] = [image: ] is equivalent to finding the point on the column space of A that is closest to [image: ]. The difference vector  [image: ]−A[image: ]  will be perpendicular to all vectors A[image: ] in the column space of A.


  by dropping a perpendicular from [image: ] to the column space of A (see figure 2.12). The point where this perpendicular meets the column space is called the projection of [image: ] on column space of A. The solution vector [image: ] to equation 2.21 that we are looking for, should correspond to the projection of [image: ] on the column space of A. This in turn means [image: ]−A[image: ]  is orthogonal (perpendicular) to all vectors in column space of A (see Figure 2.12). We represent arbitrary vectors in the column space of A as A[image: ] for arbitrary [image: ]. Hence,


  ∀[image: ] ∈  𝕽n  (A[image: ]) ⊥ ([image: ]−A[image: ]) ⇔ (A[image: ])T  ([image: ]−A[image: ]) = 0


                                                   ⇔ [image: ]TAT  ([image: ]−A[image: ]) = 0


  For the above equation to be true for all vectors [image: ], we must have  AT([image: ]−A[image: ]) = 0.


        AT  ([image: ]−A[image: ]) = 0


  ⇔ ATA[image: ] = AT[image: ]


  ⇔ [image: ] = (ATA) −1 AT[image: ]


  which is exactly the Moore-Penrose pseudo-inverse.


  2.12.5   Python numpy code to solve over-determined systems


  Fully functional code for this section, executable via Jupyter-notebook, can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch2/2.12.5-overdet-numpy.ipynb.


  Consider the overdetermined system corresponding to cat-brain from Chapter 2. There are 15 training examples, each with input and desired outputs specified.


  Our goal is to determine 3 unknowns w0,w1, b, such that for each training input [image: ] and corresponding ground truth (known desired output) y i, the model output


  
    
      	
        [image: ]

      

      	
        (2.22)

      
    

  


  is as close to desired output yi as possible.


  Note the neat trick above - we added a 1 to the right of the input - this allows us to depict the whole system (including the bias) in a single compact matrix vector multiplication. We call this “augmentation” - we have augmented the input row vector with an extra 1 on the right. Collating all the training examples together, we get


  
    
      	
        [image: ]

      

      	
        (2.23)

      
    

  


  Thus the overall system of linear equations is


  X[image: ] = [image: ]


  where X is the augmented input matrix - with a rightmost column of all 1s.


  Note that this is not a classic system of equations - it has more equations than unknowns. We cannot solve this via matrix inversion. We can however, use the pseudo-inverse mechanism to solve this. The resulting solution yields the “best fit” or “best effort” solution - which minimizes the total error over all the training examples.


  For our cat-brain problem, the exact system (repeated here for ease of reference) is


  
    
      	
        [image: ]

      

      	
        (2.24)

      
    

  


  We solve for [image: ] using the pseudo inverse formula [image: ] = (XTX) −1XTy


  Listing 2.14: Solving an overdetermined system using pseudo-inverse


  [image: ]


  Output:


  1 The solution is [ 1.07661761 0.89761672 -0.95816936] 2 Note that this is almost equal to [1.0 , 1.0 , -1.0])


  2.13   Eigenvalues and Eigenvectors - swiss army knives in Machine Learning and Data Science


  Machine Learning and Data Science is all about finding patterns in large volumes of high dimensional data. The inputs are typically feature vectors (introduced in section 2.1) in high dimensional spaces. Each individual dimension of the feature vector corresponds to a particular property of the input. The feature vector, thus, is a descriptor for the particular input instance. It can be viewed as a point in the feature space. We usually transform the points to a friendlier space where it is easier to perform the analysis we are trying to do (a simple example of such a transform was shown in section 1.3). For instance, if we are building a classifier, we try to transform the input to a space where the points belonging to different classes are more segregated. Sometimes we transform to simplify the data, eliminating axes along which there is scant variation in the data. Eigenvalues and eigenvectors are invaluable items in the tool set of a machine learning engineer or a data scientist - helping them understand how to transform and analyze large volumes of high dimensional data. In chapter 4 we will study how to use these tools to simplify and find broad patterns in large volume of multi-dimensional data.


  [image: ]


  Figure 2.13: During Rotation, points on the axis of rotation do not change position


  Transforms generally map vectors (points) in one space to different vectors (points) in the same or a different space. But a typical linear transform will leave a few points in the space (almost) unaffected. These points are called eigenvectors. They provide important insights into the transform. Let us look at a simple example. Suppose we are rotating points in 3D space about the Z axis (see Fig. 2.13). The points on the Z axis will stay where they were despite the rotation. In general, points on the axis of rotation (Z axis in this case) do not go anywhere after rotation. Thus, axis of rotation is the eigenvector of rotation transformation.


  Extending this same idea, when transforming vectors [image: ] with a matrix A, are there vectors that do not change, at least, say, in direction? Turns out, the answer is yes. These are the so called eigenvectors - they do not change direction when undergoing linear transformation by a matrix A. To be precise, if [image: ] is an eigenvector of square matrix A[10], then


  A[image: ] = λ[image: ]


  Thus the linear transformation (i.e., multiplication by matrix A) has changed the length, but not the direction of [image: ] - because λ[image: ] is parallel to [image: ].


  How to obtain λ and [image: ]? Well


        A[image: ] = λ[image: ]


  ⇔ A[image: ] − λ[image: ] = [image: ]


  ⇔ (A − λI) [image: ] = [image: ]


  where I denotes the Identity Matrix.


  Of course, we are only interested in non-trivial solutions, where [image: ] ≠ [image: ]. In that case, A − λI cannot be invertible, because if it were, one could obtain the contradictory solution [image: ] = (A − λI)−1 [image: ] = [image: ]. Thus, (A − λI) is non-invertible, implying the determinant


  det (A − λI) = 0


  For an n × n matrix A, this yields an nth degree polynomial equation with n solutions for the unknown λ. Thus a n × n matrix has n eigenvalues, not necessarily all distinct.


  Lets compute eigenvalues and eigenvectors of a 3 × 3 matrix just for kicks. The matrix we choose is not random, as will be evident soon. But for now, think of it as an arbitrary matrix.


  
    
      	
        [image: ]

      

      	
        (2.25)

      
    

  


  We will compute eigenvalues and eigenvectors of A.


  [image: ]


  Thus,


  [image: ]


  Here  [image: ]. If necessary, the reader is encouraged to refresh imaginary and complex numbers from high school algebra.


  Thus, we have found (as expected) 3 eigenvalues, 1, [image: ] and [image: ]. Each of them will yield one eigenvector. Lets compute the eigenvector corresponding to eigenvalue of 1 by way of example.


  [image: ]


  Thus, [image: ] is an eigenvector for the eigenvalue 1 for matrix A. So is [image: ]


  for any real k. In fact, if λ, [image: ] is an eigen value, eigenvector pair for matrix A, then A[image: ] = λ[image: ] ⇔ A(k[image: ]) = λ(k[image: ]), i.e. λ, (k[image: ]) is also an eigenvalue, eigenvector pair of A. In other words, one can only determine the eigenvector upto a fixed scale factor. We take the eigenvector to be of unit length ([image: ]T[image: ]= 1) without loss of generality.


  The eigenvector for our example matrix turns out to be the Z axis. This is not an accident. Our matrix A was, in fact, a rotation about the Z axis. A rotation matrix will always have 1 as an eigenvalue. The corresponding eigenvector will be the axis of rotation. In 3D, the other two eigenvalues will be complex numbers yielding the angle of rotation This is detailed in section 2.14.


  Non-zero eigenvectors corresponding to different eigenvalues are linearly independent


  Let us prove this to get some insights. Let λ1, [image: ]1 and λ2, [image: ]2 be eigenvalue, eigenvector pairs for a matrix A with λ1 ≠ λ2. Then


  A[image: ]1 = λ1[image: ]1


  A[image: ]2 = λ2[image: ]2


  If possible, let there be two constants α1 and α2 such that


   


  
    
      	
        α1[image: ]1 = α2[image: ]2 = 0


         

      

      	
        (2.26)

      
    

  


  In other words, suppose the two eigenvectors be linearly dependent. We will show that this assumption leads to an impossibility.


  Multiplying equation 2.26 by A, we get


       α1A[image: ]1 + α2A[image: ]2                     = 0


  ⇔α1 λ1[image: ]1 + α2λ2[image: ]2                    = 0


  Also, we can multiply equation 2.26 by λ2. Thus we get


       α1 λ1[image: ]1 + α2λ2[image: ]2                   = 0


       α1 λ2[image: ]1 + α2λ2[image: ]2                   = 0


  Subtracting, we get


       α1 (λ1−λ2)[image: ]1                          = 0


  By assumption, α ≠ 0, λ1 ≠ λ2 and [image: ]1 is not all zeros. Thus it is impossible for their product to be zero.


  For Symmetric Matrices eigenvectors corresponding to unequal eigenvalues are orthogonal to each other


  Let us prove this to get some more insights. A matrix A is symmetric iff AT = A. If λ1, [image: ]1 and λ2, [image: ]2 are eigenvalue, eigenvector pairs for a symmetric matrix A, then


  
    
      	
        A[image: ]1 = λ1[image: ]1

      

      	
        (2.27)

      
    


    
      	
        A[image: ]2 = λ2[image: ]2

      

      	
        (2.28)

      
    

  


  Transposing equation 2.27


  [image: ]1T AT= λ1[image: ]1 T


  [image: ]


  Right-multiplying by [image: ]2, we get


  [image: ]1T AT [image: ]2 = λ1[image: ]1 T[image: ]2


  ⇔[image: ]1T A[image: ]2 = λ1[image: ]1 T[image: ]2


  where the last equation follows from the matrix symmetry. Also, left-multiplying equation 2.28 by [image: ]1T  we get


  [image: ]1T A[image: ]2 = λ2[image: ]1 T[image: ]2


  Thus


  [image: ]1T A[image: ]2 = λ1[image: ]1 T[image: ]2


  [image: ]1T A[image: ]2 = λ2[image: ]1 T[image: ]2


  Subtracting the equations, we get


  0 = (λ1−λ2) [image: ]1 T[image: ]2


  Since λ1 ≠ λ2, we must have [image: ]1 T[image: ]2 = 0, which means the two eigenvectors are orthogonal. Thus, if A is a n × n symmetric matrix, with eigenvectors [image: ]1, [image: ]2, ··· [image: ]n then [image: ]1T [image: ]j = 0 for all i, j satisfying λi ≠ λj.


  2.13.1   Python numpy code to compute eigenvectors and eigenvalues


  Fully functional Jupyter-notebook code for this section can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch2/2.13-eig-numpy.ipynb.


  Listing 2.15: Eigen values and vectors:


  [image: ]


  Output:


  1 Eigen values are: [0.707+0.707 j 0.707 -0.707 j 1.0] 2 3 Eigen vectors are : [[0.707 0.707 j 0] 4 [0.707 -0.707 j 0] 5 [0 0 1]]


  2.14   Orthogonal (Rotation) Matrices and their Eigenvalues and Eigenvectors


  Of all transforms, rotation transforms have a special intuitive appeal because of their highly observable behavior in the mechanical world. Furthermore, they play a significant role in development and analysis of several machine learning tools. In this section we will do an overview of rotation (aka orthogonal) matrices.


  Fully functional code for Jupyter-notebook for this section can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/ blob/master/python/ch2/2.14-rotation-numpy.ipynb.


  Rotation Matrices


  [image: ]


  Figure 2.14: Rotation in plane about Origin. By definition rotation does not change the distance from the center of rotation, that is what the circle indicates.


  Figure 2.14 shows a point (x, y) rotated about the origin by an angle q. The original point’s position vector made an angle a with the X axis. Post rotation, the point’s new coordinates are (x′, y′). Note that by definition rotation does not change the distance from the center of rotation, that is what the circle indicates. Some well known rotation matrices:


  ·   Planar Rotation by angle θ about Origin (see Figure 2.14):


  
    
      	
        [image: ]

      

      	
        (2.29)

      
    

  


  ·   Rotation by angle θ in 3D space about Z axis:


  
    
      	
        [image: ]

      

      	
        (2.30)

      
    

  


  Note that the z coordinate remains unaffected by this rotation, viz.,


  [image: ]


  ·   Rotation by angle θ in 3D space about X axis:


  
    
      	
        [image: ]

      

      	
        (2.31)

      
    

  


  Note that the X coordinate remains unaffected by this rotation, viz.,


  [image: ]


  ·   Rotation by angle θ in 3D space about Y axis:


  
    
      	
        [image: ]

      

      	
        (2.32)

      
    

  


  Note that the γ coordinate remains unaffected by this rotation, viz.,


  [image: ]


  Listing 2.16: Rotation matrices


  [image: ]


  Listing 2.17: Apply rotation matrices


  [image: ]


  [image: ]


  Figure 2.15: Rotation visualized: Here the original vector u(in blue) is first rotated by 45 degrees around the Z-Axis(in green) and then subsequently rotated again by 45 degrees around the X Axis


  Orthogonality of Rotation Matrices


  A matrix R is orthogonal if and only if it its transpose is also its inverse, i.e., RTR = RRT = I. All rotations matrices are orthogonal matrices. All orthogonal matrices represent some rotation. For instance:


  [image: ]


  The reader is encouraged to verify, likewise, that all the rotation matrices shown above are orthogonal.


  Orthogonality implies Rotation is Length Preserving


  Given any vector [image: ] and rotation matrix R, let [image: ]’= R[image: ] be the rotated vector. Lengths (magnitudes) of the 2 vectors [image: ], [image: ]’ are equal,


  (it is easy to see that ||[image: ]’|| = [image: ]’T [image: ]’ = (R[image: ]) T  (R[image: ]) = [image: ]T RT R[image: ]= [image: ]TI[image: ] = [image: ]T [image: ] = ||[image: ]||)[11]


   


  Negating the angle of rotation is equivalent to inverting the rotation matrix which is equivalent to Transposing the rotation matrix


  For instance, consider in plane rotation. Say a point [image: ] is rotated about the origin to vector [image: ]’via matrix [image: ]. Thus, [image: ]’ = R[image: ]. Now, we can go back from [image: ]’ to [image: ] by rotating by −θ.


  The corresponding rotation matrix is [image: ]. In other words, RT inverts the rotation, i.e., rotates by the negative angle.


