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Introduction

The aim of this book
 is to present some the basic mathematics that is needed by computer scientists. The reader is not expected to be
 a mathematician and we hope willﬁnd what follows useful.

Just a word of warning. Unless you are one of the irritating minority math- ematics is hard. You cannot just read a mathematics book
 like a novel. The combination of the compression made by the symbols used and the precision of the argument makes this impossible. It takes time and eﬀort to decipher the mathematics and understand the meaning.

It is a little like programming,  it takes time to understand a lot of code and  you never understand how to write code by just reading a manual - you have  to  do it! Mathematics is exactly the same, you need to do it.


Chapter 1 Numbers

Defendit numerus: There is safety in numbers

We begin by talking about numbers. This may seen rather elementary but is does set the scene and introduce a lot of notation. In addition much of what follows is important in computing.


1.0.1
       
Integers


We begin by assuming you are familiar with the
integers


1,2,3,4,
. . .
,101,102,
. . . , n, . . . , 2 32582657
 −
1, . .
 .
,


sometime called the whole numbers. These are just the numbers we use for count- ing. To these integers we add the
zer
o
, 0, deﬁned as


0+
any integern=0+n=n+0=
n

Once we have the integers and zero mathematicians create negative integers by deﬁning(−n)
as:

the number which when added ton
gives zero, son
+ (−n
) = (−n
) +n=
0.

Eventually we get fed up with writingn
+(−n
) =0
and write this asn−n=0
.

We have now got the positive and negative integers{
. . . ,−
3,−
2,−
1, 0, 1, 2, 3, 4, . . .
}

You are probably used to arithmetic with integers which follows simple rules.

To be on the safe side we itemize them, so for integersa
and
b 1.a+b=b+
a


2.
                         
a×b=b×a
or
ab=
ba


3.
                         
−a×b=−
ab


4.(−a)×(−b
) =
ab

5.  
To save space we write
a k
 as a shorthand fo
ra
multiplied by itsel
fk
times. So3
 4
 =3×3×3×3
an
d
2             
 
10
 =
102
4
.  Not
e
a 
 
n
 ×
a
 m
 =
a
 n
+
m


6. 
 Do note that
n 0
=1.


Factors and Primes

[image: ]
Many integers are products of smaller integers, for example
2  3  7=
42
. Here

2, 3 and 7 are called the
factor
s
of 42 and the splitting of 42 into the individual components is known as
factorizatio
n
. This can be a diﬃcult exercise for large

integers, indeed it is so diﬃcult that it is the basis of some methods in cryptography.

Of course not all integers have factors and those that do not, such as

3, 5, 7, 11, 13, . . . , 2
216091
 −
1, . . .


are known as
prime
s
. Primes have long fascinated mathematicians and others see


http://primes.utm.edu/,


and there is a considerable industry looking for primes and fast ways of factorizing integers.

To get much further we need to consider division, which for integers can be
 tricky since we may have a result which is not an integer. Division may give rise to a
remainde
r
, for example


9=2×4+
1.

and so if we try to divide 9 by 4 we have a remainder of 1 .

In general for any integersa
and
b


b=k×a+
r

wherer
is the
remainder
.
Ifr
is zero  then  we  saya
divide
s
b
writtena|b
.  A single vertical bar is used to denote
divisibilit
y
. For example2|
128,7|
49
but 3 do
es not divide 4, symb
olically
3�4
.

Aside

Toﬁnd the factors of an integer we can just attempt division by primes i.e.

2, 3, 5, 7, 11, 19, . . .
. If it is divisible byk
thenk
is a factor and we try again. When we cannot divide byk
we take the next prime and continue until we are left with a prime. So for example:

1. 2394/2=1197 can’t divide by 2 again so try 3


2. 1197/3=399

3. 399/3 = 133 can’t divide by 3 again so try 7 ( not divisible by 5) 4. 133/7 = 19 which is prime so 2394 =2×3×3×7×
19

Modular arithmetic

The
mod
operator you meet in computer languages simply gives the remainder after division. For example,

1.
25
mod4=1
because
25÷4=6
remainder 1. 2.
19
mod5=4
since
19=3×5+4
.

3.
24
mod5=4
.

4.
99
mod
11=0
.

[image: ]
[image: ]
There are some complications when negative numbers are used, but we will ignore them. We also point out that you will often see these results written in a slightly diﬀerent way i.e.
24=4
mod5
or
21=0
mod7
. which just means
24
mod5
=


4
an
d
2
 21 o
d7=
0


Modular arithmetic is sometimes called clock arithmetic. Suppose we take a

24 hour clock so 9 in the morning is 09.00 and 9 in the evening is 21.00. If I start a journey at 07.00 and it takes 25 hours then I will arrive at 08.00. We can think  of this as 7+25 = 32 and 32 mod 24 = 8. All we are doing is starting at 7 and  going around the (25 hour) clock face until we get to 8. I have always thought this is a complex example so take a simpler version.

Four people sit around a table and we label their positions 1 to 4. We have a

pointer point to position 1 which we spin. Suppose it spins 11 and three quarters or 47 quarters. The it is pointing at
47
mod4
or 3.

1


[image: ]


4
2



3


The Euclidean algorithm

Algorithms which are schemes for computing and we  cannot resist putting one   in at this point. The Euclidean algorithm forﬁnding the gcd is one of the oldest algorithms known, it appeared in Euclid’s Elements around 300 BC. It gives a way ofﬁnding the greatest common divisor (gcd) of two numbers. That is the largest number which will divide them both.

Our aim is toﬁnd a a way ofﬁnding the greatest common divisor, gcd(
a, b)
of two integersa
andb
.

Supposea
is an integer smaller thanb
.

1. 
 Then toﬁnd the greatest common factor betweena
andb
, divideb
bya
. If the remainder is zero, thenb
is a multiple ofa
and we are done.

2. 
 If not, divide the divisora
by the remainder.

Continue this process, dividing the last divisor by the last remainder, until the remainder is zero. The last non-zero remainder is then the greatest common factor of the integersa
andb
.


The algorithm is illustrated by the following example. Consider 72 and 246.

We have the following 4 steps:

1.
246=3×
72+
30
or
246
mod
72=
30

2.
72=2×
30+
12
or
72
mod
30=
12

3.
30=2×
12+6
or
30
mod
12=
6

4.
12=2×6+
0

so the gcd is 6.

There are several websites that oﬀer Java applications using this algorithm, we give a Python function

def gcd(a,b):

"""  the  euclidean  algorithm  """ if b == 0:

return a

else:

return gcd(b, (a%b))

Those of you who would like to see a direct application of some these ideas to computing should look at the section on random numbers


1.0.2
       
Rationals and Reals


Of course life would be hard if we only had integers and it is a short step to the rationals or fractions. By a rational number we mean a number that can be written as
P/Q
whereP
andQ
are integers. Examples are
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1
3
7
7

2
4
11
6

These numbers arise in an obvious way, you can imagine a ruler divided into ’iths’ and then we can measure a length in ’iths’. Mathematicians, of course, have more complicated deﬁnitions based on modular arithmetic . They would argue that for every integern
, excluding zero, there is an inverse, written
1/n
which has the property that

1
1

[image: ]
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n
× n
 = n
 ×n=
1

Of course multiplying
1/n
bym
gives a fraction
m/n
. These are often called


rational number
s
.

We can manage with the simple idea of fractions.


One problem we encounter is that there are numbers which are neither integers

or rationals but someth√
ing
 else.  The Greeks were surprised and confused when it

was demonstrated that
2
could not be
 written exactly√
as
 a fraction. Technically

there are no integer valuesP
andQ
such that
P/Q
=
2.

From our point of view we will not need to delve much further into the details,

especially as we can get good enough approximation using fractions. For example 22/7
is a reasonable approximation forπ
while 355/113 is better. You willﬁnd people refer to the
real number
s
, sometimes writtenR
, by which they mean all the numbers we have discussed to date.

Notation

As you will have realized by now there is a good deal of notation and we list some of the symbols and functions you may meet.
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Ifx
is
less tha
n
y
then we write
x < y
. If there is a possibility that they might be equal then
x y
. Of course we can write these the other way around. So
y > x
or
y x
. Obviously we can also sayy
is greater than
x



or greater than or equal to
x


[image: ]
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Theﬂ
oor functio
n
of a real numberx
, denoted by  x  or
floor(x)
,  is  a function that returns the largest integer less than or equal tox
. So 2.7 =
2 and −
3.6 =−
4.
The function
floor
in Java and Python performs this operation.  There is an obvious(?) connection to              mod sinceb
moda
can b
e writtenb−
floor(b÷a)×a
.  So25
mo
d4=
25−�
25/4
�×4=
25−6×4
=



[image: ]
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A less used function is theceiling functio
n
, written  x  or
ceil(x)
or
ceiling(x)
, is  the  function  that  returns  the  smallest  integer
not less
 tha
n
x
.              Hence




�
2.7�=3
.

[image: ]
The
modulu
s
ofx
written|x|
is justx
when
x 0
and−x
when
x < 0
. So


|2|=2
and|−6|=6
. The famous result about the modulus is that for any


x
and
y


|x+y
|≤|x|+|y
|


[image: ]
We met
a b
 when we discussed integers and in the same way we can havex
 y
 whe
nx
an
dy
are not integers. We discuss this in detail when we meet the exponential function. Note however





–
a 0
=1 for al
la�=
1



–
0 b
 =0
for all values o
fb
including zero.



1.0.3
       
Number
 Systems


[image: ]
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We are so used to working in a decimal system we forget that it is a recent invention and was a revolutionary idea. It is time we looked carefully at how we represent numbers. We normally use the decimal system so 3459 is shorthand for 3 x 1000 + 4 x


[image: ]
[image: ]
100 + 5 x 10 + 9.


he
positio
n
of the digit is vital as it enables us to distinguish between

30 and 3. The decimal system is a positional numeral system; it has positions for units, tens, hundreds and so on. The position of each digit implies the multiplier  (a power of ten) to be
 used with that digit and each position has a value ten times that of the position to its right.

Notice we may save space by writing 1000 as
10 3
 the 3 denoting the number of zeros. So 100000
 =
10
 5
. If the superscript i
s
negativ
e
then we mean a fraction e.g
 1
0
3
 =
1/100
0
. Perhaps the cleverest part of the positional system was the addition of the decimal point allowing us to include decimal fractions. Thus 123.456 is


equivalent to


1×
100+2×
10+3+
numbers after the point+4×
1/10+5×
1/100+6×
1/1000 Multiplier
. . .              10              
2
             
 
1
0
1
             
 
1
0
0
             
 .
10             
 
−
1
             
 
1
0
−
2
             
 
1
0
−
3
             
 
. . .


[image: ]
digits
. . .
1
2
3
.
4
5
6
. . .

decimal point

However there is no real reason why we should use powers of 10, or base 10. The Babylonians use base 60 and base 12 was very common during the middle ages in Europe. Today the common number systems are



•
 
 Decimal number system: symbols 0-9; base 10


•
 
 Binary number system:symbols symbols 0,1; base 2


•
   
 Hexadecimal number system:symbols 0-9,A-F; base 16 here A≡
10 , B≡
11 , C≡
12
, D≡
13 E≡
14
, F≡
15.


•
 
 Octal number system: symbols 0-7; base 8

Binary

In the binary scale we express numbers in powers of 2 rather than the 10s of the decimal scale. For some numbers this is easy so, if recall
2 0
 =1
,
















	
Decimal

number


	
	
in


	
powers of 2


	
power

3
2


	
of

1


	
2

0


	
Binary number





	
8


	

=
2


	
3


	
	
1


	
0


	
0


	
0


	
1000





	
7


	

=
2


	

2
 +
2
 1
 +
2



	
0


	
0


	
1


	
1


	
1


	
111





	
6


	

=
2


	

2
 +
2
 1



	
	
0


	
1


	
1


	
0


	
110





	
5


	

=
2


	

2
 +
2
 0



	
	
0


	
1


	
0


	
1


	
101





	
4


	

=
2


	
2


	
	
0


	
1


	
0


	
0


	
100





	
3


	

=
2


	

1
 +
2
 0



	
	
0


	
0


	
1


	
1


	
11





	
2


	

=
2


	
1


	
	
0


	
0


	
1


	
0


	
10





	
1


	

=
2


	
0


	
	
0


	
0


	
0


	
1


	
1




	
	
	
	
	
	
	
	
	
	





As in decimal we write this with the position of the digit representing the power, theﬁrst place after the decimal being the
2 0
 position the next th
e
2
 1
 and so on.  To convert a decimal number to binary we can use ou
r
mo
d
operator.


As an example consider 88 in decimal or
88 1
0
. We would like to write it as a binary. We take the number and successively divid
e
mo
d
2. See below












	
Step


	
number
n


	
x n



	

�x
n
/2
�
x



	
n


	
mod
2





	
0


	
88


	
44


	
0





	
1


	
44


	
22


	
0





	
2


	
22


	
11


	
0





	
3


	
11


	
5


	
1





	
4


	
5


	
2


	
1





	
5


	
2


	
1


	
0





	
6


	
1


	
0


	
1




	
	
	
	
	
	





Writing the last column
in revers
e
, that is from the bottom up, we have 1011000  which is the binary for of 88, i.e.
88
10
 =
1011000
 2
.



Binary decimals are less common but quite possible, thus 101.1011 is just 2
2
 +
2
 0
 +
2
 −1
+2
 −3
+2
 −
4
 which is, after some calculation 5.6875. We have see how to turn the integer part of a decimal number into a binary number and we can do the same with
 a
decima
l
fraction. Consider 0.6875. As before we draw up a table












	
Step


	
number
n


	
x n



	

x
n
 ×2�
x



	
n


	

×2
�





	
0


	
0.6875


	
1.375


	
1





	
1


	
0.375


	
0.75


	
0





	
2


	
0.75


	
1.5


	
1





	
3


	
0.5


	
1


	
1




	
	
	
	
	
	





giving
reading dow
n
0.6875 10
 =
1011
 2



Bewar
e
it is possible to get into a non-ending cycle when we have a non

terminating decimal. For example 0.4.

[image: ]
so
0.4 10
 =
0.0110011001100 . . .
 2



←
here we repeat



•
   
Addition in binary


–
0+0 = 0


–
0+1 = 1


–
1+1 = 10 so we carry 1 and leave a zero


–
1+1+1 = 1+(1+0)=1+10=11 .

We can write this in very much the same way as for a decimal addition











	
1


	
1


	
0


	
1


	
0


	
1





	
+
1


	
0


	
1


	
1


	
1


	
0





	
1
1


	
0


	
0


	
0


	
1


	
1
Sum







the right hand uparrow sho↑
w where w↑
e carry a 1. The left hand one shows where we have1+1+1
so we carry a 1 and have a 1 left over


•
   
To subtract











	
1


	
1


	
0


	
1


	
0


	
1





	
-
1


	
0


	
1


	
1


	
1


	
0





	
0


	
0


	
0


	
1


	
1


	
1
diﬀerence







Multiplication in decimal

1
2
5
6
7
8
Multiplicand


×3
 
 
8
  
 
7
                                                     
 
Multiplier


8
7
9
7
4
6
times 7

1
0
0
5
4
2
4
Shift left one and times 8

3        
[image: ]
7
7
0
3
4
Shift left two and times 3

4        
8
6
3
7
3
8
6
Add to get product Multiplication in binary













	
	
1


	
0


	
0


	
1


	
1


	
1


	
0


	
Multiplicand





	

×
1


	
	
	
	
	
	
0


	
1


	
Multiplier




	
	
1


	
0


	
0


	
1


	
1


	
1


	
0


	
times 1





	
0


	
0


	
0


	
0


	
0


	
0


	
0


	
	
Shift left one and times 0





	
1
0


	
0


	
1


	
1


	
1


	
0


	
	
	
Shift left two and times 1





	
1
1


	
0


	
0


	
0


	
0


	
1


	
1


	
0


	
Add to get the product







As you can see multiplication in binary is easy.


Octal

Base 8 or octal does not bring any new problems. We use the symbols 0, 1, 2,. . . ,7 and the position denotes the power of 8. So
12 8
 i
s1×8+2=
1
0
in decimal, while
 302
1
8
 is



3×
8 3
 +0×
8
 2
 +2×8+1×
8

0
 =
153
6+
1
6+1=
1553


in decimal. Obviously we do not need the symbol for 9 as
9 10
 =8+1=
11

8
 in octal. To convert a decimal number to octal we  can use ou
r
mo
d
operator as we  did in the binary
 case.


As an example consider 1553 in decimal or
1553 10
. We would like to write it as an octal number.
 We take the number and successively divid
e
mo
d
8.
 See below












	
Step


	
number
n


	
x n



	

�x
n
/8
�
x



	
n


	
mod
8





	
0


	
1553


	
194


	
1





	
1


	
194


	
24


	
2





	
2


	
24


	
3


	
0





	
3


	
3


	
0


	
3




	
	
	
	
	
	





Writing the last column
in revers
e
we have 3021 which is the octal number we require since


3×
8 3
 +0×
8
 2
 +2×8+1×
8

0
 =
1553


There is a simple link between octal and binary if we notice that







	

7=
2 2
 +
2
 1
 +
2
 0
 =
111
 2



	

3=
2 1
 +
2
 0
 =
11
 2






	

6=
2 2
 +
2
 1
 =
110
 2



	

2=
2 1
 =
10
 2






	

5=
2 2
 +
2
 0
 =
101
 2



	

1
= +
2 1
 =
1
 2






	

4=
2 2
 =
100
 2



	

0=
0 2








You might like to check that 1553 is

11000010001

in binary.

Separating this into blocks of 3 gives

11 000 010 001

If we use our table to write the digit corresponding to each binary block of 3 we have

3 0 2 1


which is our octal representation!

As in the binary case we can also have octal fractions, for example
0.3012 8
.


This is a way of representing


3×
1/8 1
 +0×
1/8
 2
 +1×
1/8
 3
 +2×
1/8
 4


To convert
0.3012 8
 to decimal we proceed as for the binary case only here we use 8 rather that 2 to give











	
Step


	
number
n


	
x n



	

8×
x n



	

�
8x
n
�






	
0


	
0.3012


	
2.4096


	
2





	
1


	
0.4096


	
3.2768


	
3





	
2


	
0.2768


	
2.2144


	
2





	
3


	
0.2144


	
1.7152


	
1





	
4


	
0.7152


	
5.72165


	
5





	
5


	
0.7216


	
5.7728


	
5





	
6


	
0.7728


	
6.1824


	
6





	
7


	
0.1824


	
1.4592


	
1





	
8


	
0.4592


	
3.6736


	
3





	
9


	
0.6736


	
5.3888


	
5





	
10


	
0.3888


	
3.1104


	
3





	
11.


	
0.1104002


	
0.8832016


	
0





	
12


	
0.8832016


	
7.0656128


	
7





	
13


	
0.06561279


	
0.52490234


	
0





	
14


	
0.5249023


	
4.1992188


	
4





	
15


	
0.1992188


	
1.5937500


	
1





	
16


	
0.59375


	
4.75000


	
4





	
17


	
0.75


	
6.00


	
6





	
18


	
0


	
0


	


	
	
	
	
	





giving
reading dow
n
0.3012 8
 =
0.232155613530704146
 10


hexadecimal

[image: ]
Base 16 is more complicated because we need more symbols. We have the integers 0 to 9 and we also use A 10 , B 11 , C 12
, D 13 E 14
, F 15.

[image: ]
So
123  
16
 i
s
1 16


2
 +
2 16

1
 +3
in
 decimal
 an
d
A2E

16
 i
s
10 16             
 
2
 +
2 1
6
1
 +
1
4
in decimal. The
 good
 thing about hex is that each of the symbols cor- responds to a 4 digit binary sequence ( if we  allow leading zeros).   This means        we can easily translate from hex to binary as belo
w
010111101011010100102
 2
 =
 0101              1110              1011              0101              0010



=
5
E
B
5
2 16
 =
5EB52
 16



exercises

1.  
Factorize

(a) 3096

(b) 1234

(c)
2 4
 −
1


2. 
 It was thought that
2 p
 −1
was prime whe
np
is a prime.
 Shown that this is not true
 whe
np=
11


3. 
 Find the gcd for 3096 and 1234.

4. 
 Write the following decimal numbers in binary (a)
256 10


(b)
2 4
 −
1


(c)
549 (d)
12.34


5. 
 Convert the following binary numbers into decimal numbers and explain your answers.







	
(a)


	
101.001
2






	
(b)


	
101111
2






	
(c)


	
0.10101
2






	
(d)


	
11.0001
2






	
(e)


	
1001
2






	
(f)


	
0.11
2








6. 
 Convert the following decimal numbers into binary numbers and explain your answers.

(a) 5010


(b) 7010


(c) 6410


(d) 39.56
10


(e) 20.625
10


(f) 13.11
10
 (8 signiﬁcant digits )


7. 
 Add the following numbers in binary and explain your answers. (a) 111
2
 +
 11
1
2


(b) 1110
2
 + 1
1
2


(c) 11101
2
 + 1100
1
2


8. 
 Multiply the following numbers in binary and explain your answers. (a)
1110 2
 ×
1
1
2


(b)
111 2
 ×
10
1
2




Chapter
 2


The statement calculus and logic

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.

Lewis Carroll

You will have encountered several languages - your native language or the one in which we are currently communicating( English) and other natural languages such as Spanish, German etc. You may also have encountered programming languages like Python or C. You have certainly met some mathematics if you have got this far.

A language in which we describe another language is called a
metalanguag
e
. For

almost all of mathematics, the metalanguage is English with some extra notation.

In computing we need to deﬁne, and use, languages and formal notation so it  is essential that we have a clear and precise metalanguage. We  begin by  looking at some English expressions which we could use in computing. Most sentences in English can be
 thought of as a series of statements combined using connectives such as “and”, “or”, “if . . . then . . .”

For example the sentence “if it is raining and I go outside then I get wet” is constructed from the three simple statements:

1.  
“It  is raining.”

