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Preface

Preface to the Third Edition

In the third edition, although we have made some significant changes, we have much of the material of the second edition.
We have combined the goodness-of-fit chapter with that of categorical data to create a new chapter on categorical data. We
have added several new, real-world examples and exercises. We have expanded the study of Bayesian analysis to include
empirical Bayes. In the empirical Bayes approach, we emphasize bootstrapping and jackknifing resampling methods to
estimate the prior probability density function. This new approach is illustrated by several examples and exercises. We
have expanded the chapter on statistical applications to include some real significantly important problems that our global
society is facing in global warming, brain cancer, prostate cancer, hurricanes, rainfall, and unemployment, among others.
In addition, we have made several corrections that were discovered in the previous edition. Throughout the third edition,
we have incorporated the R-codes that will assist the student in performing statistical analysis. A solution manual for all
exercises in the third edition has been developed and published for the convenience of teachers and students.

Preface to the Second Edition

In the second edition, while keeping much of the material from the first edition, there are some significant changes and
additions. Due to the popularity of R and its free availability, we have incorporated R-codes throughout the book. This will
make it easier for students to do the data analysis. We have also added a chapter on goodness-of-fit tests and illustrated
their applicability with several examples. In addition, we have introduced more probability distribution functions with real-
world data-driven applications in global warming, brain and prostate cancer, national unemployment, and total rainfall. In
this edition, we have shortened the point estimation chapter and merged it with interval estimation. In addition, many
corrections and additions are made to reflect the continuous feedback we have obtained.

We have created a student companion website, http://booksite.elsevier.com/9780124171138, with solutions to selected
problems and data on global warming, brain and prostate cancer, national unemployment, and total rainfall. We have also
posted solutions to most of the problems in the instructor site, http://textbooks.elsevier.com/web/Manuals.aspx?isbn1/
49780124171138.

Preface to the First Edition

This textbook is of an interdisciplinary nature and is designed for a one- or two-semester course in probability and sta-
tistics, with basic calculus as a prerequisite. The book is primarily written to give a sound theoretical introduction to
statistics while emphasizing applications. If teaching statistics is the main purpose of a two-semester course in probability
and statistics, this textbook covers all the probability concepts necessary for the theoretical development of statistics in two
chapters, and goes on to cover all major aspects of statistical theory in two semesters, instead of only a portion of statistical
concepts. What is more, using the optional section on computer examples at the end of each chapter, the student can also
simultaneously learn to utilize statistical software packages for data analysis. It is our aim, without sacrificing any rigor, to
encourage students to apply the theoretical concepts they have learned. There are many examples and exercises concerning
diverse application areas that will show the pertinence of statistical methodology to solving real-world problems. The
examples with statistical software and projects at the end of the chapters will provide good perspective on the usefulness of
statistical methods. To introduce the students to modern and increasingly popular statistical methods, we have introduced
separate chapters on Bayesian analysis and empirical methods.

One of the main aims of this book is to prepare advanced undergraduates and beginning graduate students in the theory
of statistics with emphasis on interdisciplinary applications. The audience for this course is regular full-time students from
mathematics, statistics, engineering, physical sciences, business, social sciences, materials science, and so forth. Also, this
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textbook is suitable for people who work in industry and in education as a reference book on introductory statistics for a
good theoretical foundation with clear indication of how to use statistical methods. Traditionally, one of the main pre-
requisites for this course is a semester of the introduction to probability theory. A working knowledge of elementary
(descriptive) statistics is also a must. In schools where there is no statistics major, imposing such a background, in addition
to calculus sequence, is very difficult. Most of the present books available on this subject contain full one-semester material
for probability and then, based on those results, continue on to the topics in statistics. Also, some of these books include in
their subject matter only the theory of statistics, whereas others take the cookbook approach of covering the mechanics.
Thus, even with two full semesters of work, many basic and important concepts in statistics are never covered. This book
has been written to remedy this problem. We fuse together both concepts in order for the student to gain knowledge of the
theory and at the same time develop the expertise to use their knowledge in real-world situations.

Although statistics is a very applied subject, there is no denying that it is also a very abstract subject. The purpose of
this book is to present the subject matter in such a way that anyone with exposure to basic calculus can study statistics
without spending two semesters of background preparation. To prepare students, we present an optional review of the
elementary (descriptive) statistics in Chapter 1. All the probability material required to learn statistics is covered in two
chapters. Students with a probability background can either review or skip the first three chapters. It is also our belief that
any statistics course is not complete without exposure to computational techniques. At the end of each chapter, we give
some examples of how to use Minitab, SPSS, and SAS to statistically analyze data. Also, at the end of each chapter, there
are projects that will enhance the knowledge and understanding of the materials covered in that chapter. In the chapter on
the empirical methods, we present some of the modern computational and simulation techniques, such as bootstrap,
jackknife, and Markov chain Monte Carlo methods. The last chapter summarizes some of the steps necessary to apply the
material covered in the book to real-world problems. The first six chapters have been class tested as a one-semester course
for more than 3 years with five different professors teaching. First eleven chapters have been class tested by two different
professors for more than 3 years in two consecutive semesters. The audience was junior- and senior-level undergraduate
students from many disciplines who had two semesters of calculus, most of them with no probability or statistics back-
ground. The feedback from the students and instructors was very positive. Recommendations from the instructors and
students were very useful in improving the style and content of the book.

Aim and Objective of the Textbook

This textbook provides a calculus-based coverage of statistics and introduces students to methods of theoretical statistics
and their applications. It assumes no prior knowledge of statistics or probability theory, but does require calculus. Most
books at this level are written with elaborate coverage of probability. This requires teaching one semester of probability and
then continuing with one or two semesters of statistics. This creates a particular problem for nonstatistics majors from
various disciplines who want to obtain a sound background in mathematical statistics and applications. It is our aim to
introduce basic concepts of statistics with sound theoretical explanations. Because statistics is basically an interdisciplinary
applied subject, we offer many applied examples and relevant exercises from different areas. Knowledge of using com-
puters for data analysis is desirable. We present examples of solving statistical problems using Minitab, SPSS, and SAS.

Features

l During years of teaching, we observed that many students who do well in mathematics courses find it difficult to un-
derstand the concept of statistics. To remedy this, we present most of the material covered in the textbook with well-
defined step-by-step procedures to solve real problems. This clearly helps the students to approach problem solving in
statistics more logically.

l The usefulness of each statistical method introduced is illustrated by several relevant examples.
l At the end of each section, we provide ample exercises that are a good mix of theory and applications.
l In each chapter, we give various projects for students to work on. These projects are designed in such a way that stu-

dents will start thinking about how to apply the results they learned in the chapter as well as other issues they will need
to know for practical situations.

l At the end of the chapters, we include an optional section on computer methods with Minitab, SPSS, and SAS exam-
ples with clear and simple commands that the student can use to analyze data. This will help the students to learn how
to utilize the standard methods they have learned in the chapter to study real data.

l We introduce many of the modern statistical computational and simulation concepts, such as the jackknife and boot-
strap methods, the EM algorithms, and the Markov chain Monte Carlo methods, such as the Metropolis algorithm, the
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MetropoliseHastings algorithm, and the Gibbs sampler. The Metropolis algorithm was mentioned in Computing in Sci-
ence & Engineering as being among the top 10 algorithms having the “greatest influence on the development and prac-
tice of science and engineering in the 20th century.”

l We have introduced the increasingly popular concept of Bayesian statistics and decision theory with applications.
l A separate chapter on design of experiments, including a discussion on the Taguchi approach, is included.
l The coverage of the book spans most of the important concepts in statistics. Learning the material along with compu-

tational examples will prepare students to understand and utilize software procedures to perform statistical analysis.
l Every chapter contains discussion on how to apply the concepts and what the issues related to applying the theory are.
l A student’s solution manual, instructor’s manual, and data disk are provided.
l In the last chapter, we discuss some issues in applications to clearly demonstrate in a unified way how to check for

many assumptions in data analysis and what steps one needs to follow to avoid possible pitfalls in applying the methods
explained in the rest of this textbook.
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Flow chart

In this flow chart, we suggest some options on how to use the book in a one-semester or two-semester course. For a two-
semester course, we recommend coverage of the complete textbook. However, Chapters 1, 9, and 14 are optional for both
one- and two-semester courses and can be given as reading exercises. For a one-semester course, we suggest the following
options: A, B, C, D.
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Objective

Review the basic concepts of elementary statistics.

Sir Ronald Aylmer Fisher
(Source: http://www.stetson.edu/wefriedma/periodictable/jpg/Fisher.jpg).

Sir Ronald Fisher F.R.S. (1890e1962) was one of the leading scientists of the 20th century who laid the foundations
for modern statistics. As a statistician working at the Rothamsted Agricultural Experiment Station, the oldest agri-
cultural research institute in the United Kingdom, he also made major contributions to evolutionary biology and ge-
netics. The concept of randomization and the analysis of variance procedures that he introduced are now used

Mathematical Statistics with Applications in R. https://doi.org/10.1016/B978-0-12-817815-7.00001-4
Copyright © 2021 Elsevier Inc. All rights reserved.
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throughout the world. In 1922 he gave a new definition of statistics. Fisher identified three fundamental problems in
statistics: (1) specification of the type of population that the data came from; (2) estimation; and (3) distribution. His
book Statistical Methods for Research Workers (1925) was used as a handbook for the methods for the design and
analysis of experiments. Fisher also published the books titled The Design of Experiments (1935) and Statistical Tables
(1947). While at the Agricultural Experiment Station, he had conducted breeding experiments with mice, snails, and
poultry, and the results he obtained led to theories about gene dominance and fitness that he published in The Genetical
Theory of Natural Selection (1930).

1.1 Introduction

In today’s society, decisions are made on the basis of data. Most scientific or industrial studies and experiments produce
data, and the analysis of these data and drawing useful conclusions from them have become one of the central issues.
Statistics is an integral part of the quantitative approach to knowledge. The field of statistics is concerned with the scientific
study of collecting, organizing, analyzing, and drawing conclusions from data. Statistics benefits all of us because of its
ability to predict the future based on data we have previously gathered. Statistical methods help us to transform data into
information and knowledge. Statistical concepts enable us to solve problems in a diversity of contexts, add substance to
decisions, and reduce guesswork. The discipline of statistics stemmed from the need to place knowledge management on a
systematic evidence base. Earlier works on statistics dealt only with the collection, organization, and presentation of data in
the form of tables and charts. In order to place statistical knowledge on a systematic evidence base, we require a study of
the laws of probability. In mathematical statistics we create a probabilistic model and view the data as a set of random
outcomes from that model. Advances in probability theory enable us to draw valid conclusions and to make reasonable
decisions on the basis of data.

Statistical methods are used in almost every discipline, including agriculture, astronomy, biology, business, commu-
nications, economics, education, electronics, geology, health sciences, and many other fields of science and engineering,
and can aid us in several ways. Modern applications of statistical techniques include statistical communication theory and
signal processing, information theory, network security and denial-of-service problems, clinical trials, artificial and bio-
logical intelligence, quality control of manufactured items, software reliability, and survival analysis. The first of these is to
assist us in designing experiments and surveys. We desire our experiment to yield adequate answers to the questions that
prompted the experiment or survey. We would like the answers to have good precision without involving a lot of
expenditure. Statistically designed experiments facilitate the development of robust products that are insensitive to changes
in the environment and internal component variation. Another way that statistics assists us is in organizing, describing,
summarizing, and displaying experimental data. This is termed descriptive statistics. Many of the descriptive statistics
methods presented in this chapter are also part of the general area known as exploratory data analysis (EDA). A third use of
statistics is in drawing inferences and making decisions based on data. For example, scientists may collect experimental
data to prove or disprove an intuitive conjecture or hypothesis. Through the proper use of statistics, we can conclude
whether the hypothesis is valid or not. In the process of solving a real-life problem using statistics, the following three basic
steps may be identified. First, consistent with the objective of the problem, we identify the model using the appropriate
statistical method. Then, we justify the applicability of the selected model to fulfill the aim of our problem. Last, we
properly apply the related model to analyze the data and make the necessary decisions, which results in answering the
question of our problem with minimum risk. Starting with Chapter 2, we will study the necessary background material to
proceed with the development of statistical methods for solving real-world problems.

In this chapter we briefly review some of the basic concepts of descriptive statistics. Such concepts will give us a visual
and descriptive presentation of the problem under investigation. Now, we proceed with some basic definitions and
procedures.

1.1.1 Data collection

One of the first problems that a statistician faces is obtaining the data. The inferences that we make depend critically on the
data that we collect and analyze. Data collection involves the following important steps.

General procedure for data collection

1. Define the objectives of the problem and proceed to

develop the experiment or survey.

2. Define the variables or parameters of interest.

3. Define the procedures of data-collection and -measuring

techniques. This includes sampling procedures, sample

size, and data-measuring devices (questionnaires, tele-

phone interviews, etc.).
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EXAMPLE 1.1.1

Wemay be interested in estimating the average household income in a certain community. In this case, the parameter of interest is

the average income of a typical household in the community. To acquire the data, we may send out a questionnaire or conduct a

telephone interview. Once we have the data, we may first want to represent the data in graphical or tabular form to better un-

derstand its distributional behavior. Then we will use appropriate analytical techniques to estimate the parameter(s) of interest, in

this case the average household income.

Very often a statistician is confined to the data that have already been collected, possibly even collected for other
purposes. This makes it very difficult to determine the quality of the data. Planned collection of the data, using proper
techniques, is much preferred.

1.2 Basic concepts

Statistics is the science of data. This involves collecting, classifying, summarizing, organizing, analyzing, and interpreting
data. It also involves model building. Suppose we wish to study household incomes in a certain neighborhood. We may
decide to randomly select, say, 50 families and examine their household incomes. As another example, suppose we wish to
determine the diameter of a rod, and we take 10 measurements of the diameter. When we consider these two examples, we
note that in the first case the population (the household incomes of all families in the neighborhood) really exists, whereas
in the second, the population (set of all possible measurements of the diameter) is only conceptual. In either case we can
visualize the totality of the population values, of which our sample data are only a small part. Thus, we define a population
to be the set of all measurements or objects that are of interest and a sample to be a subset of that population. The
population acts as the sampling frame from which a sample is selected. Now we introduce some basic notions commonly
used in statistics.

Definition 1.2.1 A population is the collection or set of all objects or measurements that are of interest to the collector.

EXAMPLE 1.2.1

Suppose we wish to study the heights of all female students at a certain university. The population will be the set of the measured

heights of all female students in the university. The population is not the set of all female students in the university.

In real-world problems it is usually not possible to obtain information on the entire population. The primary objective of

statistics is to collect and study a subset of the population, called a sample, to acquire information on some specific characteristics

of the population that are of interest.

Definition 1.2.2 The sample is a subset of data selected from a population. The size of a sample is the number of elements
in it.

EXAMPLE 1.2.2

We wish to estimate the percentage of defective parts produced in a factory during a given week (5 days) by examining 20 parts

produced per day. The parts will be examined each day at randomly chosen times. In this case “all parts produced during the

week” is the population and the (100) selected parts for 5 days constitutes a sample.

Other common examples of sample and population are:

Political polls: The population will be all voters, whereas the sample will be the subset of voters we poll.
Laboratory experiment: The population will be all the data we could have collected if we were to repeat the exper-
iment a large number of times (infinite number of times) under the same conditions, whereas the sample will be the data
actually collected by the one experiment.
Quality control: The population will be the entire batch of items produced, say, by a machine or by a plant, whereas
the sample will be the subset of items we tested.

Descriptive statistics Chapter | 1 3



Clinical studies: The population will be all the patients with the same disease, whereas the sample will be the subset of
patients used in the study.
Finance: All common stock listed in stock exchanges such as the New York Stock Exchange, the American Stock
Exchanges, and over-the-counter is the population. A collection of 20 randomly picked individual stocks from these
exchanges will be a sample.

The methods consisting mainly of organizing, summarizing, and presenting data in the form of tables, graphs, and
charts are called descriptive statistics. The methods of drawing inferences and making decisions about the population using
the sample are called inferential statistics. Inferential statistics uses probability theory.

Definition 1.2.3 A statistical inference is an estimate, a prediction, a decision, or a generalization about the population
based on information contained in a sample.

For example, we may be interested in the average indoor radiation level in homes built on reclaimed phosphate mine
lands (many of the homes in west-central Florida are built on such lands). In this case, we can collect indoor radiation
levels for a random sample of homes selected from this area, and use the data to infer the average indoor radiation level for
the entire region. In the Florida Keys, one of the concerns is that the coral reefs are declining because of the prevailing
ecosystems. In order to test this, one can randomly select certain reef sites for study and, based on these data, infer whether
there is a net increase or decrease in coral reefs in the region. Here the inferential problem could be finding an estimate,
such as in the radiation problem, or making a decision, such as in the coral reef problem. We will see many other examples
as we progress through the book.

1.2.1 Types of data

Data can be classified in several ways. We will give two different classifications, one based on whether the data are
measured on a numerical scale or not, and the other on whether the data are collected in the same time period or collected at
different time periods.

Definition 1.2.4 Quantitative data are observations measured on a numerical scale. Nonnumerical data that can only be
classified into one of the groups of categories are said to be qualitative or categorical data.

EXAMPLE 1.2.3

Data on response to a particular therapy could be classified as no improvement, partial improvement, or complete improvement.

These are qualitative data. The number of minority-owned businesses in Florida is quantitative data. The marital status of each

person in a statistics class as married or not married is qualitative or categorical data. The number of car accidents in different U.S.

cities is quantitative data. The blood group of each person in a community as O, A, B, AB is qualitative data.

Categorical data could be further classified as nominal data and ordinal data. Data characterized as nominal have data
groups that do not have a specific order. An example of this could be state names, or names of the individuals, or courses
by name. These do not need to be placed in any order. Data characterized as ordinal have groups that should be listed in a
specific order. The order may be either increasing or decreasing. One example would be income levels. The data could
have numeric values such as 1, 2, 3, or values such as high, medium, or low.

Definition 1.2.5 Cross-sectional data are data collected on different elements or variables at the same point in time or for
the same period of time.

EXAMPLE 1.2.4

The data in Table 1.1 represent U.S. federal support for the mathematical sciences in 1996, in millions of dollars (source: AMS

Notices). This is an example of cross-sectional data, as the data are collected in one time period, namely in 1996.

Definition 1.2.6 Time series data are data collected on the same element or the same variable at different points in time or
for different periods of time.
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EXAMPLE 1.2.5

The data in Table 1.2 represent U.S. federal support for the mathematical sciences during the years 1995e97, in millions of dollars

(source: AMS Notices). This is an example of time series data, because they have been collected at different time periods, 1995

through 1997.

For an extensive collection of statistical terms and definitions, we can refer to many sources such as http://www.stats.
gla.ac.uk/steps/glossary/index.html. We will give some other helpful Internet sources that may be useful for various
aspects of statistics: http://www.amstat.org/(American Statistical Association), http://www.stat.ufl.edu (University of

TABLE 1.1 Federal Support for the Mathematical Sciences, 1996.

Federal agency Amount

National Science Foundation 91.70

DMS 85.29

Other MPS 4.00

Department of Defense 77.30

AFOSR 16.70

ARO 15.00

DARPA 22.90

NSA 2.50

ONR 20.20

Department of Energy 16.00

University Support 5.50

National Laboratories 10.50

Total, all agencies 185.00

TABLE 1.2 United States Federal Support for the Mathematical Sciences in Different Years.

Agency 1995 1996 1997

National Science Foundation 87.69 91.70 98.22

DMS 85.29 87.70 93.22

Other MPS 2.40 4.00 5.00

Department of Defense 77.40 77.30 67.80

AFOSR 17.40 16.70 17.10

ARO 15.00 15.00 13.00

DARPA 21.00 22.90 19.50

NSA 2.50 2.50 2.10

ONR 21.40 20.20 16.10

Department of Energy 15.70 16.00 16.00

University Support 6.20 5.50 5.00

National Laboratories 9.50 10.50 11.00

Total, all agencies 180.79 185.00 182.02
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Florida statistics department), http://www.statsoft.com/textbook/ (covers a wide range of topics, the emphasis is on
techniques rather than concepts or mathematics), http://www.york.ac.uk/depts/maths/histstat/welcome.htm (some in-
formation about the history of statistics), http://www.isid.ac.in/ (Indian Statistical Institute), http://www.isi-web.org/30-
statsoc/statsoc/282-nsslist (International Statistical Institute), http://www.rss.org.uk/ (Royal Statistical Society), and
http://lib.stat.cmu.edu/ (an index of statistical software and routines). For energy-related statistics, refer to http://www.
eia.doe.gov/. The Earth Observing System Data and Information System (https://earthdata.nasa.gov/about-eosdis) is one
of the largest data sources for geological data. The Environmental Protection Agency (http://www.epa.gov/datafinder/)
is another great source of data on environmental-related areas. If you want market data, YAHOO! Finance (http://
finance.yahoo.com/) is a good source. There are various other useful sites that you could explore based on your
particular needs.

Exercises 1.2

1.2.1. Give your own examples for qualitative and quantitative data. Also, give examples for cross-sectional and time
series data.

1.2.2. Discuss how you will collect different types of data. What inferences do you want to derive from each of these
types of data?

1.2.3. Refer to the data in Example 1.2.4. State a few questions that you can ask about the data. What inferences can you
make by looking at these data?

1.2.4. Refer to the data in Example 1.2.5. Can you state a few questions that the data suggest? What inferences can you
make by looking at these data?

1.3 Sampling schemes

In any statistical analysis, it is important that we clearly define the target population. The population should be defined in
keeping with the objectives of the study. When the entire population is included in the study, it is called a census study
because data are gathered on every member of the population. In general, it is usually not possible to obtain information on
the entire population because the population is too large to attempt a survey of all of its members, or it may not be cost
effective. A small but carefully chosen sample can be used to represent the population. A sample is obtained by collecting
information from only some members of the population. A good sample must reflect all the characteristics (of importance)
of the population. Samples can reflect the important characteristics of the populations from which they are drawn with
differing degrees of precision. A sample that accurately reflects its population characteristics is called a representative
sample. A sample that is not representative of the population characteristics is called a biased sample. The reliability or
accuracy of conclusions drawn concerning a population depends on whether or not the sample is properly chosen so as to
represent the population sufficiently well.

There are many sampling methods available. We mention a few commonly used simple sampling schemes. The choice
between these sampling methods depends on (1) the nature of the problem or investigation, (2) the availability of good
sampling frames (a list of all of the population members), (3) the budget or available financial resources, (4) the desired
level of accuracy, and (5) the method by which data will be collected, such as questionnaires or interviews.

Definition 1.3.1 A sample selected in such a way that every element of the population has an equal chance of being chosen is
called a simple random sample. Equivalently, each possible sample of size n has the same chance of being selected as any
other subset of sample of size n.

EXAMPLE 1.3.1

For a state lottery, 52 identical ping-pong balls with a number from 1 to 52 painted on each ball are put in a clear plastic bin. A

machine thoroughly mixes the balls and then six are selected. The six numbers on the chosen balls are the six lottery numbers that

have been selected by a simple random sampling procedure.
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Some advantages of simple random sampling

1. Selection of sampling observations at random ensures

against possible investigator biases.

2. Analytic computations are relatively simple, and probabi-

listic bounds on errors can be computed in many cases.

3. It is frequently possible to estimate the sample size for a

prescribed error level when designing the sampling

procedure.

Simple random sampling may not be effective in all situations. For example, in a U.S. presidential election, it may be
more appropriate to conduct sampling polls by state, rather than a nationwide random poll. It is quite possible for a
candidate to get a majority of the popular vote nationwide and yet lose the election. We now describe a few other sampling
methods that may be more appropriate in a given situation.

Definition 1.3.2 A systematic sample is a sample in which every Kth element in the sampling frame is selected after a
suitable random start for the first element. We list the population elements in some order (say alphabetical) and choose the
desired sampling fraction.

Steps for selecting a systematic sample

1. Number the elements of the population from 1 to N.

2. Decide on the sample size, say n, that we need.

3. Choose K ¼ N/n.

4. Randomly select an integer between 1 and K.

5. Then take every Kth element.

EXAMPLE 1.3.2

If the population has 1000 elements arranged in some order and we decide to sample 10% (i.e., N ¼ 1000 and n ¼ 100), then

K ¼ 1000/100 ¼ 10. Pick a number at random between 1 and K ¼ 10 inclusive, say 3. Then select elements numbered 3, 13, 23,

., 993.

Systematic sampling is widely used because it is easy to implement. If the population elements are ordered, systematic
sampling is a better sampling method. If the list of population elements is in random order to begin with, then the method is
similar to simple random sampling. If, however, there is a correlation or association between successive elements, or if
there is some periodic structure, then this sampling method may introduce biases. Systematic sampling is often used to
select a specified number of records from a computer file.

Definition 1.3.3 A sample obtained by stratifying (dividing into nonoverlapping groups) the sampling frame based on some
factor or factors and then selecting some elements from each of the strata is called a stratified sample. Here, a population
with N elements is divided into s subpopulations. A sample is drawn from each subpopulation independently. The size of
each subpopulation and sample sizes in each subpopulation may vary.

A stratified sample is a modification of simple random sampling and systematic sampling and is designed to obtain a
more representative sample, but at the cost of a more complicated procedure. Compared to random sampling, stratified
sampling reduces sampling error.

Steps for selecting a stratified sample

1. Decide on the relevant stratification factors (sex, age, race,

income, etc.).

2. Divide the entire population into strata (subpopulations)

based on the stratification criteria. Sizes of strata may vary.

3. Select the requisite number of units using simple random

sampling or systematic sampling from each subpopulation.

The requisite number may depend on the subpopulation

sizes.

Examples of strata might be males and females, undergraduate students and graduate students, managers and non-
managers, or populations of clients in different racial groups such as African Americans, Asians, whites, and Hispanics.
Stratified sampling is often used when one or more of the strata in the population have a low incidence relative to the other
strata. Through stratified random sampling adequate representation of all subgroups can be ensured.
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EXAMPLE 1.3.3

In a population of 1000 children from an area school, there are 600 boys and 400 girls. We divide them into strata based on their

parents’ income as shown in Table 1.3.

EXAMPLE 1.3.4

Refer to Example 1.3.3. Suppose we decide to sample 100 children from the population of 1000 (that is, 10% of the population).

We also choose to sample 10% from each of the categories. For example, we would choose 12 (10% of 120) poor boys; 6 (10% of

60 rich girls) and so forth. This yields Table 1.4. This particular sampling method is called a proportional stratified sampling.

Some uses of stratified sampling

1. In addition to providing information about the whole

population, this sampling scheme provides information

about the subpopulations, the study of which may be of

interest. For example, in a U.S. presidential election,

opinion polls by state may be more important in deciding

on the electoral college advantage than a national opinion

poll.

2. Stratified sampling can be considerably more precise than

a simple random sample, because the population is fairly

homogeneous within each stratum but there is a sizable

variation between the strata.

Definition 1.3.4 In cluster sampling, the sampling unit contains groups of elements called clusters instead of individual
elements of the population. A cluster is an intact group naturally available in the field. Unlike the stratified sample where
the strata are created by the researcher based on stratification variables, the clusters naturally exist and are not formed by
the researcher for data collection. Cluster sampling is also called area sampling.

To obtain a cluster sample, first take a simple random sample of groups and then sample all elements within the selected
clusters (groups). Cluster sampling is convenient to implement. When cost and time are important, cluster sampling may be
used. However, because it is likely that units in a cluster will be relatively homogeneous, this method may be less precise
than simple random sampling. The standard errors of estimates in cluster sampling are higher than other sampling designs.

TABLE 1.3 Classification of School Children.

Boys Girls

Poor 120 240

Middle class 150 100

Rich 330 60

This is stratified data.

TABLE 1.4 Proportional Stratification of School Children.

Boys Girls

Poor 12 24

Middle class 15 10

Rich 33 6
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EXAMPLE 1.3.5

Suppose we wish to select a sample of about 10% from all fifth-grade children of a county. We randomly select 10% of the

elementary schools assumed to have approximately the same number of fifth-grade students and select all fifth-grade

children from these schools. This is an example of cluster sampling, each cluster being an elementary school that was

selected.

Definition 1.3.5 Multiphase sampling involves collection of some information from the whole sample and additional in-
formation either at the same time or later from subsamples of the whole sample. The multiphase or multistage sampling is
basically a combination of the techniques presented earlier.

EXAMPLE 1.3.6

An investigator in a population census may ask basic questions such as sex, age, or marital status for the whole population, but

only 10% of the population may be asked about their level of education or about how many years of mathematics and science

education they had.

1.3.1 Errors in sample data

Irrespective of which sampling scheme is used, the sample observations are prone to various sources of error that may
seriously affect the inferences about the population. Some sources of error can be controlled. However, others may be
unavoidable because they are inherent in the nature of the sampling process. Consequently, it is necessary to understand the
different types of errors for a proper interpretation and analysis of the sample data. The errors can be classified as sampling
errors and nonsampling errors. Nonsampling errors occur in the collection, recording and processing of sample data. For
example, such errors could occur as a result of bias in selection of elements of the sample, poorly designed survey
questions, measurement and recording errors, incorrect responses, or no responses from individuals selected from the
population. Sampling errors occur because the sample is not an exact representative of the population. Sampling error is
due to the differences between the characteristics of the population and those of a sample from the population. For
example, we are interested in the average test score in a large statistics class of size, say, 80. A sample of size 10 grades
from this resulted in an average test score of 75. If the average test for the entire 80 students (the population) is 72, then the
sampling error is 75e72 ¼ 3.

1.3.2 Sample size

In almost any sampling scheme designed by statisticians, one of the major issues is the determination of the sample size. In
principle, this should depend on the variation in the population as well as on the population size, and on the required
reliability of the results, that is, the amount of error that can be tolerated. For example, if we are taking a sample of school
children from a neighborhood with a relatively homogeneous income level to study the effect of parents’ affluence on the
academic performance of the children, it is not necessary to have a large sample size. However, if the income level varies a
great deal in the feeding area of the school, then we will need a larger sample size to achieve the same level of reliability. In
practice, another influencing factor is the available resources such as money and time. In later chapters, we present some
methods of determining sample size in statistical estimation problems.

The literature on sample survey methods is constantly changing, with new insights that demand dramatic revisions in
the conventional thinking. We know that representative sampling methods are essential to permit confident generalizations
of results to populations. However, there are many practical issues that can arise in real-life sampling methods. For
example, in sampling related to social issues, whatever the sampling method we employ, a high response rate must be
obtained. It has been observed that most telephone surveys have difficulty in achieving response rates higher than 60%, and
most face-to-face surveys have difficulty in achieving response rates higher than 70%. Even a well-designed survey may
stop short of the goal of a perfect response rate. This might induce bias in the conclusions based on the sample we obtained.
A low response rate can be devastating to the reliability of a study. We can obtain series of publications on surveys,
including guidelines on avoiding pitfalls from the American Statistical Association (www.amstat.org). In this book, we
deal mainly with samples obtained using simple random sampling.
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Exercises 1.3

1.3.1. Give your own examples for each of the sampling methods described in this section. Discuss the merits and lim-
itations of each of these methods.

1.3.2. Using the information obtained from the publications of the American Statistical Association (www.amstat.org) or
any other reference, write a short report on how to collect survey data, and what the potential sources of error are.

1.4 Graphical representation of data

The source of our statistical knowledge lies in the data. Once we obtain the sample data values, one way to become
acquainted with them is through data visualization techniques such as to display them in tables or graphically. Charts and
graphs are very important tools in statistics because they communicate information visually, and in a way, it is compression
of knowledge. Remember, our interest in the data lies with the story it tells. These visual displays may reveal the patterns of
behavior of the variables being studied. In this chapter, we will consider one-variable data. The most common graphical
displays are the frequency table, pie chart, bar graph, Pareto chart, and histogram. For example, in the business world,
graphical representations of data are used as statistical tools for everyday process management and improvements by
decision makers (such as managers and frontline staff) to understand processes, problems, and solutions. The purpose of
this section is to introduce several tabular and graphical procedures commonly used to summarize both qualitative and
quantitative data. Tabular and graphical summaries of data can be found in reports, newspaper articles, websites, and
research studies, among others.

Now we shall introduce some ways of graphically representing both qualitative and quantitative data. Bar graphs and
Pareto charts are useful displays for qualitative data. With bar graphs, we can see how different things are distributed
between separate categories. In practice, if there are too many categories, it may be helpful to compare only a limited
number of categories, or combine categories with very short bars into say, others, and draw the bar graphs.

Definition 1.4.1 A graph of bars whose heights represent the frequencies (or relative frequencies) of respective categories is
called a bar graph.

EXAMPLE 1.4.1

The data in Table 1.5 represent the percentages of price increases of some consumer goods and services for the period December

1990 to December 2000 in a certain city. Construct a bar chart for these data.

Solution

In the bar graph of Fig. 1.1, we use the notations MC for medical care, El for electricity, RR for residential rent, Fd for food, CPI for

consumer price index, and A & U for apparel and upkeep.

Looking at Fig. 1.1, we can identify where the maximum and minimum responses are located, so that we can
descriptively discuss the phenomenon whose behavior we want to understand.

For a graphical representation of the relative importance of different factors under study, one can use the Pareto chart.
This is a bar graph with the height of the bars proportional to the contribution of each factor. The bars are displayed from

TABLE 1.5 Percentages of Price Increases of Some

Consumer Goods and Services.

Medical care 83.3%

Electricity 22.1%

Residential rent 43.5%

Food 41.1%

Consumer price index 35.8%

Apparel and upkeep 21.2%
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the most numerous category to the least numerous category, as illustrated by the following example. A Pareto chart helps in
separating significantly few factors that have larger influence from the trivial many.

EXAMPLE 1.4.2

For the data of Example 1.4.1, construct a Pareto chart.

Solution

First, rewrite the data in decreasing order. Then create a Pareto chart by displaying the bars from the most numerous category to

the least numerous category.

Looking at Fig. 1.2, we can identify the relative importance of each category such as the maximum, the minimum, and
the general behavior of the subject data.

Vilfredo Pareto (1848e1923), an Italian economist and sociologist, studied the distributions of wealth in different
countries. He concluded that about 20% of people controlled about 80% of a society’s wealth. This same distribution has
been observed in other areas such as quality improvement: 80% of problems usually stem from 20% of the causes. This
phenomenon has been termed the Pareto effect or 80/20 rule. Pareto charts are used to display the Pareto principle, ar-
ranging data so that the few vital factors that are causing most of the problems reveal themselves. Focusing improvement
efforts on these few causes will have a larger impact and be more cost-effective than undirected efforts. Pareto charts are
used in business decision-making as a problem-solving and statistical tool that ranks problem areas, or sources of variation,
according to their contribution to cost or to total variation.

Definition 1.4.2 A circle divided into sectors that represent the percentages of a population or a sample that belongs to
different categories is called a pie chart.

Pie charts are especially useful for presenting categorical data. The pie “slices” are drawn such that they have an area
proportional to the frequency. The entire pie represents all the data, whereas each slice represents a different class or group
within the whole. Thus, we can look at a pie chart and identify the various percentages of interest and how they compare
among themselves. Most statistical software can create 3D charts. Such charts are attractive; however, they can make
pieces at the front look larger than they really are. In general, a two-dimensional view of the pie is preferable.
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FIGURE 1.1 Percentage price increase of consumer goods.
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FIGURE 1.2 Pareto chart.
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EXAMPLE 1.4.3

The combined percentages of carbon monoxide (CO) and ozone (O3) emissions from different sources are listed in Table 1.6.

Construct a pie chart.

Solution

The pie chart is given in Fig. 1.3.

Definition 1.4.3 A stem-and-leaf plot is a simple way of summarizing quantitative data and is well suited to computer
applications. When data sets are relatively small, stem-and-leaf plots are particularly useful. In a stem-and-leaf plot,
each data value is split into a “stem” and a “leaf.” The “leaf” is usually the last digit of the number and the other
digits to the left of the “leaf” form the “stem.” Usually there is no need to sort the leaves, although computer
packages typically do. For more details, we refer the student to elementary statistics books. We illustrate this
technique with an example.

EXAMPLE 1.4.4

Construct a stem-and-leaf plot for the 20 test scores given below.

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution

At a glance, we see that the scores are distributed from the 50s through the 90s. We use the first digit of the score as the stem and

the second digit as the leaf. The plot in Table 1.7 is constructed with stems in the vertical position.

TABLE 1.6 Combined Percentages of CO and O3 Emissions.

Transportation (T) Industrial process (I) Fuel combustion (F) Solid waste (S) Miscellaneous (M)

63% 10% 14% 5% 8%

F (14.0%)I (10.0%)

T (63.0%)

S (5.0%)

M (8.0%)

FIGURE 1.3 Pie chart for CO and O3.
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The stem-and-leaf plot condenses the data values into a useful display from which we can identify the shape and
distribution of data such as the symmetry, where the maximum and minimum are located with respect to the frequencies,
and whether they are bell shaped. This fact that the frequencies are bell shaped will be of paramount importance as we
proceed to study inferential statistics. Also, note that the stem-and-leaf plot retains the entire data set and can be used only
with quantitative data. Examples 1.8.1 and 1.8.6 explain how to obtain a stem-and-leaf plot using Minitab and SPSS,
respectively. Refer to Section 1.8.3 for SAS commands to generate graphical representations of the data.

A frequency table is a table that divides a data set into a suitable number of categories (classes). Rather than retaining
the entire set of data in a display, a frequency table essentially provides only a count of those observations that are
associated with each class. Once the data are summarized in the form of a frequency table, a graphical representation can be
given through bar graphs, pie charts, and histograms. Data presented in the form of a frequency table are called grouped
data. A frequency table is created by choosing a specific number of classes in which the data will be placed. Generally, the
classes will be intervals of equal length. The center of each class is called a class mark. The end points of each class
interval are called class boundaries. Usually, there are two ways of choosing class boundaries. One way is to choose
nonoverlapping class boundaries so that none of the data points will simultaneously fall in two classes. Another way is that
for each class, except the last, the upper boundary is equal to the lower boundary of the subsequent class. When forming a
frequency table this way, one or more data values may fall on a class boundary. One way to handle such a problem is to
arbitrarily assign it one of the classes or to flip a coin to determine the class into which to place the observation at hand.

Definition 1.4.4 Let fi denote the frequency of the class i and let n be sum of all frequencies. Then the relative frequency for
the class i is defined as the ratio fi=n. The cumulative relative frequency for the class i is defined by

Pi
k¼ 1 fk=n.

The following example illustrates the foregoing discussion.

EXAMPLE 1.4.5

The following data give the lifetime of 30 incandescent light bulbs (rounded to the nearest hour) of a particular type.

872 931 1146 1079 915 879 863 1112 979 1120

1150 987 958 1149 1057 1082 1053 1048 1118 1088

868 996 1102 1130 1002 990 1052 1116 1119 1028

Construct a frequency, relative frequency, and cumulative relative frequency table.

Solution

Note that there are n ¼ 30 observations and that the largest observation is 1150 and the smallest one is 865 with a range of 285.

We will choose six classes each with a length of 50.

Class Frequency fi

Relative frequency
fiP
fi

Cumulative relative frequencyPi
k [ 1

fk
n

50e900 4 4/30 4/30

900e950 2 2/30 6/30

950e1000 5 5/30 11/30

1000e1050 3 3/30 14/30

1050e1100 6 6/30 20/30

1100e1150 10 10/30 30/30

TABLE 1.7 Stem-and-Leaf Display of 20 Exam Scores.

Stem Leaves

5 5

6 6 4

7 8 4 1 4 5 8 9 1

8 2 8 0 2 4 3

9 4 1 6
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When data are quantitative in nature and the number of observations is relatively large, and there are no natural separate
categories or classes, we can use a histogram to simplify and organize the data. Since the classes are listed in order,
histograms are great to identify range and skew of quantitative data.

Definition 1.4.5 A histogram is a graph in which classes are marked on the horizontal axis and either the frequencies,
relative frequencies, or percentages are represented by the heights on the vertical axis. In a histogram, the bars are drawn
adjacent to each other without any gaps.

Histograms can be used only for quantitative data. A histogram compresses a data set into a compact picture that shows
the location of the mean and modes of the data and the variation in the data, especially the range. It identifies patterns in the
data. This is a good aggregate graph of one variable. In order to obtain the variability in the data, it is always a good
practice to start with a histogram of the data. The following steps can be used as a general guideline to construct a fre-
quency table and produce a histogram.

Guidelines for the construction of a frequency table and histogram

1. Determine the maximum and minimum values of the ob-

servations. The range, R ¼maximum value �minimum

value.

2. Select from 5 to 20 classes that in general are nonover-

lapping intervals of equal length, so as to cover the entire

range of the data. The goal is to use enough classes to show

the variation in the data, but not so many that there are

only a few data points in many of the classes. The class

width should be slightly larger than the ratio

Largest value � Smallest value

Number of classes
:

3. The first interval should begin a little below the minimum

value, and the last interval should end a little above the

maximum value. The intervals are called class intervals and

the boundaries are called class boundaries. The class limits

are the smallest and the largest data values in the class. The

class mark is the midpoint of a class.

4. None of the data values should fall on the boundaries of

the classes.

5. Construct a table (frequency table) that lists the class in-

tervals, a tabulation of the number of measurements in

each class (tally), the frequency fi of each class, and, if

needed, a column with relative frequency, fi/n, where n is

the total number of observations.

6. Draw bars over each interval with heights being the fre-

quencies (or relative frequencies).

Let us illustrate implementing these steps in the development of a histogram for the data given in the following
example.

EXAMPLE 1.4.6

The following data refer to a certain type of chemical impurity measured in parts per million in 25 drinking-water samples

randomly collected from different areas of a county.

11 19 24 30 12 20 25 29 15 21

24 31 16 23 25 26 32 17 22 26

35 18 24 18 27

(a) Make a frequency table displaying class intervals, frequencies, relative frequencies, and percentages.

(b) Construct a frequency histogram.

Solution

(a) We will use five classes. The maximum and minimum values in the data set are 35 and 11. Hence the class width is (35e11)/

5 ¼ 4.8x 5. Hence, we shall take the class width to be 5. The lower boundary of the first class interval will be chosen to be

10.5. With five classes, each of width 5, the upper boundary of the fifth class becomes 35.5. We can now construct the

frequency table for the data.
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Class Class interval fi [ frequency Relative frequency Percentage

1 10.5e15.5 3 3/25 ¼ 0.12 12

2 15.5e20.5 6 6/25 ¼ 0.24 24

3 20.5e25.5 8 8/25 ¼ 0.32 32

4 25.5e30.5 5 5/25 ¼ 0.20 20

5 30.5e35.5 3 3/25 ¼ 0.12 12

(b) We can generate a histogram as in Fig. 1.4.

From the histogram we should be able to identify the center (i.e., the location) of the data, spread of the data, skewness of the

data, presence of outliers, presence of multiple modes in the data, and whether the data can be capped with a bell-shaped curve.

These properties provide indications of the proper distributional model for the data. Examples 1.8.2 and 1.8.7 explain how to

obtain histograms using Minitab and SPSS, respectively.

Exercises 1.4

1.4.1. According to the recent U.S. Federal Highway Administration Highway Statistics, the percentages of freeways and
expressways in various road mileage-related highway pavement conditions are as follows:

Poor 10%, Mediocre 32%, Fair 22%, Good 21%, and Very good 15%.
(a) Construct a bar graph.
(b) Construct a pie chart.

1.4.2. More than 75% of all species that have been described by biologists are insects. Of the approximately two million
known species, only about 30,000 are aquatic in any life stage. The data in Table 1.8 give the proportion of total
species by insect order that can survive exposure to salt (source: http://entomology.unl.edu/).
(a) Construct a bar graph.
(b) Construct a Pareto chart.
(c) Construct a pie chart.

1.4.3. The data in Table 1.9 are presented to illustrate the role of renewable energy consumption in the U.S. energy supply
in 2007 (source: http://www.eia.doe.gov/fuelrenewable.html). Renewable energy consists of biomass, geothermal
energy, hydroelectric energy, solar energy, and wind energy.
(a) Construct a bar graph.
(b) Construct a Pareto chart.
(c) Construct a pie chart.

1.4.4. A litter is a group of babies born from the same mother at the same time. Table 1.10 gives some examples of
different mammals and their average litter size (source: http://www.saburchill.com/chapters/chap0032.html).
(a) Construct a bar graph.
(b) Construct a Pareto chart.

1.4.5. The following data give the letter grades of 20 students enrolled in a statistics course.

9

8

7

6

5
10.5 15.5 20.5

Data interval

Fr
eq

ue
nc

y

25.5 30.5 35.5

FIGURE 1.4 Frequency histogram of impurity data.
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A B F A C C D A B F
C D B A B A F B C A

(a) Construct a bar graph.
(b) Construct a pie chart.

1.4.6. According to the U.S. Bureau of Labor Statistics (BLS), the median weekly earnings of fulltime wage and salary
workers by age for the third quarter of 1998 is given in Table 1.11.

Construct a pie chart and bar graph for these data and interpret. Also, construct a Pareto chart.
1.4.7. The data in Table 1.12 are a breakdown of 18,930 workers in a town according to the type of work. Construct a pie

chart and bar graph for these data and interpret.
1.4.8. The data in Table 1.13 represent the number (in millions) of adults and children living with HIV/AIDS by the end

of 2000 according to their region of the world (source: http://w3.whosea.org/hivaids/factsheet.htm).
Construct a bar graph for these data. Also, construct a Pareto chart and interpret.

TABLE 1.8 Percentage of Species by Insect Order.

Species Percentage Species Percentage

Coleoptera 26% Odonata 3%

Diptera 35% Thysanoptera 3%

Hemiptera 15% Lepidoptera 1%

Orthoptera 6% Other 6%

Collembola 5%

TABLE 1.9 Renewable Energy Consumption.

Source Percentage

Coal 22%

Natural gas 23%

Nuclear electric power 8%

Petroleum 40%

Renewable energy 7%

TABLE 1.10 Litter Size of Mammals.

Species Litter size

Bat 1

Dolphin 1

Chimpanzee 1

Lion 3

Hedgehog 5

Red fox 6

Rabbit 6

Black rat 11
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1.4.9. The data in Table 1.14 give the life expectancy at birth, in years, from 1900 through 2000 (source: National Center
for Health Statistics). Construct a bar graph for these data.

1.4.10. Dolphins are usually identified by the shape and pattern of notches and nicks on their dorsal fin. Individual dol-
phins are cataloged by classifying the fin based on the location(s) of distinguishing marks. When a dolphin is
sighted its picture can then be compared to the catalog of dolphins in the area, and if a match is found, the dolphin
can be recorded as resighted. These methods of mark-resight are for developing databases regarding the life his-
tory of individual dolphins. From these databases we can calculate the levels of association between dolphins,

TABLE 1.11 Weakly Wages & Salary Distribution by Age.

16e19 years $260

20e24 years $334

25e34 years $498

35e44 years $600

45e54 years $628

55e64 years $605

65 years and over $393

TABLE 1.12 Distribution of Workers by Type of Work.

Mining 58

Construction 1161

Manufacturing 2188

Transportation and public utilities 821

Wholesale trade 657

Retail trade 7377

Finance, insurance, and real estate 890

Services 5778

Total 18,930

TABLE 1.13 Number of People Living With HIV/AIDS.

Region of the world Adults and children living with HIV/AIDS (in millions)

Sub-Saharan Africa 25.30

North Africa and Middle East 0.40

South and Southeast Asia 5.80

East Asia and Pacific 0.64

Latin America 1.40

Caribbean 0.39

Eastern Europe and Central Asia 0.70

Western Europe 0.54

North America 0.92

Australia and New Zealand 0.15
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population estimates, and general life history parameters such as birth and survival rates. The data in Table 1.15
represent frequently resighted individuals (as of January 2000) at a particular location (source: http://www.eckerd.
edu/dolphinproject/biologypr.html).

Construct a bar graph for these data.

1.4.11. The data in Table 1.16 give death rates (per 100,000 population) for 10 leading causes in 1998 (source: National
Center for Health Statistics, U.S. Department of Health and Human Services).
(a) Construct a bar graph.
(b) Construct a Pareto chart.

1.4.12. In a fiscal year, a city collected $32.3 million in revenues. City spending for that year is expected to be nearly the
same, with no tax increase projected.
Expenditure: Reserves 0.7%, capital outlay 29.7%, operating expenses 28.9%, debt service 3.2%, transfers 5.1%,
personal services 32.4%.
Revenues: Property taxes 10.2%, utility and franchise taxes 11.3%, licenses and permits 1%, intergovernmental
revenue 10.1%, charges for services 28.2%, fines and forfeits 0.5%, interest and miscellaneous 2.7%, transfers
and cash carryovers 36%.
(a) Construct bar graphs for expenditures and revenues, and interpret.
(b) Construct pie charts for expenditures and revenues, and interpret.

TABLE 1.14 Life Expectancy at Birth.

Year Life expectancy

1900 47.3

1960 69.7

1980 73.7

1990 75.4

2000 77.0

TABLE 1.15 Number of Dolphin Resights by Type.

Hammer (adult female) 59

Mid Button Flag (adult female) 41

Luseal (adult female) 31

84 Lookalike (adult female) 20

TABLE 1.16 Death Rate by Cause.

Cause Death rate

Accidents and adverse effects 34.5

Chronic liver disease and cirrhosis 9.7

Chronic obstructive lung diseases and allied
conditions

42.3

Cancer 199.4

Diabetes mellitus 23.9

Heart disease 268.0

Kidney disease 9.7

Pneumonia and influenza 35.1

Stroke 58.5

Suicide 10.8
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1.4.13. Construct a histogram for the 24 examination scores given below:

78 74 82 66 94 71 64 88 55 80 73 86
91 74 82 75 96 78 84 79 71 83 78 79

1.4.14. The following table gives radon concentrations in pCi/liter (picocurie per liter) obtained from 40 houses in a
certain area.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2
7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4
15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7
6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

(a) Construct a stem-and-leaf display.
(b) Construct a frequency histogram and interpret.
(c) Construct a pie chart and interpret.

1.4.15. The following data give the mean of SAT mathematics scores by state for 1999 for a randomly selected 20 states
(source: The World Almanac and Book of Facts, 2000).

558 503 565 572 546 517 542 605 493 499
568 553 510 525 595 502 526 475 506 568

(a) Construct a stem-and-leaf display and interpret.
(b) Construct a frequency histogram and interpret.
(c) Construct a pie chart and interpret.

1.4.16. A sample of 25 measurements is given here:

9 28 14 29 21 27 15 23 23 10
31 23 16 26 22 17 19 24 21 20
26 20 16 14 21

(a) Make a frequency table displaying class intervals, frequencies, relative frequencies, and percentages.
(b) Construct a frequency histogram and interpret.

1.4.17. We may be interested in changing demographics of the U.S. population. The following table gives the demo-
graphics in 2010 (Overview of Race and Hispanic Origin: 2010, http://www.census.gov/prod/cen2010/briefs/
c2010br-02.pdf). The Table 1.17 gives a pretty good summary understanding.

TABLE 1.17 US Population Demographics.

Race/Ethnicity Number % of population

White or European American 223,553,265 24.14

Black or African American 38,929,319 4.20

Asian American 14,674,252 1.58

American Indian or Alaska Native 2,932,248 0.32

Native Hawaiian or other Pacific Islander 540,013 0.06

Some other race 19,107,368 2.06

Two or more races 9,009,073 0.97

Not Hispanic nor Latino 258,267,944 27.88

Non-Hispanic white or European American 196,817,552 21.25

Non-Hispanic black or African American 37,685,848 4.07

Non-Hispanic Asian 14,465,124 1.56

Non-Hispanic American Indian or Alaska Native 2,247,098 0.24

Non-Hispanic Native Hawaiian or other Pacific Islander 481,576 0.05

Non-Hispanic some other race 604,265 0.07

Non-Hispanic two or more races 5,966,481 0.64

Hispanic or Latino 50,477,594 5.45

White or European American Hispanic 26,735,713 2.89

Continued
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Draw a pie chart.

1.5 Numerical description of data

In the previous section we looked at some graphical and tabular techniques for describing a data set. We shall now consider
some numerical characteristics of a set of measurements. Suppose that we have a sample with values x1, x2, ., xn. There
are many characteristics associated with this data set, for example, the central tendency and variability. A measure of the
central tendency is given by the sample mean, median, or mode, and the measure of dispersion or variability is usually
given by the sample variance or sample standard deviation or interquartile range.

Definition 1.5.1 Let x1, x2, ., xn be a set of sample values. Then the sample mean (or empirical mean) x is defined by

x ¼ 1
n

Xn

i¼ 1

xi:

The sample variance is defined by

s2 ¼ 1
ðn� 1Þ

Xn

i¼ 1

ðxi � xÞ2:

The sample standard deviation is

s ¼
ffiffiffiffi
s2

p

The sample variance s2 and the sample standard deviation s both are measures of the variability or “scatteredness” of data
values around the sample mean x. The larger the variance, the greater is the spread. We note that s2 and s are both nonnegative.
One question we may ask is “why not just take the sum of the differences as a measure of variation?” The answer lies in the
following result that shows that if we add up all deviations about the sample mean, we always get a zero value.

Theorem 1.5.1 For a given set of measurements x1, x2, ., xn, let x be the sample mean. Then

Xn

i¼ 1

ðxi � xÞ ¼ 0:

Proof. Since x ¼ ð1 =nÞPn
i¼ 1 xi; we have

Pn
i¼ 1 xi ¼ nx. Now

Xn

i¼ 1

ðxi � xÞ ¼
Xn

i¼ 1

xi �
Xn

i¼ 1

x

¼ nx� nx ¼ 0:

Thus, although there may be a large variation in the data values,
Pn

i¼ 1ðxi �xÞ as a measure of spread would always be
zero, implying no variability. So, it is not useful as a measure of variability.

Sometimes we can simplify the calculation of the sample variance s2 by using the following computational formula:

s2 ¼

" Pn
i¼ 1

x2i �
1
n

�Pn
i¼ 1

xi

�2
#

ðn� 1Þ :

TABLE 1.17 US Population Demographics.dcont’d

Race/Ethnicity Number % of population

Black or African American Hispanic 1,243,471 0.13

American Indian or Alaska Native Hispanic 685,150 0.07

Asian Hispanic 209,128 0.02

Native Hawaiian or other Pacific Islander Hispanic 58,437 0.01

Some other race Hispanic 18,503,103 2

Two or more races Hispanic 3,042,592 0.33

Total 926,236,614 100%
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If the data set has a large variation with some extreme values (called outliers), the mean may not be a very good
measure of the center. For example, average salary may not be a good indicator of the financial well-being of the em-
ployees of a company if there is a huge difference in pay between support personnel and management personnel. In that
case, one could use the median as a measure of the center, roughly 50% of data fall below and 50% above. The median is
less sensitive to extreme data values.

Definition 1.5.2 For a data set, the median is the middle number of the ordered data set. If the data set has an even number of
elements, then the median is the average of the middle two numbers. The lower quartile is the middle number of the half of the
data below the median, and the upper quartile is the middle number of the half of the data above the median. We will denote

Q1 ¼ lower quartile

Q2 ¼ M ¼ middle quartile ðmedianÞ
Q3 ¼ upper quartile:

The difference between the quartiles is called the interquartile range (IQR).

IQR ¼ Q3 � Q1.

A possible outlier (mild outlier) will be any data point that lies below

Q1 � 1:5ðIQRÞ or above Q3 þ 1:5ðIQRÞ:
Thus, about 25% of the data lie below Q1, and about 75% of the data lie below Q3. Note that the IQR is unaffected by

the positions of those observations in the smallest 25% or the largest 25% of the data.
Mode is another commonly used measure of central tendency. A mode indicates where the data tend to concentrate most.

Definition 1.5.3 Mode is the most frequently occurring member of the data set. If all the data values are different, then by
definition, the data set has no mode.

EXAMPLE 1.5.1

The following data give the time in months from hire to promotion to manager for a random sample of 25 software engineers from

all software engineers employed by a large telecommunications firm.

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125

Calculate the mean, median, mode, variance, and standard deviation for this sample.

Solution

The sample mean is

x ¼ 1

n

Xn

i¼ 1

xi ¼ 83:28months:

To obtain the median, first arrange the data in ascending order:

5 7 12 14 14 14 18 21 22 23

24 25 34 34 37 47 49 64 67 69

125 192 229 453 483

Now the median is the thirteenth number, which is 34 months.

Since 14 occurs most often (thrice), the mode is 14 months.

The sample variance is

s2 ¼ 1

n � 1

Xn
i¼ 1

ðxi � xÞ2

¼ 1

24

�ð5� 83:28Þ2 þ/þ ð125� 83:28Þ2�

¼ 16; 478:
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and the sample standard deviation is, s ¼
ffiffiffiffi
s2

p
¼ 128:36 months. Thus, we have sample mean x ¼ 83:28 months,

median ¼ 34 months, and mode ¼ 14 months. Note that the mean is much different from the other two measures of the center because
of a few large data values. Also, the sample variance s2 ¼ 16,478 months, and the sample standard deviation s ¼ 128.36 months.

EXAMPLE 1.5.2

For the data of Example 1.5.1, find lower and upper quartiles, median, and interquartile range (IQR). Check for any outliers.

Solution

Arrange the data in an ascending order.

5 7 12 14 14 14 18 21 22 23

24 25 34 34 37 47 49 64 67 69

125 192 229 453 483

Then the medianM is the middle (13th) data value, M ¼ Q2 ¼ 34. The lower quartile is the middle number below the median,

Q1 ¼ [(14 þ 18)/2] ¼ 16. The upper quartile, Q3 ¼ [(67 þ 69)/2] ¼ 68.

The interquartile range (IQR) ¼ Q3 e Q1 ¼ 68 e 16 ¼ 52.

To test for outliers, compute

Q1 � 1:5ðIQRÞ ¼ 16� 1:5ð52Þ ¼ �62

and
Q3 þ 1:5ðIQRÞ ¼ 68þ 1:5ð52Þ ¼ 146:

Then all the data that fall above 146 are possible outliers. None is below e62. Therefore, the outliers are 192, 229,
453, and 483.

We have remarked earlier that the mean as a measure of central location is greatly affected by the extreme values or
outliers. A robust measure of central location (a measure that is relatively unaffected by outliers) is the trimmed mean. For
0 � a � 1, a 100a% trimmed mean is found as follows: Order the data, and then discard the lowest 100a% and the highest
100a% of the data values. Find the mean of the rest of the data values. We denote the 100a% trimmed mean by xa. We
illustrate the trimmed mean concept in the following example.

EXAMPLE 1.5.3

For the data set representing the number of children in a random sample of 10 families in a neighborhood, find the 10% trimmed

mean (a ¼ 0.1).

1 2 2 3 2 3 9 1 6 2 :

Solution

Arrange the data in ascending order.

1 1 2 2 2 2 3 3 6 9 :

The data set has 10 elements. Discarding the lowest 10% (10% of 10 is 1) and discarding the highest 10% of the data values,

we obtain the trimmed data set as

1 2 2 2 2 3 3 6:

The 10% trimmed mean is

x0:1 ¼ 1þ 2þ 2þ 2þ 2þ 3þ 3þ 6

8
¼ 2:6:

Note that the mean for the data in the previous example without removing any observations is 3.1, which is different from the

trimmed mean.

Although standard deviation is a more popular method, there are other measures of dispersion such as average
deviation or interquartile range. We have already seen the definition of interquartile range. The average deviation for a
sample x1, ., xn is defined by
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Average deviation ¼
Pn
i¼ 1

jxi � xj
n

:

Calculation of average deviation is simple and straightforward.

1.5.1 Numerical measures for grouped data

When we encounter situations where the data are grouped in the form of a frequency table (see Section 1.4), we no longer
have individual data values. Hence, we cannot use the formulas in Definition 1.7.1. The following formulas will give
approximate values for x and s2. Let the grouped data have l classes, with mi being the midpoint and fi being the frequency
of class i, i ¼ 1, 2, ., l. Let n ¼ Pl

i¼ 1 fi.

Definition 1.5.4 The mean for a sample of size n,

x ¼ 1
n

Xl

i¼ 1

fimi;

where mi is the midpoint of the class i and fi is the frequency of the class i.
Similarly, the sample variance,

s2 ¼ 1
n� 1

Xn

i¼ 1

fiðmi � xÞ2 ¼
P

m2
i fi �

�P
i
fimi

�2

n
n� 1

:

The following example illustrates how we calculate the sample mean for a grouped data.

EXAMPLE 1.5.4

The grouped data in Table 1.18 represent the number of children from birth through the end of the teenage years in a large

apartment complex. Find the mean, variance, and standard deviation for these data.

Here we use the usual convention of until the child attains the next age, the age will be the previous year, for instance until a

child is 4 years old, we will say the child is 3 years old.

Solution

Note that even though the classes are given as disjoint, in actuality these are adjacent age intervals, like [0, 4), [4, 8), etc. When

we take the class midpoint, we have to take this into account. For simplicity of calculation we create Table 1.19.

The sample mean is

x ¼ 1

n

X
i

fimi ¼ 540

50
¼ 10:80:

The sample variance is

s2 ¼
P

m2
i fi �

�P
i

fimi

�2

n
n � 1

¼
7016� ð540Þ2

50
49

¼ 24:1632650z24:16:

The sample standard deviation is s ¼
ffiffiffiffi
s2

p
¼ 4:9156144z4:92:

TABLE 1.18 Number of Children and Their Age Group.

Class 0e3 4e7 8e11 12e15 16e19

Frequency 7 4 19 12 8
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Using the following calculations, we can also find the median for grouped data. We only know that the median occurs
in a particular class interval, but we do not know the exact location of the median. We will assume that the measures are
spread evenly throughout this interval. Let

L ¼ lower class limit of the interval that contains the median.
n ¼ total frequency.
Fb ¼ cumulative frequencies for all classes before the median class.
fm ¼ frequency of the class interval containing the median.
w ¼ interval width of the interval that contains the median.
Then the median for the grouped data is given by

M ¼ Lþ w

fm
ð0:5n�FbÞ:

We proceed to illustrate with an example.

EXAMPLE 1.5.5

For the data in Example 1.5.4, find the median.

Solution

First, we develop Table 1.20.

The first interval for which the cumulative relative frequency exceeds 0.5 is the interval that contains the median. Hence, the

interval 8 to 11 contains the median. Therefore, L ¼ 8, fm ¼ 19, n ¼ 50, w ¼ 3, and Fb ¼ 11. Then, the median is

M ¼ Lþ w

fm
ð0:5n� FbÞ ¼ 8þ 3

19
ðð0:5Þð50Þ� 11Þ ¼ 10:211:

It is important to note that all the numerical measures we calculate for grouped data are only approximations to the actual

values of the ungrouped data if they are available.

TABLE 1.19 Summary Statistics for Number of Children.

Class Interval fi mi mifi m2
i f i

0e3 [0, 4) 7 2 14 28

4e7 [4, 8) 4 6 24 144

8e11 [8, 12) 19 10 190 1900

12e15 [12, 16) 12 14 168 2352

16e19 [16, 20) 8 18 144 2592

n ¼ 50
P

mifi ¼ 540
P

m2
i fi ¼ 7016

TABLE 1.20 Frequency Distribution for Number of Children.

Class fi Cumulative fi Cumulative fi/n

0e3 7 7 0.14

4e7 4 11 0.22

8e11 19 30 0.6

12e15 12 42 0.84

16e19 8 50 1.00
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One of the uses of the sample standard deviation will be clear from the following result, which is based on the data
following a bell-shaped curve. Such an indication can be obtained from the histogram or stem-and-leaf display.

Empirical rule

When the histogram of a data set is “bell-shaped” or “mound-

shaped,” and symmetric, the empirical rule states:

1. Approximately 68% of the data are in the interval

ðx �s; x þ sÞ.

2. Approximately 95% of the data are in the interval

ðx �2s; x þ 2sÞ.
3. Approximately 99.7% of the data are in the interval

ðx � 3s; x þ 3sÞ.

The bell-shaped curve is called a normal curve and is discussed later in Chapter 3. A typical symmetric bell-shaped
curve is given by Fig. 1.5.

1.5.2 Box plots

The sample mean or the sample standard deviation focuses on a single aspect of the data set, whereas histograms and stem-
and-leaf displays express rather general ideas about the data. A pictorial summary called a box plot (also called box-and-
whisker plots) can be used to describe several prominent features of a data set such as the center, the spread, the extent, and
nature of any departure from symmetry, and identification of outliers. Box plots are a simple diagrammatic representation
of the five number summary: minimum, lower quartile, median, upper quartile, maximum. Example 1.8.4 illustrates the
method of obtaining box plots using Minitab.

Procedure to construct a box plot

1. Draw a vertical measurement axis and mark Q1, Q2 (me-

dian), and Q3 on this axis as shown in Fig. 1.6, below. Let

IQR ¼ Q1 �Q3.

2. Construct a rectangular box whose bottom edge lies at the

lower quartile, Q1, and whose upper edge lies at the upper

quartile, Q3.

3. Draw a horizontal line segment inside the box through the

median.

4. Extend the lines from each end of the box out to the farthest

observation that is still within 1.5(IQR) of the correspond-

ing edge. These lines are called whiskers.

5. Draw an open circle (or asterisks *) to identify each

observation that falls between 1.5(IQR) and 3(IQR) from

the edge to which it is closest; these are called mild

outliers.

6. Draw a solid circle to identify each observation that falls

more than 3(IQR) from the closest edge; these are called

extreme outliers.

Normal distribution

0.4

0.3

0.2

0.1

0.0

–3 –2 –1 0
x

1 2 3

3 sd

2 sd

1 sd

FIGURE 1.5 Bell-shaped curve.
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We illustrate the procedure with the following example.

EXAMPLE 1.5.6

The following data identify the time in months from hire to promotion to chief pharmacist for a random sample of 25 employees

from a certain group of employees in a large corporation of drugstores.

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125

Construct a box plot. Do the data appear to be symmetrically distributed along the measurement axis?

Solution

Referring to Example 1.5.2, we find that the median, Q2 ¼ 34.

The lower quartile is Q1 ¼ 14þ18
2 ¼ 16:

The upper quartile is Q3 ¼ 67þ69
2 ¼ 68:

The interquartile range is IQR ¼ 68 e 16 ¼ 52.

To find the outliers, compute

Q1 � 1:5ðIQRÞ ¼ 16� 1:5ð52Þ ¼ �62

and

Q3 þ 1:5ðIQRÞ ¼ 68þ 1:5ð52Þ ¼ 146:

Using these numbers, we follow the procedure outlined earlier to construct the box plot shown by Fig. 1.7. The * in the box

plot represents an outlier. The first horizontal line is the first quartile, the second is the median, and the third is the third quartile.

Extreme outliers

Mild outliers

Mild outliers

Extreme outliers

∗
∗

Whisker

Whisker

(1.5)IQR

(3)IQR

Q3

Q2

Q1

(3)IQR

(1.5)IQR
∗
∗

FIGURE 1.6 A typical box-and-whiskers plot.
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By examining the relative position of the median line (the middle line in Fig. 1.7), we can test the symmetry of the data.
For example, in Fig. 1.7, the median line is closer to the lower quartile than the upper line, which suggests that the
distribution is slightly nonsymmetrical. Also, a look at this box plot shows the presence of two mild outliers and two
extreme outliers.

A box plot is an effective tool to visualize an entire range of data. Box plots can tell us if the data are uniform or
diverse, and gives us a broad overview of the data at hand that will help us asking more questions in a practical application
as well as selection of analytical methods.

Exercises 1.5

1.5.1. The prices of 12 randomly chosen homes in dollars (approximated to the nearest 1000) in a growing region of
Tampa in the summer of 2002 are given below (data is given in 1000s).

176 105 133 140 305 215 207 210 173 150 78 96 :

Find the mean and standard deviation of the sampled home prices from this area.
1.5.2. The following is a sample of nine mortgage companies’ interest rates for 30-year home mortgages, assuming 5%

down.

7.625 7.500 6.625 7.625 6.625 6.875 7.375 5.375 7.500

(a) Find the mean and standard deviation, and interpret.
(b) Find lower and upper quartiles, median, and interquartile range. Check for any outliers and interpret.

1.5.3. For four observations, it is given that mean is 6, median is 4, and mode is 3. Find the standard deviation of this
sample.

1.5.4. The data given below pertain to a random sample of disbursements of state highway funds (in millions of dollars),
to different states.

1188 1050 2882 2802 780 1171 685
537 519 2523 316 1117 1578 261

(a) Find the mean, variance, and range for these data and interpret.
(b) Find lower and upper quartiles, median and interquartile range. Check for any outliers and interpret.
(c) Construct a box plot and interpret.

1.5.5. Maximal static inspiratory pressure (PImax) is an index of respiratory muscle strength. The following data show the
measure of PImax (cm H2O) for 15 cystic fibrosis patients.

500

400
**

**

300

M
on

th
s

200

100

0

FIGURE 1.7 Box plot for months to promotion.

Descriptive statistics Chapter | 1 27



105 80 115 95 100 85 90 70
135 105 45 115 40 115 95

(a) Find the lower and upper quartiles, median, and interquartile range. Check for any outliers and interpret.
(b) Construct a box plot and interpret.
(c) Are there any outliers?

1.5.6. Compute the mean, variance, and standard deviation for the data in Table 1.21 (assume that the data belong to a
sample).

1.5.7. (a) For any grouped data with l classes with group frequencies fi, and class midpoints mi, show that

Xl

i¼ 1

fiðmi � xÞ ¼ 0:

(b) Verify this result for the data given in Exercise 1.5.6.

1.5.8. (a) Given the sample values x1, x2, ., xn, show that

Xn

i¼ 1

ðxi � xÞ2 ¼
Xn

i¼ 1

x2i �

�Pn
i¼ 1

xi

�2

n
:

(b) Verify the result of part (a) for the data of Exercise 1.5.6.
1.5.9. The following are the closing prices of some securities that a mutual fund holds on a certain day:

10.25 5.31 11.25 13.13 18.00 32.56 37.06 39.00
43.25 45.00 40.06 28.56 22.75 51.50 47.00 53.50
32.00 25.44 22.50 30.00 24.75 53.37 51.38 26.00
53.50 29.87 32.00 28.87 42.19 37.50 30.44 41.37

(a) Find the mean, variance, and range for these data and interpret.
(b) Find lower and upper quartiles, median, and interquartile range. Check for any outliers.
(c) Construct a box plot and interpret.
(d) Construct a histogram.
(e) Locate on your histogram x; x� s; x� 2s; and x� 3s. Count the data points in each of the intervals

x� s; x� 2s; and x� 3s and compare this with the empirical rule.
1.5.10. The radon concentration (in pCi/liter) data obtained from 40 houses in a certain area are given below.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2
7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4
15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7
6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

(a) Find the mean, variance, and range for these data.
(b) Find lower and upper quartiles, median, and interquartile range. Check for any outliers.
(c) Construct a box plot.
(d) Construct a histogram and interpret.
(e) Locate on your histogram x� s; x� 2s; and x� 3s: Count the data points in each of the intervals

x; x� s; x� 2s; and x� 3s: How do these counts compare with the empirical rule?
1.5.11. A random sample of 100 households’ weekly food expenditure represented by x from a particular city gave the

following statistics:

TABLE 1.21 Class and Frequency.

Class 0e4 5e9 10e14 15e19 20e24

Frequency 5 14 15 10 6
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X
xi ¼ 11; 000; and

X
x2i ¼ 1; 900; 000:

(a) Find the mean and standard deviation for these data.
(b) Assuming that the food expenditure of the households of an entire city of 400,000 will have a bell-shaped

distribution, how many households of this city would you expect to fall in each of the intervals,
x� s; x� 2s; and x� 3s?

1.5.12. The following numbers are the hours put in by 10 employees of a company in a randomly selected week:

40 46 40 54 18 45 34 60 39 42

(a) Calculate the values of the three quartiles and the interquartile range. Also, calculate the mean and standard
deviation and interpret.

(b) Verify from this data set that
P10
i¼ 1

ðxi �xÞ ¼ 0.
(c) Construct a box plot.
(d) Does this data set contain any outliers?

1.5.13. For the following data:

6.3 2.9 4.5 1.1 1.8 4.0 1.2 3.1 2.0 4.0
7.0 2.8 4.3 5.3 2.9 8.3 4.4 2.8 3.1 5.6
4.5 4.5 5.7 0.5 6.2 3.7 0.9 2.4 3.0 3.5

(a) Find the mean, variance, and standard deviation.
(b) Construct a frequency table with five classes.
(c) Using the grouped data formula, find the mean, variance, and standard deviation for the frequency table con-

structed in part (b) and compare it to the results in part (a).
1.5.14. In order to assess the protective immunizing activity of various whooping cough vaccines, suppose that 30 batches

of different vaccines are tested on groups of children. Suppose that the following data give immunity percentage in
home exposure values (IPHE values).

85 51 41 90 91 40 39 69 45 47
42 12 70 38 97 34 94 77 88 91
79 90 43 40 89 85 71 30 25 21

(a) Find the mean, variance, and standard deviation and interpret.
(b) Construct a frequency table with five classes.
(c) Using the grouped data formula, find the mean, variance, and standard deviation for the table in part (b) and

compare it to the results in part (a).
1.5.15. The grouped data in Table 1.22 give the number of births by age group of mothers between ages 10 and 39 in a

certain state in 2000.
Find the median for this grouped data and interpret.

TABLE 1.22 Number of Births by Mother’s Age Group.

Age of mother Number of births

10e14 895

15e19 55,373

20e24 122,591

25e29 139,615

30e34 127,502

35e39 68,685
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1.5.16. Table 1.23 gives the distribution of the masses (in grams) of 50 salmon from a single young cohort.
(a) Using the grouped data formula, find the mean, variance, and standard deviation.
(b) Find the median for this grouped data.

1.5.17. After a pollution accident, 180 dead fish were recovered from a stream. Table 1.24 gives their lengths measured to
the nearest millimeter.
(a) Using the grouped data formula, find the mean, variance, and standard deviation.
(b) Find the median for this grouped data and interpret.

1.6 Computers and statistics

With present-day technology, we can automate most statistical calculations. For small sets of data, many basic cal-
culations such as finding means and standard deviations and creating simple charts, graphing calculators are sufficient.
Students should learn how to perform statistical analysis using their handheld calculators. For deeper analysis and for
large data sets, statistical software is necessary. Software also provides easier data entry and editing and much better
graphics in comparison to calculators. There are many statistical packages available. Many such analyses can be
performed with spreadsheet application programs such as Microsoft Excel, but a more thorough data analysis requires
the use of more sophisticated software such as Minitab and SPSS. For students with programming abilities, packages
such as MATLAB may be more appealing. For very large data sets and for complicated data analysis, one could use
SAS. SAS is one of the most frequently used statistical packages. Many other statistical packages (such as Splus, and
StatXact) are available; the utilities and advantages of each are based on the specific application and personal taste.
The software R is free software that is being increasingly used by statisticians and can be downloaded from http://
www.r-project.org/, and many statistical tutorials for R are freely available on the worldwide web. For a good
introduction to doing statistics with R, refer to the book by Peter Dalgaard, Introductory Statistics, with R, Springer,
2002 or its newer edition.

In this book, we will give some representative R, Minitab, SPSS, and SAS commands at the end of each chapter
just to get students started on the technology. These examples are by no means a tutorial for the respective software.
For a more thorough understanding and use of technology, students should look at the users’ manual that comes with
the software or at references given at the end of the book. The computer commands are designed to be illustrative,
rather than completely efficient. In dealing with data analysis for real-world problems, we need to know which
statistical procedure to use, how to prepare the data sets suitable for use in the particular statistical package, and
finally how to interpret the results obtained. A good knowledge of theory supplemented with a good working
knowledge of statistical software will enable students to perform sophisticated statistical analysis, while under-
standing the underlying assumptions and the limitations of results obtained. This will prevent us from misleading
conclusions when using computer-generated statistical outputs.

TABLE 1.23 Distribution of Salmon Mass.

Weight 155e164 165e174 175e184 185e194 195e204

Frequency 8 11 18 9 4

TABLE 1.24 Length of Dead Fish.

Length of fish (mm) 1e19 20e39 40e59 60e79 80e99

Frequency 38 31 59 45 7
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1.7 Chapter summary

In this chapter, we dealt with some basic aspects of descriptive statistics. First we gave basic definitions of terms such as
population and sample. Some sampling techniques were discussed. We learned about some graphical presentations in
Section 1.4. In Section 1.5 we dealt with descriptive statistics, in which we learned how to find mean, median, and variance
and how to identify outliers. A brief discussion of the technology and statistics was given in Section 1.6. All the examples
given in this chapter are for a univariate population, in which each measurement consists of a single value. Many pop-
ulations are multivariate, where measurements consist of more than one value. For example, we may be interested in
finding a relationship between blood sugar level and age, or between body height and weight. These types of problems will
be discussed in Chapter 8.

In practice, it is always better to run descriptive statistics as a check on one’s data. The graphical and numerical
descriptive measures can be used to verify that the measurements are sound and that there are no obvious errors due to
collection or coding.

We now list some of the key definitions introduced in this chapter.

l Population
l Sample
l Statistical inference
l Quantitative data
l Qualitative or categorical data
l Cross-sectional data
l Time series data
l Simple random sample
l Systematic sample
l Stratified sample
l Proportional stratified sampling
l Cluster sampling
l Multiphase sampling
l Relative frequency
l Cumulative relative frequency
l Bar graph
l Pie chart
l Histogram
l Sample mean
l Sample variance
l Sample standard deviation
l Median
l Interquartile range
l Mode
l Mean
l Empirical rule
l Box plots

In this chapter, we have also introduced the following important concepts and procedures:

l General procedure for data collection
l Some advantages of simple random sampling
l Steps for selecting a stratified sample
l Procedures to construct frequency and relative frequency tables and graphical representations such as stem-and-leaf

displays, bar graphs, pie charts, histograms, and box plots
l Procedures to calculate measures of central tendency, such as mean and median, as well as measures of dispersion such

as the variance and standard deviation for both ungrouped and grouped data
l Guidelines for the construction of frequency tables and histograms
l Procedures to construct a box plot
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1.8 Computer examples

In this section, we give some examples of how to use Minitab, SPSS, and SAS for creating graphical representations of the
data as well as methods for the computation of basic statistics. Sometimes, the outputs obtained using a particular software
package may not be exactly as explained in the book; they vary from one package to another, and also depend on the
particular software version. In fact, most of the outputs will not be shown in this book. It is important to obtain the
explanation of outputs from the help menu of the particular software package for complete understanding. The “Computer
Examples” sections of this book are not designed as manuals for the software, nor are they written in the most efficient
way. The idea is only to introduce some basic procedures, so that the students can get started with applying the theoretical
material they have seen in each of the chapters.

1.8.1 R introduction and examples

R is a free software for statistical computing and graphics that you can download from http://www.r-project.org/. Detailed
help manuals are available from this site. In addition, you can get R help from numerous sources. One such book can be
obtained at http://www.ecostat.unical.it/tarsitano/Didattica/LabStat2/Everitt.pdf. In this book, we are only introducing the
reader to basic R-programming as a starting point. The R-commands are not optimal, nor is it comprehensive. If you don’t
have experience with R-program, we suggest that you start working with R-studio (https://www.rstudio.com/), which is
much easier to use with its windows interface.

R you ready to start programming?
Introduction to R, imputing and importing data from the examples:
How to input data?
Using the following data:
66 74 79 80 69 77 78 65 79 81
we will make a single variable data set or vector named x. First manually, and second using the scan() function for

convenience.
R code
x¼c(66,74,79,80,69,77,78,65,79,81);

Typing the commas can be time consuming

OR
x¼scan();
1: 66
2: 74
3: 79
4: 80

This method allows you to type each number

pressing enter between each entry designed

with the number pad in mind. Notice the last

entry is blank which ends the scan function.

5: 69
6: 77
7: 78
8: 65
9: 79
10: 81
11:
Results: Both methods obtain the same output, which can be seen simply by typing x or cat(x) or print(x), however, the

scan method allows you to rapidly type your numbers into the variable using a numpad and enter key.

Importing a CSV file

It is common to import comma separated value (CSV) files into R; this imports Example 7.7.1 data into variable x.
This example assumes your file is located on a D:\ drive, you may need to modify the path preceding the file name for

the CSV files you wish to import.
R code

x ¼ read.csv(“D:\ ch7_1.csv”);
Results:
You should have obtained a variable containing the data from the CSV file, these files can be opened with notepad to

see their contents.
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Exporting a CSV

It is common to export a CSV file of data you wish to save, back up, or share.
Using R we will export the following data:

Sample 1 (x): 1 2 3 4 5 6 7 8 9 10.
This example is writing to the path C:\Users\Admin\Documents; please modify the path to work on your computer.
R code

x ¼ c(1:10);
write.csv(x,”C:\Users\Admin\ Documents\myfile.csv”);

Results: This should have created the specified file in the specified location; you can open this file with notepad and
should see the exported data.

Example 1.8.1 (Stem-and-leaf plot) Using the following data construct a stem-and-leaf plot.
Sample X: 78 74 82 66 94 71 64 88 55 80 91 74 82 75 96 78 84 79 71 83

This assumes you’ve stored the data under variable x; please modify your code appropriately.
R code

stem(x);
Output:
The decimal point is 1 digit(s) to the right of the j
5 j 5
6 j 46
7 j 11445889
8 j 022348
9 j 146
Example 1.8.2 (Histogram) Using the following data construct a histogram.

Sample X: 25 37 20 31 31 21 12 25 36 27 38 16 40 32 33 24 39 26 27 19
This assumes you’ve stored the data into variable x; please modify your code appropriately.
R code

hist(x);
Output:

0.00

10 15 20 25
x

30 35 40

0.01

0.02

0.03

D
en

si
ty

0.04

0.05
Histogram of x

Example 1.8.3 (Descriptive Statistics) Using the following data generate descriptive statistics.
Sample X: 5 7 229 453 12 14 18 14 18 14 14 483 22 21 25 23 24 34 37 34 49 64 47 67 69 192 125

This assumes you’ve stored the data into variable x; please modify your code appropriately.
R code
summary(x);
sd(x); Standard deviation

length(x); Length of variable
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Output:
Min 1st Qu. Median Mean 3rd Qu. Max.
5.00 18.00 34.00 83.28 67.00 483.00

128.3649 Standard deviation

25 Length of variable

Example 1.8.4 (Box Plot) Using the following data create a box plot.
Sample X: 870 922 1146 1120 1079 905 888 865 1112 966 1150 977 958 1088 1139 1055 1082

1053 1048 1118 866 996 1102 1028 1130 1002 990 1052 1116 1109
This assumes you’ve stored the data into variable x; please adjust your code appropriately.
R code

boxplot(x);
Output:

1100

1000

950

900

Example 1.8.5 (Test of Randomness) Using the following data, test whether or not the sample is random (details of
this test are left undisclosed):

Sample X: 24 31 28 43 28 56 48 39 52 32 38 49 51 49 62 33 41 58 63 56
This test is known as “Runs test” and assumes you’ve stored the data into variable x; please modify your code

appropriately. Additionally you will need to install the “lawstat” package to use this test.
R code
install.packages(’lawstat’); Installs and loads the required package

library(’lawstat’);
runs.test(x);
Output:

Runs Test - Two sided
data: x
Standardized Runs Statistic ¼ -1.3784, p-value ¼ 0.1681
Using the methods of Chapter 6, we will see that since the P-value is not small, we cannot reject the hypothesis that the

sample is random.

1.8.2 Minitab examples

A good place to get help on Minitab is http://www.minitab.com/resources/. There are many helpful sites available on
Minitab procedures; for example, Minitab student tutorials can be obtained from http://www.minitab.com/resources/
tutorials/. Here we illustrate only some of the basic uses of Minitab. In Minitab, we can enter the data in the spread-
sheet and use the Windows pull-down menus, or we can directly enter the data and commands. We will mostly give
procedures for the pull-down menus only. It is up to the user’s taste to choose among these procedures. It should be noted
that with different versions of Minitab, there will be some differences in the pull-down menu options. It is better to consult
the Help menu for the actual procedure. Most of the time, we will not give the output.
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EXAMPLE 1.8.1 (Stem-and-Leaf)

For the following data, construct a stem-and-leaf display using Minitab:

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution

For the pull-down menu, first enter the data in column 1. Then follow the following sequence. The boldface represents the

actions.

Graph > Character Graphs > Stem-and-Leaf.

In Variables: type C1 and click OK.

EXAMPLE 1.8.2 (Histogram)

For the following data, construct a histogram:

25 37 20 31 31 21 12 25 36 27

38 16 40 32 33 24 39 26 27 19

Solution

Enter the data in C1, then use the following sequence.

Graph > Histogram . > in Graph variables: type C1 > OK.

If we want to change the number of intervals, after entering Graph variables, click Options . and click Number of intervals

and enter the desired number, then OK.

EXAMPLE 1.8.3 (Descriptive Statistics)

In this example, we will describe how to obtain basic statistics such as mean, median, and standard deviation for the following

data:

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125

Solution

Enter the data in C1. Then use

Stat > Basic Statistics > Display Descriptive Statistics . > in Variables: type C1 > click OK.

EXAMPLE 1.8.4 (Sorting and Box Plot)

For the following data, first sort in the increasing order and then construct a box plot to check for outliers.

870 922 1146 1120 1079 905 888 865 1112 966

1150 977 958 1088 1139 1055 1082 1053 1048 1118

866 996 1102 1028 1130 1002 990 1052 1116 1109
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Solution

After entering the data in C1, we can sort the data in increasing order as follows:

Manip > Sort . > in Sort column(s): type C1 > in Store sorted column(s) in: type C2 > in Sorted by column: type C1 > OK.

If we want to draw a box plot for the data, do the following:

Graph > Box plot . > in Graph variables: under Y, type C1 > OK.

EXAMPLE 1.8.5 (Test of Randomness)

Almost all of the analyses in this book assume that the sample is random. How can we verify whether the sample is really random?

Project 12B explains a procedure called run test. Without going into details, this test is simple with Minitab. All we have to do is

enter the data in C1. Then click.

Stat > Nonparametric > Runs Test . > in variables: enter C1 > OK.

For instance, if we have the following data:

24 31 28 43 28 56 48 39 52 32

38 49 51 49 62 33 41 58 63 56

we will get following output:

Run Test

C1

K ¼ 44.0500

The observed number of runs ¼ 14.

The expected number of runs ¼ 11.0000.

10 Observations above K 10 below.

*N Small – The following approximation may be invalid.

The test is significant at 0.1681.

Cannot reject at alpha ¼ 0.05.

“Cannot reject” in the output means that it is reasonable to assume that the sample is random. For any data, it is always

desirable to do a run test to determine the randomness.

1.8.3 SPSS examples

For SPSS, we will give only Windows commands. For all the pull-down menus, the sequence will be separated by the >
symbol.

EXAMPLE 1.8.6

Redo Example 1.8.1 with SPSS.

Solution

After entering the data in C1:

Analyze > Descriptive Statistics > Explore . >

At the Explore window select the variable and move to Dependent List; then click Plots ., select Stem-and-Leaf, click

Continue, and click OK at the Explore Window.

We will get the output with a few other things, including box plots along with the stem-and-leaf display, which we will not

show here.

EXAMPLE 1.8.7

Redo Example 1.8.2 with SPSS.

Solution

After entering the data:

Graphs > Histogram . >

At the Histogram window select the variable and move to Variable, and click OK.

We will get the histogram, which we will not display here.
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EXAMPLE 1.8.8

Redo Example 1.8.3 with SPSS.

Solution

Enter the data, then:

Analyze > Descriptive Statistics > Frequencies . >

At the Frequencies window select the variable(s); then open the Statistics window and check whichever boxes you desire

under Percentile, Dispersion, Central Tendency, and Distribution > continue >OK.

For example, if you select Mean, Median, Mode, Standard Deviation, and Variance, we will get the following output and

more:

Statistics

VAR00001

N Valid 25

Missing 0

Mean 83.2800

Median 34.0000

Mode 14.00

Std. Deviation 128.36488

Variance 16,477.54333

1.8.4 SAS examples

We will now give some SAS procedures describing the numerical measures of a single variable. PROC UNIVARIATE
will give mean, median, mode, standard deviation, skewness, kurtosis, etc. If we do not need median, mode, and so on, we
could just as well use PROC MEANS in lieu of PROC UNIVARIATE. We can use the following general format in
writing SAS programs with appropriate problem-specific modifications. There are many good online references as well as
books available for SAS procedures. To get support on SAS, including many example codes, refer to the SAS support
website: http://support.sas.com/. Another helpful site can be found at http://www.ats.ucla.edu/stat/sas/. There are many
other sites that may suit your particular application.

General format of an SAS program

DATA give a name to the data set;

INPUT here we put variable names and column locations, if

there are more than one variable;

CARDS; (also we can use DATALINES)

Enter the data here;

TITLE “here we include the title of our analysis”;

PROC PRINT;

PROC name of procedure (such as PROC UNIVARIATE)

goes here;

Options that we may want to include (such as the variables

to be used) go here;

RUN;

After writing an SAS program, to execute it we can go to the menu bar and select run > submit, or click the “running
man” icon. On execution, SAS will output the results to the Output window. All the steps used including time of execution
and any error messages will be given in the Log window.

In order to make the SAS outputs more manageable, we can use the following SAS command at the beginning of an
SAS program:

options ls ¼ 80 ps ¼ 50;
ls stands for line size, and this sets each line to be 80 characters wide. ps stands for page size and allows 50 lines on

each page. This reduces the number of unnecessary page breaks. In order to avoid date and number, we can use the option
commands:

Options nodate nonumber;
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EXAMPLE 1.8.9

For the data of Example 1.8.3, use PROC UNIVARIATE to summarize the data.

Solution

In the program editor window, type the following if you are entering the data directly. If you are using the data stored in a file, the

comment line (with *) should be used instead of the input and data lines.

Options nodate nonumber;

DATA e�9;

INPUT e�9 @@;

DATALINES;

5 7 229 453 12 14 18 14 14 483.

22 21 25 23 24 34 37 34 49 64.

47 67 69 192 125;

PROC UNIVARIATE;

TITLE;

RUN;

In this case we will get the following output:
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We can observe from the previous output that PROC UNIVARIATE gives much information about the data, such as mean,

standard deviation, and quartiles. If we do not want all these details, we could use the PROC MEANS command. In the previous

code, if we replace PROC UNIVARIATE by the PROC MEANS statement, we will get the following:

The MEANS Procedure

Analysis Variable : ex9

N Mean Std Dev Minimum Maximum

25 83 2800000 128.3648836 5.0000000 483.0000000

The output is greatly simplified.

If we use PROC UNIVARIATE PLOT NORMAL, this option will produce three plots: stem-and-leaf, box plot, and normal

probability plot (this will be discussed later in the text). In order to obtain bar graphs at the midpoints of the class intervals, use the

following commands:

PROC CHART DATA [ e39;

VBAR e39;

If we want to create a frequency table, use the following:

PROC FREQ;

table ex9;

title “Frequency tabulation”;

Every PROC or procedure has its own name and options. We will use different PROCs as we need them. Always
remember to enclose titles in single quotes. There are various other actions that we can perform for the data analysis using
SAS. It is beyond the scope of this book to explain general and efficient SAS codes. For details, we refer to books
dedicated to SAS, such as the book by Ronald P. Cody and Jeffrey K. Smith, Applied Statistics and the SAS Programming
Language, Fifth Edition, Prentice Hall, 2006. There are many websites that give SAS codes. One example with references
for many aspects of SAS, including many codes, can be found at http://www.sas.com/service/library/onlinedoc/code.
samples.html.

Exercises 1.8

1.8.1. The following data represent the lengths (to the nearest whole millimeter) of 80 shoots from seeds of a certain type
planted at the same time.

75 72 76 76 72 74 71 75 77 72
74 71 76 76 76 72 71 73 73 71
72 72 75 70 74 74 78 74 76 79
75 76 73 73 71 72 79 74 77 72
76 70 72 75 78 72 69 75 72 71
77 79 76 73 75 73 72 75 74 78
73 77 73 77 70 74 66 74 73 77
75 79 75 70 72 73 80 73 78 75

Using one of the software packages (R, Minitab, SPSS, or SAS):
(a) Represent the data in a histogram.
(b) Find the summary statistics such as mean, median, variance, and standard deviation.
(c) Draw box plots and identify any outliers.

1.8.2. On a particular day, when asked, “How many minutes did you exercise today?” the following were the responses of
30 randomly selected people:

15 30 25 10 30 15 10 45 20 22
18 0 45 12 15 10 17 30 30 15
10 30 20 8 18 30 27 33 15 0

Using one of the software packages (R, Minitab, SPSS, or SAS):
(a) Represent the data in a histogram.
(b) Find the summary statistics such as mean, median, variance, and standard deviation.
(c) Draw box plots and identify any outliers.
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Projects for chapter 1

1A World Wide Web and data collection

Statistical Abstracts of the United States is a rich source of statistical data (http://www.census.gov/prod/www/statistical-
abstract-us.html). Pick any category of interest to you and obtain data (say, Income, Expenditures, and Wealth). Repre-
sent a section of the data graphically. Find mean, median, and standard deviation. Identify any outliers. There are many
other sites, such as http://lib.stat.cmu.edu/datasets/ and http://it.stlawu.edu/wrlock/datasurf.html, that we can use for
obtaining real data sets.

1B Preparing a list of useful Internet sites

Prepare a list of Internet references for various aspects of statistical study.

1C Dot plots and descriptive statistics

From the local advertisements of apartments for rent, randomly pick 50 monthly rents for two-bedroom apartments. For
these data, first draw a dot plot and then obtain descriptive statistics (use R, or any other statistical software).

1D Importance of statistics in our society

Write a short report on the importance of statistics in our modern-day society. Give different examples to illustrate your
points. One interesting project will be to study the role of the Internet of Things (IoT), a vast network of smart objects that
work together in collecting and analyzing data and autonomously performing actions.

1E Uses and misuses of statistics

“There are three types of liesdlies, damn lies, and statistics”eBenjamin Disraeli.
Write a short report on uses and misuses of statistics.
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Objective

In this chapter we will review some results from probability theory that are essential for the development of the sta-
tistical results of this book.

Andrei Nikolaevich Kolmogorov
(Source: http://www.scholarpedia.org/article/Andrey_Nikolaevich_Kolmogorov).

Andrei Kolmogorov (1903e87) laid the mathematical foundations of probability theory and the theory of
randomness. His monograph Grundbegriffe der Wahrscheinlichkeitsrechnung, published in 1933, introduced proba-
bility theory in a rigorous way from fundamental axioms. He later used probability theory to study the motion of the
planets and the turbulent flow of air from a jet engine. He also made important contributions to stochastic processes,
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information theory, statistical mechanics, and nonlinear dynamics. Kolmogorov had numerous interests outside
mathematics. In particular, he was interested in the form and structure of the poetry of the Russian author Aleksandr
Pushkin.

2.1 Introduction

Probability theory provides a mathematical model for the study of randomness and uncertainty. The concept of probability
occupies an important role in the decision-making process, whether the problem is one faced in business, engineering,
government, sciences, or just in one’s own everyday life. Most decisions are made in the face of uncertainty. The
mathematical models of probability theory enable us to make predictions about certain mass phenomena from the
necessarily incomplete information derived from sampling techniques. It is probability theory that enables one to proceed
from descriptive statistics to inferential statistics. In fact, probability theory is the most important tool in statistical
inference.

The origin of probability theory can be traced to modeling of games of chances such as dealing from a deck of cards or
spinning a roulette wheel. The earliest results on probability arose from the collaboration of the eminent mathematicians
Blaise Pascal and Pierre de Fermat and a gambler, Chevalier de Méré. They were interested in what seemed to be con-
tradictions between mathematical calculations and actual games of chance, such as throwing dice, tossing coin, or spinning
a roulette wheel. For example, in repeated throws of a die, it was observed that each number, 1 to 6, appeared with a
frequency of approximately 1/6. However, if two dice are rolled, the sum of numbers showing on two dice, that is, 2 to 12,
did not appear equally often. It was then recognized that, as the number of throws increased, the frequency of these
possible results could be predicted by following some simple rules. Similar basic experiments were conducted using other
games of chance, which resulted in the establishment of various basic rules of probability. Probability theory was
developed solely to be applied to games of chance until the 18th century, when Pierre Laplace and Karl F. Gauss applied
the basic probabilistic rules to other physical problems. Modern probability theory owes much to the 1933 publication
Foundations of Theory of Probability by the Russian mathematician Andrei N. Kolmogorov. He developed the probability
theory from an axiomatic point of view. In the 21st century probability is used in many real-life applications such as to
control the flow of traffic through a highway system, or a computer network, to find the genetic makeup of individuals or
populations, spread of diseases, or spread of information in a social network, etc. Governments routinely apply proba-
bilistic methods in environmental regulations, and stock markets are perhaps the largest casinos in the world, and cannot
run without probability theory. Our objective in this chapter is to provide only a brief review of various definitions and
facts from probability that are needed elsewhere in the text. Proofs are omitted in most cases. Many books are devoted
solely to the study of probability theory and we refer to them for further details and deeper understanding.

2.2 Random events and probability

Any process whose outcome is not known in advance but is random is termed an experiment. The term experiment is used
here in a wider sense than the usual notion of a controlled laboratory testing situation. Thus, an experiment may include
observing whether a fuse is defective or not, or the duration of time from start to end of rain in a particular place. Assume
that the experiment can be repeated any number of times under identical conditions. Each repetition is called a trial. A
(random) experiment satisfies the following three conditions: (1) the set of all possible outcomes is known in advance in
each trial; (2) in any particular trial, it is not known which particular outcome will happen; and (3) the experiment can be
repeated under identical conditions. We will now summarize some notations and concepts for our study of probability.

Basic definitions

1. The sample space associated with an experiment is the set

consisting of all possible outcomes and is called the sure

event in the experiment. A sample space is also referred to

as a probability space. A sample space will be denoted

by S.

2. An outcome in S is also called a sample point. An event A

is a subset of outcomes in S, that is, A 3 S. We say that an

event A occurs if the outcome of the experiment is in A.

3. The null subset f of S is called an impossible event.

4. The event A W B consists of all outcomes that are in A or in

B or in both.

5. The event A X B consists of all outcomes that are both in A

and B.

6. The event Ac (the complement of A in S) consists of all

outcomes not in A, but in S.
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Using these concepts, we can define the following. All events are considered to be subsets of S. For some more
concepts from set theory, we refer to Appendix A1.

Definition 2.2.1 Two events A and B are said to be mutually exclusive or disjoint if A X B ¼ f. Mutually exclusive events
cannot happen together.

The mathematical definition of probability has changed from its earliest formulation as a measure of belief to the
modern approach of defining through the axioms. We shall discuss four definitions of probability. We now give an
informal definition of probability.

Informal definition of probability

Definition 2.2.2The probability of an event is a measure

(number) of the chance with which we can expect the event to

occur. We assign a number between 0 and 1 inclusive to the

probability of an event. A probability of 1 means that we are

100% sure of the occurrence of an event, and a probability of

0 means that we are 100% sure of the nonoccurrence of the

event. The probability of any event A in the sample space S is

denoted by P(A).

From this definition, we can see that P(S) ¼ 1. The earliest approach to measuring uncertainty (in chance events) is the
classical probability concept, which applies when all possible outcomes are equally likely or when the probabilities of
outcomes are known.

Classical definition of probability

Definition 2.2.3 If there are n equally likely possibilities, of

which one must occur, and m of these are regarded as
favorable to an event, or as “success,” then the probability of

the event or a “success” is given by m/n.

Now we give steps that can be used to compute the probabilities of events using this classical approach.

Method of computing probability by the classical approach

A. When all outcomes are equally likely

1. Count the number of outcomes in the sample space; say

this is n.

2. Count the number of outcomes in the event of interest,

A, and say this is m.

3. P(A) ¼ m/n.

B. When all outcomes are not equally likely

1. Let u1;u2; :::;un be the outcomes of the sample space

S. Let PðfuigÞ ¼ pi ; i ¼ 1;2; :::; n. In this case, the

probability of each outcome, pi, is assumed to be

known.

2. List all the outcomes in the event A, say, ui ;uj ; :::;um.

3. P ðAÞ ¼ P ðfuigÞ þ PðfujgÞ þ ::: þ PðfumgÞ ¼
pi þ pj þ ::: þ pm, the sum of the probabilities of the

outcomes in A.

EXAMPLE 2.2.1

A balanced die (with all outcomes equally likely) is rolled. Let A be the event that an even number occurs. Then there are three

favorable outcomes (2, 4, 6) in A, and the sample space has six elements, (1, 2, 3, 4, 5, 6). Hence, P(A) ¼ 3/6 ¼ 1/2.

EXAMPLE 2.2.2

Suppose we toss two coins. Assume that all the outcomes are equally likely (fair coins).

(a) What is the sample space?
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(b) Let A be the event that at least one of the coins shows up heads. Find P(A).

(c) What will be the sample space if we know that at least one of the coins showed up heads?

Solution

(a) The sample space consists of four outcomes, namely S ¼ {(H, H), (H, T), (T, H), (T, T)}.

(b) The event A has three outcomes, (H, H), (H, T), and (T, H). Therefore P(A) ¼ 3/4.

(c) Since we know that at least one of the coins showed up heads, the possible outcomes are (H, H), (H, T), and (T, H). The

sample space now has only three outcomes {(H, H), (H, T), (T, H)}.

The classical probability concept is not applicable in situations where the various possibilities cannot be regarded as
equally likely. Suppose we are interested in whether or not it will rain on a given day with known meteorological con-
ditions. Clearly, we cannot assume that the events of rain or no rain are equally likely. In such cases, one could use the so-
called frequency interpretation of probability. The frequentistic view is a natural extension of the classical view of
probability. This definition was developed as the result of work by R. von Mises in 1936.

Frequency definition of probability

Definition 2.2.4 The probability of an outcome (event) is the

proportion of times the outcome (event) would occur in a long
run of repeated experiments.

For example, to find the probability of heads, H, using a biased coin, we would imagine the coin is repeatedly tossed.
Let n(H) be the number of times H appears in n trials. Then the probability of heads is defined as P(H) ¼ limn/N(n(H)/n).

The frequency interpretation of probability is often useful. However, it is not complete. Because of the condition of
repetition under identical circumstances, the frequency definition of probability is not applicable to every event. For a more
complete picture, it makes sense to develop the probability theory through axioms. Now we will define probabilities
axiomatically. This definition results from the 1933 studies of A. N. Kolmogorov.

Axiomatic definition of probability

Definition 2.2.5 Let S be a sample space of an experiment.

Probability P($) is a real-valued function that assigns to each

event A in the sample space S a number P(A), called the

probability of A, with the following conditions satisfied:

1. It is nonnegative, P(A) � 0.

2. It is unity for a certain event. That is, P(S) ¼ 1.

3. It is additive over the union of an infinite number of

pairwise disjoint events, that is, if A1, A2,. form a sequence

of pairwise mutually exclusive events (that is, Ai X Aj ¼ f,

for isj) in S, then P
�
WN

i¼1Ai

� ¼ PN
i¼ 1 PðAiÞ.

From the previous three axioms, it can be shown that P(f) ¼ 0, and if A1, A2, . form a sequence of pairwise mutually
exclusive events in S, then P

�
Wn

i¼1Ai

� ¼ Pn
i¼ 1 PðAiÞ for a finite n. Also, we could verify that 0 � PðAÞ � 1, for any

event A. It is important to observe that the axioms do not tell us how to assign probabilities to events.

EXAMPLE 2.2.3

A die is loaded (not all outcomes are equally likely) such that the probability that the number i shows up is Ki, i ¼ 1; 2; :::;6,

where K is a constant. Find

(a) the value of K.

(b) the probability that a number greater than 3 shows up.

Solution

(a) Here the sample space S has six outcomes {1, 2, ., 6}. Hence, using axioms (2) and (3) we have

Pðf1gÞþ P ðf2gÞ þ.þ P ðf6gÞ ¼ 1:
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Since P(i) ¼ Ki, we have

ðKÞð1Þ þ ðK Þð2Þ þ.þ ðK Þð6Þ ¼ 1 or

ðKÞð1þ 2þ.þ 6Þ ¼ ðK Þð21Þ ¼ 1:

Hence, K ¼ 1/21.

The probability of, say, the number 5 showing up is 5/21.

(b) Let A be the event that a number greater than 3 shows up. Then the outcomes in A are {4, 5, 6} and they are mutually

exclusive. Therefore,

PðAÞ ¼ P ðf4gÞ þ P ðf5gÞ þ P ðf6gÞ

¼ 4

21
þ 5

21
þ 6

21
¼ 15

21
:

The following properties help us in going beyond the axioms to actually compute various probabilities.

Some basic properties of probability

For two events A and B in S, we have the following:

1. P(Ac) ¼ 1 � P(A), where Ac is the complement of the set A

in S.

2. If A 3 B, then P(A) � P(B).

3. P(A W B) ¼ P(A) þ P(B) � P(A X B).

In particular, if A X B ¼ f, then P(A W B) ¼ P(A) þ P(B).

EXAMPLE 2.2.4

In a large university, the freshman profile for 1 year’s fall admission says that 40% of the students were in the top 10% of their high

school class, and that 65% are white, of whom 25% were in the top 10% of their high school class. What is the probability that a

freshman student selected randomly from this class either was in the top 10% of his or her high school class or is white?

Solution

Let E1 be the event that a person chosen at random was in the top 10% of his or her high school class, and let E2 be the event that

the student is white. We are given P(E1) ¼ 0.40, P(E2) ¼ 0.65, and P(E1 X E2) ¼ 0.25. Then the event that the student chosen is

white or was in the top 10% of his or her high school class is represented by E1 W E2. Thus

PðE1WE2Þ ¼ P ðE1Þ þ P ðE2Þ � PðE1XE2Þ

¼ 0:40þ 0:65� 0:25 ¼ 0:80:

EXAMPLE 2.2.5

A subway station in a large city has 12 gates, six inbound (entering into the subway station) and six outbound (exiting the subway

station). The number of gates open in each direction is observed at a particular time of day. Assume that each outcome of the

sample space is equally likely.

(a) Define a suitable sample space.

(b) What is the probability that at most one gate is open in each direction?

(c) What is the probability that at least one gate is open in each direction?

(d) What is the probability that the number of gates open is the same in both directions?

(e) What is the probability of the event that the total number of gates open is six?

Solution

(a) We define the sample space to be the set of ordered pairs (x, y), where x is the number of inbound gates open and y is the

number of outbound gates open. For example, (4, 5)means four gates for inbound and five gates for outbound are open; (1, 0)

means one gate is open in the inbound direction and no gate is open in the outbound direction. Fig. 2.1 represents the

situation
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s ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

ð0;0Þ ð0;1Þ ð0; 2Þ ð0; 3Þ ð0; 4Þ ð0;5Þ ð0;6Þ
ð1;0Þ ð1;1Þ ð1; 2Þ ð1; 3Þ ð1; 4Þ ð1;5Þ ð1;6Þ
ð2;0Þ ð2;1Þ ð2; 2Þ ð2; 3Þ ð2; 4Þ ð2;5Þ ð2;6Þ
ð3;0Þ ð3;1Þ ð3; 2Þ ð3; 3Þ ð3; 4Þ ð3;5Þ ð3;6Þ
ð4;0Þ ð4;1Þ ð4; 2Þ ð4; 3Þ ð4; 4Þ ð4;5Þ ð4;6Þ
ð5;0Þ ð5;1Þ ð5; 2Þ ð5; 3Þ ð5; 4Þ ð5;5Þ ð5;6Þ
ð6;0Þ ð6;1Þ ð6; 2Þ ð6; 3Þ ð6; 4Þ ð6;5Þ ð6;6Þ

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

We see that the sample space has 49 possible outcomes. We assume that these outcomes are equally likely.

(b) Suppose that A is the event that at most one gate is open in each direction. Then

A ¼ fð0;0Þ; ð0;1Þ; ð1; 0Þ; ð1; 1Þg:
Hence,

P ðAÞ ¼ 4

49
¼ 0:082:

(c) Let B be the event that at least one gate is open in each direction. Then B contains 36 elements. Hence,

PðBÞ ¼ 36

49
¼ 0:7347:

(d) Let

C ¼ event that number of open gates is the same both ways

¼ fð0;0Þ; ð1; 1Þ; ð2; 2Þ; ð3;3Þ; ð4;4Þ; ð5;5Þ; ð6;6Þg:
Then P ðCÞ ¼ 7

49 ¼ 0:1428:

(e) Let

D ¼ the event that the total number of gates open is six

¼ fð3; 3Þ; ð2; 4Þ; ð4;2Þ; ð5;1Þ; ð1;5Þ; ð6;0Þ; ð0; 6Þg:
Hence, P(D) ¼ 7/49.

1
2
3
4
5
6

1
2
3
4
5
6

FIGURE 2.1 Inbound and outbound traffic.
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Exercises 2.2

2.2.1. Consider an experiment in which each of three cars exiting from a university main entrance turns right (R) or left
(L). Assume that a car will turn right or left with equal probability of 1/2.
(a) What is the sample space S?
(b) What is the probability that at least one car will turn left?
(c) What is the probability that at most one car will turn left?
(d) What is the probability that exactly two cars will turn left?
(e) What is the probability that all three cars will turn in the same direction?

2.2.2. A coin is tossed three times. Define an appropriate sample space for the following cases:
(a) The outcome of each individual toss is of interest.
(b) Head appears for the first time.

2.2.3. A pair of six-sided balanced dice are rolled. What are the probabilities of getting the sum of the face values as
follows?
(a) 8
(b) 6 or 9
(c) 3, 8, or 12
(d) Not an even number

2.2.4. An experiment has four possible outcomes A, B, C, and D. Check whether the following assignments of proba-
bility are possible:
(a) P(A) ¼ 0.20, P(B) ¼ 0.40, P(C) ¼ 0.09, P(D) ¼ 0.31.
(b) P(A) ¼ 0.41, P(B) ¼ 0.17, P(C) ¼ 0.12, P(D) ¼ 0.36.
(c) P(A) ¼ 1/8, P(B) ¼ 1/2, P(C) ¼ 1/4, P(D) ¼ 1/8.

2.2.5. Suppose we toss two coins and suppose that each of the four points in the sample space S ¼ {(H, H), (H, T),
(T, H), (T, T)} is equally likely. Let the events be A ¼ {(H, H), (H, T)} and B ¼ {(H, H), (T, H)}. Find
PðAWBÞ.

2.2.6. An urn contains 12 white, 5 yellow, and 13 black marbles. A marble is chosen at random from the urn, and it is
noted that it is not one of the black marbles. What is the sample space in view of this knowledge? What is the
probability that it is yellow?

2.2.7. Two fair dice are rolled and face values are noted.
(a) What is the probability space?
(b) What is the probability that the sum of the numbers showing is 7?
(c) What is the probability that both dice show number 2?

2.2.8. In a city, 65% of people drink coffee, 50% drink tea, and 25% both. What is the probability that a person chosen at
random will drink at least one of coffee or tea? Will drink neither?

2.2.9. In a fruit basket, there are five mangos, of which two are spoiled. If we were to randomly pick two mangos:
(a) What would be our sample space?
(b) What is the probability that both mangos are good?
(c) What is the probability that no more than one mango is spoiled?

2.2.10. In a box there are three slips of paper, with one of the letters A, C, T written on each slip. If the slips are drawn out
of the box one at a time, what is the probability of obtaining the word CAT?

2.2.11. Suppose that the genetic makeup of the population of a city is as in Table 2.1.
An individual is considered to have the dominant characteristic if the person has the AA or Aa genetic trait. If we
were to choose an individual from this city at random, what is the probability that this person has the dominant
characteristic?

2.2.12. Using the axioms of probability, show that P(f) ¼ 0, and if A1, ., An are pairwise mutually exclusive, then

P

�
W
n

i¼ 1
Ai

�
¼ Pn

i¼ 1
PðAiÞ:

2.2.13. Using the axioms of probability, prove the following:
(A) If A 3 B, then P(A) � P(B).
(B) PðAWBÞ ¼ PðAÞ þ PðBÞ � PðAXBÞ. In particular, if A X B ¼ f, then PðAWBÞ ¼ PðAÞ þ PðBÞ.
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2.2.14. Using the axioms of probability, show that

PðAWBWCÞ ¼ PðAÞ þ PðBÞ þ PðCÞ � PðAXBÞ � PðAXCÞ

� PðBXCÞ þ PðAXBXCÞ:
2.2.15. Prove that

(a) P(A X B) � P(A) þ P(B) e 1

(b) P

�
W
2

i¼ 1
Ai

�
� P2

i¼ 1
PðAiÞ:

2.2.16. If A and B are mutually exclusive events, P(A) ¼ 0.17 and P(B) ¼ 0.46, find
(a) P(A W B)
(b) P(Ac)
(c) P(Ac W Bc)
(d) P((A X (B)c)
(e) P(Ac X Bc)

2.2.17. If P(A) ¼ 0.24, P(B) ¼ 0.67, and P(A X (B) ¼ 0.09, find
(a) P(A W (B)
(b) P((A W (B)c)
(c) P(Ac W Bc)
(d) P((A X (B)c)
(e) P(Ac X Bc)

2.2.18. In a series of seven games, the first team to win four games wins the series. If the teams are evenly matched, what
is the probability that the team that wins the first game will win the series?

2.2.19. In a survey, 1000 adults were asked if they would approve an increase in tax if the revenues went to build a foot-
ball stadium. It was also noted whether the person lived in a city (C), suburb (S), or rural area (R), of the county.
The results are summarized in Table 2.2.
Define the following events:
A: person chosen is from the city
B: person disapproves tax increase
Find the following probabilities;
(1) P(B), (2) P(Ac X B), and (3) PðAWBcÞ

2.2.20. A couple has two children. Suppose we know the elder child is a boy.
(a) Determine an appropriate sample space.
(b) Find the probability that both are boys.

TABLE 2.1 Genetic Makeup of a Population.

Genetic makeup AA Aa Aa

Probability p 2q r

TABLE 2.2 Survey Results for Opinion on a Tax Increase.

Yes (for tax increase) No (against tax increase)

C 150 250

S 250 150

R 50 150
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2.2.21. A box contains three red and two blue flies. Two flies are removed with replacement. Let A be the event that both
the flies are of the same color and B be the event that at least one of the flies is red. Find (1) P(A), (2) P(B), (3)
PðAWBÞ, and (4) P(A X B).

2.2.22. Prove that for any n,

P

�
W
n

i¼ 1
Ai

�
¼
Xn
i¼ 1

PðAiÞ �
X
i1<i2

PðAi1XAi2Þ þ/

þ ð� 1Þmþ1
X

i1<i2<.<im

PðAi1XAi2X.XAimÞ

þ/þ ð� 1Þnþ1PðA1XA2X.AnÞ:

The summation
P

i1<i2<:::<im

PðAi1XAi2X:::XAimÞ is taken over all of the

�
n

m

�
subsets of size m from the set {1, 2,

., n}, and im represents a particular subset.
2.2.23. A sequence of events {An, n � 1} is said to be an increasing sequence if A1 3 A2 3 . 3 An 3 ., whereas it

is said to be decreasing if A1IA2I:::IAnI:::. If {An, n � 1} is an increasing sequence of events, then
lim
n/N

An ¼ WN
i¼ 1 An: Similarly, if {An, n � 1} is a decreasing sequence of events, then lim

n/N
An ¼ INi¼ 1An:

Show that if {An, n � 1} is either an increasing or a decreasing sequence of events, then

lim
n/N

PðAnÞ ¼ P
�
lim
n/N

An

�

2.3 Counting techniques and calculation of probabilities

In a sample space with a large number of outcomes, determining the number of outcomes associated with the events
through direct enumeration could be tedious. In this section we develop some counting techniques and use them in
probability computations.

Multiplication principle

Theorem 2.3.1 If the experiments A1, A2, ., Am contain,

respectively, n1, n2, ., nm outcomes, such that for each

possible outcome of A1 there are n2 possible outcomes for A2,

and so on, then there are a total of n1 n2 . nm possible out-

comes for the composite experiment A1, A2, ., Am.

For m ¼ 2 and n1 ¼ 2, n2 ¼ 3, the tree diagram in Fig. 2.2 illustrates the multiplication principle. If we count the total
number of branches at the top of the tree, we get the total number of possible outcomes for the composite experiment. In
Fig. 2.2, we can see that there are a total of six branches that represent all the possible outcomes of this experiment. Three
diagrams can be utilized for counting for any finite number of composite experiments.

A

B

B1

B2

B3

A1

A2

A3

FIGURE 2.2 Tree diagram.
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EXAMPLE 2.3.1

In how many different ways can a student club at a large university with 500 members choose its president and vice president?

Solution

The president can be chosen 500 ways, and the vice president can be chosen from the remaining 499 ways. Hence, by the

multiplication principle, there are (500) (499) ¼ 249,500 ways in which the complete choice can be made.

When a random sample of size k is taken with replacement from a total of n objects, the total number of ways in which
the random sample of size k can be selected depends on the particular sampling method we employ. Here we will consider
four sampling methods: (1) sampling with replacement and the objects are ordered, (2) sampling without replacement and
the objects are ordered, (3) sampling without replacement and the objects are not ordered, and (4) sampling with
replacement and the objects are not ordered.

(I) Sampling with Replacement and the Objects Are Ordered

When a random sample of size k is taken with replacement from a total of n objects and the objects being ordered, then
there are nk possible ways of selecting k-tuples.

For example, (1) if a die is rolled four times, then the sample space will consist of 64 4-tuples. (2) If an urn contains nine
balls numbered 1 to 9, and a random sample with replacement of size k ¼ 6 is taken, then the sample space S will consist of
96 6-tuples.

(II) Sampling without Replacement and the Objects Are Ordered

The symbol n! (read n factorial) is defined as n! ¼ n(n e 1) . (2) (1). Clearly 1! ¼ 1. By definition, we take 0! ¼ 1.
If r objects are chosen from a set of n distinct objects without replacement, any particular (ordered) arrangement of

these objects is called a permutation. For example, CDAB is a permutation of the letters ABCD. The number of permu-
tations of these four letters is 4! ¼ 24, because the first position can be filled by any of the four letters, leaving only three
possibilities for the second position, two for the third position, and only one for the fourth position, yielding the number of
permutations to be 4$3$2$1 ¼ 24.

Permutation of n objects taken m at a time

Theorem 2.3.2 The number of permutations of m objects

selected from a collection of n distinct objects is nPm ¼ n!

ðn �mÞ!

¼ nðn � 1Þðn � 2Þ:::ðn �m þ 1Þ:

When a random sample of size k is taken without replacement from a total of n objects and the objects being ordered,
we will apply the permutation formula.

EXAMPLE 2.3.2

How many distinct three-digit numbers can be formed using the digits 2, 4, 6, and 8 if no digit can be repeated?

Solution

The number of distinct three-digit numbers will be the number of permutations of three numbers from the set of four numbers {2,

4, 6, 8}. Hence, the number of distinct three-digit numbers will be 4P3 ¼ 4!/1! ¼ 24.
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(III) Sampling without Replacement and the Objects Are Not Ordered
Note that in a permutation, the order in which each object is selected becomes important. When the order of arrangement is
not importantdfor example, if we do not distinguish between AB and BAdthe arrangement is called a combination. We
give the following result for number of combinations.

Number of combinations of n objects taken m at a time

Theorem 2.3.3 The number of ways in which m objects can be

selected (without replacement) from a collection of n distinct

objects is

0
B@

n

m

1
CA ¼ n!

m!ðn �mÞ!

¼ nðn � 1Þðn � 2Þ :::ðn �m þ 1Þ
m!

;

m ¼ 0; 1; 2; : : : ; n:

The symbol

�
n

m

�
is to be read as “n choose m.” When a random sample of size k is taken without replacement from a

total of n objects and the objects are not ordered, we will apply combinations formula. An R command “choose(n,m)” (like,
choose(20, 10)) will calculate combinations.

EXAMPLE 2.3.3

How many different ways can the admissions committee of a statistics department choose four foreign graduate students from 20

foreign applicants and three U.S. students from 10 U.S. applicants?

Solution

The four foreign students can be chosen in

�
20

4

�
ways, and the three U.S. students can be chosen in

�
10

3

�
ways. Now, by the

multiplication principle, the whole selection can be made in

�
20

4

��
10

3

�
¼ 581; 400 ways. “choose(20, 4)*choose(10, 3)” will

give the answer in R.

(IV) Sampling with Replacement and the Objects Are Not Ordered
In obtaining an unordered sample of size k, with replacement, from a total of n objects, ðk�1Þ replacements will be made
before sampling ceases. Thus, n is increased by ðk�1Þ so that sampling in this manner may be thought of as drawing an
unordered sample of size k from a population of size (n þ k e 1). Hence, the number of possible samples can be obtained
by using the formula �

nþ k � 1

k

�
¼ ðnþ k � 1Þ!

k!ðn� 1Þ! ; k ¼ 0; 1; 2; :.

EXAMPLE 2.3.4

An urn contains 15 balls numbered 1 to 15. If four balls are drawn at random, with replacement and without regard for order, how

many samples are possible?

Solution

Using the previous formula, the number of possible samples is�
15þ 4� 1

4

�
¼ 18!

4!14!
¼ 3060:

If we need to divide n objects into more than two groups, we can use the following result.
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Number of combinations of N objects into M classes

Theorem 2.3.4The number of ways that n objects can be

grouped into m classes with ni in the ith class, i ¼ 1, 2, m andPm
i¼ 1 ni ¼ n is given by

�
n

n1n2.nm

�
¼ n!

n1!n2!.nm!

In the foregoing theorem, the numbers

�
n

n1 n2.nm

�
are called multinomial coefficients.

We can use the previous computational technique to compute the probabilities of events of interest by using frequency
interpretation of probability. Suppose that there are a total of N possible outcomes for the experiment and let nA be the
number of outcomes favoring an event A. Then the probability of this event is P(A) ¼ nA/N. The following is a well-known
problem that is called the birthday problem.

EXAMPLE 2.3.5

In a room there are n people. What is the probability that at least two of them have a common birthday?

Solution

Disregarding the leap years, assume that every day of the year is equally likely to be a birthday. Let A be the event that there are at

least two people with a common birthday. There are 365n possible outcomes of which Ac can happen in 365 � 364 � (365

e n þ 1) ways. Because the event A can happen in many more ways, it is easier to calculate P(Ac), that is, the probability that no

two persons have the same birthday or equivalently that they all have different birthdays. To count the number of n-tuples in Ac,

because there are no common birthdays, we can use the method of choosing distinct objects without replacement for an ordered

arrangement. Thus, there are 365 possibilities to choose the first person, 364 for the second person, ., (365 e (n d 1)) pos-

sibilities for the nth person. The product of these numbers gives the total number of elements in Ac. Thus

PðAcÞ ¼ 365� 364�.� ð365� n þ 1Þ
365n

and hence,

PðAÞ ¼ 1� 365� 364�.� ð365� n þ 1Þ
365n

:

For example, if n ¼ 3, P ðAÞ ¼ 1� 365�364�363
3653 ¼ 0:0082; and if n ¼ 40,

PðAÞ ¼ 1� 365� 364�.� ð365� 40þ 1Þ
ð365Þ40 ¼ 1� 0:1087 ¼ 0:89123:

That is, there is only a 0.82% chance of having a common birthday among three persons, whereas if n ¼ 40, then P(A) ¼
0.109, that is, the chance of having a common birthday among 40 persons increases to 10.9%. Thus, as the number of people

increases, the chance of finding people with common birthdays also increases.

EXAMPLE 2.3.6

In a tank containing 10 fish, there are three yellow and seven black fish. We select three fish at random.

(a) What is the probability that exactly one yellow fish gets selected?

(b) What is the probability that at most one yellow fish gets selected?

(c) What is the probability that at least one yellow fish gets selected?

Solution

Let A be the event that exactly one yellow fish gets selected, and B be the event that at most one yellow fish gets selected. There

are

�
10

3

�
¼ 120 ways to select three fishes from 10.
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(a) There are

�
3

1

�
¼ 3 ways to select a yellow fish and

�
7

2

�
¼ 21 ways to select two black fishes. By multiplication rule, the

probability of selecting exactly one yellow fish is

�
3

1

��
7

2

�
�
10

3

� ¼ 3ð21Þ
120

¼ 0:525:

(b) The probability that at most one yellow fish gets selected is the same as the probability of selecting none or one, which is

�
3

1

��
7

2

�
�
10

3

� þ

�
3

0

��
7

3

�
�
10

3

� ¼ 0:525þ 0:292 ¼ 0:817:

(c) The probability that at least one yellow fish gets selected is the same as 1 e P(none), which is 1 e 0.292 ¼ 0.708.

EXAMPLE 2.3.7

Refer to Example 2.3.3. Suppose that the admission committee decides to randomly choose seven graduate students from a pool

of 30 applicants, of whom 20 are foreign and 10 are U.S. applicants. What is the probability that the chosen seven will have four

foreign students and three U.S. students?

Solution

As in Example 2.3.3, the number of ways of selecting four foreign and three U.S. students is�
20

4

��
10

3

�
¼ 581; 400:

The number of ways of selecting seven applicants out of 30 is�
30

7

�
¼ 2; 035;800:

Hence, the probability that a randomly selected group of seven will consist of four foreign and three U.S. students is�
20

4

��
10

3

�
�
30

7

� ¼ 581;400

2; 035;800
¼ 0:2856:

Exercises 2.3

2.3.1. Determine the following:

(i)

�
10

2

�
, (ii)

�
10

0

�
, (iii)

�
10

9

�
, (iv)

�
10

2

��
10

3

�
, and (v)

�
10

2 3 5

�
.

2.3.2. A game in a state lottery selects four numbers from a set of numbers, {0,1,2,3,4,5,6,7,8,9}, with no number being
repeated. How many possible groups of four numbers are possible?

2.3.3. A 10-bit binary word is a sequence of 10 digits, of which each may be either a 1 or a 0. How many 10-bit words
are there?

2.3.4. Insulin, a peptide hormone built from 51 amino acid residues, is one of the smallest proteins known (note that
proteins are made up of chains of amino acids) with a molecular weight of 5808 Da. Twenty amino acids are
encoded by the standard genetic code, that is, proteins are built from a basic set of 20 amino acids. How
many possible proteins of length 51 can be made with 20 amino acids for each position in the protein?

2.3.5. An examination is designed where the students are required to answer any 20 questions from a group of 25 ques-
tions. How many ways can a student choose the 20 questions?
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2.3.6. How many different six-place license plates are possible if the first three places and the last place are to be occu-
pied by letters and the fourth and fifth places are to be occupied by numbers?

2.3.7. In how many different ways can 15 tickets to a football game be distributed among a class of 30 students if each
student gets at most one ticket?

2.3.8. How many different four-letter English words (with or without meaning) can be written using distinct letters from
the alphabet?

2.3.9. DNA (deoxyribonucleic acid) is made from a sequence of four nucleotides (A, T, G, or C). Suppose a region of
DNA is 40 nucleotides long. How many possible nucleotide sequences are there in this region of DNA?

2.3.10. Show that

(a)
�
n

0

�
¼
�
n

n

�
¼ 1:

(b)
�

n

m

�
¼
�

n� 1

m� 1

�
þ
�
n� 1

m

�
; 1 � m � n:

(c)
�

n

m

�
¼
�

n

n� m

�
.

2.3.11. A lot of 50 electrical components numbered 1 to 50 is drawn at random, one by one, and is divided among five
customers.
(a) Suppose that it is known that components 3, 18, 12, 26, and 46 are defective. What is the probability that each

customer will receive one defective component?
(b) What is the probability that one customer will have drawn five defective components?
(c) What is the probability that two customers will receive two defective components each, two none and the

other one?
2.3.12. A package of 15 apples contains two defective apples. Four apples are selected at random.

(a) Find the probability that none of the selected apples is defective.
(b) Find the probability that at least one of the selected apples is defective.

2.3.13. A homeowner wants to repaint her home and install new carpets (no store where she live sells both paint and
carpet). She plans to get the services from the stores where she buys the paint and carpet. Suppose there are
12 paint stores with painting services available and 15 carpet stores with installation services available in that
city. In how many ways can she choose these two stores?

2.3.14. From an urn containing 15 white, seven black, and eight yellow balls a sample of three balls is drawn at random.
Find the probability that
(a) All three balls are yellow.
(b) All three balls are of the same color.
(c) All three balls are of different colors.

2.3.15. Refer to Example 2.3.5. Compute (A) for (a) n ¼ 20; (b) n ¼ 30. Estimate n if you wish to have an approximately
50% chance of finding someone who shares your birthday.

2.3.16. A box of manufactured items contains 12 items, of which four are defective. If three items are drawn at random
without replacement, what is the probability that
(a) The first one is defective and the rest are good?
(b) Exactly one of the three is defective?

2.3.17. Five white and four black balls are arranged in a row. What is the probability that the end balls are of different
colors?

2.3.18. Three numbers are chosen at random from the numbers {1, 2, ., 9}. What is the probability that the middle num-
ber is 5?

2.3.19. In each of the following, find the number of elements in the resulting sample space.
(a) If a die is rolled five times, how many elements are there in the sample space?
(b) If 13 cards are selected from a deck of 52 playing cards without replacement, and the order in which the cards

are drawn is important, how many elements are there in the sample space?
(c) Four players in a game of bridge are dealt 13 cards each from an ordinary deck of 52 cards. What is the total

number of ways in which we can deal the 13 cards to the four players?
(d) If a football squad consists of 72 players, how many selections of 11-man teams are possible?

2.3.20. In Florida Lotto, an urn contains balls numbered 1 to 53. From this urn, a machine chooses six balls at random and
without replacement. The order in which the balls are selected does not matter. For a $1 bet, a player chooses six
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numbers. If all six numbers match with the six numbers chosen by the urn, the player wins the jackpot. What is the
probability of winning the Florida Lotto jackpot?

2.3.21. The cells in our bodies receive half of their chromosomes from the father and the other half from the mother. So,
for each pair of homologous chromosomes one will be a paternal chromosome and one will be a maternal chro-
mosome. We have 23 pairs of homologous chromosomes.
(a) How many possible combinations of paternal and maternal chromosomes are there?
(b) What is the probability of getting a gamete with nine paternal and 14 maternal chromosomes? Assume that

any ordered combination is equally likely.

2.4 The conditional probability, independence, and Bayes’ rule

If we know that an event has already occurred or we have some partial information about the event, then this knowledge
may affect the probability of the event of interest. For example, if we were to guess on the probability of rain today, the
answers will be different depending on whether we are sitting inside a windowless office or we are outside and can see the
formation of heavy clouds. This leads to the idea of conditional probability.

Definition 2.4.1 The conditional probability of an event A, given that an event B has occurred, denoted by P(AjB), is equal
to

PðAjBÞ ¼ PðAXBÞ
PðBÞ ;

provided P(B) > 0.

EXAMPLE 2.4.1

We toss two balanced dice, and let A be the event that the sum of the face values of two dice is 8, and B be the event that the face

value of the first one is 3. Calculate P(AjB).
Solution

The elements of the events A and B are

A ¼ fð2;6Þ; ð6;2Þ; ð3;5Þ; ð5; 3Þ; ð4; 4Þg:
and

B ¼ fð3;1Þ; ð3;2Þ; ð3;3Þ; ð3; 4Þ; ð3; 5Þ; ð3;6Þg:
Now A X B ¼ {(3, 5)}

P ðAÞ ¼ 5=36;P ðBÞ ¼ 6=36; and P ðA XBÞ ¼ 1=36:

Therefore,

PðAjBÞ ¼ PðAXBÞ
P ðBÞ ¼

1

36
6

36

¼ 1

6
:

It is important to note that the conditional probability P($jB), is a probability on B. It satisfies all the axioms of a
probability.

Some properties of conditional probability

1. If E2 3 E1, then P(E2jA) � P(E1jA).
2. P(EjA) ¼ 1 � P(Ec jA).
3. P(E1 W E2jA) ¼ P(E1jA) þ P(E2jA) � P(E1 X E2jA).
4. Multiplication law: P(A X B) ¼ P(B)P(AjB) ¼ P(A)P(BjA).

In general,

P ðA1XA2X.XAnÞ ¼ P ðA1ÞPðA2jA1ÞPðA3jA1XA2Þ.
PðAnjA1XA2X.XAn�1Þ:
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EXAMPLE 2.4.2

A fruit basket contains 25 apples and oranges, of which 20 are apples. If two fruits are randomly picked in sequence, what is the

probability that both the fruits are apples?

Solution

Let

A ¼ fevent that the first fruit is an appleg
B ¼ fevent that the second fruit is an appleg:

We need to find P(A X B). We have

P ðAÞ ¼ 20=25; PðBjAÞ ¼ 19=24:

Now using the multiplication principle for conditional probabilities,

P ðAXBÞ ¼ P ðAÞPðBjAÞ ¼
�
20

25

��
19

24

�
¼ 0:633:

Hence, the probability that both the fruits are apples is 0.633.

Probability and statistics are proving to be very useful in the field of genetics. Genetics is the study of hereditydtraits
transmitted from parent to offspring. The starting point of the subject of genetics as presently known can be attributed to Gregor
Mendel (1822e84), an Austrian monk. During the 1850s, Mendel was interested in plant breeding. He performed careful
experiments with the garden pea, Pisum sativum, and uncovered the basic principles of genetic inheritance. Mendel discovered
that traits are inherited in discrete units (known as genes). Mendel’s law of independent segregation states that the parent
transmits randomly one of its traits to the offspring. Geneticists use letters to represent alleles. An allele is an alternative form of
a gene that is located at a specific position on a specific chromosome. Organisms have two alleles for each trait. A capital letter
is used to represent a dominant trait, and a lowercase letter is used to represent a recessive trait. The combination pair of these
traits that one inherits from parents is the genetic makeup. A dominant allele can be observed in the organism’s appearance or
physiology, whereas a recessive allele cannot be observed unless the individual has two copies of the recessive allele.

EXAMPLE 2.4.3

Suppose we are given a population with the following genetic distribution:

Alleles are randomly donated from parents to offspring. Assuming random mating, what is the probability that the mating is

Aa � Aa and the offspring is aa (recessive trait)?

Solution

Let B denote the event that the mating is Aa � Aa, and C denote the event that the offspring is aa. Then we have P(B) ¼ 4q2.

Because the alleles are randomly donated from parents to offspring, PðCjBÞ ¼ 1=4. Now, using the multiplication principle for

conditional probabilities,

P ðBXCÞ ¼ PðBÞPðC jBÞ ¼ �
4q2

��1
4

�
¼ q2:

Hence, the probability that the mating is Aa � Aa and the offspring is of the recessive trait is q2.

In order to compute probabilities similar to that in Example 2.4.3, we could use Table 2.3. The distributions of the
progeny (zygotes) are the predicted values from Mendel’s law.

If the occurrence of one event has no effect on the occurrence of another event, then those two events are said to be
independent of each other. Thus, we have the following definition.

Definition 2.4.2 Two events A and B with P(A) s 0 and P(B) s 0 are said to be independent if P(AjB) ¼ P(A), or
P(BjA) ¼ P(B). Otherwise, A and B are dependent.

Genetic makeup AA Aa aa
Probability p 2q r
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As a consequence of the foregoing definition, two events A and B are independent if and only if P(A X B) ¼ P(A)P(B)
and at least one of P(A) or P(B) is not zero. An alternative definition of independence of two events A and B can be based
on this equality. That is, two events A and B are said to be independent if

PðAX BÞ ¼ PðAÞ PðBÞ
In this case it is not necessary to assume that at least one of P(A) or P(B) is not zero.

EXAMPLE 2.4.4

Suppose that we toss two fair dice. Let E1 denote the event that the sum of the dice is 6 and E2 denote the event that the first die

equals 4. Then, P(E1 X E2) ¼ P({4, 2}) ¼ 1/36 s P(E1)P(E2) ¼ 5/216. Hence, E1 and E2 are dependent events.

Definition 2.4.3 The k events A1, A2,., Ak are mutually independent if for every j ¼ 2, 3,., k and every subset of distinct
indices i1, i2, ., ij

P
�
Ai1XAi2X.XAij

� ¼ PðAi1ÞPðAi2Þ.P
�
Aij

�
:

Mutually independent events will often be called independent. In particular, if P
�
AijXAik

� ¼ P
�
Aij

�
PðAikÞ for each

j s k, then the events are called pairwise independent.
Now we will discuss computation of the probability P(AjjB) (called posterior probability) from the given prior prob-

abilities P(Ai) and conditional probabilities P(Bj Ai). First we will state the total probability rule.

Law of total probability

Theorem 2.4.1 Assume S ¼ A1 W A2 W . W An, where P(Ai) >

0, i ¼ 1, 2, ., n, and Ai X Aj ¼ f (null set) for i s (j). Then for

any event B,

PðBÞ ¼
Xn
i¼ 1

PðAiÞP ðBjAiÞ:

The set A1, A2, ., An given in Theorem 2.4.1 is called the partition of S.

EXAMPLE 2.4.5

Assume that a noisy channel independently transmits symbols, say 0s 60% of the time and 1s 40% of the time. At the receiver,

there is a 1% chance of obtaining any particular symbol distorted. What is the probability of receiving a 1, irrespective of which

symbol is transmitted?

Solution

Given

Pð0Þ ¼ Pð000 is transmittedÞ ¼ 0:6

and

Pð1Þ ¼ Pð010 is transmittedÞ ¼ 0:4:

TABLE 2.3 The Distribution of Zygotes.

Mating Probability of mating

Probability of zygotes (offspring)

AA Aa Aa

AA � AA p2 1 0 0

AA � Aa 2pq 1/2 1/2 0

AA � aa pr 0 1 0

Aa � Aa 4q2 1/4 1/2 ¼

Aa � aa 2qr 0 1/2 ½

aa � aa r2 0 0 1
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Also, given that the probability that a particular symbol is distorted is 0.01; that is,

Pð1j0Þ ¼ Pð1 is received j0 is transmittedÞ
¼ 0:01 ¼ Pð0j1Þ ¼ Pð0 is recieved j1 is transmittedÞ:

Hence, from the total probability rule, the probability of receiving a zero is

Pð1Þ ¼ Pðreceived a 1Þ ¼ Pð1j0ÞPð0Þ þ Pð1j1ÞPð1Þ
¼ ð0:01Þð0:6Þ þ ð0:99Þð0:4Þ ¼ 0:402:

Hence, irrespective of whether a 0 or 1 is transmitted, the probability of receiving a 1 is 0.402.

EXAMPLE 2.4.6

During an epidemic in a town, 40% of its inhabitants became sick. Of any 100 sick persons, 10 will need to be admitted to an

emergency ward. What is the probability that a randomly chosen person from this town will be admitted to an emergency ward?

Solution

Let

A ¼ fthe person is healthyg
and

B ¼ fthe person is admitted to an emergency wardg:
It is given

PðAcÞ ¼ 0:4:

Hence,

PðAÞ ¼ 0:6:

We want to find P(B). Now P(BjA) ¼ 0, because a healthy person will not be admitted to an emergency ward. Also,

PðBjAcÞ ¼ 10

100
¼ 0:1:

Hence, by the total probability rule,

PðBÞ ¼ PðAÞPðBjAÞ þ PðAcÞPðBjAcÞ
¼ ð0:6Þð0Þ þ ð0:1Þð0:4Þ ¼ 0:04:

Sometimes it is not possible to directly calculate the conditional probability that is needed but other probabilities related
to the probability in question are available. Bayes’ rule shows how probabilities change in the light of information and how
to calculate them. It is also an essential tool in the Bayesian inference. Bayes’ theorem is named after an English cler-
gyman, Reverend Thomas Bayes, who outlined the result in a paper published (posthumously) in 1763. This is one of those
results that we can prove relatively easily. However, the implications of this result are profound in statistics and many other
applied fields; see Chapter 10.

Bayes0 rule

Theorem 2.4.2 Assume S ¼ A1 W A2 W . W An, where

P(Ai) > 0, i ¼ 1, 2,., n and Ai X Aj ¼ f for is j. Then for any

event B, with P(B) > 0

PðAjjBÞ ¼ PðAjÞPðBjAjÞPn
i¼ 1

PðAiÞPðBjAiÞ
:

Proof. We have

PðAj jBÞ ¼ PðAjXBÞ
P ðBÞ

¼ PðAjXBÞPn
i¼ 1

PðAiÞP ðBjAjÞ
; by total probability rule for PðBÞ

¼ P ðAjÞPðBjAjÞPn
i¼ 1

PðAiÞP ðBjAiÞ
:
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In Bayes’ theorem, the probabilities P(Ai) are called the prior or a priori probabilities of the events Ai and the con-
ditional probability P(AjjB) is called the posterior probability of the event Aj. The events A1, ., An are sometimes called
the states of nature.

EXAMPLE 2.4.7

Suppose a statistics class contains 70% male and 30% female students. It is known that in a test, 5% of males and 10% of females

got an “A” grade. If one student from this class is randomly selected and observed to have an “A” grade, what is the probability that

this is a male student?

Solution

Let A1 denote that the selected student is a male, and A2 denote that the selected student is a female. Here the sample space S ¼
A1WA2. Let D denote that the selected student has an “A” grade. We are given P(A1) ¼ 0.7, P(A2) ¼ 0.3, P(DjA1) ¼ 0.05, and

P(DjA2) ¼ 0.10. Then by the total probability rule,

PðDÞ ¼ PðA1ÞPðDjA1Þ þ PðA2ÞPðDjA2Þ
¼ 0:035þ 0:030 ¼ 0:065:

Now by Bayes’ rule,

PðA1jDÞ ¼ PðA1ÞPðDjA1Þ
PðA1ÞPðDjA1Þ þ PðA2ÞPðDjA2Þ

¼ ð0:7Þð0:05Þ
ð0:065Þ ¼ 7

13
¼ 0:538:

This shows that even though the probability of a male student getting an “A” grade is smaller than that for a female student,

because of the larger number of male students in the class, a male student with an “A” grade has a greater probability of being

selected than a female student with an “A” grade.

Steps to apply Bayes0 rule

To find P(A1jD):

1. List all the probabilities including conditional probabilities

given in the problem. That is P(A1), ., P(An) and P(DjA1),

., P(DjAn).

2. Write the numerator as the product, P(A1)P(DjA1).

3. Using total probability rule, find the denominator proba-

bility by calculating P ðDÞ ¼ Pn
i¼ 1 P ðAiÞPðDjAiÞ, in the

Bayes’ rule.

4. The desired probability is Numerator
Denominator:

EXAMPLE 2.4.8

Suppose that three types of antimissile defense systems are being tested. From the design point of view, each of these systems has

an equally likely chance of detecting and destroying an incoming missile within a range of 250 miles with a speed ranging up to

nine times the speed of sound. However, in actual practice it has been observed that the precisions of these antimissile systems are

not the same; that is, the first system will usually detect and destroy the target 10 of 12 times, the second will detect and destroy it

9 of 12 times, and the third will detect and destroy it 8 of 12 times. We have observed that a target has been detected and

destroyed. What is the probability that the antimissile defense system was of the third type?

Solution

Let S1, S2, and S3 be the events that the first, second, and third antimissile defense systems, respectively, are used. Also letD be the

event that the target has been detected and destroyed. We wish to find P(S3jD). Given that P(S1) ¼ P(S2) ¼ P(S3) ¼ 1/3, P(DjS1) ¼
10/12, P(DjS2) ¼ 9/12, and P(DjS3) ¼ 8/12. By total probability rule,

PðDÞ ¼ PðS1ÞPðDjS1Þ þ PðS2ÞPðDjS2Þ þ PðS3ÞPðDjS3Þ

¼
�
1

3

��
10

12

�
þ
�
1

3

��
9

12

�
þ
�
1

3

��
8

12

�
¼ 0:75:
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Now using the Bayes’ formula, we have

PðS3jDÞ ¼ PðS3ÞPðDjS3Þ
PðDÞ ¼ ð1=3Þð8=12Þ

0:75
¼ 8

27
¼ 0:2963:

If the target is destroyed, then the probability that the antimissile defense system was of the third type is 0.2963.

Exercises 2.4

2.4.1. Consider the portion of an electric circuit with three relays shown in Fig. 2.3. Current will flow from point a to
point b if at least one of the relays closes properly when activated. The relays may malfunction and not close
properly when activated. Suppose that the relays act independently of one another and close properly when acti-
vated with probability 0.9.

(a) What is the probability that current will flow when the relays are activated?
(b) Given that current flowed when the relays were activated, what is the probability that relay 1 functioned?

2.4.2. If P(A) > 0, P(B) > 0 and P(A) < P(AjB), show that P(B) < P(BjA).
2.4.3. If P(B) > 0,

(a) Show that P(AjB) þ P(AcjB) ¼ 1.
(B) Show that in general the following two statements are false: (i) P(AjB) þ P(AjBc) ¼ 1, (ii) P(AjB) þ

P(AcjBc) ¼ 1.
2.4.4. If P(B) ¼ p, P(AcjB) ¼ q, and P(Ac X Bc) ¼ r, find (a) P(A X Bc), (b) P(A), and (c) P(BjA).
2.4.5. If A and B are independent, show that so are (1) Ac and B, (2) A and Bc, and (3) Ac and Bc.
2.4.6. Show that two events A and B are independent if and only if P(A X B) ¼ P(A)P(B) when at least one of P(A) or

P(B) is not zero.
2.4.7. A card is elected at random from an ordinary deck of 52 playing cards. If E is the event that the selected card is an

ace and F is the event that it is a spade, show that E and F are independent events.
2.4.8. A fruit basket contains 30 apples, of which five are bad. If you pick two apples at random, what is the probability

that both are good apples?
2.4.9. Two students are to be selected at random from a class with 10 girls and 12 boys. What is the probability that both

will be girls?
2.4.10. Assume a population with the genetic distribution given in Example 2.4.3. Assume random mating. What is the

probability that an offspring is aa?
2.4.11. One of the most common forms of color blindness is a sex-linked hereditary condition caused by a defect on the X

chromosome (one of the two chromosomes that determine gender). It is known that color blindness is much more
prevalent in males than in females. Suppose that 6% of males are color blind but only 0.75% of females are color
blind. In a certain population, 45% are male and 55% are female. A person is randomly selected from this
population.
(a) Find the probability that the person is color blind.
(b) Find the probability that the person is color blind given that the person is a male.

2.4.12. A survey asked a group of 400 people whether or not they were doing daily exercise. The responses by sex and
physical activity are as in Table 2.4.
A person is randomly selected.
(a) What is the probability that this person is doing daily exercise?
(b) What is the probability that this person is doing daily exercise if we know that this person is a male?

1

2

3

ba

FIGURE 2.3
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2.4.13. A laboratory blood test is 98% effective in detecting a certain disease if the person has the disease (sensitivity).
However, the test also yields a “false-positive” result for 0.5% of the healthy persons tested. (That is, if a healthy
person is tested, then, with probability 0.005, the test result will show positive.) Assume that 2% of the population
actually has this disease (prevalence). What is the probability a person has the disease given that the test result is
positive?

2.4.14. In order to evaluate the rate of error experienced in reading chest X-rays, the following experiment is done.
Several people with known tuberculosis (TB) status (through other reliable tests) are subjected to chest X-rays.
A technician who is unaware of this status reads the X-ray, and Table 2.5 gives the result. Here þX-ray means
the technician concluded that the person has TB.

Find (a) P(TBj þ Xeray), (b) P(þXerayjNo TB), and (c) P(No TBj e Xeray).
2.4.15. Each of 12 ordered boxes contains 12 coins, consisting of pennies and dimes. The number of dimes in each box is

equal to its order among the boxes, that is, box number 1 contains one dime and 11 pennies, box number 2 con-
tains two dimes and 10 pennies, etc. A pair of fair dice is tossed, and the total showing indicates which box is
chosen to have a coin selected at random from it.
(a) Find the probability that a coin selected is a dime.
(b) It is observed that the selected coin is a penny. Find the probability that it came from box number 4.

2.4.16. Of 600 car parts produced, it is known that 350 are produced in one plant, 150 parts in a second plant, and 100
parts in a third plant. Also, it is known that the probabilities are 0.15, 0.2, and 0.25 that the parts will be defective
if they are produced in the first, second, or third plants, respectively. What is the probability that a randomly
picked part from this batch is not defective?

2.4.17. One class contains five girls and 10 boys and a second class contains 13 boys and 12 girls. A student is randomly
picked from the second class and transferred to the first one. After that, a student is randomly chosen from the first
class. What is the probability that this student is a boy?

2.4.18. Consider that we have in an industrial complex two large boxes, each of which contains 30 electrical components.
It is known that the first box contains 26 operable and four nonoperable components and that the second box
contains 28 operable and two nonoperable components. Assume that the probability of making a selection
from each of the boxes is the same.
(a) Find the probability that a component selected at random will be operable.
(b) Suppose the component chosen at random is operable. Find the probability that the component was chosen

from box 1.
2.4.19. Urn 1 contains five white balls and three red balls. Urn 2 contains four white and six red balls. An urn is selected at

random, and a ball is drawn at random from that urn. Find the probability that, if the ball selected is white, it came
from urn 1.

2.4.20. An urn contains two white balls and two black balls. A number is randomly chosen from the set {1, 2, 3, 4}, and
many balls are removed from the urn. Find the probability that the number i, i ¼ 1, 2, 3, 4, was chosen if at least
one white ball was removed from the urn.

TABLE 2.4 Physical Activity Survey Results by Gender.

Male Female

Daily exercise 50 61

No daily exercise 177 112

TABLE 2.5 Chest X-ray for TB Result.

Person without TB Person with TB Total

þX-ray 70 27 97

eX-ray 1883 20 1903

Total 1945 55 2000
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2.4.21. A certain state groups its licensed drivers according to age into the following categories: (1) 16 to 25; (2) 26 to 45;
(3) 46 to 65; and (4) over 65. Table 2.6 lists, for each group, the proportion of licensed drivers who belong to the
group and the proportion of drivers in the group who had accidents.
(a) What proportion of licensed drivers had an accident?
(b) What proportion of those licensed drivers who had an accident were over 65?

2.4.22. It is known that a rare disease, K, is present only in 0.2% of the population. Performance of the test by a physi-
cian’s diagnostic test for the presence or absence of the disease K is given in Table 2.7, where Rþ denotes the
positive test result, and Re denotes the negative result. Also, Kc denotes absence of the disease.
(a) What is the probability that a patient has the disease, if the test result is positive?
(b) What is the probability that a patient has the disease, if the test result is negative?

2.4.23. A store has light bulbs from two suppliers, 1 and 2. The chance of supplier 1 delivering defective bulbs is 10%,
whereas supplier 2 has a defective rate of 3%. Suppose 60% of the current supply of light bulbs came from sup-
plier 1. If one of these bulbs is taken from the current supply and observed to be defective, find the probability that
it came from supplier 2.

2.4.24. The quality control chart of a certain manufacturing company shows that 45% of the defective parts produced in
the company were due to mechanical errors and 55% were caused by human error. The defective parts caused by
mechanical errors can be detected, with 95% accuracy rate, at an inspection station. The detection rate is only 80%
if the defective parts are due to human error.
(a) Suppose a defective part was detected at the inspection station. What is the probability that this defective part

is due to human error?
(b) Suppose that a customer returned a defective part that went undetected at the inspection station. What is the

probability that the defective part is due to human error?
2.4.25. A circuit has three major components: A, B, and C. Component A operates independently of B and C. The com-

ponents B and C are interdependent. It is known that the component A works properly 85% of the time; compo-
nent B, 90% of the time; and component C, 95% of the time. However, if component C fails, there is a 75%
chance that B will also fail. Assume that at least two parts must operate for the circuit to function. What is the
probability that the circuit will function properly?

2.4.26. Suppose that the data in Table 2.8 represent approximate distribution of blood type frequency in a percentage of
the total population.
Assume that the blood types are distributed the same in both male and female populations. Also assume that the
blood types are independent of marriage.
(a) What is the probability that in a randomly chosen couple the wife has type B blood and the husband has type

O blood?
(b) It is known that a person with type B blood can safely receive transfusions only from persons with type B or

type O blood. What is the probability a husband has type B or type O blood? It is given that a woman has type
B blood, what is the probability that her husband is an acceptable donor for her?

TABLE 2.6 Accident Rate and Size by Age.

Group Size Accident rate

1 0.250 0.086

2 0.257 0.044

3 0.347 0.056

4 0.146 0.098

TABLE 2.7 Diagnostic Test Results for Disease K.

RD Re

K 0.98 0.02

Kc 0.01 0.99
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2.4.27. Suppose that there are 40 students in a statistics class and their blood type follows the percentage distribution
given in Exercise 2.4.26.
(a) If we randomly select two students from this class, what is the probability that both will have the same blood

type?
(b) If we randomly select two students from this class and it is observed that the first student’s blood type is B,

what is the probability that the second student’s blood type is O?
2.4.28. A rare nonlethal disease (ND) that develops during adolescence is believed to be associated with a certain reces-

sive genotype (aa) at a certain locus. It is known that in a population 5% of adults have the disease. Suppose that
among the adults with the disease ND, 85% have the aa genotype. Also suppose that among the adults without the
disease, 2% of them have the aa genotype. We have randomly selected an adult from this population,
(a) What is the probability that this person has the disease but not the aa genome type?
(b) What is the probability that this person has the aa genome type the but not the disease ND?
(c) Given that this person has the aa genotype, what is the probability that this person has the disease ND?

2.4.29. (The gambler’s ruin problem.) Two gamblers, A and B, bet on the outcomes of successive flips of a coin. On each
flip, if the coin comes up heads, A collects from B one unit, whereas if it comes up tails, A pays to B one unit.
They continue to do this until one of them runs out of money. If it is assumed that the successive flips of the coin
are independent and each flip results in a head with probability p, what is the probability that A winds up with all
the money if A starts with i units and B starts with N e i units?

2.5 Random variables and probability distributions

An experiment may contain numerous characteristics that can be measured. However, in most cases, an experimenter will
focus on some specific characteristics of the experiment. For example, a traffic engineer may focus on the number of
vehicles traveling on a certain road or in a certain direction rather than the brand of vehicles or number of passengers in
each vehicle. In general, each outcome of an experiment can be associated with a number by specifying a rule of asso-
ciation. The concept of a random variable allows us to pass from the experimental outcomes to a numerical function of the
outcomes, often simplifying the sample space.

Definition 2.5.1 A random variable (r.v.) X is a function defined on a sample space, S, that associates a real number,
X(u) ¼ x, with each outcome u in S.

EXAMPLE 2.5.1

Two balanced coins are tossed and the face values are noted. Then the sample space S ¼ {(H,H), (H,T), (T,H), (T,T)}. Define the

random variable X(u) ¼ n, where n is the number of heads and u represents a simple event such as (H,H). Then

XðuÞ ¼

8><
>:

0; if u ¼ ðT ;T Þ
1; if u ˛fðH;T Þ; ðT ;HÞg
2; if u ¼ ðH;HÞ:

It can be noted that X(u) ¼ 0 or 2 with probability 1/4 (w.p. 1/4) and X(u) ¼ 1 w.p. 1/2.

R, the real line

Sample space S
X(ω)

ω

FIGURE 2.4 Random variable as a function.

TABLE 2.8 Blood Type Frequency.

Blood type O A B AB

Frequency (%) 45 40 10 5
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It is important to note that in the definition of a random variable, probability plays no role. However, as evidenced by
the previous example, for each value or set of values of the random variable, there are underlying collections of events, and
through these events one connects the values of random variables with probability measures.

The random variable is represented by a capital letter (X, Y, Z, .), and any particular real value of the random variable
is denoted by the corresponding lowercase letter (x, y, z, .). We define two types of random variables, discrete and
continuous. In this book, we will not deal with mixed random variables.

Definition 2.5.2 A random variable X is said to be discrete if it can assume only a finite or countably infinite number of
distinct values.

Suppose an Internet business firm had 1000 hits on a particular day. Let the random variable X be defined as the number
of sales resulted on that day. Then, X can take values 0, 1, ., 1000. If we are to define a random variable as the number of
telephone calls made from a large city on any given day, for all practical purposes, this can be assumed to take values 0, 1,
. N.

EXAMPLE 2.5.2

In the tossing of three fair coins, let the random variable X be defined as X ¼ number of tails. Then X can assume values 0, 1, 2,

and 3. We can associate these values with probabilities in the following way:

P ðX ¼ 0Þ ¼ P ðfH;H;HgÞ ¼ 1=8

P ðX ¼ 1Þ ¼ P ðfH;H;TgWfH; T ;HgWfT ;H;HgÞ ¼ 3=8

P ðX ¼ 2Þ ¼ P ðfT ; T ;HgWfT ;H;TgWfH; T ;TgÞ ¼ 3=8

P ðX ¼ 3Þ ¼ P ðfT ; T ;TgÞ ¼ 1=8:

We can write this in tabular form.

x 0 1 2 3

P(x) 1/8 3/8 3/8 1/8

Let X be a discrete random variable assuming values x1, x2, x3, .. We have the following.

Definition 2.5.3 The discrete probability mass function (pmf) of a discrete random variable X is the function

pðxiÞ ¼ PðX ¼ xiÞ; i ¼ 1; 2; 3; ::::

A probability mass function (pmf) is more simply called a probability function (pf).
The cumulative distribution function (cdf) F of the discrete random variable X is defined by

FðxÞ ¼ PðX � xÞ
¼
X
all y�x

pðyÞ; for �N < x < N:

A cumulative distribution function is also called a probability distribution function or simply the distribution
function.

The probability function p(x) is nonnegative. In addition, because X must take on one of the values in {x1, x2, x3 . },
we have

PN
i¼ 1 pðxiÞ ¼ 1. Although the pmf p(x) is defined only for a set of discrete values x1, x2, x3 ., the cdf F(x) is

defined for all real numbers.

EXAMPLE 2.5.3

Suppose that a fair coin is tossed twice so that the sample space is S ¼ {(H,H), (H,T), (T,H), (T,T)}. Let X be number of heads.

(a) Find the probability function for X.

(b) Find the cumulative distribution function of X.
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Solution

(a) We have

PðfH;HgÞ ¼ PðfH;TgÞ ¼ PðfT;HgÞ ¼ PðfT; TgÞ ¼ 1 =4:

Hence, the pmf is given by

pð0Þ ¼ PðX ¼ 0Þ ¼ 1=4;pð1Þ ¼ 1=2;pð2Þ ¼ 1=4:

(b) For example,

Fð1:5Þ ¼ PðX � 1:5Þ ¼ PðX ¼ 0 or 1Þ

¼ PðX ¼ 0Þ þ PðX ¼ 1Þ

¼ 1

4
þ 1

2
¼ 3

4
:

Proceeding similarly, we obtain (as shown in Fig 2.5)

FðxÞ ¼

8>>>>><
>>>>>:

0;

1=4;

3=4;

�N < x < 0

0 � x < 1

1 � x < 2

1; 2 � x < N:

We have seen that a discrete random variable assumes a finite or a countably infinite value. In contrast, we define a
continuous random variable as one that assumes uncountably many values, such as the points on a real line. We now give
the definition of a continuous random variable.

Definition 2.5.4 Let X be a random variable. Suppose that there exists a nonnegative real-valued function: f: R / [0, N)
such that for any interval [a, b],

PðX˛ ½a; b�Þ ¼
Z b

a
fðtÞdt:

f(x)

x

FIGURE 2.5 Graph of F(x).
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Then X is called a continuous random variable. The function f is called the probability density function (pdf)
of X.

The cumulative distribution function (cdf) is given by

FðxÞ ¼ PðX� xÞ ¼
Z x

�N

fðtÞdt:

For a given function f to be a pdf, it needs to satisfy the following two conditions: f(x) � 0 for all values of x, and.RN
�N f ðxÞdx ¼ 1:

Also, if f is continuous, then dFðxÞ
dðxÞ ¼ f ðxÞ; where F(x) is the cdf. This follows from the fundamental theorem of

calculus. If f is the pdf of a random variable X, then

Pða�X� bÞ ¼
Z b

a

f ðtÞdx:

Fig. 2.6 represents P(a � X � b).
As a result, for any real number a, P(X ¼ a) ¼ 0. Also,

Pða�X� bÞ ¼ Pða<X� bÞ ¼ Pða�X< bÞ ¼ Pða<X< bÞ:
If we have the cdf F(x), then we have

Pða�X� bÞ ¼ FðbÞ � FðaÞ:

Some properties of distribution function

1. 0 � F(x) � 1.

2. lim
x/�N

FðxÞ ¼ 0; and lim
x/N

FðxÞ ¼ 1:

3. F is a nondecreasing function, and right continuous.

EXAMPLE 2.5.4

Let the function

f ðxÞ ¼
�
lxe�x ; x > 0

0; otherwise.

(a) For what value of l is f a pdf?

(b) Find F(x).

FIGURE 2.6 Probability as an area under a curve.
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Solution

(a) First note that f(x) � 0. Now, for f(x) to be a pdf, we need
RN
�N fðxÞdx ¼ 1: Because f(x) ¼ 0 for x � 0,

therefore l ¼ 1. See Fig. 2.7.

1 ¼
Z N

�N

f ðxÞdx ¼
Z N

0

lxe�xdx

¼ l

Z N

�N

xe�xdx ¼ l

2
4� xe�x jN0 þ

Z N

0

e�xdx

3
5ðusing integration by partsÞ

¼ l
	
0� e�x jN0


 ¼ l:

(b) The cumulative distribution function is

FðxÞ ¼
Z x

�N

f ðtÞdt ¼

8>><
>>:

0; x < 0Z x

0

te�tedt ¼ 1� ðx þ 1Þe�x ; x � 0:

Fig. 2.8 represents the cumulative distribution.

x

f(x)

FIGURE 2.7 Graph of f(x) ¼ xeex.

f(x)

x

FIGURE 2.8 Graph of F(x), x � 0.
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EXAMPLE 2.5.5

Suppose that a large grocery store has shelf space for 150 cartons of fruit drink that are delivered on a particular day of each

week. The weekly sale for fruit drink shows that the demand increases steadily up to 100 cartons and then levels off between

100 and 150 cartons. Let Y denote the weekly demand in hundreds of cartons. It is known that the pdf of Y can be approx-

imated by

f ðyÞ ¼

8><
>:

y; 0 � y � 1

1; 1 < y � 1:5

0; elsewhere.

(a) Find F(Y),

(b) Find P(0 � Y � 0.5),

(c) Find P(0.5 � Y � 1.2).

Solution

(a) The graph of the density function f(y) is shown in Fig. 2.9

From the definition of cdf, we have (Fig. 2.10)

FIGURE 2.9 Graph of f(y).

1

0.5

1 1.
y

F(y)

FIGURE 2.10 Graph of cdf.
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FðyÞ ¼
Z y

�N

f ðtÞdt ¼

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

0; y < 0

Z y

0

tdt ; 0 � y < 1

Z 1

0

tdt þ
Z y

1

dt ; 1 � y < 1:5

Z 1

0

tdt þ
Z 1:5

1

dt ; y � 1:5

¼

8>>>>>>>>><
>>>>>>>>>:

0; y < 0

y2=2; 0 � y < 1

y � 1=2; 1 � y < 1:5

1 y � 1:5:

(b) The probability

P ð0 � Y � 0:5Þ ¼ Fð0:5Þ � Fð0Þ
¼ ð0:5Þ2=2 ¼ 1=8 ¼ 0:125:

(c) Pð0:5 � Y � 1:2Þ ¼ Fð1:2Þ � Fð0:5Þ ¼ ð1:2� 1=2Þ � 0:125 ¼ 0:575:

Exercises 2.5

2.5.1. The probability function of a random variable Y is given by pðiÞ ¼ cli

i! ; i ¼ 0; 1; 2; : : : ; where l is a known
positive value and c is a constant.
(a) Find c.
(b) Find P(Y ¼ 0).
(c) Find P(Y > 2).

2.5.2. Find k so that the function given by

pðxÞ ¼ k

xþ 1
; x ¼ 1; 2; 3; 4

is a probability mass function. Graph the probability mass function and cumulative distribution function.

2.5.3. A random variable X has the following probability mass function:

x �5 0 3 6
P(x) 0.2 0.1 0.4 0.3

Find the cumulative distribution function F(x) and graph it.

2.5.4. The cumulative probability function of a discrete random variable X is given in the following table:

x �1 0 2 5 6
F(x) 0.1 0.15 0.4 0.8 1
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(a) Find P(X ¼ 2).
(b) Find P(X > 0).

2.5.5. The cumulative distribution function F(x) of a random variable X is given by

FðxÞ ¼

8>>><
>>>:

0; �N < x < �1

0:2; �1 � x < 3

0:8; 3 � x < 9

1; x � 9:

Write down the values of the random variable X and the corresponding probabilities, p(x).
2.5.6. The probability density function of a random variable X is given by

f ðxÞ ¼
�
cx; 0 < x < 4

0; otherwise.

(a) Find c.
(b) Find the distribution function F(x).
(c) Compute Pð1< X< 3Þ.

2.5.7. Let the function

f ðxÞ ¼
�
cx2; 0 < x < 3

0; otherwise.

(a) Find the value of c so that f(x) is a density function.
(b) Compute P(2 < X < 3).
(c) Find the distribution function F(x).

2.5.8. Suppose that Y is a continuous random variable whose pdf is given by

f ðyÞ ¼
�
K
�
4y� 2y2

�
; 0 < y < 2

0; elsewhere.

(a) What is the value of K?
(b) Find P(Y > 1).
(c) Find F(y).

2.5.9. The random variable X has a cumulative distribution function

FðxÞ ¼

8><
>:

0; for x � 0

x2

1þ x2
; for x > 0:

Find the probability density function of X.
2.5.10. A random variable X has a cumulative distribution function

FðxÞ ¼

8><
>:

0; if x � 0

axþ b; if 0 � x < 3

1; if x � 3:

(a) Find the constants a and b.
(b) Find the pdf f(x).
(c) Find P(1 < X < 5).

2.5.11. The amount of time, in hours, that a machine functions before breakdown is a continuous random variable with
pdf
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f ðtÞ ¼

8><
>:

1
120

e�t=120; t � 0

0; t < 0:

What is the probability that this machine will function between 98 and 145 hours before breaking down? What is
the probability that it will function less than 160 hours?

2.5.12. The length of time that an individual talks on a long-distance telephone call has been found to be of a random
nature. Let X be the length of the talk; assume it to be a continuous random variable with probability density func-
tion given by

f ðxÞ ¼
(
ae�ð1=5Þx; x > 0

0; elsewhere:

Find
(a) The value of a that makes f ðxÞa probability density function.
(b) The probability that this individual will talk (1) between 8 and 12 minutes, (2) less than 8 minutes, (3) more

than 12 minutes.
(c) Find the cumulative distribution function, F(x).

2.5.13. Let T be the life length of a mechanical system. Suppose that the cumulative distribution of such a system is given
by

FðtÞ ¼

8>><
>>:

0; t < 0

1� exp

 
� ðt � yÞb

a

!
; t � 0;a > 0; b; y � 0:

Find the probability density function that describes the failure behavior of such a system.

2.6 Moments and moment-generating functions

One of the most useful concepts in probability theory is that of expectation of a random variable. The expected value may
be viewed as the balance point of the probability distribution on the real line, or in common language, the average.

Definition 2.6.1 Let X be a discrete random variable with pmf p(x). Then the expected value of X, denoted by E(X), is
defined by

m ¼ EðXÞ ¼
X
all x

xpðxÞ; provided
X
all x

jxjpðxÞ < N:

Now we will define the expected value for a continuous random variable.

Definition 2.6.2 The expected value of a continuous random variable X with pdf f(x) is defined by

m ¼ EðXÞ ¼
Z N

�N

xf ðxÞdx; provided
Z N

�N

jxjf ðxÞdx < N:

The expected value of X is also called the expectation or mathematical expectation of X. We denote the expected value
of X by m.

EXAMPLE 2.6.1

Let

X ¼
�
1; with a probability 1=2

0; with a probability 1=2.

Then E(X) ¼ 1(1/2) þ 0(1/2) ¼ 1/2.
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EXAMPLE 2.6.2

Let X be a discrete random variable whose probability mass function is given in the following table:

x �1 0 1 2 3 4 5

P(x) 1
7

1
7

1
14

2
7

1
14

1
7

1
7

Find E(X).

Solution

By definition,

EðXÞ ¼
X

xpðxÞ ¼ �1

�
1

7

�
þ 0

�
1

7

�
þ 1

�
1

14

�

þ2

�
2

7

�
þ 3

�
1

14

�
þ 4

�
1

7

�
þ 5

�
1

7

�
¼ 2:

EXAMPLE 2.6.3

Let X � 0 be an integer-valued random variable such that P(X ¼ n) ¼ pn. Show that. EðXÞ ¼ PN
n¼ 1 P ðX � nÞ:

Solution

Using the definition of expectation, and the fact that ð0Þp0 ¼ 0, we have

EðXÞ ¼
XN
n¼ 1

npn ¼ 1p1 þ 2p2 þ 3p3 þ/

¼ p1 þ p2 þ p3 þ/

þp2 þ p3 þ p4 þ/

þp3 þ p4 þ/

¼ P ðX � 1Þ þ P ðX � 2Þ þ/

¼
XN
n¼ 1

P ðX � n:Þ

EXAMPLE 2.6.4

Suppose you are selling a car. Let X0, X1, X2, . be the successive offers occurring at times 0, 1, 2, ., n, that you receive (assume

that the offers are random, independent, and have the same distribution); see Fig. 2.11. Show that E(N) ¼ N, where N ¼ min{n:

Xn > X0}, that is, the first time an offer exceeds the initial offer X0 at time 0.

0 1 2 3 4 n -1

X0

X1

Xn

n

FIGURE 2.11 Size of successive offerings.
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Solution

By definition,

PðN � nÞ ¼ PðX0 is largest of X0;X1;.;Xn�1Þ

¼ 1

n
; by symmetry;

as any of the X0
is could be more than the rest. Hence, using Example 2.6.3,

EðNÞ ¼
XN
n¼ 1

P ðN� nÞ ¼
XN
n¼ 1

1

n
¼ N:

You would expect to wait a long time to receive an offer better than the first one.

Definition 2.6.3 The variance of a random variable X is defined by

s2 ¼ VarðXÞ ¼ E
	ðX � mÞ2
:

The square root of variance, denoted by s, is called the standard deviation.
The variance is a measure of spread or variability of values of a random variable around the mean.
The next result shows how to obtain the expectation of a function of a random variable.

Expectation of function of a random variable

Theorem 2.6.1 Let g(X) be a function of X, then the expected

value of g(X) is

E ½gðXÞ� ¼

8>>><
>>>:

X
x

gðxÞpðxÞ; if X is discrete

Z N

�N

gðxÞf ðxÞdx; if X is continuous

provided the sum or the integral exists.

We now give some properties of the expectation of a random variable.

Some properties of expected value and variance

Theorem 2.6.2 Let c be a constant and let g(X), g1(X), ., gn(X)

be functions of a random variable X such that E(g(X)) and

E(gi(X)) for i ¼ 1, 2, ., n exist. Then the following results hold:

(a) E(c) ¼ c.

(b) E[cg(X)] ¼ cE [g(X)].

(c) E

�P
i

giðXÞ
�

¼ P
i

E ½giðXÞ�.

(d) Var(aX þ b) ¼ a2Var(X). In particular, Var(aX) ¼ a2Var(X).

(e) Var(X) ¼ E(X2) e m2.

Proof. Proof of (a) through (d) will be given as an exercise. We will prove (e).

VarðXÞ ¼ E
	ðX � mÞ2


¼ E
�
X2 � 2Xmþ m2

�
¼ E

�
X2
�� 2mEðXÞ þ m2

¼ E
�
X2
�� 2m2 þ m2

¼ E
�
X2
�� m2:
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EXAMPLE 2.6.5

A discrete random variable X is said to be uniformly distributed over the numbers 1, 2, 3, ., n, if

P ðX ¼ iÞ ¼ 1

n
; i ¼ 1;2;.;n:

Find E(X) and Var(X).

Solution

By definition

EðXÞ ¼
Xn
i¼ n

xipi

¼ 1

�
1

n

�
þ 2

�
1

n

�
þ/þ n

�
1

n

�

¼ 1

n

�
nðn þ 1Þ

2

�
¼ n þ 1

2
:

Similarly, using the summation formula 12 þ 22 þ/þ n2 ¼ nðnþ1Þ ð2nþ1Þ
6 ; we get

E
�
X2
� ¼ 12

�
1

n

�
þ 22

�
1

n

�
þ/þ n2

�
1

n

�

¼ 1

n

�
nðn þ 1Þð2n þ 1Þ

6

�

¼ ðn þ 1Þð2n þ 1Þ
6

:

Hence,

VarðXÞ ¼ E
�
X2
�� ðEXÞ2

¼ ðn þ 1Þð2n þ 1Þ
6

�
�
n þ 1

2

�2

¼ n2 � 1

12
:

EXAMPLE 2.6.6

To find out the prevalence of smallpox vaccine use, a researcher inquired into the number of times a randomly selected 200

people aged 16 and over in an African village had been vaccinated. He obtained the following figures: never, 17 people; once,

30; twice, 58; three times, 51; four times, 38; five times, 7. Assuming these proportions continue to hold exhaustively for the

population of that village, what is the expected number of times those people in the village had been vaccinated, and what is the

standard deviation?

Solution

Let X denote the random variable representing the number of times a person aged 16 or older in this village has been vaccinated.

Then, we can obtain the following distribution:

x 0 1 2 3 4 5

p(x) 17/200 30/200 58/200 51/200 38/200 7/200
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Then,

EðXÞ ¼
X

xpðxÞ ¼ 1

200
ð0ð17Þ þ 1ð30Þ þ 2ð58Þ þ 3ð51Þ þ 4ð38Þ þ 5ð7ÞÞ

¼ 2:43:

Also,

VarðXÞ ¼ E
�
X2
�� ðEðXÞÞ2

¼
X

x2pðxÞ � ð2:43Þ2 ¼ 7:52� ð2:43Þ2

¼ 1:6151:

Thus, the standard deviation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6151

p ¼ 1:2709:

EXAMPLE 2.6.7

Let Y be a random variable with pdf

f ðyÞ ¼

8><
>:

3

64
y2ð4� yÞ; 0 � y � 4

0; elsewhere.

(a) Find the expected value and variance of Y.

(b) Let X ¼ 300Y þ 50. Find E(X) and Var(X), and

(c) Find P(X > 750).

Solution

(a) EðY Þ ¼
Z N

�N

yf ðyÞdy

¼ 3

64

Z 4

0

yy2ð4� yÞdy

¼ 2:4

and

VarðY Þ ¼
Z 4

0

ðy � 2:4Þ2 3
64

y2ð4� yÞdy

¼ 0:64:

(b) Using the fact that Var(aY þ b) ¼ a2Var(Y), we have

VarðXÞ ¼ ð300Þ2VarðYÞ
¼ 90;000ð0:64Þ ¼ 57;600:

PðX > 750Þ ¼ P ð300Y þ 50 > 750Þ

¼ P

�
Y >

7

3

�

¼ 3

64

Z4
7=3

y2ð4� yÞdy ¼ 0:55339:
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2.6.1 Skewness and kurtosis

Even though the mean m and the standard deviation s are significant descriptive measures that locate the center and
describe the spread or dispersion of probability density function f(x), they do not provide a unique characterization of the
distribution. Two distributions may have the same mean and variance and yet could be very different, as in Fig. 2.12.

To better approximate the probability distribution of a random variable, we may need higher moments.

Definition 2.6.4 The kth moment about the origin of a random variable X is defined as EXk and denoted by m0
k0 whenever

it exists. The kth moment about its mean (also called central kth moment) of a random variable X is defined as E[(X e
m)k] and denoted by mk, k ¼ 2, 3, 4, ., whenever it exists.

In particular, we have EðXÞ ¼ m0
1 ¼ m; and s2 ¼ m2. We have seen earlier that the second moment about mean

(variance, s2) is used as a measure of dispersion about the mean.

Definition 2.6.5 The standardized third moment about mean

a3 ¼ EðX � mÞ3
s3

¼ m3

m
3=2
2

is called the skewness of the distribution of X. The standardized fourth moment about mean

a4 ¼ EðX � mÞ4
s4

is called the kurtosis of the distribution.
Skewness is used as a measure of the asymmetry (lack of symmetry) of a density function about its mean. Recall that a

distribution, or data set, is symmetric if it looks the same to the left and right of the center point. Thus, for symmetric
distribution, a3 ¼ 0. However, if a3 ¼ 0, then we cannot say that the distribution is symmetric about the mean. For
instance, if one tail is fat and the other tail is long, skewness does not obey such a simple rule. If a3 > 0, the distribution
has a longer right tail, and if a3 < 0, the distribution has a longer left tail. Thus, the skewness of a normal distribution is
zero. Kurtosis is a measure of whether the distribution is peaked or flat relative to a normal distribution. Kurtosis is based
on the size of a distribution’s tails. Positive kurtosis indicates too few observations in the tails, whereas negative kurtosis
indicates too many observations in the tail of the distribution. Distributions with relatively large tails are called leptokurtic,
and those with small tails are called platokurtic. A distribution that has the same kurtosis as a normal distribution is known
as mesokurtic. It is known that the kurtosis for a standard normal distribution is a4 ¼ 3.

A sample of n values, x1; :::; xn the skewness (g1) and kurtosis (k1) can be calculated using the following formulas.

g1 ¼ n

ðn� 1Þðn� 2Þ
Xn
i¼ 1

�
xi � x

s

�3

and

k1 ¼
"

nðnþ 1Þ
ðn� 1Þðn� 2Þðn� 3Þ

Xn
i¼ 1

�
xi � x

s

�4
#
� 3ðn� 1Þ2
ðn� 2Þðn� 3Þ:

Mean =1
Variance =1

Mean =1
Variance =1

0.0

0.1

0.2

0.3

0.4

0.5

f(x) f(x)

x x

FIGURE 2.12 Same mean and variance.
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An important expectation is the moment-generating function for a random variable, in a sense, this packages all the
moments for a random variable in one expression.

Definition 2.6.6 For a random variable X, suppose that there is a positive number h such that for eh < t < h the math-
ematical expectation E(etX) exists. The moment-generating function (mgf) of the random variable X is defined by

MXðtÞ ¼ EðetXÞ ¼
8<
:
X

etxpðxÞ; if discreteZ
etxf ðxÞdx; if continuous:

An advantage of the moment-generating function is its ability to give the moments. Recall that the Maclaurin series of
the function etx is

etx ¼ 1þ txþ ðtxÞ2
2!

þ ðtxÞ3
3!

þ/þ ðtxÞn
n!

þ/�

By using the fact that the expected value of the sum equals the sum of the expected values, the moment-generating
function can be written as

MXðtÞ ¼ E½etX � ¼ E

"
1þ tX þ ðtXÞ2

2!
þ ðtXÞ3

3!
þ/þ ðtXÞn

n!
þ/

#

¼ 1þ tE½X� þ t2

2!
E
	
X2

þ t3

3!
E
	
X3

þ/þ tn

n!
E½Xn� þ/

Note that MXð0Þ ¼ 1 for all the distributions. Taking the derivative of MX(t) with respect to t, we obtain

dMXðtÞ
dt

¼ M0
XðtÞ ¼ E½X� þ tE½X� þ t2

2!
E
	
X2



þt3

3!
E
	
X3

þ/þ tðn�1Þ

ðn� 1Þ!E½X
n� þ/

Evaluating this derivative at t ¼ 0, all terms except E[X] become zero. We have

M0
Xð0Þ ¼ E½X�:

Similarly, taking the second derivative of MX(t), we obtain

M 00
Xð0Þ ¼ E

	
X2


:

Continuing in this manner, from the nth derivative MðnÞ
X ðtÞ with respect to t, we obtain all the moments to be

MðnÞ
X ð0Þ ¼ E½Xn�; n ¼ 1; 2; 3; ::::

We summarize these calculations in the following theorem.

Theorem 2.6.3 If MX(t) exists, then for any positive integer k,

dkMXðtÞ
dtk

���� t ¼ 0
¼ MðkÞ

X ð0Þ ¼ m0
k:

The usefulness of the foregoing theorem lies in the fact that, if the mgf can be found, the often difficult process of
integration or summation involved in calculating different moments can be replaced by the much easier process of dif-
ferentiation. The following examples illustrate this fact.

EXAMPLE 2.6.8

Let X be a random variable with pf
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pðxÞ ¼
�
n

x

�
pxð1� pÞn�x

; x ¼ 0; 1; 2; .; n:

(This random variable is called a binomial random variable, and the pmf is called a binomial distribution.) Show that MX(t) ¼
[(1 e p) þ pet]n, for all real values of t. Also obtain mean and variance of the random variable X.

Solution

The moment-generating function of X is

MX ðtÞ ¼ EðetXÞ ¼
Xn
x¼ 0

etx

0
@ n

x

1
Apxð1� pÞn�x

¼
Xn
x¼ 0

0
@ n

x

1
AðpetÞxð1� pÞn�x

:

Using the binomial formula, we have

MXðtÞ ¼ ½pet þ ð1� pÞ�n; �N < t < N:

The first two derivatives of MX(t) are

M0
X ðtÞ ¼ n½ð1� pÞ þ pet �ðn�1ÞðpetÞ

and

M00
XðtÞ ¼ nðn� 1Þ½ð1� pÞ þ pet �ðn�2Þðpet Þ2 þ n½ð1� pÞ þ pet �ðn�1ÞðpetÞ:

Thus,

m ¼ EðXÞ ¼ M0
Xð0Þ ¼ np

and

s2 ¼ E
�
X2
�� m2 ¼ M00ð0Þ � ðnpÞ2

¼ nðn � 1Þp2 þ np � ðnpÞ2 ¼ npð1� pÞ:

EXAMPLE 2.6.9

Let X be a random variable with pmf f(x) ¼ eellx/(x!), x ¼ 0, 1, 2, .. (Such a random variable is called a Poisson r.v. and the

distribution is called a Poisson distribution with parameter l.) Find the mgf of X.

Solution

By definition

MXðtÞ ¼ EetX ¼
XN
x ¼ 0

etx f ðxÞ

¼
XN
x¼ 0

etxe
�llx

x!
¼
XN
x ¼ 0

e�lðetlÞx
x!

¼ e�l
XN
x¼ 0

elet
�
e�ðlet ÞðletÞx

x!

�

¼ elðet�1ÞXN
x¼ 0

�
e�ðlet ÞðletÞx

x!

�
:
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We observe that e�ðletÞðletÞx�x! is a Poisson pf with parameter let. Hence,
PN
x¼ 0

e�ðletÞðletÞx
x! ¼ 1: Thus from (1),

MXðtÞ ¼ elðe
t�1Þ:

EXAMPLE 2.6.10

Let X be a random variable with pdf given by

f ðxÞ ¼

8><
>:

1

b
e�x=b; x > 0

0; otherwise.

Find mgf MX(t).

Solution

By definition of mgf,

MxðtÞ ¼
Z N

�N

etx f ðxÞdx

¼
Z N

0

etx1

b
e�x=bdx

¼ 1

b

Z N

0

e
�

�
1
b
�t

�
x

dx;

�
t <

1

b

�

¼ 1

b

�
� 1

ðð1=bÞ � tÞe
�

�
1
b
�t

�
x

jNx ¼ 0

�

¼ 1

b

b

1� bt
¼ 1

1� bt
; t <

1

b
:

EXAMPLE 2.6.11

Let X be a random variable with pdf f ðxÞ ¼ �
1
� ffiffiffiffiffiffi

2p
p �

e�x2=2; eN <x <N. (We call such random variable a standard normal

random variable.) Find the mgf of X.

Solution

By the definition of mgf, we have

EðetxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z þN

�N

etxe�x2=2dx

¼ 1ffiffiffiffiffiffi
2p

p
Z þN

�N

e�1
2ðx2�2txÞdx

¼ 1ffiffiffiffiffiffi
2p

p
Z þN

�N

e�1
2ðx2�2txþt2Þþt2

2 dx

¼ 1ffiffiffiffiffiffi
2p

p
Z þN

�N

e�1
2ðx�tÞ2þt2

2 dx

¼ et2=2 1ffiffiffiffiffiffi
2p

p
Z þN

�N

e�1
2ðx�tÞ2dx ¼ et2=2:
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as 1

� ffiffiffiffiffiffiffiffiffi
2pe

p �1
2ðx�tÞ2

is a normal pdf with mean t and variance 1 and hence, 1ffiffiffiffi
2p

p
RN
�N e�

1
2ðx�tÞ2 ¼ 1:

A random variable X with pdf

f ðxÞ ¼ ð1 =
ffiffiffiffiffiffiffiffi
2pÞ

p
e� 1

2s2
ðx�mÞ2 ; �N< x<N

is called a normal random variable with mean m and variance s2. We will denote such random variables by X: N(m, s2).

Properties of the moment-generating function

1. The moment-generating function of X is unique in the sense

that, if two random variables X and Y have the same mgf

(MX (t) ¼MY (t), for t in an interval containing 0), then X

and Y have the same distribution.

2. If X and Y are independent, then

MXþY ðtÞ ¼ MXðtÞMY ðtÞ:

That is, the mgf of the sum of two independent random

variables is the product of the mgfs of the individual random

variables. The result can be extended to 0n0 random variables.

3. Let Y ¼ aX þ (b) Then

MY ðtÞ ¼ ebtMXðatÞ:

EXAMPLE 2.6.12

Find the mgf of Xw N(m, s2).

Solution

Let Y: N(0, 1) and let X ¼ sY þ m. Then by the foregoing property (3), and Example 2.6.11, the mgf of X is

MX ðtÞ ¼ emtMY ðstÞ

¼ emt e
1
2s

2 t2 ¼ emtþ1
2s

2 t2 :

EXAMPLE 2.6.13

Let X1 : N
�
m1;s

2
1

�
; X2 : N

�
m2;s

2
2

�
. Let X1 and X2 be independent. Find the mgf of Y ¼ X1 þ X2 and obtain the distribution of Y.

Solution

By property (2)

MX ðtÞ ¼ MX1
ðtÞMX2

ðtÞ

¼
�
em1 tþ1

2s
2
1
t2
��

em2 tþ1
2s

2
2
t2
�

¼ eðm1þm2Þtþ1
2ðs21þs2

2Þt2 :
This implies: Y : N

�
m1 þm2; s

2
1 þs22

�
.

This result can be generalized. If X1, ., Xn are independent random variables such that Xi : N
�
mi; s

2
i

�
; i ¼ 1; :::; n;

then we can show that
Pn

i¼ 1 aiXi : N

�Pn
i¼ 1 aimi;

Pn
i¼ 1 a

2
i s

2
i

�
We will conclude this section by stating a result that will be useful in the proof of central limit theorem.

Theorem 2.6.4 Let Fn be a sequence of cumulative distribution functions with the corresponding moment generating
functions Mn. Let F be a cdf with the mgf M. If MnðtÞ/MðtÞ for all t in an open interval containing zero, then FnðxÞ/
FðxÞ for all x at which F is continuous.
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Exercises 2.6

2.6.1. Find E(X) where X is the outcome when one rolls a six-sided balanced die. Find the mgf of X. Also, using the mgf
of X, compute the variance of X.

2.6.2. The grades from a statistics class for the first test are given by

xi 96 87 65 49 77 74 99 68 56 84
pðxiÞ 3/15 2/15 1/15 1/15 2/15 1/15 1/15 1/15 1/15 2/15

(a) Find mean m and variance s2.
(b) Find the mgf.

2.6.3. The cdf of a discrete random variable Y is given in the following table:

y �1 0 2 5 6
F(y) 0.1 0.15 0.4 0.8 1

(a) Find E(Y), E(Y2), E(Y3), and Var(Y).
(b) Find the mgf of Y.

2.6.4. A discrete random variable X is such that

PðX ¼ nÞ ¼ 2n�1

3n
; n ¼ 1; 2;.; n; ::::

Show that E(X) ¼ 3
2.6.5. A discrete random variable X is such that

PðX ¼ 2nÞ ¼ 1
2n
; n ¼ 1; 2; :.

Show that E(X) ¼ N. That is, X has no mathematical expectation.
2.6.6. Let X be a random variable with pdf f(x) ¼ kx2 where 0 � x � 1.

(a) Find k.
(b) Find E(X) and Var(X).
(c) Find MX(t). Using the mgf, find E(X).