  2.14.1   Python numpy code for orthogonality of rotation matrices


  Listing 2.18: Orthogonality of rotation matrices


  [image: ]


  Eigenvalues and Eigenvectors of a Rotation Matrix: How to find the axis of rotation


  Let λ, [image: ] be an eigenvalue, eigenvector pair of a rotation matrix R. Then,


  R[image: ] = λ[image: ]


  Transposing both sides


  [image: ]T RT = λ[image: ]T


  Multiplying left and right sides, respectively, with equivalent entities R[image: ] and λ[image: ], we get


  [image: ]T RT (R[image: ]) = λ[image: ]T (λ[image: ])


  ⇔ [image: ]T (RTR ) [image: ] = λ2[image: ]T [image: ]


  ⇔ [image: ]T (I) [image: ] = λ2[image: ]T [image: ]


  ⇔ [image: ]T [image: ] = λ2[image: ]T [image: ]


  ⇔ λ2 = 1


  ⇔ λ = 1


  (the negative solution λ = −1 corresponds to reflection). Thus, all rotation matrices will have 1 as one of its eigenvalues. The corresponding eigenvector [image: ] satisfies R[image: ] = [image: ]. This is the axis of rotation - the set of points that stay where they were post rotation.


  Python numpy code for eigen values and vectors of rotation matrices - axis of rotation


  Listing 2.19: Axis of Rotation


  [image: ]


  2.15   Matrix Diagonalization


  In section 2.12 we studied linear systems and their importance in machine learning. We also remarked that the standard mathematical process of solving linear systems via matrix inversion is not very desirable from machine learning point of view. In this section, we will see one method of solving linear systems without matrix inversion. In addition, this section will help us to develop the insights necessary to understand quadratic forms and eventually PCA (Principal Component Analysis) - one of the most important tools in data science.


  Consider a n × n matrix A with n linearly independent eigenvectors. Let S be a matrix with these eigenvectors as its columns. That is


  [image: ]


  and S = [[image: ]1 [image: ]2 ··· [image: ]n].


  Then


  [image: ]


  Where [image: ] is a diagonal matrix with the eigenvalues of A on the diagonal and 0 everywhere else.


  Thus, we have


  AS = SΛ


  which leads to


  A = SΛS-1


  and


  Λ = S-1AS


  If A is symmetric, then its eigenvectors are orthogonal. Then STS = SST = I ⇔ S−1 = ST and we get the diagonalization of A


  A = SΛST


  Note that diagonalization is not unique -a given matrix maybe diagonalized in multiple ways.


  2.15.1   Python Numpy code for Matrix diagonalization


  Fully functional code for this section, executable via Jupyter-notebook, can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch2/2.15-mat-diagonalization-numpy.ipynb.


  Listing 2.20: Diagonalization of matrix


  [image: ]


  2.15.2   Solving Linear Systems without Inverse via Diagonalization


  Diagonalization has many practical applications. Let us study one now. In general, matrix inversion (i.e., computation of A−1 is a very complex process which is numerically unstable. Hence, solving A[image: ] is to be avoided when possible. In the particular case of a square symmetric matrix with n distinct eigenvalues, diagonalization can come to the rescue. We can solve in multiple steps: We first diagonalize A


  A = SΛST


  Then


  A[image: ] = [image: ]


  can be written as: SΛST [image: ] = [image: ].


  where S is the matrix with eigenvectors of A as its columns:


  S = [[image: ]1 [image: ]2 ··· [image: ]n]


  (Since A is symmetric, these eigenvectors are orthogonal. Hence STS = SST = I) The solution can be obtained in a series of very simple steps as shown below


  [image: ]


  First solve


  S[image: ]1 = [image: ]


  As


  [image: ]1 = ST[image: ]


  Notice that both transpose and matrix vector multiplications are simple and numerically stable operations unlike matrix inversion. Then we get


  Λ(ST [image: ]) = [image: ]1


  Now solve


  Λ[image: ]2= [image: ]1


  as


  [image: ]2= Λ−1 [image: ]1


  Note that since Λ is a diagonal matrix, inverting it is trivial


  
    
      	
        [image: ]

      

      	
        (2.33)

      
    

  


  As final step, solve


  ST [image: ]= [image: ]2


  As


  [image: ]= S[image: ]2


  Thus we have obtained [image: ] without a single complex or unstable step.


  2.15.3   Python Numpy code for Solving Linear Systems via diagonalization


  Let us try solving the following set of equations:


        x + y + z = 8


  2x + 2y + 3z = 15


    x + 3y + 3z = 16


  This can be written using matrices and vectors as


  where


   [image: ]


  Note that A is a symmetric matrix. It has orthogonal eigenvectors. The matrix with eigenvectors of A in columns is orthogonal. Its transpose and inverse are same.


  Listing 2.21: Solving linear systems using diagonalization


  [image: ]


  2.15.4   Matrix powers using diagonalization


  If matrix A can be diagonalized then


  A = SΛS−1


  A2 = SΛS−1 SΛS−1                     = SΛIΛS−1              = SΛ2 S−1


  An = ⋅⋅⋅                                       =  ⋅⋅⋅                        = SΛn S−1


  For a diagonal matrix [image: ], the nth power is simply [image: ]


  If one needs to compute various powers of a m × m matrix A at various times, one should precompute the matrix S and compute any power with only O(m) operations - compared to (nm3)operations necessary for naive computations.


  2.16   Spectral Decomposition of a Symmetric Matrix


  We have seen subsection 2.15 that a square symmetric matrix with distinct eigenvalues can be decomposed as


  A = SΛST


  where S = [[image: ]1 [image: ]2 ··· [image: ]n]. Thus,


  [image: ]


  The above equation can be rewritten as


   


  
    
      	
        A = λ1[image: ]1[image: ]1T +  λ2[image: ]2[image: ]2T+···+  λn [image: ]n [image: ]n T

      

      	
        (2.34)

      
    

  


  Thus a square symmetric matrix can be written in terms of its eigenvalues and eigenvectors. This is the spectral resolution theorem.


  2.16.1   Python numpy code for Spectral Decomposition of Matrix


  Listing 2.22: Matrix powers using diagonalization


  [image: ]


  2.17   An application relevant to Machine Learning - finding the axes of a hyper-ellipse


  The notion of an ellipse in high-dimensional space (aka hyper-ellipse) keeps coming back in various forms in machine learning. Here we will make a preliminary review of them. We will revisit these concepts later.


  Recall the equation of ellipse from high school math lesson


  [image: ]


  This is a rather simple ellipse, 2 dimensional, centered at origin and its major and minor axes aligned with the coordinate axes. Denoting [image: ] as the position vector, the same equation can be written as


  [image: ]T Λ [image: ] = 1


  Where [image: ] is a diagonal matrix. Written in this form, the equation can be extended to beyond 2D, to a n-dimensional axis aligned ellipse centered at origin. Now, let us apply a rotation R to the axis. Then, every vector [image: ] transforms to R[image: ]. The equation of the ellipse in the new (rotated) coordinate system is


       (R[image: ])T Λ (R[image: ])       = 1


  ⇔ [image: ]T (R TΛ R)[image: ]     = 1


  With A = (RTΛR) , the generalized equation of the ellipse is


  [image: ]T A[image: ] = 1


  Note


  ·   The ellipse is no longer axis aligned


  ·   The matrix A is no longer diagonal


  ·   A is symmetric. One can easily verify that AT = (RTΛR)T = RTΛTR = RTΛR (remember transpose of a diagonal matrix is itself)


  If, in addition, we want to get rid of the “centered at origin” assumption, we get


  ([image: ]−μ) T A ([image: ]−μ) = 1


  Now, let us flip the problem around. Suppose we have a generic n-dimensional ellipse as above. How do we compute its axes directions?


  Clearly, if we could rotate the coordinate system so that the matrix in the middle is diagonal, we are done. Diagonalization (see section 2.15) is the answer. To be specific, we find the matrix S with eigenvectors of A in its columns. This is a rotation matrix (being orthogonal since A is symmetric). We transform (rotate) the coordinate system by applying this matrix. In this new coordinate system, the ellipse is axis aligned. Stated in another way, the new coordinate axes - these are the eigen vectors of A - yield the axes of the ellipse.


  2.17.1   Python numpy code for Hyper Ellipses


   Let us try finding the axes of the hyper ellipse described by the equation 5x2 + 6xy + 5y2 = 20. Note: The actual ellipse we use as example is 2D (to facilitate visualization), but the code we develop will be general and extensible to multi-dimensions.


  The ellipse equation can be written using matrices and vectors as  [image: ]T A[image: ] = 1 where


  [image: ]


  To find the axes of the hyper ellipse, we need to transform the coordinate system so that the matrix in the middle becomes diagonal. Here is how this can be done: If we diagonalize A into SΣS−1, then the ellipse equation becomes [image: ]TSΣS−1[image: ] = 1 where Σ is a diagonal matrix. Since A is symmetric, its eigenvectors are orthogonal. Hence, the matrix containing these eigenvectors as columns is orthogonal, i.e., S−1 = ST. In other words, S is a rotation matrix. So the ellipse equation becomes [image: ]TSΣST [image: ] = 1 or ([image: ]TS) Σ (ST [image: ]) = 1 or [image: ]TΣ[image: ] = 1 where [image: ] = ST [image: ]. This is of the desired form since Σ is a diagonal matrix. Remember, S is a rotation matrix. Thus, rotating the coordinate system by S aligns the coordinate axes with the ellipse axes.


  Listing 2.23: Axes of hyper ellipse


  [image: ]


  2.18   Summary


  In this chapter, we studied vectors and matrices with the backdrop of machine learning and data science.


  ·   We studied definitions of vectors, matrices and tensors along with their geometrical significances with the aid of machine learning centric examples.


  ·   We studied various vector and matrix manipulation operations that are important for machine learning, data science.


  [image: ]


  Figure 2.16: Note that the ellipse major axis is forming an angle of 45 degrees with X axis. Rotating coordinate system by this angle will align ellipse axes with coordinate axes. Subsequently, the first principal vector will also lie along this direction


  ·   We studied the dot product and its significance in machine learning and data science to measure similarity between vectors.


  ·   We studied the concept of orthogonality, which is fundamental to machine learning, data science.


  ·   We studied linear systems of equations and various methods of solving them, including the Moore-Penrose inverse.


  ·   We studied eigenvalues and eigenvectors and how to use them for diagonalizing a matrix, concepts that lead to various machine learning applications described in the next chapter.


  ·   We studied python numpy (numerical python) codes to implement the various mathematical concepts we learnt. We also studied PyTorch tensors and how to use them in conjunction with numpy arrays.


  
    


    
      [5] In mathematics, vectors can have an infinite number of elements. Such vectors cannot be expressed as arrays – but we will mostly ignore them in this book.

    


    
      [6] we will usually use upper case letters to symbolize matrices

    


    
      [7] in digital computers, numbers in the range 0..255 can be represented with a single byte of storage, hence this choice

    


    
      [8] unit vectors are conventionally depicted with the hat symbol as opposed to the little overhead arrow, as in T = 1

    


    
      [9] The mathematical symbol ∀ stands for “for all”. Thus,  ∀ ∈  𝕽n means “all vectors y in the n-dimensional space”

    


    
      [10] one can compute eigenvectors and eigenvalues only of square matrices

    


    
      [11] from elementary matrix theory, we know that (AB)T = BTAT

    

  


   


  3    Introduction to Vector Calculus from Machine Learning point of view


  The core concept of machine learning is simple enough. We took a first look at it in section 1.3. Then in section 2.8.2 we studied classifiers as a special case. Let us revisit these with a different example this time. Also, in section 1.3 we skipped on the topic of error minimization. This time, armed with our knowledge of gradients, we will study the topic.


  The python numpy/pytorch code for this section, in the form of fully functional and executable Jupyter-notebooks can be found at nbviewer.jupyter.org/github/../ch3/.


  Suppose we want to create a classifier machine that classifies whether an image contain a car or a giraffe. Such classifiers, with only two classes, are known as binary classifiers. We identify a set of input signals which are collected together in an input vector denoted [image: ]. In case of convolutional neural networks, aka CNNs, the inputs are the pixel values of the image. The image is usually scaled to a fixed size, say 224 × 224. Thus the image is representable as a matrix


  [image: ]


  Each element of the matrix, Xi,j is a pixel color value in the range [0, 255].


  One brief aside is necessary at this point. In the previous chapters, we have always seen a vector to be the input to a machine learning system. In fact, the vector representation of the input allowed us to see it as a point in a high dimensional space. This lead to a lot of geometric insights about classification. But here, our input is an image which is akin to a matrix rather than a vector. Are those intuitions applicable when our input is a matrix as opposed to a vector? The answer is yes. A matrix can always be converted into a vector by a process called rasterization. During rasterization, one iterates over the elements of the matrix left to right and top to bottom, storing successive encountered elements into a vector. The resulting vector is the rasterized vector. It has the same elements as the original matrix, only organized in a different fashion. The length of the rasterized vector will be equal to the product of row count and column count of the matrix. The rasterized vector for the above matrix X will have 224 × 224 = 50176 elements.


  [image: ] where xi ∈ [0, 255] are values of the image pixels.


  Thus, a 224 × 224 input image can be viewed as a vector (equivalently a point) in a 50176 dimensional space.


  An example of such a space is geometrically depicted in Figures 3.1 in the context of giraffe and car classification in images. The points corresponding to giraffe are marked ’g’ and those corresponding to car are marked ’c’. Another example space is depicted in 3.2 in the context of horse and zebra classification in images. Here the points corresponding to horses are marked ’h’ and those corresponding to zebras are marked ’z’. Usually, the points belonging to classes of interest will occupy a very small portion (sub-space) in the vast high-dimensional space of inputs.


  This is because there is always inherent commonality in members of a class. For instance, all giraffes have predominantly yellow color with a bit of black. Cars have certain shapes. Because of this, points belonging to a given class will not be distributed haphazardly in the high-dimensional input space. Rather they would loosely form a cluster.


  Geometrically speaking, the classifier is a hyper-surface that separates the ’c’ cluster from the ’g’ cluster. In the simple case depicted in Figure 3.1 this classifier surface is a hyper-plane (we often call surfaces as hyper-surfaces and planes as hyper-planes when in high dimensions). But in the more difficult case of classifying horse vs zebra depicted in Figure 3.2 we need a non-linear (curved) surface.


  In either case, we do not know the exact surface. We do know that it takes the image as input and emits the classification as output


  [image: ]


  but we do not know the function f([image: ]). We do know the desired output value of the surface/-function for a specific set of input values - these are the training data – (x(i), y(i)). We will have to estimate the function f([image: ]) from the training data - an overall exercise that goes by the name modeling. This is the essence of machine learning.


  As indicated in section 1.3, modeling the unknown function f has two steps.


  [image: ]


  Figure 3.1: Geometric depiction of Classification problem. In the multidimensional input space, each instance of the classes to be separated correspond to a point. E.g., the points marked ’c’ denote cars, ’g’ denotes giraffe. In the friendly case, the points would form reasonably distinct clusters. Then the classification can be done with a relatively simple surface, e.g., a hyper-plane here. The model designer chooses the function class (e.g., hyper-plane) by examining the complexity of the problem. The exact parameters of the hyper-plane - orientation and position - are determined via training.