2. 
 “I go outside.”

3. 
 “I get wet.”

Whether the original sentence is true or not depends upon the truth or not of these three simple statements.

If a statement is true we shall say that its logical value is true, and if it is false, its logical value is false. As a shorthand we shall use the letter T for true  and F  for false.


We will build compound statements from simple statements like “it is raining”, “it is sunny” by connecting them with
an
d
and
o
r
In order to make things shorter  and we hope more readable, we introduce symbolic notation.

1. 
 Negation will be
 denoted by¬
.

2.  
“and” by∧
.

3.  
“or” by∨
.

We now look at these connectives in a little more detail.


Negatio
n
¬

The negation of a statement is false when the statement is true and is true if the statement is false. So a statement and its negation always have diﬀerent truth values. For example “It is hot” and “It is not hot.” In logic you need to be quite clear about meanings so the negation of,

“All computer scientists are men”

is

“Some computer scientists are men”

NOT

“No computer scientists are men.” Theﬁrst and third statement are both false!


In symbolic terms ifp
is a statement, say “ it is raining” , then¬p
is its negation. That is¬p
is the statement “it is not raining”. We summarize the truth  or otherwise of the statements in a
truth
 tabl
e
, see table 2.1.

[image: ]


Table 2.1: Truth table for negation (¬
)

In the truth table 2.1 theﬁrst row reads in plain English - “Ifp
is true then


¬p
is false” and row two “Ifp
is false then¬p
is true’.


Conjunctio
n
∧

Similarly, ifp
andq
are statements, thenp∧q
is read as “p
andq
” . This (confusingly) is called the
conjunctio
n
ofp
andq
.

So ifp
is the statement “ it is green” whileq
is the statement ” it is an apple” then


p∧q
is the statement “It is green and it is an apple ” We often write this in the shorter form:

Ifp
=“ it is green” andq
= ” it is an apple” thenp∧q
= “It is green and it is an apple ”

Clearly this statement is true only when  bothp
andq
are  true.  If  either  of them is false then the compound statement is false. It will be
 helpful if we have a precise deﬁnition of∧
and we can get one using a truth table.








	
p


	
q


	

p∧
q





	
T


	
T


	
T





	
T


	
F


	
F





	
F


	
T


	
F





	
F


	
F


	
F







Table 2.2: The truth table for
∧

From table 2 we see that ifp
andq
are both true thenp∧q
is also true. If
p  is true andq
is false thenp∧q
is false.



Disjunctio
n
∨

Suppose we now look at “or”. In logic we usep∨q
as a symbolic way of writing
p orq
. The truth table in this case is given in table 2.3 This version of “or” , which








	
p


	
q


	

p∨
q





	
T


	
T


	
T





	
T


	
F


	
T





	
F


	
T


	
T





	
F


	
F


	
F







Table 2.3: The truth table for
∨

is the common one used in logic is sometimes known as the “inclusive or” because we can havep∨q
true if either one ofp
andq
is true or if
bot
h
are true.

[image: ]
You could of course deﬁne the exclusive or , say as having the truth table in

2.4








	
p


	
q


	
p�≡
q





	
T


	
T


	
F





	
T


	
F


	
T





	
F


	
T


	
T





	
F


	
F


	
F







Table 2.4:  The truth table for
�≡


The Conditiona
l
⇒

A rather more interesting connective is “implies” as inp
“implies”q
. This can be
 written many ways, for example


•
  
p
implies
q


•
  
Ifp
then
q


•
  
q
if
p


•
 
 p
is a suﬃcient condition for
q

I am sure you can think of other variants. We shall use the symbolic form
p
q

and the truth table for our deﬁnition is given in table 2.5.
⇒










	
p


	
q


	
p
q





	
T


	
T


	
⇒T






	
T


	
F


	
F





	
F


	
T


	
T





	
F


	
F


	
T







Table 2.5: The truth table for
⇒

We sometimes callp
the
hypothesi
s
andq
the
consequenc
e
or conclusion. Many peopleﬁnd it confusing when they read that “p
only ifq
” is the same as “If
p thenq
”.  Notice that “p
only ifq
” says thatp
cannot be
 true whenq
is not true,   in other words the statement is false ifp
is true butq
is false. Whenp
is false
q may be
 true or false.

[image: ]
You need to be
 aware that “q
only ifp
” is
NO
T
a way of expressing “
p
q
.

We  see this by  checking the truth values.  The truth value  in line 3 of table 2.5 is    the critical diﬀerence.

You  might like to check  that “¬p∨q
is equivalent to
p
q
, see the table

below
⇒










	

p¬
p


	
	

q¬p∨
q





	
T


	
F


	
T


	
T





	
T


	
F


	
F


	
F





	
F


	
T


	
T


	
T





	
F


	
T


	
F


	
T




	
	
	
	





Table 2.6: The truth table for
⇒

Notice that our deﬁnition of implication is rather broader than the usual usage.


Typically you might say

“if the sun shines today we will have a barbecue” .

The hypothesis and the conclusion are linked in some sensible way and the state- ment is true unless it is sunny and we do not have a barbecue. By contrast the statement

“If the sun shines today 19 is prime”

is true from the deﬁnition of an implication because the conclusion is always true no matter if it is sunny or not. If we consider

“if the sun shines today 8 is prime”

The statement is obviously false if today is sunny because 8 is never prime. How- ever the whole statement is true when the sun does not shine today even though   8 is never prime. Of course we are unlikely to make statements like these in real life.

[image: ]
The Biconditional


Supposep
andq
are two statements. Then the statement “p
if and only ifq
” is

[image: ]
called the
biconditiona
l
and denoted byp
q
or iﬀ. Yes there are two f’s!
 It

is true only whenp
andq
have the same logical values, i.e., when either both are true or both are false.

You may also meet the equivalent


•
  
p
iﬀ
q


•
 
 p
is necessary and suﬃcient for
q

[image: ]
The truth table is shown inﬁgure 2.7. For example we might say

Table  2.7:   The  truth  table  for⇐⇒ You can go to the match if and only if you buy a ticket.

This sort of construction is not very common in ordinary language and it is often hard to decide whether a biconditional is implied in ordinary speech. In math- ematics or computing you need to be clear if you are dealing with implication


p⇒q
or the biconditionalp
⇐⇒
q


Converse, contrapositive and inverse

Propositional logic has lots of terminology. So If
p


q
then


•
             
q
p
is the converse.
⇒



•
                  
[image: ]
[image: ]
¬
q
¬p
is the contrapositive.


•
                  
[image: ]
¬
p
¬q
is the inverse.

Truth tables

It is probably obvious that we aim to use logic to help us in checking arguments. We hope to be able to translate from English to symbols. Thus ifp
is “John learns

[image: ]
to cook” andq
is “ John willﬁnd a job” then
p
q
represents . ”If John learns

to cook” and then John willﬁnd a job” In problems like these the truth table,   while cumbersome can be
 very helpful in giving a mechanical means of checking the truth values of arguments.

[image: ]
To construct tables for compound statements such asp∨¬
q
(p∧q)
we

need to think about the order we work out the truth values of symbols. The table

2.8      
gives the order of precedence.

[image: ]


So we negateﬁrst, then and etc. As in algebra we also use brackets to indicate that we evaluate the terms in bracketsﬁrst. Thus for(p∨q
)∧r
we evaluate the term in brackets(p∨q)
ﬁrst. Thus











	
p


	

q(p∨q)¬p(p∨q
)∨¬
p





	
T

T F F


	
T

F T F


	
T

T T F


	
F

F T T


	
T

T T T





	
precidence
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1


	
2
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The vital point about logical statements and about truth tables is :  Two symbolic statements are equivalent if they have the same truth tabl
e
. and two statements
p1
and
p2
are equivalent, we will writep1⇐⇒p2.


Thus, for example, the statements(p∨q
)∧¬p
and¬p∧q
are equivalent.

We can deduce this from the truth tables, see table 2.9

[image: ]
[image: ]


Table 2.9: The truth tables for(p∨q
)∧¬p
and(¬p∧q
)

The reader can use truth table to verify the following equivalences.

1.¬(p∨q
)
¬p∧¬
q

2.¬(p∧q)⇐⇒
¬p∨¬q

One can a⇐
v⇒
oid writing truth tables in table 2.9 and verify theﬁrst equivalence

as follows:


p∨q
is false only when bothp
andq
are false. Therefore¬(p∨q)
is true only when bothp
andq
are false. Similarly,¬p∧¬q
is true only when both¬p
and


¬q
are true, which is whenp
andq
are false. This proves the equivalence.

Exercise

Construct truth tables for 1.¬(p∧q
)

[image: ]
[image: ]
[image: ]
2.¬(p∨q
)∧¬(q∨p
)


q)
 ∧(
q

3.(p
⇒


r)
         
(
p
r
)

[image: ]
r
)∧(
r
s
)

4.(p∨q
⇒

[image: ]
[image: ]
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r
)∧(
r
s
)
(
p
r
)

5.(p∨q
⇒


Arguments

We now look brieﬂy at logical arguments and begin with some deﬁnitions. Deﬁni- tion:


•
 
 A statement that is always true is called a
tautology.



•
 
 A statement that is always false is called a
contradiction.
 So a statement is

1. 
 A tautology if its truth table has no value F.

2. 
 A contradiction if its truth table has no value T.

Notice you mayﬁnd some writers who say that a formula ( in the statement calculus we have just described ) is
vali
d
rather than use the term tautology. The symbol�
A is often used as a shorthand for “A is a tautology” or “ A is valid”.

Examples

1. 
 The statementp∨¬p
is a tautology, while the statementp∧¬p
is a con- tradiction.


p
is a tautology.

2.  
The statement((p∨q)∧p)⇐⇒

3. 
 [image: ]
[image: ]
Two statements
p1
and
p2
are
equivalen
t
when
p1
p2
is a tautology, and sop1≡p2whenp1⇐⇒p2is a tautology.

[image: ]


p1
p2
is a tautology.

In everyday life we often encounter situations where we make conclusions based

on evidence. In a courtroom the fate of the accused may depend the defence prov- ing that the opposing side’s arguments are not valid. A typical task in theoretical sciences is to logically come to conclusions given premises. That is to provide principles for reasoning.

A scientist might say

“if all the premises are true then we have the following conclusion.”

Thus they would assert that the conditional

“if all the premises are true then we have the following conclusion”

is a tautology, or that the premises imply his/her conclusion. If his/her reasoning  is correct we say that his argument is valid.



D
eﬁ
nition 2
:
A conditional of the form

( a conjunction of statements) implies c

where c is a statement, is called an
argumen
t
. Symbolically

p , p , . . . , p
c


1

2

m
 ⇒


The statements in the conjunction on the left side of the conditional are called


premise
s
, whilec
is called the
conclusio
n
.

An argument is valid if it is a tautology, that is, if the premises imply the conclusion ( every line of the truth table is T), otherwise it is invalid. So we might have a sequence of premises
p 1
,
 p
2
,
 p
3
, . . . ,
 p
m
 for whic
hc
is a valid consequence, symbolically


You should note that


p
1
,
 p
2
,
 p
3
, . . . ,
 p
m
 �
c


1. 
 A conjunction of several statements is true only when all the statements are true.

2. 
 A conditional is false only when the antecedent ( the left hand side) is true and the consequent ( the right hand side) is false.

3. 
 Therefore, an argument is invalid only when there is a situation where all  the premises are true, but the conclusion is false. If such a situation cannot occur, the argument is valid.

Exercise s:

1. 
 Is the following argument valid?

All birds are mammals and the platypus is a bird. Therefore, the platypus is a mammal.

Note the premises may be wrong but we are interested in the argument.

2. 
 Sketch how you might show that the statements below below imply that “It rained”. Beware this is a big truth table so you are probably best to ensure you understand the method.

If it does not rain or if it is not foggy then the regatta will be
 held and the lifeboat demonstration will go on. If the regatta is held then the trophy will be
 awarded.

and


the trophy was not awarded.

3. 
 Show that the following argument is valid.

Blodwin works hard. If Blodwin works hard then she is a dull girl. If Blodwin is a dull girl she will not get the job therefore Blodwin will not get the job.

So far we have used truth tables only to determine the validity of arguments that are given in symbolic form. However, we can do the same with other arguments by ﬁrst rewriting them in symbolic form. This is illustrated in the following example.

Either I shall go home or stay and have a drink. I shall not go home. Therefore I stay and have a drink.

Supposep
= I shall go home andq
= I shall stay and have a drink. The argument

[image: ]
is¬
p
q
.

[image: ]
p¬
p
q¬
p
q

Table 2.10: The truth table for
⇒

From  the truth table table 2.10 we  have  a F and so the argument is not valid  is , we do not have a tautology. We summarize the process of determining the validity of arguments as follows.



2.0.4
       
Analyzing Arguments Using Truth
 Tables



•
 
 Step 1: Translate the premises and the conclusion into symbolic form.


•
 
 Step 2: Write the truth table for the premises and the conclusion.


[image: ]
Step 3: Determine if there is a row  in which all the premises are true and  the conclusion is false. If yes, the argument is invalid, otherwise it is valid.



[image: ]
However truth table can become unwieldy if we have several premises. Consider the following

p, r,(p∧q
)


¬r�¬
q

Given we  havep, q
andr
we need 8 rows (
2
3
) in our table 2.11 as we need all combinations
 o
f
p,
 q
an
dr
.
 If
 we
 examine
 line
 3
 in
 table
 2.11
 we
 can
 see
 that


when
p, r,(p∧q
)
¬r
are all true ( we can ignoreq
) then the result¬q
is true

[image: ]
and we have a t→
autology.

←

Table 2.11: Truth table with
p, q
and
r

Now suppose we havep, q, r, s
andt
. Our table will have2
5
 =
3
2
rows.


Take as an example :

If I go to myﬁrst class tomorrow , then I must get up early,  and if I go to the  dance tonight,  I will stay up late.  If I stay up late and get up early,  then I will    be
 forced to exist on onlyﬁve hours sleep. I cannot exist onﬁve hours of sleep. Therefore I must either miss myﬁst class tomorrow or not go to the dance.


•
 
 Letp
be “ I go to myﬁrst class tomorrow”


•
 
 Letq
be “ I must get up early”


•
 
 Letr
be “ I go to the dance ”


•
 
 Lets
be “ I stay up late ”.



•
 
 Lett
be “I can exist onﬁve hours sleep”.

The premises are

[image: ]
(
p
q
)∧(
r


t)
 , s∧q

t,¬
t

and the conclusion is¬p∨¬r
. We will prove that¬p∨¬r
is a valid consequence of the premises.

Of course we could write out a truth table, however we can try to be cunning.

1. 
 Take the consequence¬p∨¬r
and assume that it is FALSE.

2. 
 Then bothp
andr
must be
 TRUE.

[image: ]
q
)∧(
r
t)
implies thatq
andt
are true.

3.  
Theﬁrst premise(p
⇒

4. 
 Sot
is true and the last premise is¬t
is assumed TRUE so we have a contradiction.

5. 
 Thus our premise is valid.

I think you might agree that this is a good deal shorter than using truth tables!.

Exercises


[image: ]
Show that 1.
�(
p
q)



((q


r
))


(
p
r
))

2.�
p ⇒
(¬
q⇒
 ¬p⇒
)


q)
 ⇒
⇒

We add some tables of tautologies which enable us to eliminate conditionals and

[image: ]
[image: ]
biconditionals.


1.
  
[image: ]
�
p


¬p∨
q

[image: ]
[image: ]
[image: ]
2.�
p
¬(p∨¬q
)

[image: ]
[image: ]
3.�p∨
q
¬
p
q

[image: ]
[image: ]
4.�p∨
q
¬(
p
¬q
)


5.
                                   
�p∨
q
¬
p
q

⇐⇒
→



6.
  
�
p∨
q


7.
  
�
p∧
q


¬
p
q

[image: ]
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¬(
p
¬q
)

⇐⇒
⇒

[image: ]
8.�p∧
q
¬(¬p∨¬q
)

[image: ]
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[image: ]
9.
�(
p
q
)∧(
q
p
)

Normal forms

A statement is in
disjunctive normal for
m
(DNF) if it is a disjunction i.e.
a sequence of∨
’s consisting of one or more
disjunct
s
. Each disjuncts is a conjunction,


∧
, of one or more literals (i.e., statement letters and negations of statement letters.

For example

1.
p 2.(p∧q
)∨(p∧¬r
)

3.(p∧q∧¬r
)∨(p∧¬q
) 4.p
∨(q∧r
)

However¬(p∨q)
is not a disjunctive normal form(¬
is the outermost operator) nor isp
∨(q
∧(r∨s)
as a∨
is inside a∧
. Converting a formula to DNF involves using logical equivalences, such as the double negative elimination, De Morgan’s laws,

and the distributive law. All logical formulas can be converted into disjunctive normal form but conversion to DNF can lead to an explosion in the size of of the expression.

A formula is in
conjunctive normal for
m
(CNF ) if it is a conjunction of clauses, where a clause is a disjunction of literals. Essentially we have the same form as a DNF but we use∧
rather than∨
.  As a normal form, it is useful ( as is the DNF)    in theorem proving.

We leave with some ideas which are both important and common in mathe- matics.



2.0.5
       
Contradiction and consistency


We say a contradiction is a formula that always takes the value F, for example p∧¬p
.  Then a set of statements
p   1
,
 p
2
, . . . ,
 p
n
 i
s
inconsisten
t
if a contradiction can be drawn as a valid consequence of this set.


p1
, p
2
, . . . ,
 p
n
 �q∧¬q
for
 some
 formula
b
if
 a
 contradiction
 can
 b
e
 derived as
 a
 valid
 consequence
 o
f
p
 1
, p
2
, . . . ,
 p
n
 �q
an
d¬
q


Mathematics is full of proofs by contradiction or Reductio ad absurdum (Latin

for ”reduction to the absurd”). For example


There are i
nﬁ
nitely many prime numbers.


Assume to the contrary that there are onlyﬁnitely many prime numbers, and all of them are listed as follows:
n 1
,
 n
2
 . . . , p
m
. Consider the number



q=
n 1
 ×
n
 2
 ×
. .
 .×
p
 m
 +
1


Then the numberq
is either prime or composite. If we divided any of the listed primes
n i
 int
oq
, there would result a remainder of 1 for eac
hi=
1, 2, ...,
 m
Thus,
 q
cannot
 be
 composite. We conclude tha
tq
is a prime number, not among the primes listed above, contradicting our assumption that all primes are in the list
 n
1
,
 n
2
 . . . , n
m
. Thus there are and inﬁnite number of primes.


there is no smallest rational number greater than 0

Remember that a ration can be written as the ratio of two integers
p/q
say.

Assume
n 0
 =
p/
q
is the smallest rational bigger that zero. Conside
r
n
 0
/
2
. It is clear tha
t
n
 0
/2 <
 n
0
 an
d
n
 0
 is rational. Thus we have a contradiction and can assume that there is no smallest rational number greater than 0.




Chapter  3 Mathematical
 Induction


I have hardly ever known a mathematician who was capable of rea- soning.

Plato (427 BC - 347 BC), The Republic

The integers ,
1, 2, 3, 4, . . .
are also known as the natural numbers and
Mathematical inductio
n
is a technique for proving a theorem, or a formula, that is asserted about every natural number. Suppose for example we believe


1+2+3+
...+n=n(n+1)
/2

that is the sum of consecutive numbers from 1 ton
is given by the formula on the right. We want to prove that this will be true for
al
l
n
. As a start we can test the formula for any given number, say n = 3:


1+2+3=3×
4/2=
6

It is also true forn=
4


1+2+3+4=4×
5/2=
10

But how are we to prove this rule for every value of n? The method of proof we now describe is called the principle of mathematical induction. The idea is simple. Suppose we  have  some statement that is true for a particular natural number
n and we want to prove that it is true for every value ofn
from
1, 2, 3, . . .
If all the following are true

1. 
 When a statement is true for some natural numbern
, sayk
.

2. 
 When it is also true for its successor,k+1
.

3. 
 The statement is true for some valuen
, usuallyn=1
.



then the statement is true for every natural numbe
r
n
.

This is because, when the statement is true forn=1
, then according to 2, it   will also be
 true for 2. But that implies it will be
 true for 3; which implies it will be
 true for 4. And so on. Hence it will be
 true for every natural number and thus

is true for alln
.

To prove a result by induction, then, we must prove parts 1, 2 and 3 above.

The hypothesis of step 1

“The statement is true forn=k
”

is called the induction assumption, or the induction hypothesis. It is what we assume when we prove a theorem by induction.

Example

Prove that the sum of theﬁrst n natural numbers is given by this formula:

Sn
 =1+2+3+
...
+n=n(n+1)
/2


We will call this statement
S n
,  because it depends o
nn
.  Now we do steps 1 and 2 above.


1. 
 First, we will assume that the statement is true forn=k
that is, we will assume that
S k
 is true
 so


Sk
 =1+2+3+
...
+
k
=
k
(
k
+1)
/2


Note this is the induction assumption.

2. 
 Assuming this, we must prove that
S (k+1
)
 is also true.
 That is, we need to show:



S
(k+1
)
=1+2+3+
...+
 (
k
+1
) =
 (
k
+1
)
(
k
+2)
/2


To do that, we will simply add the next term(k+1)
to both sides of the induction assumption,


S
(k+1)
=
S (k+1)
+ (k+1
) =


1+2+3+
. . .
+ (k+1
) =k(k+1)
/2
+ (k+1
) = (k+1
)(k+2)
/2

This is line 2, which is we wanted to show.

3. 
 Next, we must show that the statement is true forn=1
. We haveS(1
) =


1=1×
2/2
. The formula therefore is true forn=1
.

We have now fulﬁlled both conditions of the principle of mathematical induction.


S
n
 is
 therefore
 true
 for
 every
 natural
 num
b
er.



Example

[image: ]
We prove that8 n
−
3
 n
 is
 divisible
 by
 5
 for
 al
l
n
  
N
.The
 pr
o
of
 is
 by
 mathematical induction.