2.6.7. Let X be a random variable with pdf f(x) ¼ ax2 þ b, 0 � x � 1. Find a and b such that EðXÞ ¼ 5=8.
2.6.8. Given that X1, X2, X3, and X4 are independent random variables with mean 2, find E(Y) and E(Z) for

Y ¼ 3X4 � X1 þ 1
5
X3

Z ¼ X2 þ 7X3 � 9X1:

2.6.9. For a random variable X, prove (a)e(d) of Theorem 2.6.2.
2.6.10. Let ε (for “error”) be a random variable with E(ε) ¼ 0, and Var(ε) ¼ s2. Define the random variable, X ¼ m þ ε,

where m is a constant. Find E(X), Var(X), and E(ε2).
2.6.11. A degenerate random variable is a random variable taking a constant value. Let X ¼ c. Show that E(X) ¼ c, and

Var(X) ¼ 0. Also find the cumulative distribution function of the degenerate distribution of X.
2.6.12. Let Y:N(m, s2). Use the mgf to find E(X2) and E(X4).
2.6.13. Using Theorem 2.6.3, show that the mean and variance of the Poisson distribution, with parameter l, is equal to l.
2.6.14. Let X be a discrete random variable with a mass function

pðxÞ ¼

8><
>:

1
xðxþ 1Þ; x ¼ 1; 2; :::;

0; otherwise.

Show that the moment-generating function does not exist for this random variable.
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2.6.15. Let X be a random variable with geometric pdf

f ðxÞ ¼ pð1� pÞx�1
; x ¼ 1; 2; 3; ::::

(a) Find E(X) and Var(X).
(b) Show that MXðtÞ ¼ pet

1�ð1�pÞet; t < � ln (1 e p).
2.6.16. Find E(X) and Var(X) for a random variable X with pdf f ðxÞ ¼ 1

2e
�jxj; �N < x < N. Also find the mgf of X.

2.6.17. The probability density function of the random variable X is given by

f ðxÞ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

x2

2
; 0 < x � 1;

6x� 2x2 � 3
2

; 1 < x � 2;

ðx� 3Þ2
2

; 2 < x � 3;

0; otherwise.

Find the expected value of the random variable X.
2.6.18. Let the random variable X be normally distributed with mean 0 and variance s2. Show that E

�
Xð2kþ1Þ� ¼ 0,

where k ¼ 0, 1, 2, ..
2.6.19. If the kth moment of a random variable exists, show that all moments of order less than k exist.
2.6.20. Suppose that the random variable X has an mgf

MXðtÞ ¼ a

a� t
; t <

1
a
:

Let the random variable Y have the following function for its probability density:

gðyÞ ¼
�
ae�ay; y > 0;a > 0;

0; otherwise.

Can we obtain the probability density of the variable X with the foregoing information?

2.7 Chapter summary

In this chapter, we have introduced the concepts of random events and probability, how to compute the probabilities of
events using counting techniques. We have studied the concept of conditional probability, independence, and Bayes’ rule.
Random variables and distribution functions, moments, and moment-generating functions of random variables have also
been introduced.

The following lists some of the key definitions introduced in this chapter.

l Sample space
l Mutually exclusive events
l Informal definition of probability
l Classical definition of probability
l Frequency interpretation of probability
l Axiomatic definition of probability
l Multinomial coefficients
l Conditional probability
l Mutually independent events
l Pairwise independent events
l Random variable (r.v.)
l Discrete random variable
l Discrete probability mass function
l Cumulative distribution function
l Continuous random variable
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l Expected value
l kth moment about the origin
l kth moment about its mean
l Skewness and kurtosis
l Moment-generating function

The following important concepts and procedures have been discussed in this chapter:

l Method of computing probability by the classical approach
l Some basic properties of probability
l Computation of probability using counting techniques
l Four sampling methods:

l Sampling with replacement and the objects are ordered
l Sampling without replacement and the objects are ordered
l Sampling without replacement and the objects are not ordered
l Sampling with replacement and the objects are not ordered

l Permutation of n objects taken m at a time
l Combinations of n objects taken m at a time
l Number of combinations of n objects into m classes
l Some properties of conditional probability
l Law of total probability
l Steps to apply Bayes’ rule
l Some properties of distribution function
l Some properties of expected value
l Expectation of function of a random variable
l Properties of moment-generating functions

2.8 Computer examples (optional)

The three software packages, Minitab, SPSS, and SAS, that we are using in this book are not specifically designed for
probability computations. However, the following examples are given to demonstrate that we will be able to use the
software for some basic probability computations. We do not recommend using any of these three software packages for
probability calculations; they are basically designed for statistical computations. There are many other software packages
such as Maple or MATLAB, that can be used efficiently for probability computations.

2.8.1 Examples using R

Example 2.8.1 Calculating Cumulative Probabilities.
Random variable X has the following distribution:

X 1 4 5 8 11
p(x) 0.2 0.2 0.1 0.15 0.35

Find PðX � 4Þ, in this example we will use the which() statement to calculate the cumulative probability in R,
however, there may be other methods available. Try using the which() statement by itself.

R code
x¼c(1,4,5,8,11);

Notice p sums to 1
p¼c(0.2,0.2,0.1,0.15,0.35);

sum(p[which(x<¼4)]);
Notice we're summing p values based
on x values which meet the criterion.

Output:

0.4 i.e, PðX � 4Þ ¼ 0:4
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Example 2.8.2 Expected Value.
Using the data in Example (2.8.1) calculate EðXÞ and VarðXÞ.
Since we’re given the distribution we can calculate it using the sum of the values multiplied by their probabilities.
R code
x¼c(1,4,5,8,11);
p¼c(0.2,0.2,0.1,0.15,0.35); Notice p sums to 1

sum(x*p); E(X)
sum(x*x*p)-sum(x*p)̂(2); Var(X)
Output:
6.55 E(X )

14.9475 Var(X)

2.8.2 Minitab computations

In order to find the cdf of a random variable, we can use the following commands in Example 2.8.1. We can use the
mathematical expressions to find the expected value of a discrete random variable.

EXAMPLE 2.8.1

A random variable X has the following distribution:

x 1 4 5 8 11

p(x) 0.2 0.2 0.1 0.15 0.35

Find P(X � 4).

Solution

Enter x values in C1 and p(x) values in C2.

Calc > Probability Distributions > Discrete . > click Cumulative probability, and in Values in: enter C1, Probabilities in:

enter C2, click input column: enter C1, in Optional storage: enter C3 > OK

We will get the following output in column C3.

0:20 0:40 0:50 0:65 1:00

EXAMPLE 2.8.2

For the random variable X in Example 2.8.1, find E(X).

Solution

Enter X values in column C1 (i.e., 1 4 5 8 11), and enter p(x) values in column C2. Use the following procedure.

Calc > Calculator . > Store results in variable: type C3 > in Expression: type (C1)*(C2) > click OK Then to find the sum of

values in column C3 > Calc > Column Statistics . > click Sum and in Input variable: type C3 > click OK

We will get the output as

Column Sum

Sum of C3 ¼ 6.5500

Note that this Sum gives the E(X). In the previous procedure, if we store the expression (C1)*(C1)*(C2) in column C4
and find the sum of terms in C4, we will get E(X2). Using this, we will be able to compute Var(X). Using a similar
procedure, we can obtain E(Xn) for any n � 1.
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2.8.3 SPSS examples

EXAMPLE 2.8.3

For the random variable X in Example 2.8.1, find E(X).

Solution

In column 1, enter the x values and column 2 enter the p(x) values. Then.

Transform > compute . > in target variable: type a name, say, product. Move var00001 and var00002 to Numeric

Expression: field and put ‘‘*’’ in between them as (var00001)*(var00002). Then use the SUM(., .) command to find the value of

E(X)

2.8.4 SAS examples

EXAMPLE 2.8.4

A random variable X has the following distribution:

x 2 5 6 8 9

P(X) 0.1 0.2 0.3 0.1 0.3

Using SAS, find E(X).

Solution

For discrete distributions where the random variable takes finite values, we can adapt the following procedure:

data evalue;

input x y n;

z ¼ x*y*n;

cards;

2 .1 5

5 2 5

6 .3 5

8 .1 5

9 .3 5

;

run;

proc means;

run;

We know that if proc means is used just for x*y, that will give us 1
n

P
xrðxÞ; hence, multiplying by n, the number of

values X takes will give us E(X) ¼Pxp(x). We will get the following output:

The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum

X 5 6.0000000 2.7386128 2.0000000 9.0000000
Y 5 0.2000000 0.1000000 0.1000000 0.3000000
N 5 5.0000000 0 5.0000000 5.0000000
Z 5 6.5000000 4.8476799 1.0000000 13.5000000

From this, we can see that E(X) ¼ 6.5. A direct way to find the expected value is by using “PROC IML.”
options nodate nonumber;
/* Finding expected value of a random variable */
proc iml;
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/* defining all the variables */
x ¼ {2 5 6 8 9};/* a row vector */
y ¼ {.1 .2 .3 .1 .3};/* probabilities */
/* calculations */
z ¼ x*y’;
/* print statements */
print “Display the vector x and probability y and the expected value”;
print x y, z;
quit;

We will get the following output:
X
2 5 6 8 9
Y
0.1 0.2 0.3 0.1 0.3
Z
6.5

Projects for chapter 2

2A The birthday problem

The famous birthday problem is to find the smallest number of people one must ask to get an even chance that at least two
people have the same birthday. To solve this you can use the following steps.

Find the probability that in a group of k people no two have the same probability. Let q be this probability. Then P ¼ 1
e q is the probability that at least two people have the same birthday. Ignoring leap years, take the sample space S as all
sequences of length k with each element one of the 365 days in the year. Thus there are 365k elements in S.

(a) Find the total number of sequences with no common birthdays.
(b)Assuming that each sequence is equally likely, show that

q ¼ ð365Þð364Þ.ð365� k þ 1Þ
365k

:

(c) Write a computer program for calculating q for k ¼ 2 to 50, and find the first k for which P > .5. This will give the least
number of people we should ask to make it an even chance that at least two people will have the same birthday.

2B The HardyeWeinberg law

Hereditary traits in offspring depend on a pair of genes, one each contributed by the father and the mother. A gene is either a
dominant allele, denoted by A, or a recessive allele, denoted by a. If the genotype is AA, Aa, or aA, then the hereditary trait is
A, and if the genotype is aa, then the hereditary trait is a. Suppose that the probabilities of the mother carrying the genotypes
aa, aA (same as Aa), and AA are p, q, and r, respectively. Here p þ q þ r ¼ 1. The same probabilities are true for the father.

(a) Assuming that the genetic contributions of the mother and father are independent and the matings are random, show
that the respective probabilities for the first-generation offspring are

p1 ¼ ðpþ q=2Þ2; q1 ¼ 2ðrþ q = 2Þ ðpþ q = 2Þ; r1 ¼ ðr þ q=2Þ2:

Also find P(A) and P(a)
(b) The Englishman G. H. Hardy and the German W. Weinberg could show that the foregoing probabilities in a population

stay constant for generations if certain conditions are fulfilled. This is known as the HardyeWeinberg law. Under the
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conditions of part (a), using the induction argument, show that the HardyeWeinberg law is satisfied, i.e., pn ¼ p1,
qn ¼ q1, and rn ¼ r1 for all n � 1. The consequences of the HardyeWeinberg law are that (1) no evolutionary change
occurs through the process of sexual reproduction itself, and (2) changes in allele and genotype frequencies can result
only from additional forces on the gene pool of a species.

2C Some basic probability simulation

Simulation imitates a real situation and it models a real situation by performing the experiment repeatedly. Repeated real
experiments are time consuming and expensive and they are difficult to calculate theoretically, whereas a computer
simulation mostly takes only seconds. For instance, think of a simple experiment of throwing a die 100 times and recording
the up face. It will take a long time, whereas in R, the outcomes are obtained instantaneously. In simulations, often we have
to make assumptions about situations being simulated, such as, there is an equal chance of producing a head or a tail. In
this project, we will show a few simple examples and give a few more exercises. The idea of this project is to encourage
students to explore more on probability simulation.

We could simulate tossing of a coin, say, 20 times by following commands.
n ¼ 20
sample(c("Heads,","Tails"), n, rep ¼ T)
Suppose we want to simulate tossing a die 100 times and observe the up face each time, we could use the following R

command.
Rolldie1 ¼ function(n) sample(1:6, n, rep ¼ T)
Rolldie1(100)
Another example: Consider picking Powerball numbers, where Powerball consists of choosing five numbers from

1e59 (without replacement) and one number (called the Powerball) chosen from 1e39. People when choosing manually
the numbers, usually, they will choose 1e31 due to various birthdates. Following a way of choosing a random combi-
nation, in which we give higher probability for numbers 32e59. You can play around with this code to change various
probabilities (code is based on the code in https://www.r-bloggers.com/picking-lotto-numbers/).

gen_lotto < -function(){
þ white < -seq(1:59)
þ red < -31:39.
þ probs < -white.
þ # Decrease probabilities for commonly chosen numbers.
þ probs[probs<¼31]<-1/(59)
þ probs[probs>¼32]<-1/14.
þ # We need 5 white.
þ w < -sample(white,5,prob ¼ probs)
þ # We need 1 Powerball
þ r < -sample(red,1)
þ # Print results.
þ cat(" White Balls:",w[order(w)]," \n","Powerball:",r)
þ # Make a good warning.
þ cat(" \n Remember, your odds of winning: \n","1 in 195,249,05400)
þ }
> gen_lotto()
This will give you five numbers and a Powerball! Good luck!
Exercises: Write and run R code for following problems:

1. In 1000 coin tosses, what is the probability of having the same side come up 10 times in a row?
2. In 10 coin tosses, what is the probability of having a different side come up with each throw, that is, that you never get

two tails or two heads in a row?
3. Write codes to generate numbers for the lottery you are interested in.

Think of a few other situations where simulation is appropriate.
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Objective

In this chapter we present some special distributions, joint distributions of several random variables, functions of
random variables, and some important limit theorems.

Johann Carl Friedrich Gauss
Source: http://tobiasamuel.files.wordpress.com/2008/06/carl_friedrich_gauss.jpg.
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German mathematician and physicist Carl Friedrich Gauss (1777e1855) is sometimes called the “prince of
mathematics.” He was a child prodigy. At the age of 7, Gauss started elementary school, and his potential was noticed
almost immediately. His teachers were amazed when Gauss summed the integers from 1 to 100 instantly. At age 24,
Gauss published one of the most brilliant achievements in mathematics, Disquisitiones Arithmeticae (1801). In it, Gauss
systematized the study of number theory. Gauss applied many of his mathematical insights to the field of astronomy,
and by using the method of least squares he successfully predicted the location of the asteroid Ceres in 1801. In 1820
Gauss made important inventions and discoveries in geodesy, the study of the shape and size of the Earth. In statistics,
he developed the idea of normal distribution. In the 1830s he developed theories of non-Euclidean geometry and
mathematical techniques for studying the physics of fluids. Although Gauss made many contributions to applied sci-
ence, especially electricity and magnetism, pure mathematics was his first love. It was Gauss who first called mathe-
matics “the queen of the sciences.”

3.1 Introduction

In the previous chapter, we looked at the basic concepts of probability calculations, random variables, and their distri-
butions. There are many special distributions that have useful applications in statistics. It is worth knowing the type of
distribution that we can expect under different circumstances, because better knowledge of the population will result in
better inferential results. In the next section, we discuss some of these distributions with some additional distributions
presented in Appendix A3. We also briefly deal with joint distributions of random variables and functions of random
variables. Limit theorems play an important role in statistics. We will present two limit theorems: the law of large numbers
and the central limit theorem (CLT).

3.2 Special distribution functions

Random variables are often classified according to their probability distribution functions. In any analysis of quantitative
data, it is a major step to know the form of the underlying probability distributions. There are certain basic probability
distributions that are applicable in many diverse contexts and thus repeatedly arise in practice. A great variety of special
distributions have been studied over the years. Also, new ones are frequently being added to the literature. It is impossible
to give a comprehensive list of all probability distribution functions in this book. There are many books and websites that
deal with a range of probability distribution functions. A good list of distributions can be obtained from http://www.
causascientia.org/math_stat/Dists/Compendium.pdf. In this section, we will describe some of the commonly used prob-
ability distributions. In Appendix A3, we list some more distributions with their mean, variance, and moment-generating
functions (mgfs). First we shall discuss some discrete probability distributions.

3.2.1 The binomial probability distribution

The simplest distribution is the one with only two possible outcomes. For example, when a coin (not necessarily fair) is
tossed, the outcomes are heads or tails, with each outcome occurring with some positive probability. These two possible
outcomes may be referred to as “success” if heads occurs and “failure” if tails occurs. Assume that the probability of heads
appearing in a single toss is p; then the probability of tails is 1 � p ¼ q. We define a random variable X associated with this
experiment as taking value 1 with probability p if heads occurs and value 0 if tails occurs, with probability q. Such a
random variable X is said to have a Bernoulli probability distribution. That is, X is a Bernoulli random variable if, for some
p, 0 � p � 1, the probability P(X ¼ 1) ¼ p, and P(X ¼ 0) ¼ 1 � p. The probability function of a Bernoulli random variable
X can be expressed as:

pðxÞ ¼ PðX ¼ xÞ ¼
(
pxð1� pÞ1�x

; x ¼ 0; 1

0; otherwise.

Note that this distribution is characterized by the single parameter p. It can be easily verified that the mean and variance
of X are E[X] ¼ p and Var(X) ¼ pq, respectively, and the mgf is MX(t) ¼ pet þ (1 � p).

Even when the experimental values are not dichotomous, reclassifying the variable as a Bernoulli variable can be
helpful. For example, consider blood pressure measurements. Instead of representing the numerical values of blood
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pressure, if we reclassify the blood pressure as “high blood pressure” and “low blood pressure,” we may be able to avoid
dealing with a possible misclassification due to diurnal variation, stress, and so forth, and concentrate on the main issue,
which would be, is the average blood pressure unusually high?

In a succession of Bernoulli trials, one is more interested in the total number of successes (whenever a 1 occurs in a
Bernoulli trial, we term it a “success”). The probability of observing exactly k successes in n independent Bernoulli trials
yields the binomial probability distribution. In practice, the binomial probability distribution is used when we are con-
cerned with the occurrence of an event, not its magnitude. For example, in a clinical trial, we may be more interested in the
number of survivors after a treatment.

Definition 3.2.1 A binomial experiment is one that has the following properties: (1) The experiment consists of n identical
trials. (2) Each trial results in one of the two outcomes, called a success S and failure F. (3) The probability of success on a
single trial is equal to p and remains the same from trial to trial. The probability of failure is 1 � p ¼ q. (4) The outcomes
of the trials are independent. (5) The random variable X is the number of successes in n trials.

We have seen that the number of ways of obtaining x successes in n trials is given by:

�
n

x

�
¼ n!

x!ðn� xÞ!:

Definition 3.2.2 A random variable X is said to have binomial probability distribution with parameters (n, p) if and
only if:

PðX ¼ xÞ ¼ pðxÞ ¼
 
n

x

!
pxqn�x

¼

8>>><
>>>:

n!

x!ðn� xÞ! p
xqn�x; x ¼ 0; 1; 2;.; n; 0 � p � 1; and q ¼ 1� p

0; otherwise.

To show the dependence on n and p, we denote p(x) by b(x; n, p) and the cumulative probability distribution by:

Bðx; n; pÞ ¼
Xx
i¼ 0

bði; n; pÞ :

The binomial probabilities have been tabulated and are given in the binomial table.
By the binomial theorem, we have:

ðpþ qÞn ¼
Xn
x¼ 0

�
n

x

�
pxqn�x:

Because (p þ q) ¼ 1, we conclude that
Px
i¼ 0

bði; n; pÞ ¼ Pn
x¼ 0

�
n

x

�
pxqn�x ¼ 1n ¼ 1; for all n � 1 and 0 � p � 1.

Hence, p(x) is indeed a probability mass function (pmf). The binomial probability distribution is characterized by two
parameters, the number of independent trials n and the probability of success p. Following R commands will help in
binomial calculation. If we want the compute probability, say for n ¼ 10, and p ¼ 0.2, use “dbinom(0:10, 10, 0.2)”.
Suppose we want to compute PðX ¼ 6Þ, use “dbinom(6, 10, 0.2)”. If we want cumulative probability, say, PðX � 3Þ, use
“pbinom(3, 10, 0.2)”.
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EXAMPLE 3.2.1

It is known that screws produced by a certain machine will be defective with probability 0.01 independent of one another. If we

randomly pick 10 screws produced by this machine, what is the probability that at least two screws will be defective?

Solution

Let X be the number of defective screws out of 10. Then X can be considered as a binomial random variable with pa-

rameters (10, 0.01). Hence, using the binomial pmf p(x), given in Definition 3.2.2, we obtain that at least two screws will be

defective, as:

PðX � 2Þ ¼
X10
x ¼ 2

 
10

x

!
ð0:01Þxð0:99Þ10�x

¼ 1� ½PðX ¼ 0Þ þ P ðX ¼ 1Þ� ¼ 0:004:

R-command: 1-pbinom(1,10,0.01)

In Chapter 2, we introduced Mendel’s law. In biology, the result “gene frequencies and genotype ratios in a randomly
breeding population remain constant from generation to generation” is known as the HardyeWeinberg law.

EXAMPLE 3.2.2

Suppose we know that the frequency of a dominant gene, A, in a population is 0.2. If we randomly select eight members of this

population, what is the probability that at least six of them will display the dominant phenotype? Assume that the population is

sufficiently large that removing eight individuals will not affect the frequency and that the population is in HardyeWeinberg

equilibrium.

Solution

First of all, note that an individual can have the dominant gene, A, if the person has traits AA, aA, or Aa. Hence, if the gene

frequency is 0.2, the probability that an individual is of genotype A is:

P ðAÞ ¼ PðAAWAaWaAÞ ¼ P ðAAÞ þ 2P ðAaÞ
¼ ð0:2Þ2 þ 2ð0:2Þð0:8Þ ¼ 0:36:

Let X denote the number of individuals out of eight that display the dominant phenotype. Then X is binomial with
n ¼ 8, and p ¼ 0.36. Thus, the probability that at least six of them will display the dominant phenotype is:

PðX � 6Þ ¼ PðX ¼ 6Þ þ PðX ¼ 7Þ þ PðX ¼ 8Þ

¼
X8
i¼ 6

 
10

i

!
ð0:36Þið0:64Þ10�i ¼ 0:029259:

R-command: 1-pbinom(5,8,0.36)
For large n, calculations of the binomial probabilities is tedious. Many statistical software packages have binomial

probability distribution commands. For the purpose of this book, we will use the binomial table that gives the cumulative
probabilities B(x, n, p) for n ¼ 2 through n ¼ 20 and p ¼ 0.05, 0.10, 0.15, ., 0.90, 0.95. If we need the probability of a
single term, we can use the relation:

PðX ¼ xÞ ¼ bðx; n; pÞ ¼ Bðx; n; pÞ � Bðx� 1; n; pÞ:

EXAMPLE 3.2.3

A manufacturer of inkjet printers claims that only 5% of their printers require repairs within the first year. If, of a random sample of

18 of the printers, four required repairs within the first year, does this tend to refute or support the manufacturer’s claim?

Solution

Let us assume that the manufacturer’s claim is correct; that is, the probability that a printer will require repairs within the first

year is 0.05. Suppose 18 printers are chosen at random. Let p be the probability that any one of the printers will require repairs
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within the first year. We now find the probability that at least four of the 18 will require repairs during the first year. Let X represent

the number of printers that require repair within the first year. Then X follows the binomial pmf with p ¼ 0.05, n ¼ 18. The

probability that four or more of the 18 will require repair within the first year is given by:

PðX � 4Þ ¼
X18
x ¼ 4

�
18

x

�
ð0:05Þxð0:95Þ18�x

or, using the binomial table:

X18
x¼ 4

bðx; 18;0:05Þ ¼ 1� Bð3;18;0:05Þ

¼ 1� 0:9891

¼ 0:0109:

This value (approximately 1.1%) is very small. We have shown that if the manufacturer’s claim is correct, then the chances of

observing four or more bad printers out of 18 are very small. But we did observe exactly four bad ones. Therefore, we must

conclude that the manufacturer’s claim cannot be substantiated.

Mean, Variance, and Moment-Generating Function of a Binomial Random Variable

Theorem 3.2.1 If X is a binomial random variable with

parameters n and p, then:

EðXÞ ¼ m ¼ np

and

VarðXÞ ¼ s2 ¼ npð1� pÞ:
Also, the mgf is:

MXðtÞ ¼ ½pet þ ð1� pÞ�n:

Proof.We derive the mean and the variance. The derivation for mgf is given in Example 2.6.8. Using the binomial pmf,
p(x) ¼ (n!/(x!(n � x)!))pxqn�x, and the definition of expectation, we have:

m ¼ EðXÞ ¼
Xn
x¼ 0

xpðxÞ ¼
Xn
x¼ 0

x
n!

x!ðn� xÞ! p
xð1� pÞn�x

¼
Xn
x¼ 1

n!

ðx� 1Þ!ðn� xÞ! p
xð1� pÞn�x

;

since the first term in the sum is zero, as x ¼ 0.
Let i ¼ x � 1. When x varies from 1 through n, i ¼ (x � 1) varies from 0 through (n � 1). Hence,

m ¼
Xn�1

i¼ 0

n!

i!ðn� i� 1Þ! p
iþ1ð1� pÞn�i�1

¼ np
Xn�1

i¼ 0

ðn� 1Þ!
i!ðn� 1� iÞ! p

ið1� pÞn�1�i
;

¼ np;

because the last summand is that of a binomial pmf with parameter (n � 1), and p, hence, equals 1.
To find the variance, we first calculate E[X(X � 1)]:
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E½XðX � 1Þ� ¼
Xn
x¼ 0

xðx� 1Þ n!

x!ðn� xÞ! p
xð1� pÞn�x

¼
Xn
x¼ 2

n!

ðx� 2Þ!ðn� xÞ! p
xð1� pÞn�x

;

because the first two terms are 0. Let i ¼ x � 2. Then,

E½XðX � 1Þ� ¼
Xn�2

i¼ 0

n!

i!ðn� i� 2Þ! p
iþ2ð1� pÞn�i�2

¼ nðn� 1Þp2
Xn�2

i¼ 0

ðn� 2Þ!
i!ðn� 2� iÞ! p

ið1� pÞn

¼ nðn� 1Þp2;
because the last summand is that of a binomial pmf with parameter (n � 2) and p thus, equals 1.

Note that E(X(X � 1)) ¼ EX2 � E(X), and so we obtain:

s2 ¼ VarðXÞ ¼ E
�
X2
�� ½EðXÞ�2

¼ E½XðX � 1Þ� þ EðXÞ � ½EðXÞ�2

¼ nðn� 1Þp2 þ np� ðnpÞ2 ¼ �np2 þ np

¼ npð1� pÞ:

3.2.2 Poisson probability distribution

The Poisson probability distribution was introduced by the French mathematician Siméon-Denis Poisson in his book
published in 1837, which was entitled Recherches sur la probabilité des jugements en matières criminelles et matière civile
and dealt with the applications of probability theory to lawsuits, criminal trials, and the like. Consider a statistical
experiment of which A is an event of interest. A random variable that counts the number of occurrences of A is called a
counting random variable. The Poisson random variable is an example of a counting random variable. Here, we assume
that the numbers of occurrences in disjoint intervals are independent and the mean of the numbers of occurrences is
constant.

Definition 3.2.3 A discrete random variable X is said to follow the Poisson probability distribution with parameter l > 0,
denoted by Poisson(l), if:

PðX ¼ xÞ ¼ f ðx; lÞ ¼ f ðxÞ ¼ e�llx

x!
; x ¼ 0; 1; 2;.

The Poisson probability distribution is characterized by the single parameter l, which represents the mean of a Poisson
probability distribution. Thus, to specify the Poisson distribution, we need to know only the mean number of occurrences.
This distribution is of fundamental theoretical and practical importance. Rare events are modeled by the Poisson distri-
bution. For example, the Poisson probability distribution has been used in the study of telephone systems. The number of
incoming calls into a telephone exchange during a unit of time might be modeled by a Poisson variable assuming that the
exchange services a large number of customers who call more or less independently. Some other problems where Poisson
representation can be used are the number of misprints in a book, radioactivity counts per unit of time, the number of
plankton (microscopic plant or animal organisms that float in bodies of water) per aliquot of seawater, or the count of
bacterial colonies per Petri dish in a microbiological study. In stem cell research, the Poisson distribution is used to analyze
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the redundancy of clusters in the stem cell database. A Poisson probability distribution has the unique property that its
mean equals its variance.

Mean, Variance, and Moment-Generating Function of a Poisson Random Variable

Theorem 3.2.2 If X is a Poisson random variable with

parameter l, then:

EðXÞ ¼ l

and

VarðXÞ ¼ l.

Also, the mgf is:

MX ðtÞ ¼ elðet�1Þ:

The proof of this result is similar to that we used in Theorem 3.2.1 in this section. One needs to use the Maclaurin

expansion, el ¼ PN
i¼ 0

�
li
�
i!
�
; in proving this result.

EXAMPLE 3.2.4

Let X be a Poisson random variable with l ¼ 1/2. Find:

(a) P(X ¼ 0)

(b) P(X � 3)

Solution

(a) We have:

PðX ¼ 0Þ ¼ pð0Þ ¼ e�1=2ð1=2Þ0
0!

¼ e�1=2 ¼ 0:60653:

(b) Here, we will use the complementary event to compute the required probability. That is,

P ðX � 3Þ ¼ 1� P ðX � 2Þ ¼ 1� ½pð0Þ þ pð1Þ þ pð2Þ�

¼ 1�
"
e�1=2 þ e�1=2ð1=2Þ

1!
þ e�1=2ð1=2Þ2

2!

#

¼ 1� 0:98561 ¼ 0:01439:

R-command: ppois(2, lambda¼1/2, lower¼FALSE)

When n is large and p small, binomial probabilities are often approximated by Poisson probabilities. In these situations,
where performing the factorial and exponential operations required for direct calculation of binomial probabilities is a
lengthy and tedious process and tables are not available, the Poisson approximation is more feasible. The following
theorem states this result.

Poisson Approximation to the Binomial Probability Distribution

Theorem 3.2.3 If X is a binomial random variable with pa-

rameters n and p, then for each value x ¼ 0, 1, 2, . and as p

/ 0, n / N with np ¼ l constant,

lim
n/N

�
n

x

�
pxð1� pÞn�x ¼ e�llx

x!
:
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The proof of this result is similar to that we used in Theorem 3.2.1. In the present context, the Poisson probability
distribution is sometimes referred to as “the distribution of rare events” because of the fact that p is quite small when n is
large. Usually, if p � 0.1 and n � 40 we could use the Poisson approximation in practice. In general, another rule of thumb
is to use Poisson approximation to binomial in the case of n > 50 and np < 5.

EXAMPLE 3.2.5

If the probability that an individual suffers an adverse reaction from a particular medication is known to be 0.001, determine the

probability that, of 2000 individuals, (a) exactly three and (b) more than two individuals will suffer an adverse reaction.

Solution

Let Y be the number of individuals who suffer an adverse reaction. Then Y is binomial with n ¼ 2000 and p ¼ 0.001. Because

n is large and p is small, we can use the Poisson approximation with l ¼ np ¼ 2.

(a) The probability that exactly three individuals will suffer an adverse reaction is:

PðY ¼ 3Þ ¼ 23e�2

3!
¼ 0:18:

That is, there is approximately an 18% chance that exactly three individuals of 2000 will suffer an adverse reaction.

(b) The probability that more than two individuals will suffer an adverse reaction is:

P ðY > 2Þ ¼ 1� P ðY ¼ 0Þ � PðY ¼ 1Þ � P ðY ¼ 2Þ

¼ 1� 5e�2 ¼ 0:323:

Similarly, there is approximately a 32.3% chance that more than two individuals will have an adverse reaction.

R-command: ppois(2, lambda¼2, lower¼FALSE)

Now we will discuss some continuous distributions. As mentioned earlier, if X is a continuous random variable with
probability density function (pdf) f(x), then:

Pða�X� bÞ ¼
Z b

a

f ðxÞdx:

3.2.3 Uniform probability distribution

The uniform probability distribution is used to generate random numbers from other distributions and also is useful as a
“first guess” if no information about a random variable X is known other than that it is between a and b. Also, in real-world
problems that have uniform behavior in a given interval, we can characterize the probabilistic behavior of such a phe-
nomenon by the uniform distribution (see Fig. 3.1).

f (x) = 0

a b

f (x) = 0
f (x) = 1/(b�a)

FIGURE 3.1 Uniform probability density.
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Definition 3.2.4 A random variable X is said to have a uniform probability distribution on (a, b), denoted by U(a, b), if the
density function of X is given by:

f ðxÞ ¼

8><
>:

1
b� a

;

0;

a � x � b;

otherwise.

The cumulative distribution function (cdf) is given by:

FðxÞ ¼
Z x

�N

1
b� a

dx ¼

8>>>><
>>>>:

0; x < a
x� a

b� a
; a � x < b

1; x � b:

EXAMPLE 3.2.6

If X is a uniformly distributed random variable over (0, 10), calculate the probability that (a) X < 3, (b) X > 6, and (c) 3 < X < 8.

Solution

(a) PðX < 3Þ ¼
Z 3

0

1

10
dx ¼ 3

10
:

(b) PðX > 6Þ ¼
Z 10

6

1

10
dx ¼ 4

10
:

(c) P ð3<X > 8Þ ¼
Z 8

3

1

10
dx ¼ 1

2
.

Mean, Variance, and Moment-Generating Function of a Uniform Random Variable

Theorem 3.2.4 If X is a uniformly distributed random variable

on (a, b), then:

EðXÞ ¼ aþ b

2
;

and

VarðXÞ ¼ ðb � aÞ2
12

:

Also, the mgf is:

MX ðtÞ ¼

8><
>:

etb � eta

tðb � aÞ; t s 0

1; t ¼ 0:

Proof. We will obtain the mean and the variance and leave the derivation of the mgf as an exercise. By definition we
have:

EðXÞ ¼
Z N

�N

x
1

b� a
dx

¼
Z b

a

x
1

b� a
dx ¼ 1

b� a

 
x2

2

����
b

a

!

¼ aþ b

2
:
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Also:

E
�
X2
� ¼

Z b

a

x2
1

b� a
dx ¼ 1

b� a

 
x3

3

����
b

a

!

¼ 1
3
b3 � a3

b� a

¼ 1
3

�
b2 þ abþ a2

�
as b3 � a3 ¼ ðb� aÞ�b2 þ abþ a2

�
:

Thus,

VarðXÞ ¼ E
�
X2
�� ðEðXÞÞ2

¼ 1
3

�
b2 þ abþ a2

�� ðaþ bÞ2
4

¼ 1
12

ðb� aÞ2:

EXAMPLE 3.2.7

The melting point, X, of a certain solid may be assumed to be a continuous random variable that is uniformly distributed between

the temperatures 100 and 120�C. Find the probability that such a solid will melt between 112 and 115�C.
Solution

The pdf is given by:

f ðxÞ ¼

8><
>:

1

20
;

0

100 � x � 120

otherwise.

Hence,

P ð112�X � 115Þ ¼
Z 115

112

1

20
dx ¼ 3

20
¼ 0:15:

Thus, there is a 15% chance of this solid melting between 112 and 115�C.

3.2.4 Normal probability distribution

The single most important distribution in probability and statistics is the normal probability distribution. The density
function of a normal probability distribution is bell shaped and symmetric about the mean. The normal probability dis-
tribution was introduced by the French mathematician Abraham de Moivre in 1733. He used it to approximate probabilities
associated with binomial random variables when n is large. This was later extended by Laplace to the so-called CLT, which
is one of the most important results in probability. Carl Friedrich Gauss in 1809 used the normal distribution to solve the
important statistical problem of combining observations. Because Gauss played such a prominent role in determining the
usefulness of the normal probability distribution, the normal probability distribution is often called the Gaussian distri-
bution. Gauss and Laplace noticed that measurement errors tend to follow a bell-shaped curve, a normal probability
distribution. Today, the normal probability distribution arises repeatedly in diverse areas of applications. For example, in
biology, it has been observed that the normal probability distribution fits data on the heights and weights of human and
animal populations, among others.

We should also mention here that almost all basic statistical inference is based on the normal probability distribution.
The question that often arises is, when do we know that our data follow the normal distribution? To answer this question,
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we have specific statistical procedures that we study in later chapters, but at this point we can obtain some constructive
indications of whether the data follow the normal distribution by using descriptive statistics. That is, if the histogram of our
data can be capped with a bell-shaped curve (Fig. 3.2), if the stem-and-leaf diagram is fairly symmetrical with respect to its
center, and/or by invoking the empirical rule “backward,” we can obtain a good indication of whether our data follow the
normal probability distribution.

Definition 3.2.5 A random variable X is said to have a normal probability distribution with parameters m and s2, if it has
a pdf given by:

f ðXÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ2=2s2 ;�N < x < N;�N < m < N; s > 0:

If m ¼ 0, and s ¼ 1, we call it a standard normal random variable.
For any normal random variable with mean m and variance s2, we use the notation Xw N(m, s2). When a random

variable X has a standard normal probability distribution, we will write Xw N(0, 1) (X is a normal with mean 0 and
variance 1). Probabilities for a standard normal probability distribution are given in the normal table.

Mean, Variance, and Moment-Generating Function of a Normal Random Variable

Theorem 3.2.5 If X w N(m, s2), then E(X) ¼ m and Var(X) ¼ s2.

Also, the mgf is:

MXðtÞ ¼ etmþ1
2t

2s2 :

If Xw N(m, s2), then the z-transform (or z-score) of X; Z ¼ X�m
s
wNð0; 1Þ: This fact will be used in calculating

probabilities for normal random variables. The normal table given in Appendix AV.2 is based on standard normal dis-
tribution. Note that for the continuous random variables, the probabilities of strict and nonstrict inequalities are the same,
that is, PðX> aÞ ¼ PðX � aÞ:

EXAMPLE 3.2.8

(a) For Xw N(0, 1), calculate P(Z � 1.13).

(b) For Xw N(5, 4), calculate P(�2.5 < X < 10).

Solution

(a) Using the normal table,

P ðZ � 1:13Þ ¼ 0:5� 0:3708 ¼ 0:1292:

0
0.0

0.1

0.2

0.3

0.4

0.5
Standard normal probabilty distribution

f(z)

z

FIGURE 3.2 Standard normal density function.
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The shaded part in the graph represents the P(Z � 1.13).

0.0

0.1

0.2

0.3

0.4

0.5

1.13

f(z)

z

R-code: pnorm(1.13, mean¼0, sd¼1, lower.tail¼FALSE)

(b) Using the z-transform, we have:

P ð�2:5 < X < 10Þ ¼ P

��2:5� 5

2
< Z <

10� 5

2

�

¼ Pð�3:75 < Z < 2:5Þ

¼ Pð�3:75 < Z < 0Þ þ P ð0 < Z < 2:5Þ

¼ 0:9938:

0.0

0.1

0.2

0.3

0.4

0.5

-2.5    5          10

f (x)

x

That is, we are 99.38% certain the Z will assume a value between �2.5 and 10.

R-code: pnorm(2.5, mean¼0, sd¼1, lower.tail¼TRUE)-pnorm(�3.75, mean¼0, sd¼1, lower.tail¼TRUE) or pnorm(10,

mean¼5, sd¼2, lower.tail¼TRUE)-pnorm(�2.5, mean¼5, sd¼2, lower.tail¼TRUE)

In the following example, we will show how to find the z values when the probabilities are given.

EXAMPLE 3.2.9

For a standard normal random variable Z, find the value of z0 such that:

(a) P(Z > z0) ¼ 0.25

(b) P(Z < z0) ¼ 0.95

(c) P(Z < z0) ¼ 0.12

(d) P(Z > z0) ¼ 0.68

Solution

(a) From the normal table, and using the fact that the shaded area in the figure is 0.25, we have

PðZ> z0Þ ¼ 0:5� Pð0 � Z � z0Þ ¼ 0:25: Thus, Pð0 � Z � z0Þ ¼ 0:25 and hence, we obtain z0 z 0.675.
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Z0
0.0

0.1

0.2

0.3

0.4

0.5

f(z)

z

(b) Because P(Z < z0) ¼ 1 � P(Z � z0) ¼ 0.95 ¼ 0.5 þ 0.45. From the normal table, z0 ¼ 1:645.

(c) From the normal table, z0 ¼ �1.175.
(d) Using the normal table, we have P(Z > z0) ¼ 0.5 þ P(0 < Z < z0) ¼ 0.68.

This implies Pðz0 < Z< 0Þ ¼ 0:18. From the normal table, z0 ¼ �0.465.

EXAMPLE 3.2.10

The scores of an examination are assumed to be normally distributed with m ¼ 75 and s2 ¼ 64. What is the probability that a

student score chosen at random will be greater than 85?

Solution

Let X be a randomly chosen score from the exam scores. Then, Xw N(75, 64):

P ðX > 85Þ ¼ P

�
X � 75

8
>

85� 75

8
¼ 1:25

�

¼ PðZ > 1:25Þ ¼ 0:1056:

1.25
0.0

0.1

0.2

0.3

0.4

0.5

f(z)

z

Thus, there is about a 10.56% chance that the score will be greater than 85.

In practice, whenever a large number of small effects is present and acting additively, it is reasonable to assume that
observations will be normal. When the number of data is small, it is risky to assume a normal distribution without a proper
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testing. Apart from histogram, box-plot, and stem-and-leaf displays, one of the most useful tools for assessing normality is
a quantileequantile or QQ plot. This is a scatterplot with the quantiles of the scores on the horizontal axis and the expected
normal scores on the vertical axis. The expected normal scores are calculated by taking the z-scores of (ri � 0.5)/n, where ri
is the rank of the ith observation in increasing order. The steps in constructing a QQ plot are as follows: first, we sort the
data in ascending order. If the plot of these scores against the expected normal scores is a straight line, then the data can be
considered normal. Any curvature of the points indicates departure from normality. This procedure to obtain a normal plot
(a QQ plot is similar to a normal plot for a normal distribution) is described in Project 4C. Fig. 3.3 shows a normal
probability plot.

If plotted points do not fit the line well, but bend away from it in places, the distribution may be nonnormal. The shapes
in Fig. 3.4 will give some indication of the distribution of the data.

FIGURE 3.3 Normal probability plot.

If the layout of points starts
below the normal line, bends to
follow it, and ends above it 
indicates long tails. That is, there
is more variance than we would
expect in a normal distribution.

An S-shaped layout of points
indicates shorter than normal
tails, thus, a smaller variance is
expected.

If the layout of points bends down
and to the right of the normal line
that indicates a long tail to the
left, or left skew.

If the layout of points appears to
bend up and to the left of the
normal line that indicates a long
tail to the right, or right skew.

FIGURE 3.4 Shapes indicating distribution behavior of the data.
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Almost all of the statistical software packages include a procedure for obtaining the graph of a normal probability plot
that can be used to test the normality of data. Errors in the measurements can also act in a multiplicative (rather than
additive) manner. In that case, the assumption of normality is not justified.

A distribution closely related to normal distribution is the log-normal distribution. A variable might be modeled as log-
normal if it can be thought of as the multiplicative effect of many small independent factors. This distribution arises in
physical problems when the domain of the variate, X, is greater than zero and its histogram is markedly skewed. If a
random variable Y is normally distributed, then exp(Y) has a log-normal distribution. Thus, the natural logarithm of a log-
normally distributed variable is normally distributed. That is, if X is a random variable with log-normal distribution, then
ln(X) is normally distributed. Most biological evidence suggests that the growth processes of living tissue proceed by
multiplicative, not additive, increments. Thus, the measures of body size should at most follow a log-normal rather than a
normal distribution. Also, the sizes of plants and animals are approximately log-normal. The log-normal distribution is also
useful in modeling of claim sizes in the insurance industry.

The pdf of a log-normal random variable, X, is given as:

f ðxÞ ¼

8><
>:

1

xsy

ffiffiffiffiffiffi
2p

p e�ðln x�myÞ2=2s2y ; x > 0;sy > 0;�N < my < N

0; otherwise.

where my and sy are the mean and standard deviation of Y ¼ ln(X). These parameters are related to the parameters of the
random variable X as follows:

my ¼ ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4
x

m2
x þ s2

x

s !
; sy ¼ ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
x þ s2

x

m2
x

s !
:

We can verify that the expected value X is:

EðXÞ ¼ emyþðs2y=2Þ

and the variance is:

VarðXÞ ¼
	
es

2
y � 1



e2myþs2y :

The question of when the log-normal distribution is applicable in a given physical problem after a certain amount of
data has been obtained can be answered by creating a normal probability plot of ln(X) and testing for normality. Thus, if the
natural logarithms of the data show normality, log-normal distribution may be more appropriate.

If X is log-normally distributed with parameters my and sy, and 0 < a < b, then with Y ¼ ln(X):

Pða � X � bÞ ¼ Pðln a � Y � ln bÞ

¼ P

�
ln a� my

sy
� Y � my

sy
� ln b� my

sy

�

¼ Pða0 � Z � b0Þ;
where Z w N(0, 1). This probability can be obtained from the standard normal table.

EXAMPLE 3.2.11

In an effort to establish a suitable height for the controls of a moving vehicle, information was gathered about X, the amounts by

which the heights of the operators vary from 60 in., which is the minimum height. It was verified that the data that were collected

followed the log-normal distribution by normal probability plot of Y ¼ ln(X). Assume that mx ¼ 6 in. and sx ¼ 2 in.

(a) What percentage of operators would have a height less than 65.5 in.?
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(b) If an operator is chosen at random, what is the probability that his or her height will be between 64 and 66 in.?

Solution

(a) Here, X ¼ 65.5 � 60 ¼ 5.5. Also,

my ¼ ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4
x

m2
x þ s2

x

s !
¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64

62 þ 22

r
¼ 1:74;

sy ¼ ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
x þ s2

x

m2
x

s !
¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 þ 22

62

r
¼ 0:053:

Thus,

P ðX � 5:5Þ ¼ PðY � ln 5:5Þ ¼ P

�
Z � ðln 5:5Þ � 1:74

0:053

�

¼ PðZ � �0:67Þ ¼ 0:2514:

Hence, about 25.14% of the heights of the operators vary from 60 in.

(b) Similar to (a), we get:

Pð4 � X � 6Þ ¼ Pðln 4 � Y � ln 6Þ

¼ P

�ðln 4Þ � 1:74

0:053
� Z � ðln 6Þ � 1:74

0:053

�

¼ Pð�6:67 � Z � 0:98Þ ¼ 0:8365:

Thus, 83.65% of the heights of the operators will be between 64 and 66 in.

3.2.5 Gamma probability distribution

The gamma probability distribution has been applied in various fields. For example, in engineering, the gamma probability
distribution has been employed in the study of system reliability. We describe the gamma function before we introduce the
gamma probability distribution. The gamma function, denoted by G(a), is defined as:

GðaÞ ¼
Z N

0
e�xxa�1dx; a > 0:

It can be shown using the integration by parts that for a > 1, G(a) ¼ (a � 1)G(a � 1). In particular, if n is a positive
integer, G(n) ¼ (n e 1)!.

Definition 3.2.6 A random variable X is said to possess a gamma probability distribution with parameters a > 0 and
b > 0 if it has the pdf given by:

f ðxÞ ¼

8><
>:

1
baGðaÞx

a�1e�x=b; if x > 0

0; otherwise.

The gamma density has two parameters, a and b. We denote this by G(a, b). The parameter a is called a shape
parameter, and b is called a scale parameter. Changing a changes the shape of the density, whereas varying b

corresponds to changing the units of measurement (such as changing from seconds to minutes). Varying these two
parameters will generate different members of the gamma family. If we take a to be a positive integer, we get a special
case of gamma probability distribution, known as the Erlang distribution. This is used extensively in queuing theory
to model waiting times. Fig. 3.5 gives an indication of how a and b influence the shape and scale of f(x).
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Mean, Variance, and Moment-Generating Function of a Gamma Random Variable

Theorem 3.2.6 If X is a gamma random variable with param-

eters a > 0 and b > 0, then:

EðXÞ ¼ ab and VarðXÞ ¼ ab2:

Also, the mgf is:

MXðtÞ ¼ 1

ð1� btÞa; t <
1

b
:

EXAMPLE 3.2.12

The daily consumption of aviation fuel in millions of gallons at a certain airport can be treated as a gamma random variable with

a ¼ 3, b ¼ 1.

(a) What is the probability that on a given day the fuel consumption will be less than 1 million gallons?

(b) Suppose the airport can store only 2 million gallons of fuel. What is the probability that the fuel supply will be inadequate on

a given day?

Solution

(a) Let X be the fuel consumption in millions of gallons on a given day at a certain airport. Then, X w G(a ¼ 3, b ¼ 1) and

f ðxÞ ¼ 1

Gð3Þð13Þx
3�1e�x ¼ 1

2
x2e�x ; x > 0:

Hence, using integration by parts, we obtain:

P ðX < 1Þ ¼ 1

2

Z 1

0

x2e�xdx ¼ 1� 5

2e
¼ 0:08025:
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FIGURE 3.5 Gamma pdfs for different degrees of freedom.
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Thus, there is about an 8% chance that on a given day the fuel consumption will be less than 1 million gallons.

(b) Because the airport can store only 2 million gallons, the fuel supply will be inadequate if the fuel consumption X is greater

than 2. Thus,

PðX > 2Þ ¼ 1

2

Z N

2

x2e�xdx ¼ 0:677:

2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

f (x)

x

We can conclude that there is about a 67.7% chance that the fuel supply of 2 million gallons will be inadequate on a given

day. So, if the model is right, the airport needs to store more than 2 million gallons of fuel.

We now describe two special cases of gamma probability distribution. In the pdf of the gamma, if we let a ¼ 1, we get
the pdf of an exponential random variable.

Definition 3.2.7 A random variable X is said to have an exponential probability distribution with parameter b if the pdf of
X is given by:

f ðxÞ ¼

8><
>:

1
b
e�x=b; b > 0; 0 � x < N

0; otherwise:

Exponential random variables are often used to model the lifetimes of electronic components such as fuses, for reli-
ability analysis, and survival analysis, among others. The exponential distribution (Fig. 3.6) is also used in developing
models of insurance risks. The exponential distribution is related to Poisson distribution. When the events can occur more
than once within a given unit of time and the time elapsed between two consecutive occurrences is exponentially
distributed and independent of previous occurrences of the events, then the random variable defined by the number of
occurrences has a Poisson distribution. A graph of the exponential pdf with b ¼ 3 is given in Fig. 3.6.

Mean, Variance, and Moment-Generating Function of an Exponential Random Variable

Theorem 3.2.7 If X is an exponential random variable with

parameters b > 0, then:

EðXÞ ¼ b and VarðXÞ ¼ b2:

Also the mgf is:

MXðtÞ ¼ 1

ð1� btÞ; t <
1

b
:
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EXAMPLE 3.2.13

The time, in hours, during which an electrical generator is operational is a random variable that follows the exponential distri-

bution with b ¼ 160. What is the probability that a generator of this type will be operational for:

(a) less than 40 h

(b) between 60 and 160 h

(c) more than 200 h

Solution

Let X denote the random variable corresponding to time (in hours) during which the generator is operational. Then the density

function of X is given by:

f ðxÞ ¼

8><
>:

1

160
e
�
	

x
160



; x � 0

0; otherwise.

Thus, we have the following:

(a) PðX � 40Þ ¼ R 40
0

1
160e

�ðx=160Þdx ¼ 0:22119: There is about a 22.1% chance that a generator of this type will be operational

for less than 40 h.

(b) Pð60 � X � 160Þ ¼ R 160
60

1
160e

�ðx=160Þdx ¼ 0:3194: Hence, there is about a 31.94% chance that a generator of this type will

be operational for between 60 and 160 h.

(c) PðX> 200Þ ¼ RN
200

1
160e

�ðx=160Þdx ¼ 0:2865: The chance that the generator will last more than 200 h is about 28.65%.

Another special case of gamma probability distribution that is useful in statistical inference problems is the chi-square
distribution.

Definition 3.2.8 Let n be a positive integer. A random variable, X, is said to have a chi-square (c2) distribution with n
degrees of freedom if and only if X is a gamma random variable with parameters a ¼ n/2 and b ¼ 2. We denote this by
X w c2(n).

Hence, the pdf of a chi-square distribution with n degrees of freedom is given by:

f ðxÞ ¼

8><
>:

1

G
	n
2



2n=2

xðn=2Þ�1e�x=2; 0 � x < N

0; otherwise.

Fig. 3.7 illustrates the dependence of the chi-square distribution on n.
The mean and variance of a chi-square random variable follow directly from Theorem 3.2.6.
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FIGURE 3.6 Probability density function for an exponential random variable.
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Mean, Variance, and Moment-Generating Function of a Chi-Square Random Variable

Theorem 3.2.8 If X is a chi-square random variable with n

degrees of freedom, then E(X) ¼ n and Var(X) ¼ 2n. Also, the

mgf is given by:

MX ðtÞ ¼ 1

ð1� 2tÞn=2
; t <

1

2
:

Another class of distributions that plays a crucial role in Bayesian statistics is the beta distribution. The beta distribution
is used as a prior distribution for binomial or geometric proportions. Also, for a random phenomenon that occurs between
0 and 1, a random variable X is said to have a beta distribution with parameters a and b if and only if the density function
of X is given by:

f ðxÞ ¼

8><
>:

xa�1ð1� xÞb�1

Bða; bÞ ;

0;

a; b > 0; 0 � x � 1

otherwise;

where Bða; bÞ ¼ R 1
0 x

a�1ð1� xÞb�1dx: It can be shown that Bða; bÞ ¼ GðaÞGðbÞ
GðaþbÞ ; and that EðXÞ ¼ a

aþb
and VarðXÞ ¼

ab

ðaþbÞ2ðaþbþ1Þ:

One of the questions we may have is: How do we know which distribution to use in a given physical problem? There is
no simple and direct answer to this question. One intuitive way is to construct a histogram from the information at hand;
from the shape of this histogram, we obtain a visual view of whether the random variable follows a particular distribution
such as gamma distribution. In Chapter 11, we discuss statistical tests called goodness-of-fit tests that will identify the pdf
of a given data with a high degree of accuracy. Once we decide that it follows a particular distribution, then the parameters
of this distribution, such as a and b, must be statistically estimated. In Chapter 5, we discuss how to estimate these
parameters.

Exercises 3.2

3.2.1. A fair coin is tossed 10 times. Let X denote the number of heads obtained. Find the following:
(a) P(X ¼ 7)
(b) P(X � 7)
(c) P(X > 0)
(d) E(X) and Var(X)

n = 2

chi-square densities, n = 2, 3, 4, and 5

n = 3

n = 4

n = 5
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FIGURE 3.7 Chi-square pdfs for different degrees of freedom.
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3.2.2. Let X be a Poisson random variable with l ¼ 1/3. Find:
(a) P(X ¼ 0)
(b) P(X � 4)

3.2.3. For a standard normal random variable Z, find the value of z0 such that:
(a) P(Z > z0) ¼ 0.05
(b) P(Z < z0) ¼ 0.88
(c) P(Z < z0) ¼ 0.10
(d) P(Z > z0) ¼ 0.95

3.2.4. Let Xw N(12, 5). Find the value of x0 such that:
(a) P(X > x0) ¼ 0.05
(b) P(X < x0) ¼ 0.98
(c) P(X < x0) ¼ 0.20
(d) P(X > x0) ¼ 0.90

3.2.5. Let Xw N(10, 25). Compute:
(a) P(X � 20)
(b) P(X > 5)
(c) P(12 � X � 15)
(d) P(jX � 12j � 15)

3.2.6. A quarterback on a football team has a pass completion rate of 0.62. If, in a given game, he attempts 16 passes,
what is the probability that he will complete:
(a) 12 passes?
(b) More than half of his passes?
(c) Interpret your result.
(d) Of the 16 passes, what is the expected number of completions?

3.2.7. A consulting group believes that 70% of the people in a certain county are satisfied with their health coverage.
Assuming that this is true, find the probability that in a random sample of 15 people from the county:
(a) Exactly 10 are satisfied with their health coverage, and interpret.
(b) Not more than 10 are satisfied with their health coverage, and interpret.
(c) What is the expected number of people out of 15 that are satisfied with their health coverage?

3.2.8. A man fires at a target. The probability of his hitting it each time is 0.40 and is independent of other tries.
(a) What is the probability that the man will hit the target at least once if he fires six times?
(b) How many times must he fire at the target so that the probability of hitting it at least once is greater than 0.77?
(c) Interpret your findings.

3.2.9. A certain electronics company produces a particular type of vacuum tube. It has been observed that, on the
average, three tubes of 100 are defective. The company packs the tubes in boxes of 400. What is the probability
that a certain box of 400 tubes will contain:
(a) r defective tubes?
(b) At least k defective tubes?
(c) At most one defective tube?
(d) Interpret your answers to (a), (b), and (c).

3.2.10. Suppose that, on average, in every two pages of a book there is one typographical error, and that the number of
typographical errors on a single page of the book is a Poisson random variable with l ¼ 1/2. What is the prob-
ability of at least one error on a certain page of the book? Interpret your result.

3.2.11. Show that the probabilities assigned by Poisson probability distribution satisfy the requirements that 0 � p(x) � 1
for all x and

P
all x

pðxÞ ¼ 1.

3.2.12. In determining the range of an acoustic source using the triangulation method, the time at which the spherical
wave front arrives at a receiving sensor must be measured accurately. Measurement errors in these times can
be modeled as possessing uniform probability distribution from �0.05 to 0.05 ms. What is the probability that
a particular arrival time measurement will be in error by less than 0.01 ms? What does your answer mean?

3.2.13. The hardness of a piece of ceramic is proportional to the firing time. Assume that a rating system has been devised
to rate the hardness of a ceramic piece and that this measure of hardness is a random variable that is distributed
uniformly between 0 and 10. If a hardness in the interval [5, 9] is desirable for kitchenware, what is the probability
that a piece chosen at random will be suitable for kitchen use?
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3.2.14. A receiver receives a string of 0’s and 1’s transmitted from a certain source. The receiver used a majority rule.
That is, if the receiver acquires five symbols, xxxxx, x is 0 or 1, of which three or more are 1’s, it decides that
a 1 was transmitted. The receiver is correct only 85% of the time. What is P(W), the probability of a wrong de-
cision if the probabilities of receiving 0’s and 1’s are equally likely? What can you conclude from your result?

3.2.15. The efficiency X of a certain electrical component may be assumed to be a random variable that is distributed
uniformly between 0 and 100 units. What is the probability that X is:
(a) Between 60 and 80 units?
(b) Greater than 90 units?
(c) Interpret (a) and (b).

3.2.16. The reliability function of a system or a piece of equipment at time t is defined by:

RðtÞ ¼ PðT � tÞ ¼ 1� FðtÞ;
where T, the failure time, is a random variable with a known distribution. A certain vacuum tube has been
observed to fail uniformly over the interval [t1, t2].
(a) Determine the reliability of such a tube at time t, t1� t � t2.
(b) If 180 � t � 220, what is the reliability of such a tube at 200 h?
(c) The failure or hazard rate function r(t) is defined by:

rðtÞ ¼ f ðtÞ
1� FðtÞ ¼ f ðtÞ

RðtÞ ¼
�dRðtÞ

dt
RðtÞ :

Calculate the failure rate of this vacuum tube. Interpret your result.

3.2.17. An electrical component was studied in the laboratory, and it was determined that its failure rate was approxi-
mately equal to 1

b
¼ 0:05: What is the reliability of such a component at 10 h?

3.2.18. Suppose that the life length of a mechanical component is normally distributed.
(a) If s ¼ 3 and m ¼ 100, find the reliability of such a system at 105 h.
(b) What should be the expected life of the component if it has reliability of 0.90 for 120 h?

3.2.19. A geologist defines granite as a rock containing quartz, feldspar, and small amounts of other minerals, provided
that it contains not more than 75% quartz. If all the percentages are equally likely, what proportion of granite sam-
ples that the geologist collects during his lifetime will contain from 50% to 65% quartz?

3.2.20. For a normal random variable with pdf

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ2=2s2 ; N < x < N;�N < m < N; s2 > 0;

show that
RN
�N f ðxÞdx ¼ 1: (Hint: use polar coordinates.)

3.2.21. A professor in a large statistics class has a grading policy such that only the 15% of the students with the highest
scores will receive the grade A. The mean score for this class is 72 with a standard deviation of 6. Assuming that
all the grades for this class follow a normal probability distribution, what is the minimum score that a student in
this class has to get to receive an A grade?

3.2.22. The scores, X, of an examination may be assumed to be normally distributed with m ¼ 70 and s2 ¼ 49. What is the
probability that:
(a) A score chosen at random will be between 80 and 85?
(b) A score will be greater than 75?
(c) A score will be less than 90?
(d) Interpret the meaning of (a), (b), and (c).

3.2.23. Suppose that the diameters of golf balls manufactured by a certain company are normally distributed with
m ¼ 1.96 in. and s ¼ 0.04 in. A golf ball will be considered defective if its diameter is less than 1.90 in. or greater
than 2.02 in. What is the percentage of defective balls manufactured by the company? What did the answer
indicate?

3.2.24. Suppose that the arterial diastolic blood pressure readings in a population follow a normal probability distribution
with mean 80 mm Hg and standard deviation 6.2 mm Hg. Suppose it is recommended that a physician be
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consulted if an individual has an arterial diastolic blood pressure reading of 90 mm Hg or more. If an individual is
randomly picked from this population, what is the probability that this individual needs to consult a physician?
Discuss the meaning of your result.

3.2.25. In a certain pediatric population, systolic blood pressure is normally distributed with mean 115 mm Hg and stan-
dard deviation 10 mm Hg. Find the probability that a randomly selected child from this population will have:
(a) A systolic pressure greater than 125 mm Hg.
(b) A systolic pressure less than 95 mm Hg.
(c) A systolic pressure below which 95% of this population lies.
(d) Interpret (a), (b), and (c).

3.2.26. A physical fitness test was given to a large number of college freshmen. In part of the test, each student was asked
to run as far as he or she could in 10 min. The distance each student ran in miles was recorded and can be consid-
ered to be a random variable, say X. The data showed that the random variable X followed the log-normal distri-
bution with my ¼ 0.35 and sy ¼ 0.5, where Y ¼ ln(X). A student is considered physically fit if he or she is able to
run 1.5 miles in the time allowed. What percentage of the college freshmen would be considered physically fit if
we consider only this part of the test?

3.2.27. An experimenter is designing an experiment to test tetanus toxoid in guinea pigs. The survival of the animal
following the dose of the toxoid is a random phenomenon. Past experience has shown that the random variable
that describes such a situation follows the log-normal distribution with my ¼ 0 and sy ¼ 0.65. As a requirement of
good design, the experimenter must choose doses at which the probability of surviving is 0.20, 0.50, and 0.80.
What three doses should he choose?

3.2.28. Show that G(1) ¼ 1 and for a > 1, prove that G(a) ¼ (a � 1)G(a � 1).
3.2.29. (a) Find the mgf for a gamma probability distribution with parameter a > 0 and b > 0. (Hint: In the integral

representation of E(etX), change the variable t to u ¼ (1 � bt)x/b, with (1 � bt) > 0.)
(B) Using the mgf of a gamma probability distribution, find E(X) and Var(X).

3.2.30. Let X be an exponential random variable. Show that, for numbers a > 0 and b > 0,

PðX> aþ bjX> aÞ ¼ PðX> bÞ:
(This property of the exponential distribution is called the memoryless property of the distribution.)

3.2.31. A random variable X is said to have a beta distribution with parameters a and b if and only if the density function
of X is:

f ðxÞ ¼

8><
>:

xa�1ð1� xÞb�1

Bða; bÞ ;a; b > 0; 0 � x � 1

0; otherwise

where Bða; bÞ ¼ R 1
0 x

a�1ð1� xÞb�1dx:
(a) Show that Bða; bÞ ¼ GðaÞGðbÞ

GðaþbÞ :
(b) Show that EðXÞ ¼ a

aþb
and VarðXÞ ¼ ab

ðaþbÞ2ðaþbþ1Þ .

3.2.32. The daily proportion of major automobile accidents across the United States can be treated as a random variable
having a beta distribution with a ¼ 6 and b ¼ 4. Find the probability that, on a certain day, the percentage of ma-
jor accidents is less than 80% but greater than 60%. Interpret your answer.

3.2.33. Suppose that network breakdowns occur randomly and independent of one another at an average rate of three per
month.
(a) What is the probability that there will be just one network breakdown during December? Interpret.
(b) What is the probability that there will be at least four network breakdowns during December? Interpret.
(c) What is the probability that there will be at most seven network breakdowns during December? Interpret.

3.2.34. Let X be a random variable denoting the number of events occurring in the time interval (0, t]. Show that X has a
gamma probability distribution with parameters n and l.

3.2.35. To etch an aluminum tray successfully, the pH of the acid solution used must be between 1 and 4. This acid so-
lution is made by mixing a fixed quantity of etching compound in powder form with a given volume of water. The
actual pH of the solution obtained by this method is affected by the potency of the etching compound, by slight
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variations in the volume of water used, and perhaps by the pH of the water. Thus, the pH of the solution varies.
Assume that the random variable that describes the random phenomenon is gamma distributed with a ¼ 2 and
b ¼ 1.
(a) What is the probability that an acid solution made by the foregoing procedure will satisfactorily etch a tray?
(b) What would the answer to (a) be if a ¼ 1 and b ¼ 2?

3.2.36. If XiwPoisðliÞ, i ¼ 1; 2;.; k; are independent, and l ¼ Pk
i¼ 1

li, then show that Y ¼ Pn
i¼ 1

XiwPoisðlÞ.

3.2.37. If XiwExpðbÞ; i ¼ 1; 2;.; k are independent, then show that Y ¼ Pk
i¼ 1

XiwGammaðk; bÞ.

3.2.38. To evaluate a new release of a database management system, a database administrator runs a benchmark program
several times and measures the time to completion in seconds. Assuming that the distribution of times is normal
with mean 95 s and with standard deviation of 10 s, what proportion of measurement times will fall below 85 s?

3.3 Joint probability distributions

We have thus far confined ourselves to studying one-dimensional or univariate random variables and their properties. In
many practical situations, we are required to deal with several, not necessarily independent, random variables. For
example, we might be interested in a study involving the weights and heights (W, H) of a certain group of persons. In this
situation, we need the two random variables (W, H), and it is likely that these two are related. Then it becomes important to
study the joint effect of these random variables, which will lead to finding the joint probability distribution. In this section,
we confine our studies to two random variables and their joint distribution, which are called bivariate distribution. We
consider the random variables to be either both discrete or both continuous. We now define joint distribution of two
random variables.

Definition 3.3.1

(a) Let X and Y be random variables. If both X and Y are discrete, then:

pðx; yÞ ¼ PðX ¼ x; Y ¼ yÞ
is called the joint probability function of X and Y.

(b) If both X and Y are continuous, then f(x, y) is called the joint probability density function (joint pdf) of X and Y if and
only if:

Pða�X� b; c� Y � dÞ ¼
Z b

a

Z d

c

f ðx; yÞdydx.

To reduce repetitions, most of the time, we may use f(.) in place of p(.) for the discrete and continuous cases. The reader
can use p(.) in the case of discrete distributions and f(.) in the case of continous distributions.

EXAMPLE 3.3.1

A probability class contains 10 African American, eight Hispanic American, and 15 white students. If 12 students are randomly

selected from this class, and if X ¼ number of black students, and Y ¼ number of white students, find the joint probability function

of the bivariate random variable (X, Y).

Solution

There is a total of 33 students. The number of ways in which x African American and y white students can be picked (which

means the remaining 12 � (x þ y) students are Hispanic American) can be obtained using the multiplication principle, that is,�
10

x

��
15

x

��
8

12� x � y

�
:

The number of ways to pick 12 students from 33 students is

�
33

12

�
Hence, the joint pmf is:

pðx; yÞ ¼ PðX ¼ x;Y ¼ yÞ ¼

�
10

x

��
15

y

��
8

12� x � y

�
�
33

12

� ;
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where 0 � x � 10, 0 � y � 12, and 4 � x þ y � 12. The last constraint is needed because there are only eight Hispanic Amer-

icans, so the combined minimum number of whites and African Americans should be at least four.

We follow the notation
P

x,y to denote
P

x
P

y. The joint distribution of two random variables has to satisfy the
following conditions.

Theorem 3.3.1 If X and Y are two random variables with joint probability function f(x, y), then:

(i) If X and Y are discrete, then pðx; yÞ � 0, for all x and y, and
P

x;ypðx; yÞ ¼ 1,
where the sum is over all values (x, y) that are assigned nonzero probabilities.

(ii) If X and Y are continuous, then f(x, y) � 0 for all x and y, and

ZZ
f ðx; yÞdxdy ¼ 1:

Given the joint probability distribution (pdf or pmf), the probability distribution function of a component random
variable can be obtained through the marginals.

Definition 3.3.2 The marginal pdf (pmf) of X denoted by fX(x) (pXðxÞ in case of discrete) (or f(x), when there is no confusion) is defined

by:

fXðxÞ ¼

8>><
>>:

Z N

N

f ðx; yÞdy; if X and Y are continuous;X
all y

pðx; yÞ; if X and Y are discrete:

Similarly, the marginal pdf of Y denoted by fYðyÞ is defined by:

fYðyÞ ¼

8>><
>>:

Z N

�N

f ðx; yÞdx; if X and Y are continuous;X
all x

pðx; yÞ; if X and Y are discrete:

Note that we can obtain marginal probabilities of X, that is,

Pða�X� bÞ ¼

8><
>:
Z b

a

fXðxÞdy; if X and Y are continuous;

X
fXðxÞ; if X and Y are discrete;

where summation is over all values of X from a to b.

EXAMPLE 3.3.2

Find the marginal pdf of the random variables X and Y, if their joint probability function is given by Table 3.1.

TABLE 3.1 Joint pmf of X and Y.

y

X �2 0 1 4 Sum

�1 0.2 0.1 0.0 0.2 0.5

3 0.1 0.2 0.1 0.0 0.4

5 0.1 0.0 0.0 0.0 0.1

Sum 0.4 0.3 0.1 0.2 1.0
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Find the marginal densities of X and Y.

Solution

By definition, the marginal pmf of X are given by the column sums (summands over y for fixed x), and the marginal pmf of Y

are obtained by the row sums. Hence,

xi �1 3 5 otherwise yi �2 0 1 4 otherwise

fX(xi) 0.5 0.4 0.1 0 fY(yi) 0.4 0.3 0.1 0.2 0

Using the joint probability distribution and the marginals, we can now introduce the conditional probability distribution
function.

Definition 3.3.3 The conditional probability distribution of the random variable X given Y is given by:

f ðxjyÞ ¼ f ðxjY ¼ yÞ

¼

8>>>>>><
>>>>>>:

f ðx; yÞ
fYðyÞ ; if X and Y are continuous; fYðyÞs0;

PðX ¼ x; Y ¼ yÞ
fYðyÞ ; if X and Y are discrete:

We note that both the marginal probability densities of X and Y as well as the conditional pdf must satisfy the two
important conditions of a pdf.

We know that two events A and B are independent if P(A X B) ¼ P(A)P(B). It is usually more convenient to establish
independence through the probability functions. Hence, we define independence for bivariate probability distribution as
follows.

Definition 3.3.4 Let X and Y have a joint pmf or pdf fðx; yÞ. Then X and Y are independent if and only if:

f ðx; yÞ ¼ fXðxÞfYðyÞ; for all x and y:

That is, for independent random variables, the joint pdf is the product of the marginals.

EXAMPLE 3.3.3

Let

f ðx; yÞ ¼
(
3x;

0;

0 � y � x � 1;

otherwise.

(a) Find P

�
X � 1

2;
1
4< Y < 3

4

�
.

(b) Find the marginals fX(x) and fY(y).

(c) Find the conditional f(xjy) (0 < y < 1). Also compute f

�
xjY ¼ 1

2

�
:

(d) Are X and Y independent?

Solution

1

1 f(x ,y ) = 3x  in
this region

x

y

FIGURE 3.8 Domain of f(x, y).
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(a) The domain of the function f(x, y) is given in Fig. 3.8. The required probability PðX � 1
2 ;

1
4< Y< 3

4

�
is the volume over the

area of the shaded region as shown by Fig. 3.9. That is,

P

�
X � 1

2
;
1

4
< Y <

3

4

�
¼
Z 1=2

1=4

Z x

1=4

3xdydx

¼
Z 1=2

1=4

3x

�
x � 1

4

�
dx

¼
�
3x3

3
� 3x2

8

�����
1=2

1=4

¼ 5

128
:

(b) To find the marginals, we note that for each x, y varies from 0 to x (0 < y < x). Therefore,

fXðxÞ ¼
Z x

0

3xdy ¼ 3x
�
yjx0
� ¼ 3x2; 0 < x < 1:

Similarly, for each y, x varies from y to 1.

fY ðyÞ ¼
Z x

0

3xdx ¼ 3x2

2

����
1

y

¼ 3

2
� 3y2

2

¼ 3

2

�
1� y2

�
; 0 < y < 1:

(c) Using the definition of conditional density:

f ðxjyÞ ¼ f ðx; yÞ
fY ðyÞ ¼ 3x

3

2
ð1� y2Þ

¼ 2x

1� y2
; y � x � 1:

Thus, from this we have:

f

�
xjy ¼ 1

2

�
¼ 2x	

1�
�
1

2

�2
 ¼ 8

3
x;

1

2
� x � 1:

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1 y = x

x

y
The region 0<x<1/2
and 1/4<y<3/4

FIGURE 3.9 Region of integration.
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(d) To check for independence of X and Y:

fXð1ÞfY
�
1

2

�
¼ ð3Þ

�
9

8

�
¼ 27

8
s3 ¼ f

�
1;
1

2

�
.

Hence, X and Y are not independent.

Recall that in the case of a univariate random variable X, with probability function f(x), the expected value of X is:

EðXÞ ¼

8>>><
>>>:

X
x
xf ðxÞ; if

X
x

jxjf ðxÞ < N; for discrete r.v.Z
xf ðxÞdx; if

Z
jxjf ðxÞdx < N; for continuous r.v.

Now we proceed to define similar concepts for bivariate probability distribution.

Definition 3.3.5 Let f(x, y) be the joint probability function, and let gðx; yÞ be such that
P
x;y
jgðx; yÞjfðx; yÞ< N, in the

discrete case, or
RN
�N

RN
�N gðx; yÞjfðx; yÞdxdy< N; in the continuous case. Then the expected value of gðX;YÞ is given

by:

EgðX; YÞ ¼

8>>>><
>>>>:

X
x;y

gðx; yÞf ðx; yÞ; if X; Y are discrete;

Z N

�N

Z N

�N

gðx; yÞf ðx; yÞdxdy; if X;Y are continuous:

In particular,

EðXYÞ ¼

8>>>><
>>>>:

X
x;y

xyf ðx; yÞ; if X; Y are discrete;

Z N

�N

Z N

�N

xyf ðx; yÞdxdy; if X;Y are continuous:

The following properties of mathematical expectation are easy to verify.

Properties of Expected Value

1. E(aX þ bY) ¼ aE(X) þ bE(Y). 2. If X and Y are independent, then E(XY) ¼ E(X)E(Y). How-

ever, the converse is not necessarily true.

EXAMPLE 3.3.4

Let f(x, y) ¼ 3x, 0 � y � x � 1.

(a) Find E(4X � 3Y).

(b) Find E(XY).

Solution

(a) EðXÞ ¼ R
xfX ðxÞdx and EðY Þ ¼ R

yfY ðyÞdy:
Recall that earlier (Example 3.3.3) we computed fX(x) ¼ 3x2 (0 < x < 1) and fY(y) ¼ 2(1 � y2) (0 � y � 1). Using

these results, we have:

EðXÞ ¼
Z 1

0

x3x2dx ¼ 3

4
;

EðY Þ ¼
Z 1

0

y
3

2

�
1� y2

�
dy ¼ 3

8
:

Hence,

Eð4X � 3YÞ ¼ 3� 9

8
¼ 15

8
:

(b) EðXY Þ ¼ R 1
0

R x
0 xyð3xÞdxdy ¼ 3

10 .
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Conditional expectations are defined in the same way as univariate expectations, except that the conditional density is
utilized in place of the unconditional density function.

Definition 3.3.6 Let X and Y be jointly distributed with pmf or pdf fðx; yÞ. Let g be a function of x. Then the conditional
expectation of g(x) given Y ¼ y is:

EðgðXÞjyÞ ¼ EðgðXÞjY ¼ yÞ

¼

8>>><
>>>:

X
all x

gðxÞf ðxjyÞ; if X;Y are discrete;

Z
gðxÞf ðxjyÞdx; if X;Y are continuous;

and

VarðXjyÞ ¼ E
�ðY � EðXjyÞÞ2jy�

¼ E
�
X2jy�� ½EðXjyÞ�2:

Note that E(g(X)jy) is a function of y. If we let Y range over all of its possible values, the conditional expectation E(g(X)jY)
can be thought of as a function of the random variable Y. We will then be able to find the mean and variance of E(g(X)jY), as
given in the following theorem, the proof of which is left as an exercise.

Theorem 3.3.2 Let X and Y be two random variables. Then:

(a) E(X) ¼ E[E(XjY)].
(b) Var(X) ¼ E[Var(XjY)] þ Var[E(XjY)].

We can define the conditional variance, VarðY jXÞ ¼ E
	
½Y � EðY jXÞ�2jX



.

EXAMPLE 3.3.5

Let X and Y be two random variables with joint density function given by:

f ðx; yÞ ¼
8<
: x2 þ xy

3
;

0;

0 � x � 1 and 0 � y � 2

otherwise.

Find the conditional expectation, E

�
X
����Y ¼ 1

2

�
.

Solution

First we will find the conditional density, f(xjy). The marginal pdf is given by:

fY ðyÞ ¼
Z 1

0

	
x2 þ xy

3



dx ¼ 1

3
þ 1

6
y; 0 < y < 2:

Therefore,

f ðxjyÞ ¼ f ðx; yÞ
fY ðyÞ ¼

x2 þ xy

3
1

6
y þ 1

3

; 0 � x � 1:

Hence,

f

�
xjY ¼ 1

2

�
¼

x2 þ x

6
1

12
þ 1

3

¼ 12

5

	
x2 þ x

6



:

Thus,

E

�
X jY ¼ 1

2

�
¼
Z 1

0

xf

�
xjY ¼ 1

2

�
dx

¼
Z 1

0

x
12

5

	
x2 þ x

6



dx ¼ 11

15
¼ 0:733:
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EXAMPLE 3.3.6

Let the joint density of two random variables X and Y be given by:

f ðx; yÞ ¼

8><
>:

1

4
ð2x þ yÞ 0 � x � 1; 0 � y � 2

0; otherwise.

(a) Find fXðxÞ and fY ðyÞ.
(b) Find VarðXÞ
(c) Find EðX jY Þ and VarðX jY Þ.

Solution

(a) We have:

fXðxÞ ¼
Z N

�N

f ðx; yÞdy ¼
Z 2

0

1

4
ð2x þ yÞdy

¼ 1

4
ð4x þ 2Þ; 0 � x � 1:

Similarly, the marginal pdf of X, fY ðyÞ ¼ R 1
0

1
4 ð2x þyÞdx ¼ 1

4 ð1 þyÞ;0 � y � 2:

(b) To find the variance,

EðXÞ ¼
Z 1

0

1

4
xð4xþ 2Þdx ¼ 7

12
;

and

E
�
X2
� ¼ Z 1

0

1

4
x2ð4xþ 2Þdx ¼ 5

12
:

Thus, the variance of X is

varðXÞ ¼ E
�
X2
�� ½EðXÞ�2

¼ 5

12
�
�

7

12

�2

¼ 11

144
:

(c) First, we will find the conditional density of X given that Y ¼ y, that is,

fXjY ðxjyÞ ¼ f ðx; yÞ
fY ðyÞ ¼

1

4
ð2x þ yÞ
1

4
ð1þ yÞ

¼ ð2x þ yÞ
ð1þ yÞ ;0 � x � 1; 0 � y � 2:

Then the conditional expectation is given by:

E ½X jY � ¼
Z 1

0

x
ð2x þ yÞ
ð1þ yÞ dx ¼ 1

1þ y

Z 1

0

�
2x2 þ xy

�
dx

¼ 1

1þ y

�
2

3
þ 1

2
y

�
¼
�
1

6

� ð4þ 3yÞ
ð1þ yÞ :
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For the conditional variance, we also need to find:

E
�
X2jY� ¼

Z 1

0

x2ð2x þ yÞ
ð1þ yÞ dx ¼ 1

1þ y

Z 1

0

�
2x3 þ x2y

�
dx

¼
�
1

6

��
3þ 2y

1þ y

�
:

Thus,

Var ½X jY � ¼ E
�
X2jY�� ½EðX jY Þ�2

¼
�
1

6

��
3þ 2y

1þ y

�
�
�

1

36

� ð4þ 3yÞ2
ð1þ yÞ2

¼ 3y2 þ 6y þ 2

36ð1þ yÞ2 :

3.3.1 Covariance and correlation

We will now define the covariance and correlation coefficient of two random variables.

Definition 3.3.7

(i) The covariance between two random variables X and Y is defined by:

sXY ¼ CovðX; YÞ ¼ E½ðX�mXÞðY �mYÞ� ¼ EðXYÞ � mXmY ;

where mX ¼ E(X) and mY ¼ E(Y).

(ii) The correlation coefficient rX;Y is defined by:

rX;Y ¼ CovðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ VarðYÞp :

Correlation is the measure of the linear relationship between the random variables X and Y. If Y ¼ aX þ b (a s 0),
then

��rX;Yj ¼ 1. If dependence on X and Y needs to be specified, we will use the notation rX,Y or r(X,Y).
From the definition of the covariance of X and Y, we note that if small values of X, for which (X � mX) < 0, tend to be

associated with small values of Y, for which (Y � mY) < 0, and similarly large values of X with large values of Y, then
Cov(X, Y) h E[(X � mX)(Y � mY)] can be expected to be positive. On the other hand, if small values of X tend to be
associated with large values of Y and vice versa, so that (X � mX) and (Y � mY) are of opposite signs, then Cov(X, Y) < 0.
Thus, covariance can be thought of as a signed measure of the variation of Y relative to X. If X and Y are independent, then
it follows from the definition of covariance that Cov(X, Y) ¼ 0. The correlation coefficient of X and Y is a dimensionless
quantity that measures the linear relationship between the random variables X and Y.

Properties of Covariance and Correlation Coefficient

(a) �1 � rX ;Y � 1.

(b) If X and Y are independent, then r ¼ 0. The converse is

not true.

(c) If Y ¼ aX þ b, then:

rX ;Y ¼


1; if a > 0;

�1; if a < 0:

Note that Cov(X, X) ¼ Var(X).

(d) If U ¼ a1X þ b1 and V ¼ a2Y þ b2, then

(i) Cov(U, V) ¼ a1a2Cov(X, Y)

and

(ii) rU;V ¼


rX;Y ; if a1a2 > 0

�rX ;Y ; otherwise.

(e) Var(aX þ bY) ¼ a2Var(X) þ b2Var(Y) þ 2abCov(X, Y). In

particular, if X and Y are independent, then

Var(aX þ bY) ¼ a2Var(X) þ b2Var(Y).

(f) If X1;.;Xn are independent, then

Var
�Pn

i¼1Xi

� ¼ Pn
i¼1VarðXiÞ:
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EXAMPLE 3.3.7

The joint pdf of the random variables X and Y is given by:

f ðx; yÞ ¼

8><
>:

1

64
e�y=8;

0;

0 � x � y � N

otherwise.

Find the covariance of X and Y.

Solution

We can use the formula Cov(X, Y) ¼ E(XY) � E(X)E(Y). Now, using integration by parts (three times) we will obtain:

EðXYÞ ¼
Z N

0

Z y

0

ðxyÞ 1

64
e�y=8dxdy

¼ 1

64

Z N

0

ye�y=8

0
@Z y

0

xdx

1
Ady

¼ 1

128

Z N

0

y3e�y=8dy ¼ 192:

We can also obtain:

EðXÞ ¼
Z N

0

Z y

0

x
1

64
e�y=8dxdy ¼ 8;

and

EðY Þ ¼
Z N

0

Z y

0

y
1

64
e�y=8dxdy ¼ 16:

Thus, Cov(X, Y) ¼ 192 � (8)(16) ¼ 64.

Next, we will define the mgf for the bivariate probability distributions.

Definition 3.3.8 Let X and Y be jointly distributed. Then the joint moment-generating function is defined by:

MðX;YÞðt1; t2Þ ¼ Eðet1Xþt2YÞ

¼

8>>>>>><
>>>>>>:

X
y

X
x

et1xþt2yf ðx; yÞ; if X and Y are discrete

ZN
�N

ZN
�N

et1xþt2yf ðx; yÞdxdy; if X and Y are continuous:

Exercises 3.3

3.3.1. An experiment consists of drawing four objects, without replacement, from a container that holds eight operable,
six defective, and 10 semioperable objects. Let X be the number of operable objects drawn and Y the number of
defective objects drawn.
(a) Find the joint probability function of the bivariate random variable (X, Y).
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(b) Find P(X ¼ 3, Y ¼ 0).
(c) Find P(X < 3, Y ¼ 1).
(d) Give a graphical presentation of (a), (b), and (c).

3.3.2. Let

f ðx; yÞ ¼

8><
>:

1
50

�
x2 þ 2y

�
;

0;

x ¼ 0; 1; 2; 3; and y ¼ xþ 3;

otherwise.

Show that f(x, y) satisfies the conditions of a pmf.
3.3.3. Let

f ðx; yÞ ¼ cð1� xÞð1� yÞ; �1 � x � 1; �1 � y � 1:

Find the value of c that makes f ðx; yÞ the joint pdf of the random variable (X, Y).
3.3.4. Let

f ðx; yÞ ¼ xe�xy; x � 0; y � 1:

Is f(x, y) a joint pdf? If not, find the proper constant to multiply with f(x, y) so that it will be a probability density.
3.3.5. Find the marginal pmf of the random variables X and Y, if their joint pmf is as given in Table 3.2.
3.3.6. Find the marginal density functions of the random variables X and Y if their joint pdf is given by:

f ðx; yÞ ¼

8><
>:

1
5
ð3x� yÞ; 1 � x � 2; 1 � y � 3;

0; otherwise.

3.3.7. Determine the conditional probability PðX ¼ �1jY ¼ 0Þ for the random variables defined in Problem 3.3.5.

3.3.8. Find k so that f(x, y) ¼ kxy, 1 � x � y � 2, will be a pdf. Also find (i) P

�
X � 3

2; Y � 3
2

�
and (ii) P

�
X þY � 3

2

�
.

3.3.9. The random variables X and Y have a joint pdf:

f ðx; yÞ ¼

8><
>:

8
9
xy;

0;

1 � x � y � 2;

elsewhere.

TABLE 3.2 Joint pmf of X and Y.

Y

X L2 0 1 4

�1 0.3 0.1 0.0 0.2

3 0.0 0.2 0.1 0.0

5 0.1 0.0 0.0 0.0
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Find:
(a) The marginal of X.
(b) P(1.5 < X < 1.75, Y > 1).

3.3.10. The joint pdf of X and Y is

f ðx; yÞ ¼

8><
>:

1
28

ð4xþ 2yþ 1Þ;
0;

0 � x � 2; 0 � y � 2

elsewhere.

Find (a) fX(x) and fY(y) and (b) f(yjx).
3.3.11. Find the joint mgf of the random variables (X, Y) defined in Problem 3.3.9.

3.3.12. The joint density of a random variable (X, Y) is given by:

f ðx; yÞ ¼

8><
>:

x3y3

16
;

0;

0 � x � 2; 0 � y � 2

elsewhere.

(a) Find marginals of X and Y and (b) find f(yjx).
3.3.13. The joint pmf of a discrete random variable (X, Y) is given by:

f ðx; yÞ ¼

8><
>:
�

6xy
nðnþ 1Þð2nþ 1Þ

�2
;

0;

x; y ¼ 1; 2;.; n;

otherwise.

Find (a) f(xjy) and (b) f(yjx).
[Hint:

Pn
i¼ 1

i2 ¼ ðnðn þ1Þð2n þ1ÞÞ�6].
3.3.14. Consider bivariate random variables with the pmf:

f ðx; yÞ ¼
	n
x



yxþa�1ð1� yÞn�xþb�1

; for x ¼ 0; 1;.; n

and 0 < y � 1:

Verify that:

f ðxjyÞf
	n
x



yxð1� yÞn�x

;

and

f ðyjxÞfyxþa�1ð1� yÞn�xþb�1
:

3.3.15. The joint mass function of the discrete random variable (X, Y) is given in Table 3.3.
(a) Find E(XY).
(b) Find Cov(X, Y).
(c) Find the correlation coefficient rX,Y.
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3.3.16. The joint probability function of the continuous random variable (X, Y) is given by:

f ðx; yÞ ¼

8><
>:

1
28

ð4xþ 2yþ 1Þ;
0;

0 � x < 2; 0 � y < 2;

otherwise.

(a) Find E(XY).
(b) Find Cov(X, Y).
(c) Find the correlation coefficient rX,Y.

3.3.17. Let X and Y be random variables and U ¼ aX þ b, V ¼ cY þ d, where a, b, c, and d are constants. Show that

rU;V ¼
(
rX;Y ; if ac > 0

�rX;Y ; otherwise.

3.3.18. Let X and Y be random variables, and let Y ¼ aX þ b, where a and b are constants. Show that (a) rX,Y ¼ 1 if a > 0,
and (b) rX,Y ¼ �1 if a < 0.

3.3.19. If jrX,Yj ¼ 1, then prove that P(Y ¼ aX þ b) ¼ 1.

3.3.20. Let X and Y be two random variables with joint pdf:

f ðx; yÞ ¼
(
8xy;

0;

0 � x � y � 1

otherwise.

(a) Find the conditional expectation, E(XjY ¼ 3
4).

(b) Find Cov(X, Y).

3.3.21. Let X and Y be two random variables with joint density function:

f ðx; yÞ ¼
(
e�y;

0;

0 � x � y

otherwise.

(a) Find the conditional expectation, E(XjY ¼ y).
(b) Find Cov(X, Y).
(c) Are X and Y independent? Why?

3.3.22. Let

f ðx; yÞ ¼ c

ð1þ x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ; �N < x < N; �1 < y < 1:

Find the c that makes f(x, y) the pdf of the random variable (X, Y). Determine whether X and Y are independent.
3.3.23. If the random variables X and Y are independent and have equal variances, what is the coefficient of correlation

between the random variables X and aX þ Y, where a is a constant?

TABLE 3.3 Joint Density of (X,Y).

Y

X 1 2 3

1 1
6

1
6

1
6

2 1
6

1
12

1
12

3 1
12

1
12 0
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3.4 Functions of random variables

In this section we discuss the methods of finding the probability distribution of a function of a random variable X. We are
given the distribution of X, and we are required to find the distribution of g(X). There are many physical problems that call
for the derivation of the distribution of a function of a random variable. The following is one of the classical examples. The
velocity V of a gas molecule (MaxwelleBoltzmann law) behaves as a gamma-distributed random variable. We would like
to derive the distribution of E ¼ mV2, the kinetic energy of the gas molecule. Because the value of the velocity is the
outcome of a random experiment, so is the value of E. This is a problem of finding the distribution of a function of a
random variable E ¼ g(V). We now illustrate various techniques for finding the distribution of g(X) by means of examples.

3.4.1 Method of distribution functions

Basically the method of distribution functions is as follows. If X is a random variable with pdf fX(x) and if Y is some
function of X, then we can find the cdf FY(y) ¼ P(Y � y) directly by integrating fX(x) over the region for which {Y � y}.
Now, by differentiating FY(y), we get the pdf fY(y) of Y. In general, if Y is a function of random variables X1, ., Xn, say
g(X1, ., Xn), then we can summarize the method of distribution function as follows.

Procedure to Find the Cumulative Distribution Function of a Function of a Random Variable Using the Method of
Distribution Functions

1. Find the region {Y � y} in the (x1, x2, ., xn) space, that is,

find the set of (x1, x2, ., xn) for which g(x1, ., xn) � y.

2. Find FY(y) ¼ P(Y � y) by integrating f(x1, x2, ., xn) over the

region {Y � y}.

3. Find the density function fY(y) by differentiating FY(y).

EXAMPLE 3.4.1

Let X w N(0, 1). Using the cdf of X, find the pdf of X2.

Solution

Let Y ¼ X2. Note that the marginal pdf of X is:

fXðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2; �N < x < N:

Then the cdf of Y for a given y � 0 is:

FðyÞ ¼ P ðY � yÞ ¼ P
�
X2 � y

�

¼ P ð� ffiffiffi
y

p � X � ffiffiffi
y

p Þ

¼
Z ffiffi

y
p

� ffiffiyp
1ffiffiffiffiffiffi
2p

p e�x2=2dx

¼ 2

Z ffiffi
y

p

0

1ffiffiffiffiffiffi
2p

p e�x2=2dx;
	
by the symmetry of e�x2=2



:

Hence, by differentiating F(y), we obtain the marginal pdf of Y; that is,

fY ðyÞ ¼ 2ffiffiffiffiffiffi
2p

p e�y=2 1

2
ffiffiffi
y

p

¼

8>>><
>>>:

1ffiffiffiffiffiffi
2p

p y�1=2e�y=2;

0;

0 < y < N

otherwise.

This is a c2 distribution with 1 degree of freedom.
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The same method can be used for the discrete case.

EXAMPLE 3.4.2

Suppose that the random variable X has a Poisson probability distribution, that is,

f ðxÞ ¼

8><
>:

e�llx

x!
;

0;

x ¼ 0;1;2;.

otherwise.

Find the cdf of Y ¼ aX þ b.

Solution

The cdf of Y is given by:

FðyÞ ¼ PðY � yÞ ¼ PðaX þ b � yÞ

¼ P

�
X � y � b

a

�
¼

X
�
y � b

a

�

x ¼ 0

e�llx

x!
;

where [x] is the largest integer less than or equal to x. Therefore,

FðyÞ ¼

8>>>>><
>>>>>:

0; y < b

X
�
y � b

a

�

x¼ 0

e�llx

x!
; y � b:

It should be noted here that the pmf, fY(y) of Y, can be found from the equation:

fY ðyÞ ¼ FY ðyÞ � FY ðy � 1Þ; for y ¼ an þ b; n ¼ 0;1;2;..

The multivariate case (in particular, the bivariate case), though it is more difficult, can be handled similarly.

3.4.2 The probability density function of Y [ g(X), where g is differentiable and monotone
increasing or decreasing

We now consider the distribution of a random variable Y ¼ g(X), where X is a continuous random variable with pdf fX(x).
Assume that g is differentiable and the inverse function g�1 of g exists. Let X ¼ g�1(Y). Let fX(x) be the pdf of X. Then, the
density function of Y can be obtained using the method we have just given. Thus,

fYðyÞ ¼ fX
�
g�1ðyÞ�$ d

dy
g�1ðyÞ:

This is a special case of the transformation method, which will be explained later in Subsection 3.4.5.

EXAMPLE 3.4.3

Let Xw N(0, 1). Find the pdf of Y ¼ eX.

Solution

Here g(x) ¼ ex, and hence, g�1(y) ¼ ln(y). Thus, d
dyg

�1ðyÞ ¼ 1
y:

Also,

fX ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2; �N < x < N:

Therefore, the pdf of Y is:

fY ðyÞ ¼

8><
>:

1

y
ffiffiffiffiffiffi
2p

p e�½lnðyÞ�2=2;

0;

y > 0;

otherwise.
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3.4.3 Probability integral transformation

Let X be a continuous random variable, with pdf fXðxÞ and cdf FðxÞ. Let Y ¼ F(X). Then,

PðY � yÞ ¼ PðFðXÞ� yÞ ¼ P
�
X�F�1ðyÞ�

¼
Z F�1ðyÞ

�N

fXðxÞdx ¼ FXðxÞjF
�1ðyÞ

�N ¼ y:

Hence,

f ðyÞ ¼

1; 0 < y < 1

0; otherwise.

Thus, Y has a U(0, 1) distribution. The transformation Y ¼ F(X) is called a probability integral transformation. It is
interesting to note that irrespective of the pdf of X, Y is always uniform in (0, 1).

EXAMPLE 3.4.4

Let X be a normal with mean m and variance s2. Thus,

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ=2s2 ;�N < x < N;�N < m < N; and s2 > 0:

Let Y ¼ R X
0

1ffiffiffiffi
2p

p
s
e�ðu�mÞ=2s2du: Then Y ¼ F(X), where F is the cdf of a standard normal random variable. Therefore, Y is uniform

on (0, 1). That is,

f ðyÞ ¼

1; if 0 < y < 1

0; otherwise.

3.4.4 Functions of several random variables: method of distribution functions

We now discuss the distribution of Y, when Y is a function of several random variables, Y ¼ g(X1, ., Xn).

EXAMPLE 3.4.5

Let X1,., Xn be continuous independent and identically distributed (iid) random variables with pdf f(x) (cdf F(x)). Find the pdfs of:

Y1 ¼ minðX1;.;XnÞ and Yn ¼ maxðX1;.;XnÞ:
Solution

For the random variable Y1, we have:

1� Fy1ðyÞ ¼ PðY1 > yÞ

¼ PðX1 > y;X2 > y;.;Xn > yÞ

¼ PðX1 > yÞP ðX2 > yÞ.P ðXn > yÞ ðbecause of independenceÞ

¼ ð1� FðyÞÞn:
This implies that:

FY1
ðyÞ ¼ 1� ð1� FðyÞÞn

and

fY1
ðyÞ ¼ nð1� FðyÞÞn�1f ðyÞ:

Consider Yn. Its cdf is given by:

FY1
ðyÞ ¼ P ðYn � yÞ ¼ ðFðyÞÞn:

This implies that:

fYnðyÞ ¼ nðFðyÞÞn�1f ðyÞ:
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3.4.5 Transformation method

The transformation method is a simple generalization of the method of distribution functions from single variable to several
variables. We illustrate the method for bivariate distributions. The method is similar for the multivariate case. Let the joint
pdf of (X, Y) be f(x, y). Let U ¼ g1(X, Y); V ¼ g2(X, Y). The mapping from (X, Y) to (U, V) is assumed to be one to one and
onto. Hence, there are functions, h1 and h2, such that:

x ¼ h�1
1 ðu; vÞ;

and

y ¼ h�1
2 ðu; vÞ:

Define the Jacobian of the transformation J by:

J ¼

��������
vx

vu

vx

vv

vy

vu

vy

vv

��������
:

Then the joint pdf of U and V is given by:

f ðu; vÞ ¼ f
	
h�1
1 ðu; vÞ; h�1

2 ðu; vÞ


jJj:

EXAMPLE 3.4.6

Let X and Y be independent random variables with common pdf f(x) ¼ eex (x > 0). Find the joint pdf of U ¼ X/(X þ Y), V ¼ X þ Y.

Solution

We have U ¼ X/(X þ Y) ¼ X/V. Hence, X ¼ UV and Y ¼ V � X ¼ V � UV ¼ V(1 � U). Thus, the Jacobian is given by:

J ¼
���� v u

�v 1� u

���� :
Then jJj ¼ v(1 � u) þ uv ¼ v(>0). Note that 0 � u � 1, 0 < v <N, and

f ðu; vÞ ¼ f
	
h�1
1 ðu; vÞ; h�1

2 ðu; vÞ


jJj

¼ e�uve�vð1�uÞv

¼ ve�v ; 0 � u � 1; 0 < v < N;

the joint pdf of UV:

Suppose we want the marginal pdfs fV(v) and fU(v), that is,

FVðvÞ ¼
Z 1

0
ve�vdu ¼ ve�v; 0 < v < N

and

fUðuÞ ¼
Z N

0
ve�vdv ¼ 1; 0 � u � 1:

Sometimes the expressions for two variables, U and V, may not be given. Only one expression is available. In that case,
call the given expression of X and Y as U, and define V ¼ Y. Then, we can use the previous method to first find the joint
density and then find the marginal to obtain the pdf of U. The following example demonstrates the method.

EXAMPLE 3.4.7

Let X and Y be independent random variables uniformly distributed on [0, 1]. Find the pdf of X þ Y.
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Solution

Let

U ¼ X þ Y ;

V ¼ Y ;

f ðx; yÞ ¼ 1; 0 � x � 1; 0 � y � 1;

X ¼ U � V ;

Y ¼ V ;

J ¼
������
1 �1

0 1

������ ¼ 1:

Thus, we have the joint pdf (U, V),

f ðu; vÞ ¼
(
1;

0;

0 � u � v � 1;

otherwise.

0 � v � 1;

Note that because V is the variable we introduced, to get the pdf of U, we just need to find the marginal pdf from the joint

pdf. From Fig. 3.10, the regions of integration are 0 � u � 1, and 0 � u � 2. That is,

fUðuÞ ¼
Z

f ðu; vÞdv ¼
Z

1dv

¼

8>>>>>>><
>>>>>>>:

Z u

0

dv ¼ u; 0 � u � 1

Z 1

u�1

dv ¼ 2� u; 0 � u � 2:

(1,0) (2,0)

v = u�1
u = v

v

u

FIGURE 3.10 The regions of integration.

u

u
FIGURE 3.11 Graph of fU(u).
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Exercises 3.4

3.4.1. Let X be a uniformly distributed random variable over (0, a), a > 0. Find the pdf of Y ¼ cX þ d for a constant
c > 0.

3.4.2. The joint pdf of (X, Y) is:

f ðx; yÞ ¼ 1

q2
e�

xþy
q ; x; y > 0; q > 0:

Find the pdf of U ¼ X � Y.

3.4.3. Let f(x, y) be the pdf of the continuous random variable (X, Y). If U ¼ XY, show that the pdf of U is given by:

fUðuÞ ¼
Z N

�N

f
	u
v
; v

����1v
����dv:

3.4.4. The joint pdf of X and Y is:

f ðx; yÞ ¼ qe�ðxþqyÞ; q > 0; x > 0:

Find the pdf of XY.

3.4.5. If the joint pdf of (X, Y) is:

f ðx; yÞ ¼ 1
2ps1s2

e
� 1

4s2
1
s2
2
ðx2þy2Þ

; �N < x < N;

�N < y < N; s1; s2 > 0

find the pdf of X2 þ Y2.

3.4.6. Let X1, ., Xn be iid random variables with pdf f(x) ¼ (1/q)eex/q, x > 0, q > 0. Find the pdf of
Pn
i¼ 1

Xi:

3.4.7. Let f(x, y) be the pdf of the continuous random variable (X, Y). If U ¼ X þ Y, then show that the pdf of U is given
by:

fUðuÞ ¼
Z N

�N

f ðu� v; vÞdv:

3.4.8. Let X be uniformly distributed over (�2, 2) and Y ¼ X2. Find the Cov(X, Y). Are X and Y independent?
3.4.9. Let Xw N(m, s2). Show that:

(a) Z ¼ ðX�mÞ
s

is Nð0; 1Þ:
(b) U ¼ ðX�mÞ2

s2
is c2ð1Þ:

3.4.10. Let Xw N(m, s2). Find the pdf of Y ¼ eX.
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3.4.11. The probability density of the velocity, V, of a gas molecule, according to the MaxwelleBoltzmann law, is given
by:

f ðv; bÞ ¼
(
cv2e�bv2 ;

0;

v > 0;

elsewhere

where c is an appropriate constant and b depends on the mass of the molecules and the absolute temperature.
Find the density function of the kinetic energy E, which is given by E ¼ gðVÞ ¼ 1

2mV
2.

3.4.12. Let X and Y be two independent random variables, each normally distributed, with parameters�
m1; s

2
1

�
; and

�
m2; s

2
2

�
; respectively. Show that the pdf of U ¼ X/Y is given by:

fUðuÞ ¼ s1s2

pðs2
1 þ s2

2u2Þ
; �N < u < N:

3.4.13. Let

f ðx; yÞ ¼ 1
2ps2

e�ð1=2s2Þðx2þy2Þ; �N < x; y < N

be the joint pdf of (X, Y). Let

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
and V ¼ tan�1

�
Y

X

�
; 0 � V � 2p:

Find the joint pdf of (U, V).

3.4.14. Let the joint pdf of (X, Y) be given by:

f ðx; yÞ ¼
(
b�2e�fðxþyÞ=bg;

0;

x; y > 0; b > 0;

elsewhere.

Let U ¼ X�Y
2 and V ¼ Y. Find the joint pdf of (U, V).

3.4.15. Let X and Y be iid random variables with pdf:

f ðxÞ ¼

8><
>:

1
2
e�x=2;

0;

x � 0;

otherwise.

Find the distribution of (X � Y)/2.

3.4.16. If X and Y are independent and chi-square-distributed random variables with n1 and n2 degrees of freedom, respec-
tively, obtain the joint distribution of (U, V), where U ¼ X þ Y and V ¼ X/Y.

3.5 Limit theorems

Limit theorems play a very important role in the study of probability theory and in its applications. In Chapter 2, we saw
that the frequency interpretation of probability depends on the long-run proportion of times the outcome (event) would
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occur in repeated experiments. Also, in Section 3.2, we learned that some binomial probabilities can be computed using the
Poisson probability distribution and the normal probability distribution using the limiting arguments described in this
section. Many random variables that we encounter in nature have distributions close to the normal probability distribution.
These modeling simplifications are possible because of various limit theorems. In this section, we discuss the law of large
numbers and the CLT.

First, we give Chebyshev’s theorem, which is a useful result for proving the limit theorems. It gives a lower bound
for the area under a curve between two points that are on opposite sides of the mean and are equidistant from the mean.
The strength of this result lies in the fact that we need not know the probability distribution of the underlying population,
other than its mean and variance. This result was developed by the Russian mathematician Pafnuty Chebyshev
(1821e1894).

Chebyshev’s Theorem

Theorem 3.5.1 Let the random variable X have a mean m and

standard deviation s. Then for K > 0, a constant,
P ðjX �mj<KsÞ� 1� 1

K 2
.

Proof. We will work with the continuous case. By definition of the variance of X, we have,

s2 ¼ EðX � mÞ2 ¼
Z N

�N

ðx� mÞ2 f ðxÞdx

¼
Z m�Ks

�N

ðx� mÞ2f ðxÞdxþ
Z mþKs

m�Ks

ðx� mÞ2f ðxÞdxþ
Z N

mþKs

ðx� mÞ2f ðxÞdx

�
Z m�Ks

�N

ðx� mÞ2f ðxÞdxþ
Z N

mþKs

ðx� mÞ2f ðxÞdx:

Note that (x � m)2 � K2s2 for x � m � Ks or x � m þ Ks. The preceding equation can be rewritten as:

s2 � K2s2

2
64Z m�Ks

�N

f ðxÞdxþ
Z N

mþKs

f ðxÞdx

3
75

¼ K2s2½PfX � m� Ksg þ PfX � mþ Ksg�

¼ K2s2PfjX � mj � Ksg:
This implies that,

PfjX�mj �Ksg � 1
K2

or

PðjX�mj<KsÞ� 1� 1
K2

:

We can also write Chebyshev’s theorem as:

PfjX�mj � εg�E
�ðX � mÞ2�

ε
2

¼ VarðXÞ
ε
2

; for some ε > 0:
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Equivalently,

PfjX�mj �Ksg � 1
K2

:

In other words, Chebyshev’s inequality states that the probability that a random variable X differs from its mean by at
least K standard deviations is less than or equal to 1

�
K2; (K � 2; for K ¼ 1, the result is obvious).

In statistics, if we do not have any idea of the population probability distribution, Chebyshev’s theorem is used in the
following manner. For any data set (regardless of the shape of the distribution), at least (1 � (1/k2))100% of observations
will lie within k(�1) standard deviations of the mean. For example, at least (1 � (1/22))100% ¼ 75% of the data will fall in
the interval ðx�2s; xþ2sÞ and at least 88.9% of the observations will lie within 3 standard deviations of the mean. If the
population distribution is bell shaped, we have a better result than Chebyshev’s theorem, namely, the empirical rule that
states the following: (1) approximately 68% of the observations lie within 1 standard deviation of the mean; (2)
approximately 95% of the observations lie within 2 standard deviations of the mean; and (3) approximately 99.7% of the
observations lie within 3 standard deviations of the mean.

EXAMPLE 3.5.1

A random variable X has mean 24 and variance 9. Obtain a bound on the probability that the random variable X assumes values

between 16.5 and 31.5.

Solution

From Chebyshev’s theorem:

Pfm�Ks<X <mþKsg� 1� 1

K 2
:

Equating m þ Ks to 31.5 and m � Ks to 16.5 with m ¼ 24 and s ¼ ffiffiffi
9

p ¼ 3; we obtain K ¼ 2.5. Hence,

Pf16:5<X < 31:5g� 1� 1

ð2:5Þ2 ¼ 0:84:

EXAMPLE 3.5.2

Let X be a random variable that represents the systolic blood pressure of the population of 18- to 74-year-old men in the United

States. Suppose that X has mean 129 mm Hg and standard deviation 19.8 mm Hg.

(a) Obtain a bound on the probability that the systolic blood pressure of this population will assume values between 89.4 and

168.6 mm Hg.

(b) In addition, assume that the distribution of X is approximately normal. Using the normal table, find P(89.4 � X � 168.6).

Compare this with the empirical rule.

Solution

(a) Because we are given only the mean and standard deviation, and no probability distribution is specified, we can use Che-

byshev’s theorem. We have:

Pfm�Ks<X <mþKsg� 1� 1

K 2
:

Equating m þ Ks to 168.6 and m � Ks to 89.4 with m ¼ 129 and s ¼ 19.8, we obtain K ¼ 2. Hence,

Pf89:4�X � 168:6g� 1� 1

ð2Þ2 ¼ 0:75:

(b) Because X is normally distributed with mean 129 and standard deviation 19.8, using the z-score, we get:

Pð89:4 � X � 168:6Þ ¼ P

�
89:4� 129

19:8
� Z � 168:6� 129

19:8

�

¼ P ð� 2 � Z � 2Þ ¼ 0:9544:

Hence, approximately 95.44% of this population will have systolic blood pressure values between 89.4 and 168.6 mm Hg.

This compares well with the 95% value from the empirical rule.
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We could use Chebyshev’s inequality to prove the following result, which is called the weak law of large numbers in
which the convergence is in probability. A stronger version of this result is called the strong law of large numbers in which
convergence is with probability 1. Since in this book we do not introduce various modes of convergence, we will not
discuss the strong law of large numbers. The law of large numbers states that if the sample size n is large, the sample mean
rarely deviates from the mean of the distribution of X, which in statistics is called the population mean.

Law of Large Numbers

Theorem 3.5.2 Let X1, ., Xn be a set of pairwise independent

random variables with E(Xi) ¼ m, and Var(Xi) ¼ s2. Then for any

c > 0,

P
�
m� c�X �mþ c

�� 1� s2

nc2

and as n /N, the probability approaches 1. Equivalently,

P

�����Snn �m

����< ε

�
/1

as n /N. Here, X ¼ 1
n

Pn
i¼ 1

Xi and Sn ¼ Pn
i¼ 1

Xi.

Proof. Because X1,., Xn are iid random variables (random sample), we know that Var(Sn) ¼ ns2, and Var(Sn/n) ¼ s2/
n. Also, E(Sn/n) ¼ m. By Chebyshev’s theorem, for any ε > 0,

P

�����Snn �m

����� ε

�
� s2

nε2
:

Thus, for any fixed ε,

P

�����Snn �m

����� ε

�
/0

as n / N. Equivalently,

P

�����Snn �m

����< ε

�
/1

as n / N.
Thus, without any knowledge of the probability distribution function of Sn, the (weak) law of large numbers states that

the sample mean, X ¼ Sn=n; will differ from the population mean by less than an arbitrary constant, ε > 0, with prob-
ability that tends to 1 as n tends to N. Because of this, the law of large numbers is also called the “law of averages.” This
result basically states that we can start with a random experiment whose outcome cannot be predicted with certainty, and
by taking averages, we can obtain an experiment in which the outcome can be predicted with a high degree of accuracy.
The law of large numbers in its simplest form for the Bernoulli random variables was introduced by Jacob Bernoulli toward
the end of the 16th century. This result in its generality was first proved by the Russian mathematician A. Khinchin in
1929. This result is widely used in applications in insurance, statistics, and the study of heredity.

EXAMPLE 3.5.3

Let X1, ., Xn be iid Bernoulli random variables with parameter p. Verify the weak law of large numbers.

Solution

For Bernoulli random variables we know that E(Xi) ¼ p, and Var(Xi) ¼ p(1 � p). Thus, by Chebyshev’s theorem,

P
�
p � c � X � p þ c

� ¼ P

����Snn � p

���� � c

�
� 1� s2

nc2

¼ 1� pð1� pÞ
nc2 /1; as n/N:

This verifies the weak law of large numbers.
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EXAMPLE 3.5.4

Consider n rolls of a balanced die. Let Xi be the outcome of the ith roll, and let Sn ¼ Pn
i¼1Xi : Show that, for any ε > 0,

P

�����Snn � 7

2

����� ε

�
/0

as n /N.

Solution

Because the die is balanced, E(Xi) ¼ 7/2. By the law of large numbers, for any ε > 0,

P

�����Snn � 7

2

����� ε

�
/0

as n /N, or equivalently,

P

�����Snn � 7

2

����< ε

�
/1

as n /N.

One of the most important results in probability theory is the central limit theorem. This basically states that the
z-transform of the sample mean is asymptotically standard normal. The amazing thing about the CLT is that no matter what
the shape of the original distribution is, the (sampling) distribution of the mean approaches a normal probability distri-
bution. We state one version of the CLT. In a restricted case, the proof uses the idea that the mgfs of Zn converge to the mgf
of the standard normal random variable. The general proof is a little bit more involved. Because the proof of the CLT is
available in most probability books, we will not give the proof here.

Central Limit Theorem

Theorem 3.5.3 If X1, ., Xn is a random sample from an infinite

population with mean m < N, and variance s2 < N, then the

limiting distribution of Zn ¼ ðX�mÞ�ðs =
ffiffiffi
n

p Þ as n/N is the

standard normal probability distribution. That is,

lim
n/N

P ðZn � zÞ ¼ 1ffiffiffi
2

p
p

Z z

�N

e�t2=2dt :

If Sn ¼ Pn
i¼ 1

Xi; then we can rewrite Zn as:

Zn ¼ X � m

s=
ffiffiffi
n

p ¼ n
�
X � m

�
ns=

ffiffiffi
n

p ;

¼ Sn � nm

s
ffiffiffi
n

p ; since nX ¼
Xn
i¼ 1

Xi:

Then the CLT states that Zn ¼ ðSn �nmÞ=s ffiffiffi
n

p
is approximately N(0, 1) for large n.

The CLT basically says that when we repeat an experiment a large number of times, the average (almost always)
follows a Gaussian distribution.

Proof. We will prove the result with m ¼ 0; thus, Zn ¼ Sn=s
ffiffiffi
n

p
. For m s 0, take Un ¼ Xn � m for each n. Let Yn ¼Pn

i¼ 1
Ui. Then, we have:

limnP

�
Sn � nm

s
ffiffiffi
n

p � x

�
¼ limnP

�
Yn

s
ffiffiffi
n

p � x

�
:

Hence, it suffices for the result in the case m ¼ 0.
Since Sn is a sum of independent random variables, MSnðtÞ ¼ ½MðtÞ�n, and hence,

MZnðtÞ ¼
�
M

�
t

s
ffiffiffi
n

p
��n

:
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Using Example 2.6.11, it is enough to show that the limn/N ln Mðt =s ffiffiffi
n

p Þ ¼ t2
�
2: Let x ¼ 1=

ffiffiffi
n

p
in this limit; so we

need to find:

lim
x/0

ln Mðtx=sÞ
x2

¼ t2

2
ðusing L'Hopital's rule a couple of timesÞ.

Thus, the proof.

EXAMPLE 3.5.5

Let X1, X2, ., be iid random variables such that:

Xi ¼
(
1;

0;

with probability p;

with probability 1� p.

Show that Zn ¼ ðSn �npÞ� ffiffiffiffiffiffiffiffiffi
npq

p
is approximately normal for large n, where Sn ¼ Pn

i¼1Xi ; and q ¼ 1 � p.

Solution

We know that:

EðXÞ ¼ p; E
�
X2
� ¼ p; VarðXÞ ¼ p � p2 ¼ pq:

Hence, by the CLT, the limiting distribution of Zn ¼ ðSn �npÞ� ffiffiffiffiffiffiffiffi
npq

p
as n /N is the standard normal probability

distribution.

EXAMPLE 3.5.6

A soft drink vending machine is set so that the amount of drink dispensed is a random variable with a mean of 8 oz and a standard

deviation of 0.4 oz. What is the approximate probability that the average of 36 randomly chosen fills exceeds 8.1 oz?

Solution

From the CLT,
��
X�8

� ��
0:4
� ffiffiffiffiffiffi

36
p ��

wNð0;1Þ: Hence, from the normal table,

P
�
X > 8:1

� ¼ P

(
Z >

8:1� 8:0
0:4ffiffiffiffiffiffi
36

p

)

¼ pfZ > 1:5g ¼ 0:0668:

Thus, there is an approximately 6.68% chance that the chosen fills exceed 8.1 oz.

EXAMPLE 3.5.7

Numbers in decimal form are often approximated by the closest integer. Suppose n numbers X1, ., Xn are approximated by their

closest integers J1, J2, ., Jn. Let Ui ¼ Xi � Ji. Assume that Ui are uniform on (�0.5, 0.5) and that U0
i s are independent.

(a) Show that

Pn
i¼ 1

Uiffiffiffiffiffiffiffiffi
n=12

p wNð0; 1Þ as n/N:

(b) For n ¼ 300, find P

8>><
>>:

�5ffiffiffiffiffiffiffiffiffiffiffi
300=12

p �
Pn
i¼ 1

Uiffiffiffiffiffiffiffiffiffiffiffi
300=12

p � 5ffiffiffiffiffiffiffiffiffiffiffi
300=12

p

9>>=
>>;

(c) For n ¼ 300, find the value of a such that Pf�a � P
Ui � ag ¼ 0:95.

(d) For n ¼ 106, find a such that P

(
� a � P106

i¼ 1

Ui � a

)
¼ 0:99:

Solution

(a) Because U0
is are uniform in (�0.5, 0.5),

P
Ui ¼ 0, Var(Ui) ¼ 1/12. Let Sn ¼ Sn

i¼1Xi; and Kn ¼ Pn
i¼ 1

Ji: Then:

PfjSn � Knj � ag ¼ P
n
� a �

X
ðXi � JiÞ � a

o

¼ P
n
�a �

X
Ui � a

o
:
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By the CLT,

Pn
i¼ 1

Ui�0ffiffiffiffiffiffiffiffi
n=12

p wNð0;1Þ as n/N:

(b) For n ¼ 300, a ¼ 5. Using the normal table,

P

8>><
>>:

�5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p �
Pn
i¼ 1

Uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p � 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p
9>>=
>>; ¼ 0:68:

(c) Now,

0:95 ¼ P
n
�a �

X
Ui � a

o

¼ P

(
�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p � Z � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300=12

p
)
:

From the normal table, we get affiffiffiffiffiffiffiffiffiffiffi
300=12

p ¼ 1:96: This implies that a ¼ 9.8.

(d) We have

0:99 ¼ P

(
� a �

X106
i¼ 1

Ui � a

)

¼ P

(
�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106=12

p � Z � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106=12

p
)
:

Now, using the normal table, we have a
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

106=12
p ¼ 2:58: Hence, a ¼ 745.

EXAMPLE 3.5.8

A casino has a coin, suspected to be biased. Estimate p (probability of heads) such that they can be 99% confident that their

estimate (say,bp ) is within 0.01 of p (unknown). What is the minimum number of times we need to toss this coin?

Solution

Set

Xj ¼

1; if H appear in j’th toss

0; if T appear in j’th toss

Suppose we decided to use bp ¼ S Xi

n ; that is,

�
# Heads

n

�
; as an estimate of p.

We want PfjX �p
��< 0:01

� ¼ 0:99:

Because Y ¼ Sn
i¼1XiwBinðn; pÞ; we have E(Y) ¼ np, Var(Y) ¼ npq. By the CLT,

�
X�pÞ� ffiffiffiffiffiffiffiffiffiffiffi

pq=n
p

wNð0;1Þ: Now,

0:99 ¼ P

(
�0:01ffiffiffiffiffiffiffiffiffiffiffi
pq=n

p <
X � pffiffiffiffiffiffiffiffiffiffiffi
pq=n

p <
0:01ffiffiffiffiffiffiffiffiffiffiffi
pq=n

p
)

¼ P

(
�0:01ffiffiffiffiffiffiffiffiffiffiffi
pq=n

p < Z <
0:01ffiffiffiffiffiffiffiffiffiffiffi
pq=n

p
)
:

Using the normal table,
	
0:01

. ffiffiffiffiffiffiffiffiffiffiffi
pq=n

p 

¼ 2:58;this implies that

ffiffiffi
n

p � �
2:58

ffiffiffiffiffiffi
pq

p �
0:01

�
:

Because the maximum of pq ¼ 1/4, it is sufficient that:

ffiffiffi
n

p ¼
�
2:58Þð ffiffiffiffiffiffiffiffiffiffiffiffið1=4Þp �

0:01
¼ 129:

Hence, n ¼ (129)2 ¼ 16,641, and we should choose the sample size n � 16,641. Thus, the coin must be tossed at least 16,641

times to determine if the coin is not fair.
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Note that the method used in Example 3.5.8 can be used to estimate any unknown probability, not just an unfair coin.
Also, the fact that pq ¼ 1=4 is maximum can be shown by calculus: let f ðpÞ ¼ pq ¼ pð1 �pÞ ¼ p � p2. 0 ¼ f 0ðpÞ ¼
1� 2p implies p ¼ 1=2, so q ¼ 1=2.

The CLT is extremely important in statistics because it says that we can approximate the distribution of certain statistics
without much knowledge about the underlying probability distribution of that statistic for a relatively “large” sample size.
How large the n should be for this normal approximation to work depends on the distribution of the original distribution. A
rule of thumb is that the sample size n must be at least 30. We deal with these issues in Chapter 4.

Exercises 3.5

3.5.1. Let X be a random variable with pdf:

f ðxÞ ¼
(
630x4ð1� xÞ4;

0;

0 < x < 1;

otherwise.

(a) Obtain the lower bound given by Chebyshev’s inequality for P{0.2 < X < 0.8}.
(b) Compute the exact probability P{0.2 < X < 0.8}.

3.5.2. Suppose that the number of cars arriving in 1 h at a busy intersection is a Poisson probability distribution with
l ¼ 100. Find, using Chebyshev’s inequality, a lower bound for the probability that the number of cars arriving
at the intersection in 1 h is between 70 and 130.

3.5.3. Prove Chebyshev’s inequality for the discrete case.
3.5.4. Suppose that the number of cars arriving at a busy intersection in a given 20-min interval in a large city has a Pois-

son distribution with mean 120. Determine a lower bound for the probability that the number of cars arriving in a
given 20-min period will be between 100 and 140 using Chebyshev’s inequality.

3.5.5. Find the smallest value of n in a binomial distribution for which we can assert that:

P

�����Xn

n
� p

����< 0:1

�
� 0:90:

3.5.6. How large should the size of a random sample be so that we can be 90% certain that the sample mean X will not
deviate from the true mean by more than s/2?

3.5.7. Let a fair coin be tossed n times and let Sn be the number of heads that turn up. Show that the fraction of heads, Sn/n,
will be near to 1/2 for large n. What can we conclude if the coin is not fair?

3.5.8. Suppose that failure of a certain component follows the distribution f ðxÞ ¼ pxð1� pÞx for x ¼ 0, 1, and 0, else-
where. How many components must one test so that the sample mean X will lie within 0.4 of the true state of nature
with probability at least as great as 0.95?

3.5.9. Let X1, ., Xn be a sequence of mutually independent random variables, with probability distribution:

P
	
Xi ¼

ffiffi
i

p 

¼ 1

2
and P

	
Xi ¼ �

ffiffi
i

p 

¼ 1

2
:

Show that this sequence of random variables does not satisfy the conditions of the law of large numbers.

3.5.10. Give a proof of the CLT.
3.5.11. Let X1, ., Xn be a sequence of independent Poisson-distributed random variables, with parameter l. Let Sn ¼Pn

i¼ 1
Xi: Show that Zn ¼ �ðSn �nlÞ= ffiffiffiffiffi

nl
p �

wNð0; 1Þ:
3.5.12. Let X1, ., Xn be a sequence of independent uniformly distributed random variables over (0,1). Let Sn ¼ Pn

i¼ 1
Xi:

Show that Zn ¼ �ðSn �nlÞ= ffiffiffiffiffi
nl

p �
wNð0; 1Þ:

3.5.13. Suppose that 2500 customers subscribe to a telephone exchange. There are 80 trunk lines available. Any one
customer has the probability of 0.03 of needing a trunk line on a given call. Consider the situation as 2500 trials
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with probability of “success” p ¼ 0.03. What is the approximate probability that the 2500 customers will “tie up”
the 80 trunk lines at any given time?

3.5.14. Suppose a group of people have an average IQ of 122 with standard deviation 2. Obtain a bound on the probability
that IQ values of this group will be between 104 and 140.

3.5.15. Let X be a random variable that represents the diastolic blood pressure of the population of 18- to 74-year-old men
in the United States who are not taking any corrective medication. Suppose that X has mean 80.7 mm Hg and
standard deviation 9.2.
(a) Obtain a bound on the probability that the diastolic blood pressure of this population will assume values be-

tween 53.1 and 108.3 mm Hg.
(b) In addition, assume that the distribution of X is approximately normal. Using the normal table, find

P(53.1 � X � 108.3). Compare the exact value of the probability with the lower bound obtained in (a).
3.5.16. Color blindness appears in 2% of the people in a certain population. How large must a random sample be to be

99% certain that a color-blind person is included in the sample?
3.5.17. A shirt manufacturer knows that, on average, 2% of his product will not meet quality specifications.

Find the greatest number of shirts constituting a lot that will have, with probability 0.95, fewer than five
defectives.

3.5.18. A medical manufacturer receives a shipment of 10,000 calibrated “eyedroppers” for administering the Sabin
poliovirus vaccine. If the calibration mark is missing on 500 droppers, which are scattered randomly
throughout the shipment, what is the probability that, at most, two defective droppers will be detected in a
random sample of 125?

3.5.19. Let X1, ., Xn be a random sample, with mean m1 and standard deviation s1. Also, let Y1, Y2, ., Ym be a random
sample, with mean m2 and standard deviation s2. Assume that both samples are from normal populations. Verify

that
�
X �Y

�
wN

�
m1 �m2;

1
ns

2
1 þ1

ms
2
2

�
:

3.5.20. Let X1, ., Xn be a random sample, with mean m1 and standard deviation s1. Also, let Y1, Y2, ., Yn be a random
sample independent of X1, ., Xn, with mean m2 and standard deviation s2. Prove that the random variable

Vn ¼
�
X � Y

�� ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1 þ s2

2

n

r

satisfies the conditions of Theorem 3.5.3 and hence Vn is asymptotically normal.

3.5.21. A random sample size of 150 is taken from an infinite population having mean m ¼ 8 and variance s2 ¼ 4. What is
the probability that X will be between 7.5 and 10?

3.5.22. A machine that is used to fill bottles with soda has been observed to have a true standard deviation in the amounts
of fill of approximately s ¼ 1.25 oz. However, the mean ounces of fill m may change from day to day, because of
change of operator or adjustments in the machine. If n ¼ 55 observations on ounces of fill are taken on a given
day, find the probability that the sample mean will be within 0.5 oz of the true population mean. State any
assumptions.

3.5.23. The times spent by customers coming to a certain gas station to fill up can be viewed as independent random vari-
ables with a mean of 3 min and a variance of 1.5 min. Approximate the probability that a random sample of 75
customers in this gas station will spend a total time of less than 3 hours. Interpret your results and state any
assumptions.

3.5.24. Refer to Exercise 3.5.23. Find the number of customers, m, such that the probability that all m customers can fill
up in less than 3 hours is approximately 0.2.

3.5.25. In the mathematics department of a certain university, in a particular semester, 1250 students took the elementary
algebra final examination. The mean was 69% with a standard deviation of 5.4%. If a random sample of 60 stu-
dents is selected from this population, what is the probability that the average score of this sample will be at most
75.08? Interpret your results and state any assumptions.

138 Mathematical Statistics with Applications in R



3.5.26. For a newborn full-term infant, the weight appropriate for gestational age is assumed to be normally distributed
with m ¼ 3025 g and s ¼ 165 g. Compute the probability that a random sample of 50 infants born at full term
results in a sample mean of less than 3500 g.

3.6 Chapter summary

In this chapter we looked at some special probability distribution functions that arise in practice. It should be noted that we
discussed only a few of the important probability distributions. There are many other discrete and continuous distributions
that will be useful and appropriate in particular applications. Some of them are given in Appendix A3. A larger list of
probability distributions can be found at http://www.causascientia.org/math_stat/Dists/Compendium.pdf, among many
other places. For more than one random variable, we learned the behavior of joint probability distributions. We also saw
how to find the probability (mass) density function and cumulative distribution for the functions of a random variable.
Limit theorems are a crucial part of probability theory. We have introduced the Chebyshev inequality, the law of large
numbers, and the CLT for the random variables.

We now list some of the key definitions introduced in this chapter:

- Bernoulli probability distribution
- Binomial experiment
- Poisson probability distribution
- Probability distribution
- Normal (or Gaussian) probability distribution
- Standard normal random variable
- Gamma probability distribution
- Exponential probability distribution
- Chi-square (c2) distribution
- Joint pdf
- Bivariate probability distributions
- Marginal pdf
- Conditional probability distribution
- Independence of two random variables
- Expected value of a function of bivariate random variables
- Conditional expectation
- Covariance
- Correlation coefficient

In this chapter, we have also learned the following important concepts and procedures:

- Mean, variance, and mgf of a binomial random variable
- Mean, variance, and mgf of a Poisson random variable
- Poisson approximation to the binomial probability distribution
- Mean, variance, and mgf of a uniform random variable
- Mean, variance, and mgf of a normal random variable
- Mean, variance, and mgf of a gamma random variable
- Mean, variance, and mgf of an exponential random variable
- Mean, variance, and mgf of a chi-square random variable
- Properties of expected value
- Properties of the covariance and correlation coefficient
- Procedure to find the cdf of a function of random variable using the method of distribution functions
- The pdf of Y ¼ g(X), where g is differentiable and monotone increasing or decreasing
- The pdf of Y ¼ g(X), using the probability integral transformation
- The transformation method to find the pdf of Y ¼ g(X1, ., Xn)
- Chebyshev’s theorem
- Law of large numbers
- CLT
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3.7 Computer examples (optional)

3.7.1 The R examples

EXAMPLE 3.7.1 Pdfs and cdfs in R

R contains functions for many distribution functions with a logical format to access each. This example will translate to other

distributions such as Poisson and normal; however, the examples will be with the binomial. Specifically, in R, they are four

command prefixes (p, q, r, d). p will return the probabilities (cumulative) while q returns values (quantile, the inverse cdf). r

generates random values from the distribution, and d returns the density. In the case of R and these functions, everything is

cumulative and you will need to adjust for this when seeking noncumulative probabilities. Using the help() function is recom-

mended since each distribution takes different arguments, e.g., help(pbinom).

R code

pbinom(c(0:5),5,0.4);

pbinom(3,5,0.4)-pbinom(2,5,0.4);

qbinom(0.5,5,0.4);

pnorm(4.2,4,2);

qnorm(0.5,4,2);

Output:
0.07776 0.33696 0.68256 0.91296 0.98976 1.00000 Where X follows the

binomial distribution

0.2304 2

0.5398278 Where X follows the normal distribution

4

P(X=3)

CDF

P(X< 4.2)

CDF(X)=0.5

EXAMPLE 3.7.2 Binomial experiment

A manufacturer of color printers claims that only 5% of their printers require repairs within the first year. If out of a random sample

of 18 of their printers, four required repairs within the first year, does this tend to refute or support the manufacturer’s claim?

R code

1-pbinom(3,18,0.05)

Output

R Code:
1-pbinom(3,18,0.05);

Output:
0.01087322

P(X>4) for the sample of 18 given p=0.05

this is a very low probability sugges�ng

that we refute the claim.

EXAMPLE 3.7.3 Binomial experiment

Suppose that a certain medication to treat a disease has a success rate of p ¼ 0.65. This medication is given to n ¼ 500 patients

with the disease.

(a) What is the probability that 335 or fewer show improvement?

(b) What is the probability that more than 320 show improvement?
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(c) What is the probability that exactly 300 show improvement?

(d) What is the probability that the number of improvements lies in the interval (300, 350)?

R code

pbinom(335,500,0.65);

1-pbinom(320,500,0.65);

pbinom(300,500,0.65)-pbinom(299,500,0.65);

pbinom(349,500,0.65)-pbinom(300,500,0.65);

Output:
0.8375342

0.6648447

0.002462253

0.9784924

P(X< 335)
P(X>320)

P(X=300)

P(300 < X < 350)

3.7.2 Minitab examples

Minitab contains subroutines that can do pdf and cdf computations. For example, for binomial random variables, the pdf
and cdf can be respectively computed using the following comments.

MTB > pdf k;

SUBC > binomial n p.

and

MTB > cdf;

SUBC > binomial n p.

Similarly, if we want to calculate the cdf for a normal probability distribution with mean k and standard deviation s, use
the following comments:

MTB > cdf x;

SUBC > normal k s.

will give P(X � x).

We can use the invcdf command to find the inverse cdf. For a given probability p, P(X � x) ¼ F(x) ¼ p, we can
find x for a given distribution. For example, for a normal probability distribution with mean k and standard deviation s,
use the following:

MTB > invcdf p;

SUBC > normal k s.

3.7.3 Distribution checking

To perform right statistical analysis, it is necessary to know the distribution of the data we are using. We can use
Minitab to do this by the following steps:

1. Choose Stat > Quality Tools > Individual Distribution Identification.
2. Specify the column of data to analyze and the distribution to check it against.
3. Click OK.
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3.7.4 SPSS examples

EXAMPLE 3.7.5

For the data of Example 3.7.4, using SPSS, find P(X � 3).

Solution

Enter numbers 1 through 18 in C1. Then use the following.

Transform > Compute > type in the Target Variable: y > use the scroll bar beside the Functions box to find

CDF.BINOM(q, n, p) > highlight it and use the Up button to load it into the Numeric Expression: box. Set q to 3 (success,

the x value), n to 18 (total trials), and p to 0.05 (probability of success) > OK.

In the second column, we will get the y values as 0.99. Hence, P(X � 3) ¼ 0.99.

We can use this procedure for many other distributions.

3.7.5 SAS examples

Sometimes, we can use computer calculations to find out the exact probability of a certain event in lieu of approx-
imations. For example, when n is large in a binomial experiment, we can use normal approximation to calculate the
probabilities. The following example shows how to calculate binomial probabilities using SAS codes.

EXAMPLE 3.7.6

Suppose that a certain medication to treat a disease has a success rate of p ¼ 0.65. This medication is given to n ¼ 500

patients with the disease.

(a) What is the probability that 335 or fewer show improvement?

(b) What is the probability that more than 320 show improvement?

(c) What is the probability that exactly 300 show improvement?

(d) What is the probability that the number of improvements lies in the interval (300, 350)?

Solution

Let X ¼ number of patients showing improvement. Then X is a binomial random variable with parameters n ¼ 500 and

p ¼ 0.65.

(a) The first three lines in the following code are comment lines. In general, it is always helpful to include the
comment lines to explain about the program.

/*This program can be used to compute probability*/

/* that a Binomial variable with parameters p*/

/*and n is less than or equal to x*/

data binomial;

p¼0.65;

n¼500;

x¼335;

y¼probbnml(p,n,x);

cards;

proc print;

run;

(b) To calculate P(X > 320), we can use the following.

data binomial;

p¼0.65;

n¼500;

x¼320;
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y¼probbnml(p,n,x);

z¼1ey;

cards;

proc print;

run;

(c) To find P(X ¼ 300), we can use the following:

data binomial;

p¼0.65;

n¼ 500;

x1¼300;

y1¼probbnml(p,n,x1);

x2¼299;

y2¼probbnml(p,n,x2);

z¼y1�y2;

cards;

proc print;

run;

(d) To find P(300 < X < 350), use the following:

data binomial;

p¼0.65;

n¼500;

x1¼300;

y1¼probbnml(p,n,x1);

x2¼349;

y2¼probbnml(p,n,x2);

z¼y2�y1;

cards;

proc print;

run;

Similar procedures could be used to calculate probabilities for other distributions.
To test for normality of a given data set using a normal probability plot, we can use PROC UNIVARIATE (see

Chapter 1 for explanation) in the following manner. Normal plot is called qqplot in SAS.

proc univariate data¼K noprint; /*Specify the name of data set as K*/ qqplot standard;

run;

quit;

Note that this avoids printing of all the standard output due to the univariate command, and we get only the QQ
plot. If we need a straight line in the plot, we can modify the commands as follows:

proc univariate data¼K noprint; /*Specify the name of data set as B*/ qqplot standard/ normal (mu¼m, sigma¼s);

run;

quit;
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Projects for Chapter 3

3A Mixture distribution

In statistical modeling, if the data are contaminated by outliers or if the samples are drawn from a population formed
by a mixture of two populations, one could use mixture distributions. Mixture distributions are used frequently in
medical applications, such as microarray analysis. Suppose a random variable X has pdf f1(x) with probability p1 and
pdf f2(x) with probability p2, where p1 þ p2 ¼ 1. Then we say that the random variable X has a mixture distribution.
This can be thought of as observing a Bernoulli random variable Z that is equal to 1 with probability p1 and 2 with
probability p2. Thus,

X ¼

X1wf1ðxÞ; if Y ¼ 1;

X2wf2ðxÞ; if Y ¼ 2:

(a) Show that the pdf of X is given by f(x) ¼ p1f1(x) þ p2f2(x).
(b) If

�
m1; s

2
1

�
and

�
m2; s

2
2

�
are means and variances of f1(x) and f2(x), respectively, show that

m ¼ EðXÞ ¼ p1m1 þ p2m2;

and

s2 ¼ VarðXÞ ¼ p1s
2
1 þ p2s

2
1 þ p1m

2
1 þ p2m

2
2 � ðp1m1 þ p2m2Þ2:

3B Generating samples from exponential and Poisson probability distribution

(a) Generate a sample from 1
q
e�x=q (q is chosen). Let Y1, Y2,., Yn be a sample from a U(0, 1) distribution. Let F(x) ¼

1 e e�x/q (cdf of exponential). Then Y ¼ F(x) is uniform. yj ¼ 1 e e�x/q implies xj ¼ �q ln(1 � yi) ¼ �q ln(ui),
where u1, u2, .., un is a sample from U(0, 1). Then X1, ., Xn is a sample from an exponential distribution with
parameter q.

(b) Suppose we want to generate a sample from a Poisson probability distribution with parameter l. X1, ., Xn is a

sample from an exponential distribution with parameter 1/l until
Pn
i¼ 1

Xi just exceeds 1. Then yn(n � 1) is a sample

value from a Poisson probability distribution with parameter l.

Exercise 3B

Let u1, u2, ., un be a sample from U(0, 1). Show that:

(i) X ¼ �2
Pn
i¼ 1

lnðuiÞwc2
2n;

(ii) X ¼ �b
Pa
i¼ 1

lnðuiÞwgammaða; bÞ; and

(iii) X ¼
Pa
i¼ 1

lnðuiÞPaþb

i¼ 1

lnðuiÞ
wBetaða; bÞ:

(iv) Search the Internet and create a list of transformations that use uniform random variables to generate random
variables from other distributions. Discuss the computational efficiency of such methods.

3C Coupon collector’s problem

Suppose there are n distinct colors of coupons. Each coupon color is equally likely to occur. When a complete set of
coupons with each color represented is assembled, you win a prize. Let X ¼ number coupons for a complete set. Find
(a) distribution of X, (b) E(X), and (c) Var(X).
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3D Recursive calculation of binomial and Poisson probabilities

A simple way to calculate binomial probabilities is as follows: For a given n and p, evaluate b(0, n, p) and then apply
the recursive relationship:

bðxþ 1; n; pÞ ¼ bðx; n; pÞ pðn� xÞ
ð1� pÞðxþ 1Þ;

to obtain other binomial probabilities.

(a) Derive this recursion formula.
(b) For n ¼ 15, p ¼ 0.4, using the recursive formula, compute all other probabilities starting from x ¼ 0.

The following recursive formulas are very useful in calculating successive Poisson probabilities:

f ðx� 1; lÞ ¼ f ðx; lÞ x
l
;

and

f ðxþ 1; lÞ ¼ e�llxþ1

ðxþ 1!Þ ¼ f ðx; lÞ l

xþ 1
:

For example, if l ¼ 2.5, we know that f(0, 2.5) ¼ e�2.5 ¼ 0.08208. Using this, calculate (c) f(1, 2.5) and f(2, 2.5).

3E Simulation of Poisson approximation of binomial

Write and run R-code with various n and p to see how the errors compare as n increases and p decreases, by
calculation of actual binomial probabilities as well as Poisson probabilities with l ¼ np.

3F Generating a large amount of random data using R

Although Projects 3B and 3E can be used for random sample generation, it is tedious for large amounts of data
generation. Now we will give some R commands for generating n random samples from a few common distributions.

runif(n, min¼a, max¼b) will generate n random values from Uða; bÞ: For instance, to generate 100 random
samples from uniform (0, 2), use the command runif(100, 0, 2).

Similarly, rnorm (n, mean¼a, sd¼b) will generate n random values from normal distribution with mean a and
standard deviation b. Thus, rnorm (100, mean¼4, sd¼2) will generate 100 random values from a normal distribution
with mean 4 and standard deviation 2. Similarly, rbinom(n, m, p) will generate n random values from a binomial
distribution with parameters m and p. For instance, to generate 100 sample values from binomial with m¼10, and
p¼0.5, use rbinom(100, 10, 0.5). Similarly, rexp(n, rate) will generate n random samples from an exponential dis-
tribution with a specified rate. Thus, rexp(100, 1/1000) will generate 100 exponential values with rate l ¼ 1=1000:
Similarly, we can generate random samples from any distribution.

Exercise 3F. For each of the generated random samples, write an R-code to create a histogram overlapped by the
corresponding density function.
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Objective

In this chapter we study the probability distributions of various sample statistics such as the sample mean and the sample
variance and illustrate their usefulness.

Abraham de Moivre
(Source: http://en.wikipedia.org/wiki/File:Abraham_de_Moivre.jpg.)

Abraham de Moivre (1667e1754) was a French mathematician known for his work on normal distribution and
probability theory. He is famous for de Moivre’s formula, which links complex numbers and trigonometry. He fled
France and went to England to escape the persecution of Protestants. In England he wrote a book on probability theory,
titled The Doctrine of Chances. This book was very popular among gamblers. The normal distribution was first
introduced by de Moivre in an article in 1733 in the context of approximating certain binomial distributions for large n,
and this approximation result is now called the theorem of de MoivreeLaplace.
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4.1 Introduction

Sampling probability distributions plays a very important role in statistical analysis and decision-making. We begin with
studying the distribution of a statistic computed from a random sample. Based on the probabilistic foundation of Chapters 2
and 3, the present study marks the beginning of our learning of statistics beyond the descriptive phase. Because a sample is
a set of random variables, X1, ., Xn, it follows that a sample statistic that is a function of the sample is also random. We
call the probability distribution of a sample statistic its sampling distribution. Sampling distributions provide the link
between probability theory and statistical inference. The ability to determine the distribution of a statistic is a critical part in
the construction and evaluation of statistical procedures. It is important to observe that there is a difference between the
distribution of the population from which the sample was taken and the distribution of the sample statistic. In general, a
population has a distribution called a population distribution, which is usually unknown, whereas a statistic has a sampling
distribution, which is usually different from the population probability distribution. The sampling distribution of a statistic
provides a theoretical model of the relative frequency histogram for the likely values of the statistic that one would observe
through repeated sampling. Even though some of the terms in this section have already been defined in Chapter 1, we now
present these definitions in terms of random variables. These abstractions are introduced to develop scientifically based
methods of analyzing the data, and one should always keep in mind the underlying population.

Definition 4.1.1 A sample is a set of observable random variables, X1, ., Xn. The number n is called the sample size.
In most of the inferential procedures that we study in this book, we are dealing with random samples. We call the

random variables X1, ., Xn identically distributed if every Xi has the same probability distribution.

Definition 4.1.2 A random sample of size n from a population is a set of n independent and identically distributed (iid)
observable random variables X1, ., Xn.

Note that in a sample (not a random sample), Xi need not be independent or identically distributed. For the results in this
book to be applicable, it is important to ensure that the selection of a sample is at least approximately random. The
significance of random sampling is that the probability distribution of a statistic can be easily derived. Random sampling
helps us to control systematic biases. For a finite population, one can serially number the elements of the population and
then select a random sample with the help of a table of random digits. One of the simplest ways to select a random sample
of finite size is to use a table of random numbers. When the population size is very large, such a method can become very
taxing and sometimes practically impossible. However, there are excellent computer programs for generating random
samples from large populations, and these programs can be used. Now we define a statistic.

Definition 4.1.3 A function T of observable random variables X1, ., Xn that does not depend on any unknown parameters
is called a statistic.

The sample mean X ¼ ð1 =nÞPn
i¼ 1 Xi is a function of X1, ., Xn. The sample median and sample variance S2 are also

examples of statistics. It is important to observe that even with random sampling, there is sampling variability or error. That
is, if we select different samples from the same population, a statistic will take different values in different samples. Thus, a
sample statistic is a random variable, and hence it has a probability distribution. For us to study the behavior of the
phenomenon a sample statistic represents, we must identify its probability distribution.

Definition 4.1.4 The probability distribution of a sample statistic is called the sampling distribution.
We can illustrate these definitions with the following example with a finite population and a finite sample size. In this

case, we take all possible samples of size n from a population of size N.

EXAMPLE 4.1.1

Let the population consist of the numbers {1, 2, 3, 4, 5}. Consider all possible samples consisting of three numbers randomly

chosen without replacement from this population. Obtain the distribution of the sample mean.

Solution

Disregarding the order, it is clear that there are

�
5

3

�
¼ 10 equally likely possible samples of size 3. They are (1, 2, 3),

(1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), and (3, 4, 5). Calculating the sample mean, X, for each of

the samples, we will get the sampling distribution of X as:

x 2
1

7
3

8
3

3
1

10
3

11
3

4
1

pðxÞ 1
10

1
10

2
10

2
10

2
10

1
10

1
10
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For example, in the table, P
�
X ¼ 8 =3

� ¼ 2=10 because the two samples (1, 2, 5) and (1, 3, 4) both give an x ¼ 8=3; which is

an estimate of the population mean, m.

In general, sampling distributions are theoretical distributions that consist of possibly an infinite number of sample statistics

taken from an infinite number of randomly selected samples of a fixed sample size. For example, if a sample of size n ¼ 30 were

taken from a large population an infinite number of times, the combined means taken from all the samples would make up the

sampling distribution of the mean. Every sample statistic has a sampling distribution. The next result states that if one selects a

random sample from a population with mean m and variance s2, then regardless of the form of the population distribution, one

can obtain the mean and standard deviation of the statistic X in terms of the mean and standard deviation of the population. This

is explained in the following result.

Theorem 4.1.1 Let X1, ., Xn be a random sample of size n from a population with mean m and variance s2. Then
E
�
X
� ¼ m and Var

�
X
� ¼ s2

�
n:

Proof. The mean and variance of X are given by,

E
�
X
� ¼ E

 
1
n

Xn
i¼ 1

Xi

!
¼ 1

n

Xn
i¼ 1

EðXiÞ

¼ 1
n

Xn
i¼ 1

m ¼ 1
n
nm ¼ m;

and

Var
�
X
� ¼ Var

 
1
n

Xn
i¼ 1

Xi

!

¼ 1

n2
Xn
i¼ 1

VarðXiÞ
�
besause X0

i s are independent and VarðaXiÞ ¼ a2VarðXiÞ
�

¼ 1

n2
ns2 ¼ s2

n
.

We denote E
�
X
� ¼ mX and Var

�
X
� ¼ s2

X
: Note that from the previous theorem, mX ¼ m and sX ¼ s=

ffiffiffiffi
n:

p
Here, sX

is called the standard error of the mean. It is important to notice that the variance of each of the random variables X1, X2,
., Xn is s

2, whereas the variance of the sample mean X is s2/n, which is smaller than the population variance s2 for n � 2.
The implication of Theorem 4.1.1 is that the sample means become more and more reliable as an estimate of m as the

sample size is increased, as we would expect. From Chebyshev’s inequality,

P
���X�mX

��< ksX

�� 1� 1
k2
:

Let ε ¼ ðks = ffiffiffi
n

p Þ Then k ¼ ðε ffiffiffi
n

p Þ=s: Since mX ¼ m; the above inequality can be written as

P
�jX�mj < ε

�� 1� s2

nε2
.

Thus, for any ε > 0, the probability that the difference between X and m is less than ε can be made arbitrarily close to 1
by choosing sample size n that is sufficiently large. We illustrate this result in the following example.
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EXAMPLE 4.1.2

A particular brand of drink is packaged at an average of 12 oz per bottle. As a result of randomness, there will be small variations

in how much liquid each bottle really contains. It has been observed that the amount of liquid in these bottles is normally

distributed with s ¼ 0.8 oz. A sample of 10 bottles of this brand of soda is randomly selected from a large lot of bottles, and the

amount of liquid, in ounces, is measured in each. Find the probability that the sample mean will be within 0.5 oz of 12 oz.

Solution

Let X1, X2,.,X10 denote the ounces of liquid measured for each of the bottles. We know that Xis are normally distributed with

mean m ¼ 12 and variance s2 ¼ 0.64. From Theorem 4.1.1, X possesses a normal distribution (actually, for the normality part, we

use Corollary 4.2.2) with a mean 12 and variance s2/n ¼ 0.64/10 ¼ 0.064. We find that:

P
���X � 12j � 0:5

� ¼ P
�� 0:5 � �X � 12

� � 0:5
�

¼ P

�
� 0:5

s=
ffiffiffi
n

p � X � 12

s=
ffiffiffi
n

p � 0:5

s=
ffiffiffi
n

p
�

¼ P

�
� 0:5

0:253
� Z � 0:5

0:253

�

¼ P ð�1:97 � Z � 1:97Þ

¼ 0:9512 ðusing a standard normal tableÞ.
Hence, the chance is about 0.95% that the mean amount of drink in any 10 bottles randomly chosen will be between 11.5 and

12.5 oz.

4.1.1 Finite populations

Let {c1, c2, ., cN} be a finite population. Then the population mean m ¼ ð1 =NÞPN
i¼ 1 ci and the population variance

s2 ¼ ð1 =NÞPN
i¼ 1 ðci � mÞ2. The following theorem for the sample mean and variance is stated without proof.

Theorem 4.1.2 If X1,., Xn is a sample of size n (chosen without replacement) from a population {c1, c2, .,cN}, then:

E
�
X
� ¼ m

and

Var
�
X
� ¼ s2

n

�
N � n

N � 1

�
.

We remark here that the sample in the theorem is not a random sample and Xi’ are not id random variables. The factor
(Nen)/(Ne1) in the foregoing theorem is often called the finite population correction factor. It is close to 1 unless the
sample amounts to a significant portion of the population. Note that the sampling without replacement causes dependence
among the Xis. However, if the sample size n is small relative to the population size N, the population correction factor is
approximately 1. Hence, we will not use the finite population correlation factor in the derivation of a sampling distribution,
unless it is absolutely necessary.

EXAMPLE 4.1.3

Obtain the mean and variance of X in Example 4.1.1.

Solution

First note that for the population in Example 4.1.1, the population mean is m ¼ ð1 =NÞPN
i¼ 1 ci ¼ 3 and the population

variance is s2 ¼ ð1 =NÞPN
i¼ 1 ðci � mÞ2 ¼ 2: Applying the probability distribution of X given in Example 4.3.1, we obtain:

E
�
X
� ¼ 2

�
1

10

�
þ 7

3

�
1

10

�
þ 8

3

�
2

10

�
þ 3

�
2

10

�
þ 10

3

�
2

10

�
þ 11

3

�
1

10

�
þ 4

�
1

10

�

¼ 3;
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and

Var
�
X
� ¼ E

	
X

2


� E

	
X

2



¼ 22

�
1

10

�
þ
�
7

3

�2�
1

10

�
þ
�
8

3

�2�
2

10

�

þ 32

�
2

10

�
þ
�
10

3

�2�
2

10

�
þ
�
11

3

�2�
1

10

�
þ 42

�
1

10

�
� 32

¼ 2

3
� 1

2
¼ 0:3333:

This is the same as s2

n

�
ðN�nÞ
ðN�1Þ

�
. In this case we observe that the variance of X is precisely one-sixth of the original variance.

EXAMPLE 4.1.4

Let X1, ., Xn be a random sample from a population with mean m and variance s2. Consider the sample variance:

S2 ¼ 1

n � 1

Xn
i¼ 1

�
Xi � X

�2
.

Show that E(S2) ¼ s2.

Solution

It can be shown that (see Exercise 1.5.8):

1

n � 1

Xn
i¼ 1

�
Xi � X

�2 ¼
Pn
i¼ 1

X2
i � nX

2

n � 1
.

Hence,

E
�
S2
� ¼ E

0
BB@
Pn
i¼ 1

X2
i � nX

2

n � 1

1
CCA ¼ 1

n � 1

Xn
i¼ 1

E
�
X2
i

�� n

n � 1
E
	
X

2


.

Using the fact that E(X2) ¼ Var (X) þ m2 and Theorem 4.1.1, we have:

E
�
S2
� ¼ 1

n � 1
n
�
s2 þ m2

�� n

n � 1

�
s2

n
þ m2

�

¼
�

n

n � 1
� 1

n � 1

�
s2 þ

	 n

n � 1
� n

n � 1



m2

¼ s2.

This shows that the expected value of the sample variance is the same as the variance of the population under consideration.

Exercises 4.1

4.1.1. Let the population be given by the numbers {�2, �1, 0, 1, 2}. Take all random samples of size 3.
(a) Without replacement, obtain the following in each case.

(i) The sampling distribution of the sample mean.
(ii) The sampling distribution of the sample median.
(iii) The sampling distribution of the sample standard deviation.
(iv) The mean and variance of the sample mean.
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(b) How many samples of size 3 can we get, if we sample with replacement?
4.1.2. (a) How many different samples of size n ¼ 2 can be chosen from a finite population of size 12 if the sampling is

without replacement?
(b) What is the probability of each sample in part (a), if each sample of size 2 is equally likely?
(c) Find the value of the finite population correction factor.

4.1.3. Let the population be given by {1, 2, 3}. Let P(x) ¼ 1/3 for x ¼ 1, 2, 3. Take samples of size 3 with replacement.
(a) Calculate m and s2.
(b) Obtain the sampling distribution of the sample mean.
(c) Obtain the mean and variance of the sample mean.

4.1.4. Find the value of the finite population correlation factor for
(a) n ¼ 8 and N ¼ 60.
(b) n ¼ 8 and N ¼ 1000.
(c) n ¼ 15 and N ¼ 60.

4.1.5. For a random sample X1, ., Xn, let ðS0Þ2 ¼ ð1 =nÞPn
i¼ 1

�
Xi � X

�2
: Find E[(S0)2]. Compare this with E(S2).

4.1.6. For a random sample X1, ., Xn with mean m and variance s2, let Tn ¼ Pn
i�1 Xi; the sample total. Show that

E(Tn) ¼ nm and Var(Tn) ¼ ns2.
4.1.7. A particular brand of sugar is sold in 5-lb packages. The weight of sugar in these packages can be assumed to be

normally distributed with mean m ¼ 5 lb and standard deviation s ¼ 0.2 lb. What is the probability that the mean
weight of sugar in 15 randomly selected packages will be within 0.2 lb of 5 lb?

4.1.8. A random sample of size 50 is taken from an infinite population having the mean m ¼ 15 and standard deviation
s ¼ 4. What is the probability that X will be between 13.5 and 16.6?

4.1.9. The distribution of heights of all students in a large university has a normal distribution with a mean of 66 in. and
a standard deviation of 2 in. What is the probability that the mean height of 26 randomly selected students from
this university will be more than 67 in.?

4.1.10. An image-encoding algorithm, when used to encode images of a certain size, uses a mean of 110 ms with a stan-
dard deviation of 15 ms. What is the probability that the mean time (in milliseconds) for encoding 50 randomly
selected images of this size will be between 104 and 115 ms?

4.1.11 Let X1, ., Xn be independent discrete random variables identically distributed as:

f ðxiÞ ¼

0:2;

0;

xi ¼ 0; 1; 2; 3; 4;

otherwise.

Using the central limit theorem, find the approximate value of P
�
X100 > 2

�
; where X100 ¼ ð1 =100ÞP100

i¼ 1
Xi.

4.1.12. A population of disk drives manufactured by a certain company runs with a mean seek time of 10 ms with stan-
dard deviation of 1 ms. What proportion of samples of size 250 would you expect to result in a mean less than
9.9 ms?

4.1.13. Suppose that the national norm of a science test for 12th graders on a particular year has a mean of 215 and a
standard deviation of 35.
(a) A random sample of 55 12th graders is selected. What is the probability that this group will average more than

225?
(b) A random sample of 200 12th graders is selected. What is the probability that this group will average over

225?
(c) A random sample of 35 12th graders is selected. What is the probability that this group will average over 225?
(d) How does the sample size influence the probability?

4.1.14. Scores on the Wechsler Adult Intelligence Scale for the 20 to 34 age group are approximately normally distributed
with a mean of 110 and standard deviation of 25. If we select 100 people at random, what is the probability that
this group will have an average score of 116 or above?

4.1.15. It is known that a healthy human body has an average temperature of 98.6�F, with a standard deviation of 0.95�F.
Sixty healthy humans are selected at random. What is the probability that their temperature average is at least
98.8�F?

4.1.16. A random sample of size 100 is taken from a population with mean 1 and variance 0.04. Find the probability that
the sample mean is between 0.99 and 1.
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4.1.17. The lifetime X (in hours) of a certain electrical component has the probability density function (pdf) f(x) ¼
(1/3)e�(1/3)x, x > 0. If a random sample of 36 is taken from these components, find P

�
X< 2

�
:

4.2 Sampling distributions associated with normal populations

The sampling distribution of a statistic will depend upon the population distribution from which the samples are taken. In
this section we discuss the sampling distributions of some statistics that are based on a random sample drawn from a
normal distribution. These statistics are used in many statistical procedures that are very important in solving real-world
problems. The following result establishes the distribution of a linear combination of independent normal random
variables.

Theorem 4.2.1 Let X1, ., Xn be independent random variables with the distribution of Xi being normal with mean
mi and variance s2

i : Let a1, a2, ., an be real constants. Then the distribution of Y ¼ Pn
i¼ 1 aiXi is normal with mean

mY ¼ Pn
i¼ 1 aimi and variance s2

Y ¼ Pn
i¼ 1 a

2
i s

2
i .

Proof. The moment-generating (mgf) function of Y is given by

MYðtÞ ¼ Ee

�Pn

i¼ 1
aiXi

�
t

¼
Y
i

EeðaiXiÞt;
�
by independence of X0

i s
�

¼
Y
i

EeðaitÞXi

¼
Y

i
MXiðaitÞ; ½using the definition of mgf�

¼
Y

i
eðaimi tþð1=2Þa2i s2i t2Þ; ½using mgf of a normal�

¼ e

��P
i
aimi

�
tþð1=2ÞðSia2i s

2
i Þt2
�
;

which is the mgf of a normal random variable with mean
P
i
aimi and variance

P
ia

2
i s

2
i .

In Theorem 4.2.1 let ai ¼ 1/n, mi ¼ m, and s21 ¼ s2; we obtain the following result, which provides the distribution of
the sample mean.

Corollary 4.2.2 Let X1,., Xn be a random sample of size n from a normal population with mean m and variance s2. Then:

X ¼ ð1 = nÞ
Xn
i¼ 1

Xi

is normally distributed with mean mX ¼ m and variance s2
X

¼ s2
�
n.

Recall that we have used the notation Xw N(m, s2) to mean that the random variable X is normally distributed with
mean m and variance s2. From Corollary 4.2.2, XwNðm;s2 �nÞ and hence by the z-transformation we obtain the standard

normal random variable, Z ¼ �
X �m

��ðs = ffiffiffi
n

p ÞwNð0; 1Þ.

EXAMPLE 4.2.1

A company that manufactures cars claims that the gas mileage for its new line of hybrid cars, on the average, is 60 miles per

gallon with a standard deviation of 4 miles per gallon. A random sample of 16 cars yielded a mean of 57 miles per gallon. If

the company’s claim is correct, what is the probability that the sample mean is less than or equal to 57 miles per gallon?

Comment on the company’s claim about the mean gas mileage per gallon of its cars. What assumptions did you make?
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Solution

Let X represent the gas mileage for the new car (in miles per gallon). If the company’s claim is true, then from Corollary 4.2.2,

X is normally distributed with mean m ¼ 60 and variance s2/n ¼ 16/16 ¼ 1. Hence,

P
�
X � 57

� ¼ P

�
X � 60

1
� 57� 60

1

�

¼ P ðZ � �3Þz1� 0:999

¼ 0:001:

Therefore, if the company’s claim is correct, it is very unlikely that the mean value of the random sample of 16 cars will be 57

miles per gallon. Because the mean is indeed 57 miles per gallon, we conclude that the company’s claim is very likely not true.

Here we have assumed that the sample of 16 measurements comes from a normal population, so that we could apply the results

of Corollary 4.2.2.

Now we introduce some distributions that can be derived from a normal distribution. These distributions play a very
important role in inferential statistics.

4.2.1 Chi-square distribution

A chi-square distribution is used in many inferential problems, for example, in inferential problems dealing with the
variance. Recall that the chi-square distribution is a special case of a gamma distribution with a ¼ n/2 and b ¼ 2. If n is a
positive integer, then the parameter n is called the degrees of freedom. However, if n is not an integer, but b ¼ 2, we still
refer to this distribution as a chi-square. The mgf of a c2e random variable isM(t) ¼ (1e2t)en/2. The mean and variance of
a chi-square distribution are m ¼ n and s2 ¼ 2n, respectively. That is, the mean of a c2(n) random variable is equal to its
degrees of freedom and the variance is twice the degrees of freedom. We now give some useful results for c2erandom
variables.

Theorem 4.2.3 Let X1, ., Xk be independent c
2e random variables with n1, ., nk degrees of freedom, respectively. Then

the sum V ¼ Pk
i¼ 1 Xi is chi-square distributed with n1 þ n2 þ . þ nk degrees of freedom.

Proof. The mgf of V is

MVðtÞ ¼
Yk
i¼ 1

ð1� 2tÞ�ni=2 ¼ ð1� 2tÞ
�

�Pk
i¼ 1

ni

�
=2

.

This implies that. Vwc2
�Pk

i¼ 1 ni
�
.

Our next result states that the difference of two chi-square random variables is a chi-square random variable, given by
the following theorem. The proof is left as an exercise.

Theorem 4.2.4 Let X1 and X2 be independent random variables. Suppose that X1 is c
2 with n1 degrees of freedom, whereas

Y ¼ X1 þ X2 is chi-square with n degrees of freedom, where n > n1. Then X2 ¼ YeX1 is a chi-square random variable
with nen1 degrees of freedom.

The following result shows that we can generate a chi-square random variable from a gamma random variable.

Theorem 4.2.5 If a random variable X has a gamma probability distribution with parameters a and b, then:

Y ¼ 2X
b
wc2ð2aÞ.

Proof. Recall that the mgf of the gamma random variable X is (1ebt)�a. Thus,

MYðtÞ ¼ M2X
b
ðtÞ ¼ E

	
e
2X
b
t



¼ E

�
e
X
�
2
b
t
��

¼ MX

�
2
b
t

�

¼ ð1� 2tÞ�a ¼ ð1� 2tÞ�2a
2 .
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Hence, Ywc2(2a).
The following result states that by squaring a standard normal random variable, we can generate a chi-square random

variable, with 1 degree of freedom.

Theorem 4.2.6 If X is a standard normal random variable, then X2 is chi-square random variable with 1 degree of freedom.
Proof. Because Xw N(0, 1), the mgf function of X2 is

MX2ðtÞ ¼
Z N

�N

etx
2 1ffiffiffiffiffiffi

2p
p e�x2=2dx ¼ ð1� 2tÞ�1=2.

This implies that X2wc2(1). Fig. 4.1 gives the probability densities of the random variables X and X2.

The following result is a direct consequence of Theorems 4.2.3 and 4.2.6. This result illustrates how to obtain a
random sample from chi-square distribution if we have a random sample of n measurements from a normal population.

Theorem 4.2.7 Let the random sample X1, ., Xn be from an N(m,s2) distribution. Then Zi ¼ (Xiem)/s, i ¼ 1, ., n are
independent standard normal random variables and

Xn
i¼ 1

Z2
i ¼

Xn
i¼ 1

�
Xi � m

s

�2

;

has a c2 distribution with n degrees of freedom. In particular, if X1, ., Xn are independent standard normal random
variables, then Y2 ¼ Pn

i¼ 1 X
2
i is chi-square distributed with n degrees of freedom.

If X w c2 (n), then from the chi-square table, we can compute the values of c2
aðnÞ such that:

P
�
X>c2

aðnÞ
� ¼ a;

as shown by Fig. 4.2.
For example, if Xw c2 (15), to find c2

0:95 (15) look in the chi-square table with the row labeled 15 degrees of freedom
and the column headed c2

0:950 and obtain the value as 7.26,094. Thus, with 15 degrees of freedom, P(X > 7.26,094) ¼
0.95. Also, if X is a chi-square random variable with 11 degrees of freedom, from the chi-square table we have c2

0:05ð11Þ ¼
19:675. Therefore, P(X > 19.675) ¼ 0.05.

EXAMPLE 4.2.2

Let the random variables X1, X2, ., X5 be from an N (5,1) distribution. Find a number a such that

P

 X5
i¼ 1

ðXi � 5Þ2 � a

!
¼ 0:90:

4
Densities of standard normal r.v. and its square

3.5

3

2.5

2

1.5

1

0.5

0
�3 �2 �1 0 1 2 3

pdf of X 2

pdf of X

x

f(x)

FIGURE 4.1 Probability density function (pdf) of standard normal random variable (r.v.) and the pdf of its square.
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Solution

By Theorem 4.2.7,
P5

i¼ 1 Z
2
i ¼ P5

i¼ 1

	
Xi�5
1


2
¼ P5

i¼ 1 ðXi � 5Þ2 has a chi-square distribution with 5 degrees of freedom.

Because the upper tail area is 0.10, looking at the chi-square table with 5 degrees of freedom and the column corresponding to

c2
0:10; we obtain a ¼ 9.23,635. Thus,

P

 X5
i¼ 1

ðXi � 5Þ2 � 9:23635

!
¼ 0:90:

EXAMPLE 4.2.3

Suppose that X is a c2erandom variable with 20 degrees of freedom. Use the chi-square table to obtain the following:

(a) Find x0 such that P(X > x0) ¼ 0.95.

(b) Find P(X � 12.443).

Solution

(a) For 20 degrees of freedom, using the chi-square table, we have:

P ðX> 10.851Þ ¼ 0.95.

Hence, x0 ¼ 10.851.

(b) From the chi-square table,

P ðX � 12.443Þ ¼ 0.10.

The following result gives the probability distribution for a function of the sample variance S2.

Theorem 4.2.8 If X1,.,Xn is a random sample from a normal population with the mean m and variance s2, then:

(a) the random variablePn
i¼ 1

ðXi�XÞ2
s2 ¼ ðn�1ÞS2

s2 ; has a chi-square distribution with (n e 1) degrees of freedom.

(b) X and S2 are independent.

Proof. We will prove only part (A). For (B), we will give some comments on the proof.

(a) We know from Theorem 4.2.7 that ð1�s2ÞPn
i¼ 1

ðXi � mÞ2 has a chi-square distribution with n degrees of freedom.
Thus,

x

f(x)

FIGURE 4.2 Chi-square probability density.
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1

s2

Xn
i¼ 1

ðXi � mÞ2 ¼ 1

s2

Xn
i¼ 1

�
Xi � X þ X � m

�2

¼ 1

s2

"Xn
i¼ 1

�
Xi � X

�2 þXn
i¼ 1

�
X � m

�2#

 
Since 2

Xn
i¼ 1

�
Xi � X

��
X � m

� ¼ 0

!

¼ ðn� 1ÞS2
s2 þ

�
X � m

s=
ffiffiffi
n

p
�2

.

The left-hand side of this equation has a chi-square distribution with n degrees of freedom. Also, since�
X�m

��ðsj ffiffiffinp ÞwNð0; 1Þ by Theorem 4.2.6 we have
��
X � m

���ðsj ffiffiffinp Þ�2wc2ð1Þ. Now from Theorem 4.2.4, (ne1) S2/
s2 w c2 (ne1).

(b) We will accept the result of (B) without proof here. A rigorous proof depends on the geometric properties of the multi-
variate normal distribution, which is beyond the scope of this book. A proof based on mgf functions is relatively
straightforward, where essentially we can first show that the random variable X and the vector of random variables�
X1 �X;.;Xn �X

�
are independent. Because S2 is a function of the vector

�
X1 �X;.;Xn �X

�
, it is then indepen-

dent of X.

EXAMPLE 4.2.4

Let X1, X2, ., X10 be a random sample from a normal distribution with s2 ¼ 0.8. Find two positive numbers a and b such that the

sample variance S2 satisfies

P
�
a� S2 � b

� ¼ 0:90:

Solution

Because ðn�1ÞS2
s2

wc2ðn�1Þ; we have

P
�
a� S2 � b

� ¼ P

�ðn � 1Þa
s2

�ðn � 1ÞS2

s2
�ðn � 1Þb

s2

�
:

The desired values can be found by setting the upper tail area and lower tail area each equal to 0.05. Using the chi-square

table with n e 1 ¼ 9 degrees of freedom, we have:

ðn � 1Þb
s2

¼ 9b

0:8
¼ 16:919 ¼ c2

0.05;9;

which implies b ¼ ((16.919) � (0.8)/9) ¼ 1.50. Similarly,

ðn � 1Þa
s2

¼ 9a

0:8
¼ 3:325 ¼ c2

0.95;9:

So we have a ¼ ((3.325) � (0.8)/9) ¼ 0.295.

Hence,

P
�
0.295� S2 � 1.50

�¼ 0.90.

It is important to note that this is not the only interval that would satisfy:

P
�
a� S2 � b

� ¼ 0.90;

but it is a convenient one.
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EXAMPLE 4.2.5

A fruit-drink company wants to know the variation, as measured by the standard deviation, of the amount of juice in 16-oz cans.

From past experience, it is known that s2 ¼ 2. The company statistician decides to take a sample of 25 cans from the production

line and compute the sample variance. Assuming that the sample values may be viewed as a random sample from a normal

population, find a value of b such that P (S2 > b) ¼ 0.05.

Solution

To find the necessary probability, use the fact that (n e 1) S2/s2 w c2 (n e 1), with n ¼ 25,

0:05 ¼ P
�
S2 > b

� ¼ P

�
24S2

2
>

24b

2

�

¼ P
�
c2 > c

�
:

From the chi-square table we obtain, c ¼ 36.4151. Hence, b ¼ 2
24 c ¼ 2

24 ð36:4151Þ ¼ 3:03 and

P
�
S2 > 3:03

�¼ 0.05.

Summary of Chi-Square Distribution

Let X1, ., Xn be iid N(m, s2) random variables. Then

1. X has N (m, s2/n) distribution,

2. (n � 1)S2/s2 has a chi-square distribution with (n � 1) degrees of freedom, and

3. X and S2 are independent.

4. A c2e random variable has a mean equal to its degrees of freedom and a variance equal to twice its degrees of freedom.

4.2.2 Student t distribution

Let the random variables X1,., Xn follow a normal distribution with mean m and variance s2. If s is known, then we know
that

ffiffiffi
n

p ��
X�m

� �
s
�
is Nð0; 1Þ: However, if s is not known (as is usually the case), then it is routinely replaced by the

sample standard deviation s. If the sample size is large, one could suppose that s z s and apply the central limit theorem
and obtain that

ffiffiffi
n

p ��
X�m

� �
S
�
is approximately an Nð0; 1Þ. However, if the random sample is small, then the distribution

of
ffiffiffi
n

p ��
X�m

� �
S
�
is given by the so-called Student distribution (or simply t distribution). This was originally developed

by W. S. Gosset in 1908. Because his employer, the Guinness brewery, would not permit him to publish this important
work in his own name, he used the pseudonym “Student.” Thus, the distribution is known as the Student t distribution.

Definition 4.2.2 If Y and Z are independent random variables, Y has a chi-square distribution with n degrees of freedom,
and Zw N(0, 1), then:

T ¼ Zffiffiffiffiffiffiffiffi
Y=n

p
is said to have a (Student) t-distribution with n degrees of freedom. We denote this by T w Tn.

The probability density of the random variable T with n degrees of freedom is given by:

f ðtÞ ¼
G
	nþ 1

2



ffiffiffiffiffiffi
pn

p
G
	n
2


	1þ t2

n


�nþ1
2

;�N < t < N.

Fig. 4.3 illustrates the behavior of the t distributions for n ¼ 2, 10, 20, and 30. It is clear from Fig. 4.3 that as n becomes
larger and larger, it is almost impossible to distinguish the graphs. It can be shown that the t distribution tends to a standard
normal distribution as the degrees of freedom (equivalently, the sample size n) tend to infinity. In fact, the standard normal
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distribution provides a good approximation to the t-distribution for sample sizes of 30 or more. We will use this
approximation in the statistical inference problems for n � 30.

The t density is symmetric about zero, and then we have E(T) ¼ 0. If n > 2, it can be shown that Var (T) ¼ n/(n e 2).
The value of ta,n is such that P (t > ta,n) ¼ a (the shaded area in Fig. 4.4) is obtained from the t table. For example, if a
random variable X has a t distribution with 9 degrees of freedom and a ¼ 0.01, then t0.01,9 ¼ 2.821.

If we have a random sample from a normal population, the following result involving a t distribution is useful in
applications.

Theorem 4.2.9 If X and S2 are the mean and the variance of a random sample of size n from a normal population with mean
m and variance s2, then:

T ¼ X � m

S=
ffiffiffi
n

p ;

0.4

T density for n=2,
n=10, n=20, n=30

n=2

n=10

n=20

n=30

0.35

0.3

0.25

0.2

0.15

0.1

0.05

–4 –3 –2 –1 0 1 2 3 4

f (t)

t

FIGURE 4.3 The Student t distribution.
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FIGURE 4.4 Probability of t distribution.
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has a t distribution with (n e 1) degrees of freedom.

Proof. By Corollary 4.2.2,

Z ¼ X � m

s=
ffiffiffi
n

p wNð0; 1Þ:
By Theorem 4.2.8, we have:

Y ¼ ðn� 1ÞS2
s2

¼ 1
s2

Xn
i¼ 1

�
Xi � X

�2
wc2ðn� 1Þ:

Hence,

T ¼
X � m

ðs= ffiffiffi
n

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1ÞS2
s2ðn� 1Þ

s w
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2ðn� 1Þ
n� 1

r .

Also, X and S2 are independent. Thus, Y and Z are independent, and by Definition 4.2.2, T follows a t distribution with
(n e 1) degrees of freedom.

How can we distinguish between given degrees of freedom and the degrees of freedom from a sample? For the
t distribution, if n is given as the degrees of freedom, we will just use n. However, if a random sample of size n is given,
then the corresponding degrees of freedom will be (n e 1), as given in Theorem 4.2.9.

The assumption that the sample comes from a normal population is not that onerous. In practice, it is necessary to check
that the sampled population is approximately bell shaped and not too skewed. Construction of the normal-scores plot or
histogram is a way to check for approximate normality. See Project 4C.

EXAMPLE 4.2.6

A manufacturer of fuses claims that with 20% overload, the fuses will blow in less than 10 minutes on average. To test this claim, a

random sample of 20 of these fuses was subjected to a 20% overload, and the times it took them to blow had a mean of

10.4 minutes and a sample standard deviation of 1.6 minutes. It can be assumed that the data constitute a random sample from a

normal population. Do they tend to support or refute the manufacturer’s claim?

Solution

Given y ¼ 10:4; s ¼ 1:6; n ¼ 20; and m ¼ 10. Hence,

t ¼ y � m

s=
ffiffiffi
n

p ¼ 10:4� 10

1:6=
ffiffiffiffiffiffi
20

p ¼ 1:118:

The degree of freedom is n e 1 ¼ 19. From the t-table, the probability that t exceeds 1.328 is 0.10, and because the observed

value of t ¼ 1.118 is less than t0:10;19 ¼ 1:328 and 0.10 is a pretty large probability, we conclude that the data tend to agree with

the manufacturer’s claim.

We will study the problems of the foregoing type in Chapter 6, where we will be learning about hypothesis testing.
Prior to Gosset’s work on the t distribution, a very large number of observations were necessary for the design and analysis
of experiments. Today, the use of the t distribution often makes it possible to draw reliable conclusions from samples as
small as 15 to 30 experimental units, provided that the samples are representative of their populations and that normality
could reasonably be assumed or justified for the population. Example 4.2.7 suggests that we need to be careful about the
use of t distribution. It depends not only on sample size, but also on the knowledge deviation.

EXAMPLE 4.2.7

The human gestation perioddthe period of time between conception and labordis approximately 40 weeks (280 days),

measured from the first day of the mother’s last menstrual period. For a newborn full-term infant, the appropriate length for

gestational age is assumed to be normally distributed with m ¼ 50 cm and s ¼ 1.25 cm. Compute the probability that a random

sample of 20 infants born at full term results in a sample mean greater than 52.5 cm.
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Solution

Let X be the length (measured in centimeters) of a newborn full-term infant. Then XwNð50;1:56 =20Þ: Note that even though

the sample size is small, since s is known, we do not use t distribution, instead we use normal distribution. Hence,

P
�
X > 52:5

� ¼ P

�
z>

52:5� 50

1:25=
ffiffiffiffiffiffi
20

p ¼ 8:94

�
z0:

Thus, the probability of such an occurrence is negligible.

In the previous example, it should be noted that P
�
X> 52:5

�
z0 does not imply that the probability of observing a

newborn full-term infant with length greater than 52.5 cm is zero. In fact, with 19 degrees of freedom, P(X > 52.5) ¼
P(Z > 2)z 0.0228.

4.2.3 F-distribution

The F-distribution was developed by Fisher to study the behavior of two variances from random samples taken from two
independent normal populations. In applied problems we may be interested in knowing whether the population variances
are equal, based on the response of the random samples. Knowing the answer to such a question is also important in
selecting the appropriate statistical methods to study their true means.

Definition 4.2.3 Let U and V be chi-square random variables with n1 and n2 degrees of freedom, respectively. Then if U and
V are independent,

F ¼ U=n1
V=n2

;

is said to have an F-distribution with n1 numerator degrees of freedom and n2 denominator degrees of freedom. We
denote this by F w F (n1, n2).

The pdf for a random variable Xw F (n1, n2) is given by:

f ðxÞ ¼

8>><
>>:

Gððn1 þ n2Þ=2Þ
Gðn1=2ÞGðn2=2Þ

�
n1
n2

�n1=2

x
n1
2 �1

�
1þ n1

n2
x

��ðn1þn2Þ=2
; x > 0

0; elsewhere.

A graph of f(x) for various values of n is given in Fig. 4.5.

F (3, 2)

F-density with n1=3, n2=2 and n1=12, n2=6

0.7
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x

F (12, 6)

f(x)

FIGURE 4.5 Probability density functions of the F-distribution.
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To find Fa (n1,n2) such that P(F > Fa (n1,n2)) ¼ a (shaded area in Fig. 4.6), we use the F table. For example, if F has 3
numerator and 6 denominator degrees of freedom, then F0.01 (3, 6) ¼ 9.78.

If we know Fa (n1, n2), it is possible to find F1�a (n2, n1) by using the identity

F1�aðn2; n1Þ ¼ 1=Faðn1; n2Þ:
Using this identity, we can obtain F0.99 (6, 3) ¼ 1/F0.01 (3, 6) ¼ 1/9.78 ¼ 0.10225.
When we need to compare the variances of two normal populations, we will use the following result.

Theorem 4.2.10 Let two independent random samples of size n1 and n2 be drawn from two normal populations with
variances s2

1;s
2
2; respectively. If the variances of the random samples are given by S21; S

2
2; respectively, then the statistic:

F ¼ S21=s
2
1

S22=s
2
2

¼ s2
2S

2
1

s2
1S

2
2

;

has the F distribution with (n1 e 1) numerator and (n2 e 1) denominator degrees of freedom.
Proof. From Theorem 4.2.9, we know that:

U ¼ ðn1 � 1ÞS21
s2
1

wc2ðn1 � 1Þ

and

V ¼ ðn2 � 1ÞS22
s2
2

wc2ðn2 � 1Þ.

Also, U and V are independent. From Definition 4.2.3, Fw F (n1 � 1, n2 � 1).

Corollary 4.2.11 If s21 ¼ s22; then

F ¼ S21
S22
wFðn1 � 1; n2 � 1Þ:

when s21 ¼ s22; we refer to them as two populations that are homogeneous with respect to their variances.

EXAMPLE 4.2.8

Let S21 denote the sample variance for a random sample of size 10 from population I and let S22 denote the sample variance for a

random sample of size 8 from population II. The variance of population I is assumed to be three times the variance of population

II. Find two numbers a and b such that P
�
a � S21

�
S22 � b

� ¼ 0:90 assuming S21 to be independent of S22 :

0.7

0.6

0.5

0.4

0.3

0.2

0.1

f(x)

x
0 1 2 3

α

4 5 6 7

FIGURE 4.6 Probability density functions of F-distribution.
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Solution

From the problem, we can assume that s2
1 ¼ 3s2

2 with n1 ¼ 10 and n2 ¼ 8. Thus, we can write:

S2
1=s

2
1

S2
2=s

2
2

¼ S2
1=3s

2
2

S2
2=s

2
2

¼ S2
1

3S2
2

;

which has F-distribution with n1 e 1 ¼ 9 numerator and n2 e 1 ¼ 7 denominator degrees of freedom. Using the F-table,

F0.05 (9, 7) ¼ 3.68. Now to find F0.95 such that:

P

 
S2
1

3S2
2

< F0:95

!
¼ 0:05:

We proceed as follows:

P

 
S2
1

3S2
2

< F0:95

!
¼ P

 
3S2

2

S2
1

>
1

F0:95

!
¼ 0:05:

Indexing v1 ¼ 7 and v2 ¼ 9 in the F-table, we have 1=F0:95ð7;9Þ ¼ F0:05ð9; 7Þ ¼ 3:68 or F0:95 ¼ 1=3:68 ¼ 0:2717. Hence,

the entire probability statement is given by:

P

 
0:2717� S2

1

3S2
2

� 3:68

!
¼ P

 
0:815� S2

1

S2
2

� 11:04

!
¼ 0:90:

Thus, a ¼ 0.815 and b ¼ 11.04.

When we need to find values not given in a t-table (or chi-square or F-tables), and those values are not available in the
corresponding table, what can we do? Most of the time, it is easier to use statistical programs to obtain so-called P values
(introduced in Chapter 6). In similar situations, most of the values given in a solution manual are obtained in this way. If
the software is not available and we need to find these values from one of these (t-, chi-square, or F-) tables, then, using
either linear interpolation or transformations, we can obtain approximate values. We will illustrate this only for linear
interpolation. Given two points ðx1; y1Þ and ðx2; y2Þ on a line, any other point ðx; yÞ on the line satisfies the following
equation

y ¼ y1 þ y2 � y1
x2 � x1

ðx� x1Þ.

Using this relationship, let us say, we want to find the t-value for a ¼ 0:15 with 6 degrees of freedom. In our table we
have t values for a ¼ 0:1 and a ¼ 0:25: Then,

t0:15;6z1:439756þ ð0:717558� 1:439756Þ
ð0:25� 0:1Þ ð0:15� 0:1Þ

¼ 1:199023:

We will use this method for finding critical values of t, chi-square, and F-values that are not available in the table.

Exercises 4.2

4.2.1. Let Y have a chi-square distribution with 15 degrees of freedom. Find the following probabilities.
(a) P(Y � y0) ¼ 0.025.
(b) P (a < Y < b) ¼ 0.95.
(c) P(Y � 22.307).

4.2.2. Let Y have a chi-square distribution with 7 degrees of freedom. Find the following probabilities.
(a) P(Y > y0) ¼ 0.025
(b) P (a < Y < b) ¼ 0.90
(c) P(Y > 1.239).

4.2.3. The time to failure T of a microwave oven has an exponential distribution with pdf:

f ðtÞ ¼ 1
2
e�t=2; t > 0:
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If three such microwave ovens are chosen and t is the mean of their failure times, find the following:
(a) Distribution of T .
(b) P

�
T > 2

�
:

4.2.4. Let X1, X2, ., X10 be a random sample from a standard normal distribution. Find the numbers a and b such that:

P

 
a�

X10
i¼ 1

X2
i � b

!
¼ 0:95:

4.2.5. Let X1, X2, ., X5 be a random sample from the normal distribution with mean 55 and variance 223. Let

Y ¼
X5
i¼ 1

ðXi � 55Þ2=223

and

Z ¼
X5
i¼ 1

�
Xi � X

�2
=223:

(a) Find the distribution of the random variables Y and Z.
(b) Are Y and Z independent?
(c) Find (i) P(0.554 � Y � 0.831), and (ii) P(0.297 � Z � 0.484).

4.2.6. Let X and Y be independent chi-square random variables with 14 and 5 degrees of freedom, respectively. Find:
(a) P(jXeYj � 11.15),
(b) P(jXeYj � 3.8).

4.2.7. A particular type of vacuum-packed coffee packet contains an average of 16 oz. It has been observed that the
number of ounces of coffee in these packets is normally distributed with s ¼ 1.41 oz. A random sample of 15
of these coffee packets is selected, and the observations are used to calculate s. Find the numbers a and b
such that P(a � S2 � b) ¼ 0.90.

4.2.8. An optical firm buys glass slabs to be ground into lenses, and it is known that the variance of the refractive index
of the glass slabs is to be no more than 1.04 � 10�3. The firm rejects a shipment of glass slabs if the sample vari-
ance of 16 pieces selected at random exceeds 1.15 � 10�3. Assuming that the sample values may be looked on as
a random sample from a normal population, what is the probability that a shipment will be rejected even though
s2 ¼ 1.04 � 10�3?

4.2.9. Assume that T has a t distribution with 8 degrees of freedom. Find the following probabilities.
(a) P(T � 2.896).
(b) P(T � �1.860).
(c) The value of a such that P(�a < T < a) ¼ 0.99.

4.2.10. Assume that T has a t distribution with 15 degrees of freedom. Find the following probabilities.
(a) P(T � 1.341).
(b) P(T � �2.131).
(c) The value of a such that P(�a < T < a) ¼ 0.95.

4.2.11. A psychologist claims that the mean age at which female children start walking is 11.4 months. If 20 randomly
selected female children are found to have started walking at a mean age of 12 months with standard deviation of
2 months, would you agree with the psychologist’s claim? Assume that the sample came from a normal
population.

4.2.12. Let U1 and U2 be independent random variables. Suppose that U1 is c2 with v1 degrees of freedom while
U ¼ U1 þ U2 is chi-square with v degrees of freedom, where v > v1. Then prove that U2 is a chi-square random
variable with v e v1 degrees of freedom.

4.2.13. Show that if Xw c2 (v), then EX ¼ v and Var (X) ¼ 2v.
4.2.14. Let X1, ., Xn be a random sample with Xi w c2 (1), for i ¼ 1, ., n. Show that the distribution of

Z ¼ X � 1ffiffiffiffiffiffiffiffi
2=n

p
as n/N is standard normal.
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4.2.15. Find the variance of S2, assuming the sample X1, X2, ., Xn is from N(m, s2).
4.2.16. Let X1, X2, ., Xn be a random sample from an exponential distribution with parameter q. Show that the random

variable 2q�1

� Pn
i¼ 1

Xi

�
wc2ð2nÞ:

4.2.17. Let X and Y be independent random variables from an exponential distribution with common parameter q ¼ 1.
Show that X/Y has an F distribution. What is the number of the degrees of freedom?