  ·   Select model architecture: Choose the parametric function ϕ to mimic f . Mathematically, we denote our model ϕ as ϕ ([image: ] ;[image: ], b). This basically means that the function ϕ takes a vector [image: *] as input and has a set of weight and bias parameters [image: ], b. The model designer will choose ϕ based on his/her understanding of the problem and experience.


  ·   Training: Estimate the parameters [image: ], b  such that ϕ emits the known correct output (as closely as possible) on the training data inputs. This is typically done via an iterative process. Training data comprises input vector instances [image: ]i and corresponding known outputs yi. For instance, the training data for the car vs giraffe classifier will comprise a number of images along with a label (’c’ or ’g’). The labels for the training images are often created manually. In each iteration, we adjust the parameters [image: ], b such that the model makes a little bit less error. That is to say, the model output y = ϕ ([image: ]i; [image: ], b) gets a little bit closer to the target output yi over all values of i. We iterate over all instances of the training data repeatedly. Each set of iterations over all training data instances is called an epoch. After many epochs, the model starts yielding correct output on arbitrary inputs, not just the training inputs. We say the model is trained.


  [image: ]


  Figure 3.2: Geometric depiction of a slightly harder Classification problem. In the multidimensional input space, each instance of the classes to be separated correspond to a point. E.g., the points marked ’h’ denote horses, ’z’ denotes zebra. In this a bit more difficult case, the classification has be done with a curved (non-planar) surface, e.g., a hyper-sphere here. The model designer chooses the function class (e.g., hyper-sphere) by examining the complexity and physical nature of the problem. The parameters of the hypersphere - radius and center - are determined via training.


  In the case of classifiers, the function  ϕ ([image: ];[image: ], b) corresponds to a hyper-surface that separates the cluster of points belonging to individual classes. E.g., in the case of the binary classification problem depicted in 3.1,  ϕ ([image: ];[image: ], b) may represent a plane (shown by the dashed line). Points on one side of the plane are classified as car while points on the other side are classified as giraffe. In Figure 3.2 a good planar separation does not exist - we need a non-linear separator - e.g., the spherical separator shown via dashed lines.


  The separating surface is sometimes referred to as decision boundary. In the special case of binary classifiers, the sign of the expression ϕ ([image: ];[image: ], b) representing the decision boundary has a special significance (see section 3.1).


  For the simpler cases, where we think a linear model is sufficient (e.g., the one depicted in Figure 3.1), we can use the model architecture


  ϕ ([image: ];[image: ], b) = [image: ]T [image: ] + b


  From equation 2.16 we know this is a planar separator.


  For the more difficult cases, where we do not think a linear model will do (e.g., the one depicted in Figure 3.2), we can try the model architecture


  [image: ]


  Figure 3.3: In real life problems, the separating surface is often not a well known surface like plane of sphere. And often the classification is not perfect - points fall on the wrong side of the separator.


  [image: ]


  The above equation represents a sphere in 3D (n = 2) - we will skip the proof of that here. It should be noted that in general, we do not even have a diagram showing the spatial distribution of the training data points. Indeed it is difficult to visualize high dimensional data on the 2D plane of a page.


  3.1   Significance of the sign of the separating surface in binary classification


  Consider a line in a 2D plane corresponding to the equation


  y + 2x + 1 = 0


  All points on the line will have x, y coordinate values satisfying the equation. The line divides the 2D plane into two half planes. All points on one half plane will have x, y values such that y + 2x + 1 is negative. All points in the other half plane will have x, y values such that y + 2x + 1 is positive. This is shown in Figure 3.4.


  [image: ]


  Figure 3.4: Given a point  (x0, y0) and a separator y +2x +1 = 0, we can tell which side of the separator the point lies from the sign of y0 + 2x0 + 1


  The idea can be extended to other surfaces and higher dimensions. Thus, binary classification can be viewed as estimating an optimal separating surface ϕ ([image: ]; [image: ], b). The parameters  [image: ], b are estimated during training. Then, given any input vector [image: ], one can compute the sign of ϕ ([image: ]; [image: ], b) to predict the class.


  3.2   Estimating Model Parameters: Training


  How do we estimate the parameters [image: ], b? As stated above, this is where training comes. We take a set of input vectors  [image: ](0) , [image: ]1 , ⋅⋅⋅[image: ]N   for which the outputs are known. The known outputs are often created via human curation - a human being looks at the training input images and labels each image with the appropriate class, e.g., car vs giraffe or horse vs zebra. Each (image, label) pair constitutes a training data instance.


  Thus overall training data comprises a set of labeled inputs (aka training data instances)


  ([image: ](0), y(0))


  ([image: ](1), y(1))


         .       .


         .       .


         .       .


   ([image: ](N), y(N))


  Now we define a loss function. On a specific training data instance, this effectively measures the error made by the machine on that particular training data input-target pair (x(i), y(i)). Although there are many sophisticated error functions more suitable for this problem, for now, let us use a squared error function for the sake of simplicity (this was introduced in section 2.5.4).


  The squared error on the ith training data element is the squared difference between the output yielded by the model and the expected or target output


  
    
      	
        (e(i))2 = (ϕ ([image: ](i); [image: ], b) − y(i))2


         

      

      	
        (3.1)

      
    

  


  The total loss (aka squared error) during training is


  
    
      	
        [image: ]

      

      	
        (3.2)

      
    

  


  It should be noted that this total error is not a function of any specific training data instance. Rather, it is the overall error over the entire training data set. This is what we minimize by adjusting [image: ] and b. To be precise, we estimate [image: ] and b that will minimize L ([image: ], b). In this context, it should also be noted that minimizing E2 and E are equivalent.


  3.3   Minimizing Error during Training a Machine Learning Model: Gradient Vectors


  The goal of training is to estimate the weights and bias parameter [image: ], b that will minimize E. This is usually done by an iterative process. We start with random values of [image: ], b and adjust these values so that the loss L ([image: ], b) = E2 ([image: ], b) goes down at a high rate. Doing this many times is likely to take us close to the optimal values for [image: ], b. This is the essential idea behind the process of training a model in machine learning. It is important to note that we are minimizing the total error. This prevents us from over indexing on any particular training instance. If the training data is a well sampled set, the parameters [image: ], b that minimizes loss over the training dataset will hold good during inferencing too.


  How do we “adjust” [image: ], b so that the value of loss L = E2 goes down? This is where gradients come in. For any function L ([image: ], b), the gradient with respect to   [image: ], b, ▽[image: ], b L([image: ], b), indicates the direction along which maximum change in L occurs - gradient is the analog of derivative in 1-dimensional calculus. Intuitively, going down along the direction of the gradient of a function seems like the best strategy for minimizing the function value.


  Geometrically speaking, if we start at an arbitrary point on the surface corresponding to L ([image: ], b), and move along the direction of the gradient ▽[image: ], b L([image: ], b), then we will go towards the minimum with highest speed (this is discussed in detail through the rest of this section). In almost all machine learning approaches, we iteratively move towards the minimum by taking steps along ▽[image: ], b L([image: ], b). It should be noted that the gradient is with respect to weights and not the input. Thus the overall algorithm is shown in Algorithm 4.


  
    Algorithm 4 Training a supervised model (overall idea)

  


   


  Initialize [image: ], b with random values


  while L ([image: ], b) > threshold do


  [image: ]


       Recompute L on new [image: ], b


  end while


  
       [image: ]*⟵[image: ], b*⟵b


     

  


  The following points are to be noted.


  ·   Mathematically, one should keep iterating until loss becomes minimal (i.e., gradient of the loss is zero). But in practice, one simply iterates until the accuracy is good enough for the purpose at hand.


  ·   In each iteration, we are adjusting [image: ], b along the gradient of the error function. We know


  ·   from section 3.3 that this is the direction of maximum change for L. Thus, L is reduced at maximal rate.


  ·   m is the learning rate - larger values imply longer steps and smaller values imply shorter steps.


  ·   Longer steps are to be taken when far away from the minimum to progress quickly.


  ·   Shorter steps are to be taken when near the minimum to avoid overshooting it.


  ·   The simplistic approach outlined in algorithm 4 takes equal sized steps everywhere. In later chapters, we will study more sophisticated approaches where we try to sense how close to the minimum we are and vary step size accordingly.


  3.3.1   Derivatives, Partial Derivatives, Change in function value and Tangents


  We have seen that machine learning, training boils down to minimizing[1]  a loss function  L([image: ]) by adjusting the parameters [image: ] [2]. The minimization is done iteratively, starting at some random set of parameter values, and then continually adjusting them to lower the loss, until the loss is low enough. This raises the crucial question, given any value for the parameter set, how can we adjust the parameters so that the loss function gets reduced? Mathematically speaking, given current loss value L([image: ]) and parameter values [image: ], we want to determine the change in parameters [image: ], such that the new (adjusted) loss value  L([image: ] + [image: ])   is less than current loss value L([image: ])[3].


  Equivalently, we want to determine [image: ]  that will make δL = L([image: ]) − L([image: ] + [image: ]) negative. If we have a consistent method of finding such [image: ], we will continue adding that to the current value of parameters until the loss L([image: ]) is acceptably low.


  The same question can be cast in a geometric fashion. Suppose we create plot of L([image: ]) versus [image: ] (Figure 3.6 shows a 2D version of this where the parameter set comprises a single value w). If we are at some arbitrary point on the curve L, say P, what is the direction we should move so as to get closer to the minimum (bottom of the bowl)?


  Let us start with the simplest of cases, the parameter set comprises a single element w and the loss function L([image: ]) is a straight line L(w) = mw + c (Figure 3.5 shows an example with m = 2 and c = 1). If we change w by a small amount, say dw, what is the corresponding change in L([image: ])?


  In other words, we want to compute δL = L(w + δw) − L(w). In this case, using the straight line equation, δL = (m (w + δw) + c) − (m(w) + c) = m δw. This is true for all dw. Hence, δL/δw = m. In particular, lim


  [image: ]


  Thus, for a straight line, the rate of change of L with respect to w is constant everywhere and equals the slope. Equivalently, the curve and its tangent is same everywhere.


  We can rewrite this as


  
    
      	
        [image: ]

      

      	
        (3.3)

      
    

  


  The physical interpretation is this: to decrease L, the change in w must have opposite sign to the derivative. Geometrically speaking, we must follow the tangent towards the minimum.


  Let us now consider a curve L(w) = w2 (depicted in Figure 3.6). Now the rate of change of L depends on w, δL / δw = 2w. So the equation 3.3 does not hold in general. For instance, consider the point P1 in Figure 3.6. At this point, w = 1 and L(w)= 1 and δL / δw = 2. If we apply δw = 2, the new value of w is 3. The corresponding point on the curve is P2, with L(w + δw) = 9. Thus, δL = 8. This is not equal to δL/δw ∗ δw (which will be 2 ∗ 2 = 4 here).


  But if δw is very very small (in mathematical parlance, infinitesimally small), we can approximate the curve locally by a straight line and then equation 3.3 holds. The derivative δL / δw now corresponds to the slope of the tangent to the curve at the current point.


  Thus in general, if we want to adjust the parameter value w so that some dependent loss L([image: ]) gets reduced, we must add a quantity dw to w whose sign is negative of the derivative δL/δw evaluated at w. In the (w, L(w)) plot, this is equivalent to following the tangent downwards. This is what equation 3.3 tells us.


  [image: ]


  Figure 3.5: For a straight line L (w) = mw + c, δL/δw = m everywhere (a constant). This implies dL = mdw.  If δw denotes change we apply to w, δL = δL / δw ∗δw. To decrease L, L + dL must be lesser than L, i.e., dL must be negative. δw must be of opposite sign to δL/δw  to achieve that. δL/δw = m is in fact slope of the straight line. It can be viewed as tangent to the curve L. Following the tangent in the negative direction decreases the function.


  [image: ]


  Figure 3.6: For curved lines L (w) = w2, δL / δw = 2w. It is not a constant. Hence, δL = δL/δw ∗δw is not generally true. But it holds for infinitesimally small δw. Then, δL/δw becomes the slope of the tangent line to the curve. The intuition that δw must have opposite sign of δL/δw, i.e., to reduce L we must follow the tangent line in the negative direction, still holds. Later we will see that this is true for only a special class of functions called convex functions.


  In higher dimensions, our loss function will be a function of many variables (tunable parameters). Hence, we will depict the input parameters with a vector instead of a scalar. In other words, L(w) becomes L([image: ]). We can compute the change in L([image: ]) caused by a small vector displacement [image: ].


  This introduces a fundamental change in minimum computation. You see, now the parameter change is a vector, [image: ] which not has a magnitude (||[image: ]||) but also a direction ([image: ]). We can take the same sized step in the w space and the change in L([image: ]) will be different depending on the direction we step. The situation is illustrated in Figure 3.7.


  


  [image: ]


  Figure 3.7: Plot for surface L([image: ]) ≡ L (w0,w1) = 2w02 + 3w12 against  [image: ] ≡ (w0,w1). From an example point P ≡ (w0 = 3,w1 = 4, L = 66) on the surface, one may travel in many directions to reduce L. Some of these are shown by arrows. The maximum reduction occurs when one travels along the thick black arrow - this happens when [image: ] is changed along [image: ] = [−12, −24]T  which is negative of the gradient of the L([image: ]) at P


  Figure 3.7 shows a function of two independent variables L([image: ]) ≡ L(w0,w1) = 2w02 + 3w12. Let usexamine this surface with a few concrete examples.


  Suppose we are at [image: ]. The corresponding value of L([image: ]) is 2 ∗ 32 + 3 * 42 = 66.


  Suppose, from this point, we suffer a small displacement [image: ], the new value is L([image: ] + [image: ]) = L (3.0003, 4.0004) = 2 ∗ 3.00032 + 3 ∗ 4.00042 ≈ 66.0132066. Thus the displacement vector  [image: ], causes a change δL = 66.01320066 − 66 = 0.01320066 in L.


  Similarly, if the displacement vector is [image: ] we get L([image: ] + [image: ]) = L(3.0004, 4.0003) = 2 ∗ 3.00042 + 3 ∗ 4.00032 ≈ 66.0120006. Thus this displacement vector causes a change δL = 66.0120006 − 66 = 0.0120006 in L.


  As mentioned before, when our loss depends on a single scalar variable w, the displacement variable δw is also a scalar - it does not have a direction. But in higher dimensions, the displacement is a vector. It has both magnitude (length) and direction and the change in the function depends on both. Thus, in the above examples, the displacement vectors [image: ], and[image: ]  both have the same length [image: ] but the change caused by them is different.