1. 
 Assume the result holds forn=k
, that is
8
k
 −
3
 k
 mo
d5=0
.

Then



8
k+
1
−
3
 k+
1
 =8×
8 
 k
 −3×
3 
 k
.


2. 
 Now the clever step

8k+
1
−
3
 k+
1
 =8×
8  
k
−3×
3
 k
 =3×
8  
k
−3×
3
 k
+5×
8
 k
 =3×(
8  
k
−
3
 k
)
 +5×
8
 k



[image: ]
But
8 k
 −
3
 k
 is divisible by 5 (by the induction hypothesis) an
d
5 8
k
is obviously a multiple of 5.  Therefore it follows tha
t(
8
 k+1
−
3
 k+1
)
is divisible by 5. Hence, the result holds fo
rn=k+1
.




3. 
 The result holds forn=1
because8−3=5
and so is divisible by 5. So we have shown that the result holds for alln
- by induction.


Another Example

We prove this rule of exponents:


(
ab)
n
 =
a
 n
b
n
,for
 every
 natural
 num
b
e
r
n.


Call this statementS(n)
and assume that it is true whenn=k
; that is, we assume


S(k
) = (
ab)
k
 =
a
 k
b
k
 is true.


We must now prove thatS(k+1)
is true, that is


S(k+1
) = (
ab
) k+
1
 =
a
 k+1
b
k+1


Simply by multiplying both sides of line (3) by
ab
gives :


(
ab)
k
a
b=
a 
 
k
b
k
a
b=
a 
 
k
a
b
k
b


since the order of factors does not matter,


(
ab)
k
a
b=
a 
 
k+
1
b
k+
1
.


Which is what we wanted to show.  So,  we  have  shown that if the theorem is  true for any speciﬁc natural numberk
, then it is also true for its successor,k+1
.

Next, we must show that the theorem is true forn=1
which is trivial since


(
ab)
1
 =
a
b=
a
 1
b
1
.


This theorem is therefore true for every natural numbern
.

Exercises

In each of the following0≤n
is an integer

1. Prove that
n 2
 +n
is even.


[image: ]
2. Prove that �
n
 n
2
 =n(n+1
)
(
2
n+1)
/6.


3. Prove that1+4+7+
. . .
+ (
3n−2
) =n(
3n−1)
/2
.

4. Prove thatn!≥
2
n
 whe
n
n > 1



Chapter 4 Sets

Philosophers have not found it easy to sort out sets . . .

D. M. Armstrong, It is useful to have a way of describing a collection of “things” and the mathe-

[image: ]
[image: ]
matical name for such a collection is a
se
t
. So the collection of colours Red,Blue, Green is a set we might callA
and write asA
= Red, Blue,  Green  .  Other examples are

1.{
1, 3, 7, 14
}

2.{
1, 2, 3, 5, 7, 11 . . .}
the set of all prime numbers. 3.{
Matthew, Mark, Luke, John
}

4.  
[image: ]
k : k is an  integer and  k is divisible  by  4  here the  contents  are  deﬁned by a rule.

5.                        
{
All songs available on iTunes}
again the contents are deﬁned by a rule.

[image: ]
[image: ]
We do not care about the order of the elements of a set so 1, 2,  3  is  the  same as
 3,2,1 .

[image: ]
Of course we may want to do things with sets and there is a whole mathemat- ical language attached as you might expect. For example you will often see the statement a
belong
s
to the setA
written as a A
. The symbol
/ is, of course,

the converse i.e.
does not belong to.


So


•
 Mark
∈{
Matthew, Mark, Luke, John
}


•
 Abergail/
∈{
Matthew, Mark, Luke, John}
.



•
  
7
∈{
1,2,3,4,5,6,7
}

There are some sets that have special symbols because they are used a lot.

Examples are

1. The set with nothing in it, called the
empty se
t
is written as∅
. 2.N={
1, 2, 3, . . .}
the set of natural numbers.

3.Z={
. . . ,−
3,−
2,−
1, 0, 1, 2, 3, . . .}
the integers.

4.Q
= the set of fractions. 5.R
= the set of real numbers.

6. The set that contains everything is called the
universa
l
set writtenS,U
or


∅
.

Finally we will write A¯
 when we mean the set of things which are not in
A.

Subsets

It is probably obvious that some set are “bigger” than others, for example{
A,B,C,D,E
} and{
B,C,D}
. We formalize this idea by deﬁning
subset
s
.

If the setB
contains all the elements in the setA
together with some others then we writeA⊂B
. We say thatA
is a
subse
t
ofB
. So


{
Matthew, Mark, Luke, John
}⊂{
Matthew, Mark, Luke, John, Thomas
}

We can of course write this the other way around, soA⊂B
is the same as


B⊃
A.

1. 
 Formally forA⊂B
we say ifa∈A
thena∈B
or


a∈A⇒a∈
B

2. 
 If B is a subset but might possibly be
 the same as A then we use A⊆
B.

3. 
 We will useA=B
to meanA
contains
exactly the sam
e
things asB
. Note that ifA⊆B
andB⊆A
thenA=B
.

In our logical symbolism we have


(A⊆B
)∧(B⊆A)⇒A=
B.


The
power  se
t
ofA
, written,P(A)
, or
2
A
,
 is
 the
 set
 of
 all
 subsets
 o
fA
.
 So
 if



A={
Matthew, Mark, Luke}
then P(A) is the set with eight elements


{
Matthew, Mark, Luke
}


{
Matthew, Mark
}


{
Matthew, Luke
}


{
Mark, Luke
}


{
Matthew
}


{
Mark
}


{
Luke
}

∅

The numb
er of elements in a set
Ais called thecardinalit
y
of
Aand written�
A�
. So if
A={
Matthew, Mark, Luke, John}
then�
A�
=4.

Venn Diagrams and Manipulating Sets

We intend to manipulate sets and it helps to introduce Venn diagrams to illustrate what we are up to. We can think of the universal set S as a rectangle and a set, sayA
as the interior of the circle drawn inS
, seeﬁgure 4.1 The speckled area is

[image: ]


Figure 4.1: Venn diagram of setA
and universal set
S


A
while the remainder of the area of the rectangle is

A¯
 .  We see immediately that


A
together with

A¯
 make upS


Intersection

[image: ]
[image: ]
We can write the set of items that belong to both the setA
and the setB
as
A B
. Formally(x A
)∧(
x B
)              (
x A B)
.

We call this the
intersectio
n
ofA
andB
or, less formally,A
an
d
B
. In terms of

the Venn diagram inﬁgure 4.2 the two circles representA
andB
while the overlap (in black) is the intersection. As examples

[image: ]


Figure 4.2: Venn diagram ofA∩
B

1.{
1,2,3,4
}∩{
3,4,5,6,7}={
3,4}
. Notice 3
∈{
3,4}
while 1/
∈{
3,4}
.

2.{
1,2,3,4
}∩{
13,14,15,16,27}
=∅
.


3.
  
 {
Abergail, Ann, Blodwin, Bronwin, Clair,
}∩{
Abergail, Bronwin, Gareth, Ian}={
Abergail, Bronwin,}
.


4.
  
 Inﬁgure 4.2 we seeA∩ 5.A∩B⊂B
andA∩B⊂
A

Union:

A¯
 =∅
so
Aand

A¯
 have nothing in common.

[image: ]
We  can write the set of items that belong to the set A or the set B or to both as    A   B. Formally(x A
)∨(
x B
)              
x (
A B)
.

We call this the
unio
n
of A and B or, less formally, A
o
r
B. The corresponding diagram is 4.3 Here the speckled area representsA∪
B


[image: ]


Figure 4.3: Venn diagram of setA∪B
(speckled) and universal set
S

As examples we have

1.{
1,2,3,4
} �
 {
3,4,5,6,7}={
1,2,3,4,5,6,7
}


2.
                                                        
{
Blue,Green
}
�
 {
Red,Green}={
Red,Blue , Green
}


3.
  
 Inﬁgure 4.2 we see
A∪
A¯
 =S
so
Aand
A¯
 together make upS
.


4.
   
IfA⊂B
thenA∪B⊂
B

We can now use our basic deﬁnitions to get some results.


1. 
 A= A¯
 The set  A¯
 consists of all the elements ofS
( the universal set) which

do not belong toA
. So

A¯
 is  the  set  of  elements  that  do  not  b
elong  to

A¯
 ,

or the elements ofS
which do not belong to belong toA
.

A¯
 .  
That is the elements that

Or supp
osea
∈
A¯
 ⇒
a /∈ A¯
 ⇒a
∈A

[image: ]
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2.  (
A∩B
) =  
A¯
 ∪  B¯


¯

[image: ]
[image: ]
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We havea∈   (A∩B)⇒
a  /∈(A∩B)⇒(
a /∈A
)∨(
a /∈B)⇒(a
∈
A
)∨(a
∈

Ther⇒
e is a table of useful results in table 4.1.  Notice each rule in the left column

has a dual rule in the right. This dual has the∪
symbol replace by
∩

[image: ]


Table 4.1: Rules for set operations

Cartesian Product

Suppose we have two setsA
andB
. We deﬁne the Cartesian ProductP=A×
B to be
 the set of ordered pairs(
a, b)
wherea∈A
andb∈B
. Or


P={(
a, b
) : (a∈A
)∧(b∈B)}
.

The pair(
a, b)
is ordered in the sense that theﬁrst term(a)
comes from the set


[image: ]
A
in
A B
.  The obvious example and hence the name comes from the geometry  of the plane. We usually write(
x, y)
to denote the coordinates of a point on the plane. This is an ordered pair! If we take real valuesx
andy
withx∈R
and




y∈R
then the Cartesian product isR×
R

1. SupposeA={
a, b}
andB={
1, 2}
thenA×B={(
a, 1),(
a, 2),(
b, 1),(
b, 2)}
.

2. 
 [image: ]
We can extend to 3 or more sets so
A B C
is the set of ordered triples


(
a, b, c)
.



4.0.6
       
Relations and functions


[image: ]
Given two setsA
andB
and the product
A B
we deﬁne a
relatio
n
betweenA
and

[image: ]
B
as a subsetR
of
A B
. We say that
a A
and
b B
are related if(
a, b
) R
,

more commonly written
aRb
. This is a quite obscure deﬁnition unless we look at

the rule giving the subset.

[image: ]
Take the simple example ofA={
1, 2, 3, 4, 5, 6}
andB={
1, 2, 3, 4, 5, 6}
then A B
is the array of pairs below - a set of 36 pairs.


(
1, 1
) (
1, 2
) (
1, 3
) (
1, 4
) (
1, 5
) (
1, 6
)

[image: ]
[image: ]
(
2, 1
) (
2, 2
) (
2, 3
) (
2, 4
) (
2, 5
) (
2, 6
)


(
3, 1
) (
3, 2
) (
3, 3
) (
3, 4
) (
3, 5
) (
3, 6
)


(
4, 1
) (
4, 2
) (
4, 3
) (
4, 4
) (
4, 5
) (
4, 6
)

[image: ]
[image: ]
(
5, 1
) (
5, 2
) (
5, 3
) (
5, 4
) (
5, 5
) (
5, 6
)


☐
 (
6, 1
) (
6, 2
) (
6, 3
) (
6, 4
) (
6, 5
) (
6, 6
) ☐



A
relatio
n
R
is the subset{(
1, 1),(
2, 2),(
3, 3),(
4, 4),(
5, 5),(
6, 6)}
or the set


{(
i, j) :
i=
j}
.  Other example are

1.R={(
i, j) :
i+
j=8}={(
2, 6)
,(
3, 5)
,(
4, 4)
,(
5, 3)
,(
6, 2)
}

2.R={(
i, j) :
i=
2j}={(
2, 1)
,(
4, 2)
,(
6, 3)
}

3.R={
i < j}=

☐☐
☐
☐



(
1, 1
) (
1, 2
) (
1, 3
) (
1, 4
) (
1, 5
) (
1, 6
)

[image: ]
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[image: ]
(
2, 3
)  (
2, 4
)  (
2, 5
) (
2, 6
)


(
3, 4
)  (
3, 5
) (
3, 6
)

[image: ]
(
4, 5
) (
4, 6
)


(
5, 6
) ☐


[image: ]
As you can see we can think of the relationR
as a rule connecting elements of
A to elements ofB
. The relation
aRb
between 2 setsA
andB
can be represented as inﬁgure 4.4

For example

1. 
 ifA={
one, two, three, four,ﬁve}
andB={
1, 2, 3, 4, 5}
we can deﬁneR
as

the set of pairs{
(word, number of letters)}
eg.{
(one, 3), (two, 3), (three,5),

. . .
}

2. 
 IfA={
2,4,8,16,32}
andB={
1,2,3,4,5}
then we might deﬁneR
as the set


{
(2,1),(4,2),(8,3),(16,4),(32,5)
}

1. 
 The
domai
n
of relation{(
x, y)}
is the set of all theﬁrst numbers of the ordered pairs. In other words, the domain is all of the x
-values.

2. 
 The
rang
e
of relation{(
x, y)}
is the set of the second numbers in each pair, or they
-values.


[image: ]


Figure 4.4: The relationR
between 2 setsA
and
B

[image: ]
There are all kinds of names for special types of relations. Some of them are 1.
r
eﬂ
exive
:
for all
x X
it follows that
xRx
. For example, ”greater than or

equal to” is a reﬂexive relation but ”greater than” is not.


2.
  
 symmetric
:
for allx
andy
inX
it follows that if
xRy
then
yRx
. ”Is a blood relative of” is a symmetric relation, becausex
is a blood relative ofy
if and only ify
is a blood relative ofx
.


3.
 
 antisymmetric
:
for allx
andy
inX
it follows that if
xRy
and
yRx
then


x=y
. ”Greater than or equal to” is an antisymmetric relation, because if


x≥y
andy≥x
, thenx=
y.



4.
  
 asymmetric
:
for allx
andy
in X it follows that if
xRy
then not
yRx
. ”Greater than” is an asymmetric relation, because
ifx > y
theny�
> x
.


5.
 
 transitive
:
for all
x, y
andz
in X it follows that if
xRy
and
yRz
then
xRz
.

”Is an ancestor of” is a transitive relation, because ifx
is an ancestor of
y andy
is an ancestor ofz
, thenx
is an ancestor ofz
.


6.
 
 Euclidean
:
for all
x, y
andz
inX
it follows that if
xRy
and
xRz
, then
yRz
.


7.
  
 A relation which is reﬂexive, symmetric and transitive is called an
equivalence relatio
n
.

You can now speculate as the name “Relational Database”.

exercises

1. 
 [image: ]
IfA−B
is the set of elementsx
that satisfy
x A
and
x / B
draw a Venn diagram forA−
B

2. 
 Prove that for sets
A, B
and
C

(a)   
IfA⊆B
andB⊆C
thenA⊆
C

(b)   
IfA⊆B
andB⊂C
thenA⊂
C

(c)   
IfA⊂B
andB⊆C
thenA⊂
C

(d)   
IfA⊂B
andB⊂C
thenA⊂
C

3. 
 Recall thatZ={
0, 1, 2, 3, 4, . . .}
and we deﬁne the following sets (a)A={x∈Z:
for some integer
y > 0, x=
2y
}


(b)
 B={x∈Z:
for some integer
y > 0, x=
2y−1
}


(c)
          
A={x∈Z:
for some integer
x < 10
}

Describ
e A¯
 , (A∪¯
B),

C¯
, A−

C¯
,and
C−(
A∪B
)

4. 
 Show that for all sets
A, B
and
C


(A∩B)∪C=A∩(B∪C
)

iﬀC⊆
A

5. 
 What is the cardinalty of
{{
1, 2},{3}
, 1}
.

6. 
 Give the domain and the range of each of the following relations. Draw the graph in each case.


(a){(
x, y)∈R×R
} |
x
2
 +
4y
 2
 =1
}


(b){(
x, y)∈R×R
} |
x
2
 =
y
 2
}


(c){(
x, y)∈R×R
} |0≤
y, y≤x
andx+
1y≤1
}

7. 
 [image: ]
Deﬁne the relation�
between the ordered pairs{(
x, y)
and(
u, v)where  x, y, v, v Z}
where(
x, y
)�(
u, v)
means
xv=
yu
. Show that�
is an equivalence relation.


Chapter 5 Counting


There are three types of people in this world: Those who can count, and those who
 can’t.


Counting seem quite simple but this is quite deceptive, especially when we have complicated system. If you do not believe me have a look at the probability section. To make like a little simpler we lay down some rules.

Sets

If we have two setsA
andB
the number of item in the sets ( the cardinality) is written�A�
and�B�
.  Then we can show that


�
A∪B�=�
A�+�B�−�
A∩B
�

This is fairly easy to see if you use a Venn diagram. For 3 sets


�
A∪B�=�
A�+�B�+�
C�−�
A∩B�−�B
∩C�−�
A∩C�+�
A∩B
∩C�

Example

LetS
be the set of all outcomes when two dice (one blue ; one green) are thrown. LetA
be the subset of outcomes in which both dice are odd, and letB
be the subset of outcomes in which both dice are even. We writeC
for the set of outcomes when the two dice have the same number showing.

How many elements are there in the following sets? It is useful to have the setS
set out as below












	
1 1


	
1 2


	
1 3


	
1 4


	
1 5


	
1 6





	
2 1


	
2 2


	
2 3


	
2 4


	
2 5


	
2 6





	
3 1


	
3 2


	
3 3


	
3 4


	
3 5


	
3 6





	
4 1


	
4 2


	
4 3


	
4 4


	
4 5


	
4 6





	
5 1


	
5 2


	
5 3


	
5 4


	
5 5


	
5 6





	
6 1


	
6 2


	
6 3


	
6 4


	
6 5


	
6 6







then we have 1.�
A�=
9

2.�B�=
9

3.�
C�=
6

4.�
A∩B�
=0

5.�
A∪B�=
18

6.�
A∩C�=�(
1, 1)
,(
3, 3)
,(
5, 5)�=
3

7.�
A∪C�=�
A�+�
C�−�
A∩C�=9+6−3=
12

Chains of actions

If we have to perform two actions in sequence and theﬁrst can be donem
ways while the second can be done inn
there will be
mn
possibilities in total.


•
   
 Suppose we wish to pick 2 people from 9. Theﬁrst can be
 picked  in  9 ways  the second in 8 giving9×8=
72
possibilities in total.


•
 
 If we roll a die and then toss a coin there are6×2=
12
possibilities.


This extends to several successive actions. Thus

1. 
 If we roll a die 3 times then there are6×6=
216
possibilities.

2. 
 [image: ]
If we toss a coin 7 times there are
2 2 2 2 2 2 2=
2
7
 =
128


possibilities.

3. 
 [image: ]
My bicycle lock has 4 rotors each with 10 digits. That gives
10 10 10 10
= 10
4
 combinations.


4. 
 Suppose you have to provide an 8 character password for a credit card com- pany. They say that you  can use a to z ( case is ignored) and 0 to 1 but  there must be
 at least one number and at least one letter.

there are 26 letters and 10 numbers so you can make
8 36
 possible passwords. Of these there ar
e
8
 10
 which are all numbers an
d
8
 26
 which are all letters. This give
s
8
 36
 −
8
 26
 −
8
 10
 =
3.24
5×
10
 32
 allowable passwords.


Permutations

Suppose I haven
distinct items and I want to arrange them in a line. I can  do  this in


n×(n−1)×(n−2)×(n−3)
× · · · ×3×2×
1

We compute this product so often it has a special symboln!
. However to avoid problems we
d
eﬁ
ne



1
! =0
and0
! =
1

So3
! =3×2×1=6
while5
! =5×4×3×2×1=
120

If we look at the characters in(
1D4Y) there are4
! =
24
possible distinct

arrangements.

Sometimes we do not have all distinct items. We might haven
item of which
r are identical then there aren!
/r!
diﬀerent possible arrangements. So WALLY can be
 arranged in5!
/2
! =60ways.

It is simpler to just state a rule in the more general case:

Suppose we haven
objects and


•
 
 there are
n 1
 of type 1.



•
 
 there are
n 2
 of type 2.



•
    
· · · · · ·


•
 
 there are
n k
 of type k.



The total number of items inn
, son=
n
1
 +
n
 2
 +
· ·
 ·
n
 k
 then
 there
 are


[image: ]
n
! n
1
!n
2
!n
3
!
· ·
 ·
n
 k
!


possible arrangements.

Suppose we have 3 white, 4 red and 4 black balls. They can be arranged in a row in

11
!

[image: ]
3!4!4
!


=
11550

possible ways while the letters in WALLY can be arranged in


5
!

[image: ]
2!1!1!1
! =
6
0
ways


Combinations

[image: ]
The  numb
er  of  ways  of  picking
kitems  from  a  group  of  sizen
is  written
�
n
�
 or

(for the traditionalists) n
C
k
.  The
 deﬁnition
 is


[image: ]
[image: ]
�
n�
 =
 
  
 
n!


So the number of ways of picking 5 students from a group of 19 is


�
19�
 =
 
 1
9
! 
  =
 1
9×
1
8×
1
7×
1
6


5
5!
14
!
4×3×2×
2


Examples

1. 
 Suppose you want to win the lottery. There are 49 numbers and you  can  pick 6. This can be
 done in

49
!

[image: ]
6!
4
3
!
 =
13983816
ways

so your chances of a win are 1/13983816.

2. 
 [image: ]
How many ways can you pick 5 correct numbers in the lottery. There are

[image: ]
[image: ]
[image: ]
6

ways to pick the 5 correct numbers and 49-6=43 ways of picking the remaining number. This
 give
s6×
4
3
ways.


numbers and


�
43
�


[image: ]


3

ways of picking the losing ones. This gives

�6
�


[image: ]



×
 �
43
�
 =


20×
12341=
246820
ways in all.