4.2.18. Prove that if X has a t distribution with n degrees of freedom, then X2 w F (1, n).
4.2.19. Let X be F distributed with 9 numerator and 12 denominator degrees of freedom. Find

(a) P(X � 3.87).
(b) P(X � 0.196).
(c) The value of a and b such that P (a < Y < b) ¼ 0.95.

4.2.20. Prove that if Xw F(n1,n2), then 1/Xw F(n2,n1).
4.2.21. Find the mean and variance of F(n1, n2) random variable.
4.2.22. Let X11;X12;.;X1n1 be a random sample with sample mean X1 from a normal population with mean m1 and vari-

ance s21, and let X21;X22;.;X2n2 be a random sample with sample mean X2 from a normal population with mean
m2 and variance s22. Assume the two samples are independent. Show that the sampling distribution of

�
X1 �X2

�
is

normal with mean m1em2 and variance s21
�
n1 þ s22

�
n2.

4.2.23. Let X1, X2, ., Xn1 be a random sample from a normal population with mean m1 and variance s2, and Y1, Y2, .,
Yn2 be a random sample from an independent normal population with mean m2 and variance s2. Show that

T ¼
�
X � Y

�� ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS21 þ ðn2 � 1ÞS22

n1 þ n2 � 2

s �
1
n1

þ 1
n2

�wTðn1þn2�2Þ.

4.2.24. Show that a t distribution tends to a standard normal distribution as the degrees of freedom tend to infinity.
4.2.25. Show that the mgf of a c2 random variable with n degrees of freedom is M(t)¼(1 e 2t)en/2. Using the mgf, show

that the mean and variance of a chi-square distribution are n and 2n, respectively.
4.2.26. Let the random variables X1, X2, ., X10 be normally distributed with mean 8 and variance 4. Find a number a

such that

P

 X10
i¼ 1

�
Xi � 8

2

�2

� a

!
¼ 0:95:

4.2.27. Let X2 w F(1,n). Show that Xw t(n).

4.3 Order statistics

In practice, the random variables of interest may depend on the relative magnitudes of the observed variable. For example,
we may be interested in the maximum mileage per gallon of a particular class of cars. In this section, we study the behavior
of ordering a random sample from a continuous distribution.

Definition 4.3.1 Let X1, ., Xn be a random sample from a continuous distribution with pdf f(x). Let Y1, ., Yn be a
permutation of X1, ., Xn such that

Y1 � Y2 � / � Yn:

Then the ordered random variables Y1, ., Yn are called the order statistics of the random sample X1, ., Xn. Here
Yk is called the kth order statistic. Because of continuity, the equality sign could be ignored.

Remark. Although Xi
0s are iid random variables, the random variables Yi

0s are neither independent nor identically
distributed.

Thus, the minimum of Xi
0s is

Y1 ¼ min ðX1;.;XnÞ
and the maximum is

Yn ¼ max ðX1;.;XnÞ.
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The order statistics of the sample X1, X2, ., Xn can also be denoted by X(1), X(2), ., X(n) where

Xð1Þ < Xð2Þ < $$$ < XðnÞ.

Here, X(k) is the kth order statistic and is equal to Yk in Definition 4.3.1. One of the most commonly used order statistics
is the median, the value in the middle position in the sorted order of the values.

EXAMPLE 4.3.1

(i) The range R ¼ YneY1 is a function of order statistics.

(ii) The sample median M equals Ymþ1 if n ¼ 2m þ 1.

Hence, the sample median M is an order statistic, when n is odd. If n is even, then the sample median can be obtained using

the order statistic M ¼ (1/2) [Yn/2 þ Y(n/2)þ1].

The following result is useful in determining the distribution of functions of more than one order statistics.

Theorem 4.3.1 Let X1, ., Xn be a random sample from a population with pdf f(x). Then the joint pdf of order statistics
Y1,.,Yn is:

f ðy1;.; ynÞ ¼

n!f ðy1Þf ðy2Þ.f ðynÞ; for y1 < / < yn
0; otherwise.

The pdf of the kth order statistic is given by the following theorem.

Theorem 4.3.2 The pdf of Yk is:

fkðyÞ ¼ fYkðyÞ ¼ n!

ðk � 1Þ!ðn� kÞ! f ðyÞ ðFðyÞÞ
k�1ð1� FðyÞÞn�k

;

for eN < y < N, where F(y) ¼ P(Xi � y) is the cumulative distribution function (cdf) of Xi.

In particular, the pdf of Y1 is f1 (y) ¼ nf (y) [1eF(y)]n�1 and the pdf of Yn is fn(y) ¼ nf(y)[F(y)]n�1. In the following
example, we will derive the pdf for Yn.

EXAMPLE 4.3.2

Let X1, ., Xn be a random sample from U[0,1]. Find the pdf of the k th order statistic Yk.

Solution

Since the pdf of Xi is f(x) ¼ 1,0 � x � 1, the cdf is F(x) ¼ x, 0 � x � 1. Using Theorem 4.3.2, the pdf of the kth order statistic Yk

reduces to:

fkðyÞ ¼ n!

ðk � 1Þ!ðn � kÞ!y
k�1ð1� yÞn�k

; 0 � y � 1

which is a beta distribution with a ¼ k and b ¼ n e k þ 1.

The next example gives the so-called extreme (i.e., largest) value distribution, which is the distribution of the order
statistic Yn.

EXAMPLE 4.3.3

Find the distribution of the nth order statistic Yn of the sample X1, ., Xn from a population with pdf f(x).

Solution

Let the cdf of Yn be denoted by Fn(y). Then:

FnðyÞ ¼ P ðYn � yÞ ¼ P

�
max
1�i�n

Xi � y

�

¼ P ðX1 � y;.;Xn � yÞ ¼ ½FðyÞ�nðby independenceÞ:
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Hence, the pdf fn (y) of Yn is:

fnðyÞ ¼ d

dy
½FðyÞ�n ¼ n½FðyÞ�n�1 d

dy
FðyÞ

¼ n½FðyÞ�n�1f ðyÞ:
In particular, if X1, ., Xn is a random sample from U[0, 1], then the cumulative extreme value distribution is given by:

FnðyÞ ¼

8><
>:

0; y < 0

yn; 0 � y � 1

1; y > 1:

EXAMPLE 4.3.4

A string of 10 light bulbs is connected in series, which means that the entire string will not light up if any one of the light bulbs

fails. Assume that the lifetimes of the bulbs, s1, ., s10, are independent random variables that are exponentially distributed with

mean 2. Find the distribution of the life length of this string of light bulbs.

Solution

Note that the pdf of si is f(t) ¼ 2e�2t, 0 < t < N, and the cumulative distribution of si is Fsi (t) ¼ 1ee�2t. Let T represent the

lifetime of this string of light bulbs. Then,

T ¼ minðs1;.; s10Þ.
Thus,

FT ðtÞ¼ 1e½1eFsiðtÞ�10.
Hence, the density of T is obtained by differentiating FT(t) with respect to t, that is,

fT ðtÞ ¼ 10fsiðtÞ½1� FsiðtÞ�9

¼

8><
>:

2ð10Þe�2t
�
e�2t

�9 ¼ 20e�20t ; 0 < t < N

0; otherwise.

The joint pdf of the order statistics is given by the following result.

Theorem 4.3.3 Let X1, ., Xn be a random sample with continuous pdf f(x) and a distribution function F(x). Let Y1, ., Yn

be the order statistics. Then for any 1 � i < k � n and eN < x � y < N, the joint pdf of Yi and Yk is given by:

fYi ;Ykðx; yÞ ¼ n!

ði� 1Þ!ðk � i� 1Þ!ðn� kÞ!½FðxÞ�
i�1

� ½FðyÞ � FðxÞ�k�i�1½1� FðyÞ�n�kf ðxÞf ðyÞ

EXAMPLE 4.3.5

Let X1, ., Xn be a random sample from U[0,1]. Find the joint pdf of Y2 and Y5.

Solution

Taking i ¼ 2 and k ¼ 5 in Theorem 4.3.3, we get the joint pdf of Y2 and Y5 as:
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fY2 ;Y5
ðx; yÞ ¼ n!

ð2� 1Þ!ð5� 2� 1Þ!ðn � 5Þ!½FðxÞ�
2�1

½FðyÞ � FðxÞ�5�2�1 � ½1� FðyÞ�n�5f ðxÞf ðyÞ

¼

8>>><
>>>:

n!

2ðn � 5Þ! xðy � xÞ2ð1� yÞn�5
;

0;

0 < x � y < 1

otherwise.

Exercises 4.3

4.3.1. The lifetime X of a certain electrical fuse has the following pdf:

f ðxÞ ¼

8><
>:

1
10

e�x=10;

0;

x > 0

otherwise.

Suppose two such fuses are in series and operate independently in a system. Find the pdf of the lifetime Y of the
system. (The system will work only if both of the fuses operate.)

4.3.2. Suppose that time between two telephone calls at an office, in minutes, is uniformly distributed on the interval
[0, 20]. If there were 15 calls, (i) what is the probability that the longest time interval between calls is less than
15 minutes? (ii) What is the probability that the shortest time interval between calls is greater than 5 minutes?

4.3.3. Let X1, X2, X3 be three random variables of discrete type. Let X1, X2 take values 0, 1, and X3 take values 1, 2, 3.
What are the values of Y1, Y2, Y3?

4.3.4. Let X1, ., X10 be a random sample from U[0, 1]. Find the joint density of Y2 and Y7, where Yi, i ¼ 1, 2, ., 10 are
order statistics of X1, ., X10.

4.3.5. Let X1, .,Xn be a random sample from exponential distribution with a mean of q. Show that Y1 ¼ min (X1, X2, .,
Xn) has an exponential distribution with mean q/n. Also, find the pdf of Yn ¼ max (X1, X2, .,Xn).

4.3.6. A string of 10 light bulbs is connected in parallel, which means that the entire string will fail to light up only if all 10
of the light bulbs fail. Assume that the lifetimes of the bulbs, s1, ., s10, are independent random variables that are
exponentially distributed with mean q. Find the distribution of the lifetimes of this string of light bulbs.

4.3.7. Let X1, ., Xn be a random sample from the uniform distribution f(x) ¼ 1/2, 0 � x � 2. Find the pdf for the range
R ¼ (X(n) � X(1)).

4.3.8. Given a sample of 25 observations from a distribution with pdf:

f ðxÞ ¼
(
e�x;

0;

x > 0

otherwise

let M be the sample median. Compute P(M � (b).

[Hint: Note that M is the 13th order statistic.]
4.3.9. Let X1, ., Xn be a random sample from a normal population with mean 10 and variance 4. What is the probability

that the largest observation is greater than 10?
4.3.10. Let X1, ., Xn be a random sample from an exponential population with parameter q. Let Y1, ., Yn be the ordered

random variables.
(a) Show that the sampling distributions of Y1 and Yn are given by

f1ðy1Þ ¼
8<
:

n

q
e�ny1=q;

0;

if y1 > 0

otherwise;
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and

fnðynÞ ¼
8<
:

n

q
e�yn=q

�
1� e�yn=q

�n�1
;

0;

if yn > 0

otherwise.

(b) Let n ¼ 2l þ 1. Show that the sampling distribution of the median, M, is given by:

f ðmÞ ¼

8><
>:

n!

ðl!Þ2qe
�mðlþ1Þ=q�1� e�m=q

�l
;

0;

for m > 0

otherwise.

4.3.11. Let X1, ., Xn be a random sample from a beta distribution with a ¼ 2 and b ¼ 3. Find the joint pdf of Y1
and Yn.

4.3.12. Let X1, ., Xn be a random sample from a geometric distribution with probability mass function

pi ¼ PðX ¼ iÞ ¼ pqie1; i¼ 1; 2;.; 0 < p< 1; q¼ 1ep.

Show that:

PðYk ¼ yÞ ¼
Xn
i¼ k

0
@ n

i

1
Aqðy�1Þðn�iÞ�qn�i½1� qy�i � �1� qy�1

�i�
;

y ¼ 1; 2;. .

4.4 The normal approximation to the binomial distribution

We know that a binomial random variable Y, with parameters n and P ¼ P(success), can be viewed as the number of
successes in n trials and can be written as:

Y ¼
Xn
i¼ 1

Xi

where

Xi ¼

1; with probability p

0; with probability ð1� pÞ.
The fraction of successes in n trials is:

Y

n
¼ 1

n

Xn
i¼ 1

Xi ¼ X:

Hence, Y/n is a sample mean. Since E(Xi) ¼ P and Var (Xi) ¼ P(1 e P), we have:

E

�
Y

n

�
¼ E

 
1
n

Xn
i¼ 1

Xi

!
¼ 1

n
np ¼ p

and

Var

�
Y

n

�
¼ 1

n2
Xn
i¼ 1

VarðXiÞ ¼ pð1� pÞ
n

:

Because Y ¼ nX; by the central limit theorem, Y has an approximate normal distribution with mean m ¼ np and
variance s2 ¼ np(1 e P). Because the calculation of the binomial probabilities is cumbersome for large sample sizes n, the
normal approximation to the binomial distribution is widely used. A useful rule of thumb for use of the normal
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approximation to the binomial distribution is to make sure n is large enough if np � 5 and n(1 e P) � 5. Otherwise, the
binomial distribution may be so asymmetric that the normal distribution may not provide a good approximation. Other
rules, such as np � 10 and n(1 e P) � 10, or np(1 e P) � 10, are also used in the literature. Because all of these rules
are only approximations, for consistency’s sake we will use np � 5 and n(1 e P) � 5 to test for largeness of sample size
in the normal approximation to the binomial distribution. If the need arises, we could use the more stringent condition np(1
e P) � 10.

Recall that discrete random variables take no values between integers, and their probabilities are concentrated at the
integers as shown in Fig. 4.7. However, the normal random variables have zero probability at these integers; they have
nonzero probability only over intervals. Because we are approximating a discrete distribution with a continuous distri-
bution, we need to introduce a correction factor for continuity which is explained next.

Correction for continuity for the normal approximation to the binomial distribution

(a) To approximate P(X � a) or P(X > a), the correction for continuity is (a þ 0.5), that is,

P ðX � aÞ ¼ P

 
Z <

ðaþ 0:5Þ � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

!

and

P ðX > aÞ ¼ P

 
Z >

ðaþ 0:5Þ � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

!
:

(b) To approximate P(X � a) or P(X < a), the correction for continuity is (a � 0.5), that is,

P ðX � aÞ ¼ P

 
Z >

ða� 0:5Þ � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

!

and

P ðX < aÞ ¼ P

 
Z <

ða� 0:5Þ � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

!
:

(c) To approximate P(a � X � b), treat ends of the intervals separately, calculating two distinct z-values according to steps (a) and

(b), that is,

P ða�X � bÞ ¼ P

 
ða� 0:5Þ � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp <Z <
ðb þ 0:5Þ � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp
!
:

(d) Use the normal table to obtain the approximate probability of the binomial event.

p(x)

x

FIGURE 4.7 Probability function of discrete random variable X.
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The shaded area in Fig. 4.8 represents the continuity correction for P(X ¼ i).

EXAMPLE 4.4.2

A study of parallel interchange ramps revealed that many drivers do not use the entire length of parallel lanes for acceleration, but

seek, as soon as possible, a gap in the major stream of traffic to merge. At one site on Interstate Highway 75, 46% of drivers used

less than one-third of the lane length available before merging. Suppose we monitor the merging pattern of a random sample of

250 drivers at this site.

(a) What is the probability that fewer than 120 of the drivers will use less than one-third of the acceleration lane length before

merging?

(b) What is the probability that more than 225 of the drivers will use less than one-third of the acceleration lane length before

merging?

Solution

First we check for adequacy of the sample size:

np ¼ ð250Þð0.46Þ¼ 115 and nð1 e pÞ ¼ ð250Þð1 e 0.46Þ¼ 135.

Both are greater than 5. Hence, we can use the normal approximation. Let X be the number of drivers using less than one-third

of the lane length available before merging. Then X can be considered to be a binomial random variable. Also,

m ¼ np ¼ ð250Þð0.46Þ¼ 115.0

and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
250ð0:46Þð0:54Þ

p
¼ 7:8804:

Thus,

(a) PðX< 120Þ ¼ P
�
Z< 119:5�115

7:8804 ¼ 0:57103
� ¼ 0:7157, that is, we are approximately 71.57% certain that fewer than 120

drivers will use less than one-third of the acceleration length before merging.

(b) PðX> 225Þ ¼ P
�
Z> 225:5�115

7:8804 ¼ 14:02213
�
z0; that is, there is almost no chance that more than 225 drivers will use less

than one-third of the acceleration lane length before merging.

Exercises 4.4

4.4.1 Suppose X is a binomial random variable with n ¼ 20 and P ¼ 0.2. Find the probability that X � 10 using binomial
tables and compare this with the corresponding value found from normal approximation.

4.4.2. Using normal approximation, find the probability of obtaining at least 90 heads in 150 tosses of a fair coin. Is the
normal approximation valid? Why?

4.4.3. A car rental company finds that each day 6% of the persons making reservations will not show up. If the rental
company reserves for 215 persons with only 200 automobiles, what is the probability that an automobile will
be available for every person who shows up holding a reservation? (Use the normal approximation.)

f (x)

i–1/2 i+1/2
x

FIGURE 4.8 Continuity correction for P(X ¼ i).
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4.4.4. The president of the United States is thought to have a positive approval rating of 58% of the people at a certain
time. In a random sample of 1200 people, what is the approximate probability that the number of positive approvals
will be at least 750? Interpret your results and state any assumptions.

4.4.5. In the United States, sudden infant death syndrome (SIDS) is one of the leading causes of postneonatal deaths
(those occurring between the ages of 28 days and 1 year). Thus far, the most significant risk factor discovered
for SIDS is placing babies to sleep in a prone position (on their stomachs). Suppose the rate of death due to
SIDS is 0.00103 per year. In a random sample of 5000 infants between the ages of 28 days and 1 year, what is
the approximate probability that the number of SIDS-related deaths will be at least 10? Interpret your results
and state any assumptions.

4.4.6. Let X and Y be independent binomial random variables with parameters (n, P1) and (m, P2), respectively.

(a) Find E

�
X
n �Y

m

�
.

(b) Find Var

�
X
n �Y

m

�
.

(c) Show that

�
X
n �Y

m

�
wN

�
E

�
X
n �Y

m

�
;Var

�
X
n �Y

m

��
; for large m and n.

4.5 Chapter summary

In this chapter, we learned about sampling distributions. In sampling distributions associated with normal populations, we
have seen that we can generate chi-square, t-, and F-distributions. In Section 4.3 we dealt with order statistics. Then in
Section 4.4 we looked at large sample approximations such as the normal approximation to the binomial distribution. In the
following section, we will give Minitab examples to show how the idea of sampling distribution can be explored using
statistical software.

We will now list some of the key definitions introduced in this chapter:

l Sampling distribution
l Sample and sample size
l Random sample
l Statistic
l Standard error
l Finite population correction factor
l Degrees of freedom
l t Distribution
l F-distribution
l Order statistics

In this chapter, we have also presented the following important concepts and procedures:

l Sampling distribution associated with normal distribution
l Results on chi-square distribution
l Results on Student t Distribution
l Results on F-distribution
l Derivation of pdfs for order statistics
l Large sample approximations
l Normal approximation to the binomial
l Correction for continuity for the normal approximation to the binomial distribution

4.6 Computer examples

4.6.1 Examples using R

Note: For the following problems you are generating random samples; your answers will vary!
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EXAMPLE 4.6.1 Generating normal random samples

Create three samples of size 30 from standard normal distribution and draw histograms for each sample.

Notice the last two arguments are the mean and standard deviation of the distribution 0, and 1. In addition, plot a density

curve over the histogram. Only one output is shown for this example.

R code:

sample1 ¼ rnorm(30,0,1);

sample2 ¼ rnorm(30,0,1);

sample3 ¼ rnorm(30,0,1);

hist(sample1,prob ¼ T);

lines(density(sample1),col ¼ “red”);

hist(sample2,prob ¼ T);

lines(density(sample2),col ¼ “red”);

hist(sample3,prob ¼ T);

lines(density(sample3),col ¼ “red”);

Output:

Histogram of sample 1

D
en

si
ty

0.4

0.3

0.2

0.1

0.0

−3 −2 −1 0
Sample 1

1 2 3

EXAMPLE 4.6.2 Generating a normal random sample

Generate 50,000 observations from a normal distribution with mean 30 and standard deviation 8. Obtain summary statistics for

these data and draw a graph.

R code:

sample ¼ rnorm(50,000,30,8);

summary(sample);

sd(sample);

hist(sample, prob ¼ T);

lines(density(sample),col ¼ “red”);

Output:

Min. 1st Qu. Median Mean 3rd Qu. Max.

�0.08056 24.62000 30.01000 30.03000 35.42000 60.82000

7.981,699 Standard deviation
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Histogram of sample 1
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EXAMPLE 4.6.3 Generating a random exponential sample

From an exponential distribution, draw 10,000 samples, each sample of size 15. Compute the mean of each sample and draw a

chart for the means. This will be an approximate sampling distribution of x for a fixed sample of size 15.

R code:

samples_means ¼ c(); ##Creates an empty array for us to store the means in.

for(i in 1:10,000) { ## This for loop repeats the code inside it change variable i over the range.

sample ¼ rexp(15,3); ##Generates a random sample of 15 from an exponential.

mean ¼ mean(sample); ## calculates the mean of that sample.

samples_means ¼ c(sample, mean); ## store the mean inside our array for later use.

}

hist(samples_means, prob ¼ T); ##Use previous methods to check the distribution of the means.

lines(density(samples_means),col ¼ “red”);

summary(samples_means);

sd(samples_means);

Output:

No output is given for this particular problem, please see the graph generated by R.

You have stored the samples_means in this variable use previous analysis methods on this variable.

4.6.2 Minitab examples

EXAMPLE 4.6.4

Create three samples of size 30 from standard normal distribution using Minitab, and draw histograms for each sample.

Solution

We can use the following procedure:

1. Open a new worksheet.

2. Choose Calc > Random Data > Normal.

3. Generate 30 rows of data.

4. Store results in C1eC3.

5. Enter a mean of 0 and a standard deviation of 1 and click OK.

6. Choose Graph > Character Graphs > Histogram and enter C1eC3 in the variable box and click OK. We will not give the

data or any of the three histograms that we will get. These histograms are just lines containing *s. If we need actual histo-

grams, in step 6 use

Graph > Histogram and enter C1 in the graph variable box and click OK.

If we wish to generate descriptive statistics, then:

7. Choose Stat > Basic Statistics > Display Descriptive statistics ., enter C1eC3 in the variable box, and click OK.

If we would like to see the mean for the three samples:
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8. Choose Calc > Row Statistics, then click Mean and in the Input variables type C1eC3. In Store Result in: C4 and click OK.

To see the histogram of these averages, follow step 6 with C4 in the graph variable box.

Using a similar procedure, one could generate samples from normal distributions with different means and standard de-

viations, as well as from other distributions.

4.6.3 SPSS examples

If we have the full version of SPSS, we can write code that can be used to simulate a sampling distribution with different
values of P. However, with the student version, it is not easy to simulate. Therefore, we will not give SPSS examples in this
chapter.

4.6.4 SAS examples

EXAMPLE 4.6.5

Generate 50,000 observations from a normal distribution with mean 30 and standard deviation 8. Obtain summary statistics for

these data and draw a graph.

Solution

We could use the following program.

title ‘50,000 Obs Sample from a Normal Distribution’;
title2 0with Mean ¼ 30 and Standard Deviation ¼ 8’;
data normaldat;

do n ¼ 1 to 50,000;
X ¼ 8*rannor(55)þ30;
output;

end;
run;
proc univariate data ¼ normaldat;

var x;
run;
proc chart;

vbar x/midpoints ¼ 6 to 54 by 2;
format x msd.;

run;
In the foregoing program, rannor (55), the number 55 is just a seed number to obtain the same series of random numbers each

time we run the program. If we use 0, each time we run the program we will get a different set of random numbers. We will not

give the output.

EXAMPLE 4.6.6

From an exponential distribution, draw 10,000 samples, each sample of size 15. Compute the mean of each sample and draw a

chart for the means. This will be an approximate sampling distribution of X for a fixed sample of size 15.

Solution

Use the following program.

title ‘10,000 Sample Means with 15 Obs per Sample’;
title2 0Drawn from an Exponential Distribution’;
data sample15;

do Sample ¼ 1 to 10,000;
do n ¼ 1 to 15;

X ¼ ranexp(3);
output;

end;
end;

proc means data ¼ sample 15 noprint;
output out ¼ mean 15 mean ¼ Mean;
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var x;
by sample;

run;
proc chart data ¼ mean 15;

vbar mean/axis ¼ 1800.
midpoints ¼ 0.10 to 2.05 by 0.1;

run;
proc univariate data ¼ mean4 noextrobs ¼ 0 normal.

mu0 ¼ 1;
mean;

run;
This will produce an approximate sampling distribution of X. We will not give the output.

Projects for chapter 4

4A A method to obtain random samples from different distributions

Most of the statistical software packages contain a random number generator that produces approximations to random
numbers from the uniform distribution U [0, 1]. To simulate the observation of any other continuous random variables, we
can start with uniform random numbers and associate these with the distribution we want to simulate. For example,
suppose we wish to simulate an observation from the exponential distribution:

FðxÞ ¼ 1� e�0:5x; 0 < x < N.

First produce the value of y from the uniform distribution. Then solve for x from the equation:

y ¼ FðxÞ ¼ 1� e�0:5x.

So x ¼ [�ln (1 e y)]/0.5 is the corresponding value of the exponential random variable. For instance, if y ¼ 0.67, then
x ¼ [�ln (1 e y)]/0.5 ¼ 2.2173. If we wish to simulate a sample from the distribution F from the different values of y
obtained from the uniform distribution, the procedure is repeated for each new observation x.

(a) Simulate 10 observations of a random variable having exponential distribution with mean and standard deviation both
equal to 2.

(b) Select 1500 random samples of size n ¼ 10 measurements from a population with an exponential distribution with
mean and standard deviation both equal to 2. Calculate the sample mean for each of these 1500 samples and draw
a relative frequency histogram. Based on Theorems 4.1.1 and 4.4.1, what can you conclude?

It should be noted that, in general, if Y w U (0, 1) random variable, then we can show that X ¼ �1nY
l will give an

exponential random variable with parameter l. Uniform random variable could also be used to generate random variables
from other distributions. For example, let Ui’ be iid U[0, 1] random variables. Then,

X ¼ � 2
Xv
i¼ 1

lnðUiÞwc2
2v;

and

Y ¼ � b
Xa
i¼ 1

lnðUiÞw Gamma ða; bÞ.

Of course, these transformations are useful only when v and a are integers. More efficient methods based on Monte
Carlo simulations, such as MCMC methods, are discussed in Chapter 13.
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4B Simulation experiments

When the derivation via probability rules is too difficult or complicated to be carried out, one can use simulation ex-
periments to obtain information about a statistic’s sampling distribution. The following characteristics of the experiment
must be specified:

(i) the population distribution (normal with m ¼ 10 and s ¼ 2, exponential with l ¼ 5, etc.);
(ii) the sample size n and the statistic of interest (X; S, etc.);
(iii) the number of replications k (such as k ¼ 300).

Then, using a computer program, obtain k different random samples, each of size n, from the designated population
distribution. Calculate the value of the statistic for each of the k replications. Construct a histogram for this k statistic. This
histogram gives the approximate sampling distribution of the statistic. The larger the value of k, the better will be the
approximation.

(a) For your simulation study, use the population distribution as normal with m ¼ 3.4 and s ¼ 1.2.

For n ¼ 8 perform k ¼ 500 replications and draw a histogram for values of the sample means. Repeat the experiment
with n ¼ 15, n ¼ 25, and n ¼ 35 and draw the histograms. Based on this exercise, you will be able to intuitively verify the
result that X based on a large n tends to be closer to m than does X based on a small n.

(b) Repeat the experiment of (a) with different values of k, such as k ¼ 200, k ¼ 750, and k ¼ 1000.
(c) Repeat the simulation study with different distributions such as exponential distribution.

4C A test for normality

Many statistical procedures require that the population be at least approximately normal. Therefore, a procedure is needed
for checking that the sampled data could have come from a normal distribution. There are many procedures, such as the
normal-score plot, or Lilliefors test for normality, available in statistics for this purpose. We will describe the normal-score
plot, which is an effective way to detect deviations from normality. The normal scores consist of values of z that divide the
axes into equal probability intervals. For a sample of size 4, the normal scores are ez0.20 ¼ �0.84, ez0.40 ¼ �0.25,
z0.40 ¼ �0.25, and z0.20 ¼ 0.84.

Steps to construct a normal plot

1. Rearrange the n data points in ascending order.

2. Obtain the n normal scores.

3. Plot the k th largest observation, versus the kth normal score, for all k.

4. If the data were from a standard normal distribution, the plot would resemble a 45� line through the origin.

5. If the observations were from normal (but not from standard normal), the pattern should still be a straight line. However, the

line need not pass through the origin or have a slope 1.

In applications, a minimum of 15e20 observations is needed to reach a more accurate conclusion.

Exercises

1. For different observations, construct normal plots and check for normality of the corresponding populations.
2. Using software (such as Minitab), generate 15 observations each from the following distributions: (a) normal (2, 4),

(b) uniform (0, 1), (c) gamma (2, 4), and (d) exponential (2).

For each of these data sets, draw a probability plot and note the geometry of the plots.
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In this chapter we study some statistical methods to find estimators of population parameters and study their properties.
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C. R. Rao
(Source: https://news.psu.edu/story/160566/2011/02/18/academics/cr-rao-receives-33rd-honorary-doctoral-degree).

Calyampudi Radhakrishna (C. R.) Rao (1920e) is a contemporary statistician whose work has influenced not just
statistics, but such diverse fields as anthropology, biometry, demography, economics, genetics, geology, and medicine.
Several statistical terms and equations are named after Rao. He has worked with many other famous statisticians such as
Blackwell, Fisher, and Neyman and has had dozens of theorems named after him. Rao earned an MA in mathematics
and another MA in statistics, both in India, and earned his PhD and ScD at Cambridge University. The following was
stated in the preface to the 1991 special issue of the Journal of Quantitative Economics in Rao’s honor: “Dr. Rao is a
very distinguished scientist and a highly eminent statistician of our time. His contributions to statistical theory and
applications are well known, and many of his results, which bear his name, are included in the curriculum of courses in
statistics at bachelor’s and master’s level all over the world. He is an inspiring teacher and has guided the research work
of numerous students in all areas of statistics. His early work had greatly influenced the course of statistical research
during the last four decades. One of the purposes of this special issue is to recognize Dr. Rao’s own contributions to
econometrics and acknowledge his major role in the development of econometric research in India.” The importance of
statistics can be summarized in Rao’s own words: “If there is a problem to be solved, seek statistical advice instead of
appointing a committee of experts. Statistics can throw more light than the collective wisdom of the articulate few”
http://www.finse.uio.no/events/international-workshops/introduction-to-estimation/.

5.1 Introduction

In statistical analysis, the estimation of a population’s parameters plays a very significant role. In most applied problems, a
certain numerical characteristic of the physical phenomenon may be of interest; however, its value may not be observable
directly. Instead, suppose it is possible to observe one or more random variables, the distribution of which depends on the
characteristic of interest. Our objective will be to develop methods that use the observed values of random variables
(sample data) to gain information about the unknown and unobservable characteristic of the population.

In studying a real-world phenomenon, we begin with a random sample of size n taken from the totality of a population.
In estimation theory, it is assumed the observations are random with a probability distribution dependent on some pa-
rameters of interest. The initial step in statistically analyzing these data is to be able to identify the probability distribution
that characterizes this information. Since the parameters of a distribution are its defining characteristics, it becomes
necessary to know the parameters. In the present chapter, we shall assume that the form of the population distribution is
known (such as binomial, normal, etc.) but the parameters of the distribution (p for a binomial, m and s2 for a normal, etc.)
are unknown. We shall estimate these parameters using the data from our random sample. It is extremely important to have
the best possible estimate of the population parameter(s). Having such estimates will lead to a better and more accurate
statistical analysis.

For example, for phosphate mining in Florida, we may be interested in estimating the average radioactivity from both
uranium and radium in a clay settling area of a mining site. Suppose that a random sample of 10 such sites resulted in a
sample average of 40 pCi/g (picocuries/gram) of radioactivity. We may use this value as an estimate of the average
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radioactivity for all of the settling areas of mining sites in Florida. We may also want to know a range of values of radio-
activity with certain confidence. Since many Florida crops are grown on clay settling areas, these types of estimates are
important for assessing the risks associated with radioactivity ingested by eating food from the crops grown on these clay
settling areas.

There are two types of estimators, namely, point estimator and interval estimator. First, we will introduce statistical
point estimation methods, discuss their properties, and illustrate their usefulness with a number of applications. Point
estimation gives a single “best guess” for the parameter(s) of interest. The importance of point estimates lies in the fact that
many statistical formulas are based on them. For example, the point estimates of mean and standard deviation are needed in
the calculation of confidence intervals (CIs) and in many formulas for hypothesis testing. These topics will be covered
subsequently. In general, the point estimates will differ from the true parameter values by varying amounts depending on
the sample values obtained. In addition, the point estimates do not convey any measure of reliability. To deal with these
issues, we will also introduce so-called interval estimation or CIs.

5.2 The methods of finding point estimators

Let X1, ., Xn be independent and identically distributed (iid) random variables (in statistical language, a random sample)
with a probability density function (pdf) or probability mass function (pmf) f (x, q1, ., ql), where q1, ., ql are the un-
known population parameters (characteristics of interest). For example, a normal pdf has parameters m (the mean) and s2

(the variance). The actual values of these parameters are not known. The problem in point estimation is to determine
statistics gi(X1,., Xn), i ¼ 1,., l, which can be used to estimate the value of each of the parametersdthat is, to assign an
appropriate value for the parameters q ¼ (q1, ., ql) based on observed sample data from the population. These statistics
are called estimators for the parameters, and the values calculated from these statistics using particular sample data values
are called estimates of the parameters. Estimators of qi are denoted by bqi , where bqi ¼ giðX1;.;XnÞ; i ¼ 1;. l: Observe
that the estimators are random variables. As a result, an estimator has a distribution (which we called the sampling dis-
tribution in Chapter 4). When we actually run the experiment and observe the data, let the observed values of the random
variables X1,., Xn be x1,., xn; then, bqðX1;.;XnÞ is an estimator, and its value bqðx1;.; xnÞ is an estimate. For example,
in case of the normal distribution, the parameters of interest are q1 ¼ m, and q2 ¼ s2, that is, q ¼ (m, s2). If the estimators of

m and s2 are X ¼ ð1 =nÞPn
i¼1Xi and S2 ¼ ð1 =ðn �1ÞÞPn

i¼1

�
Xi � X

�2
, respectively, then the corresponding estimates are

x ¼ ð1 =nÞPn
i¼1xi and s2 ¼ ð1 =n�1ÞPn

i¼1ðxi � xÞ2; the mean and variance corresponding to the particular observed
sample values. In this book, we use capital letters such as X and S2 to represent the estimators, and lowercase letters such as
x and s2 to represent the estimates.

There are many methods available for estimating the true value(s) of the parameter(s) of interest. Three of the more
popular methods of estimation are the method of moments, the method of maximum likelihood, and Bayes’ method. A
very popular procedure among econometricians to find a point estimator is the generalized method of moments. In this
chapter we study only the method of moments and the method of maximum likelihood for obtaining point estimators and
some of their desirable properties. In Chapter 10, we shall discuss Bayes’ method of estimation.

There are many criteria for choosing a desired point estimator. Heuristically, some of them can be explained as follows.

An estimator, bq, is unbiased if the mean of its sampling distribution is the parameter q. The bias of bq is given by B ¼
E
�bq�� q. The estimator has the sufficiency property if it fully uses all the sample information. Minimal sufficient sta-

tistics are those that are sufficient for the parameter and are functions of every other set of sufficient statistics for those same
parameters. A method attributable to Lehmann and Scheffé can be used to find a minimal sufficient statistic. In addition,
the estimator is said to satisfy the consistency property if the sample estimator has a high probability of being close to the
population value q for a large sample size. The concept of efficiency is based on comparing variances of the different
unbiased estimators. If there are two unbiased estimators, it is desirable to have the one with the smaller variance.
However, some of these properties will not be discussed in this book.

How do we find a good point estimator with desirable properties? To answer this question, we will study two methods
of finding point estimators, namely, the method of moments and the method of maximum likelihood.

5.2.1 The method of moments

One of the oldest methods for finding point estimators is the method of moments. This is a very simple procedure for
finding an estimator for one or more population parameters. Let m0

k ¼ E½Xk� be the kth moment about the origin of a
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random variable X, whenever it exists. Let m0
k ¼ ð1 =nÞSn

i¼1 X
k
i be the corresponding kth sample moment. Then, the

estimator of m0
k by the method of moments is m0

k. The method of moments is based on matching the sample moments with
the corresponding population (distribution) moments and is founded on the assumption that sample moments should
provide good estimates of the corresponding population moments. Because the population moments m0

k ¼ hkðq1; q2; :::; qlÞ
are often functions of the population parameters, we can equate corresponding population and sample moments and solve
for these parameters in terms of the moments.

Method of moments

Choose as estimates those values of the population parameters

that are solutions of the equations m0
k ¼ m0

k ; k ¼ 1;2;.; l: Here m0
k is a function of the population parameters.

For example, the first population moment is m0
1 ¼ EðXÞ, and the first sample moment is X ¼ Pn

i¼1 Xi

�
n. Hence,

the moment estimator of m0
1 is X. If k ¼ 2, then the second population and sample moments are m0

2 ¼ EðX2Þ and m0
2 ¼

ð1 =nÞPn
i¼1 X

2
i ; respectively. Basically, we can use the following procedure to find point estimators of the population

parameters using the method of moments.

The method of moments procedure

Suppose there are l parameters to be estimated, say q ¼ (q1,

., ql).

1. Find l population moments, m0
k ; k ¼ 1;2;.; l: m0

k will

contain one or more parameters q1, ., ql.

2. Find the corresponding l sample moments,

m0
k ; k ¼ 1; 2;.; l: The number of sample moments

should equal the number of parameters to be estimated.

3. From the system of equations, m0
k ¼ m0

k ; k ¼ 1; 2;.; l;

solve for the parameter q ¼ (q1, ., ql); this will be a

moment estimator of bq.

The following examples illustrate the method of moments for population parameter estimation.

EXAMPLE 5.2.1

Let X1, ., Xn be a random sample from a Bernoulli population with parameter p.

(a) Find the moment estimator for p.

(b) Tossing a coin 10 times and equating heads to value 1 and tails to value 0, we obtained the following values:

0 1 1 0 1 0 1 1 1 0

Obtain a moment estimate for p, the probability of success (head).

Solution

(a) For the Bernoulli random variable, m0k ¼ E½X� ¼ p; so we can use m0
1 to estimate p. Thus,

m0
1 ¼ bp ¼ 1

n

Xn
i¼ 1

Xi :

Let

Y ¼
Xn
i¼ 1

Xi :

Then, the method of moments estimator for p is bp ¼ Y=n: That is, the ratio of the total number of heads to the total number of

tosses will be an estimate of the probability of success.

(b) Note that this experiment results in Bernoulli random variables. Thus, using (a)with Y ¼ 6, we get the moment estimate of p asbp ¼ 6
10 ¼ 0:6:
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We would use this value bp ¼ 0:6; to answer any probabilistic questions for the given problem. For example, what is the

probability of obtaining exactly 8 heads out of 10 tosses of this coin? This can be obtained by using the binomial formula (or

R-command: pbinom(8,10, 0.6)-pbinom(7,10, 0.6)), with bp ¼ 0:6; that is,

P ðX ¼ 8Þ ¼
�
10

8

�
ð0:6Þ8ð0:4Þ10�8 ¼ 0:1209324:

In Example 5.2.1, we used the method of moments to find a single parameter. We demonstrate in Example 5.2.2 how
this method is used for estimating more than one parameter.

EXAMPLE 5.2.2

Let X1,., Xn be a random sample from a gamma probability distribution with parameters a and b. Find moment estimators for the

unknown parameters a and b.

Solution

For the gamma distribution (see Section 3.2.5),

E ½X � ¼ ab and E
	
X2

 ¼ ab2 þ a2b2:

Because there are two parameters, we need to find the first two moment estimators. Equating sample moments to distribution

(theoretical) moments, we have:

1

n

Xn
i¼ 1

Xi ¼ X ¼ ab; and
1

n

Xn
i¼ 1

X2
i ¼ ab2 þ a2b2:

Solving for a and b we obtain the estimates as a ¼ ðx =bÞ and b ¼ 	�ð1 =nÞSn
i¼1x

2
i �x2

��
x



Therefore, the method of moments estimators for a and b are:

ba ¼ Xbb
and

bb ¼
1

n

Pn
i¼ 1

X2
i � X

2

X
¼
Pn
i¼ 1

�
Xi � X

�2
nX

;

which implies that:

ba ¼ Xbb ¼ X
2

1

n

Pn
i¼ 1

X2
i � X

2
¼ X

2

Pn
i¼ 1

�
Xi � X

�2:

Thus, we can use these values in the gamma pdf to answer questions concerning the probabilistic behavior of the random

variable X.

The following example shows that once we find the moments estimator theoretically, the estimate can be obtained by
simply substituting a sample statistic into the formula.

EXAMPLE 5.2.3

Let the distribution of X be N(m, s2).

(a) For a given sample of size n, use the method of moments to estimate m and s2.

(b) The following data (rounded to the third decimal digit) were generated using Minitab from a normal distribution with mean 2

and standard deviation of 1.5:
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3.163 1.883 3.252 3.716 �0.049 �0.653 0.057 2.987

4.098 1.670 1.396 2.332 1.838 3.024 2.706 0.231

3.830 3.349 �0.230 1.496

Obtain the method of moments estimates of the true mean and the true variance.

Solution

(a) For the normal distribution, E(X) ¼ m, and because Var(X) ¼ EX2 � m2, we have the second moment as E(X2) ¼ s2 þ m2.

Equating sample moments to distribution moments we have:

1

n

Xn
i¼ 1

Xi ¼ m0
1 ¼ m

and

m0
2 ¼ 1

n

Xn
i¼ 1

X2
i ¼ s2 þ m2:

Solving for m and s2, we obtain the moment estimators as:

bm ¼ X

and

bs2 ¼ 1

n

Xn
i¼ 1

X2
i � X

2 ¼ 1

n

Xn
i¼ 1

�
Xi � X

�2
:

(b) Because we know that the estimator of the mean is bm ¼ X and the estimator of the variance is bs2 ¼ ð1 =nÞSn
i¼1X

2
i � X

2
, from

the data the estimates are bm ¼ 2:005, and bs2 ¼ 6:12 � ð2:005Þ2 ¼ 2:1. Notice that the true mean is 2 and the true

variance is 2.25, which we used to simulate the data.

In general, using the population pdf we evaluate the lower order moments, finding expressions for the moments in
terms of the corresponding parameters. Once we have population (theoretical) moments, we equate them to the
corresponding sample moments to obtain the moment estimators.

EXAMPLE 5.2.4

Let X1, ., Xn be a random sample from a uniform distribution on the interval [a, b]. Obtain method of moment estimators for a

and b.

Solution

Here, a and b are treated as parameters. That is, we know only that the sample comes from a uniform distribution on some

interval, but we do not know from which interval. Our interest is to estimate this interval. The pdf of a uniform distribution is:

f ðxÞ ¼

8><
>:

1

b � a
; a � x � b

0; otherwise.

Hence, the first two population moments are:

m1 ¼ EðXÞ ¼
Zb
a

x

b � a
dx ¼ aþ b

2
and m2 ¼ E

�
X2
� ¼

Zb
a

x2

b � a
dx ¼ a2 þ ab þ b2

3
:

The corresponding sample moments are:

bm1 ¼ X and bm2 ¼ 1

n

Xn
i¼ 1

X2
i :
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Equating the first two sample moments to the corresponding population moments, we have:

bm1 ¼ aþ b

2
and bm2 ¼ a2 þ ab þ b2

3
;

which, solving for a and b, results in the moment estimators of a and b,

ba ¼ bm1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
�bm2 � bm2

1

�q
and bb ¼ bm1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
�bm2 � bm2

1

�q
:

In Example 5.2.4, if a ¼ �b, that is, X1, ., Xn is a random sample from a uniform distribution on the interval
(�b, b), the problem reduces to a one-parameter estimation problem. However, in this case E(Xi) ¼ 0, so the
first moment cannot be used to estimate b. It becomes necessary to use the second moment. For the derivation, see
Exercise 5.2.3.

It is important to observe that the method of moments estimators need not be unique. The following is an example of
the nonuniqueness of moment estimators.

EXAMPLE 5.2.5

Let X1, ., Xn be a random sample from a Poisson distribution with parameter l > 0. Show that both ð1 =nÞPn
i¼1Xi and

ð1 =nÞ Pn
i¼ 1

X2
i �

�
ð1=nÞ Pn

i¼ 1

Xi

�2

are moment estimators of l.

Solution

We know that E(X) ¼ l, from which we have a moment estimator of l as ð1 =nÞPn
i¼1Xi: Also, because we have Var(X) ¼ l,

equating the second moments, we can see that:

l ¼ E
�
X2
�� ðEXÞ2;

so that:

bl ¼ 1

n

Xn
i¼ 1

X2
i �

 
1

n

Xn
i¼ 1

Xi

!2

:

Thus,

bl ¼ 1

n

Xn
i¼ 1

Xi

and

bl ¼ 1

n

Xn
i¼ 1

X2
i �

 
1

n

Xn
i¼ 1

Xi

!2

:

Both are moment estimators of l. Thus, the moment estimators may not be unique. We generally choose X as an estimator of l,

for its simplicity.

It is important to note that, in general, we have as many moment conditions as parameters. In Example 5.2.5, we have
more moment conditions than parameters, because both the mean and the variance of Poisson random variables are the
same. Given a sample, this results in two different estimates of a single parameter. One of the questions could be, Can
these two estimators be combined in some optimal way? This is done by the so-called generalized method of moments.
We will not deal with this topic. The method of moments often provides estimators when other methods fail to do so or
when estimators are harder to obtain, as in the case of a gamma distribution. Compared with other methods, method
of moments estimators are easier to compute and have some desirable properties that we will discuss in the ensuing
section.
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5.2.2 The method of maximum likelihood

Now we will present an important method for finding estimators of parameters proposed by geneticist/statistician Sir
Ronald A. Fisher around 1922 called the method of maximum likelihood. Even though the method of moments is intuitive
and easy to apply, it usually does not yield “good” estimators. The method of maximum likelihood is intuitively appealing,
because we attempt to find the values of the true parameters that would have most likely produced the data that we in fact
observed. For most cases of practical interest, the performance of maximum likelihood estimators (MLEs) is optimal for
large enough data. This is one of the most versatile methods for fitting parametric statistical models to data. First, we define
the concept of a likelihood function.

Definition 5.2.1 Let f(x1,., xn; q), q ∊ Q 4 ℝk, be the joint probability (or density) function of n random variables X1, .,
Xn with sample values x1, ., xn. The likelihood function of the sample is given by:

Lðq; x1;.; xnÞ ¼ f ðx1;.; xn; qÞ; ½ ¼ LðqÞ; is a briefer notation�:
We emphasize that L is a function of q for fixed sample values.

The likelihood of a set of parameter values q, given x1;.; xn, is equal to the probability of those observed outcomes
given the parameter values. If X1, ., Xn are discrete iid random variables with probability function p(x, q), then the
likelihood function is given by:

LðqÞ ¼ PðX1 ¼ x1;.;Xn ¼ xnÞ

¼
Yn
i¼ 1

PðXi ¼ xiÞ; ðby multiplication rule for independent random variablesÞ

¼
Yn
i¼ 1

pðxi; qÞ

and in the continuous case, if the density is f(x, q), then the likelihood function is:

LðqÞ ¼
Yn
i¼ 1

f ðxi; qÞ:

It is important to note that the likelihood function, although it depends on the observed sample values x ¼ (x1,., xn), is
to be regarded as a function of the parameter q. In the discrete case, L(q; x1, ., xn) gives the probability of observing
x ¼ (x1,., xn), for a given q. Thus, the likelihood function is a statistic, depending on the observed sample x ¼ (x1,., xn).

EXAMPLE 5.2.6

Let X1, ., Xn be iid N(m, s2) random variables. Let x1, ., xn be the sample values. Find the likelihood function.

Solution

The density function for the normal variable is given by fðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

 
� ðx� mÞ2

2s2

!
. Hence, the likelihood:

L
�
m; s2

� ¼ Yn
i¼ 1

1ffiffiffiffiffiffiffiffiffi
2ps

p exp

 
� ðxi � mÞ2

2s2

!
¼ 1

ð2pÞn=2sn
exp

0
BB@�

Pn
i¼ 1

ðxi � mÞ2

2s2

1
CCA:

A statistical procedure should be consistent with the assumption that the best explanation of a set of data is provided by
an estimator bq, which will be the value of the parameter q that maximizes the likelihood function. This value of q will be
called the MLE. The goal of maximum likelihood estimation is to find the parameter value(s) that makes the observed data
most likely.

Definition 5.2.2 Maximum likelihood estimators are those values of the parameters that maximize the likelihood function
with respect to the parameter q. That is,

L
�bq; x1.; xn

�
¼ max

q˛Q
Lðq; x1;.; xnÞ;
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where Q is the set of possible values of the parameter q.

The method of maximum likelihood extends to the case of several parameters. Let X1, ., Xn be a random sample with
joint pmf (if discrete) or pdf (if continuous):

Lðq1;.; qm; x1.; xnÞ ¼ f ðx1; x2;.; xn; q1; q2;.; qmÞ;
where the values of the parameters q1, ., qm are unknown and x1, ., xn are the observed sample values. Then, the
maximum likelihood estimates bq1; :::; bqm are those values of the q0is that maximize the likelihood function, so that:

f
�
x1;.; xn; bq1;.; bqm� � f ðx1;.; xn; q1;.; qmÞ

for all allowable q1;.; qm:

Note that the likelihood function conveys to us how feasible the observed sample is as a function of the possible
parameter values. Maximum likelihood estimates give the parameter values for which the observed sample is most likely to
have been generated. In general, the maximum likelihood method results in the problem of maximizing a function of a
single or several variables. Hence, in most situations, the methods of calculus can be used. In deriving the MLEs, however,
there are situations in which the techniques developed are more problem specific. Sometimes we need to use numerical
methods, such as Newton’s method.

To find an MLE, we need only compute the likelihood function and then maximize that function with respect to the
parameter of interest. In many cases, it is easier to work with the natural logarithm (ln) of the likelihood function, called the
log-likelihood function. Because the natural logarithm function is increasing, the maximum value of the likelihood
function, if it exists, will occur at the same point as the maximum value of the log-likelihood function. We now sum-
marize the calculus-based procedure to find MLEs.

Procedure to find the maximum likelihood estimator

1. Define the likelihood function, L(q).

2. Often it is easier to take the natural logarithm (ln) of L(q).

3. When applicable, differentiate ln L(q) with respect to q, and

then equate the derivative to zero.

4. Solve for the parameter q, and we will obtain bq.
5. Check whether it is a maximizer or a global maximizer.

EXAMPLE 5.2.7

Suppose X1, ., Xn is a random sample from a geometric distribution with parameter p, 0 � p � 1. Find the MLE bp .
Solution

For the geometric distribution, the pmf is given by:

f ðx;pÞ ¼ pð1� pÞx�1
; 0 � p � 1; x ¼ 1; 2; 3; :.

Hence, the likelihood function is:

LðpÞ ¼
Yn
i¼ 1

h
pð1� pÞx�1

i
¼ pnð1� pÞ

�nþ
Pn
i¼ 1

xi

:

Taking the natural logarithm of L(p),

ln L ¼ n ln p þ
 

� nþ
Xn
i¼ 1

xi

!
ln ð1� pÞ:

Taking the derivative with respect to p, we have:

d ln L

dp
¼ n

p
�

�
� n þ Pn

i¼ 1

xi

�
ð1� pÞ :
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Equating
d ln LðpÞ

dp
to zero, we have:

n

p
�

�
� n þ Pn

i¼ 1

xi

�
ð1� pÞ ¼ 0:

Solving for p,

p ¼ nPn
i¼ 1

xi

¼ 1

x
:

Thus, we obtain an MLE of p as:

bp ¼ nPn
i¼ 1

Xi

¼ 1

X
:

We remark that
�
1
�
X
�
is the maximum likelihood estimate of p. It can be shown that bp is a global maximum.

EXAMPLE 5.2.8

(a) Suppose X1, ., Xn is a random sample from a Poisson distribution with parameter l. Find MLE bl.
(b) Traffic engineers use the Poisson distribution to model light traffic. This is based on the rationale that when the rate is

approximately constant in light traffic, the distribution of counts of cars in a given time interval should be Poisson. The

following data show the number of vehicles turning left in 15 randomly chosen 5-minute intervals at a specific intersection.

Calculate the maximum likelihood estimate.

10 17 12 6 12 11 9 6

10 8 8 16 7 10 6

Solution

(a) We have the pmf:

pðxÞ ¼ lxe�l

x!
; x ¼ 0;1;2;.; l > 0:

Hence, the likelihood function is:

LðlÞ ¼
Yn
i¼ 1

lxi e�l

xi !
¼ l

Pn
i¼ 1

xi

e�nl

Yn
i¼ 1

xi !

:

Then, taking the natural logarithm, we have:

ln LðlÞ ¼
Xn
i¼ 1

xi lnl� nl�
Xn
i¼ 1

ln ðxi !Þ

and differentiating with respect to l results in:

d ln LðlÞ
dl

¼
Pn
i¼ 1

xi

l
� n

and

d ln LðlÞ
dl

¼ 0; implies

Pn
i¼ 1

xi

l
� n ¼ 0:
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That is,

l ¼
Pn
i¼ 1

xi

n
¼ x:

Hence, the MLE of l is:

bl ¼ X :

(b) From (a) we have the estimate as:

bl ¼ x ¼ 9:8;

or approximately 10 vehicles per 5 minutes turn left at this intersection.

It can be verified that the second derivative is negative and, hence, we really have a maximum.
Sometimes the method of derivatives cannot be used for finding the MLE. For example, the likelihood is not differ-

entiable in the range space. In this case, we need to make use of the special structures available in the specific situation to
solve the problem. The following is one such case.

EXAMPLE 5.2.9

Let X1, ., Xn be a random sample from U(0, q), q > 0. Find the MLE of q.

Solution

Note that the pdf of the uniform distribution is:

f ðxÞ ¼

8><
>:

1

q
; 0 � x � q

0; otherwise.

Hence, the likelihood function is given by:

Lðq; x1; x2; .; xnÞ ¼

8><
>:

1

qn
; 0 � x1; x2;.; xn � q

0; otherwise.

When q � max(XI), the likelihood is (1/qn), which is positive and decreasing as a function of q (for fixed n). However, for

q <max(xi) the likelihood drops to 0, creating a discontinuity at the point max(xi) (this is the minimum value of q that can be

chosen that still satisfies the condition 0 � XI � q), and Fig. 5.1 shows that the maximum occurs at this point. Hence, we will not

be able to find the derivative. Thus, the MLE is the largest order statistic,

bq ¼ max ðXiÞ ¼ XðnÞ:

In the previous example, because E(X) ¼ (q/2), we can see that q ¼ 2E(X). Hence, the method of moments estimator for
q is bq ¼ 2X: Sometimes the method of moments estimator can give meaningless results. To see this, suppose we observe
values 3, 5, 6, and 18 from a U(0, q) distribution. Clearly, the maximum likelihood estimate of q is 18, whereas the method
of moments estimate is 16, which is not quite acceptable, because we have already observed a value of 18.

FIGURE 5.1 Likelihood function for uniform probability distribution.
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As mentioned earlier, if the unknown parameter q represents a vector of parameters, say, q ¼ (q1,., ql), then the MLEs
can be obtained from solutions of the system of equations:

v

vq
ln Lðq1;.; qnÞ ¼ 0; for i ¼ 1;.; l:

These are called the maximum likelihood equations and the solutions are denoted by
�bq1; :::; bql�.

EXAMPLE 5.2.10

Let X1, ., Xn be N(m, s2).

(a) If m is unknown and s2 ¼ s20 is known, find the MLE for m.

(b) If m ¼ m0 is known and s2 is unknown, find the MLE for s2.

(c) If m and s2 are both unknown, find the MLE for q ¼ (m, s2).

Solution

To avoid notational confusion when taking the derivative, let q ¼ s2. Then, the likelihood function is:

Lðm; qÞ ¼ ð2pqÞ�n=2 exp

0
BB@�

Pn
i¼ 1

ðxi � mÞ2

2q

1
CCA

or

ln Lðm; qÞ ¼ � n

2
ln ð2pÞ � n

2
ln q�

Pn
i¼ 1

ðxi � mÞ2

2q
:

(a) When q ¼ q0 ¼ s2
0 is known, the problem reduces to estimating only one parameter, m. Differentiating the log-likelihood

function with respect to m,

v

vm
ðln Lðm; q0ÞÞ ¼

2
Pn
i¼ 1

ðxi � mÞ
2q0

:

Setting the derivative equal to zero and solving for m,

Xn
i¼ 1

ðxi �mÞ ¼ 0:

From this,

Xn
i¼ 1

xi ¼ nm or m ¼ x:

Thus, we get bm ¼ X:

(b) When m ¼ m0 is known, the problem reduces to estimating only one parameter, s2 ¼ q. Differentiating the log-likelihood

function with respect to q,

vln Lðm; qÞ
vq

¼ �n

2q
þ
Pn
i¼ 1

ðxi � mÞ2

2q2
:

Setting the derivative equal to zero and solving for q, we get:

bq ¼ bs2 ¼
Pn
i¼ 1

ðXi � m0Þ2

n
:

(c) When both m and q are unknown, we need to differentiate with respect to both m and q individually:

vln Lðm; qÞ
vm

¼
2
Pn
i¼ 1

ðxi � mÞ
2q
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and

vln Lðm; qÞ
vq

¼ �n

2q
þ
Pn
i¼ 1

ðxi � mÞ2

2q2
:

Setting the derivatives equal to zero and solving simultaneously, we obtain:

bm ¼ X ;

bs2 ¼ bq ¼
Pn
i¼ 1

�
Xi � X

�2
n

¼ S 02:

Note that in (a) and (c), the estimates for m are the same; however, in (b) and (c), the estimates for s2 are different.

At times, the MLEs may be hard to calculate. It may be necessary to use numerical methods to approximate values of
the estimate. The following example gives one such case.

EXAMPLE 5.2.11

Let X1, ., Xn be a random sample from a population with gamma distribution and parameters a and b. Find MLEs for the un-

known parameters a and b.

Solution

The pdf for the gamma distribution is given by:

f ðxÞ ¼

8><
>:

xa�1e�x=b

GðaÞba ; x > 0; a > 0; b > 0

0; otherwise.

The likelihood function is given by:

L ¼ Lða;bÞ ¼ 1

ðGðaÞbaÞn
Yn
i¼ 1

xa�1
i e

�
Pn
i¼ 1

xi=b

:

Taking the logarithms gives:

ln L ¼ � n ln GðaÞ � na ln bþ ða� 1Þ
Xn
i¼ 1

ln xi �
Xn
i¼ 1

x

b
:

Now taking the partial derivatives with respect to a and b and setting both equal to zero, we have:

v

va
ln L ¼ � n

G0ðaÞ
GðaÞ � n ln bþ

Xn
i¼ 1

ln xi ¼ 0

v

vb
ln L ¼ � n

a

b
þ
Xn
i¼ 1

xi

b2 ¼ 0:

Solving the second one to get b in terms of a, we have:

b ¼ x

a
:

Substituting this b in the first equation, we have to solve:

�n
G0ðaÞ
GðaÞ � n ln

x

a
þ
Xn
i¼ 1

ln xi ¼ 0

for a > 0. There is no closed-form solution for a and b. In this case, one can use numerical methods such as the NewtoneRaphson
method to solve for a, and then use this value to find b.
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There are many references available on the web (such as http://www.mn.uio.no/math/tjenester/kunnskap/kompendier/
num_opti_likelihoods.pdf) explaining the NewtoneRaphson method for the gamma distribution.

In only a few cases are we able to obtain a simple form for the maximum likelihood equation that can be solved by
setting the first derivative to zero. Often, we cannot write an equation that can be differentiated to find the MLE parameter
estimates. This is especially true in the situation in which the model is complex and involves many parameters. Evaluating
the likelihood exhaustively for all values of the parameters becomes almost impossible, even with modern computers. This
is why so-called optimization algorithms have become indispensable to statisticians. The purpose of an optimization al-
gorithm is to find as fast as possible the set of parameter values that make the observed data most likely. There are many
such algorithms available. We describe the NewtoneRaphson method in Project 5F, and another powerful algorithm,
known as the expectation maximization algorithm, is given in Section 13.4.

We have been introduced to several classical discrete and continuous pdfs, such as the binomial, Poisson, Gaussian
(normal), gamma, and exponential pdfs, among others. Note that when we use one of these pdfs to study a given set of
data we refer to it as parametric analysis, because each of the classical pdfs contains at least one parameter that plays a
major role in the shape of the probability distribution that characterizes the behavior of the phenomenon of interest.

5.2.2.1 Some additional probability distributions

Now, we will introduce some additional probability distributions that play major roles in analyzing data, or information, in
health science, environmental science, engineering, business, and economics, among many other important areas in our
society. We shall study the three-parameter gamma pdf and the Weibull pdf. The Rayleigh pdf and the power
exponential pdf are other examples, which will be given in this chapter. Each of these pdfs will be applied to real data:
cancer data, hurricane data, global warming data, and environmental (rainfall) data in Chapter 14.

In Example 5.2.11, we have studied the two-parameter gamma probability distribution (pdf); here we shall introduce
the three-parameter version, which is useful when we analyze data that exhibit positive skewness. The three-parameter
gamma pdf is given by:

f ðxÞ ¼ 1
baGðaÞðx� gÞa�1 exp� ðx� gÞ

b
;

where x > g; b > 0 and GðaÞ¼
RN
0 xa�1e�xdx.

The corresponding cumulative distribution function (cdf) is given by:

FðxÞ ¼ PðX � xÞ

¼
Z x

g

1
baGðaÞ

ðy� gÞa�1 exp� ðy� gÞ
b

dy

¼ Gx�g
b
ðaÞ: 1

GðaÞ:

The expected value is given by:

EðXÞ ¼
Z N

0
xf ðxÞdx ¼ gþ ab:

Note that when the location parameter g ¼ 0 we obtain the two-parameter gamma (pdf).

EXAMPLE 5.2.12

Given a random sample, X1;.;Xn from a three-parameter gamma distribution, obtain the MLEs of the parameters.

Solution

The likelihood function is given by:

Lða; b; gÞ ¼ pn
i¼1 f ðxiÞ
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¼
�

1

baGðaÞ

�nXn
i¼ 1

ðxi � gÞa�1
pn
i¼1 exp�

�
xi � g

b

�
;

and the log-likelihood function [ ða; b; gÞ of Lða;b;gÞ is given by:

[ ða; b; gÞ ¼ � n a ln b� n lnGðaÞ þ ða� 1Þ
Xn
i¼ 1

lnðxi �gÞ �
Xn
i¼ 1

xi � g

b
:

ða� 1Þ
Xn
i¼ 1

lnðx1 �gÞ �
Xn
i¼ 1

x1 � g

b
.

The maximum likelihood estimator ðMLEÞ can be obtained by setting
v[

va
¼ 0;

v[

vb
¼ 0 and

v[

vg
¼ 0.

That is,

v[

vb
¼ � na

b
þ
Pn
i¼ 1

ðxi � gÞ
b2 ¼ 0;

which results in the MLE of b being:

bb ¼
Pn
i¼ 1

ðxi � bgÞ
nba ; (5.1)

v[

va
¼ � n ln b� n

G0
ðaÞ

GðaÞ
þ
Xn
i¼ 1

lnðxi �gÞ ¼ 0:

Substituting bb in the above expression we have:

ln ba�G0
ðâÞ

GðâÞ
¼ ln

"
1

n

Xn
i¼ 1

ðx1 � bgÞ
#
� 1

n

Xn
i¼ 1

lnðxi � bgÞ; (5.2)

where
G0 ðaÞ
GðaÞ

is called the digamma function, which is defined as the logarithmic derivative of the gamma function. Now,

v[

va
¼ � ða� 1Þ

Xn
i¼ 1

1

ðxi � gÞ þ
Xn
i¼ 1

1

b
¼ 0;

which reduces to:

Xn
i¼ 1

1

xi � bg ¼ nbbðba � 1Þ
: (5.3)

Thus, we can proceed to numerically solve (5.1)e(5.3) to obtain (numerically) an approximate MLE ba; bb; and bg so that we

can apply the subject pdf to real data.

We can also use the cumulative probability distribution of the three-parameter gamma pdf to obtain the quantile, xp, for
which FðxpÞ ¼ 1 � p, that is,

FðxpÞ ¼
Gxp � gðaÞ

b
,

1
GðaÞ

¼ 1� p:

Substituting the MLE for a; b; and g, that is, ba; bb; and bg, we can proceed to obtain approximate estimates of xp.
The Weibull probability distribution is very important in characterizing the behavior of health, engineering, and

environmental data, among others. The Weibull pdf is given by:

f ðxÞ ¼ a

b

�
x� g

b

�a�1

exp

�
�
�
x� g

b

�a�
;

where x > 0; and the shape parameter a, is greater than zero; the scale parameter b is b > 0; and the location parameter g
is x > g. The cumulative probability distribution of the Weibull pdf is given by:
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FðxÞ ¼ PðX � xÞ ¼
Z x

g

a

b

�
t � g

b

�a�1

exp

�
�
�
t � g

b

�a�
dt

¼ 1� exp

�
�
�
x� g

b

�a�
:

When g ¼ 0, the subject pdf is reduced to a two-parameter Weibull and it is commonly used because of the difficulty
in estimating the three-parameter Weibull pdf.

EXAMPLE 5.2.13

For a random sample X1;.;Xn drawn from the three-parameter Weibull pdf, obtain MLEs for the parameters.

Solution

The likelihood function, Lða; b; gÞ, is given by:

Lða; b; gÞ ¼ anb�na

�
p
n

i¼ 1
ðxi � gÞ

�a�1

exp

(
� b�a

Xn
i¼ 1

ðxi � gÞa
)

and the log-likelihood function [ ða; b; gÞ of Lða; b; gÞ is given by:

[ ða; b; gÞ ¼ n ln a� na ln bþ ða� 1Þ:

:
Xn
i¼ 1

lnðxi �gÞ � b�a
Xn
i¼ 1

ðxi � gÞa.

Setting
v[

va
¼ 0;

v[

vb
¼ 0 and

v[

vg
¼ 0 and taking the partial derivatives and substituting a ¼ ba; b ¼ bb; and g ¼ bg and

simplifying the resulting expression, we have:

baþ
Xn
i¼ 1

lnðxi � bgÞ ¼
n
Pn
i¼ 1

ðxi � bgÞâ lnðxi � bgÞ
Pn
i¼ 1

ðxi � bgÞâ ;

nba Pn
i¼ 1

ðxi � bgÞâ�1

Pn
i¼ 1

ðxi � bgÞâ ¼ ðba� 1Þ
Xn
i¼ 1

1

xi � bg
and

bb ¼
(
1

n

Xn
i¼ 1

ðxi � bgÞâ
)1

â

:

The above equation cannot be analytically solved without further restrictions, so we cannot obtain exact values forba; bb; and bg; however, there are software packages that we can use to obtain approximate estimates of the subject parameters.

One of the solutions for Example 5.2.13 is given in http://math.ut.ee/acta/12/Bartkute-Sakalauskas.pdf. Thus, we can
see from the previous examples that even though MLEs are elegant estimators, sometimes it is not easy or possible to
obtain explicit forms. For these estimates to perform parametric analysis on a given set of data that represent a real-world
phenomenon of interest, we will need numerical approximations.

We can use the cumulative probability distribution function FðxÞ to the quantile xp for which FðxpÞ ¼ 1 � p, which
reduces to:

xp ¼ gþ bð� ln pÞ1a:
Thus, using the MLE of the parameters, we have:

bxp ¼ bg þ bbð� ln pÞ1a:
The graphs in Fig. 5.2 illustrate how the Weibull pdf varies with the shape parameter a (Fig. 5.2A) and with the scale

parameter b (Fig. 5.2B).
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The exponential power or error probability distribution is usually applicable in characterizing continuous data that are
very nonsymmetric with respect to their mean. It has been shown to be useful in analyzing environmental, engineering, and
health data, among others. It is characterized by three parameters that offer the flexibility of addressing different skewness
behaviors. Let X be a continuous random variable that characterizes the behavior of a certain problem of interest; the power
exponential or error pdf is given by:

f ðxÞ ¼ l
�
e1�elx

k
�
elx

k
xk�1; x > 0; l > 0; k > 0

where l and k are location and shape parameters, respectively.
The cumulative probability distribution function of the random variable X that follows the exponential power pdf is

given by:

FðxÞ ¼ 1� e1�elx
k

; x > 0; l > 0; k > 0:

The population mean and variance of X are mathematically intractable. Obtaining an MLE analytically is
difficult.

The Rayleigh distribution characterizes the behavior of a continuous random variable that represents many real-world
problems. This pdf arises when there is a two-dimensional vector, for example, wind velocity data as measured by an
anemometer and wind range that consists of speed value and direction, and both components are normally distributed, are
not correlated, and have equal variance. Let X be a continuous random variable that assumes such data; the Rayleigh pdf of
the random variable X is given by:

f ðx; sÞ ¼ x

s2
e

�
�x2

2s2

�
; x > 0;
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FIGURE 5.2 (A) Weibull distribution with different shape parameters. (B) Weibull distribution with different scale parameters. PDF, probability density
function.
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where the scale parameter s > 0. The pdf of various values of parameters is given in Fig. 5.3.
The cdf is given by:

PðX� xÞ ¼ 1
s2

Z x

0

t

s2
e

�
�t2

2s2

�
dt ¼ 1� e

�x2

2s2 ; x > 0; s > 0:

The expected value and the variance are given by:

EðXÞ ¼ s

ffiffiffi
p

2

r
¼ 1:25s

and

VarðXÞ ¼ 4� p

2
s2 ¼ 0:429s2:

For a random sample X1;.;Xn from the Rayleigh pdf, we can verify that the MLE of s is given by:

bs ¼
�
1
2n

Xn

i¼1
X2
i

�
:

Sometimes, it may be necessary to estimate a function of a parameter. The following invariance property of MLEs is
very useful in those cases.

Theorem 5.2.1 Let h(q) be a one-to-one function of q. If bq ¼ � bq1; :::; bql
�
is the MLE of q ¼ (q1, ., ql), then the MLE of a

function h(q) ¼ (h1(q), ., hk(q)) of these parameters is h
�bq� ¼ �

h1
�bq�; :::; hk�bq�� for 1 � k � l.

As a consequence of the invariance property, in Example 5.2.10, we can obtain the estimator of the true standard

deviation as bs ¼
ffiffiffiffiffiffibs2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞSn

i¼1

�
Xi� X

�2q
.

It is also known that, under very general conditions on the joint distribution of the sample and for a large sample size n,
the MLE bq is approximately the minimum variance unbiased estimator (MVUE; this concept is introduced in the next
section) of q.

1.2 � =0.5
� =1
� =2
� =3
� =4

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

FIGURE 5.3 Rayleigh probability density function for various values of s.
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EXERCISES 5.2

5.2.1. Let X1, ., Xn be a random sample of size n from the geometric distribution for which p is the probability of
success.
(a) Use the method of moments to find a point estimator for p.
(b) Use the following data (simulated from geometric distribution) to find the moment estimate for p:

2 5 7 43 18 19 16 11 22

4 34 19 21 23 6 21 7 12

How will you use this information? (The pmf of a geometric distribution is f(x) ¼ p(1 � p)x�1, for x ¼ 1, 2, ..
Also, m ¼ 1/p.)

5.2.2. Let X1, ., Xn be a random sample of size n from the exponential distribution whose pdf (by taking q ¼ 1/b in
Definition 3.2.7) is:

f ðx; qÞ ¼
�
qe�qx; x � 0

0; x < 0:

(a) Use the method of moments to find a point estimator for q.
(b) Find the MLE of q.
(c) Using the invariance property, obtain an MLE of the variance.
(d) The following data represent the time intervals between the emissions of beta particles:

0.9 0:1 0:1 0:8 0:9 0:1 0:1 0:7 1:0 0:2

0:1 0:1 0:1 2:3 0:8 0:3 0:2 0:1 1:0 0:9

0:1 0:5 0:4 0:6 0:2 0:4 0:2 0:1 0:8 0:2

0:5 3:0 1:0 0:5 0:2 2:0 1:7 0:1 0:3 0:1

0:4 0:5 0:8 0:1 0:1 1:7 0:1 0:2 0:3 0:1

Assuming the data follow an exponential distribution, obtain a moment estimate for the parameter q. Interpret.
5.2.3. Let X1, ., Xn be a random sample from a uniform distribution on the interval (q � 1, q þ 1).

(a) Find a moment estimator for q.
(b) Use the following data to obtain a moment estimate for q:

11.72 12.81 12.09 13.47 12.37

5.2.4. The probability density of a one-parameter Weibull distribution is given by:

f ðxÞ ¼
(
2axe�ax2 ; x > 0; a > 0

0; otherwise.

(a) Using a random sample of size n, obtain a moment estimator for a.
(b) Assuming that the following data are from a one-parameter Weibull population,

1.87 1.60 2.36 1.12 0.15

1.83 0.64 1.53 0.73 2.26

obtain a moment estimate of a.
5.2.5. Let X1, ., Xn be a random sample from the truncated exponential distribution with pdf:

f ðxÞ ¼
(
e�ðx�qÞ; x � q

0; otherwise.
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(a) Find the method of moments estimate of q.
(b) Show that the MLE of q is min(Xi, i¼1, ., n).

5.2.6. Let X1, ., Xn be a random sample from a distribution with pdf:

f ðxÞ ¼

8><
>:

1þ ax

2
; �1 � x � 1; and � 1 � a � 1

0; otherwise.

Find the moment estimators for a.
5.2.7. Let X1, ., Xn be a random sample from a population with pdf:

f ðxÞ ¼

8><
>:

2a2

x3
; x � a

0; otherwise.

Find a method of moments estimator for a.
5.2.8. Let X1, ., Xn be a random sample from a negative binomial distribution with pmf:

pðx; r; pÞ ¼
�
xþ r � 1

r � 1

�
pxð1� pÞx; 0 � p � 1; x ¼ 0; 1; 2; :.

Find method of moments estimators for r and p. (Here E[X] ¼ r(1 � p)/p and E[X2] ¼ r(1 � p)(r � rp þ 1)/p2.)
5.2.9. Let X1, ., Xn be a random sample from a distribution with pdf:

f ðxÞ ¼
� ðq þ 1Þxq; 0 � x � 1; q > �1

0; otherwise.

Use the method of moments to obtain an estimator of q.
5.2.10. Let X1, ., Xn be a random sample from a distribution with pdf:

f ðxÞ ¼

8><
>:

2b� 2x

b2 ; 0 < x < b

0; otherwise.

Use the method of moments to obtain an estimator of b.
5.2.11. Let X1, ., Xn be a random sample with common mean m and variance s2. Obtain a method of moments estimator

for s.
5.2.12. Let X1, ., Xn be a random sample from the beta distribution with parameters a and b. Find the method of mo-

ments estimator for a and b.
5.2.13. Let X1, X2, ., Xn be a random sample from a distribution with unknown mean m and variance s2. Show that the

method of moments estimators for m and s2 are, respectively, the sample mean X and
S02 ¼ ð1 =nÞPn

i¼1

�
X � X

�2
: Note that S02 ¼ ½ðn�1Þ =n�S2 where S2 is the sample variance.

5.2.14. Let X1, ., Xn be a random sample recorded as heads or tails resulting from tossing a coin n times with unknown
probability p of heads. Find the MLE bp of p. Also, using the invariance property, obtain an MLE for q ¼ 1 � p.
How would you use the results you have obtained?

5.2.15. Let X be a random variable representing the time between successive arrivals at a checkout counter in a supermar-
ket. The values of X in minutes (rounded to the nearest minute) are:

1 2 3 7 11 4 13

12 7 3 2 11 7 2

Assume that the pdf of X is f(x) ¼ (1/q)e�(x/q). Use these data to find MLE bq. How can you use this estimate you
have just derived? Also find the method of moment estimate.
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5.2.16. The pdf of a random variable X is given by:

f ðxÞ ¼

8><
>:

2x

a2e
�x2=a2 ; x > 0; a > 0

0; otherwise.

Using a random sample of size n, obtain MLE ba for a.
5.2.17. The pdf of a random variable X is given by:

PðX ¼ nÞ ¼ 1
n!
exp ðan � eaÞ; n ¼ 0; 1; 2; :.

Using a random sample of size n, obtain MLE ba for a.
5.2.18. Let X1, ., Xn be a random sample from a two-parameter Weibull distribution with pdf:

f ðxÞ ¼

8><
>:

a

bax
a�1e�ðx=bÞa ; x � 0

0; otherwise.

Obtain maximum likelihood equations and indicate how to obtain the MLEs of a and b.
5.2.19. Let X1, ., Xn be a random sample from a Rayleigh distribution with pdf:

f ðxÞ ¼
8<
:

x

a
e�x2=2a; x > 0

0; otherwise.

Find the MLEs of a.
5.2.20. Let X1, ., Xn be a random sample from a two-parameter exponential population with density:

f ðx; q; yÞ ¼ 1
q
e�

ðx�yÞ
q ; for x � y; q > 0:

Find MLEs for q and y when both are unknown.
5.2.21. Let X1, ., Xn be a random sample from the shifted exponential distribution with:

f ðxÞ ¼
(
le�lðx�qÞ; x � q

0; otherwise.

Obtain the MLEs of q and l.
5.2.22. Let X1, ., Xn be a random sample on [0, 1] with pdf:

f ðxÞ ¼ Gð2qÞ
GðqÞ2 ½xð1� xÞ�q�1

; q > 0:

What equation does the maximum likelihood estimate of q satisfy?
5.2.23. Let X1, ., Xn be a random sample with pdf:

f ðxÞ ¼
� ðaþ 1Þxa; 0 � x � 1

0; otherwise.

Find the MLE of a.
5.2.24. Let X1, ., Xn be a random sample from a uniform distribution with pdf:

f ðxÞ ¼

8><
>:

1
3qþ 2

; 0 � x � 3qþ 2

0; otherwise.

Obtain the MLE of q.
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5.2.25. Let X1, ., Xn be a random sample from a Cauchy distribution with pdf:

f ðxÞ ¼ 1

p
	
1þ ðx� bÞ2
; �N < x < N:

Obtain maximum likelihood equations and indicate how to obtain the MLE for b.
5.2.26. The following data represent the amounts of leakage of a fluorescent dye from the bloodstream into the eye in

patients with abnormal retinas:

1.6 1.4 1.2 2.2 1.8 1.7

1.8 6.3 2.4 2.3 18.9 22.8

Assuming that these data come from a normal distribution, find the maximum likelihood estimate of (m, s).
5.2.27. Let X1, ., Xn be a random sample from a population with gamma distribution and parameters a and b. Show that

the MLE of m ¼ ab is the sample mean bm ¼ X.
5.2.28. The lifetime X of a certain brand of component used in a machine can be modeled as a random variable with pdf

f(x) ¼ (1/q)e�(x/q). The reliability R(x) of the component is defined as R(x) ¼ 1 � F(x). Suppose X1, X2, ., Xn are
the lifetimes of n components randomly selected and tested. Find the MLE of R(x).

5.2.29. Using the method explained in Project 4A, generate 20 observations of a random variable having an exponential
distribution with mean and standard deviation both equal to 2. What is the maximum likelihood estimate of the
population mean? How much is the observed error?

5.2.30. Let X1, ., Xn be a random sample from a Pareto distribution (named after the economist Vilfredo Pareto) with
shape parameter a. The density function is given by:

f ðxÞ ¼
8<
:

a

xaþ1; x � 1

0; otherwise.

(The Pareto distribution is a skewed, heavy-tailed distribution. Sometimes it is used to model the distribution of
incomes.) Show that the MLE of a is:

ba ¼ nPn
i¼ 1

ln ðXiÞ
:

5.2.31. Let X1, ., Xn be a random sample from N(q, q), 0 < q < N. Find the maximum likelihood estimate of q.

5.3 Some desirable properties of point estimators

Two different methods of finding estimators for population parameters have been introduced in the preceding section. We
have seen that it is possible to have several estimators for the same parameter. For a practitioner of statistics, an important
question is going to be which of many available sample statistics, such as mean, median, smallest observation, or largest
observation, should be chosen to represent all of the sample? Should we use the method of moments estimator, the MLE, or
an estimator obtained through some other method such as the least squares (we will see this method in Chapter 7)? Now we
introduce some common ways to distinguish between them by looking at some desirable properties of these estimators.

5.3.1 Unbiased estimators

It is desirable to have the property that the expected value of an estimator of a parameter is equal to the true value of the
parameter. Such estimators are called unbiased estimators.

Definition 5.3.1 A point estimator bq is called an unbiased estimator of the parameter q if E
�bq� ¼ q for all possible

values of q. Otherwise bq is said to be biased. Furthermore, the bias of bq is given by:

B ¼ E
�bq�� q:

200 Mathematical Statistics with Applications in R



Note that the bias is nothing but the expected value of the (random) error, E
�bq�q

�
. Thus, the estimator is unbiased if

the bias is 0 for all values of q. The bias occurs when a sample does not accurately represent the population from which the
sample is taken. It is important to observe that to check whether bq is unbiased, it is not necessary to know the value of
the true parameter. Instead, one can use the sampling distribution of bq. We demonstrate the basic procedure through the
following example.

EXAMPLE 5.3.1

Let X1;.;Xn be a random sample from a Bernoulli population with parameter p. Show that the method of moments estimator is

also an unbiased estimator.

Solution

We can verify that the moment estimator of p is:

bp ¼
Pn
i¼ 1

Xi

n
¼ Y

n
:

Because for binomial random variables, E(Y) ¼ np, it follows that:

EðbpÞ ¼ E

�
Y

n

�
¼ 1

n
EðY Þ ¼ 1

n
,np ¼ p:

Hence, bp ¼ Y=n is an unbiased estimator for p.

In fact, we have the following result, which states that the sample mean is always an unbiased estimator of the pop-
ulation mean.

Theorem 5.3.1 The mean of a random sample X is an unbiased estimator of the population mean m.
Proof. Let X1, ., Xn be random variables with mean m. Then, the sample mean is X ¼ ð1 =nÞSn

i¼1Xi:

EX ¼ 1
n

Xn
i¼ 1

EXi ¼ 1
n
$nm ¼ m.

Hence, X is an unbiased estimator of m.

How is this interpreted in practice? Suppose that a data set is collected with n numerical observations x1, ., xn. The
resulting sample mean may be either less than or greater than the true population mean, m (remember, we do not know this
value). If the sampling experiment was repeated many times, then the average of the estimates calculated over these
repetitions of the sampling experiment will equal the true population mean.

If we have to choose among several different estimators of a parameter q, it is desirable to select one that is unbiased.
The following result states that the sample variance S2 ¼ ð1 =n�1ÞSn

i¼1

�
Xi � X

�2
is an unbiased estimator of the pop-

ulation variance s2. This is one of the reasons that in the definition of the sample variance, instead of dividing by n, we
divide by (n � 1).

Theorem 5.3.2 If S2 is the variance of a random sample from an infinite population with finite variance s2, then S2 is an
unbiased estimator for s2.

Proof. Let X1, ., Xn be a random sample with variance s2 < N. We have:

E
�
S2
� ¼ 1

n� 1
E
Xn
i¼ 1

�
Xi � X

�2 ¼ 1
n� 1

E

"Xn
i¼ 1

�ðXi � mÞ � �X � m
��2#

¼ 1
n� 1

"Xn
i¼ 1

EfXi � mg2 � nE
�
X � m

�2#
:

Because E
n
ðXi � mÞ2

o
¼ s2 and E

n�
X � m

�2o ¼ s2
.
n; it follows that:
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E
�
S2
� ¼ 1

n� 1

"Xn
i¼ 1

s2 � n
s2

n

#
¼ s2:

Hence, S2 is an unbiased estimator of s2.

It is important to observe the following:

1. S2 is not an unbiased estimator of the variance of a finite population.
2. Unbiasedness may not be retained under functional transformations, that is, if bq is an unbiased estimator of q, it does

not follow that f
�bq� is an unbiased estimator of f(q).

3. MLEs or moment estimators are not, in general, unbiased.
4. In many cases it is possible to alter a biased estimator by multiplying by an appropriate constant to obtain an unbiased

estimator.

The following example will show that unbiased estimators need not be unique.

EXAMPLE 5.3.2

Let X1, ., Xn be a random sample from a population with finite mean m. Show that the sample mean X and
1

3
X þ 2

3
X1 are both

unbiased estimators of m.

Solution

By Theorem 5.3.1, X is unbiased. Now:

E

�
1

3
X þ 2

3
X1

�
¼ 1

3
mþ 2

3
m ¼ m:

Hence, 1
3 Xþ 2

3X1 is also an unbiased estimator of m.

How many unbiased estimators can we find? In fact, the following example shows that if we have two unbiased es-
timators, there are infinitely many unbiased estimators.

EXAMPLE 5.3.3

Let bq1 and bq2 be two unbiased estimators of q. Show that:

bq3 ¼ abq1 þ ð1� aÞbq2;0 � a � 1

is an unbiased estimator of q. Note that bq3 is a convex combination of bq1 and bq2. In addition, assume that bq1 and bq2 are independent,
Var
�bq1� ¼ s21 and Var

�bq2� ¼ s22. How should the constant a be chosen to minimize the variance of bq3?
Solution

We are given that E
�bq1� ¼ q and E

�bq2� ¼ q. Therefore,

E
�bq3� ¼ E

h
abq1 þ ð1� aÞbq2

i
¼ aEbq1 þ ð1� aÞEbq2

¼ aqþ ð1� aÞq ¼ q:

Hence, bq3 is unbiased. By independence,

Var
�bq3� ¼ Var

h
abq1 þ ð1� aÞbq2i

¼ a2Var
�bq1�þ ð1� aÞ2Var

�bq2�

¼ a2s2
1 þ ð1� aÞ2s2

2:

To find the minimum,

d

da
Var

�bq3� ¼ 2as2
1 � 2ð1� aÞs2

2 ¼ 0;
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gives us:

a ¼ s2
2

s2
1 þ s2

2

:

Because d2

da2 V
�bq3� ¼ 2s2

1 þ 2s2
2> 0; V

�bq3� has a minimum at this value of 0a0. Thus, if s2
1 ¼ s2

2, then a ¼ 1/2.

EXAMPLE 5.3.4

Let X1, ., Xn be a random sample from a population with pdf:

f ðxÞ ¼

8><
>:

1

b
e�x=b; x > 0

0; otherwise.

Show that the method of moments estimator for the population parameter b is unbiased.

Solution

From Section 5.2, we have seen that the method of moments estimator for b is the sample mean X, and the population mean is b.

Because E
�
X
� ¼ m ¼ b; the method of moments estimator for the population parameter b is unbiased.

As we have seen, there can be many unbiased estimators of a parameter q. Which one of these estimators can we
choose? If we have to choose an unbiased estimator, it will be desirable to choose the one with the least variance. If an
estimator is biased, then we should prefer the one with low bias as well as low variance. Generally, it is better to have
an estimator that has low bias as well as low variance. This leads us to the following definition.

Definition 5.3.2 The mean square error of the estimator bq, denoted by MSE
�bq�, is defined as:

MSE
�bq� ¼ E

�bq � q
�2
:

Through the following calculations, we will now show that the MSE is a measure that combines both bias and variance:

MSE
�bq� ¼ E

�bq � q
�2

¼ E
h�bq � E

�bq��þ �E�bq�� q
�i2

¼ E

��bq � E
�bq��2 þ �E�bq�� q

�2
þ 2
�bq � E

�bq���E�bq�� q
��

¼ E
�bq � E

�bq��2
þ E

�
E
�bq�� q

�2
þ 2E

�bq � E
�bq���E�bq�� q

�

¼ Var
�bq�þ hE�bq�� q

i2
:

Letting B ¼ E
�bq�� q; we get:

MSE
�bq� ¼ Var

�bq�þ B2:

B is called the bias of the estimator. Also, E
�bq �E

�bq���E�bq� �q
�

¼ 0:

Because the bias is zero for unbiased estimators, it is clear that MSE
�bq� ¼ Var

�bq�. The MSE measures, on average,
how close an estimator comes to the true value of the parameter. Hence, this could be used as a criterion for determining
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when one estimator is “better” than another. However, in general, it is difficult to find bq to minimize MSE
�bq�: For this

reason, most of the time, we look only at unbiased estimators to minimize Var
�bq�: This leads to the following definition.

Definition 5.3.3 The unbiased estimator bq that minimizes the MSE is called the MVUE of q.

EXAMPLE 5.3.5

Let X1, X2, X3 be a sample of size n ¼ 3 from a distribution with unknown mean m, �N < m <N, where the variance s2 is a

known positive number. Show that both bq1 ¼ X and bq2 ¼ ½ð2X1 þX2 þ5X3Þ =8� are unbiased estimators for m. Compare the

variances of bq1 and bq2.
Solution

We have:

E
�bq1� ¼ E

�
X
� ¼ 1

3
,3m ¼ m;

and

E
�bq2� ¼ 1

8
½2EX1 þ EX2 þ 5EX3�

¼ 1

8
½2mþ mþ 5m� ¼ m:

Hence, both bq1 and bq2 are unbiased estimators.

However,

Var
�bq1� ¼ s2

3
;

whereas

Var
�bq2� ¼ Var

�
2X1 þ X2 þ 5X3

8

�

¼ 4

64
s2 þ 1

64
s2 þ 25

64
s2 ¼ 30

64
s2:

Because Var
�bq1� < Var

�bq2�, we see that X is a better unbiased estimator in the sense that the variance of X is smaller.

It is important to observe that the MLEs are not always unbiased, but it can be shown that for such estimators the bias
goes to zero as the sample size increases.

5.3.2 Sufficiency

In the statistical inference problems on a parameter, one of the major questions is: Can a specific statistic replace the entire
data without losing pertinent information? Suppose X1, ., Xn is a random sample from a probability distribution with
unknown parameter q. In general, statisticians look for ways of reducing a set of data so that these data can be more easily
understood without losing the meaning associated with the entire collection of observations. Intuitively, a statistic U is a
sufficient statistic for a parameter q if U contains all the information available in the data about the value of q. For example,
the sample mean may contain all the relevant information about the parameter m, and in that case U ¼ X is called a
sufficient statistic for m. An estimator that is a function of a sufficient statistic can be deemed to be a “good” estimator,
because it depends on fewer data values. When we have a sufficient statistic U for q, we need to concentrate only on U
because it exhausts all the information that the sample has about q. That is, knowledge of the actual n observations does not
contribute anything more to the inference about q.

Definition 5.3.4 Let X1, ., Xn be a random sample from a probability distribution with unknown parameter q. Then,
the statistic U ¼ g(X1, ., Xn) is said to be sufficient for q if the conditional pdf or pmf of X1, ., Xn given U ¼ u does
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not depend on q for any value of u. An estimator of q that is a function of a sufficient statistic for q is said to be a
sufficient estimator of q.

EXAMPLE 5.3.6

Let X1, ., Xn be iid Bernoulli random variables with parameter q. Show that U ¼ Sn
i¼1Xi is sufficient for q.

Solution

The joint pmf of X1, ., Xn is:

f ðX1;.;Xn; qÞ ¼ q

Pn
i¼ 1

Xi ð1� qÞ
n�
Pn
i¼ 1

Xi

; 0 � q � 1:

Because U ¼ Sn
i¼1Xi we have:

f ðX1;.;Xn; qÞ ¼ qUð1� qÞn�U
; 0 � U � n:

Also, because Uw B(n, q), we have:

f ðu; qÞ ¼
�
n

u

�
qUð1� qÞn�U

:

Also,

f ðx1;.; xnjU ¼ uÞ ¼ f ðx1;.; xn; uÞ
fUðuÞ ¼

8><
>:

f ðx1;.; xnÞ
fUðuÞ ; u ¼ P

xi

0; otherwise.

Therefore,

f ðx1;.; xn
��U ¼ uÞ ¼

8>>>>><
>>>>>:

quð1� qÞn�u0
@n

u

1
Aquð1� qÞn�u

¼ 10
@ n

u

1
A

if u ¼ P
xi

0; otherwise.

which is independent of q. Therefore, U is sufficient for q.

EXAMPLE 5.3.7

Let X1, ., Xn be a random sample from U(0, q). That is,

f ðxÞ ¼

8>>><
>>>:

1

q
; if 0 < x < q

0; otherwise.

Show that U ¼ max
1�i�n

Xi is sufficient for q.

Solution

The joint density or the likelihood function is given by:

f ðx1;.; xn; qÞ ¼

8><
>:

1

qn
; if 0 < x1;.; xn < q

0; otherwise.
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The joint pdf f(x1, ., xn; q) can be equivalently written as:

f ðx1;.; xn; qÞ ¼

8><
>:

1

qn
; if xmin > 0; xmax < q

0; otherwise.

Now, we can compute the pdf of U:

FðuÞ ¼ P ðU � uÞ ¼ P ðX1;.;Xn � uÞ

¼
Yn
i¼ 1

PðXi � uÞ ðbecause of independenceÞ

¼
Yn
i¼ 1

0
@Zu

0

1

q
dx

1
A ¼ un

qn
; 0 < u < q:

The pdf of U may now be obtained as:

f ðuÞ ¼ d

du
FðuÞ ¼ nun�1

qn
; 0 < u < q

Moreover,

f ðx1;.; xnjuÞ ¼

8><
>:

f ðx1;.; xn;uÞ
fUðuÞ ¼ f ðx1;.xnÞ

fUðuÞ ; if u ¼ xmax and xmin > 0

0; otherwise.

Using the expressions for f(x1, ., xn) and fU(u) we obtain:

f ðx1;.; xnju ¼ uÞ ¼

8><
>:

1=qn

nun�1=qn
¼ 1

nun�1; if u ¼ xmax and xmin > 0

0; otherwise

f(X1, ., XnjU) is a function of u and xmin, which is independent of q. Hence, U ¼ max
1�i�n

Xi is sufficient for q.

The outcome X1, ., Xn is always sufficient, but we will exclude this trivial statistic from consideration. In the previous
two examples, we were given a statistic and asked to check whether it was sufficient. It can often be tedious to check
whether a statistic is sufficient for a given parameter based directly on the foregoing definition. If the form of the statistic is
not given, how do we guess what is the sufficient statistic? Now think of working out the conditional probability by hand
for each of our guesses! In general, this will be a tedious way to go about finding sufficient statistics. Fortunately, the
NeymaneFisher factorization theorem makes it easier to spot a sufficient statistic. The following result will give us a
convenient way of verifying the sufficiency of a statistic through the likelihood function.

NeymaneFisher factorization criteria

Theorem 5.3.3 Let U be a statistic based on the random

sample X1, ., Xn. Then, U is a sufficient statistic for q if and

only if the joint pdf (or pf) f(x1,., xn; q) (which depends on the

parameter q) can be factored into two nonnegative functions:

fðx1;.; xn; qÞ ¼ gðu; qÞ hðx1;.; xnÞ; for all x1;.; xn;

where g(u, q) is a function only of u and q and h(x1, ., xn) is a

function of only x1, ., xn and not of q.

Proof (discrete case). We will give the proof only in the discrete case, even though the result is also true for the
continuous case. First suppose that U(X1, ., Xn) is sufficient for q. Then, X1 ¼ x1, X2 ¼ x2, ., Xn ¼ xn if and only if
X1 ¼ x1, X2 ¼ x2, ., Xn ¼ xn and U(X1, ., Xn) ¼ U(x1, ., xn) ¼ u (say). Therefore,
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f ðx1;.; xn; qÞ ¼ PqðX1 ¼ x1;X2 ¼ x2;.;Xn ¼ xn and U ¼ uÞ
¼ PqðX1 ¼ x1;X2 ¼ x2;.;Xn ¼ xnjU ¼ uÞPqðU ¼ uÞ:

Because U is assumed to be sufficient for q, the conditional probability PqðX1 ¼ x1; :::;Xn ¼ xnjU ¼ uÞ does not
depend on q. Let us denote this conditional probability by h(x1, ., xn). Clearly Pq(U ¼ u) is a function of u and q. Let us
denote this by g(u, q).

It now follows from the equation above that:

f ðx1;.; xn; qÞ ¼ gðu; qÞhðx1;.; xnÞ;
as was to be shown.

To prove the converse, assume that:

f ðx1;.; xn; qÞ ¼ gðu; qÞhðx1;.; xnÞ:
Define the set Au as:

Au ¼ fðx1;.; xnÞ : Uðx1;.; xnÞ ¼ ug:
That is, Au is the set of all (x1, ., xn) such that U maps it into u. We note that Au does not depend on q. Now:

PqðX1 ¼ x1;X2 ¼ x2;.;Xn ¼ xnjU ¼ uÞ

¼ PqðX1 ¼ x1;X2 ¼ x2;.Xn ¼ xn and U ¼ uÞ
PqðU ¼ uÞ

¼

8>>><
>>>:

PqðX1 ¼ x1;X2 ¼ x2;.;Xn ¼ xn and U ¼ uÞ
PqðU ¼ uÞ ; if ðx1;.; xnÞ˛Au

0; if ðx1;.; xnÞ;Au:

If (x1, ., xn) ; Au, then, clearly,

f ðx1;.; xn; qÞ ¼ PqðX1 ¼ x1;X2 ¼ x2;.;Xn ¼ xnjU ¼ uÞ;
which is independent of q.

If (x1, ., xn) ∊ Au, then, using the factorization criterion, we obtain:

PqðX1 ¼ x1;X2 ¼ x2;.;Xn ¼ xnjU ¼ uÞ

¼ PqðX1 ¼ x1;X2 ¼ x2;.Xn ¼ xnÞ
PqðU ¼ uÞ

¼ f ðx1;.; xn; qÞ
PqðU ¼ uÞ ¼ gðu; qÞ h ðx1;.; xnÞP

ðx1;.;xnÞ˛Au
gðu; qÞhðx1;.; xnÞ

¼ gðu; qÞhðx1;.; xnÞ
gðu; qÞ P

ðx1;.;xnÞ˛Au
hðx1;.; xnÞ ¼ hðx1;.; xnÞP

ðx1;.;xnÞ˛Au
hðx1;.; xnÞ

Therefore, the conditional distribution of X1, ., Xn given U does not depend on q, proving that U is sufficient.
One can use the following procedure to verify that a given statistic is sufficient. This procedure is based on factorization

criteria rather than using the definition of sufficiency directly.

Procedure to verify sufficiency

1. Obtain the joint pdf or pf fq(x1, ., xn).

2. If necessary, rewrite the joint pdf or pf in terms of the given

statistic and parameter so that one can use the factorization

theorem.

3. Define the functions g and h in such a way that g is a

function of the statistic and parameter only and h is a

function of the observations only.

4. If step 3 is possible, then the statistic is sufficient. Other-

wise, it is not sufficient.
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In general, it is not easy to use the factorization criterion to show that a statistic U is not sufficient. We now give some
examples using the factorization theorem.

EXAMPLE 5.3.8

Let X1, ., Xn denote a random sample from a geometric population with parameter p. Show that X is sufficient for p.

Solution

For the geometric distribution, the pf is given by:

f ðx; pÞ ¼
(
pð1� pÞx�1

; x � 1

0; otherwise.

Hence, the joint pf is:

f ðx1;.; xn; pÞ ¼ pnð1� pÞ
�nþ
Pn
i¼ 1

xi

¼
8<
:

pnð1� pÞnx�n
; if x1;.; xn � 1

0; otherwise.

Take,

gðx;pÞ ¼ pnð1� pÞnx�n and hðx1;.; xnÞ ¼
�
1; if xi � 1

0; otherwise.

Thus, X is sufficient for p.

EXAMPLE 5.3.9

Let X1, ., Xn denote a random sample from a U(0, q) with pdf:

fqðxÞ ¼

8><
>:

1

q
; 0 < x < q; q > 0

0; otherwise.

Show that XðnÞ ¼ max
1�i�n

Xi is sufficient for q, using the factorization theorem.

Solution

The likelihood function of the sample is:

fqðx1;.; xnÞ ¼

8><
>:

1

qn
; if 0 < x1;.; xn < q;

0; otherwise.

We can now write fq (x1, ., xn) as:

fqðx1;.; xnÞ ¼ h ðx1;.; xnÞg
�
q; xðnÞ

�
; for all x1;.; xn

where

h ðx1;.; xnÞ ¼
�
1; if x1;.; xn > 0

0; otherwise

and

g
�
q; xðnÞ

� ¼
8><
>:

1

qn
; if 0 < xðnÞ < q;

0; otherwise.
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From the factorization theorem, we now conclude that X(n) is sufficient for q. In the next definition, we introduce the concept

of joint sufficiency.

Definition 5.3.5 Two statistics U1 and U2 are said to be jointly sufficient for the parameters q1 and q2 if the conditional
distribution of X1, ., Xn given U1 and U2 does not depend on q1 or q2. In general, the statistic U ¼ (U1, ., Un) is jointly
sufficient for q ¼ (q1, ., qn) if the conditional distribution of X1, ., Xn given U is free of q.

Now we state the factorization criteria for joint sufficiency analogous to the single population parameter case.

The factorization criteria for joint sufficiency

Theorem 5.3.4 The two statistics U1 and U2 are jointly suffi-

cient for q1 and q2 if and only if the likelihood function can be

factored into two nonnegative functions,

f ðx1;.; xn; q1; q2Þ ¼ gðu1;u2; q1; q2Þ hðx1;.; xnÞ
where g(u1, u2; q1, q2) is only a function of u1, u2; q1 and q2,

and h(x1, ., xn) is free of q1 or q2.

EXAMPLE 5.3.10

Let X1, ., Xn be a random sample from N(m, s2).

(a) If m is unknown and s2 ¼ s20 is known, show that X is a sufficient statistic for m.

(b) If m ¼ m0 is known and s2 is unknown, show that Sn
i¼1ðXi � m0Þ2 is sufficient for s2.

(c) If m and s2 are both unknown, show that Sn
i¼1Xi and Sn

i¼1X
2
i are jointly sufficient for m and s2.

Solution

The likelihood function of the sample is:

L ¼ 1

ð2pÞn=2sn
exp

2
664�

Pn
i¼ 1

ðXi � mÞ2

2s2

3
775

¼ 1

ð2pÞn=2sn
exp

"
1

2s2

 Xn
i¼ 1

x2
i � 2m

Xn
i¼ 1

xi þ nm2

!#

¼ ð2pÞ�n=2
s�n exp

0
BB@�

Pn
i¼ 1

x2
i

2s2

1
CCAexp

�
2mnx

2s2

�
exp

�
� nm2

2s2

�
:

(a) When s2 ¼ s2
0 is known, use the factorization criteria, with:

gðx;mÞ ¼ exp

�
2nmx � nm2

2s2
0

�

and

hðx1;.; xnÞ ¼ ð2pÞ�n=2
s�n exp

0
BB@�

Pn
i¼ 1

x2
i

2s2

1
CCA:

Therefore, X is sufficient for. m

(b) When m ¼ m0 is known, let

g

 Xn
i¼ 1

ðXi � mÞ2; s2

!
¼ s�n exp

��������
�
Pn
i¼ 1

ðxi � mÞ2

2s2

��������
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and

hðx1;.; xnÞ ¼ 1

ð2pÞn=2
:

Thus Sn
i¼1ðXi � mÞ2 is sufficient for s2.

(c) When both m and s2 are unknown, use:

g

 Xn
i¼ 1

xi
Xn
i¼ 1

x2
i ;m;s

2

!
¼ s�n exp

��������
�
Pn
i¼ 1

x2
i � 2m

Pn
i¼ 1

xi þ nm2

2s2

��������
and

hðx1;.; xnÞ ¼ 1

ð2pÞn=2
:

Hence, Sn
i¼1Xi and Sn

i¼1X
2
i are jointly sufficient for m and s2.

EXAMPLE 5.3.11

Suppose that we have a random sample X1, ., Xn from a discrete distribution given by:

fqðxÞ ¼ CðqÞ2�x=q; x ¼ q; qþ 1; qþ 2;.; q > 0;

where C (q) > 0 is a normalizing constant. Using the factorization theorem, find a sufficient statistic for q.

Solution

The joint density function f(x1, ., xn; q) of the sample X1, ., Xn is:

f ðx1;.; xn; qÞ ¼
8<
:CðqÞ2

�
Pn
i¼ 1

ðxi=qÞ
; x1; x2;.; xn are integers � q

0; otherwise.

The function f(x1, ., xn; q) can be written as:

f ðx1;.; xn; qÞ ¼ hðx1;.; xnÞCðqÞ2
�
Pn
i¼ 1

ðxi=qÞ
g1
�
q; xð1Þ

�
;

where x(1) ¼ min
i
(x1, ., xn) and

hðx1; x2;.; xnÞ ¼
�
1; if xj � xð1Þ � 0 is an integer for j ¼ 1; 2;.;n

0; otherwise

and

g1
�
q; xð1Þ

� ¼ �
1; if xð1Þ � q

0; otherwise.

Thus,

f ðx1;.; xn; qÞ ¼ hðx1;.; xnÞg
�
q;
X

xi ; xð1Þ
�
;

where g(q, Sxi, x(1)) ¼ C(q)2�Sn
i¼ 1ðxi =qÞ g1(q, x(1)). Using the factorization theorem, we conclude that (Sxi, x(1)) is jointly sufficient

for q. This result shows that even for a single parameter, we may need more than one statistic for sufficiency.
When using the factorization criterion, one has to be careful in cases where the range space depends on the parameter.

Using the factorization criterion, we can prove the following result, which says that if we have a unique MLE, then that
estimator will be a function of the sufficient statistic.
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Theorem 5.3.5 If U is a sufficient statistic for q, the MLE of q, if unique, is a function of U.
Proof. Because U is sufficient, by Theorem 5.3.3, the joint pdf can be factored as:

f ðx1;.; xn; qÞ ¼ gðu; qÞhðx1;.; xnÞ:
This depends on q only through the statistic U. To maximize L we need to maximize gðU; qÞ.
Many common distributions such as Poisson, normal, gamma, and Bernoulli are members of the exponential family of

probability distributions. The exponential family of distributions has density functions of the form:

f ðx; qÞ ¼
�
exp½kðxÞcðqÞ þ SðxÞ þ dðqÞ�; if x˛B

0; x;B

where B does not depend on the parameter q.

EXAMPLE 5.3.12

Write the following in exponential form:

(a)
e�llx

x!
(b) pxð1� pÞ1�x

(c) 1ffiffiffiffi
2p

p e�ðx�mÞ2=2

Solution

(a) We have:

e�llx

x!
¼ exp½x lnl� ln x!� l�:

Here kðxÞ ¼ x; cðlÞ ¼ ln l; SðxÞ ¼ �lnðx!Þ and dðlÞ ¼ �l.

(b) Similarly,

pxð1� pÞ1�x ¼ exp

�
x ln

�
p

1� p

�
þ ln ð1� pÞ

�
; x ¼ 0 or 1:

(c) This is the standard normal density:

1ffiffiffiffiffiffi
2p

p e�ðx�mÞ2=2 ¼ exp

�
xm� x2

2
�m2

2
� 1

2
ln ð2pÞ

�
; �N < x < N:

Note that in the previous example, for each of the cases, Sn
i¼1Xi is a sufficient statistic for the parameter. In the next

result, we give a generalization of this fact.

Theorem 5.3.6 Let X1, ., Xn be a random sample from a population with pdf or pmf of the exponential form:

f ðx; qÞ ¼
�
exp½kðxÞcðqÞ þ SðxÞ þ dðqÞ�; if x˛B

0; x;B

where B does not depend on the parameter q. The statistic Sn
i¼1kðXiÞ is sufficient for q.

Proof. The joint density:

f ðx1;.; xn; qÞ ¼ exp

"
cðqÞ

Xn
i¼ 1

kðxiÞ þ
Xn
i¼ 1

SðxiÞ þ ndðqÞ
#

¼
(
exp

"
cðqÞ

Xn
i¼ 1

kðxiÞ þ ndðqÞ
#)(

exp

"Xn
i¼ 1

SðxiÞ
#)

:

Using the factorization theorem, the statistic Sn
i¼1kðXiÞ is sufficient.

It does not follow that every function of a sufficient statistic is sufficient. However, any one-to-one function of a
sufficient statistic is also sufficient. Every statistic need not be sufficient. When they do exist, sufficient estimators are very
important, because if one can find a sufficient estimator it is ordinarily possible to find an unbiased estimator based on the
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sufficient statistic. Actually, the following theorem shows that if one is searching for an unbiased estimator with minimal
variance, it has to be restricted to functions of a sufficient statistic.

RaoeBlackwell theorem

Theorem 5.4.7 Let X1,., Xn be a random sample with joint pf

or pdf f(x1, ., xn; q) and let U ¼ (U1, ., Un) be jointly suffi-

cient for q ¼ (q1,., qn). If T is any unbiased estimator of k (q), and

if T* ¼ E(TjU), then:

(a) T* is an unbiased estimator of k(q).

(b) T* is a function of U and does not depend on q.

(c) VarðT�Þ � VarðTÞ for every q, and VarðT�Þ < VarðTÞ for

some q unless T* ¼ T with probability 1.

Proof

(a) By the property of conditional expectation and by the fact that T is an unbiased estimator of k(q),

EðT�Þ ¼ EðEðT jUÞÞ ¼ EðTÞ ¼ kðqÞ:

Hence, T* is an unbiased estimator of k(q).
(b)Because U is sufficient for q, the conditional distribution of any statistic (hence, for T), given U, does not depend on q.

Thus, T* ¼ E(TjU) is a function of U.
(c) From the property of conditional probability, we have the following:

VarðTÞ ¼ EðVarðTjUÞÞ þ VarðEðT jUÞÞ

¼ EðVarðTjUÞÞ þ VarðT�Þ:

Because Var (TjU) � 0 for all u, it follows that E(Var (TjU)) � 0. Hence, Var (T*) � Var (T). We note that Var (T*) ¼
Var (T) if and only if Var (TjU) ¼ 0 or T is a function of U, in which case T* ¼ T (from the definition of T* ¼ E(TjU) ¼ T).

In particular, if k(q) ¼ q, and T is an unbiased estimator of q, then T* ¼ E(TjU) will typically give the minimum
variance unbiased estimator (MVUE) of q. If T is the sufficient statistic that best summarizes the data from a given dis-
tribution with parameter q, and we can find some function g of T such that E(g(T)) ¼ q, it follows from the RaoeBlackwell
theorem that g(T) is the uniformly minimum variance unbiased estimator (UMVUE) for q.

EXERCISES 5.3

5.3.1. Let X1, ., Xn be a random sample from a population with density:

f ðxÞ ¼
(
e�ðx�qÞ; for x > q

0; otherwise.

(a) Show that X is a biased estimator of q.
(b) Show that X is an unbiased estimator of m ¼ 1 þ q.

5.3.2. The mean and variance of a finite population {a1, ., aN} are defined by:

m ¼ 1
N

XN
i¼ 1

ai and s2 ¼ 1
N

XN
i¼ 1

ðai � mÞ2:

For a finite population, show that the sample variance S2 is a biased estimator of s2.
5.3.3. For an infinite population with finite variance s2, show that the sample standard deviation S is a biased estimator

for s. Find an unbiased estimator of s. (We have seen that S2 is an unbiased estimator of s2. From this exercise,
we see that a function of an unbiased estimator need not be an unbiased estimator.)

5.3.4. Let X1, ., Xn be a random sample from an infinite population with finite variance s2. Define:

S02 ¼ 1
n

Xn
i¼ 1

�
Xi � X

�2
:

Show that S02 is a biased estimator for s2, and that the bias of S02 is �s2

n . Thus, S
02 is negatively biased, and so on

average underestimates the variance. Note that S02 is the MLE of s2.
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5.3.5. Let X1, ., Xn be a random sample from a population with the mean m. What condition must be imposed on the
constants c1, c2, ., cn so that:

c1X1 þ c2X2 þ/þ cnXn

is an unbiased estimator of m?
5.3.6. Let X1,., Xn be a random sample from a geometric distribution with parameter q. Find an unbiased estimate of q.
5.3.7. Let X1, ., Xn be a random sample from a U(0, q) distribution. Let Yn ¼ max{X1, ., Xn}. We know (from

Example 5.3.4) that bq1 ¼ Yn is an MLE of q.
(a) Show that bq2 ¼ 2X is a method of moments estimator.
(b) Show that bq1 is a biased estimator and bq2 is an unbiased estimator of q.
(c) Show that bq3 ¼ nþ1

n
bq1 is an unbiased estimator of q.

5.3.8. Let X1, ., Xn be a random sample from a population with mean m and variance 1. Show that bm2 ¼ X
2
is a biased

estimator of m2, and compute the bias.
5.3.9. Let X1, ., Xn be a random sample from an N(m, s2) distribution. Show that the estimator bm ¼ X is the MVUE

for m.
5.3.10. Let X1,., Xn1 be a random sample from an N(m1, s

2) distribution and let Y1,., Yn2 be a random sample from an
N(m2, s

2) distribution. Show that the pooled estimator:

bs2 ¼ ðn1 � 1ÞS21 þ ðn2 � 1ÞS22
n1 þ n2 � 2

is unbiased for s2, where S21 and S22 are the respective sample variances.
5.3.11. Let X1, ., Xn be a random sample from an N(m, s2) distribution. Show that the sample median, M, is an

unbiased estimator of the population mean m. Compare the variances of X and M. (Note: For the normal distri-
bution, the mean, median, and mode all occur at the same location. Even though both X and M are unbiased,
the reason we usually use the mean instead of the median as the estimator of m is that X has a smaller variance
than M.)

5.3.12. Let X1, ., Xn be a random sample from a Poisson distribution with parameter l. Show that the sample mean X is
sufficient for l.

5.3.13. Let X1, ., Xn be a random sample from a population with density function:

fsðxÞ ¼ 1
2s

exp

�
�jxj
s

�
; �N < X < N; s > 0:

Find a sufficient statistic for the parameter s.
5.3.14. Show that if bq is a sufficient statistic for the parameter q and if the MLE of q is unique, then the MLE is a function

of this sufficient statistic bq.
5.3.15. Let X1,., Xn be a random sample from an exponential population with parameter q. Show that Sn

i¼1Xi is sufficient
for q. Also show that X is sufficient for q.

5.3.16. The following is a random sample from an exponential distribution:

1.5 3.0 2.6 6.8 0.7 2.2 1.3 1.6 1.1 6.5

0.3 2.0 1.8 1.0 0.7 0.7 1.6 3.0 2.0 2.5

5.7 0.1 0.2 0.5 0.4

(a) What is an unbiased estimate of the mean?
(b) Using (a) and these data, find two sufficient statistics for the parameter q.

5.3.17. Let X1, ., Xn be a random sample from a one-parameter Weibull distribution with pdf:

f ðxÞ ¼
(
2axe�ax2 ; x > 0

0; otherwise.

(a) Find a sufficient statistic for a.
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(b) Using (a), find a UMVUE for a.
5.3.18. Let X1, ., Xn be a random sample from a population with density function:

f ðxÞ ¼

8><
>:

1
q
; �q

2
� x � q

2
; q > 0

0; otherwise.

Show that

�
min
1�i�n

Xi; max
1�i�n

Xi

�
is sufficient for q.

5.3.19. Let X1, ., Xn be a random sample from a G(1, b) distribution.
(a) Show that U ¼ Pn

i¼1Xi is a sufficient statistic for b.
(b) The following is a random sample from a G(1, b) distribution:

0.3 3.4 0.4 1.8 0.7 1.0 0.1 2.3 3.7 2.0

0.3 3.7 0.1 1.3 1.2 3.3 0.2 1.3 0.6 0.4

Find a sufficient statistic for b.
5.3.20. Show that X1 is not sufficient for m, if X1, ., Xn is a sample from N(m, 1).
5.3.21. Let X1, ., Xn be a random sample from the truncated exponential distribution with pdf:

f ðxÞ ¼
�
eq�x; x > q

0; otherwise.

Show that X(1) ¼ min(Xi) is sufficient for q.
5.3.22. Let X1, ., Xn be a random sample from a distribution with pdf:

f ðxÞ ¼
�
qxq�1; 0 < x < 1; q > 0

0; otherwise.

Show that U ¼ X1, ., Xn is a sufficient statistic for q.
5.3.23. Let X1, ., Xn be a random sample from a Rayleigh distribution with pdf:

f ðxÞ ¼

8><
>:

2x
a
e�x2=a; x > 0

0; otherwise.

Show that
Pn

i¼1X
2
i is sufficient for the parameter a.

5.4 A method of finding the confidence interval: pivotal method

In the previous sections, we studied methods for finding point estimators for the population parameters. In general, the
estimates will differ from the true parameter values by varying amounts depending on the sample values obtained. In
addition, the point estimates do not convey any measure of reliability.

Now, we discuss another type of estimation, called an interval estimation. Although point estimators are useful, interval
estimators convey more information about the data that are used to obtain the point estimate. The purpose of using an
interval estimator is to have some degree of confidence of securing the true parameter. For an interval estimator of a single
parameter q, we will use the random sample to find two quantities L and U such that L < q < U with some probability.
Because L and U depend on the sample values, they will be random. This interval (L, U) should have two properties: (1)
P(L < q < U) is high, that is, the true parameter q is in (L, U) with high probability, and (2) the length of the interval (L, U)
should be relatively narrow on average.

In summary, interval estimation goes a step beyond point estimation by providing, in addition to the estimating interval
(L, U), a measure of one’s confidence in the accuracy of the estimate. Interval estimators are called confidence intervals and
the limits are called U and L, the upper and lower confidence limits, respectively. The associated levels of confidence are
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determined by specified probabilities. The width of the CI reflects the amount of variability inherent in the point estimate.
Thus, our objective is to find a narrow interval with high probability of enclosing the true parameter, q. We will restrict our
attention to single-parameter estimation.

The probability that a CI will contain the true parameter q is called the confidence coefficient. The confidence coef-
ficient gives the fraction of the time that the constructed interval will contain the true parameter, under repeated sampling.

Let L and U be the lower and upper confidence limits for a parameter q based on a random sample X1, ., Xn. Both L
and U are functions of the sample. We can write the interval estimate of q as:

PðL� q�UÞ ¼ 1� a;

and we read it as we are (1 � a)100% confident that the true parameter q is located in the interval (L, U). The number
1 � a is the confidence coefficient, and the interval (L, U) is referred to as a ((1 � a)100% CI) for q. Thus, if we want
a 95% CI for, say, population mean m, then a ¼ 0.05. Note that for the discrete random variables, we may not be able
to find a lower bound L and an upper bound U such that the probability, P(L � q � U), is exactly (1 � a). In such a
case we can choose L and U such that P(L � q � U) � 1 � a.

How do we find the CI? For this, we use the error structure of the point estimator to obtain this interval. For
instance, we know that the sample mean, X; is a point estimate (MLE or unbiased estimator) of the population mean m.
In this case, we also know that the standard error of X is s=

ffiffiffi
n

p
: If the sample came from a normal population, then for

a 95% CI for the mean, multiply the standard error by 1.96 and then add and subtract this product from the sample
mean. From this we can also observe that, if everything else remains the same, the size of the CI reduces as the sample
size increases.

EXAMPLE 5.4.1

As part of a promotion, the management of a large health club wants to estimate average weight loss for its members within the

first 3 months after joining the club. They took a random sample of 45 members of this health club and found that they lost an

average of 13.8 lb within the first 3 months of membership with a sample standard deviation of 4.2 lb. Find a 95% CI for the true

mean. What if a random sample of 200 members of this health club also resulted in the same sample mean and sample standard

deviation?

Solution

Here a point estimate of the true mean m is the sample mean x ¼ 13:8 lb. Because n ¼ 45 is large enough, we can use the central

limit theorem (CLT) and use approximate normality for the distribution of X with mean m and the approximate standard error�
4:2
� ffiffiffiffiffiffi

45
p � ¼ 0:626: Thus a 95% CI is 13.8 � (1.96)(0.626), resulting in the interval (12.57, 15.03). Thus, on average, with 95%

confidence, one can expect the true mean to lie in this interval.

For n ¼ 200, the standard error is
�
4:2
� ffiffiffiffiffiffiffiffi

200
p �

z0:297: Thus a 95% CI is 13.8 � (1.96)(0.297) resulting in the interval (13.22,

14.38). Thus, the more sample values (that is, the more information) we have, the tighter (smaller width) the interval.

The previous example was built on our knowledge of the sampling distribution of the sample mean. What if the sampling

distribution of the statistic we are interested in is not readily available? More generally, our success in building CIs for an estimate

of a parameter depends on identifying a quantity known as the pivot. We now describe this method.

The pivotal method is a general method of constructing a CI using a pivotal quantity. This relies on our knowledge of
sampling distributions. Here we have to find a pivotal quantity with the following two characteristics:

(i) It is a function of the random sample (a statistic or an estimator bq) and the unknown parameter q, where q is the only
unknown quantity, and

(ii) It has a probability distribution that does not depend on the parameter q.

Suppose that bq ¼ bqðXÞ is a point estimate of q, and let p
�bq; q� be the pivotal quantity. Now, for a given value of a

(0 < a < 1), and constants a and b, with (a < b), let

P
�
a� p

�bq; q�� b
�
¼ 1� a:

Hence, given bq; the inequality is solved for q to obtain a region of q values, usually an interval corresponding to the
observed bq value. This will be a desired CI.

From (i) and (ii), it is important to note that the pivotal quantity depends on the parameter, but its distribution is in-
dependent of the parameter. Let X1, ., Xn be a random sample and let bq be a reasonable point estimate of q. For instance,bq could be the maximum likelihood (or some other) estimator of q. In general, finding a pivotal quantity may not be easy.
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However, if bq is the sample mean X or sample variance S2, we could find a pivotal quantity with known sampling dis-
tributions. Suppose p

�bq; q� is a pivotal quantity with known probability distribution that is independent of q. (Usually, the
probability distribution of the pivotal quantity will be standard normal, t, c2, or F distribution.) The following are some of
the standard pivotal quantities. If the sample X1, ., Xn is from N(m, s2):

With m unknown and s known, let X be the sample mean. Then the pivot is
�
X�m

��ðs = ffiffiffi
n

p Þ; which has an N(0, 1)
distribution (see comments after Corollary 4.2.2).

With m unknown and s unknown, then the pivot is
�
X�m

��ðS = ffiffiffi
n

p Þ; which has a t distribution with (n � 1) degrees of
freedom (see Theorem 4.2.9). If n is large, using CLT, the distribution of the pivot is approximately N(0, 1).

If s2 is unknown, then the pivot is (n � 1)S2/s2, which has a c2 distribution with (n � 1) degrees of freedom (see
Theorem 4.2.8).

The following examples illustrate the pivotal method.

EXAMPLE 5.4.2

Suppose we have a random sample X1, ., Xn from N(m, 1). Construct a 95% CI for m.

Solution

Here the confidence coefficient is 0.95. We know that the MLE of m is X, which has an N(m, 1/n) distribution. Note that this

distribution depends on the unknown value of m, and hence, X cannot be a pivot. However, taking the z-transform of X we obtain

the pivotal quantity as:

Z ¼ X � m

s=
ffiffiffi
n

p ¼ X � m

1=
ffiffiffi
n

p ;

which has an N(0, 1) distribution that is a function of the sample measurements and does not depend on m. Hence, this Z can be
taken as a pivot p

�bq; q�: Now to find a and b such that P
�
a � Z

�
¼ p

�bq; q
�

� b
�
¼ 0:95: One such choice is to find the value

of a such that Pð�a � Z � aÞ ¼ 0:95: From the normal table,

P
�� za=2 �Z � za=2

� ¼ 0:95;

where za/2 represents the value of z with tail area a/2. This implies a ¼ za/2 ¼ 1.96. Hence,

P ð� 1:96�Z � 1:96Þ ¼ 0:95;

or, using the definition of Z and solving for m, we obtain:

P

�
X � 1:96ffiffiffi

n
p �m�X þ 1:96ffiffiffi

n
p

�
¼ 0:95:

Hence, a 95% CI for m is
�
X�ð1:96 = ffiffiffi

n
p Þ; Xþð1:96 = ffiffiffi

n
p Þ� Thus, the lower confidence limit L is X� ð1:96 = ffiffiffi

n
p Þ and the

upper confidence limit U is X þ ð1:96 = ffiffiffi
n

p Þ:

From the derivation of Example 5.4.1, it follows that:

P

���X�m
�� < za=2

sffiffiffi
n

p
�

¼ 1� a:

Thus, for a normal population with known variance s2, if X is used as an estimator of the true mean m, the probability
that the error will be less than za=2s

� ffiffiffi
n

p
is 1 � a. It is important to note that there is some arbitrariness in choosing a CI for

a given problem. There may be several pivotals for bq that could be used. Also, it is not necessary to allocate equal
probability to the two tails of the distribution; however, doing so may result in the shortest length CI for a given confidence
coefficient.

When we make the statement of the form:

P

�
X� 1:96ffiffiffi

n
p �m�Xþ 1:96ffiffiffi

n
p
�

¼ 0:95;

we mean that, in an infinite series of trials in which repeated samples of size n are drawn from the same population and
95% CIs for m are calculated by the same method for each of the samples, the proportion of intervals that actually include m
will be 0.95. Fig. 5.4 illustrates this idea, where the vertical line represents the position of true mean m and each of the
horizontal lines represents a 95% CI of the sample, and 20 samples of size n are taken.
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A statement of the type Pðx�ð1:96 = ffiffiffi
n

p Þ � m � xþð1:96 = ffiffiffi
n

p ÞÞ ¼ 0:95; where x is the observed sample mean, is
misleading. Once we calculate this interval using a particular sample, then either this interval contains the true mean m or
not, and hence, the probability will be either 0 or 1. Thus, the correct interpretation of CI for the population mean is that if
samples of the same size, n, are drawn repeatedly from a population, and a CI is calculated from each sample, then 95% of
these intervals should contain the population mean. This is often stated as “We are 95% confident that the true mean is in
the interval

�
X � za=2

�
s
� ffiffiffi

n
p �

; X � za=2
�
s
� ffiffiffi

n
p ��

.” This concept of CI is attributed to Neyman.
We can follow the accompanying procedure to find a CI for the parameter q.

Procedure to find a confidence interval for q using the pivot

1. Find an estimator bq of q: usually the MLE of q works.

2. Find a function of q and bq;p�q; bq� (pivot), such that the

probability distribution of p(.,.) does not depend on q.

3. Find a and b such that P
�
a � p

�
q; bq� � b

�
¼ 1� a:

Choose a and b such that P
�
p
�
q; bq� � a

�
¼ a

�
2 and

P
�
p
�
q; bq� � b

�
¼ a

.
2 (see Fig. 5.5 where the shaded

area in each side is a/2).

4. Now, transform the pivot CI to a CI for the parameter q.

That is, work with the inequality in step 3 and rewrite it as

P(L � q � U) ¼ 1 � a, where L is the lower confidence

limit and U is the upper confidence limit.

The following example is given to show that the success of finding a pivotal quantity depends on our ability to find the
right transformation of the statistic and its distribution so that the transformed variable is a pivot.

�

FIGURE 5.4 The 95% confidence intervals for m.

FIGURE 5.5 Probability density of the pivot.
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EXAMPLE 5.4.3

Suppose the random sample X1, ., Xn has U(0, q) distribution. Construct a 90% CI for q and interpret. Identify the upper and

lower confidence limits.

Solution

From Example 5.3.4, we know that:

U ¼ max Xi
1�i�n

is the MLE of q. The random variable U has the pdf:

fUðuÞ ¼ nun�1=qn; 0 � u � q:

This is not independent of the parameter q. Let Y ¼ U/q, then (using the Jacobians described in Chapter 3) the pdf of Y is given

by:

fY ðyÞ ¼ nyn�1; 0 � y � 1:

Hence, Y satisfies the two characteristics of the pivotal quantity. Thus, Y ¼ U/q is a pivot. Now, we have to find a and b such

that:

p

�
a�U

q
� b

�
¼ 0:90:

Pdf of Y
0.05

0.05

0 1y

To find a and b we use the cdf of Y, FY(y) ¼ yn, 0 � y � 1, as follows:

0            a          b 1                  

0.95

0.05

y

F( y )

FY ðaÞ ¼ 0:05 and FY ðbÞ ¼ 0:95;

which implies that:

an ¼ 0:05 and bn ¼ 0:95

resulting in:

a ¼
ffiffiffiffiffiffiffiffiffiffi
0:05n

p
and b ¼

ffiffiffiffiffiffiffiffiffiffi
0:95n

p
:

Write:

P

� ffiffiffiffiffiffiffiffiffiffi
0:05n

p
<
U

q
<

ffiffiffiffiffiffiffiffiffiffi
0:95n

p �
¼ 0:90:

Solving, the 90% CI for q is: �
Uffiffiffiffiffiffiffiffiffiffi
0:95n

p ;
Uffiffiffiffiffiffiffiffiffiffi
0:05n

p
�
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or

P

�
Uffiffiffiffiffiffiffiffiffiffi
0:95n

p � q� Uffiffiffiffiffiffiffiffiffiffi
0:05n

p
�

¼ 0:90:

Thus, the lower confidence limit is U
� ffiffiffiffiffiffiffiffiffiffi

0:95n
p

and the upper confidence limit is U
� ffiffiffiffiffiffiffiffiffiffi

0:05n
p

; and the 90% CI is�
U
� ffiffiffiffiffiffiffiffiffiffi

0:95n
p

; U
� ffiffiffiffiffiffiffiffiffiffi

0:05n
p �

We can interpret this in the following manner. In a large number of trials in which repeated samples are taken from a
population with uniform pdf with parameter q, approximately 90% of the intervals will contain q. For instance, if we
observed n ¼ 20 values from a uniform distribution with the maximum observed value being 15, then a 90% CI for q is
(15.04, 17.42). Thus, we are 90% confident that these data came from a uniform distribution upper limit falling somewhere
in this interval.

It is important to note that the pivotal method may not be applicable in all situations. For example, in the binomial
case, to find a CI for p, there is no quantity that satisfies the two conditions of a pivot. However, if the sample size is
large, then the z-score of sample proportion can be used as a pivot with approximate standard normal distribution. For
the pivotal method to work, there is the practical necessity that the distribution of the pivotal quantity make it easy to
compute the probabilities. In cases where the pivotal method does not work, we may need to use other techniques such as
the method based on sampling distributions (see Project 4A). A proper discussion of these methods is beyond the level of
this book.

EXERCISES 5.4

5.4.1. (a) Suppose we construct a 99% CI. What are we 99% confident about?
(b) Which of these CIs is wider, 90% or 99%?
(c) In computing a CI, when do you use the t distribution and when do you use z, with normal approximation?
(d) How does the sample size affect the width of a CI?

5.4.2. Suppose X is a random sample of size n ¼ 1 from a uniform distribution defined on the interval (0, q). Construct a
98% CI for q and interpret.

5.4.3. Consider the probability statement:

P

�
� 2:81� Z ¼ X � m

s=
ffiffiffi
n

p � 2:75

�
¼ k;

where X is the mean of a random sample of size n from an N(m, s2) distribution with known s2.
(a) Find k.
(b) Use this statement to find a CI for m.
(c) What is the confidence level of this CI?
(d) Find a symmetric CI for m.

5.4.4. A random sample of size 50 from a particular brand of 16-oz tea packets produced a mean weight of 15.65 oz.
Assume that the weights of these brands of tea packets are normally distributed with standard deviation of 0.59 oz.
Find a 95% CI for the true mean m.

5.4.5. Let X1, ., Xn be a random sample from an N(m, s2), where the value of s2 is unknown.
(a) Construct a (1 � a)100% CI for s2, choosing an appropriate pivot. Interpret its meaning.
(b) Suppose a random sample from a normal distribution gives the following summary statistics: n ¼ 21,

x ¼ 44:3; and s ¼ 3.96. Using (a), find a 90% CI for s2. Interpret its meaning.
5.4.6. Let X1, ., Xn be a random sample from a gamma distribution with a ¼ 2 and unknown b. Construct a 95% CI

for b.
5.4.7. Let X1, ., Xn be a random sample from an exponential distribution with pdf f(x) ¼ (1/q)e�x/q, q > 0, x > 0.

Construct a 95% CI for q and interpret. (Hint: Recall that
Pn

i¼1Xi has a gamma distribution with a ¼ n, b ¼ q.)
5.4.8. Let X1, ., Xn be a random sample from a Poisson distribution with parameter l.

(a) Construct a 90% CI for l.
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(b) Suppose that the number of raisins in a bowl of a particular brand of cereal is observed to be 25. Assuming
that the number of raisins in a bowl is Poisson distributed, estimate the expected number of raisins per bowl
with a 90% CI.

(c) How many bowls of cereal need to be sampled to estimate the expected number of raisins per bowl with a
standard error of less than 0.2?

5.4.9. Let X1, ., Xn be a random sample from an N(m, s2).
(a) Construct a (1 � a)100% CI for m when the value of s2 is known.
(b) Construct a (1 � a)100% CI for m when the value of s2 is unknown.

5.4.10. Let X1, ., Xn be a random sample from an N(m1, s
2) population and Y1, ., Yn be an independent random sample

from an N(m2, s
2) distribution where s2 is assumed to be known. Construct a (1 � a)100% interval for (m1 � m2).

Interpret its meaning.
5.4.11. Let X1,., Xn be a random sample from a uniform distribution on [q, q þ 1]. Find a 99% CI for q, using an appro-

priate pivot.

5.5 One-sample confidence intervals

In this section, we will find CIs for the one-sample case for both large- and small-sample situations.

5.5.1 Large-sample confidence intervals

If the sample size is large, then by the CLT, certain sampling distributions can be assumed to be approximately normal.
That is, if q is an unknown parameter (such as m, p, (m1 � m2), (p1 � p2)), then for large samples, by the CLT, the z-
transform:

z ¼
bq � q

sq̂

;

possesses an approximately standard normal distribution, where bq is the MLE of q and sq̂ is its standard deviation. Then as
in Example 5.4.1, the pivotal method can be used to obtain the CI for the parameter q. For q ¼ m, n � 30 will be considered
large; for the binomial parameter p, n is considered large if np and n(1 � p) are both greater than 5. Note that these
numbers are only a rule of thumb.

Procedure to calculate large-sample confidence interval for q

1. Find an estimator (such as the MLE) of q, say bq.
2. Obtain the standard error, sq̂ of

bq:
3. Find the z-transform z ¼

�bq�q
�.

sq̂: Then z has an

approximately standard normal distribution.

4. Using the normal table, find two tail values �za/2 and za/2.

5. An approximate (1 � a)100% CI for q is�bq�za=2sq̂;
bqþza=2sq̂

�
; that is,

P
�bq� za=2sq̂ � q� bqþ za=2sq̂

�
¼ 1� a:

6. Conclusion: We are (1 � a)100% confident that the true

parameter q lies in the interval
�bq �za=2sq̂;

bq þza=2sq̂

�

EXAMPLE 5.5.1

Let bq be a statistic that is normally distributed with mean q and standard deviation sq̂; where s is assumed to be known. Find a CI

for q that possesses a confidence coefficient equal to 1 � a.

Solution

The z-transform of bq is:

Z ¼
bq � q

sq̂
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and has a standard normal distribution. Select two tail values �za/2 and za/2 such that:

P
�� za=2 �Z � za=2

� ¼ 1� a:

Because of symmetry, this is the shortest interval that contains the area 1 � a. Then,

P
�bq� za=2sq̂ � q� bqþ za=2sq̂

�
¼ 1� a:

Therefore, the confidence limits of q are bq � za=2sq̂ and bq þ za=2sq̂: Hence, the (1 � a)100% CI for q is given by bq� za=2sq̂:

In particular, for a large sample of size n, let bq ¼ X be the sample mean. Then the large-sample (1 � a)100% CI for
the population mean m is:

X� za=2
sffiffiffi
n

p xX � za=2
Sffiffiffi
n

p

where S is a point estimate of s. That is,

P

�
X� za=2

Sffiffiffi
n

p �m�X� za=2
Sffiffiffi
n

p
�

¼ 1� a:

As we have seen in Section 5.4, the correct interpretation of this CI is that in a repeated sampling, approximately (1 � a)
100% of all intervals of the form X � za=2ðS =

ffiffiffi
n

p Þ include m, the true mean. Suppose x and s are the sample mean and the
sample standard deviation, respectively, for a particular set of n observed sample values x1, ., xn. Then we do not know
whether the particular interval

�
x�za=2ðs =

ffiffiffi
n

p Þ; x�za=2ðs =
ffiffiffi
n

p Þ� contains m. However, the procedure that produced this
interval does capture the true mean in approximately (1 � a)100% of cases. This interpretation will be assumed hereafter,
when we make a statement such as, “We are 95% confident that the true mean will lie in the interval (74.1, 79.8).”

EXAMPLE 5.5.2

Two statistics professors want to estimate average scores for an elementary statistics course that has two sections. Each professor

teaches one section and each section has a large number of students. A random sample of 50 scores from each section produced

the following results:

(a) Section I: x1 ¼ 77:01; s1 ¼ 10.32

(b) Section II: x2 ¼ 72:22; s2 ¼ 11.02

Calculate 95% CIs for each of these two samples.

Solution

Because n ¼ 50 is large, we could use normal approximation. For a ¼ 0.05, from the normal table: za=2 ¼ z0:025 ¼ 1:96: The CIs

are as follows:

(a) We have:

x1 � za=2
s1ffiffiffi
n

p ¼ 77:01� 1:96

�
10:32ffiffiffiffiffiffi

50
p

�
;

which gives a 95% CI (74.149, 79.871).

(b) We can compute:

x2 � za=2
s2ffiffiffi
n

p ¼ 72:22� 1:96

�
11:02ffiffiffiffiffiffi

50
p

�
;

which gives the interval (69.165, 75.275).

It may be noted that if the population is normal with a known variance s2, we can use X � za=2ðs =
ffiffiffi
n

p Þ as the CI for the
population mean m, irrespective of the sample size. However, if s2 is unknown, to use X � za=2ðs =

ffiffiffi
n

p Þ as an approximate
CI for m, the sample size has to be large for the CLT to hold. However, to use this approximate procedure, we do not need
the condition that samples arise from a normal distribution. We will consider sample size to be large if n � 30 (applicable
to estimators of the mean). If not, we shall use the small-sample procedure discussed in the next section.
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EXAMPLE 5.5.3

Fifteen vehicles were observed at random for their speeds (in mph) on a highway with speed limit posted as 70 mph, and it was

found that their average speed was 73.3 mph. Suppose that from past experience we can assume that vehicle speeds are normally

distributed with s ¼ 3.2. Construct a 90% CI for the true mean speed m, of the vehicles on this highway. Interpret the result.

Solution

Because the population is given to be normal with standard deviation s ¼ 3.2, sample size need not be large, given x ¼ 73:3 and

s ¼ 3.2. Here, n ¼ 15, and a ¼ 0.10. Thus, za/2 ¼ z0.05 ¼ 1.645. Hence, a 90% CI for m is given by:

73:3� 1:645
3:2ffiffiffiffiffiffi
15

p < m < 73:3þ 1:645
3:2ffiffiffiffiffiffi
15

p

or

71:681 < m < 74:919:

Interpretation: We are 90% confident that the true mean speed m of the vehicles on this highway is between 71.681 and

74.919 mph.

5.5.2 Confidence interval for proportion, p

Consider a binomial distribution with parameter p. Let X be the number of successes in n trials. Then the MLE bp of p isbp ¼ X=n: It can be shown, using the procedure outlined at the beginning of this section, that an approximate large-
sample (1 � a)100% CI for p is:  

bp� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
; bpþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r !
:

That is,

P

�bp� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp1� bpÞ
n

r
< p< bpþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp1� bpÞ
n

r �
¼ 1� a:

A natural question is, “How do we determine that the sample size we have is sufficient for the normal approximation
that is used in the foregoing formula?” There are various rules of thumb that are used to determine the adequacy of the
sample size for normal approximation. Some of the popular rules are that np and n(1 � p) should be greater than 10, or thatbp � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ=np
should be contained in the interval (0,1), or np(1 � p) � 10, etc. All of these rules perform poorly

when p is nearer to 0 or 1. There have been many works on coverage analysis for CIs. We refer to a survey article by Lee
et al., for more details on this topic. For simplicity of calculations, we will use the rule that np and n(1 � p) are both greater
than 5.

EXAMPLE 5.5.4

An auto manufacturer gives a bumper-to-bumper warranty for 3 years or 36,000 miles for its new vehicles. In a random sample of

60 of its vehicles, 20 of them needed five or more major warranty repairs within the warranty period. Estimate the true proportion

of vehicles from this manufacturer that need five or more major repairs during the warranty period, with confidence coefficient

0.95. Interpret.

Solution

Here we need to find a 95% CI for the true proportion, p. Here, bp ¼ 20=60 ¼ 1=3: For a ¼ 0.05, za/2 ¼ z0.025 ¼ 1.96. Hence, a

95% CI for p is:

bp � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
¼ 1

3
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

3

��
2

3

�
60

vuuut
;

which gives the CI as (0.21405, 0.45262). That is, we are 95% confident that the true proportion of vehicles from this manufacturer
that need five or more major repairs during the warranty period will lie in the interval (0.21405, 0.45262).
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5.5.2.1 Margin of error and sample size

In real-world problems, the estimates of the proportion p are usually accompanied by a margin of error, rather than a CI.
For example, in the news media, especially leading up to election time, we hear statements such as “The CNN/USA Today/
Gallup poll of 818 registered voters taken on June 27e30 showed that if the election were held now, the president would
beat his challenger 52% to 40%, with 8% undecided. The poll had a margin of error of plus or minus 4 percentage points.”
What is this “margin of error”? According to the American Statistical Association, the margin of error is a common
summary of sampling error that quantifies uncertainty about a survey result. Thus, the margin of error is nothing but a CI.
The number quoted in the foregoing statement is half the maximum width of a 95% CI, expressed as a percentage.

Let b be the width of a 95% CI for the true proportion, p. Let bp ¼ x=n be an estimate for p where x is the number of
successes in n trials. Then,

b ¼ x

n
þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=nÞð1� ðx=nÞÞ

n

r
�
 
x

n
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=nÞð1� ðx=nÞÞ

n

r !

¼ 3:92

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=nÞð1� ðx=nÞÞ

n

r
� 3:92

ffiffiffiffiffi
1
4n

r
;

because ðx =nÞð1 �ðx =nÞÞ ¼ bpð1 �bpÞ � 1
4:

Thus, the margin of error associated with bp ¼ ðx =nÞ is 100d%, where:

d ¼ max b
2

¼
3:92

ffiffiffiffiffi
1
4n

r
2

¼ 1:96
2
ffiffiffi
n

p :

From the foregoing derivation, it is clear that we can compute the margin of error for other values of a by replacing
1.96 with the corresponding value of za/2.

A quick look at the formula for the CI for proportions reveals that a larger sample would yield a shorter interval
(assuming other things being equal) and hence, a more precise estimate of p. The larger sample is costlier in terms of time,
resources, and money, whereas samples that are too small may result in inaccurate inferences. Then, it becomes beneficial
for finding out the minimum sample size required (thus less costly) to achieve a prescribed degree of precision (usually, the
minimum degree of precision acceptable). We have seen that the large-sample (1 � a)100% CI for p is:

bp� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
< p < bp þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
:

Rewriting it, we have:

jbp� pj � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
¼ za=2ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞq
;

which shows that, with probability (1 � a), the estimate bp is within za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ=np

units of p. Because bpð1�bpÞ � 1=
4; for all values of bp; we can write the foregoing inequality as:

jbp� pj � za=2ffiffiffi
n

p
ffiffiffi
1
4

r
¼ za=2

2
ffiffiffi
n

p :

If we wish to estimate p at level (1 � a) to within d units of its true value, that is jbp � pj � d; the sample size must
satisfy the condition

�
za=2

�ð2 ffiffiffi
n

p Þ� � d; or

n � z2a=2
4d2

:

Thus, to estimate p at level (1 � a) to within d units of its true value, take the minimal sample size as n ¼ z2
a=2

.
ð4d2Þ;

and if this is not an integer, round up to the next integer.
Sometimes, we may have an initial estimate ep of the parameter p from a similar process or from a pilot study or

simulation. In this case, we can use the following formula to compute the minimum required size of the sample to estimate
p, at level (1 � a), to within d units:
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n ¼ z2a=2epð1� epÞ
d2

and, if this is not an integer, we round up to the next integer.
A similar derivation for calculation of sample size for estimation of the population mean m at level (1 � a) with margin

of error E is given by:

n ¼ z2a=2s
2

E2

and, if this is not an integer, rounding up to the next integer. This formula can be used only if we know the population
standard deviation, s. Although it is unlikely we will know s when the population mean itself is not known, we may
be able to determine s from an earlier similar study or from a pilot study/simulation.

EXAMPLE 5.5.5

A dendritic tree is a branched formation that originates from a nerve cell. To study brain development, researchers want to

examine the brain tissues from adult guinea pigs. How many cells must the researchers select (randomly) so as to be 95% sure that

the sample mean is within 3.4 cells of the population mean? Assume that a previous study has shown s ¼ 10 cells.

Solution

A 95% confidence corresponds to a ¼ 0.05. Thus, from the normal table, za/2 ¼ z0.025 ¼ 1.96. Given that E ¼ 3.4 and s ¼ 10,

and using the sample size formula, the required sample size n is:

n ¼ z2
a=2s

2

E2
¼ ð1:96Þ2ð10Þ2

ð3:4Þ2 ¼ 33:232:

Thus, take n ¼ 34.

EXAMPLE 5.5.6

Suppose that a local TV station in a city wants to conduct a survey to estimate support for the president’s policies on the economy

within 3% error with 95% confidence.

(a) How many people should the station survey if they have no information on the support level?

(b) Suppose they have an initial estimate that 70% of the people in the city support the economic policies of the president. How

many people should the station survey?

Solution

Here a ¼ 0.05, and thus za/2 ¼ 1.96. Also, d ¼ 0.03.

(a) With no information on p, we use the sample size formula:

n ¼ z2
a=2

4d2
¼ ð1:96Þ2

4ð0:03Þ2 ¼ 1067:1:

Hence, the TV station must survey 1068 people.

(b) Because ep ¼ 0:7; the required sample size is calculated from:

n ¼ z2
a=2epð1� epÞ

d2

¼ ð1:96Þ2ð0:70Þð0:30Þ
ð0:03Þ2 ¼ 896:37:

Thus, the TV station must survey at least 897 people.

In practice, we should realize that one of the key factors of a good design is not sample size by itself; it is getting
representative samples. Even if we have a very large sample size, if the sample is not representative of our target
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population, then sample size means nothing. Therefore, whenever possible, we should use random sampling procedures (or
other appropriate sampling procedures) to ensure that our target population is properly represented.

5.5.3 Small-sample confidence intervals for m

Now we will consider the problem of finding a CI for the true mean m of a normal population when the variance s2 is
unknown and obtaining a large sample is either impossible or impractical. Let X1, ., Xn be a random sample from a
normal population. We know that:

T ¼
ffiffiffi
n

p X � m

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 1ÞS2=½s2ðn� 1Þ�p ¼ X � m

S=
ffiffiffi
n

p

has a t distribution with (n � 1) degrees of freedom, irrespective of the value of s2. Thus,
�
X�m

���
S
� ffiffiffiffiffi

nÞp
can be used as

a pivot. Hence, for n small (n < 30) and s2 unknown, we have the following result.

Theorem 5.5.1 If X and S are the sample mean and the sample standard deviation of a random sample of size n from a
normal population, then:

X� ta=2:n�1
Sffiffiffi
n

p < m < X þ ta=2;n�1
Sffiffiffi
n

p

is a (1 � a)100% CI for the population mean m.

Note that if the confidence coefficient, 1 � a, and X and S remain the same, the confidence range CR ¼ bqU � bqL
decreases as the sample size n increases, which means that we are closing in on the true parameter value of q.

One can use the following procedure to find the CI for the mean when a small sample is from an approximately normal
distribution.

Procedure to find small-sample confidence interval for m

1. Calculate the values of X and S from the sample X1, ., Xn.

2. Using the t table, select two tail values, �ta/2 and ta/2.
3. The (1 � a)100% CI for m is:

�
X � ta=2;n�1

Sffiffiffi
n

p ;X þ ta=2;n�1

Sffiffiffi
n

p
�

that is, P

�
X �ta=2;n�1

Sffiffiffi
n

p � m � X þta=2;n�1
Sffiffiffi
n

p
�

¼ 1 � a:

4. Conclusion: We are (1 � a)100% confident that the

true parameter m lies in the interval�
X �ta=2;n�1ðS =

ffiffiffi
n

p Þ;X þta=2;n�1ðS =
ffiffiffi
n

p Þ�.
5. Assumption: The population is normal.

In practice, the first step in the previous procedure should include a test of normality (see Project 4C). A built-in test
of normality is available in most of the statistical software packages. In Example 5.5.9, we show how this test is utilized.
Even when the data fail the normality test, most statistical software will produce a CI based on normality or give an error
report. We should understand that generally such answers are meaningless. In those cases, nonparametric methods
(Chapter 12) such as the Wilcoxon rank sum method or bootstrap method (Chapter 13) will be more appropriate. For
more discussion, refer to Section 14.4.1.

EXAMPLE 5.5.7

The following is a random data set from a normal population:

7.2 5.7 4.9 6.2 8.5 2.8

Construct a 95% CI for the population mean m. Interpret.

Solution

The first step is to calculate mean and standard deviation of the sample. We compute as the mean x ¼ 5:883 and as standard

deviation, s ¼ 1.959. For 5 degrees of freedom, and for a ¼ 0.05, from the t table, t0.025 ¼ 2.571. Hence, a 95% CI for m is:
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�
x � ta=2;n�1

2ffiffiffi
n

p ; x þ ta=2;n�1

2ffiffiffi
n

p
�

¼
�
5:883� 2:571

�
1:959ffiffiffi

6
p

�
;5:5883þ 2:571

�
1:959ffiffiffi

6
p

��

¼ ð3:827; 7:939Þ:
This can be interpreted as that we are 95% confident that the true mean m will be between 3.827 and 7.939.

EXAMPLE 5.5.8

The scores of a random sample of 16 people who took the TOEFL (Test of English as a Foreign Language) had a mean of 540 and a

standard deviation of 50. Construct a 95% CI for the population mean m of the TOEFL score, assuming that the scores are normally

distributed.

Solution

Because n ¼ 16 is small, using Theorem 5.5.1 with degrees of freedom 15, a 95% CI for m is:

x� ta=2;n�1

sffiffiffi
n

p ¼ 540� 2:131

�
50ffiffiffiffiffiffi
16

p
�
:

So the 95% CI for the population mean m of the TOEFL scores is (513.36, 566.64).

A Dobson unit is the most basic measure used in ozone research. The unit is named after G.M.B. Dobson, one of the
first scientists to investigate atmospheric ozone (between 1920 and 1960). He designed the Dobson spectrometer, the
standard instrument used to measure ozone from the ground. The data in Example 5.5.9 represent the total ozone levels at
randomly selected points on the Earth (represented by the pair (latitude, longitude)) on a particular day.

EXAMPLE 5.5.9

The following data represent the total ozone levels measured in Dobson units at randomly selected locations on the Earth on a

particular day:

269 246 388 354 266 303

295 259 274 249 271 254

Can we say that the data are approximately normally distributed? Construct a 95% CI for the population mean m of ozone

levels on this day.

Solution

The following is the probability plot of these data created using Minitab.
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Std Dev: 42.0086
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Normal probability plot for ozone data
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Because all the data values lie within the bounds on the normal probability plot (see the discussion in Section 3.2.4), we can

assume that the data have approximate normality. We have x ¼ 285:7 and s ¼ 43.9. Also, n ¼ 12. For a ¼ 0.05,

t0.025, 11 ¼ 2.201. A 95% CI for m is:

x� ta=2;ðn�1Þ
sffiffiffi
n

p ¼ 285:7� 2:201

�
43:9ffiffiffiffiffiffi
12

p
�
:

Hence, a 95% CI for m, the average ozone level over the Earth, lies in (257.81, 313.59).

EXERCISES 5.5

5.5.1. A survey indicates that it is important to pay attention to truth in political advertising. Based on a survey of 1200
people, 35% indicated that they found political advertisements to be untrue; 60% say that they will not vote for
candidates whose advertisements are judged to be untrue; and of this latter group, only 15% ever complained to
the media or to the candidate about their dissatisfaction.
(a) Find a 95% CI for the percentage of people who find political advertising to be untrue.
(b) Find a 95% CI for the percentage of voters who will not vote for candidates whose advertisements are consid-

ered to be untrue.
(c) Find a 95% CI for the percentage of those who avoid voting for candidates whose advertisements are consid-

ered untrue and who have complained to the media or to the candidate about the falsehoods in commercials.
(d) For each case above, interpret the results and state any assumptions you have made.

5.5.2. Many mutual funds use an investment approach involving owning stocks whose price/earnings multiples (P/Es) are
less than the P/E of the S&P 500. The following data give P/Es of 49 companies that a randomly selected mutual
fund owns in a particular year.

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1

9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6 11.1

8.9 11.7 12.8 11:5 12:0 10:6 11:1 6:4 12:3 12:3

11:4 9:9 14:3 11:5 11:8 13:3 12:8 13:7 13:9 12:9

14:2 14:0 15:5 16:9 18:0 17:9 21:8 18:4 34:3

Find a 98% CI for the mean P/E multiples. Interpret the result and state any assumptions you have made.
5.5.3. Let X1, ., Xn be a random sample from an N(m, s2) distribution, with s2 known.

(a) Show that bm ¼ X is an MLE of the population mean m.
(b) Show that:

P

�
X� 2sffiffiffi

n
p <m<Xþ 2sffiffiffi

n
p
�

¼ 0:954:

(c) Let

P

�
X� ksffiffiffi

n
p <m<Xþ ksffiffiffi

n
p
�

¼ 0:90:

Find k.
5.5.4. Let the observed mean of a sample of size 45 be x ¼ 68:51 from a distribution having variance 110. Find a 95%

CI for the true mean m and interpret the result and state any assumptions you have made.
5.5.5. In a random sample of 50 college seniors, 18 indicated that they were planning to pursue a graduate degree. Find a

98% CI for the true proportion of all college seniors planning to pursue a graduate degree, and interpret the result,
and state any assumptions you have made.

5.5.6. DVD players coming off an assembly line are automatically checked to make sure they are not defective. The
manufacturer wants an interval estimate of the percentage of DVD players that fail the testing procedure. Compute
a 90% CI, based on a random sample of size 105 in which 17 DVD players failed the testing procedure. Also,
interpret the result and state any assumptions you have made.
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5.5.7. Studies have shown that the risk of developing coronary disease increases with the level of obesity, or accumu-
lation of body fat. A study was conducted on the effect of exercise on losing weight. Fifty men who exercised lost
an average of 11.4 lb, with a standard deviation of 4.5 lb. Construct a 95% CI for the mean weight loss through
exercise. Interpret the result and state any assumptions you have made.

5.5.8. Basing findings on 60 successful pregnancies involving natural birth, an experimenter found that the mean preg-
nancy term was 274 days, with a standard deviation of 14 days. Construct a 99% CI for the true mean pregnancy
term m.

5.5.9. Let Y be the binomial random variable with parameter p and n ¼ 400. If the observed value of Y is y ¼ 120, find a
95% CI for p.

5.5.10. For a health screening in a large company, the diastolic and systolic blood pressures of all the employees were
recorded. In a random sample of 150 employees, 12 were found to suffer from hypertension. Find 95% and
98% CIs for the proportion of the employees of this company with hypertension.

5.5.11. In a random sample of 500 items from a large lot of manufactured items, there were 40 defectives.
(a) Find a 90% CI for the true proportion of defectives in the lot.
(b) Is the assumption of normal approximation valid?
(c) Suppose we suspect that another lot has the same proportion of defectives as in the first lot. What should be

the sample size if we want to estimate the true proportion within 0.01 with 90% confidence?
5.5.12. Pesticide concentrations in sediment from irrigation areas can provide information required to assess the exposure

and fate of these chemicals in freshwater ecosystems and their likely impacts on the marine environment. In a
study (Müller, J.F., et al., 2000. Pesticides in sediments from Queensland irrigation channels and drains. Mar. Pol-
lut. Bull. 41 (7e12), 294e301), 103 sediment samples were collected from irrigation channels and drains in 11
agricultural areas of Queensland. In 74 of these samples, they detected DDT with concentration levels up to
840 ng/g dw. Obtain a 95% CI for the proportion of total number of sediments with detectable DDT.

5.5.13. Let X be the mean of a random sample of size n from an N(m, 16) distribution. Find n such that
p
�
X �2< m< X þ2

� ¼ 0:95:
5.5.14. Let X be a Poisson random variable with parameter l. A sample of 150 observations from this population has a

mean equal to 2.5. Construct a 98% CI for l.
5.5.15. An opinion poll conducted in March of 1996 by a newspaper (Tampa Tribune) among eligible voters with a sam-

ple size 425 showed that the president, who was seeking reelection, had 45% support. Give a 95% and a 98% CI
for the proportion of support for the president.

5.5.16. A random sample of 100 households located in a large city recorded the number of people living in each house-
hold, Y, and the monthly expenditure for food, X. The following summary statistics are given:

X100
i¼ 1

Yi ¼ 340

X100
i¼ 1

Y2
i ¼ 1650

X100
i¼ 1

Xi ¼ 40; 000

X100
i¼ 1

X2
i ¼ 44; 000; 000

(a) Form a 95% CI for the mean number of people living in a household in this city.
(b) Form a 95% CI for the mean monthly food expenses.
(c) For each case just given, interpret the results and state any assumptions you have made.

5.5.17. Let X1, ., Xn be a random sample from an exponential distribution with parameter q. A sample of 350 observa-
tions from this population has a mean equal to 3.75. Construct a 90% CI for q.
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5.5.18. Suppose a coin is tossed 100 times to estimate p ¼ P (Heads). It is observed that heads appeared 60 times. Find a
95% CI for p.

5.5.19. Suppose a population of women at least 35 years of age are pregnant with a fetus affected by Down syndrome. We
are interested in testing positive on a noninvasive screening test for fetuses affected by Down syndrome by women
at least 35 years of age. In an experiment, suppose 52 of 60 women tested positive. Obtain a 95% CI for the true
proportion of women at least 35 years of age who are pregnant with a fetus affected by Down syndrome who will
receive positive test results from this procedure.

5.5.20. (a) Let X1, ., Xn be a random sample from a Poisson distribution with parameter l. Derive a (1 � a)100% large
sample CI for l.

(b) To date nodes in a phylogenetic tree, the mean path length (MPL) is used in estimating the relative age of a
node. The following data represent the MPL for 39 nodes (Britton, T. et al., 2002. Phylogenetic dating with
confidence intervals using mean path lengths. Mol. Phylogenet. Evol. 24, 58e65). Assume that the data
(given in centimeters) follow a Poisson distribution with parameter l:

65.2 47.0 38.2 13.5 18.0 25.6 16.3 14.0 23.2 18.8

7.5 13.3 11.0 54.9 22.0 50.1 32.6 26.0 13.0 9.0

7.2 4.7 4.5 41.1 45.8 37.0 8.5 30.5 29.3 13.8

7.7 5.5 24.1 12.5 22.3 19.0 9.5 4.7 3.0

Obtain a 95% CI for l and interpret.
5.5.21. A person plans to start an Internet service provider in a large city. The plan requires an estimate of the average

number of minutes of Internet use of a household in a week. How many households must be (randomly) sampled
to be 95% sure that the sample mean is within 15 minutes of the population mean? Assume that a pilot study esti-
mated the value of s ¼ 35 minutes.

5.5.22. The fruit fly Drosophila melanogaster normally has a gray color. However, because of a mutation a good portion
of them are black. A biologist eager to learn about the effects of mutation wants to collect a random sample to
estimate the proportion of black fruit flies of this type within 1% error with 95% confidence.
(a) How many individual flies should the researcher capture if there is no information on the population propor-

tion of black flies?
(b) Suppose the researcher has the initial estimate that 25% of the fruit fly D. melanogaster have been affected by

this mutation. What is the sample size?
5.5.23. In a pharmacological experiment, 35 lab rats were not given water for 11 hours and were then permitted access to

water for 1 hour. The amounts of water consumed (mL/h) are given in the following table:

10.6 13.3 15.5 10.7 9.6 12.1 11.8 10.9 9.9 13.2

9.3 11.7 9.9 13.0 12.3 11.0 13.1 11.0 12.5 13.9

14.1 14.8 15.1 12.8 14.0 7.1 14.1 12.7 9.6 12.5

9.0 12.7 13.6 12.5 12.6

Obtain a 98% CI for the mean amount of water consumed.
5.5.24. In sociology, a social network is defined as the people you make frequent contact with, say, through Facebook.

The personal network size for each adult in a random sample of 3000 adults was calculated. The sample had a
mean personal network size of 190 with a known population standard deviation of 25. Find a 95% CI for the
mean personal network size of all adults to see if we have a normal amount of friends in our network.

5.5.25. (a) How does the t distribution compare with the normal distribution?
(b) How does the difference affect the size of CIs constructed using z (normal approximation) relative to those

constructed using the t distribution?
(c) Does sample size make a difference?
(d) What assumptions do we need to make in using the t distribution for the construction of a CI?
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5.5.26. Use the t table to determine the values of ta/2 that would be used in the construction of a CI for a population mean
in each of the following cases:
(a) a ¼ 0.99, n ¼ 20
(b) a ¼ 0.95, n ¼ 18
(c) a ¼ 0.90, n ¼ 25

5.5.27. Let X1,., Xn be a random sample from a normal population. A particular realization resulted in a sample mean of
20 with the sample standard deviation 4. Construct a 95% CI for m when:
(a) n ¼ 5, (b) n ¼ 10, and (c) n ¼ 25. What happens to the length of the CI as n changes?

5.5.28. In a large university, the following are the ages of 20 randomly chosen employees:

24 31 28 43 28 56 48 39 52 32

38 49 51 49 62 33 41 58 63 56

Assuming that the data came from a normal population, construct a 95% CI for the population mean m of the ages
of the employees of this university. Interpret your answer.

5.5.29. A random sample of size 26 is drawn from a population having a normal distribution. The sample mean and the
sample standard deviation from the data are given, respectively, as x ¼ �2:22 and s ¼ 1.67. Construct a 98% CI
for the population mean m and interpret.

5.5.30. A medication is suspected of causing an elevated heart rate in a certain group of high-risk patients. Twenty pa-
tients from the group were given the medication. The changes in heart rates were found to be as follows:

�1 8 5 10 2 12 7 9 1 3

4 6 4 12 11 2 �1 10 2 8

Construct a 98% CI for the mean change in heart rate. Assume that the population has a normal distribution. Inter-
pret your answer.

5.5.31. Ten bearings made by a certain process have a mean diameter of 0.905 cm with a standard deviation of 0.0050 cm.
Assuming that the data may be viewed as a random sample from a normal population, construct a 95% CI for the
actual average diameter of bearings made by this process and interpret.

5.5.32. Air pollution in large US cities is monitored to see whether it conforms to requirements set by the Environmental
Protection Agency. The following data, expressed as an air pollution index, give the air quality of a city for 10
randomly selected days:

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

Assuming that the data may be looked upon as a random sample from a normal population, construct a 95% CI for
the actual average air pollution index for this city and interpret.

5.5.33. To find the average hemoglobin (Hb) level in children with chronic diarrhea, a random sample of 10 children with
chronic diarrhea is selected from a city and their Hb levels (g/dL) are obtained as follows:

12.3 11.4 14.2 15.3 14.8 13.8 11.1 15.1 15.8 13.2

Assuming that the data may be looked upon as a random sample from a normal population, construct a 99% CI for
the actual average Hb level in children with chronic diarrhea for this city and interpret. Draw a box plot and
normal plot for these data, and comment.

5.5.34. Suppose that you need to estimate the mean number of typographical errors per page in the rough draft of a 400-
page book. A careful examination of 10 pages gives an average of six errors per page with a standard deviation of
two errors. Assuming that the data may be looked upon as a random sample from a normal population, construct a
99% CI for the actual average number of errors per page in this book and interpret. In this problem, is the normal
model appropriate?

5.5.35. Creatine kinase (CK) is found predominantly in muscle and is released into the circulation from muscular lesions.
Therefore, serum CK activity has been theoretically expected to be useful as a marker in exercise physiology and
sports medicine for the detection of muscle injury and overwork. The following data represent the peak CK
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activity (measured in IU/L) after 90 min of exercise in 15 healthy young men (Totsuka, M., et al., Break point of
serum creatine kinase release after endurance exercise. http://jap.physiology.org/cgi/content/full/93/4/1280):

1112 722 689 251 196 185 128 102 166 178

775 694 514 244 208

Construct a 95% CI for the mean peak CK activity.
5.5.36. A random sample of 20 observations gave the following summary statistics:

P
xi ¼ 234 and

P
x2i ¼ 3048:

Assuming that the data may be looked upon as a random sample from a normal population, construct a 95%
CI for the actual average, m.

5.5.37. Let a random sample of size 17 from a normal population for which both mean m and variance s2 are unknown
yield x ¼ 3:12 and s2 ¼ 1.04. Determine a 99% CI for m.

5.5.38. A random sample from a normal population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92

117 93 98 120 97 109 78 87 99 79

104 85 91 107 89

(a) Calculate an unbiased estimate bq of the population mean.
(b) Give an approximate 99% CI for the population mean.

5.5.39. The following are random data from a normal population:

3.3 3.3 4.7 2.6 6.4 4.7 1.7 4.5 5.0 3.0

Construct a 98% CI for the population mean m.
5.5.40. The following data represent the rates (micrometers per hour) at which a razor cut made in the skin of anesthetized

newts is closed by new cells:

28 20 21 39 32 23 18 31 14 23

18 22 28 24 33 12 23 21 25 25

(a) Can we say that the data are approximately normally distributed?
(b) Find a 95% CI for population mean rate m for the new cells to close a razor cut made in the skin of anes-

thetized newts.
(c) Find a 99% CI for m.
(d) Is the 95% CI wider or narrower than the 99% CI? Briefly explain why.

5.5.41. For a particular car, when the brake is applied at 62 mph, the following data give stopping distance (in feet) for 10
random trials on a dry surface (source: http://www.nhtsa.dot.gov/cars/testing/brakes/b.pdf):

146.9 148.4 149.4 148.6 150.3

147.5 147.5 149.3 148.4 145.5

(a) Can we say that the data are approximately normally distributed?
(b) Find a 95% CI for population mean stopping distance m.

5.5.42. A pharmaceutical company tested a new medicine to be marketed for the treatment of a particular type of virus. To
obtain an estimate of the mean recovery time, this medicine was tested on 15 volunteer patients, and the recovery
time (in days) was recorded. The following data were obtained:

8 17 10 6 34 11 13 6 9 8

19 4 12 17 7

(a) Obtain a 95% CI estimate of the mean recovery.
(b) What assumptions do we need to make? Test for these assumptions.
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5.6 A confidence interval for the population variance

In this section we derive a CI for the population variance s2 based on the chi-square distribution (c2 distribution). Recall
that the c2 distribution, like the Student t distribution, is indexed by a parameter called the degrees of freedom. However,
the c2 distribution is not symmetric and covers positive values only, and hence, it cannot be used to describe a random
variable that assumes negative values. Let X1,., Xn be normally distributed with mean m and variance s2, with both m and
s unknown. We know that:

Pn
i¼ 1

�
Xi � X

�2
s2

¼ ðn� 1ÞS2
s2

has a c2 distribution with (n � 1) degrees of freedom irrespective of s2. Hence, it can be used as a pivot. We now find two
numbers, c2

L and c2
U , such that:

P

�
c2
L �

ðn� 1ÞS2
s2

�c2
U

�
¼ 1� a:

The foregoing inequality can be rewritten as:

P

�ðn� 1ÞS2
c2
U

� s2 �ðn� 1ÞS2
c2
L

�
¼ 1� a:

Hence, a (1 � a)100% CI for s2 is given by
�ðn�1ÞS2 �c2

U ; ðn�1ÞS2 �c2
L

�
For convenience, we take the areas to the

right of c2
U ¼ c2

a=2 and to the left of c2
L ¼ c2

1�a=2 to be both equal to a/2; see Fig. 5.6. Using the chi-square table we can

find the values of c2
a=2 and c2

1�a=2: Then, we have the following result.

Theorem 5.6.1 If X and S are the mean and standard deviation of a random sample of size n from a normal population,
then:

P

 
ðn� 1ÞS2

c2
a=2

� s2 �ðn� 1ÞS2
c2
1�a=2

!
¼ 1� a;

where the c2 distribution has (n � 1) degrees of freedom.
That is, we are (1 � a)100% confident that the population variance s2 falls in the interval�

ðn �1ÞS2
.
c2
a=2; ðn � 1ÞS2

.
c2
1�a=2

�

EXAMPLE 5.6.1

A random sample of size 21 from a normal population gave a standard deviation of 9. Determine a 90% CI for s2.

Solution

Here n ¼ 21 and s2 ¼ 81. From the c2 table with 20 degrees of freedom, c2
0:05 ¼ 31:4104 and c2

0:95 ¼ 10:8508: Therefore, a

90% CI for s2 is obtained from:

FIGURE 5.6 Chi-square density with equal area on both sides of the confidence interval.
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ðn � 1ÞS2

c2
a=2

;
ðn � 1ÞS2

c2
1�a=2

!
:

Thus, we get:

ð20Þð81Þ
31:4104

< s2 <
ð20Þð81Þ
10:8508

;

or we are 90% confident that 51.575 < s2 < 149.298.

We can summarize the steps for obtaining the CI for the true variance as follows.

Procedure to find confidence interval for s2

1. Calculate x and s2 from the sample x1, ., xn.

2. Find c2
U ¼ c2

a=2; and c2
L ¼ c2

1�a=2 using the c2 square

table with (n � 1) degrees of freedom.

3. Compute the (1 � a)100% CI for the population variance

s2 as
�
ðn�1Þs2

.
c2
a=2; ðn�1Þs2

.
c2
1�a=2

�
; where the c2

values are with (n � 1) degrees of freedom.

Assumption: The population is normal.

EXAMPLE 5.6.2

The following data represent cholesterol levels (in mg/dL) of 10 randomly selected patients from a large hospital on a particular

day:

360 352 294 160 146 142 318 200 142 116

Determine a 95% CI for s2.

Solution

From the data, we can get x ¼ 223 and standard deviation s ¼ 96.9. The following probability graph is obtained via Minitab.
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Normal probability plot for cholesterol levels

Even though the scattergram does not appear to follow a straight line, the data are still within the band, so we can assume

approximate normality for the data. (In situations like this, it is more appropriate to use nonparametric tests explained in Chapter

12.) A box plot of the data shows that there are no outliers. From the c2 table, c2
0:025ð9Þ ¼ 19:023 and c2

0:975ð9Þ ¼ 2:70:

Therefore a 90% CI for s2 is obtained from:  
ðn � 1ÞS2

c2
a=2ðn � 1

�; ðn � 1ÞS2

c2
1�a=2ðn � 1

�
!
:
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Thus, we get:

ð9Þð96:9Þ2
19:023

< s2 <
ð9Þð96:9Þ2

2:70
;

or we are 95% confident that 4442.3 < s2 < 31,299. Note that the numbers look very large, but it is the value of variance. By taking
the square root of the numbers on the both sides, we can also get a CI for the standard deviation s.

As remarked in the previous exercise, in general, to find a (1 � a)100% CI for the true population standard deviation, s, take

the square roots of the end points of the CI of the variance.

EXERCISES 5.6

5.6.1. A random sample of size 20 is drawn from a population having a normal distribution. The sample mean and the
sample standard deviation from the data are given, respectively, as x ¼ �2:2 and s ¼ 1.42. Construct a 90% CI
for the population variance s2 and interpret.

5.6.2. A medicine is suspected of causing an elevated heart rate in a certain group of high-risk patients. Twenty patients
from the group were given the medicine. The changes in heart rates were found to be as follows:

�1 8 5 10 2 12 7 9 1 3

4 6 4 12 11 2 �1 10 2 8

Construct a 95% CI for the variance of change in heart rate. Assume that the population has a normal distribution
and interpret.

5.6.3. Air pollution in large US cities is monitored to see whether it conforms to requirements set by the Environmental
Protection Agency. The following data, expressed as an air pollution index, give the air quality of a city for 10
randomly selected days:

56.23 57.12 57.7 65.80 59.40

62.90 58.00 64.56 63.92 63.45

Assuming that the data may be viewed as a random sample from a normal population, construct a 99% CI for the
actual variance of the air pollution index for this city and interpret.

5.6.4. A random sample of 25 observations gave the following summary statistics:
P

xi ¼ 234 and
P

x2i ¼ 3048:
Assuming that the data can be looked upon as a random sample from a normal population, construct a 95%
CI for the actual variance, s2.

5.6.5. Let a random sample of size 18 from a normal population with both mean m and variance s2 unknown yield x ¼
2:27 and s2 ¼ 1.02. Determine a 99% CI for s2.

5.6.6. Suppose we want to study contaminated fish in a river. It is important for the study to know the size of the variance
s2 in the fish weights. The 25 samples of fish in the study produced the following summary statistics: x ¼
1030:5g; and standard deviation s ¼ 200.6 g. Construct a 95% CI for the true variation in weights of contaminated
fish in this river.

5.6.7. A random sample from a normal population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92

117 93 98 120 97 109 78 87 99 79

104 85 91 107 89

(a) Calculate an unbiased estimate bs2 of the population variance.
(b) Give approximate 99% CI for the population variance.
(c) Interpret your results and state any assumptions you made to solve the problem.

5.6.8. It is known that some brands of peanut butter contain impurities within an acceptable level. A test conducted on 11
randomly selected jars of a certain brand of peanut butter resulted in the following percentages of impurities:

1.9 2.7 2.1 2.8 2.3 3.6 1.4 1.8 2.1 3.2 2.0

Construct a 95% CI for the average percentage of impurities in this brand of peanut butter.
Give an approximate 95% CI for the population variance.
Interpret your results and test for normality.
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5.6.9. The following data represent the maximal head measurements (across the top of the skull) in millimeters of 15
Etruscans (inhabitants of ancient Etruria):

152 147 126 140 135 139 149 140

142 147 132 148 146 143 137

Calculate an unbiased estimate bs2 of the population variance.
Give approximate 95% CI for the population variance.
Interpret your results and test for normality.

5.6.10. The rates of return (rounded to the nearest percentage) for 25 clients of a financial firm are given in the following
table:

13 11 28 6 �4 15 13 6 11 11

3 12 20 3 16 16 15 8 20 15

4 1 12 2 �9

Find a 98% CI for the variance s2 of rates of return. Use this to find the CI for the population standard
deviation, s.

5.6.11. To test the precision of a new type of blood sugar monitor for diabetic patients, 20 randomly selected monitors of
this type were used. A blood sample with 120 mg/dL was tested in each of these monitors, and the resulting read-
ings are given in the following table:

117 116 121 120 122 117 120 120 118 119

118 123 119 123 119 122 118 122 121 120

(a) Obtain a 99% CI for the variance s2.
(b) Is it reasonable to assume that the data follow a normal distribution?

5.7 Confidence interval concerning two population parameters

In the earlier sections we studied the confidence limits of true parameters from samples from a single population. Now, we
consider the interval estimation based on samples from two populations. Our aim is to obtain a CI for the parameters of
interest based on two independent samples taken from these two populations.

Let X11; :::;X1n1 be a random sample from a normal distribution with mean m1 and variance s21; and let X21; :::;X2n2 be a

random sample from a normal distribution with mean m2 and variance s22: Let X1 ¼ ð1 =n1Þ
Pn1
i¼ 1

X1i and

X2 ¼ ð1 =n2Þ
Pn2
i¼ 1

X2i: We will assume that the two samples are independent. Then X1 and X2 are independent. The dis-

tribution of X1 � X2 is N
�
m1 �m2; ð1 =n1Þs21 þð1 =n2Þs22

�
. Now, as in the one-sample case, the CI for m1 � m2 is obtained

as follows.

Large-sample confidence interval for the difference of two means

(i) s1, s2 are known. The (1 � a)100% large sample CI for m1
� m2 is given by:

�
X1 �X2

�� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s2
1

n1

þ s2
2

n2

�s
:

(ii) If s1 and s2 are not known, s1 and s2 can be replaced by

the respective sample standard deviations S1 and S2 when

ni � 30, i ¼ 1, 2. Thus, we can write:

p

0
@�X1 � X2

�� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
S2
1

n1

þ S2
2

n2

�s
� m1 � m2

� �X1 � X2

�þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
S2
1

n1

þ S2
2

n2

�s 1
A ¼ 1� a:

Assumptions: The population is normal, and the samples

are independent.
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EXAMPLE 5.7.1

A study of two kinds of machine failures shows that 58 failures of the first kind took an average of 79.7 minutes to repair with a

standard deviation of 18.4 minutes, whereas 71 failures of the second kind took on average 87.3 minutes to repair with a standard

deviation of 19.5 minutes. Find a 99% CI for the difference between the true average amounts of time it takes to repair failures of

the two kinds of machines.

Solution

Here, n1 ¼ 58, n2 ¼ 71, x1 ¼ 79.7, s1 ¼ 18.4, x2 ¼ 87.3, and s2 ¼ 19.5. Then the 99% CI for m1 � m2 is given by:

ð79:7� 87:3Þ � 2:575

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð18:4Þ2

58
þ ð19:5Þ2

71

s
:

That is, we are 99% certain that m1 � m2 is located in the interval (�16.215, 1.0149). Note that �16.215 < m1 � m2 < 1.0149

means that more than 90% of the length of this interval is negative. Thus, we can conclude that m2 dominates m1, that is, m2 > m1
more than 90% of the time.

In the small-sample case, the problem of constructing CIs for the difference of the means from the two normal pop-
ulations with unknown variances can be a difficult one. However, if we assume that the two populations have a common
but unknown variance, say s21 ¼ s22 ¼ s2; we can obtain an estimate of the variance by pooling the two sample data sets.
Define the pooled sample variance S2p as:

S2p ¼

Pn1
i¼ 1

�
X1i � X1

�2 þXn2
i¼ 1

�
X2i � X2

�2
n1 þ n2 � 2

¼ ðn1 � 1ÞS21 þ ðn2 � 1ÞS22
n1 þ n2 � 2

:

Now, when the two samples are independent,

T ¼
�
X1 � X2

�� ðm1 � m2Þ

Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

r

has a t distribution with n1 þ n2 � 2 degrees of freedom. We summarize the CI for m1 � m2 below.

Small-sample confidence interval for the difference of two means
�
s2
1 [s2

2

�
The small-sample (1 � a)100% CI for m1 � m2 is:

�
X1 �X2

�� ta=2;ðn1þn2�2ÞSp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ 1

n2

r
:

Assumption: The samples are independent from two normal

populations with equal variances.

EXAMPLE 5.7.2

Independent random samples from two normal populations with equal variances produced the following data:

Sample 1: 1.2 3.1 1.7 2.8 3

Sample 2: 4.2 2.7 3.6 3.9

(a) Calculate the pooled estimate of s2.

(b) Obtain a 90% CI for m1 � m2.
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Solution

(a) We have n1 ¼ 5 and n2 ¼ 4. Also,

x1 ¼ 2:36; s21 ¼ 0:733

x2 ¼ 3:6; s22 ¼ 0:42:

Hence,

s2p ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
n1 þ n2 � 2

¼ 0:5989:

(b) For the confidence coefficient 0.90, a ¼ 0.10, and from the t table, t0.05,7 ¼ 1.895. Thus, a 90% CI for m1 � m2 is:

�
X1 � X2

�� ta=2;ðn1þn2�2Þsp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ 1

n2

r

¼ ð2:36� 3:6Þ � 1:895

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5989

�
1

5
þ 1

4

�s

¼ �1:24� 0:98 ¼ ð� 2:22;�0:26Þ:

Here, m2 dominates m1 uniformly. Note that we can decrease the confidence range, �2.22 to 0.26, by increasing n1 and n2
with 1 � a ¼ 0.90 to remain the same. This means that we are closing on the unknown true value of m1 � m2.

In the small-sample case, if the equality of the variances cannot be reasonably assumed, that is, s21ss22; we can still use
the previous procedure, except that we use the following degrees of freedom in obtaining the t value from the table. Let

v ¼

�
s21
n1

þ s22
n2

�2

�
s21
n1

�2

n1 � 1
þ

�
s22
n2

�2

n2 � 1

:

The number given in this formula is always rounded down for the degrees of freedom. Hence, in this case, a small-
sample (1 � a)100% CI for m1 � m2 is given by:

�
X1 �X2

�� ta=2;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
;

where the t distribution has v degrees of freedom as given previously.

EXAMPLE 5.7.3

Assume that two populations are normally distributed with unknown and unequal variances. Two independent samples are taken

with the following summary statistics:

n1 ¼ 16 x1 ¼ 20:17 s1 ¼ 4:3
n2 ¼ 11 x2 ¼ 19:23 s2 ¼ 3:8

Construct a 95% CI for m1 � m2.

Solution

First let us compute the degrees of freedom,
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v ¼

�
s21
n1

þ s22
n2

�2

�
s2
1

n1

�2

n1 � 1
þ

�
s2
1

n1

�2

n1 � 1

¼

 
ð4:3Þ2
16

þ ð3:8Þ2
11

!
 

ð4:3Þ2
16

!2

15
þ

 
ð3:8Þ2
11

!2

110

¼ 23:312:

Hence, v ¼ 23, and t0.025,23 ¼ 2.069.

Now a 95% CI for m1 � m2 is:

ðx1 � x2Þ � ta=2;v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
¼ ð20:17� 19:23Þ

�ð2:069Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4:3Þ2
16

þ ð3:8Þ2
11

s

which gives the 95% CI as:

�2:3106 < m1 � m2 < 4:1906:

In a real-world problem, how do we determine if s21 ¼ s22; or s
2
1ss22; so that we can select one of the two methods just

given? In Chapter 14, we discuss a procedure that determines the homogeneity of the variances (i.e., whether s21 ¼ s22
�
.

For the time being a good indication is to look at the point estimators of s21 and s22; namely, S21 and S22: If the point
estimators are fairly close to each other, then we can select s21 ¼ s22: Otherwise, s

2
1ss22: For a more general method of

testing for equality of variances, we refer to Section 14.4.3.
We now give a procedure for a large-sample CI for the difference of the true proportions, p1 � p2, in two binomial

distributed populations.

Large-sample confidence interval for p1 L p2

The (1 � a)100% large-sample CI for p1�p2 is given by:

�bp1 � bp2

�� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� bp1

�
1� bp1

�
n1

þ bp2

�
1� bp2

�
n2

�s
;

where bp1 and bp2 are the point estimators of p1 and p2. This

approximation is applicable if bpini � 5; i ¼ 1;2 and
�
1�bpi

�
ni

� 5; i ¼ 1;2: The two samples are independent.

EXAMPLE 5.7.4

Iron deficiency, the most common nutritional deficiency worldwide, has negative effects on work capacity and on motor and

mental development. In a 1999e2000 survey by the National Health and Nutrition Examination Survey, iron deficiency was

detected in 58 of 573 white, non-Hispanic females (10% rounded to whole number) and 95 of 498 (19% rounded to whole

number) black, non-Hispanic females (source: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5140a1.htm). Let p1 be the

proportion of black, non-Hispanic females with iron deficiency and let p2 be the proportion of white, non-Hispanic females with

iron deficiency. Obtain a 95% CI for p1 � p2.

Solution

Here, n1 ¼ 573 and n2 ¼ 498. Also, bp1 ¼ 58
573 ¼ 0:10122z0:1; and bp2 ¼ 95

498 ¼ 0:1907z0:19: For a ¼ 0.05, z0.015 ¼ 1.96.

Hence, a 95% CI for p1 � p2 is:

ðbp1 � bp2Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�bp1ð1� bp1

�
n1

þ bp2ð1� bp2

�
n2

�s

¼ ð0:1� 0:19Þ � ð1:96Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:1Þð0:9Þ

573
þ ð0:19Þð0:81Þ

498

r

¼ ð� 0:13232;�0:047685Þ:
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Here, the true difference of p1 � p2 is located in the negative portion of the real line, which tells us that the true proportion of

black, non-Hispanic females with iron deficiency is larger than the proportion of white, non-Hispanic females with iron

deficiency.

There are situations in applied problems that make it necessary to study and compare the true variances of two in-
dependent normal distributions. For this purpose, we will find a CI for the ratio s21

�
s22 using the F distribution. Let

X1; :::;Xn1 and Y1; :::; Yn2 be independent samples of size n1 and n2 from two normal distributions N
�
m1; s

2
1

�
and N

�
m2; s

2
2

�
;

respectively. Let S21 and S22 be the variances of the two random samples. The CI for the ratio s21
�
s22 is given as follows.

A (1 L a)100% confidence interval for
s2
1

s2
2

A (1 � a)100% CI for s21
�
s22 is given by:  

S2
1

S2
2

!�
1

Fn1�1;n2�1;1�a=2

�
;

 
S2
1

S2
2

!�
1

Fn1�1;n2�1;ða=2Þ

�!
:

That is,

P

  
S2
1

S2
2

!�
1

Fn1�1;n2�1;1�a=2

�
� s2

1

s2
2

�
 
S2
1

S2
2

!�
1

Fn1�1;n2�1;ða=2Þ

�!

¼ 1� a:

Assumptions: These two populations are normal, and the

samples are independent.

Note that we can also write a (1 � a)100% CI for s21
�
s22 in the form:  

S21
S22

!�
1

Fn1�1;n2�1; 1�a=2

�
;

 
S21
S22

!
Fn2�1;n1�1; 1�a=2

!
:

The following example illustrates how to find the CI for s21
�
s22:

EXAMPLE 5.7.5

Assuming that two populations are normally distributed, two independent random samples are taken with the following summary

statistics:

n1 ¼ 21 x1 ¼ 20:17 s1 ¼ 4:3
n2 ¼ 16 x2 ¼ 19:23 s2 ¼ 3:8

Construct a 95% CI for s21
�
s22:

Solution

Here, n1 ¼ 21, n2 ¼ 16, and a ¼ 0.05. Using the F table, we have:

Fn1�1;n2�1;1�a=2 ¼ Fð20; 15;0:975Þ ¼ 2:76

and

Fn2�1;n1�1; 1�a=2 ¼ Fð15; 20;0:975Þ ¼ 2:57:

A 95% CI for s2
1

�
s2
2 is:   

S2
1

S2
2

!�
1

Fn1�1;n2�1; 1�a=2

�
;

 
S2
1

S2
2

!
Fn2�1;n1�1; 1�a=2

!

¼
  

ð4:3Þ2
ð3:8Þ2

!�
1

2:76

�
;

 
ð4:3Þ2
ð3:8Þ2

!
ð2:57Þ

!
¼ ð0:46394; 3:2908Þ:

That is, we are 95% confident that the ratio of true variance, s2
1

�
s2
2; is located in the interval that implies a 95% CI (0.46394,

3.2908).
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EXERCISES 5.7

5.7.1. A study was conducted to compare two different procedures for assembling components. Both procedures were
implemented and run for a month to allow employees to learn each procedure. Then each was observed for
10 days with the following results. Values are number of components assembled per day:

Procedure I 115 101 113 64 104 97 114 96 87 93

Procedure II 86 99 100 78 97 111 102 94 88 99

Construct a 98% CI for the difference in the mean number of components assembled by the two methods. Assume
that the data for each procedure are from approximately normal populations with a common variance. Interpret the
result.