  What is the relationship between the displacement vector [image: ] and the overall change in L([image: ])? We will look at this question in the general case with arbitrary dimensions. But for that, we need to know what a partial derivative is.


  Partial Derivatives


  Derivative δL/δw of a function L(w) indicates the rate of change of the function with respect to w. But if L is a function of many variables, how does it change if only one of those variables is changed? This question leads to the notion of partial derivatives. A partial derivative of a function of many variables is a derivative taken with respect to exactly one variable, treating all other variables as constants.


  For instance, given L([image: ]) ≡ L(w0,x1) = 2w02 + 3w12, the partial derivative with respect to w0 is


  [image: ]


  Total change in a multi-dimensional function: Gradients


  Partial derivatives estimate the change in a function if a single variable changes and the others stay constant. How do we estimate the change in a function’s value if all the variables change together?


  The total change can be estimated by taking a weighted combination of the partial derivatives. Let [image: ] and [image: ] denote the point and displacement vector respectively.


  [image: ]


  Then


  
    
      	
        [image: ]

      

      	
        (3.4)

      
    

  


  Equation 3.4 is essentially saying that the total change in L is obtained by adding up the changes caused by displacements in individual variables. The rate of change of L with respect to change in wi only is ∂L/∂wi. The displacement along the variable xi is δwi. Hence, the change caused by the ith element of the displacement is ∂L/∂wi ∗ δwi - this follows from equation 3.3. The total change then is obtained by adding the changes caused by individual elements of the displacement vector, i.e., summing over all i from 0 to n. This leads to equation 3.4.


  Is there a way to represent equation 3.4 compactly? The answer is yes, by defining a quantity called gradient - the vector of all partial derivatives. Given an n-dimensional function L([image: ]),


  its gradient is defined as
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        (3.5)

      
    

  


  Using this, we can rewrite equation 3.4 as


  
    
      	
        [image: ]

      

      	
        (3.6)

      
    

  


  Equation 3.6 tells us that the total change, ∂L in L([image: ]), caused by displacement [image: ]  from [image: ] in parameter space is the dot product between gradient vector ▽L([image: ]) and displacement vector [image: ]. This is the exact multi-dimensional analog of equation 3.3.


  From section 2.5.6 we will recall that the dot product of two vectors (of fixed magnitude) attains maximum value when the vectors are aligned in direction. This yields a physical interpretation of the gradient vector - its direction is the direction in parameter space along which the multi-dimensional function is changing fastest. It is the multi-dimensional counterpart for derivative. This is why, in machine learning, when we want to minimize the loss function, we change the parameter values along the direction of the gradient vector of the loss function.


  Gradient is zero at minimum


  Any optimum (i.e., maximum or minimum) of a function is a point of inflection. This means, the function will turn around at the point of optimum. In other words, the gradient direction on one side of the optimum will be opposite to that on the other side. If we try to travel smoothly from positive values to negative values, we must cross zero somewhere in between. Thus, the gradient is zero at the exact point of inflection (maximum or minimum). This is easiest to see in 2D and is depicted in Figure 3.8. However, the idea is general, it works in higher dimensions too. The fact that gradient becomes zero at optimum is often used to algebraically compute the optimum. Following example illustrates this.


  Take for instance, a simple example function [image: ]. Its optimum will occur when its gradient is zero, i.e.,


  [image: ]


  The solution is


  w0 = 0,   w1 = 0


  the function attains its minimum value at the origin which agrees with our intuition.


  From Figure 3.8, we can see that the function curves in one direction on one side of the minimum and curves in the opposite direction on the other side of the minimum. In other words, the minimum is always a point of inflection. The slope of the tangent is positive on one side negative on the other. At the exact minimum, the slope is zero. This agrees with our intuition that any smooth, continuous function must take a zero value in between positive and negative values.


  [image: ]


  Figure 3.8: The minimum is always a point of inflection - meaning the function turns around at that point. If we consider any two points, e.g., P− and P+, on two sides of the minimum the gradient is positive on one side and negative on the other. Assuming the gradient changes smoothly, it must be zero in between at the minimum.


  3.3.2   Level Surface representation and Loss Minimization


  In Figure 3.7 we plotted the loss function L([image: ]) against the parameter values [image: ]. In this section, we will study a different way of visualizing loss surfaces. This will lend further insight into gradients and minimization.


  We will continue with our simple example function from last subsection to illustrate the idea.Consider a field [image: ] defined over the 2D W0,W1 plane. Its domain is the infinite 2D plane defined by the axes W0 and W1. Note that the function has constant values along concentric circles centered on the origin. For instance, at all points on the circumference of the circle w02 + w12 = 1 the function has the constant function value of 1. At all points on the circumference of the circle w02 + w12 = 25 the function has the constant function value of 5. Such constant function value curves on the domain are called level contours in 2D. This is shown as a heat-map in Fig 3.9. The idea of level contours can be generalized to higher dimensions where we have level surfaces or level hyper-surfaces. The reader should note that while the [image: ], L([image: ]) of representation of Figure 3.7 was on a (n+1) dimensional space (where n is the dimensionality of [image: ]), the level surface/contour representation is in n dimensional space.


  [image: ]


  Figure 3.9: The domain of  [image: ] shown as a heat-map of function values. Gradients point radially outward as shown by the arrowed line. The deepness of the red color changes fastest along the gradient (i.e., radii). This is the direction to follow to rapidly reach lower values of the function represented by the heatmap.


  At any point on the domain, what is the direction along which the biggest change in function value occurs? The answer is along the direction of the gradient. The magnitude of the change corresponds to the magnitude of the gradient. In the current example, say we are at a point (w0,w1). There exists a level contour through this point - the circle with origin at center passing through (w0,w1). If we move along the circumference of this circle, i.e., along the tangent to this circle, the function value does not change at all. In other words, at any point, the tangent to the level contour through that point is the direction of minimal change. On the other hand, if we move perpendicular to the tangent, maximum change in the function value occurs. The perpendicular to the tangent is known as normal. This is the direction of the gradient. Gradient at any point on the domain is always normal to the level contour through that point, indicating the direction of maximum change in function value. In Figure 3.9, the gradients are all parallel to the radii of the concentric circles. T Recall that during training a machine learning model, we essentially define a loss function in terms of a tunable set of parameters and try to minimize the loss by adjusting (tuning) the parameters. We start at a random point and iteratively progress towards the minimum.


  Geometrically, this can be viewed as starting at an arbitrary point on the domain and continuing to move in a direction that minimizes the function value. Of course, we would like to progress to the minimum of the function value in as few iterations as possible. In Figure 3.9 the minimum i at the origin, which is also the center of all the concentric circles. Wherever we start, we will have to alway travel radially inwards to reach the minimum (0, 0) of the function [image: ].


  In higher dimensions, level contours become level surfaces. Given any function [image: ]] ∈ ℝn we define level surfaces as L([image: ]) = constant. If we move along the level surface, the change in L([image: ]) is minimal (0). The gradient of a function at any point is normal to the level surface through that point. This is the direction along which the function value is changing fastest. Moving along the gradient, one passes from one level surface to another. This is shown in Figure 3.10. Here the function is 3D: L([image: ]) = L(w0,w1,w2) = w20 + w21 + w22. The level surfaces w20 + w21 + w22 = constant , for various values of the constant are concentric spheres, with origin as center. Gradient vector at any point is along the outward pointing radius of the sphere through that point. Another example is shown in Figure 3.11.


  Here the function is 3D: L([image: ]) = f (w0,w1,w2) = w02 + w12. The level surfaces w02 + w12 = constant  for various values of the constant are coaxial cylinders, with W3 as axis. Gradient vector at any point is along the outward pointing radius of the planar circle belonging to the cylinder through that point.


  [image: ]


  Figure 3.10: Gradient example in 3D: Function L(w0,w1,w2) = L ([image: ]) = w0 2 +w 12 +w 22. Level surfaces L ([image: ]) = constant, are concentric spheres with origin as center. One such surface is partially shown in the diagram. ▽L ([image: ]) = k [w0 w1 w2]T. The gradient points radially outwards. Moving along the gradient, one goes from one level surface to another - corresponding to maximum change in L([image: ]). Moving along any direction orthogonal to the gradient, one stays on the same level surface (sphere) - corresponds to zero change in the function value. Dq ([image: ]) denotes the directional derivative along the displacement direction making angle θ with the gradient. If we l̂ denotes this displacement direction, Dθ ([image: ]) = ▽L ([image: ]) · l̂.


  [image: ]


  Figure 3.11: Gradient example in 3D: Function L(w0,w1,w2) = L([image: ]) = w0 2 + w2 2. Level surfaces f ([image: ]) = constant, are coaxial cylinders. One such surface is partially shown in the diagram. ▽L ([image: ]) = k [w0 w1 0]T. The gradient is normal to the curved surface of the cylinder, along the outward radius of the circle. Moving along the gradient, one goes from one level surface to another - corresponding to maximum change in L ([image: ]). Moving along any direction orthogonal to the gradient, one stays on the same level surface (cylinder) - corresponds to zero change in function value.


  3.4   Python numpy and PyTorch code for Gradient Descent, Error Minimization and Model Training


  In this section, we will study implementations of model training. We will study numpy and a pytorch examples in which models are trained by minimizing errors via gradient descent. Before the code is presented, we will have a brief recap of the main ideas from a practical point of view.


  Complete code for this section can be found at nbviewer.jupyter.org/github/../ch3/


  3.4.1   Numpy and PyTorch code for Linear Models


  If the true underlying function we are trying to predict is very simple, linear models suffice. Otherwise, we require non-linear models. Here we will study linear model. In machine learning, we identify the input and output variables pertaining to the problem at hand and cast the problem as generating outputs from input variables. All the inputs are represented together by the vector [image: ].


  Sometimes there are multiple outputs, sometimes single output. Accordingly, we have an output vector [image: ] or output scalar y. Let us denote the function that generates the output from input vector as f , i.e., y = f([image: ]).


  In real life problems, we do not know f . The crux of machine learning is to estimate f from a set of observed inputs [image: ]i and their corresponding outputs yi. Each observation can be depicted as a pair ⟨[image: ]i, yi⟩. We model the unknown function f with a known function ϕ. ϕ is a parameterized function. Although the nature of ϕ is known, its parameter values are unknown. These parameter values are “learnt” via training. This means, we estimate the parameter values such that the overall error on the observations is minimized.


  If [image: ], b denotes the current set of parameters (weights, bias), then the model will outputf ([image: ]i, [image: ], b) on the observed input [image: ]i. Thus the error on this ith observation is ei2 = (ϕ ([image: ]i) − yi)2. We can batch up several observations and add up the error into a batch error [image: ]


  The error is a function of the parameter set [image: ]. The question is: how do we adjust [image: ] so that theerror ei2 decreases. We know a function’s value changes most when we move along the direction of of the gradient of the parameters. Hence, we adjust the parameters [image: ], b as


  [image: ]


  Each adjustment reduces the error. Starting from a random set of parameter values doing this “sufficiently” large number of times yields the desired model.


  A simple and popular model ϕ is the linear function (predicted value is dot product between input and parameters plus bias): ỹi = ϕ ([image: ]i, [image: ], b) = [image: ]T [image: ] + b = Σj wjxj + b. In the example below, this is the model architecture used.


  Our initial implementation will simply mimic this formula. For more complicated models ϕ (with millions of parameters and non-linearities) we cannot obtain closed form gradients like this. The next example, based on PyTorch, relies on PyTorch’s autograd (automatic gradient computation) which does not require the closed form gradient. //
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  Figure 3.12: Auto grad Analysis


  Listing 3.2: Linear modeling with PyTorch


  [image: ]


  Output:


  1 True function : y = 1.5* x + 2.73 2 Learnt function : y_pred = 1.50910639763* x + 2.66267037392


   


  Listing 3.1: Numpy linear model (closed form formula for gradients needed).
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  Output:


  1 True function : y = 1.5∗x + 2.73 2 Learnt function : y_pred = 1.50606334527* x + 2.71214524274


  Autograd: PyTorch Automatic Gradient Computation


  In the numpy code above, we computed the gradient using calculus for this specific model architecture.


  This approach does not scale to more complex models with millions of weights and perhaps non-linear complex functions. For scalability, we can use PyTorch, where gradients are computed via automatic differentiation. The user of the libraries need not worry about how to compute the gradients - they just construct the model function. Once the function is specified, PyTorch figures out how to compute its gradient through a technology called autograd.


  Autograd Autograd is the technology in pytorch for automatic gradient computation. Here is how it is used. One explicitly tells pytorch to track gradients with respect to a variable by setting requires_grad = True when creating the variable. Pytorch remembers a computation graph which gets updated everytime we create an expression using tracked variables. Below is an example of computation graph


  [image: ]


  Figure 3.12: Auto grad Analysis


  Listing 3.2: Linear modeling with PyTorch


  [image: ]


  Output:


  1 True function : y = 1.5* x + 2.73 2 Learnt function : y_pred = 1.50910639763* x + 2.66267037392


  3.4.2   Non-linear Models in PyTorch


  In code listing captioned “Numpy Linear Model” and “Linear modeling with PyTorch” we fit a linear model to a data distribution that we know to be linear. From outputs we can see that those models converged to a pretty good approximation of the underlying output function - in the Numpy as well as PyTorch case. We also see that graphically from Fig 3.13. But what happens if the underlying output function is non-linear?


  For real world problems, we will not know the underlying true output function. But here, for the sake of gaining insight, we will continue to generate known output functions which we will perturb with noise to make it slightly realistic. We will first try to use a linear model on the non-linear data distribution (code listing “Linear Approximation of non linear data”). As expected (and demonstrated via the output as well as Fig 3.14) this model does not do well. This is because we are using an inadequate model architecture. Further training will not help.


  [image: ]


  Figure 3.13: Linear approximation of linear data: We see that towards step 1000 the model has more or less converged to true underlying function


  Then we will try a non-linear model (code listing “Non linear modeling with PyTorch”). As expected (and demonstrated via the output as well as Fig 3.15) the non linear model does well. In real life problems, we usually assume non-linearity and choose a model architecture accordingly.


  Complete code for this section, fully executable via Jupyter-notebook, can be found at nbviewer.jupyter.org/../ch3/3.4.3-gradients-catbrain-numpy-pytorch.ipynb.


  Listing 3.3: Linear approximation of non linear data.