5.0.7

Binomial
 Expansions


Now we have combinations we can examine a very useful result known as the binomial expansion. To start we can show that


(a+b
) 2
 =
a
 2
 +
2a
b+
b
 2


and


(a+b
) 3
 =
a
 3
 +
3a
 2
b+
3ab
 2
 +
b
 3


In general we can prove that for an integer
n > 0


(a+b)
n
 =
a
 n
+
�
n
�
a
n
−
1
b+
�
n
�
a
n
−
2
b
2
+
· · ·
+
�

n



�
a
2
b
n−2
+
�

n



�
a
b
n−1
+b
n


1
2
n−2

[image: ]
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�
 �n
�

[image: ]

[image: ]



n−
1

This can be done by induction, but there isis a page or so of algebra!

For example


(2+x
) 5
 =
2
 5
 +
 �
5
�
2
4
x
+
 �
5
�
2
3
x
2
 +
 �
5
�
2
2
x
2
 +
 �
5
�
2
x
4
 +
x
 5


1
2
3
4

or


(2+x
) 5
 =
2
 5
 +5×
2
 4
x+
1
0×
2

3
x
2
 +
1
0×
2 
 2
x
2
 +5×
2x
 4
 +
x
 5



[image: ]
Suppose you were given 3x+
5/x 3
 8
 and you wanted the term in the expansion whic
h
did not
have a
nx
. From the above the general term
 is


[image: ]
�
8
�
(
3x
3
)
8−
i
(
5/
x
3
)
i
.


Thex
terms cancel when8−i=
3i
ori=
2.
Then the term is

[image: ]
[image: ]
�
8
�
(
3x
3
)
6
(
5/
x
3
)
2
 =
 �
8
�
3
6
5
2


We can do something similar for non-integraln
as follows:

[image: ]
(1+x)
n
 =1+
n
x
+
 n(n−1)


1.2


x
2
+
n(n−1
)(n−2
)

[image: ]
1.2.3


+

+
n(n−1
)(n−2)
· · ·(n−k+1
)

[image: ]
[image: ]
1.2.3
· · ·
k


x
k
+
· · ·


[image: ]
but this is only true when|x|
< 1.

[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
Thus
(1+x
)
  
1/2  
=1
+

 1
  
 x
1/2
 + 
 
 1

−
 1
  
 x
−
1/2
 + 
 
 1

−
 1

−
 3
  
 x
−
3/2
 +
. . .


Examples

1. 
 Suppose we look at sports scholarships awarded by American universities.  A total of 147,000 scholarships were earned in 2001. Out of the 5,500 schol- arships for athletics, 1500 were earned by women. Women earned 75,000 scholarships in total. How many men earned scholarships in athletics?

2. 
 In clinical trials of the suntan lotion, Delta Sun, 100 test subjects experi- enced third degree burns or nausea (or both). Of these, a total of 35 people experienced third degree burns, and 25 experienced both third degree burns and nausea. How many subjects experienced nausea?

3. 
 A total of 1055 0 MSc degrees were earned in 2002.  Out of the 41 MSc  degrees in music and music therapy, 5 were earned by men. Men earned 650 MSc degrees. How many women earned MSc degrees  inﬁelds  other  than music and music therapy?

4. 
 A survey of 200 credit card customers revealed that 98 of them have a Visa account, 113 of them have a Master Card, 62 of them have a Visa account and a American Express, 36 of them have a Master Card account and an American Express, 47 of them have only a Master Card account, 32 have a Visa account and a Master Card account and an American Express. Assume that every customer has at least one of the services. The number of customers who have only have a Visa card is?


5. 
 So for example from the New York Times According to a New York Times report on the 16 top-performing restaurant chains

(a)   
11 serve breakfast.

(b)   
11 serve beer.

(c)  
 10 have full table service i.e. they server alcohol and all meals.

All 16 oﬀered at least one of these services. A total of 5 were classiﬁed as ”family chains,” meaning that they serve breakfast, but do not serve alcohol. Further a total ofﬁve serve breakfast and have full table service, while none serve breakfast, beer, and also have full table service. We ask

(a)  
 ( How many serve beer and breakfast?

(b)  
 How many serve beer but not breakfast?

(c)  
 How many serve breakfast, but neither have full table service, nor serve beer?

(d)  
 How many serve beer and have full table service?

6. 
 When|x|
< 1
then show that


•
                                                                                
1/(1−x
) =1+x+
x
2
 +
x
 3
 +
x
 4
 +
· ·
 ·+
x
 n
 +
· · ·
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(
1/
2
)
(−
1/
2)
x
2

(
1/
2
)
(−
1/
2
)
(−
3/
2
)
3
x
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•
                                    
1/(1−x
)
2
 =1+
2
x+
3x

2
 +
4x
 3
 +
5x
 4
 +
. . .
+
nx  
n
−
1
+
. . .


7.  
Expand(1+
2x
) 7


8. 
 Which is the coeﬃcient of the term without anx
in(x+
2/x
)
11
.


9. 
 Find an approximation for(
0.95
) 11
.


10. Find theﬁrst 3 terms of the expansion of(1+x
)
1/4
.



Chapter 6 Functions


Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely d
iﬀ
erent.


Johann Wolfgang von Goethe

[image: ]
One of the most fundamental ( and useful) ideas in mathematics is that of a functio
n
. As a preliminary deﬁnition suppose we have  two  setsX
andY
and we  also have a rule which assigns to every
x X
a UNIQUE valuey Y
. We will call

the rulef
and say that for eachx
there is ay=f(x)
in the setY
. This is a very

wide deﬁnition and one that is very similar to that of a relation , the critical point is that for each a there is a
unique valu
e
y
. A common way of writing functions is

f:
X→
Y

which illustrates that we have two setsX
andY
together with a rulef
giving values inY
for values inX
. We can think of the pairs(
x, y)
or more clearly(
x, f(x
))
.

This set of pairs is the
grap
h
of the function

In what follows we show how functions arise from the idea of relations and come up with some of the main deﬁnitions.  You  need to keep in mind the simple idea  a function is a rule that takes inx
values and producesy
values. It is probably enough to visualizef
as a device which when given anx
value produces ay
.
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✲

✲




x
y=f(x
)


[image: ]


Figure 6.1: Functionf

Clearly if you think off
as a machine we need to take care about what we are allowed to put in,x
, and have  a good
 idea of the range of what comes out,y
.  It  is these technical issues we look at next.

[image: ]
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The setX
is called the domain of the functionf
andY
is
codomai
n
. We are normally more interested in the set of values f(x
) :
x X . This is the
rang
e
R sometimes called the
imag
e
of the function. Seeﬁgure 6.1

Examples

We can have

where

f:
X
Y

[image: ]
1.f(x
) =
2  x
 wher
eX={x:0≤
x <

}
an
dY={y:0≤
x <

}


[image: ]
[image: ]
2.
f(x
) =  
√
x
whereX={x:0≤
x <
}
andY={
y:0≤
y <
}

3.
f(x
) =
sin  −
1
(x)
whereX
={x:−
π/2
≤
x
 <
 pi/2
}
an
dY={−1≤
y
≤1
}


If we think of the possibilities we have


[image: ]
There may be
 some points inY
(the codomain) which cannot be
 reached  by functionf
.              If we take all the points inX
and applyf
we get a set




[image: ]
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[image: ]
Figure 6.2: An onto function


R={f(x
) :x∈X}
which is the
rang
e
of the functionf
. NoticeR
is a subset ofY
i.e.R⊂Y
.


[image: ]
Surjection
s
(or
ont
o
functions) have the property that for everyy
in the codomain there is anx
in the domain such thatf(x
) =y
.  If you look at 6.1  you can see that in this case the codomain is bigger than the range of the



function. Seeﬁgure 6.2 If the range and codomain are the same then out function is a surjection. This means everyy
has a correspondingx
for which y=f(x
)


•
   
 Another important kind of function is the injection (or one-to-one function), which have the property that if
x 1
 =
x
 2
 the
n
y
 1
 must equa
l
y
 2
. Seeﬁgure 6.3



[image: ]
Lastly we call functions
bijection
s
, when they are are both one-to-one and onto.



A more straightforward example is as follows. Suppose we deﬁne

f:
X
Y

[image: ]
wheref(x
) =
2  
x
 an
d
X
={x:
0  x
 <

}
and
→
Y={
y
:
−

x
 <

}
.  The
 range



}
while the codomainY
has negative values

[image: ]
of the function isR={y:
0 x <

which we cannot reach using our function.

Composition of functions

The
compositio
n
of two or more functions uses the output of one function, sayf
, as  the  input  of  another,  sayg
.  The  functionsf:X→Y
andg:Y→Z
can  be


Figure 6.3: An 1 to 1 function


[image: ]
composed by applyingf
to an argumentx
to obtainy=f(x)
and then applying g
toy
to obtainz=g(y).
Seeﬁgure 6.4. The composite function formed in this way fromf
andg
can be writteng(f(x
))
or
g f
. This last form can be a bit



dangerous as the order can be diﬀerent in diﬀerent subjects. Using composition

we can construct complex functions from simple ones, which is the point of the exercise.

One interesting function, givenf
, would be
 the functiong
for which x=g(f(x)). In other wordsg
is the
inverse functio
n
. Not all functions have inverses, in fact there is an inverseg
written
f              −
1
 if and only i
ff
is bijective. In this cas
ex
=
 f
−1
(f(x))
 =f(
f
 −1
(x)).


The arrows and blob diagrams are not the usual way we draw functions. You

will recall that the technical description of
f:
X
Y
is the set of values(
x, f(x
))

Supp
ose  we  take  the  realsR
so  our  function  →
takes  real  values  and  gives  us  a

new set of reals,  sayf(x
) =
x
3
 we tak
ex
values , comput
ey=f(x)
for these values and plot them as inﬁgure 6.6.
 Plotting functions is a vital skill, you know very little about a function until you have drawn the graph. It need not
 be
 very


accurate,  mathematicians  often  talk about
sketchin
g
a function.
By this they mean a drawing which is not completely accurate but which illustrates the main characteristics of the function,

Now we might reasonably does every sensible looking function have an inverse? An example considerf(x
) =
x 2
 which is plotted inﬁgure 6.8. There is now problem in the deﬁnition o
ff
for all real values o
fx
, that is the domain i
sR
and the codomai
nR
. However if we examine the inverse we have a
 problem.


if we take y=4, this may arise from x=2 or x=-2.  So there is not an
f −
1
 =
y
 −
1/2


! If we change the domain we can get around this. Suppose we deﬁne
R +
 ={x
:


[image: ]


Figure 6.4: Composition of two functionsf
and
g

[image: ]


Figure 6.5: The inversef
andg=
f
−
1


Examples

1. 
 Supposef(x
) =
x  2
 an
dg(y
)
 =
1/
y
the
ng(f(x
))
 =
1/x

2
. We of course have to take care about the deﬁnition if the range and the domain to avoi
dx=
0


2. 
 Whenf(x
) =
x 2
 an
dg(x
)
 =
x
 1/2
 g
is the inverse function whe
nf
is deﬁned on the positive
 reals.
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−4−202
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x

Figure 6.6: Plot off(x
) =
x 3
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-10123

x

Figure 6.7: Plot off(x
) =
x 3
 −
2x
 2
 −x+
2
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[image: ]
Figure 6.8: Plot off(x
) =
x 2
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01

234
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x

Figure 6.9: Plot off(x
) =
x 2



0≤
x <
∞}
and considerf(x
) =
x
2
 deﬁned o
n
R
 +
 i.e.


[image: ]
[image: ]


In this case we do not have the problem→
of negative values ofx
.  Every value of
y

arises from a uniquex
.


Exercises

For the following pairs evaluateg(f(x
))
andf(g(x
))
.

1.f(x
) =
1/x, g(x
) =
x
2


2.f(x
) =3+
4x, g(x
) =
2x−
5

3.f(x
) =x+
1, g(x
) =x−
1


6.0.8

Important
 functions


Over time we have come to see that some functions crop up again and again in applications. This seems a good point to look at some of these.

polynomials

We call functions likef(x
) =
a p
x
p
 +
a
 p−1
x
p−1
 +
. .
 .+
a
 1
x+
a
 0
 polynomials and these usually have a domain consisting of the reals. In out example the coeﬃcients
 a
0
,
 a
1
, . . . ,
 a
p
 are numbers and our polynomial is said to have orde
rp
.
 Examples are


1.f(x
) =x+
2

2.f(x
) =
x 3
 −
x
 2
 +x+
2


3.f(x
) =
x 17
 −
11


4.f(x
) =
x 2
 −
3
x+
2



Zeros

Very often we need to know for what values ofx
for whichf(x
) =
a
p
x
p
+
a
p−
1
x
p−
1
+


. . .+
a 1
x+
a
 0
 =0
is zero. The values are called the zeros or the roots of the polynomial. We can prove that a polynomial of degre
ep
has at mos
tp
roots which


helps a little. The simplest to way toﬁnd zeros is to factorize the polynomial so if


f(x
) =
x 3
 −6∗
x
 2
 +
11
x−6
=
 (x−1
)
(x−2
)
(x−3
)


sof(x
) =0
whenx=
1, 2, 3.

Factorization is (as for integers ) rather diﬃcult.  The best strategy is to try  and guess one zero, say x=a and then divide the polynomial by (x-a). We then repeat. Polynomial division is just like long division. So to divide
x 3
−6x
2
+11x−6
 b
yx−1
:


[image: ]



x−
1
x
3
 −
6x
 2
 +
11
x−
6


[image: ]
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x
2


[image: ]



x−
1
x
3
 −
6x
 2
 +
11
x−
6


[image: ]
x
2


[image: ]



x−
1
x
3
 −
6x
 2
 +
11
x−
6



−
x 3
 +
x
 2


[image: ]


write out the sum

ﬁnd the power ofx
to multiplyx−
1 multiplyx−1
by
x
2
 as shown.


[image: ]
x
2


[image: ]



x−
1
x
3
 −
6x
 2
 +
11
x−
6


[image: ]
−
x 3
 +
x
 2



−
5x 2
 +
11x


[image: ]
[image: ]
x
2
 −
5x
 x−
1

x
3
 −
6x
 2
 +11x−6


[image: ]
−
x 3
 +
x
 2



−
5x 2
 +
11x


[image: ]
[image: ]
x
2
 −
5x
 x−
1

x
3
 −
6x
 2
 +11x−6


[image: ]
−
x 3
 +
x
 2



−
5x 2
 +
11x


5x
2
 −
5x


[image: ]


6x−
6

subtract as shown.

ﬁnd a multiplier to multiplyx−1
to get a−
5x
2


multiplyx−1
and subtract as shown


[image: ]
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x
2
 −
5x
 x−
1

x
3
 −
6x
 2
 +11x−6


[image: ]
−
x 3
 +
x
 2



−
5x 2
 +
11x


5x
2
 −
5x


[image: ]


6x−
6

[image: ]
[image: ]
x
2
 −5x+6
 x−
1

x
3
 −
6x
 2
 +11x−6


[image: ]
−
x 3
 +
x
 2



−
5x 2
 +
11x


5x
2
 −
5x


[image: ]


6x−
6


−
6x+
6

[image: ]


ﬁnd a multiplier to multiplyx−1
to get a
6x

nothing left so we stop!

0

The answer is
x 2
 −
5
x+6
. If there is something left then it is the remainder.


[image: ]
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Hencex−
3


x−
2
x
2
 −
5
x+
6


[image: ]
−
x 2
 +
2x



−
3x+
6

[image: ]
3x−
6

0

The answer is
x 2
 −
5
x+6
=
 (x−2
)
(x−3)
.


[image: ]
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However suppose we tryx−
4


x−
1
x
2
 −
5
x+
6


[image: ]
−
x 2
 +
x



−
4x+
6

[image: ]
4x−
4

2

We have a remainder and the answer is
x 2
 −
5
x+6
=
 (x−1
)
(x−4
)
 +2
.


Exercises

Factorize

1.
2x 3
 −
x
 2
 −
7
x+
6


2.
2x 3
 −3∗
x
 2
 −
5
x+
6



The power function

Suppose we take valuesx
from the reals and consider the functionP(x
) =
x
a
 for some valu
ea
. We can suppose tha
ta
is also real. So we have



R:
P
R

An example might b
eP(x
) =
x  
2
 o
rP(x
)
 →
=
x
  
1.5
.  In
 the
 second
 case
 we
 clearly
 have


to redeﬁne the domain. Can you see why? The properties of the power function

1.
x  a
 ×
x b
 =
x
 a+
b


2.
x 0
 =
1

Logarithms

We know that we can write powers of numbers, so

10
0
 =
1

10
 1
 =
2

10
 2
 =
100

10
 2
 =
1000

. . .


and
10 0.5
 =
3.162278 . .
 .
.


Now consider the backwards problem:

Giveny
can weﬁnd anx
such thaty=
10
x
.


[image: ]
In other words if we deﬁne the power functiony=P(x
) =
10
x
 fo
r
x
 R
, as above, then what is the inverse of thi
s
P
 −1
(y)? It may help to look atﬁgure 6.10. We have plotted dotted lines from (1.5,0) to the curve. Going fro
mx
vertically to the


curve and then to they
axis gives the power valueP(x
) =y
. The reverse path fromy
tox
is the logarithm.



[image: ]
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x

Figure 6.10: Plot off(x
) =
10 x


The inverse ofp(x)
is call the logarithm or log and is written
log
10
(x). So lo
g
1
0
(1
)
 =0
log             
 
10
(10)
 =1
log             
 
10
(100)
 =0
log             
 
1000
(1)
 =
. . .


Often we are lazy and drop the 10 and just write log(x
)

Because we know that log is the inverse of the power function we have some

useful rules

1. 
 log(u
) +
log(v
) =
log(
uv
)

2.  
log(u
v
)
 =v
lo
g(
u
v
)


3.  
[image: ]
[image: ]
log(u−
log(
v) =
log
� 
 
u
�



1
 u

Of course we did not have to choose 10 in our deﬁnitions. We could have choose 2, like many engineers, or any p
ositive numb
era
say.  We then writey=
log     a
(x
)
 to
 indicate
 the
 num
b
e
r
ywhich
 satisﬁe
sx=
a    
 y
.  Th
e
log
 a
(x)
is
 called
 the
 log
 of
 x
t
o
bas
e
a
.


For reasons which will (we hope) become apparent mathematicians like to use natural log
s
which have a basee=
2.718282 . . .
. because they are used so often rather than write log
e
(x)
you will often see them written as ln(x)
or just as log(x)
. All logs satisfy the rules set out in the list 6.0.8. We shall be lazy and just use

logarithms to basee
.


We can of course express logs in one base as logs in another. Supposex
=


a
lo
g
a
(x
)
 =
b
 lo
g
b
(x
)
 then taking logs gives


log
a
(x
) =
log a
(b)
log
 b
(x
)


Sometime it is natural to express powers as base 2 for exampley=P(x
) =
2 x
. Mathematicians often use the numbe
re
so the power deﬁnition i
sy=
e
 x
 which you will often see written a
sy=
ex
p(x)
sinc
e
e
 x
 is called th
e
exponential functio
n
.



6.1
          
Functions and angular
 measure


[image: ]
We look brieﬂy at the measurement of angles. Angular measure has been important from the very beginning of human history both in astronomy and navigation. Consider a circle with the angleθ
made with thex
axis as shown. Unlike maps in mathematics the reference line is
no
t
North but along thex
axis and if we rotate anti-clockwise we sweep out an angleθ
. The angle is traditionally measured in degrees, minutes and seconds. We will stick to degrees for the moment.

✻

If we sweep anti-clockwise through 360 degrees we sweep out a circle. 180 degrees

[image: ]
is a half circle and
720=
3 360two circles. Rotations in a clockwise direction are assumed to be
 negative degrees, so−
90 o
 =
270
 o


To complicate things a little we can also measure the angle in an equivalent

way by measuring the length of the arc we make out on the circle as we sweep through the angleθ
.  Suppose this iss
.  For  a circle of radius 1s
is a measure of   the angle, although in diﬀerent units called
radian
s
. So one circle is
2π
radians and
90 o
 i
s
π/
2
radians. We convert from degrees to radians as follows



[image: ]


If you look at most “scientiﬁc calculators” you will see a button for switching from degrees to radians and vice versa.

The trigonometric functions

Of course we can measure angles in other ways. Suppose we look at the angle
θ in the diagram. The ratio of they
andx
values is related to the angle. Roman surveyors would often choose and angle byﬁxing thex
value and they
value. As you can. imagine,ﬁve steps and then 3 steps vertically gives the same angle no matter where you are


[image: ]


y



x

[image: ]
Thus from the diagramθ
is related to
y/x
. In fact we deﬁne
y/x
to be
 the tangent ofθ
written as tanθ=
y/x
. The inverse function is tan              −1
θ=
y/
x
or sometimes arcta
nθ=
y/
x
The reader might like to examine our triable and see why the tangent o
f
90
 o
 does not exist. We provide a plot of the tangent from 0 to just under 90 degrees inﬁgure 6.11. If we keep the deﬁnition on the domai
n
0
 θ< 90


as is (relatively) simple. While the domain is easily extended we leave this to those of you will interests in this direction.

Of course we do not have to use tangents,  although they are probably the  most practical in applications. Alternative are to use the ratio
y/r
the height
y divided by the radius of the circler
. This is called the sine function and written sinθ=
y/x
.

In a similar we we could use the cosine written cosθ=
x/r
. Both of these

functions are plotted inﬁgure 6.12 There are lots of links between these functions,


[image: ]
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theta

Figure 6.11: tan
x

for example

[image: ]
tanθ
=

sin
θ cos
θ

This can be
 deduced quite simple from the deﬁnitions. Try it yourself!

The trigonometric functions are periodic in that if we plot them over a large part of the axis they repeat as inﬁgure 6.13

Out next step is the study of the shapes of functions which brings us to Cal- culus.
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angle in degrees

Figure 6.12: tan
x
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Figure 6.13: Plot of sin and cos


Chapter 7 Sequences


Reason’s last step is the recognition that there are an i
nﬁ
nite number of things which are
 beyond
 it.             
 