5.7.2. A study was conducted to see the differences between oxygen consumption rates for male runners from a college
who had been trained by two different methods, one involving continuous training for a period of time each day
and the other involving intermittent training of about the same overall duration. The means, standard deviations,
and sample sizes are shown in the following table:

Continuous training n1 ¼ 15 x1 ¼ 46:28 s1 ¼ 6:3
Intermittent training n2 ¼ 7 x2 ¼ 42:34 s2 ¼ 7:8

If the measurements are assumed to come from normally distributed populations with equal variances, estimate the
difference between the population means, with confidence coefficient 0.95, and interpret.

5.7.3. Studies have shown that the risk of developing coronary disease increases with the level of obesity. A study
comparing two methods of losing weight, diet alone and exercise alone, was conducted on 87 men over a
1-year period. Forty-two men dieted and lost an average of 16.0 lb over the year, with a standard deviation of
5.6 lb. Forty-five men who exercised lost an average of 10.6 lb, with a standard deviation of 7.9 lb. Construct
a 99% CI for the difference in the mean weight loss by these two methods. State any assumptions you made
and interpret the result you obtained.

5.7.4. The following information was obtained from two independent samples selected from two normally distributed
populations with unknown but equal variances:

Sample 1 14 15 12 13 6 14 11 12 17 19 23

Sample 2 16 18 12 20 15 19 15 22 20 18 23 12 20

Construct a 95% CI for the difference between the population means and interpret.
5.7.5. In the academic year 2001e02, two random samples of 25 male professors and 23 female professors from a large

university produced a mean salary for male professors of $58,550 with a standard deviation of $4000; the mean
for female professors was $53,700 with a standard deviation of $3200. Construct a 90% CI for the difference be-
tween the population mean salaries. Assume that the salaries of male and female professors are both normally
distributed with equal standard deviations. Interpret the result.

5.7.6. Let the random variables X1 and X2 follow binomial distributions that have parameters n1 ¼ 100, n2 ¼ 75. Let
x1 ¼ 35 and x2 ¼ 27 be observed values of X1 and X2. Let p1 and p2 be the true proportions. Determine an appro-
priate 95% CI for p1 � p2.

5.7.7. The following information is obtained from two independent samples selected from two populations:

n1 ¼ 40 x1 ¼ 28:4 s1 ¼ 4:1
n2 ¼ 32 x2 ¼ 25:6 s2 ¼ 4:5

(a) What is the MLE of m1 � m2?
(b) Construct a 99% CI for m1 � m2.
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5.7.8. To compare the mean Hb levels of well-nourished and undernourished groups of children, random samples from
each of these groups yielded the following summary:

Number of children Sample mean Sample standard deviation

Well nourished 95 11.2 0.9

Undernourished 75 9.8 1.2

Construct a 95% CI for the true difference of means, m1 � m2.
5.7.9. In a certain part of a city, the average price of homes in 2000 was $148,822, and in 2001 it was $155,908. Suppose

these means were based on a random sample of 100 homes in 1997 and 150 homes in 1998 and that the sample
standard deviations of sale prices were $21,000 for 2000 and $23,000 for 2001. Find a 98% CI for the difference
in the two population means.

5.7.10. Two independent samples from a normal population are taken with the following summary statistics:

n1 ¼ 16 x1 ¼ 2:4 s1 ¼ 0:1
n2 ¼ 11 x2 ¼ 2:6 s2 ¼ 0:5

Construct a 95% CI for s21
�
s22:

5.7.11. The following information was obtained from two independent samples selected from two normally distributed
populations:

Sample 1 35 36 33 34 27 35 32 33 38 40 44

Sample 2 37 39 33 41 36 40 36 43 41 39 44 33 41

Construct a 90% CI for s21
�
s22:

5.7.12. The management of a supermarket wanted to study the spending habits of its male and female customers. A
random sample of 16 male customers who shopped at this supermarket showed that they spent an average of
$55 with a standard deviation of $12. Another random sample of 25 female customers showed that they spent
$85 with a standard deviation of $20.50. Assuming that the amounts spent at this supermarket by all its male
and female customers were approximately normally distributed, construct a 90% CI for the ratio of variance in
spending for males and females, s21

�
s22:

5.7.13. An experiment is conducted comparing the effectiveness of a new method of teaching algebra for eighth-grade
students. Twelve gifted and 12 average students are taught using this method. Their scores on a final exam are
shown in the following table:

Average 58 69 55 65 88 52 99 76 45 86 55 79

Gifted 77 86 84 93 77 91 87 95 68 78 74 58

(a) Compute the 95% CI on the difference between the means of the students being taught by this new method.
(b) Construct a 95% CI for the ratio of variance in test scores for average and gifted students, s21

�
s22:

(c) What are the assumptions you made in (a) and (b)? Are these assumptions justified?

5.7.14. Assume that two populations have the same variance s2. If a sample of size n1 produced a variance S21 from pop-
ulation I and a sample of size n2 produced a variance S22 from population II, show that the pooled variance,

S2p ¼ ðn1 � 1ÞS21 þ ðn2 � 1ÞS22
n1 þ n2 � 2

is an unbiased estimator of s2. Show that
�
S21 þS22

��
2 is also an unbiased estimator of s2. Which of the two es-

timators would you prefer? Give reasons for your choice.
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5.8 Chapter summary

In this chapter we have discussed the basic concepts of estimation, both point estimation and interval estimation. Two
methods of finding point estimators were describeddthe method of moments and the method of maximum likelihood.
Some desirable properties of the point estimators that we have discussed are unbiasedness and sufficiency. Unbiasedness
guards against consistently producing under- or overestimates of the parameter in repeated sampling. A sufficient estimator
is a “good” estimator of the population parameter q in the sense that it depends on fewer data values. Later, this chapter
discusses the concept of interval estimation. A (1 � a)100% CI for an unknown parameter q is computed from sample
data. The so-called pivotal method is introduced for deriving a CI. Large-sample and small-sample CIs are derived for
population mean m. CIs in the case of two samples are also discussed. In addition, CIs for variance and ratio of variances
are derived.

We will now list some of the key definitions introduced in this chapter.

- Method of moments
- Likelihood function
- Maximum likelihood equations
- Unbiased estimator
- MSE
- MVUE
- Sufficient estimator
- Jointly sufficient
- Upper and lower confidence limits
- Confidence coefficient
- A (1 � a)100% CI for q
- Interval estimation
- CI

In this chapter, we have also learned the following important concepts and procedures:

- The method of moments procedure
- Procedure to find MLE
- Procedure to verify
- Pivotal method
- Procedure to find a CI for q using the pivot
- Procedure to find a large-sample CI for q
- Procedure to find a small-sample CI for m
- Procedure to find a CI for the population variance s2

- Large-sample CI for the difference of the means
- Small-sample CI for the difference of two means

�
s21 ¼ s22

�
- Small-sample CI for the difference of two means

�
s21 ss22

�
- Large-sample CI for p1 � p2
- A (1 � a)100% CI for s21

�
s22

5.9 Computer examples

5.9.1 Examples using R

It should be noted that for the problems where you are generating random samples your answers will vary!

EXAMPLE 5.9.1

Descriptive point estimates
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Generate 50 sample points from an N(4,4) distribution and find the descriptive statistics. Obtain an unbiased and sufficient

estimate of m.

R-code

sample¼rnorm(50,4,4);

summary(sample);

sd(sample);

sd(sample)/sqrt(length(sample));
Standard error of the mean

Output

Your output will be unique since the samples are generated randomly; take notice of standard error.

Min. 1st Qu. Median Mean 3rd Qu. Max.

�4.292 1.105 4.012 3.865 6.478 14.790

Notice this is an estimate;

we know that the population

mean is 4 as we defined it.

4.288085 Standard deviation
0.6064268 Standard error of the mean

Notice this is an estimate;
we know that the population
mean is 4 as we defined it.

EXAMPLE 5.9.2

Uniform maximum likelihood

Generate 35 samples from a U(0,5) distribution and, using the descriptive statistics command, find the maximum likelihood

estimate for these data.

Solution

We know that for a random sample X1,., Xn from U(0, q), the MLE bq ¼ maxðXiÞ ¼ XðnÞ, the nth order statistic. We can use the

following steps to obtain the estimate.

R-code

sample¼runif(35,0,5);

summary(sample);

Output

Your output will be unique since the samples

are generated randomly.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1155 1.5710 2.9520 2.7620 4.0920 4.9900

The MLE of the data 4.99

EXAMPLE 5.9.3

Confidence interval

Obtain a 95% CI for m using the following data:

Sample (x): 7.227 5.7383 4.9369 6.238 8.4876 2.7618

This example assumes you have stored your data into variable x. Please modify code appropriately.

R-code

t.test(x,conf.level¼0.95);

Output

One Sample t-test.

data: x

t ¼ 7.3399, df ¼ 5, p-value ¼ 0.0007365

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

3.832566 7.963967

sample estimates:
Notice the interval

rather than point estimate.mean of x

5.898267

Statistical estimation Chapter | 5 243



EXAMPLE 5.9.4

Confidence interval

For the following data obtain a 98% CI for m:

Sample (x): 6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1 9.9 9.6 9.0 13.7 9.4 16.6 9.1 10.1 10.6 11.1 8.9 11.7 12.8

11.5 10.6 12.0 11.1 6.4 12.3 12.3 11.4 9.9 15.5 14.3 11.5 13.3 11.8 12.8 13.7 13.9 12.9 14.2 14.0

This example assumes you have stored the data into variable x. Please modify your code appropriately.

R-code

t.test(x,conf.level¼0.98);

Output

One Sample t-test

data: x

t ¼ 27.7762, df ¼ 42, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

98 percent confidence interval:

9.910598 11.801030

sample estimates:
Notice the interval

rather than point estimate.mean of x

10.85581

EXAMPLE 5.9.5

Confidence interval

For the following data, find a 90% CI for m1 � m2 using the following data:

Sample (x): 1.2 3.1 1.7 2.8 3.0

Sample (y): 4.2 2.7 3.6 3.9

This example assumes you have stored your data into variables x and y. Please modify your code appropriately.

R-code

t.test(x,y,conf.level¼0.90);

Output

Welch Two Sample t-test

data: x and y

t ¼ �2.4721, df ¼ 6.996, p-value ¼ 0.04272

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

�2.1903896 �0.2896104 90% Confidence Interval

sample estimates:

mean of x mean of y

2.36 3.60

5.9.2 Minitab examples

EXAMPLE 5.9.6

Generate 50 sample points from an N(4, 4) distribution and find the descriptive statistics. Obtain an unbiased and sufficient

estimate of m.

Solution

Because we know that the sample mean x is an unbiased and sufficient estimate of the population mean m, we need to find only

the sample mean of the generated data.

Calc > Random Data > Normal . > Type 50 in Generate __ rows of data > Store in column(s): type C1

> type in Mean: 4.0 and in Standard deviation: 2.0 > click OK.
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EXAMPLE 5.9.7

Generate 35 samples from a U(0, 5) distribution and, using the descriptive statistics command, find the maximum likelihood

estimate for these data.

Solution

We know that for a random sample X1, ., Xn from U(0, q), the MLE bq ¼max(Xi) ¼ X(n), the nth order statistic. We can use the

following steps to obtain the estimate.

Calc > Random Data > Uniform . > Type 35 in Generate __ rows of data > Store in column(s): type C1 > type in Lower

end point: 0.0 and in Upper end point: 5.0 > click OK.

EXAMPLE 5.9.8

(Small Sample) Using Minitab, obtain a 95% CI for m using the following data:

7.227 5.7383 4.9369 6.238 8.4876 2.7618

Solution

Use the following commands.

Enter the data in C1. Then,

Stat > Basic Statistics > 1-sample t ., in variables: enter C1, click Confidence interval, in Level default value is 95, if any

other value, enter that value, and click OK.

EXAMPLE 5.9.9

(Large Sample) For the data:

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1 9.9

9.6 9.0 13.7 9.4 16.6 9.1 10.1 10.6 11.1 8.9 11.7

12.8 11.5 10.6 12.0 11.1 6.4 12.3 12.3 11.4 9.9 15.5

14.3 11.5 13.3 11.8 12.8 13.7 13.9 12.9 14.2 14.0

obtain a 98% CI for m.

Solution

Enter the data in C1. Then click:

Stat > Basic Statistics > 1-Sample Z . >, in Variables: type C1 > click Confidence interval, and enter 98 in Level:> enter 5

in Sigma: > OK.

EXAMPLE 5.9.10

For the following data, find a 90% CI for m1 � m2:

Sample 1 1.2 3.1 1.7 2.8 3.0

Sample 2 4.2 2.7 3.6 3.9

Solution

Enter sample 1 in C1 and sample 2 in C2. Then click:

Stat > Basic Statistics > 2-Sample t . > click Sample in different columns > in First: enter C1 and in Second: enter C2 >

enter 90 in Confidence Level: (if equality of variance can be assumed, click Assume equal variances) > OK.
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5.9.3 SPSS examples

EXAMPLE 5.9.11

Consider the data:

66 74 79 80 77 78 65 79 81 69

Using SPSS, obtain a 99% CI for m.

Solution

One easy way to obtain the CI in SPSS is to use the hypothesis testing procedure. The procedure is as follows: First enter the data

in C1. Then click:

Analyze > Compare Means > One-sample t Test ., > Move var00001 to Test Variable(s), and Click Options ., and enter

99 in Confidence interval:, click Continue, and OK.

Note that the default value is 95%.

5.9.4 SAS examples

We will not give the output in this section.

EXAMPLE 5.9.12

The following data give P/Es for a particular year of 49 mutual fund companies owned by a randomly selected mutual fund:

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1

9.9 9.6 9.0 16.6 9.1 10.1 10.6 11.1 8.9 11.7

12.8 11:5 12:0 10:6 11:1 6:4 11:4 9:9 14:3 11:5

11:8 13:3 13:9 12:9 14:2 14:0 15:5 17:9 21:8 18:4

34:3 13:7 12:3 18:0 9:4 12:3 16:9 12:8 13:7

Find a 98% CI for the mean P/E multiples. Use SAS procedures.

Solution

We could use the following procedure.

DATA peratio;
INPUT patio @@;
DATALINES;
6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8
7.1 9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6
11.1 8.9 11.7 12.8 11.5 12.0 10.6 11.1 6.4 12.3
12.3 11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9

12.9
14.2 14.0 15.5 16.9 18.0 17.9 21.8 18.4 34.3
;
PROC MEANS data ¼ peratio lclm uclm alpha ¼ 0.02;
var peratio;
RUN;

EXERCISES 5.9

5.9.1. Using any of the software packages (R, Minitab, SPSS, or SAS), obtain CIs for at least one data set taken from each
section of this chapter.

5.10 Projects for Chapter 5

5.10.1 Asymptotic properties

In general, we do not have a single sample with one estimator of the unknown parameter q. Rather, we will have a general
formula that defines an estimator for any sample size. This gives a sequence of estimators of q:

246 Mathematical Statistics with Applications in R



bq ¼ hnðX1;.;XnÞ; n ¼ 1; 2;.::

In this case, we can define the following asymptotic properties:

(i) The sequence of estimators is said to be asymptotically unbiased for q if bias
�bqn�/0 as n / N.

(ii) Suppose
�bqn� and byn are two sequences of estimators that are asymptotically unbiased for q. The asymptotic relative

efficiency of bqn to byn is defined by:

lim
n

Var
�bqn�

Var
�byn�:

(a) Show that bqn is asymptotically unbiased if and only if:

E
�bqn�/ q as n/N:

(b) Let X1, ., Xn be a random sample from a distribution with unknown mean m and variance s2. It is known that the
method of moments estimators for m and s2 are, respectively, the sample mean X and
S02n ¼ ð1 =nÞ Sn

i¼1

�
Xi � X

�2 ¼ ððn �1Þ =nÞS2n, where S2n is the sample variance.
(i) Show that S02n is an asymptotically unbiased estimator of s2.
(ii) Show that the asymptotic relative efficiency of S02n to S2n is 1.
(iii) Show that MSE

�
S02n
�
< MSE

�
S2n
�
. Thus,

�
S2n
�
is unbiased but

�
S02n
�
has a smaller MSE. However, it should be

noted that the difference is very small and approaches zero as n becomes large.

5.10.2 Robust estimation

The estimators derived in this chapter are for particular parameters of a presumed underlying family of distributions.
However, if the choice of the underlying family of distributions is based on past experience, there is a possibility that the
true population will be slightly different from the model used to derive the estimators. Formally, a statistical procedure is
robust if its behavior is relatively insensitive to deviations from the assumptions on which it is based. If the behavior of an
estimator is taken as its variance, a given estimator may have minimum variance for the distribution used, but it may not be
very good for the actual distribution. Hence, it is desirable for the derived estimators to have small variance over a range of
distributions. We call such estimators robust estimators. The following illustrates how the variance of an estimator can be
affected by deviations from the presumed underlying population model.

Consider estimating the mean of a standard normal distribution. Let X1, ., Xn be a random sample from a standard
normal distribution. Suppose the population actually follows a contaminated normal distribution. That is, for 0 � d � 1,
(1 � d)100% of the observations come from an N(0, 1) distribution and the remaining (d)100% of observations come from
an N(0, 5) distribution. We already know that the MVUE of the mean m of an uncontaminated normal distribution is the
sample mean. A less effective alternative would be the sample median.

(a) Conduct a simulation study with sample size n that takes, say, 5000 random samples of 100 observations each. Find
the mean and median. Also find the sample variance of each. For various values of d, say 0.0, 0.01, 0.05, 0.1, 0.2, 0.3,
and 0.4, create a table of variances of sample mean and sample variance. Compare the variances as the value of
d increases.

(b) The aim of robust estimation is to derive estimators with variance near that of the sample mean when the distribution is
standard normal while having the variance remain relatively stable as d increases. One such estimator is the
a � trimmed mean. Let 0 � a � 0.5, and define k ¼ [na], where [x] is the greatest integer that is less than or equal
to x. For the ordered sample, discard the k highest and lowest observations and find the mean of the remaining
n � k observations. That is, let X(1) � X(2) �. < X(n) be the ordered sample, and define:

Xa ¼ Xð1þkÞ � Xð2þkÞ � . � XðnþkÞ
n� 2k

:

For the values of d and the samples in (a), compute the mean and the 0.05-, 0.1-, 0.25-, and 0.5-trimmed means. Discuss
the robustness.
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5.10.3 Numerical unbiasedness and consistency

(a) Run the simulation of a normal experiment with increasing sample size. Numerically show the unbiased and consistent
properties of the sample mean. Run the experiment at least up until n ¼ 1000.

(b)Repeat the experiment of (a), now with an exponential distribution.

5.10.4 Averaged squared errors

Generate 25 samples of size 40 from a normal population with m ¼ 10 and s2 ¼ 4. For each of the 25 samples:

(a) Compute: x, s2 ¼ S40
i¼ 1ðxi�xÞ2

39 , s21 ¼ S40
i¼ 1ðxi�xÞ2

40 , and s22 ¼ S40
i¼ 1ðxi�xÞ2

41 .

(b)Compute the average squared error (ASE) for each of the estimates s2, s21, and s22 as follows:

Let Ks2 ¼
��

SK
i¼ 1ðxi � xÞ2

��
39

�
for K ¼ 1, 2, ., 25 and Ks2be the sample variance for the Kth sample. Then, the

ASE is:

ASE ¼
P25
i¼ 1

�
KS2 � s2

�2
25

:

Repeat this procedure for the other two estimators. Compare the three ASEs and check which has the smallest ASE.
(c) Repeat (a) and (b) with a sample size of 15.

5.10.5 Alternate method of estimating the mean and variance

(a) Consider the following alternative method of estimating m and s2. We sample sequentially, and at each stage we
compute the estimates of m and s2 as follows:
Let X1, ., Xn, Xnþ1 be the sample values.
Compute:

Xn ¼
Pn
i¼ 1

Xi

n
; Xnþ1 ¼

Pnþ1

i¼ 1
Xi

nþ 1
; S2n ¼

Pn
i¼ 1

�
Xi � Xn

�2
n� 1

; and

S2nþ1 ¼
Pnþ1

i¼ 1

�
Xi � Xn

�2
n

:

The sequential procedure is stopped when: ��S2n � S2nþ1

�� � 0:01:

This will also determine the sample size.
(b)Compare the sample sizes and estimates in Sections 5.10.4 and 5.10.5(a) to see if the sequential procedure has an

advantage over ASEs in 5.10.4.

5.10.6 NewtoneRaphson in one dimension

For a given function g(x), suppose we need to solve g(q) ¼ 0. Using the first-order Taylor expansion,
gðqÞzgðxÞ þ ðq �xÞg0ðxÞ, where g0ðxÞ ¼ dg

dx, and setting gðqÞ ¼ 0, we get qzx � gðxÞ
g0ðxÞ. Thus, starting with an initial

guess solution x, the guess is updated by q using the previous formula. This derivation is the basis for the Newtone
Raphson iterative method for obtaining the solution of g(q) ¼ 0. This is given by:

qðnþ1Þ ¼ qn � gðqnÞ
g0ðqnÞ; n � 0;

where qn is the value of q at the nth iteration, starting with the initial guess, q0. For a good approximation of the solution,
the choice of q0 is important. The convergence of this algorithm cannot be guaranteed.
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For the MLE, we want to find a solution to:

gðqÞ ¼ dL

dq
¼ 0;

where L ¼ L(q) is the likelihood function of the random sample X1, ., Xn. An iterative algorithm for finding the MLE can
be given by:

qðnþ1Þ ¼ qn �
dL

dq
ðqnÞ

d2L

dq2
ðqnÞ

; n � 0:

Write a computer program to find the MLE of a for a gamma distribution with parameters a and b.

5.10.7 The empirical distribution function

In this project, we use an estimation procedure that estimates the whole distribution function, F, of a random variable X.
We now define the empirical distribution.

The empirical distribution function for a random sample X1, ., Xn from a distribution F is the function defined by:

FnðxÞ ¼ 1
n
#fi; 1� i� n : Xi � xg:

It can be shown that nFn(x) is a binomial random variable with:

E½FnðxÞ� ¼ FðxÞ and Var ½FnðxÞ� ¼ 1
n
FðxÞ½1�FðxÞ�:

Also, by the strong law of large numbers, for each real number x,

lim
n/N

Fn ðxÞ ¼ FðxÞ with probability 1:

One of the tests to determine whether a random sample comes from a specific distribution is the KolmogoroveSmirnov
(KeS) test. The KeS test is based on the maximum distance between the empirical distribution function and the actual cdf
of this specific distribution (such as, say, the normal distribution).

Using the method of Project 4A (or using any statistical software), generate 100 sample points from a normal dis-
tribution with mean 2 and variance 9. Graph the empirical distribution function for this sample. Compare this graph with
the graph of the N(2, 9) distribution.

5.10.8 Simulation of coverage of the small confidence intervals for m

(a) Generate 25 samples of size 15 from a normal population with m ¼ 10 and s2 ¼ 4. Using a statistical package (such as
Minitab), compute the 95% CIs for each of the samples using the small-sample formula. From your output, determine
the proportion of the 25 intervals that cover the true mean m ¼ 10.

(b)What would you expect if the sample size is increased to 100? Would the width of the interval increase or decrease?
Would you expect more or fewer of these intervals to contain the true mean 10? Check your answers with actual
computation.

(c) Repeat with 20 samples of size 10.

5.10.9 Confidence intervals based on sampling distributions

If we want to obtain a (1 � a)100% CI for q, begin with an estimator bq of q and determine its sampling distribution. Now select
two probability levels, a1 and a2, so that a¼ a1 þ a2. Generally we let a1 ¼ a2. Take a sample and calculate the value of bq,
say bq ¼ k: Now we need to determine the values of the upper and lower confidence limits. Find a value qL such that:

p
�bq� k

�
¼ a1

and qU such that:

p
�bq� k

�
¼ a2:
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Then a (1 � a)100% CI for q will be:

qL < q < qU :

(a) Let X1, ., Xn be a random sample from a U(0,q) distribution. Obtain a (1 � a)100% CI for q, using the method of
sampling distribution.

(b) Let X have a binomial distribution with parameters n and p. First show that there is no quantity that satisfies the con-
ditions of a pivotal quantity. Then, using the method of sampling distributions, obtain a (1 � a)100% CI for p.

5.10.10 Large-sample confidence intervals: general case

The method of finding a CI for a parameter q that we described in this chapter depends on our ability to find the pivotal
quantity. We have seen that such a quantity may not exist. In those cases, the method of sampling distribution described in
the previous project could be used. However, this method can involve some difficult calculations. For large samples, we
can utilize the following procedure, which is based on the asymptotic distribution of MLEs. Under fairly general con-
ditions, the MLEs have a limiting distribution that is normal. Also, MLEs are asymptotically efficient. Hence, for a large
sample the MLE bq of q will have approximately normal distribution with mean q. Also, if the CraméreRao lower bound
exists, the limiting variance of bq will be:

s2
q̂
¼ 1

E
h�v 1n L

vq

�2i:

Hence,

Z ¼
bq � q

sq̂

wNð0; 1Þ:

Then a large-sample (1 � a)100% CI is obtained from the probability statement:

P

 
� za=2 <

bq � q

sq̂

< za=2

!
z 1� a:

We summarize the procedure to construct large-sample CIs.

1. Determine the MLE, bq; of q. Also find the MLEs of all other unknown parameters.
2. Obtain the variance s

q̂
(if possible directly, otherwise by using the CraméreRao lower bound).

3. In the expression for s
q̂
; substitute bq for q. Replace all other unknown parameters with its MLE. Let the resulting quan-

tity be denoted by s
q̂
:

4. Now construct a (1 � a)100% CI for q from:

bq� za=2sq̂ < q< bq þ za=2sq̂:

(a) Using the foregoing procedure, show that a large-sample (1 � a)100% CI for the parameter p in a binomial distri-
bution based on n trials is:

bp� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
< p < bp þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
:

(b) Let X1,., Xn be a random sample from a normal population with parameters m and s2. Derive a large-sample CI for
s2 using the above procedure.

(c) Let X1, ., Xn be a random sample from a population with a pdf:

f ðxÞ ¼

8><
>:

1
q
e�x=q; x > 0

0; otherwise:

Derive a large-sample CI for q.
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5.10.11 Prediction interval for an observation from a normal population

In many cases, we may be interested in predicting future observations from a population, rather than making an inference.
A (1 � a)100% prediction interval for a future observation X is an interval of the form (XL, XU) such that
P(XL < X < XU) ¼ 1 � a. Similar to CIs, we can also define one-sided prediction intervals. Assume that the population is
normal with known variance s2. Let X1,., Xn be a random sample from this population. Then the sampling distribution of
the difference X � X (we use X to denote Xn) is normal with mean 0 and variance s2 þ s 2

X ¼ ð1þð1 =nÞÞs2: Then a
(1 � a)100% prediction interval for X is given by: 

X� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 1

n

�
s2

s
; Xþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 1

n

�
s2

s !
:

Thus, we are (1 � a)100% confident that the next observation, Xnþ1, will lie in this interval. As in CIs, if the sample
size is large, replace s by sample standard deviation s.

In cases where both m and s are not known, and the sample size is small (so that the CLT cannot be applied), it can be
shown that

	�
Xnþ1 �Xn

� ��
Sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1=nÞp �


has a t distribution with (n � 1) degrees of freedom. Thus, a (1 � a)100%
prediction interval for Xnþ1 is given by:�

X� ta=2;n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ð1=nÞÞS2

p
; Xþ ta=2;n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ð1=nÞÞS2

p �
:

A standard measure of the capacity of lungs to expel air in breathing is called forced expiratory volume (FEV). The
FEV1 is the volume exhaled during the first second of a forced expiratory maneuver started from the level of total lung
capacity. The following data (M. Bland, An Introduction to Medical Statistics, Oxford University Press, 1995) represent
FEV measurements (in liters) from 57 male medical students:

4.47 3.10 4.50 4.90 3.50 4.14 4.32 4.80 3.10 4.68

4.47 3.57 2.85 5.10 5.20 4.80 5.10 4.30 4.70 4.08

3.48 4.20 3.70 5.30 4.71 4.10 4.30 3.39 3.69 4.44

5.00 4.50 4.20 4.16 3.70 3.83 3.90 4.47 3.30 5.43

3.42 3.60 3.20 4.56 4.78 3.60 3.96 3.19 2.85 3.04

3.78 3.75 4.05 3.54 4.14 2.98 3.54

Obtain a 95% prediction interval for a future observation Xnþ1.

5.10.12 Empirical distribution function as estimator for cumulative distribution function

In Chapter 3, we saw that probabilistically, the cdf defined as FðxÞ ¼ PðX � xÞ; for all x ˛ð�N;NÞ: The question is,
given a random sample X1;.;Xn with common cdf FðxÞ, how do we estimate the cdf, FðxÞ? The empirical distribution
function (EDF) is the “data analogue” of cdf of a random variable. The EDF is defined as:

bFnðxÞ ¼ number of elements in the sample � x
n

¼ 1
n

Xn

i¼1
IðXi�xÞ;

where IA is the indicator of event A. Note that EDF is a step function that jumps 1
n at each Xi ¼ xi. We can see that EDF

describes the data in more detail than the histogram. Using the strong law of large numbers, it can be shown that bFnðxÞ/
FðxÞ; with probability 1. We refer the reader to look for other interesting properties of EDF.

Using R, create 100 data values from each of the uniform and normal distributions. Draw the theoretical cdf and EDF
on the same graph for each of the distributions, respectively.
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Objective

In this chapter, various methods of testing hypotheses will be discussed.

Jerzy Neyman
(Source: http://sciencematters.berkeley.edu/archives/volume2/issue12/legacy.php.)

Jerzy Neyman (1894e1981) was a Polish statistician and mathematician who, after spending time in various in-
stitutions in Warsaw, Poland, came to the University of California, Berkeley. He made far-reaching contributions in
hypothesis testing, confidence intervals, probability theory, and other areas of mathematical statistics. His work with
Egon Pearson gave logical foundation and mathematical rigor to the theory of hypothesis testing. Neyman made a
broader impact in statistics throughout his lifetime.
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6.1 Introduction

Statistics plays an important role in decision-making. In statistics, one utilizes random samples to make inferences about
the population from which the samples were obtained. Statistical inference regarding population parameters takes two
forms: estimation and hypothesis testing, although both may be viewed as different aspects of the same general problem of
arriving at decisions on the basis of observed data. We have already seen several estimation procedures in earlier chapters.
Hypothesis testing is the subject of this chapter. This has an important role in the application of statistics to real-life
problems. Here we utilize sampled data to make decisions concerning the unknown distribution of a population or its
parameters. Pioneering work on the explicit formulation as well as the fundamental concepts of the theory of hypothesis
testing are due to J. Neyman and E.S. Pearson.

A statistical hypothesis is a statement concerning the probability distribution of a random variable or population pa-
rameters that are inherent in a probability distribution. The following example illustrates the concept of hypothesis testing.
An important industrial problem is that of accepting or rejecting lots of manufactured products. Before releasing each lot
for the consumer, the manufacturer usually performs some tests to determine whether the lot conforms to acceptable
standards. Let us say that both the manufacturer and the consumer agree that if the proportion of defectives in a lot is less
than or equal to a certain number p, the lot will be released. Very often, instead of testing every item in the lot, we may test
only a few at random from the lot and make decisions about the proportion of defectives in the lot; that is, we make
decisions about the population on the basis of sample information. Such decisions are called statistical decisions. In
attempting to reach decisions, it is useful to make some initial conjectures about the population involved. Such conjectures
are called statistical hypotheses. Sometimes the results from the sample may be markedly different from those expected
under the hypothesis. Then we can say that the observed differences are significant and we would be inclined to reject the
initial hypothesis. The procedures that enable us to decide whether to reject hypotheses or to determine whether observed
samples differ significantly from expected results are called tests of hypotheses, tests of significance, or rules of decision.

In any hypothesis-testing problem, we formulate a null hypothesis and an alternative hypothesis such that if we reject the
null, then we have to accept the alternative. The null hypothesis usually is a statement of the “status quo” or “no effect” or a
“belief.” A guideline for selecting a null hypothesis is that when the objective of an experiment is to establish a claim, the
nullification of the claim should be taken as the null hypothesis. The experiment is often performed to determine whether the
null hypothesis is false. For example, suppose the prosecution wants to establish that a certain person is guilty. The null
hypothesis would be that the person is innocent and the alternative would be that the person is guilty. Thus, the claim itself
becomes the alternative hypothesis. Customarily, the alternative hypothesis is the statement that the experimenter believes to
be true. For example, the alternative hypothesis is the reason a person is arrested (police suspect the person is not innocent).
Once the hypotheses have been stated, appropriate statistical procedures are used to determine whether to reject the null
hypothesis. For the testing procedure, one begins with the assumption that the null hypothesis is true. If the information
furnished by the sampled data strongly contradicts (beyond a reasonable doubt) the null hypothesis, then we reject it in favor
of the alternative hypothesis. If we do not reject the null, then we automatically reject the alternative. Note that we always
make a decision with respect to the null hypothesis. Failure to reject the null hypothesis does not necessarily mean that the null
hypothesis is true. For example, a person being judged “not guilty” does not mean the person is innocent. This basically means
that there is not enough evidence to reject the null hypothesis (presumption of innocence) beyond “a reasonable doubt.”

We summarize the elements of a statistical hypothesis in the following.

The elements of a statistical hypothesis

1. The null hypothesis, denoted by H0, is usually the nullifi-

cation of a claim. Unless evidence from the data indicates

otherwise, the null hypothesis is assumed to be true.

2. The alternative hypothesis, denoted by Ha (or sometimes

denoted by H1), is customarily the claim itself.

3. The test statistic, denoted by TS, is a function of the sample

measurements upon which the statistical decision, to reject

or not to reject the null hypothesis, will be based.

4. A rejection region (or a critical region) is the region

(denoted by RR) that specifies the values of the observed TS

for which the null hypothesis will be rejected. This is the

range of values of the TS that corresponds to the rejection

of H0 at some fixed level of significance, a, which will be

explained later.

5. Conclusion: If the value of the observed TS falls in the RR,

the null hypothesis is rejected and we will conclude that

there is enough evidence to decide that the alternative

hypothesis is true. If the TS does not fall in the RR, we

conclude that we cannot reject the null hypothesis.
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In practice one may have hypotheses such as H0: m ¼ m0 against one of the following alternatives:8>>>>>><
>>>>>>:

Ha : msm0; called a two-tailed alternative.

or

Ha : m < m0; called a lower ðor leftÞ tailed alternative.

or

Ha : m > m0; called an upper ðor rightÞ tailed alternative.

A test with a lower- or upper-tailed alternative is called a one-tailed test. One of the issues in hypothesis testing is the
choice of the form of alternative hypothesis. Note that, as discussed earlier, the null hypothesis is always concerned with
the question posed: the claim. The alternative hypothesis must reflect the aim of the claim when in fact we reject the claim;
we want to know why we rejected it. For example, suppose that a pharmaceutical company claims that medication A is
80% effective (that is, p ¼ 0:8). We conduct an experiment, clinical trials, to test this claim. Thus, the null hypothesis is
that the claim is true. Now if we do not want to reject the null hypothesis, no problem, but if we reject the null hypothesis,
we want to know why. Thus, the alternative must be a one-tailed test, p < 0:8, that is, the claim is not true. If we were to
use a two-tailed test, we would not know whether the rejection was because p < 0:8 or p > 0:8. In this case, p > 0:8 is
actually part of the null hypothesis. It is important to note that when using a one-tailed test in a certain direction, if the
consequence of missing an effect in the other direction is not negligible, it is better to use a two-tailed test. Also, choosing a
one-tailed test after doing a two-tailed test that failed to reject the null hypothesis is not appropriate. Therefore, the choice
of the alternative is based on what happens if we reject the null hypothesis. In an applied hypothesis-testing problem, we
can use the following general steps.

General method for hypothesis testing

1. From the (word) problem, determine the appropriate null hypothesis, H0, and the alternative, Ha.

2. Identify the appropriate TSs and calculate the observed TS from the data.

3. Find the RR by looking up the critical value in the appropriate table.

4. Draw the conclusion: reject or fail to reject the null hypothesis, H0, based on a given level of significance a:

5. Interpret the results: state in words what the conclusion means to the problem we started with.

It is always necessary to state a null and an alternative hypothesis for every statistical test performed. All possible
outcomes should be accounted for by the two hypotheses. Note that a critical value is the value that a TS must surpass for
the null hypothesis to be rejected, and is derived from the level of significance a of the test. Thus, the critical values are the
boundaries of the RR. It is important to observe that both null and alternative hypotheses are stated in terms of parameters,
not in terms of statistics.

EXAMPLE 6.1.1

In a coin-tossing experiment, let p be the probability of heads. We start with the claim that the coin is fair, that is, H0: p ¼ 1/2. We

test this against one of the following alternatives:

(a) Ha: The coin is not fair (p s 1/2). This is a two-tailed alternative.

(b) Ha: The coin is biased in favor of heads (p > 1/2). This is an upper-tailed alternative.

(c) Ha: The coin is biased in favor of tails (p < 1/2). This is a lower-tailed alternative.

It is important to observe that the TS is a function of a random sample. Thus, the TS itself is a random variable whose
distribution is known under the null hypothesis. The value of a TS when specific sample values are substituted is called the
observed test statistic or simply test statistic.

For example, consider the hypothesis H0: m ¼ m0 versus Ha: ms m0, where m0 is known. Assume that the population is
normal, with a known variance s2. Consider X, an unbiased estimator of m based on the random sample X1;.;Xn. Then Z ¼�
X�m0

��ðs = ffiffiffi
n

p Þ is a function of the random sample X1;.;Xn, and has a known distribution, say a standard normal, under
H0. If x1; x2;.; xn are specific sample values, then z ¼ ðx�m0Þ=ðs =

ffiffiffi
n

p Þ is called the observed sample statistic or simply
sample statistic.
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Definition 6.1.1. A hypothesis is said to be a simple hypothesis if that hypothesis uniquely specifies the distribution from
which the sample is taken. Any hypothesis that is not simple is called a composite hypothesis.

EXAMPLE 6.1.2

Refer to Example 6.1.1. The null hypothesis p ¼ 1/2 is simple, because the hypothesis completely specifies the distribution, which

in this case will be a binomial with p ¼ 1/2 and with n being the number of tosses. The alternative hypothesis p s 1/2 is

composite because the distribution now is not completely specified (we do not know the exact value of p).

Because the decision is based on the sample information, we are prone to commit errors. In a statistical test, it is
impossible to establish the truth of a hypothesis with 100% certainty. There are two possible types of errors. On one hand,
one can make an error by rejecting H0 when in fact it is true. On the other hand, one can also make an error by failing to
reject the null hypothesis when in fact it is false. Because the errors arise as a result of wrong decisions, and the decisions
themselves are based on random samples, it follows that the errors have probabilities associated with them. We now have
the following definitions.

The decision and the errors are represented in Table 6.1.

Definition 6.1.2. (a) A type I error is made if H0 is rejected when in fact H0 is true. The probability of type I error is denoted
by a. That is,

Pðrejecting H0jH0 is trueÞ ¼ a:

The probability of type I error, a, is called the level of significance.

(b) A type II error is made if H0 is accepted when in fact Ha is true. The probability of a type II error is denoted by b.
That is,

Pðnot rejecting H0jH0 is falseÞ ¼ b:

It is desirable that a test should have a ¼ b ¼ 0 (this can be achieved only in trivial cases), or at least we prefer to use a
test that minimizes both types of errors. Unfortunately, it so happens that for a fixed sample size, as a decreases, b tends to
increase and vice versa. There are no hard and fast rules that can be used to make the choice of a and b. This decision must
be made for each problem based on quality and economic considerations. However, in many situations it is possible to
determine which of the two errors is more serious. It should be noted that a type II error is only an error in the sense that a
chance to correctly reject the null hypothesis was lost. It is not an error in the sense that an incorrect conclusion was drawn,
because no conclusion is made when the null hypothesis is not rejected. In the case of a type I error, a conclusion is drawn
that the null hypothesis is false when, in fact, it is true. Therefore, type I errors are generally considered more serious than
type II errors. For example, it is mostly agreed that finding an innocent person guilty is a more serious error than finding a
guilty person innocent. Here, the null hypothesis is that the person is innocent, and the alternative hypothesis is that the
person is guilty. “Not rejecting the null hypothesis” is equivalent to acquitting a defendant. It does not prove that the null
hypothesis is true, or that the defendant is innocent. In statistical testing, the significance level a is the probability of
wrongly rejecting the null hypothesis when it is true (that is, the risk of finding an innocent person guilty). Here the type II
risk is acquitting a guilty defendant. The usual approach to hypothesis testing is to find a test procedure that limits a, the
probability of type I error, to an acceptable level while trying to lower b as much as possible.

The consequences of different types of errors are, in general, very different. For example, if a doctor tests for the
presence of a certain illness, incorrectly diagnosing the presence of the disease (type I error) will cause a waste of

TABLE 6.1 Statistical Decision and Error Probabilities.

Statistical decision

True state of null hypothesis

H0 true H0 false

Do not reject H0 Correct decision Type II error (b)

Reject H0 Type I error (a) Correct decision
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resources, not to mention the mental agony to the patient. On the other hand, failure to determine the presence of the
disease (type II error) can lead to a serious health risk.

To formulate a hypothesis-testing problem, consider the following situation. Suppose a toy store chain claims that at
least 80% of girls under 8 years of age prefer dolls over other types of toys. We feel that this claim is inflated. In an attempt
to dispose of this claim, we observe the buying pattern of 20 randomly selected girls under 8 years of age, and we observe
X, the number of girls under 8 years of age who buy stuffed toys or dolls. Now the question is, how can we use X to
confirm or reject the store’s claim? Let p be the probability that a girl under 8 chosen at random prefers stuffed toys or
dolls. The question now can be reformulated as a hypothesis-testing problem. Is p � 0.8 or p < 0.8? Because we would
like to reject the store’s claim only if we are highly certain of our decision, we should choose the null hypothesis to be H0:
p � 0.8, the rejection of which is considered to be more serious. The null hypothesis should be H0: p � 0.8, and the
alternative Ha: p < 0.8. To make the null hypothesis simple, we will use H0: p ¼ 0.8, which is the boundary value, with the
understanding that it really represents H0: p � 0.8. We note that X, the number of girls under 8 years of age who prefer
stuffed toys or dolls, is a binomial random variable. Clearly a large sample value of X would favor H0. Suppose we
arbitrarily choose to accept the null hypothesis if X > 12. Because our decision is based on only a sample of 20 girls under
8, there is always a possibility of making errors whether we accept or reject the store chain’s claim. In the following
example, we will now formally state this problem and calculate the error probabilities based on our decision rule.

EXAMPLE 6.1.3

A toy store chain claims that at least 80% of girls under 8 years of age prefer dolls over other types of toys. After observing the

buying pattern of many girls under 8 years of age, we feel that this claim is inflated. In an attempt to dispose of this claim, we

observe the buying pattern of 20 randomly selected girls under 8 years of age, and we observe X, the number of girls who buy

stuffed toys or dolls. We wish to test the hypothesis H0: p ¼ 0.8 against Ha: p < 0.8. Suppose we decide to accept the H0 if X > 12

(that is, X � 13). This means that if {X � 12} (that is, X < 13), we will reject H0.

(a) Find a.

(b) Find b for p ¼ 0.6.

(c) Find b for p ¼ 0.4.

(d) Find the RR of the form {X � K} so that (i) a ¼ 0.01; (ii) a ¼ 0.05.

(e) For the alternative Ha: p ¼ 0.6, find b for the values of a in (d).

Solution

The TS X is the number of girls under 8 years of age who buy dolls. X follows the binomial distribution with n ¼ 20 and p, the

unknown population proportion of girls under 8 who prefer dolls. We now calculate a and b.

(a) For p ¼ 0.8, the probability of type I error is:

a ¼ Pfreject H0jH0 is trueg
¼ PfX � 12jp ¼ 0:8g

¼
X12
x ¼ 0

0
@ 20

x

1
Að0:8Þxð0:2Þ20�x

¼ 0:0321:

If we calculate a for any other value of p > 0.8, then we will find that it is smaller than 0.0321. Hence, there is at most a

3.21% chance of rejecting a true null hypothesis. That is, if the store’s claim is in fact true, then the chance that our test will

erroneously reject that claim is at most 3.21%.

(b) Here, p ¼ 0.6. The probability of type II error is:

b ¼ Pfaccept H0jH0 falseg
¼ PfX > 12jp ¼ 0:6g
¼ 1� PfX � 12jp ¼ 0:6g
¼ 1� 0:584

¼ 0:416
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that is, there is a 41.6% chance of accepting a false null hypothesis. Thus, in case the store’s claim is not true, and the

truth is that only 60% of the girls under 8 years of age prefer dolls over other types of toys, then there is a 41.6% chance

that our test will erroneously conclude that the store’s claim is true.

(c) If p ¼ 0.4, then:

b ¼ Pfaccept H0jH0 falseg
¼ PfX > 12jp ¼ 0:4g
¼ 1� PfX � 12jp ¼ 0:4g
¼ 1� 0:979

¼ 0:021:

That is, there is a 2.1% chance of not rejecting a false null hypothesis.

(d) (i) To find K such that

a ¼ PfX �K jp ¼ 0:8g ¼ 0:01;

from the binomial table, K ¼ 11. Hence, the RR is reject H0 if {X � 11}.

(ii) To find K such that

a ¼ PfX �K jp ¼ 0:8g ¼ 0:05;

from the binomial table, a ¼ 0.05 falls between K ¼ 12 and K ¼ 13. However, for K ¼ 13, the value for a is 0.087,

exceeding 0.05. If we want to limit a to be no more than 0.05, we will have to take K ¼ 12. That is, we reject the null

hypothesis if X � 12, yielding an a ¼ 0.0321 as shown in (a).

(e) (i) When a ¼ 0.01, from (d), the RR is of the form {X � 11}. For p ¼ 0.6,

b ¼ Pfaccept H0jH0 falseg
¼ PfY > 11jp ¼ 0:6g
¼ 1� PfY � 11jp ¼ 0:6g
¼ 1� 0:404

¼ 0:596:

(ii) From (a) and (b) for testing the hypothesis H0: p ¼ 0.8 against Ha: p < 0.8 with n ¼ 20, we see that when a is 0.0321, b is

0.416. From (d) (i) and (e) (i) for the same hypothesis, we see that when a is 0.01, b is 0.596. This holds in general. Thus,

we observe that for fixed n as a decreases, b increases, and vice versa.

In the next example, we explore what happens to b as the sample size increases, with a fixed.

EXAMPLE 6.1.4

Let X be a binomial random variable. We wish to test the hypothesis H0: p ¼ 0.8 against Ha: p ¼ 0.6. Let a ¼ 0.03 be fixed. Find b

for n ¼ 10 and n ¼ 20.

Solution

For n ¼ 10, using the binomial tables, we obtain P{X � 5 j p ¼ 0.8} y 0.03. Hence, the RR for the hypothesis H0: p ¼ 0.8 versus

Ha: p ¼ 0.6 is given by reject H0 if X � 5. The probability of type II error is:

b ¼ Pfaccept H0jp ¼ 0:6g
b ¼ PfX > 5jp ¼ 0:6g ¼ 1� PfX � 5jp ¼ 0:6g ¼ 0:733:

For n ¼ 20, as shown in Example 6.1.3, if we reject H0 for X � 12, we obtain:

P ðX � 12jp ¼ 0:8Þy0:03

and

b ¼ P ðX > 12jp ¼ 0:6Þ ¼ 1� PfX � 12jp ¼ 0:6g ¼ 0:416:

We see that for a fixed a, as n increases b decreases and vice versa. It can be shown that this result holds in general.
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For us to compute the value of b, it is necessary that the alternative hypothesis is simple. Now we will discuss a three-
step procedure to calculate b.

Steps to calculate b

1. Decide an appropriate TS (usually this is a sufficient sta-

tistic or an estimator for the unknown parameter, whose

distribution is known under H0).

2. Determine the RR using a given a, and the distribution of

the TS.

3. Find the probability that the observed TS does not fall in the

RR assuming Ha is true. This gives b. That is,

b ¼ P(TS falls in the complement of the RR j Ha is true).

EXAMPLE 6.1.5

A random sample of size 36 from a population with known variance, s2 ¼ 9, yields a sample mean of x ¼ 17. For the hypothesis

H0: m ¼ 15 versus Ha: m > 15, find b when m ¼ 16. Assume a ¼ 0.05.

Solution

Here, n ¼ 36, x ¼ 17, and s2 ¼ 9. In general, to test H0: m ¼ m0 versus Ha: m > m0, we proceed as follows. An unbiased estimator

of m is X. Intuitively we would reject H0 if X is large, say X > c. Now using a ¼ 0.05, we will determine the RR. By the definition

of a, we have:

P
�
X > c

��m ¼ m0

� ¼ 0:05

or

P

�
X � m0

s=
ffiffiffi
n

p >
c � m0

s=
ffiffiffi
n

p
����m ¼ m0

�
¼ 0:05

But, if m ¼ m0, because the sample size n � 30,
	�
X�m0

� �ðs =
ffiffiffi
n

p Þ
wNð0;1Þ: Therefore, P
�

X�m0
ðs= ffiffinp Þ>

c�m0
ðs= ffiffinp Þ

�
¼ 0:05 is

equivalent to P
�
Z> c�m0

ðs= ffiffinp Þ
�

¼ 0:05: From standard normal tables, we obtain P(Z > 1.645) ¼ 0.05. Hence, c�m0
ðs= ffiffinp Þ ¼ 1:645 or

c ¼ m0 þ 1:645ðs =
ffiffiffi
n

p Þ:
Therefore, the RR is the set of all sample means x such that:

x>m0 þ 1:645

�
sffiffiffi
n

p
�
:

Substituting m0 ¼ 15, and s ¼ 3, we obtain:

m0 þ 1:645
�
s =

ffiffiffi
n

p � ¼ 15þ 1:645

�
3ffiffiffiffiffiffi
36

p
�

¼ 15:8225:

The RR is the set of x such that x � 15:8225:

Then by definition,

b ¼ P
�
X
�� 15:8225 when m ¼ 16Þ:

Consequently, for m ¼ 16,

b ¼ P

�
X � 16

s=
ffiffiffi
n

p � 15:8225� 16

3=
ffiffiffiffiffiffi
36

p
�

¼ PðZ � �0:36Þ

¼ 0:3594:

That is, under the given information, there is a 35.94% chance of not rejecting a false null hypothesis.
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6.1.1 Sample size

It is clear from the preceding example that once we are given the sample size n, an a, a simple alternative Ha, and a TS, we
have no control over b. Hence, for a given sample size and the TS, any effort to lower b will lead to an increase in a and
vice versa. This means that for a test with fixed sample size it is not possible to simultaneously reduce both a and b. We
also notice from Example 6.1.4 that by increasing the sample size n, we can decrease b (for the same a) to an acceptable
level. The following discussion illustrates that it may be possible to determine the sample size for a given a and b.

Suppose we want to test H0: m ¼ m0 versus Ha: m > m0. Given a and b, we want to find n, the sample size, and K, the
point at which the rejection begins. We know that:

a ¼ P
�
X > K; when m ¼ m0

�

¼ P

�
X � m0

s=
ffiffiffi
n

p >
K � m0

s=
ffiffiffi
n

p ; when m ¼ m0

�
.

¼ PðZ > zaÞ

(6.1)

and for some particular value m ¼ ma > m0;

b ¼ P
�
X � K; when m ¼ ma

�

¼ P

�
X � ma

s=
ffiffiffi
n

p � K � ma

s=
ffiffiffi
n

p ; when m ¼ ma

�
.

¼ Pðz � zbÞ:

(6.2)

From Eqs. (6.1) and (6.2),

za ¼ K � m0

s=
ffiffiffi
n

p

and

�zb ¼ K � ma

s=
ffiffiffi
n

p :

This gives us two equations with two unknowns (K and n), and we can proceed to solve them. Eliminating K, we get:

m0 þ za

�
sffiffiffi
n

p
�

¼ ma � zb

�
sffiffiffi
n

p
�
:

From this we can derive:

ffiffiffi
n

p ¼ ðza þ zbÞs
ma � m0

:

Thus, the sample size for an upper-tail alternative hypothesis is:

n ¼ ðza þ zbÞ2s2

ðma � m0Þ2
:

The sample size increases with the square of the standard deviation and decreases with the square of the difference
between the mean value of the alternative hypothesis and the mean value under the null hypothesis. Note that in real-world
problems, care should be taken in the choice of the value of ma for the alternative hypothesis. It may be tempting for a
researcher to take a large value of ma to reduce the required sample size. This will seriously affect the accuracy (power) of
the test. This alternative value must be realistic within the experiment under study. Care should also be taken in the choice
of the standard deviation s. Using an underestimated value of the standard deviation to reduce the sample size will result in
inaccurate conclusions similar to overestimating the difference of means. Usually, the value of s is estimated using a
similar study conducted earlier. The problem could be that the previous study may be old and may not represent the new
reality. When accuracy is important, it may be necessary to conduct a pilot study only to get some idea of the estimate of s.
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Once we determine the necessary sample size, we must devise a procedure by which the appropriate data can be randomly
obtained. This aspect of the design of experiments is discussed in Chapter 8.

EXAMPLE 6.1.6

Let s ¼ 3.1 be the true standard deviation of the population from which a random sample is chosen. How large should the sample

size be for testing H0: m ¼ 5 versus Ha: m ¼ 5.5 so that a ¼ 0.01 and b ¼ 0.05?

Solution

We are given m0 ¼ 5 and ma ¼ 5.5. Also, za ¼ z0.01 ¼ 2.33 and zb ¼ z0.05 ¼ 1.645. Hence, the sample size:

n ¼ ðza þ zbÞ2s2

ðma � m0Þ2
¼ ð2:33þ 1:645Þ2ð3:1Þ2

ð0:5Þ2 ¼ 607:37:

So, n ¼ 608 will provide the desired levels. That is, for us to test the foregoing hypothesis, we must randomly select 608

observations from the given population.

From a practical standpoint, the researcher typically chooses a and the sample size, b, is ignored. Because a trade-off
exists between a and b, choosing a very small value of a will tend to increase b in a serious way. A general rule of thumb
is to pick reasonable values of a, possibly in the 0.05 to 0.10 range, so that b will remain reasonably small.

Exercises 6.1

6.1.1. An appliance manufacturer is considering the purchase of a new machine for stamping out sheet metal parts. If m0
(given) is the true average of the number of good parts stamped out per hour by their old machine and m is the
corresponding true unknown average for the new machine, the manufacturer wants to test the null hypothesis
m ¼ m0 versus a suitable alternative. What should the alternative be if he does not want to buy the new machine
unless it is (a) more productive than the old one or (b) at least 20% more productive than the old one?

6.1.2. Formulate an alternative hypothesis for each of the following null hypotheses.
(a) H0: Support for a presidential candidate is unchanged after the start of the use of TV commercials.
(b) H0: The proportion of viewers watching a particular local news channel is less than 30%.
(c) H0: The median grade point average of undergraduate mathematics majors is 2.9.

6.1.3. It is suspected that a coin is not balanced (not fair). Let p be the probability of tossing a head. To test H0: p ¼ 0.5
against the alternative hypothesis Ha: p > 0.5, a coin is tossed 15 times. Let Y equal the number of times a head is
observed in the 15 tosses of this coin. Assume the RR to be {Y � 10}.
(a) Find a.
(b) Find b for p ¼ 0.7.
(c) Find b for p ¼ 0.6.
(d) Find the RR for {Y � K} for a ¼ 0.01 and a ¼ 0.03.
(e) For the alternative Ha: p ¼ 0.7, find b for the values of a given in (d).

6.1.4. In Exercise 6.1.3:
(a) Assume that the RR is {Y � 8}. Calculate a and b if p ¼ 0.6. Compare the results with the corresponding

values obtained in Exercise 6.1.3. (This gives the effect of enlarging the RR on a and b.)
(b) Assume that the RR is {Y � 8}. Calculate a and b if p ¼ 0.6 and (1) the coin is tossed 20 times or (2) the coin

is tossed 25 times. (This shows the effect of increasing the sample size on a and b for a fixed RR.)
6.1.5. Suppose we have a random sample of size 25 from a normal population with an unknown mean m and a standard

deviation of 4. We wish to test the hypothesis H0: m ¼ 10 versus Ha: m > 10. Let the RR be defined by reject H0 if
the sample mean X > 11:2:
(a) Find a.
(b) Find b for Ha: m ¼ 11.
(c) What should the sample size be if a ¼ 0.01 and b ¼ 0.2?

6.1.6. A process for making steel pipe is under control if the diameter of the pipe has mean 3.0 in. with standard deviation
of no more than 0.0250 in. To check whether the process is under control, a random sample of size n ¼ 30 is taken
each day and the null hypothesis m ¼ 3.0 is rejected if X is less than 2.9960 or greater than 3.0040. Find (a) the
probability of a type I error and (b) the probability of a type II error when m ¼ 3.0050 in. Assume s ¼ 0.0250 in.
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6.1.7. A bowl contains 20 balls, of which x are green and the remainder red. To test H0: x ¼ 10 versus Ha: x ¼ 15, three
balls are selected at random without replacement, and H0 is rejected if all three balls are green. Calculate a and b for
this test.

6.1.8. Suppose we have a sample of size 6 from a population with probability density function (pdf)
f ðxÞ ¼ ð1=qÞe�x=q; x > 0; q > 0: We wish to test H0: q ¼ 1 versus Ha: q > 1. Let the RR be defined by reject
H0 if S

6
i¼1Xi > 8: (a) Find a. (b) Find b for Ha : q ¼ 2:

6.1.9. Let s2 ¼ 16 be the variance of a normal population from which a random sample is chosen. How large should the
sample size be for testing H0: m ¼ 25 versus Ha: m ¼ 24, so that a ¼ 0.05 and b ¼ 0.05?

6.2 The NeymanePearson lemma

In practical hypothesis-testing situations, there are typically many tests possible with significance level a (which is also
called the size of the test) for a null hypothesis versus an alternative hypothesis (see Project 7A). This leads to some
important questions, such as (1) how to decide on the TS and (2) how to know that we selected the best RR. In this section,
we study the answers to these questions using the NeymanePearson approach introduced by Jerzy Neyman and Egon
Pearson in a paper published in 1933.

Definition 6.2.1. Suppose that W is the TS and RR is the rejection region for a test of the hypothesis concerning the value of
a parameter q. Then the power of the test is the probability that the test rejects H0 when the alternative is true. That is,

p ¼ PowerðqÞ
¼ PðW in RR when the parameter value is an alternative qÞ:

If H0: q ¼ q0 and Ha: q s q0, then the power of the test for some q ¼ q1 s q0 is:

Powerðq1Þ ¼ Pðreject H0jq ¼ q1Þ:
But, b(q1) ¼ P(accept H0j q ¼ q1). Therefore,

Powerðq1Þ ¼ 1� bðq1Þ:
In other words, power refers to the probability that the test will find a statistically significant difference when such a

difference actually exists. A good test will have high power. In statistical tests, it is generally accepted that the power
should be 0.8 or greater.

Note that the power of a test H0 cannot be found until some true situation Ha is specified. That is, the sampling
distribution of the TS when Ha is true must be known or assumed. Because b depends on the alternative hypothesis, which
being composite most of the time does not specify the distribution of the TS, it is important to observe that the experi-
menter cannot control b. For example, the alternative Ha: m < m0 does not specify the value of m, as in the case of the null
hypothesis, H0: m ¼ m0.

EXAMPLE 6.2.1

Let X1, ., Xn be a random sample from a Poisson distribution with parameter l, that is, the pdf is given by f(x) ¼ e�l lx/(x!). Then

the hypothesis H0: l ¼ 1 uniquely specifies the distribution, because f(x) ¼ e�1/(x!) and hence, is a simple hypothesis. The hy-

pothesis Ha : l > 1 is composite, because f(x) is not uniquely determined.

Definition 6.2.2. A test at a given a of a simple hypothesis H0 versus the simple alternative Ha that has the largest power
among the tests with the probability of a type I error that is no larger than the given a is called a most powerful test.

Consider the test of hypothesis H0: q ¼ q0 versus Ha: q ¼ q1. If a is fixed, then our interest is to make b as small as
possible. Because b ¼ 1 � Power(q1), by minimizing b we would obtain a most powerful test. The following result says
that among all tests with given probability of type I error, the likelihood ratio test given later minimizes the probability of a
type II error, in other words, it is the most powerful.

Theorem 6.2.1. (NeymanePearson lemma) Suppose that one wants to test a simple hypothesis H0: q ¼ q0 versus the
simple alternative hypothesis Ha: q ¼ q1 based on a random sample X1, ., Xn from a distribution with parameter q.
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Let L(q) h L(q; X1, ., Xn) > 0 denote the likelihood of the sample when the value of the parameter is q. If there exist a
positive constant K and a subset C of the sample space R

n (the Euclidean n-space) such that,

1. Lðq0Þ
Lðq1Þ � K for ðx1; x2;.; xnÞ˛C;

2. Lðq0Þ
Lðq1Þ � K for ðx1; x2;.; xnÞ˛C0; where C0 is the complement of C, and

3. P½ðX1; .;XnÞεC; q0� ¼ a.

Then the test with critical region C will be the most powerful test for H0 versus Ha. We call a the size of the test and C
the best critical region of size a.

Proof. We prove this theorem for continuous random variables. For discrete random variables, the proof is identical
with sums replacing the integral. Let S be some region in Rn, an n-dimensional Euclidean space. For simplicity we will use
the following notation: Z

S

LðqÞ ¼
Z
S

/

Z
S

Lðq; x1; x2;.; xnÞdx1dx2;.; dxn:

Note that:

PððX1;.;XnÞ ˛C; q0Þ ¼
Z
C

f ðx1;.; xn; q0Þdx1;.; dxn

¼
Z
C

Lðq0; x1;.; xnÞdx1;.; dxn:

Suppose that there is another critical region, say B, of size less than or equal to a, that is
R
B Lðq0Þ � a: Then:

0�
Z
C

Lðq0Þ �
Z
B

Lðq0Þ; because
Z
C

Lðq0Þ ¼ a by assumption 3.

Therefore,

0 �
Z
C

Lðq0Þ �
Z
B

Lðq0Þ

¼
Z
CXB

Lðq0Þ þ
Z
CXB0

Lðq0Þ �
Z
CXB

Lðq0Þ �
Z
C0XB

Lðq0Þ

¼
Z
CXB0

Lðq0Þ �
Z
C0XB

Lðq0Þ:

Using assumption 1 of Theorem 6.2.1, KL(q1) � L(q0) at each point in region C and hence, in CXB'. Thus,Z
CXB0

Lðq0Þ � K

Z
CXB0

Lðq1Þ:

By assumption 2 of the theorem, KL(q1) � L(q0) at each point in C0, and hence, in C0 T B. Thus,Z
C0XB

Lðq0Þ � K

Z
C0XB

Lðq1Þ:

Therefore,
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0 �
Z
CXB0

Lðq0Þ �
Z
C0XB

Lðq0Þ

� K

8<
:
Z
CXB0

Lðq1Þ �
Z
C0XB

Lðq1Þ
9=
;:

That is,

0 � K

8<
:
Z
CXB

Lðq1Þ þ
Z
CXB0

Lðq1Þ �
Z
CXB

Lðq1Þ �
Z
CXB

Lðq1Þ
9=
;

¼ K

8<
:
Z
C

Lðq1Þ �
Z
B

Lðq1Þ
9=
;:

As a result, Z
C

Lðq1Þ �
Z
B

Lðq1Þ:

Because this is true for every critical region B of size � a, C is the best critical region of size a, and the test with critical
region C is the most powerful test of size a.

When testing two simple hypotheses, the existence of a best critical region is guaranteed by the NeymanePearson
lemma. In addition, the foregoing theorem provides a means for determining what the best critical region is. In this case,
given a choice of a, we will get a test that is the one with greatest statistical power in terms of the choice of a critical region.
In addition, this lemma tells us that good hypothesis tests are in fact the likelihood ratio tests. However, it is important to
note that Theorem 6.2.1 gives only the form of the RR; the actual RR depends on the specific value of a.

In real-world situations, we are seldom presented with the problem of testing two simple hypotheses. There is no
general result in the form of Theorem 6.4.1 for composite hypotheses. However, for hypotheses of the form H0: q ¼ q0
versus Ha: q > q0, we can take a particular value q1 > q0 and then find a most powerful test for H0: q ¼ q0 versus Ha:
q > q1. If this test (that is, the RR of the test) does not depend on the particular value q1, then this test is said to be a
uniformly most powerful test for H0: q ¼ q0 versus Ha: q > q0.

The following example illustrates the use of the NeymanePearson lemma.

EXAMPLE 6.2.2

Let X1, ., Xn denote an independent random sample from a population with a Poisson distribution with mean l. Derive the most

powerful test for testing H0: l ¼ 2 versus Ha: l ¼ 1/2.

Solution

Recall that the pdf of the Poisson variable is:

pðxÞ ¼

8><
>:

e�llx

x!
l > 0; x ¼ 0;1; 2;.

0; otherwise.

Thus, the likelihood function is:

L ¼

2
64l
�Pn

i¼ 1

xi

�
e�ln

3
75

Yn
i¼ 1

ðxi !Þ
:
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For l ¼ 2,

Lðq0Þ ¼ Lðl ¼ 2Þ ¼

2
642
�Pn

i¼ 1

xi

�
e�2n

3
75

Yn
i¼ 1

ðxi !Þ
;

and for l ¼ 1/2,

Lðq1Þ ¼ Lðl ¼ 1 = 2Þ ¼

2
64ð1=2Þ

�Pn
i¼ 1

xi

�
e�ð1=2Þn

3
75

Yn
i¼ 1

ðxi !Þ
:

Thus,

Lðq0Þ
Lðq1Þ ¼

�
2ð
P

xiÞe�2n
�

�
1

2

�P xi

e�n
2

< K

which implies:

ð4Þ
P

xi
�
e�3n

2

�
< K

or, taking natural logarithm,

�X
xi
�
ln 4� 3n

2
< ln K :

Solving for ðS xiÞ and letting {[ln K þ (3n/2)]/ln 4} ¼ K0, we will reject H0 whenever ðS xiÞ < K0:

A step-by-step procedure in applying the NeymanePearson lemma is now given.

Procedure for applying the NeymanePearson lemma

1. Determine the likelihood functions under both null and

alternative hypotheses.

2. Take the ratio of the two likelihood functions to be less than

a constant K.

3. Simplify the inequality in step 2 to obtain an RR.

EXAMPLE 6.2.3

Suppose X1, ., Xn is a random sample from a normal distribution with a known mean of m and an unknown variance of s2. Find

the most powerful a-level test for testing H0 : s
2 ¼ s20 versus Ha : s

2 ¼ s21;
�
s21 > s20

�
. Show that this test is equivalent to the

c2-test. Is the test uniformly most powerful for Ha : s
2 > s20?

Solution

Test H0 : s
2 ¼ s2

0 versus Ha : s
2 > s2

1: We have:

L
�
s2
0

� ¼
Yn
i¼ 1

1ffiffiffiffiffiffi
2p

p
sn
0

e
�ðxi�mÞ2

2s2
0

¼ 1� ffiffiffiffiffiffi
2p

p �n
sn
0

e
�
P

ðxi�mÞ2
2sn

0 :

Similarly,

L
�
s2
1

� ¼ 1� ffiffiffiffiffiffi
2p

p �n
sn
1

e
�
P

ðxi�mÞ2
2s2

1 :
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Therefore, the most powerful test is reject H0 if:

L
�
s2
0

�
Lðs2

1Þ
¼
�
s2
1

s2
0

�n

e

"
�ðs21�s2

0Þ2
2s2

1
s2
0

P
ðxi�mÞ2

#
� K

for some K.

Taking the natural logarithms, we have:

n ln

�
s1

s0

�
�
�
s2
1 � s2

0

�
2s2

1s
2
0

X
ðxi � mÞ2 � ln K ;

or X
ðxi � mÞ2 �


n ln

�
s1

s0

�
� ln K

��
2s2

1s
2
0

s2
1 � s2

0

�
� C :

To find the RR for a fixed value of a, we write the region as:P ðxi � mÞ2
s2
0

� C

s2
0

¼ C 0:

Note that by Theorem 4.2.7,
P ðxi � mÞ2

.
s2
0 has a c

2 distribution with n degrees of freedom. Thus, this test is equivalent to the

c2-test. Under the H0, because the same RR (does not depend upon the specific value of s2
1 in the alternative) would be used for

any s2
1 > s2

0; the test is uniformly most powerful.

The foregoing example shows that, to test for variance using a sample from a normal distribution, we could use the chi-
square table to obtain the critical value for the RR given a.

EXAMPLE 6.2.4

Suppose X is a single observation from a pdf f ðxÞ ¼ lxl�1 for 0 < x < 1:With a ¼ 0:05; find the most powerful test forH0 : l ¼ 3

against Ha : l ¼ 2:

Solution

Here we want to test H0 : l ¼ 3 against Ha : l ¼ 2:

Therefore, the most powerful test is reject H0 if:

Lðl0Þ
Lðl1Þ ¼

3x2

2x
¼ 3

2
x � C

Thus, x � C�. Now, a ¼ 0:05 ¼ PðX< C� when l ¼ 3Þ ¼
Z C�

0

3x2dx; and we get C� ¼ ð0:05Þ1=3 ¼ 0:368: Thus, the

RR of the most powerful testing in this case is x < 0:368:

Exercises 6.2

6.2.1. Suppose X1, ., Xn is a random sample from a normal distribution with a known variance of s2 and an unknown
mean of m. Find the most powerful a-level test of H0: m ¼ m0 versus Ha: m ¼ ma if (a) m0 > ma and (b) ma > m0.

6.2.2. Show that the most powerful test obtained in Example 6.2.1 is uniformly most powerful for testing H0: m � m0
versus Ha: m > ma, but not uniformly most powerful for testing H0: m ¼ m0 versus Ha: ms m0.

6.2.3. Suppose X1, ., Xn is a random sample from a U(0, q) distribution. Find the most powerful a-level test for testing
H0: q ¼ q0 versus Ha: q ¼ q1, where q0 < q1.

6.2.4. Let X1, ., Xn be a random sample from a geometric distribution with parameter p. Find the most powerful test of
H0: p ¼ p0 versus Ha: p ¼ pa (>p0). Is this the uniformly most powerful test for H0: p ¼ p0 versus Ha: p > p0?

6.2.5. Let X1, ., Xn be a random sample from a distribution having a pdf of:

f ðyÞ ¼

8><
>:

2y

n2
e�

y2

n2 ; if x > 0

0; otherwise.

Find a uniformly most powerful test for testing H0: h ¼ h0 versus Ha: h < h0.
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6.2.6. Let X be a single observation from the pdf:

f ðxÞ ¼
�
qxq�1; 0 < x < 1

0; otherwise.

Find the most powerful test with a level of significance a ¼ 0.01 to test H0: q ¼ 3 versus Ha: q ¼ 4.
6.2.7. Let X1, ., Xn be a random sample from a Bernoulli distribution with parameter p. Find the most powerful test of

H0: p ¼ p0 versus Ha: p ¼ pa, where pa > p0.
6.2.8. Let X1, ., Xn be a random sample from a Poisson distribution with mean l. Find a best critical region for testing

H0: l ¼ 3 against Ha: l ¼ 6.
6.2.9. Let X1, ., Xn be a random sample from a population with pdf:

f ðxÞ ¼

8><
>:

l

x2
; if 0 < l � x < N

0; otherwise.

(a) Find a most powerful test to test l ¼ l0 against l ¼ l1 ðsl0Þ:
(b) Suppose sample size 1 is taken from this pdf; what is the most powerful test for l ¼ 4 against l ¼ 3; with

a ¼ 0:05?
6.2.10. Let X1, ., Xn be a random sample from a normal population with mean m and variance 25. Find the most power-

ful test, with sample size 20 and the size of the test a ¼ 0:05 to test H0 : m ¼ 5 against Ha : m ¼ 10:

6.3 Likelihood ratio tests

The NeymanePearson lemma provides a method for constructing most powerful tests for simple hypotheses. We also have
seen that in some instances, when a hypothesis is not simple, it is also possible to find uniformly most powerful tests. In
general, uniformly most powerful tests do not exist for composite hypotheses. As an example, consider the two-sided
hypothesis, at level a, given by:

H0: m ¼ m0 vs. Ha: msm0;

where m is the mean of a normal population with known variance s2. If X is the sample mean of a random sample of size n,
then as shown earlier, we can use the TS:

Z ¼ X � m0

s=
ffiffiffi
n

p :

For Ha : m ¼ m1 > m0, the RR for the most powerful test would be:

Reject H0 if z > za:

On the other hand, for Ha : m ¼ m2 < m0, the RR for the most powerful test would be:

Reject H0 if z< � za:

Thus, the RR depends on the specific alternative. Consequently, the two-tailed hypothesis just given has no uniformly
most powerful test.

In this section, we shall study a general procedure that is applicable when one or both H0 and Ha are composite. In fact,
this procedure works for simple hypotheses as well. This method is based on the maximum likelihood estimation and the
ratio of likelihood functions used in the NeymanePearson lemma. We assume that the pdf or the probability mass function
of the random variable X is f ðx; qÞ; where q can be one or more unknown parameters. Let Q represent the total parameter
space that is the set of all possible values of the parameter q given by either H0 or Ha.
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Consider the hypotheses:

H0: q ˛Q0 vs. Ha: q˛Qa ¼ Q�Q0;

where q is the unknown population parameter (or parameters) with values in Q, and Q0 is a subset of Q.
Let LðqÞ be the likelihood function based on the sample X1,., Xn. Now we define the likelihood ratio corresponding to

the hypotheses H0 and Ha. This ratio will be used as a TS for the testing procedure that we develop in this section. This is a
natural generalization of the ratio test used in the NeymanePearson lemma when both hypotheses were simple.

Definition 6.3.1. The likelihood ratio l is the ratio:

l ¼
max
q˛Q0

Lðq; x1;.; xnÞ
max
q˛Q

Lðq; x1;.; xnÞ ¼ L�
0

L�:

We note that 0 � l � 1. Because l is the ratio of nonnegative functions, we have l � 0. Because Q0 is a subset of Q,
we know that max

q˛Q0

LðqÞ � max
q˛Q

LðqÞ: Hence, l � 1.

If the maximum of L in Q0 is much smaller compared with the maximum of L in Q, that is, if l is small, it would appear
that the data X1,., Xn do not support the null hypothesis q ˛ Q0. Thus, there are some parameter values in Ha from which
observed samples more likely came than from any parameter values in H0. On the other hand, if l is close to 1, one could
conclude that the data support the null hypothesis, H0. Therefore, small values of l would result in rejection of the null
hypothesis, and large values nearer to 1 will result in a decision in support of the null hypothesis.

For the evaluation of l, it is important to note that maxq˛QLðqÞ ¼ L
�bqml:

�
; where bqml: is the maximum likelihood

estimator of q ˛ Q, and maxq˛Q0 LðqÞ is the likelihood function with unknown parameters replaced by their maximum
likelihood estimators subject to the condition that q ˛ Q0. We can summarize the likelihood ratio test as follows.

Likelihood ratio tests

To test:

H0: q˛Q0 vs. Ha: q˛Qa;

l ¼
max
q˛Q0

Lðq; x1;.; xnÞ
max
q˛Q

Lðq; x1;.; xnÞ ¼ L�0
L�
;

will be used as the TS.

The RR for the likelihood ratio test is given by:

Reject H0; if l � K :

K is selected such that the test has the given significance

level a.

Note that different choices of K˛½0; 1� will give different tests and RRs. Smaller values of K will result in smaller
values of type I error probabilities and the larger values of K will result in smaller type II error probabilities.

EXAMPLE 6.3.1

Let X1, ., Xn be a random sample from an N(m, s2). Assume that s2 is known. At level a, we wish to test H0: m ¼ m0 versus

Ha: ms m0. Find an appropriate likelihood ratio test.

Solution

We have seen that to test:

H0: m ¼ m0 vs. Ha: msm0

there is no uniformly most powerful test. The likelihood function is:

LðmÞ ¼
�

1ffiffiffiffiffiffi
2p

p
s

�n

e�

Pn
i¼ 1

ðxi�mÞ2

2s2 :
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Here, Q0 ¼ {m0} and Qa ¼ R � {m0}.

Hence,

L�0 ¼ max
m¼m0

�
1

s
ffiffiffiffiffiffi
2p

p
�n

e�

Pn
i¼ 1

ðxi�mÞ2

2s2

¼
�

1ffiffiffiffiffiffi
2p

p
s

�n

e�

Pn
i¼ 1

ðxi�m0Þ2

2s2 :

Similarly,

L� ¼ max
�N<m<N

�
1ffiffiffiffiffiffi
2p

p
s

�n

e�

Pn
i¼ 1

ðxi�mÞ2

2s2 :

Because the only unknown parameter in the parameter space Q is m, �N < m <N, the maximum of the likelihood function is

achieved when m equals its maximum likelihood estimator, that is,

bmml: ¼ X :

Therefore, with a simple calculation we have:

l ¼ e
�

�Pn
i¼ 1

ðxi�m0Þ2
�

=2s2

e
�

�Pn
i¼ 1

ðxi�xÞ2
�

=2s2

¼ e�nðx�m0Þ2=2s2 :

Thus, the likelihood ratio test has the RR:

Reject H0 if l � K

which is equivalent to:

� n

2s2

�
X � m0

�2 � ln K5

�
X � m0

�2
s2=n

� 2 ln K5

����X � m0

s=
ffiffiffi
n

p
���� � 2 ln K ¼ c1; say:

Note that we use the symbol 5 to mean “if and only if.” We now compute c1. Under H0,
	�
X �m0

� �ðs =
ffiffiffi
n

p Þ
wNð0; 1Þ:
Observe that:

a ¼ P

�����X � m0

s=
ffiffiffi
n

p
����� c1

�
.

This gives a possible value of c1 as c1 ¼ za=2. Hence, the likelihood ratio test for the given hypothesis is:

Reject H0; if

����X � m0

s=
ffiffiffi
n

p
���� � za=2:

Thus, in this case, the likelihood ratio test is equivalent to the z-test for large random samples.

In fact, when both hypotheses are simple, the likelihood ratio test is identical to the NeymanePearson test. We can now
summarize the procedure for the likelihood ratio test.

Procedure for the likelihood ratio test

1. Find the largest value of the likelihood L(q) for any q0 ∊ Q0

by finding the maximum likelihood estimate within Q0 and

substituting back into the likelihood function.

2. Find the largest value of the likelihood L(q) for any q ∊ Q by

finding the maximum likelihood estimate within Q and

substituting back into the likelihood function.

Continued
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Procedure for the likelihood ratio testdcont’d

3. Form the ratio:

l ¼ lðx1; x2;.; xnÞ ¼ LðqÞ in Q0

LðqÞ in Q
:

4. Determine a K so that the test has the desired probability of

type I error, a.

5. Reject H0 if l � K.

In the next example, we find a likelihood ratio test for testing problems when both H0 and Ha are simple.

EXAMPLE 6.3.2

Machine I produces 5% defective products. Machine 2 produces 10% defectives. Ten items produced by each of the machines are

sampled randomly; X ¼ number of defectives. Let q be the true proportion of defectives. Test H0: q ¼ 0.05 versus Ha: q ¼ 0.1. Use

a ¼ 0.05.

Solution

We need to test H0: q ¼ 0.05 versus Ha: q ¼ 0.1. Let

LðqÞ ¼

8>>>><
>>>>:

 
10

x

!
ð0:05Þxð0:95Þ10�x

; if q ¼ 0:05

 
10

x

!
ð0:1Þxð0:90Þ10�x

; if q ¼ 0:10;

L1 ¼ Lð0:05Þ ¼
�
10

x

�
ð0:05Þxð0:95Þ10�x

;

and

L2 ¼ Lð0:1Þ ¼
�
10

x

�
ð0:1Þxð0:90Þ10�x

:

Thus, we have:

L1
L2

¼ 0:05x

0:1x

ð0:95Þ10�x

ð0:9Þ10�x ¼
�
1

2

�x�
19

18

�10�x

:

The likelihood ratio test ratio is:

l ¼ L1
maxðL1; L2Þ:

Note that if max(L1, L2) ¼ L1, then l ¼ 1. Because we want to reject for small values of l, max(L1, L2) ¼ L2, and we reject H0 if

(L1/L2) � K or (L2/L1) > K (note that L2
L1

¼ 2x
�

18
19

�10�x�
That is, reject H0 if:

2x

�
18

19

�10�x

> K

5

�
2
18
19

�x

> K1

5

�
19

9

�x

> K1:

Hence, reject H0 if X > C; P(X > C j H0: q ¼ 0.05) � 0.05.

Using the binomial tables, we have:
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P ðX > 2jq ¼ 0:05Þ ¼ 0:0116

and

PðX � 2jq ¼ 0:05Þ ¼ 0:0862:

Reject H0 if X > 2. If we want a to be exactly 0.05, we have to use a randomized test. Reject with probability 0:0384
0:0762 ¼ 0.5039

if X ¼ 2.

The likelihood ratio tests do not always produce a TS with a known probability distribution such as the z-statistic of
Example 6.3.1. If we have a large sample size, then we can obtain an approximation of the distribution of the statistic l,
which is beyond the level of this book.

Exercises 6.3

6.3.1. Let X1, ., Xn be a random sample from an N(m, s2). Assume that s2 is unknown. We wish to test, at level a, H0:
m ¼ m0 versus Ha: m < m0. Find an appropriate likelihood ratio test.

6.3.2. Let X1, ., Xn be a random sample from an N(m, s2). Assume that both m and s2 are unknown. We wish to test, at
level a, H0 : s

2 ¼ s20 versus Ha : s
2 > s20: Find an appropriate likelihood ratio test.

6.3.3. Let X1,., Xn be a random sample from an N(m1, s
2) and let Y1, Y2,., Yn be an independent sample from an N(m2,

s2), where s2 is unknown. We wish to test, at level a, H0: m1 ¼ m2 versus Ha: m1 s m2. Find an appropriate likeli-
hood ratio test.

6.3.4. Let X1, ., Xn be a sample from a Poisson distribution with parameter l. Show that a likelihood ratio test of H0:
l ¼ l0 versus Ha: l s l0 rejects the null hypothesis if X � m1 or X � m2:

6.3.5. Let X1, ., Xn be a sample from an exponential distribution with parameter q. Show that a likelihood ratio test of

H0: q ¼ q0 versus Ha: qs q0 rejects the null hypothesis if
Pn
i¼ 1

Xi � m1 or
Pn
i¼ 1

Xi � m2:

6.3.6. A clinical oncology program developed a set of guidelines for its cancer patients to follow. It is believed that the
proportion of patients who are still living after 24 months is greater for those who follow the guidelines. Of the 40
patients who followed the guidelines, 30 are still living after 24 months, whereas of 32 patients who did not follow
the guidelines, 21 are living after 24 months. Find a likelihood ratio test at a ¼ 0.01 to decide whether the program
is effective.

6.4 Hypotheses for a single parameter

In this section, we first introduce the concept of p value. After that, we study hypothesis testing concerning a single
parameter.

6.4.1 The p value

In hypothesis testing, the choice of the value of a is somewhat arbitrary. For the same data, if the test is based on two
different values of a, the conclusions could be different. Many statisticians prefer to compute the so-called p value, which
is calculated based on the observed TS. For computing the p value, it is not necessary to specify a value of a. We can use
the given data to obtain the p value.

Definition 6.4.1. Corresponding to an observed value of a TS, the p value (or attained significance level) is the lowest level
of significance at which the null hypothesis would have been rejected.

For example, if we are testing a given hypothesis with a ¼ 0.05 and we make a decision to reject H0 and we proceeded
to calculate the p value equal to 0.03, this means that we could have used an a as low as 0.03 and still maintained the same
decision, rejecting H0.

Based on the alternative hypothesis, one can use the following steps to compute the p value.
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Steps to find the p value

1. Let TS be the test statistic.

2. Compute the value of TS using the sample X1, ., Xn. Say

the computed value of TS is a.

3. The p value is given by:

p value ¼

8><
>:

P ðTS < ajH0Þ; if lower tail test

P ðTS > ajH0Þ; if lower tail test

P ðjTSj>jajjH0Þ; if lower tail test.

EXAMPLE 6.4.1

To test H0: m ¼ 0 versus Ha: ms 0, suppose that the TS Z results in a computed value of 1.58.

Then, the p value ¼ P(jZj > 1.58) ¼ 2(0.0571) ¼ 0.1142. That is, we must have a type I error of 0.1142 to reject H0. Also, if Ha:

m > 0, then the p value would be P(Z > 1.58) ¼ 0.0582. In this case we must have an a of 0.0582 to reject H0.

The p value can be thought of as a measure of support for the null hypothesis: The lower its value, the lower the
support. Typically, one decides that the support for H0 is insufficient when the p value drops below a particular threshold,
which is the significance level of the test, a.

Reporting test results as p values

1. Choose the maximum value of a that you are willing to

tolerate the decision.

2. If the p value of the test is less than the maximum value of

a, reject H0.

If the exact p value cannot be found, one can give an interval in which the p value can lie. For example, if the test is
significant at a ¼ 0.05 but not significant at a ¼ 0.025, report that 0.025 � p value � 0.05. So for a > 0.05, reject H0, and
for a < 0.025, do not reject H0.

In another interpretation, 1 � (p value) is considered as an index of the strength of the evidence against the null hy-
pothesis provided by the data. It is clear that the value of this index lies in the interval [0, 1]. If the p value is 0.02, the value
of the index is 0.98, supporting the rejection of the null hypothesis. Not only do p values provide us with a yes or no
answer, they also provide a sense of the strength of the evidence against the null hypothesis. The lower the p value, the
stronger the evidence. Thus, in any test, reporting the p value of the test is a good practice.

Because most of the outputs from statistical software used for hypothesis testing include the p value, the p-value
approach to hypothesis testing is becoming more and more popular. In this approach, the decision of the test is made in the
following way. If the value of a is given, and if the p value of the test is less than the value of a, we will reject H0. If the
value of a is not given and the p value associated with the test is small (usually set at p value < 0.05), there is evidence to
reject the null hypothesis in favor of the alternative. In other words, there is evidence that the value of the true parameter
(such as the population mean) is significantly different (greater or lesser than) from the hypothesized value. If the p value
associated with the test is not small (p > 0.05), we conclude that there is not enough evidence to reject the null hypothesis.
In most of the examples in this chapter, we give both the RR and the p-value approaches.

EXAMPLE 6.4.2

The management of a local health club claims that its members lose on the average 15 lb or more within the first 3 months after

joining the club. To check this claim, a consumer agency took a random sample of 45 members of this health club and found that

they lost an average of 13.8 lb within the first 3 months of participation, with a sample standard deviation of 4.2 lb.

(a) Find the p value for this test.

(b) Based on the p value in (a), would you reject the null hypothesis at a ¼ 0.01?
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Solution

(a) Let m be the true mean weight loss in pounds within the first 3 months of participation in this club. Then we have to test the

hypothesis:

H0: m ¼ 15 versus Ha: m < 15:

Here, n ¼ 45, x ¼ 13:8, and s ¼ 4.2. Because n ¼ 45 > 30, we can use normal approximation. Hence, the TS is:

z ¼ 13:8� 15

4:2=
ffiffiffiffiffiffi
45

p ¼ �1:9166

and

p value ¼ P ðZ < � 1:9166ÞxP ðZ < � 1:92Þ ¼ 0:0274:

Thus, we can use a as small as 0.0274 and still reject H0.

(b) No. Because the p value ¼ 0.0274 is greater than a ¼ 0.01, one cannot reject H0.

In any hypothesis testing, after an experimenter determines the objective of an experiment and decides on the type of
data to be collected, we recommend the following step-by-step procedure for hypothesis testing.

Steps in any hypothesis testing problem

1. State the alternative hypothesis, Ha (what is believed to be

true).

2. State the null hypothesis, H0 (what is doubted to be true).

3. Decide on a level of significance a.

4. Choose the appropriate TS and compute the observed TS.

5. Using the distribution of TS and a, determine the RR(s).

6. Conclusion: If the observed TS falls in the RR, reject H0 and

conclude that based on the sampled information, we are

(1 � a)100% confident that Ha is true. Otherwise,

conclude that there is not sufficient evidence to reject H0.

In all the applied problems, interpret the meaning of your

decision.

7. State any assumptions you made in testing the given

hypothesis.

8. Compute the p value from the null distribution of the TS

and interpret it.

6.4.2 Hypothesis testing for a single parameter

Now we study the testing of a hypothesis concerning a single parameter, q, based on a random sample X1, ., Xn. Let bq be
the sample statistic. First, we deal with tests for the population mean m for large and small samples. Next, we study
procedures for testing the population variance s2. We conclude the section by studying a test procedure for the true
proportion p.

To test the hypothesis H0: m ¼ m0 concerning the true population mean m, when we have a large sample (n � 30) we
use the TS Z given by:

Z ¼ X � m0

S=
ffiffiffi
n

p ;

where S is the sample standard deviation and m0 is the claimed mean under H0 (if the population variance is known, we
replace S with s).

For a small random sample (n < 30), the TS is:

T ¼ X � m0

S=
ffiffiffi
n

p

where m0 is the claimed value of the true mean, and X and S are the sample mean and standard deviation, respectively. Note
that we are using lowercase letters, such as z and t, to represent the observed values of the TSs Z and T, respectively.

In practice, with raw data, it is important to verify the assumptions. For example, in the small sample case, it is
important to check for normality by using normal plots. If this assumption is not satisfied, the nonparametric methods
described in Chapter 12 may be more appropriate. In addition, because the sample statistics such as X and S will be greatly
affected by the presence of outliers, drawing a box plot to check for outliers is a basic practice we should incorporate in our
analysis.
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We now summarize the typical test of hypothesis for tests concerning the population (true) mean.
To compute the observed TS, z in the large sample case and t in the small sample case, calculate the values of z ¼

ðx�m0Þ=ðs =
ffiffiffi
n

p Þ and t ¼ ½ðx�m0Þ =ðs =
ffiffiffi
n

p Þ�; respectively.

Summary of hypothesis tests for m

Large sample (n � 30)

To test:

H0: m ¼ m0

versus

Ha :

m > m0 upper tail test

m < m0 lower tail test

msm0; two-tailed test

Test statistic: Z ¼ X�m0

s=
ffiffi
n

p

Replace s with S, if s is unknown.

Rejection region :

8><
>:

z < za; upper tail RR

z < �za; lower tail RR

jzj > za=2; two tail RR

Assumption: n � 30 and s2 < N:

Decision: Reject H0, if the observed TS falls in the RR, and conclude that Ha is true with (1 � a)100% confidence. Otherwise,

keep H0 as there is not enough evidence to conclude that Ha is true for the given a and more data may be needed.

Small sample (n < 30)

To test:

H0: m ¼ m0

versus

Ha :

m > m0 upper tail test

m < m0 lower tail test

msm0; two-tailed test

Test statistic:

T ¼ X � m0

S=
ffiffiffi
n

p

RR :

8><
>:

t < ta;n�1; upper tail RR

t < �ta;n�1; lower tail RR

jt j > ta=2;ðn�1Þ; two tail RR

Assumption: Random sample comes from

a normal population.

EXAMPLE 6.4.3

It is claimed that sports-car owners drive on average 18,000 miles per year. A consumer firm believes that the average mileage is

probably lower. To check, the consumer firm obtained information from 40 randomly selected sports-car owners that resulted in a

sample mean of 17,463 miles with a sample standard deviation of 1348 miles. What can we conclude about this claim? Use

a ¼ 0.01. What is the p value?

Solution

Let m be the true population mean. We can formulate the hypotheses as H0: m ¼ 18,000 versus Ha: m < 18,000.

The observed TS (for n � 30) is:

z ¼ x � m0

s=
ffiffiffi
n

p y
17; 463� 18;000

1348=
ffiffiffiffiffiffi
40

p

¼ �2:52:

RR is {z < �z0.01} ¼ {z < �2.33}.

Decision: Because z ¼ �2.52 is less than �2.33, the null hypothesis is rejected at a ¼ 0.01. There is sufficient evidence to

conclude that the mean mileage on sports cars is less than 18,000 miles per year.

The p value ¼ Pðz< �2:52Þ ¼ 0:0059. This p value is less than 0.01 and also supports rejection of the null hypothesis.

EXAMPLE 6.4.4

In a frequently traveled stretch of the I-75 highway, where the posted speed is 70 mph, it is thought that people travel on average at

least 70 mph. To check this claim, the following radar measurements of the speeds (in mph) are obtained for 10 vehicles traveling

on this stretch of the interstate highway:

66 74 79 80 69 77 78 65 79 81.
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Do the data provide sufficient evidence to indicate that the mean speed at which people travel on this stretch of highway is at

least 70 mph (the posted speed limit)? Test the appropriate hypothesis using a ¼ 0.01. Draw a box plot and a normal plot for this

data, and comment.

Solution

We need to test:

H0: m ¼ 70 vs. Ha: m > 70:

Here n < 30: For this sample, the sample mean is x¼ 74.8mph and the sample standard deviation is s ¼ 5:9963mph.

Hence, the observed TS is:

t ¼ x � m0

s=
ffiffiffi
n

p ¼ 74:8� 70

5:9963=
ffiffiffiffiffiffi
10

p

¼ 2:5314:

From the t table, t0.01,9 ¼ 2.821. Hence, the RR is {t > 2.821}.

Because t ¼ 2.5314 does not fall in the RR, we do not reject the null hypothesis at a. This can also be verified by the fact that

the p value of 0.01608 is larger than a ¼ 0.01. This p value is obtained from R. (If we use the t table, we will see that 0:01 < p�
value < 0:025:) Note that we assumed that the vehicles were randomly selected and that the collected data follow the normal

distribution; because of the small sample size, n < 30, we use the t-test.

Figs. 6.1 and 6.2 are the box plot and the normal plot of the data, respectively.

The box plot suggests that there are no outliers present. However, the normal plot indicates that the normality assumption for

this data set is not justified. Hence, it may be more appropriate to do a nonparametric test or obtain more data.
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FIGURE 6.1 Box plot of speed data.
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FIGURE 6.2 Normal probability plot for speed.
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EXAMPLE 6.4.5

In attempting to control the strength of the wastes discharged into a nearby river, an industrial firm has taken a number of

restorative measures. The firm believes that they have lowered the oxygen-consuming power of their wastes from a previous mean

of 450 manganate in parts per million. To test this belief, readings are taken on n ¼ 20 successive days. A sample mean of 312.5

and a sample standard deviation 106.23 are obtained. Assume that these 20 values can be treated as a random sample from a

normal population. Test the appropriate hypothesis. Use a ¼ 0.05.

Solution

Here we need to test the following hypothesis:

H0: m ¼ 450 vs: Ha: m < 450

Given n ¼ 20, x ¼ 312:5; and s ¼ 106.23, the observed TS is:

t ¼ 312:5� 450

106:23=
ffiffiffiffiffiffi
20

p ¼ �5:79:

The RR for a ¼ 0.05 and with 19 degrees of freedom is the set of t values such that:

ft < � t0:05:19g ¼ ft < � 1:729g:

Decision: Because t ¼ �5.79 is less than �1.729, reject H0. There is sufficient evidence to confirm the firm’s belief.

For large random samples, the following procedure is used to perform tests of hypotheses about the population pro-
portion, p.

EXAMPLE 6.4.6

A machine is considered to be unsatisfactory if it produces more than 8% defectives. It is suspected that the machine is unsat-

isfactory. A random sample of 120 items produced by the machine contains 14 defectives. Does the sample evidence support the

claim that the machine is unsatisfactory? Use a ¼ 0.01.

Solution

Let Y be the number of observed defectives. This follows a binomial distribution. However, because np0 and nq0 are greater than

5, we can use a normal approximation to the binomial to test the hypothesis. So we need to test H0: p ¼ 0.08 versus Ha: p > 0.08.

Let the point estimate of p be bp ¼ ðY=nÞ ¼ 0:117; the sample proportion. Then the value of the TS is:

z ¼ bp � p0ffiffiffiffiffiffiffiffiffiffi
p0q0

n

r ¼ 0:117� 0:08ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:08Þð0:92Þ

120

r ¼ 0:137:

For a ¼ 0.01, z0.01 ¼ 2.33. Hence, the RR is {z > 2.33}.

Decision: Because 0.137 is not greater than 2.33, we do not reject H0. We conclude that the evidence does not support the

claim that the machine is unsatisfactory.

Summary of large sample hypothesis test for p

We want to test:

H0: p ¼ p0

versus

Ha:

p > p0; upper tail test

p < p0; lower tail test

psp0; two tailed test.

The TS is:

Z ¼ bp � p0

sp̂

; where sp̂ ¼
ffiffiffiffiffiffiffiffiffiffi
p0q0

n

r
; where q0 ¼ 1� p0:

Rejection region:

8>>><
>>>:

z > za; upper tail RR

z < �za; lower tail RR

jzj > za=2: two tail RR;

where z is the observed TS.
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Summary of large sample hypothesis test for pdcont’d

Assumption: n is large. A good rule of thumb is to use the

normal approximation to the binomial distribution only when

np0 and n(1 � p0) are both greater than 5.

Decision: Reject H0, if the observed TS falls in the RR, and

conclude that Ha is true with (1 � a)100% confidence.

Otherwise, do not reject H0 because there is not enough evi-

dence to conclude that Ha is true for the given a and more data

are needed.

Note that this an approximate test, and the test can be improved by increasing the sample size.
Now we give the procedure for testing the population variance when the samples come from a normal population.

Summary of hypothesis test for the variance s2

We want to test:

H0: s
2 ¼ s2

0

versus

s2 > s2
0; upper tail test

Ha: s
2 < s2

0; lower tail test

s2ss2
0; two-tailed test.

The TS is:

c2 ¼ ðn � 1ÞS2

s2
0

where S2 is the sample variance.

The observed value of the TS is:

ðn � 1ÞS2

s2
0

Rejection region:

8><
>:

c2 > c2
a;n�1; upper tail RR

c2 < c2
1�a;n�1; lower tail RR

c2 > c2
a=2;n�1 or c2 < c2

1�a=2;n�1; two tail RR

where c2
a;n�1 is such that the area under the chi-square distribution with (n � 1) degrees of freedom to its right is equal to a.

Assumption: The sample comes from a normal population.

Decision: Reject H0, if the observed TS falls in the RR, and conclude that Ha is true with (1 � a)100% confidence. Otherwise,

do not reject H0 because there is not enough evidence to conclude that Ha is true for the given a and more data are needed.

Because the chi-square distribution is not symmetric, the “equal tails” used for the two-tailed alternative may not be the
best procedure. However, in real-world problems we seldom use a two-tailed test for the population variance.

EXAMPLE 6.4.7

A physician claims that the variance in cholesterol levels of adult men in a certain laboratory is at least 100 mg/dL. A random

sample of 25 adult males from this laboratory produced a sample standard deviation of cholesterol levels of 12 mg/dL. Test the

physician’s claim at 5% level of significance.

Solution

To test:

H0 : s
2 ¼ 100 versus Ha: s

2 < 100
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for a ¼ 0.05, and 24 degrees of freedom, the RR is:

RR ¼
n
c2 <c2

1�a;n�1

o
¼ �

c2 < 13:484
�
:

The observed value of the TS is:

c2 ¼ ðn � 1Þs2
s2
0

¼ ð24Þð144Þ
100

¼ 34:56:

Because the value of the TS does not fall in the RR, we cannot reject H0 at the 5% level of significance. Here, we assumed that

the 25 cholesterol measurements follow the normal distribution.

Exercises 6.4

6.4.1. A random sample of 50 measurements resulted in a sample mean of 62 with a sample standard deviation 8. It is
claimed that the true population mean is at least 64.
(a) Is there sufficient evidence to refute the claim at the 2% level of significance?
(b) What is the p value?
(c) What is the smallest value of a for which the claim will be rejected?

6.4.2. A machine in a certain factory must be repaired if it produces more than 12% defectives among the large lot of
items it produces in a week. A random sample of 175 items from a week’s production contains 35 defectives, and
it is decided that the machine must be repaired.
(a) Does the sample evidence support this decision? Use a ¼ 0.02.
(b) Compute the p value.

6.4.3. A random sample of 78 observations produced the following sums:

X78
i¼ 1

xi ¼ 22:8;
X78
i¼ 1

ðxi � xÞ2 ¼ 2:05:

(a) Test the null hypothesis that m ¼ 0.45 against the alternative hypothesis that m < 0.45 using a ¼ 0.01. Also
find the p value.

(b) Test the null hypothesis that m ¼ 0.45 against the alternative hypothesis that m s 0.45 using a ¼ 0.01. Also
find the p value.

(c) What assumptions did you make for solving (a) and (b)?
6.4.4. Consider the test H0: m ¼ 35 versus Ha: m > 35 for a population that is normally distributed.

(a) A random sample of 18 observations taken from this population produced a sample mean of 40 and a sample
standard deviation of 5. Using a ¼ 0.025, would you reject the null hypothesis?

(b) Another random sample of 18 observations produced a sample mean of 36.8 and a sample standard deviation
of 6.9. Using a ¼ 0.025, would you reject the null hypothesis?

(c) Compare and discuss the decisions of parts (a) and (b).
6.4.5. According to the information obtained from a large university, professors there earned an average annual salary of

$55,648 in 1998. A recent random sample of 15 professors from this university showed that they earn an average
annual salary of $58,800 with a sample standard deviation of $8300. Assume that the annual salaries of all the
professors in this university are normally distributed.
(a) Suppose the probability of making a type I error is chosen to be zero. Without performing all the steps of test

of hypothesis, would you accept or reject the null hypothesis that the current mean annual salary of all pro-
fessors at this university is $55,648?

(b) Using the 1% significance level, can you conclude that the current mean annual salary of professors at this
university is more than $55,648?

6.4.6. A check-cashing service company found that approximately 7% of all checks submitted to the service were
without sufficient funds. After instituting a random check verification system to reduce its losses, the service com-
pany found that only 70 were rejected in a random sample of 1125 that were cashed. Is there sufficient evidence
that the check verification system reduced the proportion of bad checks at a ¼ 0.01? What is the p value associ-
ated with the test? What would you conclude at the a ¼ 0.05 level?
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6.4.7. Preliminary results of a study (the journal Environmental News reported in April 1975 that "The continuing anal-
ysis of lead levels in the drinking water of several Boston communities has verified elevated lead concentrations in
the water supplies of Somerville, Brighton, and Beacon Hill") found that "20% of the 248 randomly chosen house-
holds tested in these communities showed lead levels exceeding the U.S. Public Health Service standard of 50
parts per million." In contrast, in Cambridge, which adds anticorrosive to its water in an attempt to keep the
lead from leaching out of the pipes, "only 5% of the 100 randomly sampled households showed lead levels
exceeding the standard." Find a 95% confidence interval for the difference in the proportions of households in
Somerville, Brighton, and Beacon Hill, on one hand, and Cambridge, on the other, that had lead levels exceeding
the government standard, and carry out a test of the hypothesis of no difference at a ¼ 0:05.

6.4.8. A manufacturer of washers provides a particular model in one of three colors, white, black, or ivory. Of the first
1500 washers sold, it is noticed that 550 were of ivory color. Would you conclude that customers have a prefer-
ence for the ivory color? Justify your answer. Use a ¼ 0.01.

6.4.9. A test of the breaking strength of six ropes manufactured by a company showed a mean breaking strength of
7225 lb and a standard deviation of 120 lb. However, the manufacturer claimed a mean breaking strength of
7500 lb.
(a) Can we support the manufacturer’s claim at a level of significance of 0.10?
(b) Compute the p value. What assumptions did you make for this problem?

6.4.10. A sample of 10 observations taken from a normally distributed population produced the following data:

44 31 52 48 46 39 43 36 41 49

(a) Test the hypothesis H0: m ¼ 44 versus Ha: m s 44 using a ¼ 0.10. Draw a box plot and a normal plot for
these data, and comment.

(b) Find a 90% confidence interval for the population mean m.
(c) Discuss the meanings of (a) and (b). What can we conclude?

6.4.11. The principal of a charter school in Tampa believes that the IQs of its students are above the national average of
100. From the past experience, IQ is normally distributed with a standard deviation of 10. A random sample of 20
students is selected from this school and their IQs are observed. The following are the observed values.

95 91 110 93 133 119 113 107 110 89

113 100 100 124 116 113 110 106 115 113

(a) Test for the normality of the data.
(b) Do the IQs of students at the school run above the national average at a ¼ 0.01?

6.4.12. To find out whether children with chronic diarrhea have the same average hemoglobin level (Hb) that is normally
seen in healthy children in the same area, a random sample of 10 children with chronic diarrhea is selected and
their Hb levels (g/dL) are obtained as follows.

12.3 11.4 14.2 15.3 14.8 13.8 11.1 15.1 15.8 13.2

Do the data provide sufficient evidence to indicate that the mean Hb level for children with chronic diarrhea is less
than that of the normal value of 14.6 g/dL? Test the appropriate hypothesis using a ¼ 0.01. Draw a box plot and
normal plot for these data, and comment.

6.4.13. A company that manufactures precision special-alloy steel shafts claims that the variance in the diameter of shafts
is no more than 0.0003. A random sample of 10 shafts gave a sample variance of 0.00027. At the 5% level of
significance, test whether the company’s claim can be substantiated.

6.4.14. It was claimed that the average annual expenditures per consumer unit had continued to rise, as measured by the
Consumer Price Index annual averages (Bureau of Labor Statistics report, 1995). To test this claim, 100 consumer
units were randomly selected in 1995 and found to have an average annual expenditure of $32,277 with a standard
deviation of $1200. Assuming that the average annual expenditure of all consumer units was $30,692 in 1994, test
at the 5% significance level whether the annual expenditure per consumer unit had really increased from 1994 to
1995.
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6.4.15. It is claimed that two of three Americans say that the chances of world peace are seriously threatened by the nu-
clear capabilities of other countries. If in a random sample of 400 Americans, it is found that only 252 hold this
view, do you think the claim is correct? Use a ¼ 0.05. State any assumptions you make in solving this problem.

6.4.16. According to the Bureau of Labor Statistics (1996), the average price of a gallon of gasoline in all cities in the
United States in January 1996 was $1.129. A later random sample in 24 cities found the mean price to be
$1.14 with a standard deviation of 0.01. Test at a ¼ 0.05 to see whether the average price of a gallon of gas
in the cities had recently changed.

6.4.17. A manufacturer claims that the mean life of batteries manufactured by his company is at least 44 months. A
random sample of 40 of these batteries was tested, resulting in a sample mean life of 41 months with a sample
standard deviation of 16 months. Test at a ¼ 0.01 whether the manufacturer’s claim is correct.

6.5 Testing of hypotheses for two samples

In this section we study the hypothesis-testing procedures for comparing the means and variances of two populations. For
example, suppose that we want to determine whether a particular medication is effective for a certain illness. The sample
subjects will be randomly selected from a large pool of people with that particular illness and will be assigned randomly to
the two groups. To one group we will administer a placebo; to the other we will administer the medication of interest. After
a period of time, we measure a physical characteristic, say the blood pressure, of each subject that is an indicator of the
severity of the illness. The question is whether the medication can be considered effective on the population from which
our samples have been selected. We will consider the cases of independent and dependent samples.

6.5.1 Independent samples

Two random samples are drawn independent of each other from two populations, and the sample information is obtained.
We are interested in testing a hypothesis about the difference of the true means. Let X11;.;X1n1 be a random sample from
population 1 with mean m1 and variance s21, and X11;.;X1n2 be a random sample from population 2 with mean m2 and
variance s22. Let Xi, i ¼ 1, 2, represent the respective sample means and S2i , i ¼ 1, 2, represent the sample variances. In this
case, we shall consider the following three cases in testing hypotheses about m1 and m2: (1) when s21 and s22 are known, (2)
when s21 and s22 are unknown and n1 � 30 and n2 � 30, and (3) when s21 and s22 are unknown and n1 < 30 and n2 < 30. In
case (3) we have the following two possibilities, (a) s21 ¼ s22; and (b) s21ss22.

In the large sample case, knowledge of population variances s21 and s22 does not make much difference. If the pop-
ulation variances are unknown, we could replace them with sample variances as an approximation. If both n1 � 30 and
n2 � 30 (large sample case), we can use normal approximation. The following box sums up a large sample hypothesis
testing procedure for the difference of means for the large sample case.

Summary of hypothesis test for m1 L m2 for large samples (n1 and n2 ‡ 30)

We want to test:

H0: m1 �m2 ¼ D0

versus

Ha :

8><
>:

m1 � m2 > D0; upper tailed test

m1 � m2 < D0; lower tailed test

m1 � m2sD0; two-tailed test.

The TS is:

Z ¼ X1 � X2 �D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1

þ s2
2

n2

s :
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Replace si with si, if si, i ¼ 1, 2, are not known.The RR is:

RR :

8><
>:

z > za; upper tail RR

z < �za; lower tail RR

jzj > za=2; two tail RR;

where z is the observed TS given by:

z ¼ x1 � x2 �D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1

þ s2
2

n2

s :

Assumption: The samples are independent and n1 and n2 � 30.

Decision: Reject H0, if the TS falls in the RR, and conclude that Ha is true with ð1�aÞ100% confidence. Otherwise, do not

reject H0 because there is not enough evidence to conclude that Ha is true for a given a and more data are needed.

EXAMPLE 6.5.1

In a salary equity study of faculty at a certain university, sample salaries of 50 male assistant professors and 50 female assistant

professors yielded the following basic statistics.

Sample mean salary Sample standard deviation

Male assistant professor $46,400 360

Female assistant professor $46,000 220

Test the hypothesis that the mean salary of male assistant professors is more than the mean salary of female assistant professors

at this university. Use a ¼ 0.05.

Solution

Let m1 be the true mean salary for male assistant professors and m2 be the true mean salary for female assistant professors at this

university. To test:

H0: m1 �m2 ¼ 0 vs: Ha: m1 � m2 > 0

the TS is:

z ¼ x1 � x2 �D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s ¼ 46; 400� 46; 000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð360Þ2
50

þ ð220Þ2
50

s ¼ 6:704:

The RR for a ¼ 0.05 is {z > 1.645}.

Because z ¼ 6.704 > 1.645, we reject the null hypothesis at a ¼ 0.05.We conclude that the salary of male assistant professors

at this university is higher than that of female assistant professors for a ¼ 0.05. Note that even though s2
1 and s2

2 are unknown,

because n1 � 30 and n2 � 30, we could replace s2
1 and s2

2 with the respective sample variances. We are assuming that the

salaries of male and female assistant professors are sampled independent of each other.

6.5.1.1 Equal variances

Given next is the procedure we follow to compare the true means from two independent normal populations when n1 and
n2 are small (n1 < 30 or n2 < 30) and we can assume homogeneity in the population variances, that is, s21 ¼ s22: In this
case, we pool the sample variances to obtain a point estimate of the common variance.
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Comparison of two population means, small sample case (pooled t-test)

We want to test:

H0: m1 �m2 ¼ D0

versus

m1 � m2 > D0; upper tailed test

Ha: m1 � m2 < D0; lower tailed test

m1 � m2sD0; two-tailed test.

The TS is:

T ¼ X1 � X2 �D0

Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ 1

n2

r :

Here the pooled sample variance is:

S2
p ¼ ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2

n1 þ n2 � 2
:

Then the RR is:

RR :

8><
>:

t > ta; upper tailed test

t < �ta; lower tail test

jt j > ta=2; two-tailed test

where t is the observed TS and ta is based on (n1 þ n2 � 2)

degrees of freedom, and such that P(T > ta) ¼ a.

Decision: Reject H0, if TS falls in the RR, and conclude that

Ha is true with (1 � a)100% confidence. Otherwise, do not

reject H0 because there is not enough evidence to conclude

that Ha is true for a given a.

Assumptions: The samples are independent and come from

normal populations with means m1 and m2, and with (unknown)

equal variances, that is, s21 ¼ s22:

6.5.1.2 Unequal variances: Welch’s t-test (s21ss22)

Now we shall consider the case where s21 and s22 are unknown and cannot be assumed to be equal. Welch’s t-test is
designed for this case; however, it is still necessary to assume the samples are coming from normal distributions. In such a
case the following test is often used. For the hypothesis:

H0: m1 �m2 ¼ D0 vs. Ha:

8><
>:

m1 � m2 > D0

m1 � m2 < D0

m1 � m2sD0

define the TS Tv as:

Tv ¼ X1 � X2 � D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S22
n2

s

where Tv has a t distribution with v degrees of freedom, and for a particular sample with S21 ¼ s21 and S22 ¼ s22;

v ¼
	�
s21=n1

�þ �s22=n2�
2�
s21=n1

�2
n1 � 1

þ
�
s22=n2

�2
n2 � 1

¼
	�
s21=n1

�þ �s22=n2�
2
s41

n21ðn1 � 1Þ þ
s42

n22ðn2 � 1Þ
:

The value of v will not necessarily be an integer. In that case, we will round it down to the nearest integer. This method
of hypothesis testing with unequal variances is called the SmitheSatterthwaite procedure, or Welch’s procedure. Even
though this procedure is not widely used, some simulation studies have shown that the SmitheSatterthwaite procedure
performs well when variances are unequal and it gives results that are more or less equivalent to those obtained with the
pooled t-test when the variances are equal. However, when the sample sizes are approximately equal, the pooled t-test may
still be used. Note that in addressing the question which of the cases (3) (a) or (3) (b) to use in a given problem, we suggest
that if the point estimates S21 of s

2
1 and S

2
2 of s

2
2 are approximately the same, then it is logical to assume homogeneity, s21 ¼

s22 and use (3) (a), whereas if S
2
1 and S

2
2 are significantly different we use (3) (b). More appropriately, we have tests that can

be used to test hypotheses concerning s21 ¼ s22 or s21ss22; known as the F-test, which we discuss at the end of this
subsection. Some authors do suggest doing Welch’s t-test all the time, to avoid a test of equality of variances. It should be
noted that assumption of normality is crucial.
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EXAMPLE 6.5.2

The IQs of 17 students from one area of a city showed a sample mean of 106 with a sample standard deviation of 10, whereas the

IQs of 14 students from another area chosen independently showed a sample mean of 109 with a sample standard deviation of 7.

Is there a significant difference between the IQs of the two groups at a ¼ 0.01? Assume that the population variances are equal.

Solution

We need to test:

H0 : m1 �m2 ¼ 0 vs: Ha : m1 � m2s0:

Here n1 ¼ 17, x1 ¼ 106; and s1 ¼ 10. Also, n2 ¼ 14, x2 ¼ 109; and s2 ¼ 7.

We have:

s2p ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
n1 þ n2 � 2

¼ ð16Þð10Þ2 þ ð13Þð7Þ2
29

¼ 77:138:

The TS is:

t ¼ x1 � x2 �D0

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ 1

n2

r ¼ 106� 109� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
77:138

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

17
þ 1

14

r ¼ � 0:94644:

For a ¼ 0.01, t0.01,29 ¼ 2.462. Hence, the RR is t < �2.462 or t > 2.462.

Because the observed value of the TS, t ¼ �0.94644, does not fall in the RR, there is not enough evidence to conclude that the

mean IQs are different for the two groups. Here we assume that the two samples are independent and taken from normal

populations.

EXAMPLE 6.5.3

Assume that two populations are normally distributed with unknown and unequal variances. Two independent samples were

drawn from these populations and the data obtained resulted in the following basic statistics:

n1 ¼ 18 x1 ¼ 20:17 s1 ¼ 4:3

n2 ¼ 12 x2 ¼ 19:23 s2 ¼ 3:8 :

Test at the 5% level of significance whether the two population means are different.

Solution

We need to test the hypothesis:

H0: m1 �m2 ¼ 0 versus Ha: m1 � m2s0:

Here n1 ¼ 18, x1 ¼ 20:17; and s1 ¼ 4.3. Also, n2 ¼ 12, x2 ¼ 19:23; and s2 ¼ 3.8.

The degrees of freedom for the t distribution are given by:

v ¼
�
s21=n1 þ s22=n2

�2�
s21=n1

�2
n1 � 1

þ
�
s22=n2

�2
n2 � 1

¼

 
ð4:3Þ2
18

þ ð3:8Þ2
12

!2

 
ð4:3Þ2
18

!2

17
þ

 
ð3:8Þ2
12

!

11

2 ¼ 25:685:
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Hence, rounding down we have v ¼ 25 degrees of freedom. For a ¼ 0.05, t0.025,25 ¼ 2.060. Thus, the RR is t < �2.060 or

t > 2.060.

The TS is given by:

tv ¼ x1 � x2 �D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s

¼ 20:17� 19:23ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4:3Þ2
18

s
þ ð3:8Þ2

12

¼ 0:62939:

Because the observed value of the TS, ty ¼ 0:62939, does not fall in the RR, we do not reject the null hypothesis. At a ¼ 0.05

there is not enough evidence to conclude that the population means are different. Note that the assumptions we made are that the

samples are independent and came from two normal populations. No homogeneity assumption of the variance is made.

EXAMPLE 6.5.4

Infrequent or suspended menstruation can be a symptom of serious metabolic disorders in women. In a study to compare the

effect of jogging and running on the number of menses, two independent subgroups were chosen from a large group of women,

who were similar in physical activity (aside from running), height, occupation, distribution of age, and type of birth control

method being used. The first group consisted of a random sample of 26 women joggers who jogged “slow and easy” 5 to 30 miles

per week, and the second group consisted of a random sample of 26 women runners who ran more than 30 miles per week and

combined long, slow distance with speed work. The following summary statistics were obtained (E. Dale, D.H. Gerlach, and A.L.

Wilhite, “Menstrual Dysfunction in Distance Runners,” Obstet. Gynecol. 54, 47e53, 1979).

Joggers x1 ¼ 10:1; s1 ¼ 2:1

Runners x2 ¼ 9:1; s2 ¼ 2:4

Using a ¼ 0.05, (a) test for differences in mean number of menses for each group assuming equality of population variances,

and (b) test for differences in mean number of menses for each group assuming inequality of population variances.

Solution

Here we need to test:

H0: m1 �m2 ¼ 0 versus Ha: m1 � m2s0:

We are given n1 ¼ 26, x1 ¼ 10:1; and s1 ¼ 2.1. Also, n2 ¼ 26, x2 ¼ 9:1; and s2 ¼ 2.4.

(a) Under the assumption s2
1 ¼ s2

2; we have:

s2p ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
n1 þ n2 � 2

¼ ð25Þð2:1Þ2 þ ð25Þð2:4Þ2
50

¼ 5:085:

The TS is:

t ¼ x1 � x2 �D0

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ 1

n2

r

¼ 10:1� 9:1� ffiffiffiffiffiffiffiffiffiffiffiffi
5:085

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

26
þ 1

26

r ¼ 1:5989:
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For a ¼ 0.05, t0.025,50 z 1.96. Hence, the RR is t < �1.96 and t > 1.96. Because t ¼ 1.589 does not fall in the RR, we do not

reject the null hypothesis. At a ¼ 0.05 there is not enough evidence to conclude that the population mean numbers of menses for

joggers and runners are different.

(b) Under the assumption s2
1ss2

2; we have:

v ¼
�
s21=n1 þ s22=n2

�2�
s21=n1

�2
n1 � 1

þ
�
s22=n2

�2
n2 � 1

¼

 
ð2:1Þ2
26

þ ð2:4Þ2
26

!2

 
ð2:1Þ2
26

!2

25
þ

 
ð2:4Þ2
26

!2

25

¼ 49:134:

Hence, we have v ¼ 49 degrees of freedom. Because this value is large, the RR is still approximately t < �1.96 and t > 1.96.

Hence, the conclusion is the same as that of (a). In both parts (a) and (b), we assumed that the samples were independent and

came from two normal populations.

Now we present the summary of the test procedure for testing the difference of two proportions, inherent in two
binomial populations. Here, again we assume that the binomial distribution is approximated by the normal distribution and
thus it is an approximate test.

Summary of hypothesis test for (p1 L p2) for large samples (nipi > 5 and niqi > 5, for i [ 1, 2)

To test:

H0: p1 � p2 ¼ D0

versus

Ha :

p1 � p2 < D0; upper tailed test

p1 � p2 > D0; lower tailed test

p1 � p2sD0; two-tailed test

at the level of significance a, the TS is:

Z ¼ bp1 � bp2 �D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp1
bq1

n1

þ bp2
bq2

n2

s

where z is the observed value of Z.

The RR is:

RR :

8><
>:

z > za; upper tailed RR

z < �za; lower tailed RR

jzj > za=2; two-tailed RR

Assumption: The samples are independent and

nipi > 5 and niqi > 5; for i ¼ 1; 2:

Decision: Reject H0 if the TS falls in the RR, and conclude

that Ha is true with (1 � a)100% confidence. Otherwise, do

not reject H0, because there is not enough evidence to

conclude that Ha is true for a given a and more data are

needed.

EXAMPLE 6.5.5

Because of the impact of the global economy on a high-wage country such as the United States, it is claimed that the domestic

content in manufacturing industries fell between 1977 and 1997. A survey of 36 randomly picked US companies gave the

proportion of domestic content total manufacturing in 1977 as 0.37 and in 1997 as 0.36. At the 1% level of significance, test the

claim that the domestic content really fell during the period 1977e97.

Solution

Let p1 be the domestic content in 1977 and p2 be the domestic content in 1997.

Given n1 ¼ n2 ¼ 36, bp1 ¼ 0:37 and bp2 ¼ 0:36: We need to test:

H0 : p1 � p2 ¼ 0 vs: Ha : p1 � p2 > 0:
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The TS is:

z ¼ bp1 � bp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp1
bq1

n1

þ bp2
bq2

n2

s

¼ 0:37� 0:36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:37Þð0:63Þ

36
þ ð0:36Þð0:64Þ

36

r ¼ 0:08813:

For a ¼ 0.01, z0.01 ¼ 2.325. Hence, the RR is z > 2.325.

Because the observed value of the TS does not fall in the RR, at a ¼ 0.01, there is not enough evidence to conclude that the

domestic content in manufacturing industries fell between 1977 and 1997.

Let X1, ., Xn and Y1, ., Yn be two independent random samples from two normal populations with sample variances
S21 and S22; respectively. The problem here is of testing for the equality of the variances, H0 : s

2
1 ¼ s22: We have already

seen in Chapter 4 that:

F ¼ S21=s
2
1

S22=s
2
2

follows the F distribution with v1 ¼ n1 � 1 numerator and v2 ¼ n2 � 1 denominator degrees of freedom. Under the
assumption H0 : s

2
1 ¼ s22; we have:

F ¼ S21
S22
;

which has an F distribution with (v1, v2) degrees of freedom. We summarize the test procedure for the equality of variances.

Testing for the equality of variances

To test:

H0 : s
2
1 ¼ s2

2

versus

s2
1 > s2

2; lower tailed test

Ha : s
2
1 < s2

2; upper tailed test

s2
1ss2

2; two-tailed test

at significance level a, the TS is:

F ¼ S2
1

S2
2

:

The RR is:

RR :

8><
>:

f > Faðv1; v2Þ; upper tailed RR

f < F1�aðv1; v2Þ; lower tailed RR

f > Fa=2ðv1; v2Þ or f < F1�a =2ðv1; v2Þ; two-tailed RR

where f is the observed TS given by f ¼ s21
s2
2

.

Decision: Reject H0 if the TS falls in the RR and conclude

that Ha is true with (1 � a)100% confidence. Otherwise, keep

H0, because there is not enough evidence to conclude that Ha

is true for a given a and more data are needed.

Assumptions:

(i) The two random samples are independent.

(ii) Both populations are normal.

Recall from Section 4.2 that to find F1�a(v1, v2), we use the identity F1eaðv1; v2Þ ¼ ð1 =Faðv2; v1ÞÞ.

EXAMPLE 6.5.6

Consider two independent random samples, X1, ., Xn from an N
�
m1;s

2
1

�
distribution and Y1, ., Yn from an N

�
m2;s

2
2

�
distri-

bution. Test H0 : s21 ¼ s22 versus Ha : s21ss22 for the following basic statistics:

n1 ¼ 25; x1 ¼ 410; s21 ¼ 95; and n2 ¼ 16; x2 ¼ 390; s22 ¼ 300:

Use a ¼ 0.20.
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Solution

Test H0 : s2
1 ¼ s2

2 versus Ha : s2
1ss2

2: This is a two-tailed test.

Here the degrees of freedom are n1 ¼ 24 and n2 ¼ 15. The TS is:

F ¼ s21
s22

¼ 95

300
¼ 0:317:

From the F table with a=2 ¼ 0:10, F0.10(24, 15) ¼ 1.90 and F0.90(24, 15) ¼ (1/F0.10(15, 24)) ¼ 1=1:78 ¼ 0.56.

Hence, the RR is F > 1.90 or F < 0.56. Because the observed value of the TS, 0.317, is less than 0.56, we reject the null

hypothesis. There is evidence that the population variances are not equal.

6.5.2 Dependent samples

We now consider the case in which the two random samples are not independent. When two samples are dependent (the
samples are dependent if one sample is related to the other), then each data point in one sample can be coupled in some
natural, nonrandom fashion with each data point in the second sample. This situation occurs when each individual data
point within a sample is paired (matched) to an individual data point in the second sample. The pairing may be the result of
the individual observations in the two samples: (1) representing before and after a program (such as weight before and after
following a certain diet program), (2) sharing the same characteristic, (3) being matched by location, (4) being matched by
time, (5) control and experimental, and so forth. Let (X1i, X2i), for i ¼ 1, 2, ., n, be a random sample. X1i and X2j (i s j)
are independent. To test the significance of the difference between two population means when the samples are dependent,
we first calculate for each pair of scores the difference, Di ¼ X1i � X2i, i ¼ 1, 2, ., n, between the two scores. Let
mD ¼ E(Di), the expected value of Di. Because pairs of observations form a random sample, D1, ., Dn are independent
and identically distributed random variables, if d1, ., dn are the observed values of D1, ., Dn, then we define:

d ¼ 1
n

Xn
i¼ 1

di and s2d ¼ 1
n� 1

Xn
i¼ 1

�
di � d

�2
¼
Pn
i¼ 1

d2
i �

1
n

�Pn
i¼ 1

di

�2

n� 1
:

Now the testing for these n observed differences will proceed as in the case of a single sample. If the number of
differences is large (n � 30), large sample inferential methods for one sample case can be used for the paired differences.
We now summarize the hypothesis-testing procedure for small samples.

Summary of testing for matched pairs experiment

To test:

H0 : mD ¼ d0 versus Ha :

mD > d0; upper tail test

mD < d0; lower tail test

mDsd0; two-tailed test

the TS is T ¼ D�D0

SD=
ffiffi
n

p (this approximately follows a Student t

distribution with (n � 1) degrees of freedom). The RR is:8><
>:

t > ta;n�1; upper tail RR

t < �ta;n�1; lower tail RR

jtj > ta=2;n�1; two-tailed RR

where t is the observed TS.

Assumption: The differences are approximately normally

distributed.

Decision: Reject H0 if the TS falls in the RR and conclude

that Ha is true with (1 � a)100% confidence. Otherwise, do

not reject H0, because there is not enough evidence to

conclude that Ha is true for a given a and more data are

needed.

EXAMPLE 6.5.7

A new diet and exercise program has been advertised as a remarkable way to reduce blood glucose levels in diabetic patients. Ten

randomly selected diabetic patients are put on the program, and the results after 1 month are given by the following table:

Before 268 225 252 192 307 228 246 298 231 185

After 106 186 223 110 203 101 211 176 194 203
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Do the data provide sufficient evidence to support the claim that the new program reduces blood glucose level in diabetic

patients? Use a ¼ 0.05.

Solution

We need to test the hypothesis:

H0: mD ¼ 0 vs: Ha : mD < 0:

First we calculate the difference of each pair given in the following table:

Before 268 225 252 192 307 228 246 298 231 185

After 106 186 223 110 203 101 211 176 194 203

Difference (after � before) �162 �39 �29 �82 �104 �127 �35 �122 �37 18

From the table, the mean of the differences is d ¼ �71:9 and the standard deviation sd ¼ 56.2. The TS is:

t ¼ d � d0

sd=
ffiffiffi
n

p ¼ �71:9

56:2=
ffiffiffiffiffiffi
10

p ¼ �4:0457z� 4:05:

From the t table, t0,05,9 ¼ 1.833. Because the observed value of t ¼ �4.05 < �t0,05,9 ¼ �1.833, we reject the null hypothesis

and conclude that the sample evidence suggests that the new diet and exercise program is effective. Here we assume the dif-

ferences follow the normal distribution.

We can also obtain a (1 � a)100% confidence interval for mD using the formula:�
D� ta=2

Sdffiffiffi
n

p ;Dþ ta=2
Sdffiffiffi
n

p
�
;

where ta/2 is obtained from the t table with (n � 1) degrees of freedom. The interpretation of the confidence interval is
identical to the earlier interpretation.

EXAMPLE 6.5.8

For the data in Example 6.5.7, obtain a 95% confidence interval for mD and interpret its meaning.

Solution

We have already calculated d ¼ �71:9 and sd ¼ 56.2. From the t table, t0.025,9 ¼ 2.262. Hence, a 95% confidence interval for

mD is (�112.1, e31.7). That is, Pð�112:1 � mD � �31:7Þ � 0:95. Note that mD ¼ m1 � m2, and from the confidence limits we can

conclude with at least 95% confidence that m2 is always greater than m1, that is, m2 > m1.

It is interesting to compare the matched pairs test with the corresponding two independent sample tests. One of
the natural questions is, why must we take paired differences and then calculate the mean and standard deviation for the
differencesdwhy can’t we just take the difference of means of each sample, as we did for independent samples? The
answer lies in the fact that s2D need not be equal to s2ðX1�X2Þ. Assume that:

EðXjiÞ ¼ mj; VarðXjiÞ ¼ s2
j ; for j ¼ 1; 2;

and

CovðX1i;X2iÞ ¼ rs1s2;

where r denotes the assumed common correlation coefficient of the pair (X1i, X2i) for i ¼ 1, 2, ., n. Because the values of
Di, i ¼ 1, 2, ., n, are independent and identically distributed,

mD ¼ EðDiÞ ¼ EðX1iÞ � EðX2iÞ ¼ m1 � m2

and

s2
D ¼ VarðDiÞ ¼ VarðX1iÞ þ VarðX2iÞ � 2CoyðX1i;X2iÞ

¼ s2
1 þ s2

2 � 2rs1s2:
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From these calculations,

E
�
D
� ¼ mD ¼ m1 � m2

and

s2
D
¼ Var

�
D
� ¼ s2

D

n
¼ 1

n

�
s2
1 þ s2

2 � 2rs1s2

�
:

Now, if the samples were independent with n1 ¼ n2 ¼ n, we would have:

E
�
X1 �X2

� ¼ m1 � m2

and

s2

ðX1�X2Þ ¼ 1
n

�
s2
1 þ s2

2

�
:

Hence, if r > 0, then s2D < s2ðX1�X2Þ. As a result, we can see that the matched pairs test reduces any variability
introduced by differences in physical factors in comparison to the independent samples test when r > 0. It is also important
to observe that normality assumption for the difference does not imply that the individual samples themselves are normal.
Also, in a matched pairs experiment, there is no need to assume the equality of variances for the two populations. Matching
also reduces degrees of freedom, because in the case of two independent samples, the degrees of freedom are
(n1 þ n2 � 2), whereas for the case of two dependent samples they are only (n � 1).

Exercises 6.5

6.5.1. Two sets of elementary school children were taught to read by different methods, 50 by each method. At the
conclusion of the instructional period, a reading test gave results y1 ¼ 74; y2 ¼ 71; s1 ¼ 9, and s2 ¼ 10.
What is the attained significance level if you wish to see if there is evidence of a real difference between the
two population means? What would you conclude if you desired an a value of 0.05?

6.5.2. The following information was obtained from two independent samples selected from two normally distributed
populations with unknown but equal variances:

Sample 1 14 15 11 14 10 8 13 10 12 16 15
Sample 2 17 16 21 12 20 18 16 14 21 20 13 20 13

Test whether m1 is lower than m2 at a ¼ 0:02.
6.5.3. In the academic year 1997e98, two random samples of 25 male professors and 23 female professors from a large

university produced a mean salary for male professors of $58,550 with a standard deviation of $4000 and an
average for female professors of $53,700 with a standard deviation of $3200. At the 5% significance level,
can you conclude that the mean salary of all male professors for 1997e98 was higher than that of all female pro-
fessors? Assume that the salaries of male and female professors are both normally distributed with equal standard
deviations.

6.5.4. It is believed that the effects of smoking differ depending on race. The following table gives the results of a sta-
tistical study for this question.

Number in the study Average number of cigarettes per day Number of lung cancer cases

Whites 400 15 78
African Americans 280 15 70

Do the data indicate that African Americans are more likely to develop lung cancer due to smoking? Use
a ¼ 0.05.
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6.5.5. A supermarket chain is considering two sources, A and B, for the purchase of 100-lb bags of onions. The
following table gives the results of a study.

Source A Source B

Number of bags weighed 80 100
Mean weight 105.9 100.5
Sample variance 0.21 0.19

Test at a ¼ 0.05 whether there is a difference in the mean weights.
6.5.6. To compare the mean hemoglobin (Hb) levels of well-nourished and undernourished groups of children, random

samples from each of these groups yielded the following summary.

Number of children Sample mean Sample standard deviation

Well nourished 95 11.2 0.9
Undernourished 75 9.8 1.2

Test at a ¼ 0.01 whether the mean Hb levels of well-nourished children were higher than those of undernourished
children.

6.5.7. An aquaculture farm takes water from a stream and returns it after it has circulated through fish tanks. To find out
how much organic matter is left in the wastewater after the circulation, some samples of the water are taken at the
intake and other samples are taken at the downstream outlet and tested for biochemical oxygen demand (BOD).
BOD is a common environmental measure of the quantity of oxygen consumed by microorganisms during the
decomposition of organic matter. If BOD increases, it can be said that the waste matter contains more organic
matter than the stream can handle. The following table gives data for this problem.

Upstream 9.0 6.8 6.5 8.0 7.7 8.6 6.8 8.9 7.2 7.0
Downstream 10.2 10.2 9.9 11.1 9.6 8.7 9.6 9.7 10.4 8.1

Assuming that the samples come from a normal distribution:
(a) Test that the mean BOD for the downstream samples is more than for the samples upstream at a ¼ 0.05. As-

sume that the variances are equal.
(b) Test for the equality of the variances at a ¼ 0.05.
(c) In (a) and (b), we assumed the samples are independent. Now, we feel this assumption is not reasonable.

Assuming that the difference of each pair is approximately normal, test that the mean BOD for the down-
stream samples is more than for the upstream samples at a ¼ 0.05.

6.5.8. Suppose we want to know the effect on driving of a medication for cold and allergy, in a study in which the same
people were tested twice, once 1 h after taking the medication and once when no medicine was taken. Suppose we
obtain the following data, which represent the number of cones (placed in a certain pattern) knocked down by each
of the nine individuals before taking the medicine and an hour after taking the medicine.

No medicine 0 0 3 2 0 0 3 3 1
After medication 1 5 6 5 5 5 6 1 6

Assuming that the difference of each pair is coming from an approximately normal distribution, test if there is any
difference in the individuals’ driving ability under the two conditions. Use a ¼ 0.05. What is the p value?

6.5.9. Suppose that we want to evaluate the role of intravenous pulse cyclophosphamide (IVCP) infusion in the man-
agement of nephrotic syndrome in children with steroid resistance. Children were given a monthly infusion of
IVCP in a dose of 500e750 mg/m2. The following data (source: S. Gulati and V. Kher, “Intravenous pulse
cyclophosphamideda new regime for steroid resistant focal segmental glomerulosclerosis,” Indian Pediatr. 37,
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2000) represent levels of serum albumin (g/dL) before and after IVCP in 14 randomly selected children with
nephrotic syndrome.

Pre-IVCP 2.0 2.5 1.5 2.0 2.3 2.1 2.3 1.0 2.2 1.8 2.0 2.0 1.5 3.4
Post-
IVCP

3.5 4.3 4.0 4.0 3.8 2.4 3.5 1.7 3.8 3.6 3.8 3.8 4.1 3.4

Assuming that the samples come from a normal distribution:
(a) Here, we cannot assume that the samples are independent. Assuming that the difference of each pair is

approximately normal, test that the mean pre-IVCP is less than the post-IVCP at a ¼ 0.05.
(b) Test for the equality of the variances at a ¼ 0.05.

6.5.10. Show that S2D is an unbiased estimator of s2D.
6.5.11. Test H0 : s

2
1 ¼ s22 versus Ha : s21ss22 for the following data.

n1 ¼ 10; x1 ¼ 71; s21 ¼ 64 and n2 ¼ 25; x2 ¼ 131; s22 ¼ 96:

Use a ¼ 0.10.
6.5.12. The IQs of 17 students from one area of a city showed a mean of 106 with a standard deviation of 10, whereas the

IQs of 14 students from another area showed a mean of 109 with a standard deviation of 7. Test for equality of
variances between the IQs of the two groups at a ¼ 0.02.

6.5.13. The following data give SAT mean scores for math by state for 1989 and 1999 for 16 randomly selected states
(source: The World Almanac and Book of Facts, 2000).

State 1989 1999

Arizona 523 525
Connecticut 498 509
Alabama 539 555
Indiana 487 498
Kansas 561 576
Oregon 509 525
Nebraska 560 571
New York 496 502
Virginia 507 499
Washington 515 526
Illinois 539 585
North Carolina 469 493
Georgia 475 482
Nevada 512 517
Ohio 520 568
New Hampshire 510 518

Assuming that the samples come from a normal distribution:
(a) Test that the mean SAT score for math in 1999 is greater than that in 1989 at a ¼ 0.05. Assume the variances

are equal.
(b) Test for the equality of the variances at a ¼ 0.05.

6.6 Chapter summary

In this chapter, we have learned various aspects of hypothesis testing. First, we dealt with hypothesis testing for one sample
where we used test procedures for testing hypotheses about true mean, true variance, and true proportion. Then we dis-
cussed the comparison of two populations through their true means, true variances, and true proportions. We also intro-
duced the NeymanePearson lemma and discussed likelihood ratio tests and chi-square tests for categorical data.

We now list some of the key definitions in this chapter.

- Statistical hypotheses
- Tests of hypotheses, tests of significance, or rules of decision
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- Simple hypothesis
- Composite hypothesis
- Type I error
- Type II error
- The level of significance
- The p value or attained significance level
- The SmitheSatterthwaite procedure
- Power of the test
- Most powerful test
- Likelihood ratio

In this chapter, we also learned the following important concepts and procedures:

- General method for hypothesis testing
- Steps to calculate b

- Steps to find the p value
- Steps in any hypothesis-testing problem
- Summary of hypothesis tests for m
- Summary of large sample hypothesis tests for p
- Summary of hypothesis tests for the variance s2

- Summary of hypothesis tests for m1 � m2 for large samples (n1 and n2 � 30)
- Summary of hypothesis tests for p1 � p2 for large samples
- Testing for the equality of variances
- Summary of testing for a matched pairs experiment
- Procedure for applying the NeymanePearson lemma
- Procedure for the likelihood ratio test

6.7 Computer examples

In the following examples, if the value of a is not specified, we will always take it as 0.05.

6.7.1 R examples

EXAMPLE 6.7.1

One-sample t-test

Using the following data:

Sample x: 66 74 79 80 69 77 78 65 79 81

Test H0 : m ¼ 70 versus Ha : m > 70

This example assumes you have stored the data in variable x; please modify the code appropriately.

R-code

t.test( x, mu¼70, alternative¼”greater”);

Output

One-sample t-test

data: x

t ¼ 2.5314, df ¼ 9, p-value ¼ 0.01608

alternative hypothesis: true mean is greater than 70.

95 percent confidence interval:

71.32406 Inf

sample estimates:

mean of x

74.8

Conclusion: Since the p value ¼ 0.01608 > 0.01, we will not reject H0 at a ¼ 0:01: However, if a is greater than 0.01608, then

we will reject the null hypothesis.
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EXAMPLE 6.7.2

The management of a local health club claims that its members lose on average 15 lb or more within the first 3 months after

joining the club. To check this claim, a consumer agency took a random sample of 45 members of this health club and found that

they lost an average of 13.8 lb within the first 3 months of membership, with a sample standard deviation of 4.2 lb.

(a) Find the p value for this test.

(b) Based on the p value in (a), would you reject the null hypothesis at a ¼ 0.01?

R-code

> xbar¼13.8 #sample mean

> mu0¼15 #hypothesized value

> sigma¼4.2

> n¼45

> z¼(xbar-mu0)/(sigma/sqrt(n))

> z

[1] -1.91663

> alpha¼.01

> z.alpha¼qnorm(1-alpha)

> -z.alpha

[1] -2.326348

Since observed z- does not fall in the RR, we do not reject the null hypothesis at a ¼ 0:01.

If we need a p value approach, then:

> pval¼pnorm(z)

> pval

Output

[1] 0.0276425

Again since the p value is larger than a ¼ 0:01, we do not reject the null hypothesis.

EXAMPLE 6.7.3 R-code for Exercise 6.4.9

> xbar¼7225

> mu0¼7500

> s¼120

> n¼6

> t¼(xbar-mu0)/(s/sqrt(n))

> t

[1] -5.613414

> alpha¼0.01

> t.alpha¼qt(1-alpha, df¼n-1)

> -t.alpha

[1] -3.36493

> pval¼pt(t, df¼n-1)

> pval

[1] 0.001240944

EXAMPLE 6.7.4 Two-sample t-test:

Using the following data:

Sample x: 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample y: 14 15 10 13 11 7 12 11 12 15 14

Test H0 : mx ¼ my versus Ha : mx < my using a ¼ 0:02.

This example assumes you have stored the data in variables x and y. Please modify your code appropriately.
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R-code

t.test(x, y, alternative¼”less”);

Output

Welch Two Sample t-test

data: x and y

t ¼ 4.8077, df ¼ 21.963, p-value ¼ 1

Since our p value is greater than
0.02, we fail to reject the null.

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf 6.852384

sample estimates:

mean of x mean of y

17.23077 12.18182

EXAMPLE 6.7.5 One-sample t-test (two-tailed):

Use the following data:

Sample X: 6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1 9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6 11.1 8.9 11.7 12.8 11.5 12.0 10.6

11.1 6.4 12.3 12.3 11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9 12.9 14.2 14.0 15.5 16.9 18.0 17.9 21.8 18.4 34.3

Test H0 : mx ¼ 12 versus Ha : mxs12 using a ¼ 0:05.

This example assumes you have stored the data in variable x. Please modify your code appropriately.

R-code

t.test(x, mu¼12);

Output

One Sample t-test

data: x

t ¼ 0.1854, df ¼ 48, p-value ¼ 0.8537

Since the p value is greater than 0.05,
we fail

to reject the null hypothesis

alternative hypothesis: true mean is not equal to 12

95 percent confidence interval:

10.77437 13.47461

sample estimates:

mean of x

12.12449

EXAMPLE 6.7.6 Paired samples t test

Use the following data:

Upstream (x) 9.0 6.8 6.5 8.0 7.7 8.6 6.8 8.9 7.2 7.0

Downstream (y) 10.2 10.2 9.9 11.1 9.6 8.7 9.6 9.7 10.4 8.1

Test Ha : md ¼ 0versus Ha : md < 0 using a ¼ 0:05.

This is a paired t-test and assumes you have stored the data in variables x and y. Please modify code appropriately.
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R-code

t.test(x, y, paired¼TRUE, alternative¼”less”);

Output

Paired t-test

data: x and y

t ¼ -5.3982, df ¼ 9, p-value ¼ 0.000217

We reject the null hypothesis since our
p value is less than 0.05 suggesting 

than the mean difference is less than 0.

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -1.38689

sample estimates:

mean of the differences

-2.1

6.7.2 Minitab examples

EXAMPLE 6.7.7

(t-test): Consider the data:

66 74 79 80 69 77 78 65 79 81

Using Minitab, test H0: m ¼ 75 versus H1: m > 75.

Solution

Enter the data in C1. Then,

Stat > Basic Statistics > 1-sample t.. > in Variables: enter C1 > choose Test Mean > enter 75 > in Alternative: choose greater

than and click OK.

EXAMPLE 6.7.8

For the following data:

Sample1: 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample 2: 14 15 10 13 11 7 12 11 12 15 14

Test H0: m1 ¼ m2 versus H1: m1 < m2. Use a ¼ 0.02.

Solution

Enter sample 1 data in C1 and sample 2 data in C2. Then,

Stat > Basic Statistics > 2-sample t . > choose Samples in different columns > in Alternative: choose less than > in

Confidence level: enter 98 > click Assumed equal variances and click OK.

We obtain the following output.

Two sample T-test and confidence interval

Two sample T for C1 vs C2

N Mean StDev SE Mean

C1 13 17.23 2.74 0.76

C2 11 12.18 2.40 0.76

98% CI for mu C1 �mu C2: (2.38, 7.71)

T-Test mu C1 ¼mu C2 (vs <): T ¼ 4.75 P ¼ 1.0 DF ¼ 22

Both use Pooled StDev ¼ 2.59.

If we did not select Assumed equal variances, we will obtain the following output.
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Two sample T-test and confidence interval

Two sample T for C1 vs C2

N Mean StDev SE Mean

C1 13 17.23 2.74 0.76

C2 11 12.18 2.40 0.72

98% CI for mu C1 � mu C2: (2.40, 7.69)

T-Test mu C1 ¼ mu C2 (vs <): T ¼ 4.81 P ¼ 1.0 DF ¼ 21

EXAMPLE 6.7.9

Use the following data:

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1

9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6 11.1

8.9 11.7 12.8 11.5 12.0 10.6 11.1 6.4 12.3 12.3

11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9 12.9

14.2 14.0 15.5 16.9 18.0 17.9 21.8 18.4 34.3

Test H0: m ¼ 12 versus H1: m s 12. Use a ¼ 0.05.

Solution

Enter the data in C1. Then,

Stat > Basic Statistics > 1-sample z . > in Variables: Type C1 > choose Test Mean and enter 12 > choose not equal in

Alternative, and type 4.7 for sigma > click OK.

EXAMPLE 6.7.10

(Paired t-test): Consider the data of Example 7.5.7. Using Minitab, perform a paired t-test.

Solution

Enter sample 1 in column C1 and sample 2 in column C2. Then,

Stat > Basic Statistics > Paired t. > in First Sample: type C2, and in the Second sample: type C1 > click options > and click

less than (if a is other than 0.05, enter appropriate percentage in Confidence level: and enter appropriate number if it is not zero

in Test mean) > click OK >OK.

6.7.3 SPSS examples

EXAMPLE 6.7.11

Consider the data:

66 74 79 80 69 77 78 65 79 81

Using SPSS, test H0: m ¼ 75 versus H1: m > 75.

Solution

Use the following procedure:

1. Enter the data in column 1.
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2. Click Analyze > Compare Means >One-sample t Test ., move var00001 to Test Variable(s), and change Test Value: 0 to

75. Click OK.

If we want the computer to calculate the p value in the previous example, use the following procedure.

1. Enter the TS (L0.105) in the data editor using teststat.

2. Click Transform > compute .
3. Type p-value in the box called Tarobtain value. In the box called Functions: scroll and click on CDF.T(q,df) and move to

Numeric Expressions.

4. The CDF(q,df) will appear as CDF(?,?) in the Numeric Expressions box. Replace teststat for q and 9 for df (the degree of

freedom in this example is 9). Click OK.

EXAMPLE 6.7.12

Use the following data:

Sample 1: 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample 2: 14 15 10 13 11 7 12 11 12 15 14

Test H0: m1 ¼ m2 versus H1: m1 < m2. Use a ¼ 0.02.

Solution

In column 1, under the title “group” enter 1s to identify the sample 1 data and 2s to identify sample 2 data. In column C2, under

the title “data” enter the data corresponding to samples 1 and 2. Then:

Analyze > Compare Means > Independent Samples t-test . > bring Data to Test Variable(s): and group to Grouping

Variable:, click Define Groups ., and enter 1 for sample 1, 2 for sample 2 > click continue > click Options . enter 98 in

Confidence interval: > click continue > OK.

EXAMPLE 6.7.13

(Paired t-test): For the data of Example 7.5.7, use SPSS to test whether the data provide sufficient evidence for the claim that the

new program reduces blood glucose level in diabetic patients. Use a ¼ 0.05.

Solution

Enter after data in column C1 and before data in column C2. Then,

Analyze > Compare Means > Paired-Sample T-Test > bring after and before to Paired Variables: so that it will look after-

before > click OK.

6.7.4 SAS examples

To conduct a hypothesis test using SAS, we could use proc ttest, or proc means with the option of computing the t value
and corresponding probability. However, to use this, we need a hypothesis of the form H0: m ¼ 0. For testing nonzero
values, H0: m ¼ m0, we must create a new variable by subtracting m0 from each observation, and then use the test procedure
for this new variable. The following example illustrates this concept.

EXAMPLE 6.7.14

(t-test): The following radar measurements of speed (in miles per hour) are obtained for 10 vehicles traveling on a stretch of

interstate highway:

66 74 79 80 69 77 78 65 79 81.

Do the data provide sufficient evidence to indicate that the mean speed at which people travel on this stretch of highway is at

least 75 mph? Test using a ¼ 0.01. Use an SAS procedure to do the analysis.
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Solution

In the SAS editor, type in the following commands:

data speed;

title ’Test on highway speed’;.

input X @@;

Y¼X-75;

datalines;

66 74 79 80 69 77 78 65 79 81

;

PROC TTEST data¼speed;

run;

We obtain the following output.

Test on highway speed

The TTEST Procedure Statistics

Statistics

Lower CL Upper CL Lower CL Upper CL

Variable N Mean Mean Mean Std Std Std Std

Dev Dev Dev Err

X 10 70.511 74.8 79.089 4.1245 5.9963 10.947

1.8962

Y 10 �4.489 �0.2 4.0895 4.1245 5.9963 10.947

T-Tests

Variable DF t Value Pr > jtj
X 9 39.45 <0.0001

Y 9 �0.11 0.9183

To test H0: m ¼ 75, we need to look at the Y values. The corresponding t value is �0.11, and because this is a one-tailed test,

we need to divide 0.9183 by 2 to obtain the p value as p ¼ 0.45915. Because the p value is larger than 0.01 ¼ a, we cannot reject

the null hypothesis.

One of the easier ways to conduct large sample hypothesis testing using SAS procedures is through computation of the
p value. The following example illustrates the procedure.

EXAMPLE 6.7.15

(z-test): It is claimed that the average miles driven per year for sports cars is at least 18,000 miles. To check claim, a consumer firm

tests 40 of these cars randomly and obtains a mean of 17,463 miles with standard deviation of 1348 miles. What can it conclude if

a ¼ 0.01?

Solution

Here we will find the p value and compare that with a to test the hypothesis. We use the following SAS procedure:

Data ex888;

z¼(17463-18000)/(1348/(SQRT(40)));

pval¼probnorm(z);

run;

proc print data¼ex888;

title ’Test of mean, large sample’;

run;

We obtain the following output:

Test of mean, large sample

Obs z pval

1 2.51950 .005876079

Because the p value of 0.005876079 is less than a ¼ 0.01, we reject the null hypothesis. There is sufficient evidence to

conclude that the mean miles driven per year for sport cars is less than 18,000.
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Note that in the previous example, the value of z was negative. If the value of z is positive, use pval¼probnorm(- z).
Also, if it is a two-tailed hypothesis, we need to multiply by 2, so use pval¼probnorm(z)*2; to obtain the p value.

EXAMPLE 6.7.16

(Paired t-Test): For the data of Example 7.5.7, use SAS to test whether the data provide sufficient evidence for the claim that the

new program reduces blood glucose level in diabetic patients. Use a ¼ 0.05.

Solution

We can use the following commands:

data dietexr;

input before after;

diff ¼ after - before;

datalines;

268 106

225 186

252 223

192 110

307 203

228 101

246 211

298 176

231 194

185 203

run;

proc means data¼dietexr t prt;

var diff;

title ’Test of mean, Paired difference’;

run;

Projects for Chapter 6

6A Testing on computer-generated samples

(a) Small sample test:
Generate a sample of size 20 from a normal population with m ¼ 10 and s2 ¼ 4.
(i) Perform a t-test for the test H0: m ¼ 10 versus Ha: ms 10 at level a ¼ 0.05.
(ii) Perform the test H0: s

2 ¼ 4 versus Ha: s
2 s 4 at level a ¼ 0.05.

Repeat the procedure 10 times, and comment on the results.
(b) Large sample test:

Generate a sample of size 50 from a normal population with m ¼ 10 and s2 ¼ 4. Perform a z-test for the test H0: m ¼ 10
versus Ha: m s 10 at level a ¼ 0.05. Repeat the procedure 10 times and comment on the results.

6B Conducting a statistical test with confidence interval

Let q be any population parameter. Consider the three tests of hypotheses:

H0 : q ¼ q0 vs. Ha : q > q0 (6.3)

H0 : q ¼ q0 vs. Ha : q < q0 (6.4)

H0 : q ¼ q0 vs. Ha : qsq0 (6.5)

The following procedure can be exploited to test a statistical hypothesis utilizing the confidence intervals.
Procedure to use confidence interval for hypothesis testing:
Let q be any population parameter.
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(a) For test (6.3), that is,

H0 : q ¼ q0 vs. Ha : q > q0

choose a value for a. From a random sample, compute a confidence interval for q using a confidence coefficient equal
to 1 � 2a. Let L be the lower end point of this confidence interval:

Reject H0 if q0 < L:

That is, we will reject the null hypothesis if the confidence interval is completely to the right of q0.

(b) For test (6.4), that is,

H0 : q ¼ q0 vs. Ha : q < q0;

choose a value for a. From a random sample, compute a confidence interval for q using a confidence coefficient equal
to 1 � 2a. Let U be the upper end point of this confidence interval:

Reject H0 if U < q0:

That is, we will reject the null hypothesis if the confidence interval is completely to the left of q0.

(c) For test (6.5), that is,

H0 : q ¼ q0 vs. Ha : qsq0;

choose a value for a. From a random sample, compute a confidence interval for q using a confidence coefficient equal
to 1 � a. Let L be the lower end point and U be the upper end point of this confidence interval:

Reject H0 if q0 < L or U < q0:

That is, we will reject the null hypothesis if the confidence interval does not contain q0.

(i) For any large data set, conduct all three of these hypothesis tests using a confidence interval for the population mean.
(ii) For any small data set, conduct all three of these hypothesis tests using a confidence interval for the population mean.

300 Mathematical Statistics with Applications in R



Chapter 7

Linear regression models

Chapter outline

7.1. Introduction 302

7.2. The simple linear regression model 302

7.2.1. The method of least squares 304

7.2.2. Derivation of b̂0 and b̂1 305

7.2.3. Quality of the regression 308

7.2.4. Properties of the least-squares estimators for the

model Y¼b0 þ b1x þ ε 309

7.2.5. Estimation of error variance s2 312

Exercises 7.2 312

7.3. Inferences on the least-squares estimators 315

7.3.1. Analysis of variance approach to regression 318

Exercises 7.3 320

7.4. Predicting a particular value of Y 321

Exercises 7.4 323

7.5. Correlation analysis 324

Exercises 7.5 326

7.6. Matrix notation for linear regression 327

7.6.1. ANOVA for multiple regression 331

Exercises 7.6 332

7.7. Regression diagnostics 333

7.8. Chapter summary 334

7.9. Computer examples 335

7.9.1. Examples using R 335

7.9.2. Minitab examples 337

7.9.3. SPSS examples 338

7.9.4. SAS examples 338

Projects for chapter 7 340

7A Checking the adequacy of the model by scatterplots 340

7B The coefficient of determination 340

7C Outliers and high leverage points 341

Objective

In this chapter we will study linear relationships in sample data and use the method of least squares to estimate the
necessary parameters.

Sir Francis Galton
(Source: http://en.wikipedia.org/wiki/Francis_Galton).

English scientist Sir Francis Galton (1822e1911), a cousin of Charles Darwin, made significant contributions to
both genetics and psychology. He was the inventor of regression and a pioneer in applying statistics to biology. One of
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the data sets that he considered consisted of the heights of fathers and first sons. He was interested in predicting the
height of a son based on the height of a father. Looking at the scatterplots of these heights, Galton saw that the trend was
linear and increasing. After fitting a line to these data (using the techniques described in this chapter), he observed that
for fathers whose heights were taller than the average, the regression line predicted that taller fathers tended to have
shorter sons and shorter fathers tended to have taller sons. There is a regression toward the mean. That is how the
method of this chapter got its name: regression.

7.1 Introduction

In earlier chapters, we were primarily concerned about inferences on population parameters. In this chapter, we examine
the relationship between one or more variables and create a model that can be used for predictive purposes. For example,
consider the question, “Is there statistical evidence to conclude that the countries with the highest average blood-cholesterol
levels have the greatest incidence of heart disease?” It is important to answer this if we want to make appropriate lifestyle
and medical choices. We will study the relationship between variables using regression analysis. Our aim is to create a
model and study inferential procedures when one dependent and several independent variables are present. We denote by Y
the random variable to be predicted, also called the dependent variable (or response variable) and by xi the independent (or
predictor) variables used to model (or predict) Y. For example, let (x, y) denote the height and weight of an adult male. Our
interest may be to find the relationship between height and weight from sample measurements of n individuals. The process
of finding a mathematical equation that best fits the noisy data is known as regression analysis. In his book Natural
Inheritance, Sir Francis Galton introduced the word regression in 1889 to describe certain genetic relationships. The
technique of regression is one of the most popular statistical tools to study the dependence of one variable with respect to
another. There are different forms of regression: simple linear, nonlinear, multiple, and others. The primary use of a
regression model is prediction. When using a model to predict Y for a particular set of values of x1, ., xk, one may want to
know how large the error of prediction might be. Regression analysis, in general after collecting the sample data, involves
the following steps.

Procedure for regression modeling

1. Hypothesize the form of the model as Y ¼ f ðx1;.; xk ;

b0;b1;.;bkÞ þ ε. Here ε represents the random error

term. We assume that E(ε) ¼ 0 but Var(ε) ¼ s2 is unknown.

From this we can obtain E(Y) ¼ f (x1, ., xk; b0, b1, ., bk).

2. Use the sample data to estimate unknown parameters in

the model.

3. Check for goodness of fit of the proposed model.

4. Use the model for prediction.

The function f(x1,., xk; b0, b1,., bk) (k � 1) contains the independent or predictor variables x1,., xn (assumed to be
nonrandom) and unknown parameters or weights b0, b1, ., bk and ε representing the random or error variable. We now
proceed to introduce the simplest form of a regression model, called simple linear regression.

7.2 The simple linear regression model

Consider a random sample of n observations of the form (x1, y1), (x2, y2), ., (xn, yn), where X is the independent variable
and Y is the dependent variable, both being scalars. A preliminary descriptive technique for determining the form of
relationship between X and Y is the scatter diagram or the scatterplot. A scatter diagram is drawn by plotting the sample
observations in Cartesian coordinates. The pattern of the points gives an indication of a linear relationship, nonlinear
relationship, or no relationship between the variables. A no relationship may indicate that events are happening randomly
and any effort to predict based on those data will be futile. Thus, we can consider the scatterplots as visualization and
discovery tools. In practice with very large data sets, scatterplots may show trends, clusters, patterns, and relationships
among the data points. In this chapter, we will use the scatterplots for identifying only possible linear or nonlinear
relationships.

In Fig. 7.1A, the relationship between x and y is fairly linear, whereas the relationship is somewhat like a parabola in
Fig. 7.1B, and in Fig. 7.1C there is no obvious relationship between the variables.

Once the scatter diagram reveals a linear relationship, the problem then is to find the linear model that best fits the given
data. To this end, we will first give a general definition of a linear statistical model, called a multiple linear regression
model.
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Definition 7.2.1 A multiple linear regression model relating a random response Y to a set of predictor variables x1, ., xk
is an equation of the form

Y ¼ b0 þ b1x1 þ b2x2 þ.þ bkxk þ ε;

where b0, ., bk are unknown parameters, x1, ., xk are the independent nonrandom variables, and ε is a random variable
representing an error term. We assume that E(ε) ¼ 0, or equivalently,

EðYÞ ¼ b0 þ b1x1 þ b2x2 þ.þ bkxk:

To understand the basic concepts of regression analysis, we shall consider a single dependent variable Y and a single
independent nonrandom variable x. We assume that there are no measurement errors in xi. The possible measurement errors
in y and the uncertainties in the assumed model are expressed through the random error ε. Our inability to provide an exact
model for a natural phenomenon is expressed through the random term ε, which will have a specified probability dis-
tribution (such as a normal) with mean zero. Thus, one can think of Y as having a deterministic component, E(Y), and a
random component, ε. If we take k ¼ 1 in the multiple linear regression model, we have a simple linear regression model.

Definition 7.2.2 If Y ¼ b0 þ b1x þ ε, this is called a simple linear regression model. Here, b0 is the y-intercept of the line
and b1 is the slope of the line. The term ε is the error component.

This basic linear model assumes the existence of a linear relationship between the variables x and y that is disturbed by
a random error ε. The known data points are the pairs (x1, y2), (x2, y2),., (xn, yn); the problem of simple linear regression is
to fit a straight line optimal in some sense to the set of data, as shown in Fig. 7.2.
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FIGURE 7.2 Scatterplot and least-squares regression line.
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Now the problem becomes one of finding estimators for b0 and b1. Once we obtain the “good” estimators bb0 and bb1,
we can fit a line to the data given by the prediction equation bY ¼ bb0 þ bb1x: Unlike the single-variable estimation
problems, now the response variable is dependent on the independent variables and thus estimators have to reflect this
aspect. The question then becomes whether this predicted line gives the “best” (in some sense) description of the data. This
necessitates a new method of estimation. We now describe the most widely used technique, called the method of least
squares, to obtain the estimators or weights of the parameters.

7.2.1 The method of least squares

As stated, (x1, y1), (x2, y2), ., (xn, yn) are the n observed data points, with corresponding errors εi, i ¼ 1, ., n. That is,

Yi ¼ b0 þ b1xi þ εi; i ¼ 1; 2;.; n:

We assume that the errors εi, i ¼ 1, ., n are independent and identically distributed with E(εi) ¼ 0, i ¼ 1, ., n, and
Var(εi) ¼ s2, i ¼ 1,., n. One of the ways to decide on how well a straight line fits the set of data is to determine the extent
to which the data points deviate from the line. The straight line model for the response Y for a given x is

Y ¼ b0 þ b1xþ ε:

Because we assumed that E(ε) ¼ 0, the expected value of Y is given by

EðYÞ ¼ b0 þ b1x:

The estimator of the E(Y), denoted by bY , can be obtained by using the estimators bb0 and bb1 of the parameters b0 and b1,
respectively. Then, the fitted regression line we are looking for is given by

bY ¼ bb0 þ bb1x:

For observed values (xi,yi), we obtain the estimated value of yi as

byi ¼ bb0 þ bb1xi:

The deviation of observed yi from its predicted value byi; called the ith residual, is defined by

ei ¼
�
yi �byi� ¼

h
yi �

�bb0 þ bb1xi
�i

:

The residuals, or errors ei, are the vertical distances between observed and predicted values of y0is (Fig. 7.3).

Definition 7.2.3 The sum of squares for errors (SSE) or sum of squares of the residuals for all of the n data points is

SSE ¼
Xn
i¼ 1

e21 ¼
Xn
i¼ 1

h
yi �

�bb0 þ bb1xi
�i2

:

The least-squares approach to estimation is to find bb0 and bb1 that minimize the sum of squared residuals, SSE. Thus, in

the method of least squares, we choose b0 and b1 so that SSE is a minimum. The quantities bb0 and bb1 that make the SSE a

minimum are called the least-squares estimates of the parameters b0 and b1, and the corresponding line by ¼ bb0 þ bb1x is
called the least-squares line.

Definition 7.2.4 The least-squares line by ¼ bb0 þ bb1x is one that satisfies the following property:

SSE ¼
Xn
i¼ 1

�
yi � byi�2;

y

x

ei

FIGURE 7.3 Illustration of ei.
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is a minimum for any other straight line model with the sum of errors (SE) being

SE ¼
Xn
i¼ 1

�
yi �byi� ¼ 0:

Thus, the least-squares line is a line of the form y ¼ b0 þ b1x for which the error sum of squares
Pn

i¼1ðyi � b0 � b1xÞ2
is a minimum. The minimum is taken over all values of b0 and b1, and (x1, y1), (x2, y2), ., (xn, yn) are observed data pairs.

The problem of fitting a least-squares line now reduces to finding the quantities bb0 and bb1 that minimize the error sum
of squares.

7.2.2 Derivation of bb0 and bb1

Now we derive expressions for bb0 and bb1 using the methods of calculus. If SSE attains a minimum, then the partial
derivatives of SSE with respect to b0 and b1 are zeros. That is,

vSSE

vb0
¼

v

�Pn
i¼ 1

½yi � ðb0 þ b1xiÞ�2
�

vb0

¼ �
Xn
i¼ 1

2½yi � ðb0 þ b1xiÞ�

¼ 2

 Xn
i¼ 1

yi � nb0 � b1

Xn
i¼ 1

xi

!
¼ 0;

(7.1)

and

vSSE

vb1
¼

v

�Pn
i¼ 1

½yi � ðb0 þ b1xiÞ�2
�

vb1

¼ �
Xn
i¼ 1

2½yi � ðb0 þ b1xiÞ�xi

(7.2)

¼ �2

 Xn
i¼ 1

xiyi � b0

Xn
i¼ 1

xi � b1

Xn
i¼ 1

x2i

!
¼ 0:

Eqs. (7.1) and (7.2) are called the least-squares equations for estimating the parameters of a line. From (7.1) and (7.2)
we obtain a set of linear equations called the normal equations,

Xn
i¼ 1

yi ¼ nb0 þ b1

Xn
i¼ 1

xi; (7.3)

and

Xn
i¼ 1

xiyi ¼ b0

Xn
i¼ 1

xi þ b1

Xn
i¼ 1

x2i : (7.4)

Solving for b0 and b1 from Eqs. (7.3) and (7.4), we obtain

bb1 ¼
Pn
i¼ 1

ðxi � xÞ�yi � y
�

Pn
i¼ 1

ðxi � xÞ2
¼

n
Pn
i¼ 1

xiyi�
Pn
i¼ 1

xi
Pn
i¼ 1

yi

n
Pn
i¼ 1

x21 �
�Pn

i¼ 1
xi

	2 ¼
Pn
i¼ 1

xiyi �
Pn
i¼ 1

xi
Pn
i¼ 1

yi

n

Pn
i¼ 1

x21 �

�Pn
i¼ 1

xi

	2

n

; (7.5)
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and

bb0 ¼ y� bb1x: (7.6)

To simplify the formula for bb1, set

Sxx ¼
Xn
i¼ 1

x2i �

�Pn
i¼ 1

xi

	2

n
; Sxy ¼

Xn
i¼ 1

xiyi �

�Pn
i¼ 1

xi

	�Pn
i¼ 1

yi

	
n

;

we can rewrite Eq. (7.5) as

bb1 ¼ Sxy
Sxx

:

It can be shown (by using the second derivatives) that Eqs. (7.5) and (7.6) do indeed minimize SSE. Now we will
summarize the procedure for fitting a least-squares line.

Procedure for fitting a least-squares line

1. Form the n data points (x1, y1), (x2, y2), ., (xn, yn),

and compute the following quantities:
Pn

i¼1xi ;
Pn

i¼1x
2
i ;Xn

i¼1
yi ;
Xn

i¼1
y2
i ; and

Xn

i¼1
xiyi :

Also compute the sample means, x ¼ ð1 =nÞXn

i¼1
xi and y ¼ ð1 = nÞ

Xn

i¼1
yi :

2. Compute

Sxx ¼
Xn
i¼ 1

x2
i �

� Pn
i¼ 1

xi

	2

n
¼
Xn
i¼ 1

ðxi � xÞ2

and

Sxy ¼
Xn
i¼ 1

xiyi �

� Pn
i¼ 1

xi

	� Pn
i¼ 1

yi

	
n

¼
Xn
i¼ 1

ðxi � xÞ�yi � y
�
:

3. Compute bb0 and bb1 by substituting the computed quanti-

ties from step 1 into the equations

bb1 ¼ Sxy
Sxx

and

bb0 ¼ y � bb1x:

4. The fitted least-squares line is

by ¼ bb0 þ bb1x:

For a graphical representation, in the xy-plane, plot all the

data points and draw the least-squares line obtained in step 4.

Once we have accomplished the best-fit combination of the two parameters b0 and b1, any deviation of either parameter
away from its optimum value will cause the sum of squares error to increase. Thus, the optimum combination of the pairs�bb0; bb1

�
forms a global minimum point of the error sum of squares among all possible values of b0 and b1 for the given

data set.

EXAMPLE 7.2.1

Use the method of least squares to fit a straight line to the accompanying data points. Give the estimates of b0 and b1. Plot the

points and sketch the fitted least-squares line. The observed data values are given in the following table.

x �1 0 2 �2 5 6 8 11 12 �3

Y �5 �4 2 �7 6 9 13 21 20 �9

Solution

Form a table to compute various terms.
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xi yi xiyi x2
i

�1 �5 5 1

0 �4 0 0

2 2 4 4

�2 �7 14 4

5 6 30 25

6 9 54 36

8 13 104 64

11 21 231 121

12 20 240 144

�3 �9 27 9P
xi ¼ 38

P
yi ¼ 46

P
xiyi ¼ 709

P
x2
i ¼ 408

Sxx ¼
Xn
i¼ 1

x2
i �

 Xn
i¼ 1

xi

!2

n
¼ 408� ð38Þ2

10
¼ 263:6;

Sxy ¼
Xn
i¼ 1

xiyi �

� Pn
i¼ 1

xi

	� Pn
i¼ 1

yi

	
n

¼ 709� ð38Þð46Þ
10

¼ 534:2;

x ¼ 3:8 and y ¼ 4:6:

Therefore,

bb1 ¼ Sxy
Sxx

¼ 534:2

263:6
¼ 2:0266:

and bb0 ¼ y � bb1x

¼ 4:6� ð2:0266Þ ð3:8Þ ¼ �3:1011:

Hence, the least-squares line for these data is

by ¼ bb0 þ bb1x ¼ �3:1011þ 2:0266x

and its plot is shown in Fig. 7.4.
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FIGURE 7.4 Simple regression line.
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Recall that for the regression line by ¼ bb0 þ bb1x: we have defined SSE to be

SSE ¼
Xn
i¼ 1

�
yi � byi�2 ¼

Xn
i¼ 1

�
yi � bb0 � bb1xi

�2
:

We now show that

SSE ¼ Syy � bb1Sxy; where Syy ¼
Xn
i¼ 1

y2i �

�Pn
i¼ 1

yi

	2

n
¼
Xn
i¼ 1

�
yi � y

�2
:

We know that

SEE ¼
Xn
i¼ 1

�
yi � bb0 � bb1xi

�2

¼
Xn
i¼ 1

�
yi � yþ bb1x� bb1xi

�2

¼
Xn
i¼ 1

h�
yi � y

�� bb1ðxi � xÞ
i2

¼
Xn
i¼ 1

�
yi � y

�2 þ bb2

1

Xn
i¼ 1

ðxi � xÞ2 � 2bb1

Xn
i¼ 1

ðxi � xÞ�yi � y
�

¼ Syy þ bb2

1Sxx � 2bb1Sxy:

Recall that bb1 ¼ Sxy
Sxx
:

Substituting for bb1, we obtain

SSE ¼ Syy �
�
Sxy
Sxx

	2

Sxx � 2
Sxy
Sxx

Sxy

¼ Syy � Sxy
Sxx

Sxy

¼ Syy � bb1Sxy:

7.2.3 Quality of the regression

Once we obtain the linear model, the question is, how well does this line fit the data? We could make use of the residuals,
that is,

bei ¼ yi � bb0 � bb1xi;

to answer the question and to assess the quality of the fit. If our model is good, then the residual bei should be close to the
random error ε with mean zero. Furthermore, the residuals should contain little or no information about the model, and
there should be no recognizable pattern. If we plot the residuals versus the independent variables on the x-axis, ideally,
the plot should look like a horizontal blur, the residuals showing no relationship to the x-values, as shown by Fig. 7.5.
Otherwise, these plots reveal a not very good fit of the given data, as shown by Fig. 7.6, and we need to improve our model
specifications. Thus, a symmetric trend in the plot of residuals ei versus xi or byiði ¼ 1;.; nÞ indicates that the assumed
regression model is not correct.
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Whereas the residual plots give us a visual representation of the quality of fit, a numerical measure of how well the
regression explains the data is obtained by calculating the coefficient of determination, also called the R2 of the regression.
Particular (observed) value of realized R2 is

r2 ¼ Syy � SSE

Syy
¼ 1�

Pn
i¼1

�
yi � byi�2Pn

i¼1

�
yi � y

�2 :
Further discussion is given in Project 7B. Regression analysis with any of the standard statistical software packages will

contain an output value of the R2. This value will be between 0 and 1; closer to 11 means a better fit. For example, if the
value of R2 is 0.85, the regression captures 85% of the variation in the dependent variable. This is generally considered
good regression.

7.2.4 Properties of the least-squares estimators for the model Y[ b0 D b1x D ε

We discussed in Chapter 4 the concept of sampling distribution of sample statistics such as that of X. Similarly, knowledge
of the distributional properties of the least-squares estimators bb0 and bb1 is necessary to allow any statistical inferences to be
made about them. The following result gives the sampling distribution of the least-squares estimators.

Theorem 7.2.1 Let Y ¼ b0 þ b1x þ ε be a simple linear regression model with ε w N(0, s2), and let the errors εi associated
with different observations yi (i ¼ 1, ., N) be independent. Then

(a) bb0 and bb1 have normal distributions.
(b) The mean and variance are given by

E
�bb0

�
¼ b0; Var

�bb0

�
¼
�
1
n
þ x2

Sxx

	
s2;

and

E
�bb1

�
¼ b1; Var

�bb1

�
¼ s2

Sxx
;

.
.

.
. .

. .
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. .
. . . .

... . .
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e

^

FIGURE 7.5 Good fit.

y 

e

^

FIGURE 7.6 Not a good fit.
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where Sxx ¼ Pn
i¼ 1

x2i � 1
n

� Pn
i¼ 1

xi

	2

: In particular, the least-squares estimators bb0 and bb1 are unbiased estimators of b0 and

b1, respectively.

Proof.
We know that bb1 ¼ Sxy

Sxx

¼ 1
Sxx

Xn
i¼ 1

ðxi � xÞ�Yi � Y
�

¼ 1
Sxx

"Xn
i¼ 1

ðxi � xÞ Yi � Y
Xn
i¼ 1

ðxi � xÞ
#

¼ 1
Sxx

Xn
i¼ 1

ðxi � xÞ Yi;

where the last equality follows from the fact that
Pn

i¼1ðxi �xÞ ¼ Pn
i¼1xi � nx ¼ 0. Because Yi is normally distributed,

the sum 1
Sxx

Pn
i¼ 1ðxi �xÞYi is also normal. Furthermore,

E
hbb1

i
¼ 1

Sxx

Xn
i¼ 1

ðxi � xÞE½Yi�

¼ 1
Sxx

Xn
i¼ 1

ðxi � xÞðb0 þ b1xiÞ

¼ b0

Sxx

Xn
i¼ 1

ðxi � xÞ þ b1

Sxx

Xn
i¼ 1

ðxi � xÞxi

¼ b1
1
Sxx

Xn
i¼ 1

ðxi � xÞxi

¼ b1
1
Sxx

"Xn
i¼ 1

x2i � x
Xn
i¼ 1

xi

#

¼ b1
1
Sxx

2
664X

n

i¼ 1

x2i �
 Xn

i¼ 1

xi

!0BB@
Pn
i¼ 1

xi

n

1
CCA
3
775

¼ b1
1
Sxx

2
6664
Xn
i¼ 1

x2i �

 Xn
i¼ 1

xi

!2

n

3
7775

¼ b1
1
Sxx

Sxx ¼ b1:
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For the variance we have,

Var
hbb1

i
¼ Var

"
1
Sxx

Xn
i¼ 1

ðxi � xÞYi

#

¼ 1

S2xx

Xn
i¼ 1

ðxi � xÞ2 Var ½Yi�
�
since the Y 0

i s are independent
�

¼ s2 1

S2xx

Xn
i¼ 1

ðxi � xÞ2�VarðYiÞ ¼ Varðb0 þ b1 þ εiÞ ¼ VarðεiÞ ¼ s2
�

¼ s2

Sxx
:

Note that both Y and bb1 are normal random variables. It can be shown that they are also independent (see Exercise

7.3.3). Because bb0 ¼ y� bb1x is a linear combination of Y and bb1, it is also normal. Now,

E
hbb0

i
¼ E

h
Y � bb1x

i
¼ E



Y
�� xE

hbb1

i

¼ E

"
1
n

Xn
i¼ 1

Yi

#
� xb1 ¼ 1

n

Xn
i¼ 1

ðb0 þ b1xÞ � xb1

¼ b0 þ xb1 � xb1 ¼ b0:

The variance of bb0 is given by

Var
hbb0

i
¼ Var

h
Y � bb1x

i

¼ Var


Y
�þ x2 Var

hbb1

i �
since Y and bb1 are independent

�

¼ s2

n
þ x2s2

Sxx
¼
�
1
n
þ x2

Sxx

	
s2:

If an estimator bq is a linear combination of the sample observations and has a variance that is less than or equal to that
of any other estimator that is also a linear combination of the sample observations, then bq is said to be a best linear
unbiased estimator (BLUE) for q. The following result states that among all unbiased estimators for b0 and b1 that are
linear in Yi, the least-square estimators have the smallest variance.

GausseMarkov theorem

Theorem 7.2.2 Let Y ¼ b0 þb1x þε be the simple regression model such that for each xi fixed, each Yi is an observable random

variable and each ε ¼ εi, i ¼ 1, 2,., n is an unobservable random variable. Also, let the random variable εi be such that E[εi] ¼ 0,

Var(εi) ¼ s2 and Cov(εi, εj) ¼ 0, if is j. Then the least-squares estimators for b0 and b1 are best linear unbiased estimators.

It is important to note that even when the error variances are not constant, there still can exist unbiased least-square
estimators, but the least-squares estimators do not have minimum variance.
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7.2.5 Estimation of error variance s2

The greater the variance, s2, of the random error ε, the larger will be the errors in the estimation of model parameters b0
and b1. We can use already-calculated quantities to estimate this variability of errors. It can be shown that (see Exercise
7.2.1(b)) that

EðSSEÞ ¼ ðn� 2Þs2:

Thus, an unbiased estimator of the error variance, s2, is bs2 ¼ ðSSEÞ�ðn�2Þ: We will denote (SSE)/(ne2) by mean
square error (MSE).

Exercises 7.2

7.2.1. For a random sample of size n,
(a) Show that the error sum of squares can be expressed by

SSE ¼ Syy � bb1Sxy:

(b) Show that E[SSE] ¼ (ne2)s2.
7.2.2. The following are midterm and final examination test scores for 10 students from a calculus class, where x denotes

the midterm score and y denotes the final score for each student.

x 68 87 75 91 82 77 86 82 75 79

y 74 79 80 93 88 79 97 95 89 92

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

7.2.3. The following data give the annual incomes (in thousands of dollars) and amounts (in thousands of dollars) of life
insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

7.2.4. Consider a simple linear model Y ¼ b0 þ b1x þ ε, with ε w N(0, s2). Show that

cov
�bb0; bb1

�
¼

�s2
Pn
i¼ 1

xi

n
Pn
i¼ 1

x2i �
�Pn

i¼ 1
xi

	2:

7.2.5. (a) Show that the least-squares estimates of b0 and b1 of a line can be expressed as

bb0 ¼ y� bb1x

and

bb1 ¼
Pn
i¼ 1

ðxi � xÞ�yi � y
�

Pn
i¼ 1

ðxi � xÞ2
:

(b) Using part (a), show that the line fitted by the method of least squares passes through the point ðx; yÞ.
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7.2.6. Crickets make their chirping sounds by rapidly sliding one wing over the other. The faster they move their wings,
the higher the number of chirping sounds that are produced. Scientists have noticed that crickets move their wings
faster in warm temperatures than in cold temperatures (they also do this when they are threatened). Therefore, by
listening to the pitch of the chirp of crickets, it is possible to tell the temperature of the air. The following table
gives the number of cricket chirps per 13 s recorded at 10 different temperatures. Assume that the crickets are not
threatened.

Temperature 60 66 70 73 78 80 82 87 90 92

Number of chirps 20 25 31 33 36 39 42 48 49 52

Calculate the least-squares regression line for these data and discuss its usefulness.
7.2.7. Consider the regression model

Y ¼ b1xþ ε

where ε w N(0, s2). Show that

bb1 ¼
Pn
i¼ 1

xiyi

Pn
i¼ 1

x2i

:

7.2.8. A farmer collected the following data, which show crop yields for various amounts of fertilizer used.

Fertilizer (pounds/100 sq. ft) 0 4 8 10 15 18 20 25

Yield (bushels) 6 7 10 13 17 18 22 23

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

7.2.9. An economist desires to estimate a line that relates personal disposable income (DI) to consumption expenditures
(CE). Both DI and CE are in thousands of dollars. The following gives the data for a random sample of nine
households of size four.

DI 25 22 19 36 40 47 28 52 60

CE 21 20 17 28 34 41 25 45 51

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

7.2.10. The following data represent systolic blood pressure readings on 10 randomly selected females between ages 41
and 82.

Age (x) 63 70 74 82 60 44 80 71 71 41

Systolic (y) 151 149 164 157 144 130 157 160 121 125

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

7.2.11. It is believed that exposure to solar radiation increases the pathogenesis of melanoma. Suppose that the following
data give sunspot relative number and age-adjusted total incidence (incidence is the number of cases per 100,000
population) for 8 different years in a certain region.

Sunspot relative number 104 12 40 75 110 180 175 30

Incidence total 4.7 1.9 3.8 2.9 0.9 2.7 3.9 1.6

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.
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7.2.12. It is believed that the average size of a mammal species is a major factor in the period of gestation (the period of
development in the uterus from conception until birth). In general, it is observed that the bigger the mammal is, the
longer the gestation period. Table 7.1 gives adult mass in kilograms and gestation period in weeks of some species
(source: http://www.saburchill.com/chapters/chap0037.html).
(a) Calculate the least-squares regression line for these data with adult mass as the independent variable.
(b) Plot the points and the least-squares regression line on the same graph.
(c) Calculate the least-squares regression line for these data with gestation period as the independent variable.
(d) Assuming that the regression model of part (c) holds for all mammals, estimate the adult mass in kilograms

for the mammals given in Table 7.2.
7.2.13. Using the Internet, obtain home sales data relating square footage to sale price for 10 randomly selected homes for

your area of interest and obtain a least-squares regression line for these data. Test for all the assumptions for this
analysis and see if your data satisfy these assumptions.

7.2.14. The following data represent sales volume as a fraction of number of visits to company website.

Average number of visits per month x 100 150 175 200 240 464 530 480 598 650

Sales volume ($1000) y 16 25 27 31 34 88 108 95 132 165

(a) Calculate the least-squares regression line for these data with adult mass as the independent variable.
(b) Plot the points and the least-squares regression line on the same graph.
(c) Calculate the least-squares regression line for these data with average number of visits as the independent

variable.
(d) Predict sales volume if the number visits x ¼ 490.

TABLE 7.1 Adult Mass and Gestation Period for Mammals.

Species Adult mass (kg) Gestation period (weeks)

African elephant 6000 88

Horse 400 48

Grizzly bear 400 30

Lion 200 17

Wolf 34 9

Badger 12 8

Rabbit 2 4.5

Squirrel 0.5 3.5

TABLE 7.2 Gestation Period of Mammals.

Species Gestation period (weeks)

Indian elephant 89.0

Camel 57.0

Sea lion 51.4

Dog 8.7

Rat 3.0

Hamster 2.3
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7.3 Inferences on the least-squares estimators

Once we obtain the estimators of the slope b1 and intercept b0 of the model regression line, we are in a position to use
Theorem 7.2.1 to make inferences regarding these model parameters. Using the properties of bb0 and bb1, in this section we
study the confidence intervals and hypothesis tests concerning these parameters.

From Theorem 7.2.1, we can write

Z1 ¼
bb1 � b1

sffiffiffiffiffiffi
Sxx

p
wNð0; 1Þ:

Also, it can be shown that SSE/s2 is independent of bb1 and has a chi-square distribution with n e 2 degrees of freedom.
Let the mean square error be defined by

MSE ¼ SSE

n� 2
¼ 1

n� 2

Xn
i¼ 1

h
yi �

�bb0 þ bb1xi
�i2

:

Then using Definition 4.2.2, we have

tb1 ¼
Zffiffiffiffiffiffiffiffiffiffiffiffiffi�
SSE
s2

	
n� 2

vuut
¼
bb1 � b1ffiffiffiffiffiffiffiffiffiffi

MSE

Sxx

r ;

which follows the t-distribution with n e 2 degrees of freedom.
Similarly, let

Z0 ¼
bb0 � bb0

s

�
1
n
þ x2

Syy

	wNð0; 1Þ:

Also, it can be shown that bb0 and SSE are independent. Hence,

tb0 ¼ z0ffiffiffiffiffiffiffiffi
SSE
s2

n�2

s ¼
bb0 � b0�

MSE

�
1
n
þ x2

Sxx

	�1=2;

follows the t-distribution with n e 2 degrees of freedom.
From these derivations, we can obtain the following procedure about the confidence intervals for the slopes b1 and for

the intercept b0.

Procedure for obtaining confidence intervals for b0 and b1

1. Compute Sxx, Sxy, Syy, y, and x as in the procedure for

fitting a least-squares line.

2. Compute bb1; bb0 using equations bb1 ¼ (Sxy)/(Sxx) andbb0 ¼ y � bb1x; respectively.

3. Compute SSE by SSE ¼ Syy e bb1Sxy.

4. Define MSE to be

MSE ¼ SSE

n � 2
;

where n ¼ number of pairs of observations (x1, y1), .,

(xn, yn).

5. A(1� a)100% confidence interval for b1 is given by

 bb1 � ta=2;n�2

ffiffiffiffiffiffiffiffiffiffiffi
MSE

Sxx
;

s
bb1 þ ta=2;n�2

ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

s !

where ta/2 is the upper tail a/2-point based on a t-distri-

bution with (n e 2) degrees of freedom.

6. A(1� a)100% confidence interval for b0 is given by

 bb0 � ta=2;n�2

�
MSE

�
1

n
þ x2

Sxx

	�1=2
;

bb0 þ ta=2;n�2

�
MSE

�
1

n
þ x2

Sxx

	�1=2!
:

We illustrate this procedure for obtaining confidence limits with the following example.
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EXAMPLE 7.3.1

For the data of Example 7.2.1:

(a) Construct a 95% confidence interval for b0 and interpret.

(b) Construct a 95% confidence interval for b1 and interpret.

Solution

The following calculations were obtained in Example 7.2.1:

Sxx ¼ 263:6; Sxy ¼ 534:2; y ¼ 4:6 and x ¼ 3:8:

Also,

bb1 ¼ 2:0266; bb0 ¼ �3:1011:

In addition to those calculations, we can compute

Xn
i¼ 1

y2
i ¼ 1302 and Syy ¼

Xn
i¼ 1

y2
i �

� Pn
i¼ 1

yi

	2

n
¼ 1302� ð46Þ2

10
¼ 1090:4:

Now,

SSE ¼ Syy � bb1Sxy

¼ 1090:4� ð2:0266Þð534:2Þ
¼ 7:79028:

Hence,

MSE ¼ SSE

n � 2
¼ 7:79028

8
¼ 0:973785:

Now from the t-table, we have t0.025,8 ¼ 2.306.

(a) A 95% confidence interval for b0 is given by

�bb0 � taj2;n�2

�
MSE

�
1

n
þ x2

Sxx

	�1=2
; bb0 þ taj2;n�2

�
MSE

�
1

n
þ x2

Sxx

	�1=2	

¼
 

� 3:1011� ð2:306Þ
" 

0:973785Þ
 

1

10
þ ð3:8Þ2

263:6

!#1=2

�3:1011þ ð2:306Þ
" 

0:973785Þ
 

1

10
þ ð3:8Þ2

263:6

!#1=2!
:

From which we obtain a 95% confidence interval for b0 as (�3.9846, �2.2176). Thus, we can conclude with at least 95%

confidence that the true value of the intercept, b0, is between �3.9846 and �2.2176.