  [image: ]


  Output:


  1 True function : y=x^2 -x + 2 2 Learnt function : y_pred = 8.79633331299* x + -13.4027605057


  [image: ]


  Figure 3.14: Linear approximation of non linear data: Clearly the model is not converging to anything close to the desired/true function. Our model architecture is inadequate


  Listing 3.4: Non linear modeling with PyTorch


  [image: ]


  Output:


  1 True function : y= 2 - x + x^2 2 Learnt function : y_pred = 1.87116754055 + -0.953767299652* x + 0.996278882027* x^2


  [image: ]


  Figure 3.15: Non linear model: If we use a non linear model instead, we see that the model has more or less converged to true underlying function


  3.4.3   A Linear Model for the cat-brain in PyTorch


  In section 2.12.5 we solved the cat-brain problem directly via pseudo-inverse. Let us now train a PyTorch model over the same dataset. As expected, the model parameters will be converge to a solution close to that obtained by the pseudo-inverse technique (this being a simple training dataset) - but in this course, we will demonstrate our first somewhat sophisticated PyTorch model.


  Listing 3.5: Our first realistic PyTorch model (solves the cat-brain problem)


  [image: ]


  Output:


  1 The solution via gradient descent is [ 1.0766 0.8976 -0.9581]


  [image: ]


  Figure 3.16: A convex function: Only global minima, no local minima. Descending along gradient is guaranteed to reach the global minimum. Friendly error functions are like this


  [image: ]


  Figure 3.17: A nonconvex function: Local minima exists. Descending along gradient may reach a local minimum and never discover the global minimum. Unfriendly error functions are like this


  3.5   Convex, Non-convex functions; Global and Local Minima


  A convex surface (see Figure 3.16) has a single optimum (maximum/minimum) - the global one. Wherever we are on such a surface, if we keep taking downward steps, eventually we will reach the global minimum. On the other hand, a non-convex surface looks something like Figure 3.17. Here, we might get stuck in a local minimum. For instance, see Figure 3.17. If we start at the point marked with the arrowed line indicating gradient and move downward following the gradient, we will arrive at a local minimum. At the minimum, gradient is zero and we will never move out of that point.


  There was a time when researchers spent a lot of effort trying to avoid local minima. Special techniques (such as simulated annealing) were developed to avoid them. However, neural networks typically do not do anything special to deal with local minima and non-convex functions. Quite often the local minimum is good enough. Or one retrains starting from a different random point luckily escapes the local minimum.


  After training, we have an estimated output function f([image: ]) with a set of weights that minimizes the error over the training data set. Its time to launch the classifier in life. It takes an arbitrary input [image: ] (not necessarily seen before) and evaluates f([image: ]) and emits a decision. This latter process is called “inferencing” as opposed to “training”.


  It is important to realize that the error has been minimized only on the training data set. This will yield a good classifier in the real world if and only if the training data set was a good representation of the data one encounters during inferencing. It is absolutely imperative that the training data set is sufficiently large and sufficiently varied for the classifier to do well in practice.


  3.6   Multi-dimensional Taylor series and Hessian Matrix


  3.6.1   1D Taylor Series recap


  Suppose we are trying to describe the curve f (x) in the neighborhood of a particular point x. If we stay infinitesimally close to x then, as described in subsection 3.3, we can approximate the curve with a straight line and say


  [image: ]


  But in the general case, if we are describing a continuous (smooth) function in the neighborhood of a specific point, we use Taylor series. Taylor series allows us to describe a function in the neighborhood of a specific point in terms of the value of the function and its derivatives at that point. It is relatively simple in 1D.


  
    
      	
        [image: ]

      

      	
        (3.7)

      
    

  


  Note that the terms become progressively smaller (since they involve higher and higher powers of a small number δx). Hence although the series goes on till infinity, in practice, one entails negligible loss in accuracy by dropping higher order terms. One often uses the first order approximation or at most second order.


  A handy example of Taylor series is the expansion of the exponential function ex near x = 0.


  [image: ]


  where we have used the fact that [image: ] for all n.


  3.6.2   Multi-dimensional Taylor series and Hessian Matrix


  In equation 3.7 we expressed a function of one variable in a small neighborhood around a point in terms of the derivatives. Can we do a similar thing in higher dimensions. The answer is yes. We simply needs to replace the first derivative with gradient. We need to replace the second derivative with its multi-dimensional counterpart - the Hessian matrix. The multi-dimensional Taylor series is as follows
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        (3.8)

      
    

  


  where H([image: ]), called the Hessian matrix defined as
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        (3.9)

      
    

  


  Note that the Hessian matrix is symmetric since [image: ]. It should be noted that Taylor expansion assumes that the function is continuous in the neighborhood.


  3.7   Convex sets and functions


  In section 3.5 we briefly encountered convex functions and how convexity tells us whether the function has local minima or not. In this section, we will study convex functions in more detail. In particular, we will learn how to tell whether a given function is convex. We will also study some important properties of convex functions which will come in handy later, for instance when we study Jensen’s Inequality in probability and statistics, sec ??.


  We will mostly illustrate the ideas in 2D space, they can be easily extended to higher dimensions.


  Convex Sets


  Informally speaking, a set of points is said to be convex if and only if the straight line joining any pair of points in the set lies entirely within the set. Consider the green regions in Fig. 3.18. If we take any pair of of points in the green region and join them with a straight line, all points on that line will also be in the green region. This is illustrated by the points A and B in Fig. 3.18. The complete set of points in any such region together will constitute a convex set.


  Conversely, a set of points is non-convex if it contains at least one pair of points whose joining line contains a point not belonging to the set. For instance, see the red region in Fig. 3.18. We show a pair of points A and B whose joining line passes through points not belonging to the red region.


  The boundary of a convex set is always a convex curve.


  [image: ]


  Figure 3.18: Convex and non convex sets. The points in the green region form a convex set. The line joining any pair of points in green region lies entirely in the green region, e.g., AB in left hand figure. The points in the red region form a non convex set. For instance, the line joining points AB in right hand figure passes through non red region even though both end points belong to red region.


  Convex Curves and Surface


  Consider a function g(x). Let us pick any two points on the curve y = g (x), A ≡ (x1, y1 = g (x1)) and B ≡ (x2, y2 = g (x2)). Now consider the line segment L joining A and B. From section 2.8.1, equation 2.14 and Fig 2.8 we know that all points C on L can be expressed as a weighted average ofthe coordinates of A and B with the sum of weights being 1. Thus, C ≡ (α1x1 + α2x2, α1y1 + α2y2) where α1 + α2 = 1. Compare C with its corresponding point D on the curve, which has the same X coordinate. D ≡ (α1x1 + α2x2, g(α1x1 + α2x2)).


  If and only if g (x) is a convex function, C will always be above D or


  α1y1 + α2y2 = α1g (x1) + α2g (x2) ≥  g (α1x1 + α2x2)


  Viewed in another way, if we drop a perpendicular to the X-axis from any point on a line joining a pair of points on the curve, that perpendicular will cut the curve at a lower point (i.e., smaller in Y-coordinate).


  This is illustrated in Fig. 3.19 left hand side with the functiong (x) = x2 (known to be convex) and A ≡ (−3, 9) and B ≡ (5, 25), α1 = 0.3, α2 = 0.7. It can be seen that the weighted average point C on the line lies above the corresponding point on the curve D. The right hand side illustrates the non-convex function g(x) = x3, with A ≡ (−8, −512) and B ≡ (5, 125), α1 = 0.3, α2 = 0.7. One weighted average point, viz., C, on the line joining points A and B on the curve, which lies below the point on the curve with same X coordinate, viz., D, is shown.


  In fact, we need not restrict ourselves to two points only. We can take weighted average of an arbitrary number of points on the curve, with the weights summing to one. The point corresponding to the weighted average will lie above the curve (i.e., above the point on curve with same X coordinate).


  [image: ]


  Figure 3.19: Convex and non convex curves. A and B are a pair of points on the curve. C = 0.3A + 0.7B is a weighted average of the coordinates of A and B, with weights summing to 1. C lies on the line joining joining A and B. The left hand figure shows a convex curve. Here C lies above the corresponding curve point D. The right hand figure shows a non-convex curve. Here C lies below the corresponding curve point D.


  The idea extends to higher dimensions too.


  
    Definition 1

  


  In general, a multi-dimensional function g([image: ]) is convex if and only if


  ·   Given an arbitrary set of points on the function surface (curve if the function is 1D), ([image: ]1, g([image: ]1)), ([image: ]2, g([image: ]2)), ⋅⋅⋅, ([image: ]n, g([image: ]n))


  ·   Given an arbitrary set of n weights α1, α2, ⋅⋅⋅, αn that sum to 1, i.e., Sin=1 αi = 1


  ·   The weighted sum of function outputs exceeds or equals the function output on the weighted sums
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        (3.10)

      
    

  


  
     

  


  A little thought will reveal that definition 1 implies that convex curves always curls upwards and/or rightwards, everywhere. This leads to another equivalent definition of convexity.


  
    Definition 2

  


  ·   A 1D function g(x) is convex if and only if its curvature is positive everywhere, i.e.,
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        (3.11)

      
    

  


  ·   A multidimensional function g([image: ]) is convex if and only if its Hessian matrix (see section 3.6.2, equation 3.9) is positive semi-definite (i.e., all the eigenvalues of the Hessian matrix are greater than or equal to zero). This is just the multi-dimension analog of equation 3.11.


  
     

  


  One subtle point to note is that, if the second derivative is negative everywhere or the Hessian is negative semi-definite, the curve or surface is said to be concave. This is different from non-convex curves where the second derivative is positive in some places and negative in some other places. The negative of a concave function is a convex function. But the negative of a non-convex function is again non-convex. A function that curves upwards everywhere is always going to lie above its tangent. This leads to another equivalent definition of a convex function


  
    Definition 3

  


  ·   A function g(x) is convex if and only if all the points on the curve S ≡ (x, g (x)) lie above the tangent line T at any point A on S, with S touching T only at A.


  ·   A function g([image: ]) is convex if and only if all the points on the surface S ≡ ([image: ], g ([image: ])) lie above the tangent plane T at any point A on S, with S touching T only at A.


  
     

  


  This is illustrated in Fig. 3.20.


  [image: ]


  Figure 3.20: Convex and non convex curves. The left hand figure shows a convex curve. If we draw a tangent line at any point A on the curve, the entire curve will be above the tangent line, touching it only at A. The right hand side shows a non-convex function where part of the curve lies above the tangent and another part below.


  Convexity and Taylor Series


  In section 3.6.1, equation 3.7 we saw the one dimensional Taylor expansion for a function in the neighborhood of a point x. If we retain terms in Taylor expansion only upto the first derivative and ignore all subsequent terms, that is equivalent to approximating the function at x with its tangent at x (see fig. 3.20). This is the linear approximation to the curve. If we retain one more term, i.e., upto second derivative, we get the quadratic approximation to the curve. Now, if the second derivative of the function is always positive (as in convex functions), the quadratic approximation to the function will always be greater than or equal to the linear approximation. In other words, locally, the curve will curve in a way that it lies above the tangent. This connects second derivative definition with the above tangent definition of convexity.


  Some examples of convex function


  The function g (x) = x2 is convex. The easiest way to verify this is to compute


   d2g/dx2 = d(2x)/dx = 2, which is positive always.


  In fact, any even power of x., g (x) = x2n for an integer n, like x4, x6 etc is convex.


  g (x) = ex is also convex. It can be easily verified by taking its second derivative.


  g (x) = logx is concave. Hence, g (x) = −logx is convex.


  Multiplication by a positive scalar preserves convexity. Also sum of convex functions is itself a convex function.





3.8   Chapter Summary


  In this chapter we studied machine learning training in more detail.


  ·   We gained more insights into geometrical view of machine learning. In particular, we learnt how machine learning classifiers boil down to separating clusters of points in highdimensional spaces.


  ·   We learnt about various separating surfaces in high-dimensions and the role played by the sign of the separating surface.


  ·   We learnt about gradients of multi-dimensional functions and how they indicate the direction of maximal change in function value.


  ·   We learnt how machine learning training quickly progresses towards the minimum loss by moving along gradient of the loss function.


  ·   We learnt about convex and non-convex functions and local and global minima. In a convex function, gradient based descent is guaranteed to converge to the global minimum while in a non-convex function, such approaches may get stuck in local minima.


  ·   We learnt about multi-dimensional Taylor series to create local approximations to a smooth function. We learnt about the Hessian matrix which is needed to make higher order approximations.


  
    

    


    
      [1]  Most of what we say in these sections is equally applicable to the minimum and maximum. We choose to use the word minimum (plural minima) instead of the more mathematical word optimum (optima) for ease of reading. We can view machine learning as the business of minimizing loss. However, we can also view it as maximizing gain

    


    
      [2] for the sake of brevity, here we will use the symbol w to denote all parameters - weight as well

    


    
      [3] (note that if change in a quantity, say w, is infinitesimally small, we use the symbol dw to denote the change, whileif the change is small but not infinitesimally so, we use dw)

    

  


  4    Linear Algbraic Tools in Machine Learning and Data Science


  As mentioned earlier, finding patterns in large volumes of high dimensional data is the name of the game in machine learning and data science. The data often appears in the form of large matrices (a toy example of this is shown in section 2.3 and also in equation 2.1). The rows of the data matrix would represent feature vectors for individual input instances. The number of columns would match the size of the feature vector. The number of rows would match the number of observed input instances. The geometrical representation of such an input matrix would be a set of points (the number of points matches the number of rows in the matrix). The number of dimensions of the space would match the number of columns in the data matrix). The distribution of these points is usually not uniformly random - meaning these points are not spread all over the space. Rather they will occupy a rather small sub-region of that space. Such a skewed distribution of points is shown in Figure 4.2 as a toy instance. Instead of being distributed all over the 2D space, the points are lying within a long and very narrow elliptic shape.


  For instance, consider the problem of determining similarity between documents. This is an important problem machine learning. Its use is in document search and retrieval where given a query document, the system needs to retrieve - in ranked order - documents from archive that match the query document. Google solves this problem for instance. Each document is represented by a document descriptor vector. It is a very very long vector - its length matches the size of the vocabulary of the documents in the system - with a fixed position for every word in the vocabulary, ignoring perhaps prepositions and conjunctions. For every document, the descriptor contains the frequency (number of occurrences) of every word in the vocabulary. If the word does not occur, we put a zero there. We will store one descriptor vector for every document in the archive. Such machine learning systems indeed exist. However, we do not explicitly store the descriptor vectors in their entirety. Instead, we store them in a logically equivalent fashion, meaning we store the frequency along with the actual word in the descriptor vector - not explicitly storing the words that did not occur.


  Certain words often occur together (“Michael” and “Jackson”, “driver-less” and “cars”). Consequently, the points corresponding to the descriptor vectors will have a very skewed shape, reminiscent of Figure 4.2.