Pascal


[image: ]
We  write  a  sequence
a  1
,
 a
2
,
 a
3
,   , a  
n
,   a
s{
a   
n
}
and  our  interest  is  normally whether the sequence tends to a
 limi
tA
written





•
 [image: ]
a n
 →A
a
sn
→
 ∞
.


However there are many interesting sequences where limits are not the main inter- est. For example the Fibonacci sequence. In Fibonacci’s Liber Abaci (1202) poses the following problem

How Many Pairs of Rabbits Are Created by One Pair in One Year:

A certain man had one pair of rabbits together in a certain enclosed place,  and one wishes to know how  many are created from the pair  in one year when it is the nature of them in a single month to bear another pair, and in the second month those born to bear also.

The resulting sequence is

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

and each term is the sum of the previous two terms. An interesting aside is that then
th Fibonacci numberF(n)
can we written as

[image: ]
[image: ]
F(n
) = [
φn
 −(1−
φ)
  
n
]
/
 √
5
whereφ=
 (1
+

√
5)
/2
�
1.618 . . .


[image: ]
which is a surprise sinceF(n)
is an integer and the formula contains
√
5
. For lots

more on sequences see


http://www.research.att.com/
 njas/sequences/



7.0.1
       
Limits of sequences


We  turn  our  attention  to  the  b
ehaviour  of  sequences  such  as{
a  n
}
a
sn
b
ecomes very
 large.


1. 
 [image: ]
A sequence may approach aﬁnite valueA. We  say that it tends to a limit,  so for example we write

[image: ]
[image: ]
1,
 �
1
 �

or


�
1
 �
2
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�
1
 �
3


[image: ]


. . .


�
1
 �
n


[image: ]


, . . .

1.0000
0.5000
0.2500
0.1250
0.0625
0.0312
0.0156
0.0078
0.0039
0.0020 . . .

as

[image: ]
and we shall see that


�
�
 1
 �n
�


[image: ]


[image: ]
�
�
 1
 �n
�
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0
as
n

2. 
 [image: ]
If a sequence does not converge it may go to
, that is keep increasing or decreasing.

1
2
4
8
16
32
64
128
256
512
1024 . . .

Informally{
2 n
}

as

.


3. 
 A sequence may→
ju∞
st o→
scil∞
late


1−
1
1−
1
1−
1
1−
1
1−
1
1

Limit

We need a deﬁnition of a limit and after 2000 years of trying we use :
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n

A
as

if and only if, given any numbe
r�
there is a
nN
such that for


[image: ]
n N|
a
n
 −A|
<
�
.


In essence I give you a guarantee that I can get as close as you wish to a limit

(if it exists) for all members of the sequence with suﬃciently largeN
, that is after N
all the values of the sequence satisfy|
a              n
 −A|
<
�
.  The idea is that if there is  a limit then if you give me some tolerance, her
e�
, I can guarantee that for some point
 in
 the
 sequence
 all
 the
 terms
 beyond
 tha
t
al
l
lie
 withi
n�
of
 the
 limit.



Examples


•
                       
[image: ]
{ 1
}

0.



•
  
[image: ]
{
x  n
}
→0
fo
r|x|
<
 1.


Suppose you give me a (small) value for�
. I can then choose a  valueN where
N > 1/�
. We can do this as, for|x|
< 1

. . .|x
|  4
<|x
|  
3
<|x
|  
2
<|x
|


It then follows that as
N > 1/�
then
�> 1/N
. But if
n > N
then
1/n < 1/N

so we can say:

[image: ]
[image: ]
if we choose
N > 1/�
the when
N > n|
1/n−0|
<�
and so
1/n


•
 
 We argue as follows:

Suppose you give me a (small) value for�
. I can then choose a valueN where|x
|              
N
<
�
.  OrNlo
g|x|<
lo
g�
.  Rearranging


But if log|x|
< 1
then


N
 >

log�

[image: ]
log|x
|

beware the signs!

log|x
|
2
<
lo
g|x|
,lo
g|x
|

3
<
lo
g|x
|

2
, . . .lo
g|x
|

n
<
lo
g|x
|

n
+
1


So we cho
ose
N >
log
�/log|x|
then whenN > n|
x
n
 |=|
x
 n
 −0|
<�


and so|
x n
 |
→
0



Rules

Manipulating expressions like|
a
n
 −a|
can
 be
 tricky so it is easier to develop some rules. Using these is very much easier as we
 shall see.
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If{
a n
}
an
d{
b
  
n
}
are
 two
 sequences
 an
d{
a
  
n

Awhil
e{
b

n

B
then



•
                                             
[image: ]
{
a  n
 ±
b
 n
}

A
±
B



•
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{
a  n
b
n
}

AB



•
                                        
[image: ]
{
a  n
/
b
n
}

A/Bprovide
dB
is
 nonzero
 as
 are
 the
{
b

n
}
.



•
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For a constantcwe have{
ca
n
}

cA


also


•
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If{
a  n
}

±

then
{
1/a

n
}

0



•
                                  
[image: ]
If{
a  n
}

±

whil
e{
b

n
}

B
(ﬁnit
eB
)
 then
{
a

n
 +
b
 n
}              ±
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If{
a  n
}

whil
e{
b

n
}

B
(ﬁnit
eB
)
 then
{
a

n
b
n
}

de
p
ending
 on
 the sign
 o
fB
.




We can look at rational functions as follows 1.
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�
 n+
1
 �
 =
 �
 1+
1/n
 �
 →
 �
 1+
0
 �
 →
1


[image: ]



n
2
 −
3
n+
11


[image: ]
n
4
 +
13n 2
 −n+
43
=


[image: ]
3.

1/n
2
 −
3/n
 3
 +
11/n
 4


[image: ]
1+
13/n 2
 −
1/n 3
 +
43/n 4

→



0−0+0



1+0−0+
0

0/1

4.

Subsequence


n+
13x n


[image: ]
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[image: ]
3n
 +
1


[image: ]
4
n
 +13


1+
13x n
/n

[image: ]
[image: ]
(
3/4)
n
 +
1/4
 n


[image: ]
=


1+
13(
1/4
) n


0/1=
0
1
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A subsequence of a sequence{
a n
}
is
 an
 inﬁnite
 succession
 of
 its
 terms
 picked
 out
 in any way. Note that if the original series converges t
oA
so does any subsequence. I
f
a  
n
+
1
             
 
a  
n
  we  say  the  subsequence  is  increasing  while  i
f
a  
n
+
1
             
 
a  
n
  we  say the subsequence is decreasing. Increasing or decreasing sequences are sometimes


called monatonic.


Bounded

If an increasing sequence is bounded above then it must converge to a limit. Simi- larly If an decreasing sequence is bounded below then it must converge to a limit.


7.1
          
Series


A series is the sum of terms of a sequence written

[image: ]
N



u
1
 +
u
 2
 +
u
 3
 +
· · ·
+
u 
 N
 =

u
i



i=
1


We use capital sigma (Σ
) for sums and by

[image: ]
b



u
i



i=
a


we mean the sum of terms like
u i
 fo
ri
taking the value
sa
t
ob
. Of course there


are many series we sum, for example we have met the Binomial series and we have

the following useful results.



•
                                                                                                
[image: ]
1+2+3+4+
· · ·+N
=
�
N
 =N(N+1)
/2


•
 
 [image: ]
1 2
 +
2
 2
 +
3
 2
 +
4
 2
 +
· ·
 ·+
N
 2
 =
 �
N



•
 
 [image: ]
1 3
 +
2
 3
 +
3
 3
 +
4
 3
 +
· ·
 ·+
N
 3
 =
 �
N



i
2
 =N(
2
N+1
)
(N+1)
/6



i
3
 =
 [N(N+1)
/
2
]
 2



•
 
 [image: ]
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1 1
 +
 1
 1
 +
· ·
 ·
+
 1
 1
 =
 �
N



�
 1
 �
 =1
−
 1



•
                                    
[image: ]
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1+x+
x
2
 +
x
 3
 +
· · ·
+
x  
N
 =
 �
N   
x
i
 =
 �
1−
x  
N
+
1
�
 /
(1−x
)



7.1.1
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I
nﬁ
nite
 series


If we want the sum of the inﬁnite series
i
=
1
u
i
 -if
 such
 a
 thing
 exists
 -
 we
 need
 to
 be
 clear we mean
.
Assume that
 all
 the terms in the series are non-negative, that i
s
0≤
u             
 i
.
Consider
 the
 partial
 sums



S
1
 =
u
 1



S
2
 =
u
 1
 +
u
 2



S
3
 =
u
 1
 +
u
 2
 +
u
 3



S
4
 =
u
 1
 +
u
 2
 +
u
 3
 +
u
 4


· · ·


S
N
 =
u
 1
 +
u
 2
 +
u
 3
 +
· · ·
+
u 
 N


[image: ]
· · ·

If the sequence{
S n
}
converges
 to
 a
 limi
tS
then
 we
 say
 that
 the
 series

i
=
1
u
i
 is convergent and the sum i
sS
. Otherwise we say the series diverges or is divergent.


Examples


•
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�∞



1
 is divergent.
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S  =1
+   1
 +  1
 +  1
 =1
+   1
 + �
1 
  
+ 1 
 
 
�
 > 1
+   1
 +  1
 > 2

and
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S


=1
+
 1
 +
 �
1
 +
 1
 �
 +
 �
1
 +
 1
 +
 1
 +
 1
 �
 >
 1
+
 1
 +
 1
 +
 1

> 3/2
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S

 1

�
 1
 + 
 1
 �
+
�
 1
 + 
 1
 + 
 1
 + 
 1
 �
+
�
1 
  +
 
 1 
 
+ 
 1 
 
+ 
 
1 
 
+ 
 
1 
 
+ 
 
1 
 
+ 
 1 
 
+ 
 
1 
 �


> 1
+

1
1
1
1
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+
+
+

2
2
2
2

> 6/2

In general we can ( with care show )

k

[image: ]
S
2
k  
>  
2
 +
1


So we can make the partial sums of
2 k
 terms as large as we like and they are increasing and unbounded. Thus the series must
 be
 divergent.


[image: ]
This has an important consequence if
u n

0
it does not mean that
 the


[image: ]
sum is convergent
. It may be
 but it may not be!


n
=
0
x
n
 is
 convergent
 fo
r|x|
<
 1
and
 the
 sum
 i
s
1
/(1−x)
.When
|x|
>
 1
the series is
 divergent.


We can argue that
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N

N−
1



x
n
 =
 
 
1−x
    

1/(1−x)
 1−
x



n=
0


and since we have an explicit form for the sum the result follows.


•
   
�∞



1
 
 
converges and the sum is 1
 since


[image: ]
n=
1
 n(n+1)



�
n
=
1



1
    
 
n(n+1
)
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[image: ]
−

n=1


1

 
  
 
1


[image: ]
−

n
(n+1
)

[image: ]
=1
−


1



N+
1


•
   
[image: ]
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�∞


is divergent forα≥1
and convergent otherwise.
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Some Rules for series of positive terms



•
                    
If
n
=
1
u
n
 and

n
=
1
v
n
 are
 b
oth
 convergent
 with
 sum
sS
an
d
Tthen


[image: ]
n
=
1
(u
n
 ±
v
 n
)
converges
 to
S±
T.


If
n
=
1
u
n
 converges  then  adding  or  subtracting  aﬁnite  num
b
er  of  terms does
 not
 aﬀect
 convergence,
 it
 will
 however
 aﬀect
 the
 sum.




•
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If
u  n
 d
o
es
 not
 converge
 to
 zero
 then

∞
n
=
1
u
n
 d
o
es
 not
 converge.



•
  
 The  comparison  test:  If
n
=
1
u
n
  and

n
=
1
v
n
  are  two  series  of  
p
ositive terms
 and
 i
f{
u
 n
/
v
n
}
tends
 to
 a
 non
 zeroﬁnite
 limi
tR
then
 the
 series
 either both converge or both
 diverge.


[image: ]
The Ratio test:  If
n
=
1
u
n
 is a series of
 p
ositive terms and sup
p
os
e{
u
 n
+
1
/
u
n
}



L
then


–
If
L < 1
the series converges.


–
If
L > 1
the series diverges.

[image: ]
–
IfL=1
the question is unresolved.

The integral test:  Supp
ose we have
n
=
1
u
n
 an
d
f
(n
)
 =
u  
n
 for some function



f
which satisﬁes

1.f(x)
is decreasing asx
increases. 2.f(x)
> 0
forx≥
1

Then
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1.
0 <  �
N

u  − �
N
+
1
f(x)
dx < f(1
)

2.  The  sum  converges if the integral
f(x)
dx
isﬁnite and diverges if


1
∞
 f
(x)
dxis
 inﬁnite.


Absolute Convergence

[image: ]
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�
We  
say  
that  
�
∞
n
=
1
u
n
  i
s
absolutely
�
convergen
t
if

�
∞
n
=
1  
|
u 
 
n
 
 
|
converges.              If



ditionally convergen
t
. The nice thing about absolutely convergent series is we can rearrange the terms without aﬀecting the convergence or the sum.

Alternating sign test

On simple test for non conditionally convergent series is the alternating sign test. Supp
ose we have a decreasing sequence of p
ositive terms{
u n
}
and
 let



S=
u 1
 −
u
 2
 +
u
 3
 −
u
 4
 +
. .
 .
+
 (−1
)
 n
u
n
 . . .


ThenS
converges. For example


1
−

1
1
1

[image: ]
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+
−

2
3
4

1
1
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+
−
. . .

5
6


Power series

A series of the form


S=
a 0
 +
a
 1
x+
a
 1
x+
a
 2
x
2
 +
a
 3
x
3
 . .
 .
=


∞

[image: ]
n=0



a
n
x
n


is called a
power serie
s
Many power series only converge for values ofx
which satisfy|x|
< R
for some valueR
. This value is called the
radius of convergence.
 We can usually rindR
using the ratio test, for example

[image: ]
5
5
5
5

Then


|
u
/u


|
=
 �
�
  
x
�
n
+
1
/
 �
  
x
�
n
�
 =
 �
�
  
x
�
�



n+
1

n

�
 5


5
�

�
 5 �


for this to be less than 1 we need|x|
< 5
You can then checkx±5
separately.

Exercises

1. 
 Write down theﬁrstﬁve terms of each of the sequences deﬁned below

(a)
a n
 =1−(
0.
2
)
 n


(b)
a n
 =1−(−
0.
2
)
 n


(c)a  n
 =
 (n
2
 +1)
/
(n+1)
. (d
)
a
 n
 =3/a
 n−
1

a
1
 =−1


2. 
 Graph the sequences in question 1.

3. 
 Decide which of the following sequences converges andﬁnd the limit if it exists.

(a)2−(
0.2
)
n


(b)2−(−
0.2
)
n


(c)(n+1)
/(
n
2
 +1
)


(d)(4+n)/(
3n−2
) (e)(4+n
)

(f
)(
n  2
 −n+2)
/
(
5n  
2
 +
4
n+1
)


[image: ]
(g)2  n
 −
 �
−
 1
�



4. 
 How large mustn
be for(
1/3
)
n
 to
 be
 less that (a)
 0.01


(b)
10 −
6


5. 
 Find a numberN
such that
n
2
/
2
n
 ≤
0.00
1
i
f
n >
 N
.


6. 
 Suppose
a n
 =
x
 1/n

x > 1


(a)  
 Show that the sequence is decreasing.

(b)  
 Show that the sequence is bounded below.

(c)   
Is the sequence convergent?

7.  
Show that

8.  
Find


1+3+5+
· · ·
+ (
2N−1
) =
N
2


[image: ]
N



(n+1
)(n+2
)


n=
1


9. 
 Decide which of the following sums are convergent.

(a)

(b)


∞
n
=
1
1/(
2n−1
)

[image: ]
∞
n
=
1
2/(n
2
 +3
)
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(c)  �
∞
n
=
1
1/
√
2n−
1


Chapter 8 Calculus


I’m very good at integral and d
iﬀ
erential calculus, I know the sci- ent
iﬁ
c names of beings animalculous; In short, in matters vegetable, animal,
 and
 mineral,
 I
 am
 the
 very
 model
 of
 a
 modern
 Major-General.


The Pirates of Penzance.  Act 1.

We have looked at limits of sequences, now I want to look at limits of functions. Suppose we have a functionf(x)
deﬁned on an intervala≤x≤b
. I have a sequence
x 1
,
 x
2
,
· ·
 ·
, x
 n
 which tends to a limi
t
x
 0
. Can I say that the sequence
 f
(x
1
)
, f
(x
2
, . . . , f
(
x
n
)
tends
 to
�
and
 what
 do
 I
 mean?  We
 normally
 deﬁne
 the
 limit


[image: ]
as follows:

[image: ]
We say thatf(x
)
f(x


0
)
a
s
x

x

0
 if for an
y
�>
 0
there is a
 value


δ> 0
such that|x−x


0
 |
<δ

|
f
(x)−�|
<�


This is in the same spirit as our previous deﬁnition for sequences.  We  can be
 as   close as we wish to the limiting value�
.

For example(x−2
)
4



0
as
x
2
. If you given me an
0 <�< 1
then if

[image: ]
|x−2
|≤
δwe know|(x−2
)
→

4
 −→
0
|≤
δ
4
.
  
So
 provide
d
δ
≤�
we
 have
 a
 limit
 as
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1.0
2.0
3.0
4.0



[image: ]


0.5



-0.5

In the second case we plot sin(
1/x)
. This starts to oscillate faster and faster as it approaches zero and ( it is not quite simple to show) does not have a limit.



8.0.2
       
Continuity and
 D
iﬀ
erentiability


We did not specify which direction we used to approach the limiting value, from above or from below. This might be important as in the diagram below where the

[image: ]
f(x
)

[image: ]
[image: ]
x
0


function has a
jum
p
at
x 0
.


[image: ]
[image: ]
We like
continuou
s
functions, these are functions wheref(x
)
f(
x
0
)
a
s
x

x

0


from above and below. You can think of these as functions you can draw without

lifting your pencil oﬀthe page. Continuous functions have lots of nice properties.

If we have a continuous function we might reasonably look at the
slop
e
of the curve at any point. This may have a real physical meaning. So suppose we have the track of a car. We might plot the distance it travels, East say, against time.

If the diﬀerence between the distance at times
t 0
 an
d
t
 1
 i
sD
the
n
D
/(
t

1
 −
t
 0
)


gives the approximate speed. This is just the procedure followed by average speed

[image: ]
cameras on roads! However what we have observed is an average speed. If we want an estimate of speed at a particular timet
we need
t              
0
 an
d
t
 1
 to approac
ht
.



[image: ]
f(x+
δx
)

θ


y

f(x)


x

x+
δx

If we take the times to bet
andt+
δt
, where
δt
means a small extra bit oft
, then we want


f(t+
δt)−f(t
)

[image: ]
(t+
δt−t
)

as
δt
becomes small or more explicitly


f(t+
δt)−f(t
)

[image: ]
[image: ]
δt

as
t
0

This limit gives the
derivativ
e
which is the slope of the curvef(t)
at the point
t and is written
f �
 (t)
or

df

[image: ]
dx
 =
lim


δt→
0



f(t+
δt)−f(t
)

[image: ]
δt

(8.1)

Suppose we takey=f(t
) =3−
4t
, a line with constant negative slope. Using the equation 8.1 we have

df

[image: ]
dx
 =
lim


δt→
0



3−4(t+
δt)−3+
4t

[image: ]
=

δt


−
4δt

[image: ]
=−
4

δt

If we now havey=x
2
 −3
we have, writin
gx
fo
r
t


df

[image: ]
dx
 =
lim

δt→0


(x+
δx
) 2
 −3−
x
 2
 +3


[image: ]
=

δx


x
2
 +
2xδ
x
+
 (
δ
x
)
 2
 −3−
x
 2
 +
3


[image: ]
=

δx

2xδx
+ (
δx
) 2


[image: ]
=
2x+
δx

δx

So at x=2 the slope is zero while whenx
is negative the slope is down and then      is upwards whenx
is greater that zero.  You  mightﬁnd it useful to consider the  plot. Note that if we take a point on a curve and draw a straight line whose slope is
f �
 (x)
this line is known as the
tangen
t
atx
.


[image: ]


Of course life is too short for working out the derivatives
dy/dx
like this fromﬁrst principles so we tend to use rules ( derived fromﬁrst principles ).

d
df

1.  
 [image: ]
[image: ]
dx
 [
af(x
)] =
a dx
 wherea
is a constant.

d

[image: ]
2.
[f(x
) +g(x
)] =

dx

d

df dg dx dx

[image: ]
dg
df
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[image: ]
3.
[f(x)g(x
)] =f(x
)
+g(x
)

dx
dx
dx

d
1
1
df


4.
  
 [image: ]
[image: ]
dx f(x
) =
−
 f
2
(x
) dx


5.
     
[image: ]
[image: ]
d
 [x
n
]
 =
nx
 n
−
1
 when
n=
0
 and
 zero
 otherwise.


dx


6.
  
 [image: ]
df
(
g
(x
))
 =
f �
 (
g(x
))
g
�
 (x)
using  �
 for
 the
 derivative.


dx


This set of rules makes like very easy, so

[image: ]
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d
 (
3x
2
 −
11
x+
5
9
)
 =
3 2
x−
11


dx

d
1
6x−
11

[image: ]
[image: ]
dx (
3x
2
 −
11x+
59
)
=
−
 (
3x
2
 −
11x+
59
) 2


[image: ]
d
 (
3x
2
 −
11
x+
5
9
)
(x−1
) =
 (
6
x−
1
1
)
(x−1
) +
 (
3x

2
 −
11
x+
5
9
)
(1
)


dx

Example


[image: ]
Suppose we would like to show that sin
x x
for
0 x π/2
. We know that whenx=
0
x=
sinx=0
. But



[image: ]
[image: ]
dx =1
and

dsinx


=
cos
x

dx
dx


[image: ]
Since cos
x 1
in the interval it implies that sinx
grows more slowly thanx
and the result follows.