(b) A 95% confidence interval for b1 is given by

 bb1 � taj2;n�2

ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

s
; bb1 þ taj2;n�2

ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

s !

¼
 
2:0266� ð2:306Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:973785

236:6

r
;2:0266þ ð2:306Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:973785

236:6

r !

from which we obtain a 95% confidence interval for b1 as (1.8864, 2.1668). Thus, we can conclude with 95% confidence that

the true value of the slope of the linear regression model is between 1.8864 and 2.1663.

One of the assumptions for linear regression models that we have made is that the variance of the errors is a constant and

independent of x. Errors with this property are called homoscedastic. If the variance of the errors is not constant, the errors are
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called heteroscedastic. In the heteroscedastic case, standard errors and confidence intervals based on the assumption that s2 is an

estimate of s2 may be somewhat deceptive.

Now we introduce hypothesis testing concerning the slope and intercept of the fitted least-squares line. We use tb0 and tb1
defined earlier as the test statistic for testing hypotheses concerning b0 and b1, respectively. The usual one- and two-sided al-

ternatives apply. We proceed to summarize these test procedures.

Hypothesis test for b0

One-sided test Two-sided test

H0: b0 ¼ b00 (b00 is a specific value of b0)

Ha: b0 > b00 or b0 < b00
Test statistic:

tb0 ¼ b̂0�b00�
MSE

�
1

n
þ

x

Sxx

	�1=2

Rejection region:

t > ta;ðn�2Þ, (upper tail region)
t < �ta;ðn�2Þ, (lower tail region)

H0: b0 ¼ b00
Ha: b0 s b00
Test statistic:

tb0 ¼ b̂0�b00�
MSE

�
1

n
þ

x

Sxx

	�1=2

Rejection region:

jt j > ta=2;ðn�2Þ

Decision: If tb0 falls in the rejection region, reject the null hypothesis at level of significance a.

Assumptions: Assume that the errors εi, i ¼ 1, ., n are independent and normally distributed

with E (εi) ¼ 0, i¼ 1, ., n, and Var (εi)¼ s2, i ¼ 1, ., n.

We now illustrate this procedure with the following example.

EXAMPLE 7.3.2

Using the data given in Example 7.2.1, test the hypothesis H0: b0 ¼ e3 versus Ha: b0 s �3 using the 0.05 level of significance.

Solution

We test H0: b0 ¼ �3 versus Ha: b0 s �3.

Here b00 ¼ �3. The rejection region is t < �2.306 or t > 2.306.

From the calculations of the previous example, we have

tb0 ¼
bb0 � b00�

MSE

�
1

n
þ x2

Sxx

	�1=2

¼ �3:1011� ð�3Þ"
ð0:973785Þ

 
1

10
þ ð3:8Þ2

263:2

!#1=2

¼ �0:26041:

Because the test statistic does not fall in the rejection region, at a ¼ 0.05, we do not reject H0.

Hypothesis test for b1

One-sided test Two-sided test

H0: b1 ¼ b10 (b10 is a specific value of b1) H0: b1 ¼ b10

Ha: b1 > b10 or b1 < b10 Ha: b1 s b10

Test statistic: Test statistic:

tb1 ¼ b̂1�b10ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r tb1 ¼ b̂1�b10ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r
Rejection region: Rejection region:

t > ta,(n�2) (upper tail region) t < �ta,(n�2) (lower tail region) jtj > ta/2, (n�2)

Decision: If tb1falls in the rejection region, reject the null hypothesis at level of significance a.

Assumptions: Assume that the errors εi, i ¼ 1, ., n are independent and normally distributed

with E (εi) ¼ 0, i ¼ 1, ., n, and Var(εi) ¼ s2, i ¼ 1, ., n.

Linear regression models Chapter | 7 317



The test of hypothesis H0: b1 ¼ 0 answers the question, is the regression significant? If b1 ¼ 0, we conclude that there is no

significant linear relationship between X and Y, and hence, the independent variable X is not important in predicting the values of

Y if the relationship of Y and X is not linear. Note that if b1 ¼ 0, then the model becomes y ¼ b0 þ ε. Thus, the question of the

importance of the independent variable in the regression model translates into a narrower question of the test of hypothesis H0:

b1 ¼ 0. That is, the regression line is actually a horizontal line through the intercept, b0.

EXAMPLE 7.3.3

Using the data given in Example 7.2.1, test the hypothesis H0: b1 ¼ 2 versus Ha: b1 s 2 using the 0.05 level of significance.

Solution

We test

H0 : b1 ¼ 2 vs: Ha : b1s2:

We know that bb1 ¼ 2:0266:

For a ¼ 0.05 and n ¼ 10, the rejection region is tb1 < �2:306 or tb1 > �2:306 . The test statistic is

tb1 ¼
bb1 � b10ffiffiffiffiffiffiffiffiffiffi

MSE

Sxx

r

¼ 2:0266� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:0266� 2

263:6

r ¼ 0:4376:

Because the test statistic does not fall in the rejection region, at a ¼ 0.05, we do not reject H0. Thus, for a ¼ 0.05, the given

data support the null hypothesis that the true value of the slope, b1, of the regression line is equal to 2.

As we already know, estimates of the regression coefficients b0 and b1 are subject to sampling uncertainty.
Therefore, we will never estimate the true value accurately of these parameters from sample data. However, we may
construct confidence intervals for the intercept and the slope parameters. Thus, a problem closely related to
the problem of estimating the regression coefficients b0 and b1 is that of estimating the mean of the distribution of Y
for a given value of x, that is, estimating b0 þ b1x. For a fixed value of x, say x0, we have the following confidence
limits.

A (1 � a)100% confidence interval for b0 þ b1x is given by

�bb0 þ bb1x
�
� ta=2se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx0 � xÞ2

Sxx

s

where

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Syy � ðSxyÞ2
ðn � 2ÞSxx :

s

We could use the data from the previous example to easily calculate a confidence interval for b0 þ b1x.

7.3.1 Analysis of variance approach to regression

Another approach to hypothesis testing is based on analysis of variance (ANOVA). A detailed explanation of this approach
is given in Chapter 9. Here we present necessary steps for regression. The main reason for this presentation is the fact that
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most of the major statistical software outputs for regression analysis (see Section 7.9) are given in the form of ANOVA
tables.

It can be verified that (see Exercise 7.3.7),

Xn
i¼ 1

�
yi � y

�2 ¼
Xn
i¼ 1

�
yi � byi�2 þXn

i¼ 1

�byi � y
�2
:

Denoting

SST ¼
Xn
i¼ 1

�
yi � y

�2
; SSE ¼

Xn
i¼ 1

�
yi � byi�2; and SSR ¼

Xn
i¼ 1

�byi � y
�2
;

the foregoing equation can be written as

SST ¼ SSRþ SSE:

Note that the total sum of squares (SST ) is a measure of the variation of y0is around the mean y, and SSE is the residual
or error sum of squares that measures the lack of fit of the regression model. Hence, sum of squares of regression or model
(SSR) measures the variation that can be explained by the regression model.

We saw that to test the hypothesis H0: b1 ¼ 0 versus Ha: b1 s 0, the statistic

tb1 ¼
bb1ffiffiffiffiffiffiffiffiffiffi
MSE

Sxx

r ;

was used, where tb1 follows a t-distribution with (n e 2) degrees of freedom. From Exercise 4.2.18, we know that

t2b1 ¼
bb2

1�
MSS

Sxx

	;

follows an F-distribution with numerator degrees of freedom 1 and denominator degrees of freedom (n e 2). We can
also verify that

t2b1 ¼ MSR

MSE
:

Thus, to test H0: b1 ¼ 0 versus Ha: b1 s 0, we could use the statistic

MSR

MSE
w Fð1; n� 2Þ;

and reject H0 if

MSR

MSE
� Fað1; n� 2Þ:

The procedure is summarized in Table 7.3, known as the ANOVA table.

TABLE 7.3 ANOVA Table for Simple Regression.

Source of variation Degrees of freedom Sum of squares Mean sum of squares F-ratio

Regression (model) 1 SSR MSR ¼ SSR
d :f :

MSR
MSE

Error (residuals) n e 2 SSE SSE
d :f :

Total n e 1 SST
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The last column in the ANOVA table gives the statistic (MSR)/(MSE). It is also customary to give another column with
the p value of the test.

EXAMPLE 7.3.4

In a study of baseline characteristics of 20 patients with foot ulcers, we want to see the relationship between the stage of ulcer that

is determined using the YarkonyeKirk scale, a higher number indicating a more severe stage, with range 1e6, and duration of the

ulcer in days. Suppose we have the data shown in Table 7.4.

(a) Develop an ANOVA table to test H0: b1 ¼ 0 versus Ha: b1 s 0. What is the conclusion of the test based on a ¼ 0.05?

(b) Write down the expression for the least-squares line.

Solution

(a) We test H0: b1 ¼ 0 vs. Ha: b1 s 0. We will use Minitab to generate the ANOVA table (Table 7.5). Because the p value is less

than 0.001, for a ¼ 0.05, we reject the null hypothesis that b1 ¼ 0 and conclude that there is a relationship between the stage

of ulcer and its duration.

(b) Again, using the Minitab output, we obtain the least-squares line as

d ¼ 4:61x � 2:40:

Exercises 7.3

7.3.1. An experiment was conducted to observe the effect of an increase in temperature on the potency of an antibiotic.
Three one-ounce portions of the antibiotic were stored for equal lengths of time at each of the following Fahrenheit
temperatures: 40 degrees, 55 degrees, 70 degrees, and 90 degrees. The potency readings observed at the end of the
experimental period were

Potency reading, y 49 38 27 24 38 33 19 28 16 18 23

Temperature, x 40
degrees

55
degrees

70
degrees

90
degrees

TABLE 7.4 Stage and Duration of Foot Ulcers.

Stage of ulcer (x) 4 3 5 4 4 3 3 4 6 3

Duration (d) 18 6 20 15 16 15 10 18 26 15

Stage of ulcer (x) 3 4 3 2 3 2 2 3 5 6

Duration (d) 8 16 17 6 7 7 8 11 21 24

TABLE 7.5 Anova Table for Foot Ulcer Data.

Source of variation Degrees of freedom Sum of squares Mean sum of squares F-ratio p Value

Regression (model) 1 570.04 570.04 77.05 0.000

Error (residuals) 18 133.16 7.40

Total 19 703.20
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(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line as a check for your calculations.
(c) Calculate the 95% confidence intervals for b0 and b1, respectively.

7.3.2. Consider the data

x 38 26 48 22 40 15 30 33

y 10 11 16 8 12 5 10 11

(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line as a check for your calculations.
(c) Calculate the 95% confidence intervals for b0 and b1, respectively.

7.3.3. Show that Y and bb1 are independent, under the usual assumptions of a simple linear regression model.
7.3.4. Using the data of Exercise 7.2.10, calculate the 95% confidence intervals for b0 and b1, respectively.
7.3.5. The following data represent survival time in days after a heart transplant and patient age in years at the time of

transplant for 10 randomly selected patients.

Age at transplant 28 41 46 53 39 36 47 29 48 44

Survival time, in days 7 278 44 48 406 382 1995 176 323 1846

(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line.
(c) Calculate the 95% confidence intervals for b0 and b1, respectively.

7.3.6. The following data represent weights of cigarettes (g) from different manufacturers and their nicotine contents
(mg).

Weight 15.8 14.9 9.0 4.5 15.0 17.0 8.6 12.0 4.1 16.0

Nicotine 0.957 0.886 0.852 0.911 0.889 0.919 0.969 1.118 0.946 1.094

(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line. Do you think the linear regression is appropriate?
(c) Calculate the 95% confidence intervals for b0 and b1, respectively.

7.3.7. The following data represent total CO2 emissions per vehicle (in metric tons per vehicle) (http://corporate.ford.com/
microsites/sustainability-report-2012-13/environment-data-energy).

Year 2007 2008 2009 2010 2011 2012

Total 1.01 1.09 1.07 1.01 0.91 0.90

(a) Find the least-squares line appropriate for this data.
(b) Plot the points and graph the line.
(c) Calculate the 95% confidence intervals for b0 and b1, respectively.

7.3.8. Show that

Xn
i¼ 1

�
yi � y

�2 ¼
Xn
i¼ 1

�
yi � byi�2 þXn

i¼ 1

�byi � y
�2
:

7.4 Predicting a particular value of Y

In the earlier sections, we have seen how to fit a least-squares line for a given set of data. Also using this line, we could find
E(Y), for any given value of x. Instead of obtaining this mean value, we may be interested in predicting the particular value
of Y for a given x. In fact, one of the primary uses of the estimated regression line is to predict the response value of Y for a
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given value of x. Prediction problems are very important in several real-world problems; for example, in economics one
may be interested in predicting a particular gain associated with an investment.

Let bY 0 denote a predictor of a particular value of Y¼ Y0 and let the corresponding values of x be x0. We shall choose bY 0

to be E
�bY ��x0�. Let bY denote a predictor of a particular value of Y. Then the error h of the predictor in comparison to a

particular value of Y is

h ¼ Y � bY 0:

Both Y and bY are normal random variables, and the error is a linear function of Y and bY . This means that h itself is
normally distributed. Also, because E

�bY � ¼ EðYÞ, we have

EðhÞ ¼ EðY jx0Þ � E
�bY � ¼ 0:

Furthermore,

VarðhÞ ¼ Var
�
Y � bY� ¼ VarðYÞ þ Var

�bY �� 2Cov
�
Y; bY �:

We can consider Y and bY as independent, because we are predicting a different value of Y, not used in the calculation ofbY . Therefore, Cov�Y; bY� ¼ 0. In that case,

VarðhÞ ¼ VarðY0Þ þ Var
�bY 0

�

¼ s2 þ s2

"
1
n
þ ðx� xÞ2

Sxx

#

¼
"
1þ 1

n
þ ðx� xÞ2

Sxx

#
s2:

Hence, the error of predicting a particular value of Y, given x, is normally distributed with mean zero and variance"
1 þ1

n þðx�xÞ2
Sxx

#
s2:

That is,

hwN

 
0;

"
1þ 1

n
þðx� xÞ2

Sxx

#
s2

!
;

and

Z ¼ Y � bY
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1þ 1

n
þ ðx� xÞ2

Sxx

#vuut
wNð0; 1Þ:

If we substitute the sample standard deviation S for s, then we can show that

T ¼ Y � bY
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1þ 1

n
þ ðx� xÞ2

Sxx

#vuut
;

follows the t-distribution with [ne(k þ 1)] degrees of freedom. Using this fact, we now give a prediction interval for the
random variable Y, the response of a given situation.

We know that
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P
�� ta=2 < T < ta=2

� ¼ 1� a:

Substituting for T, we have

P

0
B@� ta=2 <

Y � bY
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1þ 1

n
þ ðx� xÞ2

Sxx

#vuut
< ta=2

1
CA ¼ 1� a;

which implies that

P

2
4bY � ta=2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1þ 1

n
þ ðx� xÞ2

Sxx

#vuut < Y < bY þ ta=2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1þ 1

n
þ ðx� xÞ2

Sxx

#vuut
3
5 ¼ 1� a:

Hence, we have the following.

A (1 � a)100% prediction interval for Y is

bY � ta=2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1þ 1

n
þ ðx � xÞ2

Sxx

#vuut
where ta/2 is based on (n � 2) degrees of freedom and S2 ¼ SSE

n�2 ¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p
:

We illustrate this statistical procedure with the following example.

EXAMPLE 7.4.1

Using the data given in Example 7.2.1, obtain a 95% prediction interval at x ¼ 5.

Solution

We have shown that by ¼ �3:1011þ 2:0266x: Hence, at x ¼ 5, by ¼ 7:0319:

Also, x ¼ 3:8; Sxx ¼ 263.6, SSE ¼ 7.79,028, and S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
7:79028

8

q
¼ 2:306:

From the t-table, t0.025,8 ¼ 2.306.

Thus, we have

7:0319� ð2:306Þð0:98681Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
1þ 1

10
þ ð5� 3:8Þ2

263:6

#vuut ;

which gives the 95% prediction interval as (4.6393, 9.4245).

We can conclude with at least 95% confidence that the true value of Y at the point x ¼ 5 will be somewhere between 4.6393

and 9.4245.

Exercises 7.4

7.4.1. The following are midterm and final examination test scores for 10 calculus students, where x denotes the midterm
score and y denotes the final score for each student.

x 68 87 75 91 82 77 86 82 75 79

y 74 89 80 93 88 79 97 95 89 92

Obtain a 95% prediction interval for x ¼ 92 and interpret its meaning.
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7.4.2. The following data give the annual incomes (in thousands of dollars) and amounts (in thousands of dollars) of life
insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100

Obtain a 90% prediction interval for x ¼ 59 and interpret its meaning.

7.4.3. For the following data, construct a 95% prediction interval for x ¼ 12.

x 1 3 5 7 9 11

Y 16 36 43 65 80 88

7.4.4. The data given below are from a random sample of height (in inches) and weight (in pounds) of seven basketball
players.

Height 73 83 77 80 85 71 80

Weight 186 234 208 237 265 190 220

Construct a 99% prediction interval for height equal to 90. Interpret the result and state any assumptions.

7.4.5. For the data in Exercise 7.2.10, obtain a 95% prediction interval for the age, x ¼ 85, interpret and state any
assumptions.

7.4.6. For the CO2 emission data of Exercise 7.3.7, construct a 95% prediction interval for the year 2013 emission.

7.5 Correlation analysis

Using the regression model, we can evaluate the magnitude of change in the dependent variable due to certain changes in
the independent variables. One of the main assumptions we have used is that the independent variables are known.
However, there are problems where the x-values as well as the y-values are assumed to be random variables. This would be
the case, for example, if we study the relationship between secondhand smoking and the incidence of a certain disease.
Here, basically, one treats X as random, and hence the simple linear regression model is

Y ¼ b0 þ b1X þ ε:

This implies that
EðY jX ¼ xÞ ¼ b0 þ b1x;

and one looks for dependence of X and Y. Once we have determined that there is a relationship between the variables, the
next question that arises is how closely the variables are associated. A measure of the amount of linear dependency of the
two random variables is the correlation. The correlation coefficient tells us how strongly two variables are linearly related.
The statistical method used to measure the degree of correlation is referred to as the correlation analysis. We will assume
that the vector random variable (X, Y) has a bivariate normal distribution. In this case, it can be shown that

EðY jX ¼ xÞ ¼ b0 þ b1x:

At times, our interest may not be in the linear relationship; rather, we may merely want to know whether X and Y are
independent random variables. If (X, Y) has a bivariate normal distribution, then testing for independence is equivalent to
testing that the correlation coefficient, r ¼ sxy/(sxsy), is equal to zero. Note that r is positive if X and Y increase together
and r is negative if Y decreases as X increases. If r ¼ 0, there is no relation between X and Y; if r > 0, there is a positive
relation between X and Y (increasing slope); and when r < 0, we have a negative relationship (decreasing slope). Thus, the
correlation coefficient can be used to measure how well the linear regression model fits the data.

Let (X1, Y1), (X2, Y2), ., (Xn, Yn) be a random sample from a bivariate normal distribution. The maximum likelihood
estimator of r is the sample correlation coefficient defined by br or r,
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r ¼
Pn
i¼ 1

�
Xi � X

��
Yi � Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼ 1

�
Xi � X

�2Xn
i¼ 1

�
Yi � Y

�2s

¼ Sxyffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p :

(7.7)

Equivalently, we can rewrite (7.7) by

r ¼
n
Pn
i¼ 1

XiYi�
Pn
i¼ 1

Xi

Pn
i¼ 1

Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
n
Pn
i¼ 1

X2
i�
�Pn

i¼ 1
Xi

	2
#"

n
Pn
i¼ 1

Y2
i�
�Pn

i¼ 1
Yi

	2
#vuut
:

We can see that e1 � r � 1. The value of r could readily be obtained by the calculations one already has performed for
the regression analysis. Observe that the numerator of r is exactly the same as the numerator of bb1 derived in Section 7.2.
Because the denominators of both bb1 and r are nonnegative, they have the same sign. It can be shown that this estimator is
not unbiased. If the value of r is near or equal to zero, this implies little or no linear relationship between x and y. On the
other hand, the closer r is to 1 or �1, the stronger the linear relationship between x and y. When r > 0, values of y increase
as the values of x increase, and the data set is said to be positively correlated. When r < 0, values of y decrease as the
values of x increase, and the data set is said to be negatively correlated. r ¼ 0 indicates no linear relationship between x and
y, however, there can be a nonlinear relationship in this case. In this book, we use the term correlation only when referring
to linear relationships. In actual practice we can use the value of r to decide whether it is appropriate to develop linear
regression models in a given situation. As a rule of thumb, if r > 0.30 or r < �0.30, we proceed with developing a linear
regression model. However, a much higher or lower value is desirable. For example, if in a given problem where r ¼ 0.77,
it conveys to us that approximately 77% of the data we have are linearly related.

The probability distribution for r is difficult to obtain. For large samples, this difficulty could be overcome by using the
fact that the Fisher z-transform, given by

z ¼ ð1 = 2Þln½ð1þ rÞ = ð1� rÞ�;
is approximately normally distributed with mean mz ¼ (1/2) ln [(1 þ r) (1er)] and variance sz ¼ 1/(ne3). Thus, for large
random samples, we can test hypotheses about r using the approximate test statistic:

Z ¼ z� mz

sz

¼
ð1=2Þ ln

�
1þ r

1� r

	
� ð1=2Þln

�
1þ r

1� r

	
1ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
:

For example, suppose we are interested in testing the hypothesis that the true value of r is a specific number, say, r0,
with a certain value of a. We can proceed to make a decision by following the procedure given below.

Hypothesis test for r

One-sided test
H0: r ¼ r0
Ha: r > r0 or
Ha: r < r0

Test statistic:

Z ¼
ð1=2Þln

�
1þ r

1� r

	
�ð1=2Þln

�
1þ r0

1� r0

	
1ffiffiffiffiffiffiffiffiffiffiffiffi
n � 3

p
Rejection region:
z > za (upper tail region)
z < �za (lower tail region)

Two-sided test
H0: rs r0
Ha: rs r0
Test statistic:

Z ¼
ð1=2Þln

�
1þ r

1� r

	
�ð1=2Þln

�
1þ r0

1� r0

	
1ffiffiffiffiffiffiffiffiffiffiffiffi
n � 3

p

Rejection region:
jzj > za/2

Decision: If z falls in the rejection region, reject the null hypothesis at the level of significance a.
Assumption: (X, Y) follow the bivariate normal, and this test procedure is approximate.

Linear regression models Chapter | 7 325



EXAMPLE 7.5.1

For the data given in Example 7.2.1, would you say that the variables X and Y are independent? Use a ¼ 0.05.

Solution

We test

H0 : r ¼ 0 vs: Ha : rs0:

From Example 7.2.1, for n ¼ 10, we have the following summary:

X10
i¼ 1

xi ¼ 38;
X10
i¼ 1

yi ¼ 46;
X10
i¼ 1

xiyi ¼ 709;

and

X10
i¼ 1

x2
i ¼ 408;

X10
i¼ 1

y2
i ¼ 1302:

Hence,

r ¼
n
Pn
i¼ 1

XiYi�
Pn
i¼ 1

Xi

Pn
i¼ 1

Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
n
Pn
i¼ 1

X2
i �
 Xn

i¼ 1

Xi

!2#"
n
Xn
i¼ 1

Y 2
i �
 Xn

i¼ 1

Yi

!2#vuut

¼ ð10Þð709Þ � ð38Þð46Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10Þð408Þ � ð38Þ2�
ð10Þð1302Þ � ð46Þ2�q

¼ 0:99641:

The test statistic is

z ¼
ð1=2Þln

�
1þ r

1� r

	
� ð1=2Þln

�
1þ r0

1� r0

	
1ffiffiffiffiffiffiffiffiffiffiffiffi
n � 3

p

¼
ð1=2Þln

�
1þ 0:99641

1� 0:99641

	
� ð1=2Þln

�
1þ 0

1� 0

	
1ffiffiffi
7

p

¼ 8:3618:

For za/2 ¼ z0.025 ¼ 1.96, the rejection region is jzj > 1.96. Because the observed value of the test statistic falls in the rejection

region, we reject the null hypothesis and conclude that at a ¼ 0.05, the variables X and Y are dependent.

Exercises 7.5

7.5.1. This table shows the midterm and final examination test scores for 10 students from a differential equations class,
where x denotes the midterm scores and y denotes the final scores.

x 68 87 75 91 82 77 86 82 75 79

y 74 89 80 93 88 79 97 95 89 92

(a) At 95% confidence level, test whether X and Y are independent.
(b) Find the p value.
(c) State any assumptions you have made in solving the problem.

326 Mathematical Statistics with Applications in R



7.5.2. The following table gives the annual incomes (in thousands of dollars) and amounts (in thousands of dollars) of life
insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100

(a) At the 98% confidence level, test whether annual income and the amount of life insurance policies are
independent.

(b) Find the attained significance level.
(c) State any assumptions you have made in solving the problem.

7.5.3. Show that

r ¼
n
Pn
i¼ 1

XiYi�
Pn
i¼ 1

Xi

Pn
i¼ 1

Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
n
Pn
i¼ 1

X2
i�
�Pn

i¼ 1
Xi

	2
#"

n
Pn
i¼ 1

Y2
i�
�Pn

i¼ 1
Yi

	2
#vuut
;

is not an unbiased estimator of the population coefficient, r.
7.5.4. Using the data in Example 7.2.1:

(a) Compute r, the coefficient of correlation.
(b) Would you say that the variables X and Y are independent? Use a ¼ 0.05.
(c) State any assumptions you have made in solving the problem.

7.5.5. A new medication is tested for serum cholesterol-lowering properties on six randomly selected volunteers. The
serum cholesterol values are given in the following table.

Before treatment: 232 254 220 200 213 222

After treatment: 212 240 225 205 204 218

(a) At 95% confidence level, test whether X and Y are independent.
(b) Find the p value.
(c) Calculate the least-squares regression line for these data.
(d) Interpret the usefulness of the model.
(e) State any assumptions you have made in solving the problem.

7.6 Matrix notation for linear regression

Most real-life applications of regression analysis use models that are more complex than the simple straight-line model. For
example, a person’s body weight may depend not just on the person’s eating habits; it may depend on additional factors
such as heredity, exercise, and type of work. Hence, we may want to incorporate other potential independent variables in
the modeling. We now study the situation where k (>1) independent variables are used to predict the dependent variable.
The model to be studied is of the form

Y ¼ b0 þ b1x1 þ b1x2 þ/þ bkxk þ ε:

Here, ε w N(0, s2). This model is called a multiple regression model.
Let y1, y2, ., yn be n independent observations on Y. Then each observation yi can be written as

yi ¼ b0 þ b1xi1 þ b2xi2 þ/þ bkxik þ ε;

Linear regression models Chapter | 7 327



where xij is the jth independent variable for the ith observation, i ¼ 1, 2, ., n, and ε
0
is are independent as in the simple

linear regression case. It is sometimes advantageous to introduce matrices to study the linear equations. Let x0 ¼ 1. Define
the following matrices:

X ¼

2
66666666666666664

x0 x11 x12 : : x1k

x0 x21 x22 : : x2k

: : : : : :

: : : : : :

: : : : : :

x0 xn1 xn2 : : xnk

3
77777777777777775

; Y ¼

2
66666666666666664

y1

y2

:

:

:

yn

3
77777777777777775

;

b ¼

2
66666666666666664

b0

b1

:

:

:

bn

3
77777777777777775

and ε ¼

2
66666666666666664

ε1

ε2

:

:

:

εn

3
77777777777777775

:

Thus, the n equations representing the linear equations can be rewritten in the matrix form as

Y ¼ Xbþ ε:

In particular, for the n observations from the simple linear model of the form

Y ¼ b0 þ b1xþ ε

we can write

Y ¼ Xbþ ε;

where

Y ¼

2
666666664

y1
y2
:

:

:

yn

3
777777775
; X ¼

2
666666664

1 x1
1 x2
1 :

1 :

1 :

1 xn

3
777777775
; ε ¼

2
666666664

ε1

ε2

:

:

:

εn

3
777777775
; and b ¼

�
b0

b1

�
:

We can see that

X 0X ¼
�
1 1 : : : 1

x1 x2 : : : xn

�
2
666666664

1 x1
1 x2

: :

: :

: :

1 xn

3
777777775

¼

2
6664

n
Pn
i¼ 1

xi

Xn
i¼ 1

xi
Pn
i¼ 1

x21

3
7775;

where 0 denotes the transpose of a matrix.
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Also,

X0Y ¼

2
6664
Xn
i¼ 1

yi

Xn
i¼ 1

xiyi

3
7775:

Let us now go back to the multiple regression model

Y ¼ b0 þ b1x1 þ b1x2 þ/þ bkxk þ ε:

The least-squares estimators bbi of bi for i ¼ 0, 1, 2, ., k are the ones that minimize the sum of squares

SSE ¼
Xn
i¼ 1

e2i ¼
Xn
i¼ 1

h
yi �

�bb0 þ bb1x1 þ bb2x2 þ/þ bbkxk
�i2

¼
�
y� Xbb�0�y� Xbb�

¼ y0y� y0Xbb �
�
Xbb�0yþ �bbX�0Xbb:

To minimize SSE with respect to b, we differentiate SSE with respect to b and equate it to zero. Thus,

v

vb
ðy0y� y0X0b� b0X0yþX 0b0XbÞ ¼ 0;

yielding

ðX0XÞbb ¼ X0Y :

Assuming the matrix (X0X) is invertible, we obtain

bb ¼ ðX0XÞ�1X0Y :

We now summarize the procedure to obtain a multiple linear regression equation.

Procedure to obtain a multiple linear regression equation

1. Rewrite the n observations as

Yi ¼ b0 þ b1x1i þ b1x2i þ/þ bkxki ; i ¼ 1; 2; : : : ; n

in the matrix notation as

Y ¼ Xbþ ε

2. Compute (X0X)�1 and obtain the estimators of b as

bb ¼ ðX 0XÞ�1
X 0Y :

3. Then the regression equation is

bY ¼ Xbb:

EXAMPLE 7.6.1

Using the data given in Example 7.2.1, use the matrix approach to solve the problem of operations.

Solution

From the data in Example 7.2.1, we have
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Y ¼

2
6666666666666666664

�9

�7

�5

�4

2

6

9

13

21

20

3
7777777777777777775

and X ¼

2
6666666666666666664

1 � 3

1 � 2

1 � 1

1 0

1 2

1 5

1 6

1 8

1 11

1 12

3
7777777777777777775

:

Thus, we can write,

X 0X ¼
�
10 38

38 408

�
; X 0Y ¼

�
46

709

�
; ðX 0XÞ�1 ¼

�
0:1548 �0:0144

�0:0144 0:0038

�
:

Hence,

bb ¼ ðX 0XÞ�1ðX 0Y Þ ¼
"

0:1548 �0:0144

�0:0144 0:0038

#"
46

709

#

¼
"�3:1009

2:0266

#
¼
2
4 bb0bb1

3
5:

Thus, the least-squares line is given by

by ¼ � 3:1009þ 2:0266X ;

which is identical to the regression line we obtained in Example 7.2.1.

EXAMPLE 7.6.2

The following data relate to the prices (Y) of five randomly chosen houses in a certain neighborhood, the corresponding ages of

the houses (x1), and square footage (x2).

Price y in thousands of dollars Age x1 in years Square footage x2 in thousands of square feet

100 1 1

80 5 1

104 5 2

94 10 2

130 20 3

Fit a multiple linear regression model

Y ¼ b0 þ b1x1 þ b2x2 þ ε

to the foregoing data.

Solution

We have,
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Y ¼

2
6666666666664

100

80

104

94

130

3
7777777777775
; X ¼

2
6666666666664

1 1 1

1 5 1

1 5 2

1 0 2

1 20 3

3
7777777777775
; X 0X ¼

2
66664

5 41 9

41 551 96

9 96 19

3
77775;

X 0Y ¼

2
66664

508

4560

966

3
77775

and

ðX 0XÞ�1 ¼

2
64

2:3076 0:1565 �1:8840

0:1565 0:0258 �0:2044

�1:8840 �0:2044 1:9779

3
75:

Hence,

ðX 0XÞ�1ðX 0Y Þ ¼

2
64
66:1252

�0:3794

21:4365

3
75:

Thus, the regression model is

y ¼ 66:12� 0:3794x1 þ 21:4365x2:

Thus, for a given x1 and x2 we can estimate (predict) the value of the house.

7.6.1 ANOVA for multiple regression

As in Section 7.3, we can obtain an ANOVA table for multilinear regression (with k independent or explanatory variables)
to test the hypothesis

H0 : b1 ¼ b2 ¼ / ¼ bk ¼ 0

versus,

Ha : At least one of the parameters bj s 0; j ¼ 1;.; k:

The calculations for multiple regression are almost identical to those for simple linear regression, except that the test
statistic (MSR)/(MSE) has an F(k, n e k e 1) distribution. Note that the F-test does not indicate which of the parameters bj s
0, except to say that at least one of them is not zero. The ANOVA table for multiple regression is given by Table 7.6.

EXAMPLE 7.6.3

For the data in Example 7.6.2, obtain an ANOVA table and test the hypothesis

TABLE 7.6 ANOVA Table for Multiple Regression.

Source of variation Degrees of freedom Sum of squares Mean sum of squares F-ratio

Regression (model) K SSR MSR ¼ SSR
d :f :

MSR
MSE

Error (residuals) n e k e 1 SSE SSE
d :f :

Total n e 1 SST
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H0 : b1 ¼ b2 ¼ 0 vs. Ha: at least one of the bis0; i ¼ 1; 2:

Use a ¼ 0.05.

Solution

We test H0: b1 ¼ b2 ¼ 0 vs. Ha: At least one of the bi s 0, i ¼ 1, 2. Here n ¼ 5, k ¼ 2. Using Minitab, we obtain the ANOVA table

(Table 7.7). Based on the p value, we cannot reject the null hypothesis at a ¼ 0.05.

Exercises 7.6

7.6.1 Given the data

X1 X2 y

3 1 4

2 5 3

3 3 6

1 2 5

(a) Write the multiple regression model in matrix form.
(b) Find X0X, (X0X)�1, and X0y.
(c) Estimate b.

7.6.2. A study is conducted to estimate the demand for housing (y) based on current interest rate X1 and the rate of un-
employment. The data in Table 7.8 are obtained.
(a) Fit the multiple regression model

y ¼ b0 þ b1x1 þ b1x2 þ ε:

(b) Test whether the model is significant.
7.6.3. The following data give the annual incomes (in thousands of dollars) and amounts (in thousands of dollars) of life

insurance policies for eight persons.

TABLE 7.7 ANOVA Table for Home Price Data.

Source of variation Degrees of freedom Sum of squares Mean sum of squares F-ratio p Value

Regression (model) 2 956.5 478.2 2.50 0.286

Error (residuals) 2 382.7 191.4

Total 4 1339.2

TABLE 7.8 Housing Demand, Interest Rate, and Unemployment Rate.

Units sold Interest rate (%) Unemployment rate (%)

65 9.0 10.0

59 9.3 8.0

80 8.9 8.2

90 9.1 7.7

100 9.0 7.1

105 8.7 7.2

332 Mathematical Statistics with Applications in R



Annual income 42 58 27 36 70 24 53 37

Life insurance 150 175 25 75 250 50 250 100

Calculate the least-squares regression line for this data using matrix operations.
7.6.4. The following is a random sample of height (in inches) and weight (in pounds) of seven basketball players.

Height 73 83 77 80 85 71 80

Weight 186 234 208 237 265 190 220

Calculate the least-squares regression line for this data using matrix operations.

7.7 Regression diagnostics

In the previous sections, we derived least-squares estimators for the parameters in the linear regression model. These
estimators are useful as long as we can determine (1) how well the model fits the data and (2) how good our estimates are in
providing possible relationships between variables of interest. Some of these problems are discussed in Chapter 14 in a
unified manner. We now briefly discuss some aspects of the adequacy of the simple linear regression model. In multiple
regression, in addition to the problems discussed here, there are other problems, such as collinearity and model specifi-
cation (inclusion of all relevant variables, as well as exclusion of irrelevant variables), that need to be examined. They are
beyond the level of this text. Many graphical methods and numerical tests dealing with these problems are available in the
literature and are often called regression diagnostics. Most of the major statistical software packages incorporate these tests,
making it easier to perform regression diagnostics so as to detect potential problems.

We have seen that the (ordinary) least-squares regression model must meet the following assumptions.

1. Linearity. The existence of a linear relationship between x and y is the basis of the simple linear regressionmodel. A simple
method to test for linearity is to draw a scatterplot of data points. Aswe explained in Section 7.2, we could also plot residual
ei versus xi orbY i. A symmetric trend in the plot of the residuals versus the explanatory variable or the fitted values indicates
there is a problem with the obtained regression model. For a correct model, the residuals should center around zero across
the explanatory variables and the fitted values. The degree of linear relationship can be ascertained by the correlation co-
efficient, r, given in Section 7.5 or by using the value of the coefficient of determination r2, explained in Project 8B. Most
statistical software packages give the value of r2 (refer to outputs given in Section 7.9). The closer the value of r2 is to 1, the
better the least-squares equation by ¼ bb1xþ bb0 performs as a predictor of y.

2. Homoscedasticity (homogeneity of variance). This assumption says that the variance of the error term remains constant
across all values of x. In this case we know by the GausseMarkov theorem that the least-squares estimators bb0 and bb1 are
the best linear unbiased estimators of b0 and b1. A frequently used graphical method is to draw the residuals versus a fitted
plot. This can be easily done using statistical software packages. The graph of residuals ei versus fitted values bY i or explan-
atory variable xi indicates a change in the spread of residuals as bY or x changes. It may look like Fig. 7.7.
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FIGURE 7.7 Scatterplot of fitted values versus residuals.
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If the variances of yi values are not constant, the inferences we made, such as confidence intervals on means, prediction,
and so forth, are off. The severity of this discrepancy depends on the degree of the assumption violation. If we see that the
pattern of data points only changes slightly, that will indicate a mild heteroscedasticity. Two numerical tests for hetero-
scedasticity are explained in Section 14.4.3.

3. Independence of εi and εj, for i s j. This assumption specifies that the errors associated with one observation should
not be correlated with the errors of any other observation. In general, whether the two samples are independent of each
other is decided by the structure of the experiment from which they arise. Violation of the independence assumption
can occur in a variety of situations. For example, if we take a survey on a certain issue on children’s education from one
particular school, these observations may reflect some pattern, thus violating the independence assumption. If data are
collected on the same variable over time, then the assumption of independence will be violated. Project 12B explains a
run test for checking of this assumption. Also, see Section 14.4.4.

4. Normality of the errors. This assumption specifies that the distribution of the εi values should be normal. This
assumption is crucial when sample size is small if the p value for the test is to be valid. For large samples, by the central
limit theorem this assumption becomes less important unless the prediction of a single value of y is involved. Thus, a
test of normality is necessary mainly when the t-test is used. Section 14.4.1 explains some of the tests for normality. A
simple way is to draw a probability plot for the errors to conform to the assumption of normality. If we observe non-
normality, one of the ways to overcome the problem is to use data transformation such as logarithmic transformation, as
explained in Section 14.4.2, and perform the regression analysis on the transformed data. Sometimes nonparametric
methods may be more appropriate, but we will not deal with this topic in this book.

Another important issue is the existence of influential observations, individual observations that have a strong influence
on estimated coefficients. If a single observation substantially changes our results, we need to do further investigation. The
ordinary least-squares method is quite sensitive for outlying observations, both for independent variables and for dependent
variables, and can have an adverse effect on the estimate. In higher dimensional data, these outlying observations can
remain unnoticed. This aspect in one explanatory variable case is discussed in Project 8C. One of the simple ways to
identify such observations is to draw a scatterplot. In the scatterplot, if we see a data point that is farther away from the rest
of the data points, that is an indication of a possible influential point or an outlier.

The natural question is, if we find that the data violate one or more of the assumptions, what can we do about it? We
have already explained that violation of the normality assumption in large samples is not an issue unless prediction is
involved, because prediction depends on normality of an individual observation. Thus, if the inferences are based on the
t- or F-tests or prediction is involved, we may be able to transform Y to Y0 to achieve normality. If we have predicted Y0,
then back-transform to predict Y. If we observe nonlinearity of data, we may be able to transform x to x0 ¼ h(x) such that Y
is linear in x0, or consider a polynomial model in x, in which case the ideas of multiple linear regression may be utilized.
Robust estimates of variances of b0 and b1 or the method of weighted least squares may be used to deal with the case of
nonconstant variance. Often careful experimental design could be done to remove possible correlation in errors. There are
also robust methods available for correlation analysis. We refer to specialized books on regression methods for further
details on these issues. If we detect influential observations, there are statistical techniques available, such as least-trimmed-
squares estimators, to deal with outlying observations.

7.8 Chapter summary

In this chapter, we first derived the least-squares line and its properties. Then we learned about the confidence intervals for
the coefficients in the regression model and did hypothesis tests on the values of the coefficients. We introduced the matrix
notation for linear regression as well as for multiple regression. We discussed how to predict a particular value of Y for a
given value of X. In order to study the dependence of X and Y, we presented correlation analysis.

The following are some of the key definitions we have used in this chapter:

l Predictors
l Response variable
l Regression analysis
l Multiple linear regression model
l Simple linear regression model
l Sum of squares for errors (SSE)
l Sum of squares of the residuals
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l Least-squares line
l Least-squares equations
l Normal equations
l Best linear unbiased estimator (BLUE)
l Correlation analysis

The following important concepts and procedures were discussed in this chapter:

l Procedure for regression modeling
l Procedure for fitting a least-squares line
l Properties of the least-squares estimators for the model Y ¼ b0 þ b1x þ ε

l The GausseMarkov theorem
l Procedure for obtaining confidence intervals of b0 and b1
l Procedure to obtain a multiple linear regression equation
l Prediction interval for the response variable Y
l Hypothesis testing for correlation, r
l Linearity
l Homoscedasticity
l Independence of εi and εj, for i s j
l Normality of the errors
l Influential observations

7.9 Computer examples

7.9.1 Examples using R

EXAMPLE 7.9.1 For the following data, use the method of least-squares regression to fit a straight line to the
accompanying data points. Give the estimates of b0 and b1. Plot the points and sketch the fitted least-squares line.

Sample (x) �1 0 2 �2 5 6 8 11 12 �3

Sample (y) �5 �4 2 �7 6 9 13 21 20 �9

This example assumes you put the data into variables x and y. Please modify your code appropriately.

R code

model ¼ lm(y w x);

summary(model);

Solution

From the output below the estimate of b0 is �3.10091, and the estimate of b1 is 2.02656. Hence, the regression line isby ¼ �3:10091 þ 2:02656x.

Output
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EXAMPLE 7.9.2 Now obtain the fitted regression line, using results from the previous example.

This example assumes you have your linear model stored in the variable model from the previous example. This example also

assumes you have the data from the previous example stored in x and y. Please modify your code appropriately.

R Code:

yhat¼predict(model,data¼x);
plot(x,y);
lines(x,yhat);
c¼confint(model); New command for confidence interval of model estimates

m¼model;
m$coefficients[1]¼c[1];
lines(x,predict(m,data¼x),col¼”blue”);
m$coefficients[1]¼c[3];
m¼model;
m$coefficients[2]¼c[2];
lines(x,predict(m,data¼x),col¼”red”);
m$coefficients[2]¼c[4];
lines(x,predict(m,data¼x),col=”red”);
Output:

We obtain a graph with confidence intervals for the intercept in blue and confidence intervals for the slope in red. The coefficient

of determination r2 is 0.9928, and the p value is small, suggesting the model fits pretty well.
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EXAMPLE 7.9.3 In this example we’ll be using matrix multiplication to perform linear regression. The following is a
random sample of height (in inches) and weight (in pounds) of several basketball players.

Sample (x) 73 83 77 80 85 71 80

Sample (y) 186 234 208 237 265 190 220

Calculate the least-squares regression line for these data. This example assumes you’ve placed the data into variables x and y.

Please modify your code appropriately.

R Code:

library(’MASS’); Required for ginv() function
x¼cbind(c(1:length(x))*0þ1,x); Creates a matrix with a column of 1's for the intercept
b¼ginv(t(x)%*%x)%*%t(x)%*%y; Store coefficients into b
yhat¼x%*%b; Calculate yhat using the regression equation
plot(x[,2],y);
lines(x[,2],yhat);
Output:

Looking at the coefficients, we see that bb0 ¼ �188:476 and bb1 ¼ 5:208. Hence, the regression line is given byby ¼ �188:476 þ 5:208x. It is more difficult to perform confidence intervals and other tasks since this is done using matrices

instead of model objects.
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EXAMPLE 7.9.4 Consider the following advertisement expenses versus total sales data.

Year Advertising Cost ($) Yearly Sales Volume (Units)

1999 20,210 112,485

2000 22,469 118,332

2001 23,982 122,435

2002 24,645 125,569

2003 24,988 125,880

2004 25,250 127,362

2005 25,978 125,967

2006 26,556 127,252

2007 26,978 127,456

2008 27,125 127,789

2009 27,461 128,313

2010 28,120 128,662

2011 28,888 128,879

2012 29,200 129,290

Use the method of least-squares regression to fit a straight line to the accompanying data points. Plot the points and sketch the

fitted least-squares line. Interpret the output.

R-code

> x < -c(22469, 23982, 24645, 24988, 25250, 25978, 26556, 26978, 27125, 27461, 28120, 28888, 29200).

> y < -c(118332, 122435, 125569, 125880, 127362, 125967, 127252, 127456, 127789, 128313, 128662,

128879,129290).

>model ¼ lm(y w x).

> summary(model).

7.9.2 Minitab examples

EXAMPLE 7.9.5

For the data in Example 7.2.1, use the method of least squares to fit a straight line to the accompanying data points. Give the

estimates of b0 and b1. Plot the points and sketch the fitted least-squares line.
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Solution

Enter independent variable, x, in C1 and the response variable, y, in C2. Then:

Stat > Regression > Regression . > in Response: type C2, and in Predictors: type C1 > click OK.

Now to obtain the fitted regression line, use the following procedure:

Stat > Regression > Fitted Line Plot . > in Response(Y): type C2, and in Predictors(X): type C1 > click Linear OK.

If in addition, we need, say, 95% confidence and predictor bands, then use:

Stat > Regression > Fitted Line Plot . > in Response(Y): type C2, and in Predictor(X): type C1 > click

Linear > click options . > click Display confidence bands and Display predictor bands > in Title: type a title for the graph

and OK > OK.

7.9.3 SPSS examples

A detailed explanation of regression methods including diagnostics using SPSS can be obtained at the site: http://www.ats.
ucla.edu/stat/spss/webbooks/reg/. We will just demonstrate a simple case with an example.

EXAMPLE 7.9.6

The following is a random sample of height (in inches) and weight (in pounds) of seven basketball players.

Height 73 83 77 80 85 71 80

Weight 186 234 208 237 265 190 220

Calculate the least-squares regression line for these data using SPSS.

Solution

Enter height in column 1 and weight in column 2. Then, Analyze > Regression > Linear. >move var00002 to dependent:, and

var00001 to Independent(s): > click OK.

7.9.4 SAS examples

For regression analysis, we can use the SAS command called GLM, which stands for general linear model, and REG,
which stands for regression. In the following example we will give a simplified version of the foregoing procedure. A good
explanation of regression methods including diagnostics using SAS can be obtained at http://www.ats.ucla.edu/stat/sas/
webbooks/reg/.

EXAMPLE 7.9.7

Using the SAS commands, redo Example 7.9.1.

Solution

We can use the following commands.

options nodate nonumber;
data exreg;
INPUT x y @@;
datalines;

e1 e5
0 e4
2 2
e2 e7
5 6
6 9
8 13
11 21
12 20
e3 e9

;
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proc reg data ¼ exreg;
title ‘Regression of Y on X’;

model y ¼ x/p clm;
run;

We obtain the following output.

By looking at the parameter estimates in the foregoing output, we see that an intercept value of �3.10091 is the es-
timate of b0, and the estimate of b1 is 2.02656, corresponding to the variable x. For each value of x, the actual value and
predicted value of y are given as the output statistics.

It is important to note that the presentation of results of analysis in a simple way is as important as the analysis itself.
For example, if one is interested only in a simple linear regression, most of the output values in the foregoing output may
not be necessary. All the values until the parameter estimates are giving us the analysis of variance results, and all the
values in the REG procedure are dealing with prediction and confidence intervals. For clarity and simplicity of report, we
may only need to report the regression line, and perhaps the graph of the line.

If we need the plot of the points (x, y), add the following commands to the previous program. We will not give the
corresponding graph.

proc plot data ¼ exreg;
title ‘Plot of Y Vs. X’;
plot y*x;
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run;
If we need the graph of the regression line along with, say, 95% prediction and confidence intervals, we add the

following.

proc gplot data ¼ exreg;
plot y*x
y*x
y*x/overlay frame vaxis ¼ axis1 haxis ¼ axis2;
symbol1 v ¼ �h ¼ 1.5 i ¼ none c ¼ black;
symbol2 v ¼ none i ¼ rlclm95 c ¼ red;
symbol3 v ¼ none i ¼ rlcli95 c ¼ blue;
axis1 order ¼ (�5 to 14 by 1).
offset ¼ (1).
label ¼ (h ¼ 1.5 f ¼ duplex);
axis2 order ¼ (�10 to 20 by 1).
offset ¼ (1).
label ¼ (h ¼ 1.5 f ¼ duplex);
title h ¼ 1.5.
‘Effect of X on Y’;
title2 h ¼ 1.2 f ¼ duplex.
‘Common regression line with 95% confidence interval’;
title3 h ¼ 1.5 f ¼ duplex
‘Regression line is predicted Y ¼ �3.1011 þ2.0266X’;
run;

Projects for chapter 7

7A Checking the adequacy of the model by scatterplots

If the regression model is adequate, then the fitted equation can be used to make inferences. Otherwise, the inferences made
will be practically useless. Note that the residuals give all the information on lack of fit. Figs. 7.5 and 7.6 give an indication
of good fit and misfit.

(1) Collect a couple of real-life data and find a regression line for each.
(2) Draw the scatterplot for the residuals ei versus x and determine whether the regression lines obtained in (1) are a good

fit or not.

7B The coefficient of determination

One of the ways to measure the contribution of x in predicting y is to consider how much the prediction errors were reduced
by using the information provided by the variable x. The quantity called the coefficient of determination measures how well

the least-squares equation by ¼ bb1xþ bb0 performs as a predictor of y. If x contributes no information for predicting y, then
the best prediction for values of y is simply the sample mean y. The resulting sum of squares of deviation for this modelby ¼ y is Syy ¼ Pn

i¼1

�
yi � y

�2
: In the case where x contributes information for predicting y, then we have seen that the

sum of squares of deviation for the model by ¼ bb1xþ bb0 is Syy ¼ Pn
i¼1

�
yi � byi�2: It can be shown thatPn

i¼1

�
yi � byi�2 �Pn

i¼1

�
yi � y

�2
:

The coefficient of determination is the proportion of the sum of squares of deviations of the y values that can be credited
to a linear relationship between x and y. This is defined by
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r2 ¼ Syy � SSE

Syy

¼ 1� SSE

Syy

¼ 1�
Pn
i¼ 1

�
yi � byi�2

Pn
i¼ 1

�
yi � y

�2 :
We can see that 0 �r2 � 1. We can interpret r2 to be the proportion of variability explained by the regression line.

When x contributes no information for predicting y, Syy and SSE will be nearly equal, and hence r2 will be near to zero. If x
contributes information for predicting y, Syy will be larger than SSE, and hence r2 will be greater than zero. Thus, r2 ¼ 0.75
means that use of by instead of y to predict y reduced the sum of squares of deviations of the y values about their predicted
values by by 75%. This can also be interpreted as meaning that nearly 75% of the variation is explained by the independent
variable x. In general, about (r2 � 100)% of the sample variation in y can be attributed to using x to predict y in the linear
model. The coefficient of nondetermination is the percent of variation that is unexplained by the regression equation and is
given by 1 e r2.

(1) For Exercises 7.2.2 and 7.2.3, find the coefficient of determination, and discuss the information contributed by x in
predicting y.

(2) Collect a couple of real-life data and find the corresponding regression lines. Also draw the scatterplot for ei versus by
and determine whether the regression line obtained is a good fit or not based on the coefficient of determination.

7C Outliers and high leverage points

One of the important aspects of residual analysis is to identify any existence of unusual observations in a data set. There are
two possibilities for a data point to be unusual. It could be in the response variable (i.e., in the horizontal direction)
representing model failure, or in the predictor variable (i.e., in the vertical direction). It should be noted that unusual
observations in the horizontal direction occur when we assume that the independent variable X in the linear model is
random. An observation that is unusual in the vertical direction is called an outlier. An observation that is unusual in the
horizontal direction is called a high leverage point (or just leverage point).

Consider the following 10 points, which we will call base points, and three additional points representing an outlier (O),
a high leverage point (H), and both (OH), respectively.

10 base points O H OH

x �1 0 2 �2 5 6 8 11 12 �3 6 19 19

y �5 �4 2 �7 6 9 13 21 20 �9 30 13 30

Investigate the effect of adding a single aberrant point by running four separate regressions: (1) regression for 10 base
points; (2) regression for 10 base points plus O; (3) regression for 10 base points plus H; and (4) regression for 10 base
points plus OH. For each of them, find bb0 and bb1 as well as the coefficient of determination. Discuss the effects of each
type of outlier on the regression line.
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Objective

In this chapter we study the basic design concepts for experiments, through which we can make comparisons of
treatments with respect to the observed responses.

Genichi Taguchi
(Source: http://www.amsup.com/BIOS/g_taguchi.html)

Genichi Taguchi (1924e2012) acquired his statistical skills under the guidance of Professor Motosaburo
Masuyama, one of the best statisticians of his time. After World War II, Japanese manufacturers were struggling to
survive with very limited resources. Taguchi revolutionized the manufacturing process in Japan through cost savings.
He understood that all manufacturing processes are affected by outside influencesdnoise. However, Taguchi realized
methods of identifying those noise sources that have the greatest effects on product variability. Isolating these factors to

Mathematical Statistics with Applications in R. https://doi.org/10.1016/B978-0-12-817815-7.00008-7
Copyright © 2021 Elsevier Inc. All rights reserved.

343

http://www.amsup.com/BIOS/g_taguchi.html
https://doi.org/10.1016/B978-0-12-817815-7.00008-7


determine their individual effects can be a very costly and time-consuming process. Taguchi devised a way to use the
so-called orthogonal arrays to isolate these noise factors from all others in a cost-effective manner. He introduced the
loss function to quantify the decline of a customer’s perceived value of a product as its quality declines. Taguchi
referred to the ability of a process or product to work as intended regardless of uncontrollable outside influences as
robustness. This was a novel concept in the design of experiments, with profound influence in manufacturing. His ideas
have been adopted by successful manufacturers around the globe because of their results in creating superior production
processes at much lower costs.

8.1 Introduction

In statistics, we are concerned with the analysis of data generated from an experiment. How do we collect data to answer
our research questions? What should our design be? It is desirable to take the necessary time and effort to organize the
experiment appropriately so that we have the right type of data and a sufficient amount of data to answer the questions of
interest as clearly and efficiently as possible. This systematic procedure to determine the relationship between factors
affecting a process and the output of that process is called experimental design (or design of experiments [DOE]). In any
experiment, there are uncontrollable and controllable factors. The idea of DOE is to modify the controllable factors given
the uncontrollable factors for an “optimal” output. We can trace the roots of modern experimental design to the 1935
publication of the book The Design of Experiments, written by Sir Ronald A. Fisher. He showed how one could conduct
credible experiments in the presence of many naturally fluctuating conditions, such as the soil condition, temperature, and
rainfall in an agricultural experiment. The design principles that were developed for agricultural experiments were suc-
cessfully modified and adapted to industrial, military, and other applications. In modern industry it is essential to
manufacture parts efficiently and with practically no defects. As a result, variation reduction in quality characteristics of
these parts has become a major focus of quality and productivity improvement. Dr. Genichi Taguchi pioneered the use of
DOE in designing robust productsdthose relatively insensitive to changes in design parameters. Currently, DOE is used as
an essential tool for improving the quality of goods and services. It is important to note that, unless a sound design is
employed, it may be very difficult or even impossible to obtain valid conclusions from the resulting data. Also, properly
designed experiments will generate more precise data while using substantially fewer experimental runs than ad hoc
approaches. In industrial manufacturing, some of the major benefits of DOE are lower costs, simultaneous optimization of
several factors, fast generation and organization of quantitative information, and overall quality improvement.

It is important to clearly identify the particular questions that an experiment is intended to answer (that is, the major
objective of the experiment) before conducting the experiment. These objectives may be to estimate or predict some
unknown parameters, to explore relationships among various factors, to compare a collection of effects or parameters, or
any combination of these. When the intention is to compare parameters, the objective may be to corroborate a hypothesis or
to explore some simple relationships. In any design, it is necessary to identify the populations that are to be studied and the
type of information about these populations that will be needed to answer the desired questions. While planning an
experiment to investigate the primary objectives of the investigation, we need to ensure that the measurement process is
simple, the cost of the study is reasonable, the study can be concluded in a reasonable time frame, and the study produces
reliable data. Because of the complex nature of real-world problems, planning an effective experiment is not an easy task.
The important issues confronting one area, say engineering, will be different from those for another area such as biology or
medicine. As a result, the DOE can take several forms. In this chapter, we will follow a general framework. Two of the
major distinguishing elements of DOE are (1) simultaneous variation and evaluation of various factors and (2) systematic
removal of some of the possible test combinations to cut back on experimental time and cost. Thus, a researcher should
ensure that the statistical design is as simple as possible given the objectives of the experiment and within the practical
constraints, such as materials, labor, and cost. Some other desirable criteria of a good design are that it provides unbiased
estimates of treatment effects and the experimental error. In addition, it should be able to detect important small differences
with sufficient precision, and it should provide an estimation of uncertainty in the conclusions and the confidence with
which the result can be extended to other analogous situations. The experimental design determines the basic character-
istics of the data collected. These data are then processed using statistical analysis techniques, with the goals of these
analyses being determined by the experimental objectives. Conclusions are obtained by looking at the results of the
statistical analyses.
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8.2 Concepts from experimental design

In this section we introduce some of the basic definitions, methods, and procedures used in the experimental design. Many
of the terms used have an agricultural basis, because the early development and applications of DOE were in the field of
agriculture.

8.2.1 Basic terminology

The first step in planning an experiment is to formulate a clear statement of the objectives of the test program. The
purpose of most statistical experiments is to determine the effect of one or more independent variables on the response
variable. The main variable of interest in a study is the response variable, also called the output variable. These are
the dependent variables (also referred to as criteria, effects, or predicted variables) in an experiment that describe the
factors we are interested in predicting or comparing. The response variable is measured with different values of
independent variables (representing those factors that are assumed to be the causes of the outcome) and analyzed to
determine whether the independent variables have any effect. For example, in an agricultural experiment, the crop
yield could be the response variable, whereas the type of soil, temperature, and rainfall could be the independent
variables. We would like also to identify known or expected sources of variability in the experimental units, because
one of the main aims of a designed experiment is to reduce the effects of these sources of variability on the answers to
questions of interest. Hence, we must make a list of the factors that may affect the value of the response variable. We
must also decide how many observations should be taken and what values should be chosen for each independent
variable in each individual test run. The independent variables are sometimes referred to as the attributable variables
or risk factors which are the cause of response.

Definition 8.2.1 The variables that an experimenter is able to completely control in the DOE are called independent
variables or treatment variables. These are also called input variables, explanatory variables, or factors.

Basically, factors are independent variables whose effect on the response variable is a main objective of the study.
These are controllable variables selected by the analyst for comparison. A factor is a general category or type of treatment.
Factors can be either quantitative or qualitative based on whether the variable is measured on a numerical scale or not. For
example, a rice field is divided into six parts, and each part is treated with a different fertilizer to see which produces the
most rice. Here, the response variable is the amount of rice output. The objective of the study is to compare the effects of
different fertilizers on the rice output. Thus, the type of fertilizer is the factor.

Definition 8.2.2 Independent variables that are unknown, or known but not manipulable, are called nuisance variables.
The factors that we could change but we deliberately keep fixed are called the constants in the experiment. A factor can

have different levels referred to as the treatment or factor levels. Different treatments constitute different levels of a factor.
Levels are the values at which the factors are set in an experiment. The level of a variable or treatment means its amount or
magnitude. For example, if the experimental units of a medication were given as 2.5, 5, and 10 mg, those amounts would
be three levels of the treatment. Level is also used for categorical variables, such as drugs I, II, and III, where the three are
different kinds of drugs, not different amounts of the same thing. Suppose four different groups of students are subjected to
four different teaching methods. The students are the experimental units, the teaching methods are the treatments, and the
four types of teaching methods constitute four levels of the factor “type of teaching.” Note that this is a single-factor
experiment, the factor being the method of teaching.

Definition 8.2.3 Noise is the effect of all the uncontrolled factors in an experiment.
In some experiments, all the noise factors are known; however, in most cases only some of them are known. When an

analyst controls the specification of the treatments and the method of allocating the experimental units to each of the
treatments, the experiment is called designed. For example, n rats are randomly assigned to one of the five dose levels of an
experimental drug under investigation. The analyst can also decide on the number ni of rats for each dose level such thatP5

i¼ 1 ni ¼ n.
Sometimes, conducting a designed experiment may not be practical or ethical. For example, if an analyst wants to know

the relationship between fat content in a diet and cholesterol level, it would be unethical and costly, as well as time
consuming, to subject human volunteers to different fat-content diets. However, it is possible to observe the cholesterol
levels of people who consume different diets. Care must be taken to record various other factors, such as exercise habits,
age, and gender, before reporting any association between cholesterol levels and fat content of diets. The experiment is
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called observational if the analyst is just an observer of the treatments on a sample of experimental units. Note that the
experimental units are objects to which treatments are applied.

The crucial difference between an experiment and an observational study for comparing the effects of treatments is
that, in an experiment, the researcher decides which experimental units receive which treatments, whereas in an
observational study, the researcher simply compares experimental units that happen to be there that have received
each of the treatments. Observational studies are often useful for identifying possible causes of treatment effects, and
they are often cheaper. Their main disadvantage is that they are less conclusive. Only properly designed and executed
experiments can lead to reliable conclusions. Hence, in general, designed experiments are preferred over observa-
tional experiments. In designing the experiment, there are almost always going to be constraints such as budget, time,
and availability of experimental units.

The following example illustrates an observational experiment, in which the analyst has control over the random
sampling from the treatment populations as well as the size of each sample, but has no control over the assignment of the
experimental units to the treatments.

EXAMPLE 8.2.1

To compare the risk-taking tendency of people who invest in mutual funds, samples are taken of individuals from three income

groupsdlow-income class, middle-income class, and high-income class. A score is given based on the percentage of their in-

vestment allocation on different types of mutual funds, such as large-cap, mid-cap, small-cap, hybrid, and specialty. The mean

score for each income group is calculated. Identify each of the following elements: response, factors and factor type(s), treatments,

and experimental units.

Solution

The response is the variable of interest, which is the score given to each individual investor. The only factor investigated is the

income class. This is a qualitative variable. The three income classes represent the levels of this factor. The treatment is

the percentage of investments in different types of mutual funds, such as large-cap, mid-cap, small-cap, hybrid, and specialty. The

experimental unit is the individual investor.

There are single-factor experiments and multifactor experiments. The previous example was a case of a single-factor

experiment. Single-factor experiments have only one independent variable. Another example of a single-factor experiment is

when we are interested in the effect of size of the screen of a computer monitor on reading speed. In this case, the size of the

screen is the single factor. If there are only two sizes, say 15 and 17 in., that we wish to compare, tests such as the two-sample t-

test could be used to compare average reading speed. If there are more than two sizes of monitors, then the one-way analysis of

variance (ANOVA) method described in Chapter 9 could be used for analysis of the resulting data.

Even though the single-factor experiments are simple and elegant, they are costly and not very effective when there is

more than one independent variable. Efficient use of resources is achieved through multifactor experiments in comparison to

conducting many single-factor experiments. A multifactor experiment involves two or more independent variables and a

dependent variable. Also, a greater range of questions could be answered using multifactor experiments. While multifactor

experiments are efficient, care should be taken to identify and interpret the main effects and interaction effects as well as

nonlinear effects. For details on these concepts, we refer to dedicated books on experimental design. The resulting data are

analyzed using ANOVA as described in Chapter 9. The following is an example of a multifactor experiment.

EXAMPLE 8.2.2

To study the conditions under which a particular type of commercially raised fish reaches maximum weight, an experiment is

conducted at four water temperatures (60, 70, 80, 90�F) and four water salinity levels (1%, 5%, 10%, 15%). Fish are raised in

tanks with specific salinity levels and temperature levels. There are 32 tanks, and one of the four temperatures and one of the four

salinity levels are assigned randomly to each tank. The weights are recorded at the beginning of the experiment and after

2 months. Identify each of the following elements: response, factors, and factor type(s). Write all the treatments from the factor-

level combinations.

Solution

The response is the variable of interest, which is the weight gain of a fish. This experiment has two factors: water temperatures

at four levels and water salinity at four levels. There are 4 � 4 ¼ 16 possible treatments:
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ð60�F; 1%Þ ð60�F; 5%Þ ð60�F; 10%Þ ð60�F; 15%Þ
ð70�F; 1%Þ ð70�F; 5%Þ ð70�F; 10%Þ ð70�F; 15%Þ
ð80�F; 1%Þ ð80�F; 5%Þ ð80�F; 10%Þ ð80�F; 15%Þ
ð90�F; 1%Þ ð90�F; 5%Þ ð90�F; 10%Þ ð90�F; 15%Þ

It should be noted that there may be other factors, such as the density of the fish population, the initial size of the fish, and the

type of feeding, that may affect weight gain of fish.

Definition 8.2.4 The experimental error explains the variation in the responses among experimental units that are assigned
the same treatment and observed under identical experimental conditions.

Experimental error can occur for many reasons, among them are (1) the difference in the devices that record the mea-
surements, (2) the natural dissimilarities in the experimental units prior to their receiving the treatment, (3) the variation in setting
the treatment conditions, and (4) the effect on the response variable of all extraneous factors other than the treatment factors.

To construct confidence intervals on the treatment population means and to test hypotheses, it is necessary to obtain an
estimate of the variance of experimental design. In a single-factor experiment with k levels, the estimate of the variance of
experimental design could be taken as the pooled variance of responses from experimental units receiving identical
treatments. A large variance of experimental error will compromise the accuracy of inferences made from the experiments.
Also, large amounts of experimental error make it difficult to determine whether the treatment has produced an effect, so
one of the design goals is to reduce the experimental error. Bad execution of a design can lead to the whole experiment
becoming a waste of time and resources. It is necessary to implement techniques to reduce experimental error to obtain
more accurate inferences. One approach to reducing experimental error is to take extra care in conducting the experiment.
The effect of experimental error can be reduced by using more homogeneous experimental materials (if available) and
using the fundamental principles of replication, randomization, and blocking (see Section 8.2.2).

The one-way ANOVA (in a single-factor experiment at several levels) enables one to compare several groups of obser-
vations, all of which are independent, with the possibility of a different mean for each group. A test of significance is whether
all the means are equal. Two-way ANOVA is a method of studying the effects of two factors on the response variable.

There are other terms that are important in different applications. For example, in the medical field, the terms blinding,
double-blind, and placebo are used. In a medical experiment, the comparison of treatments may be distorted if the patient,
the person administering the treatment, and those evaluating it know which treatment is being allocated to which patient. It
is therefore necessary to ensure that the patient, and/or the person administering the treatment, and/or the trial evaluators do
not know (are blind to) which treatment is allocated to whom. If only the patient is unaware of the treatment, it is called
blinding, and if both the patient and the person administering the treatment are blind to which treatment is being allocated,
it is called double-blinding. To study the effect of a particular drug, experimenters divide the study population into two
groups and treat one group with the drug and the other group with a so-called placebo, which could be just sugar pills. To
clarify the objective of a design, it is necessary for an experimental designer to consult a wide range of people, especially
those affected by the problem to be solved.

8.2.2 Fundamental principles: replication, randomization, and blocking

A good design of an experiment makes efficient use of resources to gather the data needed to meet the goals of the study.
There are three fundamental principles that need to be considered in a good experimental design. They are replication,
randomization, and blocking. Replication and blocking increase precision in the experiment, whereas randomization re-
duces bias.

Definition 8.2.5 Replication means that the same treatment is applied (i) several times to the same experimental units or (ii)
one time to several similar experimental units, called replicate units.

Replications are necessary for the estimation of the error variance in an experiment against which the differences
among treatments are assessed. If an experiment is intended to test whether a number of treatments differ in their effects,
these treatments must be applied to replicate units of the experiment. To show that two treatments have different mean
effects, we need to measure several samples given the same treatment. For example, observing that one plant of a particular
genotype is more resistant to a disease than another plant of a different genotype does not convey anything about the
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difference between the mean disease resistances of the two genotypes. This difference could have been caused by the
environment or the inoculation procedure affecting the two plants differently. Hence, to make any inference about the mean
difference between the genotypes, we have to test several plants of each type. Thus, increasing the number of replications
increases the reliability of inferences drawn from the observed data. It is necessary to increase the number of replications
with varied experimental conditions to decrease the variance of the treatment effect estimates and also to provide more
power for detecting differences in treatment effects. We should not confuse multiple observations of the same experimental
unit with replication. Replication involves applying the treatment to a number of experimental units.

Definition 8.2.6 A block is a portion of the experimental unit that is more likely to be homogeneous within itself than with
other units.

Blocking refers to the distribution of the experimental units into blocks in such a way that the units within each block
are more or less homogeneous. The experimenter uses information on the possible variability among units to group them in
such a way that most of the unwanted experimental error can be removed through the block effect.

For blocking to be effective, the units should be arranged so that within-block variation is much smaller than between-
block variation. As an example, suppose a researcher wishes to compare the yields of rice for four different kinds of
fertilizers. To minimize the effect of environmental and soil conditions, the field may be divided into smaller blocks and
each block is further parceled into four plots. Each variety of fertilizer is applied in each block with one in each parcel. This
method ensures that the external conditions from plot to plot within a block will be relatively uniform. Then we can use the
ANOVA method to pool from block to block to obtain the within-block information about the treatment differences while
avoiding between-block differences. The relevant analysis is given in Section 9.5. Time could also be a block factor,
because the concentration or expertise could alter as one carries out a task, such as determining disease levels or scoring
microscope slides.

Definition 8.2.7 Randomization is the process of assigning experimental units to treatment conditions in an entirely chance
manner.

The main objective of randomization is to negate the effects of all uncontrolled extraneous variables. Usually,
randomization is associated with design functions such as random sampling or selection, random assignment, and random
order. Random assignment of experimental units to groups tends to spread out differences between subjects in unsym-
metrical or random ways so that there is no tendency to give an edge to any group. In any well-conducted experiment,
randomization eliminates bias from the experiment, enables us to use statistical tests of significance, and creates valid
estimates of experimental error. For instance, suppose we are measuring the time of flowering of plants in a glasshouse or
in a growth cabinet. If the pots are arranged so that all the plants of one variety are next to one another, and we observe that
one variety flowers earlier than the rest, does this imply that this variety is inherently earlier flowering, or does it suggest
that the light and temperature conditions in that part of the cabinet or glasshouse cause plants to flower early? It is not
possible to tell from an experiment designed in this manner. Randomizing the treatments in time or space is an insurance
policy, to take account of variation that we may or may not know to exist under the conditions of our experiment. For
instance, the levels of light in growth cabinets vary considerably, so randomizing the layout of the plants of different types
is essential to make sure that no one type is consistently exposed to light and temperature levels that are particularly high or
low. Another way of selecting experimental units is simply to use intact groups, such as all students in a particular statistics
classroom. Results obtained this way may be highly biased and hence, not desirable. In general, the process of
randomization ensures independent observations; it should be noted that random assignment does not completely eliminate
the problem of correlated data values.

Now we study some steps that can be used for randomization. Suppose there are N homogeneous experimental units

and k treatments. To randomly assign ri experimental units to the ith treatment with
Pk

i¼1ri ¼ N; we could use the
following steps.

Procedure for random assignment

1. Number the experimental units from 1 to N.

2. Use a random number table or statistical software to get a

list of numbers that are random permutations of the

numbers 1 to N.

3. Give treatment 1 to the experimental units having the first

r1 numbers in the list. Treatment 2 will be given to the next

r2 numbers in the list, and so on; give treatment k to the last

rk units in the list.

The following example illustrates the random assignment

procedure.
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EXAMPLE 8.2.3

To study the number of hours to relief provided by five different brands (A, B, C, D, E) of pain reliever, doses are administered to 25

subjects numbered 1 through 25, with each brand administered to five subjects. Develop a design using the random assignment

procedure.

Solution

Using Minitab, we obtained the following random permutations of the numbers from 1 to 25.

1 8 7 12 10 25 23 4 6 3

9 21 5 24 18 16 22 14 17 15

20 13 2 11 19

Using the randomized procedure, we obtain the design given in Table 8.1.

That is, subject 8 will get brand A pain reliever, subject 23 will get brand B pain reliever, and so forth. We can rewrite

Table 8.1 as shown in Table 8.2.

It should be noted that once we create the design, the actual data will contain the number of hours to relief for each individual.

It is important to note that randomization may not be possible in some cases. Observational studies may be necessary
whenever the researcher cannot use controlled randomized experiments. For example, if we want to study the effect of
smoking on lung cancer, randomization will mean that we should be able to select a group of people and tell a randomly
selected subgroup to smoke and the other subgroup not to smoke. This is not only practically impossible; it is also un-
ethical to deliberately expose people to a potentially hazardous substance.

8.2.3 Some specific designs

In this subsection, we will introduce three specific designs: completely randomized design, randomized complete block
design, and Latin square design. The structure of the experiment in a completely randomized design is presumed to be such
that the treatments are assigned to the experimental units completely at random. Example 8.2.1 is one such design. To
create a completely randomized design, follow the procedure given in Section 8.2.2.

The randomized complete block design is a design in which the subjects are matched according to a variable that
the experimenter wants to control. The subjects are put into groups (blocks) of the same size as the number of
treatments. The elements of each block are then randomly assigned to different treatment groups so as to reduce the
influence of unknown variables. For example, a researcher is carrying out a study of three different drugs for the

TABLE 8.2 Random Permutation of Numbers by Brand.

Brand Subject

A 1 8 7 12 10

B 25 23 4 6 3

C 9 21 5 24 18

D 16 22 14 17 15

E 20 13 2 11 19

TABLE 8.1 Random Permutation of Numbers 1 to 25.

Subject 1 8 7 12 10 25 23 4 6 3 9 21

Brand A A A A A B B B B B C C

Subject 5 24 18 16 22 14 17 15 20 13 2 11 19

Brand C C C D D D D D E E E E E
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treatment of high cholesterol. Suppose she has 45 patients and divides them into three treatment groups of 15 patients
each. Using a randomized block design, the patients are rated and put in blocks of three, based on the cholesterol
level: the three patients with the highest cholesterol are put in the first block, those with the next highest levels are put
in the second block, and so on. The three members of each block are then randomly assigned, one to each of the three
treatment groups. If there is very little extraneous, systematic variation, complete randomization allows differences
between the mean effects of the treatments to be estimated with higher precision than other designs. However, it does
not allow for the possibility that there could be some unknown extraneous factors, so if in doubt, use a randomized
complete block design.

Suppose we have k treatments and N experimental units. Further, assume that the experimental units can be grouped
into b groups containing k experimental units, so that N ¼ bk. We could use the following steps for a randomized complete
block design.

Procedure for randomization in a randomized complete block design

1. Group the experimental units into b groups (blocks) con-

taining k homogeneous experimental units.

2. In group 1, number the experimental units from 1 to k and

obtain a random permutation of numbers 1 to k using a

random number generator.

3. In group 1, the experimental unit corresponding to the first

number in the permutation receives treatment 1, the

experimental unit corresponding to the second number in

the permutation receives treatment 2, and so on.

4. Repeat steps 2 and 3 for each of the remaining blocks.

We illustrate the step-by-step procedure just given in the

following example.

EXAMPLE 8.2.4

To study the number of hours to relief provided by five different brands (A, B, C, D, E) of pain relievers for pain resulting from

different causes (headache [H], muscle pain [M], pain due to cuts and bruises [CB]), doses are administered to five subjects,

each having similar types of pain. Create a randomized complete block design. Choose, as blocks, the different types of pain

(H, M, or CB).

Solution

Using Minitab with k ¼ 5 we have generated the random permutations shown in Table 8.3 for each of the b ¼ 3 blocks of five

numbers and assigned the treatments according to the procedure just explained. As the table indicates, among persons with

headache, subject 3 is treated with brand A pain killer, and so forth.

In the previous example, we had only one replication of each treatment per block. This idea can be generalized to
have r replications of each treatment per block. Then the generalized randomized complete block design with k treat-
ments, b blocks, and r replications with N ¼ kbr, which has kr homogeneous experimental units, can be randomized as
follows.

TABLE 8.3 Random Permutation of Numbers by Block.

H M CB

3 (A) 5 (A) 1 (A)

1 (B) 4 (B) 2 (B)

2 (C) 3 (C) 4 (C)

5 (D) 1 (D) 3 (D)

4 (E) 2 (E) 5 (E)
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Procedure for a randomized complete block design with r replications

1. Group the experimental units into b groups (called blocks),

each containing rk homogeneous experimental units.

2. In group 1, number the experimental units from 1 to rk and

generate a list of numbers that are random permutations of

the numbers 1 to rk.

3. In group 1, assign treatment 1 to the experimental units

having numbers given by the first r numbers in the list.

Assign treatment 2 to the experiments having the next r

numbers in the list, and so on until treatment k receives r

experimental units.

4. Repeat steps 2 and 3 for the remaining blocks of experi-

mental units.

The following example illustrates this procedure.

EXAMPLE 8.2.5

With the following modifications, consider Example 8.2.2. Three groups of subjects are considered, with each group having 15

subjects. Group I consists of subjects with only H, group II of subjects with only M, and group III of subjects with only CB. Of the

15 with H (group I), three are treated with brand A pain killer, three with brand B, and so forth. Subjects with other types of pain

are treated similarly. Here, the number of replications is three for each type of drug and for each type of pain. Create a ran-

domized complete block design with three replications.

Solution

Using Minitab, for the group with H, we generate a random permutation of numbers 1 to 15. The first three are given pain

killer A, the next three B, and so forth. The process is repeated for other types of pain killers. The design is given in Table 8.4

where “2 (A)” means that patient 2 is given brand A pain killer.

By increasing the number of replications, we can increase the accuracy of estimators of treatment means and the power
of the tests of hypotheses regarding differences between treatment means. However, because of constraints such as cost,
time needed to handle a large number of experimental units, and even availability of experimental units, it is not realistic to
have a large number of replications. It is then necessary to determine the minimum number of replications needed to meet
reasonable specifications on the accuracy of estimators or on the power of tests of hypotheses. We give a simple procedure
for determining the number of replications needed.

Let r be the number of replications that we need to determine. Let s be the experimental standard deviation, and E be
the desired accuracy of the estimator. Then the sample size required to be (1�a)100% confident that the estimator is within
E units of the true treatment mean, m, is:

r ¼
�
za=2
�2bs2

E2
.

The values of bs could be obtained from past experiments, from a pilot study, or by using a rough estimator:

bs ¼ ðlargest observation� smallest observationÞ=4.
Following is an example for determining the appropriate number of replications.

TABLE 8.4 Random Permutation of Numbers by Brand and Block.

H M CB H M CB

2 (A) 8 (A) 3 (A) 15 (C) 9 (C) 11 (C)

14 (A) 13 (A) 8 (A) 7 (D) 4 (D) 2 (D)

10 (A) 5 (A) 14 (A) 5 (D) 11 (D) 13 (D)

8 (B) 2 (B) 6 (B) 6 (D) 15 (D) 5 (D)

12 (B) 1 (B) 15 (B) 3 (E) 7 (E) 1 (E)

11 (B) 10 (B) 12 (B) 9 (E) 12 (E) 4 (E)

4 (C) 3 (C) 10 (C) 13 (E) 6 (E) 9 (E)

1 (C) 14 (C) 7 (C)
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EXAMPLE 8.2.6

A researcher wants to know the effect of class sizes on the mean score in a standardized test. She wants to estimate the treatment

means m1, m2, m3, and m4 such that she will be 95% confident that the estimates are within 10 points of the true mean score. What

is the necessary number of replications to achieve this goal? It is known from the previous experiments that scores have ranged

from 46 to 98.

Solution

A rough estimator of s is:

bs ¼ Range

4
¼ 98� 46

4
¼ 13:

From the normal table, z0.025 ¼ 1.96. The value of E ¼ 10. Thus, the number of replications necessary is:

r ¼
�
za=2

�2bs2

E2
¼ ð1:96Þ2ð13Þ2

ð10Þ2 ¼ 6:4923y7:

Thus, the researcher should use seven replications of each of the treatments to obtain the desired precision.

We have used the randomized complete block design when we wanted to control a single source of extraneous variation
and there is only one factor of interest. When we need to compare k treatment means and there are two possible sources of
extraneous variation, a Latin square design is the appropriate DOE.

Definition 8.2.8 A k � k Latin square design contains k rows and k columns. The k treatments are randomly assigned to
the rows and columns so that each treatment appears in every row and column of the design.

It was the famous mathematician Leonhard Euler who introduced Latin squares in 1783 as a new kind of magic square.
Even though the idea is fairly elementary, a systematic use of Latin squares in DOE was advanced by Ronald A. Fisher
around 1921. Fisher realized that in a two-dimensional plot of land, the systematic error due to variation in soil and other
factors could be minimized by a suitable Latin square partition of the plot.

The following example illustrates a case in which the experimental problems are affected by two sources of extraneous
variation, the type of car and type of driver.

EXAMPLE 8.2.7

A gasoline company is interested in comparing the effects of four gasoline additives (A, B, C, D) on the gas mileage achieved per

gallon. Four cars (I, II, III, IV) and four drivers (1, 2, 3, 4) will be used in the experiment. Create a Latin square design.

Solution

We can filter out the variability due to type of car used by ensuring that in each row only one of the additive types appears.

Also, to filter the driver effect, use each additive only once for each driver. One such randomization results in the Latin square

design given in Table 8.5.

To construct a basic Latin square, one can use the following method, which we will present only for the 4 � 4 Latin square of

Example 8.2.7.

TABLE 8.5 Latin Square Design of Gasoline Additives.

Car

Driver

1 2 3 4

I D B A C

II C A D B

III B D C A

IV A C B D
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Procedure for constructing a 43 4 Latin square

1. Begin with the first row as A, B, C, D.

2. Generate each succeeding row by taking the first letter of

the preceding row and placing it last, which has the effect

of moving the other letters one position to the left.

3. Randomly assign one block factor to the rows and the other

to the columns.

4. Randomly assign levels of the row factor, column factor,

and treatment to row positions, column positions, and

letters, respectively.

In step 2 of the foregoing procedure, instead of using the

cyclic placement of rows, we can perform a cyclic placement

for the columns. Accordingly, change the procedures in steps 3

and 4.

The following example illustrates a 4 � 4 Latin square

design.

EXAMPLE 8.2.8

Using the previous procedure, construct a Latin square for the case of Example 8.2.7.

Solution

Following the procedure just given, the Latin square in Example 8.2.7, the basic Latin square is represented by Table 8.6.

Now one random assignment of cars, I, II, III, IV, is to the rows 4, 3, 2, 1 (this is a random order of numbers 1, 2, 3, 4) of

Table 8.6. This gives Table 8.7.

Now one random assignment of the drivers 1, 2, 3, 4 is to the columns 1, 2, 4, 3 (this is a random order of numbers 1, 2, 3, 4) of

Table 8.7, resulting in the Latin square shown in Table 8.8.

TABLE 8.6 Latin Square Design of Cars and Drivers.

Car

Driver

1 2 3 4

I A B C D

II B C D A

III C D A B

IV D A B C

TABLE 8.7 Latin Square Design of Drivers and Random Order of Cars.

Car

Driver

1 2 3 4

I D A B C

II C D A B

III B C D A

IV A B C D

TABLE 8.8 Latin Square Design of Cars and Random Order of Drivers.

Car

Driver

1 2 3 4

I D A C B

II C D B A

III B C A D

IV A B D C
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Now along with this Latin square, we can represent the corresponding observations (numbers in parentheses are the gas

mileage in miles per gallon) as shown in Table 8.9.

Note that if we use the notation 1 for additive A, 2 for additive B, 3 for additive C, and 4 for additive D, the Latin
square in the previous example can be rewritten as shown in Table 8.10.

This representation will be convenient if we need to write down a model. To test for the treatment effects, one could use
the ANOVA method discussed in Chapter 9.

For Latin square experiments involving k treatments, it is necessary to include k observations for each treatment,
resulting in a total of k2 observations. Table 8.11 shows two examples of Latin squares for n ¼ 3, and n ¼ 5.

We have used the Latin square design to eliminate two extraneous sources of variability. To eliminate three extraneous
sources of variability, we can use a design called the Greco-Latin square. Greco-Latin squares are also called orthogonal
Latin squares. This design consists of k Latin and k Greek letters. In this design, we take a Latin square and superimpose
upon it a second square with treatments denoted by Greek letters. In this superimposed square, each Latin letter coincides

TABLE 8.9 Latin Square Design of Cars and Drivers With Gasoline Additive.

Car

Driver

1 2 3 4

I D (18) A (22) C (25) B (19)

II C (22) D (24) B (26) A (24)

III B (21) C (20) A (22) D (23)

IV A (17) B (24) D (23) C (21)

TABLE 8.10 Latin Square Design of Cars and Drivers With

Gasoline Additive in Numbers.

Car

Driver

1 2 3 4

I 4 1 3 2

II 3 4 2 1

III 2 3 1 4

IV 1 2 4 3

TABLE 8.11 Latin Square for n¼5 and n¼3.

A B C

B A B

C C A

3 � 3.

A B C D E

B A E C D

C D A E B

D E B A C

E C D B A

5 � 5.
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with exactly one of each Greek letter. In our gasoline example, if we introduce the effect of, say, four different days,
represented by Greek letters, then Table 8.12 shows the 4 � 4 Greco-Latin square.

We will not go into more detail on this design, or on the many other similar designs.
When developing an experimental design, it is important for the researcher to learn more about the terminology as well

as the intricacies of the field in which the experiment will be performed. It is also important to observe that there are many
other practical constraints affecting DOE. For example, experiments are done by organizations and individuals that have
limited resources of money and time. Appropriating these resources within the constraints is an integral part of planning an
experiment. Also, many problems are approached sequentially in several stages. Planning for each stage is built on what
has been learned before. Dealing with these types of issues is beyond the scope of this book.

Exercises 8.2

8.2.1. To study the conditions under which hash brown potatoes will absorb the least amount of fat, an experiment is
conducted with four frying durations (2, 3, 4, 5 minutes) and using four different types of fats (animal fat I, animal
fat II, vegetable fat I, vegetable fat II). The amount of fat absorbed is recorded. Identify each of the following
elements: response, factors, and factor type(s). Write all the treatments from the factor-level combinations.

8.2.2. A team of scientists is interested in the effects of vitamin A, vitamin C, and vitamin D on the number of offspring
born for a specific species of mice. An experiment is set up using the same species of mice. The mice are randomly
assigned to three groups. Each mouse in the study gets the same amount of food and daily exercise and is kept at
the same temperature. One group of mice gets extra vitamin A, another group gets extra vitamin C, and the
remaining group gets extra vitamin D. The supplements are added to their food. The number of offspring are
counted and recorded for each group.
(a) What is the response variable?
(b) What is the factor?

8.2.3. Thirty rose bushes are numbered 1 to 30. Three different fertilizers are to be applied to 10 bushes each. Develop a
design using the random assignment procedure.

8.2.4. Three different fertilizers are to be applied to five bushes each for three varieties of flower plants: gardenia (G),
rose (R), and jasmine (J). Create a randomized complete block design. Choose as blocks the different types of
plants (G, R, or J).

8.2.5. With the following modifications, consider Exercise 8.2.4. Three groups of flower plants are considered, with each
group having nine plants. Group I consists of G, group II consists of R, and group III consists of J. Of the nine
gardenias (group I), three are treated with brand A fertilizer, three with brand B, and three with brand C. Other
plant types are treated similarly. Here, the number of replications is three for each type of fertilizer and for each
type of plant. Create a randomized complete block design with three replications.

8.2.6. What are the reasons for using randomization in Exercises 8.2.3 to 8.2.5?
8.2.7. Suppose a food processing company wants to package sliced pineapples in cans. They have four different process-

ing plants, say, A, B, C, and D. Suppose they have 56 truckloads (numbered 1 to 56) of pineapples collected from
different parts of the country. To get some uniformity in taste, it is better to randomly assign the trucks to the four
plants. Develop a design using the random assignment procedure.

8.2.8. In Exercise 8.2.1, suppose there are four pans and 25 packets of hash brown potatoes. Randomly select six of the
25 packets to be fried with each of the fat types.
(a) Create a randomized complete block design.
(b) Create a Latin square design.

TABLE 8.12 Greco-Latin Squares.

Aa Bb Cg Dd

Bd Ag Db Ca

Cb Da Ad Bg

Dg Cd Ba Ab
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8.2.9. A chemist is interested in the effects of five different catalysts (A, B, C, D, E) on the reaction time of a chemical
process. There are five batches of new material (1, 2, 3, 4, 5). She decides to study the effect of each catalyst on
each material for 5 days (1, 2, 3, 4, 5). Construct a Latin square design for this experiment.

8.2.10. Suppose a dating service wants to schedule dates for four women, Anna, Carol, Judy, and Nancy, with Ed, John,
Marcus, and Richard on Thursday, Friday, Saturday, and Sunday in such a way that each man dates each woman
in the 4 days. Create a Latin square design displaying a schedule that the dating service could follow.

8.2.11. To test the relative effectiveness of four different fertilizer mixtures on an orange crop, a Florida farmer applies the
fertilizer and measures the yield per unit area when he harvests. The four experiments cannot be carried out on the
same plot of land. Devise a Latin square arrangement of dividing a single plot into a 4 � 4 grid of subplots for
administering the fertilizers (labeled randomly A, B, C, D).

8.2.12. A researcher wants to know the effects of four different types of fertilizer on the mean number of tomatoes pro-
duced. He wants to estimate the treatment means m1, m2, m3, and m4 such that he will be 90% confident that the
estimates are within five tomatoes of the true mean number of tomatoes. What is the necessary number of repli-
cations to achieve this goal? It is known from previous experiments that the numbers of tomatoes per plant have
ranged from 20 to 60.

8.3 Factorial design

In this section, we introduce a treatment design in which the treatments are constructed from several factors rather than just
being k levels of a single factor. The treatments are combinations of levels of the factors. A factorial experiment can be
defined as an experiment in which the response variable is observed at all factor-level combinations of the independent
variables. A factorial design is used to evaluate two or more factors simultaneously. In general, there are three ways to
obtain experimental data: one factor at a time, full factorial, and fractional factorial. The most efficient design is the
fractional factorials. A simple approach for examining the effect of multiple factors is the one-at-a-time approach. The
advantages of factorial designs over one-factor-at-a-time experiments is that they allow interactions to be spotted. An
interaction occurs when the effect of one factor varies with the level of another factor or with some combination of levels of
other factors when there are multiple factors.

The one-way ANOVA, discussed in Chapter 9, enables us to compare several groups of observations, all of which are
independent, with the possibility of a different mean for each group. A test of significance is whether all the means are
equal. Two-way ANOVA is a way of studying the effects of two factors separately, such as their main effects, and
together, with their interaction effect.

8.3.1 One-factor-at-a-time design

In one-factor-at-a-time design, one conducts the experiment with one factor at a time. Here, we hold all factors constant
except one and take measurements on the response variable for several levels of this one factor, then choose another factor
to vary, keeping all others constant, and so forth. We are familiar with this type of experiment from undergraduate
chemistry or physics labs. One of the drawbacks of this method is that all factors are evaluated while the other factors are at
a single setting. For example, in the case of Example 8.2.2, we would set a fixed temperature and study the effect of water
salinity on fish weight gains, and then set a fixed water salinity and vary temperature. All this is time consuming.

EXAMPLE 8.3.1

Consider the following hypothetical data, in which two types of diet (fat, carbohydrates) in two levels (high, medium) were

administered for a week in a sample of individuals. At the end of the week, each subject was put on a treadmill and time of

exhaustion, in seconds, was measured. The objective was to determine the factor-level combination that will give maximum time

of exhaustion. Table 8.13 gives average time to exhaustion for each combination of diet.

TABLE 8.13 Average Time to Exhaustion.

Average time to exhaustion (s) Fat Carbohydrate

88 High Medium

98 Medium Medium

77 Medium High

74 High High
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Discuss this as a one-factor-at-a-time experiment to predict average time of exhaustion.

Solution

We can see that the average time of exhaustion decreases when fat content is increased from medium to high while holding

carbohydrate at medium. The average time of exhaustion also decreases when carbohydrate content is increased from medium to

high while holding fat at medium. Thus, it is tempting to predict that increasing both fat and carbohydrate consumption will result

in a lower average time of exhaustion. The problem with this reasoning is that the prediction is based on the assumption that the

effect of one factor is the same for both levels of the other factor. Changing the fat content from medium to high, keeping car-

bohydrate at medium, and the carbohydrate content from medium to high, keeping fat at medium, reduced the average time of

exhaustion by approximately 10 seconds. The question then is, can we predict that increasing both fat and carbohydrate content

to high will lower the average time of exhaustion to approximately 67 seconds? To answer this question, we need to administer

high levels of both diets to a sample and observe the average time of exhaustion. If it is 67 seconds, then our observation is

correct. However, what if the observation is 74 seconds? The average time of exhaustion has been lowered, but not as much. If

this happens, we say that the two factors interact. When factors interact, the effect of one factor on the response is not the same for

different levels of the other factor. Hence, the information obtained from the one-factor-at-a-time approach would lead to an

invalid prediction.

The factor-level combination for the one-factor-at-a-time approach of Example 8.3.1 can be seen in Fig. 8.1.
If there is no interaction, we get Fig. 8.2, which shows average time to exhaustion with three given points and a possible

point of around 67 seconds.

Definition 8.3.1 Two factors, I and II, are said to interact if the difference in mean responses for different levels of one
factor is not constant across levels of the second factor.

If there is interaction, the lines in Fig. 8.2 might cross each other, in which case a one-factor-at-a-time approach may not
be the appropriate design. In that case, the following alternative designs will give more accurate data.
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FIGURE 8.1 One-factor-at-a-time approach.
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FIGURE 8.2 No interaction.
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8.3.2 Full factorial design

One way to get around the problem of interaction in one-factor-at-a-time design is to evaluate all possible combinations of
factors in a single experiment. This is called a full factorial experiment. The main benefit of a full factorial design is that
every possible data point is collected. The choice of optimum condition becomes easy. For example, in an experiment such
as the one in Example 8.2.2, one could conduct a full factorial design. The simplest form of factorial experiment involves
two factors only and is called a two-way layout. A full factorial experiment with n factors and two levels for each factor is
called a 2n factorial experiment. A full factorial experiment is practical if only a few factors (say, fewer than five) are being
investigated. Beyond that, this design becomes time consuming and expensive.

8.3.3 Fractional factorial design

In a fractional factorial experiment, only a fraction of the possible treatments is actually used in the experiment. A full
factorial design is the ideal design, through which we could obtain information on all main effects and interactions. But
because of the prohibitive size of the experiments, such designs are not practical to run. For instance, consider Example
8.2.2. Now if we were to add say, two different densities, three sizes of fish, and three types of food, the number of
factors becomes five, and the total number of distinct treatments will be 4 � 4 � 2 � 3 � 3 ¼ 288. This method be-
comes very time consuming and expensive. The number of relatively significant effects in a factorial design is relatively
small. In these types of situations, fractional factorial experiments are used in which trials are conducted on only a well-
balanced subset of the possible combinations of levels of factors. This allows the experimenter to obtain information
about all main effects and interactions while keeping the size of the experiment manageable. The experiment is carried
out in a single systematic effort. However, care should be taken in the selection of treatments in the experiment so as to
be able to answer as many relevant questions as possible. The fractional factorial design is useful when the number of
factors is large. Because we are reducing the number of factors, a fractional factorial design will not be able to evaluate
the influence of some of the factors independently. Of course, the question is how to choose the factors and levels we
should use in a fractional factorial design. The question of how fractional factorial designs are constructed is beyond the
scope of this book.

Exercises 8.3

8.3.1. Suppose a large retail chain decides to introduce clothing in two types of material (ordinary, fine) quality. Each
store will have two different proportions (40%, 60%) displayed. At the end of the month, profits from each store
for these two types of clothing are recorded. Table 8.14 represents the average profits for each of the qualitye
proportion combinations.

Discuss this as a one-factor-at-a-time experiment to predict the average amount of profit.

8.3.2. Draw graphs for the data to represent qualityeproportion combinations (a) for the one-factor-at-a-time approach,
and (b) for the case in which there is no interaction.

8.3.3. Discuss how a fractional factorial design can be performed for the problem in Exercise 8.3.1.
8.3.4. Suppose a researcher wants to conduct a series of experiments to study the effects of fertilizer and temperature on

plant growth. She uses four different brands of fertilizers in three different settings for rose plants of the same age
and of similar growth.

TABLE 8.14 Two Types of Clothing and Profit.

Average profit Quality Proportion

$10,000 Fine 40%

$25,000 Ordinary 40%

$9500 Ordinary 60%

$8000 Fine 60%
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(a) How many factor-level combinations are possible in this experiment?
(b) Each experiment makes use of one fertilizeretemperature combination (one-factor-at-a-time design). How

should she implement randomization in this experiment?

8.4 Optimal design

In 1959, J. Kiefer presented a paper to the Royal Statistical Society about his work on the theory of optimal design. He was
trying to answer the major question, “How do we find the best design?” This work initiated a whole new field of optimal
design. Optimal designs are a class of experimental design that are optimal with respect to certain statistical criteria. For
instance, in estimation problems, these designs allow parameters to be estimated without bias and with minimal variance.
The methods of optimal experimental design provide the technical tools for building experimental designs to attain well-
defined objectives with efficiency and with minimum cost. The cost can be the monetary cost, time, number of experi-
mental runs, and so on. There are many methods of achieving optimal designs such as sequential (simplex) or simultaneous
experiment designs. In sequential design, experiments are performed in succession in a direction of improvement until the
optimum is reached. Simultaneous experiment designs such as response surface designs are used to build empirical models.
A survey by Atkinson in 1988 contains many references on optimal design.

In this section, we focus only on one simple example to illustrate the ideas of optimal design in terms of choosing
appropriate sample size. It is not possible to have a single design that is best for securing information concerning all types
of population parameters. Indeed, it is beyond the scope of this section to present a general theory of optimal design.

8.4.1 Choice of optimal sample size

The sample size estimation is an essential part of experimental design; otherwise, sample size may be very high or very
low. If sample size is too low, the experiment will lack the accuracy to provide dependable answers to the questions we are
investigating. If sample size is too large, time and resources will be wasted, often for insignificant gain. We now illustrate a
simple case of optimal sample size determination.

Let X11;.;X1n1 be a random sample from population 1 with mean m1 and variance s21 and X21;.;X2n2 be random
samples from population 2 with mean m2 and variance s22: Assume that the two samples are independent. Then we know
that X1 � X2 is an unbiased estimator of m1�m2 with standard error:

s2

ðX1�X2Þ ¼ Var
�
X1 � X2

�

¼ s2
1

n1
þ s2

2

n2
.

Suppose that there is a restriction that the total observations should be n, that is, n1 þ n2 ¼ n. Such a restriction may be
due to cost factors or to a shortage of available subjects. An important design question is how to choose the sample sizes n1
and n2 so as to maximize the information in the data relevant to the parameter m1�m2. We know that the samples contain
maximum information when the standard error is minimum. Hence, the problem reduces to minimization of Var

�
X1 �X2

�
Let a ¼ n1

n be the fraction on n observations that is assigned to sample 1. Then n1 ¼ na and n2 ¼ n (1�a), and we have:

Var
�
X1 � X2

� ¼ s2
1

n1
þ s2

2

n2

¼ s2
1

na
þ s2

2

nð1� aÞ .

The problem is now reduced to finding an a that minimizes the function gðaÞ ¼ s21
na þ s22

nð1�aÞ. This problem can be

solved using calculus. By taking the derivative with respect to a, d
da gðaÞ, and equating it to zero, we have:

� s2
1

na2
þ s2

2

nð1� aÞ2 ¼ 0:

Multiplying throughout by na2(1 � a)2, we have:
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�s2
1ð1� aÞ2 þ s2

2a
2 ¼ 0;

which results in the quadratic equation: �
s2
2 � s2

1

�
a2 þ 2s2

1a� s2
1 ¼ 0:

Using the quadratic formula, we obtain the two roots, that is,

a1 ¼ s1

s1 þ s2

and

a2 ¼ s1

s1 � s2
.

However, a2 cannot be the solution because, if s1 > s2, then a2 > 1, otherwise a2 < 0; both are not admissible because
a is a fraction. Hence,

a ¼ s1

s1 þ s2
and 1� a ¼ s2

s1 þ s2
$

Using the second derivative test, we can verify that this indeed is a minimum for var
�
X1 �X2

�
. From this analysis we

can see that the sample sizes that maximize the information in the data relevant to the parameter m1 � m2 subject to the
constraint n1 þ n2 ¼ n are:

n1 ¼ s1

s1 þ s2
n and n2 ¼ s2

s1 þ s2
n:

As a special case, we can see that when s21 ¼ s22, the optimal design is to take n1 ¼ n2.

Exercises 8.4

8.4.1. A total of 100 sample points were taken from two populations with variances s21 ¼ 4 and s22 ¼ 9: Find n1 and n2
that will result in the maximum amount of information about (m1 � m2).

8.4.2. Suppose in Exercise 8.4.1 we want to take n ¼ n1 ¼ n2. How large should n be to obtain the same information as
that implied by the solution of Exercise 8.4.1?

8.5 The Taguchi methods

Taguchi methods were developed by Deming prize winner Dr. Genichi Taguchi to improve the implementation of total
quality control in Japan. These methods are claimed to have provided as much as 80% of Japanese quality gains. They are
based on DOE to provide near-optimal quality characteristics for a specific objective. A special feature of Taguchi methods
is that they integrate the methods of statistical DOE into a powerful engineering process. The Taguchi methods are in
general simpler to implement.

Taguchi methods are often applied on the Japanese manufacturing floor by technicians to improve their processes and
their product. The goal is not just to optimize an arbitrary objective function, but also to reduce the sensitivity of engi-
neering designs to uncontrollable factors or noise. The objective function used is the signal-to-noise ratio, which is then
maximized. This moves design targets toward the middle of the design space so that external variation affects the behavior
of the design as little as possible. This permits large reductions in both part and assembly tolerances, which are major
drivers of manufacturing cost. Linking quality characteristics to cost through the Taguchi loss function (Taguchi and
Yokoyama, 1994) was a major advance in quality engineering, as well as in the ability to design for cost. Taguchi methods
are also called robust design. In 1982, the American Supplier Institute introduced Dr. Taguchi and his methods to the US
market.

Using a well-planned experimental design, such as a fractional factorial design, it is possible to efficiently obtain
information about the model and the underlying process. Clearly, the purpose of these methods is to control and ensure the
quality of the end product. In the conventional approach, this is achieved by further testing a few end products that are
randomly chosen or using control charts and making decisions based on certain preset criteria, such as acceptable or
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unacceptable. Thus, “quality” of the product is thought of as inside or outside of specifications. Instead, Taguchi suggested
that we should specify a target value, and the quality should be thought of as the variation from the target.

As an example, suppose we have n observations of the output x1; :::; xn of a process at times 1, 2, . , n, as shown
in Fig. 8.3.

The control chart consists of a plot of observed output values (xi0s) on the y-axis and the times of observation, 1, 2, . ,
n on the x-axis, as shown in the figure. The letter T represents the target value. If the output value is between TL and TU, the
process is deemed to be operating satisfactorily; otherwise the process is said to be out of control and the output value is
considered unsatisfactory.

Some other examples are (1) defining specification limits for acceptance, such as stating that the diameter of bolts must
be between 8.8 and 10.2 mm with mean 10 mm, and (2) that the waiting time in a line should be less than 30 minutes for at
least 90% of customers.

In all these situations, the specifications partition the state of the process as acceptable or unacceptable, that is, it
classifies the state as a dichotomy. This is often called the “goalpost mentality.”

The basic idea of the Taguchi approach is a shift in mind-set from demarking the quality as acceptable or unacceptable
to a more flexible and realistic classification. The traditional approach to quality control does not take into account the size
of departure from the target value. To accommodate the size of such departure as a significant factor in quality control, let
us introduce the concept of loss function (see Chapter 10). If an output value x differs from the target value T, let L(T, x)
denote the loss incurred, say in dollars. Other possible losses could be reputation or customer satisfaction.

For the control chart example, we can assign the loss function:

LðT; xÞ ¼
�
0; if TU < x < TL

L; if x > TL or x < TU

where L is a constant and x is the measured value. This is schematically shown in Fig. 8.4.
From Fig. 8.4, it is seen that we view outputs x1 and x2 as having equal quality, whereas x2 and x3 are considered to

have vastly differing quality (x2 is acceptable and x3 is not acceptable). A more reasonable conclusion would be that x1 has
excellent quality, whereas x2 and x3 are similar, both being poor.

In Taguchi’s approach, the loss function takes into account the size of departure from the target value. For example, a
popular choice for the loss function is:

LðT;XÞ ¼ kðX � TÞ2;
where

. 
TU

x . 
T = Target value

. TL

1 2 n
Time

FIGURE 8.3 Control plot of processing times and outputs.

LL

TL T      x1 x2 TU x3

FIGURE 8.4 Loss function.
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L ¼ loss incurred;

k ¼ constant;

X ¼ actual value of the measured output; and

T ¼ target value.

We can schematically represent the behavior as shown by Fig. 8.5.
This form of loss function is called the quadratic loss function. The choice of k depends on the particular problem. For

example, the scaling factor k can be used to convert loss into monetary units to accommodate comparisons of systems with
different capital losses. Or, in product manufacturing, let D denote the allowed deviation from the target, and let A denote
the loss due to a defective product. Then a choice of k can be k ¼ (A/D)2. As shown earlier, the average loss is E(L) and is
given by:

EðLÞ ¼ k
�ðEðXÞ � TÞ2 þ s2

� ¼ k
�ðbiasÞ2 þ variance

�
;

where s2 is the variance of X (measured quality, which is assumed to be random). In Taguchi, the variation from the target
can be broken into components containing bias and product variation. Thus, if our aim is to minimize the expected loss,
E(L), we should not only require E(X) ¼ m to be close to T, but should also reduce the variance. It turns out that often these
requirements are contradictory. The objective is to choose the design parameters (the factors that influence the quality)
optimally to obtain the best quality product. In practice, the parameters m and s2 are not known and are being estimated
by X and S2, respectively. This results in the Taguchi loss function, that is,

L ¼ k
h�
X � T

�2 þ S2
i
.

This loss function penalizes small deviations from T only slightly, while assessing a larger penalty for responses far
from the target. The expected loss is similar to a mean squared error loss, which we have seen in regression analysis in the
form of least squares.

Why is controlling both bias and variance important? Suppose you want your community swimming pool temperature
at 80�F, which is the T here. Suppose the temperature varies between 60 and 100�F. Clearly the average (bias) is zero;
however, it will be pretty uncomfortable to swim at 60 or 100�F. Here, the bias takes the ideal value of zero, but the
variance is large. In another scenario, the variance may be small, but the average temperature may be further away from the
target value of 80�F (for example, the temperature is constant at 60�F). Hence, we want the pool temperature to be near to
the target value of 80�F, with as small a variance as possible (say, within 1 to 2�F).

Taguchi coined the term design parameters as the generic description for factors that may influence the quality and
whose levels we want to optimize. Taguchi’s philosophy is to “design quality in” rather than to weed out the defective
items after manufacturing. To obtain an optimal set of design parameters that affect the quality of the end product, the
Taguchi method utilizes appropriately designed experiments. More specifically, orthogonal arrays are used for fractional
factorial designs. Orthogonal arrays provide a set of well-balanced experiments. Taguchi provides tables for these designs
so that even a nonspecialist can use them. For two-level designs (high, low), we have a table for an L4 orthogonal array up
to three factors, a table for an L8 orthogonal array up to seven factors, and so forth. Similar tables are available for three-
level designs. We will not describe these design issues in this section. We refer the reader to specialized books on the
subject for further details.

We can summarize the Taguchi approach to quality design as follows:

L(T , x)

L

TL x T TU

FIGURE 8.5 Quadratic loss function.

362 Mathematical Statistics with Applications in R



1. Taguchi’s methods for experimental design are ready made and simple to use in the design of efficient experiments,
even by nonexperts.

2. Taguchi’s approach to total quality management is holistic and tries to design quality into a product rather than inspect-
ing defects in the final product.

3. Taguchi’s techniques can readily be applied to other fields such as management problems.

Exercises 8.5

8.5.1. Suppose the following data represent thickness between and within silicon wafers (in micrometers), with a target
value of 14.5 mm.

13:688 13:788 14:173 14:557

13:925 14:545 13:797 14:778

Compute the Taguchi loss function.

8.5.2. One of the commonly used performance measures in the Taguchi method is:

log

 
ðmeanÞ2

s2

!
;

where s2 is the sample variance. In general, the higher the performance measure, the better the design. This measure is
called robustness statistics. For the problem of Exercise 8.5.1, suppose that we run the experiment by controlling various
factors affecting the thickness. Table 8.15 shows the data obtained in four different runs.

(a) Using the robustness statistics given earlier, which of the processes gives us an improved performance?
(b)Another commonly used performance in the Taguchi method is:

�log
�
s2
�
.

Using this robustness statistic, which of the processes used gives us an improved performance? Compare this with the
results of (a).

8.6 Chapter summary

In this chapter, we have learned some basic aspects of experimental design. Some fundamental definitions and tools for
developing experimental designs such as randomization, replication, and blocking were introduced in Section 8.2. Basic
concepts of factorial design were given in Section 8.4. In Section 8.6, we saw an example of optimal design. The Taguchi
method was introduced in Section 8.5. In the next chapter, we introduce the analysis component. We have discussed only a
very small collection of experimental designs in this chapter. There exist a wide variety of experimental designs to deal
with a large number of treatments and to suit specific needs of research experiments in diverse fields. It is an exciting and
growing area for the interested student to apply and explore.

We list some of the key definitions introduced in this chapter:

TABLE 8.15 Thickness (in Microns) Between and Within Silicon Wafers in Different Runs.

Run 1: 14.158 14.754 14.412 14.065 13.802 14.424 14.898 14.187

Run 2: 13.676 14.177 14.201 14.557 13.827 14.514 13.897 14.278

Run 3: 13.868 13.898 14.773 13.597 13.628 14.655 14.597 14.978

Run 4: 13.668 13.788 14.173 14.557 13.925 14.545 13.797 14.778
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l Response variable (output variable)
l Independent variables (treatment variables or input variables or factors)
l Nuisance variables
l Noise
l Observational
l Experimental units
l Single-factor experiments
l Multifactor experiments
l Experimental error
l Blinding, double-blinding, and placebo
l Replication
l Block
l Randomization
l Completely randomized design
l Randomized complete block design
l k � k Latin square design
l Greco-Latin square
l Design parameters

In this chapter, we have also learned the following important concepts and procedures:

l Procedure for random assignment
l Procedure for randomization in a randomized complete block design
l Procedure for a randomized complete block design with r replications
l Procedure for constructing a 4 � 4 Latin square
l One-factor-at-a-time design
l Full factorial design
l Fractional factorial design
l Choice of optimal sample size
l The Taguchi methods

8.7 Computer examples

In this chapter, we present R, Minitab, and SAS commands only. SPSS commands can be performed similar to Minitab.

8.7.1 Examples using R

EXAMPLE 8.7.1 Permutation

Obtain a random perturbation of the numbers 1 to n, where n ¼ 10.

R Code:

Sample(c(1:10)); Frequently used in R, c(1:10) is similar
to c(1,2,3,4,5,6,7,8,9,10). Anywhere

you want a range of values use 1:n.

Output:

This output will be a random sample without replacement, your output will look similar.

6 7 9 2 10 1 5 3 8 4
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EXAMPLE 8.7.2 Randomized Block Design

To study the number of hours to relief provided by five different brands (A, B, C, D, E) of pain relievers for pain resulting from

different causes (headache [H], muscle pain [M], pain due to cuts and bruises [CB]), doses are administered to five subjects, each

having similar types of pain. Create a randomized complete block design. Choose the different types of pain (H, M, CB) as the

blocks.

R Code:

h¼sample(c(1:5));

Random samples from five subjects 
without replacement are generated for

each type of pain. For the sake of formatting we create 
a matrix using cbind() to bind columns.
Notice we added a column of row titles.

m¼sample(c(1:5));

cb¼sample(c(1:5));

table¼cbind(h,m,cb);

table¼as.data.frame(table);

colnames(table)¼c(”H”,”M”,”CB”);

rownames(table)¼c(“A”,”B”,”C”,”D”,”E”);

print(table);

Output:

This output will be a random sample without replacement, your output will look similar.

H M CB

A 4 2 1

B 2 1 4

C 3 4 5

D 5 5 3

E 1 3 2

EXAMPLE 8.7.3 Latin Squares
A gasoline company is interested in comparing the effects of four gasoline additives (A, B, C, D) on the gas mileage achieved per

gallon. Four cars (1, 2, 3, 4) and four drivers (I, II, III, IV) will be used in the experiment. Create a Latin square design.

R Code:

gasadd¼c("A","B","C","D");

table¼c();

for(i in 1:4) {

table¼cbind(table,c(gasadd[i:4],gasadd[0:(i-1)]));

} table¼as.data.frame(table);

colnames(table)¼c(1:4);

rownames(table)¼c("I","II","III","IV");

print(table[,sample(c(1:4))]);

Output:

This output will be a random sample without replacement, your output will look similar.

4 1 3 2

I D A C B

II A B D C

III B C A D

IV C D B A
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8.7.2 Minitab examples

EXAMPLE 8.7.4

Obtain a random permutation of numbers 1 to n.

Solution

Enter in C1 the numbers 1 to n, say n ¼ 10. Then

calc > random data > samples from column . >

enter sample 10 > rows from column(s) C1 > Store samples in: C2 > OK.

The result is a random permutation of numbers 1 to n (¼10). Now if we need to generate blocks of random permutations of

numbers 1 to n (¼10), in the foregoing steps, just store samples in C3, C4, ..

8.7.3 SAS examples

EXAMPLE 8.7.5

For the data of Example 8.2.4, conduct a randomized complete block design using SAS.

Solution

We represent blocks that are reasons for pain by H ¼ 1, M ¼ 2, and CB ¼ 3, and similarly, five brands that are treatments by

A ¼ 1, B ¼ 2, C ¼ 3, D ¼ 4, and E ¼ 5. Then we can use the following code to generate a randomized complete block design.

options nodate nonumber;
data a;

do block ¼ 1 to 3 ;
do subject ¼ 1 to 5;
x ¼ ranuni(0);
output;
end;

end ;
proc sort; by block x;
data c; set a;
trt ¼ 1 þ mod(N � 1, 5); /* mod ¼ remainder of N/5 */
proc sort; by block subject;
proc print;

var block subject trt;
run;

We obtain the following output:

Completely randomized 2 � 3 design, 4 subjects per cell

Obs block subject trt

1 1 1 5
2 1 2 4
3 1 3 3
4 1 4 2
5 1 5 1
6 2 1 2
7 2 2 5
8 2 3 3
9 2 4 4
10 2 5 1
11 3 1 4
12 3 2 5
13 3 3 1
14 3 4 2
15 3 5 3
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Note that the numbers in the column corresponding to a block identify the type of pain, the numbers in the subject
column correspond to the subjects, and the numbers in the column corresponding to trt identify the brands. Using the
corresponding letters, we can rewrite the foregoing table in the familiar form shown in Table 8.16.

The PLAN procedure constructs experimental designs. The PLAN procedure does not have a DATA¼option in the
PROC statement; in this procedure, both the input and the output data sets are specified in the OUTPUT statement. We will
use this to construct a Latin square design.

EXAMPLE 8.7.6

A gasoline company is interested in comparing the effects of four gasoline additives (A, B, C, D) on the gas mileage achieved per

gallon. Four cars (1, 2, 3, 4) and four drivers (I, II, III, IV) will be used in the experiment. Create a Latin square design.

Solution

We can use the following program, where we represent the additives by 1 ¼ A, 2 ¼ B, 3 ¼ C, and 4 ¼ D.

Options nodate nonumber;
title ’Latin Square design for 4 additives’;
proc plan seed¼37432;

factors rows¼4 ordered cols¼4 ordered/NOPRINT;
treatments tmts¼4 cyclic;
output out¼g

rows cvals¼(’car 1’ ’car 2’ ’car 3’ ’car 4’)
random

cols cvals¼(’Driver 1’ ’Driver 2’ ’Driver 3’
’Driver 4’) random

tmts nvals¼(1 2 3 4) random;
run;
proc tabulate;

class rows cols;
var tmts;
table rows, cols*(tmts*f¼1.);
keylabel sum¼’ ’;

run;

Projects for chapter 8

8A Sample size and power

Suppose that the experimenter is interested in comparing the true means of two independent populations. If two similar
treatments are to be compared, the assumption of equality of variances is not unreasonable. Hence, assume that the
common variance of the two populations is s2, and the experimenter has a prior estimate of the variance. We learned in
Section 8.4 that in this case, the optimal design will be to take sample sizes n1 and n2 to be equal. Let n ¼ n1 ¼ n2 be the
size of the random sample that the experimenter should take from each population.

Now, suppose that the experimenter has decided to use the one-sided large sample test, H0: m1 ¼ m2 versus Ha: m1 > m2
with a fixed a ¼ P (Type I error). He wants to choose n to be so large that if m1 ¼ m2 þ ks, he will get a fixed power (1�b)

TABLE 8.16 Latin Square Design for Gasoline

Additives.

H M CB

1 (E) 1 (B) 1 (D)

2 (D) 2 (E) 2 (E)

3 (C) 3 (C) 3 (A)

4 (B) 4 (D) 4 (B)

5 (A) 4 (A) 5 (C)
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of deciding m1 > m2. Recall that the power of a test is the probability of (correctly) rejecting H0 when H0 is false. Find the
approximate value of n. Note that, for a given a, this will be an optimal sample size with a desired value of the power.

In particular, what should be the sample size in the hypothesis testing problem H0: m1�m2 ¼ 0 versus Ha: m1�m2 ¼ 3, if
a ¼ b ¼ 0.05. Assume that s ¼ 7.

8B Effect of temperature on the spoilage of milk

Suppose you have observed that milk in your refrigerator spoils very fast. You may be wondering whether it has anything
to do with the temperature settings. Design an experiment to study the effect of temperature on spoiled milk, with at least
three meaningful settings of the temperature. (i) Write a possible hypothesis for your experiment. (ii) What are the in-
dependent and dependent variables? (iii) Which variables are being controlled in this experiment? (iv) Discuss how you
used the three basic principles of replication, blocking, and randomization. (v) What conclusions can you make? Think
through any possible flaws in the design that may affect the integrity of your findings.
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Objective

The objective of this chapter is to analyze the means of several populations by identifying the sources of variability of
the data.

John Wilder Tukey
(Source: http://en.wikipedia.org/wiki/John_Tukey).

John W. Tukey (1915e2000), a chemist turned topologist turned statistician, was one of the most influential
statisticians of the past 50 years. He is credited with inventing the word software. He worked as a professor at Princeton
University and a senior researcher at AT&T’s Bell Laboratories. He made significant contributions to the fields of
exploratory data analysis and robust estimation. His works on the spectrum analysis of time series and other aspects of
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digital signal processing have been widely used in engineering and science. He coined the word bit, which refers to a
unit of information processed by a computer. In collaboration with Cooley, in 1965, Tukey introduced the fast Fourier
transform (FFT) algorithm that greatly simplified computation for Fourier series and integrals. Tukey authored or
coauthored many books on statistics and wrote more than 500 technical papers. Among Tukey’s most far-reaching
contributions was his development of techniques for “robust analysis,” an approach to statistics that guards against
wrong answers in situations where a randomly chosen sample of data happens to poorly represent the rest of the data set.
Tukey also made significant contributions to the analysis of variance.

9.1 Introduction

Suppose that we are interested in the effects of four different types of chemical fertilizers on the yield of rice, measured in
pounds per acre. If there is no difference between the different types of fertilizers, then we would expect all the mean yields
to be approximately equal. Otherwise, we would expect the mean yields to differ. The different types of fertilizers are
called treatments and their effects are the treatment effects. The yield is called the response. Typically, we have a model
with a response variable that is possibly affected by one or more treatments. The study of these types of models falls under
the purview of design of experiments, which we discussed in Chapter 8. In this chapter we concentrate on the analysis
aspect of the data obtained from the designed experiments. If the data came from one or two populations, we could use the
techniques learned in Chapters 5 and 6. Here, we introduce some tests that are used to analyze the data from more than two
populations. These tests are used to deal with treatment effects, including tests that take into account other factors that may
affect the response. The hypothesis that the population means are equal is considered equivalent to the hypothesis that there
is no difference in treatment effects. The analytical method we will use in such problems is called the analysis of variance
(ANOVA). The initial development of this method could be credited to Sir Ronald A. Fisher, who introduced this method
for the analysis of agricultural field experiments. The “green revolution” in agriculture would have been impossible
without the development of the theory of experimental design and the methods of ANOVA.

ANOVA is one of the most flexible and practical techniques for comparing several means. It is important to observe
that ANOVA is not about analyzing the population variance. In fact, we are analyzing treatment means by identifying
sources of variability of the data. In its simplest form, ANOVA can be considered as an extension of the test of hypothesis
for the equality of two means that we learned in Chapter 6. Actually, the so-called one-way ANOVA is a generalization of
the two-means procedure to a test of equality of the means of more than two independent, normally distributed populations.

Recall that the methods of testing H0: m1 � m2 ¼ 0, such as the t-test, were discussed earlier. In this chapter, we are
concerned with studying situations involving the comparison of more than two population or treatment means. For
example, we may be interested in the question, Do the rates of heart attack and stroke differ for three different groups of
people with high cholesterol levels (borderline high, such as 150e199 mg/dL; high, such as 200e239 mg/dL; very high,
such as greater than 240 mg/dL) and a control group given different dosage levels of a particular cholesterol-lowering drug
(say, a particular statin drug)? Let us consider four populations with means m1, m2, m3, and m4, and say that we wish to test
the hypothesis m1 ¼ m2 ¼ m3 ¼ m4. That is, the true mean rate is the same for all four groups. The question here is, Why do
we need a new method to test for differences among the four procedure population means? Why not use z- or t-tests for all
possible pairs and test for differences in each pair? If any one of these tests leads to the rejection of the hypothesis of equal
means, then we might conclude that at least two of the four population means differ. The problem with this approach is that

our final decision is based on results of

�
4

2

�
¼ 6 different tests, and any one of them can be wrong. For each of the six

tests, let a ¼ 0.10 be the probability of being wrong (type I error). Then the probability that at least one of the six tests
leads to the conclusion that there is a difference leads to an error of 1 � (0.9)6 ¼ 0.46856, which clearly is much larger than
0.10, thus resulting in a large increase in the type I error rate. Hence, if an ordinary t-test is used to make several treatment
comparisons from the same data, the actual a-value applying to the tests taken as a group will be larger than the specified
value of a, and one is likely to declare significance when there is none.

ANOVA procedures were developed to eliminate the increase in error rates resulting from multiple t-tests. With
ANOVA, we are able to set one a level and test whether any of the group means differ from one another. Given a sample
from each of the populations, our interest is to answer the question, Are the observed discrepancies among the different
sample means merely due to chance fluctuations, or are they due to inherent differences among the populations? ANOVA
separates the effect of purely random variations from those caused by existing differences among population means. The
phrase “analysis of variance” springs from the idea of analyzing variability in the data to see how much can be attributed to
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differences in m and how much is due to variability in the individual populations. The ANOVA method incorporates
information on variability from all of the samples simultaneously. At the heart of ANOVA is the fact that variances can be
partitioned, with each partition attributable to a specific source. The method inspects various sums of squares (which are
measures of variation in a sample) calculated from the data. ANOVA looks at two types of sums of squares: sums of
squares within groups and sums of squares between groups. That is, it looks at each of the distributions and compares the
between-group differences (variation in group means) with the within-group differences (variation in individuals’ scores
within groups).

9.2 Analysis of variance method for two treatments (optional)

In this section, we present the simplest form of the ANOVA procedure, the case of studying the means of two populations,
I and II. For comparing only two means, the ANOVA will result in the same conclusions as the t-test for independent
random samples. The basic purpose of this section is to introduce the concept of ANOVA in simpler terms. Let us consider
two random samples of size n1 and n2, respectively. That is, y11; y12;.; y1n1 from population I and y21; y22;.; y2n2 from
population II. Let

y1 ¼
y11 þ y12 þ.þ y1n1

n1
ðsample mean from population IÞ;

and

y2 ¼
y21 þ y22 þ.þ y2n2

n2
ðsample mean from population IIÞ.

These samples are assumed to be independent and come from normal populations with respective means m1, m2, and
variances s21 ¼ s22. We wish to test the hypothesis:

H0 : m1 ¼ m2 vs. Ha : m1sm2:

The total variation of the two combined response measurements about y (the sample mean of all n ¼ n1 þ n2 obser-
vations) is (SS is used for sum of squares) defined as:

Total SS ¼
X2
i¼ 1

Xni
j¼ 1

�
yij � y

�2
: (9.1)

That is,

y ¼ y11 þ y12 þ.þ y1n1 þ y21 þ y22 þ.þ y2n2
n

¼ 1
n

X
ij

yij:

The total sums of squares measure the total spread of scores around the grand mean, y. We can rewrite Eq. (9.1) as:

Total SS ¼
X2
i¼ 1

Xni
j¼ 1

�
yij � y

�2

¼
Xn1
j¼ 1

�
y1j � y

�2
þ
Xn2
j¼ 1

�
y2j � y

�2

¼
Xn1
j¼ 1

�
y1j � y1 þ y1 � y

�2
þ
Xn2
j¼ 1

�
y2j � y2 þ y2 � y

�2

¼
Xn1
j¼ 1

�
y1j � y1

�2
þ n1

�
y1 � y

�2 þ 2
�
y1 � y

�Xn1
j¼ 1

�
y1j � y1

�

þ
Xn2
j¼ 1

�
y2j � y2

�2
þ n2

�
y2 � y

�2 þ 2
�
y2 � y

�Xn2
j¼ 1

�
y2j � y2

�
:
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Note that
Pn1
j¼ 1

�
y1j �y1

�
¼ 0 ¼ Pn2

j¼ 1

�
y2j �y2

�
. Thus, we obtain:

Total SS ¼
Xn1
j¼ 1

�
y1j � y1

�2
þ
Xn2
j¼ 1

�
y2j � y2

�2

þ n1
�
y1 � y

�2 þ n2
�
y2 � y

�2

¼
X2
i¼ 1

Xni
j¼ 1

�
yij � yi

�2
þ
X2
i¼ 1

ni
�
yi � y

�2
:

(9.2)

Define SST, the sum of squares for a treatment, as:

SST ¼
X2
i¼ 1

ni
�
yi � y

�2
.

The SST measures the total spread of the group means yi with respect to the grand mean, y. Also, SSE represents the
sum of squares of errors given by:

SSE ¼
X2
i¼ 1

Xni
j¼ 1

�
yij � yi

�2

¼
Xn1
j¼ 1

�
y1j � y1

�2
þ
Xn2
j¼ 1

�
y2j � y2

�2

¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22;
where s21 and s22 are the unbiased sample variances of the two random samples. Note that this connects the sum of

squares to the concept of variance we have been using in previous chapters. We can now rewrite Eq. (9.2) as:

Total SS ¼ SSE þ SST :

It should be clear that the SSE measures the within-sample variation of the y values (effects), whereas SST measures the
variation among the two sample means. The logic by which the ANOVA tests is as follows: If the null hypothesis is true,
then SST compared with SSE should be about the same, or less. The larger the SST, the greater will be the weight of
evidence to indicate a difference in the means m1 and m2. The question then is, how large?

To answer this question, let us suppose we have two populations that are normal. That is, let Yij be N(mi, s
2) distributed

with values yij. Then, the pooled unbiased estimate of s2 is given by:

s2p ¼
ðn1 � 1Þs21 þ ðn2 � 1Þs22

n1 þ n2 � 2
¼ SSE

n1 þ n2 � 2
:

Hence,

s2 ¼ E
�
S2p

�
¼ E

�
SSE

n1 þ n2 � 2

�
:

Also, we can write:

SSE

s2
¼
Xn1
j¼ 1

�
Y1j � Y1

�2
s2

þ
Xn2
j¼ 1

�
Y2j � Y2

�2
s2

;

which has a c2 distribution with (n1 þ n2 � 2) degrees of freedom.
Under the hypothesis that m1 ¼ m2, E(SST) ¼ s2. Furthermore,

Z ¼ Y1 � Y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

�
1
n1

þ 1
n2

�s wNð0; 1Þ:
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This implies that:

Z2 ¼
�
1
n1

þ 1
n2

�2664
�
Y1 � Y2

�2
s2

3
775 ¼ SST

s2
;

has a c2 distribution with 1 degree of freedom. It can be shown that SST and SSE are independent. From Chapter 4, we
restate the following result.

Theorem 9.2.1. If c2
1 has y1 degrees of freedom, c2

2 has y2 degrees of freedom, and c2
1 and c2

2 are independent, then

F ¼ c2
1=y1

c2
2=y2

has an F-distribution with y1 numerator degrees of freedom and y2 denominator degrees of freedom.

Using the foregoing result, we have:

SST=ð1Þs2

SSE=ðn1 þ n2 � 2Þs2
¼ SST=1

SSE=ðn1 þ n2 � 2Þ ;

which has an F-distribution with y1 ¼ 1 numerator degrees of freedom and y2 ¼ (n1 þ n2 � 2) denominator degrees of
freedom.

Now, we introduce the mean square error (MSE), defined as:

MSE ¼ SSE

ðn1 þ n2 � 2Þ

¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
ðn1 þ n2 � 2Þ ;

and the mean square treatment (MST), given by:

MST ¼ SST

1

¼
h
n1
�
y1 � y

�2 þ n2
�
y2 � y

�2i
.

Under the null hypothesis, H0: m1 ¼ m2, both MST and MSE estimate s2 without bias. When H0 is false and m1 s m2,
MST estimates something larger than s2 and will be larger than MSE. That is, if H0 is false, then E(MST ) > E(MSE ) and
the greater the differences among the values of m, the larger E(MST ) will be relative to E(MSE ).

Hence, to test H0 : m1 ¼ m2 vs: Ha : m1sm2, we use the F-test, given by:

F ¼ MST

MSE
;

as the test statistic. Thus, for a given a, the rejection region is {F > Fa}. It is important to observe that compared with
the small sample t-test, here we work with variability. Now we summarize the ANOVA procedure for the two-sample case.

Analysis of variance procedure for two treatments

For equal sample sizes n ¼ n1 ¼ n2, assume s21 ¼ s22:

We test:

H0 : m1 ¼ m2 vs. Ha : m1sm2:

1. Calculate y1; y2;
P
ij

y2
ij ;
P
ij

yij ; and find:

SST ¼
X2
i¼ 1

ni

�
yi � y

�2
:

Also calculate:

Total SS ¼
X
i

X
j

y2
ij �

 P
i

P
j

yij

!2

n1 þ n2

:

Then:

SSE ¼ Total SS � SST :

Continued
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Analysis of variance procedure for two treatmentsdcont’d

2. Compute:

MST ¼ SST

1
;

and

MSE ¼ SSE

n1 þ n2 � 2
:

3. Compute the test statistic,

F ¼ MST

MSE
:

4. For a given a, find the rejection region as:

RR : F > Fa;

based on 1 numerator and ðn1 þn2 �2Þ denominator de-

grees of freedom.

5. Conclusion: If the test statistic F falls in the rejection region,

conclude that the sample evidence supports the alternative

hypothesis that the means are indeed different for the two

treatments.

Assumptions: The populations are normal with equal but

unknown variances.

EXAMPLE 9.2.1

The following data represent a random sample of end-of-year bonuses for lower-level managerial personnel employed by a large

firm. Bonuses are expressed in percentage of yearly salary.

Female 6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7

Male 8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8

The objective is to determine whether the male and female bonuses are the same. We can answer this question by connecting

the following:

(a) Use the ANOVA approach to test the appropriate hypothesis. Use a ¼ 0.05.

(b) What assumptions are necessary for the test in (a)?

(c) Test the appropriate hypothesis by using the two-sample t-test for comparing population means. Compare the value of the

t-statistic with the value of the F-statistic calculated in (a).

Solution

(a) We need to test:

H0 : m1 ¼ m2 vs: Ha : m1sm2:

From the random samples, we obtain the following needed estimates, n1 ¼ n2 ¼ 8:

y1 ¼ 7.8375; y2 ¼ 10.0625;
X
ij

y2
ij ¼ 1319:34;

X
ij

yij ¼ 143:20; y ¼ 8:95

and

SST ¼
X2
i¼ 1

ni

�
yi � y

�2 ¼ 19:8025:

Therefore,

Total SS ¼
X
i

X
j

y2
ij �

 X
i

X
j

yij

!2

ðn1 þ n2Þ

¼ 1391:34� ð143:2Þ2
16

¼ 109:70:
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Then:

SSE ¼ Total SS � SST

¼ 109:7� 19:8025 ¼ 89:8975;

MST ¼ SST

1
¼ 19:8025;

and

MSE ¼ SSE

2n1 � 2

¼ 89.8975

14

¼ 6.42125.

Hence, the test statistic:

F ¼ MST

MSE

¼ 19.8025

6.42125

¼ 3:0839:

For a ¼ 0.05, F0.05,1,14 ¼ 4.60. Hence, the rejection region is {F > 4.60}. Because 3.0839 is not greater than 4.60, H0 is not

rejected. There is not enough evidence to indicate that the average percentage bonuses are different for men and women at

a ¼ 0.05.

(b) To solve the problem, we assumed that the samples are random and independent with n1 ¼ n2 ¼ 8, drawn from two normal

populations with means m1 and m2 and common variance s2.

(c) The value of MSE is the same as s2 ¼ s2p ¼ 6:42125. Also, y1 ¼ 7:8375 and y2 ¼ 10:0625. Then, the t-statistic is:

t ¼ y1 � y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
�
1

n1

þ 1

n2

�s ¼ 7:8375� 10:0625ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:42125

�
1

8
þ 1

8

�s ¼ �1:756:

Now, t0.025, 14 ¼ 2.145 and hence, the rejection region is {t < �2.145}.

Because �1.756 is not less than �2.145, H0 is not rejected, which implies that there is no significant difference between the

bonuses for males and females. Note also that t 2 ¼ F, that is, (�1.756)2 ¼ 3.083, implying that in the two-sample case, the t-test

and F-test lead to the same result.

It is not surprising that, in the previous example, the conclusions reached using ANOVA and two-sample t-tests are the
same. In fact, it can be shown that for two sets of independent and normally distributed random variables, the two pro-
cedures are entirely equivalent for a two-sided hypothesis. However, a t-test can also be applied to a one-sided hypothesis,
whereas ANOVA cannot. The purpose of this section is only to illustrate the computations involved in the ANOVA
procedures as opposed to simple t-tests. The ANOVA procedure is effectively used for three or more populations, which is
described in the next section.

Exercises 9.2

9.2.1. The following information was obtained from two independent samples selected from two normally distributed
populations with unknown but equal standard deviations. Do the data present sufficient evidence to indicate that
there is a difference in the mean for the two populations?

Sample 1 1 2 3 3 1 2 1 3 1

Sample 2 2 5 2 4 3 1 2 3 3
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(a) Use the ANOVA approach to test the appropriate hypotheses. Use a ¼ 0.05.
(b) Test the appropriate hypothesis by using the two-sample t-test for comparing population means. Compare the

value of the t-statistic to the value of the F-statistic calculated in (a).
9.2.2. The following information was obtained from two independent samples selected from two normally distributed

populations with unknown but equal standard deviations. Do the data present sufficient evidence to indicate that
there is a difference in the mean for the two populations?

Sample 1 15 13 11 14 10 12 7 12 11 14 15

Sample 2 18 16 13 21 16 19 15 18 19 20 21 14

(a) Use the ANOVA approach to test the appropriate hypotheses. Use a ¼ 0.01.
(b) Test the appropriate hypothesis by using the two-sample t-test for comparing population means. Compare the

value of the t-statistic to the value of the F-statistic calculated in (a).
9.2.3. A company claims that its medicine, brand A, provides faster relief from pain than another company’s

medicine, brand B. A random sample from each brand gave the following times (in minutes) for relief. Do the
data present sufficient evidence to indicate that there is a difference in the mean time to relief for the two
populations?

Brand A 47 51 45 53 41 55 50 46 45 51 53 50 48

Brand B 44 48 42 45 44 42 49 46 45 48 39 49

(a) Use the ANOVA approach to test the appropriate hypothesis. Use a ¼ 0.01.
(b) What assumptions are necessary for the conclusion in (a)?
(c) Test the appropriate hypothesis by using the two-sample t-test for comparing population means. Compare the

value of the t-statistic to the value of the F-statistic calculated in (a).
9.2.4. Table 9.1 gives mean SAT scores for math by state from 1989 and 1999 for 20 randomly selected states. (Source:

The World Almanac and Book of Facts, 2000.)

TABLE 9.1 Mean SAT Scores for Math by State.

State 1989 1999

Arizona 523 525

Connecticut 498 509

Alabama 539 555

Indiana 487 498

Kansas 561 576

Oregon 509 525

Nebraska 560 571

New York 496 502

Virginia 507 499

Washington 515 526

Illinois 539 585

North Carolina 469 493

Georgia 475 482

Nevada 512 517

Ohio 520 568

New Hampshire 510 518
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Using the ANOVA procedure, test if the mean SAT score for math in 1999 is greater than that in 1989 at a ¼ 0.05.
Assume that the variances are equal and the samples come from a normal distribution.

9.2.5. Let X1;.;Xn1 and Y1;.; Yn2 be two sets of independent, normally distributed random variables with means m1 and
m2 and the common variance s2. Show that the two-sample t-test and the ANOVA are equivalent for testing H0:
m1 ¼ m2 versus Ha: m1 > m2.

9.3 Analysis of variance for a completely randomized design

In this section, we study the hypothesis-testing problem of comparing population means for more than two independent
populations, where the data are about several independent groups (different treatments being applied or different pop-
ulations being sampled). We have seen in Chapter 8 that the random selection of independent samples from k populations
is known as a completely randomized experimental design or one-way classification.

Let m1;.;mk be the means of k normal populations with unknown but equal variance s2. The question is whether themeans
of these groups are different or are all equal. The idea is to consider the overall variability in the data.We partition the variability
into two parts: (1) between-groups variability and (2) within-group variability. If between groups ismuch larger than that within
groups, this will indicate that differences between the groups are real, not merely due to the random nature of sampling. Let
independent samples be drawn of sizes ni, i ¼ 1, 2,., k, and let N ¼ n1 þ. þ nk. Let yij be the measured response on the jth
experimental unit in the ith sample. That is,Yij is the jth observation frompopulation i, i ¼ 1, 2,., k, and j ¼ 1, 2,., ni. Let y be
the overall mean of all observations. The problem can be formulated as a hypothesis-testing problem, where we need to test:

H0 : m1 ¼ m2 ¼ . ¼ mk vs. Ha : Not all the m0
is are equal.

The method of ANOVA tests the null hypothesis H0 by comparing two unbiased estimates of the variance, s2, an
estimate based on variations from sample to sample, and the other one based on variations within the samples. We will be
rejecting H0 if the first estimate is significantly larger than the second, so that the samples cannot be assumed to come from
the same population. That is, the variances influence the decision.

We can write the total sum of squares of deviations of the response measurements about their overall mean for the k
samples into two parts, from the treatment (SST ) and from the error (SSE). This partition gives the fundamental rela-
tionship in ANOVA, where total variation is divided into two portions: between-sample variation and within-sample
variation. That is,

Total SS ¼ SST þ SSE:

The following derivations will make computation of these quantities simpler. The total SS can be written as:

Total SS ¼
Xk
i¼ 1

Xni
j¼ 1

�
yij � y

�2
¼
Xk
i¼ 1

Xni
j¼ 1

y2ij � 2y
Xk
i¼ 1

Xni
j¼ 1

yij þ Ny2:

Note that y ¼
Pk
i¼ 1

Pni
j¼ 1

yij

N , and then we have:

Total SS ¼
Xk
i¼ 1

Xni
j¼ 1

y2ij � CM;

where CM is the correction factor for the correction for the means and is given by:

CM ¼

 Pk
i¼ 1

Pni
j¼ 1

yij

!2

N
¼ Ny2:

Let

Ti ¼
Xni
j¼ 1

yij; be the sum of all the observations in the ith sample

and

Ti ¼

Pni
j¼ 1

yij

ni
; the mean of the observations in the ith sample.
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We can rewrite y as:

y ¼

Pk
i¼ 1

Pni
j¼ 1

yij

N
¼
Pk
i¼ 1

niTi

N
:

Now, we introduce SST, the sum of squares for treatment (sometimes known as between-group sum of squares, SSB) as:

SST ¼
Xk
i¼ 1

ni
�
Ti � y

�2
:

We note that
�
Ti
�
is the mean response due to its ith treatment and y is the overall mean. A large value of

�
Ti �y

�
is

likely to be caused by the ith treatment effect being very different from the rest. Hence, SST can be used to measure the
differences in the treatment effects.

Thus, the SSE is given by:

SSE ¼ Total SS� SST :

We must state that the SSE is the sum of squares within groups (thus, sometimes SSE is referred to as the within-group
sum of squares, SSW) and this can be seen from rewriting the expression as:

SSE ¼
Xk
i¼ 1

Xni
j¼ 1

�
yij � Ti

�2
:

The decomposition of the total sum of squares can be easily seen in Fig. 9.1.

Fig. 9.2 represents one point for each observation against each sample, with SM representing the sample means and
GM representing the grand mean. The dotted lines between the SMs and the GM are the distance between them. Taking
these distances, squaring, multiplying by the corresponding sample sizes, and summing, we get SST. To obtain SSE, we
take the distances from each group mean, SM, to each member of the group, square them, and add them. In addition, to
give an idea of within-group variations, it is customary to draw side-by-side box plots.

SST (or between
group sum of squares)

SSE (or within group sum
of squares)

Total sum of
squares

(yij – Ti)2

i =1

k ni

j =1
�� �

= Ti  – y  2
i =1

k
ni� � ��

�
�
�=

FIGURE 9.1 Decomposition of total sum of squares.
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As mentioned earlier, SST estimates the variation among the m0
is, and hence, if all the m0

is were equal, the Tis would be
similar and the SST would be small. It can be verified that the unbiased estimator of s2 based on (n1 þ n2 þ $ $ $ þ nk � k)
degrees of freedom is:

S2 ¼ MSE ¼ SSE

ðn1 þ n2 þ/þ nk � kÞ

¼ SSE

N � k
:

Note that the quantity MSE is a measure of variability within the groups. If there were only one group with n
observations, then the MSE would be nothing but the sample variance, s2. The fact that ANOVA deals simultaneously with
all k groups can be seen by rewriting MSE in the following form:

MSE ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22 þ/þ ðnk � 1Þs2k
ðn1 � 1Þ þ ðn2 � 1Þ þ/þ ðnk � 1Þ :

The mean square for treatments with (k � 1) degrees of freedom is:

MST ¼ SST

k � 1
:

The MST is a measure of the variability between the sample means of the groups. We now summarize the ANOVA
hypothesis-testing method for two or more populations.

One-way analysis of variance for k ‡ 2 populations

We test:

H0 : m1 ¼ m2 ¼ . ¼ mk versus

Ha : At least two of the m0
is are different.

When H0 is true, we have:

EðMST Þ ¼ EðMSEÞ:
The greater the differences among the m’s, the larger the

E(MST) will be relative to E(MSE).

Test statistic:

F ¼ MST

MSE
:

Rejection region is:

RR : F > Fa

with y1 ¼ (k � 1) numerator degrees of freedom and

y2 ¼ Pk
i¼ 1

ni � k ¼ N � k denominator degrees of freedom,

where N ¼ Pk
i¼ 1

ni :

Assumptions: The observations Y 0
ij s are assumed to be

independent and normally distributed with mean mi, i ¼ 1, 2,

. , k, and variance s2.

I II III
Sample

SM SM
–o
o

o

GM

SM

O
bs

er
va

tio
ns

FIGURE 9.2 ANOVA decomposition. GM, grand mean; SM, sample mean.
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Now we give a five-step computational procedure that we could follow for the ANOVA for the completely randomized
design.

One-way analysis of variance procedure for k ‡ 2 populations

We test:

H0 : m1 ¼ m2 ¼ . ¼ mk versus

Ha : At least two of the m0
is are different.

1. Compute:

Ti ¼
Xni
j¼ 1

yij ; T ¼
Xk
i¼ 1

Xni
j¼ 1

yij ; and
Xk
i¼ 1

Xni
j¼ 1

y2
ij ;

CM ¼

 Xk
i¼ 1

Xni
j¼ 1

yij

!2

N
¼ T 2

N
; where N ¼

Xk
i¼ 1

ni ;

Ti ¼ Ti

ni

;

and

Total SS ¼
Xk
i¼ 1

Xni
j¼ 1

y2
ij � CM:

2. Compute the sum of squares between samples (treatments),

SST ¼
Xk
i¼ 1

T 2
i

ni

� CM;

and the sum of squares within samples,

SSE ¼ Total SS � SST :

Let

MST ¼ SST

k � 1
;

and

MSE ¼ SSE

n � k
:

3. Compute the test statistic:

F ¼ MST

MSE
:

4. For a given a, find the rejection region as:

RR : F > Fa

with y1 ¼ (k � 1) numerator degrees of freedom and

y2 ¼
� Pk

i¼ 1

ni

�
� k ¼ N � k denominator degrees of

freedom, where N ¼ Pk
i¼ 1

ni :

5. Conclusion: If the test statistic F falls in the rejection

region, conclude that the sample evidence supports the

alternative hypothesis that at least one pair of the means

is indeed different for the k treatments and all are not

equal.

Assumptions: The samples are randomly selected from the k

populations in an independent manner. The populations are

assumed to be normally distributed with equal variances s2

and means m1;.;mk .

Even though the completely randomized design is extremely easy to construct and the calculations described above are
relatively easy, the homogeneousness of the treatments is crucial. Any extraneous sources of variability will make it more
difficult to detect differences among treatment means due to inflation of the error term.

9.3.1 The p-value approach

Note that if we are using statistical software packages, the p-value approach can be used for the testing. Just compare the p
value and a to arrive at a conclusion. Refer to the computer examples in Section 9.7.

The following example illustrates the ANOVA procedure.

EXAMPLE 9.3.1

We are given three random samples as shown in Table 9.2 that represent test scores from three classes of statistics taught by three

different instructors and are independently sampled from each class. Assume that the three different populations are normal with

equal variances.
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At the a ¼ 0.05 level of significance, test for equality of the population means.

Solution

We test:

H0 : m1 ¼ m2 ¼ m3 versus Ha : At least two of the m0s are different.

Here, k ¼ 3, n1 ¼ 5, n2 ¼ 3, and N ¼ n1 þ n2 þn3 ¼ 11.

Also,

Ti 380 199 257

ni 5 3 3

Ti 76 66.33 85.67

Clearly, the sample means are different. The question we are going to answer is, Is this difference due to just chance, or is it

due to a real difference caused by different teaching styles? For this, we now compute the following:

CM ¼

 X
i

X
j

yij

!2

N
¼ ð836Þ2

11
¼ 63;536;

Total SS ¼
X
i

X
j

y2
ij � CM

¼ 64;560� 63; 536 ¼ 1024;

SST ¼
X
i

T 2
i

ni

� CM

¼ ð380Þ2
5

þ ð199Þ2
3

þ ð257Þ2
3

� CM

¼ 64;096:66� 63;536 ¼ 560:66;

and
SSE ¼ Total SS � SST

¼ 1024� 560:66 ¼ 463:34:

Hence,

MST ¼ SST

k � 1
¼ 560:66

2
¼ 280:33;

and

MSE ¼ SSE

N � k
¼ 463:34

8
¼ 57:9175:

TABLE 9.2 Test Scores for Three Classes.

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80
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The test statistic is:

F ¼ MST

MSE
¼ 280.33

57.9175
¼ 4.84.

From the F table, F0.05,2,8 ¼ 4.46.

Therefore, the rejection region is given by:

RR : F > 4:46:

Decision: Because the observed value of F ¼ 4.84 falls in the rejection region, we do reject H0 and conclude that there is

sufficient evidence to indicate a difference in the true means.

If we want the p value, we can see from the F table that 0.025 < p value < 0.05, indicating the rejection of the null hypothesis

with a ¼ 0.05. Using statistical software packages, we can get the exact p value.

The calculations obtained in analyzing the total sum of squares into its components are usually summarized by the
analysis-of-variance table (ANOVA table), given in Table 9.4.

Sometimes, one may also add a column for the p value, P(Fk�1, n�k � observed F), in the ANOVA table.
For the previous example, we can summarize the computations in the ANOVA table shown in Table 9.3.

9.3.2 Testing the assumptions for one-way analysis of variance

The randomness assumption could be tested using the WaldeWolfowitz test (see Project 12B). The assumption of
independence of the samples is hard to test without knowing how the data are collected and should be implemented
during collection of data in the design stage. Normality can be tested (this should be performed separately for each
sample, not for the total data set) using probability plots or other tests such as the chi-square goodness-of-fit test.
ANOVA is fairly robust against violation of this assumption if the sample sizes are equal. Also, if the sample sizes
are fairly large, the central limit theorem helps. The presence of outliers is likely to increase the sample variance,
thus decreasing the value of the F-statistic for ANOVA, which will result in a lower power of the test. Box plots or
probability plots could be used to identify the outliers. If the normality test fails, transforming the data (see Section
14.4.2) or a nonparametric test such as the KruskaleWallis test described in Section 12.5.1 may be more appro-
priate. If the sizes of all the samples are equal, ANOVA is mostly robust for violation of homogeneity of the

TABLE 9.4 ANOVA Table for Test Scores.

Source of variation Degrees of freedom Sum of squares Mean square F-statistic p value

Treatments 2 560.66 280.33 4.84 0.042

Error 8 463.34 57.917

Total 10 1024

TABLE 9.3 ANOVA Table.

Source of variation Degrees of freedom Sum of squares Mean squares F-statistic

Treatments k � 1
SST ¼ Pk

i¼1

T 2
i

ni
� CM

MST ¼ SST
k�1

MST
MSE

Error N � k SSE ¼ Total SS � SST MSE ¼ SSE
N�k

Total N � 1
Total SS ¼ Pk

i¼1

Pni
i¼1

�
yij � y

�2
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variances. A rule of thumb used for robustness for this condition is that the ratio of sample variance of the largest
sample variance s2 to the smallest sample variance s2 should be no more than 3:1. Another popular rule of thumb
used in one-way ANOVA to verify the requirement of equality of variances is that the largest sample standard
deviation not be larger than two times the smallest sample standard deviation. Graphically, representing side-by-side
box plots of the samples can also reveal a lack of homogeneity of variances if some box plots are much longer than
others (see Fig. 9.3E). For a significance test on the homogeneity of variances (Levene’s test), refer to Section
14.4.3. If these tests reveal that the variances are different, then the populations are different, despite what ANOVA
concludes about differences of the means. But this itself is significant, because it shows that the treatments had an
effect.

EXAMPLE 9.3.2

In order to study the effect of automobile size on noise pollution, the following data are randomly chosen from the air pollution

data (source: A.Y. Lewin and M.F. Shakun, Policy Sciences: Methodology and Cases, Pergamon Press, 1976, p. 313). The au-

tomobiles are categorized as small, medium, and large, and noise level readings (in decibels) are given in Table 9.5.

At the a ¼ 0.05 level of significance, test for equality of population mean noise levels for different sizes of the automobiles.

Comment on the assumptions.

Solution

Let m1, m2, and m3 be population mean noise levels for small, medium, and large automobiles, respectively. First, we test for the

assumptions. Using Minitab, run tests for each of the samples; we can justify the assumption of randomness of the sample values.

A normality test for each column gives the graphs shown in Figs. 9.3Ae9.3C, through which we can reasonably assume

normality. Because the sample sizes are equal, we will use the one-way ANOVA method to analyze these data.

TABLE 9.5 Size of Automobile and Noise Level (Decibels).

Size of automobile

Small Medium Large

Noise level (dB) 820 840 785

820 825 775

825 815 770

835 855 760

825 840 770
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FIGURE 9.3A Normal plot for noise level of small automobiles.
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Fig. 9.3D indicates that the relative positions of the sample means are different, and Fig. 9.3E (Minitab steps for creating

side-by-side box plots are given at the end of Example 9.7.1) gives an indication of within-group variations; perhaps the group 2

(medium size) variance is larger. Now, we will do the analytic testing.
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FIGURE 9.3C Normal plot for noise level of large automobiles.
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FIGURE 9.3B Normal plot for noise level of medium-sized automobiles.
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We test:
H0 : m1 ¼ m2 ¼ m3 versus Ha : At least two of the m0s are different.

Here, k ¼ 3, n1 ¼ 5, n2 ¼ 5, n3 ¼ 5, and N ¼ n1 þ n2 þ n3 ¼ 15.

Also,

Ti 4125 4175 3860

ni 5 5 5

Ti 825 835 772

840
Chart title

830

820

810

800

790

780

770

760

D
ec

ib
le

 le
ve

l

Size of automobile (1=small, 2=medium, 3=large)
0 0.5 1 1.5 2 2.5 3 3.5

FIGURE 9.3D Mean decibel levels for three sizes of automobiles.
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FIGURE 9.3E Side-by-side box plots for decibel levels for three sizes of automobiles.
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In the following calculations, for convenience we will approximate all values to the nearest integer:

CM ¼

 X
i

X
j

yij

!2

N
¼ ð12; 160Þ2

15
¼ 9; 857; 707;

Total SS ¼
X
i

X
j

y2ij � CM

¼ 12; 893;

SST ¼
X
i

T2
i

ni
� CM

¼ 11; 463;

and
SSE ¼ Total SS� SST

¼ 1430:

Hence,

MST ¼ SST

k � 1
¼ 11; 463

2
¼ 5732;

and

MSE ¼ SSE

N � k
¼ 1430

12
¼ 119:

The test statistic is:

F ¼ MST

MSE
¼ 5732

119
¼ 48.10.

From the table, we get F0.05,2,12 ¼ 3.89. Because the test statistic falls in the rejection region, we reject at a ¼ 0.05 the
null hypothesis that the mean noise levels are the same. We conclude that the size of the automobile does affect the mean
noise level.

It should be noted that the alternative hypothesis Ha in this section covers a wide range of situations, from the case
where all but one of the population means are equal to the case where they are all different. Hence, with such an alternative,
if the samples lead us to reject the null hypothesis, we are left with a lot of unsettled questions about the means of the k
populations. These are called post hoc testing. This problem of multiple comparisons is the topic of Section 9.8.

9.3.3 Model for one-way analysis of variance (optional)

We conclude this section by presenting the classical model for one-way ANOVA. Because the variables Yij are random
samples from normal populations with E(Yij) ¼ mi and with common variance Var(Yij) ¼ s2, for i ¼ 1, ., k and j ¼ 1, .,
ni, we can write a model as:

Yij ¼ mi þ εij; j ¼ 1;.; ni

where the error terms εij are independent normally distributed random variables with E(εij) ¼ 0 and Var(εij) ¼ s2. Let
ai ¼ mi � m be the difference of mi (ith population mean) from the grand mean m. Then ai can be considered as the ith
treatment effect. Note that the ai values are nonrandom. Because m ¼ Si (ni mi/N), it follows that

Pk
i¼1ai ¼ 0. This will

result in the following classical model for one-way layout:

Yij ¼ mþ ai þ εij; i ¼ 1; :::; k; j ¼ 1;.; ni:

With this representation, the test H0: m1 ¼ m2 ¼ .. ¼ mk reduces to testing the null hypothesis that there is no treatment
effect, H0: ai ¼ 0, for i ¼ 1, ., k.
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Exercises 9.3

9.3.1. In an effort to investigate the premium charged by insurance companies for auto insurance, an agency randomly
selects a few drivers who are insured by one of three different companies. These individuals have similar cars,
driving records, and levels of coverage. Table 9.6 gives the premiums paid per 6 months by these drivers with
the three companies.

(a) Construct an ANOVA table and interpret the results.
(b) Using the 5% significance level, test the null hypothesis that the mean auto insurance premium paid per

6 months by all drivers insured for each of these companies is the same. Assume that the conditions of
completely randomized design are met.

9.3.2. Three classes in elementary statistics are taught by three different persons: a regular faculty member, a graduate
teaching assistant, and an adjunct from outside the university. At the end of the semester, each student is given a
standardized test. Five students are randomly picked from each of these classes, and their scores are as shown in
Table 9.7.

(a) Construct an ANOVA table and interpret your results.
(b) Test at the 0.05 level whether there is a difference between the mean scores for the three persons teaching.

Assume that the conditions of completely randomized design are met.
9.3.3. Let n1 ¼ n2 ¼ . ¼ nk ¼ n0. Show that:

Xk
i¼ 1

Xn0
j¼ 1

�
yij � y

�2
¼
Xk
i¼ 1

Xn0
j¼ 1

�
yij � Ti

�2
þ n

Xk
i¼ 1

�
Ti � y

�2
:

9.3.4. For the sum of squares for treatment:

SST ¼
Xk
i¼ 1

ni
�
Ti � y

�2
;

show that:

EðSSTÞ ¼ ðk� 1Þs2 þ
Xk
i¼ 1

niðmi � mÞ2

TABLE 9.6 Auto Insurance Premiums.

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474 432

TABLE 9.7 Test Scores by Instructor Type.

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47
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where m ¼ 1
N S

k
i¼ 1nimi:

[This exercise shows that the expected value of SST increases as the differences among the m0
is increase.]

9.3.5 (a) Show that:

SSE ¼
Xk
i¼ 1

ðni � 1ÞS2i ¼
Xk
i¼ 1

Xni
j¼ 1

�
Yij � Ti

�2
;

where S2i ¼ 1
n�1

Pni
j¼ 1

�
Yij � Ti

�2
provides an independent, unbiased estimator for s2 in each of the k samples.

(b) Show that SSE/s2 has a chi-square distribution with N � k degrees of freedom, where N ¼ Pk
i¼ 1

ni.

9.3.6. Let each observation in a set of k independent random samples be normally distributed with means m1;.;mk and
common variance s2. If H0 ¼ m1 ¼ m2 ¼ . ¼ mk is true, show that:

F ¼ SST=ðk � 1Þ
SSE=ðn� kÞ ¼ MST

MSE
;

has an F distribution with k � 1 numerator and n � k denominator degrees of freedom.
9.3.7. The management of a grocery store observes various employees for work productivity. Table 9.8 gives the number

of customers served by each of its four checkout lanes per hour.

(a) Construct an ANOVA table and interpret the results. Indicate any assumptions that were necessary.
(b) Test whether there is a difference between the mean numbers of customers served by the four employees at

the 0.05 level. Assume that the conditions of completely randomized design are met.
9.3.8. Table 9.9 represents immunoglobulin levels (with each observation being the IgA immunoglobulin level measured

in international units) of children under 10 years of age of a particular group. The children are grouped as follows:
group A, ages 1 to less than 3; group B, ages 3 to less than 6; group C, ages 6 to less than 8; and group D, ages 8 to
less than 9. Test whether there is a difference between the means for each of the age groups. Use a ¼ 0.05. Inter-
pret your results and state any assumptions that were necessary to solve the problem.

9.3.9. Table 9.10 gives rental and homeowner vacancy rates by US region (source: US Census Bureau) for 5 years.
Test at the 0.01 level whether the true rental and homeowner vacancy rates by area are the same for all 5 years.
Interpret your results and state any assumptions that were necessary to perform the analysis.

TABLE 9.8 Number of Customers Served by Different Employees.

Lane 1 Lane 2 Lane 3 Lane 4

16 11 8 21

18 14 12 16

22 10 17 17

21 10 10 23

15 14 13 17

10 15

TABLE 9.9 Immunoglobulin Level by Age Group.

A 35 8 12 19 56 64 75 25

B 31 79 60 45 39 44 45 62 20 66

C 74 56 77 35 95 81 28

D 80 42 48 69 95 40 86 79 51
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9.3.10. Table 9.11 gives lower limits of income (approximated to the nearest $1000 and calculated as of March of the
following year) of the top 5% of US households by race from 1994 to 1998 (source: US Census Bureau).
Test at the 0.05 level whether the true lower limits of income for the top 5% of US households for each race are
the same for all 5 years.

9.3.11. Table 9.12 gives mean serum cholesterol levels (given in milligrams per deciliter) by race and age for the adult
population in the United States between 1978 and 1980.
(Source: Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treat-
ment of High Blood Cholesterol in Adults, Arch. Intern. Med. 148, January 1988.)
Test at the 0.01 level whether the true mean cholesterol levels for the adult population in the United States be-
tween 1978 and 1980 are the same.

9.4 Two-way analysis of variance, randomized complete block design

A randomized block design, or the two-way ANOVA, consists of b blocks of k experimental units each. In many cases we
may be required to measure response at combinations of levels of two or more factors considered simultaneously. For
example, we might be interested in gas mileage per gallon among four different makes of cars for both in-city and highway
driving, or in examining weight loss comparing five different diet programs among whites, African Americans, Hispanics,
and Asians according to their gender. In studies involving various factors, the effect of each factor on the response variable
may be analyzed using one-way classification. However, such an analysis will not be efficient with respect to time, effort,
and cost. Also, such a procedure would give no knowledge about the likely interactions that may exist among different
factors. In such cases, the two-way ANOVA is an appropriate statistical method to use.

TABLE 9.10 Rental Vacancy by Region.

Rental units 1995 1996 1997 1998 1999

Northeast 7.2 7.4 6.7 6.7 6.3

Midwest 7.2 7.9 8.0 7.9 8.6

South 8.3 8.6 9.1 9.6 10.3

West 7.5 7.2 6.6 6.7 6.2

TABLE 9.11 Lower Limits of Income of Top 5% by Race.

Race Year

1994 1995 1996 1997 1998

All races 110 113 120 127 132

White 113 117 123 130 136

Black 81 80 85 87 94

Hispanic 82 80 86 93 98

TABLE 9.12 Mean Serum Level by Race and Age.

Race

Age

20e24 25e34 35e44 45e54 55e64 65e74

All races 180 199 217 227 229 221

White 180 199 217 227 230 222

Black 171 199 218 229 223 217
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In a randomized block design, the treatments are randomly assigned to the units in each block, with each treatment
appearing exactly once in every block (that is, there is no interaction between factors). Thus, the total number of
observations obtained in a randomized block design is n ¼ bk. The purpose of subdividing experiments into blocks is to
eliminate as much variability as possible, that is, to reduce the experimental error or the variability due to extraneous
causes. Refer to Section 9.2.3 for a procedure to obtain completely randomized block design. The goal of such an
experiment is to test the equality of levels for the treatment effect. Sometimes, it may also be of interest to test for a
difference among blocks. We proceed to give a formal statistical model for the completely randomized block design.

For i ¼ 1, 2, ., k and j ¼ 1, 2, ., b, let Yij ¼ m þ ai þ bj þ εij, where Yij is the observation on treatment i in block
j, m is the overall mean, ai is the nonrandom effect of treatment i, bj is the nonrandom effect of block j, and εij are the
random error terms such that εij are independent normally distributed random variables with E(εij) ¼ 0 and Var(εij) ¼ s2. In
this case, Sai ¼ 0, and Sbj ¼ 0.

The ANOVA for a randomized block design proceeds similar to that for a completely randomized design, the main
difference being that the total sum of squares of deviations of the response measurements from their means may be
partitioned into three parts: the sum of squares of blocks (SSB), treatments (SST), and error (SSE).

Let Bj ¼
Pk
i¼ 1

yij and Bj denote, respectively, the total sum and mean of all observations in block j. Represent the total

for all observations receiving treatment i by Ti ¼ Pb
j¼ 1

yij, and mean and Ti, respectively. Let

y ¼ average of n ¼ bk observations

¼ 1
n

Xb
j¼ 1

Xk
i¼ 1

yij

and

CM ¼ 1
n
ðtotal of all observationsÞ2

¼ 1
n

 Xb
j¼ 1

Xk
i¼ 1

yij

!2

:

For convenience, we can represent the two-way classification as in Table 9.13.

Note that from the table we can obtain
Pb
j¼ 1

Pk
i¼ 1

yij ¼
Pb
j¼ 1

Bj: Hence, CM ¼ ð1 =nÞ
 Pb

j¼ 1
Bj

!2

:

TABLE 9.13 Two-way Classification.

Blocks

1 2 . j . b Total Ti Mean Ti

Treatment 1 y11 y12 . y1j . y1b T1 T 1

Treatment 2 y21 y22 . y2j . y2b T2 T 2

� � �
� � �
� � �
Treatment i yi1 yi2 . yij . yib Ti T i

� �
� �
� �
Treatment k yk1 yk2 . ykj . ykb Tk Tk

Total Bj B1 B2 . Bj . Bb

Mean Bj B1 B2 . Bj . Bb y
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Then, for a randomized block design with b blocks and k treatments, we need to compute the following sums of
squares. They are:

Total SS ¼ SSBþ SST þ SSE

¼
Xb
j¼ 1

Xk
i¼ 1

�
yij � y

�2
¼
Xb
j¼ 1

Xk
i¼ 1

y2ij � CM;

SSB ¼ k
Xb
j¼ 1

�
Bj � y

�2 ¼

Pb
j¼ 1

B2
j

k
� CM;

SSB ¼ b
Xk
i¼ 1

�
Ti � y

�2
¼
Pk
i¼ 1

T2
i

b
� CM;

and

SSE ¼ Total SS� SSB� SST :

We define:

MSB ¼ SSB

b� 1
;

MST ¼ SST

k � 1
;

and

MSE ¼ SSE

n� b� k þ 1
:

The ANOVA for the randomized block design is presented in Table 9.14. The column corresponding to d.f. represents
the degrees of freedom associated with each sum of squares. MS denotes the mean square.

To test the null hypothesis that there is no difference in treatment means, that is, to test:

H0 : ai ¼ 0; i ¼ 1; :::; k versus Ha : Not all a
0
is are zero.

we use the F-statistic,

F ¼ MST

MSE
;

and reject H0 if F > Fa based on (k � 1) numerator and (n � b � k þ 1) denominator degrees of freedom.
Although blocking lowers the experimental error, it also furnishes a chance to see whether evidence exists to indicate a

difference in the mean response for blocks. In this case we will be testing the hypothesis:

H0 : bj ¼ 0; j ¼ 1;.; b versus Ha : Not all b
0
js are zero.

TABLE 9.14 ANOVA Table for Randomized Block Design.

Source d.f. SS MS

Blocks b � 1 SSB SSB
b�1

Treatments k � 1 SST SST
k�1

Error (b � 1)(k � 1) ¼ n � b � k þ 1 SSE SST
n�b�kþ1

Total n � 1 Total SS
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Under the assumption that there is no difference in the mean response for blocks, MSB provides an unbiased estimator
for s2 based on (b � 1) degrees of freedom. If there is a real difference that exists among block means, MSB will be larger
in comparison with MSE and

F ¼ MSB

MSE
;

will be used as a test statistic. The rejection region in this case will be F > Fa based on (b � 1) numerator and
(n � b � k þ 1) denominator degrees of freedom.

We now summarize the foregoing methodology in a step-by-step computational procedure. For a reasonable data set
size, we could use scientific calculators for handling the ANOVA calculations. For larger data sets, the use of statistical
software packages is recommended.

Computational procedure for randomized block design

1. Calculate the following quantities:

(i) Sum the observations for each row to form row totals:

T1; T2;.; Tk ; where Ti ¼
Xb
j¼ 1

yij :

(ii) Sum the observations for each column to form col-

umn totals:

B1;B2;.;Bb ; where Bj ¼
Xk
i¼ 1

yij :

(iii) Find the sum of all observations:

Xb
j¼ 1

Xk
i¼ 1

yij ¼
Xb
j¼ 1

Bj :

2. Calculate the following quantities:

(i) Square the sum of the totals for each column and

divide it by n ¼ bk to obtain:

CM ¼ 1

n

 Xb
j¼ 1

Bj

!2

:

(ii) Find the sum of squares of the totals of each column

and divide it by k to obtain:

1

k

Xb
j¼ 1

B2
j

and

SSB ¼

Pb
j¼ 1

B2
j

k
� CM and MSB ¼ SSB

b � 1
:

(iii) Find the sum of squares of the totals of each row

and divide it by b to obtain:

Pk
i¼ 1

T 2
i

b
;

and

SST ¼
Pk
i¼ 1

T 2
j

b
� CM; and MSB ¼ SST

k � 1
:

(iv) Find the sum of squares of individual observations:

Xb
j¼ 1

Xk
i¼ 1

y2
ij :

Also compute:

Total SS ¼
Xb
j¼ 1

Xk
i¼ 1

y2
ij � CM:

(v) Using (ii), (iii), and (iv), find:

SSE ¼ Total SS � SSB � SST and MSE ¼ SSE

n � b � k þ 1
:

3. To test the null hypothesis that there is no difference in

treatment means:

(i) Compute the F-statistic,

F ¼ MST

MSE
:

(ii) From the F table, find the value of Fa;y1 ;y2; where

y1 ¼ (k � 1) is the numerator and y2 ¼ (n � b

� k þ 1) is the denominator degrees of freedom.

(iii) Decision: Reject H0 if F > Fa;y1 ;y2 and conclude that

there is evidence to conclude that there is a difference

in treatment means at level a.

4. To test the null hypothesis that there is no difference in the

mean response for blocks:

(i) Compute the F-statistic,

F ¼ MSB

MSE
:

(ii) From the F table, find the value of Fa;y1 ;y2; where

y1 ¼ (b � 1) is the numerator and y2 ¼ (n � b

� k þ 1) is the denominator degrees of freedom.
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Computational procedure for randomized block designdcont’d

(iii) Decision: Reject H0 if F > Fa;y1 ;y2 and conclude that

there is evidence to conclude there is a difference in

the mean response for blocks at level a.

Assumptions: The samples are randomly selected in an in-

dependent manner from n ¼ bk populations. The populations

are assumed to be normally distributed with equal variances

s2. Also, there are no interactions between the variables (two

factors).

We have already discussed the assumptions and how to verify those assumptions in one-way analysis. The only new
assumption in the randomized blocked design is about the interactions. One of the ways to verify the assumption of no
interaction is to plot the observed values against the sample number. If there is no interaction, the line segments (one for
each block) will be parallel or nearly parallel; see Fig. 9.2. If the lines are not approximately parallel, then there is likely to
be interaction between blocks and treatments. In the presence of interactions, the analysis of this section needs to be
modified. For details on those procedures, refer to more specialized books on ANOVA methods.

We illustrate the randomized block design procedure with the following example.

EXAMPLE 9.4.1

A furniture company wants to know whether there are differences in stain resistance among the four chemicals used to treat three

different fabrics. Table 9.15 shows the yields of resistance to stain (a low value indicates good stain resistance).

At the a ¼ 0.05 level of significance, is there evidence to conclude that there is a difference in mean resistance among

the four chemicals? Is there any difference in the mean resistance among the materials? Give bounds for the p values in

each case.

Solution

Here, T1 ¼ 16, T2 ¼ 28, T3 ¼ 14, and T4 ¼ 24. Also, B1 ¼ 21, B2 ¼ 32, and B3 ¼ 29. In addition, b ¼ 3, k ¼ 4, and n ¼ bk ¼ 12.

Now:

CM ¼ 1

n

 Xb
j¼ 1

Bj

!2

¼ 1

12
ð82Þ2 ¼ 560:3333:

We can compute the following quantities:

SSB ¼

Pb
j¼ 1

B2
j

k
� CM ¼ 2306

4
� 560:3333 ¼ 16:1667;

MSB ¼ SSB

b � 1
¼ 16:1667

2
¼ 8:0834;

SST ¼
Pk
i¼ 1

T 2
i

b
� CM ¼ 1812

3
� 560:3333 ¼ 43:6667;

TABLE 9.15 Stain Resistance by Chemicals and by Fabric Types.

Chemical Material

I II III Total

C1 3 7 6 16

C2 9 11 8 28

C3 2 5 7 14

C4 7 9 8 24

Total 21 32 29 82
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and

MST ¼ SST

k � 1
¼ 43:6667

3
¼ 14:5556:

We have
Pb
j¼ 1

Pk
i¼ 1

y2ij ¼ 632: Thus,

Total SS ¼
Xb
j¼ 1

Xk
i¼ 1

y2
ij � CM ¼ 632� 560:3333 ¼ 71:666;

SSE ¼ Total SS � SSB � SST ¼ 71:6667� 16:1667� 43:6667

¼ 11:8333;

and

MSE ¼ SSE

n � b � k þ 1
¼ 11:8333

6
¼ 1:9722:

The F-statistic is:

F ¼ MST

MSE
¼ 14.5556

1.9722
¼ 7.3804.

From the F-table, F0.05,3,6 ¼ 4.76. Because the observed value F ¼ 7.3804 > 4.76, we reject the null hypothesis and conclude

that there is a difference in mean resistance among the four chemicals. Because the F-value falls between a ¼ 0.025 and a ¼ 0.01,

the p value falls between 0.01 and 0.025. To test for the difference in the mean resistance among the materials,

F ¼ MSB

MSE
¼ 8.0834

1.9722
¼ 4.0987.

From the F table, F0.05,2,6 ¼ 5.14. Because the observed value of F ¼ 4.098 < 5.14, we conclude that there is no difference in

the mean resistance among the materials. Because the F value falls between a ¼ 0.10 and 0.05, the p value falls between 0.05

and 0.9.

Exercises 9.4

9.4.1. Show that:

Xb
j¼ 1

Xk
i¼ 1

�
yij � y

�2
¼
Xk
i¼ 1

Xb
j¼ 1

�
yij � Ti � Bj � y

�2

þ b
Xk
i¼ 1

�
Ti � y

�2
þ k

Xb
j¼ 1

�
Bj � y

�2
:

Hint: Use the identity
h
yij � y ¼

�
yij � Ti � Bj � y

�
þ�Ti � y

� þ�Bj � y
�i

9.4.2. Show the following:
(a) E(MSE) ¼ s2,

(b) E(MSB) ¼ k
b�1

Pb
j¼ 1

B2
j þ s2;

(c) E(MST) ¼ b
k�1

Pk
i¼ 1

s2i þ s2:

9.4.3. The least-square estimators of the parameters m, si, and bj are obtained by minimizing the sum of squares:

W ¼
Xk
i¼ 1

Xb
j¼ 1

�
yij � m� si � bj

�2
;

with respect to m, si, and bj, subject to the restrictions
Pk
i¼ 1

si ¼
Pb
j¼ 1

bj ¼ 0: Show that the resulting estimators are:
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bm ¼ y;

bsi ¼ Ti � y; i ¼ 1; 2;.; k;

and

bbj ¼ Bj � y; j ¼ 1;.; b:

9.4.4 To test the wear on four hyperalloys, a test piece of each alloy was extracted from each of the three positions
of a test machine. The reduction of weight in milligrams due to wear was determined on each piece, and the
data are given in Table 9.16.

At a ¼ 0.05, test the following hypotheses, regarding the positions as blocks:
(a) There is no difference in average wear for each material.
(b) There is no difference in average wear for each position.
(c) Interpret your final result and state any assumptions that were necessary to solve the problem.

9.4.5. Using the data of Exercise 9.3.10, test at the 0.05 level that the true income lower limits of the top 5% of US house-
holds for each race are the same for all 5 years. Also, test at the 0.05 level that the true income lower limits of the
top 5% of US households for each year between 1994 and 1998 are the same.

9.4.6. Using the data of Exercise 9.3.11, test at the 0.01 level that the true mean cholesterol levels for all races in the
United States during 1978e80 are the same. Also, test at the 0.01 level that the true mean cholesterol levels for
all ages in the United States during 1978e80 are the same.

9.4.7. To see the effect of hours of sleep on tests of different skill categories (vocabulary, reasoning, and arithmetic), tests
consisting of 20 questions in each category were given to 16 students, in groups of four, based on the hours of sleep
they had on the previous night. Each right answer is given one point. Table 9.17 gives the cumulative scores of each
group of four students in each category.

Test at the 0.05 level whether the true mean performance for different hours of sleep is the same. Also, test at the
0.05 level whether the true mean performance for each category of the test is the same.

TABLE 9.17 Effect of Sleep on Test Scores by Skill Categories

Hours of sleep Category

Vocabulary Reasoning Arithmetic

0 44 33 35

4 54 38 18

6 48 42 43

8 55 52 50

TABLE 9.16 Loss of weight due to wear testing of four materials (in mg).

Position

Type of alloy 1 2 3

1 241 270 274

2 195 241 218

3 235 273 230

4 234 236 227
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9.5 Multiple comparisons

The ANOVA procedures that we have used so far showed whether differences among several means are significant.
However, if the equality of means is rejected, the F-test did not pinpoint for us which of the given means or groups of
means differs significantly from another given mean or group of means. With ANOVA, when the null hypothesis of
equality of means is rejected, the problem is to see whether there is some way to follow up (post hoc) this initial test, H0:
m1 ¼ m2 ¼. ¼ mk, by looking at subhypotheses, such as H0: m1 ¼ m2.

This involves multiple tests. However, the solution is not to use a simple t-test repeatedly for every possible combi-
nation taken two at a time. That, apart from introducing many tests, will considerably increase the significance level, the

probability of type I error. For example, to test four samples we will need

�
4

2

�
¼ 6 tests. If each one of the comparisons

is tested with the same value of a ¼ P (type I error), and if all the null hypotheses involving six comparisons are true, then
the probability of rejecting at least one of them is:

Pðat least one type I errorÞ ¼ 1� ð1� aÞ6:
In particular, if a ¼ 0.01, then P(at least one type I error) ¼ 0.077181, which is significantly higher than the original

specified error value of 0.01.
One way to investigate the problem is to use a multiple comparison procedure. A good deal of work has been done on

problems of multiple comparisons. There are a variety of methods available in the literature, such as the Bonferroni
procedure, Tukey’s method, and Scheffe’s method. We now describe one of the more popular procedures, called Tukey’s
method, for completely randomized, one-factor design.

In this multiple comparison problem, we would like to test H0: mi ¼ mj versus Ha: mi s mj, for all i s j. Tukey’s
method will be used to test all possible differences of means to decide whether at least one of the differences mi � mj is
considerably different from zero. In this comparison problem, Tukey’s method makes use of confidence intervals for
mi � mj. If each confidence interval has a confidence level 1 � a, then the probability that all confidence intervals include
their respective parameters is less than 1 � a. We now describe this method where each of the k sample means is based on
the common number of observations, n.

Let N ¼ kn be the total number of observations and let

S2 ¼ 1
N � k

Xk
i¼ 1

Xni ¼ n

j¼ 1

�
Yij � Ti

�2
:

Let Tmax ¼ max
�
T1;.; Tk

�
and Tmin ¼ min

�
T1;.; Tk

�
. Define the random variable

Q ¼ Tmax � Tmin

S
ffiffiffi
n

p :

The distribution of Q under the null hypothesis H0: m1 ¼ . ¼ mk is called the Studentized range distribution, which
depends on the number of samples k and the degrees of freedom y ¼ N � k ¼ (n � 1)k. We denote the upper a critical
value by qa,k,y. The Studentized range distribution table gives values for selected values of k, y, and a as 0.01, 0.05, and
0.9. The following theorem, attributable to Tukey, defines the test procedure.

Theorem 9.5.1 Let Ti; i ¼ 1, 2,., k, be the k sample means in a completely randomized design. Let mi, i ¼ 1, 2,., k, be the

true means and let ni ¼ n be the common sample size. Then the probability that all

�
k

2

�
differences mi � mj will

simultaneously satisfy the inequalities�
Ti � Tj

�
� qa;k;y

sffiffiffi
n

p �mi �mj �
�
Ti � Tj

�
þ qa;k;y

sffiffiffi
n

p ;

is (1 � a), where qa,k,y is the upper a critical value of the Studentized range distribution. If, for a given i and j, zero is
not contained in the preceding inequality, H0: mi ¼ mj can be rejected in favor of Ha: mi s mj, at the significance level of a.

Now we give a step-by-step approach to implementing Tukey’s method discussed above.
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Procedure to find (1 L a)100% confidence intervals for difference of means with common sample size N: Tukey’s
method

1. There are

�
k

2

�
comparisons of mi versus mj.

2. Compute the following quantities:

Ti ¼

Pni
j¼ 1

yij

ni

; i ¼ 1;2;.; k ;

and

s2 ¼ 1

N � k

Xk
i¼ 1

Xni ¼ n

j¼ 1

�
yij � Ti

�2
;where N ¼ kn:

3. From the Studentized range distribution table, find the

upper a critical value, qa,k,y, where y ¼ N � k ¼ (n � 1)k.

4. For each

�
k

2

�
pair (i, j), is j, compute the Tukey interval:

��
Ti � Tj

�
� qa;k ;y

sffiffiffi
n

p ;
�
Ti � Tj

�
þ qa;k ;y

sffiffiffi
n

p
�
:

5. Let NR denote insufficient evidence for rejecting H0.

Create the following table for each

�
k

2

�
pairwise differ-

ence mi � mj, is j, and do not reject if the Tukey interval

contains the number 0. Otherwise reject.

Table 9.18 is used to summarize the final calculations of the Tukey method.

In practice, there are now numerous statistical packages available for Tukey’s purpose. The following example is
solved using Minitab. The necessary Minitab commands are given in Example 9.7.3.

EXAMPLE 9.5.1

Table 9.19 shows the 1-year percentage total return of the top five stock funds for five different categories (source: Money, July

2000). Which categories have similar top returns and which are different? Use 95% Tukey’s confidence intervals.

Solution

For simplicity of computation, we will use SPSS (Minitab steps are given in Example 9.7.2). The following is the output.

TABLE 9.18 Tuky Method-Calculation Summaries.

mi L mj TiLTj Tukey interval Observation Conclusion

m1 � m2 T 1 � T 2 . Doesn’t contain 0 Reject

m1 � m3 T 1 � T 3 . Contains 0 Do not reject

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

TABLE 9.19 Percentage Returns by Stock Types.

Large-cap Mid-cap Small-cap Hybrid Specialty

110.1 299.8 153.8 68.3 181.6

102.9 139.0 139.8 67.1 159.3

93.1 131.2 138.3 42.5 138.3

83.0 110.5 121.4 40.0 132.6

83.3 129.2 135.9 41.0 135.7
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One-way

ANOVA

RETURN

Sum of Squares df Mean Square F Sig.

Between Groups 41,243.698 4 10,310.925 7.397 .001

Within Groups 27,877.580 20 1393.879

Total 69,121.278 24

Note that since the p value is 0.001, we are rejecting the null hypothesis that all means are equal. To find out which of the

means might be different, we use the multiple comparison output.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: RETURN

Tukey HSD

Homogeneous Subsets

RETURN

Tukey HSDa

(I) FUND (J) FUND Mean Std. Error Sig. 95% Confidence Interval

Difference
(I�J)

Lower Bound Upper Bound

1.00 2.00 �67.4600 23.61253 .066 �138.1175 3.1975

3.00 �43.3600 23.61253 .382 �114.0175 27.2975

4.00 42.7000 23.61253 .396 �27.9575 113.3575

5.00 �55.0200 23.61253 .177 �125.6775 15.6375

2.00 1.00 67.4600 23.61253 .066 �3.1975 138.1175

3.00 24.1000 23.61253 .843 �46.5575 94.7575

4.00 19.1600* 23.61253 .001 39.5025 180.8175

5.00 12.4400 23.61253 .984 �58.2175 83.0975

3.00 1.00 43.3600 23.61253 .382 �27.2975 114.0175

2.00 �24.1000 23.61253 .843 �94.7575 46.5575

4.00 86.0600* 23.61253 .012 15.4025 156.7175

5.00 �11.6600 23.61253 .987 �82.3175 58.9975

4.00 1.00 �42.7000 23.61253 .396 �113.3575 27.9575

2.00 e 19.1600* 23.61253 .001 �180.8175 �39.5025

3.00 �86.0600* 23.61253 .012 �156.7175 �15.4025

5.00 e 97.7200* 23.61253 .004 �168.3775 �27.0625

5.00 1.00 55.0200 23.61253 .177 �15.6375 125.6775

2.00 �12.4400 23.61253 .984 �83.0975 58.2175

3.00 11.6600 23.61253 .987 �58.9975 82.3175

4.00 97.7200* 23.61253 .004 27.0625 168.3775

*The mean difference is significant at the 0.05 level.

Subset for alpha ¼ .05

FUND N 1 2

4.00 5 51.7800

1.00 5 94.4800 94.4800

3.00 5 137.8400

5.00 5 149.5000

2.00 5 161.9400

Sig. .396 .066

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size ¼ 5.000.
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The Tukey intervals for pairwise differences (mi � mj) are in the foregoing computer printout. For example, the Tukey interval

for (m1 � m2) is (�138.1, 3.2) and for (m2 � m4) is (39.5, 180.8). Also, sample mean and standard deviation are given in the output.

For example, 94.48 is the sample mean of the five data points of large-cap funds, and 11.97 is the sample standard deviation of

the five data points of large-cap funds.

If the Tukey interval for a particular difference (mj � mi) contains the number 0, we do not reject H0: mi ¼ mj. Otherwise, we

reject H0: mi ¼ mj. For example, the interval for (m4 � m2) is (39.5e180.8) and does not contain 0. Hence, we reject H0: m4 ¼ m2.

The complete table corresponding to step 5 is produced in Table 9.20, where NR represents “do not reject.”

Based on the 95% Tukey intervals, the average top return of hybrid funds is different from those for mid-cap, small-cap, and

specialty funds. All other returns are similar.

In Tukey’s method, the confidence coefficient for the set of all pairwise comparisons {mi � mj} is exactly equal to 1 � a

when all sample sizes are equal. For unequal sample sizes, the confidence coefficient is greater than 1 � a. In this sense,
Tukey’s procedure is conservative when the sample sizes are not equal. In the case of unequal sample sizes, one has to
estimate the standard deviation for each pairwise comparison. Tukey’s procedure for unequal sample sizes is sometimes
referred to as the TukeyeKramer method.

Exercises 9.5

9.5.1 A large insurance company wants to determine whether there is a difference in the average time to process claim
forms among its four different processing facilities. The data in Table 9.21 represent weekly average number of days
to process a form over a period of 4 weeks.
(a) Test whether there is a difference in the average processing times at the 0.05 level.
(b) Test whether there is a difference, using Tukey’s method to find which facilities are different.
(c) Interpret your results and state any assumptions you have made in solving the problem.

TABLE 9.21 Claim Processing Time by Facility

Facility 1 Facility 2 Facility 3 Facility 4

1.50 2.25 1.30 2.0

0.9 1.85 2.75 1.5

1.12 1.45 2.15 2.85

1.95 2.15 1.55 1.15

TABLE 9.20 Tukey Intervals and Decisions.

mi L mj TieTj Tukey interval R or NR Conclusion

m1 � m2 161.94 � 94.48 (�138.1, 3.2) NR m1 ¼ m2

m1 � m3 137.84 � 94.48 (�114.0, 27.3) NR m1 ¼ m3

m2 � m3 137.84e161.94 (�46.6, 94.8) NR m3 ¼ m2

m1 � m4 51.78e94.48 (�27.9, 113.3) NR m4 ¼ m1

m2 � m4 51.78e161.94 (39.5, 180.8) R m4 s m1

m3 � m4 51.78e137.84 (15.4, 156.7) R m4 s m3

m1 � m5 149.50e94.98 (�125.6, 15.6) NR m5 ¼ m1

m2 � m5 149.50e161.94 (�58.2, 83.1) NR m5 ¼ m2

m3 � m5 149.50e137.84 (�82.3, 59.0) NR m5 ¼ m3

m4 � m5 149.50e51.78 (�168.3,e27.1) R m5 s m4

NR, do not reject; R, Reject.
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9.5.2 Table 9.22 gives the rental vacancy rates by US region (source: US Census Bureau) for 5 years.
(a) Test at the 0.01 level whether the true rental vacancy rates by region are the same for all 5 years.
(b) If there is a difference, use Tukey’s method to find which regions are different.