  If the sub-region of the space occupied by the data points has very little variation (spread) along certain directions, we can ignore those directions when measuring similarity. We ignore the small variance directions by projecting the data on the high variance dimensions only. This leads to a much simplified representation of the data and the process is called dimensionality reduction. Not only does this lead to a simplified representation, it often leads to elimination of noisy signals, because the small variations are often caused by noise.


  The above ideas form the basis of the technique of Principal Component Analysis (PCA). It is one of the most important tools in the repertoire of a data scientist and machine learning practitioner. These ideas also underly the technique of Latent Semantic Analysis (LSA) for document retrieval - a fundamental approach for solving Natural Language Processing (NLP) problems in machine learning. This chapter is dedicated to studying a set of methods leading up to the PCA and LSA. We study a basic document retrieval system along with python code in the end.


  This chapter deals in some intricate mathematics. The reader will be well advised to persevere through all of that, including theorem proofs. Getting an intuitive understanding the proofs will lead to significantly better insights.


  Fully functional code for chapter 4, runnable via Jupyter-Notebook is available at our public github repository at https://nbviewer.jupyter.org/github/krishnonwork/mathematicalmethods-in-deep-learning-ipython/tree/master/python/ch4/.


  4.1   Quadratic Forms and their Minimization


  Given a square symmetric matrix A, the scalar quantity Q = [image: ]TA[image: ] is called a quadratic form. It is seen in various situations in machine learning.


  For instance, recall the equation of a circle we learnt in high school.


  (x0 − α0)2 + (x1 − α1)2 = r2


  where the center of the circle is (α0, α1) and radius is r. This equation can be rewritten as


  [image: ]


  If we denote the position vector [image: ] as [image: ] and the center of the circle [image: ] as [image: ] the above equation can be written compactly as


  ([image: ] −[image: ])T I ([image: ] −[image: ]) = r2


  Stated in this matrix format, it is no longer restricted to 2D. It is in fact a hyper-sphere. The LHS is a quadratic form (transpose of a vector multiplied with a symmetric matrix multiplied with the same vector).


  Consider, now, the equation of ellipse we learnt in high school.


  [image: ]


  The reader can verify that this can be written compactly in matrix form as


  [image: ]


  or, equivalently


   


  
    
      	
        ([image: ] −[image: ])T A ([image: ] −[image: ]) = 1

      

      	
        (4.1)

      
    

  


  where


  [image: ]


  Once again, the matrix representation is dimension independent. In other words, equation 4.1 represents a hyper-ellipse. It should be noted that if the ellipse axes are aligned with the coordinate axes, matrix A is diagonal. If we rotate the coordinate system, each position vector will be rotated by an orthogonal matrix R. Equation 4.1 gets transformed as follows (we have used the rules for transposing product of matrices from equation 2.11)


  (R([image: ] −[image: ]))T  A (R([image: ] −[image: ])) = 1


  (([image: ] −[image: ])T  (RT AR) ([image: ] −[image: ]) = 1


  Replacing RTAR with A, we get the same equation as equation 4.1, only A is no longer a diagonal matrix.


  For a generic ellipsoid with arbitrary axes, A will have non-zero off diagonal terms, but it will still be symmetric. Thus, the multi-dimensional hyper-ellipse is represented by a quadratic form. The hyper-sphere is a special case of this.


  The quadratic form is also found in the second term of the multi-dimensional Taylor expansion shown in equation 3.8, [image: ] is a quadratic form in the Hessian matrix.


  Another huge application of quadratic forms is Principal Component Analysis which is so important that we have a whole section devoted to it (section 4.3).


  An important question is what choice of [image: ] maximizes or minimizes the quadratic form. Because the quadratic form is part of the multi-dimension Taylor series, this question arises when we are trying to determine what direction to move in so as to approach the minimum with maximal speed during minimization of loss L ([image: ]). It will also arise in context of Principal Component Analysis which we will study later.


  If [image: ] is an arbitrary length vector, we can make Q arbitrarily big or small by simply changing the length of [image: ]. Consequently, optimizing Q with arbitrary length [image: ] is not a very interesting problem. Rather, we want to know which direction of [image: ] optimizes Q. Hence, for the rest of this section, we will discuss quadratic forms with unit vectors Q = x̂TAx̂ (recall that x̂ denotes an unit length vector satisfying  x̂T x̂ = || x̂ ||2  = 1). Equivalently, one can use a different flavor, [image: ]. We will use the former expression here. We are essentially searching over all possible directions x̂, examining which direction optimizes Q = x̂TAx̂.


  Using matrix diagonalization (section 2.15)


  Q = x̂TAx̂= x̂T SΛST x̂


  where  S = [[image: ]1 [image: ]2 ··· [image: ]n] is the matrix with eigenvectors of A as its columns and Λ is a diagonal matrix with the eigenvalues of A on the diagonal and 0 everywhere else. Substituting


  ŷ = ST x̂


  we get


  
    
      	
        Q = x̂TAx̂= x̂T SΛST x̂


            = ŷTΛy

      

      	
        (4.2)

      
    

  


  where [image: ].


  It should be noted that since A is symmetric, its eigenvectors are orthogonal. This implies S is an orthogonal matrix. Consequently, STS = SST = I. Recall from section 2.14 that for orthogonal matrix S the transformation ST x̂ is length preserving. Consequently, ŷ is also of unit length. Expanding the right hand side of equation 4.2 we get


  
    
      	
        [image: ]

      

      	
        (4.3)

      
    

  


  We can assume that the eigenvalues are sorted in decreasing order of magnitude (because if not we can always renumber them).


  Lemma: The quantity [image: ] where [image: ] and λ1 ≥ λ2 ≥ ··· λn, attains its maximum value when y1 = 1, y2 = ··· yn = 0.


  Intuitive Proof:


  If possible, let that the maximum value occur at some other value of ŷ. We are constrained by the fact that ŷ is an unit vector, so we must maintain [image: ] None of the elements of ŷ can exceed 1. Also, if we reduce y1’  from 1 to a smaller value, say √1−𝜖 some other element(s) must go up by an equivalent amount to compensate. Keeping that in mind, let us suppose that the maximum value occurs at ŷ’ which looks like


  [image: ]


  and all other elements are zero. In other words, there is an additional non-zero value, other than the first one, in ŷ’, viz., the jth element is √𝜖. Consequently y’1 has to decrease from 1 to √1−𝜖, to ensure [image: ].


  Let us compare the corresponding two values of the quadratic form


  [image: ]


  We see


  Q − Q′ = λ1𝜖 − λj𝜖 = (λ1 – λj) 𝜖


  But this quantity is greater than zero since λ1 > λj - we sorted the λs in decreasing order at the beginning. Hence, Q − Q′ > 0 implying Q > Q′. This contradicts the assumption that ŷ‘ is a maximum. This means, to maximize the right hand side of equation 4.3, we must have 1 as the first element (corresponding to the largest eigenvalue) of the unit vector ŷ and zeros everywhere else. Anything else violates the condition that the corresponding quadratic form [image: ] is a maximum.


  Thus we have established that the maximum of Q occurs at [image: ]. The corresponding x̂ = Sŷ  = [image: ]1 - the eigenvector corresponding to the largest eigenvalue of A.


  Thus, the quadratic form Q = x̂TA x̂ attains its maximum when x̂ is along the eigenvector corresponding to the largest eigenvalue of A. The corresponding maximum Q is equal to the largest eigenvalue of A. Similarly, the minimum of the quadratic form occurs when x̂ is along the eigenvector corresponding to the smallest eigenvalue.


  As stated above, many machine learning problems boil down to minimizing a quadratic form. We will study a few of them in later sections.


  4.1.1   Symmetric Positive (Semi)definite Matrices


  A square symmetric n × n matrix A is positive semi-definite if and only if


  [image: ]TA[image: ] ≥ ∀[image: ] ∈ ℝn


  In other words, a positive semi-definite matrix yields a non-negative quadratic form with all n × 1 vectors [image: ].


  If we disallow the equality, we get symmetric positive definite matrices. Thus A square symmetric n × n matrix A is positive definite if and only if


  [image: ]TA[image: ] > ∀[image: ] ∈ ℝn


  From equation 4.2 and 4.3, if Q is positive or zero, all the λis are also positive or zero (since the y2is are non-negative). Hence, symmetric positive (semi)definiteness is equivalent to the condition that all eigenvalues of the matrix are greater than (or equal to) zero.


  4.2   Spectral and Frobenius Norm of a Matrix


  Spectral Norm


  In section 2.5.4 we saw that the length (aka magnitude) of a vector [image: ] is ||[image: ]|| = [image: ]T [image: ]. Is there an equivalent notion of magnitude for a matrix A?


  Well, a matrix can be viewed as an amplifier of a vector. The matrix A amplifies the vector [image: ] to [image: ] = A[image: ]. So we can take the maximum possible value of ||A[image: ]||  over all possible [image: ]. That is a measure for the magnitude of A. Of course, if we consider arbitrary length vectors, we can make [image: ] arbitrarily large by simply scaling [image: ] - for any A. That is uninteresting. Rather, we want to examine which direction of [image: ] gets amplified most and by how much.


  We examine with unit vectors x̂: what is the maximum (or minimum) value of ||A|| and what direction x̂ materializes it?


  The quantity


  [image: ]


  is known as the spectral norm of the matrix A. Note that A[image: ] is a vector and its  ||A||2 is its length. We will sometimes drop the subscript 2 and just denote the spectral norm as ||A||.


  Now, consider the vector Ax̂. Its magnitude


  ||Ax̂|| = (Ax̂)T (Ax̂) = x̂T AT Ax̂


  This is a quadratic form. From section 4.1 we know it will maximize (minimize) when x̂ s aligned with the largest (smallest) eigenvalue of ATA.


  Thus the spectral norm is given by the largest eigenvalue of ATA.


  
    
      	
        [image: ]

      

      	
        (4.4)

      
    

  


  where σ1 is the largest eigenvalue of ATA. It is also (square of) the largest singular value of A. We will see σ1 again in section 4.4, when we study SVD.


  Frobenius Norm


  An alternative measure for the “magnitude” of a matrix is the Frobenius norm, defined
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        (4.5)

      
    

  


  In other words, it is the root mean square of all the matrix elements.


  It can be proved that the Frobenius norm is equal to the root mean square of all the singular values (eigenvalues of ATA) of the matrix
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        (4.6)

      
    

  


  4.3   Principal Component Analysis


  Suppose we have a set of numbers, X = {x(0), x(1), ··· , x(n)} We want to get a sense of how tightly packed these points are. In other words, we want to measure the spread of these numbers. Figure 4.1 show such a distribution. Note that the points need not be uniformly distributed. In


  [image: ]


  Figure 4.1: A 1D distribution of points. Distance between extreme points is not a fair representation of the spread of points; the distribution is not uniform and the extreme points are far away from others. Most points are within a more tightly packed region.


  particular, the extreme points (xmax, xmin) maybe far away from most other points (as in Figure 4.1). Thus, xmax−xmin / n+1 is not a fair representation of the average spread of points here. Most points are within a more tightly packed region. The statistically sensible way to obtain the spread is to first obtain the mean


  [image: ]


  Then obtain the average distance of the numbers from the mean


  [image: ]


  (one can, if one wishes, take square root and use σ but it is often not necessary to incur that extra computational burden). This scalar quantity, σ, is a good measure of the the mean packing density or spread of points in 1D. The astute reader will recognize that above is nothing but the famous variance formula from statistics. Can we extend the notion to higher dimensional data?


  Lets first try 2D. As usual, we will name our coordinate axes X0, X1 etc, instead of X, Y - to facilitate the extension to multi-dimensions. Individual 2D data point is denoted [image: ].


  The dataset is {[image: ](0), [image: ](1), ··· [image: ](n)}.


  The mean is straightforward, instead of one we will have 2 means


  [image: ]


  Thus, we now have a mean vector


  [image: ]


  Now let us do the variance. The immediate problem we face, there are infinite number of possible directions in the 2D plane. We can measure variance along any of them. It will be different for each choice. We can, of course, find the variance along the X0 and X1 axes


  [image: ]


  σ00 and σ11 tells us the variance when the data varies along only one of the axes X0 and X1 respectively. But, in general, there will be joint variation along both axes. In order to deal with joint variation, let us introduce a cross term


  [image: ]


  The above equations can be written compactly in matrix vector notation.


  [image: ]


  (Note: In the expression for C, we are not taking the dot product of the vectors ([image: ](i) − [image: ]) and ([image: ](i) − [image: ]). The dot product would have been ([image: ](i) − [image: ])T ([image: ](i) − [image: ]) here the second element of the product is transposed as opposed to the first. Consequently, the result is a matrix. Dot product would have yielded a scalar.)


  In fact, the last equations are general, meaning they can be extended to any dimension. To be precise, given a set of n multi-dimensional data points  X{[image: ](0), [image: ](1) , [image: ](2),···,[image: ](n)}, we can define
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  Note how the mean has become a vector (it was a scalar for 1D data) and the scalar variance of 1D, σ, has now become a matrix C. This matrix is called the covariance matrix. The (n + 1)-dimensional mean and covariance matrix can also be defined as
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  Where
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  For i = j, σii is essentially the variance of the data along the ith dimension. Thus the diagonal elements of matrix C contain the variance along the coordinate axes. Off-diagonal elements correspond to cross-covariances.


  Equations 4.8 and 4.9 are equivalent to each other.


  What is the direction of maximum spread/variance? Let us first consider an arbitrary direction specified by the unit vector l̂. Recalling that the component of any vector along a direction is yielded by the dot product of the vector with the unit direction vector, the components of the data points along l̂ are given by


  X′ = { l̂T  [image: ](0), l̂T  [image: ](1),⋅⋅⋅, l̂T  [image: ](n)}


  (remember Figure 2.7 - the component of one vector along another is given by the dot product between them? Note that l̂T [image: ](i) are dot products and hence scalar values).


  The spread along direction l̂ is given by the variance of the scalar values in X′. The mean of the values in X′ is given by


  [image: ]


  and the variance


  [image: ]


  The above can be optimized using Quadratic Form optimization techniques we learnt in 4.1. Overall, we have the following results


  ·   Variance is maximal when l̂  is along the the eigenvector corresponding to the largest eigenvalue of the covariance matrix C. This direction is called the first principal axis of the multidimensional data.


  ·   The components of the data vectors along the principal axis are known as first principal components.


  ·   The value of the variance along the first principal axis, given by the corresponding eigenvalue of the covariance matrix, is called the first principal value.


  ·   The second principal axis is the eigenvector of the covariance matrix corresponding to the second largest eigenvalue of the covariance matrix. Second principal components and values are defined likewise.


  ·   Note that the principal axes are orthogonal to each other, being eigenvectors of the symmetric covariance matrix.