Once we move away from polynomials life gets a little more complex. In reality you need to know the derivative to be
 able to proceed so you  need a list such as  in table 8.1. Note that the derivative of exp(x)
is just exp(x)
. So for example

Table 8.1: Table of derivatives: all logs are basee
anda
is a constant







	
Function


	
Derivative





	
exp(
ax
)


a
x


log(ax) x
x
 sin(
ax
)

cos(
ax
)

tan(
ax
)


	
aexp(ax) a
x
 lo
g(a
)
 1


[image: ]


x x
x
(1+
lo
gx
)
 a
co
s(x
)



−a
sin(x
)

a

[image: ]


cos
2
(x
)








•
                                                     
Ify=
exp(−
x
2
)then



d
exp(−
x 2
)


[image: ]


dx


=
exp(−
x


2
)
(−
2
x
)



•
                                                 
Ify=
log(
3x
2
 −4x+1)then



d
log(
3x 2
 −4x+1)


[image: ]
dx

6x−
4

[image: ]
=


(
3x
2
 −
4x+1
)

It is important to remember that the formulas only work for logarithms to base
e and trigonometric functions, sin, cos etc expressed in
radians.



higher derivatives

dy


d
 � 
 d
y
�


[image: ]


Since


dx
 is a function we might wish to diﬀerentiate it again to get

[image: ]
d
2
y



dx

called


dx


d
4
y


the second derivative and written

[image: ]
and in general


d
x
2
 . If we diﬀerentiate 4 times we write

[image: ]


dx
4


So ify=
log(x)
we have


d
n
y d
x
n



n=
2, 3, 4, . . .

dy
1

[image: ]
[image: ]
=

dx
x


d
2
y

1


[image: ]
[image: ]
=
−

dx
2

x2



d
3
y

2


[image: ]
[image: ]
=

dx
3

x3



d
4
y


[image: ]
=−

dx
4


6

[image: ]
. . .


x
4


Maxima and minima

One common use for the derivative is toﬁnd the maximum or minimum of a function. It is easy to see that if we have a maximum or minimum of a function

then the derivative is zero. Considery
=
 1
x
3
 +
 1
x
2
 −
6
x+
8



3

2



f(x
) = 1
x
3
 +
 1
x
2
 −
6
x+
8



3

2


[image: ]


df

[image: ]
We  compute dx



=
x 2
 +x−6
which is zero whe
n
x

2
 +x−6
=
 (x+3
)
(x−2
)
 =
0


orx=−3
andx=2
and from the plot it we see that we have found the turning

points of the function. These are the local maxima and minima.

However when we step back and look at the whole picture it is possible to we

df

[image: ]
have a stationary point i.e. dx
 =0
which is not a turning point and hence we

need a local max or minimum rule:











	
	


	
	
	
dy

[image: ]


dx


	

=
0


	
	


	
	



	
dy dx

dy dx


	
< 0
for
x < x

> 0
for
x > x


	
0

0


	
dy dx

dy dx


	
> 0
for
x < x

< 0
for
x > x


	
0

0





	

x
0
 is a minimum



	

x
0
 is a maximum






	

d
2
y


> 0

dx
2



	

d
2
y


< 0

dx
2





	
	
	
	
	
	





1. 
 [image: ]
[image: ]
[image: ]
The functionf(x
) = 1
x
3
 +
 1
x
2
 −
6
x+8
has derivative

dy



=
x 2
 +x−6
so


[image: ]
[image: ]
[image: ]
[image: ]
3

2

dx


[image: ]
atx=2
we have
 dy
 =0
. Whe
n
x <
 2
the derivative is negative while when


x > 2
it is positive so we have a minimum.


d
2
y


2. 
 [image: ]
Or perhaps simpler d
x
2
 =
2x+
1 > 0
atx=2
so we have a minimum.

3.  
Whenx=−3
again
 dy
 =0
.
 Forx
 <−
3

 dy
 >
 0
while whe
n
x
 >−
3             
 
d
 y
 < 0



dx

dx

dx


implying a maximum.


d
2
y


4. 
 [image: ]
Again for simplicity d
x
2
 =
2x+
1 < 0
atx=−3
hence we have a maximum.


Example

Suppose we make steel cans. If the form of the can is a cylinder of heighth
and radiusr
the volume of the can isV=
πr 2
h
and the area of the steel used is
 A=
2πr
h+
2πr
 2
.


We want the volume to be 64cc. and henceV=
πr 2
h=
6
4
which gives



h=
64/(
πr 2
)
. The area is therefor
eA=
2πr
h+
2πr
 2
 =
128/r
 2
 +
2πr
 2


To minimize the area we compute


[image: ]
dA
 =−
128/r 2
 +4πr dr




[image: ]
which is zero when
4πr 3
 =
12
8
givin
g
r 2.1
7
an
dh=
64
/(
πr
 2
)
 4.34.


To check that this is a minimum


[image: ]
d
2
A d
r
2




=256/r


3
 +
4π


which is positive whenr
is positive so we have a minimum.

The Taylor Expansion

We leave you with one useful approximation. If we have a functionf(x)
then we have


f(x+a
) =f(x
) +a

df
a2
 df
2


[image: ]
[image: ]
+

dx
2
! dx2



+
. . .+


a
n
 d
f
n


[image: ]
n
! dxn



+
. . .

Whena
is small and we evaluate the derivatives at x. For example if we take sin
x the derivatives are cosx,−
sinx,−
cosx,
sinx
, . . . . So atx=0
since sin0=
0

and cos0=
1

sin(a
) =a
−


a
3

a
5


[image: ]
[image: ]
+
−


3
!
5
!


a
7


[image: ]
−
. . .


7
!


8.0.3
       
Newton-Raphson
 method


We now examine a method, known as the Newton-Raphson method, that makes use of the derivative of the function toﬁnd a zero of that function. Suppose we have reason to believe that there is a zero off(x)
near the point
x 0
.
 The
 Taylor


expansion forf(x)
about
x
0
 can
 be
 written as:



f(x
) =f(x

) + (x−
x
)
f
�
 (
x  ) + 1
 (x−
x  2
f
��
 (
x  )
 +
. . .


[image: ]



0

0

0

2
!

0

0


If we drop the terms of this expansion beyond theﬁrst order term we have

f(x
) =
f(
x 0
) +
 (x−
x  
0
)
f
�
 (x
0
)



Now setf(x
) =0
toﬁnd the next approximation,
x
1
, to the zero o
ff(x)
,
 we


ﬁnd:

f(x
1
)
 =
f
(
x
 0
) +
 (x
1
 −
x
 0
)
f
�
 (x
0
)
 =
0


or


x
1
 =
x



−
 f(x
0
)


[image: ]
f
�
 (x
0
)


This provides us with an
iteration schem
e
which may well converge on the zero off(x)
, under appropriate conditions.

example

Suppose we want the cube root of 2 or the value ofx
for whichf(x
) =
x
3
 −2=0. Her
e
f
 �
 (x
)
 =
3x
 2
 so


[image: ]
x
3
 −
2
 x
1
 =
x
 0
 −

0


[image: ]
3x
2


Starting with
x 0
 =1
we
 havex

1
 =
1.33333
3
and using this value
 fo
r
x             
 
0
 we
 get



x
1
 =
1.26388
9
. The steps are laid out below








	
Step


	
Estimate





	
0


	
1





	
1


	
1.333333





	
2


	
1.263889





	
3


	
1.259933





	
4


	
1.259921







Or supposef(x
) =
sinx−
cosx
then
f
�
 (x
) =
cosx+
sinx
and so

x =
x


−
 si
n
x
 0
 −
co
s
x
 0



1

0


then starting with
x 0
 =1
we have


cos
x 0
 +
si
n
x
 0








	
Step


	
Estimate





	
1


	
1





	
2


	
0.7820419





	
3


	
0.7853982





	
4


	
0.7853982





	
5


	
0.7853982







To examine the conditions under which this iteration converges, we consider the iteration function


g(x
) =x
−


f(x
)

[image: ]
f
�
 (x
)


whose derivative is:


g
�
 (x
) =1−


(
f
�
 (x
))
2
 −
f
(x)
f
 ��
 (x
)


[image: ]
(
f
�
 (x
))
2

=


f(x)
f
��
 (x
)

[image: ]
(
f
�
 (x
))
2


At the actual zero,f(x
) =0
, so that as long as
f �
 (x
) =0
, we haveg �
 (x
) =0
at the zero off(x)
. In addition we would like the iteration function to get smaller, that is|
g �
 (x)|
< 1
. We conclude that the Newton-Raphson method converges in the interval where.

f(x)
f
��
 (x
)

[image: ]
(
f
�
 (x
))
2   
<
 1








	
Step


	
Estimate





	
0


	
1





	
1


	
1.333333





	
2


	
1.263889





	
3


	
1.259933





	
4


	
1.259921









8.0.4
       
Integrals and Integration


Many important problems can be
 reduced toﬁnding the area under a curve between two pointsa
and
b


[image: ]



f(x
)



[image: ]
[image: ]
→
b


The obvious idea is to split the area into small rectangles and sum the area of these.  So if  we take the  rectangle  b
etween
x j
 an
d
x
 j+
1
 this has  a height o
f
f
(
x
 j
)
 and an area o
f
f
(
x
 j
)
(x
j+
1
−
x
 j
)
.  If we add all such rectangles this gives an gives an approximation to the area. We do better when the width of the rectangles
 gets


small so if we choose all the widths asδ
our approximation is


�
 f(x
j
)
δ
x
fo
ra=
x

1
,
 x
2
, . . . ,
 x
n
 =
b


When we shrink
δx
to zero we have the area we need and write

[image: ]
�
b


[image: ]


The �
 sign was originally a capital S, for sum.



[image: ]



f(x
)



f(x
j
)


[image: ]
[image: ]
[image: ]
x
j
 x
j+
1

b


We avoid technicalities and deﬁne the
d
eﬁ
nite integra
l
of a functionf(x)
between

[image: ]
a
andb
as

b


f(x)
dx

a

which is the area under the curve, seeﬁgure 8.1 Using the idea of areas we have

[image: ]


Figure 8.1: Areas underf(x
)

some rule for integrals

1. 
 [image: ]
[image: ]
[image: ]
Ifa≤
c≤b
then
�
b
 f(x)
dx=  �
c
 f(x)
dx+ �
b
 f(x)
dx

2. 
 [image: ]
[image: ]
For a constantc  
�
b
 cf(x)
dx=
c  �
b
 f(x)
dx

3. 
 [image: ]
[image: ]
[image: ]
For two functions
f(x)
and
g(x
)
�
b
 c(
f(x
) +
g(x
))
dx=
�
b
 f(x)
dx+
�
b
 g(x)
dx


Perhaps the most important result about integration is the fundamental theorem   of calculus. It is easy to follow, if not to prove. Suppose we have a functionf(x
)

[image: ]
and we deﬁne

Then


F(x
) =

x


f(t)
dt

a


d
F(x
)


=


d 
 �
�
x



f(t)
dt�



=f(x
)

dx
dx
a


In other words integration is rather like the reverse of diﬀerentiation. We need to be a bit careful so deﬁneF(x)
as the
primitiv
e
off(x)
if

dF(x
)

[image: ]
=f(x
)

dx

[image: ]
So logx
is a primitive for
1/x
as is logx+
23
. The primitive is normally called the indeﬁnite integral              f(x)
dx
off(x)
and is deﬁned up to a constant, so              
f(x)dx= F(x
) +
constant

If the limits of the integration exist, saya
andb
then we have the deﬁnite

[image: ]
integral

b


f(x)
dx=F(b)−F(a
)
(8.2)

a

We can of course spend time looking at functions which diﬀerentiate to what

we want. Normally however we use tables ( or our memory) So







	

f(x
)


	



	

x
n
 (n�=−1)


1/x exp(
ax
) log
x


a
x


sin(
ax
)

c√
o
s(
a
x
)


1/   a
2
 −
x 2


1/(a
2
 −
x
 2
)



	

F(x
) = �
 f(x)
dx


x
n
/
(n+1
)
 lo
g
x
 exp(ax)/a



x
logx−
x


a
x
/
lo
g
a



−
cos(
ax)
/a

sin(
ax)
/a sin−1
(x/a)
 (−
1 < x < a)


tan
−1
(
x/
a
)








Example

1. �
 x
2
d
x=
x
 3
/
3+
constant


[image: ]
[image: ]
2.  �
3   
x
2
dx=  
�
x
3
/3
�
3    
=
 (3)
3
/3
−(−2
)
 3
/3=
 (
2
7+8)
/3


[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
3.  �
10  
=
1/xdx
= [
logx
]  
10
 =
lo
g
1
0−
lo
g1=
2.30 . . .
−
0


4.  �
1/2
 dx/
√
1−
x  2  
= [
sin  (x
)]
10
 =
sin
 −
1
(
1/
2)−
sin



(0
) =
π/6


Exercises

[image: ]
Evaluate the following integrals and check your solutions by diﬀerentiating.

1.        
[image: ]
x
3
dx


2.        
[image: ]
1/x
2
dx


3.
(
25+
x 2
)
−1
dx


Evaluate

[image: ]
[image: ]
1.  �
7
 log
xdx 2.  �
2
 x
−
3/2
dx


[image: ]
3.  �
2a
(a
2
 +
x
 2
)
−
1
dx




Chapter
 9



Algebra:

Matrices, Vectors etc.


The human mind has never invented a labor-saving machine equal to algebra

Author Unknown

We  now  meet the ideas of
matrice
s
and
vectors
.
While they may seem rather odd atﬁrst they are vital for studies in almost all subjects. The easiest way to see the power of the idea is to consider simultaneous equations. Suppose we have the set of equations

3x−
5y=
12 x+
5y=
24

We  canﬁnd the solutionx=
9
y=3
in several ways . For example if we add the second equation to theﬁrst we have equations

4x=
36 x+
5y=
24.

Thusx=9
and substituting 9 in the second equation gives9+
5y=
24
or 5y=
15
givingy=
3.
Many mathematical models result in sets of simultaneous equations, like these except much more complex which need to be solved, or per-

haps just to be examined. To do this more easily the matrix was invented. The essence of the set of equations


[image: ]
3x−
5y=
12 x+
5y=
24



is captured in the array or matrix of coeﬃcients
3−
5


[image: ]
1
5


�
 or the
augmented



matrix

3−
5
 12


1
5
0


�
 These  arrays  of  numbers  are called matrices.
To save


space we often give matrices names in boldface, for example

[image: ]
A
= ☐


☐☐


[image: ]
or


3−
5
12

1
5
24

6
8−
3

[image: ]
11
0
0

☐☐
☐



X
=

3−
5 12 0

1
5
24 0

We deﬁne anr×c
matrix as a rectangular array of numbers withr
rows and


c
columns, for example
A
above is a4×3
matrix while
X
is2×4
is

A matrix with just one column is called a
column vecto
r
while one with just

one row is a
row vecto
r
, for example a column vector

☐ 3
 ☐


a
= ☐
 1 ☐


[image: ]


and a row vector


b
=  �
 3−
5 12−
19
�


We use matrices in ways which keep our links with systems of equations. Before looking at the arithmetic of matrices we see how we can use them to come up with a general method of solving equations.


9.0.5
       
Equation
 Solving.


If you were to look at ways people use to solve equations you would be able do deduce some simple rules.

1. 
 Equations can be
 multipled by a non-zero constant

2. 
 Equations can be
 interchanged

3. 
 Equations can be
 added or subtracted to other equations

If equations are manipulated following these rules they may look diﬀerent but
they have the same solution
s
as when you started. We can solve equations by writing the coeﬃcients in the
augmented matri
x
form and manipulating as follows

1. 
 rows of the matrix may be
 interchanged

2. 
 rows of the matrix may be
 multiplied by a nonzero constant.


3. 
 rows can be
 added (or subtracted ) to (from) other rows

Our aim is to reduce the matrix to what is known as
row echelon form
.
This means that:


•
  
 the leading non zero term in each row is a one.


[image: ]
Also the leading 1 in theﬁrst row  lies to the left of that in the second row   and so on. More precisely the leading 1 in any row lies to the left of the leading ones in all the rows below it.



[image: ]
[image: ]
For example

[image: ]
☐
 1−
5 12
☐



☐
  
1−
5  12
☐

☐
☐

☐
☐


[image: ]
[image: ]
[image: ]
[image: ]
The reason for this will become apparent when we do it. Lets try it out: We start with the equations

2x+y+2z=10 x−
2y+
3z=
2


−x+y+z=
0

in this case the coeﬃcients are

[image: ]
[image: ]
☐
 2
1
2 10 ☐



1−
2  3
2


−
1
1
1
0

We are allowed to manipulate rows, these arerow operations
, to try and get to the row echelon form. Thus we have

[image: ]
[image: ]
☐
 2
1
2   10 ☐


1. 
 Add row  2 to row 3 to get
1−
2  3
2


0−
1  4
2

2. 
 [image: ]
[image: ]
[image: ]
[image: ]
Subtract row 2 from row 1 to get
1−
2
3
2
☐


[image: ]
[image: ]
1
3−
1
8

[image: ]
0−
1
4
2
☐



[image: ]
[image: ]
1  3−
1
8

[image: ]
0 1−4−
2
☐


[image: ]
[image: ]
☐
 1 3−
1
8
☐


5. Subtract 5 times row 3 from row 2 to get
0 0
16
16

0 1−4−
2

[image: ]
[image: ]
1  3−
1
8

[image: ]
[image: ]
[image: ]
0 0
16
16 ☐


1  3−
1
8

[image: ]
0 0
1
1 ☐


This seems more like row echelon .

This last matrix corresponds to the set of equations


x+
3y−z=
8


y−
4z=−
2


z=
1

These are much easier to solve! Here


z=
1
y=
2
x=
3.


It is often nicer to go a bit further and get rid of as much of the upper triangle as possible. Clearly the leading 1 in each row can be
 used to get zeros in the column above it. The resulting matrix is calledreduced row echelon for
m
of the original matrix. Here we get

[image: ]
☐
8

☐
☐ 1

9
 ☐
☐ 1

☐

☐
2

☐ →
 ☐ 0

2
 ☐ →
 ☐ 0

☐

It does really matter a great deal to us which we use since we are only interested  in solutions.

Lets look at another example

6x+
3y+
6z=
9 x+
2y=
16

4x+
5y+
1z=
18

The augmented form is

We have









	
6


	
3


	
6


	
9





	
1


	
2


	
0


	
6







4 5 1 18

[image: ]
☐
 6   3   6 9 ☐

☐
 0−
9 6−27


☐

☐
 1 2
0
6 ☐



☐
 1 2
0
6 ☐


[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
☐
 1  2  0  6 ☐
 → ☐
 1
2
0
6
☐
 → ☐
 0 3−
2
9
☐
 →
. . .
→  ☐
 0  1−
2/3
3
 ☐


Some steps have been concatenated!

What can go wrong

In reality nothing much can go wrong but we need to examine a couple of cases where the results we obtain require some thought.

1. 
 Suppose we end up with
a  row  of  zeros
.
This is no problem,  except when the number of non-zero rows is less that the number of variables. This just means there is not an unique solution e.g


x+
2y−z=
0


x+z=
3 2x+
2y=
3


We have


☐
 1 2−
1 0
☐



☐
 1 2−1
0


☐

☐
 1 2
1−
6
☐


[image: ]
[image: ]
☐
 1 0
1
3 ☐
 →· · ·→

0 1−2−
3

0 0
0
0

0 1−1−
3/2

[image: ]
[image: ]
0 0
0
0

This corresponds to


x+y+z=−
69 y−z=−
3/2

Now there is a solution for these equations but it is not the explicit unique type we have been dealing with up to now. Ifz
is known, say
z 0
 then it follow
sx=3−
z
 0
 an
dy
=
 (
2z
 0
−3)
/2
.
We have a solution for ever
y
z
 0
 value.


Technically there are an
i
nﬁ
nite number of solution
s
. It is obvious if you

think about it that if you have fewer equations than variables (unknowns) then you will not have a simple solution.

If we have 2 rows all zero then we have to give a value to two variables, if 3 then 3 variables and so on.

2.  
No Solution

Of course your equations may not have a solution in that they are contra- dictory, for example:


x=
1
y=
3
x=−
2
z=
16

We recognize the equations are contradictory ( have no solutions at all ) in the following way.If we have a row of which is
 all
 zero except for the very last
 element
 then
 the
 equations
 have
 no
 solution
.
For example:

Suppose we have the equations


x−
2y−
3z=
1 2x+
cy+
6z=
6


−x+
3y
+(c−3)z=
0

wherec
is some constant. We proceed to row echelon


☐
 1−
2
3
1
☐

☐
 1−
2
3 2
☐


[image: ]
[image: ]
☐
 2
c
6
6 ☐
 → ☐
 0 c+
6 0 4
☐



Before we go further what happens ifc=−6
? The middle row of our matrix corresponds to 0=4 which is nonsense. Thus the original equation set does not have a solution whenc=−
6

However we will just carry on


☐
 1−
2
3
1
☐

☐
 1−
2
3
1
☐

☐
 1
− 2
3
1 ☐


[image: ]
[image: ]
[image: ]
☐
 2
c
6
6 ☐
 → ☐
 0 c+
6 2c 6
☐
 → ☐
 0
0
2c−c(c+6)
4
☐



☐
 1−
2
3
1
☐

☐
 1−
2
3
1
☐


[image: ]
[image: ]
→ ☐
 0
1
c
0 ☐
 → ☐
 0
1
c
0 ☐


Now if−
4c−
c
2
 =0
, that i
sc=0
, o
rc=−4
our last equation
 i
s0=
1


which is clearly nonsense! This means that the original equations had no

solution.