9.5.3 Table 9.23 gives lower limits of income (approximated to nearest $1000 and calculated as of March of the following
year) by race for the top 5% of US households from 1994 to 1998 (source: US Census Bureau).
(a) Test at the 0.05 level whether the true lower limits of income for the top 5% of US households for each race are

the same for all 5 years.
(b) If there is a difference, use Tukey’s method to find which is different.
(c) Interpret your results and state any assumptions you have made in solving the problem.

9.5.4 The data in Table 9.24 represent the mean serum cholesterol levels (given in milligrams per deciliter) by race and
age in the United States from 1978 to 1980 (source: “Report of the National Cholesterol Education Program Expert
Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults,” Arch. Intern. Med. 148,
January 1988).

(a) Test at the 0.01 level whether the true mean cholesterol levels for all races in the United States during 1978e80
are the same.

(b) If there is a difference, use Tukey’s method to find which of the races are different with respect to mean choles-
terol levels.

TABLE 9.24 Mean Serum Cholostorel Level by Age and Race

Race

Age

20e24 25e34 35e44 45e54 55e64 65e74

All races 180 199 217 227 229 221

White 180 199 217 227 230 222

Black 171 199 218 229 223 217

TABLE 9.23 Income Lower Limits for Top 5% by Race

Race 1994 1995 1996 1997 1998

All races 110 113 120 127 132

White 113 117 123 130 136

Black 81 80 85 87 94

Hispanic 82 80 86 93 98

TABLE 9.22 Retal Vacancy by Year for Different Regions

Rental units 1995 1996 1997 1998 1999

Northeast 7.2 7.4 6.7 6.7 6.3

Midwest 7.2 7.9 8.0 7.9 8.6

South 8.3 8.6 9.1 9.6 10.3

West 7.5 7.2 6.6 6.7 6.2
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9.6 Chapter summary

In this chapter, we have introduced the basic idea of analyzing data from various experimental designs. In Section 9.3, we
explained the one-way ANOVA for the hypothesis testing problem for more than two means (different treatments being
applied, or different populations being sampled). The two-way ANOVA, having b blocks and k treatments consisting of b
blocks of k experimental units each, is discussed in Section 9.4. We also described one popular procedure called Tukey’s
method for completely randomized, one-factor design for multiple comparisons. We saw in Chapter 8 that there are other
possible designs, such as the Latin square design or Taguchi methods. We refer to specialized books on experimental
design (Hicks and Turner) for more details on how to conduct ANOVA on such designs. In the final section, we give some
computational examples.

We now list some of the key definitions introduced in this chapter:

l Completely randomized experimental design
l Randomized block design
l Studentized range distribution
l TukeyeKramer method

In this chapter, we also learned the following important concepts and procedures:

l ANOVA procedure for two treatments
l One-way ANOVA procedure for k � 2 populations
l Procedure to find (1 � a)100% confidence intervals for difference of means with common sample size n; Tukey’s

method
l Computational procedure for randomized block design

9.7 Computer examples

Minitab, SPSS, SAS, and other statistical programming packages are especially useful when we perform an ANOVA. As
we have experienced in earlier sections, an ANOVA computation is very tedious to complete by hand.

9.7.1 Examples using R

EXAMPLE 9.7.1 One-way ANOVA

The three random samples in the following table are independently obtained from three different normal populations with equal

variances. At the a ¼ 0:05 level of significance, test for equality of means.

Sample 64 84 75 77 80 56 74 69 81 92 84

Group 1 1 1 1 1 2 2 2 3 3 3

This example assumes you have stored the data into two variables, sample and group. Please modify your code appropriately.

R-code

model ¼ lm(samplewas.factor(group));
Notice we must use as.factor() to

get the proper degrees of freedom.anova(model);

Output

Analysis of Variance Table

Response: sample

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(group) 2 560.67 280.333 4.8403 0.04192 *

Residuals 8 463.33 57.917

- - -

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Since the p value is less than 0.05, we reject H0 of equal means.
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EXAMPLE 9.7.2 Two-way ANOVA

A furniture company wants to know whether there are differences in stain resistance among the four chemicals used to treat three

different fabrics. The following table shows the yields on resistance to stain (a low value indicates good stain resistance). At the

a ¼ 0:05 level of significance, is there evidence to conclude that there is a difference in mean resistance among the four

chemicals? Is there any difference in the mean resistance among the materials?

Chemical 1 2 3 4 1 2 3 4 1 2 3 4

Resistance 3 9 2 7 7 11 5 9 6 8 7 8

Material 1 1 1 1 2 2 2 2 3 3 3 3

This example assumes you have stored data into three variables chemical, resistance, and material. Please modify your code

appropriately.

R-code

model ¼ lm(resistancewas.factor(chemical)þas.factor(material));

anova(model);

Output

Analysis of Variance Table

Response: resistance

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(chemical) 3 43.667 14.5556 7.3803 0.01943 *

as.factor(material) 2 16.167 8.0833 4.0986 0.07548.

p values suggest that the
chemical is a significant factor
but the material is not.

Residuals 6 11.833 1.9722

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EXAMPLE 9.7.3 Tukey’s Method

The following table shows the 1-year percentage total return of the top five stock funds for five different categories (source:Money,

July 2000). Which categories have similar top returns and which are different? Use 95% Tukey’s confidence intervals. This

example assumes you have stored your data into “stocks” and “groups” variables that pair.

Large-cap Mid-cap Small-cap Hybrid Specialty

19.1 299.8 153.8 68.3 181.6

102.9 139.0 139.8 67.1 159.3

93.1 131.2 138.3 42.5 138.3

83.0 19.5 121.4 40.0 132.6

83.3 129.2 135.9 41.0 135.7

R-code

groups¼c(rep(“Large-cap”,5),rep(“Mid-cap”,5),rep(“Small-

cap”,5),rep(“Hybrid”,5),rep(“Specialty”,5));

This assumes your “stocks”

variable is typed in column

by column, top to bottom.

model¼aov(stockswas.factor(groups));

TukeyHSD(model);

Output

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula ¼ stocksw as.factor(groups))
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$‘as.factor(groups)‘

Large-cap-Hybrid

Mid-cap-Hybrid

Small-cap-Hybrid

Specialty-Hybrid

Mid-cap-Large-cap

Small-cap-Large-cap

Specialty-Large-cap

Small-cap-Mid-cap

Specialty-Mid-cap

Specialty-Small-cap

diff

42.70

19.16

86.06

97.72

67.46

43.36

55.02

�24.10

�12.44

11.66

lwr

�27.957536

39.502464

15.402464

27.062464

�3.197536

�27.297536

�15.637536

�94.757536

�83.097536

�58.997536

upr

113.35754

180.81754

156.71754

168.37754

138.11754

114.01754

125.67754

46.55754

58.21754

82.31754

p adj

0.3963504

0.0012546*

0.0124242*

0.0041271*

0.0657451

0.3816028

0.1765264

0.8429013

0.9835150

0.9870429

This shows that mean returns for hybrid to mid-cap, small-cap, and specialty are different.

9.7.2 Minitab examples

EXAMPLE 9.7.4

(One-way ANOVA): The three random samples in Table 9.25 are independently obtained from three different normal populations

with equal variances.

At the a ¼ 0.05 level of significance, test for equality of means.

Solution

Enter sample 1 data in C1, sample 2 in C2, and sample 3 in C3.

Stat > ANOVA > One-way (unstacked) . > in Responses (in separate columns): type C1 C2 C3 and click OK.

We get the following output:

One-Way Analysis of Variance

Analysis of Variance

Source
Factor
Error
Total

DF
2
8

10

SS
560.7
463.3

1024.0

MS
280.3
57.9

F
4.84

P
0.042

Individual 95% CIs For Mean
Based on Pooled StDev

Level
C1
C2
C3

Pooled StDev ¼ 7.610

N
5
3
3

60

Mean
76.000
66.333
85.667

72

StDev
7.517
9.292
5.686

84

—— þ ——————— þ ——————— þ ——————— þ –

(———*————)
(———*————)
(———*————)

—— þ ——————— þ ———————— þ ——————— þ ——

96

TABLE 9.25 Three Random Samples from Different Normal Populations.

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80
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We can see that the output contains SS, MS, individual column means, and standard deviation values. Also, the F value gives

the value of the test statistic, and the p value is obtained as 0.042. Comparing this p value of 0.042 with a ¼ 0.05, we will reject

the null hypothesis.

If we want to create side-by-side box plots to graphically test homogeneity of variances, we can do the following.

Enter all the data (from all three samples) in C1, and enter the sample identifier number in C2 (that is, 1 if the data belong to

sample 1, 2 for sample 2, and 3 for sample 3).

Graph > Boxplot > in Y column, type C1 and in X column, type C2 > click OK.

Then as in Example 9.3.2, interpret the resulting box plots.

EXAMPLE 9.7.5

Give Minitab steps for randomized block design for the data of Example 9.4.1.

Solution

To put the data into the format for Minitab, place all the data values in one column (say, C2). Let numbers 1, 2, 3, 4 represent the

chemicals and numbers 1, 2, 3 represent the fabric material. In one column (say, C1) place numbers 1 through 4 with respect to

the data values identifying the factor (chemical) used. In another column (say, C3) place corresponding numbers 1 through 3 to

identify the second factor (material) used. See Table 9.26.

Then do the following:

Stat > ANOVA > Two-way . > in Response: type C2, in Row Factor: type C1, and in Column factor: type C3 > OK

We will get the following output.

Two-Way Analysis of Variance

Analysis of variance for Response

Source
Chemical
Material
Error
Total

DF
3
2
6
11

SS
43.67
16.17
11.83
71.67

MS
14.56
8.08
1.97

F
7.38
4.10

P
0.019

Note that the output contains p values for the effects both of the chemicals and of the materials. Because the p value of 0.019 is

less than a ¼ 0.05, we reject the null hypothesis and conclude that there is a difference in mean resistance among the four

chemicals. For the materials, the p value of 0.075 is greater than a ¼ 0.05, so we cannot reject the null hypothesis and conclude

that there is no difference in the mean resistance among the materials.

TABLE 9.26 Example of Randomized Block Design.

C1 chemical C2 response C3 material

1 3 1

2 9 1

3 2 1

4 7 1

1 7 2

2 11 2

3 5 2

4 9 2

1 6 3

2 8 3

3 7 3

4 8 3
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EXAMPLE 9.7.6

Give the Minitab steps for using Tukey’s method for the data of Example 9.5.1.

Solution

To use Tukey’s method, it is necessary to enter the data in a particular way. Enter all the data points in column C1: the first five

from large-cap, next five from mid-cap, and so on, with the last five from specialty. In column C2, enter the number identifying

the data points: the first four numbers are 1 (identifying 1 as the data belonging to large-cap), next five numbers are 2, and so on;

the last five numbers are 5. Then:

Stat > ANOVA > One-way . > Comparisons . > click Tukey’s, family error rate: and type 5 (to represent 100a% error) >

OK > in Response: type C1, and in Factor: type C2 > OK

We will get an output similar to that given in the solution part of Example 9.5.1. For discussion of the output, refer to
Example 9.5.1.

9.7.3 SPSS examples

EXAMPLE 9.7.7

Conduct a one-way ANOVA for the data of Example 9.7.1. Use a ¼ 0.05 level of significance, and test for equality of means.

Solution

In SPSS, we need to enter the data in a special way. First name column C1 as Sample and column C2 as Values. In the Sample

column, enter the numbers to identify from which group the data come. In this case, enter 1 in the first five rows, 2 in the next

three rows, and 3 in the last three rows. In the Values column, enter sample 1 data in the first five rows, sample 2 data in the next

five rows, and sample 3 data in the last three rows. Then:

Analyze > Compare Means > One-way ANOVA . > Bring Values to Dependent List: and Sample to Factor: > OK

EXAMPLE 9.7.8

Give the SPSS steps for using Tukey’s method for the data of Example 9.5.1.

Solution

First name column C1 as Fund and column C2 as Return. In the Fund column, enter the numbers to identify from which group the

data come. In this case, the first four numbers are 1 (identifying 1 as the data belonging to large-cap), the next four numbers are 2,

and so on, until the last four numbers are 5. In the Return column, enter large-cap return data in the first four rows, mid-cap data

in the next four rows, and so on, the last four from specialty. Then:

Analyze > Compare Means >One-way ANOVA . > Bring Return to Dependent List: and Fund to Factor: > Click Post-Hoc

. > click Tukey > click Continue >OK

We will get the output as in Example 9.5.1.

Interpretation of the output is given in Example 9.5.1. When the treatment effects are significant, as in this example where the

p value is 0.001, the means must then be further examined to determine the nature of the effects. There are procedures called post

hoc tests to assist the researcher in this task. For example, looking at the output column Sig., we could observe that there are

significant differences in the mean returns between funds 2 and 4 and funds 4 and 5.
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9.7.4 SAS examples

EXAMPLE 9.7.9

Using SAS, conduct a one-way ANOVA for the data of Example 9.7.1. Use a ¼ 0.05 level of significance, and test for equality of

means.

Solution

We could use the following code.

Options nodate nonumber;
options ls¼80 ps¼50;
DATA Scores;
INPUT Sample Value @@;
DATALINES;

1 64 1 84 1 75 1 77 1 80

2 56 2 74 2 69

3 81 3 92 3 84

;
PROC ANOVA DATA¼Scores;
TITLE ‘ANOVA for Scores’;
CLASS Sample;
MODEL Value ¼ Sample;
MEANS Sample;
RUN;
We could have used PROC GLM instead of PROC ANOVA to perform the ANOVA procedure. Usually, PROC ANOVA is

used when the sizes of the samples are equal; otherwise PROC GLM is more desirable. The next example will show how to do the

multiple comparison using Tukey’s procedure.

EXAMPLE 9.7.10

Give the SAS commands for using Tukey’s method for the data of Example 9.5.1.

Solution

We could use the following code.

Options nodate nonumber;
options ls¼80 ps¼50;
DATA Mfundrtn;
INPUT Fund Return @@;
DATALINES;

1 19.1 2 299.8 3 153.8 4 68.3 5 181.6

1 102.9 2 139.0 3 139.8 4 67.1 5 159.3

1 93.1 2 131.2 3 138.3 4 42.5 5 138.3

1 83.3 2 129.2 3 135.9 4 41.0 5 135.7

1 83.0 2 19.5 3 121.4 4 40.0 5 132.6

;
PROC GLM DATA¼Mfundrtn;
TITLE ‘ANOVA for Mutual fund returns’;
CLASS Fund;
MODEL Return¼Fund;
MEANS Fund / tukey;
RUN;
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Exercises 9.7

9.7.1. Using the data of Exercise 9.5.4, perform a one-way ANOVA using any of the softwares (R, Minitab, SPSS, or
SAS).

9.7.2. Using the data of Exercise 9.5.2, perform Tukey’s test using any of the softwares (R, Minitab, SPSS, or SAS).
9.7.3. Using the data of Exercise 9.5.4, perform Tukey’s test using any of the softwares (R, Minitab, SPSS, or SAS).

Projects for Chapter 9

9A Transformations

The basic model for the ANOVA requires that the independent observations come from normal populations with equal
variances. These requirements are rarely met in practice, and the extent to which they are violated affects the validity of the
subsequent inference. Therefore, it is important for the investigator to decide whether the assumptions are at least
approximately satisfied and, if not, what can be done to rectify the situation. Hence, it is necessary to (1) examine the data
for marked departures from the model and, if necessary, (2) apply an appropriate transformation to the data to bring them
more in line with the basic assumptions.

A simple way to check for the equality of the population variances is to calculate the sample variances and plot against
mean as in Fig. 9.3. If the graph suggests a relation between sample mean and variance, then the relation very likely exists
between population mean and variance, and hence, the population from which the samples are taken may very well be
nonnormal and/or the data are heterogeneous. A simple visual check of heterogeneity can be done using the following type
of scatterplot of mean versus variance across replicates.
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Homogeneous variance

Heterogeneous variance where the
variance is proportional to the mean.

Outliers – transformation will not
work.

If a study of sample means and variances reveals a marked departure from the model, the observations may be
transformed into a new set to which the methods of ANOVA are better suited. Three commonly used transformations are
the following:

(a) The logarithmic transformation: This is used if the graph of sample means against sample variance suggests a relation
of the form:

s2 ¼ C
�
X

2
�
;

That is, if s2 ¼ km2; replace each observation X with its logarithm to the base 10,

Y ¼ log10X;

or, if some X values are 0, with Y ¼ log10 (X þ 1).

(b) The square root transformation: This is used if the relation is of the form:

s2 ¼ CX

That is, if s2 ¼ km; replace X with its square root,

Y ¼
ffiffiffiffi
X

p

or, if the values of X are very close to 0, with the square root of (X þ ½). This relation is found in data from Poisson
populations, where the variance is equal to the mean.

(c) The angular transformation: If the observations are counts of a binomial nature, and bp is the observed proportion,
replace bp with:

q ¼ arcsin
ffiffiffibpp ;

which is the principal angle (in degrees or radians) whose sine is the square root of bp.
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(i) To check for the equality of the population variances, calculate the sample variances for each of the data sets given in
the exercises of Section 9.3 and plot against the corresponding mean.

(ii) If there is assumptional violation, perform one of the transformations described earlier and do the ANOVA procedure
for the transformed data.

9B Analysis of variance with missing observations

In the two-way ANOVA, we assumed that each block cell has one treatment value. However, it is possible that some
observations in some block cells may be missing for various reasons, such as if the investigator failed to record the ob-
servations, the subject discontinued participation in the experiment, or the subject moved to a different place or died prior
to completion of the experiment. In those cases, this project gives a method of inserting estimates of the missing values.

Let y.. denote the total of all kb observations. If the observation corresponding to the ith row and the jth column, which
is denoted by yij., is missing, then all the sums of squares are calculated as before, except that the yij term is replaced by:

byij ¼ bB0
j þ kT 0

i � y0::

ðk � 1Þðb� 1Þ ;

where T 0
i denotes the total of b � 1 observations in the ith row, B0

j denotes the total of k � 1 observations in the jth
column, and y0.. denotes the sum of all kb � 1 observations. Using calculus, one can show that byij minimizes the error sum
of squares. One should not include these estimates when computing relevant degrees of freedom. With these changes,
proceed to perform the analysis as in Section 9.4. For more details on the method, refer to Sahai and Ageel (2000), p. 145.

Perform the test of Example 9.4.1, now with a missing value for material III and chemical C4. Does the conclusion
change?

9C Analysis of variance in linear models

To determine whether the multiple regression model introduced in Section 8.5 is adequate for predicting values of
dependent variable y, one can use the ANOVA F-test. The model is:

Y ¼ b0 þ b1x1 þ b2x2 þ :::þ bkxk þ ε;

where ε ¼ (ε1, ε2, ., εn)w N(0, s2) and εi and εj are uncorrected if i s j. Define the multiple coefficient of deter-
mination, R2, as:

R2 ¼ 1�
P�

yi � byi�2P�
yi � y

�2 :
The ANOVA F-test:

H0 : b1 ¼ b2 ¼ ::: ¼ bk ¼ 0 versus

Ha : At least one of the parameters; b1; b2; ::: ; bk; differs from 0:

Test statistic:

F ¼ Mean square for model
Mean square for error

¼ SSðmodelÞ=k
SSE=½n� ðk þ 1Þ�

¼ R2=k

ð1� R2
�
=½n� ðk þ 1Þ�;

where
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n ¼ number of observations

k ¼ number of parameters in the model excluding b0:

From the F-table, determine the value of Fa with k numerator degrees of freedom and n � (k þ 1) denominator degrees
of freedom. Then the rejection region is {F > Fa}.

If we reject the null hypothesis, then the model can be taken as useful in predicting values of y.
Using the data of Example 8.5.1, test the overall utility of the fitted model:

y ¼ 66:12� 0:3794X1 þ 21:4365X2

using the F-test described earlier.
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Objective

The objective of this chapter is to study the Bayesian analysis methods and procedures that are becoming very popular
in building statistical models for real-world problems.

The Reverend Thomas Bayes
(Source: http://en.wikipedia.org/wiki/Thomas_Bayes)

The Reverend Thomas Bayes (1702e61) was a Nonconformist minister. In the 1720s Bayes started working on the
theory of probability. Even though he did not publish any of his works on mathematics during his lifetime, Bayes was
elected a Fellow of the Royal Society in 1742. His famous work titled “Essay toward solving a problem in the doctrine
of chances” was published in the Philosophical Transactions of the Royal Society of London in 1764, after his death.
The paper was sent to the Royal Society by Richard Price, a friend of Bayes. Another mathematical publication on
asymptotic series also appeared after his death.
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Copyright © 2021 Elsevier Inc. All rights reserved.
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10.1 Introduction

Bayesian procedures are becoming increasingly popular in building statistical models for real-world problems. In recent
years, the Bayesian statistical methods have been increasingly used in scientific fields ranging from archaeology to
computing. Bayesian inference is a method of analysis that combines information collected from experimental data with
the knowledge one has prior to performing the experiment. Bayesian and classical (frequentist) methods take basically
different outlooks on statistical inference. In this approach to statistics, the uncertainties are expressed in terms of prob-
abilities. In the Bayesian approach, we combine any new information that is available with the prior information we have,
to form the basis for the statistical procedure. The classical approach to statistical inference that we have studied so far is
based on the random sample alone. That is, if a probability distribution depends on a set of parameters q, the classical
approach makes inferences about q solely on the basis of a sample X1, ., Xn. This approach to inference is based on the
concept of a sampling distribution. To correctly interpret traditional inferential procedures, it is necessary to fully un-
derstand the notion of a sampling distribution. In this approach, we analyze only one set of sample values. However, we
have to imagine what could happen if we drew a large number of random samples from the population. For example,
consider a normal sample with known variance. We have seen that a 95% confidence interval for the population mean m is
given by the random interval

�
X�1:96s =

ffiffiffi
n

p
;Xþ1:96s =

ffiffiffi
n

p �
. This means that when samples are repeatedly taken from

the population, at least 95% of the random intervals contain the true mean m. The classical inferential approach does not use
any of the prior information we might have as a result of, say, our familiarity with the problem, or information from earlier
studies. Scientists and engineers are faced with the problem that there is typically only a single data set, and they need to
determine the value of the parameter at the time the data are taken. The basic question then is, “What is the best estimate of
a parameter one can make from the data using one’s prior information?” Statistical approaches that use prior knowledge,
possibly subjective, in addition to the sample evidence to estimate the population parameters are known as Bayesian
methods.

Bayesian statistics provides a natural method for updating uncertainty in the light of evidence. Data are still assumed to
come from a distribution belonging to a known parametric family. However, the Bayesian outlook toward inference is
founded on the subjective interpretation of probability. Subjective probability is a way of stating our belief in the validity of
a random event. The following example will illustrate the idea. Suppose we are interested in the proportion of all un-
dergraduate students at a particular university who take on off-campus jobs for at least 20 hours a week. Suppose we
randomly select, say, 50 students from this university and obtain the proportion of students who have off-campus jobs for
at least 20 hours a week. Let us assume that the sample proportion is 30/50 ¼ 0.6. In a frequentist approach, all of the
inferential procedures, such as point estimation, interval estimation, or hypothesis testing, are based on the sampling
distribution.

That is, even though we are analyzing only one data set, it is necessary to have knowledge of the mean, standard
deviation, and shape of this sampling distribution of the proportion for the correct interpretation in classical inferential
procedures. In the subjective interpretation of probability, the proportion of undergraduates who work at an off-campus job
for at least 20 hours a week is assumed to be unknown and random. A probability distribution, called the prior, represents
our knowledge or belief about the location of this proportion before any collected data are used. For instance, the college
placement office already may have an opinion on this proportion based on its earlier experience. The classical approach
ignores this prior knowledge, whereas the Bayesian approach combines this knowledge with the current observed data to
update the value of this proportion. That is, after the data are collected our opinion about the proportion may change. Using
Bayes’ rule, we will compute the posterior probability distribution for the proportion, based on our prior belief and evi-
dence from the data. All of our inferences about the proportion are made by computing appropriate statistics of the
posterior distribution.

The Bayesian approach seeks to optimally merge information from two sources: (1) knowledge that is known from
theory or opinion formed at the beginning of the research in the form of a prior and (2) information contained in the data in
the form of likelihood functions. Basically, the prior distribution represents our initial belief, whereas the information in the
data is expressed by the likelihood function. Combining prior distribution and likelihood function, we can obtain the
posterior distribution. This expresses our revised uncertainty in light of the data. The main difference between the Bayesian
approach and the classical approach is that in the Bayesian setting, the parameter is viewed as a random variable, whereas
the classical approach considers the parameter to be fixed but unknown. The parameter is random in the sense that we can
assign to it a subjective probability distribution that describes our confidence about the actual value of the parameter.

Some of the reasons for Bayesian approaches are as follows: (1) Most Bayesian inferential conclusions are made
conditional on the observed data. Unlike the traditional approach, one need not be concerned with data sets other than the
one that is observed. There is no need to discuss sampling distributions using the Bayesian approach. Also, (2) from a
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Bayesian viewpoint, it is legitimate to talk about the probability that the proportion falls in a specific interval, say (0.2, 0.6),
or the probability that a hypothesis is true. Too often, traditional inferential conclusions are misstated; for example, if a
confidence interval computed from a sample for a parameter is (0.2, 0.6), it is common for the student to incorrectly state
that the population parameter falls in the interval (0.2, 0.6) with probability at least 0.90. The Bayesian viewpoint provides
a convenient model for implementing the scientific method. The prior probability distribution can be used to state initial
beliefs about the population of interest, relevant sample data are collected, and the posterior probability distribution reflects
one’s new, updated beliefs about the population parameter in light of the new data that were collected. All inferences about
the parameter are made by computing appropriate summaries of the posterior probability distribution. Because of
formidable theoretical and computational challenges, the Bayesian approach has found relatively limited use. Advances in
Bayesian analysis combined with the growing power of computers are making Bayesian methods practical and increas-
ingly popular. The Markov chain Monte Carlo method described in Section 13.5 is one of the computationally intensive
methods that are often useful in Bayesian estimation.

10.2 Bayesian point estimation

The cornerstone of Bayesian methodology is the Bayes theorem. It helps us to update our beliefs in the form of
probability statements about the parameters after the sample has been taken. The conditional distribution of the
parameters after observing the data is called the posterior distribution that integrates the prior and the sample infor-
mation. Suppose we have two discrete random variables, X and Y. Then the joint probability mass function (pmf) can
be written as p(x, y) ¼ p(xjy)pY(y), and the marginal probability mass function of X is p

X
ðxÞ ¼P

ypðx; yÞ ¼ P
ypðxjyÞpYðyÞ. Then Bayes’ rule for the conditional p(yjx) is:

pðyjxÞ ¼ pðx; yÞ
p
X
ðxÞ ¼ pðxjyÞpYðyÞ

p
X
ðxÞ ¼ pðxjyÞpYðyÞP

y
pðxjyÞp

Y
ðyÞ .

The denominator in this expression is a fixed normalizing factor that ensures that
P

yp(yjx) ¼ 1. If Y is continuous, the
Bayes theorem can be stated as:

pðyjxÞ ¼ pðxjyÞpYðyÞR
pðxjyÞp

Y
ðyÞdy ;

where the integral is over the range of values of y. These two equations are the Bayes formulas for random variables.
In Bayesian terminology, pYðyÞ represents the probability statement of our prior belief; p(xjy) is the probability of the

data x given our prior beliefs, which is called the likelihood; and the updated probability p(yjx) is the posterior. Because
pXðxÞ (which is the likelihood accumulated over all possible prior values) is independent of y, we can express the posterior
distribution as proportional (f) to [(likelihood) � (prior distribution)], that is,

pðyjxÞf pðxjyÞ pðyÞ.
We use the notation f(xjq) to represent a probability distribution whose population parameter is considered to be a

random variable. Now one of the problems is finding a point estimate of the parameter q (possibly a vector) for the
population with distribution f(xjq), given q. Since q is assumed to be a random variable, we can talk of the distribution of q.
Assume that p(q) is the prior distribution of q, which reflects the experimenter’s prior belief about q. We will not
distinguish between the scalars and the vectors, which will be clear based on the specific situation. Suppose that we have a
random sample X ¼ (X1, ., Xn) of size n from f(xjq). Then the posterior distribution of q can be written as:

f ðqj X1;.;XnÞ ¼ f ðq;X1;.;XnÞ
f ðX1;.;XnÞ ¼ LðX1;.;XnjqÞpðqÞ

f ðX1;.;XnÞ ;

where L(X1, ., Xnjq) is the likelihood function. Letting C represent all terms that do not involve q (in this case,
C ¼ 1/f (X1, ., Xn)), we have:

f ðqj X1;.;XnÞ ¼ CLðX1;.;XnjqÞpðqÞ;
For specific sample values X1 ¼ x1, X2 ¼ x2, ., Xn ¼ xn, the foregoing equation can be written in a compact form as:

f ðqjxÞf f ðxjqÞpðqÞ; where x ¼ ðx1; x2;.; xnÞ.
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This can be expressed as:

ðposterior distributionÞf ðprior distributionÞ � ðlikelihoodÞ.
The full result including the normalization can be written as:

ðposterior distributionÞ ¼ ½ðprior distributionÞ� ðlikelihoodÞ�=
hX

ðprior� likelihoodÞ
i
;

where the denominator is a fixed normalizing factor obtained by the likelihood accumulated over all possible prior values.
We can now give a formal definition.

Definition 10.2.1. The distribution of q, given data x1; :::; xn, is called the posterior distribution, which is given by:

pðqjxÞ ¼ f ðxjqÞpðqÞ
gðxÞ ; (10.1)

where g(x) is the marginal distribution of X. The Bayes estimate of the parameter q is the posterior mean.
The marginal distribution g(x) can be calculated using the formula:

gðxÞ ¼

8>>><
>>>:

X
q

f ðxjqÞpðqÞ; in the discrete case

Z N

�N

f ðxjqÞpðqÞdq; in the continuous case;

where p(q) is the prior distribution of q. Here, the marginal distribution g(x) is also called the predictive distribution of X,
because it represents our current predictions of the values of X taking into account both the uncertainty about the value of q
and the residual uncertainty about the random variable X when q is known.

In a Bayesian setting, all the information about q from the observed data and from the prior knowledge is contained in
the posterior distribution, p(qjx). In almost all practical cases, because we are combining our prior information with the
information contained in the data, the posterior distribution provides a more refined estimation of q than the prior.

All inferences from Bayesian methods are based on the posterior probability distribution of the parameter q. Using the
explanation given later, we will take the Bayes estimate of a parameter as the posterior mean.

Furthermore, consider a Bayesian statistical inference problem where the parameter is a population proportion. In the
Bernoulli trials, the population contains two types, called “successes” and “failures.” The proportion of successes in the
population is denoted by q. We take a random sample of size n from the population and observe s successes and f failures.
The goal is to learn about the unknown proportion q on the basis of these data.

In this situation, a model is represented by the population proportion q. We do not know its value. In Chapter 5, we
have seen that we could use the maximum likelihood estimator (MLE) for estimating q, which did not use any prior
knowledge we may have about q. Note that the maximum likelihood estimate is broadly equivalent to finding the mode of
the likelihood. In a Bayesian setting, we represent our beliefs about location of q in terms of a prior probability distribution.
We introduce proportion inference by using a discrete prior distribution for q. We can construct a prior by specifying a list
of possible values for the proportion q, and then assign probabilities to these values that reflect our knowledge about q.
Then the posterior probabilities can be computed using the Bayes theorem. The following example illustrates this concept.

EXAMPLE 10.2.1

It is believed that cross-fertilized plants produce taller offspring than self-fertilized plants. To obtain an estimate on the proportion

q of cross-fertilized plants that are taller, an experimenter observes a random sample of 15 pairs of plants that are exactly the same

age. Each pair is grown under the same conditions, with some cross-fertilized and the others self-fertilized. Based on previous

experience, the experimenter believes that the following are possible values of q and that the prior probability for each value of q

(prior weight) is p(q).

q : 0:80 0:82 0:84 0:86 0:88 0:90

pðqÞ : 0:13 0:15 0:22 0:25 0:15 0:10
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From the experiment, it is observed that in 13 of 15 pairs, the cross-fertilized plant is taller. Create a table with columns of the

prior p(q), likelihood of L(X1, X2, ., Xnjq) for different values of q and for the given sample, prior times likelihood, and posterior

probability of q. Based on the posterior probabilities, what value of q has the highest support? Also, find E(q) based on the posterior

probabilities.

Solution

The likelihood of obtaining 13 taller cross-fertilized plants in 15 pairs compared with the different prior values of p is given using

the binomial pmf

�
15

13

�
q13ð1� qÞ2. For example, if the prior value of q is 0.80, then the likelihood of q given the sample is:

f ðxjqÞ ¼
�
15

13

�
ð0:8Þ13ð0:2Þ2 ¼ 0:2309:

From Table 10.1 we obtain
P

(prior � likelihood) ¼ 0.27217. Hence, the normalized value corresponding to q ¼ 0.80 is the

posterior probability f(qjx), which is equal to (0.030017/0.27217) ¼ 0.11029. Now, we can obtain the table of posterior distri-

bution of a proportion p using the discrete prior given in Table 10.1. When we substitute in Bayes’ rule, the factor

�
15

13

�
would

be canceled. Hence, in the calculation of the likelihood function, we could have just used q13(1 � q)2 instead of the full

expression

�
15

13

�
q13ð1� qÞ2.

Thus, the Bayesian estimate of q is:

EðqÞ ¼ ð0:8Þð0:11029Þ þ ð0:82Þð0:14028Þ þ ð0:84Þð0:22528Þ

þ ð0:86Þð0:2661Þ þ ð0:88Þð0:15817Þ þ ð0:9Þð0:098065Þ

¼ 0:84879z0:85:

It may be noted that the MLE of q is 13/15 ¼ 0.867.

In Example 10.2.1, the priors are called informative priors, because they favored certain values of q; for example, for
the value q ¼ 0.86, the prior value of p (q) is 0.25, which is higher than all the rest of the values. If there were no in-
formation or no strong prior opinions, then we could select a noninformative prior, which would have assigned equal prior
probability of 1/6 to each of the possible values of q. A noninformative prior (also called a flat or uniform prior) provides
little or no information. In practice, a noninformative prior is used, when we do not have any prior information but still
want to use the Bayes method. Thus, uniform prior amounts to random choice from possible values of the parameter. Based
on the situation, noninformative priors may be quite dispersed, may avoid only impossible values of the parameter, and
oftentimes give results similar to those obtained by classical frequentist methods.

TABLE 10.1 Summary of Prior and Posterior Probabilities.

Prior value of q Prior probability p(q) Likelihood of q given sample Prior3likelihood Posterior probability of q

0.80 0.13 0.2309 3.0017 � 10�2 0.11029

0.82 0.15 0.2578 0.03867 0.14208

0.84 0.22 0.2787 6.1314 � 10�2 0.22528

0.86 0.25 0.2897 7.2425 � 10�2 0.2661

0.88 0.15 0.2870 0.4305 0.15817

0.90 0.10 0.2669 0.02669 0.098064

Total: 0.27217 0.9998z 1.0
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EXAMPLE 10.2.2

Repeat Example 10.2.1 using a noninformative prior, p(q) ¼ 1/6, for each given value of q.

Solution

Here pðqÞ ¼ 1=6 for each value of q. See Table 10.2.

The Bayesian estimate for the noninformative prior is:

EðqÞ ¼ ð0:8Þð0:14333Þ þ ð0:82Þð0:16003Þ þ ð0:84Þð0:173Þ

þ ð0:86Þð0:17982Þ þ ð0:88Þð0:17815Þ

þ ð0:9Þð0:16567Þ ¼ 0:85173:

It should be noted that because the choice of priors in Example 10.2.1 is only mildly informative, we do not see much
difference in the values of Bayesian estimates. In general, it is difficult to construct an acceptable prior, because most often
it has to be based on subjective experiences. Therefore, it is relatively easy to use a noninformative prior. For example, if
we have no information on the values of proportion q, then one type of standard noninformative prior is to take the
proportion q as one of the equally spaced values 0, 0.1, 0.2, ., 0.9, 1. We can assign for each value of q the same
probability, p(q) ¼ 1/11. This prior is convenient and may work reasonably well when we do not have many data. It is
fairly easy to construct a prior when there exists considerable prior information about the proportion of interest.

The posterior distribution gives us information regarding the likelihood of values of q given sample data. Then the
question is how to use this information to estimate q. Instead of having explicit probabilities, the prior may be given
through an assumed probability distribution. We illustrate the calculations involved to find the posterior distribution in the
following example.

EXAMPLE 10.2.3

Let X be a binomial random variable with parameters n and p. Assume that the prior distribution of p is uniform on [0, 1]. Find the

posterior distribution, f(pjx).
Solution

Because X is binomial, the likelihood function is given by:

f ðxjpÞ ¼
�
n

x

�
pxð1� pÞn�x .

Because p is uniform on [0, 1], p(p) ¼ 1, 0 � p � 1.

Then the posterior distribution is given by:

f ðpjxÞf f ðxjpÞpðpÞ ¼
�
n

x

�
pxð1� pÞn�x

; x ¼ 0;1;.; n;

which is the same as the likelihood.

TABLE 10.2 Prior and Posterior Probabilities with Noninformative Prior.

Prior value of q

Prior probability

p(q) Likelihood of q given sample Prior3likelihood Posterior probability of q

0.80 1/6 0.2309 3.8483 � 10�2 0.14333

0.82 1/6 0.2578 4.2967 � 10�2 0.16003

0.84 1/6 0.2787 0.04645 0.173

0.86 1/6 0.2897 4.8283 � 10�2 0.17982

0.88 1/6 0.2870 4.7833 � 10�2 0.17815

0.90 1/6 0.2669 4.4483 � 10�2 0.16567

Total 0.2685 1.0
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Note that in the previous example, the forms of the pmf in both f ðxjpÞ and f ðpjxÞ are the same; however, in f ðpjxÞ, p is
considered random and in f ðxjpÞ, p is not random. This particular form of f ðpjxÞ is also called beta-binomial distribution
for p with parameters a ¼ xþ 1 and b ¼ n � x þ 1. This example illustrates that if the prior is noninformative
(uniform), then the posterior is essentially the likelihood function. In the case where the prior and the posterior are of the
same functional form, we call it a conjugate prior. Bayesian inference becomes simpler when the prior density has the
same functional form as the likelihood (which is the case for the conjugate prior) or when the data are an independent
sample from an exponential family (such as normal, Poisson, or binomial). Bayesian priors act just like pseudo-
observations added to the data.

The following example demonstrates the method of finding the posterior distribution for a continuous random variable.

EXAMPLE 10.2.4

Suppose that X is a normal random variable with mean m and variance s2, where s2 is known and m is unknown. Suppose that m

behaves as a random variable whose probability distribution (prior) is p(m) and which is also normally distributed with mean mp

and variance s2p ; both assumed to be known or estimated. Find the posterior distribution f(mjx).
Solution

Using the Bayes theorem, we have:

f ðmjxÞ ¼ f ðxjmÞpðmÞR
f ðxjmÞpðmÞdm

¼

1ffiffiffiffiffiffiffiffiffi
2ps

p e�ðx�mÞ2=2s2 1ffiffiffiffiffiffiffiffiffiffiffi
2psp

p e�ðm�mpÞ2=2s2p

R 1ffiffiffiffiffiffiffiffiffi
2ps

p e�ðx�mÞ2=2s2 1ffiffiffiffiffiffiffiffiffi
2ps

p
p

e�ðm�mpÞ2=2s2p dm

¼ 1

2pssp

e

�

2
64ðx�mÞ2

2s2
þðm�mp Þ2

2s2p

3
75
.

(10.2)

Consider the exponential term in Eq. (10.2), namely, ðx�mÞ2
2s2 þ ðm�mpÞ2

2s2
p

.

ðx � mÞ2
2s2 þ

�
m� mp

�2
2s2

p

¼ 1

2

2
64ðx � mÞ2

s2 þ
�
m� mp

�2
s2
p

3
75

¼ 1

2

" 
1

s2 þ
1

s2
p

!
m2 � 2

 
mp

s2
p

þ x

s2

!
mþ

 
x2

s2 þ
m2
p

s2
p

!#

¼ 1

2

"
s2
p þ s2

s2s2
p

m2 � 2

 
mp

s2
p

þ x

s2

!
mþ

 
x2

s2 þ
m2
p

s2
p

!#

¼ 1

2

s2
p þ s2

s2s2
p

"
m2 � 2

s2s2
p

s2
p þ s2

 
mp

s2
p

þ x

s2

!
m

þ s2s2
p

s2
p þ s2

 
x2

s2 þ
m2
p

s2
p

!
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¼ 1

2

s2
p þ s2

s2s2
p

"
m2 � 2

 
s2

s2
p þ s2mp þ

s2
p

s2
p þ s2 x

!
m

þ
 

s2

s2
p þ s2

mp þ
s2
p

s2
p þ s2

x

!2#

þ 1

2

s2
p þ s2

s2s2
p

"
x2

s2 þ
m2
p

s2
p

�
 

s2
p

s2
p þ s2

x þ s2

s2
p þ s2

mp

!2#

¼ 1

2

s2
p þ s2

s2s2
p

"
m�

 
s2

s2
p þ s2

mp þ
s2
p

s2
p þ s2

x

!#2
þ eK ;

where

eK ¼ 1

2

s2
p þ s2

s2s2
p

"
x2

s2
þm2

p

s2
p

�
 

s2

s2 þ s2
p

mp þ
s2
p

s2 þ s2
p

x

!2#
.

From the foregoing derivation, we obtain:

f ðmjxÞ ¼ Ke
�1

2

s2pþs2

s2s2p

"
m�

 
s2

s2
p þ s2

mp þ
s2
p

s2
p þ s2

x

!#2
;

where K does not contain m.

This implies that the posterior density f(mjx) is the pdf of a normal random variable with mean 
s2

s2
p þ s2

mp þ
s2
p

s2
p þ s2

x

!

and variance

s2s2
p

s2
p þ s2

.

If we let sp ¼ 1
s2
p
and s ¼ 1

s2 ; then the posterior density can be rewritten as the pdf of a normal random variable with mean

1
spþs

�
spmp þsx

�
and variance 1

spþs:

As an example, suppose that mp ¼ 100, sp ¼ 15, and s ¼ 10, x ¼ 115. Then f(mjx) is the pdf of a normal random variable with

Mean ¼ 100

100þ 225
ð100Þ þ 225

100þ 225
ð115Þ ¼ 110:4

and

Variance ¼ ð100Þð225Þ
100þ 225

¼ 69:2:

10.2.1 Criteria for finding the Bayesian estimate

In the Bayesian approach to parameter estimation, we use both the prior and observations. This leads to an estimation
strategy based on the posterior distribution. How do we know that the estimate thus obtained is “good”? To assess the
quality of likely estimators, we use a loss function L(q, a) that measures the loss incurred by using a as an estimate of q.
Here q is the parameter being estimated (in real-world problems it is not known), and a is the estimate of q. Then the

“optimal” or “best” estimate a ¼ bq is chosen so as to minimize the expected loss E
h
L
�
q; bq�i; where the expectation is

taken over q with respect to the posterior distribution f(qjx). Here, we mention two types of commonly used loss functions,
quadratic and absolute error loss functions, and the resulting estimates.
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(1) A quadratic (or squared error) loss function is of the form L(q, a) ¼ (a � q)2. In this case,

E½Lðq; aÞ� ¼
Z

Lðq; aÞ f ðqjx1;.; xnÞdq

¼
Z

ða� qÞ2 f ðqjx1;.; xnÞdq.

Differentiating with respect to a and equating to zero, we obtain:

2
Z

ða� qÞ f ðqjx1;.; xnÞdq ¼ 0.

This implies:

a ¼
Z

qf ðqjx1;.; xnÞdq.

This is the posterior mean (expected value) of q, E(qjx1, ., xn). Hence, the quadratic loss function is minimized by

taking the estimate of q, that is, bq, to be the posterior mean. In previous examples in this section, we used this value as the

estimate bq. Note that what the quadratic loss function displays is that if the estimate bq and the true parameter q are close to

each other, the loss we expect is very small. Likewise, if the difference is larger, the expected loss in estimating q with bq is
going to be large.

(2) An absolute error loss function is of the form L(q, a) ¼ ja � qj. In this case,

E½Lðq; aÞ� ¼
Z

Lðq; aÞ f ðqjx1;.; xnÞdq

¼
Z a

q¼�N

ða� qÞ f ðqjx1;.; xnÞdq

þ
Z N

q¼a

ðq� aÞ f ðqjx1;.; xnÞdq:

Differentiating with respect to a and equating to zero, we obtain:Z a

q¼�N

f ðqjx1;.; xnÞdq�
Z N

q¼a

f ðqjx1;.; xnÞdq ¼ 0:

The minimum loss is attained when the values of both integrals are equal to 1=2. This can be achieved by taking bq to be
the posterior median.

There are other loss functions such as the all or nothing (or 0e1) loss function given by:

Lða; qÞ ¼ 1� daq ¼
	
0; if q ¼ a

1; otherwise

where d is the Kronecker Delta function. This loss function is used mostly when values of q are assumed to be discrete. In
this case, it can be shown that expected loss is minimized when bq is the maximum of the posterior distribution, or the mode.
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The following can be considered as a general Bayesian procedure for point parameter estimation.

Bayesian parameter estimation procedure

1. Consider the unknown parameter q as a random variable.

2. Use a probability distribution (prior) to describe the un-

certainty about the unknown parameter.

3. Update the parameter distribution using the Bayes

theorem:

P ðqjDataÞfPðqÞP ðDatajqÞ;

that is,

ðposterior of qÞfðprior of qÞðlikelihoodÞ.

4. The Bayes estimator of q is set to be the expected value of

the posterior distribution P(qjData) under the quadratic loss

function.

5. The Bayes estimator of q is set to be the posterior median

under the absolute error loss function.

From the procedure of Bayesian estimation, it is clear that a bad choice of prior may result in a bad estimate. Generally,
if the priors are based on a previous and trustworthy sample, Bayesian estimation methods are desirable. A schematic figure
of the steps involved in the Bayesian estimate is given in Fig. 10.1.

In this chapter, we use only the quadratic loss function unless it is explicitly stated otherwise. We also mention that this
loss function is very popular because of its analytic tractability. We now derive Bayesian point estimates for some specific
distributions.

Whereas uniform priors are useful in the noninformative situations, the beta family of distributions is one of the
commonly taken informative priors. Distributions in the beta family take values in the interval (0, 1). Recall that if
Xw Beta(a, b), then the pdf of X is given by:

f ðxÞ ¼
	 Gðaþ bÞ
GðaÞGðbÞx

a�1ð1� xÞb�1
; 0 � x < 1

0; otherwise;a > 0; b > 0.

The beta pdf can be written as:

f ðxÞ ¼ Cxa�1ð1� xÞb�1fxa�1ð1� xÞb�1
;

where C ¼ GðaþbÞ
GðaÞGðbÞ . We also know that:

EðXÞ ¼ a

aþ b
; and VarðXÞ ¼ ab

ðaþ bÞ2ðaþ bþ 1Þ .

When using a beta prior, we will take the number of successes as a � 1 and the number of failures as b � 1.

Prior  info, 
P(θθ)

Likelihood
P(Data | θ)

Posterior
P(θ | Data)

Loss 
Function Updated

FIGURE 10.1 Bayesian estimation procedure.
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EXAMPLE 10.2.5

Let X1, ., Xn be a sample from a geometric distribution with parameter p, 0 � p � 1. Assume that the prior distribution of p is

beta with a ¼ 4 and b ¼ 4.

(a) Find the posterior distribution of p.

(b) Find the Bayes estimate under the quadratic loss function.

Solution

(a) Because p is Beta(4, 4), the prior density is:

Gð8Þ
Gð4ÞGð4Þp

3ð1� pÞ3 ¼ 140p3ð1� pÞ3.

Because the random variables Xi have a geometric distribution with parameter p, the likelihood is given by:

LðX1;.;XnjqÞ ¼
Yn
i¼ 1

pð1� pÞxi�1 ¼ pnð1� pÞ
Pn
i¼ 1

xi�n

.

The product of the likelihood function and the prior is given by:

pnð1� pÞ
Pn
i¼ 1

xi�n

140p3ð1� pÞ3� ¼ 140pnþ3ð1� pÞ

Pn
i¼ 1

xi�nþ3

.

Because (posterior of p)f (prior of p(.). (likelihood), rewriting the normalizing constant in the denominator of Eq. (10.1) as C,

and letting C1 ¼ 140C, the posterior distribution (because a � 1 ¼ n þ 3 and b� 1 ¼ Pn
i¼1xi � nþ 3Þ is

Beta

�
n þ4;

Pn
i¼ 1

xi �n þ4

�
:

(b) Recall that for a Beta(a, b) random variable, the mean is [a/(a þ b)]. Because the Bayes estimate is the posterior mean, the

mean of Beta

�
nþ4;

Pn
i¼ 1

xi �nþ4

�
is:

n þ 4� Pn
i¼ 1

xi � n þ 4


þ ðn þ 4Þ

¼ n þ 4Pn
i¼ 1

xi þ 8
:

Note that for large n, the Bayes estimate is approximately n
�Pn

i¼1xi; which is the MLE of p.

In general, for a Bernoulli random variable with unknown probability of success p in [0, 1], the usual conjugate prior is the

beta distribution, where the parameters of the beta distribution are chosen to reflect any prior information that we have.

We will follow the idea of the previous example in a binomial experiment of tossing a coin.

EXAMPLE 10.2.6

Suppose we are flipping a biased coin, for which the probability of heads p could be any value between 0 and 1. Given a

sequence of toss samples, x1; :::; xn, we want to estimate P(H) ¼ p. We may have two sources of information: our prior belief,

which we will express as a beta distribution, and the data, which could come from counts of heads x in n ¼ 20 independent flips

of the coin, say x ¼ 13. Suppose that in six prior tosses, we observed three heads and three tails, which led us to believe that the

value of p is near 0.5. Obtain the posterior distribution of p.

Solution

Here our prior belief or assumption can be written in terms of beta distribution as:

pðpÞ ¼ Gðaþ bÞ
GðaÞGðbÞp

a�1ð1� pÞb�1
:

where a ¼ 4 and b ¼ 4. That is, (noting G(n) ¼ (n � 1)!)

pðpÞ ¼ 7!

ð3!Þð3!Þp
3ð1� pÞ3.
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Hence, p(p) f p3(1 � p)3. Because the mean of a beta distribution is a/(a þ b) and the variance is ab/((a þ b)2 (a þ b þ 1)), for

the prior,

MeanðpÞ ¼ 4

4þ 4
¼ 0:5;

and

VarðpÞ ¼ ð4Þð4Þ
ð4þ 4Þ2ð4þ 4þ 1Þ ¼ 0:028:

Let X denote the number of heads in 20 flips of this coin. Then X has a binomial distribution, and the pmf is given by:

f ðxjpÞ ¼
�
20

x

�
pxð1� pÞ20�x

; x ¼ 0;1;.; 20:

This we can write as:

f ðxjpÞfpxð1� pÞ20�x .

In the 20 flips we have observed 13 heads. Then fix x ¼ 13, and we are interested in the likelihood, which is the relative value

of the function at different values of p:

f ð13jp;20Þfp13ð1� pÞ7.
The posterior probability of p, given x ¼ 13, is:

pðpjx ¼ 13Þff ðxjpÞpðpÞ

¼
�
p13ð1� pÞ20�13

�
p3ð1� pÞ3

¼ p16ð1� pÞ10.
Thus, the posterior is a beta distribution with a ¼ 17 and b ¼ 11. Consequently, we can now obtain the mean and variance of

p as:

MeanðpÞ ¼ 17

17þ 11
¼ 0:607

and

VarðpÞ ¼ ð17Þð11Þ
ð17þ 11Þ2ð17þ 11þ 1Þ ¼ 0:008:

Note that the prior was a beta distribution with mean 0.5 and variance 0.028. Fig. 10.2 gives the prior and posterior densities.

4.5

4

3.5

3

2.5

prior

posterior

Π (X)

2

1.5

1

0.5

0
0 0.2 0.4

p
0.6 0.8 1

FIGURE 10.2 Prior and posterior distributions for the proportions.

426 Mathematical Statistics with Applications in R



Note that if we had ignored the prior and taken just the point estimation, then the MLE of p would be

MLEðpÞ ¼ bp ¼ 13
20 ¼ 0:65: Compare this with the Bayesian estimate of p ¼ 0.607. Because Beta(1, 1) is the Uniform [0, 1], the

method of the previous example can be used for noninformative priors. The method could also be used in many applications. For

example, suppose p represents the proportion of infected individuals in a population, and x is the number of infected individuals in

a sample of size n. Then with a noninformative prior, we can show that the posterior of p is Beta(xþ 1, n � x þ 1). This type of

setting can be used for estimating the true proportion of infected individuals in the population.

EXAMPLE 10.2.7

Suppose for the past million days we have been predicting whether the sun will rise the next morning or not. Each evening we say

that the sun will rise the next morning
� bR�, and we were right (R) all these days. Suppose on the 106-th evening we predict that the

sun will rise on the next day. What is the probability that the sun will rise the next day?

Solution

The problem can be cast in the following table form.

1 2 . 106 106 þ 1bR bR . bR bR
R R . R ?

P
�
R
��bR� ¼ 1 if we use the frequency method of estimation (for example the MLE). Let us now consider the Bayes method.

Suppose the prior is uniform on [0, 1]. That is,

pðpÞ ¼
	
1; if 0 � p � 1

0; otherwise.

Suppose we predict n times and we succeed x times. Then:

f ðxjpÞ ¼
�
n

x

�
pxð1� pÞn�x .

The joint pdf is given by:

f ðx;pÞ ¼ f ðxjpÞpðpÞ

¼
0
@n

x

1
Apxð1� pÞn�x

; x ¼ 0; 1;.;n; 0 � p � 1:

By the Bayes theorem, the posterior pdf p(pjx) is:

pðpjxÞ ¼ f ðxjpÞpðpÞR1
0

ðxjpÞpðpÞdp

¼ K ðn; xÞpxð1� pÞn�x
; 0 � p � 1; 0 � x � n;

which is a beta probability distribution. Recall that the beta density is given by:

f ðyÞ ¼ 1

Bða;bÞy
a�1ð1� yÞb�1

and EðYÞ ¼ a
aþb . Thus,

E ½pðpjxÞ� ¼ x þ 1

ðx þ 1Þ þ ðn � xÞ þ 1
¼ x þ 1

n þ 2
.

In our example, x ¼ 106, n ¼ 106, which implies that the posterior mean is given by:

bpb ¼ 106 þ 1

106 þ 2
z1:
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EXAMPLE 10.2.8

Let X1, X2, ., Xn be N(m, s2) random variables with prior p(m) having N
�
m0; s

2
0

�
distribution with known s2.

(a) Obtain the posterior distribution of m.

(b) Suppose it is known from past experience that the weight loss for a particular combination of diet and exercise program (if

followed for a month) is normally distributed with mean 10 lb and standard deviation 2 lb. A random sample of five persons

who went through this program for a month produced the following weight loss in pounds:

14 8 11 7 11

What is the point estimate of the mean, m? Assume s2 ¼ 4.

Solution

(a) Because pðmÞwN
�
m0;s

2
0

�
;pðmÞfexp

h
ðm� m0Þ2

.
s2
0

i
and we omit the terms that do not depend on m. We have from the data

x ¼ ðx1; :::; xnÞ, the likelihood function,

Lðx1;.; xnjmÞ ¼ f ðxjmÞf
Yn
i¼ 1

exp

(
� ðxi � mÞ2

2s2

)

¼ exp

(
�
Xn
i¼ 1


ðxi � mÞ2=2s2
�)

;

where m is determined by the posterior distribution. The product of the likelihood function and the prior gives the posterior,

which is obtained (after some algebra) as follows:

f ðmjxÞfpðmÞfexp

� ðm� m1Þ2 = 2s2

1

�
where

m1 ¼
n

s2
x þ 1

s2
0

m0

n

s2
þ 1

s2
0

and

s2
1 ¼ 1

n

s2
þ 1

s2
0

.

Thus, the posterior distribution of m is N
�
m1;s

2
1

�
.

(b) Note that the sample mean x ¼ 10:2 lb; and sample standard deviation s ¼ 2.77 lb. Now from (a), the posterior distribution

of m is normal with mean

m1 ¼
n

s2
x þ 1

s2
0

m0

n

s2
þ 1

s2
0

¼
5

22
ð10:2Þ þ 1

22
ð10Þ

5

22
þ 1

22

¼ 10:167

and variance

s2
1 ¼ 1

n

s2
þ 1

s2
0

¼ 1
5

22
þ 1

22

¼ 0:66667:
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Thus, the point estimate of m is the posterior mean, 10.167. Fig. 10.3 represents the prior and posterior densities of m.
Sometimes, the inverse of variance in the normal distribution is called the precision of the normal distribution and

denoted by s ¼ 1/s2. Also note that in (a) of the previous example, if the prior variance s20/N; then the prior flattens out,
p(m) f c, a constant. This basically amounts to saying that prior information on m decreases, that is, all m are equally

probable. This corresponds to a noninformative prior. Also, in this case, as s20/N; s21/
s2

n and m1/x. Hence, in the limit

(i.e., for noninformative priors), the posterior f(mjx) will have an Nðx; s2 �nÞ distribution, which is exactly the same
inference as in classical statistics.

In Bayesian inference problems, one of the questions is, which will have relatively more influence, prior or likelihood?
As we observe a large amount of data, it can be shown that the posterior distribution is almost exclusively determined by
the data. That is, asymptotically, observed data will have a larger influence compared with the choice of prior, and thus the
prior will be irrelevant. Hence, we can make the following general observations. If the prior is noninformative and we have
a large data set, then we can expect that the likelihood will have greater influence, whereas if we have a small data set and
an informative prior, then the prior will have a larger influence on the updated posterior distribution. Bayesian estimators
are more complicated to compute than calculating the maximum likelihood estimates in simple cases. However, in complex
settings Bayesian statistics are often relatively easier to compute.

One of the problems in using Bayesian analysis is choosing an appropriate prior. There are no specific rules available
for this purpose. For instance, the following priors are commonly used in the literature. If data are in [0, 1], we could use
uniform or beta distribution. If the data are in [0, N), normal (with nonnegative and relatively large m), gamma, or log-
normal distributions are used. If the data are in (�N,N), normal or t distributions are commonly used. In Section 10.6, we
will learn the empirical Bayes method for choosing priors based on the data itself.

Exercises 10.2

10.2.1. Suppose, in a casino, two kinds of dice are used: one kind (98%) is fair, and the other kind (2%) is loaded such
that 5 comes up 60% of the time and the rest of the numbers are equally probable. We pick a die at random and
roll it three times. We get three consecutive 5s. What is the probability that the die is loaded?

10.2.2. It is believed that cross-fertilized plants produce taller offspring than self-fertilized plants. To obtain an estimate
on the proportion q of cross-fertilized plants that are taller, an experimenter observes a random sample of 15 pairs
of plants, exactly the same age, with each pair grown under the same conditions, with one cross-fertilized and the
other self-fertilized. Based on previous experience, the experimenter believes that the following are possible
values of p and prior probabilities for each value (prior weight), p(q):

q 0.80 0.82 0.84 0.86 0.88 0.90

p(q) 0.03 0.40 0.22 0.15 0.15 0.05

0.5

0.45

0.4

0.35

0.3

0.25

0.2
Prior

Posterior

0.15

0.1

0.05

0
4 6 8 10

μ

Π (μ)

12 14 16

FIGURE 10.3 Prior and posterior densities of m.
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From the experiment, it is observed that in 13 of 15 pairs, the cross-fertilized plant is taller.
(a) Create a table with columns for prior, likelihood of q given sample, prior times likelihood, and posterior

probability of q. Based on the posterior probabilities, what value of q has the highest support? Also, find
E(q) based on the posterior probabilities.

(b) Redo (a) with a completely noninformative prior, that is, take the prior for the proportion q as one of the
equally spaced values 0, 0.1, 0.2, ., 0.9, 1. Also assign for each value of q the same probability,
p(q) ¼ 1/11.

(c) Calculate the MLE of q and compare it with the Bayesian estimate.
10.2.3. Consider the problem of estimating p in a binomial distribution. Let X be the number of successes in a sample of

size n.
(a) Let the prior distribution of p be given by Beta(3, 1), that is:

pðpÞ ¼
	
3p2; 0 < p < 1

0; otherwise.

Find the posterior distribution of p.2
64Hint : f ðxjpÞ ¼

8><
>:
 
n

x

!
pxð1� pÞn�x

; x ¼ 0; 1; 2;.; n

0; otherewise.

3
75

(b) Let the prior distribution of p be given by Beta(a, b) (that is, p(p) f pa�1 (1 � p)b�1). Find the posterior
distribution of p.

10.2.4. A biased coin is tossed n times. Let xi be 1 if the ith toss is heads and 0 if it is tails. Assume a noninformative
prior, p(q) ¼ 1, 0 � q � 1. Let t be the number of heads obtained. Show that the posterior distribution of q is
Beta(t þ 1, n � t þ 1).

10.2.5. Let X1, X2, ., Xn be exponential random variables with parameter l. Let the prior p(l) be exponentially distrib-
uted with parameter m, which is a fixed and known constant.
(a) Show that the posterior distribution of l is Gamma

�
n þ1;m þPn

i¼1xi
�
.

(b) Obtain the Bayes estimate of l.
10.2.6. Let X1, X2, ., Xn be Poisson random variables with parameter l. Assume that l has a Gamma(a, b) prior.

(a) Compute the posterior distribution of l.
(b) Obtain the Bayes estimate of l.
(c) Compare the MLE of l with the Bayes estimate of l.
(d) Which of the two estimates is better? Why?

10.2.7. Let X1, X2, ., Xn be Poisson random variables with parameter l. Assume that l has an exponential distribution
with q ¼ 1 prior.
(a) Compute the posterior distribution of l and show that it is Gamma

��Pn
i¼1xi þ1

�
; ðn þ1Þ�.

(b) Find the Bayes estimate of l.
10.2.8. It is known that a certain disease has affected 10% of a population. In a random sample of 50 patients typical of

the disease group who are exposed to a new treatment, we observe that 12 patients were hospitalized in a year.
Let m be the rate of the population that needs hospitalization. Assume that:

mwGammað0:1; 2Þ and f ðxjmÞwPoið50mÞ.

Given that 0.24 is an observation from f(xjm), find the Bayesian estimator of m (that is, obtain E(mjx)).
10.2.9. Let X1, ., Xn be an N(m, 2) random sample with prior p(m) having N(0, s2) distribution with known s2. Obtain

the posterior distribution of m.
10.2.10. Let X1, ., Xn be an N(m, 1) random sample with prior p(m) having the pdf [1/p (1 þ m2)]. Show that the

posterior:

pðmjxÞf exp

(
� nðm� xÞ2

2

)
� 1
1þ m2

.
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10.3 Bayesian confidence interval or credible interval

In this section, we want to study the question, “Can we construct an interval such that we are confident that the interval
contains the unknown true value of q?” We have seen how in many situations it may be preferable to use an interval
estimate instead of a point estimate for a population parameter q. Such intervals in classical statistics were called confi-
dence intervals. We can extend the concept of interval estimation to a Bayesian setting. The Bayesian analogue of a
confidence interval is called a credible interval and is defined as follows.

Definition 10.3.1. A 100(1La)% credible interval for q is an interval (a, b) such that:

pða� q� bjx1;.; xnÞ � ð1�aÞ.
Here a is given a small positive number between 0 and 1, and x1; :::; xn are the sample values.
Note that we read this definition backward, that is, we are at least 100% (1 � a) confident that the true value of q is

between a and b, given the sampled information.
Because the conditional distribution of q given X1, ., Xn is actually a probability distribution, it makes sense to talk

about the probability that q is in the interval (a, b). Once we have observed data, the credible interval is fixed while q is
random. This is in contrast to the classical confidence interval where the interval is random but q is a fixed parameter. In the
classical case, we would say, “In the long run, 100(1 � a)% of all such intervals will contain the true parameter q.” In the
Bayesian approach, we would say, “The probability is at least (1 � a) that q lies within the specified interval (a, b).”

As in the classical case, it would be desirable to minimize the length of the credible interval. This entails choosing only
those points with highest values in the posterior density of f ðqjx1; :::; xnÞ, as shown in Fig. 10.4. This will be better
especially if the density is not symmetric.

Definition 10.3.1 can be rephrased as follows using the posterior distribution of q.

Definition 10.3.2. A 100(1La)% credible interval for q is an interval (a, b) such that:

1.
R b
a f ðqjx1;.; xnÞdq � 1� a; if q is continuous, and the posterior pdf of q is f(qjx1, ., xn);

2.
Pbf ðqjx1;.; xnÞ � 1� a; if q is discrete.

We will now give some examples for computing credible intervals.

EXAMPLE 10.3.1

Suppose X1, ., Xn is a random sample from N(m, s2) with s2 ¼ 4. Suppose the prior pdf of m is N(0, 1), that is, p(m)w N (0, 1).

Find a 95% credible interval for m.

Solution

We have seen from Example 10.2.8 that the posterior distribution of m given x1; :::; xn is normally distributed with:

Mean ¼ 1

1þ 4

n

x

1��

�

a b
0

f(� �x1..., xn)

� / 2� / 2

FIGURE 10.4 Credible interval for q.
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and

Variance ¼ 1

1þ n

4

.

Fig. 10.5 presents the posterior distribution of m.

To find the 95% credible interval for m, we have to find two numbers a and b such that:

pða�X� bÞ ¼ 0:95

where

XwN

�
m ¼ x

1þ 4
n

; s2 ¼ 1

1þ n

4

�
.

We choose a to be �b (b is positive). Using z-scores, we get (X is continuous),

p

0
BBBB@� zaj2 <

m� 1
1þ 4

n

xffiffiffiffiffiffiffiffiffiffi
1

1þ n
4

s < zaj2

1
CCCCA ¼ 1� a;

which can be rearranged as:

p

0
BBB@ 1

1þ 4
n

x� 1ffiffiffiffiffiffiffiffiffiffiffi
1þ n

4

r zaj2 <m<
1

1þ 4
n

xþ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ n

4

r zaj2

1
CCCA ¼ 1� a.

Thus, a 95% credible interval for m is:0
BBB@ 1

1þ 4
n

x� 1ffiffiffiffiffiffiffiffiffiffiffi
1þ n

4

r zaj2;
1

1þ 4
n

xþ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ n

4

r zaj2

1
CCCA.

For convenience, we summarize this procedure in the following steps.

(1+ −)−1xn
4

1+ −n4

1Var =

( )

−

FIGURE 10.5 Posterior distribution of m.

432 Mathematical Statistics with Applications in R



Bayesian credible interval procedure

1. Consider q as a random variable with prior pdf (or pmf)

p(q).

2. Update the prior distribution p(q) using the Bayes theorem.

That is, find the posterior distribution of q by the formula:

pðqjdataÞ ¼

8>>>><
>>>>:

f ðdatajqÞpðqÞR
f ðdatajqÞpðqÞdq; if continuous

f ðdatajqÞpðqÞP
f ðdatajqÞpðqÞ; if discrete.

3. Find two numbers a and b such that:

Z b

a

pðqjdataÞdq � 1� a; if continuous

Xb
q¼ a

pðqjdataÞ � 1� a; if discrete.

Note: The numbers a and b are found such that:Z a

�N

pðqjdataÞdq ¼ a=2; if continuousX
q�a

pðqjdataÞ ¼ a=2; if discrete.

and Z N

b

pðqjdataÞdq ¼ a=2; if continuousX
q�b

pðqjdataÞ ¼ a=2; if discrete.

4. The (1 � a)100% credible interval for q is the interval (a, b).

In the discrete case, an easy way of finding a credible interval of smallest length is to arrange the values of q from most
likely to least likely (that is, in the order of the magnitude of the posterior probabilities), and then put values of q into the
interval until the cumulative posterior probability of the set exceeds (1 � a)100%. Such an interval is called a highest
posterior density (HPD) interval. It can be shown that the HPD interval always exists, and it is unique, so long as for all
intervals of probability (1 � a), the posterior density is never uniform in any interval of values of q.

EXAMPLE 10.3.2

For the data of Example 10.2.1, find a 90% credible interval for q.

Solution

Arranging the values of q from most likely to least likely, we have Table 10.3. Looking at the “cumulative probability” column, we

see that the probability that q is in the set {0.86, 0.84, 0.88, 0.82, 0.80} is 0.90192. So this set is a 90% probability (or credible)

interval for q.

TABLE 10.3 Posterior and Cumulative Probability.

Prior values of q Posterior probability of q Cumulative probability

0.86 0.2661 0.2661

0.84 0.22528 0.49138

0.88 0.15817 0.64955

0.82 0.14208 0.79163

0.80 0.11029 0.90192

0.90 9.8064 � 10�2 0.99984
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Exercises 10.3

10.3.1. (a) Suppose X1,., Xn is a random sample from N(m, s2) with s2 ¼ 9. Suppose the prior pdf of m is N (0, 1); that
is, p(m) w N(0, 1). Find a 95% credible interval for m.

(b) The following is a set of random data from a normal distribution with variance 9:

0:92 1:05 5:53 3:64 �4:47 �2:60 0:71 �3:66 1:38 3:87

7:42 1:76 0:01 2:69 1:54 3:97 1:34 �1:63 �1:24 �4:78

Using the results of (a), compute a 95% credible interval for m, interpret its meaning, and state any assumptions
you have made.

10.3.2. Suppose that a person believes that his last year’s weight was normally distributed with mean of 165 lb and stan-
dard deviation of 5 lb. That is, the prior pdf of m is N(165, 25), or p(m) w N(165, 25). He expects his current
weight X is normally distributed with mean m and standard deviation 7 lb. Following are 10 random measurements
(in pounds) from this year:

176 165 180 172 175

179 166 177 184 183

Find a 95% credible interval for m.
10.3.3. It is known that a certain disease affects 10% of a population. In a random sample of 50 patients in the disease

group who are exposed to a new treatment, we observe that 12 patients were hospitalized in a year. Let m be the
population rate that needs hospitalization in a year. Assume m has a Gamma(0.1, 2) prior. Let m w Gamma(0.1, 2)
and f(xjm) w Poi(50m). Given that x ¼ 0.24 is an observation of X, find the 95% credible internal for m. Obtain a
Bayesian credible interval for m. (If X is the number of patients admitted in a year, assume X w Poi(50m), the
Poisson approximation of the binomial.) How can we improve on this estimate?

10.3.4. For an upcoming congressional election, suppose we want to estimate the amount of support for a particular candi-
date in a district. By previous experience and voter registration data, we can assume that the prior distribution of
the proportion of support, p, is a beta distribution with m ¼ 10, and b ¼ 8 (i.e., p (p) w Beta(10, 8)). We con-
ducted a survey of 1000 randomly selected voters, of whom 600 support the candidate. Obtain a 95% credible
interval for p. What will happen to the credible interval if we reduce the confidence interval? What will happen
to the 95% credible interval if we increase the sample size?

10.3.5. It is recommended that the daily intake of sodium be 2400 mg per day. From a previous study on a particular
ethnic group, the prior distribution of sodium intake is believed to be normal, with mean 2700 mg and standard
deviation 250 mg. If a recent survey for this group resulted in a mean of 3000 mg and standard deviation of
300 mg, obtain a 95% credible interval for the mean intake of sodium for this ethnic group.

10.3.6. Suppose we have a coin (not necessarily balanced) with p being the probability of heads. Assume a uniform prior
for p. Suppose in 20 tosses of this coin, we obtained 12 heads. Obtain a 90% credible interval for p.

10.3.7. Suppose that in a particular telephone exchange, the number of calls received per minute has a Poisson distribution
with parameter l. Assume an exponential prior for l with parameter 2. Suppose this exchange had received 25
calls in 5 minutes. Obtain a 95% credible interval for l.

10.4 Bayesian hypothesis testing

The Bayesian approach to hypothesis testing for simple hypotheses is pretty straightforward. Deciding between two hy-
potheses for a given set of data x reduces to computing their posterior probabilities. If an explicit loss function is available,
the Bayes rule is chosen to minimize the expected value of the loss function with respect to the posterior distribution. In the
absence of a loss function, the probabilities of type I and type II errors are of little interest to the Bayesian.

In the classical hypothesis testing, we test a null hypothesis (denoted by H0) against an alternative hypothesis (denoted
by H1 or Ha). The test procedure is based on controlling the two types of errorsdtype I and type II. The classical test
procedures limit the type I error to a and minimize the type II error. If the type II error is unacceptably high, it is reduced by
increasing the sample size.
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In the Bayesian approach, the problem of deciding between the null and the alternative is rather straightforward.
Consider the problem of hypothesis testing with:

H0 : q˛Q0 vs: H1 : q˛Q1 (10.3)

where Q0, Q1 are subsets of the real line. Let X1, ., Xn be the sample from a population with pdf fq(x).
In the Bayesian hypothesis testing approach we compute the following posterior probabilities:

a0 ¼ Pðq˛Q0jx1;.; xnÞ (10.4)

and

a1 ¼ Pðq˛Q1jx1;.; xnÞ. (10.5)

If a0 > a1, we accept the null hypothesis, and if a0 < a1, we reject the null hypothesis. We now outline the Bayes
hypothesis testing procedure for testing hypothesis (10.3).

Let p(q) be the prior. Also,

p0 ¼ Pðq˛Q0Þ ¼ Pðq˛Q0Þ
and

p1 ¼ Pðq˛Q1Þ ¼ PðH1Þ

Definition 10.4.1. The ratio p0/p1 is called the prior odds ratio. The ratio a0/a1 (see Eqs. 10.4 and 10.5) is called the
posterior odds ratio.

The posterior odds ratio is the ratio of the posterior probabilities, given the data, of the null and alternative hypotheses.
The posterior odds ratio will be used in decision-making for testing the hypotheses. We now compute a0 and a1 using the
Bayes theorem. That is,

a0 ¼ pðq˛Q0jx1;.; xnÞ

¼

8>>>>>><
>>>>>>:

Z
Q0

f ðqjx1;.; xnÞdq; if continuous

X
q˛Q0

f ðqjx1;.; xnÞ; if discrete.

Similarly,

a1 ¼ pðq˛Q1jx1;.; xnÞ

¼

8>>>>>><
>>>>>>:

Z
Q1

f ðqjx1;.; xnÞdq; if continuous

X
q˛Q1

f ðqjx1;.; xnÞ; if discrete.

We reject H0 if the odds ratio (a0/a1) < 1 and accept H0 if (a0/a1) > 1.
This method of hypothesis testing is called Jeffreys hypothesis-testing criterion. It basically says that if the posterior

odds ratio is greater than 1, we accept the null hypothesis; otherwise, we reject the null in favor of the alternative
hypothesis.

Because we cannot determine the probability of a single value in the continuous variable case, it should be noted that a
simple null hypothesis of the form q equals some specified value cannot be dealt with easily in the Bayesian framework.
Hence, unlike the classical framework, here we mostly deal with the composite hypotheses for both null and alternative.
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EXAMPLE 10.4.1

A student taking a standardized test is classified as gifted if he or she scores at least 100 out of a possible score of 150. Otherwise

the student is classified as not gifted. Suppose the prior distribution of the scores of all students is a normal with mean 100 and

standard deviation 15. It is believed that scores will vary each time the student takes the test and that these scores can be modeled

as a normal distribution with mean m and variance 100. Suppose the student takes the test and scores 115. Test the hypothesis that

the student can be classified as a gifted student.

Solution

The hypothesis testing problem can be phrased as:

H0 : q< 100 vs: Ha : q � 100:

Referring to Example 10.2.8, we know that the posterior distribution f(qjx) is a normal with mean 110.4 and variance 69.2.

Because the prior is a N(100, 225), we have p0 ¼ P(q < 100) ¼ 1/2 and p1 ¼ P(q � 100) ¼ 1/2.

We can now compute:

a0 ¼ pðq < 100jx ¼ 115Þ

¼ p

�
q� 110:4ffiffiffiffiffiffiffiffiffiffi

69:2
p <

100� 110:4ffiffiffiffiffiffiffiffiffiffi
69:2

p
�

¼ p

�
z � � 10:4ffiffiffiffiffiffiffiffiffiffi

69:2
p

�
¼ 0:106

and

a1 ¼ pðq � 100jx ¼ 115Þ

¼ 1� pðq < 100jx ¼ 115Þ

¼ 1� 0:106 ¼ 0:894:

Thus, a0/a1 ¼ (0.106/0.894) ¼ 0.119 < 1, and we reject H0.

EXAMPLE 10.4.1 BAYESIAN HYPOTHESIS TESTING PROCEDURE

To testH0: q εQ0 versusH1: q εQ1, whereQ0 andQ1 are given

sets:

1. Consider q as a random variable with prior distribution

p(q).

2. Compute the posterior distribution f ðqjx1; :::; xnÞ of q given

x1, ., xn, using Bayes’ theorem.

3. Compute a0 and a1 using the following formulas:

a0 ¼ pðq˛Q0jx1;.; xnÞ

¼

8>>>>>><
>>>>>>:

Z
Q0

f ðqjx1;.; xnÞdq; if continuous

X
q˛Q0

f ðqjx1;.; xnÞ; if discrete

and

a1 ¼ pðq˛Q1jx1;.; xnÞ

¼

8>>>>>><
>>>>>>:

Z
Q1

f ðqjx1;.; xnÞdq; if continuous

X
q˛Q1

f ðqjx1;.; xnÞ; if discrete.

4. Reject H0 if the posterior odds ratio a0

a1
< 1: Otherwise

accept.

In the foregoing procedure, we assume that P(q ˛ Q0) and P(q ˛ Q1) are both greater than zero.
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Exercises 10.4

10.4.1. The following are random data from a normal distribution with variance 9:

0:92 1:05 5:53 3:64 �4:47 �2:60 0:71 �3:66 1:38 3:87

7:42 1:76 0:01 2:69 1:54 3:97 1:34 �1:63 �1:24 �4:78

(a) Test the hypothesis H0: m � 0 versus Ha: m > 0. Assume that the prior is N(0, 4), so that m � 0 and m > 0 are
equally probable.

(b) Compare your decision with classical hypothesis testing, with a ¼ 0.05.
10.4.2. (a) For the data of Exercise 10.3.2, using the Bayesian method, test the hypothesis H0: m � 170 versus Ha:

m > 170.
(b) Compare your decision with classical hypothesis testing, with a ¼ 0.05.

10.4.3. It is known that a certain disease affects 10% of a population. Of a random sample of 50 patients in the disease
group who are exposed to a new treatment, we observe that 12 patients were hospitalized in a year. Let m be the
population rate that needs hospitalization in a year. Assume m has a Gamma(0.1, 2) prior. Let mw Gamma(0.1, 2)
and f(xjm) w Poi(50m). Given that x ¼ 0.24 is an observation of X, test the hypothesis H0: p � 0.10 versus Ha:
p > 0.10. (If X is the number of patients admitted in a year, assume X w Poi(50m), the Poisson approximation
of the binomial.)

10.4.4. For an upcoming congressional election, suppose we want to estimate the amount of support for a particular candi-
date in a district. By previous experience and voter registration data, we can assume that the prior distribution, the
proportion of support, p, is a beta distribution with a ¼ 10, and b ¼ 8 (i.e., p(p) w Beta(10, 8)). We conducted a
survey of 1000 randomly selected voters, of whom 600 support the candidate. Test the hypothesis H0: p � 0.60
versus Ha: p < 0.60.

10.4.5. Using the data of Exercise 10.3.5, test the hypothesis H0: m � 2400 mg versus Ha: m > 2400 mg for this ethnic
group.

10.4.6. Suppose we have a coin (not necessarily balanced) with p being the probability of heads. Assume a uniform prior
for p. Suppose in 20 tosses of this coin, we obtained 12 heads. Test the hypothesis H0: p � 0.50 versus Ha:
p > 0.50.

10.5 Bayesian decision theory

Bayesian methods in general are more concerned with problems of decision-making than with problems of inference.
Decision theory, as the name implies, is concerned with the problem of making decisions. Statistical decision theory is
concerned with optimal decision-making under uncertainty or when statistical knowledge is available only on some of the
uncertainties involved in the decision problem. Uncertainty could be about the true value related to the decision, or,
uncertainty could be about the actual state of nature. Abraham Wald (1902e50) laid the foundation for statistical decision
theory. Original works on decision theory emerged out of game theory considerations. Many books and articles have been
written on the various aspects of decision theory. The Bayesian approach to decision theory was introduced by Leonard
Jimmie Savage in 1954. In this section, we introduce the general idea of decision theory. We basically deal with analytical
procedures for the decision-making process. This will involve selection of an optimum decision from a choice of courses of
action among two or more alternatives. The Bayesian decision theory quantifies the trade-offs between different decisions
using costs and probabilities that accompany such decisions.

Consider, as an example, a company deciding whether to market a new brand of toothpaste with a whitening agent.
Clearly many factors will affect the decision (for example, the proportion of people who are likely to switch to the new
brand and the likelihood of other competing companies introducing similar toothpastes). These factors are generally
unknown, but estimates can be obtained from statistical investigations.

The classical statistical approach relies exclusively on the data obtained from these statistical investigations, ignoring
other relevant information such as the company’s past experiences in marketing similar products. Statistical decision theory
tries to combine other relevant information with the sample information to arrive at the optimal decision. Therefore, a
Bayesian setting seems to be more appropriate for decision theory.

One piece of relevant information that decision theory considers is the possible consequences of the decisions. Often
these consequences can be quantified. That is, the loss or gain of each decision can be expressed as a number (called the
loss or utility). A loss or utility to a decision maker is the effect of the interaction of two factors: (1) the decision or action
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selected by the decision maker and (2) the event or state of the world that actually occurs. Classical statistics does not
explicitly use a loss function or a utility (payoff) function.

A second source of information that decision theory utilizes is prior information. Prior information could be based on
past experiences of similar situations or on expert opinion. We can follow the procedure explained next as a guideline for
decision-making.

General decision theory procedure

1. Identify the objectives of the decision-making process.

2. Identify the set of actions and set of possible events (states

of nature).

3. Assign probabilities to the occurrence of each possible

state of nature (prior). If more observations are available,

calculate the posterior probabilities of the occurrence of

each possible state of nature.

4. For each possible event, assign a numerical value to the

anticipated payoff (or loss) of each course of action.

5. Compute the expected value of the payoffs (utility or loss

function). This could be done by either using the prior

probabilities, if there are no observations, or using the

posterior probabilities.

6. Select the optimum decision among the available alterna-

tive courses of action that maximizes the expected value of

the payoffs.

There are many other decision criteria available in the literature. In this section, we consider only the expected utility or
loss function approach. We now consider an example to illustrate the idea of statistical decision-making.

EXAMPLE 10.5.1

Suppose you own a small stall at a flea market that is open only on weekends. If the weather is good, you make a profit of $200,

and if it is bad, you close your stall and you make no (zero) profit. However, you have the option of buying, from an insurance

company, weather insurance that costs $75. The company pays you $210 if the weather is bad. Suppose you believe that the

probability of good weather on a particular weekend is p. Compute the expected gain if you insure and if you do not. What is the

best course of action? Arrive at a decision.

Solution

From the information in the problem, we can obtain the utility gain or profit table shown in Table 10.4, based on our decision to

insure or not insure. Suppose that we model the state of weather as good or bad by means of a random variable defined as follows:

q ¼
	
1; if the weather is good

0; if the weather is bad.

Suppose for our example we believe that during a particular weekend P(q ¼ 1) ¼ p, and P(q ¼ 0) ¼ 1 � p. This can be

considered as prior information. The different values of q are called states of nature. We assign (perhaps subjectively) a probability

structure for the states of nature defined by a prior distribution p(q). Now we can compute the expected gain when we insure and

when we do not.

Using the values in the table,

Expected gain given we insure ¼ ð125Þp þ ð135Þð1� pÞ

¼ 135� 10p

Expected gain when do not insure ¼ ð200Þp þ ð0Þð1� pÞ

¼ 200p

TABLE 10.4 Weather Insurance.

Weather

Parameter space / decision space YD Good (q1) Bad (q2)

Insurance (I) (d1) $125 (200 � 75) $135 (210 � 75)

No insurance (NI) (d2) $200 $0
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Hence, insurance is preferable if:

135� 10p > 200p

or

p<
135

210
¼ 0:643:

That is, we should take the insurance if we believe the probability of good weather is less than 0.643.

In general the states of nature are represented by q1, ., qn and the possible decisions (actions) are represented by d1,
., dm. Let U(dj, qi) represent the net gain when the true state of nature is qi and the decision dj is made. Then we can
construct the general utility table shown in Table 10.5.

In Bayesian decision theory, we assume a probability distribution on the states of nature called the prior distribution.
Using this probability distribution, we can find the decision that maximizes the expected utility. That is, let the states of
nature be initially modeled by a random variable q with probability function p(q) such that P(q ¼ qi) ¼ p(qi), i ¼ 1, ., n.
Let U denote the utility. Then the expected utility for decision dj is given by:

EðUjdjÞ ¼
Xn
i¼ 1

Uðdj; qiÞpðqiÞ.

The optimal decision, called the Bayes decision, denoted by d*, is that which maximizes the expected utility. That is,
d* satisfies the following equation:

max
dj

Xn
i¼ 1

Uðdj; qiÞpðqiÞ ¼
Xn
i¼ 1

Uðd�; qiÞpðqiÞ.

This procedure is called the Bayes decision procedure with respect to the assumed or given prior p(qi), i ¼ 1, 2, ., n.

Procedure to find optimal decision

1. For each decision di, compute
Pn

i�1Uðdj ; qiÞpðqiÞ. 2. Find a decision d* from the decision space that maximizes

the sum in step 1. This is the Bayes decision.

In determining the Bayes decision, we have assumed a prior distribution p(q) for the states of nature {qi}. Naturally the
question arises, “Can there be information or observations that will help us to determine p(q)?”

Definition 10.5.1.Observations that can aid us in determining the relative likelihoods of the possible states of nature are
called observables.

TABLE 10.5 General Utility Table.

States of nature

q1 q2 . qi . qn

d1 U(d1, q1) U(d1, q2) U(d1, qi) U(d1, qn)

d2

Decision $

states

dj U(dj, qi)

$

dm U(d1, q1) U(dm, qn)
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We remark that observables enable us to refine and update our initial prior p(q). The updated prior is the conditional
distribution p(qjobservables), which clearly depends on the observables as well as the initial prior p(q). The updated prior
is also called the posterior.

For example, to determine the nature of weather we may hear the weather forecast (80% chance of rain), in which case

we may assume P(G) ¼ 0.2, and P(B) ¼ 0.8. However, the weather forecast is not perfect. Let bG and bB denote the

meteorologist’s prediction. We may like to know P
�
G
��� bG� and P

�
G
��bB�. That is, what is the probability of the weather

being good when the meteorologist predicts the weather will be good, and what is the probability that the weather will be
good when the meteorologist predicts the weather will be bad?

It may be noted that there is no direct causeeeffect relation in G
��� bG. That is, the prediction of the weather forecast does

not influence the weather. If a probability distribution depends on a set of parameters q, the classical approach estimates q
on the basis of an observed sample X1, ., Xn. The samples X1, ., Xn are the observables. Thus, observables are used to
estimate the parameters, that is, we want the distribution of q given X1, ., Xn or p(qjX1, ., Xn). In our weather situation,

the observable is the weather forecast, whereas the parameter is one of the weather conditions, good or bad. In P
�bG���G� we

are asking, “Given that the weather is good, what is the probability that the weather forecast is correct?” We can imagine
that meteorological conditions such as the barometric pressure determine the weather (that is, G ¼ f(m1, ., mk),

mi ¼ meteorological factor), and in this sense we can consider that G is a parameter. We thus want P
�
G
��� bG�.

To compute the posterior P
�
G
��� bG�; we use the Bayes theorem (which needs a prior distribution, P(G)). That is,

P
�
G
��� bG� ¼

P
�bG���G�PðGÞ

P
�bG���G�PðGÞ þ P

�bG���B�PðBÞ .
Similarly, we can compute P

�
B
��bB�:

Coming back to our weather situation, if P(G) is known and P
�bGjG

�
; P
�bB��B� are known, we could obtain the

required posterior distributions P
�
G
��� bG� and P

�
BjbB�. We can now use this distribution to calculate the expected utilities

and choose the decision that maximizes the expected utility.
We now consider an example.

EXAMPLE 10.5.2

Let us initially assume P(q ¼ 1) ¼ P(q ¼ 0) ¼ 1
2. That is,

Pðgood weatherÞ ¼ P ðbad weatherÞ ¼ 1

2
.

Suppose we have the following record of the meteorologist’s predictions. The meteorologist predicts good weather
� bG�; given

the weather is good, 2=3 of the time, that is, P
� bG ���G� ¼ 2=3; and predicts bad weather, given the weather is bad, 3/4 of the time,

that is, P
� bB��B� ¼ 3=4. Thus, given that the meteorologist predicts good weather, what is the probability that the weather will turn

out to be good, and given the meteorologist predicts bad weather, what is the probability that the weather will turn out to be bad?

Solution

To compute the true probabilities, we use the Bayes theorem.

We are given P
� bGjG� ¼ 2

3 and P
�bB��B� ¼ 3

4 ; which imply P

�bBjG� ¼ 1
3 and P

�bG���B� ¼ 1
4 . Using the Bayes theorem, we

obtain the likelihood of G as:

P
�
G
��� bG� ¼

P
� bG ���G�P ðGÞ

P
� bG ���G�P ðGÞ þ P

� bG���B�PðBÞ

¼

�
2

3

��
1

2

�
�
2

3

��
1

2

�
þ
�
1

4

��
1

2

� ¼ 8

11
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and the likelihood of B is:

P
�
B
�� bB� ¼ P

� bB��B�PðBÞ
P
� bB��B�PðBÞ þ P

� bB��G�PðGÞ

¼

�
3

4

��
1

2

�
�
3

4

��
1

2

�
þ
�
1

3

��
1

2

� ¼ 9

13
.

Thus, we have the following updated prior depending upon the meteorologist’s prediction. The updated prior when the

meteorologist predicts good weather is:

pðGÞ ¼ P
�
G
��� bG� ¼ 8

11
;pðBÞ ¼ 1� pðGÞ ¼ 3

11
.

Thus, the updated p(G) is actually pĜðGÞ. Similarly, the updated prior when the meteorologist predicts bad weather�
that is; pB̂ðGÞ� is:

pðGÞ ¼ P

�
G
�� bB� ¼ 4

13
;pðBÞ ¼ P

�
Bj bB� ¼ 9

13
.

That is, if the meteorologist predicts good weather, he will be right about 72.7% of the time, and if he predicts bad weather,

he will be right about 69.2% of the time.

EXAMPLE 10.5.3

Consider Example 10.5.2, with the additional information that the meteorologist has predicted that the weather will be good on a

given weekend. Referring to the utility table (Table 10.5) given in Example 10.5.1, we ask, what should be our decisiondto insure

or not to insuredin light of this prediction?

Solution

From Example 10.5.2, we know that the updated prior, given that the meteorologist predicts good weather, is:

pðGÞ ¼ P

�
G
��� bG� ¼ 8

11
and pðBÞ ¼ P

�
Bj bG� ¼ 3

11
.

Using the foregoing prior and the utility table in Example 10.5.2, we can compute the following expected gains:

Expected gain if we insure ¼ ð125ÞpðGÞ þ ð135ÞpðBÞ

¼ ð125Þ 8

11
þ ð135Þ 3

11
¼ 127:73.

and

Expected gain if we do not insure ¼ ð200Þ 8

11
¼ 145:45.

Therefore, our decision, given that the meteorologist predicts good weather, is not to insure.

Exercises 10.5

10.5.1. Suppose that we will receive $25 if we get two consecutive heads (H) on two flips of a balanced coin. If only one
head appears, we will get $10. On the other hand, if there are no heads, we will lose $15. If monetary return is the
only concern, should we play this game? Why?

10.5.2. In the previous problem, suppose we suspect the coin is not balanced. We feel that P(H) is only 0.4. In our last 10
observations, we counted three heads and seven tails. Should we play the game? Defend your answer.

10.5.3. The owner of a small structural engineering firm in Tampa wants to open a new branch office in Orlando. The
single most influential factor is the projected state of the economy for the next 4 years. If the economy keeps
expanding or at least does not take a turn for the worse, the owner expects an annual profit of $300,000 by opening
the new office. If the economy experiences a downward trend, then the owner forecasts an annual loss of
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$200,000. If he just continues to operate his business in Tampa, he expects a $50,000 annual profit. Suppose a
government forecast indicates that there is a 70% chance of economic expansion or status quo in the next 4 years
and there is a 30% chance that the economy will show a decline. What is the optimal decision in this problem? Did
you make any assumption in obtaining this optimal decision?

10.5.4. In Exercise 10.5.3, suppose the owner decides to look at the accuracy of past forecasts by the government. Sup-
pose his study indicates that a forecast of economic expansion came true only 2/3 of the time, whereas an eco-
nomic downturn came true 4/5 of the time. Now based on this new evidence, what is the optimal option for
the owner?

10.5.5. Consider the weather problem in Example 10.5.1, discussed earlier. The meteorologist’s prediction record over the
past 15 days is as follows:

Weather person’s prediction G B B G G G B G G B B G B G G

How the weather turned out to be B B B G G B B G B G B G G G G

(a) Assuming a uniform distribution for the states of nature, obtain an updated prior (posterior) based on the me-
teorologist’s record.

(b) Obtain the Bayes decision.
10.5.6. A coin (not necessarily fair) will be tossed once, and you have to predict the outcome. If you predict the outcome

correctly you win $1000. Otherwise, you lose $5.
(a) What are the states of nature? What is the decision space? Write the utility table.
(b) Suppose that you believe that the probability of heads is 2/3. What is your price for the states of nature? Find

the expected gains.
(c) Suppose that you are allowed to toss the coin twice and you find that the first toss results in heads and the

second in tails. What are the observables?
(d) Assume the situation in (c). The coin is going to be tossed again and you have to predict the outcome. What is

your updated prior?
(e) What are your expected gains, and what is your decision for the situation in (d)?

10.5.7. We are given the following utility table:

States of nature

q1 q2 q3

d1 0 10 4

d2 �2 5 1

Determine the Bayes decision assuming a uniform prior for the states of nature.
10.5.8. Suppose that we have an observable X that can take only two values, X1 and X2, for the situation in Exercise

10.5.7. The distribution of X depends on the states of nature and is as follows:

q1 q2 q3

X1 0.1 0.5 0.6

X2 0.9 0.5 0.4

That is, P(X ¼ x1jq1) ¼ 0.1 or P(X ¼ x2jq3) ¼ 0.4, and so forth.
Suppose you observe X1; what is the updated prior? What is the Bayes decision?

10.5.9. A large lot has p% defectives and you have to predict p. If you predict p correctly you gain $g, and if the pre-
diction is wrong, you lose $l. It is known that the possible values of p are p1, p2, ., pk.
(a) Set up a utility table.
(b) Suppose you assume a uniform prior for p. That is pðpiÞ ¼ 1

k; i ¼ 1; 2;.; k: Find an expression for the
Bayes decision.

(c) Suppose you have an observable X such that P(X ¼ x1jpi) ¼ ai, i ¼ 1, 2 ., k and P(X ¼ x1jpi) ¼ 1 � ai,
i ¼ 1, 2, ., k. Find the updated prior for p. What is the Bayes decision in this case?
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10.6 Empirical Bayes estimates

Empirical Bayes methods are techniques for statistical inference in which the prior distribution is estimated from the data,
instead of assuming a specific fixed prior distribution. Thus, the essential empirical Bayes task is to learn an appropriate
prior distribution from ongoing statistical experience, rather than knowing it by assumption. The empirical Bayes model
often provides superior estimates of parameters in comparison to the ordinary Bayes model.

The roots of empirical Bayes can be traced back to a work by von Mises in the 1940s; however, the first major work
was developed by Herbert Robbins, who introduced the concept of empirical Bayes to estimate the parameter that behaves
as a random variable in the pdf of a given set of data, f ðxjqÞ. Robbins’s framework is considered nonparametric empirical
Bayes in which the prior distribution is completely unspecified. In this section, we will mostly study parametric empirical
Bayes. In this approach, we specify a parametric family of distributions. Major works on (parametric) empirical Bayes
were done by Efron and Morris in the 1970s.

What we have learned in the previous sections of this chapter we refer to as ordinary or standard Bayesian analysis of a
given set of data, X1;.;Xn; that has been drawn from a population or follows the pdf, f ðxjqÞ. Usually, once we are given
the random sample of size n, we perform a goodness-of-fit test to identify the pdf that probabilistically characterizes the
behavior of the given data. Sometimes, it is not possible to define the pdf of difficult data; then we proceed to analyze the
subject data using nonparametric methods that we present in Chapter 12.

In an ordinary Bayes estimate, we assume that we have identified the pdf, f ðxjqÞ, that characterizes the behavior of the
given data. In such a situation Bayes theory assumes that the parameter q in f ðxjqÞ behaves as a random variable rather than
a fixed point estimate. Thus, we need the pdf of the parameter q since we assumed its behavior as a random variable. We
refer to the pdf of q, say, pðqÞ, as the prior pdf of q. In summary, to perform a standard Bayesian estimation, we need the
following:

1. Identify through the goodness-of-fit methods the pdf of the given data, f ðxjqÞ.
2. Assume a prior pdf that defines the random parameter q, p(q).
3. Assume a loss function, L

�
q; bq�, to be used in the analysis.

Thus, using the above information, we develop the posterior pdf and its expected value in the ordinary (standard)
Bayesian estimate of the parameter q, which was assumed to behave as a random variable. The major problem that we have
in performing ordinary Bayesian analysis is that we must assume or guess the prior pdf. In analyzing real-world data from
health sciences, business, and engineering, among others, we cannot assume a prior pdf. That is, if we obtain ordinary
Bayesian results from an assumed prior pdf, and we check our result using a different prior pdf, the results will be
different. Thus, an ordinary Bayesian estimate is very sensitive to the choice of the assumed prior pdf. To address the issue
of not assuming the prior pdf, we will study some basic aspect of empirical base estimates. There are several methods that
have been introduced to empirically estimate the prior pdf of q, p(q), so that we do not have to assume or guess it as in the
standard Bayes method. Recall that the Bayes theorem can be stated as follows:

pðqjyÞ ¼ pðqÞpðyjqÞ
pðyÞ ;

where pðqjyÞ is the posterior pdf, and pðqÞ and pðyjqÞ are the prior and sampling pdf, respectively. If q has a discrete
distribution, then the marginal pdf of Y is given by:

pðyÞ ¼
X

q
pðqÞpðyjqÞ

where the sum is over all possible values of q. In the continuous case of q we have:

pðyÞ ¼
Z

pðqÞpðyjqÞdq.

In standard Bayes, in general we assume a prior pdf pðqÞ depends on another parameter, h, that is, pðqjhÞ; where h is
called a hyperparameter (h could be a vector). Since the prior of q depends on another parameter h; the posterior density is:

pðqjyÞfpðhÞpðqjhÞpðyjqÞ.
In general, it is difficult if not impossible to directly calculate pðqjhÞ. In the empirical Bayes, we consider:

pðqjyÞz pðqjy; bhðyÞÞ; with bhðyÞ ¼ arg max
h

pðqjhÞ.
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Note that we use argmax; since pðqjhÞ is a function of both q and h; we are maximizing only with respect to h. This
way, we could reduce the complexity of choosing the hyperparameter (prior) by replacing, in most of the cases, with the
MLE of bh of h based on observed data y. This is why, in empirical Bayes, the choice of the prior itself is based on
the observed data. The main difference between ordinary Bayes and empirical Bayes methods is that, in standard Bayes,
the hyperparameter h is assumed to be known, that is, a hyperprior pdf has been placed as h. In contrast, in the empirical
Bayes approach, the hyperparameter remains unknown. Thus, h needs to be estimated from the given data. This approach
is not really Bayesian because we use the same data to identify the prior pdf. Empirical Bayes methods are often considered
as a bridge between classical and Bayesian inference.

It is more common to use bootstrap methodology to estimate the prior in the empirical Bayes approach; in the present
approach, we shall introduce two methods of resampling the given data to estimate (identify) the prior pdf. The resampling
methods that we shall use are the jackknife and the bootstrap. These resampling methods are discussed in Chapter 13;
however, we will give here a brief discussion.

10.6.1 Jackknife resampling

M.H. Quenouille, in 1949, introduced this resampling method, and in 1956, John Tukey refined the method and named it
jackknife, after the Swiss jackknife, which has multiple useful tools. Given a random sample of size n, X ¼ ðX1;.;XnÞ,
the jackknife samples are computed by omitting one observation xi at a time, that is,

xi ¼ ðx1; :::; xi�1; xiþ1; :::; xnÞ.
The dimension of the jackknife sample xi is m ¼ n� 1; that is, n different jackknife samples,

�
xðiÞ
�
i¼1; .;n

. The
following diagram illustrates the process of jackknife resampling, and for each new sample we obtain the MLE of q, that is,bq�1; bq�2; .; bq�m; m ¼ n � 1.

Now, our objective is to use this sequence of jackknife resampling of the MLE of q, bq�1; bq�2; .; bq�m; m ¼ n � 1, to
obtain if possible the pdf of these estimates and use it as our prior pdf, pðqÞ, and proceed to obtain the Bayesian estimate of
q, without guessing it.

10.6.2 Bootstrap resampling

Bradley Efron in 1979 introduced the bootstrap resampling method for estimating the sampling distribution of an estimator.
Given a set of data n, using the subject method, we generate k samples with replacement from the given data with k < n.
The pdf of the k samples will follow the original pdf of the n independent and identically distributed observations. Consider
the observation x1; x2; .; xn; by bootstrapping we obtain different subsets of our original sample, that is, a subsample of
size k. There are several uses of this method, but in our present study of empirical Bayes, we shall use bootstrapping
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resampling to obtain an estimate of the prior pdf. For a given set of data x1; x2; .; xn; we will proceed if possible to
identify the pdf, f ðxjqÞ, that follows the observations or the population that it is drawn from. Through bootstrap resampling

we will obtain a sequence of estimates, bq�1; bq�2; .; bq�k , and through goodness-of-fit methods, we proceed to obtain an
estimate of the prior pdf, pðqÞ, if possible. The following diagram illustrates the process we follow to resample using the
bootstrap method:

Thus, our objective is to use this sequence of estimates to obtain, through the goodness-of-fit method, if possible, the

pdf that drives these estimated bq�1; bq�2; .; bq�k and consider it as the prior pdf, pðqÞ, of the parameter q, that is, p
�bq��. We

then proceed to obtain the Bayesian estimate of q without having to guess it.

10.6.3 Parametric, standard Bayes, empirical Bayes: Bootstrapping and jackknife

In statistics, when we are given a set of data, initially we characterize if the data were randomly collected and test and, if
necessary, remove any outliers. Our next step is to perform parametric analysis, that is, through a goodness-of-fit test we try
to identify, if possible, the pdf that probabilistically characterizes the behavior of the given data. If we cannot identify a
well-defined pdf we must rely on nonparametric methods. The parametric analysis is the underlying pdf, say, f ðxjqÞ: A
better estimate than the parametric estimate, usually the MLE, is the Bayesian estimate. In the Bayesian estimate we ask for
more information, such as the prior pdf; therefore we expect to get more about the estimate of the true parameter q. In
Bayesian analysis we proceed with standard and empirical Bayes methods to study q. In the following Example 10.6.1 we
shall use the data given in Table 10.6 that represent a certain phenomenon of interest to illustrate the parametric, standard,
and empirical Bayesian estimate of the true parameter q.

TABLE 10.6 The Data.

0.46 0.36 0.05 1.55 0.31 0.59 0.05 0.87 0.12 0.10 0.26 0.17 1.01 0.56 0.57

0.19 0.04 0.21 0.04 0.25 0.69 0.88 0.27 0.10 0.47 0.20 0.06 0.05 0.28 0.33

0.10 0.42 0.46 0.51 0.99 0.79 0.35 1.11 0.57 0.18 0.47 0.43 0.67 0.50 0.07

0.22 0.27 0.33 1.27 0.55 0.01 0.77 0.56 0.48 0.02 0.69 1.85 0.63 1.54 0.57

0.07 0.18 0 0.34 0.31 1.19 0.71 0.07 0.34 0.64 0.63 0.47 2.06 0.05 1.36
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EXAMPLE 10.6.1

(a) Parametric analysis

We would like to find, if possible, the pdf, say, f ðxjqÞ, that follows the data given in Table 10.6. We shall use the three commonly

used goodness-of-fit tests in search of the pdf of the given data. These tests are:

1. KolmogoroveSmirnov

2. AndersoneDarling

3. Cramerevon Mises criterion

More information about the definition and structure of these goodness-of-fit tests will be found in Chapter 11.

To obtain a visual idea of what type of pdf we are looking for, we structure the histogram of the given data as shown in Fig. 10.6

to obtain some idea of what type of pdf we are looking for.

The histogram suggests some sort of exponential decay of a pdf. Thus, we believe that exponential pdf is a good candidate and

we begin to perform goodness-of-fit, using the three tests we mentioned. Table 10.7 shows the goodness-of-fit result for the

exponential pdf:

Below is the SAS code for producing the goodness-of-fit results that are given in Table 10.7.

data random;
input var @@;
cards;

0:46 0:36 0:05 1:55 //

;

run;
proc univariate data ¼ random;
var var ; histogram/exp; run;
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FIGURE 10.6 Histogram of the data.

TABLE 10.7 Goodness-of-Fit Result.

Goodness-of-fit tests for exponential distribution

Test Statistic p value

KolmogoroveSmirnov D 0.09398415 Pr > D >0.250

Cramerevon Mises W-Sq 0.14110857 Pr > W-Sq 0.168

AndersoneDarling A-Sq 0.71224681 Pr > A-Sq >0.250
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Thus, all three tests identify the one-parameter exponential pdf that fits the given data, that is,

f ðxjqÞ ¼

8><
>:

1

q
exp
�
�x

q

�
; x � 0; q > 0

0; elsewhere.

We used the MLE of q in performing the aforementioned tests, which is given by:

bqMLE ¼ X ¼ 1

75

X75
i¼ 1

xi ¼ 0:492:

The graph of the exponential pdf, f ðxjq ¼ 0:492Þ, is given in Fig. 10.7.

In addition to the MLE of the true parameter, we can obtain 100ð1�aÞ% confidence limits for the parameter q, which will be

used to compare with standard and empirical Bayes estimates. The confidence limit is based on the c2 distribution. That is,

P

2
4 2n

X
�
c2

a
2 ; 2n

� � q � 2n

X
�
c2
1�a

2 ; 2n

�
3
5 � 100ð1�aÞ%.

For 90% and 95% confidence limits, we have:

P ½ 0:41 � q � 0:58� � 0:90

and

P ½ 0:40 � q � 0:60� � 0:95.

Thus, the confidence range of q for the 90% and 95% confidence limits is 0.17 and 0.2, respectively.

(b) Standard Bayes estimate

Now that we have identified the pdf of the given data to be an exponential distribution, we shall assume that the parameter q

behaves as a random variable and we denote the pdf as f ðxjqÞ. Here we will assume or guess that the pdf of q, that is, the prior pdf

pðqÞ, is given by the inverted gamma, that is,

pðqja; bÞ ¼

8><
>:

ba

GðaÞq
a�1 exp

�
�b

q

�
; q > 0; a;b > 0

0; elsewhere.

where a and b are hyperparameters.

Now, we have identified the pdf of the data, we have assumed the prior pdf, and, assuming a mean squared error loss function,

we can obtain a Bayesian estimate of the true parameter q.

The square error loss function is given by:

L
�
q; bq� ¼ cðqÞ

�
q � bq�2;

and assume that cðqÞ ¼ 1. We choose the estimate of q, bq, so as to minimize the expected loss, E
h
L
�
q; bq�i.
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FIGURE 10.7 Probability density function (pdf ) of f ðx; q ¼ 0:492Þ.
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The posterior pdf is given by:

P ðqjXÞ ¼ pðqÞ LðqjXÞ
mðxÞ . (10.1)

The likelihood function LðqjXÞ and prior pdf, pðqÞ, for a single observation are given by:

LðqjXÞ ¼ 1

q
e

�X
q

ba

Ga
q�ðaþ1Þ e

�b
q

¼ ba

Ga

1

q2þa
e

�ðbþxÞ
q .

The marginal pdf, mðxÞ, is given by:

mðxÞ ¼
Z N

0

ba

Ga

1

q2þa
e

�ðbþxÞ
q dq;

To compute the above integral, we make a transformation from q to Y and assume q ¼ 1
y 0 then:

mðxÞ ¼ ba

Ga

Z N

0

yaþ2 e�yðbþxÞ j J j dy;

where jJ j ¼
���� dq

dy

���� is the absolute value of the Jacobian of transformation. Simplifying mðxÞ, we have:

mðxÞ ¼ ba

Ga

Z N

0

yaþ2 e�yðbþxÞ y�2 dy

ba

Ga

Z N

0

y ðaþ1Þ�1 e�yðbþxÞ dy

¼ ba

Ga

Gðaþ 1Þ
Gðbþ xÞaþ1 .

Thus, the posterior pdf, Eq. (10.6.1), PðqjXÞ, is given by:

P ðqjXÞ ¼ ðbþ xÞaþ1

Gðaþ 1Þ q�ðaþ2Þ e
�ðbþxÞ

q .

Note that for a single observation x, P ðqjXÞ is the same as an inverted gamma pdf with hyperparameters aþ 1 and bþ x. Thus,

in general, x ¼ ðx1; x2; .; xnÞ, the posterior pdf is given by:

P ðqjX ¼ xÞ ¼
�
bþ Pn

i¼1xi
�aþn

Gðaþ nÞ q�ðaþnÞ e
�bþ
Pn

i¼1
xi

q .

Using the R-output given below we have estimated a and b for the given data: ba ¼ 0:57 and bb ¼ 0:06.

> library(fitdistrplus)
> ob ¼ fitdist(1/ro, "gamma")
> ob

Fitting of the distribution “gamma” by maximum likelihood parameters:

Estimate Standard Error

Shape 0.57263897 0.07816841

Rate 0.05705247 0.01167617

Thus, for n ¼ 75, ba ¼ 0:57, and bb ¼ 0:06, the posterior pdf, PðqjXÞ is given by:

P ðqjXÞ ¼ ð36:9Þ75:57
Gð75:57Þ q�ð75:57Þ e

�ð36:9Þ
q ; 0 < q.

Recall that the inverted gamma pdf is of the form:

pðq;a; bÞ ¼ ba

GðaÞ qa�1 exp

�
�b
q

�
; q > 0; a;b > 0 ;

which has mean E ½q� ¼ b
a�1 and varðqÞ ¼ b2

ða�1Þ2ða�2Þ; a > 0.
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Thus, for a squared loss function, the expected value of the posterior pdf is the standard ordinary Bayesian estimate of q. That is,

EðPðqjxÞÞ ¼
bbba � 1

¼ 36:9

75:57� 1
z0:495:

Thus,

bqOBz0:495:

Now, to calculate the Bayesian credible interval (upper and lower confidence limits), say, and a and b, we need to find:

P ½a� q� bj x1; x2; .; xn� � ð1�aÞ100%.

That is, we need to integrate:

Z a

0

ð36:9Þ75:57
Gð75:57Þ q�ð75:57Þ e

�ð36:9Þ
q dq ¼ a

2
;

and

Z b

0

ð36:9Þ75:57
Gð75:57Þ q�ð75:57Þ e

�ð36:9Þ
q dq ¼ a

2
.

The following R-code gives us 95% and 90% confidence limits on the true q.

> library(pscl)
> c (qigamma (0.025, alpha¼75.57, beta¼36.9), qigamma(0.975, alpha¼75.57, beta¼36.9))

½1� 0:3945061 0:6201909

> c (qigamma (0.05, alpha¼75.57, beta¼36.9), qigamma(0.95, alpha¼75.57, beta¼36.9))

½1� 0:4081207 0:5964911

That is, the Bayesian 95% and 90% confidence limits (credible interval) are:

P ½0:4� q� 0:62� � :95

and

P ½0:41� q� 0:6� � :90:

Thus, we have 95% and 90% confidence ranges of 0.22 and 0.19, respectively. While these ranges are slightly wider than the

non-Bayesian range, we need not assume the sampling distribution.

(c) Empirical Bayes: Bootstrap

Here we will use bootstrap resampling to obtain the MLE of each of the samples of the true parameter q that behave as random

variables. We follow the resampling procedure of bootstrap that we have discussed and obtain 50 samples from the original data

n ¼ 75 that was given. Through goodness-of-fit we found the exponential pdf, P ðxjqÞ. That is, for each of the 50 samples of size

75 we obtained 50 estimates of q, bq�1; bq�2; .; bq�50, as shown in Table 10.8.

The R-code for obtaining the bootstrap of q is:

> set.seed(100)
> N ) length (ro)
> nboots ) 50
> boot.result ) numeric (nboots)
> for (i in 1:nboots)
þ{
þ boot.samp ) sample(ro, N, replace¼TRUE)
þ boot.result [i] ) mean (boot.samp)
þ}

To obtain, if possible, the pdf of q, we started with a histogram to obtain a visual indication of a possible pdf. Given in Fig. 10.8

is the histogram of the 50 MLE of q.
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The histogram indicates a gamma pdf for bq�50. We performed a goodness-of-fit test to confirm that indeed the 50 bootstrap

estimates of q, bq�1; bq�2; .; bq�50, follow the gamma pdf. That is,

pðq;a;bÞ ¼ pðq�ja;bÞ ¼

8><
>:

1

GðaÞbaq
a�1 exp

�
�q

b

�
; q > 0; a;b > 0

0; elsewhere.

The goodness-of-fit results using the three tests are given in Table 10.9.

All three tests confirm the gamma prior pdf for bq�, the estimate of q, using bootstrap resampling. Through the goodness-of-fit

testing we obtained the MLE of the hyperparameters a and b of the identified prior pdf, that is, ba ¼ 125:23 andbb ¼ 1
253:5 ¼ 0:0039. Thus,

p
�bq�; ba; bb� ¼ 1

Gð125:23Þ ð0:0039Þ125:23
bq�124:23 exp

 
�q̂

�
0:0039

!
; bq� > 0:

TABLE 10.8 Bootstrap Estimate of q.

0.52 0.46 0.48 0.44 0.53 0.52 0.53 0.54 0.47 0.49

0.45 0.52 0.63 0.49 0.54 0.44 0.46 0.49 0.49 0.51

0.45 0.52 0.53 0.52 0.47 0.51 0.50 0.45 0.47 0.54

0.42 0.53 0.43 0.54 0.51 0.48 0.57 0.49 0.57 0.47

0.55 0.42 0.44 0.44 0.50 0.52 0.52 0.44 0.42 0.48

TABLE 10.9 Goodness-of-Fit Results.

Goodness-of-fit tests for exponential distribution

Test Statistic p value

KolmogoroveSmirnov D 0.10861215 Pr > D 0.146

Cramerevon Mises W-Sq 0.07346459 Pr > W-Sq >0.250

AndersoneDarling A-Sq 0.49233552 Pr > A-Sq 0.220

0.40 0.45 0.50 0.55 0.60 0.65

0
5

10
15
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io

r p
df

Bootstrap of 50 estimates of θ

Histogram of estimates of θ

FIGURE 10.8 Histogram of the estimate of q, bq�50. pdf, probability density function.
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The posterior pdf, p
�bq�; ba; bb��X�, is given by:

p
�bq�; ba; bb��X� ¼

�bb�1 þ nX
�âþn

Gðba þ nÞ
bq�âþn�1

exp�bq��bb�1 þ nX
�
;

¼ ð355Þ175:23
Gð175:23Þ

bq�174:23 exp�q̂
�ð355Þ; bq� > 0 :

We know, under squared error loss function, the Bayes estimate of q is the posterior mean. That is, for a ¼ n þ ba and b ¼bb�1 þ nX ¼ 355, we have:

E
h
p
�bq�; ba; bbjX�i ¼ n þ babb�1 þ nX

¼ 50þ 125:23

254:5þ 101:5
¼ 0:494:

We used the SAS code given below to obtain the necessary calculations.

data
input bootvar @@;
cards;

0:52 0:46 0:48 0:44 0:53 0:52 ...

;
run;
proc univariate data¼ boot;
var bootvar;
histogram/ gamma odstitle ¼ “ fitting gamma distribution on 50 bootstrap estimates”
VAXISLABEL¼ “prior”; inset n mean (5.3) std¼’Std Dev’ (5.3)
skewness (5.3) kurtosis (5.3)
/ pos ¼ ne header ¼ ‘Summary Statistics’ ; run;

Thus, the Bayesian estimate of q under bootstrap resampling to determine the prior pdf of q is:

bq�empboot ¼ 0:494:

The analytical form of a 100ð1�aÞ% credible interval for the true parameter q, under the bootstrapping Bayesian estimate for

the true q, is given by:

Z a

0

ð355Þ175:23
Gð175:23Þ qð174:23Þ e�qð355Þdq ¼ a

2
;

and

Z N

b

ð355Þ175:23
Gð175:23Þ qð174:23Þ e�qð355Þdq ¼ a

2
.

Using the following R-code we obtain (a, b) for 90% and 95% credible intervals using the bootstrap Bayes estimate of q,bq�:
> bootconf) rgamma(50, shape ¼ 175.23, scale ¼ .0028)
> library(EnvStats)
> eqgamma ( bootconf, p ¼ 0.5, method ¼ “mle”, ci ¼ TRUE, ci.type ¼ “two-sided”,
þ conf.level ¼ 0.95, normal.approx.transform ¼ “Kulkarni.powar”, digits ¼ 0)

Thus, the 90% credible interval for the true q is [0.476, 0.495] and

P ½0:476� q� 0:495� � 90% ;

with a confidence range of 0.019. Similarly, the 95% credible interval for the true q is [0.481, 0.502]; thus,

P ½0:481� q� 0:502� � 95%

with a confidence range of 0.021. These are much smaller confidence ranges compared with parts (a) and (b).
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(d) Empirical Bayes estimate: Jackknife

Here we shall use the jackknife resampling method on the data given in Table 10.6. Recall that we have identified the one-

parameter exponential pdf with the MLE of bq ¼ 0:492, that is, f ðx;0:492Þ, the underlying pdf of the data.

Now, we will follow the jackknife resampling procedure and obtain 50 samples, and for each sample we will calculate the

MLE of the true q, that is, bq�1; bq�2; .; bq�50. These jackknife MLE estimates of q are given in Table 10.10.

The R-code for obtaining the jackknife estimates of q is:

> set.seed(10)
> jack ) numeric(length (ro)-1)
> pseudo ) numeric(length (ro))
> for (i in 1:length(ro))
þ{ for (j in 1:length(ro))
þ { if(j<i) jack[j] ) ro[j] else if(j>i) jack[j-1] ) ro[j]}
þ pseudo[i] ) length(ro)*mean(ro) e (length(ro)-1)*mean(jack)}
> samj ) sample(pseudo, 50, replace ¼ T)

Now, we are interested in finding, if possible, the pdf of the 50 jackknife estimates through goodness-of-fit testing. Using the

three commonly used goodness-of-fit tests, the results are given in Table 10.11.

All three tests at the level of significance a ¼ 0:05 identified the one-parameter exponential pdf fit, the jackknife estimates

with the MLE of the hyperparameter being 0.46. That is, the estimated prior pdf of q, pðq;0:46Þ, is given by:

p
�bq�

;0:46
�
¼ 1

0:46
exp

 
�
bq�
0:46

!
; bq� � 0:

The histogram along with the graph of the estimated prior, pðq; 0:46Þ, is given in Fig. 10.9.

Fig. 10.9 shows the pdf of 50 jackknife estimates, which has been identified as the exponential pdf. Thus, we will use the

exponential pdf as our prior to obtain the empirical Bayes estimate of the true q.

The SAS codes for producing the above results are given below:

data
input jackvar @@;
cards;

0:57 0:10 0:46 0:77 0:05 0:04:..

;

TABLE 10.10 Jackknife Estimates of q.

0.57 0.10 0.46 0.77 0.05 0.04 0.69 0.69 0.27 0.46

1.27 0.67 0.12 0.07 0.06 0.46 1.55 0.25 0.33 0.00

0.31 0.27 1.54 0.06 0.10 0.56 0.00 0.21 0.63 0.06

0.47 0.05 1.01 0.07 0.42 1.85 0.18 0.47 0.77 1.11

0.69 0.21 0.36 0.02 0.04 1.01 0.36 0.35 0.87 0.07

TABLE 10.11 Goodness-of-Fit Result.

Goodness-of-fit tests for exponential distribution

Test Statistic p value

KolmogoroveSmirnov D 0.09045389 Pr > D >0.500

Cramerevon Mises W-Sq 0.08260139 Pr > W-Sq >0.250

AndersoneDarling A-Sq 0.51924948 Pr > A-Sq >0.250
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run;
proc univariate data¼ jack; var jackvar;
histogram/ exp odstitle ¼ “ fitting an Exponential distribution on 50 Jackknife estimates”
VAXISLABEL¼ “Prior PDF”; inset n mean (5.3) std¼’Std Dev’ (5.3)
skewness (5.3) kurtosis (5.3)
/ pos ¼ ne header ¼ ‘Summary Statistics’ ; run;

The posterior pdf bq� with hyperparameter b, and its MLE bb , p
�bq�; bb ��x1; x2; .; xn

�
, is given by:

p
�bq�; bb��X� ¼

�bb�1 þ nX
�nþ1

Gðn þ 1Þ
bq�ðnþ1Þ�1

exp�bq��bb�1 þ nX
�
; 0 � q.

For n ¼ 50 and bb ¼ 0:46, we have:

p
�bq�; 0:49�� 2:03� ¼ ð103:67Þ51

Gð51Þ
bq�50 exp�bq�ð103:67Þ; 0 � q.

Thus, the posterior pdf of bq� is the gamma pdf with shape parameter equal to 51 and scale parameter equal to 1
103:67. We know

the Bayes estimate under the square error loss function is the posterior mean.

Thus, the mean or expected value of the gamma pdf is:

E
h
p
�bq�; 0:46jX�i ¼ n þ 1

bb�1 þ nX
¼ 50þ 1

2:17þ 101:5
¼ 0:492:

which is fairly close to the MLE of the parameter q, the standard Bayes and empirical Bootstrap estimate.

The analytical form of the 100ð1� aÞ% credible interval for the true parameter q, under the jackknife empirical Bayes esti-

mate, is given by:

Z a

0

ð103:67Þ51
Gð51Þ qð50Þ e�qð103:67Þdq ¼ a

2
;

and

Z 0

b

ð103:67Þ51
Gð51Þ qð50Þ e�qð103:67Þdq ¼ a

2
;

where ða; bÞ is the credible interval and a is the level of significance.

The following R-code gives the 90% and 95% credible intervals.

> jackconf) rgamma(50, shape ¼ 51, scale ¼ .0096)
> library(EnvStats)
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FIGURE 10.9 Histogram and prior probability density function (pdf ) of bq�1; bq�2; .; bq�50.
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> eqgamma ( jackconf, p ¼ 0.5, method ¼ “mle”, ci ¼ TRUE, ci.type ¼ “two-sided”,
þ conf.level ¼ 0.95, normal.approx.transform ¼ “Kulkarni.powar”, digits ¼ 0)

Thus, the 90% credible interval under jackknife Bayes estimate bq is (0.47, 0.5). That is,

P ½0:47� q� 0:5� � 90%.

The confidence range is 0.5 � 0.47 ¼ 0.03. Similarly, the 95% credible interval is (0.457, 0.495), that is,

P ½0:459� q� 0:495� � 95%;

with a confidence range of 0.038.

Note that all the estimates of the true parameter q, MLE, standard Bayes, empirical Bayes, bootstrapping, and jackknife, are all

very close.

In the literature, there are many different empirical Bayes models and various applications are available. The purpose of
this section is mainly to introduce the concept of empirical Bayes.

Exercises 10.6

10.6.1. You are given the following observation, n ¼ 60, in Table 10.12, that characterizes the behavior of a certain
phenomenon, A, about which we are interested in analyzing and learning as much as possible. Assume that
the given data were randomly obtained.
(a) Through goodness-of-fit testing identify, if possible, the pdf that characterizes probabilistically the behavior

of phenomenon A, say, f ðx; qÞ.
(b) From (a) obtain the MLE of the parameter, or the parameter that drives the pdf, f ðx; qÞ.
(c) Determine the 90% and 95% confidence limits of the two parameters in f ðx; q1; q2Þ.
(d) Interpret the meanings and usefulness of (a), (b), and (c), with respect to phenomenon A.

10.6.2. For the data given in Exercise 10.6.1, assume that the parameter q, in the pdf f ðx; qÞ that you have identified,
behaves as a random variable with prior pdf, pðqÞ, which follows the exponential pdf. Assume a mean square
error loss function, and proceed to answer the following questions:
(a) What is the standard Bayes estimate of the true parameter q?
(b) What are the 90% and 95% credible intervals of the true parameter q?
(c) Interpret the meaning of your results in comparison with those found in Exercise 10.6.1.

10.6.3. (a) Obtain an empirical Bayes estimate of the true q, using the data in Exercise 10.6.1, by estimating the prior
pðqÞ of the parameter q, in f ðxjqÞ, using the bootstrapping resampling method with an n ¼ 50 sample.

(b) Obtain 90% and 95% credible intervals for the true parameter q.
(c) Interpret your results.
(d) Compare your findings with the MLE of q, the standard Bayesian estimate of q, and the empirical Bayes by

bootstrapping of q.
10.6.4. Repeat Exercise 10.6.3, but instead of using bootstrapping, use jackknife resampling and compare the four esti-

mates of q, that is, parametric, standard Bayes, empirical Bayes using bootstrapping, and jackknife estimates of the
prior.

TABLE 10.12 The Data.

0.69 0.54 0.08 2.33 0.47 0.88 0.07 1.31 0.19 0.15

0.39 0.25 1.52 0.84 0.85 0.29 0.05 0.32 0.06 0.37

1.03 1.32 0.41 0.14 0.70 0.29 0.09 0.07 0.42 0.50

0.16 0.63 0.70 0.76 1.49 1.19 0.53 1.67 0.86 0.27

0.71 0.65 1.01 0.75 0.11 0.33 0.41 0.50 1.91 0.83

0.02 1.15 0.85 0.72 0.03 1.04 2.78 0.94 2.32 0.86

454 Mathematical Statistics with Applications in R



10.6.5. We were told by a laboratory scientist that she conducted an experiment and measured the behavior of a certain
characteristic of 60 mice, and the data she collected are given in Table 10.13.
The laboratory scientist also told us that the data follow a two-parameter gamma pdf, f ðx; a; bÞ.
(a) Through goodness-of-fit testing confirm the fact that the data follow a gamma pdf. Through the process you

have identified the MLE of the shape parameter a and location parameter b.
(b) If in (a) the data follow the gamma pdf, f ðx; a; bÞ, find the 95% confidence limit on the true parameter a.
(c) Plot the pdf and its cumulative probability distribution of (a).

10.6.6. (a) If the given data follow the gamma pdf, assume the shape parameter behaves as a random variable with expo-
nential pdf. Using mean square error obtain the standard Bayesian estimate of a.

(b) Obtain a 95% credible interval for the true parameter a and its confidence range. Interpret the meaning of
your results.

(c) Compare and discuss the results of the parametric analysis in Exercise 10.6.5 with the standard Bayesian
results.

10.6.7. (a) We want to estimate the prior pdf, pðaÞ, rather than assume or guess it as in Exercise 10.6.6 using bootstrap
resampling from the given data, that is, estimating the prior, pðbaÞ, and proceed to obtain an empirical Bayes
estimate of the true a.

(b) Obtain a 95% credible interval of the true parameter a and its confidence range.
(c) Compare the results of the parametric analysis, Exercise 10.6.5; standard Bayesian, Exercise 10.6.6; and

empirical Bayes estimates using bootstrapping.
10.6.8. Repeat Exercise 10.6.7 (a), (b), and (c) using jackknife resampling to obtain the empirical Bayesian estimate of the

shape parameter aa. Compare and discuss your current results with the results of Exercises 10.6.5, 10.6.6, and
10.6.7.

10.7 Chapter summary

In this chapter we introduced the basic philosophy, definitions, and methods of performing statistical analysis in a Bayesian
setting. The treatment of unknown parameters as if they are random variables provides a feedback mechanism to update
our original beliefs about the parameter(s). The posterior distribution of the parameter(s) represents our revised belief and is
calculated by combining data and prior knowledge. We also saw a brief explanation of Bayesian decision theory. It should
be noted that there are various other aspects of Bayesian analysis, such as Bayesian regression, in which priors are used
about the regression coefficients as well as about the error variance. It is beyond the scope of one chapter to deal with all
aspects of Bayesian analysis. There are many publications on Bayesian statistics. We have also briefly studied some el-
ements of decision theory, which has a natural base in the Bayesian approach. Empirical Bayes method calculations are
illustrated through an example.

TABLE 10.13 Laboratory Mice Data.

0.56 2.06 1.12 1.34 0.50 1.49 0.67 1.09 1.10 0.81

2.54 0.50 0.65 2.60 1.36 0.19 1.91 1.28 1.92 0.35

0.33 1.24 0.18 0.36 3.53 0.87 0.87 0.80 3.68 1.34

1.90 0.11 2.90 0.77 0.87 1.04 6.37 1.54 1.60 1.09

2.05 0.41 2.86 0.34 0.75 0.66 3.47 0.13 1.73 1.21

0.93 1.36 0.10 0.18 4.88 0.95 0.26 1.84 0.85 2.15

Bayesian estimation and inference Chapter | 10 455



We now list some of the key definitions introduced in this chapter:

- Posterior distribution
- Quadratic loss function
- Absolute error loss function
- 100 (1 � a)% credible interval
- Prior odds ratio
- Posterior odds ratio
- Observable

In this chapter, we have also learned the following important concepts and procedures:

- Bayesian parameter estimation procedure
- Bayesian credible interval procedure
- General decision theory procedure
- Procedure to find optimal decision
- Empirical Bayes

10.8 Computer examples

A very popular software (and it is free) for the Bayesian computation is WinBUGS, which can be obtained from http://
www.mrc-bsu.cam.ac.uk/bugs/. Computing posterior probability for proportions using the steps we learned in Section
10.2 can be performed using Minitab. Refer to the book Bayesian Computation Using Minitab, by Jim Albert (Wadsworth,
1996). For R help, we suggest the book Bayesian Computation with R (second edition), by Jim Albert (Springer, 2009).
The methods explained in this book can also be used in Chapter 13.

10.8.1 Examples with R

To do the R-codes in this section, download the R package LearnBayes.

EXAMPLE 10.8.1: Using the data of Example 10.2.1, write an R-code to obtain the posterior.

Solution

We use p ¼ q.

p¼seq(0.8, 0.9, by ¼ 0.02)

prior¼c(0.13, 0.15, 0.22, 0.25, 0.15, 0.10)

prior¼prior/sum(prior)

plot(p, prior, type¼"h", ylab¼"Prior Probability")

data¼c(13, 2)

post¼pdisc(p, prior, data)

post¼pdisc(p, prior, data)

round(cbind(p, prior, post), 2)

Output:

0.80 0.82 0.84 0.86 0.88 0.90
p

0.
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0.
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0.
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0.
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Figure: Discrete prior distribution for a proportion p.
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p prior post

[1,] 0.80 0.13 0.11

[2,] 0.82 0.15 0.14

[3,] 0.84 0.22 0.23

[4,] 0.86 0.25 0.27

[5,] 0.88 0.15 0.16

[6,] 0.90 0.10 0.10

EXAMPLE 10.8.2 (Posterior calculation) Consider Example 10.2.4 with mp [100, sp [15, and x [115. Write an
R-code to find the posterior.

Solution

R-code

library (LearnBayes)

mup¼100

sigmp¼15

sigma¼10

x¼115

post¼rnorm(1000,((sigmâ2*mup/(sigmp̂2þsigmâ2))þ(sigmâ2*x/(sigmp̂2þsigmâ2))),(sigmâ2*sigmp̂2/(sigmp̂2þsigmâ2)))

post

hist(post)

Output

Along with many posterior sample values, we will get the following histogram for the posterior.
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Histogram of post

EXAMPLE 10.8.3 (Credible interval) Obtain a 95% credible interval for the posterior obtained in Example 10.8.2.

Solution

Once we have the posterior stored in post, the following will give us the credible interval.

R-code

quantile(post, c(0.025,0.5,0.975))

Output

2.5% 50% 97.5%

�76.84277 66.83870 207.86700
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EXAMPLE 10.8.4 (Bayesian hypothesis testing)

The following are random data from a normal distribution with variance 9.

0:92 1:05 5:53 3:64 �4:47 �2:60 0:71 �3:66 1:38 3:87

7:42 1:76 0:01 2:69 1:54 3:97 1:34 �1:63 �1:24 �4:78

Test the hypothesis, H0: m � 0 versus Ha: m > 0. Assume that the prior is N(0, 4), so that m � 0 and m > 0 are equally probable.

Solution

R-code

y¼c(.92, 7.42, 1.05, 1.76, 5.53, .01, 3.64, 2.69, -4.47, 1.54,

þ -2.60, 3.97, .71, 1.34, -3.66, -1.63, 1.38, -1.24, 3.87, -4.78)

pop.s¼3

norpar¼c(0,4) # vector of mean and standard deviation of the normal prior distribution

m0¼0 # value of the normal mean to be tested

mnormt.onesided(m0,normpar,data)

Output

$BF (Bayes factor in support of the null hypothesis)

½1� 0

Post. Odds <1

reject the null hypothesis

$prior.odds (prior odds of the null hypothesis)

½1� 0.7621303

$post.odds (posterior odds of the null

hypothesis)

½1� 0

Post. Odds <1
reject the null hypothesis

$postH (posterior probability of null hypothesis)

½1� 0

Project for Chapter 10

10A Predicting future observations

Suppose we want to predict the value of future observations based on the prior and observed data. In addition to the
posterior distribution f(qjx), in Bayesian statistics we are interested in the marginal density of the observations (note that
because both q and x are random, it makes sense to speak about their joint, marginal, and conditional densities). Using the
Bayes theorem, we have seen that g(x) is at x ¼ (x1, ., xn) (for the continuous case) to be:

gðxÞ ¼
Z

f ðxjqÞpðqÞdq

where f(xjq)p(q) is the joint density of x and q. This also can be written as:

gðxÞ ¼ E½f ðxjqÞ�;
the expected density of observations with respect to the prior distribution p(q). With the help of g(x), we can predict

observations.
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We are more interested in the density of future observations y, given present data x. However, because we have already
updated the value of q using the posterior density, this should be reflected in our prediction:

f

�
yjxÞ ¼

Z
f ðy; qjx

�
dq

¼
Z

f ðyjq; xÞ,pðqjxÞdq

¼
Z

f ðyjqÞpðqjxÞdq;

if y and x are conditionally independent given q. Conditional independence is achieved, for example, when x ¼ (x1, .,
xn)0 and y ¼ (xnþ1, ., xnþm)0 both are samples from f(xjq).

We see that the density of future observations is the expected density of observations with respect to posterior dis-
tribution. Consider two different priors for q: Uniform [0,2], and (2) N(1, 1/16). Assume f(xjq) w N(q, 1). Find the pre-
dictive distributions given the sample X1, X2, ., Xn.
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Objective

In this chapter, we will study various methods of categorical data analysis, including goodness-of-fit tests, to determine
if a given set of data follows a particular probability distribution.

Karl Pearson
(Source: http://www-history.mcs.st-and.ac.uk/whistory/PictDisplay/Pearson.html)

Karl Pearson (1857e1936) is considered the founder of the 20th-century science of statistics. Pearson contributed in
several different fields such as anthropology, biometry, genetics, scientific methods, and statistical theory. He applied
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statistics to biological problems of heredity and evolution. In 1911 he founded the world’s first university statistics
department at the University College London.

He is the author of The Grammar of Science, the three volumes of The Life, Letters and Labors of Francis Galton,
and The Ethic of Free Thought. Pearson was the founder of the statistical journal Biometrika. In 1900, he published a
paper on the chi-square goodness-of-fit test that we will study in this chapter. This is one of Pearson’s most significant
contributions to statistics. In 1893, Pearson coined the term “standard deviation.”

11.1 Introduction

Techniques presented in the previous chapters are mostly designed for quantitative or numerical data that included both
discrete and continuous data. In general, there are two types of data, namely quantitative and categorical. This chapter
provides some introductory ideas on categorical data analysis. Categorical (or qualitative) data are the outcome of an
experiment or a process that can be categorized into a finite number of mutually exclusive groups or categories. The
categorical variables are measured on a scale that is nominal or ordinal. These data are represented through contingency
tables. Examples of categorical variables are the political philosophy of a person such as liberal, conservative, or moderate;
sex of an individual; make and model of a new auto; education level of an individual; or customer satisfaction surveys with
categories such as poor, fair, good, great, excellent; etc. Categories may either be unordered (nominal) or ordered (ordinal).
Telephone numbers, zip codes, blood types, occupation, gender, race/ethnicity, etc. have no particular order. Age group,
degree of agreement with a statement on a questionnaire (strongly agree, agree, neutral, disagree, strongly disagree, etc.),
grade in an exam (such as A, B, C, etc.), or patient condition (poor, fair, good, excellent) have a natural ordering of cat-
egories. Binary variables such as success and failure for nominal or ordinal distinction are unimportant. Categorical variables
can be analyzed with a chi-square goodness-of-fit test. Counts and percentages are the basic statistics available for categorical
variables. Hence, goodness-of-fit tests consist of determining whether the frequency counts in the categories of the variable
agree with a specific distribution. For the regression analysis with contingency table, we will use the logistic regression.

Categorical data can be summarized using a frequency table. We can use a bar graph, Pareto chart, and pie chart for
graphically representing the categorical data. There are many other effective graphical representations available in practice,
however, they are beyond the level of this book. For a detailed account on categorical analysis, we refer to other books,
such as Agresti’s, on the topic.

11.2 Contingency tables and probability calculations

In categorical data, the observed frequencies are organized in rows and columns like a spreadsheet. The table of observed
cell frequencies is called a contingency table. The basics of two-way contingency tables are introduced in this section.
Categorical data are often summarized by reporting the proportion or percentage of each category. Contingency tables are
used in recording counts or percentages for categorical data. We might be interested in if the new medicine’s effectiveness
depends on sex. Contingency tables are very useful for figuring out whether two events are dependent or independent. In
this section, we will study a two-way contingency table with N rows and M columns. We will now give examples, where
N ¼ 2 ¼ M, as well as, M and N both greater than two. 2� 2 contingency tables are very common in many applications,
where binary (yeseno, or successefailure) plays an important role. In the following example, the effectiveness is almost
the same, hence the treatment can be considered gender neutral.

EXAMPLE 11.2.1

In a medical trial to study the effectiveness of a new medication for a specific illness, 180 patients were included in the study,

among whom 80 were females and 100 were males. Out of these people, 55 females and 68 males responded positively to the

medication.

(a) Create a contingency table.

(b) What is the probability that the medication gives a positive (success) result for males?

(c) What is the overall probability that the medication gives a positive result?

(d) Is a positive response of the new medication independent of gender?

Solution

(a) The contingency table is given by Table 11.1
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(b) The probability that the medication gives a positive result for males is

P ðpositive if maleÞ ¼ 68

100
¼ 0:68:

(c) The overall probability that the medication gives a positive result is

Pðoverall positiveÞ ¼ 123

180
¼ 0:6833:

(d) Recall that two events A and B are independent if and only if PðAXBÞ ¼ PðAÞPðBÞ. Let the events A represent female,

and B represent positive response of medication. Then, PðAÞ ¼ 80
180 ¼ 0:44, and PðBÞ ¼ 123

180 ¼ 0:68. Also,

P ðAXBÞ ¼ 55

180
¼ 0:305

sP ðAÞP ðBÞ ¼ 0:300:

Hence, positive response of the new medication and gender may not be independent events. However, to make a statistical

conclusion, we need to perform a chi-square test, described later in the chapter.

In general, a 2 � 2 contingency table can be written as in Table 11.2.

where ðn11; n12; n21; n22Þ are random variables that have a multinomial distribution with sample size
n ¼ ðn11 þ n12 þ n21 þ n22Þ and we can create a corresponding probabilities table of the joint distribution as in Table 11.3.

TABLE 11.1 Effect of Medication Based on Sex.

Male Female Totals

Positive 68 55 123

Negative 32 25 57

Totals 100 80 180

TABLE 11.2 Notation for Joint Outcomes.

Y

1 2 Total

X 1 n11 n12 n1

2 n21 n22 n2

n1 n2 n

TABLE 11.3 Notation for Joint Probabilities.

Y

1 2

X 1 p11 p12

2 p21 p22
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Thus, ðp11;p12;p21;p22Þ define the probability structure of the contingency table, where pij
0s can be estimated using

observed data, pij ¼ nij=n. From Table 11.2 we can estimate the following probabilities:

bPðY ¼ 1Þ ¼ n11 þ n21
n

¼ n1

n

bPðX ¼ 1Þ ¼ n11 þ n12
n

¼ n1
n

bPðY ¼ 1jX ¼ 1Þ ¼ n11
n11 þ n12

¼ n11
n1

bPðX ¼ 1jY ¼ 1Þ ¼ n11
n11 þ n21

¼ n11
n1

; etc.

The marginal probability distributions of X and Y are the sums of cell probabilities across the columns and rows,
respectively. In disease diagnostic tests, usually Y is taken as the outcome of the test (positive (1), negative (2)), and X is
the actual condition (has disease (1), no disease (2)). With this interpretation in Table 11.2, we can define sensitivity and
specificity.

Definition 11.2.1. Sensitivity (also called true positive rate) is defined as the probability that a patient gets a positive test
result, when he has the disease. That is, the proportion of actual positives that are correctly identified:

Sensitivity ¼ PðY ¼ 1jX ¼ 1Þ
and specificity (or true negative rate) is the probability that the patient gets a negative test result, when he doesn’t have the
disease. That is, specificity measures the proportion of actual negatives that are correctly identified. Thus,

Specificity ¼ PðY ¼ 2jX ¼ 2Þ.
In the diagnostic tests, it is better to rewrite the contingency table as in Table 11.4.

In many of the categorical data analyses, odds ratio plays an important role, appearing as a parameter in the models as a
measure of association or as a relative measure of effect. Thus, an odds ratio is a relative measure of effect of a treatment.
In a 2� 2 within row i, the odds of success instead of failure is Li ¼ pi=ð1�piÞ: The ratio of odds L1 and L2 is the odds
ratio given by

q ¼ L1

L2
¼ p1=ð1� p1Þ

p2=ð1� p2Þ .

For joint distributions with cell probabilities fpijg in Table 11.3, the odds in row i is Oi ¼ pi1
pi2
; i ¼ 1; 2. Then the odds

ratio is defined as

q ¼ p11=p12

p21=p22
¼ p11p22

p12p21
.

Thus, we have the following interpretations based on the values of the odds ratio. q ¼ 1 will correspond to inde-
pendence of X and Y: When 1 < q < N; subjects in row 1 are more likely to have success than are the subjects in row 2,
and for values of 0 < q < 1, subjects in row 2 are more likely to have success than are subjects in row 2 (control [placebo,
or no treatment] is better than intervention). Odds ratio is always nonnegative. When values of q are further away from 1,
this will represent stronger association in that direction.

TABLE 11.4 Notation for Probabilities.

Test result (Y)

Positive (1) Negative (2)

True state (X) Positive (1) p1 (sensitivity) 1� p1 (false negative)

Negative (2) p2 (false positive) 1� p2 (specificity)
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EXAMPLE 11.2.2 For the data of Example 11.2.1, we rewrite the table in terms of probabilities, and obtain the odds
ratio.

Solution

The contingency table in terms of probabilities is given by (after approximating to the second digit)

Male Female Totals

Positive 0.38 0.31 0.69

Negative 0.17 0.14 0.31

Totals 0.55 0.45 1.00

Now, the odds ratio is given by

q ¼ ð0:38Þð0:14Þ
ð0:31Þð0:17Þ ¼ 1:009:

That is, for males the test is slightly more likely to give a correct result than for females.

Contingency tables can have more than two categories as can be seen in Example 11.2.2.

EXAMPLE 11.2.2

Fruit trees are subject to a bacteria-caused disease commonly called fire blight (because the resulting dead branches look like they

have been burned). One can imagine several different treatments for this disease: treatment A: no action (a control group);

treatment B: careful removal of clearly affected branches; and treatment C: frequent spraying of the foliage with an antibiotic in

addition to careful removal of clearly affected branches. One can also imagine several different outcomes from the disease:

outcome 1: tree dies in the same year as the disease was noticed; outcome 2: tree dies 2e4 years after the disease was noticed;

and outcome 3: tree survives beyond 4 years. A group of N trees are assorted into one of the treatments (i.e., every tree falls into

exactly one of the following treatment categories [ A j B j C ] ) and over the next few years the outcome is recorded (i.e., every tree

falls into exactly one of the following outcome categories [ 1 j 2 j 3 ] ). If we count the number of trees in a particular treatment/

outcome pair (e.g., the number of trees that received treatment B and lived beyond 4 years: #B3), we can display the results in a

contingency table:

Treatment

Outcome A B C Totals

1 8 5 3 16

2 4 3 3 10

3 3 6 7 16

Totals 15 14 13 42

(a) What is the probability that a randomly selected tree was given treatment B?

(b) What is the probability that a randomly selected tree received treatment B given it had outcome 2?

(c) What is the probability that a randomly selected tree received treatment B or will have outcome 2?

Solution

(a) From the table, PðBÞ ¼ 14

42
¼ 0:33:

(b) From the table, PðBj2Þ ¼ 3

10
¼ 0:3:

(c) Thus, we have

PðBW2Þ ¼ PðBÞ þ P ð2Þ � PðBX2Þ

¼ 14

42
þ 10

42
� 3

42
¼ 0:5:

The general representation of a two-way r � c contingency table, with cells representing counts of outcomes with nij
representing observed cell frequency at cell ði; jÞ, can be represented by Table 11.5.
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Here, n ¼ Pr
i¼ 1

ni ¼
Pc
j¼ 1

nj is the total number of observations, ni ¼
Pr
j¼ 1

nij is the marginal frequency of row i, and

nj ¼ Pc
i¼ 1

nij is the marginal frequency of column j, i ¼ 1;.; r; j ¼ 1;.; c. From this table, we can calculate various

probabilities. For example, the joint distribution of X and Y can be expressed using the multinomial distribution given by

PðN11 ¼ n11;.;Nrc ¼ nrcÞ ¼ n!Yr
i¼ 1

Yc
j¼ 1

nij!

Yr
i¼ 1

Yc
j¼ 1

pnijij

where the probability of having an outcome with X ¼ i and Y ¼ j is denoted as

pij ¼ PðX ¼ i; Y ¼ jÞ ¼ nij
n
; i ¼ 1; 2;.; r; j ¼ 1; 2;.; c.

By restricting to a particular column or row, we can also obtain the conditional probabilities.

Exercises 11.2

11.2.1. In a random sample of 120 females and 110 males, 80 females and 70 males own iPhones, the rest own other
brands. (a) Create a contingency table. (b) What is the probability that a chosen female doesn’t own an iPhone?
(c) What is the probability that a randomly chosen person from this group owns an iPhone? (d) Are gender and
iPhone ownership independent?

11.2.2. In order to study the association between mortality and treatment, a sample of 150 mice was divided into two
groups: 110 were given a standard dose of pathogenic bacteria followed by an antiserum, and a control group
of 40, after receiving pathogenic bacteria, was not given the antiserum. After a month, the numbers of alive
and dead mice in each group are given in Table 11.6.
Compare the probabilities of survival in the two groups.

TABLE 11.5 Two-Way r3c Contingency Table.

XyY/
Y 1 2 . c Total

1 n11 n12 . n1c n1

2 n21 n22 . n2c n2

« « « « «

r nr1 nr2 . nrc nr

Total n1 n2 . nc n

TABLE 11.6 Contingency: Treatment and Mortality Rate.

Outcome

Alive Dead Total

Antiserum 80 30 110

Control 15 25 40

Total 95 55 150
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11.2.3. Among teen drivers, two major reasons for causing accidents are texting and driving, and drunk driving. In a sam-
ple of 1000 accidents, Table 11.7 below lists the fatal and nonfatal accidents based on the two reasons that caused
the accident.

(a) What is the probability that a randomly chosen teen involved in an accident was texting while driving, given
that he is involved in a nonfatal accident?

(b) What is the probability that a randomly chosen teen was driving while drunk, given that she or he is involved
in a nonfatal accident?

(c) What is the probability that a randomly chosen teen is involved in an accident?

11.2.4. In two simple random samples of 100 men and 100 women, the color of their eyes was recorded. Here, you are
now sampling from two different populations that may have different response probabilities. The actual data of the
experiment are summarized in Table 11.8.

(a) What is the probability that a chosen female doesn’t have brown eye color?
(b) What is the probability that a randomly chosen person from this group has brown-colored eyes?
(c) What is the probability that a randomly chosen person from this group has brown-colored eyes given he is a

male?
(d) Create a relative frequency table and interpret its contents.

11.3 Estimation in categorical data

Estimation in categorical data generally involves the proportion of “successes” in a given population. This may consist of
estimating a single population proportion, comparing two population proportions, or investigating the potential relationship
between two or more categorical variables. Thus, if X is a binary response from a trial with two possible outcomes (success/
failure), then the methods of Section 5.5.2, and Section 5.5.7 for single population and two populations cases, respectively,
can be used for the estimation. We will summarize the results here.

TABLE 11.7 Contingency Table: Accidents due to Texting and Drunken Driving.

Reason

Texting while driving Drunken driving Total

Fatal accident 210 42 252

Nonfatal accident 140 608 748

Total 350 650 1000

TABLE 11.8 Contingency Table: Sex by Eye Color.

Sex

Eye color

TotalBlue Green Brown

Female 40 25 35 100

Male 45 20 35 100

Total 85 45 70 200
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11.3.1 Large sample confidence intervals for p

For a random sample of size n from a given population, the point estimate of the population parameter p is given by

bp ¼ the number of “successes”
n

¼ X

n
.

The statistic bp is the key entity in the binomial probability estimation, with true mean p and variance ðpð1 �pÞÞ= n,
respectively. For large sample size n (if both np � 5 and nð1 �pÞ � 5), we use the normal pdf to obtain approximate
100ð1�aÞ% confidence interval for p which is given by

 
bp� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
; bpþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r !
.

That is,

P

"
bp� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r
� p� bpþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ
n

r #
zð1�aÞ

and we read it as “based on the random sample of size n, we are about 100ð1�aÞ% certain that the true value of p is in the

interval

 
bp �za=2

ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

n

q
; bp þza=2

ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

n

q !
.

We now restate a procedure from Section 5.7 for a large sample confidence interval for the difference of the true
proportions, p1 e p2, in two binomial distributed populations.

Large sample confidence interval for p1 e p2

The (1ea)100% large sample confidence interval for p1 e p2 is

given by

�bp1 � bp2

�� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�bp1

�
1� bp1

�
n1

þ bp2

�
1� bp2

�
n2

�s
;

where bp1 and bp2 are the points estimators of p1 and p2.

This approximation is applicable if bpini � 5; i ¼ 1; 2 and�
1�bpi

�
ni � 5; i ¼ 1;2: The two samples are independent.

The Wald confidence interval can be obtained using the following R-commands.
1-sample proportions test (Wald)
library(epitools)
binom.approx(9,20)
We will get the following output.

X n Proportion Lower Upper conf. level

9 20 0.45 0.2319678 0.6680322 0.95

From this, we can see that about 95% confidence interval for the true proportion p is (0.2319678, 0.6680322).

11.4 Hypothesis testing in categorical data analysis

Hypothesis testing on the population proportion is the same as in Sections 6.4 and 6.5 for one and two proportions,
respectively, and we will refer to those sections. Now we will explain the chi-square tests. There are two kinds of chi-
square tests: one-way and two-way analysis. For example, if we are interested in comparing the effectiveness of two or
more types of drugs in treating a particular disease, we will have a one-way analysis. Note that in order to use ANOVA or a
t-test, we need at least one of the variables to be continuous. Thus, we resort to Pearson’s chi-square test. In addition, if we
are interested to find out whether these drugs differently affect men and women, then we need two-way analysis, and in
two-way analysis we will use data from contingency tables. The purpose of both is to determine if the observed frequencies
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are significantly different from the frequencies that we would expect by chance or from a hypothesized distribution. In both
one-way and two-way data, chi-square tests are most often used.

11.4.1 The chi-square tests for count data: one-way analysis

A chi-square test is useful to analyze categorical data and it is intended to test how likely it is that an observed probability
distribution is due to chance, that is, to test whether a frequency distribution observed for categories fits an expected
probability distribution. In this section, we will study several commonly used tests for count data, where observations are
given by counting that assumes nonnegative integer values, {0,1,2,.} (this test can be considered as a one-way test).
These are basically large sample tests based on a c2-approximation. Suppose that we have outcomes of a multinomial
experiment that consists of k mutually exclusive and exhaustive events, A1, ., Ak. Let PðAiÞ ¼ pi; i ¼ 1; 2;.; k. ThenPk
i¼ 1

pi ¼ 1. Let the experiment be repeated n times, and let Xi (i ¼ 1, 2, ., k), represent the number of times the event Ai

occurs. Then (X1, ., Xk) has a multinomial distribution with parameters n, p1; :::; pk . Recall that if n is the total number of
trials, that is, xi ˛f0; 1;.; ng with

Pk
i¼ 1

xi ¼ n; then the pmf of the multinomial distribution is given by

n!

x1!.xk!
px11 .pxkk ;

with EðXiÞ ¼ npi.
Now, let

Q2 ¼
Xk
i¼ 1

ðXi � npiÞ2
npi

:

It can be shown that for large n, the random variable Q2 is approximately c2-distributed with ðk�1Þ degrees of
freedom. It is required that npi � 5 (i ¼ 1, 2,., k) for the approximation to be valid, although the approximation generally
works well if we only have a few values of i (no more than 20% of the total cells), npi � 1 and the rest (about 80%) satisfy
the condition that npi � 5. This statistic was proposed by Karl Pearson in his 1900 paper.

It should be noted that the c2-test that we are studying in this section is an approximate test valid for large samples.
Often Xi is called the observed frequency and is denoted by Oi (this is the observed value in class i), and npi is called the
expected frequency and is denoted by Ei (this is the theoretical distribution frequency under the null hypothesis). Thus,
with these notations, we can calculate

Q2 ¼
Xk
i¼ 1

ðOi � EiÞ2
Ei

¼
X ðObserved � ExpectedÞ2

Expected
.

The example given below illustrates how we apply this goodness-of-fit test.

EXAMPLE 11.4.1

A plant geneticist grows 200 progeny from a cross that is hypothesized to result in a 3:1 phenotypic ratio of red-flowered to white-

flowered plants. Suppose the cross process produces 170 red- to 30 white-flowered plants. (a) Calculate Q2 for this experiment.

(b) Do the given data support the 3:1 ratio at a ¼ 0:05?

Solution

There are two categories of data totaling n ¼ 200. Hence, k ¼ 2. Let i ¼ 1 represent red-flowered and i ¼ 2 represent white-

flowered plants. Then O1 ¼ 170, and O2 ¼ 30.

Here, we want to test the hypothesis to answer the posed question.

H0 : The flower color population ratio is 3 : 1;

Vs:

Ha : The flower color population sampled has a flower color ratio that is not 3 red : 1 white.
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(a) We are given that the probability of red flowers is p1 ¼ 3=4, and the probability of white flowers is p2 ¼ 1=4 and the condition

that np1 � 5 and np2 � 5; are satisfied. Thus, we can proceed to calculate Q2 for the information that is given.

Thus,

E1 ¼ np1 ¼ ð200Þð3 = 4Þ ¼ 150; and E2 ¼ np2 ¼ ð200Þð1 = 4Þ ¼ 50

and

Q2 ¼
X2
i¼ 1

ðOi � EiÞ2
Ei

¼ ð170� 150Þ2
150

þ ð30� 50Þ2
50

¼ 10:667:

Since k ¼ 2, from the c2- table with 1 degree of freedom and a ¼ 0.05, the rejection region is
n
Q2 > c2

1;0:05 ¼ 3:841
o
. Since

10.667 is greater than 3.841, we reject the null hypothesis and conclude that the color ratio is not 3:1. The data support the

alternative hypothesis that the ratio is not 3 red : 1 white.

The type of calculation in Example 11.4.1 gives a measure of how close our observed frequencies are compared to the
expected frequencies. Smaller values of Q2 indicate better fit of the data. The test is also called a “goodness-of-fit” test
statistic, because this measures how well the observed distribution of the data fits with the distribution that is expected
if data are consistent with the assumed distribution. Note that this is equivalent to testing the parameters of a
multinomial distribution. Let an experiment have k mutually exclusive and exhaustive outcomes A1, A2, ., Ak. We
would like to test the null hypothesis that all the pi ¼ p(Ai), i ¼ 1, 2, ., k are equal to known numbers pi0; i ¼ 1;.; k.

The test procedure that we use to test the subject hypothesis is summarized below.

Testing the parameters of a multinomial distribution (summary)

To test

H0 : p1 ¼ p10;.;pk ¼ pk0

Vs:

Ha: At least one of the probabilities is different from the

hypothesized values

The test is always a one-sided upper tail test.

Let Oi be the observed frequency, Ei ¼ npi0 be the expected

frequency (frequency under the null hypothesis), and k be the

number of classes. The test statistic is

Q2 ¼
Xk
i¼ 1

ðOi � EiÞ2
Ei

.

The test statistic Q2 has an approximate chi-square proba-

bility distribution with k � 1 degrees of freedom.

The rejection region is given by

Q2 � c2
k�1; a.

Assumption: Ei � 5 for all k and no more than 20% cells

have 5 > Ei � 1.

Note that the chi-square test will tell us if there is a significant difference between the observed data and the hypothesis
distribution. However, it cannot test the strength of dependence or direction of the difference. This test is known as the c2�
goodness-of-fit test. It implies that if the observed data are very close to the expected data, we have a very good fit and we
do not reject the null hypothesis. That is, for small Q2 values, we don’t have enough evidence to reject H0 and hence, we
will not reject H0.

The following examples illustrate how we apply the chi-square goodness-of-fit test.

EXAMPLE 11.4.2

A TV station broadcasts a series of programs on the ill effects of smoking marijuana. After the series, the station wants to know

whether people have changed their opinion about legalizing marijuana. Historical data from before the series showing the

proportions of different categories of opinions is shown in the first table below, and the second table shows the sample proportion

from the 500 randomly selected people.
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Before the Series Was Shown

For legalization Decriminalization Existing law (fine or imprisonment) No opinion

7% 18% 65% 10%

After the Series Was Shown

For legalization Decriminalization Existing law (fine or imprisonment) No opinion

39% 9% 36% 16%

Here, k ¼ 4, and we wish to test the following hypothesis

H0 : p1 ¼ 0:07; p2 ¼ 0:18; p3 ¼ 0:65; p4 ¼ 0:1

Vs:

Ha : At least one of the probabilities is different from the hypothesized value.

The test is always an upper tail test. We will test this hypothesis using a ¼ 0.01.

Solution

We have the expected frequencies,

E1 ¼ ð500Þð0:07Þ ¼ 35; E2 ¼ 90; E3 ¼ 325; E4 ¼ 50:

The observed frequencies are

O1 ¼ ð500Þð0:39Þ ¼ 195; O2 ¼ 45; O3 ¼ 180; O4 ¼ 80:

The value of the test statistic is given by

Q2 ¼
X4
i¼ 1

ðOi � EiÞ2
Ei

¼
"
ð195� 35Þ2

35
þ ð45� 90Þ2

90
þ ð180� 325Þ2

325
þ ð80� 50Þ2

50

#

¼ 836:62:

From the c2-table, c2
0:01; 3 ¼ 11:3449: Because the test statisticQ2 ¼ 836.62 > 11.3449, we reject H0 at a ¼ 0.01. Hence, the

data suggest that people have changed their opinion after watching the series on the ill effects of smoking marijuana was shown.

That is, the TV station broadcast did not change the opinion of the audience.

EXAMPLE 11.4.3

A die is rolled 60 times and the face values are recorded. The results of this experiment are:

Up face 1 2 3 4 5 6

Frequency 8 11 5 12 15 9

Is the die balanced fair? Test this question using a ¼ 0.05.

Solution

If the die is fair, we must have

p1 ¼ p2 ¼ . ¼ p6 ¼ 1

6

where pi ¼ P (face value on the die is i), i ¼ 1, 2, ., 6. This experimental outcome follows the discrete uniform probability

distribution.

Categorical data analysis and goodness-of-fit tests and applications Chapter | 11 471



Hence,

H0 : p1 ¼ p2 ¼ . ¼ p6 ¼ 1

6

Vs:

Ha : At least one of the probabilities is different from the hypothesized value of 1=6

Note that E1 ¼ n1p1 ¼ (60) (1/6) ¼ 10, ., E6 ¼ 10, and the condition of using this test is satisfied.

We summarize the calculations in the following table:

Face value 1 2 3 4 5 6

Frequency, Oi 8 11 5 12 15 9

Expected value, Ei 10 10 10 10 10 10

The test statistic value is given by

Q2 ¼
X6
i¼ 1

ðOi � EiÞ2
Ei

¼ 6:

From the chi-square table with 5 d.f., c2
0.05; 5 ¼ 11:070.

Thus, c2
0.05;5 ¼ 11:070 ¼ 11.07 >Q2 ¼ 6 and since the value of the test statistic does not fall in the rejection region, we do

not reject H0. Therefore, we do not have enough evidence to conclude that the die is not fair.

The tests that we will study here are approximate tests, but very useful in performing statistical analysis. Let the random
variables (X1, ., Xk) have a multinomial distribution with parameters n, p1;.; pk . Let n be known. We will now present
some important tests based on the chi-square c2-statistic.

11.4.2 Two-way contingency table: test for independence

Another important use of the c2-statistic is testing for dependencies or associations between the rows and columns in a
contingency table. That is, if we have two categorical variables, is there convincing evidence of association between the
variables in the population? Here, we have seen that n randomly selected items are classified according to two different
criteria, or two factors (row factor and column factor), where the row factor has r levels and the column factor has c levels.
The obtained data are displayed in a contingency table as shown in Table 11.9, where nij represents the number of data
values in row i and column j. Our interest here is to test for independence of the two-way classifications of observed events.
For example, we might classify a sample of students by male or female and by their grade on a statistics course in order to
test the hypothesis that the grades are independent of gender. More generally the problem is to investigate a dependency (or
contingency) between two classification criteria.

In the present study the given data of a problem are presented in a tabular form as illustrated by Table 11.9.

TABLE 11.9 Two-Way Contingency Table.

Levels of column factor

1 2 . C Row total

Row 1 n11 n12 n1c n1:

levels 2 n21 n21 n2c n2:

$

$

r nr1 nr2 nrc nr :

Column totals n:1 n.2 n.c N

where N ¼ Pc
j¼ 1

n:j ¼ Pr
i¼1

ni: ¼
Pr
i¼ 1

Pc
j¼ 1

nij is the grand total.
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Here, we wish to test the hypothesis that the two factors (rows and columns) are independent. We summarize the
procedure in the following table for testing that the factors represented by the rows are independent of those represented by
the columns.

Testing for the independence of two factors

To test

H0 : The factors are independent

Vs:

Ha : The factors are dependent

the test statistic is,

Q2 ¼
Xr
i¼ 1

Xc
j¼ 1

ðOij � EijÞ2
Eij

;

where

Oij ¼ nij

and

Eij ¼ ni:n:j

N
.

Then under the null hypothesis the test statistic Q2 has an

approximate chi-square probability distribution with (r � 1)

(c � 1) degrees of freedom.

Hence, the rejection region is Q2 > c2
a; ðr�1Þðc�1Þ.

Assumption: Eij � 5.

EXAMPLE 11.4.4

Table 11.10 gives a classification according to religious affiliation and marital status for 500 randomly selected individuals.

Using a level of significance, a ¼ 0.01, test the null hypothesis that marital status and religious affiliation are independent.

Solution

We need to test the hypothesis

H0 : Marital status and religious affiliation are independent

Vs:

Ha : Marital status and religious affiliation are dependent :

Here, c ¼ 5 and r ¼ 2. For a ¼ 0.01, and for (c e 1) (r e 1) ¼ 4 degrees of freedom, we have

c2
0:01;4 ¼ 13:2767:

Hence, the rejection region is Q2 > 13.2767.

We have Eij ¼ ninj
N . Thus,

TABLE 11.10 Marital Status and Religious Affiliation.

Religious affiliation

TotalA B C D None

Marital status Single 39 19 12 28 18 116

With spouse 172 61 44 70 37 384

Total 211 80 56 98 55 500
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E11 ¼ ð116Þð211Þ
500

¼ 48:952; E12 ¼ ð116Þð80Þ
500

¼ 18:5;

E13 ¼ ð116Þð56Þ
500

¼ 12:992; E14 ¼ ð116Þð98Þ
500

¼ 22:736;

E15 ¼ ð116Þð55Þ
500

¼ 12:76; E21 ¼ ð384Þð211Þ
500

¼ 162:05;

E22 ¼ ð384Þð80Þ
500

¼ 61:44; E23 ¼ ð384Þð56Þ
500

¼ 43:008;

and

E24 ¼ ð384Þð98Þ
500

¼ 75:264;E25 ¼ ð384Þð55Þ
500

¼ 42:24:

The value of the test statistic is

Q2 ¼
Xr
i¼ 1

Xc
j¼ 1

ðOij � EijÞ2
Eij

¼
"
ð39� 48:952Þ2

48:952
þ ð19� 18:5Þ2

18:5
þ ð12� 12:992Þ2

12:992
þ ð28� 22:736Þ2

22:736
þ ð18� 12:76Þ2

12:76
þ ð172� 162:05Þ2

162:05

þ ð61� 61:44Þ2
61:44

þ ð44� 43:08Þ2
43:08

þ ð70� 75:264Þ2
75:264

þ ð37� 42:24Þ2
42:24

#
¼ 7:1351:

Because the observed value of Q2 does not fall in the rejection region, we do not reject the null hypothesis at a ¼ 0.01.

Therefore, based on the given data, the marital status and religious affiliation are independent. Note that the assumption of Eij� 5

is satisfied.

It should be noted that the chi-square test becomes inaccurate when used to analyze 2� 2 contingency tables, and when
the large sample conditions, Ei � 5 for all cells and no more than 20% cells with Ei � 1, are not met. Fisher’s exact test is
used in these cases, and we refer the reader to the book by Agresti, among other places.

Exercises 11.4

11.4.1. If we toss a coin a few times, we expect half heads and half tails. Suppose we tossed a coin 200 times and obtained
104 heads. Can we assume the coin is fair? Use a ¼ 0:05:

11.4.2. The following table gives the opinion on collective bargaining by a random sample of 200 employees of a school
system, belonging to a teachers’ union.

Opinion on Collective Bargaining by Teachers’ Union.

For Against Undecided Total

Staff 30 15 15 60

Faculty 50 10 40 100

Administration 10 25 5 40

Column totals 90 50 60 200

Test the hypotheses

H0 : Opinion on collective bargaining is independent of employee classification

Vs:

Ha : Opinion on collective bargaining is dependent on employee classification using a ¼ 0:05:

11.4.3. A random sample was taken of 300 undergraduate students from a university. The students in the sample
were classified according to their gender and according to the choice of their major. The results are given
in Table 11.11.
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Test the hypothesis that the choice of the major by undergraduate students in this university is independent of their
gender. Use a ¼ 0.01.

11.4.4. A presidential candidate advertises on TV by comparing his positions on some important issues with those of his
opponent. After a series of advertisements, a pollster wants to know whether people have changed their opinion
about the candidate. Historical data from before the advertisement show the proportions of different categories of
opinions in the first table below, and then the second table below shows the data based on a survey of 950
randomly chosen people:

Before the Advertisement Was Shown.

Support the candidate Oppose the candidate Need to know more about the candidate Undecided

40% 20% 5% 35%

After the Advertisement Was Shown.

Support the candidate Oppose the candidate Need to know more about the candidate Undecided

45% 25% 2% 28%

Let pi, i ¼ 1, 2, 3, 4, represent the respective true proportions.
Test

H0 : p1 ¼ 0:35; p2 ¼ 0:20; p3 ¼ 0:15; p4 ¼ 0:3

Vs:

Ha : At least one of the probabilities is different from the hypothesized value:

Test this hypothesis using a ¼ 0.05.
11.4.5. A survey of footwear preferences of a random sample of 100 undergraduate students (50 females and 50 males)

from a large university resulted in Table 11.12.

(a) Let pi, i ¼ 1, 2, 3, 4, 5 represent the respective true proportions of students with a particular footwear pref-
erence, and let

H0 : p1 ¼ 0:20; p2 ¼ 0:20; p3 ¼ 0:30; p4 ¼ 0:20; p5 ¼ 0:10

Vs:

Ha : At least one of the probabilities is different from the hypothesized value:

TABLE 11.11 Gender and Major Contingency Table.

Gender Arts and sciences Engineering Business Other Total

Male 75 40 24 66 205

Female 45 12 15 23 95

Total 120 52 39 89 300

TABLE 11.12 Gender and Footwear Table.

Boots Leather shoes Sneakers Sandals Other

Female 12 9 12 10 7

Male 10 12 17 7 4
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Test this hypothesis using a ¼ 0.05.
(b) Test the hypothesis that the choice of footwear by undergraduate students in this university is independent of

their gender, using a ¼ 0.05.
11.4.6. A casino game involves rolling three dice. The winning is directly proportional to the total number of sixes rolled.

Suppose a gambler plays the game 150 times, with the following observed counts:

Number of sixes 0 1 2 3

Number of rolls 72 51 21 6

Assuming that roll of one die does not affect the roll of others, test to determine if the dice are fair, at a ¼ 0:05.
11.4.7. Criminologists are interested to know if there is any relationship between homicides and seasons of the year. In the

paper “Is Crime Seasonal” (https://bjs.gov/content/pub/pdf/ics.pdf), the following data for 1361 homicides are
given in terms of seasons.

Winter Spring Summer Fall

328 334 372 327

Do these data support the theory that the homicide rate is not the same over the seasons?
11.4.8. In order to find out the relationship between packaging preferences (in terms of size) to economic status, a

manufacturing company of pain medication conducted a survey. Table 11.13 gives the result of this survey.

Is there a significant relationship between packaging preferences and economic status? Use a ¼ 0:05.

11.5 Goodness-of-fit tests to identify the probability distribution

In studying various real-world phenomena, we begin with a random sample of data X1;.;Xn that represents values of
some sort of a subject of interest. These measurements could represent the amount of carbon dioxide, CO2, in the at-
mosphere on a daily basis, the sizes of cancerous breast tumors, the monthly average rainfall in the state of Florida, the
average monthly unemployment rate in the United States, the hourly wind forces of a hurricane, etc. In order for us to
probabilistically understand the behavior of these phenomena, we will need to identify the probability distribution that
characterizes the probabilistic behavior of the given data, that is, the pdf of the random sample they were drawn from. For
example, at a certain time point we say that these data follow or come from the normal or exponential probability dis-
tribution. One of the important questions then is whether the observed data are representative or follow a particular
probability distribution. The goodness-of-fit tests are used to test if a sample fits a particular distribution. In fact, there is
nothing we can do parametrically or statistically unless through goodness-of-fit testing we identify the probability density
functions, which probabilistically characterize the behavior of the given data, the phenomenon of interest.

To accomplish this objective of identifying the underlying probability distribution, we will discuss four statistical tests
(methods) that we can use to determine how good the data fit a particular well-defined probability distribution. These four
tests are: Pearson’s chi-square test, KolmogoroveSmirnov test, AndersoneDarling test, and ShapiroeWilk test. Even
though we will give theoretical steps of how to calculate the quantities for most of the tests, it should be noted that, in
practice, most of the goodness-of-fit tests will be done using statistical software. For large data sets, it is tedious to do
goodness-of-fit analysis by hand. There are other methods we can follow if we are not able to identify the appropriate pdf,
such as nonparametric or probability distribution free analysis, which will be discussed in Chapter 12.

TABLE 11.13 Economic Status and Size of Purchase.

Lower Middle Upper

Small 23 24 19

Medium 22 26 20

Large 16 28 18

Jumbo 15 21 30
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11.5.1 Pearson’s chi-square test

When we are interested in studying the behavior of a given unknown phenomenon, we begin by obtaining thorough
experimentation or other means a set of data, the random sample. The initial step of studying this phenomenon is to try to
identify the probability distribution that characterizes the behavior of the given data. The methods that we use are called
goodness-of-fit tests. That is, if we assume that a given set of data follows the normal or Gaussian probability distribution,
the data must be a good-fit to this distribution with a high degree of assurance. Historically, the first statistical method to
test the fit of a particular distribution to a given set of data was Person’s chi-square goodness-of-fit test.

In hypothesis-testing problems we often assume that the form of the population distribution is known. For example, in a
c2-test for variance, we assume that the population is normal. The goodness-of-fit test examines the validity of such an
assumption if we have a large enough sample. We now describe the goodness-of-fit test procedure for such an application.
This test uses a measure of goodness of fit, which is the mean of the differences between the observed and expected
outcome frequencies (counts of observations), each squared and divided by the expected frequencies. That is, the test
statistic is given by:

Q2 ¼
Xk
i¼ 1

ðOi � EiÞ2
Ei

.

Here, Oi is the ith observed outcome frequency (in class i), Ei is the ith expected (theoretical) frequency, and i ¼
1; 2;.; k is the number of classes. The expected frequency, Ei, is calculated by

Ei ¼ ½F0ðyuÞ�F0ðylÞ�n;
where F0 is the cumulative probability distribution that is being tested (assumed) to determine if the given data follow (fit)
this probability distribution; Yu and Yl are the upper and lower limits of class i, respectively; and n is the sample size. Thus,
we proceed to set up the hypothesis,

H0 : The given data follow a specific probability distribution ðFÞ
Vs:

Ha : The data do not follow the specified probability distribution:

We proceed to calculate the value of the Q2 statistic and if it is greater than the value we obtain from the c2
a; k�1 tables

for a given level of significance a and k e 1 degrees of freedom, we reject the hypothesis. Note that for (k e 1) degrees of
freedom, we need to know that the F distribution is completely defined. If there are any unknown parameters that need to
be estimated, we need to reduce that many degrees of freedom. That is, the data do not follow or fit the specified probability
distribution. Thus, if the calculated value of the chi-square test statistic is less than the c2

a; k�1 value that we obtain from the
tables, indeed the specified data fit the specified probability distribution at a level of significance a. That is, the rejection
region is given by

P
�
Q2 �c2

a;k�1

�
¼ a:

The basic assumptions for applying this test are

i. The observed frequencies in the k classes should be independent.

ii.
Pk

i¼ 1 Ei ¼ Pk
i¼ 1 Oi ¼ n.

iii. The total frequency, n, should be more than 50.
iv. Each expected frequency, Ei, in each class should be at least 5.

In testing the above hypothesis, we usually assume a value of the level of significance a, like a ¼ 0:01; 0:05; 0:1; etc.
and proceed to make the decision of accepting or rejecting the null hypothesis based on the assumed a. However, by using
statistical packages such as R, it gives you a p value, in contrast to a fixed a value, that is calculated based on the test statistic,
and denotes the threshold value of the significance level in the sense that the null hypothesis will be accepted at all sig-
nificance a levels less than the calculated p value. For example, if p value ¼ 0.05, the null hypothesis will not be rejected for
all values of assumed a < p value of 0.05, and will be rejected for higher levels. Recall that the p value is the probability of
observing a sample statistic as extreme as the test statistic. Since here the test statistic has chi-square distribution, use the chi-
square table to calculate the p value. Note that recently using the p value has created some useful criticism of its applicability
but we will not discuss these issues here. Following is a summary of a step-by-step procedure for applying the subject test.
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Goodness-of-fit test procedures for identifying the probability distributions

Let X1;.Xn be a sample from a population with cdf F(x). We

wish to test Ho : F(x) ¼ Fo(x), where Fo(x) is completely speci-

fied (assumed) pdf.

1. Divide the range of values of the random variables X1 into

k nonoverlapping intervals I1, I2, . Ik . Let Oj be the

number of sample values that fall in the interval Ij (j ¼ 1, 2,

., k).

2. Assuming the probability distribution of X to be Fo (x), find

P(X ˛ Ij ). Let P(X ˛ Ij ) ¼ pi . Let Ej ¼ npj be the expected

frequency.

3. Compute the test statistic Q2 given by

Q2 ¼
Xk
i¼ 1

ðOi � EiÞ2
Ei

:

The test statisticQ2 has an approximate c2-distribution with

(k e 1) degrees of freedom.

4. Reject the H0 ifQ2 � c2
a; ðk�1Þ.

5. Assumptions: Ej � 5, j ¼ 1, 2,., k.

It should be noted that when the hypothesis distribution does not involve any extra parameters, the degrees of freedom is
(k e 1). If the hypothesis distribution involves extra parameters (e.g., in the exponential distribution example given below,
because the exponential distribution has one rate parameter involved which needs to be estimated from the data), the degrees
of freedom for the chi-square test need to be adjusted to subtract one degree of freedom used for estimating each of the
unknown parameters. Also note that if the observed data, Oi, is very close to the expected value, Ei, the difference Oi� Ei is
going to be very small, which implies the Q2 statistic will be small and, thus, a good fit of the given data to the assumed pdf.
It should be noted that when data are numerical, we don’t have natural categories. We need to create categories (similar to
the way we create intervals for histogram) such that for each category the condition Ej ¼ npj � 5 is satisfied. Example
11.5.1 is given only for demonstration purposes, for more accuracy, our sample size should be at least 50.

EXAMPLE 11.5.1

We are given a random sample of n ¼ 30 observations of a given experiment of a certain phenomenon of interest, that is.

1.79 2.62 11.92 9.77 12.13 15.04 16.14 20.74 22.73 23.29 24.97 26.12

211.06 29.60 32.47 36.32 42.18 45.06 45.64 48.34 48.87 64.99 66.28 68.00

68.60 75.34 99.32 162.48 164.38 235.95

We believe that these data may follow the exponential pdf. Test our belief at a ¼ 0:05.

Solution

We need to test

H0 : The given data follow an expontential probability distribution

Vs:

Ha : The data do not follow the specified probability distribution

We will now give steps of how we can solve this problem analytically and then illustrate how this can be implemented in R.

Recall that the pdf of the exponential distribution with the rate parameter l is fðxÞ ¼ l expð�lxÞ; for x � 0; and l > 0:

The MLE of l is given by bl ¼ 1
x . Since l is unknown, we can calculate bin probabilities using bl in place of l:

For the exponential random variable X with the rate parameter l, we know that

P ða�X � bÞ ¼
Zb
a

le�lxdx ¼ e�la � e�lb.

Based on this, we can now calculate the probability of the exponential random variable falling in each individual interval (bin).

Note that the minimum value for these data is 1.79, and the maximum is 235.16. The sample mean is x ¼ 57:738: Thus, bl ¼
1

57:738z0:017:Considering the observed rangeof data and the size of eachbin to ensure the large sample approximation is valid for the

grouped data, we divide the data into four unequal-width bins (intervals) as [0, 25], [25, 50], [50, 80], and [80, N] (since the

exponential is continuous, openorclosed intervalswill not change theprobabilities). Thenwecancalculate eachcell/binprobabilities

as follows (you could also use R to calculate the cumulative density function at a certain value, a, by using pexp(a, rate ¼ l)), and then

calculate the difference between the CDFs at the lower and upper bounds of each interval to calculate these cell probabilities:

Pð0�X � 25Þ ¼ 0:351;P ð25�X � 50Þ ¼ 0:228; Pð50�X � 80Þ ¼ 0:170 and

PðX � 80Þ ¼ 0:250:
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Thus, the expected cell frequencies under the assumed exponential distribution are calculated as

E1 ¼ 0:351 � 30 ¼ 10:54; E2 ¼ 0:228 � 30 ¼ 6:84; E3 ¼ 0:170 � 30 ¼ 5:11, and E4 ¼ 0:250 � 30 ¼ 7:51.

Note that the condition, Ei � 5; for each i; is satisfied, and hence, the test is appropriate as the approximate chi-square

distribution is satisfied. Now the observed and expected frequencies as well as ðOi�EiÞ2
Ei

; i ¼ 1; :::;4; needed for calculating the

chi-square test statistic are given in the following table.

Data interval (bin) Observed frequency (Oi ) Expected frequency (EiÞ
ðOiLEi Þ2

Ei

0e25 11 10.54 0.0198

25e50 9 6.84 0.6837

50e80 5 5.11 0.0025

� 80 5 7.51 0.8364

Thus, the test statistic Q2 is given by

Q2 ¼
Xk ¼ 4

i¼ 1

ðOi � EiÞ2
Ei

¼ 1:5424:

From the c2-table with k� 2 ¼ 2 degrees of freedom (one additional degree of freedom is lost because we had to estimate l),

and with a ¼ 0:05; rejection region is
	
Q2 � 5:991



. Since 1.5424 is less than 5.991, we fail to reject H0: Thus, we can

conclude that the observed data fit well with the exponential distribution.

Below we provide the R-code and output for implementing the above-described goodness-of-fit test.

R-code and output

> x ¼ c(1.79,2.62,11.92,9.77,12.13,15.04,16.14,20.74,22.73,23.29,24.97.
þ 26.12,211.06,29.60,32.47,36.32,42.18,45.06,45.64,48.34,48.87,64.99.
þ 66.28,68.00,68.60,75.34,99.32,162.48,164.38,235.95)
> # estimate the rate parameter
> lambda < e 1/mean(x)
> lambda
[1] 0.01731962
> # define the bin boundaries
> bounds < e c(25,50,80,Inf)
> # the cummulative bin frequencies
> Ocum < e c(sum(x<¼bounds[1]),sum(x<¼bounds[2]),sum(x<¼bounds[3]),sum(x<¼bounds[4]))
> # the observed bin frequencies
> O < - Ocum-c(0,Ocum[-4])
> # CDF
> cp < epexp(bounds, rate ¼ lambda)
> # bin probabilities
> bps < ecp-c(0,cp[e4])
> # chi-square test.
> res < echisq.test(x ¼ O,p ¼ bps)
> res
# p-value

> pv < �1epchisq(as.numeric(res[1]),2)

> pv

[1] 0.4624616.

Thus, for a p value of 0.4624616, we do not reject the null hypothesis and we conclude that the given data are consistent with

the exponential distribution.

EXAMPLE 11.5.2

The grades of students in a class of 200 are given in the following table. Test the hypothesis that the grades are normally distributed

with a mean of 75 and a standard deviation of 8. Use a ¼ 0.05.

Range 0e59 60e69 70e79 80e89 90e100

Number of students 12 36 90 44 18
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Solution

To test the hypothesis,

H0 : Student grades follow a N
�
m ¼ 75; s2 ¼ 64

�
distribution.

Vs:

Ha : Student grades do not follow the N
�
m ¼ 75; s2 ¼ 64

�
distribution.

We have O1 ¼ 12, O2 ¼ 36, O3 ¼ 90, O4 ¼ 44, O5 ¼ 18.

We now compute pi(i ¼ 1, 2, ., 5), using the continuity correction factor,

p1 ¼ PfX � 59:5jH0g ¼ P

�
z � 59:5� 75

8

�
¼ 0:0262;

p2 ¼ 0:2189;p3 ¼ 0:4722;p4 ¼ 0:2476;p5 ¼ 0:0351;

and

E1 ¼ 5:24; E2 ¼ 43:78; E3 ¼ 94:44; E4 ¼ 49:52; E5 ¼ 7:02:

The test statistic results in

Q2 ¼
Xn
i¼ 1

ðOi � eiÞ2
ei

¼ ð12� 5:74Þ2
5:74

þ ð36� 43:78Þ2
43:78

þ ð90� 94:44Þ2
94:44

þ ð44� 49:52Þ2
49:52

þ ð18� 7:02Þ2
7:02

¼ 26:22:

Q2 has a chi-square distribution with (5 e 1) ¼ 4 degrees of freedom. The critical value is c2
0.05; 4 ¼ 7:11: Hence, the rejection

region is Q2 > 11.11. Because the observed value of Q2 ¼ 26.22 > 11.11, we reject H0 at a ¼ 0.05. Thus, we conclude that the

given data do not follow (or are drawn) from the normal pdf.

11.5.2 The KolmogoroveSmirnov test: (one population)

Let Xi; i ¼ 1; 2;.; n be a random sample of n observations and we shall assume is drawn (it follows) from a probability
distribution whose cumulative distribution is specified to be F0ðxÞ. Our objective now is to determine if the actual (correct)
cumulative probability is FðxÞ based on the assumed F0ðxÞ. That is, we wish to test the following hypothesis:

H0 : The true probability distribution that follows the given data; FðxÞ; is actually the assumed distribution F0ðxÞ;
for all x.

Vs:

Ha : The actual cumulative distribution; FðxÞ is not F0ðxÞ; for at least one x.

The KolmogoroveSmirnov goodness-of-fit test to test the above hypothesis is based on the following test statistic:

D ¼ Max
�N<x<N

fjFnðxÞ�F0ðxÞjg;

where FnðxÞ is the sample (empirical) distribution function given by

FnðxÞ ¼ number of X 0s in the sample � x

n
:

Note that for an ordered data Xð1Þ; :::;XðnÞ; FnðxÞ can be given as

FnðxÞ ¼

8>>>><
>>>>:

0; x < Xð1Þ;

i

n
; XðiÞ � x < Xðiþ1Þ;

1; x > XðnÞ:
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If F0ðxÞ and FnðxÞ are plotted against the x-axis, D is the value of the largest vertical distance between F0ðxÞ and FnðxÞ.
In order to compute D, we can use the following. If the n observations are distinct, then define

Ki ¼ max

� in�F0ðXðiÞÞ
;
ði� 1Þ

n
�F0ðXðiÞÞ


�
;

and

D ¼ max
i¼1;.;n

Ki:

If there are tied observations, let l be the number of distinct observations and let Yð1Þ < . < YðlÞ be ordered distinct
observations. Then, let

K '
i ¼ max

	Fn

�
YðiÞ
��F0

�
YðiÞ
�; Fn

�
Yði�1Þ

��F0

�
YðiÞ
�
;

and

D ¼ max
i¼1;.;l

K '
i:

Procedure to calculate D

To calculate the value of the test statistic D, we follow the

following three steps:

1. We calculate the assumed cumulative distribution, F0(x),

based on the given data of observations and the specified

population distribution.

2. We proceed to obtain the cumulative distribution of the

sample, Fn(x), is the empirical distribution function defined

as a step function,

FnðxÞ ¼ #Xi � x

n
;

the number of observations Xi � x divided by n.

3. We find the absolute difference

jF0ðxÞ� FnðxÞ j.
Thus, we have a value of the test statistic D, and if

D � Da;

we will not reject the hypothesis,H0 at level of significance a.

That is, we accept the hypothesis, where Da is the critical value from the KolmogoroveSmirnov tables that is based on
a given a and n: The following example illustrates how we apply this test.

EXAMPLE 11.5.3 From a large statistics class, we have taken a random sample of 55 students, n ¼ 55, and recorded
their ages. The resulting data are:

27 25 24 24 22 20 21 22 21 25 24

26 25 24 23 22 20 21 19 21 25 24

26 25 22 23 22 22 21 19 21 23 21

26 24 22 23 22 22 20 19 21 23 21

26 24 22 23 21 19 20 18 20 20 18

We believe that these data follow the normal pdf and wish to use the KolmogoroveSmirnov goodness-of-fit test, given above,

to test our belief. That is, test

H0 : The ages of the students follows the normal probability distribution

Vs:

Ha : The ages of students does not follow the normal probability distribution

Solution

It usually helps to obtain a possible visual indication of the pdf by structuring a histogram of the given data (see Figure 11.1).