  What is the practical significance of PCA? Why would one like to know the direction along which the spread is maximum for a point distribution? The next two sections, sections 4.3.1, 4.3.4 are devoted to answering this question.


  4.3.1   Application of PCA in Data Science: Dimensionality Reduction


  Dimensionality Reduction is one of the most important tools in the machine learning practitioner’s toolbox. In typical real life datasets, larger variations correspond to the underlying structural pattern of the data - which we want to learn. The smaller variations happen due to noise (e.g., faulty collection method) which we want to ignore.


  For instance, consider the 2D distribution in Figure 4.2. Let us say that the underlying structure is 1D (shown by the two-arrowed thick line in the figure). The variation along the direction perpendicular to the Principal Axis is noise caused by measurement error.


  [image: ]


  Figure 4.2: A 2D data distribution. The true underlying pattern is indicated by the two arrowed straight line. The variation along the direction perpendicular to the true pattern is caused by measurement errors. PCA finds the underlying straight line pattern as first principal axis. Rotating the coordinate system so that this becomes the X axis and then replacing every point by its projection on the new X axis converts the data from 2D to 1D. The projected data is less noisy. And it captures the true distribution.


  We could obtain a simpler and at the same time less noisy version of the data by replacing each data point with its projection on the first principal axis. This will convert the 2D dataset into a 1D dataset, thereby reducing its dimensionality. This also brings out the true underlying pattern in the data.


  In general, dimensionality reduction throws away the noise or unimportant variations, thereby enabling the machine learning system to discover the true pattern in the data from a more basic and simpler representation. We obtain a lower dimensional representation of the data by getting rid of the principal components corresponding to relatively small principal values.


  4.3.2   Python Numpy code: PCA and dimensionality reduction


  In this section we provide implementations of PCA in python numpy and demonstrate various properties via simple examples. The first example computes PCA on synthetic correlated data.


  The complete code fully functional via Jupyter-Notebook can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/ tree/master/python/ch4/.


  Listing 4.1: Principal Component Analysis computation


  [image: ]


  Fully functional code for PCA computation is available at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch4/4.3.2-common.ipynb.


  Listing 4.2: Numpy code demonstrating PCA on synthetic correlated data
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  Output:


  1 Principal values are: [54594.39 96.57] 2 First Principal Vector is: [ -0.44 , -0.89]


  [image: ]


  Figure 4.3: One principal value will be much larger than the other - indicating data points are distributed more or less along a straight line, y = 2x. The principal axis captures that straight line. If we convert the 2D data to 1D by projecting all data points on the principal axis, little error will occur in positions of individual points - little information loss. This is dimensionality reduction.


  [image: ]


  Figure 4.4: Reduced dimensionality representation of same data


  Fully functional code for example PCA computation on synthetic correlated data is available at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch4/4.3.2-pca-numpy.ipynb.


  Listing 4.3: Numpy code demonstrating PCA on synthetic uncorrelated data
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  Output:


  1 Principal values are [8348.79940518 13162.68537655]


  Fully functional code for PCA computation on synthetic un-correlated data is available at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/ blob/master/python/ch4/4.3.2-pca-uncorrelated-numpy.ipynb.


  4.3.3   Drawback of PCA from Data Science viewpoint


  PCA assumes that the underlying pattern is linear in nature. Where this is not true, PCA will not capture the correct underlying pattern. For instance, see figure 4.6.
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  Figure 4.5: PCA on uncorrelated data - projecting on first principal vector will result in large error in positions for most points. Dimensionality reduction will lead to high error.


  [image: ]


  Figure 4.6: A 2D data distribution with curved underlying pattern. Impossible to find a strait line or vector such that all points are near it. PCA will not do well.


  Listing 4.4: Numpy code demonstrating PCA on synthetic non-linearly correlated data


  [image: ]


  4.3.4   Application of PCA in Data Science: Data Compression


  If we want to represent a large multi-dimensional dataset within a fixed byte budget, what is the information we can get rid of with least loss of accuracy? Clearly, these are the principal components along the smaller principal values - getting rid of them actually helps, as described in 4.3.1. So, in order to compress data, one often performs PCA and then replaces the data points with their projections on first few principal axes. This reduces the number of data components to store. This is the underlying principle in JPEG 98 image compression techniques.


  [image: ]


  Figure 4.7: PCA on synthetic non linear data. There is correlation, the points (green dots) are distributed along a curve, single dimensional but not linear. The principal axis (red line) is not capturing underlying pattern of the non-linear data. Projecting data on this axis results in large error in data positions - loss of information.


  4.4   Singular Value Decomposition


  Singular Value Decomposition (abbreviated SVD) maybe the most important linear algebraic tool in machine learning. Among other things, PCA and LSA implementations are built based upon SVD.We will illustrate the basic idea below.[15]


  The SVD theorem states that any matrix A, singular or non-singular, rectangular or square, can be decomposed as the product of 3 matrices.


  
    
      	
        A = UΣVT

      

      	
        (4.11)

      
    

  


  where (assuming that the matrix A is m × n)


  ·   Σ is a m × n diagonal matrix. Its diagonal elements contain the square roots of the eigenvalues of ATA. These are also known as the singular values of A. The singular values appear in a decreasing order in the diagonal of Σ.


  ·   V is a n × n orthogonal matrix containing eigenvectors of ATA in its columns.


  ·   U is a m × m orthogonal matrix contains eigenvectors of AAT in its columns.


  We will provide an informal proof of the SVD theorem through a series of Lemmas (small proofs).


  Lemma 1:    ATA is symmetric positive semi-definite. Its eigenvalues are non-negative and eigenvectors are orthogonal.


  Proof: Let us say A has m rows and n columns. Then ATA is a n × n square matrix.


  (ATA) T =  AT(AT) T = ATA


  which proves that ATA is symmetric. Also, for any [image: ],


  [image: ]T AT A[image: ] = (A[image: ])T  (A[image: ]) = ||A[image: ]||2  > 0


  which as per section 4.1.1 proves that the matrix ATA is symmetric and positive semi-definite. Hence, its eigenvalues are all positive or zero.


  We have proved in section 2.13 that symmetric matrices have orthogonal eigenvectors. That completes the proof.


  Accordingly, let (λi, v̂i), for i ∈ [1, n] be the set of eigenvalue, eigenvector pairs of ATA. Note that without loss of generality we can assume λ1 ≥ λ2 ≥ ···λn (because if not we can always renumber the eigenvalues and eigenvectors). Now, by definition


  ATA v̂i = λi v̂i                     ∀ i ∈ [1, n]


  From Lemma 1


  
    
      	
        [image: ]

      

      	
        (4.12)

      
    

  


  Note that v̂is are unit vectors (that is why we are using the hat sign as opposed to the overhead arrow). As described in section 2.13, eigenvectors remain eigenvectors if we change their length. We are free to choose any length as long as we choose it consistently. We are choosing the unit length eigenvectors here.


  Lemma 2:    AAT is symmetric positive semi-definite. Its eigenvalues are non-negative and eigenvectors are orthogonal.


  Proof:


  (AAT ) T = (AT )T  AT = AAT


  Also,


  [image: ]T AA T [image: ])||  ≥  0


  Lemma 3:    1/√λi×Av̂i, ∀i ∈ [1, n] is a set of orthogonal unit vectors.


  Let us take the dot product of a pair of these vectors


  [image: ]


  Since λj, v̂j are eigenvalue, eigenvector pairs of ATA, the above can be rewritten as


  [image: ]


  which, using equation 4.12, can be rewritten as


  [image: ]


  Lemma 4:    If (λj, v̂j) is an eigenvalue, eigenvector pair of ATA, then (λi, ûi = 1/√λi Av̂i) is an eigenvalue, eigenvector pair of AAT.


  Proof:


  By given


  ATAv̂i  = λi v̂i


  Left multiplying both sides of the equation by A, we get


  AATAv̂i  = λi Av̂i


  AAT(Av̂i)  = λi (Av̂i)


  Substituting [image: ]i = Av̂i in the last equation, we get


  AAT[image: ]i  = λi A[image: ]i


  which proves [image: ]i = Av̂i is an eigenvector of AAT with λi as corresponding eigenvalue. Multiplying by 1/√λi converts it into an unit vector as per Lemma 3. This completes the proof of the lemma.


  Now we are ready to go into the proof of the SVD theorem.


  Case 1:        More rows that columns in A


  If m, the number of rows in A is greater than or equal to n, the number of columns in A, we define


  [image: ]


  Note:


  ·   From Lemma 1, we know that the eigenvalues of ATA are positive. This makes the square roots, √λis, real.


  ·   U is a m × m orthogonal matrix whose columns are the eigenvectors of AAT. Since, AAT is m × m, it has m eigenvalues and eigenvectors. The first n of them are û1= 1/√λ·Av̂1, û2 = 1/√λ·Av̂2,···, ûn = 1/√λi·Av̂n (from Lemma 4 we know these are eigenvectors of AAT). In this case, by our initial assumption, n < m. Thus AAT has (m × n) more eigenvectors,  ûn+1 ,···ûm.


  Consider the matrix product UΣ. From basic matrix multiplication rules (section 2.5, one can see that
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  Note that the last columns of U, ûn+1 ,···ûm are getting multiplied by all zeros in Σ and vanishing. Thus,
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  Here the later columns of U, the ones named with u’s fail to survive as they get multiplied with the zeros at the bottom of Σ. Thus we have proved that


  AV = UΣ


  Then


  AVVT = UΣVT


  Since V is orthogonal, VVT = I. Hence


  A = UΣVT


  which completes the proof of the Singular Value Theorem.


  Case 2:        Less rows than columns in A


  If m, the number of rows in A is lesser than or equal to n, the number of columns in A, we will have


  [image: ]


  The proof follows along similar lines.


  4.4.1   Application of SVD: PCA computation


  We will illustrate the idea first with a toy dataset. Consider a 3D dataset with 5 points. We will use a superscript to denote the index of the data instance and subscript to denote the component. Thus the ith data instance vector is denoted as [x0 (i) x1 (i) x(i)2]. We denote the entire data set with a matrix in which each instance appears as a row vector. The data matrix is


  [image: ]


  We will assume that the data is already mean-subtracted. Now examine the matrix product XTX. Using ordinary rules of matrix multiplication


  [image: ]


  From equations 4.10 and 4.9


  [image: ]


  Thus XTX is the covariance matrix of the dataset X. This in fact holds for arbitrary dimensions and arbitrary instance counts.


  Thus, if we create a data matrix X with each data instance forming a row, XTX yields the covariance matrix of the dataset. Now, from sec 4.3 we know its eigenvectors of the covariance matrix are the principal axes and corresponding eigenvalues are the principal values of the dataset. Also, from section 4.4 we know that performing SVD on X would yield


  X = UΣVT


  where the columns of V are the eigenvectors and the squares of the singular values are the eigenvalues of XTX Hence we see, performing SVD on a data matrix yields PCA of the data (assuming prior mean subtraction).


  4.4.2   Application of SVD: Solving arbitrary Linear System


  A linear system is a system of simultaneous linear equations


  A[image: ] = [image: ]


  We first encountered a linear system in section 2.12. It is possible to use matrix inversion to solve such a system, as


  [image: ] = A−1 [image: ]


  However, this is numerically unstable. This is because the matrix inverse contains the determinant of the matrix in its denominator. The determinant can be zero - then this method of solution is not feasible. Ideally, in this case, we would have liked to obtain a “best effort” solution. If the determinant is near zero, the inverse will contain very large numbers. Minor noise in [image: ] will get multiplied by these large numbers and cause large errors in computed solution A = UΣVT addresses all these issues.


  The steps are as follows


  ·   A[image: ] = [image: ] ⟹ U(ΣVT [image: ]) = [image: ]


  Solve U[image: ]1  = [image: ] using orthogonality of U, as [image: ]1  = UT [image: ]


  ·   Now we have Σ(VT [image: ]) = [image: ]1


  Solve Σ[image: ]2  = [image: ]1


  For any diagonal matrix [image: ]


  we can easily compute


  [image: ]


  Hence, [image: ]2 = Σ−1[image: ]1


  ·   Now we have VT [image: ]2


  Thus we have solved for [image: ] without inverting the matrix A.


  ·   For invertible square matrices A this method will yield the same solution as the matrix inverse based method.


  ·   For non square matrices, this boils down to the Moore Penrose inverse and yields the best effort solution.


  4.4.3   Rank of a Matrix


  In section 2.12 we studied linear system of equations. Such a system can be represented in matrixvector form


  A[image: ] = [image: ]


  Each row of A and [image: ] contributes one equation. If we have as many independent equations as unknown, the system is solvable. This is the simplest case. In this case, the matrix A is square and invertible. det(A) is non-zero and A−1 exists.


  Sometimes, the situation maybe misleading. Consider the following system.


  [image: ]


  Although there are 3 rows and apparently 3 equations, the equations are not independent. For instance, the third equation can be obtained by adding the first two. We really have only 2, not 3, equations. We say the linear system is “degenerate”. All the following statements will be true for such a system A[image: ] = [image: ]


  ·   The linear system is degenerate


  ·   det(A) = 0


  ·   A−1 cannot be computed, A is not invertible.


  ·   Rows of A are linearly dependent. There exists a linear combination of the rows that sum to zero. E.g., in the above example [image: ]0 +[image: ]1 = 0


  ·   At least one of the singular values of A, i.e., eigenvalues of ATA is zero. In fact, the number of linearly independent rows is equal to the number of non-zero eigenvalues.


  The number of linearly independent rows in a matrix is called its rank. It can be proved that a matrix has as many non-zero singular values as its rank. It can also be proved that the number of linearly independent columns in a matrix matches the number of linearly independent columns. Hence, rank can also be defined as the number of linearly independent columns in a matrix.


  A non-square rectangular matrix with m rows and n columns will have a rank r = min(m, n). Such matrices are never invertible. One usually resorts to SVD to solve them.


  A square matrix with n rows and n columns will be invertible (non-zero determinant) if and only if it has rank n. Such a matrix is said to have full rank. Full rank matrices are invertible. They can be solved via matrix inverse computation. However, inverse computation is not numerically stable always. SVD can be applied here as well with good numerical properties. Non full rank matrices are degenerate. Rank then, is a measure of non-degeneracy of the matrix.


  4.4.4   Python numpy code for linear system solving via SVD


  This section shows numpy based implementation of Singular Value Decomposition (SVD) and demonstrates an application - solving a linear system via SVD.