You  may  feel that this is a bit of a sledge hammer to crack a nut, but there is       a real purpose to our exercise. If you move away from the trivial cases then the scheme we have outlined above is the best approach. It is also the technique use  in the computer programs available for equation solving. In addition the shape of the reduced row echelon form tell us a lot about matrices. Often we have a system of equations where we have some parameters e.g. using our techniques above we canﬁnd the range of values, or perhaps the values themselves when solutions are possible.

The row elimination ideas we have outlined are known as
Gaussian elimination


in numerical circles. The algorithms which bear tis name, while very much slicker are based on these simple ideas.


Exercises

1. Solve

(a)

2x+
3y=
7

5x−y=
9

(b)


x+
3y+
3z=
1 2x+
5y+
7z=
1


−
2x−
4y−
5z=
1

(c)


v−w−x−y−z=
1 2v−w+
3x+
4z=
2

2v−
2w+
2x+y+z=
1


v+x+
2y+z=
0

(d)


w+
2x−
3y−
4z=
6 w+
3x+y−
2z=
4 2w+
5x−
2y−
5z=
10

2. Consider the equations


v−w−x−y−z=
1 2v−w+
3x+
4z=
2

2v−
2w+
2x+y+z=
1


v+x+
2y+z=
c

For what values ofc
do these equations have a unique solution? Are there any values ofc
for which there is no solution?



9.0.6
       
More on Matrices



[image: ]
If we have an
n m
matrix
A
we need some way of referring to  a  particular element. It is common to refer to the(
ij)
th element meaning the element in row i
and columnj
. We think of the matrix as having the form



[image: ]
A
= ☐
☐
☐



a
11   
a
12   
· ·
 ·
a  
 
1,n−1   
a
1n
 a
21   
a
22   
. . .   a
2,n−1   
a
2n
 a
31  
a
32
 · ·
 ·
a
 3,n−1
 a
3n


☐☐
☐


cdots
· · ·
· · ·
· · ·
· · ·

[image: ]
a
m1

a
m2   
· ·
 ·
a

m,n−1
 a
m,n


If we have a typical
ij
th element we sometimes write


A
= (
a i
j
)



[image: ]
[image: ]
The
unit matri
x
is an
n n
matrix with ones on the diagonal and zeros elsewhere, usually written
I
for example



[image: ]
[image: ]
1 0


0 1

or

So
A
is a unit matrix if

1. 
 It is square.

☐☐
☐


☐☐
☐


2. 
 The elements
a ij
 satisf
y
a
 ii
 =1
for al
li
an
d
a

ij
 =0
for al
li�=
j



9.0.7
       
Addition and Subtraction


We can add or subtract matrices
that have the same dimension
s
by just adding or subtracting the corresponding elements. For example


�
 a
11
 a
12
 �
 +
 �
 b
11
 b
12
 �
 =
 �
 a
11
 +
b
 11
 a
12
 +
b
 12
 �


and


a
21
 a
22



b
21
 b
22



a
21
 +
b
 21
 a
22
 +
b
 22



�
 a
11
 a
12
 �
 −
 �
 b
11
 b
12
 �
 =
 �
 a
11
 −
b
 11
 a
12
 −
b
 12
 �



a
21
 a
22



☐
 1 2 ☐



b
21
 b
22


[image: ]
☐
 −4−3


a
21
 −
b
 21
 a
22
 −
b
 22


[image: ]
☐


☐
 −3−
1
☐


[image: ]
when
A
=

while
A
−
B
=

3 4
and
B
=

[image: ]
4 0

[image: ]
5 5

5 5

4 5


−2−
1

0
5

then
A
+
B
=
1
3

[image: ]
[image: ]
4
1


Multiplication by a scalar ( number)

We can multiply a matrix
A
by a numbers
to gives
A
which is the matrix whose elements are those of
A
multiplied bys
, so if

[image: ]
A
= ☐
☐
☐



a
11  
a
12  
· ·
 ·
a  
 
1,n−1   
a
1n
 a
21  
a
22  
. . .   a
2,n−1   
a
2n
 a
31
 a
32
 · ·
 ·
a
 3,n−1
 a
3n


☐☐
☐


then

· · ·

m1

· · ·
· · ·

am2
 · · ·a


· · ·

m,n−1

· · ·

[image: ]
a
m,n



s
A
=

☐☐
☐


sa11

sa12

· · ·
sa
1,n−1

sa1n


sa21

sa22

. . .
sa2,n−1

sa2n
 sa31

sa32

· · ·
sa

3,n−1

sa3n


[image: ]


☐☐
☐



☐
 s
·a
· ·

· · ·
· · ·

sa
m2
  · · ·sa


· · ·

m,n−1

· · ·

[image: ]
s
a
m,n


We use the term
scala
r
for quantities that are not vectors.

Transpose of a matrix

[image: ]
[image: ]
If we take a matrix
A
and write the columns as rows then the new matrix is called the transpose
A
written
A             
 
T
 o
r
A
 �


Thus if
A
=

1
2
4

11   12 0

1 11

[image: ]
then
A
 T
 =

2 12

Notice tha
t(
A
 T
)
T
 =
A
.


4
5

Any matrix that satisﬁes

is said to be
symmetri
c
. If then it is anti-symmetric.


A
=
A
 T



A
=−
A
 T


Multiplication of Matrices

This is a rather more complicated topic. We deﬁne multiplication in a rather complex way so that we keep a connection with systems of equations. Suppose
A
 is ann×p
matrix and
B
is ap×m
matrix. Then the(
ij)
th element of
A
B
is

[image: ]
p



a
ik
b
kj
 =
a
 i1
b
1j
 +
a
 i2
b
2j
 +
a
 i3
b
3j
 +
a
 i4
b
4j
 +
. .
 .+
a
 ip−1
b
p−1j
 +
a
 ip
b
pj



k=
1



[image: ]
Note that
A
B
is an
n m
matrix. One way of thinking of this is to notice that the(
ij)
th element of the product matrix is made up by multiplying elements in thei
th row of theﬁrst matrix by the corresponding elements in thej
th column of

the second matrix. The products are then summed.

examples


�
 1 2 3

7

[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
☐
 6 ☐
 =1×7+2×6+3×4=
31

7

☐6
 ☐

[image: ]


1 2 3

7   14 21

[image: ]
=
6   12 18

4
8
12


�
 1
2

� � 1   4
 � =
 � 5

22
 �

Some consequences are

4 12
2 9

28 124


•
 
 You can only multiply matrices if they have the right dimensions.


•
 
 In general
AB
 BA



•
  
A
I
=
A



•
 
 I
A
=
A
but
I
has diﬀerent dimensions to that above


•
  
A
0
=
0



•
 
 0
A
=
0
but
0
, a matrix of zeros, has diﬀerent dimensions to that above


As we said the reason for this strange idea is so that it ties in with linear equations, thus if


x+
2y=
u 4x+
9y=
v

and


v+
4y=
3 2v−y=
0

these can be written in matrix form

[image: ]
[image: ]
A
x
= �
 1 2
 � �
 x


� =
 � u
 � =
u


[image: ]
and


B
u
= �
 1

4


� � u
 � =
 � 3
 �

[image: ]
[image: ]
[image: ]
So we can write both e can write systems of equations as one matrix equation

[image: ]
BA
x
= �
 3
 �



�
 1
4

[image: ]



� �
 1   2 �
 x
=
 �
 17
38

� x
=
 � 3
 �

[image: ]
[image: ]
[image: ]
This is exactly the same set of equations we would have had if we had eliminated


u
andv
without any matrices.

Inverses

So we have a whole set of algebraic operations we can use to play with matrices, except we have not deﬁned division since if we can multiply then why not divide?

For a ( non-zero) numberz
we can deﬁne the inverse
z
−
1
 which satisﬁes


zz
−
1
 =
z
 −1
z=
1.


In the same way we say that the matrix
A
has an inverse
A

−1
.if there is a
 matrix



A
−
1
 which satisﬁes



A
−1
A
=
AA
 −
1
 =
I
.



Bewar
e
not all matrices have inverses! Those that do are said to be
non-singular
 otherwise a matrix which does not have an inverse said to be is
singular
.
If you


think about it you will see that only square matrices can have inverses. Suppose


A
is ann×n
matrix and
B
is anothern×n
matrix. If


A
B
=
B
A
=
I


[image: ]
whereI
is an
n n
unit matrix then
B
is the inverse of
A
.
Notice
A
must be square
bu
t
not all square matrices have inverses.

We can of courseﬁnd the inverse by solving equations. For example

[image: ]
[image: ]
a
b
e
f

c
d
g  h

[image: ]
So

� =
 � 1 0
 �


[image: ]
[image: ]
ae+
bg af+bh ce+
dg
cf+dh



we then solve the four equations .

ae+
bg=
1 af+
bh=
0 ce+
dg=
0 cf+
dh=
1

� =
 � 1 0
 �

Not a very promising approach. However we can use the row-echelon ideas to get an inverse. All we do is take a matrix
A
and paste  next  to  it  a  unit  matrix
I
. Write this augmented matrix as
B
= (
A
I
)
.

[image: ]
We row reduce
B
to
reduced row echelon for
m
. The position of the original
I


is  the  inverse.  For example suppose
A
=
1 2

then

[image: ]
4 9


B
= (
A
I
)
1   2   1 0


4   9   0 1

We get using row operations

[image: ]
[image: ]
[image: ]
[image: ]
�
 1   2   1   0 �
 →
 �
 1 2
1
0  �
 →
 �
 1  0
9
2 �


and the inverse is
A
 −
1
 =

9

2



−
4  1

[image: ]
Of course we check

[image: ]
�


2
 � � 9

2 
 � =
 � 9

2
 � � 1 2
 �


What can go wrong?

1. 
 If you manage to convert the left hand matrix
A
to a unit matrix
I
then you have succeeded.

2. 
 [image: ]
[image: ]
Sometimes as you manipulate the augmented matrix
B
you introduce a row of zeros into the position where you placed
A
. In this case you can stop as there is no
 solutio
n
.

Consider
A
=

6 3 6

1      
[image: ]
2 0
. The augmented matrix is
B
=

4 5 0

6   3   6   1   0 0

[image: ]
1   2   0   0   1 0

4   5   1   0   0 0

Now using row operations we have


☐
 6 3 6 1 0 0 ☐

☐
 0−
9   6 1−
6 0
☐

☐
 0
0
3 1−
6 0
☐


[image: ]
[image: ]
[image: ]
☐
 1  2   0  0  1  0 ☐
 → ☐
 1
2
0 0
1
0 ☐
 → ☐
 1
2
0 0
1
0 ☐


[image: ]
[image: ]
[image: ]
☐
 1 2
0
0
1
0
☐

☐
 1 0 0−
2/9−
3
4/3
☐


0 1−
1/3
0−
4/3−
1/3

0 0
1
1/3
2
1

giving us our inverse

0 1 0
1/9
2−
1/3

0 0 1
1/3
2−
1

[image: ]
[image: ]
☐
 −
2/9−
3
4/3
☐


1/9
2−
1/3

[image: ]
[image: ]
1/3
2
0

Consider nowA
=

6 3 6

1      
[image: ]
2 0
. The augmented matrix is
B
=

4 8 0

6   3   6   1   0 0

[image: ]
1   2   0   0   1 0

4   8   0   0   1 0

[image: ]
Now using row operations we have

[image: ]
6   3   6   1   0 0

1   2   0   0   1 0

4   8   0   0   0 0


0−
9
6
1−
6 0

[image: ]
[image: ]
1
2
0
0
1
0


0

0

0
0
0
0

Given the zeros we know there is no inverse!

Of course we can think of solving equations using inverse matrices. It is almost always better to use row operations on the augmented matrix but we can proceed as follows. If we have the equations

6x+
3y+
6z=
9


x+
2y=
6 4x+
5y+z=
18


this can be written as

☐ 6  3  6
 ☐ ☐ x
 ☐
☐ 9
 ☐

☐ 1
 2
 0
 ☐ ☐ y
 ☐ =
 ☐ 6
 ☐

4 5 1
z
18

so


☐
 x ☐

☐
 6 3 6 ☐
−1
 ☐
  
9  
☐

☐
  
−
2/9−
3
4/3

☐ ☐ 9
 ☐

[image: ]
☐
 y  ☐
 = ☐
 1 2 0 ☐


[image: ]

[image: ]


☐ 6 
 ☐ =
 ☐

[image: ]


1/9
2−2/3

☐ ☐ 6
 ☐

[image: ]


In general if then

provided
A
 −
1
 exists.



A
x
=
b
 x
=
A
 −1
b



Summary

1. 
 The transpose of
A
written
A

T
 is the matrix made by writing the rows o
f
A
 as columns i
n
A
 T
.


2.                                                                                           
A
is symmetric if
A
=
A

T


3. 
 The zero matrix is then×m
array of zeros
e.g

0   0 0

[image: ]
[image: ]
0   0 0

0   0 0

4. 
 [image: ]
The unit matrix
I
( of ordern
) is the
n m
matrix with 1’s on the diagonal

1 0 0

and zeros elsewhere e.g.

0   1 0

[image: ]
0   0 1

5. 
 The matrix
A
has an inverse
B
iﬀ
A
B
=
B
A
=
I
.
B
is written
A

−1
.


6. 
 A matrix which has an inverse is said to be
 non-singular.


7.
 
 Do remember that except in special cases
A
B
�=
BA


Exercises


☐
 1−
1
1
☐



☐
 1 2 3 ☐


1.  
GivenA
=


−
3
2−
1

[image: ]
−
2
1
0


☐
 andB
=


2
     
4 6
compute
A
B
and
BA


[image: ]
1 2 0


☐
 0−
2 3
☐


2. 
 [image: ]
[image: ]
Show that ☐


2            
0
4
is skew symmetric.


−3−
4 3

3.  
IfA
=


2−
2 4

[image: ]
−
1
3
4
show that
A
=
A

2



1−
2 0

4. 
 Show that
AB
 T
 =
B
 T
A
T


5. 
 Show that the inverse of
A
B
is
B

−1
A
−1



☐
 2 3 1 ☐


[image: ]


2 4
3
2

[image: ]
[image: ]
3 6
5
2 ☐


[image: ]


6.  
Find the inverse of ☐
  
1  2  3  ☐
 and ☐
☐
  
2  5

2−
3

☐
☐



[image: ]
Geometry


We  write the point(
x, y)
in the plane as the vector
x
=
x


[image: ]
y


�
. If
A
is a2×
2

matrix
A
x
transforms
x
into a new point. Suppose
A
=
1 1/2

Then

0
1

[image: ]
[image: ]
1.
A 
 �
 0
 �
 = �
 0  
 �


[image: ]
[image: ]
2.
A 
 �
 1
 �
 = �
 1  
 �


[image: ]
[image: ]
3.
A 
 �
 0
 �
 = �
 1/2
 �


[image: ]
[image: ]
4
.
A 
 � 1
 � =
 � 3/2
 �

If we plot the 4 points (0,0),(0,1),(1,1),(0,1) and their transforms we get


[image: ]


[image: ]
[image: ]
[image: ]
−2−101

2




x


9.1
          
[image: ]
[image: ]
[image: ]
Determinants


Consider the matrix
a

b


c
d

.  We can show that this has an inverse
e

f


g d

when∇=
ad−
bc 0
, see 9.0.7. The quantity∇
is called the
determinan
t
of the


[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
�
 a
b �

a
b

[image: ]



☐
 a
b
c ☐


[image: ]


has an inverse when

[image: ]
a
b
c
e

f


[image: ]
[image: ]
[image: ]
[image: ]
�

�



�

�

�


[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
The general deﬁnition of a determinant of ann×n
matrix
A
is as follows.

1. 
 Ifn=1
then det(
A
) =
a
11


2.  
if
n > 1
Let
M ij
 be
 th
e
determinan
t
of th
e(n−1)×(n−1)
matrix obtained fro
m
A
by deleting ro
wi
and colum
nj.
M             
 
ij
 is called
 a
mino
r
.


Then

[image: ]
n


det(
A
) =
a 11
M
11
−a
12
M
12
+a
13
M
13
−a
14
M
14
+
. . .
(−1
)
 n
+
1
a
1n
M
1n
 =

(−1)
j+
1
a
1j
M
1j



j=
1


Determinants are pretty nasty but we are fortunate as we really only need them forn=
1, 2
or 3.


9.2
          
Properties of the
 Determinant


1. 
 Any matrix
A
and its transpose
A
 T
 have the same determinant, i.e. det
(
A
)=det
(
A
T
). Note: This is useful since it implies that whenever we use rows, a similar behavior
 will
 result
 if
 we
 use
 columns.
 In
 particular
 we
 will
 see
 how
 row


elementary operations are helpful inﬁnding the determinant.

2. 
 [image: ]
The determinant of a triangular matrix is the product of the entries on the

a b c

diagonal, that is ☐


0
e
f

0
0
i


☐
 =
aei

3. 
 If we interchange two rows, the determinant of the new matrix is the opposite sign of the old one, that is

[image: ]
[image: ]
☐
 a
b
c ☐

☐
 d
e
f ☐


d
e
f

g
h
i


☐
 =−

a
b
c

g
h
i


4. 
 If we  multiply one row  by  a constant,  the determinant of the new ma-   trix is the determinant of the old one multiplied by the constant, that is

[image: ]
[image: ]
☐
 a
b
c ☐

☐
 a
b
c ☐


d
e
f

λgλhλi


☐
  
=λ

d
e
f

g
h
i


☐
 In particular, if all the entries in one

row are zero, then the determinant is zero.

5. 
 If we add one row to another one multiplied by a constant, the determinant of

the new matrix is the same as the old one, that is ☐
☐


[image: ]
[image: ]
☐
 a
b
c ☐


a
b
c

d
e
f

λa+
gλb+
hλc+
i

☐☐
 =


d
e
f

g
h
i

Note that whenever you want to replace a row by something (through ele- mentary operations), do not multiply the row itself by a constant. Otherwise, it is easy to make errors, see property 4

6.  
det(
A
B
)=det(
A
)det(
B
)

7.                                                                              
A
is invertible if and only if det(
A
)�=0
. Note in that case det(
A

−1
)=1/det(
A
) While determinants can
 be
 useful in geometry and theory they are complex and quite diﬃcult
 to
 handle.              Our last result is for completeness and links matrix inverses with
 determinants.


[image: ]
Recall that the
n n
matrix
A
does not have an inverse when det(
A
)=0.  How- ever the connection between determinants and matrices is more complex. Suppose we deﬁne a new matrix, the adjoint of
A
say adj(
A
) as


☐

M
11


[image: ]


−M12


· · ·(−1
)
n+1
M


T

[image: ]
1,n



�

i+1



�
T

☐



−M
21

M
22

· · ·
(−1
)

n
+
2
M
2,n
  
☐


[image: ]


adj
A
=


(−1
)


M
ij



☐
  
(−1
)·
n
·
+
·
1
M
n1
  (−1)
·
n
·
+
·
2
M
n2


· · ·

· · ·(−1)


·
2
·
n
·

[image: ]
nn


Here the
M ij
 are just the minors deﬁned above.



☐
 1 2
3 ☐

☐
 11−7
2


☐
T

☐
 
 
11−
9
1
☐


[image: ]
[image: ]
So ifA
=

1 3
5
then adj(
A
)
=
−
9
9−
3

1   5
· · ·
1−
2
1

=
−
7
9−
2

[image: ]
[image: ]
[image: ]
2−
3
1

Why is anyone interested in the adjoint? The main reason is

[image: ]
A
−
1
 =
 adj
A


det(
A
)

Of course you would have to have a very special reason to compute an inverse this way.



9.2.1
       
Cramer’s
 Rule


Suppose we have the set of equations

and letD
=


a
1
 b
1
 c
1
 a
2
 b
2
 c
2
 a
3
 b
3
 c
3



a
1
x+
b
 1
y+
c
 1
z=
d
 1
 a
2
x+
b
 2
y+
c
 2
z=
d
 2
 a
3
x+
b
 3
y+
c
 3
z=
d
 3


Then Cramer’ s rule states that

[image: ]
[image: ]
[image: ]
[image: ]
 1


[image: ]



x
=

[image: ]
�


[image: ]
[image: ]
y
= D

�


[image: ]
[image: ]
z
= D
 �

�


[image: ]



A
x
=
d


wherex
 T
 =
 (x
1
,
 x
2
, . . . ,
 x
n
)
an
d
d  
T
 =
 (d
1
,
 d
2
, . . . ,
 d
n
)
.  Let
D
=det(
A
).


Then

[image: ]
x  =
 
 1 
 ☐
☐



a
11

· ·
 ·
a

1(k−1
)
 d
1

a
1(k+1
)
 · ·
 ·
a

1n
 ☐


[image: ]
a
n1   
 · ·
 ·
a

n(k−1
)
 d
n

a
n(k+1
)
 · ·
 ·
a

nn


While this is a nice formula you would have to be mad to use it to solve equations since the best way of evaluating big determinants is by row reduction, and this gives solutions directly.

Exercises

1.  
[image: ]
Evaluate
2
 4


3 6


2.  
Evaluate

2 4 3

[image: ]
�
 3 6 5 �


[image: ]
[image: ]
[image: ]
x
1
2


�
 0
3x−
2
2
�


[image: ]
[image: ]
[image: ]
a
b
0
0

c
d
0
0 ☐


[image: ]
4. If
A
=

0
0
e
f 0
0
g 14


☐
☐
 show that

det(
A
) =
a

b



�
 c
d

e
f


� �
 g d
 �



Chapter 10 Probability

Probability theory is nothing but common sense reduced to calcula- tion.

Pierre Simon Laplace

In what follows we are going to cover the basics of probability. The ideas are reasonably straightforward, however as it involves counting it is very easy to make mistakes - as we shall see.