That is,
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Visually it seems that the normal pdf is a good possibility. We shall now test it statistically.

The sample mean is x ¼ 22 and the sample standard deviation is s ¼ 2:08. The three-step procedure of the subject test to

obtain the value of the test statistic D can be easily calculated using the following table and letting D as max of the column,

jF0ðxÞ �FnðxÞj

2624222018
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Age
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FIGURE 11.1 Histogram of ages.

Row Age F0ðxÞ Fn(x) jF0ðxÞ LFnðxÞj D Critical value

1 18 0.028 0.018 0.010 0.127 0.183

2 18 0.028 0.036 0.009

3 19 0.071 0.055 0.017

4 19 0.071 0.073 0.001

5 19 0.071 0.091 0.019

6 19 0.071 0.109 0.038

7 20 0.155 0.127 0.028

8 20 0.155 0.145 0.010

9 20 0.155 0.164 0.009

10 20 0.155 0.182 0.027

11 20 0.155 0.200 0.045

12 20 0.155 0.218 0.063

13 21 0.286 0.236 0.050

14 21 0.286 0.255 0.032

15 21 0.286 0.273 0.013

16 21 0.286 0.291 0.005

17 21 0.286 0.309 0.023

18 21 0.286 0.327 0.041

19 21 0.286 0.345 0.059

20 21 0.286 0.364 0.078

21 21 0.286 0.382 0.096

22 21 0.286 0.400 0.114

23 22 0.454 0.418 0.036

24 22 0.454 0.436 0.018

25 22 0.454 0.455 0.000

26 22 0.454 0.473 0.018
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Since the D-statistic ¼ 0.127 < Da¼0:05 ¼ 0:183 (from the KeS table), we fail to reject the null hypothesis at the level of

significance a ¼ 0:05. Thus, the ages of the students in the class indeed follow the normal pdf.

Also, we can easily calculate the KolmogoroveSmirnov test statistics and the p value using R code, and the output is given

below:

x ¼ c(27,25,24,24,22,20, 21,22,21,25,24.
þ 26,25,24,23,22,20,21,19,21,25,24.
þ 26,25,22,23,22,22,21,19,21,23,21.
þ 26,24,22,23,22,22,20,19,21,23,21.
þ 26,24,22,23,21,19,20,18,20,20,18)

ks.test(x,pnorm, mean(x),sd(x))

Output

One-sample KolmogoroveSmirnov test

data: x
D ¼ 0.1274, P-value ¼ 0.3336
alternative hypothesis: two-sided

Since the p value is large, we cannot reject the null hypothesis.

11.5.3 The AndersoneDarling test

The AndersoneDarling goodness-of-fit test is also used to determine if a given set of data is drawn from a population that
follows a specific probability distribution. This is a modification of the KolmogoroveSmirnov (KeS) test and gives more
weight to the tails than the KeS test. However, critical values for the AndersoneDarling test make use of particular

27 22 0.454 0.491 0.037

28 22 0.454 0.509 0.055

29 22 0.454 0.527 0.073

30 22 0.454 0.545 0.091

31 22 0.454 0.564 0.109

32 22 0.454 0.582 0.127

33 23 0.631 0.600 0.031

34 23 0.631 0.618 0.013

35 23 0.631 0.636 0.005

36 23 0.631 0.655 0.023

37 23 0.631 0.673 0.041

38 23 0.631 0.691 0.059

39 24 0.784 0.709 0.075

40 24 0.784 0.727 0.057

41 24 0.784 0.745 0.039

42 24 0.784 0.764 0.020

43 24 0.784 0.782 0.002

44 24 0.784 0.800 0.016

45 24 0.784 0.818 0.034

46 25 0.892 0.836 0.055

47 25 0.892 0.855 0.037

48 25 0.892 0.873 0.019

49 25 0.892 0.891 0.001

50 25 0.892 0.909 0.017

51 26 0.954 0.927 0.027

52 26 0.954 0.945 0.009

53 26 0.954 0.964 0.010

54 26 0.954 0.982 0.028

55 27 0.984 1.000 0.016
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distribution resulting in the need for calculating critical values for each distribution. As a result, we will not give critical values
for this test, instead we will use the software. There are AndersoneDarling tables available for many popular distributions,
such as, normal, lognormal, exponential, Weibull, etc. Let Xi, i ¼ 1; 2;.; n be a random sample of observations and Yi; i ¼
1; 2;.; n is the corresponding ordered value according to size. The hypothesis that we wish to test is:

H0 : The given data follow a specific probability distribution

Vs:

Ha : The given data do not follow the specified probability distribution.

The AndersoneDarling test statistic for testing the above hypothesis is given by

A2 ¼ �n� S where S ¼ Pn
i¼ 1

ð2i�1Þ
n ½ln FðYiÞþ lnð1�FðYnþ1�iÞ�; n is the random sample size, Yi the ordered data, and

F the specified probability distribution that we are testing. For a given level of significance a, the hypothesis is rejected if
the value of the test statistic A is greater than the critical value Aa, that is, if

A > Aa:

Thus, we reject the null hypothesis in favor of the alternative hypothesis; the specified probability distribution does not
fit the distribution of the drawn data from the population. The Aa is obtained from the AndersoneDarling tables for a given
a. The following example illustrates how we apply the subject test.

EXAMPLE 11.5.4

Use ages of the 55 students given in Example 11.5.3 to illustrate the applicability of the AndersoneDarling goodness-of-fit test.

Solution

The data are given in Example 11.3.3 and we proceed to test our belief that the students’ ages follow the normal pdf.

install.packages(0nortest0)
library(nortest)
ad.test(x,"pnorm")

Output
AndersoneDarling normality test

data: x
A ¼ 0.6456, p-value ¼ 0.08743

Thus, the AndersoneDarling statistic is A ¼ 0.6456 with a p value of 0.08743. Thus, at a 5% level of significance we fail to

reject the null hypothesis. The data fit the normal probability distribution with mean 22 and standard deviation 2.

11.5.4 ShapiroeWilk normality test

The ShapiroeWilk goodness-of-fit test is used to determine if a random sample, Xi; i ¼ 1; 2;.; n, is drawn from a normal
Gaussian probability distribution with true mean and variance, m and s2, respectively. That is, XwNðm; s2Þ: Thus, we wish
to test the following hypothesis:

H0 : The random sample was drawn from a normal population; N
�
m;s2

�
Vs:

Ha : The random sample does not follow N
�
m;s2

�
:

To test this hypothesis, we use the ShapiroeWilk test statistic, which is given by

W ¼

�Pn
i¼ 1

aixðiÞ

�2

Pn
i¼ 1

ðxi � xÞ2
;
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where xðiÞ are the ordered sample values and ai are constants that are generated by the expression,

ða1; a2;.; anÞ ¼ mTV�1

ðmTV�1mÞ1=2

with m ¼ ðm1;m2;.:;mnÞT being the expected values of the ordered statistics that are independent and identically distrib-
uted random variables that follow the standard normal, Nð0; 1Þ, and V is the covariance matrix of the order statistics.

EXAMPLE 11.5.5 Proceed to use the ShapiroeWilk normality test for the data of Example 11.5.3 that we used the
AndersoneDarling goodness-of-fit test to see if the ages of the students follow the normal pdf.

Use a ¼ 0.05.

Solution

The R code for the subject test is

Shapiro.test(x)

Output

ShapiroeWilk normality test

Data: x

W ¼ 0.9683, p value ¼0 .1551

Thus, since the p value is larger than 0.05, we fail to reject the null hypothesis and the ages of the students indeed follow the

normal pdf. This result is the same as that obtained using the AndersoneDarling test.

11.5.5 The PeP plots and QeQ plots

We commonly use a visual interpretation of graphs (plots) to determine if a given random sample of data follows or is
drawn from a well-known probability distribution. These graphs are the probability, PeP plots and the quantile, QeQ
plots.

The PeP plot is a graphical tool used to determine how well a given data set fits a specific probability distribution that
we are testing. This plot compares the empirical cumulative distribution functions of the given data with that of the
assumed true cumulative probability distribution functions. If the plot of these two distributions is approximately linear, it
indicates that the assumed true pdf gives a reasonably good fit to the given data that we seek to find its true pdf.

11.5.5.1 Steps to construct the PeP plot

Let FðxÞ be the cumulative pdf of the random variable, X, with a random sample xð1Þ; xð2Þ;.; xðnÞ of ordered data values
with associated probabilities bCðiÞ ¼ i

nþ1, the scattered PeP plot is the plot of bCðiÞ versus CðiÞ ¼ F
�
X ¼ xðiÞ

�
, of the

possibly true cumulative pdf that we are testing. The step-by-step procedure that we follow to structure the PeP plot is
given below.

Steps for PeP plot

Step 1. Given a random sample x1; x2;.; xn, sort the data in

ascending order,

xð1Þ; x ð2Þ;.; xðnÞ:

Step 2. Associate with each of the ordered data value xð1Þ a

cumulative probability,

bC ðiÞ ¼ i

n þ 1
:

Step 3. Determine the hypothetical probabilities associated

with the probability distribution we are testing:

C ðiÞ ¼ F
�
X ¼ x ðiÞ

�
;

FðxÞ ¼ P ½X � x�;
where FðxÞ is the cumulative pdf.

Step 4. Construct the scatter plot of bC ðiÞ versus

C ðiÞ ¼ F
�
X ¼ xðiÞ

�
.

Step 5. Interpret the plot; if the overall pattern follows

approximately a straight line, then the data follow the assumed

probability distribution, and if the overall pattern has curvature

or shelves, then the data have skewed behavior and therefore

they do not follow the assumed pdf.

The following example illustrates how we obtain and

interpret the subject plot.
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EXAMPLE 11.5.6 Using the data of Example 11.5.3, obtain the PeP plot as in Figure 11.2

Thus, the data fall on a straight line and we can conclude that the information of the ages of the students follows the normal pdf,

which is consistent with our previous test. Again, the PeP plot is a visual decision and we cannot associate with it a degree of

confidence.

The QeQ plot is another graphical method that is commonly used to obtain a graphical (visual) indication of the true
pdf that the given data come from. This method is a graph of the quantiles of the empirical distribution of the given data
versus the quantiles of the assumed true pdf that we are testing. If the resulting graph of these two distributions follows a
linear pattern, it indicates that the assumed pdf fits the given data reasonably well. A step-by-step procedure of obtaining
the QeQ plot is given below.

Steps to obtain QeQ plots

Let FðxÞ be the assumed cumulative pdf of the random variable

X, with a random sample xð1Þ; xð2Þ;.; xðnÞ of ordered data

values with associated probabilities bC ðiÞ ¼ i
nþ1, the QeQ plot

is the xðiÞ ¼ F�1
� bC ðiÞ

�
, the inverse function of FðxÞ.

Step 1. Given a random sample x1; x2;.; xn, sort the data in

ascending order:

xð1Þ; xð2Þ;.; xðnÞ:

Step 2. Associate with each of the order data value xð1Þ a cu-

mulative probability,

bC ðiÞ ¼ i

n þ 1
:

Step 3. Determine the estimated value of the random variable

associated with the assumed probability distribution

xðiÞ ¼ F�1ð bC ðiÞ
�

where FðxÞ is the cumulative density function.

Step 4. Construct the scatter plot of xðiÞ versus
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FIGURE 11.2 PeP plot of the ages.
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Steps to obtain QeQ plotsdcont’d

bx ðiÞ ¼ F�1
h bC ðiÞ

i
.

Step 5. If the overall pattern follows approximately a straight

line, then the data follow the assumed probability distribution.

If the overall pattern has curvature or shelves, then the data

have skewed behavior and they do not follow the assumed

probability distribution.

The following example illustrates how we structure a QeQ plot.

EXAMPLE 11.5.7 We shall use the data given in Example 11.5.3, the ages of 55 students to construct the QeQ plot
to verify normality.

Solution

The results are given in Figure 11.3 (created using Minitab).

Note that the plot follows approximately a straight line, which suggests that the data follow the normal pdf, which we have

also proven using two other goodness-of-fit tests.

Exercises 11.5

11.5.1 The speeds of vehicles (in mph) passing through a section of Highway 75 are recorded for a random sample of 150
vehicles and are given below. Test the hypothesis using the AndersoneDarling test that the speeds are normally
distributed with a mean of 70 mph and a standard deviation of 4. Use a ¼ 0.01.

Range 40e55 56e65 66e75 76e85 >85

Number 12 14 78 40 6

11.5.2 The temperature in degrees Fahrenheit is recorded for a randomly selected 50 days in the city of Tampa, Florida, in
2018. The data collected are given below.
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Mean 22.25
StDev 2.221
N 55
AD 0.646
P-Value 0.087

Normal 

FIGURE 11.3 QeQ plot for the ages.
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City of Tampa

Temperature 46e55 56e65 66e75 76e85 86e95

Number of days 4 6 13 23 4

Using one of the tests introduced in this section, test the hypothesis that the data follow normal pdf with mean 77�F
and variance 6. Use a ¼ 0.05.

11.5.3 A sample of 30 electronic circuit components is randomly selected from a production process. The lifetime, in
hours, of each component is precisely measured by testing it until it fails. The time in hours that it took the compo-
nent to fail is given below:

268.276 420.559 6.590 78.389 14.123 85.507 216.594 39.892 9.468 83.088

519.682 315.754 139.046 4.522 81.480 209.099 170.128 711.794 115.778 108.640

226.053 443.029 35.662 115.668 5.032 111.357 331.462 184.734 79.502 611.019

Using the Pearson’s chi-square goodness-of-fit test, test the hypothesis that the lifetimes of the components follow
an exponential probability distribution with a mean of 200 h. Use a ¼ 0:05:

11.5.4 For the data given in Example 11.5.3, test the goodness of fit that the data follow:
(a) the gamma pdf.
(b) the Weibull pdf.

11.5.5 Using the data given in Example 11.5.1, construct the PeP plot and interpret the meaning of the graph.
11.5.6 For the data given in Example 11.5.2, construct the PeP plot and interpret its meaning.
11.5.7 Using the data given in Example 11.5.1, construct the graph of the QeQ plot and interpret its meaning.

11.6 Chapter summary

In this chapter, we learned different aspects of categorical data analysis, including estimation and hypothesis testing
problems. We also looked at goodness-of-fit methods and how we use them to attempt to identify the pdf that characterizes
probabilistic behavior of a given set of data. These are the methods: chi-square, KolmogoroveSmirnov, Andersone
Darling, and ShapiroeWilk tests.

A list of some of the key definitions introduced in this chapter is given below:

l Categorical data analysis
l Estimation in categorical data
l Hypothesis testing in categorical data
l Test of independence
l Chi-square tests for count data
l Goodness-of-fit test
l Test for independence
l Contingency table
l PeP plot
l QeQ plot
l ShapiroeWilk normality test

In this chapter, we have also learned the following important concepts and procedures:

l Pearson’s chi-square test procedure
l KolmogoroveSmirnov test procedure
l AndersoneDarling test procedure
l ShapiroeWilk test procedure
l PeP plot construction procedure
l QeQ plot construction procedure
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11.7 Computer examples

11.7.1 R-commands

Since most of the R-codes are already given in the chapter, we will only give the R-code for selecting a random sample
from a large data set.

In R, sample() function can be used to take a random sample of size n. Suppose we want to take a random sample of
size 40 from a data set named mydata without replacement.
R-code

Mysample < - mydata[sample(1:nrow(mydata), 40, replace ¼ FALSE),]
When multiple distributions fit well with a data set based on the goodness-of-fit tests, then we may select the best-fitted

distribution based on maximizing the log-likelihood value. The fitdistr() function in the MASS package in R can be used to
calculate maximum likelihood fitting of a univariate distribution. Then the distribution with largest log likelihood can be
chosen as best fit. Download package “MASS.” Then do the following:

library(MASS)
fitdistr(mydata, 0t0)$loglik
> fitdistr(mydata, 0normal0)$loglik

> fitdistr(mydata, 0logistic0)$loglik
> fitdistr(mydata, 0weibull0)$loglik

> fitdistr(mydata, 0gamma0)$loglik
> fitdistr(mydata, 0lognormal0)$loglik

> fitdistr(mydata, 0exponential0)$loglik

Some other distributions such as beta may need specification of additional parameters. We suggest you look at R-help.
It should be noted that there are other packages, such as “fitdistrplus” that will provide functions for fitting univariate
distributions to different types of data. We will not go into details.

11.7.2 Minitab examples

EXAMPLE 11.8.1 (Contingency Table): Consider the following data with five levels and two factors. Test for
dependence of the factors.

Factors Levels

1 2 3 4 5

1 39 19 12 28 18

2 172 61 44 70 37

Solution

In C1 enter the data in column 1 (39 and 172), and continue to C5. Then,

Stat > Tables > Chi-Square-Test . > in Columns containing the table: Type C1 C2 C3 C4 C5 > click OK.

We will obtain the following output.

11.7.2.1 Chi-square test

Expected counts are printed below the observed counts.

C1 C2 C3 C4 C5 Total

1 39 19 12 28 18 116

48.95 18.56 12.99 22.74 12.76

2 172 61 44 70 37 384

162.05 61.44 43.01 75.26 42.24

Total 211 80 56 98 55 500

Chi-Sq ¼ 2.023 þ 0.010 þ 0.076 þ 1.219 þ 2.152 þ 0.611 þ 0.003 þ 0.023 þ 0.368 þ 0.650 ¼ 11.135
DF ¼ 4, p value ¼ 0.129
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Projects for Chapter 11

11A Fitting a distribution to data

A common problem in statistical modeling is fitting a probability distribution to a set of observations (data set) for a given
variable. By doing this graphically (like a histogram), we may have some rough idea. If we do goodness-of-fit tests, with
say two different distributions, it can happen that both hypotheses may not be rejected. So which one should we choose?
This is mainly important in forecasting. Do a short paper on fitting a distribution to data and apply your results to each of
the data in Section 11.4 to check if the chosen distributions are best possible. Some references are:

(1) Fitting distributions With R, http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf
(2) Fitting distributions to data and why you are probably doing it wrong, by David Vose, http://www.vosesoftware.com/

whitepapers/Fitting%20distributions%20to%20data.pdf.

11B Simpson’s paradox

Simpson’s paradox refers to a phenomenon whereby the association between a pair of variables ðX; YÞ reverses sign upon
conditioning of a third variable, Z, regardless of the values taken by Z. Confounding factors play a very important role in
categorical data, resulting in Simpson’s paradox, if we are not careful. As an example, consider data from two hospitals on
an emergency surgical procedure:

Lived Died Survival rate

Hospital 1 120 180 40%

Hospital 2 60 140 30%

From this contingency table, it looks like hospital 1 is significantly better than hospital 2.

(a) Use a hypothesis-testing procedure to test if the survival rates are different at the two hospitals. Use a ¼ 0:05.
Now, we are given the information that hospital 1 is situated in a wealthy area and, as a result, patients arrive there in
relatively good condition. Whereas hospital 2 is in a poor neighborhood, thus, resulting in patients arriving in much
worse condition. Now let us see what happens when we break down the above data by patient condition when they
reached the hospital.

Good condition Bad condition

Lived Died Survival rate Lived Died Survival rate

Hospital 1 120 150 44.44% 0 30 0%

Hospital 2 30 30 50% 30 110 21.42%

Now, hospital 2 is better in both good and bad conditions! This is an example of Simpson’s paradox. Here the
confounding factor is the patient condition.

(b) Find two more real examples for Simpson’s paradox.
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Objective

In this chapter we shall introduce several classical nonparametric or distribution free tests. These tests do not require
distributional assumptions about the population such as the normality.

Jacob Wolfowitz
(Source: http://www-groups.dcs.st-and.ac.uk/whistory/Mathematicians/Wolfowitz.html)

Jacob Wolfowitz was born on March 19, 1910, in Warsaw, Russian Empire (now Poland), and died on July 16, 1981
in Tampa, Florida, United States. Wolfowitz’s earliest interest was nonparametric inference, and the first joint paper he
wrote with Abraham Wald introduced methods of calculating confidence intervals that are not necessarily of fixed
width. It is in this paper by Wolfowitz in 1942 that the term nonparametric appears for the first time. Later, he worked
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on the area of sequential analysis and published work on sequential estimators of a Bernoulli parameter and results on
the efficiency of certain sequential estimators. He also studied asymptotic statistical theory and worked on many aspects
of the maximum likelihood method. Information theory pioneered by Shannon was another area to which Wolfowitz
made important contributions, culminating in a classic book titled Coding Theorems of Information Theory (third ed.,
1978). After working at different places such as the Statistical Research Group at Columbia University, the University
of North Carolina, and the University of Illinois at Urbana, in 1978 he joined the faculty of the University of South
Florida in Tampa. Wolfowitz was elected to the National Academy of Sciences and the American Academy of Arts and
Sciences. He was also elected a fellow of the Econometric Society, the International Statistics Institute, and the Institute
of Mathematical Statistics. In 1979 he was Shannon Lecturer of the Institute of Electrical and Electronic Engineers.

12.1 Introduction

Most of the tests that we have learned up to this point are based on the assumption that the sample(s) came from a normal
population, or at the least that the population probability distribution(s) is specified except for a set of free parameters. Such
tests are called parametric tests. In general, a parametric test is known to be generally more powerful than other procedures
when the underlying assumptions are met. Usually the assumption of normality or any other distributional assumption
about the population is hard to verify, especially when the sample sizes are small or the data are measured on an ordinal
scale such as the letter grades of a student, in which case we do not have a precise measurement. For example, incidence
rates of rare diseases, data from gene-expression microarrays, and the number of car accidents in a given time interval are
not normally distributed. Nonparametric tests are tests that do not make such distributional assumptions, particularly the
usual assumption of normality. In situations where a distributional model for a set of data is unavailable, nonparametric
tests are ideal. Even if the data are distributed normally, nonparametric methods are frequently almost as powerful as
parametric methods. These tests involve only order relationships among observations and are based on ranks of the
variables and analyzing the ranks instead of the original values. Nonparametric methods include tests that do not involve
population parameters at all, such as testing whether the population is normal. Distribution-free tests generally do make
some weak assumptions, such as equality of population variances and/or the distribution, and are of the continuous type.

Sometimes we may be required to make inferences about models that are difficult to parameterize, or we may have data
in a form that makes, say, the normal theory tests unsuitable. For example, incomes of families generally follow a skewed
distribution. If we do a sample survey of a large number of the families in a feeder area, the income distribution may look
as in Fig. 12.1.

This distribution is clearly difficult to parameterize, that is, to identify a classical probability distribution that will
characterize the data’s behavior. Moreover, the mean income of this sample may be misleading. A better measure of the
central tendency is the median income. At least we know that 50% of the families are below the median and 50% above.
Appropriate techniques of inference in these situations are based on distribution-free methods. Most of the nonparametric
methods use only the order of magnitude of observations, known as order statistics, in a random sample, rather than the
observed values of the random variables.

In general, nonparametric methods are appropriate to estimation or hypothesis-testing problems when the population
distributions could only be specified in general terms. The conditions may be specified as being continuous, symmetric, or
identical, differing only in median or mean.

Frequency

Unemployed

Part time

Full time

People with
large assets

Income

FIGURE 12.1 Income distribution of families.
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The distributions need not belong to specific families such as normal or gamma, etc. Because most of the nonparametric
procedures depend on a minimum number of assumptions, the chance of their being improperly used is relatively small.
Most of the nonparametric procedures involve ranking data values and developing testing methods based on the ranks.
Because of this, nonparametric procedures may be used when the data are measured on a weak scale such as only count
data or rank data. We may ask: Why not use nonparametric methods all the time? The answer lies in the fact that when the
assumptions of the parametric tests can be verified as true, parametric tests are generally more powerful than nonparametric
tests. Because only ranks are used in nonparametric methods, and even though the ranks preserve information about the
order of the data, because the actual values are not used some information is lost. Because of this, nonparametric pro-
cedures cannot be as powerful as their parametric counterparts when parametric tests can be used. For brevity and clarity,
this chapter is presented without much theoretical explanation to focus on the methods. Theoretical developments can be
found in many specialized books on the subject.

In this chapter, we study some of the commonly used classical nonparametric methods that are based on ordering,
ranking, and permutations. The modern approaches are based on resampling methods such as bootstrap and will be dis-
cussed in Chapters 10 and 13.

12.2 Nonparametric confidence interval

We have seen that for a large sample, using the central limit theorem, we can obtain a confidence interval for a parameter
within a well-defined probability distribution. However, for small samples, we need to make distributional assumptions that
are often difficult to verify. For this reason, in practice it is often advisable to construct confidence intervals or interval
estimates of population quantities that are not parameters of a particular family of distributions. In a nonparametric setting, we
need procedures where the sample statistics used have distributions that do not depend on the population distribution. The
median is commonly used as a parameter in nonparametric settings. We assume that the population distribution is continuous.

Let M denote the median of a distribution and X (assumed to be continuous) be any observation from that distribution.
Then,

PðX�MÞ ¼ PðX�MÞ ¼ 1
2
:

This implies that, for a given random sample X1, ., Xn from a population with median M, the distribution of the
number of observations falling below M will follow a binomial distribution with parameters n and p ¼1=2, irrespective of
the population distribution. That is, let Ne be the number of observations less than M. Then the distribution of Ne is
binomial with parameters n and p ¼1=2 for a sample of size n. Hence, we can construct a confidence interval for the
median using the binomial distribution.

For a given probability value a, we can determine a and b such that

PðN� � aÞ ¼
Xa
i¼ 0

�
n

i

��
1
2

�i�1
2

�n�i

¼
Xa
i¼ 0

�
n

i

��
1
2

�n

¼ a

2

and

PðN� � bÞ ¼
Xn
i¼ b

�
n

i

��
1
2

�i�1
2

�n�i

¼
Xn
i¼ b

�
n

i

��
1
2

�n

¼ a

2
:
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If exact probabilities cannot be achieved, choose a and b such that the probabilities are as close as possible to the value
of a/2. Furthermore, let X(1), X(2), ., X(a), ., X(b), .,X(n) be the order statistics of X1, .,Xn as in Fig. 12.2.

Then the population median will be above the order statistic, XðbÞ;
�
a
2

�
100% of the time and below the order statistic,

XðaÞ;
�
a
2

�
100% of the time. Hence, a (1 e a)100% confidence interval for the median of a population distribution will be

XðaÞ < M < XðbÞ:

We can write this result as P
�
XðaÞ < M< XðbÞ

� � 1ea:
By dividing the upper and lower tail probabilities equally, we find that b ¼ n þ 1 e a. Therefore, the confidence

interval becomes

XðaÞ < M < Xðnþ1�aÞ:

In practice, a will be chosen so as to come as close to attaining a
2 as possible.

We can summarize the nonparametric procedure for finding the confidence interval for the population median as
follows.

Procedure for finding (1La)100% confidence interval for the median M

For a sample of size n:

1. Arrange the data in ascending order.

2. From the binomial table with n and p ¼ 1
2, find the value

of a such that

pðX � aÞ ¼ a

2
or nearest to

a

2
:

3. Set b ¼ n þ 1 � a.

4. Then the confidence interval is such that the lower limit is

the ath value and the upper limit is the bth value of the

observations in step 1.

Assumptions: Population distribution is continuous; the

sample is a simple random sample.

We illustrate this four-step procedure with an example.

EXAMPLE 12.2.1

In a large company, the following data represent a random sample of the ages of 20 employees.

24 31 28 43 28 56 48 39 52 32

38 49 51 49 62 33 41 58 63 56.

Construct a 95% confidence interval for the population median M of the ages of the employees of this company.

Solution

For a 95% confidence interval, a ¼ 0.05. Hence, a /2 ¼ 0.025. The ordered data are

24 28 28 31 32 33 38 39 41 43

48 49 49 51 52 56 56 58 62 63.

Looking at the binomial table with n ¼ 20 and p ¼ 1
2, we see that P(X � 5) ¼ 0.0207. Hence, a ¼ 5 comes closest to achieving

a/2 ¼ 0.025. Hence, in the ordered data, we should use the fifth observation, 32, for the lower confidence limit and the 16th

observation (n þ 1ea ¼ 21e5 ¼ 16), 56, for the upper confidence limit. Therefore, an approximate 95% confidence interval

for M is

32< M< 56:

Thus, we are at least 95% certain that the true median of the employee ages of this company will be greater than 32 and less

than 56, that is,

Pð32<M< 56Þ � 0:95:

X(1) X(2) X(a) X(b) X(n�1) X(n)M

FIGURE 12.2 Ordered sample.
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The data of Example 12.2.1 passes the normality test and we can calculate the 95% parametric confidence interval as (38.40,

49.70). Comparing this to the nonparametric confidence interval, length of parametric confidence interval, in general, is smaller

whenever parametric assumption can be made.

EXAMPLE 12.2.2

A drug is suspected of causing an elevated heart rate in a certain group of high-risk patients. Twenty patients from this group were

given the drug. The changes in heart rates were found to be as follows,

�1 8 5 10 2 12 7 9 1 3

4 6 4 20 11 2 �1 10 2 8 :

Construct a 98% confidence interval for the mean change in heart rate. Can we assume that the population has a normal

distribution? Interpret your answer.

Solution

First testing for normality, we get the normal probability plot as shown in Fig. 12.3.

This shows that the normality assumption may not be satisfied, and thus the nonparametric method is more suitable (this

conclusion is based strictly on the normal probability plot which is a visual interpretation). Using a box plot, we can also test for

outliers. The ordered data are

�1 �1 1 2 2 2 3 4 4 5

6 7 8 8 9 10 10 11 12 20

Looking at the binomial table with n ¼ 20 and p ¼ 1
2, we see that P (X � 4) ¼ 0.006. Hence, a ¼ 4 comes closest to achieving

a/2 ¼ 0.01. Hence, in the ordered data, we should use the fourth observation, 2, for the lower confidence limit and the 17th

observation (n þ 1ea ¼ 21e4 ¼ 17), 10, for the upper confidence limit. Therefore, an approximate 98% confidence interval for

M is

2< M< 10:

That is, we are at least 98% certain that the true median of the mean change in heart rate will be greater than 2 and less than

10.

If we perform the usual t-test, we will get the 98% confidence interval as (3.20, 9.0). However, such an interval is not valid,

because the normality assumptions are not satisfied and will lead to misinterpretation of the facts.

Exercises 12.2

12.2.1. For the following random sample values, construct a 95% confidence interval for the population median M:

7.2 5.7 4.9 6.2 8.5 2.7 5.9 6.0 8.2.

1

�10 0 10
Data

20

5

P
er

ce
nt

ML Estimates
Mean: 6.1
Std Dev: 4.97896

10

20
30
40
50
60
70
80

90
95

99

FIGURE 12.3 Normal probability plot for heart rate.
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12.2.2. The following data represent a random sample of end-of-year bonuses for the lower-level managerial personnel
employed by a large firm. Bonuses are expressed in percentage of yearly salary.

6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7 8.6 6.9

8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8 3.2 4.6:

Construct a 98% confidence interval for the median bonus expressed in percentage of yearly salary of this firm.
Also, draw a probability plot and test for normality. Can this be considered a random sample?

12.2.3. Air pollution in large U.S. cities is monitored to see if it conforms to requirements set by the Environmental
Protection Agency. The following data, expressed as an air pollution index, give the air quality of a city for
10 randomly selected days.

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

(a) Draw a probability plot and test for normality.
(b) Construct a 95% confidence interval for the actual median air pollution index for this city and interpret its

meaning.
12.2.4. A random sample from a population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92

117 93 98 120 97 109 78 87 99 79

104 85 91 107 89

Obtain a 99% confidence interval for the population median.
12.2.5. In an experiment on the uptake of solutes by liver cells, a researcher found that six determinations of the radi-

ation, measured in counts per minute after 20 minutes of immersion, were:

2728 2585 2769 2662 2876 2777

Construct a 99% confidence interval for the population median and interpret its meaning.
12.2.6. The nominal resistance of a wire is 0.20 U. A testing of the wire randomly chosen from a large collection of such

wires yields the following resistance data.

0.199 0.211 0.198 0.201 0.197 0.200 0.198 0.208

Obtain a 95% confidence interval for the population median.
12.2.7. In order to measure the effectiveness of a new procedure for pruning grapes, 15 workers are assigned to prune an

acre of grapes. The effectiveness is measured in worker-hours per acre for each person.

5.2 5.0 4.8 4.5 3.9 6.1 4.2 4.4 5.5 5.8

4.2 5.3 4.9 4.7 4.9

Obtain a 99% confidence interval for the median time required to prune an acre of grapes for this procedure
and interpret its meaning.

12.2.8. The following data give the exercise capacity (in minutes) for 10 randomly chosen patients being treated for
chronic heart failure.

15 27 11 19 12 21 11 17 13 22

Obtain a 95% confidence interval for the median exercise capacity for patients being treated for chronic heart
failure.

12.2.9. The data given below refer to the in-state tuition costs (in dollars) of 15 randomly selected colleges from a list of
the 100 best values in public colleges (source: Kiplinger, October 2000).

3788 4065 2196 7360 5212 4137 4060 3956

3975 7395 4058 3683 3999 3156 4354

Obtain a 95% confidence interval for the median in-state tuition costs and interpret its meaning.
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12.2.10. Sepsis is an extreme immune system response to an infection that has spread throughout the blood and tissues.
Sepsis can reduce blood flow to kidneys resulting in acute renal failure (also called acute kidney injury). Relative
risk of mortality associated with developing acute renal failure as of sepsis in 16 studies is given below (Crit
Care, 2002: 6(6): 509e513).

0.75 2.03 2.29 2.11 0.80 1.50 0.79 1.01

1.23 1.48 2.45 1.02 1.03 1.30 1.54 1.27

Obtain a 95% confidence interval for the median relative risk of mortality.

12.3 Nonparametric hypothesis tests for one sample

In this section, we study two popular tests for testing hypotheses about the population location, or median using the sign
test and the Wilcoxon signed rank test. The comparison of medians rather than means is a technicality that is not important
unless the data are skewed substantially. In such cases, medians are somewhat more accurate than means for comparing the
locations of probability distributions. Further discussions on nonparametric tests can be found in many references, such as
those by W. J. Conover and by E. L. Lehmann. Before using nonparametric tests, it is desirable to test for normality of the
data using normal probability plots, and for the existence of outliers using box plots, and run tests for test of randomness of
the data. When we make any particular choice of method, test for the assumptions made. These assumption checks are
relatively easier using statistical software packages. Many of the examples in this chapter are given more for illustration of
the nonparametric methods than for assumption violations of parametric tests or for comprehensive assumption testing
techniques. Also, when we use statistical software packages, generally, the p value of the test will be given in the output. In
order to make a decision on a particular hypothesis, we just need to compare the p value with the chosen value of a. We are
going to explain a more traditional approach instead of using the p-value approach in the discussion, however, the
computer example section will illustrate the p-value approach.

12.3.1 The sign test

In this section, we describe a test that is the nonparametric alternative to the one-sample t-test and to the paired-sample t-
test. Let M be the median of a certain population. Then we know that

PðX�MÞ ¼ 0:5 ¼ PðX> MÞ:
We consider the problem of testing the null hypothesis

H0 : M ¼ m0 versus Ha : M > m0:

Assume that the underlying population distribution is continuous. Let Xi be the ith observation and let Nþ be the number
of observations that are greater than m0. N

þ will be our test statistic. We will reject H0 if, n
þ the observed value of Nþ, is too

large. This test is called the sign test. A test at a significance level a will reject H0 if n
þ � k, where k is chosen such that

PðNþ � k when M ¼ m0Þ ¼ a:

Similarly, if the alternative is of the form Ha:Ms m0, the critical region is of the form Nþ � k or Nþ � k1, where P(N
þ

� k) þ P(Nþ � k1) ¼ a.
In order to determine such a k and k1, we need to determine the distribution of Nþ. The test works on the principle that if

the sample were to come from a population with a continuous distribution, then each of the observations falls above the
median or below the median with probability 1

2. Hence, the number of sample values falling below the median follows a
binomial distribution with parameters n and p ¼ 1

2, n being the sample size. If a sample value equals the hypothesized
median m0, that observation will be discarded and the sample size will be adjusted accordingly (we remark that such values
should be very few). Thus, when H0 is true, N

þ will have a binomial distribution with parameters n and p ¼ 1
2. For this

reason, some authors call this test the binomial test. The following procedure summarizes the test statistic and the cor-
responding critical regions.
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SIGN TEST

H0 : M ¼ m0

Alternative hypothesis Critical region

Ha : M > m0
Nþ � k ;where

Pn
i¼ k

�
n

i

��
1
2

�n

¼ a

Ha : M < m0

and

Nþ � k ;where
Pk

i¼ 0

�
n

i

��
1
2

�n

¼ a

Ha : Msm0
Nþ � k1;where

Pn
i¼ k1

�
n

i

��
1
2

�n

¼ a
2

or

Nþ � k ;where
Pk

i¼ 0

�
n

i

��
1
2

�n

¼ a
2:

If a or a/2 cannot be achieved exactly, choose k (or k and k1) so that the probability comes as close to a (or a/2) as possible.

We now summarize the procedure of the sign test in the case of an upper tail alternative. The other two cases are
similar.

Hypothesis-testing procedure using the sign test

We test

H0 : M ¼ m0 vs. H1 : M > m0:

1. Replace each value of the observation that is greater than

m0 by a plus sign and each sample value less than m0 by a

minus sign. If the sample value is equal to m0, discard the

observation and adjust the sample size n accordingly.

2. Let nþ be the number of þ’s in the sample. For n and p ¼ 1
2,

from the binomial table, find

g ¼ PðNþ � nþÞ:

3. Decision: If g is less than a, H0 must be rejected. Based on

the sample, we will conclude that the median of the

population is greater than m0 at the significance level a.

Otherwise do not reject H0.

Assumptions: The population distribution is continuous.

The number of ties is small (less than 10% of the sample).

Note that the approach described in the foregoing procedure is nothing but the p-value method for hypothesis testing
regarding a median using the sign test. Recall that the p value is the probability of observing a test statistic as extreme or
more extreme than what was really observed, under the assumption that the null hypothesis is true. In the sign test, we had
assumed that the median is M ¼ m0, so 50% of the data should be less than m0 and 50% of the data greater than m0. Thus,
we expect half of the data to result in plus signs and half to result in minus signs. Hence, we can think of the data as
following a binomial distribution with p ¼ 1/2 under the null hypothesis. The p value is computed from its definition given
by the formula

p value ¼ PðNþ � nþÞ ¼
Xn
i¼ k

�
n

i

��
1
2

�n

¼ g:

The p-value method is to reject the null hypothesis if the computed p value is greater than a. These binomial prob-
abilities can be obtained from the binomial tables, or statistical software packages. The following example illustrates how
we apply the three-step procedure.

EXAMPLE 12.3.1

For the given data from an experiment

1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45

test the hypothesis that H0: M ¼ 1.4 versus Ha: M > 1.4 at a ¼ 0.05.
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Solution

We test

H0 : M ¼ 1:4 versus Ha : M > 1:4:

Replacing each value greater than 1.4 with a plus sign and each value less than 1.4 with a minus sign, we have

þ�þþ��þ�þ:

Thus, nþ ¼ 5. From the binomial table with n ¼ 9 and p ¼ 1
2, we have

P ðNþ � 5Þ ¼ 0:50:

Hence, the p value is 0.5. Because a ¼ 0.05 < 0.50, the null hypothesis is not rejected. We conclude that the median does not

exceed 1.4.

When the sample size n is large, we can apply the normal approximation to the binomial distribution. That is, the test
statistic Nþ is approximately normally distributed. Thus, under H0, N

þ will have approximate normal distribution with
mean np ¼ n=2 and variance of npð1 � pÞ ¼ n=4. By the z-transform, we have

Z ¼ Nþ � n=2ffiffiffiffiffiffiffiffi
n=4

p ¼ 2Nþ � nffiffiffi
n

p wNð0; 1Þ:

We could utilize this test if n is large, that is, if np � 5 and n(1 e p) � 5. Hence, under H0, because p ¼ 1=2, if n � 10,
we could use the large sample test. The following table summarizes the method for a large sample sign test.

A SIGN TEST FOR A LARGE RANDOM SAMPLE

When the sample size is large (n � 10), we can use the normal approximation to a binomial. This leads to the large sample sign

test:

H0 : M ¼ m0

versus

Alternative hypothesis Rejection region

Ha : M > m0 z � za
Ha : M < m0 z � �za
Ha : Msm0 jzj � za=2:

The test statistic is

Z ¼ 2Nþ � nffiffiffi
n

p :

Decision: Reject H0, if the test statistic falls in the rejection region, and conclude that Ha is true with at least (1 � a)100%

confidence. Otherwise, do not reject H0 because there is not enough evidence to conclude that Ha is true for a given a, and more

data are needed.

Assumptions: (1) Population distribution is continuous. (2) Sample size greater than or equal to 10 (after the removal of ties).

(3) The number of ties is small (less than 10% of the sample size).

We illustrate this procedure with the following example.

EXAMPLE 12.3.2

In order to measure the effectiveness of a new procedure for pruning grapes, 15 workers are assigned to prune an acre of grapes.

The effectiveness is measured in worker-hours/acre for each person. The results are given below:

5.2 5.0 4.8 3.9 6.1 4.2 4.4 5.5 5.8 4.5

4.2 5.3 4.9 4.7 4.9

Test the null hypothesis that the median time to prune an acre of grapes with this method is 4.5 h against the alternative that it

is larger. Use a ¼ 0.05.
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Solution

We test

H0 : M ¼ 4:5 versus H0 : M > 4:5:

Replacing each value greater than 4.5 with a plus sign and each value less than 4.5 with a minus sign, we have

þþþ�þ��þþ�þþþþ :

Because there is one observation that is equal to 4.5, we must discard it and take n ¼ 14.

Thus, Nþ ¼ 10, using the large sample approximation, the test statistic is

Z ¼ 2Nþ � nffiffiffi
n

p ¼ 20� 14ffiffiffiffiffiffi
14

p ¼ 1:6:

For a ¼ 0.05, from the standard normal table, the value of z0.05 ¼ 1.645. Hence, the rejection region is z > 1.645. Because the

observed value of the test statistic does not fall in the rejection region, we do not reject the null hypothesis at a ¼ 0.05 and

conclude that the median time to prune an acre of grapes is 4.5 hours.

12.3.2 Wilcoxon signed rank test

In the sign test, we have considered only whether each observation is greater than m0 or less than m0 without giving any
importance to the magnitude of the difference from m0. Neglecting information on the magnitude of the observations is
rather inefficient and may reduce the statistical power of the test. An improved version of the sign test is the Wilcoxon
signed rank test, in which one replaces the observations by their ranks of the ordered magnitudes of differences, jxi e m0j.
The smallest observation is ranked as 1, the next smallest will be 2, and so on. However, the Wilcoxon signed rank test
requires an additional assumption that the continuous population distribution is symmetric with respect to its center. Thus,
if the data are ordinal, the Wilcoxon test cannot be used.

Hypothesis testing procedure using Wilcoxon signed rank test

We wish to test

H0 : M ¼ m0 versus H1 : Msm0:

1. Compute the absolute differences zi ¼ jxi � m0j for each
observation. Replace each value of the observation that is

greater thanm0 by a plus sign and each sample value that is

less than m0 by a minus sign. If the sample value is equal to

m0, discard the observation and adjust the sample size n

accordingly.

2. Assign each zi a value equal to its rank. If two values of zi
are equal, assign each zi a rank equal to the average of the

ranks each should receive if there were not a tie.

3. Let Wþ be the sum of the ranks associated with plus signs

and W� be the sums of ranks with negative signs.

4. Decision: If m0 is the true median, then the observations

should be evenly distributed about m0. For a given a crit-

ical region, reject H0 if

Wþ � c1; where PðWþ � c1Þ ¼ a

2
;

or

Wþ � c2; where PðWþ � c2Þ ¼ a

2
:

Assumptions: The population distribution is continuous and

symmetrical. The number of ties is small, less than 10% of the

sample size.

The exact distribution ofWþ is considerably complicated and we will not derive it. However, for certain values of n, the
distribution is given in the Wilcoxon signed rank test table.

For the Wilcoxon signed rank test, the rejections region based on the alternative hypothesis is given next.
For

Ha : M>m0; rejection region is Wþ � c; where PðWþ � cÞ ¼ a;

and for

Ha : M<m0; rejection region is Wþ � c; where PðWþ � cÞ ¼ a:

We illustrate the Wilcoxon signed rank test with the following examples.
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EXAMPLE 12.3.3

For the given data that resulted from an experiment

1.51 1.35 1.69 1.48 1.29 1:27 1:54 1:39 1:45

test the hypothesis that H0: M ¼ 1.4 versus Ha: M s 1.4. Use a ¼ 0.05.

Solution

We wish to test

H0 : M ¼ 1:4 versus Ha : Ms1:4:

Here, a ¼ 0.05, and m0 ¼ 1.4. The results of steps 1 to 3 are given in Table 12.1.

Thus, we haveWþ ¼ 29 and n ¼ 9. From the Wilcoxon signed-rank test table in the appendix, we should reject H0 if W
þ � 6

or Wþ � 38 with actual level of a ¼ 0.054. Because Wþ ¼ 29 does not fall in the rejection region, we do not reject the null

hypothesis that M ¼ 1.4.

EXAMPLE 12.3.4

Air pollution in large U.S. cities is monitored to see whether it conforms with requirements set by the Environmental Protection

Agency. The following data, expressed as an air pollution index, give the air quality of a city for 10 randomly selected days.

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

Test the hypothesis that H0: M ¼ 65 versus Ha: M < 65. Use a ¼ 0.05.

Solution

We will test

H0 : M ¼ 65 versus Ha : M < 65:

Here, a ¼ 0.05, and m0 ¼ 65.

The results of steps 1 to 3 are given in Table 12.2.

TABLE 12.1 Data Summary for Wilcoxon Signed Rank Test.

xi zi ¼ jxi e 1.4j Sign Rank

1.51 0.11 þ 5.5

1.35 0.05 e 3

1.69 0.29 D 9

1.48 0.08 D 4

1.29 0.11 e 5.5

1.27 0.13 e 7

1.54 0.14 D 8

1.39 0.01 e 1.5

1.45 0.01 D 1.5
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Thus, Wþ ¼ 3, and n ¼ 10. Using the Wilcoxon signed rank test table, we should reject H0 if Wþ � 10 with level of

significance a ¼ 0.042. Because the observed value of Wþ falls in the rejection region, we reject H0 and conclude that the

sample evidence suggests that we conclude the median air pollution index is less than 65.

The Wilcoxon signed rank test is a nonparametric alternative to the one-sample t-test. The question then is, how do we
decide which one to choose? Choose the one-sample t-test if it is reasonable to assume that the population follows a normal
distribution. Otherwise, choose the Wilcoxon nonparametric test. However, the Wilcoxon test will have less power. For
example, a normal probability plot of the data of Example 12.3.4 is given in Fig. 12.4. Looking at this figure, we can see
that the normality assumption is suspected. It may make more sense to use the nonparametric method.

When sample size n is sufficiently large, under the assumption of H0 being true, the distribution ofW
þ is approximately

normal with mean

EðWþÞ ¼ 1
4
nðnþ 1Þ

and variance

VarðWþÞ ¼ nðnþ 1Þð2nþ 1Þ
24

:

TABLE 12.2 Summary Calculations for Air Pollution Data.

xi zi ¼ jxi e 65j Sign Rank

57.3 7.7 e 10

58.1 6.9 e 9

58.7 6.3 e 8

66.7 1.7 þ 3

58.8 6.2 e 7

61.9 4.1 e 5

59.0 6.0 e 6

64.4 0.6 e 2

62.6 2.4 e 4

64.9 0.1 e 1

57 58 59 60 61 62
Index

P
ro

ba
bi

lit
y

Normal probability plot

Average: 61.22
Std Dev: 3.32158
N: 10

Kolmogorov-Smirnov Normality Test
D�: 0.248 D�: 0.131 D: 0.248

Approximate p value: 0.081

0.001

0.01

0.05

0.20

0.50
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0.95
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FIGURE 12.4 Normal probability for air pollution index.
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Hence, the test statistic is given by

Z ¼
Wþ � 1

4
nðnþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 1Þð2nþ 1Þ=24p
which is approximately the standard normal distribution. This approximation can be used when n > 20. We summarize the
test procedure below.

Summary of the Wilcoxon signed rank test for large samples (n > 20)

We test

H0 : M ¼ m0

versus

M > m0; upper tailed test

Ha : M < m0; lower tailed test

Msm0; two-tailed test.

The test statistic:

Z ¼
Wþ � 1

4
nðn þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn þ 1Þð2n þ 1Þ=24p :

Rejection region:8><
>:

z > za; upper tail RR

z < �za; lower tail RR

jzj > za=2; two tail RR:

Decision: Reject H0, if the test statistic falls in the RR, and

conclude that Ha is true with (1 � a)100% confidence.

Otherwise, do not reject H0, because there is not enough ev-

idence to conclude that Ha is true for a given a and more data

are needed.

Assumptions: (1) The population distribution is continuous

and symmetric about 0. (2) Sample size is greater than or equal

to 20. (3) The number of ties is small, <10% of the sample size.

We illustrate the Wilcoxon signed rank test with the following example.

EXAMPLE 12.3.5

The following data give the monthly rents (in dollars) paid by a random sample of 25 households selected from a large city.

425 960 1450 655 1025 750 670 975 660 880

1250 780 870 930 550 575 425 900 525 1800

545 840 765 950 1080

Using the large sample Wilcoxon signed rank test, test the hypotheses that the median rent in this city is $750 against the

alternative that it is higher with a ¼ 0.05.

Solution

We test

H0 : M ¼ 750 versus Ha : M > 750:

Here, a ¼ 0.05, and m0 ¼ 750. The results of steps 1 to 3 are given in Table 12.3 (where the asterisk indicates zi ¼ 0).

TABLE 12.3 Summary Calculations for Monthly Rent

Data.

xi zi ¼ jxi e 750j Sign Rank

425 325 e 19.5

960 210 þ 15

1450 700 þ 23

655 95 e 6

1025 302 þ 18

750 0 * ignore

670 80 e 3

Continued
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Here, for n ¼ 24, Wþ ¼ 172.5, and the test statistic is

Z ¼
Wþ � 1

4
nðn þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn þ 1Þð2n þ 1Þ=24p

¼
172:5�

�
1

4

�
ð24Þð25Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð24Þð25Þð49Þ
24

r ¼ 0:64286:

For a ¼ 0.05, the rejection region is z > 1.645. Because the observed value of the test statistic does not fall in the rejection

region, we do not reject the null hypothesis. There is not enough evidence to conclude that the median rent in this city is more

than $750.

The rank tests are useful for situations when you suspect that the data do not follow the normal population. It is
important to note that ignoring the tied observations reduces the effective sample size, which in turn reduces the power of
the test (see Example 7.1.4 for the effect of n on the value of b). This loss is not significant if there are only a few ties.
However, if the ties are 10% or more, hypothesis testing using rank tests becomes considerably conservative. That is, they
yield error probabilities that are significantly high.

12.3.3 Dependent samples: paired comparison tests

The sign test and the Wilcoxon signed rank test can also be used for paired comparisons. The experimental procedure
typically consists of taking “before” and “after” types or otherwise matched as in the paired t-test case readings for each
unit. Suppose there are n pairs of before and after observations and we are interested in testing the equality of the two
medians. One way to test such observations is to consider the difference between the two observations for a unit to be a

TABLE 12.3 Summary Calculations for Monthly Rent

Data.dcont’d

xi zi ¼ jxi e 750j Sign Rank

975 225 þ 16.5

660 90 e 4.5

880 130 þ 8

1250 500 þ 22

780 30 þ 2

870 120 þ 7

930 180 þ 11

550 200 e 12.5

575 175 e 10

425 325 e 19.5

900 150 þ 9

525 225 e 16.5

1800 1050 þ 24

545 205 e 14

840 90 þ 4.5

765 15 þ 1

950 200 þ 12.5

1080 330 þ 21
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single observation on that unit. Thus, we can treat the sample as being n observations on a population of differences. For
this new sample of differences, the testing problem becomes

H0 : M ¼ 0 versus Ha : M > 0ðor M< 0; or Ms 0Þ:
Hence, the basic procedure could be summarized to first find the difference between the two units for each of the

observations, and then follow the testing procedures explained earlier for the sign test or the Wilcoxon signed rank test.
Both small sample and large sample cases can be handled as before. In the following example, we illustrate this concept for
a large sample sign test.

EXAMPLE 12.3.6

A dietary program claims that 3 months of its diet will reduce weight. In order to test this claim, a random sample of eight in-

dividuals who went through this program for 3 months is taken. The following table gives weight in pounds.

Before 180 199 175 226 189 205 169 211

After 172 191 172 230 178 199 171 201

Using a 5% significance level, is there evidence to conclude that the program really reduces the population median weight?

Solution

LetM denote the median of the population of difference of weights. We will use the difference as “after” e “before.” Then we will

test

H0 : M ¼ 0 versus Ha : M < 0:

We will use the large sample sign test. Replacing each value of the difference that is greater than zero by a þ sign and less than

zero by a e sign, we have

Difference �8 �8 �3 4 �11 �6 2 �10

Sign e e e þ e e þ e

For n ¼ 8 and Nþ ¼ 2, the test statistic is given by

Z ¼ 2Nþ � nffiffiffi
n

p ¼ 4� 8ffiffiffi
8

p ¼ �1:414:

For a ¼ 0.05, z0:05 ¼1:645, and the rejection region is z < �1.645. Because the observed value of the test statistic does not

fall in the rejection region, we do not reject the null hypothesis. Thus, there is not enough evidence to conclude that the new

program reduces the weight. Note that even though n ¼ 8 is small, here we are using the large sample test only for demonstration

purposes.

Exercises 12.3

12.3.1. It was reported that the median interest rate on 30-year fixed mortgages in a certain large city is 7.75% on a
particular day, with zero points. A random sample of nine lenders produced the following data of interest rates
in percentage.

7.625 7.375 8.00 7.50 7.875 8.00 7.625 7.75 7.25

Test the hypothesis that the median interest rate in this city is different from 7.75%, using (a) the sign test, and
(b) the Wilcoxon signed rank test. Use a ¼ 0.01. Compare the two results.

12.3.2. It is believed that a typical family spends 35% of its income on food and groceries. A sample of eight randomly
selected families yielded the following data.

30 29 39 49 36 33 37 35

Test the hypothesis that the median percentage of family income spent for food and groceries is 35 against the
alternative that it is less than 35. Use a ¼ 0.05.

12.3.3. The SAT scores (out of a maximum possible score of 1600) for a random sample of 10 students who took this
test recently are:

1355 765 890 1089 986 1128 1157 1065 1224 567
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Test the hypothesis that the median SAT score is 1000 against the alternative that it is greater using a ¼ 0.05.
Use both the sign test and the Wilcoxon signed rank test. Explain if the conclusions are different.

12.3.4. The regulatory board of health in a particular state specifies that the fluoride levels in water must not exceed 1.5
parts per million (ppm). The 20 measurements given here represent the randomly selected daily early morning
readings on fluoride levels in water at a certain city.

0.88 0.82 0.97 0.95 0.84 0.90 0.87 0.78 0.75 0.83

0.71 0.92 1.11 0.81 0.97 0.85 0.97 0.91 0.78 0.81

Test the hypothesis that the median fluoride level for this city is 0.90 against the alternative that the median is
different from 0.9 at a ¼ 0.01, using (a) the large sample sign test, and (b) the Wilcoxon signed rank test. Inter-
pret the results.

12.3.5. The following data give the weights (in pounds) for a random sample of 20 NFL players.

285 178 311 276 192 232 259 189 289 211

269 285 296 293 288 254 246 234 274 229

Test the hypothesis that the median weight of NFL players is 250 pounds against the alternative that it is greater
at a ¼ 0.05, using (a) the large sample sign test and (b) the Wilcoxon signed rank test.

12.3.6. The following data give the amount of money (in dollars) spent on textbooks by 18 students for the last academic
year at a large university.

510 425 190 298 157 260 320 615 455

490 188 115 230 610 220 155 315 110

Test the hypothesis that the median amount spent on books at this university is $325 against the alternative that it
is different using the large-sample sign test. Use a ¼ 0.05.

12.3.7. It is desired to study the effect of a special diet on systolic blood pressure. The following sample data are ob-
tained for eight adults over 40 years of age before and after 6 months of this diet.

Before 185 222 235 198 224 197 228 234

After 188 217 229 190 226 185 225 231

At 95% confidence level, is there evidence to conclude that the new diet reduces the systolic blood pressure in
individuals over 40 years old? Test (a) using the sign test, and (b) using the Wilcoxon signed rank test. Interpret
the results.

12.3.8. In an effort to study the effect on absenteeism of having a day-care facility at the workplace for women with
newborn babies (less than 1 year old), a large company compared the number of absent days for a year for seven
women with newborn children before and after instituting a day-care facility.

Before 20 18 35 22 17 24 15

After 16 9 22 28 19 13 10

At 99% confidence level, is there evidence to conclude that having a day-care facility at the workplace reduces
absenteeism for women with newborn children?

12.3.9. For a popular computer tablet, the user ratings (1 through 5 stars, with 5 stars being the highest rating) of 10
randomly selected are given as follows

5; 5; 1; 4; 3; 5; 4; 4; 5; 4

At the 0.05 level, is there evidence that the median rating is at least 4?
12.3.10. For the data given in Exercise 12.2.10, does the combined evidence from all 16 studies suggest that developing

acute renal failure as a complication of sepsis impacts on mortality? Use a ¼ 0:05. Do both sign test and
Wilcoxon signed rank test.

12.4 Nonparametric hypothesis tests for two independent samples

In this section we learn how to test the equality of the medians of two independent samples from two populations. This is
especially useful when one studies the treatment effects, such as the effect of a certain drug to treat a given medical
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condition when we have two groupsdan experimental group and a control groupdor the effect of a particular type of
teaching method. Even though this test can be used for more than two samples, here, we will restrict it to two samples. We
will describe the median test, which corresponds to the sign test, and the Wilcoxon rank sum test.

12.4.1 Median test

Let m1 and m2 be the medians of two populations 1 and 2, respectively, both with continuous distributions. Assume that we
have a random sample of size n1 from population 1 and a random sample of size n2 from population 2. The median test can
be summarized as follows.

HYPOTHESIS-TESTING PROCEDURE USING MEDIAN TEST

We test

H0 : m1¼m2 versus Ha :

m1 > m2; upper tailed test

m1 < m2; lower tailed test

m1sm2; two-tailed test.

1. Combine the two samples into a single sample of size n ¼ n1 þ n2, keeping track of each observation’s original population.

Arrange the n1 þ n2 observations in increasing order and find the median of this combined sample. If the median is one of the

sample values, discard those observations and adjust the sample size accordingly.

2. Define N1b to be the number of observations of a sample from population 1.

3. Decision: If H0 is true, then we would expect N1b to be equal to some number around n1/2. For Ha:m1 >m2, rejection region

is N1b � c, where P(N1b � c) ¼ a, for Ha: m1 <m2, rejection region is N1b � c, where P(N1b � c) ¼ a, and for Ha: m1 ¼m2,

rejection region is N1b � c1, or N1b � c2, where

PðN1b � c1Þ ¼ a

2
and PðN1b � c2Þ ¼ a

2
:

Assumptions: (1) Population distribution is continuous. (2) Samples are independent.

Note that since some observations can be equal to the overall median, and those values will be discarded, N1b need not
be equal to n1. Let n1 þ n2 ¼ 2k. Under H0, N1b has a hypergeometric distribution given by

PðN1b ¼ n1bÞ ¼

�
n1
n1b

��
n2
k � n1b

�
�
n1 þ n2

k

� ; n1b ¼ 0; 1; 2;.; n1;

with the assumption that

�
i

j

�
¼ 0; if j > i: Note that the hypergeometric distribution is a discrete distribution that

describes the number of “successes” in a sequence of n draws from a finite population without replacement. Thus, we
can find the values of c, c1, and c2, required earlier. This calculation can be tedious. To overcome this, we can use the
following large sample approximation valid for n1 > 5 and n2 > 5. First classify each observation as above or below
the sample median as shown in Table 12.4.

TABLE 12.4 Data Classification With Respect to Median.

Below Above Totals

Sample 1 N1b N1a n1

Sample 2 N2b N2a n2

Total Nb Na n1 þ n2 ¼ n
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It can be verified that the expected value and variance of N1a (similarly for N1b) are given by

EðN1aÞ ¼ Nan1
n

; and VarðN1aÞ ¼ Nan1n2Nb

n2ðn� 1Þ:

Thus, for a large sample we can write

z ¼ N1a � EðN1aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðN1aÞ

p wNð0; 1Þ:

Hence, we can follow the usual large sample rejection region procedure, which is summarized next.

Summary of large sample median sum test (n1 > 5 and n2 > 5)

We test

H0 : m1 ¼ m2 versus Ha :

8><
>:

m1 > m2; upper tailed test

m1 < m2; lower tailed test

m1sm2; two-tailed test.

The test statistic:

z ¼ N1a � EðN1aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðN1aÞ

p ;

where

EðN1aÞ ¼ Nan1

n

and

VarðN1aÞ ¼ Nan1n2Nb

n2ðn � 1Þ :

Rejection region:8><
>:

z > za; upper tail RR

z < �za; lower tail RR

jzj > za=2; two tail RR

Decision: Reject H0, if the test statistic falls in the RR, and

conclude that Ha is true with (1 � a)100% confidence.

Otherwise, do not reject H0, because there is not enough

evidence to conclude that Ha is true for a given a and more

data are needed.

Assumptions: (1) Population distributions are continuous.

(2) n1 > 5 and n2 > 5.

We illustrate this procedure with the following example.

EXAMPLE 12.4.1

Given below are the mileages (in thousands of miles) of two samples of automobile tires of two different brands, say I and II,

before they wear out.

Tire I : 34 32 37 35 42 43 47 58 59 62 69 71 78 84

Tire II : 39 48 54 65 70 76 87 90 111 118 126 127

Use the median test to see whether the tire II gives more median mileage than tire I. Use a ¼ 0.05.

Solution

We will test

H0 : m1 ¼ m2 versus H0 : m1 < m2:

Because the sample size assumption is satisfied, we will use the large sample normal approximation. The results of steps 1 and

2, using the notation A for above the median and B for below the median, are given in Table 12.5.

The median is 63.5. Thus, we obtain Table 12.6.

Also,

EN1a ¼ Nan1

n
¼ ð13Þð14Þ

26
¼ 7;

and

VarðN1aÞ ¼ Nan1n2Nb

n2ðn � 1Þ ¼ ð13Þð13Þð14Þð12Þ
16;900

¼ 1:68:
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Hence, the test statistic is

z ¼ N1a � EðN1aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðN1aÞ

p ¼ 4� 7ffiffiffiffiffiffiffiffiffiffi
1:68

p ¼ �2:31:

For a ¼ 0.05, z0.05 ¼ 1.645. Hence, the rejection region is {z < �1.645}. Because the observed value of z does fall in the

rejection region, we reject H0 and conclude that there is enough evidence to conclude that there is a difference in the median

mileage for the two types of tires.

TABLE 12.5 Mileage Data Classification.

Sample values Population Above/below the median

32 I B

34 I B

35 I B

37 I B

39 II B

42 I B

43 I B

47 I B

48 II B

54 II B

58 I B

59 I B

62 I B

65 II A

69 I A

70 II A

71 I A

76 II A

78 I A

84 I A

87 II A

90 II A

111 II A

118 II A

126 II A

127 II A

TABLE 12.6 Summary of Mileage Data for Automobile Tires.

Below Above Totals

Sample 1 N1b ¼ 10 N1a ¼ 4 n1 ¼ 14

Sample 2 N2b ¼ 3 N2a ¼ 9 n2 ¼ 12

Total Nb ¼ 13 Na ¼ 13 n1 þ n2 ¼ n ¼ 26
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12.4.2 The Wilcoxon rank sum test

The Wilcoxon rank sum test is used for comparing the medians of two independent populations, as in the two-sample t-test
in the parametric case. For accurate results, it is necessary to assume that the variances of the populations are equal. This
test is quite similar to the Wilcoxon signed rank test. Whereas the one-sample Wilcoxon signed rank test requires an
additional assumption that the population distribution is symmetric, such an assumption is not necessary for the two-
sample Wilcoxon rank sum test. This test can be applied for skewed distributions. The test is almost as powerful as the
parametric version when the population distributions are close to normal. Many statistical software packages do not give
the Wilcoxon rank sum test; instead the ManneWhitney test is given. It should be noted that the Wilcoxon rank sum test is
equivalent to the ManneWhitney U-test. We will not separately describe the ManneWhitney test; however, in practice just
perform the ManneWhitney test if the software has only that test.

Assume that we have n1 observations randomly sampled from population I and n2 observations randomly sampled from
population II with n1 � n2. The Wilcoxon rank sum test procedure can be summarized as follows.

Hypothesis-testing procedure using the Wilcoxon rank sum test

We test

H0 : m1 ¼ m2 versus H1 : m1sm2:

1. Combine the two samples into a single sample of size

n1 þ n2, keeping track of each observation’s original pop-

ulation. Arrange the n1 þ n2 observations in ascending

order and assign ranks.

2. Sum the ranks of observations from population II and

call it R.

3. Let the test statistic be W ¼ R � 1
2n2ðn2 þ1Þ:

4. Decision: If H0 is false, one would expect that the value of

W would be very small or very large. For a size a critical

region reject H0 if

W � c1; where PðW � c1Þ ¼ a

2
;

or

W � c2; where PðW � c2Þ ¼ a

2
:

Note: The exact distribution of W is given in the Wilcoxon

rank sum test table in the appendix for small values of n1
and n2.

In the Wilcoxon rank sum test, based on the alternative hypothesis, we have the following rejection regions.
For

Ha : m1 >m2; rejection region is W � c; where PðW � cÞ ¼ a:

and for

Ha : m1 <m2; rejection region is W � c; where PðW � cÞ ¼ a:

We will illustrate the foregoing procedure with the following example.

EXAMPLE 12.4.2

Comparison of the prices (in dollars) of two brands of similar automobile tires resulted in the data in Table 12.7.

Use the Wilcoxon rank sum test with a ¼ 0.05 to test the null hypothesis that the two population medians are the same against

the alternative hypothesis that the population medians are different.

Solution

Here, we need to test

H0 : m1 ¼ m2 versus Ha : m1sm2:

TABLE 12.7 Prices of Two Brands of Tires.

Tire I: 85 99 100 110 105 87

Tire II: 67 69 70 93 105 90 110 115
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The sample sizes are n1 ¼ 6, and n2 ¼ 8. Combining step 1 and step 2, we have the results shown in Table 12.8.

The sum of ranks of observations from population II is R ¼ 56. Hence, the test statistic is

W ¼ R � 1

2
n2ðn2 þ 1Þ

¼ 56� 1

2
ð8Þð9Þ ¼ 20:

For a ¼ 0.05, the rejection region is W � 9 or W > 38, with the actual a being 0.0592. Because the observed value of the test

statistic does not fall in the rejection region, H0 is not rejected. Thus, we do not have enough evidence to conclude that the

median prices are different for these two brands of automobile tires.

When the sample sizes are large and when H0 is true, the distribution of the Wilcoxon rank sum test can be
approximated by the normal distribution. It can be shown that under H0, when both n1 and n2 are greater than 10, the
distribution of W is approximately normal with

EðWÞ ¼ n1n2
2

and VarðWÞ ¼ n1n2ðn1 þ n2 þ 1Þ
12

:

For a large random sample, we can summarize the test procedure as follows.

Summary of large sample median sum test (n1 > 10 and n2 > 10)

We test

H0 : m1 ¼ m2 versus Ha :

8><
>:

m1 > m2; upper tailed test

m1 < m2; lower tailed test

m1sm2; two-tailed test.

The test statistic:

z ¼ W � n1n2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðn1 þ n2 þ 1Þ=12p :

Rejection region:8><
>:

z > za; upper tail RR

z < �za; lower tail RR

jzj > za=2; two tail RR.

Assumption: The samples are independent and n1 > 10 and

n2 > 10.

Decision: Reject H0, if the test statistic falls in the RR, and

conclude that Ha is true with (1ea)100% confidence. Other-

wise, do not reject H0, because there is not enough evidence to

conclude that Ha is true for a given a and more data are

needed.

We will use the foregoing procedure to solve the following problem.

EXAMPLE 12.4.3

In an effort to determine the immunoglobulin D (IgD) levels of a certain ethnic group, a large number of blood samples repre-

senting both sexes for 12-year-olds were taken. The following sample data give the IgD levels (in mg/100 mL).

Male: 9.3 0.0 12.2 8.1 5.7 6.8 3.6 9.4 8.5 7.3 9.7

Female: 7.1 0.0 5.9 7.6 2.8 5.8 7.2 7.4 3.5 3.3 7.5 7.0

Use the large sample Wilcoxon rank sum test with the significance level a ¼ 0.01 to test the hypothesis that there is no

difference between the sexes in the median level of IgD.

TABLE 12.8 Ranking of Prices of Tires.

Value 67 69 70 85 87 90 93 99 100 105 105 110 110 115

Population II II II I I II II I I I II I II II

Rank 1 2 3 4 5 6 7 8 9 10.5 10.5 12.5 12.5 14
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Solution

We need to test

H0 : m1 ¼ m2 versus Ha : m1sm2:

Here, n1 ¼ 11, and n2 ¼ 12, and the results of step 1 and step 2 are given in Table 12.9, where we use M or F to identify the

population from which the data are coming.

The sum of the ranks for females is R ¼ 114.5, and

W ¼ R � 1

2
n2ðn2 þ 1Þ

¼ 114:5� 1

2
ð12Þð13Þ ¼ 36:5:

Therefore, the test statistic results in

Z ¼ W � n1n2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðn1 þ n2 þ 1Þ=12p

¼ 36:5� ð11Þð12Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið11Þð12Þð24Þ=12p ¼ �1:815z� 1:82:

For a ¼ 0.01, we have za/2 ¼ z0.005 ¼ 2.575. Hence, the rejection region is z < �2.575 or z > 2.575. Because the test statistic

does not fall in the rejection region, we do not reject H0 at a ¼ 0.01 and conclude that there is not enough evidence to conclude

that there is any difference between the sexes in the median level of IgD.

With a slight modification of the ranking system in the Wilcoxon rank sum test, we could test for the equality of
variances when the normality assumption of the F-test fails.

Exercises 12.4

12.4.1. The following data give the winning proportions of the top six football teams from each of the two conferences of
the NFL.

American conference 0.818 0.727 0.909 0.818 0.727 0.545

National conference 0.636 0.545 0.636 0.636 0.818 0.455

Use the Wilcoxon rank sum test at the significance level of 0.05 to test the null hypothesis that the two samples
contain populations with identical medians against the alternative hypothesis that the medians are not equal. State
any assumptions you have made to solve the problem.

12.4.2. Comparison of two protective methods against corrosion yielded the following maximum depths of pits (in thou-
sandths of an inch) in pieces of similar metals subjected to the respective treatments:

Method I: 68 75 69 75 70 69 72

Method II: 61 65 57 63 58

TABLE 12.9 Ranking of Immunoglobulin D (IgD) Levels.

Value 0 0 2.8 3.3 3.5 3.6 5.7 5.8 5.9 6.8 7 7.1

M or F M F F F F M M F F M F F

Rank 1.5 1.5 3 4 5 6 7 8 9 10 11 12

Value 7.2 7.3 7.4 7.5 7.6 8.1 8.5 9.3 9.4 9.7 12.2

M or F F M F F F M M M M M M

Rank 13 14 15 16 17 18 19 20 21 22 23
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Use the Wilcoxon rank sum test at the significance level of 0.01 to test the null hypothesis that the two samples
have identical medians against the alternative hypothesis that the medians are not equal.

12.4.3. Show that when H0 is true, the mean and variance of the Wilcoxon rank sum test with sample sizes n1 and n2 are

EðWÞ ¼ n1n2
2

and VarðWÞ ¼ n1n2ðn1 þ n2 þ 1Þ
12

:

12.4.4. In order to make inferences about the temporal muscles of the cat, a certain dose of tubocurarine is injected
into a random sample of nine cats. The following data give the tetanus frequency (in hertz) in the temporal
(T) muscles before and after injection of tubocurarine.

T before 24 33 27 23 31 28 31 24 19

T after 27 38 34 32 37 28 35 28 41

Use the Wilcoxon rank sum test at the significance level of 0.05 to test the null hypothesis that the median tetanus
frequency (in hertz) in the temporal (T) muscles is larger after injection of tubocurarine. State any assumptions
you made to solve the problem.

12.4.5. In a study of the net conversion of progesterone in rat liver, the following samples were attained for the net con-
version in rats 3e4 weeks old:

Use the large sample Wilcoxon rank sum test at the significance level of 0.05 to test the hypothesis that the median
net conversion of progesterone in male rats is larger than that in female rats. What would be your conclusion if
you were to use the median test?

12.4.6. Two groups of randomly selected 1-acre plots were treated with two different brands of fertilizer. The following
data give the yields of corn (in bushels) from each of these plots.

Fertilizer I: 89 93 105 94 92 96 93 101

Fertilizer II: 85 88 94 87 86 91

Use the data to determine whether there is a difference in yields for two brands of fertilizers. Use a ¼ 0.01. State
any assumptions you made to solve the problem.

12.4.7. The following information is obtained from two independent samples.

Sample 1: 15 8 12 4 10 8 13 7 12 6 14 11

Sample 2: 18 13 15 19 17 13 17 16

Test at 1% significance level that the median for sample 1 is less than the median for sample 2 and interpret the
meaning of your result.

12.4.8. In order to determine if a new hybrid seeding produces a bushier flowering plant, data are collected on shrub girth
(in inches) for both current variety and hybrid plants resulted in the following values.

Current variety 27.7 25.1 35.4 36.5 22.0 30.5

Hybrid 35.8 30.0 34.6 37.5 31.9 32.6 39.7

Test at 1% significance level that the median for sample 1 is different from the median for sample 2 and interpret
the meaning of your result.

12.5 Nonparametric hypothesis tests for k ‡ 2 samples

In this section we learn how to compare the medians of more than two independent samples and to determine whether
medians of the groups differ. These tests are nonparametric alternatives to the ANOVA methods discussed in Chapter 9.
We study the KruskaleWallis test and Friedman test. Both of these methods test the equality of the treatment medians.

Male: 16.9 16.0 13.5 13.1 14.2 11.6 12.8 17.3 13.8 9.8 16.0 15.9 16.7 15.1

Female: 13.8 11.2 7.5 10.4 15.8 14.5 9.5 9.8 5.1 5.5 6.5 7.2
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12.5.1 The KruskaleWallis test

The KruskaleWallis test is a generalization of the Wilcoxon rank sum test for two independent samples to several in-
dependent samples. This test is a nonparametric alternative to one-way ANOVA. The KruskaleWallis test is almost as
powerful as the one-way ANOVA when the data are from a normal distribution, and more powerful in the case of
nonnormality or in the presence of outliers. We now describe this test.

Suppose that we have k populations, with qi being the median of the population i and k independent random samples
from these populations. Let the samples from the ith population be ni. We wish to test the equality of the medians of
different groupsdthat is, to test the hypothesis

H0 : q1 ¼ q2 ¼ / ¼ qk ¼ 0 versus Ha : Not all q0s equal 0.

We shall show that the hypothesis q1 ¼ $$$ ¼ qk is equivalent to the hypothesis H0: q1 ¼ q2 ¼ $$$ ¼ qk ¼ 0. Let
q1 ¼ $$$ ¼ qk ¼ t (same number). Then the observations yij e t (i ¼ 1, 2, ., k) will be from a population with median
zero. Because the KruskaleWallis test procedure depends only on the ranks of yij values in the combined sample and the
ranks of (yijet) values are identical to those of yij values, the two hypotheses are equivalent.

We summarize the KruskaleWallis procedure to solve this type of problem, which is given by the following steps.

KruskaleWallis test procedure

1. Combine and rank all N ¼ Pn
i¼ 1

ni observations yij in

ascending order. Also keep track of the groups from which

the observations came. Assign average ranks in case of ties.

Let

rij ¼ rankðyijÞ.

2. Calculate the group sum,

ri ¼
Xni
i¼ 1

rij ; i ¼ 1; 2;.; k :

and the group averages

r i ¼ ri
ni

; i ¼ 1; 2;.; k :

3. Let

r ¼
Xk
i¼ 1

ri ¼ NðN þ 1Þ
2

(this can be used as a check for accuracy of your

calculation of r 0i s ) and let

r ¼ r

N
¼ N þ 1

2
:

4. Calculate the KruskaleWallis test statistic

H ¼ 12

NðN þ 1Þ
Xk
i¼ 1

niðr i � rÞ2

or the convenient computational form of H,

H ¼ 12

NðN þ 1Þ
Xk
i¼ 1

r2i
ni

� 3ðNþ 1Þ:

Note that to compute the convenient form of H, there is no

need to calculate r i and r .

5. Reject H0 if

H � c;

where the constant c is chosen to achieve a specified value

for a.

The exact distribution of H is complicated. It depends on the sample sizes, n1, n2, ., nk, and so it is not practical to
tabulate its values beyond a small number of cases. When k or N is large, the exact distribution of H under the null
hypothesis can be approximated by the chi-square distribution with (k e 1) degrees of freedom. To this effect, we state the
KruskaleWallis theorem without proof.

Theorem 12.5.1. When H0: q1 ¼ q2 ¼ $$$ ¼ qk is true, then as N becomes large, the statistic

H ¼ 12
NðN þ 1Þ

Xk
i¼ 1

niðri � rÞ2

has an asymptotic distribution that is chi-square with (k e 1) degrees of freedom.

Thus, for approximate large samples the KruskaleWallis test for a given a is to reject H0 if
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H > c2
aðk� 1Þ:

The chi-square approximation is acceptable when the group sample sizes ni > 5 with k � 3. However, for convenience,
we will use the chi-square approximation for all values of ni. For this test, we follow the procedure described earlier except
that for finding the rejection region, we use the chi-square table.

The following example illustrates how we use the foregoing procedure to test the appropriate hypothesis for three
populations.

EXAMPLE 12.5.1

In an effort to investigate the premium charged by insurance companies for auto insurance, an agency randomly selects a few

drivers who are insured from three different companies. Assume that these persons have similar autos, driving records, and level of

coverage. Table 12.10 gives the premiums paid per 6 months by these drivers with these three companies. Using the 5% level of

significance, test the null hypothesis that the median auto insurance premium paid per 6 months by all drivers insured with each

of these companies is the same.

Solution

Here, we need to test

H0 : M1 ¼ M2 ¼ M3 ¼ 0 versus Ha : Not all M0
is equal 0;

where Mi is the true median of the auto insurance premium paid to company i, i ¼ 1, 2, 3.

Here n1 ¼ 4, n2 ¼ 3, and n3 ¼ 5. Hence, there are N ¼ P3
i¼ 1

ni ¼ 12 observations. Let Y denote the observations in ascending

order. Table 12.11 gives the combined data in ascending order while keeping track of the groups and their ranks.

Thus, the group rank sums are

r1 ¼ 24; r2 ¼ 23; and r3 ¼ 31:

As a check for accuracy of these calculations, note that

r1 þ r2 þ r3 ¼ 78 ¼ NðN þ 1Þ
2

¼ ð12Þð13Þ
2

:

TABLE 12.10 Auto Insurance Premium by Company.

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432

TABLE 12.11 Ranking of Auto Insurance Premiums.

Premium 294 318 330 336 348 360 378 396 432 438 474 522

Group 3 1 3 1 2 2 3 1 3 1 3 2

Rank 1 2 3 4 5 6 7 8 9 10 11 12
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The test statistic is given by

H ¼ 12

NðN þ 1Þ
Xk
i¼ 1

r2i
ni

� 3ðN þ 1Þ

¼ 12

ð12Þð13Þ

 
ð24Þ2
4

þ ð23Þ2
3

þ ð31Þ2
5

!
� 3ð13Þ

¼ 0:42564:

From the chi-square table, c2
0:05ð2Þ ¼ 5:991, and hence, the rejection region is H � 5.991. Because the observed value of H

does not fall in the rejection region, we do not reject H0 and conclude that there is no evidence to show that the median auto

insurance premiums paid per 6 months by all drivers insured in each of these companies are different.

12.5.2 The Friedman test

The Friedman test, named after the Nobel laureate economist Milton Friedman, tests whether several treatment effects
(measured as locations) are equal for data in a two-way layout. We will assume that there are k different treatment levels
and l blocks. In each block, assign one experimental unit to each treatment level. We want to test whether the true medians
for different treatment levels are the same in each blockdthat is, to test

H0 : True medians at different levels are all equal

versus

Ha : Not all the medians are equal.

Rather than combine the entire sample as in the KruskaleWallis statistic, here we order the y values within each block
and then assign each its rank. In order to eliminate the differences due to blocks, we take the sum of ranks for each
treatment level. The following gives a summary of the procedure.

The Friedman test procedure

1. Rank observations from k treatments separately within

each block. Assign average ranks in case of ties. Let

Rij ¼ rank(Yij), the rank of the observation for treatment

level i in block j.

2. Calculate the rank sums

Ri ¼
Xl

j¼ 1

Rij ; i ¼ 1; 2; .; k :

3. Calculate the Friedman statistic

S ¼ 12

lkðk þ 1Þ
Xk
i¼ 1

�
Ri � lðk þ 1Þ

2

�2

or a convenient computational form,

S ¼ 12

lkðk þ 1Þ
Xk
i¼ 1

R2
i � 3lðk þ 1Þ:

4. Reject H0 if S � c, where the constant c is chosen to ach-

ieve a specified value for a.

The exact distribution of S is complicated. Here, for k ¼ 3, 4, 5, and for various values of l, the Friedman distribution
has been calculated and its values are given in the table in Appendix A7. We will illustrate this four-step procedure with an
example.

EXAMPLE 12.5.2

Three classes in elementary statistics are taught by three different persons, a regular faculty member, a graduate teaching assistant,

and an adjunct from outside the university. At the end of the semester, each student is given a standardized test. Five students are

randomly picked from each of these classes, and their scores are given in Table 12.12. Test whether there is a difference between

the scores for the three persons teaching with a ¼ 0.05.
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Solution

Here, we need to test

H0 : Median for the three persons scores are all equal

Ha : The medians are not equal

We are given a ¼ 0.05, k ¼ 3, and l ¼ 5. To compute the value of the statistic S, we first assign ranks for each student as shown

in Table 12.13. Ha: Note that they are not all equal.

Thus, we have

R1 ¼ 12; R2 ¼ 11; and R3 ¼ 7;

and the test statistic is given by

S ¼ 12

lkðk þ 1Þ
Xk
i¼ 1

R2
i � 3lðk þ 1Þ

¼ 12

ð5Þð3Þð4Þ
�ð12Þ2 þ ð11Þ2 þ ð7Þ2�� ð3Þð5Þð4Þ ¼ 2:8:

From the Friedman table, the rejection region is S � 5.20 at an exact significance level of 0.092. Because the computed value

of the test statistic does not fall in the rejection region, we do not reject H0 and conclude that there is no difference in scores based

on who teaches the course.

When the number of blocks, l, becomes large, the Friedman test statistic has an approximate chi-square distribution
under the null hypothesis. That is:

Theorem 12.5.2. When H0: q1 ¼ q2 ¼ $$$ ¼ q3 is true then, as l becomes large,

S ¼ 12
lkðk þ 1Þ

Xk
i¼ 1

�
Ri � lðk þ 1Þ

2

�2

TABLE 12.12 Test Grades by Instructor.

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47

TABLE 12.13 Ranks of Test Scores by Instructor.

Faculty Teaching assistant Adjunct

3 2 1

2 3 1

3 2 1

1 2 3

3 2 1
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has an asymptotic distribution that is chi-squared with (k e 1) degrees of freedom.

Thus, for an approximate large random sample, the Friedman test for given a is to reject H0 if S > c2
aðk �1Þ:

When the values of k and l exceed the values given in the Friedman table, we could use the chi-square approximation,
which gives acceptable results. We proceed to illustrate the Friedman test with the following example.

EXAMPLE 12.5.3

In the previous example, we now randomly select 10 student grades from each class, resulting in the data shown in Table 12.14.

Test whether there is a difference between the scores for the three persons teaching. Use a ¼ 0.05.

Solution

Here we need to test

H0 : The true median scores for the three instructors are all equal

versus

Ha : They are not all equal.

We are given a ¼ 0.05, k ¼ 3, and l ¼ 10. We use the chi-square approximation to solve the problem. To compute the value

of the statistic S we first assign ranks for each student as shown in Table 12.15. The Friedman test statistic is

TABLE 12.14 Test Grades of 10 Random Students From Each

Instructor.

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47

45 74 88

99 23 77

86 61 18

82 60 66

74 77 55

TABLE 12.15 Ranks of Test Scores of 10 Random Students.

Faculty Teaching assistant Adjunct

3 2 1

2 3 1

3 2 1

1 2 3

3 2 1

1 2 3

3 1 2

3 2 1

3 1 2

2 3 1

Total 24 20 16
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S ¼ 12

lkðk þ 1Þ
Xk
i¼ 1

R2
i � 3lðk þ 1Þ

¼ 12

ð10Þð3Þð4Þ
�ð24Þ2 þ ð20Þ2 þ ð16Þ2�� ð3Þð10Þð4Þ ¼ 3:2:

From the chi-square table, c2
0:05ð2Þ ¼ 5:992: Hence, the rejection region is S � 5.992. The computed value of the test statistic

does not fall in the rejection region, and we do not reject H0. We conclude that there is no difference in scores based on who

teaches the course.

Friedman’s test is an alternative to the repeated measures ANOVA, when assumptions such as that of normality or
equality of variance are not satisfied. Because this test, like many other nonparametric tests, does not make a distribution
assumption, it is not as powerful as the ANOVA.

Exercises 12.5

12.5.1. Table 12.16 shows a random sample of observations on children under 10 years of age, each observation being the
IgA immunoglobulin level measured in international units from a large number of blood samples, and the pop-
ulation is studied in blocks in terms of age groups (the upper value is not included) as I: (1e3), II: (3e6), III:
(6e8), and IV: (8e10). Test for the hypothesis of equality of true medians for IgA level in each block (age level),
(a) with the 5% level and (b) with the 1% level of significance. Compare the results obtained.

12.5.2. In an effort to study the effect of four different preventive maintenance programs on downtimes (in minutes) for a
certain period of time in a production line, a factory runs four parallel production lines, and each line has five
different types of machine. The different maintenance programs are randomly assigned to each of the four pro-
duction lines so as to treat the various machines as blocks. Results are shown in Table 12.17.
Test the hypothesis at a ¼ 0:05, H0: True medians of the four maintenance programs are equal versus Ha: Not all
are equal. (Hint: In the Friedman test, k ¼ 4, and l ¼ 6.) State any assumptions you have made to solve this
problem.

12.5.3. Show that, when k ¼ 2, the KruskaleWallis statistics,

H ¼ 12
NðN þ 1Þ

Xk
i¼ 1

r2i
ni
� 3ðNþ 1Þ

becomes equivalent to the Wilcoxon rank sum test.

TABLE 12.16 IgA Immunoglobulin Level of Children.

I 6 37 19 14 51 68 27 75

II 32 65 76 42 45 41 38 63

III 73 75 59 90 37 32 63 80

IV 81 42 48 60 98 100 79 45

TABLE 12.17 Downtimes by Program.

Machine Method 1 Method 2 Method 3 Method 4

I 181 124 126 181

II 185 122 125 160

III 67 65 68 69

IV 121 66 120 68

V 62 60 62 65
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12.5.4. A consumer testing agency is interested in determining whether there is a difference in the mileage for three
brands of gasoline. To test this, four different vehicles are driven with each of these gasolines. Results are shown
in Table 12.18.
Test whether there is a difference between the three gasoline medians at the 0.05 level.

12.5.5. In order to study the effect of fertilizers, five groups of 1-acre plots were randomly selected. One group was not
treated with any fertilizers and the remaining four groups were treated with four different brands of fertilizers.
Table 12.19 gives the yields of corn (in bushels) from each of these plots.
Use the data to determine whether there is a difference in yields for different fertilizers. Use a ¼ 0.01.

12.5.6. In order to compare grocery prices of four different grocery stores on a particular day in November 1999, 11
randomly selected items with the same brands are given in Table 12.20.
Use the data to determine whether there is a difference in prices at these four grocery store chains. Use a ¼ 0.01.
State any assumptions you have made to solve this problem.

TABLE 12.18 Mileage by Gasoline Type.

Vehicle

Gasoline

A B C

I 19 25 22

II 26 33 39

III 20 28 25

IV 18 30 21

TABLE 12.19 Yield by Fertilizer.

None: 58 27 36 41 48 36 50 50 39

Fertilizer I: 69 67 57 63 49 65 78 69

Fertilizer II: 95 92 92 89 100 88 79 97 75

Fertilizer III: 102 111 92 103 102 94 100 112 96

Fertilizer IV: 127 115 112 122 114 107 116 112 108

TABLE 12.20 Grocery Prices by Store.

Product Store A Store B Store C Store D

Bread (20 oz) $1.39 $1.39 $1.39 $1.39

Red apples (1 lb) 1.29 1.29 0.99 0.68

Large eggs (1 dozen) 0.69 0.88 0.89 0.89

Orange juice (64 oz) 3.29 2.99 2.79 2.69

Cereal (15 oz) 3.59 3.19 3.19 3.58

Canned corn (15.25 oz) 0.50 0.53 0.50 0.49

Sugar crystals (5 lb) 1.99 2.09 1.99 1.89

2% milk (1 gal) 3.19 3.19 3.09 3.09

Frozen pizza (21.5 oz) 3.00 4.59 3.50 3.50

Puppy chow (4.4 lb) 4.59 3.69 3.69 3.99

Diapers (56-pack) 12.99 12.99 12.99 11.88
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12.6 Chapter summary

In this chapter, we first learned about nonparametric approaches to interval estimation and nonparametric hypothesis tests
for one sample, such as the sign test, the Wilcoxon signed rank test, and dependent sample paired comparison tests. Then
nonparametric hypothesis tests for two independent samples such as the median test and Wilcoxon rank sum test were
considered. Later the KruskaleWallis test and the Friedman test were explained for more than two samples.

It is natural to ask, “Why do we substitute a set of nonnormal numbers, such as ranks, for the original data?” Few data
are truly normal. Rank tests are sometimes called “approximate” tests. They are most useful in instances when we suspect
that the data are not normal, and we either cannot transform the data to make them more normal, or do not like to do so.
One of the simple ways to check for appropriateness of use of nonparametric tests is to simply construct a stem-and-leaf
display or a histogram for the sample data and see whether they look symmetric and approximately bell shaped. If this is
not so, we may often be better off using a nonparametric approach.

Since the 1940s, many nonparametric procedures have been introduced, and the number of procedures continues to
grow. The nonparametric tests presented in this chapter represent only a small portion of available nonparametric tests.
There are many references available in the bibliography for further reading on the subject.

In this chapter, we have also learned the following important concepts and procedures:

- Procedure for finding (1 e a)100% confidence interval for the median M
- Hypothesis-testing procedure by sign test
- A large sample sign test
- Hypothesis-testing procedure by Wilcoxon signed rank test
- Summary of large sample Wilcoxon signed rank test (n > 20)
- Summary of large sample median sum test (n1 > 5 and n2 > 5)
- Hypothesis-testing procedure by Wilcoxon rank sum test
- Summary of large sample Wilcoxon rank sum test (n1 > 10 and n2 > 10)
- KruskaleWallis test procedure
- Friedman test procedure

12.7 Computer examples

In this section, we illustrate some nonparametric procedures using statistical software packages.

12.7.1 Examples using R

EXAMPLE 12.7.1 (Sign test)

Using the following data test H0 : M ¼ 1:4 vs. Ha : M > 1:4, using the sign test.

Sample (x): 1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45.

R code

y ¼ length(which(x > 1.4));

n ¼ length(x);

binom.test(y,n,alternative ¼ ”greater”);

Our p  value suggests that we fail to

reject the null hypothesis for any 

reasonable level of significance and

that the medians are equal.Output

Exact binomial test.

data: y and n

number of successes ¼ 5, number of trials ¼ 9, p value ¼ 0.5

alternative hypothesis: true probability of success is greater than 0.5

95 percent confidence interval:

0.2513676 1.0000000

sample estimates:

probability of success

0.5555556
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EXAMPLE 12.7.2 (Wilcoxon test)

Using the data from the previous example test H0 : M ¼ 1:4 vs. Ha : Ms1:4, using one-sample Wilcoxon test.

R code

wilcox.test(x,mu ¼ 1.4);

Output

Wilcoxon signed rank test

data: x

We fail to reject the null hypothesis 
suggesting that the true mean is equal to 1.4

for any reasonable level of significance. 

V ¼ 30, p value ¼ 0.4258

alternative hypothesis: true location is not equal to 1.4

EXAMPLE 12.7.3 (Two-sample sign test)

Using the following data, test H0 : M ¼ 0 vs. Ha : M < 0, using the two-sample sign test, whereM is the median difference. Use

a ¼ 0:05.

Sample (x) 180 199 175 226 189 205 169 211

Sample (y) 172 191 172 230 178 199 171 201

R code

z ¼ x-y;

y ¼ length(which(z < 0));

n ¼ length(z);

binom.test(y,n,alternative ¼ “less”);

Output

Exact binomial test.

data: y and n

Fail to reject the null hypothesis since

the p  value is larger than our alpha.

This suggests the median difference is zero.

number of successes ¼ 2, number of trials ¼ 8, p value ¼ 0.1445

alternative hypothesis: true probability of success is less than 0.5

95% confidence interval:

0.0000000 0.5996894

sample estimates:

probability of success

0.25

EXAMPLE 12.7.4 (Wilcoxon two-sample test)

Use the Wilcoxon rank sum test with a ¼ 0:05 to test the null hypothesis that the two population medians are the same against

the alternative hypothesis that the population medians are different.

Sample (x): 85 99 100 110 105 87

Sample (y): 67 69 70 93 105 90 110 115

R code

wilcox.test(x,y);

Output

Wilcoxon rank sum test with continuity correction

data: x and y

Fail to reject the null 
hypothesis 

W ¼ 28, p value ¼ 0.6507

alternative hypothesis: true location shift is not equal to 0
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EXAMPLE 12.7.5 (KruskaleWallis test)

In an effort to investigate the premium charged by insurance companies for auto insurance, an agency randomly selects a few

drivers who are insured by three different companies. Assume that these persons have similar cars, driving records, and levels of

coverage. The following data are the premiums paid per 6 months by these drivers with these three companies. Using a ¼ 0:05,

test the null hypothesis that the median auto insurance premium paid per 6 months by all drivers insured in each of these

companies is the same.

Company C1 C1 C1 C1 C2 C2 C2 C3 C3 C3 C3 C3

Value 396 438 336 318 348 360 522 378 330 294 474 432

R code

kruskal.test(value, company);

Output

KruskaleWallis rank sum test

data: value and company

KruskaleWallis chi-squared ¼ 0.4256, df ¼ 2, p value ¼ 0.8083

A large p value suggests we

fail to reject the null hypothesis

EXAMPLE 12.7.6 (Friedman test)

Using the following data conduct a Friedman test.

C1 93 61 87 75 92 45 99 86 82 74

C2 88 90 76 82 58 74 23 61 60 77

C3 86 56 73 90 47 88 77 18 66 55

R code

blocks ¼ c(c(1:10),c(1:10),c(1:10)); A data set called blocks contains
matching block data ranged 1 to 10friedman.test(values, groups,blocks);

Output

Friedman rank sum test

data: values, groups and blocks

Friedman chi-squared ¼ 3.2, df ¼ 2, p value ¼ 0.2019

12.7.2 Minitab examples

EXAMPLE 12.7.7

(One-sample sign): For the data

1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45

test H0: M ¼ 1.4 versus Ha: M > 1.4, using sign test.

Solution

Enter data in C1. Then

Stat > Nonparametric > 1-Sample Sign . > in Variables: type C1 > click Test median: type 1.4 > in Alternative: click greater

than > click OK

We can obtain the nonparametric confidence interval using the following procedure. Enter in variable, C1, and then

Stat > Nonparametric > 1-Sample Sign. > in Variables: type C1 > click Confidence interval > in Level: enter appropriate, say,

95.0 > click OK
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EXAMPLE 12.7.8

(One-sample Wilcoxon): For the data

1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45

test H0: M ¼ 1.4 versus Ha: M s 1.4, using one-sample Wilcoxon test.

Solution

We will give only Sessions commands; the Windows procedure is similar to the previous example.

Stat > Nonparametric > 1-Sample Wilcoxon. > in Variables: type C1 > click Test median: type 1.4 > in Alternative: clickNot

equal > click OK

EXAMPLE 12.7.9

(Two-sample sign test): For the data

Sample 1 180 199 175 226 189 205 169 211

Sample 2 172 191 172 230 178 199 171 201

test H0: M ¼ 0 versus Ha: M < 0, using the two-sample sign test, where M is the median of the difference. Use a ¼ 0.05.

Solution

After entering sample 1 data in C1 and sample 2 data in C2, we can use the following sequence:

Calc > Calculator . > in Store result in variable: type C3 > in Expression: type C2eC3 > click OK

We will get the pairwise difference of the two samples. For these values, we will apply the one-sample sign test.

Stat > Nonparametric > 1-sample sign . > in Variables: type C3 > click Test median: and in Alternative: choose Less

than > click OK

EXAMPLE 12.7.10

(KruskaleWallis test): In an effort to investigate the premium charged by insurance companies for auto insurance, an agency

randomly selects a few drivers who are insured by three different companies. Assume that these persons have similar cars, driving

records, and levels of coverage. Table 12.21 gives the premiums paid per 6 months by these drivers with these three companies.

Using the 5% significance level, test the null hypothesis that the median auto insurance premium paid per 6 months by all

drivers insured in each of these companies is the same. Use Minitab.

Solution

Enter data for company I in C1, for company II in C2, and for company III in C3. First stack the data while keeping track of the

companies in the following way.

Manip > Stack/Unstack > Stack Columns . > in Stack the following columns: type C1 C2 C3 > in Stored data in: type C4 > in

Store subscripts in: type C5 > click OK

Now we can use KruskaleWallis as follows.

Stat > Nonparametric > KruskaleWallis . > in Response: type C4 > in Factor: type C5 > click OK

TABLE 12.21 Auto Insurance Premium by Company.

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432
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We will get the output shown in Table 12.22.

Because the p value of 0.808 is larger than a ¼ 0.05, we cannot reject the null hypothesis.

EXAMPLE 12.7.11

(Friedman test): For the following data, conduct a Friedman test.

93 61 87 75 92 45 99 86 82 74

88 90 76 82 58 74 23 61 60 77

86 56 73 90 47 88 77 18 66 55

Solution

Enter each row of data in C1, C2, and C3, respectively. Then stack the data in C1, C2, C3 in the following way.

Manip > Stack/Unstack > Stack Columns . > in Stack the following columns: type C1 C2 C3 > in Stored data in: type C4 > in

Store subscripts in: type C5 > click OK

In C6, enter numbers 1 through 10 in the first 10 rows, enter numbers 1 through 10 in the next 10 rows, and enter numbers 1

through 10 in the following 10 rows. Now we can use the Friedman test as follows.

Stat > Nonparametric > Friedman . > in Response: type C4 > in Treatment: C5 > in Blocks: type C6 > click OK

We will get the output shown in Table 12.23.

Because the p value is 0.202, for any value of a < 0.202, we cannot reject the null hypothesis.

TABLE 12.22 KruskaleWallis Test.

KruskaleWallis test on C4

C5 N Median Ave rank Z

1 4 366.0 6.0 �0.34

2 3 360.0 7.7 0.65

3 5 378.0 6.2 �0.24

Overall 12 6.5

H ¼ 0.43; DF ¼ 2; p ¼ 0.808

* NOTE * one or more small samples

TABLE 12.23 Friedman Test for C4 by C5 Blocked by C6.

C5 N Est median Sum of ranks

1 10 81.500 24.0

2 10 72.000 20.0

3 10 68.000 16.0

Grand median ¼ 73.833

S ¼ 3.20; DF ¼ 2; p ¼ 0.202.
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12.7.3 SPSS examples

EXAMPLE 12.7.12

(Wilcoxon rank sum test): For the data of Example 12.4.2, use the Wilcoxon rank sum test at the significance level of 0.05 to test

the null hypothesis that the two population medians are the same against the alternative hypothesis that the population medians

are different. Use an SPSS procedure.

Solution

Because the SPSS pull-down menu does not have the Wilcoxon rank sum test, we will use the ManneWhitney U-test. The

ManneWhitney U-test is equivalent to the Wilcoxon rank sum test, although we calculate it in a slightly different way. For the

same data set, any p values generated from one test will be identical to those generated from the other. The following gives the

steps to follow. Enter tire brands as 1 to identify brand 1 and 2 to identify brand 2, in C1. Enter the corresponding prices in C2.

Name C1 as Brand and C2 as Price. Then click

Analyze > Nonparametric tests > 2 Independent samples . >move Brand to Grouping Variable: and Price to Test Variable

list: > click Define Groups. > enter 1 in Group 1:, and 2 in Group 2: > click continue > choose ManneWhitney U >OK

We obtained the following output:

ManneWhitney Test

Ranks

BRAND N Mean rank Sum of ranks

Price 1.00 6 8.17 49.00

2.00 8 7.00 56.00

Total 14

Test Statistics

Price

ManneWhitney U 20.000

Wilcoxon W 56.000

Z e0.518

Asymp. Sig. (2-tailed) 0.605

Exact Sig. [2*(1-tailed Sig.)] 0.662

(a) Not corrected for ties.

(b) Grouping Variable: BRAND

In the first table just shown, ranks show the mean ranking of tire brand I and tire brand II. The ManneWhitney test is used to

assess whether the distribution of ranks is statistically significant. Under the null hypothesis, the distribution of ranks should be the

same for both groups. Looking at the second table, the calculated value of the ManneWhitney U is 20. The value U represents the

amount by which the ranks for tire brand I and tire brand II deviate from what we would expect under the null hypothesis. For a

0.05 significance level, we can reject the null hypothesis if the 2-tailed significance (see Asymp. sig in the second table) is less

than 0.05. In this case, because Asymp. Sig. (2-tailed) ¼ 0.605, we do reject the null hypothesis.

EXAMPLE 12.7.13

(KruskaleWallis test): For the data of Example 12.5.1, conduct the KruskaleWallis test using SPSS.

Solution

Enter insurance companies as 1 to identify company I, 2 to identify company II, and 3 to identify company III, in C1. Enter the

corresponding premiums in C2. Name C1 as Company, and C2 as Premium. Then:

Analyze > Nonparametric Tests > K Independent samples . > move Premium to Test Variable List: and Company to Grouping

variable: > click Define Rage . > enter 1 in Minimum, and 3 in Maximum > click Continue > click KruskaleWallis H > OK

If we need to do a Friedman test, say for the data of Example 12.7.5, enter each row of data in C1, C2, and C3, respectively.

Then use the following sequence to obtain the appropriate output.

Analyze > Nonparametric Tests > K Related Samples. >move each of the three columns to Test Variables: > check in Test

Type Friedman >OK
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12.7.4 SAS examples

To perform the nonparametric tests, use the SAS statement PROC NPAR1WAY. In the procedure, if we include the
EXACT statement, the program will compute the exact p value computations for the Wilcoxon rank sum test.

EXAMPLE 12.7.14

(Wilcoxon rank sum test): Comparison of the prices (in dollars) of two brands of similar tires gave the following data.

Tire I: 85 99 100 110 105 87

Tire II: 67 69 70 93 105 90 110 115

Use the Wilcoxon rank sum test at the significance level of 0.05 to test the null hypothesis that the two population medians are

the same against the alternative hypothesis that the population medians are different. Use the SAS procedure.

Solution

We can use the following procedure:

options nodate nonumber;

DATA tprice;

INPUT Brand Price @@;

CARDS;

1 85 1 99 1 100 1 110 1 105 1 87

2 67 2 69 2 70 2 93 2 105 2 90 2 110 2 115

;

/* Nonparametric statistics/Wilcoxon Rank-

Sum */

PROC NPAR1WAY DATA ¼ tprice WILCOXON;

CLASS Brand;

VAR Price;

EXACT WILCOXON;

run;

EXAMPLE 12.7.15

(KruskaleWallis test): For the data of Example 12.7.4, perform the KruskaleWallis test using SAS.

Solution

We can use the following code;

options nodate nonumber;

DATA insprice;

INPUT Company Price @@;

CARDS;

1 396 1 438 1 336 1 318

2 348 2 360 2 522

3 378 3 330 3 294 3 474 3 432

;

proc npar1way data ¼ insprice;

class company;

var Price;

run;

Projects for Chapter 12

12A Comparison of Wilcoxon tests with normal approximation

(i) For the Wilcoxon signed rank test, compare the results from the Wilcoxon signed rank test table with the normal
approximation using several sets of data of various sample sizes. Also, if the sample size is very small, compare
the results from the Wilcoxon signed rank test with a small sample t-test.
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(ii) For the Wilcoxon rank sum test, compare the results from the Wilcoxon rank sum test table with the normal approx-
imation using several sets of data (from pairs of samples) of various sample sizes. Also, if the sample sizes are very
small, compare the results from the Wilcoxon rank sum test with small sample t-test for two samples.

12B Randomness test (WaldeWolfowitz test)

When we have no control over the way in which the data are selected, it is useful to have a technique for testing whether
the sample may be looked on as random. The condition of randomness is essential for all of the analyses explained in this
book: that is, whether a sequence of random variables X1,., Xn are independent based on a set of observations x1,., xn of
these random variables. Here we will give a method based on the number of runs displayed in the sample events. This is a
nonparametric procedure. The run test is used to test the randomness of a sample at 100(1 e a)% confidence level.

Given a sequence of two symbols, say H and T, a run is defined as a succession of identical symbols contained between
different symbols or none at all. The total number of runs in a sequence of n trials serves as an indication whether the
arrangement is random or not. If a sequence contains n1 symbols of one kind and n2 symbols of another kind and both n1
and n2 are greater than 10 (this is a rule of thumb; for more accuracy we can also take both n1 and n2 as greater than 20),
then the sampling distribution of the total number of runs, R, has an asymptotic normal distribution with mean

mR ¼ 2n1n2
n1 þ n2

þ 1

and variance

s2
R ¼ 2n1n2ð2n1n2 � n1 � n2Þ

ðn1 þ n2Þ2ðn1 þ n2 � 1Þ:

For example, if we have the following symbols

HHH T HH TTTT HH TTT

there are six runs indicated by the underlines and n1 ¼ 7 and n2 ¼ 8. If the sample contains numerical data, the run test
is used by counting runs above and below the median. Denoting the observations above the median by the letter A and
observations below the median by the letter B, we can determine the run as before. For example, if we have data values

2 5 11 13 7 22 6 8 15 9

then the median is 8.5. Hence, we get the following arrangement of values above and below the median:

BB AA B A BB AA :

Hence, there are six runs with n1 ¼ 5 and n2 ¼ 5.
Now we can formulate the test of randomness as a hypothesis-testing problem as described in the following procedure.

Procedure for test of randomness using the run test

To test

H0 : Arrangement of sample values is random

versus

Ha : Data is not random.

1. Compute the median of the sample.

2. Going through the sample values, replace any observation with A if the value is above the median, or B if the value is below

the median. Discard any ties.

3. Compute n1, n2, and R. Also, compute the mean and variance of R.

mR ¼ 2n1n2

n1 þ n2

þ 1;
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and

s2
R ¼ 2n1n2ð2n1n2 � n1 � n2Þ

ðn1 þ n2Þ2ðn1 þ n2 � 1Þ:

4. Compute the test statistic:

Z ¼ R � mR

sR

:

5. Rejection region:

jZ j > Za=2:

6. Decision: If the test statistic falls in the rejection region, reject H0 and conclude that the sample is not random with (1 e a)

100% confidence.

Assumption: n1 � 10 and n2 � 10.

Note 1: Sometimes the same procedure is used with the median replaced by the mean of the sample. That is, if the
observation is above the sample, use A, and if it is below the sample, use B. We use this procedure for large samples. For
small sample sizes, to determine the upper and lower critical values, a special table is needed. Some statistical software
packages have the ability to use the run test for randomness. For example, in Minitab we can use the following procedure.

Enter the data that we want to test for randomness in C1. Then:
Stat > Nonparametric > Runs Test . > In variables: enter C1 > OK
Default in Minitab is a run test with the mean. If we prefer median, type the value of the median by first clicking Above

and below:.

EXAMPLE 12.B.1

The following table gives the radon concentration in pCi/L obtained from 40 houses in a certain area.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2

7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4

15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7

6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

Test using Minitab (or some other software) whether the data are random at 95% confidence level.

Solution

Running the data with Minitab, we get the following output.

radon
K = 8.3400

The observed number of runs = 17
The expected number of runs = 20.9500

19 Observations above K 21 below
The test is significant at 0.2046

Cannot reject at alpha = 0.05
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Thus the data set is a random sample at 95% confidence level.
Note 2: If the large samples assumption is not satisfied (that is, n1 < 10 and n2 < 10, for more accuracy use 20 instead

of 10), then use the total number of runs, R, itself as the test statistic and we can find lower and upper critical values for a
given a (from Frieda S. Swed and C. Eisenhart. Tables for testing randomness of grouping in a sequence of alternatives,
Annals of Mathematical Statistics, 14, 83e86, 1943). We will not be giving this table in this book.

Exercise

Pick a couple of data sets from this book or your own and test for randomness using (1) hand calculations, and (2) a
statistical software package.

530 Mathematical Statistics with Applications in R



Chapter 13

Empirical methods

Chapter outline

13.1. Introduction 532

13.2. The jackknife method 532

Exercises 13.2 534

13.3. An introduction to bootstrap methods 535

13.3.1. Bootstrap confidence intervals 539

Exercises 13.3 540

13.4. The expectation maximization algorithm 540

Exercises 13.4 548

13.5. Introduction to Markov chain Monte Carlo 549

13.5.1. Metropolis algorithm 552

13.5.2. The MetropoliseHastings algorithm 554

13.5.3. Gibbs algorithm 557

13.5.4. Markov chain Monte Carlo issues 560

Exercises 13.5 560

13.6. Chapter summary 562

13.7. Computer examples 562

13.7.1. Examples using R 562

13.7.2. Examples with Minitab 567

13.7.3. SAS examples 568

Project for Chapter 13 568

13A Bootstrap computation 568

Objective

In this chapter we introduce several empirical methods that are being increasingly used in statistical computations as an
alternative or as an improvement to classical statistical methods.

Stanislaw Ulam
(Source: http://scienceworld.wolfram.com/biography/Ulam.html.)

Stanislaw Ulam (1909e84) was a Polish American mathematician who came to the United States in 1936. He
worked at Princeton University. He was involved with the Manhattan Project to build the first atomic bomb. Ulam
solved the problem of how to initiate fusion in the hydrogen bomb. Ulam was interested in astronomy, physics, and
mathematics from an early age. He obtained his PhD from the Polytechnic Institute in Lwów in 1933, where he studied
under a famous mathematician named Banach. Ulam’s writings included A Collection of Mathematical Problems
(1960); Sets, Numbers, and Universes (1974); and Adventures of a Mathematician (1976). His major contribution to
statistics is through the introduction of the Monte Carlo methods along with Metropolis in 1949. These methods are
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widely used in solving mathematical problems using statistical sampling. Monte Carlo methods became widely popular
with the ever-increasing power of computers and the development of specialized mathematical and statistical software.

13.1 Introduction

In statistics, major efforts are made to develop and study accurate statistical models that are able to describe natural
phenomena. The dilemma is whether to use the standard model that may allow closed-form solutions, or to describe the
phenomenon more accurately, which would often preclude the computation of explicit answers. Obtaining methods that
result in useful qualitative and quantitative understanding of realistic complex systems is difficult, and obtaining exact
analytical tools is not practical either. Because of this problem, practitioners have relied on simulation-based methods.
Computer simulation methods are becoming the tools of choice for problems in statistics. Most of the empirical methods
discussed in this chapter had been in existence in the statistical literature as possible numerical methods for some time.
Because of the difficulty of computing by hand, these methods did not gain much popularity. These numerical techniques
became popular and practical with the advent of high-quality pseudo-random number generators and high-speed com-
puters. Modern statistics is increasingly being equipped with theoretical concepts complemented with effective compu-
tational tools to handle the challenges that arise in science and technology. The methods presented in this chapter could be
effectively used for Bayesian computation and for problems arising in such diverse areas as environmental modeling,
epidemiology, finance, genetics, image analysis, and statistical physics.

It is important to note that the literature on these simulation methods is growing, and it is impossible to present the
whole picture in a single chapter. The purpose of this chapter is only to introduce some basic and popular computational
methods. There are many specialized books for further study.

13.2 The jackknife method

It was Tukey who, in 1958, gave the name “jackknife” (sometimes also known as the QuenouilleeTukey jackknife) to a
general statistical method, invented by Maurice Quenouille in 1956, for testing hypotheses and finding confidence intervals
where traditional methods are not applicable or not well suited. In general usage, a jackknife is a large clasp knife that has a
multitude of small pull-out tools. Because this method could be used for small tasks without resorting to other tools, it was
named the jackknife. The jackknife method could also be used with multivariate data. However, here we will present only
the method for univariate data. The jackknife procedure is very useful when outliers are present in the data or the dispersion
of the distribution is wide. In the jackknife method, we systematically recompute the statistic, leaving out one observation
at a time from the observed sample. This is used to estimate the variability of a statistic from the variability of that statistic
between subsamples. This avoids the parametric assumptions that we used in obtaining the sampling distribution of the
statistic to calculate standard error. Thus, this can be considered a nonparametric estimate of the parameter. Initially, the
jackknife method was introduced for bias reduction (thus improving a given estimator) and is a useful method for variance
estimation. In this section, we study only how to compute a jackknife estimate and a confidence interval. We do not discuss
how it reduces bias or any other theoretical properties. Jackknife methods predate the bootstrap method discussed in the
next section.

Let X1, ., Xn be a random sample from a population with finite variance. Then the sample mean is:

X ¼ 1
n

Xn
i¼ 1

Xi:

If one of the observations, say, the kth observation, is taken out (or missing), then:

X�k ¼ 1
n� 1

 Xn
i¼ 1

Xi �Xk

!
¼ 1

n� 1

Xn
ksi¼ 1

Xi:

Now, if we know the overall sample mean X and we calculated X�k , then we can obtain the deleted observation Xk by
using the formula:

Xk ¼ nX � ðn� 1ÞX�k:
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In general, suppose that the population parameter q is estimated by a function of the sample values bq (X1, ., Xn),
represented by bq, and let bq�k be the corresponding estimate by removing the kth observation. Note that here q is any
parameter; it need not be the population mean. Then the set of “pseudo-values” bq�k , k ¼ 1, 2, ., n are obtained by:

bq�k ¼ nbq � ðn� 1Þbq�
�k:

The average of these pseudo-values,

bq� ¼ 1
n

Xn
k¼ 1

bq��k;

is the jackknife estimate of the parameter q.
Let s�

2
be the sample variance of these pseudo-values. Then, the variance of bq� is estimated by s�

2
/n, and a (1 � a)

100% jackknife confidence interval for q is given by:

bq� � ta=2
s�ffiffiffi
n

p ;

where ta/2 is evaluated with (n � 1) degrees of freedom.

A procedure for jackknife point and interval estimation

1. Generate a random sample X1, ., Xn from a population.

2. First remove X1 from the sample (so the new sample will be

X2, ., Xn) and compute the estimator bq�1 (such as the

sample mean); then remove X2 (the resulting sample will

be X1, X3, ., Xn) and compute the estimator bq�2, and so

on until the last sample is X1, ., Xn�1, with the estimator

being bq�n:

3. The jackknife point estimate of q is:

bq� ¼ 1

n

Xn
k ¼ 1

bq��k :

4. Calculate the sample variance of the values bq�i , i ¼ 1, .,

n, and denote the variance as s�
2
.

5. A (1 � a) 100% jackknife confidence interval for q is given

by:

bq� � ta=2
s�ffiffiffi
n

p :

EXAMPLE 13.2.1

A random sample of n ¼ 6 from a given population resulted in the following data:

7:2 5:7 4:9 6:2 8:5 2:8:

(a) Find a jackknife point estimate of the population mean m.

(b) Construct a 95% jackknife confidence interval for the population mean m.

Solution

(a) Here n ¼ 6. Table 13.1 represents the original sample and the six jackknife samples.

TABLE 13.1 Jackknife Samples.

Original Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

7.2 5.7 7.2 7.2 7.2 7.2 7.2

5.7 4.9 4.9 5.7 4.9 4.9 4.9

4.9 6.2 6.2 6.2 5.7 6.2 6.2

6.2 8.5 8.5 8.5 8.5 5.7 8.5

8.5 2.8 2.8 2.8 2.8 2.8 5.7

2.8
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Using Minitab descriptive statistics, we obtained the summary of the analysis given in Table 13.2. Now, taking the mean and

standard deviation of the means of the six jackknife samples, we get bm� ¼ 5:883; and the standard deviation s� ¼ 0.392. Thus,

the jackknife point estimate of m is bm� ¼ 5:883; that is, the same as the mean of the original sample. However, we can see that the

standard deviation resulting from the jackknife is reduced to only 0.392, compared with 1.959 for the original sample.

In Table 13.2, TrMean is the trimmed mean, which is computed by first ordering the data values from smallest to largest, then

deleting a selected number of values from each end of the ordered data, and then, averaging the remaining data. In this case, we

have removed the smallest and largest 5% of the values (rounded to the nearest integer), and then calculated the mean of the

remaining values.

(b) A 95% jackknife confidence interval for m is:

bm� � ta=2
s�ffiffiffi
n

p ¼ 5:883� 2:571
0:392ffiffiffi

6
p ;

resulting in (5.471, 6.2944). Compare this with Example 5.5.7, in which we got the confidence interval as (3.827, 7.939).

Thus, through the jackknife method, we get a much tighter confidence interval for m.

The jackknife method of resampling is also known as the “leave-one-out” method because it uses all observations but
one in each subsample. Here, every observation is left out exactly once. Note that in the jackknife method, sampling is
done without replacement. This procedure can also be used for other statistical procedures such as hypothesis testing and
regression. We use the jackknife resampling method to estimate the prior probability density function (pdf) of true pa-
rameters in the pdf of the given data, f ðxjqÞ, to obtain empirical Bayes estimates of q; in Chapter 10.

Exercises 13.2

13.2.1. The following data represent the total ozone levels measured in Dobson units at randomly selected locations on
the Earth on a particular day:

269 246 388 354 266 303

295 259 274 249 271 254

(a) Find a jackknife point estimate of the population mean m ozone level.
(b) Construct a 95% jackknife confidence interval for the population mean m.
(c) Compare the confidence interval obtained in (b) with that in Example 6.3.3.

13.2.2. A drug is suspected of causing an elevated heart rate in a certain group of high-risk patients. Twenty patients from
this group were given the drug. The changes in heart rates were found to be as follows:

�1 8 5 10 2 12 7 9 1 3

4 6 4 12 11 2 �1 10 2 8

Construct a 98% jackknife confidence interval for the mean change in heart rate. Interpret your answer.

TABLE 13.2 Summary Statistics for Jackknife Samples.

Variable N Mean Median TrMean StDev SE Mean

Original 6 5.883 5.950 5.883 1.959 0.800

Sample 1 5 5.620 5.700 5.620 2.068 0.925

Sample 2 5 5.920 6.200 5.920 2.188 0.978

Sample 3 5 6.080 6.200 6.080 2.123 0.949

Sample 4 5 5.820 5.700 5.820 2.183 0.976

Sample 5 5 5.360 5.700 5.360 1.656 0.741

Sample 6 5 6.500 6.200 6.500 1.395 0.624
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13.2.3. Air pollution in large US cities is monitored to see whether it conforms to requirements set by the Environmental
Protection Agency. The following data, expressed as an air pollution index, give the air quality of a city for 10
randomly selected days:

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

Construct a 95% jackknife confidence interval for the actual average air pollution index for this city and interpret.

13.2.4. The mileage (in thousands) for a random sample of 10 rental cars from a large rental company’s fleet is listed:

7 13 5 5 11 15 7 9 13 8

Find a 95% jackknife confidence interval for the population mean mileage of the rental cars of this company.

13.2.5. The following data represent cholesterol levels (in mg/dL) of 10 randomly selected patients from a large hospital
on a particular day:

360 352 294 160 146 142 318 200 142 116

Determine a 95% jackknife confidence interval for s2. Compare this with the confidence interval obtained in
Example 6.4.2.

13.2.6. Air pollution in large US cities is monitored to see whether it conforms to requirements set by the Environmental
Protection Agency. The following data, expressed as an air pollution index, give the air quality of a city for five
randomly selected days:

56.23 57.12 57.7 63.92 59.40

Construct a 99% jackknife confidence interval for the actual variance of the air pollution index for this city and
interpret.

13.2.7. It is known that some brands of peanut butter contain impurities within an acceptable level. A test conducted on 12
randomly selected jars of a certain brand of peanut butter resulted in the following percentages of impurities:

1.9 2.7 2.1 2.8 2.3 3.6 1.4 1.8 2.1 3:2 2.0 1.9

(a) Construct a 95% jackknife confidence interval for the average percentage of impurities in this brand of peanut
butter.

(b) Give an approximate 95% jackknife confidence interval for the population variance.
(c) Interpret your results.

13.2.8. The following is a random sample taken from the data that represent the time intervals in days between earth-
quakes that either registered magnitudes greater than 7.5 on the Richter scale or produced more than 1000 fatal-
ities during the time period December 1902 to March 1977.

263 1901 121 832 150 99

(a) Construct a 95% jackknife confidence interval for the average number of days between earthquakes of this
type.

(b) Give an approximate 95% jackknife confidence interval for the population variance of number of days be-
tween earthquakes of this type.

13.3 An introduction to bootstrap methods

In this section, we describe some aspects of a relatively recent statistical technique known as the bootstrap method that can
be used when the statistical distribution is unknown or the assumptions of normality are not satisfied and especially when
the samples are small. This is a general method for estimating sampling distributions. The concept of the bootstrap was
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introduced by Bradley Efron in 1979 and further developed by Efron and Tibshirani in 1993. We often try to determine the
exact (sampling) distribution in an inferential procedure, such as the sampling distribution of the sample mean, the median,
or the variance, to be used in computing confidence intervals and for testing hypotheses. However, as we have seen, this is
often the most difficult part of the work, because the sampling distribution depends on the population distribution, which is
often unknown. This is the reason asymptotic methods are quite frequently used for hypothesis testing and interval
estimation. The bootstrap procedure provides us with a simple method for obtaining an approximate sampling distribution
of the statistic, conditional on the observed data. However, it should be noted that the distribution thus obtained is only
approximate. It is not as “good” as the exact distribution, because we have only a sample from the population. However,
often, a bootstrap sampling distribution is easier to compute. Bootstrap methods are computer-intensive methods that use
simulation to calculate standard errors, confidence intervals, and significance tests. The methods are applied by researchers
in business, econometrics, life sciences, medical sciences, social sciences, and other areas where statistics is being utilized.
The bootstrap method uses computer-generated pseudo-random numbers. So, the same situation might give similar but
possibly different results. Also, it is computationally more involved to obtain results than by using the asymptotic dis-
tribution. The advantage is that the results are conditional on observed data, not based on large sample approximations.
How does bootstrap help in reality? For instance, suppose we have 10 years of monthly return data on a particular stock. If
we were to use these data to predict the future return, say through linear regression, we would be assuming that the future is
going to behave similar to what happened in the past. We know from experience that such an assumption may not give us a
good prediction and the underlying parametric assumptions may not hold. By creating bootstrap samples from these
available data, what we are creating is not what happened, but rather what could have happened in the past from what did
happen. For example, to see how resampling affects sample mean, a particular mutual fund had the following total return
(in percentage) for the past 5 years:

Year 1 2 3 4 5

Total return 40.7 10.8 29.2 9.9 0.7

In this case, the average return for the past 5 years is 18.26%. A two-times resampling (what could have happened)
resulted in the following outcomes.

Year 1 2 3 4 5

Total return 29.2 40.7 9.9 10.8 10.8

Here, the average is 20.28%. The next resampling gave the following:

Year 1 2 3 4 5

Total return 0.7 0.7 40.7 0.7 9.9

The resulting average return is 10.54%. A realistic future prediction method should depend on these possible fluctu-
ations that could have happened in different scenarios.

Most of the inferential procedures we learned are based on a single sample drawn from the population. Bootstrap
methods, in contrast, generate repeated subsamples from the single original sample itself and make inferences without
assuming any particular functional form for the population distribution. Because this has the effect of sampling with
replacement, we can create as many subsamples as we wish. These subsamples will have the same sample size and values
as the original sample, except that many values in each of the subsamples will be repeated because of sampling with
replacement. It should be noted that the effectiveness of a bootstrap procedure depends on the original sample being
representative of the population. If the original sample is not representative, the conclusions drawn from the bootstrap
methods will be completely inappropriate.

Using the jackknife method, the size of resamples is confined to (n � 1), and the number of total possible samples is
only n, the original sample size. The resampling strategy based on bootstrap has no such limitations in terms of the number
and magnitude of replications possible. The only limitation comes from the computing resources, and these new sets of
samples can be treated as a virtual population.
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EXAMPLE 13.3.1

Suppose that the population distribution is a N (1, s2). Estimate s2.

Solution

Because we know the functional form of the distribution, we could use the estimation procedures discussed in Chapter 5. There is

no need for the bootstrap method. These steps are as follows:

Step 1. If we have a random sample from N(1, s2) of size n, use it. Otherwise, generate a random sample X1,., Xn from N(m, s2).

This could be done using the method described in Project 4A of Chapter 4.

Step 2. Estimate s2 by using the method of maximum likelihood, yielding:

bs2
ml ¼

1

n

Xn
i¼ 1

�
Xi � X

�2
:

Note that the maximum likelihood procedure requires the knowledge of the functional form of the distribution; see
the derivation in Chapter 5. Suppose the form of the population distribution is not known but we do have a random sample
X1, ., Xn from a distribution. Now we will describe how we can estimate s2 using the bootstrap method.

Let X1, ., Xn be a random sample from a probability distribution F with m ¼ E(Xi) and s2 ¼ Var(Xi). Then the
standard error of X is defined as s2/n. In general, the population distribution F is unknown. A simple estimate of F is the
empirical (or sample) cumulative distribution function defined by:

bFðxÞ ¼ #fXi � xg
n

¼ Proportion of X0
i s � x:

This bF is a step function with the size of the jump being 1/n at each ordered Xi.

Summary of bootstrap method of estimating the standard error of X

Step 1. Use the sample X, ., Xn and find bF , the empirical

cumulative distribution function of F.

Step 2. Generate a sample
�
X�
11;X

�
12; :::;X

�
1n

�
from bF . From

this sample, compute X
�
1.

Step 3. Repeat step 2 (N � 1) times to obtain samples�
X�
i1;X

�
i2; ::::;X

�
in

�
, i ¼ 1, 2, ., N, and find

X
�
2;X

�
3;.;X

�
N . Now calculate X

� ¼ 1
N

PN
i¼ 1

X
�
i . This is

the bootstrap mean.

Step 4. Then the bootstrap estimate of Var
�
X
�
, denoted bybs2

bs, is given by:

bs2
bs ¼

1

N � 1

XN
i¼ 1

�
X

�
i � X

��2
:

Observe that once we have the subsample means X
�
1; .; X

�
N , the formulas for calculating the bootstrap mean and

bootstrap variance are the same as those for calculating the mean and variance of a given sample.
Note that when bF is taken to be the empirical cumulative distribution function, generating a sample from bF is

equivalent to generating a sample from {X1, ., Xn} with replacement. As a result, we obtain the following algorithm.

Bootstrap algorithm for estimating the standard error of X

1. Draw N random samples with replacement from the orig-

inal sample X1, ., Xn, with each observation having the

same probability of being drawn (1/n). Let these bootstrap

samples be denoted by
��

X�
i1;X

�
i2;.;X�

in

�
;

i ¼ 1;2;.;N
�

2. Calculate the sample means of each of these bootstrap

samples and the overall sample mean by:

X
�
i ¼ 1

n

Xn
j¼ 1

X�
ij and X

� ¼ 1

N

XN
i¼ 1

X
�
ij :

3. Compute:

bs2
bs ¼

1

N � 1

XN
i¼ 1

�
X

�
i � X

��2
:

4. Then the bootstrap estimate of Var
�
X
�
is bs2

bs0 , or equiva-

lently, the standard error of X is
ffiffiffiffiffiffiffibs2
bs

q
:
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It is not necessary that the size of the bootstrap sample also must be n or that the samples have to be obtained with
replacement. However, it is suggested that the best results are obtained when the repeated samples are the same size n as
the original sample and when the samples are obtained with replacement. The number of bootstrap samples N could be in
the hundreds or more, depending only on the capacity of the software that we are using to generate these samples.

EXAMPLE 13.3.2

The following data represent the total ozone levels measured in Dobson units at randomly selected locations on Earth on a

particular day:

269 246 388 354 266 303

295 259 274 249 271 254

Generate N ¼ 6 bootstrap samples of size 12 each and find the bootstrap mean and standard deviation (standard error).

Solution

Using Minitab (see Example 13.7.1 for the steps) we have created 200 bootstrap samples of size 12. We obtain the following

summary results:

X
� ¼ 285:74

and

bs2
bs ¼ 153:02 and bsbs ¼ 12:37:

Note that the mean of the original sample is 285.7, but the standard deviation is 43.9 (see Example 5.5.9). Even though the

mean of the original sample and the bootstrap means are very close, their standard deviations are substantially different.

In real applications, one of the difficulties is to estimate the standard errors of more complicated statistics. We can now
generalize the bootstrap method for those situations. Let bq ¼ bqðX1;.;XnÞ be a sample statistic that are estimates of the
parameter q of an unknown distribution F using some procedure. We wish to estimate the standard error of bq using the
bootstrap procedure, which is summarized next.

General bootstrap procedure to estimate the standard error of bq
1. Draw N samples with replacement from the original sam-

ple, (X1, ., Xn). Denote these bootstrap samples as�
X�
i1;X

�
i2;.;X�

in

�
, i ¼ 1, 2, ., N.

2. Compute bq1; bq2; .; bqN , where

bq�i ¼ bqiðXi1;Xi2;.;XinÞ:
The procedure for computing bq�i is the same procedure as

that used to compute bq for the original sample X1, ., Xn.

Also, compute:

bq� ¼ 1

N

XN
i¼ 1

bq�i :
3. The bootstrap estimator of standard error of bq is given by:

� d
BSE

�bq	
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼ 1

�bq�i � bq�	2
N � 1

vuuut
:

It is clear that these algorithms are considerably computer intensive and it is necessary to have suitable software to
implement them. The accuracy of the bootstrap approximation depends on the accuracy of bF as an estimate of F and
how large a bootstrap sample is used to estimate the standard error of bq. We will leave the computation to Project 13A. We
now give a theoretical example.

EXAMPLE 13.3.3

Let X1, ., Xn be a sample from a Poisson distribution with parameter l. Let

q ¼ PfX � 1g ¼ e�lð1þ lÞ:
Obtain a bootstrap estimate of q.
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Solution

It can be shown that the maximum likelihood estimator (MLE) of q is:

bqml ¼ e�Xð1þXÞ:
To estimate the bias of q, take N bootstrap samples from {X1, ., Xn}. Let

bqi ¼ e�Xi

�
1þXi

	
�
�
#X 0

i s � 1
�

n
:

Then the bootstrap estimate of the bias of q is:

bqbias ¼ bq1 þ/þ bqN
N

:

One might now use:

e�Xi
�
1þXi

�� bqbias
as an estimator of q.

13.3.1 Bootstrap confidence intervals

We could use the repeated sampling method to construct bootstrap confidence intervals. We now give a procedure to obtain
this.

Procedure to find the bootstrap confidence interval for the mean

1. Draw N samples (N will be in the hundreds, and if the

software allows, in the thousands) from the original sample

with replacement.

2. For each of the samples, find the sample mean.

3. Arrange these sample means in order of magnitude.

4. To obtain, say, a 95% confidence interval, we will find the

middle 95% of the sample means. For this, find the means

at the 2.5% and 97.5% percentiles. The 2.5th percentile

will be at the position (0.025)(N þ 1), and the 97.5th

percentile will be at the position (0.975)(N þ 1). If any of

these numbers are not integers, round to the nearest

integer. The values of these positions are the lower and

upper limits of the 95% bootstrap interval for the true

mean.

It should be noted that every time we do this procedure, we may get a slightly different bootstrap interval. We now give
an example.

EXAMPLE 13.3.4

For the data given in Example 13.3.2, obtain a 95% bootstrap confidence interval for m.

Solution

We took N ¼ 200 samples of size 12. Thus 0.025 � 201 ¼ 5.025 z 5 and 0.975 � 201 ¼ 195.975z 196. Thus, taking the 5th

and 196th values of sorted (in ascending order) sample means, we get the 95% bootstrap confidence interval for m is

ð263:8; 311:5Þ:
1. Comparing the classical confidence interval we obtained in Example 6.3.3, which is (257.81, 313.59), the bootstrap con-

fidence interval of Example 13.3.4 has smaller length, and thus less variability. In addition, we saw in Example 6.3.3 that the

normality assumption is necessary for the confidence interval there was suspected. In the bootstrap method, we did not have

any distributional assumptions.

2. Because the bootstrap methods are more in tune with nonparametric methods, sometimes it makes sense to obtain a

confidence interval about the median rather than the mean. With a slight modification of the procedure that we have

described for the bootstrap confidence interval for the mean, we can obtain the bootstrap confidence interval for the

median.
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Procedure to find the bootstrap confidence interval for the median

1. Draw N samples (N will be in the hundreds, and if the

software allows, in the thousands) from the original sample

with replacement.

2. For each of the samples, find the sample median.

3. Arrange these sample medians in order of magnitude.

4. To obtain, say, a 95% confidence interval we will find the

middle 95% of the sample medians. For this, find the

medians at the 2.5% and 97.5% quartiles. The 2.5th

percentile will be at the position (0.025)(N þ 1), and the

97.5th percentile will be at the position (0.975)(N þ 1). If

any of these numbers are not integers, round to the nearest

integer. The values of these positions are the lower and

upper limits of the 95% bootstrap interval for the median.

In practice, how many bootstrap samples should be taken? The answer depends on two things: how much the result
matters, and what type of computing power is available. In general, it is better to start with 1000 subsamples. With the
computational power available now, even taking 10,000 replications is not much of a problem. There are many works in
the literature on bootstrap hypothesis testing and regression. These are beyond the scope of this chapter. In Chapter 10 we
use bootstrap resampling to obtain empirical Bayes estimates.

Exercises 13.3

13.3.1. Using the data of Exercise 13.2.2, generate N ¼ 8 bootstrap samples of size 20 each and find the bootstrap mean
and standard deviation (standard error).

13.3.2. Using the data of Exercise 13.2.5, generate N ¼ 12 bootstrap samples of size 10 each and find the bootstrap mean
and standard deviation (standard error).

13.3.3. Using the data of Exercise 13.3.3, obtain a 95% bootstrap confidence interval for m.
13.3.4. Using the data of Exercise 13.2.6, (a) obtain a 95% bootstrap confidence interval for m, and (b) obtain a 95%

bootstrap confidence interval for the population median.
13.3.5. Using the data of Exercise 13.2.8, (a) obtain a 95% bootstrap confidence interval for m, and (b) obtain a 95%

bootstrap confidence interval for the population median.

13.4 The expectation maximization algorithm

In this section, we introduce an algorithm, called the expectation maximization (EM) algorithm, that is widely used to
compute maximum likelihood estimates when some elements of the data set are missing, unobservable, or incomplete. In
real-life problems, observing the complete data set is the exception rather than the rule. For example, in lifetime studies,
when n items are placed on a given test, we may have the failure times of only n1 < n items, while for the rest of the
(n � n1) items we know only the censored failure time, that they survived a particular failure time T (fixed beforehand). For
example, we may want to know whether the lifetime of a certain brand of fluorescent light bulbs is at least 24 months. For
this purpose, let us say we randomly test 100 light bulbs of this brand. In this case, our data will contain all the months
within which the bulbs burned out, and some that survived for 24 months. After 24 months, we may not follow when these
bulbs will burn out; all we know is that these bulbs lasted for 24 months. Such a data set is an example of censored data.
We can consider the censored failure times of (n � n1) items as the unobservable data values.

Another common problem is missing data. For example, suppose we were to take a survey on some socioeconomic
problems from a random sample of families from a city in 2009 and then a follow-up study on the same families in 2014.
This may result in many missing values in the follow-up study, because it is possible that we may not be able to locate
some of the families. Missing values can also occur if some of the respondents refuse to answer certain questions. We have
seen in Section 5.3 that sometimes it is not possible to obtain closed-form solutions for the MLE. In the completely
observed case, there are other algorithms, such as NewtoneRaphson, that can be used to numerically obtain appropriate
estimates. With missing values, those algorithms cannot be used. The name EM algorithm was coined by Dempster, Laird,
and Rubin in 1977. This is a general iterative algorithm to obtain the MLE when the data set is incomplete. The EM
algorithm is a formalization of an intuitive idea of obtaining approximate estimates of the parameters with missing data: (1)
replace missing values with estimated values as true values, (2) estimate the parameters, and (3) repeat.

Let X1;.;Xn1 be the n1 observed data values, and let y1;.; yn�n1 be the (n � n1) unobserved data values. Assume that
X0
i s are independent and identically distributed (iid) random variables with pdf f ðxjqÞ and X0

i s and Y 0
i s are independent, that

is, data are missing at random.
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We denote the random vector by X and the corresponding data vector by x.
The joint pdf of X1;.;Xn1 is represented by f(xjq), where q is the parameter vector with values in Q 3 Rp, a

p-dimensional Euclidean space. Let g(x, yjq) denote the pdf of the complete data set x and y; that is, the vector (x, y)
represents the conceptualized complete data set. Let h(yjq, x) be the conditional pdf of the unobserved data y given q and
the observed data x. The likelihood function for the observed data x is, by definition,

Lðq; xÞ ¼ f ðxjqÞ:
The likelihood function for the combined data (x, y) is, again by definition, given by:

Lcðq; x; yÞ ¼ gðx; yjqÞ:
The problem is to find the MLE that maximizes the likelihood function L(q, x), at the same time using Lc(q; x, y).
From the foregoing definitions, we know that:

gðx; yjqÞ ¼ f ðxjqÞhðyjq;xÞ.
Thus, we have the conditional pdf of the missing (or unobserved) data y, given x:

hðyjq; xÞ ¼ gðx; yjqÞ
f ðxjqÞ ;

or equivalently,

f ðxjqÞ ¼ gðx; yjqÞ
hðyjq; xÞ: (13.1)

Let q0 ˛ Q be a given q value. Because h(yjq0, x) is a pdf, we have:Z
hðyjq0; xÞdy ¼ 1:

Thus, the ln of the observed likelihood,

ln Lðq; xÞ ¼ ln Lðq; xÞ
Z

hðyjq0; xÞdy

¼
Z

ln Lðq; xÞhðyjq0; xÞdy ðas ln Lðq; xÞis independent of yÞ.

Because L(q, x) ¼ f(xjq), we have:

ln Lðq; xÞ ¼
Z

ln f ðxjqÞhðyjq0; xÞdy

¼ ½ln gðx; yjqÞ � ln hðyjq; xÞ�hðyjq0; xÞdyðfromð1ÞÞ

¼
Z

ln gðx; yjqÞhðyjq0; xÞdy�
Z

ln hðyjq; xÞhðyjq0; xÞdy

¼ Eq0½ln gðx; yjqÞ� � Eq0½ln hðyjq; xÞ�;

(13.2)

where the expectation is taken with respect to the conditional distribution of y given q0 and x. Let us now consider maxi-
mizing this with respect to q. This maximization is the maximization step (M step) in the EM algorithm. It is important to
note that EM-based estimates are approximate estimates.

Let q0 be an initial estimate of q. The choice of this initial value q0 could be made randomly or heuristically based on
any prior knowledge about the optimal value of the parameter. For instance, suppose we have to estimate mean and
variance of a normal distribution. One good starting point could be to take the sample mean x and sample variance s2 based
on a subset of the data containing no missing values.

Let

Qðqjq0; xÞ ¼ Eq0½ln Lcðq; x; yÞ�
¼ Eq0½ln gðx; yjqÞ�.
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Here, q0 is used only to compute the expectation; we should not substitute for q in the complete data log-likelihood. Letbqð1Þ be the maximizer that maximizes Q(qjq0, x) with respect to q. That is, Q
�bqð1Þjq0; x	 � Q

�
qjq0; x

	
for all q0 ˛Q.

Then bqð1Þ is the first-step estimator of q. Continuing the procedure we obtain a sequence of approximate estimators bqðmÞ,
which under appropriate conditions converges to the maximum likelihood estimate with likelihood Lc(q; x, y).

Steps for using the expectation maximization algorithm

1. bqðnÞ is the estimate of the parameter q on the nth step.

2. Expectation step (E step). Compute:

Q
�
q
��bqðnÞ; x	 ¼ Eq̂ðnÞ½ln gðx; yjqÞ

i
;

where the expectation is with respect to the conditional pdf

of y given bqðnÞ and x
�
i.e., with respect to h

�
y
��bqðnÞ; x		

3. M step. Find bqðnþ1Þ ˛Q such that:

bqðnþ1Þ ¼ max
q

Q
�
q
��bqðnÞ; x	:

4. Repeat until specified convergence criteria are met.

Thus, in the EM algorithm, each iteration involves two steps: the E step, followed by the M step. In the E step, we find
the conditional expectation of the unobserved or missing data given the observed data and the current estimated param-
eters. Thus, in E step, missing data are estimated given the observed data and the present estimate of the model parameters.
That is, the E step constitutes the calculation of:

Q
�
qjbqðnÞ; x	 ¼ Eq̂ðnÞ

h
ln gðx; yjqÞ

i

¼
Z

ln g
�
x; yjqÞh�yjqðnÞ; x�dy;

(which is the sum if discrete), where the integration is over the range of values that y can assume. The M step constitutes

maximization of Q
�
q

���bqðnÞ; x	 with respect to q. Thus, in the M step, the likelihood function is maximized under the assump-

tion that the missing or hidden data are known. The estimates of the missing data from the E step are used in place of the
actual missing data. This procedure improves the log-likelihood at every iteration; that is, the log-likelihood is nondecreasing

for every iteration. Thus, for the sequence
�bqðnÞ	 obtained through the EM algorithm, we have L

�bqðnþ1Þ; x
	

� L
�bqðnÞ; x	

with equality holding if and only if Q
�bqðnþ1Þ

��bqðnÞ; x	 ¼ Q
�bqðnÞ��bqðnÞ;x	. When we have filled the completed data set, the

parameter q can be estimated by maximizing the log-likelihood estimating procedure (M step). It can be shown that under

some conditions (such as that ln f(xjq) is bounded or that Qðqjq0; xÞ is continuous in both q and q0), bqðnÞ converges in
probability as n/N to the maximum likelihood estimate based on the complete likelihood Lc(q; x, y).

For computational convergence purposes, the E and M steps are alternated repeatedly until the difference

L
�bqðnþ1Þ; x

	
� L
�bqðnÞ; x	 is less than d, a small but specified quantity. Another possible convergence criterion is to stop

the iteration when the distance between bqðnþ1Þ and bqn becomes arbitrarily small. In practice, it may be necessary to run the
EM algorithm a number of times with different (random) starting points to ensure that the global maximum is obtained.

In general, the E and M steps could be complex. Even though the EM algorithm is applicable to any model, it is
particularly effective if the data come from an exponential family. It turns out that, in this case, the log-likelihood is linear
in the sufficient statistic for q. For the E step, simply compute the expectation of the complete data sufficient statistic given
the observed data. By substituting the conditional expectations of the sufficient statistics computed in the E step for the
sufficient statistics that occur in the expression obtained for the complete data MLEs of q, we can obtain the next iterate in
the M step. Thus, when the complete data set is from an exponential family, both the E and M steps are simplified.

Let z ¼ (x, y) be the complete observation vector. A particular case in which g(x, yjq) ¼ g(z, q) is from an exponential
family:

gðz; qÞ ¼ aðxÞexpfk0ðqÞtðxÞg=cðqÞ;
where t(x) is a vector of sufficient statistics with complete data, k0(q) is a vector function of the parameter vector q, and a(x)
and c(q) are scalar functions. Recall that the members of the exponential family include many popular distributions, such as
the normal, multivariate normal, Poisson, and multinomial distributions. In this case, the E step can be written as:
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Q
�
qjqðnÞ; x

� ¼ EqðnÞ½ln aðxÞjx
i
þ k0ðqÞtðnÞ � ln cðqÞ

where t(n) ¼ Eq(n)[t(Z)jx] is an estimator of the sufficient statistic. The M step maximizes the Q function with respect to q.
Because Eq(n)[ln a(x)jx] does not depend on q, we can rewrite the steps as follows:

E step: Compute t(n) ¼ Eq(n)[t(Z)jx].
M step: Find bqðnþ1Þ˛Q; such that,

bqðnþ1Þ ¼ max
q

�
k0ðqÞtðnÞ � ln cðqÞ.

The following example gives an EM algorithm for a special case of censored survival times. In the following example,
the survival function is defined as the probability that an individual survives beyond time y, that is, S(y) ¼ P(Y > y).

EXAMPLE 13.4.1

Let x ¼ ðx1;.; xn1Þ be the observed data and the censored observations at T are y ¼ �
y1;.; yn2

�
(that is, the survival time is at

least T). Let the mean survival time be q, and the probability density be given by:

f ðxjqÞ ¼ q�1 expð�x = qÞ; x > 0:

(a) Obtain the MLE, bqML:

(b) Obtain an EM algorithm.

(c) Consider the following censored data, which represent the number of years 20 patients survived after a major surgery, where

a þ symbol represents that we know only that this patient survived for 4 years and have no further information. That is,

4þ 12 12 1 4þ 3 3 5 2 0

5 1 4þ 0 3 13 13 1 0 4

Using the algorithm developed in (b), run for 50 iterations with the initial value of q0 being the observed sample mean, x, and

with q0 ¼ 0. Comment on the results.

Solution

The joint pdf of the uncensored observation, x, is:

f ðxjqÞ ¼ 1

qn
exp

 
�
Xn1
i¼ 1

xi = q

!
.

For the right censored (at T) observations yi, i ¼ 1, ., n2, the pdf can be calculated as follows:

K

ZN
T

1

q
e�y=qdy ¼ 1;

which implies that K ¼ eT/q. Thus, the pdf of yi is given by:

hðyjq; xÞ ¼ eT=q

q
e�y=q ¼ 1

q
e
1
q
ðT � yÞ; y � T :

(a) The likelihood, Lc(q, x, y), can also be written in the form:

Lcðq; x; yÞ ¼ 1

qn1
e
�
Pn1
i¼ 1

ðxi=qÞ½1� FðT Þ�n2

¼ 1

qn1
e
�
Pn1
i¼ 1

ðxi=qÞ
e�n2T

q :
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Thus,

ln Lcðq; x; yÞ ¼ � n1 ln q�
Pn1
i¼ 1

xi

q
� n2T

q
:

Differentiating with respect to q, and equating to zero, we have:

v

vq
ln Lcðq; x; yÞ ¼ � n1

q
þ
Pn1
i¼ 1

xi

q2
þ n2T

q2
¼ 0:

This implies that:

n1q ¼
Xn1
i¼ 1

xi þ n2T

or

bq ¼ 1

n1

Xn1
i¼ 1

xi þ n2

n1

T ¼ x þ n2

n1

T :

Hence, the MLE of q is:

bqML ¼ X þ n2

n1

T :

(b) Because g(X, Yjq) denote the pdf of the complete data, and we assumed that the pdf of all the data (censored or not) follows

exponential distribution, we have:

gðx; yjqÞ ¼ 1

qn1
e
�
Pn1
i¼ 1

ðxi=qÞ 1
qn2

e
�
Pn2
i¼ 1

yi=q

;

and we get:

ln gðx; yjqÞ ¼ � n1 ln q�
Xn1
i¼ 1

xi
q
� n2 ln q�

Xn2
i¼ 1

yi
q
:

For the E step of the EM algorithm, we first compute:

Eq0Y ¼ eT=q0

ZN
T

y
1

q0
e�y=q0dy

¼ T þ q0 ðusing the integration by partsÞ:
Thus, we get:

Qðqjq0; xÞ ¼ Eq0½gðx; yjqÞ�

¼ Eq0

"
�n1 ln q�

Xn1
i¼ 1

xi
q
� n2 ln q�

Xn2
i¼ 1

yi
q

#

¼ �n1 ln q�
Xn1
i¼ 1

xi
q
� n2 ln q� 1

q

Xn2
i¼ 1

Eq0ðyiÞ

¼ �n1 ln q�
Xn1
i¼ 1

xi
q
� n2 ln q� 1

q
n2ðT þ q0Þ

¼ �n1 ln q�
Xn1
i¼ 1

xi
q
� n2 ln q� n2T þ n2q0

q
:

For the M step, we differentiate Qðqjq0; xÞ with respect to q and set it equal to zero,
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v

vq
Qðqjq0; xÞ ¼ v

vq

"
� n1 ln q�

Xn1
i¼ 1

xi
q
� n2 ln q� n2T þ n2q0

q

#

¼ �n1

q
þ

Pi¼ 1

n1

xi

q2
� n2

q
þ n2T þ n2q0

q2
¼ 0

½n1 þ n2�q ¼
Xn1
i¼ 1

xi þ n2T þ n2q0

and

bq1 ¼ 1

½n1 þ n2�
Xn1
i¼ 1

xi þ n2T

½n1 þ n2� þ
n2

½n1 þ n2�q0

¼ n1

½n1 þ n2� x þ n2T

½n1 þ n2� þ
n2

½n1 þ n2�q0:

Thus, for the general n, the algorithm is:

bqðnþ1Þ ¼ n1

½n1 þ n2� x þ n2T

½n1 þ n2� þ
n2

½n1 þ n2�
bqðnÞ:

Now putting qðkþ1Þ ¼ qðkÞ ¼ q� in the previous equation and solving for q�, we have the EM sequence {q(k)}, which has the

MLE bqML as its unique limit point, as k/N. That is, q� ¼ bqML:

(c) We used the following MATLAB code to run the algorithm with starting value q0 as the sample mean, that is, 4.5. Here T ¼ 4.

We run it for 50 iterations.

A(1) ¼ 4.5
for n ¼ 2: 50
A(n) ¼ 4.41*(17./20)þ3*4/20þ(3./20)*A(n�1)
end

The following is the output:

4.5000 5.0235 5.1020 5.1138 5.1156 5.1158 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159

Thus, bq ¼ 5:1159:

To run with q0 ¼ 0, in the previous code, just change A(1) ¼ 0. We get the following output:

0.0000 4.3485 5.0008 5.0986 5.1133 5.1155

5.1158 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159

With q0 ¼ x ¼ 4:5; it took six iteration steps to converge, whereas with q0 ¼ 0, it took seven steps to converge. Note that in

both cases, bq ¼ 5:1159 ¼ bqML:

Example 13.4.1 is a simple case, where there is no need for iterative computation of bqML: However, this demonstrates
how the EM algorithm would work. These types of problems are abundant in the medical field. For example, we may be
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interested in the survival times of n patients after a treatment. For practical reasons, we may be observing only for a fixed
duration, such as 10 years. In Example 13.4.1, the vector x will represent the time of death for the n1 individuals. For the
remaining n2 ¼ n � n1 individuals, the only data we have state that they survived for more than 4 years. Thus, the value of
T is 4. There is a possibility that during these experimental times, we may lose contact with some individuals, perhaps
because they moved to some other place or they simply refused to participate in this experiment. In those cases, we will
know only that the individual survived until we lost contact. This generalization of Example 13.4.1 to where the survival
time data are different for each observation is given in Exercise 13.4.5.

We now give a similar example with a normal sample.

EXAMPLE 13.4.2

Let x ¼ ðx1;.; xn1Þ be observed data from a normal population with mean q and variance 1. Let the censored observations at T

be y ¼ �
y1;.; yn2

�
(that is, the survival time is at least T) from the same population. Assume that the two sets of observations {xi}

and {yi} are independent. Write down an EM algorithm to estimate q.

Solution

For the uncensored observed sample x1;.; xn1, the likelihood function is:

LðqjxÞ ¼ fxðxjqÞ ¼ 1� ffiffiffiffiffiffi
2p

p �n1e�1
2

Pn1
i¼ 1

ðxi�qÞ2
:

Furthermore, the complete likelihood for both samples is:

Lðqjx; yÞ ¼ 1� ffiffiffiffiffiffi
2p

p �n1e�1
2

Pn1
i¼ 1

ðxi�qÞ2 1� ffiffiffiffiffiffi
2p

p �n2e�1
2

Pn2
i¼ 1

ðyi�qÞ2
: (13.3)

From the definition of Q(qjq0, x), we obtain:

Qðqjq0; xÞ ¼ Eq0½ln Lcðqjx; yÞ�; (13.4)

where the expectation is taken with respect to the conditional pdf:

hðyjq0; x; T Þ ¼ 1ffiffiffiffiffiffi
2p

p e�ðy�q0Þ2=2 1

1� FY ðT ; q0Þ

¼ 1ffiffiffiffiffiffi
2p

p e�ðy�q0Þ2=2 1

1� FðT � q0Þ;

where:

FY ðT ; q0Þ ¼
ZT
�N

1ffiffiffiffiffiffi
2p

p e�ðy�q0Þ2=2dy ¼
ZT�q0

�N

1ffiffiffiffiffiffi
2p

p e�u2=2du ¼ FðT � q0Þ:

Thus, from Eqs. (13.4) and (13.5),

Qðqjq0; xÞ ¼ Eq0
Xn1
i¼ 1

ln

�
1ffiffiffiffiffiffi
2p

p e�ðxi�qÞ2
2



þ Eq0 ln

�
1ffiffiffiffiffiffi
2p

p n2e
�ðyi�qÞ2

2




¼ �n1

2
lnð2pÞ �

Xn1
i¼ 1

ðxi � qÞ2
2

þn2

ZN
T

ln

"
1� ffiffiffiffiffiffi
2p

p 	n2e�ðyi�qÞ2
2

#
� 1ffiffiffiffiffiffi

2p
p e�ðy�q0Þ2=2 1

1� FðT � q0Þdy:

Now taking the derivative with respect to q, we have:
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vQ

vq
¼
Xn1
i¼ 1

ðxi � qÞ2 þ n2ffiffiffiffiffiffi
2p

p
ZN
T

ðy � qÞ e�ðy�q0Þ2=2

1� FðT � q0Þ dy

¼
Xn1
i¼ 1

xi � n1qþ n2

½1� FðT � q0Þ�FðT � q0Þ � n2ðq� q0Þ:

Solving vQ
vq ¼ 0, and letting n ¼ n1 þ n2, we obtain:

q ¼
Pn1
i¼ 1

xi

n
þ n2

n
q0 þ n2FðT � q0Þ

1�FðT � q0Þ: (13.5)

From Eq. (13.5), we obtain the EM algorithm as:

bqmþ1 ¼
Pn1
i¼ 1

xi

n
þ n2

n
bqm þ

n2F
�
T � bqm	

1�F
�
T � bqm	;

where F is the cumulative distribution function of a standard normal random variable.

We have seen that incomplete data could occur as a result of missing data, or the complete data may contain variables
that are not observable (hidden). The following is an example of the latter situation.

EXAMPLE 13.4.3

Suppose that in a set of n twin pairs of children, n1 are male twin pairs, n2 are female twin pairs, and n3 ¼ n � (n1 þ n2) are

opposite-sex twin pairs. Let p be the probability that a twin pair is identical and q be the probability that a child is male. It is not

known which pairs of same-sex twins are identical. Obtain an EM sequence for q ¼ (p, q).

Solution

We have n ¼ (n1 þ n2 þ n3), and q ¼ (p, q) is the parameter vector. Let x ¼ (n1, n2, n3) be the observed data. Because we do not

know which pairs of the same sex are identical, postulate the complete data set as z ¼ (n11, n12, n21, n22, n3), where n11 is the

number of male identical pairs, n21 is the number of female identical pairs, and n12 and n22 are the nonidentical pairs for males

and females, respectively. Here, the complete data, z, have a multinomial distribution with the likelihood given by:

Lðz; qÞ ¼ f ðzjqÞ

¼
0
@ n

n11;n12;n21;n22;n3

1
AðpqÞn11�ð1� pÞq2

n12 ½pð1� qÞ�n21

��ð1� pÞð1� qÞ2n22 ½2ð1� pÞð1� qÞq�n3

where the identical twins involve one choice of sex and the nonidentical twins involve two choices of sex. The log-likelihood for

the complete data is:

ln f ðxjqÞ ¼ ðn11 þ n21Þln p þ ðn12 þ n22 þ n3Þlnð1� pÞ
þðn11 þ 2n12 þ n3Þln q þ ðn21 þ 2n22 þ n3Þ
� lnð1� qÞ þ constant:

For the E step, use Bayes’ rule to obtain the following:
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nðkÞ
11 ¼ E

�
n11

��x; qðkÞ� ¼ n1

pðkÞqðkÞ

pðkÞqðkÞ þ
�
1� pðkÞ

��
qðkÞ
�2

n
ðkÞ
12 ¼ E

�
n12

��x; qðkÞ� ¼ n1

�
1� pðkÞ

��
qðkÞ
�2

pðkÞqðkÞ þ
�
1� pðkÞ

��
qðkÞ
�2

n
ðkÞ
21 ¼ E

�
n21

��x; qðkÞ� ¼ n2

pðkÞ
�
1� qðkÞ

�
pðkÞ
�
1� qðkÞ

�þ �1� pðkÞ
��
1� qðkÞ

�2
and

n
ðkÞ
22 ¼ E

�
n22

��x; qðkÞ� ¼ n2

�
1� pðkÞ

��
1� qðkÞ

�2
pðkÞ
�
1� qðkÞ

�þ �1� pðkÞ
��
1� qðkÞ

�2:
Thus, the Q function is given by:

Q
�
q; qðkÞ

� ¼
�
n
ðkÞ
11 þ n

ðkÞ
21

	
ln p þ

�
n
ðkÞ
12 þ n

ðkÞ
22 þ n3

	
lnð1� pÞ

þ
�
nðkÞ
11 þ 2nðkÞ

21 þ n3

	
ln q þ

�
nðkÞ
21 þ 2nðkÞ

22 þ n3

	

� lnð1� qÞ þ constant:

It can be verified that the M step gives the following:

pðkþ1Þ ¼ n
ðkÞ
11 þ n

ðkÞ
21

n

and

qðkþ1Þ ¼ n
ðkÞ
11 þ 2n

ðkÞ
12 þ n3

n þ n
ðkÞ
12 þ n

ðkÞ
22

:

Substituting for the log-likelihoods with log-posteriors, the EM algorithm can also be used for computations related to
Bayesian analysis to find the posterior mode of q. In the context of incomplete data coming from mixtures of parametric
families, the EM algorithm provides a very powerful numerical technique. In this book, we will not go into the mixture
models. The steps necessary to compute the required quantities depend on the particular application, and thus, in general,
how to code the EM algorithm is not clear. There are special cases available in some software packages such as SAS using
PROC MI with EM option when the data come from a multivariate normal distribution. It is desirable to search the
literature on the particular software you are using to find the availability of “EM codes” to suit the particular application in
which you are interested. Also, another difficulty with implementation of the EM algorithm is that in each E step, we
require computation of the conditional expectation. To overcome this difficulty, Wei and Tanner in 1990 proposed an
algorithm called MCEM (Monte Carlo EM) based on the Monte Carlo approach explained in Section 13.7. This basically
involves simulating m variables, Y1, ., Ym, from the conditional distribution h(yjq(n), x) and then maximizing the
approximate complete data likelihood, that is,

bQ�q��bqðnÞ; x� ¼ 1
m

Xm
i¼ 1

½ln gðx; yjqÞ�:

We will not go into the details of these methods. The student may refer to Wei and Tanner’s paper for further details.

Exercises 13.4

13.4.1. Suppose that Y is a noise-corrupted observation of a signal S. That is, Y ¼ S þ N, where S is independent of N.
Assume that for a known s, N w N(0, s2) and S w N (0, q2), where q is unknown. Given the observation Y ¼ y:
(a) Obtain the MLE, bqML:
(b) Obtain an EM algorithm.
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13.4.2. Let X1,., Xn be an observed random sample and Xðn1þ1Þ;.;Xn be the missing (at random) observations. Assume
that Xi are iid from an N(m, s2) distribution.
(a) Show that

�
Sn
i¼1 Xi; Sn

i¼1 X2
i

�
are sufficient statistics for q ¼ (m, s2).

(b) Obtain the EM sequence for q ¼ (m, s2).
(c) Consider a censored normal sample with n ¼ 10, with the largest three being censored:

1.613 1.644 1.663 1.732 1.740 1.763 1.778

Using the results of (a), obtain an EM estimate of q ¼ (m, s2) with an arbitrary starting point.

13.4.3. In Example 13.4.3, suppose that q is the probability that a child is a female. Obtain an EM sequence for q ¼ (p, q).
13.4.4. Let x ¼ ðx1;.; xn1Þ and the censored observations be ðxn1 þ1;.; xnÞ (that is, in the ith experiment, if i > n1, the

survival time is at least yi). Let the new complete censored data yi be such that:

yi ¼
�
xi; i � n1
yi; i > n1:

Let the mean survival time be q and the probability density of y be:

f ðyjqÞ ¼ q�1 expð�y = qÞ; y > 0

and let the survival function be defined as the probability that an individual survives beyond time y, that is, S(y) ¼
P(Y > y). Thus,

SðyÞ ¼ expð�y = qÞ; y > 0:

(a) Obtain the MLE, bqML:
(b) Obtain an EM algorithm.

13.4.5. Let x ¼ ðx1;.; xn1Þ be observed data and the censored observations be y ¼ �
y1;.; yn2

�
(that is, in the ith exper-

iment, if i > n 1, the survival time is at least yi). Let the mean survival time be 9, and the probability density be
given by:

f ðxjqÞ ¼ 1ffiffiffiffiffiffi
2p

p exp

�
� 1
2
ðx� qÞ2

�
:

(a) Obtain the MLE, bqML:
(b) Obtain an EM algorithm.

13.5 Introduction to Markov chain Monte Carlo

In this section, we give a brief introduction to Markov chain Monte Carlo (MCMC) methods. Among the computational
simulation methods, MCMC is enormously useful for realistic statistical modeling. MCMC methods were initially
developed and used in physics. These methods have had a profound influence in statistics since the turn of the century,
especially in Bayesian inference. MCMC is a computer-driven sampling method that allows us to characterize a distri-
bution without the knowledge of the distribution’s mathematical properties. MCMC methods are used to solve problems in
many diverse areas such as archaeology, biology, biophysics, computational chemistry, computer graphics, finance, nu-
clear medicine, transport theory, and zoology. These methods have enabled researchers to exploit a degree of complexity
and realism in modeling and analysis of problems in these areas that were previously beyond reach. The nameMonte Carlo
method was coined by Stan Ulam and John von Neumann, who introduced this method to solve neutron shielding and
other related problems at Los Alamos in the early 1940s. MCMC originated with the now classic paper of Metropolis et al.,
in 1953, where it was used to simulate the distribution of states for a system of idealized molecules.

The popular MCMC procedures make use of two standard algorithms: the Metropolis algorithm and the Gibbs sampler.
In the Metropolis approach, all the parameters are varied at once. In the Gibbs method, each variable of the target pdf is
changed one at a time. An improvement on Metropolis, called the MetropoliseHastings (MeH) algorithm, was introduced
by Hastings in 1970. There are other efficient hybrid methods, such as the Hamiltonian Monte Carlo method, which
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alternates between Gibbs and Metropolis procedures. In our present study, we will explain only the first three methods,
namely, the Metropolis algorithm, the MeH algorithm, and the Gibbs sampler.

The objective of MCMC techniques is to generate random variables having certain distributions called target distri-
butions with pdf p(x). The simulation of standard distributions is readily available in many statistical software packages,
such as Minitab. In cases where the functional form of p(x) is not known, MCMC techniques become very useful. The
basic idea of MCMC methods is to find a Markov chain with a stationary distribution that is the same as the desired
probability distribution p(x); this is the target distribution. Run the Markov chain for a long time (say, K iterations) and
observe in which state the chain is after these K iterations. The probability that the chain is in state x will be approximately
the same as the probability that the discrete random variable equals x.

In Bayesian analysis, whether we are finding a posterior distribution or a Bayesian estimate (usually, the posterior
mean), integration is involved. We know from calculus that obtaining closed-form solutions for integrations becomes
almost impossible (too difficult) for all but some simple functions. A standard approach to numerical integration of a
function f(x) is to first divide the range of integration R into n segments x1,., xn, calculate the value of f(x) at each of these
points f(x1), ., f(xn), multiply the values by the length of each segment, and sum these rectangles to approximate the
integral, which is the area under the curve. The error in this approximation is reduced by increasing the number of seg-
ments n.

In Monte Carlo integration, instead of taking x1, ., xn as fixed deterministic numbers, we proceed to draw a random
sample from a uniform distribution over the range of integration R, then evaluate f(xi) for each xi, and take the average. This
assumes that the range R is bounded. If R is not bounded, then f(x) can be integrated when it can be written as the product
of another function h(x) and a distribution function p(x) from which we can draw values of x (that is, x1, ., xn is drawn
from the distribution p(x)). That is, Z

f ðxÞdx ¼
Z

hðxÞpðxÞdx;

where integration is over the range R. Then, the integral can be approximated by averaging the f(xi) values, that is,Z
f ðxÞdxz1

n

Xn
i¼ 1

hðxiÞ;

where we assume that xi values are a random sample from p(x) and in the range R. When p(x) is a standard distribution,
many statistical software packages, such as Minitab, can generate random samples from this distribution. In these cases, a
general coding to evaluate this integral can be written as:

sum^0

For i ¼ 1 to n

{Draw xi from p(x)
sum^ sum þ h(xi)}

return sum/n

In the preceding coding, by multiplying h(xi) by the indicator function of R (that is, IR(xi) ¼ 1, if xi˛R, and 0 other-
wise), we can avoid the assumption that xi values are in the range R. For instance, let X1, ., Xn be a random sample
generated from a target pdf, p(x). Then the expectation of any function f(X) can be estimated using the Monte Carlo
method by:

Epf ðXÞ ¼
Z

f ðxÞpðxÞdxz1
n

Xn
i¼ 1

f ðxiÞ ¼ f ;

where Ep denotes the expectation with respect to the pdf p(x). By the law of large numbers, it follows that:

1
n

Xn
i¼ 1

f ðXiÞ/Ep½f ðXÞ� as n/N;
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provided X1, ., Xn are independent. We can verify that f is an unbiased estimate of Ep f. In addition, the sampling dis-
tribution of f is approximately normal, with variance s2/n, where s2 is estimated by:

s2 ¼ 1
n

Xn
i¼ 1

�
f ðxiÞ � f

	2
:

For example, in a Bayesian setting, an estimate of the posterior mean can be obtained by taking f(x) ¼ x, and the
variance can be obtained by taking f ðxÞ ¼ ðx� xÞ2; if p(x) is the posterior distribution (recall that in Chapter 10, we used
the notation p(qjx) for the posterior distribution). Using the sampling distribution of f , we can also construct point and
interval estimates for Ep f.

Observe that the heart of the Monte Carlo method is to obtain random samples from the target distribution p(x). One of
the problems encountered using this approach is that, while it is easy to generate samples from standard distributions using
popular statistical software packages, it is very difficult (sometimes not feasible) to do so from any distribution that is not
standard (see Project 4A for a method of generating random samples from a given distribution). For these reasons, the
ordinary Monte Carlo method can be implemented in only a very few cases for Bayesian inference. That is where the
MCMC method plays a crucial role. MCMC methods allow the data analyst to build and analyze more realistic statistical
models that may be more complex than standard formulations.

Using the MCMC methods, we will construct a Markov chain {Xn} with a limiting distribution as the target distri-
bution, p(x). Let us first introduce the concept of Markov chains. For a brief description of Markov chains, refer to
Appendix A2. We call a sequence of random variables {Xn} a Markov chain with state space S if:

PðXn ¼ xnjXn�1 ¼ xn�1;.;X1 ¼ x1Þ ¼ PðXn ¼ xnjXn�1 ¼ xn�1Þ:
That is, the probability distribution of future states of a Markov chain depends only on the present state and not on the past
states. However, it is important to note that a Markov chain {Xn} is a dependent sequence of random variables; thus, the
independence assumption inherent in a random sample cannot be used. The transition probability function of a discrete
parameter Markov chain is defined as:

pm;nðx; yÞ ¼ PðXn ¼ yjXm ¼ xÞ; x; y in S:

We denote this transition probability simply as p(x, y). When the number of elements in the state space S is finite, we
can form a matrix P with the (x, y)th element being p(x, y). This matrix is called a one-step transition probability matrix.
p(x) is called an invariant (limiting) distribution if it satisfies the equation:

pðxÞ ¼
X
y˛S

pðyÞpðy; xÞ:

We say that the chain satisfies the reversibility or detailed balanced condition if p(x)p(x, y) ¼ p(y)p(y, x) holds for
some p(.). It can be shown that such a p(x) that satisfies the reversibility condition is invariant. Basically, if a Markov
chain is reversible and its limiting distribution exists, then the limiting distribution is the invariant distribution.

The results explained for discrete Markov chains can be extended to continuous time defined in a continuous state
space. The stationary or the equilibrium distribution p(x) of a continuous Markov chain satisfies:

pðxÞ ¼
Z

pðy; xÞpðyÞdy:

Assume that the samples are generated from a Markov chain whose equilibrium distribution is the target distribution,
p(x). We know by the law of large numbers that:

1
n

Xn
i¼ 1

f ðXiÞ/Ep½f ðXÞ� as n/N

provided X1, ., Xn are independent. It turns out that, if we generate a Markov chain X1, ., Xn from the target distribution
p(x), the result:

1
n

Xn
i¼ 1

f ðXiÞ/Ep½f ðXÞ� as n/N
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still holds. In this sense, the chain {Xi} resulting from an MCMC algorithm with stationary distribution p is similar to the
use of a random sample from p. The analytical details are beyond the scope of this book. Instead, we focus on the question,
How do we construct a Markov chain whose stationary distribution is our target distribution, p(x)? The answer is given by
the MeH algorithm, and the two special cases: the Metropolis algorithm and the Gibbs sampler. An MCMC method for
simulating a distribution p can be defined as any method that produces an ergodic (thus, forgets the initial starting point x0)
Markov chain {Xi} whose stationary distribution is p. We start with the Metropolis algorithm. Subsequently, we will
explain both the MeH algorithm and the Gibbs sampler. MCMC methods are increasingly being used for simulation
of complex probability models, for computation of integrals, and optimization.

13.5.1 Metropolis algorithm

One of the simplest algorithms in MCMC calculations is the Metropolis algorithm, introduced by the Greek American
mathematician Nicholas Constantine Metropolis and his colleagues in 1953. This work was mentioned in Computing in
Science & Engineering as being among the top 10 algorithms having the “greatest influence on the development and
practice of science and engineering in the 20th century.” In this case, we make a trial perturbation from the current position
in a parameter space by randomly selecting a trial step from a symmetric probability distribution called candidate-
generating density or proposal density q(x, y) (in the discrete case, it is a symmetric matrix called the nominating ma-
trix A ¼ (aij), with aij ¼ aji, where i; j˛S; the state space of the Markov chain). The qðx; yÞ depends only on the current state
x and the new proposed state y (that is, q(x, y) ¼ qx(y) is a function of the next proposed state y that is allowed to depend on
the current state x). Thus, starting at x, q(x, y) can be regarded as the conditional density of landing at y in one transition
step. The trial step is either accepted or rejected on the basis of the probability of the new position relative to the previous
one. The Metropolis algorithm is formulated as an instance of the rejection method used for generating steps in a Markov
chain. The idea of the rejection algorithm is that if we want to sample from a specific distribution, simply sample from any
distribution that is convenient, but keep only the good samples.

We now give the Metropolis algorithm for a discrete distribution. We want to obtain a sample from a distribution {pj},
where p(j) ¼ P(Xkþ1 ¼ j), and we have a symmetric nominating matrix A; then we can write the Metropolis algorithm in
four steps as follows.

Metropolis algorithm (discrete case)

For k ¼ 0, start with an arbitrary point, xk ¼ i.

1. Generate j from the probability distribution {aij, j ¼ 1, 2,

.}.

2. Set

r ¼ pðjÞ
pðiÞ:

3. If r � 1, set xkþ1 ¼ j (acceptance),

otherwise generate u from Uniform (0, 1);

if u < r, set xkþ1 ¼ j (acceptance),

else xkþ1 ¼ xk (rejection) (note that the value of xkþ1

becomes the next state).

4. Set k ¼ k þ 1, go to step 1.

Each of the accepted points is considered to be a sample value from the target distribution {pj}.
The continuous case of the Metropolis algorithm is given next.

Metropolis algorithm (continuous case)

1. Start with an arbitrary point, x0.

2. Select a new position x� ¼ Dk þ Dx , where Dx is

randomly chosen from a symmetric distribution.

3. Calculate the ratio:

r ¼ pðx�Þ
pðxk Þ;

where p(x) is the target distribution.

4. Accept the trial position, that is, set

xkþ1 ¼ x�; if r � 1:

Otherwise generate u from Uniform (0, 1).

If u < r, set xkþ1 ¼ x�,
else set xkþ1 ¼ xk.

5. Set k ¼ k þ 1, go to step 2.
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If the proposal step size is dx, we could use the proposal distribution as U(�dx, dx); for example, if the step size is 1,
then randomly choose Dx w U(�1, 1). For further discussion on selection of the proposal distribution, read Subsection
13.8.4. The Metropolis algorithm generates a set of states that is a Markov chain because each state xkþ1 depends only on
the previous state xk. Using Markov chain techniques, it can be shown that the equilibrium distribution of the chain
constructed by the Metropolis algorithm is indeed pðx�Þ. Note that in the Metropolis algorithm, it is not necessary to have
the pdf; instead, all that is necessary is to know the ratio pðx�Þ=pðxkÞ. Thus, none of the multiplicative constants in the pdf
p plays a role in the algorithm.

This algorithm works well in most applications. Following is a simple example to show how the Metropolis algorithm
works.

EXAMPLE 13.5.1

Using the Metropolis algorithm, generate a random sample from a Poisson distribution with mean l. For the nominating matrix,

use the symmetric matrix with elements:

a00 ¼ 1=2; aij ¼

8><
>:

1=2; j ¼ i � 1

1=2; j ¼ i þ 1

0; otherwise.

Solution

The nominating probability matrix is a one-step transition matrix (see Appendix A2),

A ¼

2
666666666664

1=2 1=2 0 0 0 .

1=2 0 1=2 0 0 .

0 1=2 0 1=2 0 .

0 0 1=2 0 1=2 .

: : : : : :

: : : : : :

: : : : : :

3
777777777775
:

Now we apply the Metropolis algorithm for generating samples from Poisson (l) in the following steps.

Step 1. Start with xne1 ¼ i.

Step 2. Generate j from A ¼ {aij}. How do we do it? We can do this using the following procedure:

For i s 0,

Generate u1 from U(0, 1).

If u1 � 1
2, set j ¼ i þ 1, else set j ¼ i � 1.

For i ¼ 0,

if u1 < 1
2, set j ¼ 0,

else set j ¼ 1.

Step 3. Set

r ¼ pðiÞ
pðiÞ ¼ e�llj=j!

e�lli=i!
¼ i!lj

j!li
¼ i!lj�i

j!
:

Set

r ¼

8>>>>>><
>>>>>>:

1; if i ¼ 0; j ¼ 0

l

j
; if j ¼ i þ 1

i

l
; if j ¼ i � 1:

Step 4. Acceptance/rejection:

If r � 1, set xn ¼ j (i.e., accept the new state j).

Otherwise, generate u2 from U(0, 1);

if u2 < r, set xn ¼ j (i.e., accept the new state j),

else set xn ¼ xn � 1 (i.e., reject the new state j and keep the current state i).

Step 5. Set n ¼ n þ 1, go to step 2.
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In Example 13.5.1, let us say that we want to generate a random sample from Poisson with l ¼ 2 and we are at state
i ¼ 3 in the iteration step (n � 1). If our proposed new state is j ¼ 4, then r ¼ 2/4 ¼ 1/2. Suppose we obtained the value of
u2 as 0.672772. Because this value is larger than 1/2, we reject the proposed new state 4 and stay at state 3 for the iteration
step n (if you generate a new u2, your decision might be different). Instead, suppose our proposed step was j ¼ 2; then
r ¼ i/l ¼ 3/2 > 1, and we will immediately accept our new state as j ¼ 2 (no need to generate a uniform random number;
if you did, it would have been smaller than 3/2 anyway) for the iteration step n.

EXAMPLE 13.5.2

Let p(x) ¼ c exp(�f(x)) be the form of the target distribution function. Write a general Metropolis algorithm to generate a sample

from p.

Solution

Let q(x, y) be any symmetric distribution. Starting from an arbitrary x(0), we can write the Metropolis algorithm through the

following steps.

Step 1. Let x(t) be the current state.

Step 2. Generate y from the distribution q(x, y).

Because,

r ¼ pðyÞ
p
�
xðtÞ
� ¼ c expð�f ðyÞÞ

c exp
�� f

�
xðtÞ
�� ¼ exp

�� f ðyÞ� f
�
xðtÞ
��
;

calculate the change in f, Df ¼ f(y) � f(x(t)).

Step 3.Generate a random number from the uniform distribution,U(0, 1). If u � exp(�Df), set x(tþ1) ¼ y (accept the proposed new

state), otherwise set x(tþ1) ¼ x(t) (reject the proposed new state).

Step 4. Continue (i.e., go to step 1).

Note that in the previous example, the normalizing constant in p(x) is not important, because it cancels in the ratio. In
fact this is true in all Metropolis and MeH algorithms. In the special case where q(x, y) ¼ q (jy � xj), the Metropolis
algorithm is also called the random-walk Metropolis. Another special choice is q(x, y) ¼ q(y); this is called the inde-
pendence sampler. In all of these cases, it is important to observe that, whereas the target distribution is independent of the
positions, the proposal functions depend on where we are. For example, let p(x) be standard normal density, and let the
proposal density be of the form:

qðx; yÞfexp

 
� ðy� xÞ2

2ð:25Þ2
!
:

Fig. 13.1 gives a representation of the target distribution and some representative proposals. For each point x of the
target distribution, we generate a y from the corresponding proposal distribution. Then, according to the accept/reject rule
that we specified earlier, we will make a decision whether to treat this new value y as being from the target distribution.

13.5.2 The MetropoliseHastings algorithm

The MeH algorithm is a generalization of the Metropolis algorithm, in which we need not assume symmetry of the
nominating matrix A (or for proposal density q(x, y)). The acceptance probability is given by:

aði; jÞ ¼ min

�
pðjÞaji
pðiÞaij; 1

�
:

This algorithm is the basic building block of MCMC methods. The MeH algorithm is widely used in applied statistics
and is very useful for sampling from complicated, high-dimensional probability distributions. Now we present the steps
involved in the MeH algorithm in the discrete case.
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MetropoliseHastings algorithm (discrete case)

For k ¼ 0, start with an arbitrary point, xk ¼ i.

1. Generate j from the nominating distribution {aij, j ¼ 1, 2,

.}.

2. Set

r ¼ pðjÞaji
pðiÞaij :

3. If r � 1, set xkþ1 ¼ j.

Otherwise generate u from U(0, 1);

if u < r, set xkþ1 ¼ j,

else set xn ¼ xn�1.

4. Set k ¼ k þ 1, go to step 1.

In the preceding algorithm, if we calculate a(i, j) ¼ min{r, 1}, basically, we accept the proposed new step j if u < a(i, j);
otherwise we stay at the current step i. The resulting Markov chain from both Metropolis and MeH algorithms would have
the transition probability matrices defined by:

pði; jÞ ¼ aijaði; jÞ for isj

and

pði; iÞ ¼ 1�
X
jsi

aijaði; jÞ:

In the continuous case, for any given p(x), the MeH algorithm takes the following form. To start the algorithm, we
choose an arbitrary proposal distribution qðx; yÞ so that it is easy to obtain a sample from this distribution. Define the
acceptance/rejection function as:

aðx; yÞ ¼ min

�
pðyÞqðy; xÞ
pðxÞqðx; yÞ; 1

�
:

If both p(x) and p(y) are zero, set a(x, y) ¼ 0.

10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

�1�2�3�4 2

Target

Proposals

3 4
x

f(x)

FIGURE 13.1 Target and proposal densities.
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MetropoliseHastings algorithm (continuous case)

Step 1. Start with an arbitrary point, x0.

Step 2. Given a current state x(t), draw y from the proposal

distribution q(x, y).

Step 3. Draw u from U[0, 1].

Step 4. If u < a(x(t), y), set x(tþ1) ¼ y, otherwise set

x(tþ1) ¼ x(t).

Step 5. Set t ¼ t þ 1, go to step 2.

Note that if the q(x, y) is symmetric (i.e., q(x, y) ¼ q(y, x)), then the MeH algorithm reduces to the Metropolis al-
gorithm. In practice, there are other forms of acceptance/rejection functions suggested. Observe that in the MeH algorithm,
as in the Metropolis algorithm, it is not necessary to have the pdf; instead, all that is necessary is to know the ratio p(y)/
p(x). Thus, none of the multiplicative constants in the pdf, p(x), plays a role in the algorithm.

Because of the versatility of this method, there are many generalizations of the MeH algorithm in the literature. It is
also necessary to impose some conditions both on p(x) and on the proposal distribution qðx; yÞ for p(x) to be the limiting
distribution of the Markov chain {X(t)} produced by the MeH algorithm. We do not want a large ratio of the proposed new
values to be rejected. Discussion of these issues is beyond the scope of this book.

EXAMPLE 13.5.3

Using the MeH algorithm, generate a sample from the following distribution. Let U ¼ {2, 3, ., 11, 12}, which represents the sum

of the up faces of two balanced dice, and let the distribution be given by:

Sum i 2 3 4 5 6 7 8 9 10 11 12

p(i) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Using the nominating matrix:

a22 ¼ að12Þð12Þ ¼ 1=2; aij ¼

8><
>:

1=2; j ¼ i � 1

1=2; j ¼ i þ 1; i; j˛U
0; otherwise;

write the MeH algorithm to generate samples from the distribution p(x).

Solution

Suppose that we start with state i ∊ U, say at 5 (starting at any other state is OK).

Step 1. Generate j from the nominating distribution {aij, j ¼ 1, 2, . }. Thus, j ¼ i � 1 or i þ 1, and in this case j has to be 4 or 6.

We can follow the same procedure as in Example 13.5.1 to choose between i � 1 and i þ 1. Let us say we got j ¼ i þ 1,

here 6.

Step 2. Set r ¼ pðjÞaji
pðjÞaij. In this case, r ¼ pð6Þ

pð5Þ ¼ 5=36
4=36 ¼ 5

4. (If we had chosen 4, then, r ¼ pð4Þ
pð5Þ ¼ 3

4:

�
Step 3. If r � 1, set xn ¼ j. Here, r > 1; hence, we accept the new state, xn ¼ 6. Otherwise generate u from U(0, 1), if u < r, set

xn ¼ j, else set xn ¼ xne1.

Step 4. Set n ¼ n þ 1, and go to step 1.

EXAMPLE 13.5.4

Write an MeH algorithm to generate samples from N (0, 1) based on the proposal U[�1, 1].

Solution

Note that for y to be generated based on U[�1, 1], we need y � x(t) w U[�1, 1]. Thus, yw U[x(t) � 1, x(t) þ 1]. Fig. 13.2 shows

the target distribution as the standard normal and the representative proposals that are uniform at points x(t) ¼ �2 and 2.
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Now, the MeH algorithm can be obtained in the following way.

Set

a
�
xðtÞ; y

� ¼ min

�
pðyÞqðy; xÞ
pðxÞqðx; yÞ; 1

�

¼ min

��
exp
n
xðtÞ2 � y2=2

o	 x þ 1

y þ 1
;1

�
:

Generate u w U[0, 1].

If u < a(x(t), y), set xðtþ1Þ ¼ y; otherwise set x(tþ1) ¼ x(t). Continue.

Observe that to generate normal random variables, it is not necessary to use MeH algorithms. Most of the statistical
software packages will give us a random sample from the normal distribution. Example 6.5.2 (originally suggested by
Hastings in 1970) is given for demonstration of the MeH algorithm. The algorithm is effective in general cases, for
instance, to generate a sample from a gamma distribution. In Gamma(a, b), if a is an integer, we can use the method of
Project 4A to generate a random sample. However, if a is not an integer, we could use Gamma([a], b) (here [a] denotes the
integer part of a) as the proposal distribution, and follow the steps of the MeH algorithm to generate a sample from
Gamma(a, b) (see Exercise 13.5.3).

13.5.3 Gibbs algorithm

The name Gibbs algorithm (or Gibbs sampler) was coined by the brothers Stuart Geman and Donald Geman in 1984 and
refers to Gibbs distributions in statistical physics. This is very useful in obtaining a sequence of observations from a
specified multivariate probability distribution, when direct sampling is hard or the joint distribution is not known explicitly.
A Gibbs sampler can be used in those situations when the conditional distribution of each variable is known and is
relatively easier to sample from. In the Gibbs sampler, only one parameter is varied at a time, while all others are held
fixed. The parameter then is randomly drawn from a conditional pdf, the probability distribution of one parameter, given all
other parameters, p(xijx�i), where x�i is the full set of parameters excluding only the single component xi. Let x ¼ (x1, .,
xk) be k (�2)-dimensional. Recall from Chapter 3 that these conditional densities can be obtained as follows:

pðxijx�iÞ ¼ pðxijx1;.; xi�1; xiþ1;.; xkÞ

¼ pðx1;.; xi�1; xi; xiþ1;.; xkÞR
pðx1;.; xi�1; xi; xiþ1;.; xkÞdxi:

Target

Proposals

6420

1

�2�4�6
x

f(x)

FIGURE 13.2 Normal target and uniform proposal distributions.
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The basic assumption under which the Gibbs algorithm works is that we could easily draw a random sample from these
conditional pdfs. Thus, the Gibbs algorithm is a particular case of MeH algorithms. For example, at the ith step, yi is
generated from the nominating density qi(xi, yi) where qi depends on the current state xi. The candidate yi is accepted with
probability:

aiðxi; yiÞ ¼ min

(
piðyiÞqiðyi; xiÞ
piðxiÞqiðxi; yiÞ; 1

)
:

If yi is accepted, we will set the ith component of xn, xn, i ¼ yi; otherwise set xn, i ¼ xn i. The remaining components of
xn are not changed in step i. This is repeated for each i, at the end of which the entire vector xn would have been updated.
Thus, if we are in state x at time t, at time t þ 1 we either remain at x or go to y by modifying only one component of x. It is
important to use the most recent values of updated components to update the next component. That is, given xðtÞ ¼�
xðtÞ1 ;.; xðtÞk

	
at time t, generate:

xðtþ1Þ
1 wp

�
x1
���xðtÞ2 ; xðtÞ3 ;.; xðtÞk

	

xðtþ1Þ
2 wp

�
x2
���xðtþ1Þ

1 ; xðtÞ3 ;.; xðtÞk
	

xðtþ1Þ
3 wp

�
x3
���xðtþ1Þ

1 ; xðtþ1Þ
2 ; xðtÞ4 ;.; xðtÞk

	
:

:

:

xðtþ1Þ
k wp

�
xk
���xðtþ1Þ

1 ; xðtþ1Þ
2 ;.; xðtþ1Þ

k�1

	
:

For instance, let k ¼ 2. The Gibbs sampler updates in the following manner. Start at xð0Þ ¼
�
xð0Þ1 ; xð0Þ2

	
; first update xð0Þ1

to xð1Þ1 , using this updated value xð1Þ1 andxð0Þ2 , update xð0Þ2 toxð1Þ2 , resulting in the updated vector x(1). Repeat this procedure to
obtain x(2), x(3), .. Fig. 13.3 depicts this updating procedure.