  Listing 4.5: Numpy code to solve invertible linear system via matrix inversion as well as SVD


  [image: ]


  Output:


  1 Solution via inverse : [ 1. 2. 3.] 2 Solution via SVD : [ 1. 2. 3.]


   


  Listing 4.6: Numpy code to solve overdetermined linear system via Pseudo-Inverse and SVD


  [image: ]


  Output:


  1 Solution via pseudo - inverse : [1.07661761 0.89761672 -0.95816936] 2 Solution via SVD : [1.07661761 0.89761672 -0.95816936]


  Fully functional code for SVD based linear system solving can be found at https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch4/4.4.4-svd-linear-system-numpy.ipynb.


  4.4.5   Python numpy code for PCA computation via SVD


  This section demonstrates PCA computation via SVD.


  Listing 4.7: Computing PCA directly and using SVD


  [image: ]


  4.4.6   Application of SVD: Best low rank approximation of a matrix


  Given a matrix A of some rank p, we sometimes want to approximate it with a matrix of lower rank r, where r < p. How do we obtain the best rank r approximation of A?


  Motivation


  Why would one want to do this? Well, consider a data matrix X as shown in section 4.4.1. As explained in section 4.3.1, we often want to eliminate the small variances in the data (likely due to noise) and get the pattern underlying the large variations. Replacing the data matrix with a lower rank matrix is a tool that often achieves this. Although, we must bear in mind that this does not happen when the underlying pattern is non-linear (e.g., Figure 4.6).


  Approximation Error


  What exactly do we mean by “best approximation”? The Frobenius norm can be taken as the magnitude of the matrix. Accordingly, given a matrix A and its rank r approximation Ar, the approximation error is e = ||A − Ar||F.


  Method


  To fix our ideas, let us consider a m × n matrix A. From sec 4.4 we know it will have min(m, n) singular values. Let its rank be p ≤ min(m, n). We want to approximate this matrix with a rank r(< p) matrix.


  Let us rewrite the SVD expression. To make our ideas concrete, we will assume m > n. Also, as usual, we have the singular values sorted in decreasing order λ1 ≥ λ2 ≥ λn. We will partition U, Σ, V.


  A = UΣVT


  [image: ]


  It can be proved that U1Σ1V1T is a rank r matrix. Furthermore, it is best rank r approximation of A.


  4.5   Machine Learning Application: Document Retrieval


  We will now bring together several of the concepts we studied with a illustrative toy example, viz. the document retrieval problem we first encountered in section 2.1. Briefly recapitulating, we have a set of documents {d0, · · · , d6}. Now given an incoming query phrase, we have to retrieve documents that match the query phrase. We will use bag of words model - i.e., our matching approach does not pay attention to where a word appears in a document, it simply pays attention to how many times a word appears in a document. Although not the most sophisticated, this is quite a popular technique owing to its conceptual simplicity.


  Our documents are:


  ·   d0: Roses are lovely. Nobody hates roses.


  ·   d1: Gun violence has reached an epidemic proportion in America.


  ·   d2: The issue of gun violence is really over-hyped. One can find many instances of violence where no guns were involved.


  ·   d3: Guns are for violence prone people. Violence begets guns. Guns beget violence.


  ·   d4: I like guns but I hate violence. I have never been involved in violence. But I own many guns. Gun violence is incomprehensible to me. I do believe gun owners are the most anti violence people on the planet. He who never uses a gun will be prone to senseless violence.


  ·   d5: Guns were used in a armed robbery in San Francisco last night


  ·   d6:Acts of violence usually involve a weapon.


  4.5.1   TF-IDF and Cosine Similarity in Machine Learning based Document Retrieval


  Before studying PCA, let us study some more elementary techniques for document retrieval. These are based on TF-IDF and Cosine Similarity.


  Term Frequency (TF)


  Term Frequency is defined as the number of occurrences of a particular term in a document. In a slightly looser sense, any quantity proportional to the number of occurrences is also known as Term Frequency. E.g., TF of the word “gun” in d0, d6 is 0, in d1 it is 1, in d3 it is 3 etc. Note that we are being case independent.


  Inverse Document Frequency(IDF)


  Certain terms, e.g., “the”, appears in pretty much all documents. These should be ignored during document retrieval. How do we down-weight them?


  IDF is obtained by inverting and then taking logarithm of the fraction of all documents in which the term occurs. For terms that occur in most documents, IDF weight will be very low. It will be high for relatively esoteric terms.


  Document Feature Vectors


  Each document is represented by a vector with as many elements as the size of our vocabulary (i.e., the number of distinct words over all the documents). For real life document retrieval systems like Google, this vector will be very very long indeed. But not to worry, this vector is notional, it never gets explicitly stored in the computer’s memory. Anyway, this vector has a fixed position for every word in the vocabulary. Each position in this vector contains the TF of the corresponding term. In order to minimize the contributions from ubiquitous terms, we use product of TF and IDF instead of TF alone.


  Cosine Similarity


  In section 2.5.6 we saw that dot product between two vectors measures the agreement between them.


  Given two vectors [image: ]  and [image: ] we know [image: ] · [image: ] = ||[image: ]|| ||[image: ]|| cos (θ), where the operator || · || implies length of a vector, and θ is the angle between the 2 vectors (see Figure 2.7). The cosine is at its maximum possible value, 1, when the vectors are pointing in the same direction and the angle between them is zero. It progressively becomes smaller as the angle between the vectors increases until the two vectors become perpendicular to each other when the cosine becomes zero, implying no correlation - vectors are independent of each other.


  The magnitude of dot product itself is also proportional to the length of the two vectors. Hence, we do not want to use the dot product par se as a measure of similarity between the vectors. Because then two long vectors would have a high score of similarity even if they are not aligned in direction. Rather, we want to use the cosine, defined as
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  The cosine similarity between document vectors is often used to measure similarity between two documents. It is a principled way of measuring the degree of term sharing between the two documents.


  4.5.2   Latent Semantic Analysis (LSA)


  Cosine similarity and such techniques suffer from a significant drawback. To see this, examine the cosine similarity between d5 and d6. It will be zero. But it is obvious to a human that the documents are similar.


  What went wrong? Answer: we are measuring only direct overlap between terms in documents. The words “gun” and “violence” occurred together in many of the other documents to indicate some degree of similarity between them. But cosine similarity between document vectors does not look at such secondary evidence.


  This is the blind spot that LSA tries to overcome.


  Words are known by the company they keep. This means, if terms appear together in many documents, they are likely to share some semantic similarity. For instance, guns and violence in the above examples. Such terms should be grouped together into a common pool of semantically similar terms. We will call this pool a topic. Document similarity should be measured in terms of common topics rather than common terms. Thus, we have expanded the notion of shared terms between documents to shared topics between documents.


  [image: ]


  Figure 4.8: Document Vectors from our toy dataset d0, ··· d6. Each word in the vocabulary corresponds to a separate dimension. Dots show projections of document feature vectors on the plane formed by the axes corresponding to the terms “gun(s)” and “violence”


  How do we automatically identify topics from an universe of documents? Answer: we look for terms that occur together in many documents. Geometrically, this would manifest as follows: if we project the points representing document vectors on the subspace corresponding to the topic, we will see correlation (see Figure 4.8). This means - recall section 4.3 - we expect principal components along the topics. We can identify these principal components by taking SVD on the data matrix with individual document vectors along its rows. Then, the right eigenvectors would be along topics. Projecting the document vectors on the subspace of these eigenvectors would yield topic modeling of the document. As indicated before, we can set the smaller eigenvalues to zero to eliminate noise and unimportant topics.


  The document matrix (with document vectors as rows) -we will omit prepositions, conjunctions, commas etc - looks like Thus, the oveall steps are as follows (see Listing 4.5.3 for python code):


   


   


  Table 4.1: Documents matrix for toy example dataset. Rows correspond to documents. Columns correspond to terms. Each cell contains the term frequency. The terms “Gun” and “Violence” occur equal number of times in most documents, indicating clear correlation (Gun-Violence is a topic). Principal Components (right eigenvectors) will identify topics.
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        1

      

      	
        …

      

      	
        0

      
    


    
      	
        d2

      

      	
        2

      

      	
        2

      

      	
        0

      

      	
        …

      

      	
        0

      
    


    
      	
        d3

      

      	
        3

      

      	
        3

      

      	
        0

      

      	
        …

      

      	
        0

      
    


    
      	
        d4

      

      	
        5

      

      	
        5

      

      	
        0

      

      	
        …

      

      	
        0

      
    


    
      	
        d5

      

      	
        0

      

      	
        1

      

      	
        0

      

      	
        …

      

      	
        0

      
    


    
      	
        d6

      

      	
        1

      

      	
        0

      

      	
        0

      

      	
        …

      

      	
        0

      
    

  


  ·   Create document term matrix, X, of dimension say m×n. Its rows correspond to documents (m documents), columns correspond to terms (n terms).


  ·   Perform SVD on document term matrix. This yields U, S and V matrices. V is n×n orthogonal matrix. S is a diagonal matrix.


  ·   Columns of resulting V matrix yield topics. These are principal vectors for the rows of X, i.e., eigenvectors of XTX. Initially V has n , i.e., n topics.


  ·   The successive elements of each topic vector (column of V matrix) tell us the contribution of corresponding terms to that topic. Each of these columns is n×1, depicting the contributions of the n terms in the system.


  ·   The diagonal elements of S tell us the weights (importance) of corresponding topics. These are the eigenvalues of XTX, i.e., principal values of the row vectors of X.


  ·   We inspect weights and choose a cutoff. All topics below that weight are discarded. The corresponding columns of V are thrown away. This yields a V matrix with fewer columns (but same number of rows). These are the topic vectors of interest to us. We have reduced dimensionality of the problem. Let us say, the number of retained topics is t. The reduced V matrix is m×t


  ·   By projecting (multiplying) the original doc-term matrix X  to this new V matrix, we will get a m×t doc-topic matrix (it has same number of rows as X, but fewer columns). This is theprojection of the doc-term matrix to the topic space, i.e., topic based representation of thedocument vectors.


  ·   Rows of the doc-topic matrix will henceforth be taken as document representations. Document similarities will be computed by taking cosine similarity of these rows, as opposed to rows of the original doc-term matrix. This cosine-similarity, in the topic space, will capture many indirect connections that were not visible in the original input space.


  4.5.3   Python/Numpy code to compute LSA on a toy dataset


  Fully functional code for this section, can be found at


  https://nbviewer.jupyter.org/github/krishnonwork/mathematical-methods-in-deep-learningipython/blob/master/python/ch4/4.5.3-svd-lsa-toy-dataset-numpy.ipynb.


  Here we will present annotated code snippets to explain the idea.


  Listing 4.8: Latent Semantic Analysis on the toy dataset from Table 4.1


  [image: ]


  4.5.4   Python/Numpy code to compute and visualize LSA/SVD on a 500 × 3 dataset


  Supposing we have a set of 500 documents over a vocabulary of 3 terms. It is a unrealistically short vocabulary, but it allows us to easily visualize the space of document vectors. Each document vector is 3 × 1 vector and there are 500 such vectors. Together they form a 500 × 3 data matrix X. In the python code, we create an artificial dataset like this. In this dataset, the terms x0 and x1 are correlated. x0 occurs randomly between 0 and 100 times in a document. x1 occurs twice as many times as x0 except for small random fluctuations. The third term’s frequency varies between 0 and 5. From section 4.5, we know that x0, x1 together form a single topic while x2 by itself forms another topic. We expect a principal component along each topic. The code below creates the dataset, computes SVD, plots the dataset and shows the first two principal components in red and purple respectively. The third singular value is small compared to the first. We can ignore that dimension - it corresponds to the small random variation within the x0 − x1 topic.


  Listing 4.9: Latent Semantic Analysis using SVD


  [image: ]


  Output:


  1 Singular values are: 5305.37495081 , 109.572182265 , 19.4568281491


  [image: ]


  Figure 4.9: Latent Semantic Analysis. Note: the scale is very different along the third axis, purple line is much smaller than red line.


  4.6   Summary


  In this chapter, we studied several linear algebraic tools in machine learning and data science.


  ·   We learnt that the direction (unit vector) which maximizes (minimizes) the quadratic form x̂TAx̂ is the eigenvector corresponding to the largest (smallest) eigenvalue of matrix A. The magnitude of the quadratic form when x̂ is along those directions is the largest (smallest) eigenvalue of A.


  ·   We learnt that given a set of points, X = {[image: ](0), [image: ](1) , [image: ](2),···,[image: ](n)} in an n + 1 dimensional space, we can define the mean vector and covariance matrix as


  [image: ]


  The variance along an arbitrary direction (unit vector) l̂ is l̂TCl̂. This is a quadratic form. Consequently, the maximum (minimum) variance of a set of data points in multidimensional space occurs along the eigenvector corresponding to the largest (smallest) eigenvalue of the covariance matrix. This direction is called the first principal axis of the data. The subsequent eigenvectors, sorted in order of decreasing eigenvalues, will be mutually orthogonal (perpendicular) and will yield subsequent direction of maximum variance. This technique is known as Principal Component Analysis (PCA).


  In many real life cases, the larger variances correspond to true underlying pattern of the data while smaller variances correspond to noise (e.g., measurement error). Projecting the data on the principal axes corresponding to the larger eigenvalues would yield a lower dimensional data that is relatively noise free. Also, the projected data points match the true underlying pattern more closely, hence yield better insights. This is known as dimensionality reduction.


  ·   We studied Singular Value Decomposition (SVD) - a technique that allows us to decompose an arbitrary m × n matrix A as a product of 3 matrices: A = UΣVT where U,V are orthogonal and Σ is diagonal. Matrix V has the eigenvectors of ATA as its columns. U has eigenvectors of AAT as columns. Σ has the eigenvalues of ATA (sorted in decreasing order) in its diagonal.


  o   SVD provides us with a numerically stable way to solve the linear system of equations A[image: ] = [image: ]. In particular, for non-square matrices, it provides the closest approximations, viz., [image: ] that minimizes ||A[image: ] = [image: ]||.


  -   Given a dataset X whose rows are data vectors corresponding to individual instances and columns correspond to feature values, XTX yields the covariance matrix. Thus eigenvectors of XTX yields the principal components of the data. Since SVD of X has eigenvectors of XTX as columns of the matrix V, SVD is an effective way of computing PCA.


  ·   Finally we studied a real life machine learning, data science application for document retrieval.


  -   We learnt the bag of words model where documents are represented by document vectors that contain the term frequency (number of occurrences) of each term in the document.


  -   We studied TF-IDF an cosine similarity techniques for document matching and retrieval. We also studied the drawbacks of these techniques.


  -   Finally we studied Latent Semantic Analysis (LSA) which does topic modeling. Here, we do PCA on the document vectors to identify topics. Projecting document vectors onto topic axes allows LSA to see latent (indirect) similarities beyond direct overlapping of terms.


  
    


    
      [15] There are several mildly different forms of SVD, we have chosen the one that seems intuitively the simplest
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