The conditional densities f1,., fk are called the full conditionals. In the Gibbs sampler, only these conditional densities
are needed for simulation. Thus, this procedure becomes very efficient when the vector x is large, because all of the
simulations can be done as univariate.

updated

X(1)
X(3)

x2
(0)

x2

x1

x1
(0)

X(0)

X(2)

updated

FIGURE 13.3 Gibbs updating procedure.
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The following example of bivariate density is popularly used in the literature to illustrate the Gibbs sampler. It is
the case where the joint density is complex, because one variable (x) is discrete, while the other variable (y) is
continuous. However, the conditional densities are simple known distributions, binomial and beta distributions,
respectively. It is then easier to simulate these distributions, thus, demonstrating the power of the Gibbs sampler.

EXAMPLE 13.5.5

(a) Write a Gibbs sampler for generating samples from the following bivariate density:

f ðx; yÞ ¼
0
@ n

x

1
Ayxþa�1ð1� yÞn�xþb�1

; for x ¼ 0;1;.; n

and 0 � y � 1:

(b) Starting with y0 ¼ 1/4, n ¼ 15, and a ¼ 1, b ¼ 2, obtain the first three realizations of the Gibbs sequence.

Solution

(a) From Exercise 3.3.14, we know that:

f ðxjyÞf
�
n

x

�
yxð1� yÞn�x

:

That is, the conditional distribution of x (treating y as a constant) is binomial with parameters n and y, 0 � y � 1. Also,

f ðxjyÞfyxþa�1ð1� yÞn�xþb�1
:

Thus, the conditional distribution of y given x is a beta distribution with parameters x þ a and n � x þ b. The Gibbs sampler

for generating bivariate samples from f(x, y) is then given as follows: For i ¼ 1, ., n, repeat:

1. Generate yi from fYjX
���xði�1Þ�, that is, from Betaðxi�1 þa; n �xi�1 þbÞ

2. Generate xi from fXjY
���yðiÞ�, that is, from binomial (n, yi).

3. Return (xi, yi).

(b) We proceed with the following steps.

(i) For y0 ¼ 1/4, x0 is obtained from generating a random variable from binomial with n ¼ 15, y0 ¼ 1/4, that is, from B(15,

1/4), resulting in a value of 4 (generated using Minitab; you may get a different value when you do it). Thus, x0 ¼ 4.

(ii) Generate y1 randomly from:

Betaðx0 þ a; n � x0 þ bÞ ¼ Betað4þ 1;15� 4þ 2Þ
¼ Betað5;13Þ;

resulting in y1 ¼ 0.53 (approximated to second digit). Now x1 w B(15, 0.53), resulting in x1 ¼ 6.

(iii) Generate y2 randomly from:

Betaðx1 þa;n� x1 þ bÞ ¼ Betað7;11Þ;

resulting in y2 ¼ 0.30. Now, x2 w B(15, 0.30), resulting in x2 ¼ 3.

Thus, a particular realization of the Gibbs sampler for the first three iterations is (4, 0.25), (6, 0.53), and (3, 0.30).

From Exercise 13.5.8, it can be observed that, at the beginning, the values of the chain are highly dependent on the
choice of the initial value y0. In practice, it is necessary to run a sufficient number of iterations to remove the effect of the
starting values. Even though the Gibbs sampler is a special case of the MeH algorithm, it is important to observe that,
unlike the MeH algorithm, every sample generated by the Gibbs algorithm is accepted. Also, we should have at least a
two-dimensional problem for the Gibbs sampler to be used. Since Gibbs sampling (like other MCMC sampling) generates
a Markov chain of samples, each sample is correlated with neighboring samples; to obtain a random sample, one needs to
perform thinning of the resulting chain by taking only every kth value (like taking every 50th value). There are some pros
and cons to the practice of thinning; for that and some nice applications of the Gibbs method, we refer the reader to
specialized books.
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From the previous discussions, we can see that a general description of an MCMC method can be summarized in the
following algorithm.

Initialize X0

For i ¼ 1; .; N repeat

x ¼ Xi�1;

Generate Y from a nominating density, q(x; y);

Calculate the acceptance rate, a(x; y);

Generate U from the uniform U(0; 1);

If (U < a(x; y)) set X(i) ¼ y,

Else set X(i) ¼ x;

End;

If we choose a nominating density q(x, y) and an acceptance rate a(x, y), such that, the reversibility condition:

pðxÞaðx; yÞqðx; yÞ ¼ pðyÞaðy; xÞqðy; xÞ;
is satisfied, then the foregoing procedure generates a Markov chain with limiting distribution p(x). To use Gibbs sampling
for Bayesian analysis, we must have an explicit analytical posterior conditional distribution.

13.5.4 Markov chain Monte Carlo issues

Two major issues in MCMC are convergence and burn-in. Because in all three MCMC algorithms we start the sequence
from an arbitrary point, any particular sequence may take some time to pass through the transient stage, and the effect of
the starting value is very small and can be ignoreddthat is, it attains convergence. In practice, we will have to run the
algorithm for a few thousand iterations so that the effect of this initial state is negligible. The samples obtained during this
burn-in period should be discarded for the subsequent analysis as they do not represent the target pdf. By monitoring the
sequence itself, we can determine whether the sequence has reached the convergence. A simple way to decide how much
burn-in is necessary is to create scatterplots of Xi versus Xj, is j. When the wild variations stop, then it is safe to assume
that the chain has reached stationarity.

Another major issue in the implementation of MCMC algorithms is the choice of proposal density. In the continuous
case, popular choices among others are the multivariate normal density and the multivariate t with specified parameters.
Even in these cases, there is the question of appropriate size of the spread, or scale of the proposal density. The size of the
acceptance ratio is another issue. If the ratio is too small, the samples will get stuck (because almost all proposed new states
will be rejected), and if the ratio is too high, the samples will show tracking. A general rule of thumb is that the acceptance
ratio should be within 30%e60%. If not, adjust the step size (for a small ratio, decrease the step size, and for a high ratio,
increase the step size). There are many publications devoted to these issues.

For the Bayesian computation, MCMC allows us to sample from any posterior. Because of the availability of
specialized software packages, such as BUGS, it is practical to code up for a particular problem.

There are many references, including books, on MCMC methods; some of these are listed in the references at the end of
this book. For a good discussion including some technical details, refer to http://mpdc.mae.cornell.edu/Courses/MAE714/
Papers/wp9.pdf.

Exercises 13.5

13.5.1. For Example 13.5.1, let l ¼ 3. Starting with initial state x0 ¼ 6, compute relevant quantities performing 10 iter-
ations of the algorithm.

13.5.2. Using the MeH algorithm, generate a random sample from a geometric distribution with mean q. Use the nomi-
nating distribution {aij, j ¼ 1, 2, . }, such that,

560 Mathematical Statistics with Applications in R

http://mpdc.mae.cornell.edu/Courses/MAE714/Papers/wp9.pdf
http://mpdc.mae.cornell.edu/Courses/MAE714/Papers/wp9.pdf


aij ¼

8>>>>>><
>>>>>>:

1
2

j ¼ i� 1; iþ 1; and i ¼ 1; 2; 3;.

1
2

j ¼ 0; 1 and i ¼ 0

0 otherwise.

(Recall that if X is geometric with parameter q, then P(X ¼ x) ¼ (1 � q)xq, for x ¼ 0, 1, 2, ..)

13.5.3. Write down the MeH algorithm to generate a sample from Gamma(a, b) using the proposal density as Gam-
ma([a], [a]/a).

13.5.4. Write down the MeH algorithm for simulating a Markov chain with stationary distribution p ¼ (1/6, 2/3, 1/6),
using the “proposal” transition matrix:

Q ¼

0
B@

1=2 1=2 0

1=2 0 1=2

0 1=2 1=2

1
CA:

13.5.5. In tossing three fair coins, let the random variable X be defined as X ¼ number of tails. Then the distribution
of X is given by:

Write down the Metropolis or MeH algorithm for simulating a Markov chain with stationary distribution p(x).
Use any nominating matrix.

13.5.6. Write a Metropolis algorithm to generate samples from a target distribution, pðxÞfexp

�
�x2

2

�
; based on the

proposal density:

qxðyÞ ¼ exp

 
� ðy� xÞ2

2ð0:4Þ2
!
:

13.5.7. Write a general Metropolis or MeH algorithm to generate a sample from a target distribution p, where p is
an exponential random variable with parameter q.

13.5.8. Write a general Metropolis or MeH algorithm to generate a sample from a target distribution p, where p(x) a
x34(1 � x)38(2 þ x)125. Use the proposal density as q(x, y) ¼ 1 on the interval [0, 1].

13.5.9. For the bivariate density given in Example 13.5.5, starting with three different values of y0, say, 1/3, 1/2, and 2/3;
n ¼ 15; and a ¼ 1, b ¼ 2, obtain the first three realizations of the Gibbs sequence. Comment on the influence of
the initial values.

13.5.10. Consider a problem of sampling bivariate random variables with joint density given by:

f ðx; yÞ ¼
(
ce�ðxþyþ4xyÞ; x � 0; y � 0

0; otherwise.

(a) Find f(xjy) and f(yjx).
(b) Write a Gibbs procedure to generate samples from this distribution. Discuss why it is easier to use the Gibbs

sampler for this case.
(c) Starting from an arbitrary point, obtain the first three sample points.

13.5.11. Suppose the target distribution is:

ðX; YÞwN

��
0

0

�
;

�
1 r

r 1

��
:

x 0 1 2 3

p(x) 1/8 3/8 3/8 1/8
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Then write the Gibbs sampler to generate a sample from this distribution. In particular, say, we start with (X,
Y) ¼ (12, 12) and r ¼ 0.7. What is the Gibbs procedure to generate a sample from a binormal distribution?
The pdf of a bivariate normal distribution with:

x ¼
�
x

y

�
m ¼

�
mx

my

�
S ¼

�
s2
X rsXsY

rsXsY s2
Y

�

is given by:

f ðxÞ ¼ 1
2p

ðdetSÞ�1=2 exp

�
� 1
2
ðx�mÞ'S�1ðx�mÞ




where ' denotes the vector transpose.
13.5.12. Suppose the target distribution is:

ðX; YÞwN

��
m

m

�
;

�
2 1

1 1

��
:

Then write the Gibbs sampler to generate a sample from this distribution.

13.6 Chapter summary

In this chapter, we introduced some empirical methods that are becoming increasingly popular in modern statistical
analysis. The methods presented must be viewed as introductory in nature and by no means most efficient or general.
Because of ever-evolving applications and advancements in technology, most of the methods presented here also evolve.
Also, based on the situation, it is necessary to write computer codes to run the algorithms introduced in this chapter. Our
hope is that students will explore these topics in more detail by referring to specialized books and publications.

In this chapter, we also learned the following important concepts and procedures:

- The jackknife method
- General bootstrap procedure to estimate the standard error of bq
- Bootstrap confidence intervals
- EM algorithm
- MCMC methods
- Metropolis algorithm
- MeH algorithm
- Gibbs sampler

13.7 Computer examples

Most of the procedures described in this chapter could be implemented using Minitab, SAS, or SPSS. There are other
specialized programs that will do a good job of implementing the methods discussed in this chapter. BUGS (Bayesian
Inference Using Gibbs Sampling) is free software that has proven to be effective in MCMC computations, and the details
are at the website: http://www.mrc-bsu.cam.ac.uk/bugs/. Most of the procedures discussed in this chapter can also be
implemented in R, which is also free software that can be downloaded from http://www.rproject.org/. A few examples in R
are given. We will also present an example in Minitab. However, we will not discuss SAS or SPSS examples.

13.7.1 Examples using R

EXAMPLE 13.7.1 Bootstrap

Using the following data, perform a bootstrap point and interval estimate for the median. Generate six replications or bootstrap

samples of size 12 each.

Sample (x): 269 246 388 354 266 303 295 259 274 249 271 254
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R-code:

library(’boot’); Load the boot library

mystatfun ¼ function(data,index) {

return(median(data[index]));
Create a function returning your parameter

to be estimated. Notice this requires an index.

}

mybs¼boot(x,mystatfun,R¼6);

print(mean(mybs$t)); mybs$t contains the values generated by
your function from each bootstrap replication

print(sd(mybs$t));

boot.ci(mybs,type¼"basic");

Output:

269.6667

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 6 bootstrap replicates

CALL:

boot.ci(boot.out ¼ mybs, type ¼ "basic")

Intervals :

Level Basic

95% (241, 286)

Calculations and Intervals on Original Scale

Warning: Basic Intervals used Extreme Quantiles

Some basic intervals may be unstable

EXAMPLE 13.7.2 Jackknife

Using the data from the previous example, perform a jackknife point estimate for the mean and standard deviation. Notice the

jackknife computation is not simulated like the bootstrap and will have one answer.

R-code:

tmp¼c();
for(i in 1:12) {
tmp¼c(tmp,mean(x[-i]));
}
mean(tmp);
sd(tmp);

Output:

285.6667 Mean

3.988777 Standard deviation
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EXAMPLE 13.7.3 Markov chain Monte Carlo

MCMC is used to simulate random variables from distributions we cannot sample from. In this example our target distribution is

chisq(4) and our proposal distribution is normal(i,1). Notice we can use the rchisq() function to do this and obtain a better result;

however we are going to compare the results of rchisq() with MCMC for learning purposes. Another important note, our proposal

distribution’s mean is the previous value in the Markov chain.

The chain variable may be treated as a generated random sample from our target distribution. Notice that we can evaluate the

target distribution but perhaps we cannot sample or integrate the target.

Your means will be unique for both your rchisq() and your chain but they should be close. Observe the density curves over the

histogram (Fig. 13.4).

R-code:

i¼10; #Step 1.

chain¼c();

for(c in 1:100,000) {

j¼rnorm(1,i,1); #Step 2

u¼runif(1,0,1); #Step 3

r¼(dchisq(j,df¼4)*dnorm(j,i,1))/(dchisq(i,df¼4)*dnorm(i,j,1));

a¼min(c(r,1),na.rm¼TRUE);

Step 4
Step 5

if(u<a) {

chain¼c(chain,j);

i¼j;

} else {

chain¼c(chain,i);

}

}

mean(chain);

mean(rchisq(3000,df¼4));

plot(density(chain),col¼"blue",type¼"l");

lines(density(rchisq(3000,df¼4)),col¼”red”);

lines(seq(0,25,by¼0.1),dchisq(seq(0,25,by¼0.1),df¼4),col¼”black”);

Output:

0.15

0.10

0.05

0.00

0

Density.default (x = chain)

5 10

N = 100,000 Bandwidth = 0.2305

D
en

si
ty

15 20 25x

f(x)

FIGURE 13.4 Simulated densities.
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EXAMPLE 13.7.4 (EM algorithm)

Using the data of Exercise 13.4.2 (c) give the R-code.

Solution

We take arbitrary initial values for the parameters m and s.

#Change the values in (*) and (**) and put any arbitrary values as follows:

em.norm <- function(Y){

Yobs <- Y[!is.na(Y)]

Ymis <- Y[is.na(Y)]

n <- length(c(Yobs, Ymis))

r <- length(Yobs)

# initial values.

mut <- 1 # (*)put arbitrary value for m

sit <- 0.1 # (**)put arbitrary value for s

# Define log-likelihood function

ll <- function(y, mu, sigma2, n){

-.5*n*log(2*pi*sigma2)-.5*sum((y-mu)̂2)/sigma2

}

# Compute the log-likelihood for the initial values, and ignoring the missing data mechanism

lltm1 <- ll(Yobs, mut, sit, n)

repeat{

# E-step

EY <- sum(Yobs) þ (n-r)*mut

EY2 <- sum(Yobŝ 2) þ (n-r)*(mut̂ 2 þ sit)

# M-step

mut1 <- EY / n

sit1 <- EY2 / n - mut1̂ 2

# Update parameter values

mut <- mut1

sit <- sit1

# compute log-likelihood using current estimates, and ignoring the missing data mechanism

llt <- ll(Yobs, mut, sit, n)

# Print current parameter values and likelihood

cat(mut, sit, llt, "\n")

# Stop if converged

if ( abs(lltm1 - llt) < 0.001) break

lltm1 <- llt

}

# fill in missing values with new mu.

return(mut,sit)

}

EXAMPLE 13.7.5 (MCMC) Write an MCMC algorithm for Example 13.5.4.

Solution

metrop3¼function(n¼1000,eps¼0.5)
{

vec¼vector("numeric", n)
x¼0
oldll¼dnorm(x,log¼TRUE)
vec[1]¼x
for (i in 2:n) {

can¼xþrunif(1,-eps,eps)
loglik¼dnorm(can,log¼TRUE)
loga¼loglik-oldll
if (log(runif(1)) < loga) {

x¼can
oldll¼loglik
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}
vec[i]¼x

}
vec

}
In addition, if we want to plot the results, use the following code:

plot.mcmc<-function(mcmc.out)
{

op¼par(mfrow¼c(2,2))
plot(ts(mcmc.out),col¼2)
hist(mcmc.out,30,col¼3)
qqnorm(mcmc.out,col¼4)
abline(0,1,col¼2)
acf(mcmc.out,col¼2,lag.max¼100)
par(op)

}
metrop.out<-metrop3(10000,1)
plot.mcmc(metrop.out)

With the plot, we get the following output.
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EXAMPLE 13.7.6 (Gibbs sampler) Write an R-code for Example 13.5.5 (b).

Solution

#R program for Gibbs sampling

>

> n¼15
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> y0¼1/4

> p¼y0

> x0¼rbinom(1,n,p)

>

> a¼1

> b¼2

> A¼x0þa

> B¼n-x0þb

> X¼matrix(x0,3);Y¼matrix(y0,3)

>

> for(i in 2:3){#sample from f(y/x)

þ Y[i]¼rbeta(1,A,B)

þ #sample from f(x/y)

þ X[i]¼rbinom(1,n,Y[i])

þ }

> print(matrix(c(X,Y),3,2))

Output:

[,1] [,2]

[1,] 5 0.2500000

[2,] 5 0.4011747

[3,] 4 0.2047587

It should be noted that each time we run the code, we may get different output.

13.7.2 Examples with Minitab

EXAMPLE 13.7.7

Using the data of Example 13.3.2, give the Minitab steps.

Solution

Enter the data in C1. Enter 0.08 (z1/12) 12 times in C2. Then.

Calc > Random Data > Discrete . > Generate [enter 200] rows of data > Store in column(s): enter C3-C14 > values in:

enter C1 > Probabilities in: enter C2 > click OK.

We will get 200 rows of data stored in 12 columns. Because the data are generated randomly from the original data with

replacement, we will consider the row data (C3eC14) as the sample size and the 200 columns as the number of samples. Thus

N ¼ 200, and n ¼ 12. Now for each row we can find the mean, X
�
i by doing the following:

Calc > Row Statistics . > click Mean > in Input variables: enter C3-C14 > store results in: enter C15 > click OK.

We will get 200 values representing the sample means. To get the bootstrap mean:

Stat > Basic Statistics > Display Descriptive Statistics . > Variables: enter C15 > click OK.

The value in the mean is the bootstrap mean, and the value in the standard deviation is the bootstrap standard deviation.

If we want to get, say, a 95% bootstrap confidence interval, first sort the sample means in ascending order:

Manip > Sort . > Sort column(s): enter C15 > store sorted column(s) in: enter C16 > sorted by column: enter C15 > click

OK.

Calculate the values of 0.025 � (N þ 1) ¼ 0.025 � 201 ¼ 5.025 and 0.975 � (N þ 1) ¼ 0.975 � 201 ¼ 195.975. Approxi-

mating these values to the nearest integer, we get 5 and 196, respectively. The lower confidence limit will be the fifth entry in the

sorted means, and the upper confidence limit will be the 196th value in the sorted means.

If we want to obtain a confidence interval for the median, we follow very much the same steps as before, but instead of
using the mean in the procedure, we substitute the median. For example:

Calc > Row Statistics . > click Median > in Input variables: enter C3-C14 > store results in: enter C15 > click
OK.

The rest of the steps are similar.
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13.7.3 SAS examples

There are %JACK and %BOOT macros available to do jackknife and bootstrap computations. A good site with example
programs from SAS Institute is http://ftp.sas.com/techsup/download/stat/jackboot.html. Sometimes, PROC IML could also
be used to bootstrap. In the case of multivariate normal data, PROC MI with the EM option will perform the EM algorithm
in SAS. Refer to http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#mcmc_toc.htm for
the options available for the MCMC procedure. Example SAS codes could be obtained from a simple search of the web for
almost all the procedures explained in this chapter.

Project for Chapter 13

13A Bootstrap computation

Use any statistical computer program to generate random numbers. By specifying a particular distribution, such as normal
with mean 0 and variance 1 or other similar distributions, we can then generate numbers that follow this distribution. (This
can be done either directly, if your software allows, or by the method described in Project 4A.)

(a) Use such a package to generate 200 numbers from an N (0, 1) distribution. Then calculate the sample mean and sample
variance. (They will be slightly off from the actual mean and variance. From this, we can draw the conclusion that the
estimates of data parameters that are computed using the data set are not necessarily the true parameters, but often are
reasonable guesses.) Using these values, calculate an estimate of the standard error.

(b)Now for the same data, pretend that we are not really sure what the distribution is. Then, we could consider letting the
observed data specify what the distribution is. This is the essence of bootstrapping. In particular, sample, with replace-
ment from a distribution that we have observed (the empirical distribution of the data), to study the possible estimates
that might have resulted from a similar sample (same data observations, but in possibly different quantities). Using the
bootstrap algorithm described in Section 13.4, obtain a bootstrap estimate of the standard error and compare this with
the estimate obtained in (a).
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Objective

In this chapter we discuss some general concepts and useful methods with applications to real-world problems.

Florence Nightingale
(Source: http://commons.wikimedia.org/wiki/File:Florence_Nightingale_1920_reproduction.jpg.)
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Florence Nightingale (1820e1910) is most remembered as a pioneer of nursing and a reformer of hospital sanitation
methods. Her statistical contributions caused Karl Pearson to acknowledge Nightingale as a “prophetess” in the
development of applied statistics. Nightingale used data as a tool for improving medical and surgical practices. During
the Crimean War, she plotted the incidence of preventable deaths in the military and introduced polar-area charts to
demonstrate the unnecessary deaths due to unsanitary conditions. With her analysis, Florence Nightingale showed the
need for reform and revolutionized the idea that social phenomena could be objectively measured and subjected to
mathematical analysis. In addition, she developed a model hospital statistical form for hospitals to collect and generate
data and statistics. She became a Fellow of the Royal Statistical Society in 1858 and an honorary member of the
American Statistical Association in 1874.

14.1 Introduction

Basically, there can be three major problems in applying the statistical methods that we have studied in the previous
chapters to real-world problems. These involve sources of bias, errors in methodology, and the interpretation of the
analytical results. Bias occurs in situations or conditions that affect the validity of statistical results. For the statistical
inferences to be valid, the observed sample must be representative of the target population, and the observed variables must
conform to assumptions that underlie the statistical procedures to be used. Of course, the statistical methodology chosen
must also be appropriate for the problem under study. We must be careful with the interpretation of the statistical results.
For example, in a regression problem, a cause-and-effect relationship may not be warranted, or in a hypothesis testing
problem, we may not accept the null hypothesis, without exploring the probability of type II error. If we present the results
graphically, the graphs should be accurate and reflect the data variations clearly.

In this textbook, we have assumed that a data set is available to us. Either it is a small data set that we can handle
without much effort or it is in a computer-readable file. In practical situations, the proper handling of a statistical data set is
not an easy task. Going from a stack of disorganized hard copy to online data that are trustworthy, that is, to input, debug,
and manipulate the data, is a problem one will face even before one starts the statistical analysis. Here, we will not be
dealing with these issues. Interested readers should refer to the references at the end of this book for further study on these
aspects.

It is not our aim to discuss comprehensively all the problems that come up in applications. Most of the material
presented in this chapter has already been discussed in various parts of the book. One of the problems we face when we
study a book of this sort is that, for the problems of each chapter, say, Chapter 6 on hypothesis testing, we know that we
need to use only the techniques of that section, or at most of that chapter. For the parametric analysis, in Chapter 11,
we gave ways to do goodness-of-fit for choosing a particular distribution. In a real-world situation, we will not be able to
look at the data analysis in a chapter-by-chapter manner. The purpose of this chapter is to present some methods in a
unified way and to discuss generally the various ways in which the techniques developed in previous chapters could be
applied to real-world data. Because the material in this chapter is a collection of available techniques, we will not follow
the more rigorous pattern of previous chapters, and no proofs will be given.

It is very important to mention that every parametric statistical method and also some nonparametric methods are
subject to certain assumptions, and when we apply them to real-world problems, we should make every effort to justify
these assumptions. If you cannot, it is necessary, when you conclude your analysis and make decisions, that you state that
your results are subject to certain assumptions that you could not justify.

14.2 Graphical methods

We first present some useful graphical methods that were not introduced in Chapter 1 on descriptive statistics. Graphical
analysis is a very important aspect of any statistical study. Before attempting a complex statistical analysis, summarize the
data with a graph. Graphical displays of data analysis help in data exploration, analysis, and presentation and in
communication of results. In data analysis, one of the significant steps is to summarize and plot the data. Graphs help in the
communication of final results and recommendations inferred from quantitative models. A statistical model is often
suggested by an initial graphical analysis. Adequacy of statistical models depends on the model conditions. Because the
violations of these model assumptions may sometimes occur as nonlinearities, graphical methods provide an easy and
perhaps very effective method of detection. Some examples of graphical displays are histograms, dot plots, box plots, and
scatterplots. Methods of graphing multivariate data are more complex and include scatterplot matrices and icon plots.
These are beyond the level of this book.
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If we have a data set with one variable (univariate), we first create a dot plot and summary of basic statistics. In a dot
plot, we plot the data as dots (one dot for each observation) above the horizontal axis that covers the entire range of
observations (see Fig. 14.1). The dot plot will provide us with an idea of the distribution of the data and any unusual
behavior of the data that may not be apparent from summary statistics such as mean, median, or standard deviation. The dot
plots allow us to visualize the entire distribution of the data set by listing each possible outcome and the frequency of the
variable. Other ways of summarizing univariate data, such as histograms, have been discussed in Chapter 1. The histogram
differs from the dot plot in that it groups data into categories. We illustrate these problems with several examples.

EXAMPLE 14.2.1

The following data give the lifetimes of 30 light bulbs (rounded to nearest hour) of a particular type:

1122 922 1146 1120 1079 905 1095 977 1138 966

1150 977 1137 1088 1139 1055 1082 1053 1048 1132

1088 996 1102 1028 1130 1002 990 1052 1116 1135

Construct a dot plot.

Solution

Fig. 14.1 is the dot plot for these data.

The dot plot suggests a distribution that is skewed toward the right, because most of the observations are located to the right.

Some of the graphing methods can also be applied to compare two variablesdfor example, their frequency distri-
butions. For instance, dot plots could also be used to compare bivariate (two variables) or multivariate (many variables)
data. When we have independent samples, side-by-side box plots could be used for comparing two-sample distributions in
terms of their centers, dispersions, and skewnesses.

When there are two variables, a scatterplot is used as one of the basic graphic tools to examine the relationship between
two variables.

The scatterplot in Fig. 14.2 for two variables, x and y, indicates a possible linear relation between x and y. The strength
of the relationship between two variables is often represented through a correlation statistic. It should be noted that the
correlation coefficient is a single number that is easy to calculate and comprehend, though it measures only the strength of a
linear relationship and hence is often used as the primary statistic of interest. However, scatterplots provide information
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FIGURE 14.1 Dot plot for lifetime of light bulbs.
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about the strength of association, not necessarily linear, between variables. In addition, scatterplots help us understand
other aspects of the data, such as the range. Given n observations on two variables, X and Y, we plot a character or symbol
at n points representing (xi, yi). If two or more observations in a scatterplot are identical, the plotted symbols will coincide,
masking possibly important information.

EXAMPLE 14.2.2

The following data give the cholesterol levels before a certain treatment and after 4 months of the treatment:

Before 235 212 277 262 162 212 226 252 185 276

216 315 289 283 234 223 275 282 311 285

After 233 214 200 266 146 212 238 284 191 247

244 268 241 289 220 202 221 196 212 247

Draw a scatterplot. Also find the correlation between before-treatment and after-treatment values.

Solution

Fig. 14.3 is a scatterplot of the data.

Looking at the scatterplot in Fig. 14.3, we see a trend in the cholesterol levels before and after the treatment. Correlation of

before-treatment and after-treatment data is measured by r, the correlation coefficient, and is given by:

r ¼
Pn
i¼ 1

ðxi � xÞ�yi � y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � xÞ2P�
yi � y

�2q :

The quantileequantile (QQ) plot is another useful technique for comparing bivariate data. In a QQ plot, the quantiles of
the two samples are plotted against each other. For two distributions that are almost the same, their quantiles would be
nearly equal. As a result, the quantiles would plot along the 45-degree line. Deviation of plots from this line can be used to
draw inferences about how the two samples differ from one another. If the two sample sizes n1 and n2 are equal, then we
can draw the QQ plot by graphing the order statistics x(i) and y(i) against each other. If the two samples are not of the same
size, then we can use the following procedure to create the QQ plot. If n1 > n2, then draw the (1/(ni þ 1))th quantiles of the
two samples against each other. For a large sample, they are the order statistics, xð1Þ < ::: < xðn1Þ. For the smaller sample
sizes, the pth quantile value is obtained by using the following formula:

exp ¼
�

xpðnþ1Þ; if pðnþ 1Þ; is an integer

xðmÞ þ ½pðnþ 1Þ � m��xðmþ1Þ � xðmÞ
�
; if pðnþ 1Þ; is a fraction

(14.1)
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FIGURE 14.3 Scatterplot for cholesterol levels.
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where m denotes the integer part of p(n þ 1). It should be noted that a QQ plot is not useful for paired data because the
same quantiles based on the ordered observations do not, in general, come from the same pair.

EXAMPLE 14.2.3

Draw a QQ plot for the data given in Example 14.2.2.

Solution

Here n1 ¼ n2 ¼ 20. First sort the data in ascending order:

Before 162 185 212 212 216 223 226 234 235 252

262 275 276 277 282 283 285 289 311 315

After 146 191 196 200 202 212 212 214 220 221

233 238 241 244 247 247 266 268 284 289

Because the QQ plot points lie mostly below the 45-degree line, we may conjecture that the cholesterol level before is

generally higher than that after (Fig. 14.4).

We saw in Chapter 1 that box plots could be used for identification of outliers. To summarize, we emphasize that
graphical procedures, although preliminary, are an integral part of any statistical analysis.

Exercises 14.2

14.2.1. To study any possible relationship between expense and return, the following data give percentage of expense
ratio and total 1-year return for randomly selected stock mutual funds for the year 2000 (source: Money, February
2000):

% Expense ratio 1.03 1.80 1.90 1.53 1.03 2.06 3.20 0.49 1.10 1.07

1.48 1.30 1.23 1.22 1.60 1.50 1.81 1.75 0.97 1.28

% Return 7.3 9.5 32.2 11.0 19.5 7.3 25.1 10.2 1.5 7.9

18.9 26.1 3.4 3.7 23.5 2.9 14.5 14.9 22.7 21.9

Draw a scatterplot. Also find the sample correlation of percentage expense ratio and percentage return.
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FIGURE 14.4 QQ plot for cholesterol levels.
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14.2.2. To study any possible relationship between age and change in systolic blood pressure (BP) (mm Hg) in 24 hours
in response to a treatment, the following data were obtained from 11 individuals:

Age 70 51 65 70 48 70 45 48 35 48 30

Systolic BP change �28 �10 �8 �15 �8 �10 �12 3 1 �5 5

(a) Draw a scatterplot.
(b) Find the sample correlation of age and systolic BP.
(c) Fit a least-squares regression line.
(d) Interpret (a), (b), and (c).

14.2.3. The following data represent 15 randomly selected state finances: revenue and expenditures (in millions of dollars)
for the fiscal year 1997 (source: The World Almanac and Book of Facts, 2000).

Revenue 9,439 8,845 14,520 24,028 39,038 5,215 20,128 7,467

26,538 5,537 6,494 2,818 49,318 4,229 7,724

Expenditure 5,722 7,685 13,862 21,975 35,302 4,441 16,200 7,145

25,791 4,808 5,130 2,426 39,296 4,002 6,818

(a) Draw a scatterplot.
(b) Find the sample correlation between revenue and expenditure.
(c) Draw a QQ plot.
(d) Interpret (a), (b), and (c).

14.2.4. The following data give birth rates (per 1000 population) for 20 selected states in 1998 (source: The World
Almanac and Book of Facts, 2000).

14.4 16.3 13.5 14.6 13.7 15.6 10.9 12.8 13.0 14.2

13.4 13.9 15.9 13.3 14.1 15.7 15.2 13.9 15.4 11.3

Construct a dot plot and interpret.
14.2.5. The following data give the median prices (rounded to nearest $1000) of single-family homes for 18 randomly

selected US cities in 1998 (source: The World Almanac and Book of Facts, 2000).

128 146 109 90 105 152 79 89 109

93 108 128 188 158 93 78 123 137

Construct a dot plot and interpret.

14.3 Outliers

All statistical procedures make assumptions about a population and the sample values obtained from the population. Before
we proceed to analyze the data, we must check to see if there are any outliers, that is, data points that do not belong in the
data set or are not in line with the rest of the data.

Outliers are observations that appear to have an abnormal value compared with the rest of the values in the data set; that
is, the value of an outlier is either much higher or significantly lower than any other value in the data set. An outlier could
be a discordant observation or a contaminant. A discordant observation is one that appears surprising or discrepant to the
investigator and is to some extent subjective. A contaminant is an observation that is from a different distribution compared
with the rest of the data. Outliers may occur as a result of some limitations on measuring techniques or recording errors.
They may also be due to the sample not being entirely from the same population. Extreme values in a data set could also be
due to a skewed population. It should be noted that sometimes a data point that is labeled as an outlier may really be
indicative of a novel phenomenon. In these cases, an extreme observation may not be classified as an outlier.

The presence of outliers can dramatically affect the estimate of the mean and variance of the sample, especially if the
sample size is small. As a result, any test statistic computed from such data would be unreliable, and so would be the
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statistical inferences. For example, the presence of outliers might lead to an incorrect conclusion that the variances of two
samples are not equal, if the outlier is the result of a recording or measurement error.

In a controlled experiment, such as in a laboratory setting, good record keeping with a clear understanding of the
phenomenon under investigation and information about all the data will minimize the occurrence of outliers due to
recording errors.

What to do with outliers? As long as these points remain observations, we cannot throw them out on a whim. There are
basically two methods that are employed in dealing with outliers. One method is to use statistical testing procedures to
detect outliers, possibly removing them from the data set if we know that these are measurement errors, incorrectly entered
values, or impossible values in real life, and letting the analysis deal only with the rest of the data. The second method is to
use statistical procedures, such as nonparametric tests or data transformations, that are immune or only minimally sensitive
to the presence of outliers. Of course, we could run the analysis both with and without the outliers and report both results.
We now present some commonly used tests for labeling outliers.

In data analysis, it is necessary to label suspected outliers for further study. For normally distributed data, we give three
simple methods to identify an outlier: z-score, modified z-score, and box plot.

In a z-test, first find the z-scores of the entire data set and label any observation with a z-score greater than 3 or less
than �3 as an outlier. Recall that for the observed values x1, ., xn, the z-score is defined by:

zi ¼ xi � x

s
;

where s is the sample standard deviation of the sample, that is,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼ 1

ðxi � xÞ2
s

:

Because both the sample mean and the sample standard deviation are affected by the outliers, this labeling method is
not very reliable.

In a modified z-score test, the median of absolute deviation (MAD) is used. Let

MAD ¼ median ðjxi �mjÞ;
where m is the median of the observations. Then:

zi ¼ ðxi � xÞ
MAD

:

An observation is labeled as an outlier if the corresponding modified z-score is greater than 3.5. A normal plot may be
used for testing normality for the data.

If we want a reasonably robust distribution-free test, an observation x0 is labeled as an outlier if:

jx0 � mj
MAD

> 5:

Here, the choice of 5 is somewhat arbitrary.
A box plot (also called a box-and-whisker plot) gives a method of labeling outliers through a graphical representation.

We have seen the method of construction of box plots in Chapter 1. A box plot consists of a box, whiskers, and outliers.
We draw a line across the box at the median. For example, in Minitab, the bottom of the box is at the first quartile (Q1) and
the top is at the third quartile (Q3). The whiskers are the lines that extend from the top and bottom of the box to the adjacent
values, the lowest and highest observations still inside the region defined by the lower limit Q1 � 1.5(Q3 � Q1) and the
upper limit Q1 þ 1.5(Q3 � Q1). Outliers are points outside the lower and upper limits, plotted with asterisks (*).

EXAMPLE 14.3.1

The following data give the hours worked by 25 employees of a company in a randomly selected week:

45 40 39 36 42 40 55 58 42 41

48 50 47 54 40 34 18 40 60 56

42 43 46 43 54
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Label all possible outliers using:

(a) The z-score test, distribution-free test, and modified z-score test.

(b) A box plot.

Solution

(a) We can create Table 14.1, in which Dfree z stands for the distribution-free scores, and modified stands for the modified

z-scores.

By the z-score test, there are no outliers. Using the distribution-free test, the 18 is the only outlier. By the modified z-score test,

18 and 60 are possible outliers.

(b) The box plot is given in Fig. 14.5.

Hence, the observation 18 is identified as an outlier using the box plot.

Once we identify the outliers, then the question is what to do with them. If we can rule out recording errors as the
source of outliers, the situation becomes more difficult. It is often impossible to say whether an outlier is really an extreme
value within a skewed population or it represents a value drawn from a different population. As we indicated earlier, an
outlier can be a legitimate observation representing a special feature of the sample population. In those cases, discarding
the outliers may simplify the statistical analysis, although it also reduces the usefulness of such analysis. Understanding the
experiment that generated the data might help in determining whether to discard or to keep the outliers.

TABLE 14.1 Hours Worked and Modified Scores.

Data z-score Dfree z Modified

45 0.05355 0.12 0.12

40 �0.50427 1.13 �1.13

39 �0.61583 1.38 �1.38

36 �0.95053 2.13 �2.13

42 �0.28114 0.63 �0.63

40 �0.50427 1.13 �1.13

55 1.16919 2.62 2.62

58 1.50389 3.75 3.37

42 �0.28114 0.63 �0.63

41 �0.39271 0.88 �0.88

48 0.38824 0.87 0.87

50 0.61137 1.37 1.37

47 0.27668 0.62 0.62

54 1.05763 2.37 2.37

40 �0.50427 1.13 �1.13

34 �1.17366 2.63 �2.63

18 �2.95868 6.63 �6.63

40 �0.50427 1.13 �1.13

60 1.72701 3.87 3.87

56 1.28076 2.87 2.87

42 �0.28114 0.63 �0.63

43 �0.16958 0.38 �0.38

46 0.16512 0.37 0.37

43 �0.16958 0.38 �0.38

54 1.05763 2.37 2.37
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Once we decide to include the outliers, there are two possible ways to deal with them. One is to transform the data, such
as by taking the natural logarithm, so as to reduce the undue influence of the outliers. Another possibility is to perform the
analysis twice, with and without outliers, and report both results.

If we have bivariate data, a scatterplot may reveal any possible outliers; see Fig. 14.27. There are other methods
available to detect outliers in multivariate data.

Exercises 14.3

14.3.1. Motor vehicle thefts are a big problem in cities. Table 14.2 displays data on motor vehicle thefts per 100,000 pop-
ulation in the year 1997 for 15 randomly selected large US cities (source: Statistical Abstract of the United States,
1999).
Label all possible outliers using:
(a)

(i) The z-score test.
(ii) The distribution-free test.
(iii) The modified z-score test.

(b) A box plot.
14.3.2. Using the data of Example 14.2.1, label all possible outliers using:

(a)
(i) The z-score test.
(ii) The distribution-free test.
(iii) The modified z-score test.

(b) A box plot.
14.3.3. The following data represent test scores of 36 randomly selected students from a large mathematics class:

67 63 39 80 64 95 90 93 21 36 44 66

100 66 72 34 78 66 68 98 74 81 71 100

60 50 81 66 90 89 86 49 77 63 58 43

60
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20

C1

FIGURE 14.5 Box plot for hours of work per week.

TABLE 14.2 Motor Vehicle Thefts per 100,000 Population.

Chicago, IL 1215.1 San Antonio, TX 830.0

Columbus, OH 1109.9 Charlotte, NC 780.1

Nashville, TN 1536.5 Tucson, AZ 1403.3

Albuquerque, NM 1797.8 Atlanta, GA 1869.7

Sacramento, CA 1630.5 St. Louis, MO 2152.8

Toledo, OH 939.7 Tampa, FL 1410.0

Birmingham, AL 1219.7 Anchorage, AK 532.8

Norfolk, VA 519.9
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Label all possible outliers using:
(a)

(i) The z-score test.
(ii) The distribution-free test.
(iii) The modified z-score test.

(b) A box plot.
14.3.4. The following data represent the number of days in 1997 on which selected US metropolitan areas failed to meet

acceptable air-quality standards at trend sites (source: The World Almanac and Book of Facts, 2000):

26 55 30 8 9 15 0 12 3 50 16

47 0 63 3 0 19 23 3 32 15 20

106 2 15 1 14 0 1 44 28

Label all possible outliers using:
(a)

(i) The z-score test.
(ii) The distribution-free test.
(iii) The modified z-score test.

(b) A box plot.

14.4 Checking the assumptions

With some exceptions, checking data for agreement with assumptions is not a topic that is strongly emphasized in other
textbooks at this level. Even in more advanced books, this step is frequently omitted. For the inferences to work correctly,
the measured variables must conform to assumptions that underlie the statistical procedures, or methods, to be applied. In
hypothesis testing such as the t-tests and analysis of variance (ANOVA), we made some fundamental assumptions that the
random samples need to satisfy for the tests to yield correct results.

As an example, the basic assumptions underlying a t-test are:

(i) The sample comes from a normal population and is usually small, n < 30.
(ii) The sample is random. In cases of two-sample tests (excluding paired tests), the measurements in one sample are

independent of those in the other sample.
(iii) When we are given two random samples, most of the results assume the equality of population variances, that is,

s21 ¼ s22. This assumption is called the homogeneity of variances. The test for equality of variance may have to
be performed first if we doubt the equality of the variance.

Likewise, ANOVA is based on a model that requires the following three primary assumptions:

(i) The samples come from normal populations.
(ii) Each of the samples is randomly selected from each group, and the samples are independent of each other.
(iii) The population variances for all the samples are equal. That is, if we have k populations with variances s21, i ¼ 1, 2,

., k, then s21 ¼ s22 ¼ . ¼ s2k :

When we say we have a random sample, we implicitly assume that the data are identically distributed. The presence of
outliers in an observed sample may affect such an assumption. We now explain a few tests for checking these assumptions,
such as the assumptions of normality, data transformations, and equality of variances.

14.4.1 Checking the assumption of normality

We start with the assumption of normality. Let us consider the example of randomly selected scores of 28 calculus
students.
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EXAMPLE 14.4.1

Given in the following table are the test scores of 28 randomly selected students from a calculus 1 class:

86 95 82 53 98 85 87 80 49 71 99 40 96 97

94 89 69 23 72 76 78 91 96 77 77 91 35 47

Construct a dot plot and a histogram, and compute the percentage of observations that fall in the intervals

x � s; x � 2s; and x � 3s:

Solution

The dot plot is shown in Fig. 14.6.

The histogram is shown in Fig. 14.7.

We have x ¼ 71:18 and s ¼ 20.99. Also, 57% of the random sample (i.e., 16 observations) falls in the interval 71.18 �
20.99 ¼ (50.19, 92.17). There are 27 observations, or about 96%, that fall in 71.18 � 41.98 ¼ (29.2, 113.16), and all the

observations fall in 71.18 � 62.97 ¼ (8.21, 134.94). This suggests that the data set is approximately normally distributed. This

procedure is the empirical rule.

For the previous example, we have seen that the dot plot does not suggest any normality. A histogram also does not
suggest any normality (see Fig. 14.7). However, if we used the empirical rule as a test for normality, the data suggest
normality. Clearly this leads to a conflicting situation, with a simple theoretical check suggesting normality, while visual
displays suggest nonnormality. In this case more sophisticated procedures are warranted.

Sometimes, skewness and kurtosis can be used to test for tilt in and peakedness of a distribution. After getting skewness
and kurtosis from the descriptive statistics, divide these by the standard errors. If both skew and kurtosis are within the �2
range, the data can be considered normal.

We mention some sophisticated testing procedures for two of the most important of the parametric assumptions when
running single-factor trials, namely, normality and homogeneity of variance. We have already seen in Project 4C how to
construct a normal probability plot and to check for normality. In this chapter, we will use the Minitab normal plot to check
for normality. Fig. 14.8 graphs a normal probability plot (using Minitab) for Example 14.4.1.
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FIGURE 14.6 Dot plot of student scores.
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FIGURE 14.7 Histogram for student scores.
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We see that the test scores follow the straight line on the normal probability plot pretty well. The serious departures
occur for the last four scores, because the values fall well above the line. This suggests normality with possible outliers.

It should be noted that for skewed data, in the normal probability plot, positively skewed data fall below the straight
line, whereas the negatively skewed data rise above the straight line. A normal probability plot for the lifetime of 30 light
bulbs in Example 14.2.1 is given in Fig. 14.9.

This graph suggests that the data may not be normal and are more toward negatively skewed. Fig. 14.10 is a normal
probability plot for 30 data points generated from a standard normal distribution.

In this chapter, we have presented only simple graphical tests for testing of normality. We should mention that, in the
literature, a variety of procedures for testing for normality are available, including the KolmogoroveSmirnov test, the
ShapiroeWilkW-test, and the Lilliefors test. In Chapters 10 and 11, we learned how to use the KolmogoroveSmirnov test,
AndersoneDarling test, and chi-square test. Some of these tests are incorporated into statistical software packages such as
R and Minitab and could be performed as easily as the graphical tests. If the sample size is very small, with any of these
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FIGURE 14.8 Normal probability plot of student scores.
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tests it may be difficult to detect assumption violations. It is important to keep in mind that these tests are only rough
indicators of assumption violations. For small sample sizes, even when the tests show that none of the test assumptions is
violated, a normality test may not have sufficient power to detect a significant departure from normality, although it is
present.

14.4.2 Data transformation

Many data in real life do not meet the assumptions of parametric statistical tests: they may not be normally distributed, the
variances may not be homogeneous, or both. Using most of the parametrical tests on those data may give a misleading
result. Data transformation uses mathematical operations (filters) on each of the observations, transforming the original
scores into a new set of scores. An appropriate transformation may (1) reduce the influence of outliers, (2) make data from
a nonnormal distribution more normal, and/or (3) make the variances of different data sets more homogeneous. Some of
the more commonly used transformations are (1) power transformations such as square root, (2) logarithm, (3) reciprocal,
and (4) arcsine. Used correctly, data transformation can be a useful tool for the practitioner. Some of these transformations
can be put into a popular class of transformations called the BoxeCox power law transformation,

y ¼ xl � 1
l

;

where l can be optimally adjusted from 0 to 1. For example, as l / 0, we obtain the y ¼ ln x (logarithmic filter) trans-
formation, and when l ¼ 1/2, we get the square root transformation.

Even though we have done a statistical test on a transformed variable, it is not a good idea to report the summary
statistics such as mean, standard errors, etc., in transformed units. We should back transform by doing the opposite of the
mathematical function we used in the data transformation. For instance, if we had originally used the natural logarithm, we
should use exponential transformation as the back transformation. For instance, if we got a symmetric confidence interval
for transformed mean as in Chapter 5, which is symmetric for natural logarithmetransformed data, we should take ex-
ponentials of the lower and upper limits. In the process, we may lose the symmetry of the confidence interval.

As we have seen in Project 9A, it is sometimes possible to use appropriate data transformations to transform nonnormal
data into approximately normal data. Then we can use this normality property to perform statistical analysis on these
transformed values. For instance, if the distribution of data has a long tail (which could be seen by drawing a histogram of
observations) or a few laggards on the right (which could be seen by drawing a dot plot of observations), the

ffiffiffi
x

p
or ln x

transforms will pull larger values down further than they pull the smaller or center values. Sometimes it is necessary to try
several different transformations (trial and error) to find one that is more appropriate.
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FIGURE 14.10 Normal probability plot of data from a standard normal distribution.
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EXAMPLE 14.4.2

Consider the following data from an experiment:

1.15 3.84 0.01 2.06 3.28 2.61 0.59 3.19 1.32 1.07

7.80 1.74 0.25 0.21 3.42 4.52 0.43 0.38 0.07 1.26

4.03 7.28 0.85 3.24 0.62

(a) Draw a histogram and a normal plot.

(b) Take the transform y ¼ ffiffiffi
x

p
and draw a histogram and normal plot for the transformed data.

Solution

(a) The histogram and normal plots for the data are shown in Figs. 14.11 and 14.12.

These graphs clearly show that the data do not follow a normal distribution.

(b) The histogram and normal plot for the transformed data are shown in Figs. 14.13 and 14.14. With this transformation (filter),

we can see that the filtered data follow normality.
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FIGURE 14.11 A histogram of the data.

0.001

C3

1 20 3 4 5 6 7 8

P
ro

ba
bi

lit
y

0.01

0.05

0.20

0.50

0.80

0.95

0.99

0.999

�

�

��
���

��
� ��

�� � � �

�

��
� ���

�
�

�

Average: 2.21297
Std Dev: 2.12252
N of data: 25

Anderson–Darling Normality Test
A-Squared: 1.033

p  value: 0.003

FIGURE 14.12 Normal probability plot of the data.

582 Mathematical Statistics with Applications in R



We have only pointed out transformations in single-variable cases. The transformation methods are also useful in
multivariable and multifactor studies; however, these involve more difficult analysis.

14.4.3 Test for equality of variances

Now we discuss the tests for equality of variances, that is, the tests for heteroscedasticity. Our recommendation is that, in a
real-world problem, after accounting for outliers one should conduct tests for normality and heterogeneity of variance
routinely before analyzing any data. Here, we give two tests. One, for the two-sample case, is based on the F-test, and for
the multisampling case we give Levene’s test based on ANOVA procedures. Albert Madansky’s book Prescriptions for
Working Statisticians (Springer-Verlag, 1988) gives various other tests for normality and heteroscedasticity.

14.4.3.1 Testing equality of variances for two normal populations

The following procedure has already been discussed in Chapter 6, Hypothesis testing. For the sake of completeness, here
we again briefly discuss this procedure. Let X11;.;X1n1 be a random sample from an N

�
m1; s

2
1

�
distribution and

X21;.; X2n2 be a random sample from an N
�
m2; s

2
2

�
distribution. Assume that X1is and X2js are independent of each other

for all i, j. Let
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FIGURE 14.13 Histogram of the transformed data.
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xi ¼ 1
ni

Xni
j¼ 1

xij; i ¼ 1; 2:

Assuming that m1 and m2 are unknown, we can test the hypothesis that s21 ¼ s22 based on the ratio:

F ¼ s21
s22

¼

Pn1
j¼ 1

�
x1j � x1

�2
=ðn1 � 1Þ

Pn2
j¼ 1

�
x2j � x2

�2
=ðn2 � 1Þ

:

We know that ðn1 �1Þs21
�
s21 has a c2(n1 � 1) distribution and ðn2 �1Þs22

�
s22 has a c2(n2 � 1) distribution. Therefore,

under the null hypothesis H0 : s
2
1 ¼ s22; the F statistic has an F(n1 � 1, n2 � 1) distribution.

Based on the alternate hypothesis, we will reject the equality of variance assumption if the test statistic falls into the
appropriate tail of the F distribution. For example, if Ha : s

2
1 > s22 with a ¼ 0.05, we would reject H0 when

F > F0.95(n1 � 1, n2 � 1), and if Ha : s
2
1 < s22 with a ¼ 0.05, we would reject H0 when F � F0.05(ni � 1, n2 � 1). When

Ha : s
2
1ss22 with a ¼ 0.05, we would reject H0 when F � F0 975(n1 � 1, n2 � 1) or F � F0 025(n1 � 1, n2 � 1). It should

be noted that in the case of a two-tailed alternative, this procedure is not the best one in the sense of minimizing the type II
error. However, for simplicity, we will not discuss the optimal two-tailed procedure.

EXAMPLE 14.4.3

An aquaculture farm takes water from a stream and returns it after it has circulated through the fish tanks. Suppose the owner

thinks that, because the water circulates rather quickly through the tank, there is little organic matter in the effluent. To find out,

some samples of the water are taken at the intake and other samples are taken at the downstream outlet, and tests are performed

for biochemical oxygen demand (BOD). If BOD increases, it can be said that the effluent contains more organic matter than the

stream can handle. Table 14.3 gives the data for this problem.

(a) Using normal plots, check for normality of each sample.

(b) Test for the equality of variances of the BOD for the downstream and upstream samples at a ¼ 0.05.

Solution

(a) The normal plots are shown in Figs. 14.15 and 14.16.

The BOD data for the downstream and upstream samples are approximately normal.

(b) We test H0 : s2
1 ¼ s2

2 versus Ha : s
2
1ss2

2. We have n1 ¼ n2 ¼ 10, and a ¼ 0.05. Because the normal plots of each sample

conform with the normality assumption, we can use the F-statistic:

F ¼ s21
s22

¼ ð0:729Þ2
ð0:654Þ2 ¼ 1:2425:

TABLE 14.3 Biochemical Oxygen Demand.

Upstream Downstream

7.863 8.132

5.714 9.128

5.871 7.574

6.479 8.678

7.124 9.336

7.539 8.798

6.682 8.457

5.877 9.756

6.227 8.548

6.771 7.992
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From the F table, the rejection region is {F � F0.025(9, 9) ¼ 0.248} or {F > F0.975(9, 9) ¼ 4.03}. Because the observed value of

the test statistic does not fall in the rejection region, we conclude based on the sample evidence that the variances of the two

populations are equal.

14.4.3.2 Test for equality of variances, k � 2 populations

Generalizing to k populations, let Xi1; Xi2;.;Xini; i ¼ 1, 2, ., k, be k random samples from N
�
mi; s

2
i

�
distributions, with

both mis and sis unknown. Also assume that Xij, Xkl are independent for all (i, j), (k, l). We wish to test the hypothesis H0 :
s21 ¼ s22 ¼ ::: ¼ s2k against Ha: at least one of the s2i is different. There are many tests available. One of the basic
graphical procedures is to use side-by-side box plots (see Example 9.3.2). We describe Levene’s test based on the ANOVA
(source: Levene, 1960).
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FIGURE 14.15 Normal plot of upstream data.
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FIGURE 14.16 Normal plot of downstream data.
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Let yij ¼
���xij �xi

���. Now perform an ANOVA for equality of the means of the yij. Let

n ¼
Xk
i¼ 1

ni; yi: ¼
Xni
j¼ 1

yij = ni and y:: ¼
Xk
i¼ 1

Xni
j¼ 1

yij =
Xk
i¼ 1

ni:

The ANOVA statistic is given by:

z ¼
Pk
i¼ 1

ni
�
yi � y::

�2
=ðk � 1Þ

Pk
i¼ 1

Pni
j¼ 1

�
yij � yi:

	2
=ðn� kÞ

¼ MST

MSE
:

Recall that MST (mean square for treatments) and MSE (mean square error) were defined in Section 9.3; the MST is a
measure of the variability between the sample means of the groups and the MSE is a measure of variability within the
groups. For a 95% confidence level, the rejection region is {z > F0.95 (k � 1, n � k)}.

It should be noted that yij is not independent, but the ANOVA is found to be robust against the deviation from this
assumption of independence.

EXAMPLE 14.4.4

The three random samples in Table 14.4 are independently obtained from three different normal populations.

At the a ¼ 0.05 level of significance, test for the equality of variances.

Solution

We test H0 : s2
1 ¼ s2

2 ¼ s2
3 versus Ha: not all the s2

i are equal. For this sample, x1 ¼ 76; x2 ¼ 66:33; and x3 ¼ 85:67: Also

n ¼ 11 and k ¼ 3. Letting yij ¼
��xij �xi

��; we obtain the following yij values:

12 10.33 4.67000

8 7.67 6.33000

1 2.67 1.67000

1

4

The test statistic is:

z ¼
Pk
i¼ 1

ni

�
yi:� y::

�2
=ðk � 1Þ

Pk
i¼ 1

Pni
j¼ 1

�
yij � yi:

	2
=ðn � kÞ

¼ MST

MSE
¼ 5:5

16:5
¼ 0:33:

From the F table, the 95% point is F0.05(2, 8) ¼ 4.46. Hence, the rejection region is {z > 4.46}. Because the observed value of

z ¼ 0.33 does not fall in the rejection region, the null hypothesis is not rejected, and we conclude that the assumption of equality

of variances seems to be justified.

TABLE 14.4 Three Independent Samples from Normal Population.

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80
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Through our testing, if we find that the homogeneity of variance of the data is violated significantly, then nonparametric
tests are more appropriate. Another popular test for equality of variance is Bartlett’s test.

14.4.4 Test of independence

Almost all the results in this book assume that we have independent random samples. In the situation where we suspect that
the sample data may not be independent, perform a run test as described in Project 12B to test for independence. There are
parametric procedures available to test independence; however, the run test is independent of the distributional assumptions
and simpler to perform. In general, whether the two samples are independent of each other is decided by the structure of the
experiment from which they arise. In the case of correlated samples, such as a set of pre- and posttest observations on the
same subject that are not independent, a two-sample paired test may be more appropriate. Another popular method used to
check for independence is the chi-square test of independence; see Section 7.6.2. For time series data, the DurbineWatson
test (http://www.alchemygroup.net/Permutation%20Durbin-Watson%20Final.pdf) is effective.

In practical sampling situations, the underlying populations are unlikely to be exactly normally distributed with ho-
mogeneity of variances. Both t-tests and ANOVA are robust for reasonable departures in some of these assumptions.
However, these tests may not be robust with respect to certain other assumption violations. For example, ANOVA is quite
sensitive to the violation of independence assumption. These factors need to be given special attention in data analysis.

Exercises 14.4

14.4.1. The scores of 25 randomly selected students from a large calculus class are given below:

47 73 90 22 68 86 94 32 88 86

80 97 48 70 61 82 67 73 78 55

63 59 42 46 90

(a) Test the data for normality.
(b) If the data are not normal, try a suitable transformation (filter) to make the transformed data normal.

14.4.2. Refer to Example 14.3.1. Suppose we use the transformation yi ¼ ln xi for each observation.
(a) Test whether the transformed data are normal.
(b) Determine whether the data value 18 is still an outlier in the transformed data set.

14.4.3. The data shown in the following table relate to the concealed weapons permits issued in 13 randomly selected
Florida counties in 1996:

31;603 20;873 15;963 10;294 8;956 7;901 6;820

5;695 5;485 4;827 3;969 3;278 1;731

(a) Test whether the data are normal.
(b) If not, try a suitable transformation to make the transformed data normal.

14.4.4. The following table represents a summary by state for Medicare enrollment (in thousands) for 15 randomly
selected states in 1998 (source: Statistical Abstract of the United States, 1999):

665 3;757 623 757 541 448 478 2;728 103 771

224 86 623 1;373 713

(a) Test to determine whether the data are normal.
(b) If not, try a suitable transformation to make the transformed data approximately normal.
(c) Test for outliers. If an observation is extreme, would you classify it as an outlier?

14.4.5. Given in the following table are 15 randomly selected state expenditures (in millions of dollars) for the fiscal year
1997 (source: The World Almanac and Book of Facts, 2000):

5;722 7;685 13;862 21;975 35;302 4;441 16;200 25;791

4;808 5;130 2;426 39;296 4;002 6;818 7;145
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(a) Test the data for normality.
(b) If the data are not normal, try a suitable transformation to make the transformed data approximately normal.

14.4.6. Using the data of Exercise 14.3.4:
(a) Test whether the data are normal.
(b) If not, try a suitable transformation to make the transformed data approximately normal.

14.4.7. The following data give in-city mileage per gallon for 25 small and midsize cars (source: Money Magazine,
March 2001):

25 23 20 20 27 26 20 32 25 22

24 21 28 20 22 19 21 29 23 32

23 52 24 24 22

(a) Test to determine whether the data are normal.
(b) If not, try a suitable transformation to make the transformed data approximately normal.
(c) Test for outliers. If an observation is extreme, would you classify it as an outlier?

14.4.8. The following table gives in-state tuition costs (in dollars) for 15 randomly selected colleges taken from a list of
the 100 best values in public colleges (source: Kiplinger’s Magazine, October 2000):

3788 4065 2196 7360 5212 4137 4060 3956 3975 7395

4058 3683 3999 3156 4354

(a) Test for outliers.
(b) Test whether the data are normal.

14.4.9. Using the data given in Exercise 14.2.1, test for equality of variances.
14.4.10. Using the data given in Exercise 14.2.3, test for equality of variances.
14.4.11. The following data represent a random sample of end-of-year bonuses for lower-level managerial personnel

employed by a large firm. Bonuses are expressed in percentage of yearly salary:

Females 6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7

Males 8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8

Test for equality of variances. State any assumptions you have made, and interpret your result. Use a ¼ 0:05:
14.4.12. In an effort to investigate the premium charged by insurance companies for auto insurance, an agency randomly

selects a few drivers who are insured by three different companies. These individuals have similar cars, driving
records, and levels of coverage. Table 14.5 gives the premiums paid per 6 months by these drivers with these
three companies.
Test for equality of variances. State any assumptions you have made, and interpret your result. Use a ¼ 0:01:

14.4.13. Three classes in elementary statistics are taught by three different persons, a regular faculty member, a graduate
teaching assistant, and an adjunct from outside the university. At the end of the semester, each student is given a
standardized test. Five students are randomly picked from each of these classes, and their scores are as shown in
Table 14.6.
Test for equality of variances. State any assumptions you have made, and interpret your result. Use a ¼ 0:05:

TABLE 14.5 Auto Insurance Premiums.

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432
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14.5 Modeling issues

A model is a theoretical description in the language of mathematical statistics of a physical phenomenon. Even though
interpretations can be developed by analogy, past experience, or intuition, the scientific approach requires a model for the
phenomenon of interest. Models are simplifications (or approximations) of real-world situations and are designed to make
it easier to identify and understand relationships among variables. A good model is crucial for accurate estimation,
forecasting, or predicting. If the observed data show a good fit to the estimates obtained through the model, we consider the
model to be an adequate representation of the real-world phenomenon. If not, the model must be improved, to incorporate
additional variables or modify the equations defining the relationships. In statistical modeling, it is important not to lose
perspective on the essential purpose of the modeling effort. The emphasis should be on making these models work on real
data sets in lieu of spending a large amount of time on the capabilities of the models. Even though the study of properties
and abilities of models is important, equally important is the ability to know when and how to fit models to a particular data
set. A regression line is a two-parameter model that depicts a linear dependence of one variable on another. Again, it is not
our objective to discuss all the issues related to statistical modeling. We will discuss briefly only some simple issues
relevant to modeling.

14.5.1 A simple model for univariate data

Suppose that we have a data set that characterizes a phenomenon of interest. Suppose our problem is to create a statistical
model for the data set in the form of a probability distribution from which the data set came. First we create a dot plot and
summary of the basic statistics. The dot plot will provide us with an idea of the probability distribution of the data and any
unusual behavior of the data that will not be apparent from the basic statistics such as sample mean and sample standard
deviation. Having identified the probability distribution of the sample statistic, we can proceed to obtain 95% confidence
limits on parameters such as the mean and variance. In addition, we can obtain a 95% prediction interval of the next
observation using the following expression:

y� ðt� valueÞs
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
.

Note that the prediction interval is always wider than the corresponding confidence interval. The confidence interval
provides a measure of reliability for estimating a parameter. The prediction interval provides a measure of reliability for the
prediction of an observation. Thus, the prediction interval needs to account for estimation error as well as the natural
variability of a single observation. These steps can be considered as the first modeling effort for univariate data. Note that if
we have a small sample size, using a t value in the confidence interval and/or prediction interval supposes a modeling
assumption of normality for the corresponding population. The preliminary verification of this is done by the dot plot. For
more detailed verification of this modeling assumption, use the normal plots.

TABLE 14.6 Exam Scores by Different Instructors.

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47
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EXAMPLE 14.5.1

Consider the following data from an experiment:

0.15 0.14 0.15 0.14 0.26 0.00 0.00 0.47 0.35 0.16

0.15 0.15 0.23 0.13 0.19 0.15 0.22 0.53 0.17 0.23

0.22 0.16 0.12 0.13 0.11 0.14 0.18 0.15 0.14 0.21

0.13 0.12 0.13 0.13 0.21 0.22 0.18 0.20 0.22 0.16

0.17 0.00 0.23 0.21 0.18 0.05 0.16 0.13 0.23 0.18

0.14 0.29 0.21 0.22 0.11 0.16 0.23 0.13 0.07 0.17

0.08 0.14 0.06 0.08 0.07 0.11 0.12 0.14 0.16 0.12

0.10 0.27 0.19 0.13 0.27 0.16 0.07 0.09 0.04 0.53

0.29 0.15 0.12 0.11 0.10 0.14 0.14 0.16 0.16 0.17

0.36 0.46 1.21 0.39 0.01 0.52 0.09 0.18 0.16 0.16

0.14 0.15 0.09 0.09 0.13 0.13 0.08 0.14 0.20 0.09

0.09 0.16 0.08 0.10 0.34 0.24 0.15 0.44 0.08 0.08

0.16 0.14 0.18 0.23 0.19 0.11 0.19 0.10 0.14 0.11

0.14 0.17 0.17 0.17 0.05 0.12 0.14 0.11 0.20 0.14

0.23 0.03 0.10 0.29 0.13 0.26 0.13 0.15 0.27 0.14

0.50 0.16 0.15 0.18 0.16 0.14 0.13 0.08 0.20 0.17

0.17 0.16 0.15 0.11 0.13 0.76 0.18 0.19 0.09 0.12

0.11 0.12 0.08 0.26 0.23 0.20 0.19 0.19 0.16 0.11

0.12 0.13 0.32 0.05 0.18 0.12 0.13 0.50 0.13 0.04

0.00 �0.11 0.18 0.15 0.14 0.15 0.02 0.20

(a) Create a dot plot.

(b) Calculate the basic statistics, sample mean, sample median, and sample standard deviation.

(c) Obtain a 95% confidence interval for the true mean.

(d) Obtain a 95% prediction interval.

Solution

(a) Each dot in Fig. 14.17 represents three points.

(b) We can use Minitab’s describe command to obtain the following:

N Mean Median Tr Mean StDev SE mean

C1 198 0.17038 0.15121 0.15982 0.13610 0.00967

Min Max Q1 Q3

�0.39575 1.22076 0.12059 0.19284

(c) Again using Minitab commands, we can obtain (where data are stored in C1), MTB > ZInterval 95.0 0.136 c1.

The assumed s [ 0.136

N Mean StDev SE mean 95.0% CI

C1 198 0.17038 0.13610 0.00967 (0.15143, 0.18933)

(d) For the prediction interval use the large sample formula y� �za=2�s ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

q
to obtain the 95% prediction interval for the true

mean as (0.097, 0.4387).
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14.5.2 Modeling bivariate data

When a scatterplot of bivariate data exhibits a linear pattern, the modeling is usually done using linear regression to study
their linear relationship as explained in Chapter 8. Clearly a linear relationship is desirable because it is easy to interpret,
departure from linearity is easy to detect, and predicting dependent values from independent variables is straightforward.
However, when a scatterplot shows a curved nonlinear pattern, finding a “good” model that fits the observed data may not
be very easy. Sometimes, instead of fitting a curve, we may be able to transform the data so as to make the scatterplots of
the transformed data look more linear.

A popular statistical method used to straighten a plot is the so-called power transformation. The power transformation
is defined by specifying an exponent, k, which could be a positive or negative real number, then computing each trans-
formed value as the original value to the power k. Note that k ¼ 1/2 gives the square root transform. When k ¼ 0, every
transformed value is equal to 1. Instead it is customary to think of k ¼ 0 as corresponding to a logarithmic transformation
so as to unify the transformation concept. The power k ¼ 1 corresponds to no transformation at all. Observe that these are
the same transformations we have explained in Subsection 14.4.2 to transform nonnormal data into normal transformed
data. The shape of the scatterplots should suggest an appropriate transformation. The four curves in Fig. 14.18 represent
possible shapes of scatterplots that are usually encountered in practice.

We can use the following as a general guideline for making transformations. If we have a scatterplot that looks like plot
1 of Fig. 14.18, then to straighten the plot, we should use a power k < 1 for x (the independent variable) and/or use a power
k > 1 for y (the dependent variable). Similarly, for curve 2, k > 1 for x and/or k < 1 (such as

ffiffiffi
y

p
or ln y) for y. For curve 3,

take k > 1 for x (such as x2 or x3) and/or k > 1 for y. Finally, for curve 4, take k < 1 for x and/or k > 1 for y. Once we
straighten the data through transformations, obtain the least-squares equation of the line as explained in Chapter 8. By
reversing the transformation (or solving for y in the transformed equation) we can obtain the original nonlinear relationship
between x and y.

y y

x x x x
4321

y y

FIGURE 14.18 Possible shapes of a scatterplot.
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FIGURE 14.17 Dot plot of the data.

Some issues in statistical applications: an overview Chapter | 14 591



EXAMPLE 14.5.2

For the following bivariate data:

x 0 4 8 10 15 18 20 25

y 2.4 2.6 3.1 3.6 4.1 4.2 4.6 4.7

(a) Draw a scatterplot.

(b) Use the appropriate transformation (if necessary) to linearize the scatterplot.

(c) Fit the data to an appropriate curve.

Solution

(a) The scatterplot is shown in Fig. 14.19.

This looks more like curve 4.

(b) Let us use the transformation x0 ¼ ln x and y0 ¼ y2. We will get the scatterplot shown in Fig. 14.20.

This looks more linear.
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FIGURE 14.19 Scatterplot of the data.
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FIGURE 14.20 Scatterplot of the transformed data.

592 Mathematical Statistics with Applications in R



(c) The regression line for the transformed data is y0 ¼ 8.86x0 � 6.96. Therefore, for the original data, y2 ¼ 8.86 ln x � 6.96. The

fitted curve is shown in Fig. 14.21.

Looking at Fig. 14.21, we can see that the data are only slightly nonlinear. In addition, using the equation, for a given value of

x we can predict the value of the response variable y. For instance, if x ¼ 1.5, we estimate y2 to be �3.3676.

There are various other modeling issues that one may encounter in applications. For example, in multiple regression
modeling, an investigator may have data on a number of predictor variables that might be incorporated into a model. Some
of these variables may be irrelevant or may duplicate the information provided by other variables. The problem then is how
to detect and eliminate the duplicating variables. However, for the sake of brevity and level of presentation, we will not go
into the difficulty of these issues of model selection.

Exercises 14.5

14.5.1. Using the data of Exercise 14.4.5:
(a) Create a dot plot.
(b) Describe the data, such as mean, median, and standard deviation.
(c) Obtain a 95% confidence interval for the mean.
(d) Obtain a 95% prediction interval.
(e) Explain your solutions and state any assumptions.

14.5.2. Using the gas mileage data of Exercise 14.4.7:
(a) Create a dot plot.
(b) Describe the data, such as mean, median, and standard deviation.
(c) Obtain a 95% confidence interval for the mean.
(d) Obtain a 95% prediction interval.

14.5.3. The following represents the midterm and final exam scores for 35 randomly selected students from a large math-
ematics class:

Midterm 67 63 39 80 64 95 90 93 21 36

44 66 66 72 34 78 66 68 98 43

74 81 71 100 60 50 81 66 90 89

86 49 77 63 58

Final 29 33 100 33 55 20 10 5 67 64

71 25 34 66 28 34 16 27 32 20

14 21 16 62 50 14 61 11 14 41

52 35 37 51 43

(a) Draw a scatterplot.
(b) Use an appropriate transformation (if necessary) to linearize the scatterplot.
(c) Fit the data to an appropriate curve and explain the usefulness.
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FIGURE 14.21 Fitted curve.
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14.5.4. Using the state finance data of Exercise 14.2.3:
(a) Draw a scatterplot.
(b) Fit a least-squares line.
(c) Explain your solutions and state any assumptions.

14.5.5. Table 14.7 gives in-state tuition costs (in dollars) and 4-year graduation rate (%) for 15 randomly selected colleges
taken from a list of the 100 best values in public colleges (source: Kiplinger’s Magazine, October 2000).
(a) Draw a scatterplot.
(b) Fit a least-squares line and graph it.
(c) Looking at the scatterplot of (a), do you think the least-squares line is a good choice? Discuss.

14.6 Parametric versus nonparametric analysis

Up until Chapter 11, we basically assumed that random variables belong to specific probability distributions, such as a
normal distribution or binomial distribution. The members of those distributions are associated by different parameters
such as means or variances. Most of our efforts were concentrated on making some inferences about the unknown pa-
rameters. In this vein, we looked at point estimators, confidence intervals, and hypothesis-testing problems. In practice, the
assumption that observations come from a particular family of distributions such as normal or exponential may be quite
sensible. As we have already mentioned, slight violations of these assumptions in many practical cases may not signifi-
cantly affect statistical inferences. However, this is not always true. Furthermore, sometimes we may want to make in-
ferences that have nothing to do with parameters. We may not even have precise measurement data, but only the rank order
of observations. For example, if we want to study the performance of students at an institution, we may not have the precise
scores the students obtained; instead we may only have their letter grades such as A, B, C, D, and F. Even if we have
precise measurements, we may not be able to assume a distribution, such as normality. Still, we may be able to say that the
distribution is symmetric, or skewed, or has some other characteristics. Basically, if there is doubt about the parametric
assumptions, or the data are not suitable for parametric inference, or we are not interested in inference about parameters, a
nonparametric test that is valid under weaker assumptions is preferable. It should be noted that weaker assumptions do not
mean that nonparametric methods are assumption free. The inference that can be made depends on valid assumptions that
are made.

When using nonparametric tests, a common question is, “Why substitute a set of nonnormal numbers, such as ranks, for
the original data?” Rank tests are often useful in circumstances when we have no idea about the population distribution.
We suspect that the data are not normal, and either we cannot transform the data to make them more normal or we do not
wish to do so. Few data are truly normal, despite the robustness of common parametric tests; unless we are quite sure that
the nonnormality is a minor problem and would not affect the conclusions, we may often be better off using a rank test.
However, there is a small penalty for using delete rank tests. If the original data are really normal, in the long run, the rank
tests will be about 95.5% as efficient as a Student t-test would have been. This means that in such situations, the t-test will
require about 95 samples compared with 100 for the rank test. But when data are far from normal, the rank tests will require
fewer samples than the t-test; in fact, we should not use the t-test in such cases.

Basically, if we know the distribution of the underlying population, we can use parametric tests. Otherwise, for a given
data set, we first perform the normality test as explained in Section 14.4. If normality fails, try transformations; if that fails,
we can use nonparametric methods for the data analysis.

Another situation in which we can use nonparametric tests is when the data contain some outliers. A box plot or a
normal plot, as explained in Section 14.4, will reveal the existence of outliers. However, in many applied areas, such as in
most bioavailability data, there will appear to be outliers. It is not feasible to determine whether these are skewed or
contaminated distributions. They are not errors. In those situations, a conservative approach will be to use nonparametric

TABLE 14.7 Tution Amount Versus Graduatin Rate.

In-state tuition 3788 4065 2196 7360 5212 4137 4060 4354

Graduation rate 45 64 40 58 38 20 39 48

In-state tuition 3956 3975 7395 4058 3683 3999 3156

Graduation rate 40 20 45 39 39 20 9 48
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methods. For example, because the statistic for the rank sum test is resistant to outliers, it will not be seriously affected by
the presence of outliers unless the number of outliers becomes large relative to the sample size.

It should be noted that we ought to be careful even when we use nonparametric tests. For example, if the data for one or
both of the samples to be analyzed by a rank sum test come from a population whose distribution violates the assumption
that the distributional shapes are the same, then the rank sum test on the original data may provide misleading results or
may not be the most powerful test available. Transforming the data (for example, a logarithmic transformation pulls in long
tails) to obtain normality and then performing a two-sample t-test, or using another nonparametric test, may be more
appropriate for the analysis. In general, nonparametric methods are appropriate when the sample sizes are small. When the
data set is large, say n > 100, it often makes little sense to use nonparametric methods.

Finally, we must conclude that we do not perform nonparametric tests on a given set of data unless it is necessary, that
is, if we cannot assume a classical probability distribution that characterizes the given data. Also, parametric statistical
analysis is, in general, more powerful than nonparametric analysis. We will end this section with a quote from W.J.
Conover: “Nonparametric methods use approximate solutions to exact problems, while parametric methods use exact
solutions to approximate problems.”

Exercises 14.6

14.6.1. Consider the following data:

0.01 0.012 0.016 0.018 0.036 0.042 0.036 0.048

0.072 0.042 0.22 0.096 0.76 0.055 0.13 0.016

(a) Test for normality and comment on whether a parametric or a nonparametric test is appropriate.
(b) Try a suitable transformation (filter) to make the transformed data normal, if possible, and then use a para-

metric procedure.
14.6.2. Using the Medicare data in Exercise 14.4.4, if parametric procedures are not appropriate, use a nonparametric

procedure.

14.7 Tying it all together

Now we will give some real-world problems for which we will use standard methods to analyze the given data. Software
reliability is a major aspect in any kind of software development. One of the ways to do this is to observe time to failure
and/or time between failures (TBF). If the defects are fixed, we would expect, on average, the TBF to increase. Based on
those data, one studies reliability of the software. There are a variety of methods to analyze the software reliability
problems. Here we will not dwell on the reliability issues. We will only do some simple data analysis on a set of software
failure data. The following data represent software failure times in the Apollo 8 software system. They were obtained from
www.dacs.dtic.mil/databases/sled/swrel.shtml. It is assumed that these failure times are random.

EXAMPLE 14.7.1

The following data set consists of 26 software failure times taken from testing of the Apollo 8 software system:

T : 9 21 32 36 43 45 50 58 63

70 71 77 78 87 91 92 95 98

104 105 116 149 156 247 249 250

TBF : 9 12 11 4 7 2 5 8 5

7 1 6 1 9 4 1 3

6 1 11 33 7 91 2 1

3

(a) Create a dot plot and describe the TBF data.

(b) Identify any outliers and test for normality with and without outliers for TBF data. If the data are not normal, does any simple

transformation make the data normal?

(c) Obtain a 95% confidence interval for TBF.
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(d) For estimation problems, does a parametric or nonparametric method seem more appropriate for this data?

(e) Create a scatterplot between T and TBF and discuss its usefulness.

Solution

(a) The dot plot for the TBF data is shown in Fig. 14.22.

The following is the result from using the describe command in Minitab:

TBF N Mean Median Tr mean StDev SE mean

26 9.62 5.50 6.58 17.79 3.49

TBF Min Max Q1 Q3

1.00 91.00 2.00 9.00

(b) We will use the box plot shown in Fig. 14.23 to identify the outliers.

From the box plot, observations 33 and 91 are outliers.

Figs. 14.24 and 14.25 show the normal plots with and without outliers.

It is clear that the data with outliers are not normal, whereas if we remove the outliers, the data become normal.

Fig. 14.26 gives the normal plot by taking the natural log of the TBF data with outliers. The figure shows that the data become

approximately normal.

(c) It is clear that to obtain a small-sample confidence interval, to satisfy the assumption of normality, we need to take the data

without the outliers. Hence, a 95% confidence interval for TBF with the outliers removed is (3.77, 6.73). Running a

nonparametric Wilcoxon test in Minitab for the 95% confidence interval with outliers gave the following:

Estimated Achieved

Time between failures N Median Confidence Confidence interval

26 6.00 94.9 (4.00, 8.00)

(d) If we are analyzing the data without outliers or the log-transformed data, parametric methods are better. With the original

data, because the normality assumption may not be appropriate, we need to use nonparametric methods.

(e) Fig. 14.27 gives the scatterplot of T and TBF.
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FIGURE 14.22 Dot plot of time-between-failures data.
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FIGURE 14.23 Box plot of time-between-failures (TBF) data.
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Anderson–Darling Normality Test
A-Squared: 5.075
p value: 0.000

Average: 9.61539
Std Dev: 17.7878
N of data: 26
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FIGURE 14.24 Normal probability plot of time-between-failures (TBF) data with outliers.
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FIGURE 14.25 Normal probability plot of time-between-failures (TBF) data without outliers.
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FIGURE 14.26 Normal probability plot of transformed time-between-failures (TBF) data with outliers.
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EXAMPLE 14.7.2

Table 14.8 gives dealer cost and sticker price for four-door base models of 25 small and midsize cars (source: Money Magazine,

March 2001).

(a) Create a dot plot and describe the sticker price data.

(b) Identify any outliers and test for normality with and without outliers for sticker price data. If the data are not normal, does any

simple transformation make the data normal?

(c) Obtain a 95% confidence interval for sticker price.
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FIGURE 14.27 Scatterplot of time (T) and time between failures (TBF).

TABLE 14.8 Dealer Cost and Sticker Price.

Model Dealer cost (in dollars) Sticker price (in dollars)

Acura Integra GS 19,479 21,600

Chevy Cavalier 12,398 13,260

Chevy Impala LS 21,251 23,225

Chrysler Concord LX 20,834 22,510

Dodge Neon SE 11,856 12,715

Ford Escort 12,277 12,970

Ford Taurus SE 17,606 19,035

Honda Civic DX 11,723 12,960

Honda Accord 2.3 LX 16,727 18,790

Hyundai Sonata 13,805 14,999

Kia Sephia 9,914 10,595

Mazda 626 LX V6 18,181 19,935

Mitsubishi Mirage ES 12,534 13,627

Mercury Sable GS 17,777 19,185

Continued
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(d) For estimation problems, do parametric or nonparametric methods seem more appropriate for this data?

(e) Create a scatterplot between dealer cost and sticker price.

(f) Fit a least-squares regression line and run a residual model diagnostic using Minitab.

Solution

(a) The dot plot for the sticker price is shown in Fig. 14.28.

The following summary statistics are obtained by using the describe command in Minitab.

N Mean Median Tr mean StDev SE Mean

Sticker price 25 17,726 19,035 17,758 4278 856

Min Max Q1 Q3

Sticker price 10,570 24,150 13,322 21,350

(b) The box plot for the sticker price is shown in Fig. 14.29.

According to this, there are no outliers. The normal plot is shown in Fig. 14.30. This is approximately normal.

TABLE 14.8 Dealer Cost and Sticker Price.dcont’d

Model Dealer cost (in dollars) Sticker price (in dollars)

Nissan Maxima GXE 19,430 21,249

Oldsmobile Intrigue GL 22,097 24,150

Pontiac Grand Am GT 18,790 20,535

Saturn SL 9,936 10,570

Subaru Impreza L 14,695 15,995

Toyota Corolla LE 12,042 13,383

Toyota Camry LE 18,169 20,415

Toyota Prius 18,793 19,995

VW Jetta GLS 15,347 16,500

VW Passat GLS 19,519 21,450

Volvo S40 22,090 23,500

10800 12600 14400 16200 18000 19800 21600 23400

FIGURE 14.28 Dot plot for the sticker price.
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FIGURE 14.29 Box plot for the sticker (St.) price.
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(c) The 95% confidence interval for the sticker price is:

N Mean StDev SE mean 95.0% CI

Sticker price 25 17,726 4278 856 (15,960, 19,492)

(d) Because there are no outliers and the data look approximately normal, parametric tests seems to be appropriate for these data.

(e) The scatterplot for dealer cost versus sticker price is shown in Fig. 14.31.
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FIGURE 14.30 Normal plot for the sticker price.
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FIGURE 14.31 Scatterplot for dealer cost versus sticker price.
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(f) Fig. 14.32 shows the fitted regression line.

An analysis of residuals by Minitab gives Fig. 14.33.

By looking at the residuals versus fits, we can see that we have a good fit, and hence, the model seems to be appropriate.

Exercises 14.7

14.7.1. Table 14.9 gives revenue (in thousands) for public elementary and secondary schools, by state, for 1997e98 and
corresponding pupils per teacher for that state for 20 randomly selected states (source: The World Almanac and
Book of Facts, 2000).
(a) Create a dot plot and describe the pupils per teacher data.
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Delear cost vs. Sticker price

FIGURE 14.32 Regression line for dealer cost versus sticker price.
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FIGURE 14.33 Residuals versus fit.
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(b) Identify any outliers and test for normality with and without outliers for the pupils per teacher data. If the data
are not normal, does any simple transformation make the data normal?

(c) Obtain a 95% confidence interval for pupils per teacher.
(d) Create a scatterplot for total revenue and pupils per teacher.
(e) Fit a regression line between total revenue and pupils per teacher.

14.7.2. Table 14.10 gives the dealer cost and sticker price for luxury cars and sports utility vehicles with popular options
(source: Money Magazine, March 2001).
(a) Create a dot plot and describe the sticker price data.
(b) Identify any outliers and test for normality with and without outliers for sticker price data. If the data are not

normal, does any simple transformation make the data normal?
(c) Obtain a 95% confidence interval for sticker price.
(d) Do parametric or nonparametric methods seem more appropriate for the data?
(e) Create a scatterplot between dealer cost and sticker price.
(f) Fit a least-squares regression line and run a residual model diagnostics using Minitab.

14.7.3. For the college tuition data of Exercise 14.5.5, fit a least-squares regression line and run a residual model diag-
nostics using Minitab.

14.7.4. The following data give the area (in square feet) and the sale prices (approximated to the nearest $1000) of homes
that were sold in a particular city in a 6-week period of 2003.

Area 1123 1028 1490 2172 2300 1992 3200 3063 3720

7228 720 943 904 912 1031 1152 1482 1426

1491 1184 1650 1392 1755 2062 2495 3253 5152

1270 1723 1161 1220 837 1446 2442 2300 2518

Price 75 75 102 149 152 154 327 425 625

775 775 57 66 68 75 86 90 93

95 95 104 105 135 159 169 253 725

67 67 110 65 74 95 156 183 207

TABLE 14.9 School Revenue and Number of Pupils per Teacher.

State Total revenue Pupils per teacher

Arizona 4,388,915 19.8

Connecticut 5,112,950 14.2

Alabama 4,030,356 16.3

Indiana 7,006,752 17.2

Kansas 3,090,829 14.9

Oregon 3,119,028 20.1

Nebraska 1,688,662 14.5

New York 27,690,556 15.0

Virginia 6,661,612 14.7

Washington 6,722,916 20.2

Illinois 13,649,628 16.8

North Carolina 7,127,549 15.9

Georgia 8,579,628 16.2

Nevada 1,754,717 18.5

Ohio 12,694,407 16.7

New Hampshire 1,365,391 15.6
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(a) Create a dot plot and describe the home price data.
(b) Identify any outliers and test for normality with and without outliers for home price data. If the data are not

normal, does any simple transformation make the data normal?
(c) Obtain a 95% confidence interval for home price.
(d) Do parametric or nonparametric methods seem more appropriate for the data?
(e) Create a scatterplot between the square-foot area of a home and its price.
(f) Fit a least-squares regression line and run a residual model diagnostics using Minitab.

14.8 Some real-world problems: applications

In this section, we will use the goodness-of-fit methods discussed in the previous sections to identify the probability
distribution that characterizes the behavior of some real-world problems that our society is facing. All the data sets used in
this section are available at http://booksite.elsevier.com/9780124171138.

TABLE 14.10 Dealer Cost and Sticker Price for Luxury and Sport Cars.

Model Dealer cost (in dollars) Sticker price (in dollars)

Acura TL 3.2 26,218 29,030

Audi A6 4.2 45,385 50,754

BMW 525i 33,800 37,245

Cadillac DeVille DHS4 43,825 47,603

Infiniti I30 Touring 28,604 32,065

Jaguar XJ8 52,535 58,171

Lexus GS430 41,881 48,581

Mercedes-Benz C320 35,067 36,950

SAAB 9-3 Viggen 35,270 38,690

Volvo S80T-6 39,315 41,768

BMW X5 4.4i 45,994 50,774

Chevrolet Blazer LT 26,958 29,725

Dodge Durango 26,845 29,370

GMC Jimmy SLE 26,637 29,370

Honda CR-V LX 17,578 19,190

Isuzu Trooper LS 27,901 31,285

Jeep Cherokee SE 21,392 23,130

Lexus LX470 54,785 63,474

Mercedes-Benz ML430 42,243 45,337

Nissan Pathfinder SE 27,203 29,869

Pontiac Aztek GT 22,912 24,995

Subaru Forester S 21,990 24,190

Suzuki Vitara JS 16,063 17,079

Toyota RAV4 18,786 20,630
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14.8.1 Global warming

The concept of “global warming” consists of two interacting entities, the atmospheric temperature and carbon dioxide,
CO2, in the atmosphere. The United States collects annual data for both of these variables in our observatories in Alaska
and Hawaii. The actual data can be found on the website http://scrippsco2.ucsd.edu/data/atmosperic-co2.html.

Our objective is to identify the probability distribution function (pdf) that follows the CO2 data given in thousands of
metric tons annually for 31 years. Once we know the pdf that fits the CO2 data, we can obtain useful information, such as
probabilistic characterization of its behavior, the expected value of CO2 (theoretical average), and confidence limits on the
true amount of CO2, among other interesting information.

We begin our process of identifying the pdf by structuring a histogram of the 31 randomly selected measurements of
CO2. The histogram of the subject data will give us some idea about the possible pdf that we should be testing. After some
preliminary testing of some pdfs we proceed to test the following hypothesis:

H0: the CO2 data follow the gamma pdf
versus
Ha: the CO2 data do not follow the gamma pdf.
To test this hypothesis, we applied the KolmogoroveSmirnov, AndersoneDarling, and chi-square tests with a level of

significance a ¼ 0.05. The test statistic results of the three goodness-of-fit tests are given below:

KolmogoroveSmirnov test D ¼ 0.08771, p value 0.954

AndersoneDarling test A ¼ 0.3627, p value 0.883

Chi-square test c2 ¼ 0:95844; p value 0.811

All three goodness-of-fit tests strongly support the null hypothesis that the CO2 measurements follow the gamma pdf.
We obtained the maximum likelihood estimates of the two parameters a and b of the gamma pdf, which are ba ¼ 635:29
and bb ¼ 0:557: Thus, we can write the estimated gamma pdf for the subject data. That is,

f ðxÞ ¼ x635:29�1

ð0:557Þ635:29Gð635:29Þ exp

 �x

0:557

�
; x > 0:

We can use f(x) to determine various probabilities of interest concerning the behavior of X, the amount of CO2 in the
atmosphere. Also, we can calculate cumulative distribution function F(x), the expected amount that we would find in the
atmosphere, and confidence limits, among other interesting questions about the behavior of CO2, using procedures pre-
viously explained in this book.

14.8.2 Hurricane Katrina

One of the most devastating hurricanes in the past 100 years to hit the United States was Hurricane Katrina. The Atlantic-
based hurricane, category 5 (most devastating), lasted 9 days, August 23e31, 2005. The wind pressure and velocity of
Katrina are two of the most important variables and we wish to identify the pdf that characterizes its behavior. That is, we
wish to perform goodness-of-fit testing to determine the pdf that follows the wind pressure data that were obtained from
http://weather.unisys.com/hurricane/atlantic/2005H/KATRINA/track.dat.

We have 63 observations of the wind velocity (in mph) that reached a maximum wind velocity of 150 mph. After
looking at the histogram of the data, we believe that the wind velocity of Katrina followed the two-parameter (d ¼ 0)
Weibull pdf. Thus, we proceeded to test the following hypothesis:

H0 : the wind velocity data of Hurricane Katrina follow the two-parameter Weibull pdf
versus
Ha : the wind velocity data of Hurricane Katrina do not follow the Weibull pdf.
To test this hypothesis, we applied the KolmogoroveSmirnov, AndersoneDarling, and chi-square tests.
All these tests strongly support the acceptance of the null hypothesis. The test results are given below:

KolmogoroveSmirnov test D ¼ 0.0792, p value 0.795

AndersoneDarling test A ¼ 0.5949, p value 0.863

Chi-square test c2 ¼ 3:4031; p value ¼ 0.638

604 Mathematical Statistics with Applications in R

http://scrippsco2.ucsd.edu/data/atmosperic-co2.html
http://weather.unisys.com/hurricane/atlantic/2005H/KATRINA/track.dat


Thus, the wind velocity measurements of Hurricane Katrina follow the two-parameter Weibull pdf, with the maximum
likelihood estimates of the parameter given by ba ¼ 2:1281 and bb ¼ 86:376: The pdf of the subject data is given by:

f ðxÞ ¼

8><
>:

86:376
2:1281

� x

2:1281

	85:376
exp
� x

2:1281

	86:376
; x > 0

0 elsewhere.

A graphical display of f(x) is given in Fig. 14.34.
Knowing the pdf that characterize the true-probabilistic behavior of the wind velocity of Katrina, we can calculate the

expected wind velocity and confidence limits. That is,

EðXÞ ¼ 76 miles=hour;

and the 95% confidence limits of the true mean of the wind velocity are 23.8 and 150.6 mph.
That is, we are at least 95% certain that the true wind velocity of Hurricane Katrina or similar hurricanes will be

between 23.8 and 150.6 mph.
Also, the cumulative probability distribution, F(x), of the wind velocity in its analytical and graphical form (Fig. 14.35)

is given below:

FðxÞ ¼ PðX� xÞ ¼
Zx

0

b

a



t

a

�b�1

exp�


t

a

�b

dt; x > 0; a; b > 0;

and for the given data we will get:

FðxÞ ¼
Zx

0

86:37
2:128



t

2:128

�85:37

exp

 
�



t

2:128

�86:37
!
dt:

Thus, we can use the graph in Fig. 14.35 to obtain various probabilities; for example, if we are interested in the
probability that the wind velocity of a category 5 hurricane is less than 150 mph we can obtain an approximate estimate
from this graph, that is,

Fð150Þ ¼ PðX� 150Þz0:93:

This means that based on the given data we are approximately 93% certain that the wind velocity will be less than
150 mph.
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FIGURE 14.34 Weibull probability density function of wind velocity of Hurricane Katrina.
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The following is the R-code for the goodness-to-fit tests for the Katarina data:
HK<-read.delin(“w/Documents/Hurricane Katrina.txt”)
View(HK)
summary(HK) #### descriptive Stat###
xk¼HK$WIND
hist(xk) ### Histogram ####
library(lessR)
dens(xk,type¼c(“both”,”normal”),xlab¼”Wind”,ylab¼”f(x)”)
color.density(xk)
m¼mean(xk);m
std¼sqrt(var(xk));std
hist(xk),density¼12,breaks¼8,prob¼T,col¼”plum4”,xlab¼”Wind”,xlim¼c(0,200),main¼

”Histogram of Wind velocity of Hurricane Katrina”)
library(vcd) ## Goodness of fit test
fitdistr(xk,’weibull’) ### estimate the parameters using MLE
ks.test(xk,”pweibull”,shape¼1.805,scale¼52.323) #Kolmogorov-Smirnov test
ad.test(xk)#Anderson-Darling

14.8.3 National unemployment

The aim in the present problem is to identify the probability distribution that characterizes the rates of unemployment in the
United States. The subject data were obtained from the US Bureau of Labor Statistics, www.bls.gov/, under Database &
Tools. The data are the annual averages of the unemployment rate in the United States from 1957 to 2008. Initially, we
looked at the histogram of the data and it gave us a visual interpretation that it may follow the gamma pdf. Initially we
tested for the two-parameter gamma pdf and obtained a fairly good fit, but when we tried the three-parameter gamma pdf,
we obtained a better fit. That is:

H0 : the annual average rates of unemployment in the United States follow the three-parameter gamma pdf
versus
Ha : the subject data do not fit the three-parameter gamma pdf.
Given below is the value of the goodness-of-fit test statistics for a sample of 51 data points:

KolmogoroveSmirnov test D ¼ 0.0847, p value 0.8276

AndersoneDarling test A ¼ 0.3424, p value 0.7916

Chi-square test c2 ¼ 2:2353; p value 0.8172
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FIGURE 14.35 Weibull cumulative distribution function of the wind velocity of Hurricane Katrina.
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All three goodness-of-fit tests strongly support that the three-parameter gamma pdf is probabilistically the best to
characterize the behavior of the US annual average of unemployment, with the maximum likelihood estimate of the pa-
rameters ba ¼ 5:5871; bb ¼ 0:5954; and bg ¼ 2:5008: Thus, the subject pdf is given by:

f ðxÞ ¼ 1

ð0:5954Þ5:5971Gð0:5954Þðx� 2:5008Þ4:5871 exp�


x� 2:5008
0:5954

�
; x > 0:

The expected value of the subject pdf is:

EðXÞ ¼ bdþ ba�bb	 ¼ 2:5008þð5:5871Þð0:5954Þ ¼ 5:83:

Thus, one will expect the unemployment rate to be approximately 5.83% based on the actual data we analyzed. A
graphical form of f(x) over the initial histogram that guided us to the three-parameter gamma pdf is given in Fig. 14.36.

We can use the pdf to obtain confidence limits on the true rate of unemployment, the cumulative pdf, F(x), and various
probabilities of interest on the subject problem, among other useful information.

14.8.4 Brain cancer

A brain tumor is an abnormal growth of cells within the brain, which can be cancerous (malignant) or benign. It is
estimated that there have been more than 43,800 new cases of cancerous brain tumors in the United States during the past
few years. In this application we are interested in studying the behavior of the malignant tumor sizes in the brain. The
subject data were obtained from the Surveillance Epidemiology and End Results (SEER) database. We have taken a
random sample of 200 brain cancer patients from the large database with their cancerous tumor size measured in milli-
meters. Our aim is to find the probability distribution that characterizes the behavior of the tumor size. Thus, after testing
several pdfs and looking at the histogram we believe that the three-parameter Weibull pdf is a prime candidate. Table 14.11
contains the actual data for 50 patients.

Now, we proceed to test our belief.
H0 : the sizes of the malignant tumors in the brain fit the three-parameter Weibull pdf
versus
Ha : the subject data do not follow the three-parameter Weibull pdf.
We are applying the most commonly used goodness-of-fit tests to make a decision concerning accepting or rejecting the

stated hypothesis for, say, a ¼ 0.01, 0.05, 0.10. The results of the three tests are given below:

KolmogoroveSmirnov test D ¼ 0.0502, p value 0.6746

AndersoneDarling test A ¼ 0.6948, p value 0.7321

Chi-square test c2 ¼ 9:6143; p value 0.2115

3.6
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3

4 4.4 4.8 5.2 5.6 6
x

6.4 6.8 7.2 7.6 8 8.4 8.8 9.2 9.6

= 5.5871ˆ
= 0.5954ˆ

= 2.5008ˆ

α
β
γ 

f (x)

FIGURE 14.36 Three-parameter gamma probability density function for unemployment in the United States.
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Thus, all three goodness-of-fit tests, for all levels of significance, support the null hypothesis that the sizes of cancerous
tumors of the brain follow the three-parameter Weibull pdf. The approximate maximum likelihood estimates of the three
parameters used are ba ¼ 9:4826E þ 7; bb ¼ 1:4060E þ 9; and bg ¼ 1:3940E þ 9. Thus, we can write the pdf that
characterizes probabilistically the malignant tumor sizes in the brain as:

f ðxÞ ¼ 9:4826E þ 7
1:4060E þ 9



xþ 1:3940E þ 9
1:4060E þ 9

�9:4826Eþ7�1

exp

"
�


xþ 1:3940E þ 9
1:4060E þ 9

�9:4826Eþ7
#
; x > 0;

and the cumulative pdf is given by:

FðxÞ ¼ 1� exp

"
�


xþ 1:3940E þ 9
1:4060E þ 9

�9:482Eþ7
#
; x � 0:

A graphical illustration of the three-parameter Weibull pdf along with a frequency histogram of the data is given in
Fig. 14.37.

We can use this diagram to obtain approximate probabilities of the behavior of the cancerous tumor sizes. For example,
the probability that the tumor size is less 60 mm is approximately 0.25, that is,

PðX� 60 mmÞz 0:25; P½X � 60 mm� ¼ 0.25;

and the probability that the tumor size is larger than 48 mm is approximately 74%, that is,

PðX> 48mmÞ ¼ 1� PðX� 48mmÞz0:74:

We also can proceed to obtain the expected value of the tumor size and approximate confidence limits on the true size
of the tumor, among other interesting information.

TABLE 14.11 Brain Cancer Data.

Frequency 1 3 3 1 1 2 3 2 4 2 1 7 1 1 2

Tumor size (mm) 7 8 10 11 12 14 15 19 20 23 24 25 26 27 28

Frequency 1 7 1 34 1 7 1 1 27 3 1 1 2 11 2

Tumor size (mm) 34 35 37 40 41 45 46 48 50 55 56 57 59 60 63

Frequency 3 2 9 1 1 1 2 6 1 1 1 2 1 1 2

Tumor size (mm) 65 67 70 72 73 74 75 80 83 85 86 90 94 100 120

Frequency 1 1 1 2 21

Tumor size (mm) 150 160 250 21 30
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FIGURE 14.37 Three-parameter Weibull pdf for tumor size data.
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14.8.5 Rainfall data analysis

For the southern region of the United States, we have the average annual rainfall data in inches from 1975 to 2007. The
actual data are given in Table 14.12.

Using 33 measurements (n ¼ 33), we wish, if possible, to identify the pdf that probabilistically characterizes the
behavior of the average annual rainfall of the southern district of United States. Having such pdf we can calculate the
amount of rain we will expect in the region and obtain confidence limits of the true amount of annual rainfall, among other
interesting questions.

From a preliminary view of the histogram, Figure 14.38, of the data we believe that the rainfall data follows the beta
pdf.

Thus, let us proceed to test our belief:
H0 : we believe that the rainfall data follow the beta pdf
versus
Ha : the subject data do not follow the beta pdf.
Given below are the goodness-of-fit results applying the three commonly used statistical tests:

KolmogoroveSmirnov test D ¼ 0.0773, p value 0.9806

AndersoneDarling test A ¼ 0.2098, p value 0.8836

Chi-square test c2 ¼ 0:2888; p value 0.9905

For all commonly used levels of significance, a ¼ 0.01, 0.05, and 0.10, we strongly accept the null hypothesis that our
belief is true, that is, the given rainfall data follow the beta pdf. The maximum likelihood estimates of the parameters a and
b of the beta pdf are ba ¼ 2.2823 and bb ¼ 1.8754. Thus, the beta pdf of the rainfall data is given by:

f ðxÞ ¼
G
�
2þ bb	

Gð2ÞG
�bb	xâ�1ð1� xÞb̂�1

; x � 0;

or

f ðxÞ ¼ 2:5237
5:7593

x0:2823ð1� xÞ0:8754; x � 0;

where

Gð2:2823þ 1:8754Þ ¼ 2:5237; and Gð2:2823ÞGð1:87554Þ ¼ 5:7593:

The graph of the subject pdf over the histogram of the data is given in Fig. 14.38.
The expected amount of average rainfall in the southern region is 4.2998 inches, that is,

EðXÞ ¼
ZN
0

xf ðxÞdx ¼ 4:2998 inches:

We can also calculate confidence limits around the true value of the annual average rainfall. For example, we are at least
95% confident that the true annual average rainfall in the southern district is between 4.0579 and 4.5167 inches.

TABLE 14.12 Rainfall Data.

Year Rain Year Rain Year Rain Year Rain Year Rain Year Rain

1975 3.957 1981 3.68 1987 4.465 1993 4.175 1999 4.103 2005 5.22

1976 4.031 1982 5.224 1988 4.487 1994 4.889 2000 2.737 2006 3.526

1977 3.918 1983 5.639 1989 3.612 1995 5.468 2001 4.104 2007 3.211

1978 4.299 1984 3.563 1990 3.322 1996 3.668 2002 5.037

1979 4.942 1985 3.592 1991 4.463 1997 5.029 2003 4.633

1980 3.921 1986 4.307 1992 4.514 1998 4.73 2004 5.219
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14.8.6 Prostate cancer

In this application we will study the behavior of the cancerous tumor in prostate cancer patients. We shall use real prostate
cancer data for white men from 1973 to 2007 from the SEER Program. The tumor size is the random variable of interest for
20,645 prostate cancer patients. Our primary objective is to identify the pdf that characterizes probabilistically the behavior
of the cancerous tumor size in millimeters. From the initial structure of the histogram, Figure 14.39, we believe that the
two-parameter Weibull pdf may fit the subject data. Thus, we set up our hypothesis to test our belief:

H0 : the prostate cancerous tumor sizes follow the Weibull pdf
versus
Ha : the subject data do not follow the Weibull pdf.
After we apply the KolmogoroveSmirnov, AndersoneDarling, and chi-square tests, all support the null hypothesis that

the subject data follow the two-parameter Weibull pdf. The maximum likelihood estimates of the parameters a and b that
drive the Weibull pdf are ba ¼ 0:8704 and bb ¼ 12:4403:

Thus, the two-parameter Weibull pdf is given by:

f ðxÞ ¼ 0:8704
12:4403

� x

12:4403

	�0:1296

exp

�
�
� x

12:4403

	�0:8704

; x � 0;

where x represents the size of the cancerous tumor in millimeters. The cumulative Weibull pdf is useful in obtaining
various probabilities of the size of the tumor and is given by:

FðxÞ ¼ PðX� xÞ ¼ 1� exp

�
�
� x

12:4403

	�8704

; x � 0:

Given in Fig. 14.39 is the Weibull pdf over the initial histogram along the cumulative pdf.
Thus, for an individual patient drawn at random from the subject population, we expect his cancer tumor size to be

13.341 mm, that is,

EðXÞ ¼
ZN
0

xf ðxÞdx ¼ 13:341 mm:

Furthermore, we can calculate confidence limits around the true unknown size of the prostate tumor, that is, a 90%
confidence interval for the true mean size is (0.410, 43.81). We can conclude that we are at least 90% certain that the true
size of the tumor will be between 0.410 and 43.81 mm for an individual who falls in the subject population.
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FIGURE 14.38 Beta probability density function for rainfall data.
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14.8 Exercises

14.8.1. Global warming:
Carbon dioxide (CO2) data in the United States are collected in two locations in inland Hawaii, Point Barrow and
Mauna Lao.
These data are given at http://booksite.elsevier.com/9780124171138. Using the CO2 data collected in Point
Barrow from 1974 to 2004, perform the following analysis:
(a) Construct a histogram of the data and interpret its visual behavior.
(b) Apply the chi-square goodness-of-fit test to prove or disprove that the CO2 data follow the exponential po-

wer probability distribution, using a ¼ 0.05.
(c) If you have proven that the CO2 data follow the exponential power pdf, proceed to calculate and interpret

the expected value of the subject pdf.
14.8.2. Answer the same questions stated in Exercise 14.8.1 using the CO2 data that were collected at Mauna Lao.
14.8.3. Rainfall data:

At http://booksite.elsevier.com/9780124171138 you will find the average yearly rainfall data in inches for the
northern, central, and southern regions of the United States from 1975 to 2007. Using the northern region
data, perform the following analysis:
(a) Construct a histogram of the yearly average rainfall for the northern region. Does the histogram give you

any visual indication of the type of pdf that the data follow?
(b) Using the KolmogoroveSmirnov goodness-of-fit test, verify if the subject data follow the normal pdf for

a ¼ 0.05.
(c) If you have proven that the data follow the normal pdf, what is the expected rainfall for a given year? Also,

calculate the 95% confidence limits for the true average rainfall and interpret their meaning.
(d) Calculate a PeP plot and interpret its visual meaning with respect to (b).

14.8.4. Using the average yearly rainfall from the central region of the United States, perform the same analysis as for
the northern region and in place of the normal pdf use the gamma pdf.

14.8.5. Using the data given for the southern region of the United States, perform the same analysis as for the northern
region, Exercise 14.8.3, with the normal pdf replaced by the beta pdf.

14.8.6. Hurricane Katrina:
Hurricane Katrina was the most devastating hurricane to hit the United States in the past 100 years. Katrina was
an Atlantic-based category 5 hurricane that reached wind velocities of more than 160 mph. At http://booksite.
elsevier.com/9780124171138 you will find 63 measurements of the wind velocity of Katrina. Using the subject
data perform the following analysis:
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FIGURE 14.39 Weibull probability density function (pdf) and cumulative distribution function (cdf) for prostate tumor sizes.
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(a) We believe that the wind velocity measurements of Hurricane Katrina follow the three-parameter Weibull
pdf. Test this belief using:
(i) the KolmogoroveSmirnov goodness-of-fit test;
(ii) the AndersoneDarling goodness-of-fit test;

using a ¼ 0.05
(b) Discuss the results of (i) and (ii) above. What conclusion have you reached about our belief?
(c) If our belief is correct, write the complete form of the pdf that characterizes the behavior of the wind velocity

of Hurricane Katrina.
(d) If in the future we experience a category 5 hurricane, what would the expected velocity of such a hurricane

be?
14.8.7. With respect to Exercise 14.8.6, there is a group of scientists who believe that the Rayleigh pdf is a better fit of

the wind speed measurements of Hurricane Katrina. Follow the same questions posed in Exercise 14.8.6 using
the Rayleigh pdf. What do you conclude in comparing the results of Exercise 14.8.6 with those of Exercise
14.8.7?

14.8.8. National unemployment:
At http://booksite.elsevier.com/9780124171138 you will find the data for the annual average percentage of un-
employment for the United States from 1957 to 2007. Using these data perform the following analysis:
(a) Construct a histogram of the data. Does this histogram convey any useful information concerning the

behavior of the data?
(b) Using the goodness-of-fit test of your choice, can you identify the pdf that characterizes the behavior of the

data, that is, the pdf that the subject data were drawn from using a ¼ 0.05.
(c) Once you have found the subject pdf of the unemployment data, calculate the expected value of the annual

average percentage of unemployment rate.
14.8.9. Breast cancer:

At http://booksite.elsevier.com/9780124171138 we have the malignant breast tumor sizes in millimeters of 250
breast cancer patients. In the database, draw a random sample of tumor sizes of n ¼ 50 breast cancer patients. For
the 50 tumor sizes in millimeters perform the following analysis:
(a) Construct a histogram of the 50 tumor sizes. Discuss any visual information you might obtain concerning

the possible pdf that characterizes the data behavior.
(b) Identify, if possible, a pdf that you believe may characterize the given data, using one or more of the

goodness-of-fit tests, using a ¼ 0.05.
(c) If you were not able to identify the pdf, why not? If you were successful, identify completely the pdf, with

appropriate parameter estimates.
(d) If you have identified correctly the pdf, calculate and interpret the expected value of the subject data.

14.8.10. At http://booksite.elsevier.com/9780124171138 we have the survival times (in years) of 250 breast cancer pa-
tients, that is, the age at which they died due to breast cancer. From this database, draw a random sample of
n ¼ 50 survival times. Use these survival times to perform the following analysis:
(a) Construct a histogram to possibly guide you in identifying the pdf of the subject data.
(b) Use any of the goodness-of-fit tests to search for the correct pdf that characterizes the behavior of the given

survival times for a ¼ 0.05.
(c) State completely the pdf you have identified and discuss its usefulness in obtaining information about the

subject data.
(d) Obtain the cumulative distribution function F(t) of the pdf f(t) you have found. If you take 1 minus the F(t)

you will obtain the survival function, S(t), of the given data. That is, S(t) ¼ 1 � F(t). The survival function,
S(t), gives you the probability that a given patient drawn from the database of 250 breast cancer patients will
survive a specified year.

(e) Write the survival function of the given data set and graph it, that is, S(t) versus t. Discuss the useful infor-
mation that the graph gives concerning breast cancer patients.

14.8.11. Lung cancer:
At http://booksite.elsevier.com/9780124171138 we have the malignant tumor sizes for male and female lung
cancer patients. We also include the survival times of both genders, that is, the age in years at which they
died due to lung cancer. From the male database draw a random sample of n ¼ 60 malignant tumor sizes and
perform the following analysis:
(a) Construct a histogram of the 60 measurements of the tumor sizes in millimeters.
(b) Let (a) guide you, if possible, in performing goodness-of-fit testing at a ¼ 0.05 to identify the best possible

pdf that characterizes the probabilistic behavior of the tumor sizes.
(c) Write the pdf completely with appropriate parameter estimates and obtain and interpret its expected value.
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14.8.12. Proceed to obtain a random sample of n ¼ 60 from the female database and perform the same analysis as in
(a)e(c) in Exercise 14.8.11.

14.8.13. Give a precise comparison of males and females for each of the analyses you performed in (a)e(c) of Exercises
14.8.11 and 14.8.12. Discuss your comparison findings.

14.8.14. In the lung cancer database we have also given information about the survival times of male and female lung
cancer patients. Take a random sample of n ¼ 50 of the survival times of male lung patients and proceed to
perform the same analysis for the survival times as in Exercise 14.8.10.

14.8.15. Similar to Exercise 14.8.4, proceed to take a random sample of n ¼ 50 of the survival times of female lung pa-
tients and perform the same analysis as you did for the male patients in Exercise 14.8.14.

14.8.16. Give a precise comparison of the analysis of the findings of male and female lung patients that you made in Ex-
ercises 14.8.14 and 14.8.15, respectively. Discuss your comparison findings.

14.8.17. Colon cancer:
At http://booksite.elsevier.com/9780124171138 we have the malignant tumor sizes of male and female colon
cancer patients. From this database draw a random sample of n ¼ 50 tumor sizes of the male colon cancer pa-
tients. Using these data proceed to perform the same analysis that you did for the lung cancer data in Exercise
14.8.11.

14.8.18. Proceed to draw a random sample of n ¼ 50 from the female database that gives the malignant colon tumor size.
Perform the same analysis for the females that you did for the males in Exercise 14.8.17.

14.8.19. In the colon cancer database we also give the survival times for both male and female patients. From the male
database draw a random sample of n ¼ 60 survival times and proceed to perform the same analysis as you did in
Exercise 14.8.11.

14.8.20. From the survival times of female colon cancer patients draw a random sample of n ¼ 60 and proceed with the
same analysis that you did for the male patients in Exercise 14.8.19.

14.8.21. Give a precise comparison of the survival times analyses in (a)e(c) for males and females.

14.9 Conclusion

We have briefly discussed some of the real-world problems that arise in applied data analysis. However, this discussion is
not exhaustive. There are various other special problems that can arise in applied data analysis. For example, if one or both
of the sample sizes are small, it may be hard to detect violations of some of the assumptions. For small samples, violation
of assumptions such as inequalities of variances is hard to discover. Also, for small sample sizes, possible outliers whose
detection may be in doubt may have undue influence on the inferences. It is better to avoid such problems in the design
stage of an experiment, when suitable sample sizes can be determined before we start collecting data.

Differences in distributional shapes can influence the testing procedures of two or more samples. In those cases, uti-
lizing a transformation may settle that problem and may also promote normality as well as correcting the problem of
inequality of variances. There are also many issues related to simulation that are discussed in Chapter 13 in the utilization
of empirical methodsdfor instance, in the application of Markov chain Monte Carlo methods, the issues of burn-in, the
choice of the correct proposal function, and convergence. These are beyond the scope of this book.

Combining the issues discussed in this chapter with the rest of the material in this textbook should give the student a
good footing in the theory of statistics as well as the ability to deal with many real-world problems.
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Appendix I

Set theory

In this appendix, we present some of the basic ideas and concepts of set theory that are essential for a modern
introduction to probability and statistics. The origin of set theory is credited to Georg Cantor, when he proved the
uncountability of the real line in 1873. A set is defined as a collection of well-defined distinct objects. These objects of a
set are called elements or members. The elements of a set can be anything: the alphabet, numbers, people, other sets, and
so forth. Sets are conventionally denoted with capital letters, A, B, C, and so on. A universal set, denoted by S, is the
collection of all possible elements under consideration. If a is an element of a set A, we write a˛A. If a is not an element
of A, we write a;A.

A set is described either by listing its elements or by stating the properties that characterize the elements of the set. For
example, to specify the set A of all positive integers less than 12, we may write

A ¼

8><
>:

f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g
fall positive integers less than 12g
fx : x < 12; a a positive integerg:

Sets are classified as finite or infinite. A set is finite if it contains exactly n objects, where n is a nonnegative integer. A
set is infinite if it is not finite. For example, if A is a set containing all positive integers less than or equal to 50, then A is a
finite set. If B is a set containing all the positive integers, it is an infinite set.

Describing a set by stating its properties is the practical way to represent a set with a large or infinite number of
elements.

A set B is a subset of a set A if every element of B is also an element of A. We denote this by writing B4 A, which is
read “A contains B” or “B is contained in A.” For example, if A is the set of real numbers and

B ¼ fx : x� 5; x a positive integerg;
it is clear that B is a subset of A. Also, every subset is a subset of itself. Two sets A and B are equal, A ¼ B, if and only

if A4B and B4A. Thus, two sets A and B are said to be equal if they have the same members. A set B is a proper subset of
a set A if every element of B is an element of A and A contains at least one element that is not an element of B. We denote
this relationship by B3A. In the previous example, we have B3A. The set, which contains no elements, is called the empty
set (or null set) and is denoted by f. The null set f is a subset of every set.

A Venn diagram is used for visual representation of sets. In the Venn diagram, the universal set, S, is represented by a
rectangle. The subsets are represented by circles inside this rectangle (Fig. AI.1).

AI.1 Set operations

Union, W: The union of two sets A and B is the set of all elements that belong to A or B (or both; elements that belong to
both sets are included only once) and is denoted by AWB (Fig. AI.2).

AWB ¼ fx : x˛A or x˛Bg
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Intersection, X: The intersection of two sets A and B is the set of all elements that belong to both A and B and is
denoted by AXB (Fig. AI.3).

AXB ¼ fx˛ S : x˛A and x˛Bg
If AXB ¼ B, then the sets A and B are said to be disjoint or mutually exclusive sets.
Complement: The complement of a set A is the set of all elements that belong to S but not to A (Fig. AI.4).

Ac ¼ fx : x˛ S; x;Ag
The difference of any two sets, A and B, denoted by AyB, is equal to AXBc. Thus, Ac ¼ SyA. It should be noted that

ðAcÞc ¼ A. The symmetric difference between any two sets, A and B, denoted by ADB, is the set of elements in A or B, but
not both, that is, ðAyBÞWðByAÞ.

S

A B

FIGURE AI.1 A Venn diagram.

S

A B

FIGURE AI.2 Union of two sets.

S

A B

FIGURE AI.3 Intersection of two sets.

616 Mathematical Statistics with Applications in R



Properties of sets
If A, B, and C are the subsets of the universal set S, then they satisfy the following properties.

Commutative law

AWB ¼ BWA

AXB ¼ BXA

Associative law

AW ðBWCÞ ¼ ðAWBÞWC ¼ AWBWC

AX ðBXCÞ ¼ ðAXBÞXC

Distributive law

AW ðBXCÞ ¼ ðAWBÞXðAWCÞ;
AX ðBWCÞ ¼ ðAXBÞWðAXCÞ

Idempotent law

AWA ¼ A; AXA ¼ A

Identity law

AW S ¼ S; AXS ¼ A;

AWB ¼ A; AXB ¼ B

Complement law

AWAc ¼ S; AXAc ¼ B

De Morgan’s laws

ðAWBÞc ¼ AcXBc

ðAXBÞc ¼ AcWBc

The two sets A and B are said to be in one-to-one correspondence (denoted by 1:1) if each element a˛A is paired with
one and only one element b˛B in such a manner that each element of B is paired with exactly one element of A. For
example, if A ¼ fa1; a2; a3; a4g and B ¼ f1; 2; 3; 4g, then A and B are in a 1:1 correspondence.

A set whose elements can be put into a one-to-one correspondence with the set of all positive integers is referred to as
being a countably infinite set. Also, a set is said to be countable, denumerable, or enumerable if it is finite or countably
infinite. The product or Cartesian product of sets A and B is denoted by A� B and consists of all ordered pairs ða; bÞ, where
a˛A and b˛B, that is,

A�B ¼ fða; bÞ : a˛A; b˛Bg

S

cA

FIGURE AI.4 Complement of a set.
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For example, if A ¼ fa1; a2; a3g and B ¼ f1; 2g, then
A�B ¼ fða1; 1Þ; ða1; 2Þ; ða2; 1Þ; ða2; 2Þ; ða3; 1Þ; ða3; 2Þg.

The notion of a Cartesian product can be extended to any finite number of sets; that is, A1 � A2 �/� An is the set of
all ordered n-tuples, ða1; a2; :::; anÞ, where

a1 ˛A1; a2 ˛A2; :::; an ˛An
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Appendix II

Review of Markov chains

A stochastic or random process is defined as a family of random variables, fXðtÞg, describing an empirical process, the
development of which in time is governed by probabilistic laws. The state space, S, of the stochastic process is the set of all
possible values that the random variable XðtÞ can take. The parameter t is often interpreted as time and may be either
discrete or continuous. When the set of possible values of t forms a countable set, the process fXðtÞ; t ¼ 0; 1; 2;.g, is
discrete. If t forms an interval of real line, the process fXðtÞ; t � 0g is said to be continuous. In the discrete case, the state
space can be finite or infinite.

Among many different discrete stochastic processes, we are interested in a special class called Markov chains. The
basic concepts of Markov chains were introduced in 1907 by the Russian mathematician A.A. Markov.

Let i1; i2; ::: represent the states of the chain. The sequence of random variables X1;X2; ::: is called a Markov
chain if:

PðXn ¼ iknjX1 ¼ ik1;.;Xn�1 ¼ ikn�1Þ ¼ PðXn ¼ iknjXn ¼ ikn�1Þ

An intuitive interpretation is that a stochastic process fXðtÞg has the Markov property if the conditional probability of
any future state, given the present and past states, is independent of the past states and depends only on the present state.
Thus, a Markov chain can be used to model the position of an object in a discrete set of possible states over time, in which
the subsequent position is chosen at random from a distribution that depends only on the current location of the chain and
not on any previous locations of the chain.

The conditional probabilities that the chain moves to state j at time n, given that it is in state i at time n � 1, are called
transition probabilities and are denoted by pij,

pij ¼ PðXn ¼ jjXn�1 ¼ iÞ;

with the subscript ij of p indicating the direction of transition i/j. Sometimes, pij may also be represented by pði; jÞ,
and if we need to represent the time points, then we use the notation, pn�1;nði; jÞ ¼ PðXn ¼ jjXn�1 ¼ iÞ.

Two basic assumptions we make are that (1) pij � 0 for all i and j; the transition probabilities are nonnegative. Also,
(2) for every i,

XN
j¼ 1

pij ¼ 1

 Xn
j¼ 1

pij ¼ 1 if the state space is finite

!
;

that is, the chain makes a transition to some state in the state space.
If the transition probabilities pij depend only on the sates i and j and not on the time n, then the conditional probabilities

are called stationary. Markov chains with stationary probabilities are called (time) homogeneous Markov chains. We shall
consider only homogeneous Markov chains.
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The behavior of homogeneous Markov chains is described by the transition or stochastic matrices of the processes in
which the transition probabilities are arranged as elements of a matrix. The transition or stochastic matrix of a chain
having transition probabilities i; j ¼ 1; 2;.n is:

P ¼

0
B@

p11 . p1n
« 1 «

pn1 / pnn

1
CA

In the infinite state space case, we represent the transition matrix in the following manner:0
BBB@

p11 . pln.

« 1 «

pm1 . pmn.

« «

1
CCCA

Each element of the matrix is nonnegative, and each row sums to 1. If we look at any particular row, say the mth row,
then we can see the probabilities of going from state m to the various other states including the state m.

EXAMPLE AII.1
Four quarterbacks are warming up by throwing a football to one another. Let 1, 2, 3, and 4 denote the four quarterbacks. It has

been observed that 1 is as likely to throw the ball to 2 as to 3 and 4. Player 2 never throws to 3 but splits his throws between 1 and

4. Quarterback 3 throws twice as many passes to 1 as to 4 and never to 2, but 4 throws only to 1. This process forms a Markov

chain because the player who is about to throw the ball is not influenced by the player who had the ball before him. The one-step

transition matrix is 0
BBBBBBBBBBB@

0
1

3

1

3

1

3

1

2
0 0

1

2

2

3
0 0

1

3

1 0 0 0

1
CCCCCCCCCCCA
.

The following is a standard example of a chain with infinite state space.

EXAMPLE AII.2
Consider a chain with state space S ¼ ð0;1;2;3;.Þ and transition matrix:

P ¼

0
BBBBBB@

r0 p0 0 0 0 /

q1 r1 p1 0 0 /

0 q2 r2 p2 0 /

0 0 q3 r3 p3 /

« « « « « «

1
CCCCCCA
;

where pi ;qi ; ri � 0 for all i � 0, p0 þ r0 ¼ 1, and pi þ qi þ ri ¼ 1 for all i � 1. Thus, for this Markov chain, the transition

probabilities are p00 ¼ r0, p01 ¼ p0, and for i; js0,

pij ¼

8>>>><
>>>>:

pi ; j ¼ i þ 1

ri ; j ¼ i

qi ;

0;

j ¼ i � 1

otherwise.

This chain is known as the random walk chain (with barrier at 0).

The following example gives a transition matrix for the random walk chain in a special case. We can think of this as a
chain resulting from tossing a fair coin. If we are not at state 0, then if heads comes up, we take a step to the right, and if tails
comes up, we take a step to the left. If at state 0, we remain at 0 for a tails outcome and move a step to the right for heads.
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EXAMPLE AII.3
Consider a Markov chain with state space S ¼ ð0;1;2;3;.Þ and the transition probabilities given by:

p00 ¼ 1

2
; pij ¼

8>>>>>><
>>>>>>:

1

2
j ¼ i � 1

1

2
j ¼ i þ 1

0; otherwise.

This results in the symmetric transition matrix with elements:

A ¼

2
666666666666666666664

1

2

1

2
0 0 0 :::

1

2
0

1

2
0 0 :::

0
1

2
0

1

2
0 :::

0 0
1

2
0

1

2
:::

: : : : : :

: : : : : :

: : : : : :

3
777777777777777777775

.

The n-step transition probability, p
ðnÞ
ij , is defined as the probability that the chain is in state i and will go to state j in n steps. If

pij is the one-step transition probability, p
ðnÞ
ij can be obtained as follows. Let i be the state of the process at timem, that is Xm ¼ i.

Then, the n-step transition probability is:

p
ðnþmÞ
ij ¼ P ðXnþm ¼ jjX0 ¼ iÞ

¼
XN
k ¼ 0

P ðXnþm ¼ j;Xn ¼ k jX0 ¼ iÞ

¼
XN
k ¼ 0

P ðXnþm ¼ jjXn ¼ k ;X0 ¼ iÞP ðXn ¼ k jX0 ¼ iÞ

¼
XN
k ¼ 0

pm
kj p

n
ik .

This can be rewritten in the matrix notation as:

P ðnþmÞ ¼ P ðmÞP ðnÞ ¼ P ðnÞP ðmÞ.

This is known as the ChapmaneKolmogorov equation.

The following example shows how to compute an n-step transition matrix.

EXAMPLE AII.4
Consider the one-step transition matrix given in Example AII.1,0

BBBBBBBBBBB@

0
1

3

1

3

1

3

1

2
0 0

1

2

2

3
0 0

1

3

1 0 0 0

1
CCCCCCCCCCCA
.

Review of Markov chains Appendix | II 621



The two-step transition matrix, P 2, is:

P 2 ¼ P :P ¼

0
BBBBBBBBBBBBBBB@

0
1

3

1

3

1

3

1

2
0 0

1

2

2

3
0 0

1

3

1 0 0 0

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

0
1

3

1

3

1

3

1

2
0 0

1

2

2

3
0 0

1

3

1 0 0 0

1
CCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBB@

13

18
0 0

5

18

1

2

1

6

1

6

1

6

1

3

2

9

2

9

2

9

0
1

3

1

3

1

3

1
CCCCCCCCCCCCCCCCCA

:

The three-step transition matrix, P 3, is:

P 3 ¼ P 2P ¼

0
BBBBBBBBBBBBB@

5

18

13

54

13

54

13

54

13

36

1

6

1

6

11

36

13

27

1

9

1

9

8

27

13

18
0 0

5

18

1
CCCCCCCCCCCCCA
:

For instance, the third row of P 3, �
13

27

1

9

1

9

8

27

�
;

denotes that, after three throws, the ball is in the hands of player 1, 2, 3, or 4 with respective probabilities 13/27, 1/9, 1/9, and

8/27.

A transition matrix, P, all entries of which are positive, is called a positive transition matrix. A state j of a

Markov chain is accessible from a state i if pðnÞij > 0 for some n � 0. If state j is accessible from state i, and state i

is accessible from state j, the states are said to communicate. If all the states communicate, then the Markov chain
is called irreducible. A state i is periodic (of period d) if the only way to revisit it is through steps of length k:d for
some value of k and a fixed value of d > 1. Thus, the period, d, is the greatest common divisor of the number of
steps n needed for the chain, starting at state i, to revisit the state i:

d ¼ GCD
�
n� 1

��pnii > 0
�
.

If a state is not periodic, then it is called aperiodic. A state i is recurrent if it will be revisited by the chain with
probability 1. That is,

PðXn ¼ i for infinitely many njX0 ¼ iÞ ¼ 1:

If a state is not recurrent, it is called transient. Recurrent, aperiodic states are called ergodic. It is necessary to
impose an extra condition for ergodicity, that the expected recurrence time be finite. This is satisfied for recurrent states in a
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finite-state Markov chain. A Markov chain is called ergodic if every state is ergodic. It is clear that a finite-state Markov
chain with a positive transition matrix is ergodic.

The following result is of fundamental importance.

Theorem AII.1. For an ergodic Markov chain, limn/NpðnÞij ¼ pj exists, and this limit is independent of the initial state i. Let

the vector p with elements ðpjÞ be the limiting or the stationary distribution of the chain. Then, this stationary probability
vector is the unique solution of the equation:

p ¼ pP;

and satisfies the normalization condition: X
j˛S

pj ¼ 1:

If, at any transition step n, the distribution of the chain is the same as p obtained in Theorem AII.1, we say that the
chain has reached the steady state. Thus, the vector p would be the unique steady-state probability vector of the Markov
chain.

Analogous to the law of large numbers for a sequence of independent random variables, for Markov chains we can
obtain the following so-called ergodic theorem:

Theorem AII.2. For any ergodic Markov chain fXng with stationary distribution p:

1
n

Xn
k¼ 1

f ðXkÞ/
X
i˛S

f ðiÞpi ¼ Ef ðXÞ w:p:1:

The validity of the Markov chain Monte Carlo method lies in this ergodic theorem.
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Appendix III 

Common probability distributions 

III this appendix, we present some common probability distributions that are useful in statistical methods that we have used 

in this book. There is a much greater variety of distributions that are very important in particular areas of applications. A 
good reference can be found at http://www.causascientia.orgimath_stalfDists/Compendium.pdf. We give the density 

function, mean, variance, and moment-generating function (mgf). For some distribulion functions, if the mgf is compli

cated, we just leave it out and refer the reader to one of the references in the book. 

Name 

Bernoulli 
distribution 

Binomial 

Geometric 

Hypergeometric 

Negative 
binomial 

Poisson 

Probability density function 

{ p x = 1 
f(x,p) = 1 -

'
p, x = 0 0 � p � 1 

0, otherwise. 

f(x.n,p) = C)p'q"-"x = 0,1.. .,n 

f(x,p) = q'-'p,x 1,2.. .. ,0�p� 1. 

f(x.N,m,n) 

N = 0,1.2, ... ,01 = 0.1, ... ,N, 
n = O.1. .... N.x = O.1. ... ,n 

f(x,N,m.n) = ("+:- 1  )p'q" 

x=O,1,2, ... 

),1'e-l f(x.A) = -,-. x. 
x=O.1,2, ... 

Mean 

p 

np 

p 
mn 
N 

,2. 
p 

Variance 

p(l -p) 

npq 

q 
p' 

n(�)(l - �)(1 - �) 

,5L 
p' 

N 

Moment-generating 

function 

q+pe', 
q = 1 - P 

(q + pe')" 

� 
1 - qet 

No dosed form 

exp(!.(e' -1)) 
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Name 

Beta 

Chi�square 

Exponential 

Gamma 

Laplace 

Normal 

Uniform 

Three
parameter 
gamma 

Two
parameter 
Weibull 

Three
parameter 
Weibull 

Probability density function 

f(x. a,p) = (n:)t&�) X�-I ( 1  - X)P-I. 
O<x<l 

x{n/2)-1 e-x/2 I(x, n) � r(n(2)2"'2' 
x � O. n > O(degrees ollreedom) 

{ �e-"'� (3 > 0,0:0: x < 00 
flx,�): (3 , 

0, orhenvise 
{l 'A" " 

� "" f(a) . , e . x > O,a,� > 0 i(x. a,�) " 
o. otherwise 

1 (IX -"I) f(x./J,u) = 2qexp --u-' 
X,/J> -co 

t ((X_")2) I(x," . .') � "" exp - -2-' - . 
O'v27r O'� _00 <x./J< 00,0'>0 

f(x, a, b) = � 

1(" a.�, y) 
{I ( )"_' (x-y) 

= (J"f(n) 
x-r exp --

�
-, 

O. 
I(x.n,�) 

� �Gre-Gr.x � O.n,�> 0 
I(x, a,�. y) 

'Y<x< oo,a.p>O 
otherwise. 

{1 (x - y)') 
� -(x-y)'-'e ,x>y.a,�,y>O. a 

Mean 

11 

� 

a� 

a+b 
2 

y +a� 

Variance a� (a+�)2(a+�+1) 
2n 

�2 

a�' 

(b _ a)' 
-1-2-

a�' 

Moment-generating 

function 

1 1 
1 <

(1 - 21)",2' 2 

1 (1 -�I)' 

e1b _ e1d 
I(b - a) 
exp(yl) 

(1 �I)"' 

1 1<-� 

e'Y 1"" e-Y+ '(oY)'I'dy 



Appendix IV

What is R?

R is a language and environment for statistical computing and graphics. It provides a broad variety of statistical methods,
including basic statistical tests and regression models, among many other classical and graphical methods and techniques.
R can be easily used to produce technical plots of quality along with mathematical symbols and formulas. R is available as
free software under the terms of the Free Software Foundation’s GNU general public license in source code form. R can be
downloaded from https://www.r-project.org/.

R is similar to the S language and environment. The language S is considered the choice in statistical methods and R
provides an open-source route to work with in statistical methods, among others.

R is also designed like S around a true computer language with flexibility in that it allows users to add additional
functions.

Finally, some users of R think of it as a statistics system, but others think of R as an environment within which
statistical methods and graphics are implemented.
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Appendix V

Probability tables



TABLE AV.1 Cumulative binomial probabilities, PðX £ xÞ [ Px
i[ 0

pðiÞ.

 n = 2 p =
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

x = 0 0.980 0.903 0.810 0.640 0.490 0.360 0.250 0.160 0.090 0.040 0.010 0.003 0.000

1.000 0.998 0.990 0.960 0.910 0.840 0.750 0.640 0.510 0.360 0.190 0.098 0.0201
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 3
x = 0 0.970 0.857 0.729 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001 0.000 0.000

1 1.000 0.993 0.972 0.896 0.784 0.648 0.500 0.352 0.216 0.104 0.028 0.007 0.000

2 1.000 1.000 0.999 0.992 0.973 0.936 0.875 0.784 0.657 0.488 0.271 0.143 0.030

3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 4 
x = 0 0.961 0.815 0.656 0.410 0.240 0.130 0.063 0.026 0.008 0.002 0.000 0.000 0.000

1 0.999 0.986 0.948 0.819 0.652 0.475 0.313 0.179 0.084 0.027 0.004 0.000 0.000

2 1.000 1.000 0.996 0.973 0.916 0.821 0.688 0.525 0.348 0.181 0.052 0.014 0.001

3 1.000 1.000 1.000 0.998 0.992 0.974 0.938 0.870 0.760 0.590 0.344 0.185 0.039

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 5
x = 0 0.951 0.774 0.590 0.328 0.168 0.078 0.031 0.010 0.002 0.000 0.000 0.000 0.000

1 0.999 0.977 0.919 0.737 0.528 0.337 0.188 0.087 0.031 0.007 0.000 0.000 0.000

2 1.000 0.999 0.991 0.942 0.837 0.683 0.500 0.317 0.163 0.058 0.009 0.001 0.000

3 1.000 1.000 1.000 0.993 0.969 0.913 0.813 0.663 0.472 0.263 0.081 0.023 0.001

4 1.000 1.000 1.000 1.000 0.998 0.990 0.969 0.922 0.832 0.672 0.410 0.226 0.049

n = 6 
x  = 0 0.531 0.262 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000 0.0000.7350.941

1 0.886 0.655 0.420 0.233 0.109 0.041 0.011 0.002 0.000 0.000 0.0000.9670.999

2 0.984 0.901 0.744 0.544 0.344 0.179 0.070 0.017 0.001 0.000 0.0000.9981.000

3 0.999 0.983 0.930 0.821 0.656 0.456 0.256 0.099 0.016 0.002 0.0001.0001.000

4 1.000 0.998 0.989 0.959 0.891 0.767 0.580 0.345 0.114 0.033 0.0011.0001.000

5 1.000 1.000 1.000 0.999 0.996 0.984 0.953 0.882 0.738 0.469 0.265 0.0591.000

Continued
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TABLE AV.1 Cumulative binomial probabilities, P X£ xð Þ[ Px
i[ 0

pðiÞ.dcont’d

n = 9

n= 7 
x = 0 0.932 0.698 0.478 0.210 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000 0.000

1 0.998 0.956 0.850 0.577 0.329 0.159 0.063 0.019 0.004 0.000 0.000 0.000 0.000

2 1.000 0.996 0.974 0.852 0.647 0.420 0.227 0.096 0.029 0.005 0.000 0.000 0.000

3 1.000 1.000 0.997 0.967 0.874 0.710 0.500 0.290 0.126 0.033 0.003 0.000 0.000

4 1.000 1.000 1.000 0.995 0.971 0.904 0.773 0.580 0.353 0.148 0.026 0.004 0.000

5 1.000 1.000 1.000 1.000 0.996 0.981 0.938 0.841 0.671 0.423 0.150 0.044 0.002

6 1.000 1.000 1.000 1.000 1.000 0.998 0.992 0.972 0.918 0.790 0.522 0.302 0.068

n = 8
x = 0 0.923 0.663 0.430 0.168 0.058 0.017 0.004 0.001 0.000 0.000 0.000 0.000

1 0.997 0.943 0.813 0.503 0.255 0.106 0.035 0.009 0.001 0.000 0.000 0.000 0.000

2 1.000 0.994 0.962 0.797 0.552 0.315 0.145 0.050 0.011 0.001 0.000 0.000 0.000

3 1.000 1.000 0.995 0.944 0.806 0.594 0.363 0.174 0.058 0.010 0.000 0.000 0.000

4 1.000 1.000 1.000 0.990 0.942 0.826 0.637 0.406 0.194 0.056 0.005 0.000 0.000

5 1.000 1.000 1.000 0.999 0.989 0.950 0.855 0.685 0.448 0.203 0.038 0.006 0.000

6 1.000 1.000 1.000 1.000 0.999 0.991 0.965 0.894 0.745 0.497 0.187 0.057 0.003

7 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.983 0.942 0.832 0.570 0.337 0.077

x = 0 0.914 0.630 0.387 0.134 0.040 0.010 0.002 0.000 0.000 0.000 0.000 0.000 0.000

1 0.997 0.929 0.775 0.436 0.196 0.071 0.020 0.004 0.000 0.000 0.000 0.000 0.000

2 1.000 0.992 0.947 0.738 0.463 0.232 0.090 0.025 0.004 0.000 0.000 0.000 0.000

3 1.000 0.999 0.992 0.914 0.730 0.483 0.254 0.099 0.025 0.003 0.000 0.000 0.000

4 1.000 1.000 0.999 0.980 0.901 0.733 0.500 0.267 0.099 0.020 0.001 0.000 0.000

5 1.000 1.000 1.000 0.997 0.975 0.901 0.746 0.517 0.270 0.086 0.008 0.001 0.000

6 1.000 1.000 1.000 1.000 0.996 0.975 0.910 0.768 0.537 0.262 0.053 0.008 0.000

7 1.000 1.000 1.000 1.000 1.000 0.996 0.980 0.929 0.804 0.564 0.225 0.071 0.003

8 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.990 0.960 0.866 0.613 0.370 0.086

n = 10
x  = 0 0.904 0.599 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000

1 0.996 0.914 0.736 0.376 0.149 0.046 0.011 0.002 0.000 0.000 0.000 0.000 0.000

2 1.000 0.988 0.930 0.678 0.383 0.167 0.055 0.012 0.002 0.000 0.000 0.000 0.000

3 1.000 0.999 0.987 0.879 0.650 0.382 0.172 0.055 0.011 0.001 0.000 0.000 0.000

4 1.000 1.000 0.998 0.967 0.850 0.633 0.377 0.166 0.047 0.006 0.000 0.000 0.000

5 1.000 1.000 1.000 0.994 0.953 0.834 0.623 0.367 0.150 0.033 0.002 0.000 0.000

6 1.000 1.000 1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013 0.001 0.000

7 1.000 1.000 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070 0.012 0.000

8 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264 0.086 0.004

9 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651 0.401 0.096

0.000

Continued
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TABLE AV.1 Cumulative binomial probabilities, P X£ xð Þ[ Px
i[ 0

pðiÞ.dcont’d

n = 15
x = 0 0.860 0.463 0.206 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.990 0.829 0.549 0.167 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 1.000 0.964 0.816 0.398 0.127 0.027 0.004 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.995 0.944 0.648 0.297 0.091 0.018 0.002 0.000 0.000 0.000 0.000 0.000

4 1.000 0.999 0.987 0.836 0.515 0.217 0.059 0.009 0.001 0.000 0.000 0.000 0.000

5 1.000 1.000 0.998 0.939 0.722 0.403 0.151 0.034 0.004 0.000 0.000 0.000 0.000

6 1.000 1.000 1.000 0.982 0.869 0.610 0.304 0.095 0.015 0.001 0.000 0.000 0.000

7 1.000 1.000 1.000 0.996 0.950 0.787 0.500 0.213 0.050 0.004 0.000 0.000 0.000

8 1.000 1.000 1.000 0.999 0.985 0.905 0.696 0.390 0.131 0.018 0.000 0.000 0.000

9 1.000 1.000 1.000 1.000 0.996 0.966 0.849 0.597 0.278 0.061 0.002 0.000 0.000

10 1.000 1.000 1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.164 0.013 0.001 0.000

11 1.000 1.000 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056 0.005 0.000

12 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184 0.036 0.000

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451 0.171 0.010

14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794 0.537 0.140

x = 0 0.818 0.358 0.122 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.983 0.736 0.392 0.069 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.999 0.925 0.677 0.206 0.035 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.984 0.867 0.411 0.107 0.016 0.001 0.000 0.000 0.000 0.000 0.000 0.000

4 1.000 0.997 0.957 0.630 0.238 0.051 0.006 0.000 0.000 0.000 0.000 0.000 0.000

5 1.000 1.000 0.989 0.804 0.416 0.126 0.021 0.002 0.000 0.000 0.000 0.000 0.000

6 1.000 1.000 0.998 0.913 0.608 0.250 0.058 0.006 0.000 0.000 0.000 0.000 0.000

7 1.000 1.000 1.000 0.968 0.772 0.416 0.132 0.021 0.001 0.000 0.000 0.000 0.000

8 1.000 1.000 1.000 0.990 0.887 0.596 0.252 0.057 0.005 0.000 0.000 0.000 0.000

9 1.000 1.000 1.000 0.997 0.952 0.755 0.412 0.128 0.017 0.001 0.000 0.000 0.000

10 1.000 1.000 1.000 0.999 0.983 0.872 0.588 0.245 0.048 0.003 0.000 0.000 0.000

11 1.000 1.000 1.000 1.000 0.995 0.943 0.748 0.404 0.113 0.010 0.000 0.000 0.000

12 1.000 1.000 1.000 1.000 0.999 0.979 0.868 0.584 0.228 0.032 0.000 0.000 0.000

13 1.000 1.000 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.087 0.002 0.000 0.000

14 1.000 1.000 1.000 1.000 1.000 0.998 0.979 0.874 0.584 0.196 0.011 0.000 0.000

15 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.949 0.762 0.370 0.043 0.003 0.000

16 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.589 0.133 0.016 0.000

17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.794 0.323 0.075 0.001

18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.931 0.608 0.264 0.017

19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.878 0.642 0.182

n  = 20

Continued
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TABLE AV.1 Cumulative binomial probabilities, P X£ xð Þ[ Px
i[ 0

pðiÞ.dcont’d

6 1.000 1.000 0.991 0.780 0.341 0.074 0.007 0.000 0.000 0.000 0.000 0.000 0.000

7 1.000 1.000 0.998 0.891 0.512 0.154 0.022 0.001 0.000 0.000 0.000 0.000 0.000

8 1.000 1.000 1.000 0.953 0.677 0.274 0.054 0.004 0.000 0.000 0.000 0.000 0.000

9 1.000 1.000 1.000 0.983 0.811 0.425 0.115 0.013 0.000 0.000 0.000 0.000 0.000

10 1.000 1.000 1.000 0.994 0.902 0.586 0.212 0.034 0.002 0.000 0.000 0.000 0.000

11 1.000 1.000 1.000 0.998 0.956 0.732 0.345 0.078 0.006 0.000 0.000 0.000 0.000

12 1.000 1.000 1.000 1.000 0.983 0.846 0.500 0.154 0.017 0.000 0.000 0.000 0.000

13 1.000 1.000 1.000 1.000 0.994 0.922 0.655 0.268 0.044 0.002 0.000 0.000 0.000

14 1.000 1.000 1.000 1.000 0.998 0.966 0.788 0.414 0.098 0.006 0.000 0.000 0.000

15 1.000 1.000 1.000 1.000 1.000 0.987 0.885 0.575 0.189 0.017 0.000 0.000 0.000

16 1.000 1.000 1.000 1.000 1.000 0.996 0.946 0.726 0.323 0.047 0.000 0.000 0.000

17 1.000 1.000 1.000 1.000 1.000 0.999 0.978 0.846 0.488 0.109 0.002 0.000 0.000

18 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.926 0.659 0.220 0.009 0.000 0.000

19 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.971 0.807 0.383 0.033 0.001 0.000

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.910 0.579 0.098 0.007 0.000

21 1.000 1.000

1.000

1.000 1.000 1.000 1.000 1.000 0.998 0.967 0.766 0.236 0.034 0.000

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.902 0.463 0.127 0.002

23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.973 0.729 0.358 0.026

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.928 0.723 0.222

x = 0 0.778 0.277 0.072 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.974 0.642 0.271 0.027 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.998 0.873 0.537 0.098 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.966 0.764 0.234 0.033 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 1.000 0.993 0.902 0.421 0.090 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 1.000 0.999 0.967 0.617 0.193 0.029 0.002 0.000 0.000 0.000 0.000 0.000 0.000

n= 25 
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TABLE AV.2 Standard norms table.

Area between 0 and z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993

3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995

3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997

3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998

z
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TABLE AV.3 t table.

Right Tail Probabilities

df\p 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0005
1 0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192

2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991

3 0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240

4 0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103

5 0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688

6 0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588

7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079

8 0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413

9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869

11 0.259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370

12 0.259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178

13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208

14 0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405

15 0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728

16 0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150

17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651

18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216

19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834

20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495

21 0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193

22 0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921

23 0.256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676

24 0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454

25 0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251

26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066

27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896

28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739

29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594

30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460

∞ 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905
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TABLE AV.4 Chi-square probabilities.

df\p 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005
1 4 × 10–5 16 × 10–5 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299 

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169

�

x2
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TABLE AV.5 Percentage point of F-distributions.

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d

Continued
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TABLE AV.5 Percentage point of F-distributions.dcont’d
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TABLE AV.6 Wilcoxon signed rank test: P(WD £ c).

n
c 3 4 5 6 7 8 9 10 11
0 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 0.000

1 0.250 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001

2 0.375 0.188 0.094 0.047 0.023 0.012 0.006 0.003 0.001

3 0.625 0.312 0.156 0.078 0.039 0.020 0.01 0.005 0. 002

4 0.750 0.438 0.219 0.109 0.055 0.027 0.014 0.007 0.003

5 0.875 0.562 0.312 0.156 0.078 0.039 0.020 0.01 0.005

6 1.000 0.688 0.406 0.219 0.109 0.055 0.027 0.014 0.007

7 0.812 0.500 0.281 0.148 0.074 0.037 0.019 0.009

8 0.875 0.594 0.344 0.188 0. 098 0.049 0.024 0.012

9 0.938 0.688 0.422 0.234 0.125 0.064 0.032 0.016

10 1.000 0.781 0.500 0.289 0.156 0.082 0.042 0.021

11 0.844 0.578 0.344 0.191 0.102 0.053 0.027

12 0.906 0.656 0.406 0.230 0.125 0.065 0.034

13 0.938 0.719 0.469 0.273 0.150 0.080 0.042

14 0.969 0.781 0.531 0.320 0.180 0.097 0.051

15 1.000 0.844 0.594 0.371 0.213 0.116 0.062

16 0.891 0.656 0.422 0.248 0.138 0.074

17 0.922 0.711 0.473 0.285 0.161 0.087

18 0.953 0.766 0.527 0.326 0.188 0.103

19 0.969 0.812 0.578 0.367 0.216 0.120

20 0.984 0.852 0.629 0.410 0.246 0.139

21 1.000 0.891 0.680 0.455 0.278 0.160

22 0.922 0.727 0.500 0.312 0.183

23 0.945 0.770 0.545 0.348 0.207

24 0.961 0.809 0.590 0.385 0.232

25 0.977 0.844 0.633 0.423 0.260

26 0.984 0.875 0.674 0.461 0.289

27 0.992 0.902 0.715 0.500 0.319

28 1.000 0.926 0.752 0.539 0.350

29 0.945 0.787 0.577 0.382

30 0.961 0.820 0.615 0.416

31 0.973 0.850 0.652 0.449

32 0.980 0.875 0.688 0.483

33 0.988 0.898 0.722 0.517

34 0.992 0.918 0.754 0.551

35 0.996 0.936 0.784 0.584

36 1.000 0.951 0.812 0.618

37 0.963 0.839 0.650

38 0.973 0.862 0.681

39 0.980 0.884 0.711

40 0.986 0.903 0.740

41 0.9 90 0.920 0.768

42 0.994 0.935 0.793

43 0.996 0.947 0.817

44 0.998 0.958 0.840

45 1.000 0.968 0.861

46 0.976 0.880

47 0.981 0.897

48 0.986 0.913

Continued
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TABLE AV.6 Wilcoxon signed rank test: P(WD £ c).dcont’d

49 0.990 0.926

50 0.993 0.938

51 0.995 0.949

52 0.997 0.958

53 0.998 0.966

54 0.999 0.973

55 1.000 0.979

56 0.984

57 0.988

58 0.991

59 0.993

60

61 0.997

62 0.998

63 0.999

64 0.999

65 1.000

Continued
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TABLE AV.6 Wilcoxon signed rank test: P(WD £ c).dcont’d

n
c 12 13 14 15 16 17 18 19 20

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

6 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000

7 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000

8 0.006 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000

9 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000

10 0.010 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000

11 0.013 0.007 0.003 0.002 0.001 0.000 0.000 0.000 0.000

12 0.017 0.009 0.004 0.002 0.001 0.001 0.000 0.000 0.000

13 0.021 0.011 0.005 0.003 0.001 0.001 0.000 0.000 0.000

14 0.026 0.013 0.007 0.003 0.002 0.001 0.000 0.000 0.000

15 0.032 0.016 0.008 0.004 0.002 0.001 0.001 0.000 0.000

16 0.039 0.020 0.010 0.005 0.003 0.001 0.001 0.000 0.000

17 0.046 0.024 0.012 0.006 0.003 0.002 0.001 0.000 0.000

18 0.055 0.029 0.015 0.008 0.004 0.002 0.001 0.000 0.000

19 0.065 0.034 0.018 0.009 0.005 0.002 0.001 0.001 0.000

20 0.076 0.040 0.021 0.011 0.005 0.003 0.001 0.001 0.000

21 0.088 0.047 0.025 0.013 0.007 0.003 0.002 0.001 0.000

22 0.102 0.055 0.029 0.015 0.008 0.004 0.002 0.001 0.001

23 0.117 0.064 0.034 0.018 0.009 0.005 0.002 0.001 0.001

24 0.133 0.073 0.039 0.021 0.011 0.005 0.003 0.001 0.001

25 0.151 0.084 0.045 0.024 0.012 0.006 0.003 0.002 0.001

26 0.170 0.095 0.052 0.028 0.014 0.007 0.004 0.002 0.001

27 0.190 0.108 0.059 0.032 0.017 0.009 0.004 0.002 0.001

28 0.212 0.122 0.068 0.036 0.019 0.010 0.005 0.003 0.001

29 0.235 0.137 0.077 0.042 0.022 0.012 0.006 0.003 0.002

30 0.259 0.153 0.086 0.047 0.025 0.013 0.007 0.004 0.002

31 0.285 0.170 0.097 0.053 0.029 0.015 0.008 0.004 0.002

32 0.311 0.188 0.108 0.060 0.033 0.017 0.009 0.005 0.002

33 0.339 0.207 0.121 0.068 0.037 0.020 0.010 0.005 0.003

34 0.367 0.227 0.134 0.076 0.042 0.022 0.012 0.006 0.003

35 0.396 0.249 0.148 0.084 0.047 0.025 0.013 0.007 0.004

36 0.425 0.271 0.163 0.094 0.052 0.028 0.015 0.008 0.004

37 0.455 0.294 0.179 0.104 0.058 0.032 0.017 0.009 0.005

38 0.485 0.318 0.195 0.115 0.065 0.036 0.019 0.010 0.005

39 0.515 0.342 0.213 0.126 0.072 0.040 0.022 0.011 0.006

40 0.545 0.368 0.232 0.138 0.080 0.044 0.024 0.013 0.007

41 0.575 0.393 0.251 0.151 0.088 0.049 0.027 0.014 0.008

42 0.604 0.420 0.271 0.165 0.096 0.054 0.030 0.016 0.009

43 0.633 0.446 0.292 0.180 0.106 0.060 0.033 0.018 0.01

44 0.661 0.473 0.313 0.195 0.116 0.066 0.037 0.020 0.011

45 0.689 0.500 0.335 0.211 0.126 0.073 0.041 0.022 0.012

46 0.715 0.527 0.357 0.227 0.137 0.080 0.045 0.025 0.013
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TABLE AV.6 Wilcoxon signed rank test: P(WD £ c).dcont’d

47 0.741 0.554 0.380 0.244 0.149 0.087 0.049 0.027 0.015

48 0.765 0.580 0.404 0.262 0.161 0.095 0.054 0.030 0.016

49 0.788 0.607 0.428 0.281 0.174 0.103 0.059 0.033 0.018

50 0.810 0.632 0.452 0.300 0.188 0.112 0.065 0.036 0.020

51 0.830 0.658 0.476 0.319 0.202 0.122 0.071 0.040 0.022

52 0.849 0.682 0.500 0.339 0.217 0.132 0.077 0.044 0.024

53 0.867 0.706 0.524 0.360 0.232 0.142 0.084 0.048 0.027

54 0.883 0.729 0.548 0.381 0.248 0.153 0.091 0.052 0.029

55 0.898 0.751 0.572 0.402 0.264 0.164 0.098 0.057 0.032

56 0.912 0.773 0.596 0.423 0.281 0.176 0.106 0.062 0.035

57 0.924 0.793 0.620 0.445 0.298 0.189 0.114 0.067 0.038

58 0.935 0.812 0.643 0.467 0.316 0.202 0.123 0.072 0.041

59 0.945 0.830 0.665 0.489 0.334 0.215 0.132 0.078 0.045

60 0.954 0.847 0.687 0.511 0.353 0.229 0.142 0.084 0.049

61 0.961 0.863 0.708 0.533 0.372 0.244 0.152 0.091 0.053

62 0.968 0.878 0.729 0.555 0.391 0.259 0.162 0.098 0.057

63 0.974 0.892 0.749 0.577 0.410 0.274 0.173 0.105 0.062

64 0.979 0.905 0.768 0.598 0.430 0.290 0.185 0.113 0.066

65 0.983 0.916 0.787 0.619 0.450 0.306 0.196 0.121 0.071

66 0.987 0.927 0.805 0.640 0.470 0.322 0.209 0.129 0.077

67 0.990 0.936 0.821 0.661 0.490 0.339 0.221 0.138 0.082

68 0.992 0.945 0.837 0.681 0.510 0.356 0.234 0.147 0.088

69 0.994 0.953 0.852 0.700 0.530 0.373 0.248 0.156 0.095

70 0.995 0.960 0.866 0.719 0.550 0.391 0.261 0.166 0.101

71 0.997 0.966 0.879 0.738 0.570 0.409 0.275 0.176 0.108

72 0.998 0.971 0.892 0.756 0.590 0.427 0.290 0.187 0.115

73 0.998 0.976 0.903 0.773 0.609 0.445 0.305 0.198 0.123

74 0.999 0.980 0.914 0.789 0.628 0.463 0.320 0.209 0.131

75 0.999 0.984 0.923 0.805 0.647 0.482 0.335 0.221 0.139

76 1.000 0.987 0.932 0.820 0.666 0.500 0.351 0.233 0.147

77 1.000 0.989 0.941 0.835 0.684 0.518 0.367 0.245 0.156

78 1.000 0.991 0.948 0.849 0.702 0.537 0.383 0.258 0.165

79 0.993 0.955 0.862 0.719 0.555 0.399 0.271 0.174

80 0.995 0.961 0.874 0.736 0.573 0.416 0.284 0.184

81 0.996 0.966 0.885 0.752 0.591 0.433 0.297 0.194

82 0.997 0.971 0.896 0.768 0.609 0.449 0.311 0.205

83 0.998 0.975 0.906 0.783 0.627 0.466 0.325 0.215

84 0.998 0.979 0.916 0.798 0.644 0.483 0.340 0.226

85 0.999 0.982 0.924 0.812 0.661 0.500 0.354 0.237

86 0.999 0.985 0.932 0.826 0.678 0.517 0.369 0.249

87 0.999 0.988 0.940 0.839 0.694 0.534 0.384 0.261

88 1.000 0.990 0.947 0.851 0.710 0.551 0.399 0.273

89 1.000 0.992 0.953 0.863 0.726 0.567 0.414 0.285

90 1.000 0.993 0.958 0.874 0.741 0.584 0.430 0.298

91 1.000 0.995 0.964 0.884 0.756 0.601 0.445 0.311

92 0.996 0.968 0.894 0.771 0.617 0.461 0.324

93 0.997 0.972 0.904 0.785 0.633 0.476 0.337

94 0.997 0.976 0.912 0.798 0.649 0.492 0.351

95 0.998 0.979 0.920 0.811 0.665 0.508 0.364

96 0.998 0.982 0.928 0.824 0.680 0.524 0.378

97 0.999 0.985 0.935 0.836 0.695 0.539 0.392

98 0.999 0.987 0.942 0.847 0.710 0.555 0.406
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99   0.999 0.989 0.948 0.858 0.725 0.570 0.420 

100 1.000 0.991 0.953 0.868 0.739 0.586 0.435 

101   1.000 0.992 0.958 0.878 0.752 0.601 0.449 

102   1.000 0.994 0.963 0.888 0.766 0.616 0.464 

103   1.000 0.995 0.967 0.897 0.779 0.631 0.478 

104   1.000 0.996 0.971 0.905 0.791 0.646 0.493 

105 1.000 0.997 0.975 0.913 0.804 0.660 0.507 

106    0.997 0.978 0.920 0.815 0.675 0.522 

107    0.998 0.981 0.927 0.827 0.689 0.536 

108    0.998 0.983 0.934 0.838 0.703 0.551 

109    0.999 0.986 0.940 0.848 0.716 0.565 

110 0.999 0.988 0.946 0.858 0.729 0.580 

111    0.999 0.989 0.951 0.868 0.742 0.594 

112    0.999 0.991 0.956 0.877 0.755 0.608 

113    1.000 0.992 0.960 0.886 0.767 0.622 

114    1.000 0.993 0.964 0.894 0.779 0.636 

115 1.000 0.995 0.968 0.902 0.791 0.649 

116    1.000 0.995 0.972 0.909 0.802 0.663 

117    1.000 0.996 0.975 0.916 0.813 0.676 

118    1.000 0.997 0.978 0.923 0.824 0.689 

119    1.000 0.997 0.980 0.929 0.834 0.702 

120 1.000 0.998 0.983 0.935 0.844 0.715 

121     0.998 0.985 0.941 0.853 0.727 

122     0.999 0.987 0.946 0.862 0.739 

123     0.999 0.988 0.951 0.871 0.751 

124     0.999 0.990 0.955 0.879 0.763 

125 0.999 0.991 0.959 0.887 0.774 

126     0.999 0.993 0.963 0.895 0.785 

127     1.000 0.994 0.967 0.902 0.795 

128     1.000 0.995 0.970 0.909 0.806 

129     1.000 0.995 0.973 0.916 0.816 

130 1.000 0.996 0.976 0.922 0.826 

131     1.000 0.997 0.978 0.928 0.835 

132     1.000 0.997 0.981 0.933 0.844 

133     1.000 0.998 0.983 0.938 0.853 

134     1.000 0.998 0.985 0.943 0.861 

135 1.000 0.998 0.987 0.948 0.869 

136     1.000 0.999 0.988 0.952 0.877 

137      0.999 0.990 0.956 0.885 

138      0.999 0.991 0.960 0.892 

139      0.999 0.992 0.964 0.899 

140 0.999 0.993 0.967 0.905 

141      1.000 0.994 0.970 0.912 

142      1.000 0.995 0.973 0.918 

143      1.000 0.996 0.975 0.923 

144      1.000 0.996 0.978 0.929 

145 

146      1.000 0.997 0.982 0.938 

147      1.000 0.998 0.984 0.943 

148      1.000 0.998 0.986 0.947 

149      1.000 0.998 0.987 0.951 
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1.000 0.999 0.989 0.955 

151      1.000 0.999 0.990 0.959 

152      1.000 0.999 0.991 0.962 

153      1.000 0.999 0.992 0.965 

154       0.999 0.993 0.968 

155 0.999 0.994 0.971 

156       1.000 0.995 0.973 

157       1.000 0.995 0.976 

158       1.000 0.996 0.978 

159       1.000 0.996 0.980 

160 1.000 0.997 0.982 

161       1.000 0.997 0.984 

162       1.000 0.998 0.985 

163       1.000 0.998 0.987 

164       1.000 0.998 0.988 

165 1.000 0.999 0.989 

166       1.000 0.999 0.990 

167       1.000 0.999 0.991 

168       1.000 0.999 0.992 

169       1.000 0.999 0.993 

1.000 0.999 0.994 

171       1.000 1.000 0.995 

172        1.000 0.995 

173        1.000 0.996 

174        1.000 0.996 

1.000 0.997 

176        1.000 0.997 

177        1.000 0.998 

178        1.000 0.998 

179        1.000 0.998 

1.000 0.998 

181        1.000 0.999 

182        1.000 0.999 

183        1.000 0.999 

184        1.000 0.999 

1.000 0.999 

186        1.000 0.999 

187        1.000 0.999 

188        1.000 1.000 

175 

150 

170 

180 

185 
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TABLE AV.7 Wilcoxon rank sum test.
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TABLE AV.7 Wilcoxon rank sum test.dcont’d
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TABLE AV.7 Wilcoxon rank sum test.dcont’d
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TABLE AV.7 Wilcoxon rank sum test.dcont’d
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TABLE AV.7 Wilcoxon rank sum test.dcont’d
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TABLE AV.7 Wilcoxon rank sum test.dcont’d
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TABLE AV.7 Wilcoxon rank sum test.dcont’d
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TABLE AV.7 Wilcoxon rank sum test.dcont’d
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TABLE AV.8 Friedman test.
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TABLE AV.8 Friedman test.dcont’d

Continued

662 Mathematical Statistics with Applications in R



TABLE AV.8 Friedman test.dcont’d
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TABLE AV.8 Friedman test.dcont’d

Continued

664 Mathematical Statistics with Applications in R



TABLE AV.8 Friedman test.dcont’d
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TABLE AV.8 Friedman test.dcont’d
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TABLE AV.9 Studentized range q table.

The following tables provide the critical value (upper quantiles) for q(k, df, α) for α = .10, .05 and .01. 

Level of Significance  = 0.10

Continued
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TABLE AV.9 Studentized range q table.dcont’d

Level of Significance  �= 0.05
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TABLE AV.9 Studentized range q table.dcont’d

Level of Significance  �= 0.01
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TABLE AV.10 Critical values of the KolmogoroveSmirnov one-sample test statistics.
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A
Absolute error loss function, 423
Alternative hypothesis, 254
Analysis of variance (ANOVA)
angular transformation, 412
assumption, 578e587
F-test, 413
linear models, 413e414
logarithmic transformation, 412
Minitab, 403e405
missing observations, 413
multiple comparisons, 396e399
multiple regressions, 331e332
R code, 401e403
regression, 318e320
SAS, 406e411
simple regression, 318e320
SPSS, 405
square root transformation, 412
treatments, 371e375

Angular transformation, ANOVA, 412
Area sampling, 8
Average deviation, 22e23
Average weight loss estimation, 215

B
Bar graph
definition, 10
Pareto chart, 10e11, 11f

Bayesian decision theory, 439
decision-making process, 437e438
statistical theory, 437

Bayesian hypothesis testing
Jeffreys’ hypothesis testing criterion, 435
null hypothesis, 434
posterior odds ratio, 435
posterior probability, 435
prior odds ratio, 435

Bayesian inference, 416
Bayesian point estimation
Bayes’ rule, 417
criteria for finding Bayesian estimate,

422e429
likelihood function, 416
marginal distribution, 418
population proportion, 418
posterior distribution, 417
probability distribution, 417

Bayes’ rule, 55e60
Bayes, Thomas, 415f
Bell-shaped curve, 25

Bernoulli population, 201
Bernoulli random variable, 182e183,

204e205
probability function of, 90e108

Best linear unbiased estimator (BLUE), 311
Beta-binomial distribution, 421
Binomial distribution, normal approximation,

169e171
Binomial experiment, 91
Binomial formula, 182e183
Binomial probability distribution, 90e94
Binomial random variables, 201

expected value of, 98
Binomial theorem, 91
Birthday problem, 52e53
Bivariate data, 591e593
Bivariate probability distributions, 120
Blinding, 347
Blocking, 348
Bootstrap methods, 535e540

R code, 562e567
SAS, 568

Box plot, 25e27, 25b
outliers, 575e576

C
Cauchy distribution, 200
Central limit theorem (CLT), 215, 221e222
ChapmaneKolmogorov equation, 621b
Chi-square distribution, 154e158, 232

degrees of freedom, 154e155
density, 232f
probabilities, 636t
random variable, 107

Chi-square tests
contingency tables, 462e466
multinomial distribution, 463, 470b, 472
one-way analysis, 469e472
Pearson’s, 477e480

Cluster sampling, 8
Coefficient of determination, 309, 340e341
Comma separated value (CSV), 32e34
Common probability distribution, 625
Complement set, 616, 617f
Completely randomized design

ANOVA decomposition, 378, 379f
assumption testing, 382e386
between-groups variability, 377
correction factor, 377
decomposition of SS, 378, 378f
null hypothesis, 377

one-way ANOVA, 379b, 382e386
population means, 377
p-value approach, 380e382
SSE, 378
unbiased estimator, 379
within-groups variability, 377

Composite hypothesis testing, 255e256
Computers and statistics, 30
Conditional probability
definition, 55
law of total probability, 57b
properties of, 55b

Conditional probability distributions,
114e116

Confidence intervals
computer examples, 242e246
confidence coefficient, 215
degrees of freedom, 216
interval estimation, 214
large sample, 468
normal population, 215
one sample, 220e227
pivotal quantity, 215e216
population variance, 232e234
probability density, pivot, 217e219, 217f
proportion, 222e225
sample mean, 215
sampling distributions, 219, 249e250
shortest length confidence interval, 216
Tukey’s method, 396b
two population parameters, 235e239
upper and lower confidence limits, 214e215

Conjugate prior, 421
Contingency table, chi-square tests
definition, 462e466
independence factors, 472e474
sensitivity, 464e465
two-way, 472e474

Continuity correction factor, 478e480
Continuous random variable, 65
Control plot, Taguchi methods, 361, 361f
Correlation analysis
Fisher z-transform, 325
independent variables, 324e326
maximum likelihood estimator, 324e325
simple linear regression model, 324e326

Correlation coefficient, 119, 324e326
Countably infinite, 617
Counting random variable, 94e95
Covariance, 119
Credible intervals
conditional distribution, 431
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Credible intervals (Continued )
definition, 431e433
posterior distribution, 431e432, 432f

Cross-sectional data, 4
Cumulative binomial probabilities,

630te633t
Cumulative distribution function (cdf), 64,

66, 251
Cumulative probability distribution, 193, 477

D
Data

bivariate, 591e593
collection, 2e3, 2b
cross-sectional, 4
graphical representation, 10e15
nominal, 4e5
numerical description, 20e27
ordinal, 4e5
quantitative, 4
time series, 4
transformation, 581e583
types of, 4e6

Data collection, 40
Dealer cost, 598te599t
Degrees of freedom, 154e155, 232
de Moivre, Abraham, 147f
Descriptive point estimates, 242e244
Descriptive statistics, 4
Design of experiments (DOE)

basic terminology, 345e347
factorial design, 356e358
Minitab, 366
optimal design, 359e360
R code, 364e365
replication, randomization, and blocking,

347e349
sample size and power, 367e368
SAS, 366e367
specific designs, 349e355
Taguchi methods, 360e363
temperature effect, 368

Digamma function, 192e193
Discrete distribution, 209e210
Discrete random variable, 94
Discrete uniform distribution, 470e472
Distribution-free tests, 575

income distribution of families, 492, 492f
nonparametric confidence interval, 493e495
outliers, 575
parametric tests, 493
projects for, 527e530

Distribution function, 64
Dobson units, 226e227
Dotplot, 571, 571f, 579f
Double-blind treatment method, 347

E
Elementary statistics, 221. , See also

Statistics course
Empty set (null set), 615
Equality of variances, 583e587
Ergodic theorem, 623

Error probability distribution, 195
Error variance estimation, 312
Estimation theory, 180
Expectation maximization (EM) algorithm,

540e548
R code, 562e567

Experimental error, 347
Exponential family of probability

distributions, 211
Exponential power, 192, 195
Exponential probability distribution, 106

F
Factorial design

fractional, 358
full, 358
one-factor-at-a-time design, 356e357

F-distribution, 161e163
Finite set, 615
Finite variance, 201, 212
Fisher z-transform, 325
Fractional factorial design, 358
Friedman test

Minitab, 523e525
R code, 523e525
treatment effects, 516e519

Friedman tests, 661te666t
Full conditionals, 558
Full factorial design, 358

G
Galton, Francis, 301f
Gamma probability distribution, 104e108,

183, 192
Gauss, Carl Friedrich, 89f
Gaussian distribution, 98
Gaussian probability distribution, 477
GausseMarkov theorem, 333
Geometric distribution, 187e189, 208e209
Gibbs algorithm (Gibbs sampler), 557e560
Goodness-of-fit tests

AndersoneDarling test, 483e484
categorical data estimation, 467e468
chi-square tests, 462, 469e472, 477e480
contingency tables, 462e466
KolmogoroveSmirnov test, 480e483
multinomial distribution, 463, 470b, 472
PeP plots, 485e487
probability calculations, 462e466
probability distribution, 476e487
QeQ plots, 485e487
ShapiroeWilk normality test, 484e485
Simpson’s paradox, 490

Graphical representation
bar graph, 10
dotplot, 571, 571f, 579f
frequency table, 13, 14b
grouped data, 13
histogram, 14, 14b
pie chart, 11, 12f
quantile-quantile (QQ) plot, 572e573
relative frequency, 13
scatter plot, 571e572, 571f

side-by-side box plots, 571
stem-and-leaf plot, 12, 13t

GrecoeLatin square, 354e355
Grouped data, numerical measures, 23e25

H
HardyeWeinberg law, 92
Highest posterior density (HPD) interval,

433
Histogram, 579f

of data, 582f
definition, 14
guidelines, 14b

Homoscedasticity, 333
Hypothesis testing

categorical data analysis, 468e474
composite, 256
level of significance, 255e256
likelihood ratio tests, 267e271
NeymanePearson Lemma, 262e266
p-value, 271e273
sample size, 256, 258, 260e261
simple, 256
single parameter, 271e278
two samples, 280e289
type I error, 256
type II error, 256

I
Independent variables, 345e347
Inferential statistics, 4
Infinite set, 615
Informative priors, 419e420
Interquartile range (IQR), 21
Invariance property, 196e197

J
Jackknife method, 532e534

R code, 562e567
SAS, 568

Jeffreys’ hypothesis testing criterion, 435
Joint density function, 209e211
Joint probability distributions, 112e120

bivariate distributions, 112e113
conditional expectation, 117e119
covariance and correlation, 119e120
marginal pmf, 113

Joint probability mass function, 186

K
Kolmogorov, Andrei Nikolaevich, 41f

KolmogoroveSmirnov test, one sample test
statistics, 670

Kronecker Delta function, 423
KruskaleWallis test

asymptotic distribution, 514
chi-square distribution, 514
description, 514e516
Minitab, 523e525
R code, 521e523
SAS, 527
SPSS, 526
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L
Large sample approximations, 169e170
Large-sample confidence intervals, 250
Latin square design
definition, 352
GrecoeLatin square, 354e355
R code, 364e365

Least-squares equations, 305
Least-squares estimators
definition, 304
GausseMarkov theorem, 333
inferences, 315e320
properties of, 309e311

Least-squares line, 304
Least-squares, method of, 304e305
Least-squares regression line, 303, 303f
Least-squares regression model, 333
Level of significance, hypothesis testing, 256
Likelihood ratio tests (LRT), 267e271
Limit theorems, 130e137
central limit theorem, 134b
Chebyshev’s theorem, 131b
law of large numbers, 133b

Linear regression models
ANOVA, 413e414
coefficient of determination, 340e341
correlation analysis, 324e326
least-squares estimators, 315e320
matrix notation, 327e332
Minitab, 337e338
outliers and high leverage points, 341
particular value prediction, 321e323
regression diagnostics, 333e334
SAS, 338e340
scatterplots, 340
simple, 302e312
SPSS, 338

Logarithmic transformation, ANOVA, 412
Log-likelihood function, 187e191, 194
Loss function, Taguchi methods, 361, 361f
Lower confidence limit, 214e219, 217b

M
Maclaurin’s expansion, with Poisson random

variable, 95
Marginal pmf/pdf, 113
Margin of error and sample size, 223e225
Markov chain Monte Carlo (MCMC)

methods, 549e560
issues in, 560
Metropolis algorithm, 552e554
R code, 562e567

Markov chains, 619
aperiodic, 622b
Ergodic theorem, 623
homogeneous, 619
irreducible, 622b
periodic, 622b
positive transition matrix, 622b
random walk chain, 620b
steady state, 623
stochastic/random process, 619
transient, 622be623b

transition probabilities, 619
transition/stochastic matrix, 620

Matrix notation
independent observations, 327
least-squares estimators, 329
linear equations, 328
multiple regression model, 329

Maximum likelihood equations (MLE),
186e190

definition, 190e191
log-likelihood function, 187e191, 194
optimization, 192
parameter values, 192
probability distributions, 192e196

Mean
binomial random variable, 93b
chi-square random variable, 107b
exponential random variable, 106b
gamma random variable, 104b
normal random variable, 99b
poisson random variable, 94b
uniform random variable, 97b

Mean square error (MSE), 203, 373
Mean square treatment (MST), 373
Median test

hypergeometric distribution, 507
hypothesis testing procedure, 507
large sample, 508b
Minitab, 523e525
sample median, 507, 507t

Method of moments, 181e185
Metropolis algorithm

continuous case, 552b
discrete case, 552b
random-walk, 554

Metropolis-Hastings (M-H) algorithm,
554e557

continuous case, 555b
discrete case, 554b

Minimal sufficient statistics, 181
Minimum variance unbiased estimator

(MVUE), 196
Minitab

ANOVA, 403e405
design of experiments, 366
goodness-of-fit tests, 489
linear regression models, 337e338
nonparametric tests, 523e525
statistical estimation, 244e245
t-test, 295e296

Model
issues in, 589e593
for univariate data, 589e590

Moment-generating function (MGF)
of Bernoulli random variable, 93b
binomial random variable, 93b
chi-square random variable, 107b
exponential random variable, 106b
gamma random variable, 104b
moments and, 71e80
normal random variable, 99b
poisson random variable, 94b
properties, 80b
uniform random variable, 97b

Multifactor experiments, 346
Multinomial distribution, 463, 470b, 472
Multiphase sampling, 9
Multiple comparisons, ANOVA
studentized range distribution, 396
Tukey’s method, 396b

Multiple linear regression model
ANOVA table, 331e332, 331t
definition, 302e304

N
Negative binomial distribution, 198
Neyman, Jerzy, 253f
NeymanePearson Lemma, 262e266
Nightingale, Florence, 569f
Noise, 345
Nominal data, 4e5
Noninformative priors, 419e420
Nonparametric analysis vs. parametric,

594e595
Nonparametric confidence interval
binomial distribution, 493
central limit theorem, 493
ordered sample, 494, 494f
population median, 494

Nonparametric hypothesis tests
for one sample, 497e505
for two samples, 506e512

Normal approximation to binomial
distribution, 169e171

Normal distribution, 181
Normality, assumption, 578e581
Normal probability distribution, 98e104
Normal probability plots, 579, 580fe582f, 597f
for ANOVA, 383f

Nuisance variables, 345
Null hypothesis, 254
Numerical description, data
average deviation, 22e23
bell-shaped curve, 25
grouped data, numerical measures, 23e25
interquartile range (IQR), 21
lower quartile, 21
median, 21
mode, 21
sample mean (empirical mean), 20
sample standard deviation, 20
sample variance, 20
upper quartile, 21

O
Observables
for Bayesian decision theory, 437e441
definition, 439
predicting future, 458e459

Observational experiment, 346
One-factor-at-a-time design, 356e357
One-parameter Weibull distribution,

213e214
One sample confidence intervals
large sample, 220e222
proportion, 223
small sample, 225e227
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One-tailed test, 255
One-way ANOVA, 347

k32 populations, 379b
Minitab, 403e405
model for, 386
R code, 401e403
SAS, 406e411
SPSS, 405

Optimal design
choice of optimal sample size, 359e360
sequential design, 359e360
simultaneous experiment design, 359

Optimization, 192
Order statistics, 165e168
Ordinal data, 4e5
Orthogoal Latin squares, 354e355
Outliers

box plot, 575e576
distribution-free test, 575
and high leverage points, 341
modified z-score, 575
value, 574
z-score, 575

P
Paired comparison tests, 504e505
Parametric analysis, nonparametric analysis

vs., 594e595
Pareto chart, 10e11, 11f
Pareto distribution, 200
Pearson, Karl, 461f
Pearson’s chi-square tests

cumulative probability distribution, 477
Gaussian probability distribution, 477

Percentage point of F-distributions,
637te646t

Pie chart, 11, 12f
Placebo, 347
Point estimators

method of maximum likelihood, 186e196
method of moments, 181e185
sufficiency, 204e212
unbiased estimators, 200e204

Poisson distribution, 185, 187e189, 213
Poisson probability distribution, 94e96

discrete random variable and, 94
Poisson random variables, 185

definition of, 94e95
Poisson, Siméon-Denis, 94e95
Pooled sample variance, 236
Pooled t-test, 281b, 282e285
Population

defined, 3
standard deviation, 224

Population variance, confidence interval
chi-square density, 232f
chi-square distribution, 232e234

Positive transition matrix, 622b
Posterior distribution

Bayesian point estimation, 417e429
definition, 417

Posterior mean, 423
Posterior odds ratio, 435
Power exponential PDF, 192, 195

Power transformation, 591
Prior odds ratio, 435
Probability density, 196f, 197, 217e219,

217f
Probability density function (pdf), 65
Probability distribution, 476e487

common, 625
Probability distribution function (PDF), 64,

90e108, 180e181, 192e196
references for, 90

Probability function (pf), Bernoulli random
variable, 93b

Probability mass function, 181
Probability tables

chi-square probabilities, 636t
cumulative binomial probabilities,

630te633t
Friedman tests, 661te666t
KolmogoroveSmirnov test, one sample test

statistics, 670
percentage point of F-distributions,

637te646t
standard norms table, 634t
studentized range q table, 667te669t
t-table, 635t
Wilcoxon signed rank test, 647te652t

Probability theory
concept of, 42
counting techniques and calculation of,

49e53
experiment, defined, 42
mutually exclusive/disjoint, 43
origin of, 42
probability, defined, 43be44b
special distribution functions, 90e108
trial, 42

p-value
approach, 380e382
hypothesis testing, 271e273

Q
Quadratic loss function, 362, 362f, 423
Quality of regression, 308e309
Quantile-quantile (QQ) plot, 572e573
Quantitative data, 4

R
Random assignment procedure, 348b
Randomization, 348
Randomized complete block design

definition, 349e350
R code, 364e365
replications, 350e351
SAS, 366e367

Randomness test
asymptotic normal distribution, 528e530
Minitab, 529
nonparametric procedure, 528

Random variables
counting, 94e95
and probability distributions, 63e69

Random variables functions, 124e128
distribution functions method, 124e125

functions of, 126
pdf, 124
probability integral transformation, 126
transformation method, 127e128

Random-walk metropolis, 554
Rao, C.R, 180f
Rayleigh distribution, 214
Rayleigh PDF, 192, 195
R code

Bayesian estimation inference, 456e458
design of experiments, 364e365
goodness-of-fit tests, 489
linear regression models, 335e337
nonparametric tests, 521e523
one-way ANOVA, 401e403
statistical estimation, 242e244
two-way ANOVA, 401e403

Regression diagnostics, 333e334
Rejection region (critical region), 262
Relative frequency, 13
Replication

definition, 347
procedure for randomized complete block

design, 350b
Response variable, 345e347
R language, 627
Robust estimation, 247

S
Sampling

area, 8
biased, 6
4B simulation experiments, 177
chi-square distribution, 154e155
cluster, 8
defined, 3
distribution, 148
errors in, 9
F-distribution, 161e163
finite population correction factor, 150e151
Minitab examples, 174e175
multiphase, 9
normal approximation to binomial

distribution, 169e171
order statistics, 165e168
population distribution, 153e163
R code, 172e174
representative, 6
sample, defined, 148
SAS examples, 175e176
simple random, 6
size, 9
SPSS examples, 175
standard error, 149
statistic, 148
stratified, 7, 7b
student t-distribution, 158e161
systematic, 7

SAS
ANOVA, 406e411
design of experiments, 366e367
linear regression models, 338e340
nonparametric tests, 527
t-test, 297e298
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Scatter diagram, 233e234, 302, 303f
Scatter plot, 303, 303f, 340, 571e572, 571f
Set theory
complement, 616, 617f
countably infinite, 617
difference, 616e617
disjoint/mutually exclusive, 616
elements/members, 615
empty set (null set), 615
finite, 615
infinite, 615
intersection, 616, 616f
one-to-one correspondence, 617
properties, 617
set, defined, 615
subset, 615
symmetric difference, 616e617
union, 615, 616f
universal set, 615
Venn diagram, 615, 616f

Shortest length confidence interval, 216
Side-by-side box plots, 571
one-way ANOVA, 382e386, 383f

Sign test
binomial distribution, 497e498
hypothesis testing procedure, 497e500
large random sample, 499
Minitab, 523e525
null hypothesis testing, 497
population distribution, 497e500
R code, 521e523
z-transform, 499

Simple hypothesis testing, 256
Simple linear regression models
definition, 303
derivation of b0 and b1, 305e308
error variance estimation, 312
least-squares estimators, 309e311
least-squares, method of, 304e305
least-squares regression line, 303, 303f
quality of regression, 308e309
Scatter diagram, 302, 303f

Simple random sampling
advantages, 6b
definition, 6

Simple regression line, 306e307, 307f
Single-factor experiments, 346
Skewness and Kurtosis, 76e80, 579
Smith-Satterthwaite procedure, 282e285
SPSS
ANOVA, 405
linear regression models, 338
nonparametric tests, 526
statistical estimation, 246
t-test, 297

Squared error loss function, 423
Square root transformation, ANOVA, 412
Standard error, 149
Standard normal density, 211
Standard normal random variable, 99
Standard norms table, 634t
Standard pivotal quantity, 215e216
Stationary, 619
Statistic(s)

concepts of, 3e6
descriptive, 4
inferential, 4
population, 3
sampling, 3

Statistical decision, 254
making, 438e439

Statistical estimation
asymptotic properties, 246e247
averaged squared errors, 248
empirical distribution function, 249
NewtoneRaphson in one dimension,

248e249
numerical unbiasedness and consistency,

248
robust estimation, 247

Statistical hypotheses, 254
Stem-and-leaf plot, 12, 13t
Sticker price, 598t, 599f, 599t, 600f
Stratified sample

definition, 7
selection procedure, 7b
uses of, 8b

Studentized range distribution, 396
Studentized range q table, 667te669t
Student t-distribution, 158e161, 232
Subjective probability, 416
Subset, 615

proper subset, 615
Sufficient estimator, 204e205

conditional probability, 206
definition, 204e205
density functions, 211
factorization criterion, 208e209

Sum of squares of errors (SSE), 372, 378
Systematic sampling

definition, 7
selection procedure, 7b

T
Taguchi, Genichi, 343f
Taguchi methods

control plot, 361, 361f
design parameters, 362
engineering designs, 360
goal post mentality, 361
loss function, 361, 361f
quadratic loss function, 362, 362f
quality control, 360

Test of independence, 587
Test statistics (TS), 254b
Three-parameter gamma PDF, 192
Time series data, 4
Time to failure and/or time between failure

(TBF), 595e601
Transformation

power, 591
Transformation(s)

for ANOVA, 411e413
Transition probabilities, 619

function, 551
n-step, 621b

Treatment variables, 345

Truncated exponential distribution, 214
t-table, 635t
t-test
assumptions, 578
Minitab, 295e296
one-sample, 292e295
paired samples, 295e296
pooled, 281b, 282e285
SAS, 297e298
SPSS, 297

Tukey, John W., 369f
TukeyeKramer method, 399
Tukey’s method
calculations of, 397, 397t
confidence intervals, 396
Minitab, 403e405
R code, 401e403
SAS, 406e411
SPSS, 405

Two random samples, hypothesis testing,
280e289

dependent samples, 287e289
independent samples, 280e287

Two-way ANOVA, 347
computational procedure for, 392b
nonrandom effect, 390
null hypothesis, 391
R code, 401e403
step-by-step computational procedure,

392e393
sums of squares, 391
two-way classification, 390, 390t
unbiased estimator, 392

Two-way contingency table, 472e474
Type I error, hypothesis testing,

656
Type II error, hypothesis testing, 256

U
Ulam, Stanislaw, 531f
Unbiased estimators
definition, 200
mean square error, 203
sample mean, 201
variance, 201

Uniform maximum likelihood estimation,
242e244

Uniform probability distribution, 96e98
Univariate data, 589e590
Upper confidence limit, 214e219, 217b

V
Variance
of Bernoulli random variable, 93b
binomial random variable, 93b
chi-square random variable, 107b
exponential random variable, 106b
gamma random variable, 104b
normal random variable, 99b
poisson random variable, 94b
uniform random variable, 97b

Venn diagram, 615, 616f
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W
WaldeWolfowitz test. See Randomness test
Weibull PDF, 192e194
Wilcoxon rank sum test

hypothesis testing procedure, 510b
large sample, 511b
R code, 521e523
SAS, 527

SPSS, 526
Wilcoxon signed rank test, 647te652t

hypothesis testing procedure, 500e504
large samples, 503b
Minitab, 523e525
R code, 521e523

Wilcoxon tests vs. normal approximation,
527e528

Wolfowitz, Jacob, 491f
World Wide Web, 40

Z
z-score test, 575
Z-transform, 325
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