Suppose we perform an experiment whose outcome is not perfectly predictable

e.g. roll a die or toss a coin. Imagine we make a list of all possible outcomes, call this listS
the
sample spac
e
. So


•
 If we toss a coinS
consists of{
Head, Tail}, we writeS={
Head, Tail},


•
 If we roll a dieS={
1,2,3,4,5,6
}


•
 If a princess kisses a frog then we have two possibilities


S={
we get a prince, we get an embarrassed frog
}


•
 When we roll two dice thenS
is the set of pairs











	
(1,1)


	
(1,2)


	
(1,3)


	
(1,4)


	
(1,5)


	
(1,6)





	
(2,1)


	
(2,2)


	
(2,3)


	
(2,4)


	
(2,5)


	
(2,6)





	
(3,1)


	
(3,2)


	
(3,3)


	
(3,4)


	
(3,5)


	
(3,6)





	
(4,1)


	
(4,2)


	
(4,3)


	
(4,4)


	
(4,5)


	
(4,6)





	
(5,1)


	
(5,2)


	
(5,3)


	
(5,4)


	
(5,5)


	
(5,6)





	
(6,1)


	
(6,2)


	
(6,3)


	
(6,4)


	
(6,5)


	
(6,6)







An
even
t
A
is a collection of outcomes of interest, for example rolling two dice and getting a double. In this case the eventA
is deﬁned as



A={
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}
.

Suppose that the eventB
is that the sum is less that 4 when we roll two dice, then


B={
(1,1),(1,2),(2,1)}
.

If two eventsA
andB
have no elements in common then we say they are
mutually exclusiv
e
. For example letA
be the event{
At least one 6}
that is


A={
(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,)
}

SinceA
andB
have no elements in common they are mutually exclusive. Deﬁne the eventC
as


C={
(2,3),(5,7)
}

[image: ]
ThenA
andC
are also mutually exclusive. IfD
= sum exceeds 10 thenA
and


D
are
no
t
mutually exclusive!
Check this yourself.


Combining events


[image: ]
It is handy to have a symbol for notA
, we use∼A
but we are not very picky and notA
is acceptable.




[image: ]
The eventA
andB
, often written
A B
is the set of outcomes which belong both toA
and toB
.




[image: ]
The eventA
orB
, often written
A B
is the set of outcomes which belong either toA
or toB
or to both.



You will recognise the notation from the earlier discussion on sets.

[image: ]
SupposeS
= 0,1,2,3,4,5,6,7,8,9 then if we deﬁneA
=  1,3,5,7,9  andB
=  4,5,7  we have


•
  
A∩B=A
andB={
5,7
}


•
  
WhileA∪B=A
orB={
1,3,4,5,7,9
}


•
  
∼B
=notB
= 1,2,3,4,8,9



10.0.2
          
Probability - the
 rules


Now to each event we are going to assign a measure ( in some way ) called the probability. We will write the probability of an eventA
asP[A]
. We will set out some rules for probabilities, the main ones are as follows:

1.0≤P[A]≤
1.

2.P[S
] =
1

3. For mutually exclusive eventsA
and
B P[A
orB
] =P[A
] +P[B
]

We will add a few extra rules

(i)  
 For mutually exclusive eventsA 1
 an
d
A
 2
 an
d
A
 3
 · ·
 ·
A
 n
 then



P[
A
1
 ∪A
 2
 ∪A
 3
 · · ·∪A  
n
 · · ·]
 =P[
A  
1
]
 +P[
A
 2
]
 +P[
A
 3
]
 +
· · ·
+P[
A 
 n
]
 +
· · ·


or written diﬀerently


P[
A
1
 o
r
A
 2
 o
r
A
 3
 · · ·o
r
A 
 n
 · · ·]
 =P[
A  
1
]
 +P[
A
 2
]
 +P[
A
 3
]
 +
· · ·
+P[
A
  
n
]
 +
· · ·


(ii)   
For an eventA


P[
notA
] =1−P[A
]

(iii)   
For eventsA
and
B


P[A
orB
] =P[A
] +P[B]−P[A
andB
]

All this is a bitﬁddley but is not really very hard.  If you  were not too confused   at this point you will have noticed that we do not have a way of getting the probabilities. This is a diﬃcult point except in the case we are going to discuss.


10.0.3
      
Equally likely events


Suppose that every outcome of an experiment is equally likely. Then we can show from the rules above for any event
A


[image: ]
P[A
] =


the number of outcomes in A the number of possible outcomes




This means we can do some calculations.

examples

1. 
 Suppose that the outcomes


•
          
that a baby  is a  girl


•
          
that a baby  is a boy

are equally likely. Then as there are two possible outcomes we have P[girl]=1/2=P[boy].

2. 
 Suppose now a family has 3 children, the possibilities are

BB BG GB GG

and so P[ one boy and one girl]= 2/4=1/2 while P[two girls]=1/4

3. 
 The famous statistician R A Fisher had seven daughters. If you count the possible sequences BBBBBBB to GGGGGGG you willﬁnd that there are 2
7
 =
12
8
. Only one sequence is all girl so the probability of this event is 1/128.


4. 
 A pair of dice is thrown. What is the probability of getting totals of 7 and

11. Suppose now we throw the two dice twice. What is the probability of getting a total of 11 and 7 in this case?

5. 
 We draw 2 balls from an urn containing 6 white and 5 black, WHat is the probability that we get one white and one black ball?

As you can see we really need some help in counting.

ExercisesS

1. 
 A poker hand consists of 5 cards drawn from a pack of 52. What is the probability that a hand is a
straigh
t
, that is 5 cards in numerical order, but not all of the same suit.

2. 
 What is the probability that a poker hand is a
full
 hous
e
, that is a triple and  a pair.

3. 
 A and Bﬂip a coin in turn. Theﬁrst to get a head wins. Find the sample space. What is the probability that A wins?


4. 
 The game of craps is played as follows: A player rolls two dice. If the sum is a 2, 3 or 12 he loses. If the sum is a seven or an 11 he wins. Otherwise the player rolls the dice until he gets his initial score, in which case he wins or gets a 7 in which case he loses. What is the probability of winning?

5. 
 A man has n keys, one of which will open his door. He tries keys at ran- dom, discarding those that don’t work until he opens the door. What is the probability that he is successful on the kth try.

6. 
 The birthday proble
m
How many people should be
 in a room to make the probability of two or more having the same birthday more than 0.5? This is quite diﬃcult and a simpler approach is to consider the probability that no two people have the same birthday.

It is often a useful dodge in probability to look at P[ notA
] when P[A
] is hard.

So P[ no coincidences] =


36
5×
36
4×
36
3
× · · ·
 ×(
36
5−n+1)


365×
365
× · · · ×
365


=1×(1−
364/365)×(1−
364/365)×(1−
363/365)
×· · ·×(1−(
365−n+1)
/365
)







	
Number


	
Probability





	
15


	
0.74709868





	
16


	
0.71639599





	
17


	
0.68499233





	
18


	
0.65308858





	
19


	
0.62088147





	
20


	
0.58856162





	
21


	
0.55631166





	
22


	
0.52430469





	
23


	
0.49270277





	
24


	
0.46165574





	
25


	
0.43130030








[image: ]
Prob of coincident birthdays



[image: ]
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10.0.4
      
Conditional
 Probability


Sometime it is natural to talk of the probability of an event A
give
n
some other event has occurred.  We  write the probability of A given B asP[A|B]
and deﬁne it as


P[A|B
] =

 P[A∩B
]



P[B
]

Remember this is a fancy way of writing

[image: ]
P[A|B
] =

P[A
andB
]


P[B
]

While conditional probabilities can have interesting philosophical implications they also allow one to do calculations. Thus


P[A
] =P[A|B]P[B
] +P[A|∼B]P
[∼B
]

[image: ]
or more generally if
B 1
,
 B
2
,
· ·
 ·
are the only possibilities so

�
n



B
i
 =1
then


[image: ]
n



P[
A] =
P[
A|
B  
i
]P[
B
i
]



i=
1



[image: ]
            

A

[image: ]
B

Not A

A

not B

not A


Examples

1. 
 Consider the table below.








	
	
Employed


	
Unemployed


	
Total





	
Male


	
460


	
40


	
500





	
Female


	
140


	
260


	
400





	
Total


	
600


	
300


	
900







Then


•
         
P[ Male] = 500/900


•
         
P[ Male and Unemployed] =40/900


•
         
P[ Unemployed — Male] =40/500 = P[ Unemployed and Male] /P[Male]

= 40/900÷
500/900 =40/500.

2. 
 Suppose we buy widgets from 3 suppliers A,B and C. They supply all pro- duction and the number of defective items per batch as well as their share   of our supply is given below.








	
	
A


	
B


	
C




	
	
Supplier





	
Proportion supplied


	
0.60


	
0.30


	
0.10





	
Proportion defective


	
0.03


	
0.05


	
0.07




	
	
	
	





What proportion of widgets are defective? We know


•
         
P[defective|
A] = 0.03


•
         
P[defective|
B]=0.03


•
         
P[defective|
C]=0.07

so using the formula we have P[defective]=P[defective|
A]×
P[A]+P[defective|
B]×
P[B]+P[defective|
C]×
P[C] So P[defective] =
0.03×
0.6+
0.03×
0.3+
0.07×
0.1=
0.034



10.0.5
      
Bayes


We also have
Bayes Theorem


[image: ]
P[A|B
] =
 P[B|A]P[A
]


P[B
]

(10.1)

or


P[A|B]∝P[B|A]P[A
]
(10.2)

Here∝
means equal to but multiplied by a constant.

You will oftenﬁnd that you can computeP[A|B]
when really you want


P[B|A]
. Bayes theorem gives you the means for turning one into the other.

Examples

1. 
 Take the data in the example 2 above. We know thatP[
defective|A]
=0.03 and we found thatP[
defective]
=0.034. Then suppose we pick up a defective component and ask what is the probability that it come fromA
. Thus we needP[A|
defective]
.

We can use Bayes to give


P[A|
defective
] =P[
defective|A]P[A]
/P[
defective
]


=
0.03×
0.6/0.34=
9/17=
0.529.

2. 
 Suppose that the probability that a person has a diseaseP[D
] =
0.01
. A test is available which is correct 90% of the time. If we useY
to denote that the test is positive and∼Y
negative we mean


P[Y|D
] =P
[∼Y|∼D
] =
0.9

Now the probability of a yes is


P[Y
] =P[Y|D]P[D
] +P[Y|∼D]P
[∼D
] =
0.9×
0.01+
0.1×
0.99=
0.108.

The more interesting case is

[image: ]
P[D|Y
] =
 P[Y|D]P[D
]


P[Y
]


=
0.009/0.108=
0.0833


Exercises

1. 
 An insurance broker believes that a quarter of drivers are accident prone. What is more the probability of an accident prone driver making  a claim    is 1/3 while for a non accident prone drive the probability is 1/5. What is  the probability of a claim? On his way home the broker sees that one of his customers has driven his car into a tree. What is the probability that this customer is accident prone?

2. 
 An urn contains 4 red and 6 green balls. One ball is drawn at random and it’s colour observed. It is then returned to the urn and 3 new balls of the same colour are added to the urn, which now contains 13 balls. A second ball is now drawn from the urn.

(a)  
 What is the probability that theﬁrst ball drawn was green?

(b)  
 What is the probability of getting a red ball
give
n
theﬁrst ball drawn was green

(c)  
 What is the probability of getting a green ball in the second draw?

3. 
 Sometime used by unscrupulous students of probability -

We have 3 cards. Theﬁrst card has two red sides, the second two black sides. The remaining card has one black and one red side. Otherwise the cards are identical.

The three cards are mixed in a hat and one card is selected at random an placed on a table. If the exposed side is red what is the probability that the hidden side is black?


Independence

IfP[A|B
] =P[A]
then we sayA
andB
are independent. This is usually written in the equivalent form


P[A∩B
] =P[A]P[B
]

Independent is very useful and plays a central role in statistics.


10.0.6
      
Random Variables and
 distributions


If we conduct and experiment and see an outcome we almost always code the outcome in same way, say H,T for head and tail or even 0,1. The coding is known as a random variable, usually written as a capital such as X. If we toss a coin we can say that the outcome is X. The actual values may be
 head, head, tail, giving the sequence of values of X as H, H, T, . . We use random variables when we have probability distributions, that is lists of possible outcomes and probabilities, such as in the table










	
k


	
0


	
1


	
2


	
3





	

P[X=k
]


	
0.1


	
0.3


	
0.5


	
0.1







[image: ]
We point out that the sum of the probabilities must be
 one, that is �
3

P[X=k
]

We deﬁne the
cumulative distribution functio
n
(c.d.f.)F(x)
as the cumulative sum

of the probabilities

[image: ]
k



F(x
) =
P[X=k
]


x=
0


So in the example above










	
k


	
0


	
1


	
2


	
3





	

P[X=k
]


	
0.1


	
0.3


	
0.5


	
0.1





	

F(x
)


	
0.1


	
0.4


	
0.9


	
1.0







It is more usual to give a formula for a random variable, for example


P[x=k
] =
0.3×
0.7
x−
1

x=
1, 2, 3
,
· · ·


As the formula is commonly shorter you can see why.



10.1
        
Expectation


We  can also view probability from the point of view of what happens in the long   run. Given a random variableX
deﬁne the expected value ofX
writtenE[X]
as

[image: ]
E[X
] =
xP[X=x
]

allx

The expected value can be
 regarded as the
long run averag
e
. So if we roll a fail die and the outcome isX
thenP[X=i
] =
1/6              i=
1, 2,
· · ·
, 6]
and so


E[X
] =1
×

1

[image: ]
6
 +2
×

1

[image: ]
6
 +
· · ·+6×

1

[image: ]
=
3.5

6


[image: ]
[image: ]
You  can be
 sure that if you  roll a die you  will never get 3.5,
howeve
r
if you  rolled     a die and kept an average of the score you willﬁnd that this will approach 3.5,  see  the plot below



[image: ]



020

4060

80100


no rolls

For a coin we have Head and Tail. Suppose we count head as 1 and tail as zero, then


P[X=1
] =
1/2
andP[X=0
] =
1/2

[image: ]
[image: ]
[image: ]
and soE[X
] =1
×
 1
 +0
× 1
 = 1
 . A similar experiment gives the following



[image: ]
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10.1.1
      
Moments


Some important expected values in statistics are the
moments


µr
 =
E
[
X
 r
]r=
1, 2, . . .


since we can usually estimate these while probabilities are much more diﬃcult. You will have met the


•
  
mea
n
µ=E[X
]


•
                                                            
The
varianc
e
σ
2
 =
E[
(
X
−
µ) 
 
2
]
.



•
 
 The parameterσ
is known as the
standard
 deviation.


The central moments are deﬁned as

µr
 =
E[
(
X
−
µ)
  
r
]r=
1, 2, . . .


[image: ]
The third and fourth momentsE[(
X−
µ)  3
],
E[
(
X
−
µ)
 4
]
are
 less
 commonly
 used. We can prove an interesting link between the mea
nµ
and the varianc
e
σ
 2
. The result s known as Chebyshev’s
 inequality



P[|X−µ|
>�
]
σ
 2

(10.3)

�

This tells us that departure from the mean have small probability whenσ
is small.



10.1.2
      
Some Discrete Probability
 Distributions


We shall run through some of the most common and important discrete probability distributions.

The Discrete Uniform distribution

Suppose X can take one values
1, 2,
· · ·
, n
with equal probability, that is

1

[image: ]
P[X=k
] =
k=
1, 2,
· · ·
, n
(10.4)

n


•
 
 The mean isE[X
] =


n+
1
 2


•
                                                                                           
[image: ]
[image: ]
[image: ]
[image: ]
the variance is var(X) =
 1
n
3
 +
 1
n
2
 +
 2
n−
 1


For example a die is thrown, the distribution of the score X is uniform on the integer 1 to 6.

The Binomial distribution

Suppose we have a series if trials each of which has two outcomes, success S and failure F. We assume that the probability of success,p
, is constant, so for every trial


P[
Success
] =p
andP[
failure
] =1−
p

e the probability of X successes in n trails is given by

[image: ]
P[
X=
k] =
�
n
�
p
k
(1−
p)
 n
−
k

k
=
0, 1, 2
,
· · ·
n
(10.5)



•
 
 The mean isE[X
] =
np


•
 
 the variance is var(X) =
np(1−p
)

The  probability  that  a  person  will  survive  a  serious  blood  disease  is  0.4.  If  15 people have the disease the number of survivors X has a Binomial B(15,0.4) distribution.


•
                                            
[image: ]
P[
X=3
] =
�
15
�
(
0.4)
3
(
0.
6)
12



•
                                            
[image: ]
[image: ]
P[
X≤8
] =
�
8

�
15
�
(
0.4)
x
(
0.
6)
1
5−
x



•
                                                                                                                                            
[image: ]
[image: ]
P[3≤
X≤8
] =P[
X≤8]−P[
X≤2
] =
�
8

�
15
�
(
0.4)
x
(
0.
6)
1
5−
x



Applying expectation using the Binomial

A more interesting use is:

Suppose we wish to test whetherN
people have  a disease.  It would seem that  the only way to do this is to take a blood test, which will requireN
blood tests. Suppose we try the following:

1. 
 We pool
 the blood of
k < N
people.

2. 
 If the combined sample is negative we have k people without the disease.

3. 
 If the pooled test is positive we then test allk
people individually, resulting ink+1
tests in all.

4. 
 Repeat until everyone is diagnosed What does this save us?


Assume the probability of a person having the disease isp
and that we have a Binomial distribution for the number with the disease. Then for a group of
k

1.P[
just 1 test
] = (1−p
)
k


2.P[
k+1 tests
] =1−P[
just 1 test
] =1−(1−p
)
k


[image: ]
So the expected number of tests is


E[
no. of tests
] = (1−p
) k
 +
 (k+1
)

1−(1−p
)

k
 =
k

1−(1−p
)

k
 +
1


This does give a considerable saving in the number of tests, see the diagram below


[image: ]
p = 0.1




[image: ]
p = 0.01


[image: ]
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[image: ]
p = 0.001


p =

[image: ]
[image: ]
1e−04
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The Hypergeometric distribution

Suppose we have N items and D of these are defective. I take a sample of size n from these items, then the probability that this sample contains k defectives is

[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
�
N
−
D
�
�
D
�


[image: ]



•
                                                                                  
[image: ]
[image: ]
The mean isE[X
] =
n
N



•
                                                                                           
[image: ]
[image: ]
[image: ]
the variance is var(
X) =
 (
N
−
n
)
n
 D
 �
1
−  
 
D
�


While situations involving the Hypergeometric are common ii common practice to approximate with the Binomial whenN
is large compared toD
. We setp=
D/N

[image: ]
and sue


P[
X=
k] =
�
n
�
p
k
(1−
p)
 N
−
k

k
=
0, 1, 2
,
· · ·n



The Poisson distribution

Suppose events occur at random


P[X=k
] =


•
 
 The mean isE[X
] =
λ


•
 
 the variance is var(X) =
λ


λ
k
e
−λ


[image: ]
k
!

k=
1, 2,
· · ·
, n
(10.7)

The average number of oil tankers arriving per day at a port is 10.  The facilities  at the port can handle at most 15 arrivals in a day.  What is the probability that   the port will not be
 able to handle all the arrivals in a day? The variable X is Poissonλ=
10
so


P[X≥
16
] =

∞

[image: ]
x=16


10
x


[image: ]
x
!
 exp(−
10
) =1
−

15

[image: ]
x=0


10
x


[image: ]
x
!
 exp(−
10
) =1−
0.9513



10.1.3
      
Continuous
 variables


All the cases we have considered so far have been where X takes discrete values. This does not have to be
 true - we can imagine X taking a continuous set of values. SInce we have though of a probability at X=k we  might think of the probability  of X being in some small intervalx, x+
δx
This probability will be



P[x≤X≤x+
δx
] =f(x)
δx

The functionf(x)
is called the probability density function.

δx

[image: ]


✛ ✲


[image: ]


3.0



2.0

1.0

x

The probability, as can be seen from the sketch is made up of boxes, and if we add these together we get a probability.

[image: ]
[image: ]
Personally Iﬁnd it simpler to think of the cumulative distribution function F(x)
which is deﬁned asP[
X x
] =F(x)
. This is just a probability and is what youﬁnd in tables. We relate this to the density function by


F(x
) =

It is then not diﬃcult to show that


f(t)
dt


−
∞



�
b


Typical shapes are


P[a≤X≤b
] =


f(t)
dt

a


[image: ]
density function


[image: ]
[image: ]
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−3−2−101

23


x

[image: ]
distribution function


[image: ]
[image: ]
[image: ]
−3−2−101

23


x



10.1.4
      
Some Continuous Probability Distributions


Uniform Distribution

Here X is uniformly distributed on a range, say(
a, b)
so

1

[image: ]
f(x
) =


b−
a

It follows thatF(x
) =P[X≤x
] =
 x−
a
 an
dP[c≤X≤d
] =

 d−
c


(10.8)


•
 
 The mean isE[X
] =


a+b
 2


b−
a



b−
a



•
                                                                                           
[image: ]
the variance is var(X) =
 1
 (b−a
)
 2


This is a useful model for a random choice in he interval froma
tob
.

Exponential Distribution

[image: ]
Here X is distributed on the range(
0,
)
and


f(x
) =λ
exp(−
λx
)
(10.9)

whereλ
is a constant.
It follows thatF(x
) =P[X≤x
] =1−
exp(
λx)
and


P[c≤X≤d
] =
exp(
λc)1−
exp(
λd
)


1



•
                                                                            
The mean isE[X
] =
λ



1



•
                                                                                           
the variance is var(X) =
λ
2


Normal Distribution

[image: ]
,
)
and

1

[image: ]
f(x
) = √
2π
σ
2
 exp

whereµ
andσ
are constants.


•
 
 The mean isE[X
] =
µ


•
 
 [image: ]
the variance is var(X) =
σ


(x−µ
) 2


[image: ]
[image: ]
−

2σ
2


(10.10)

The normal distribution crops up all over  the place the problem is that there is   no simple way of working out the probabilities. They can be
 computed but you either need the algorithm or tables.


Normal Computation

SupposeX
has a Normal distribution with meanµ
and Varianceσ
2
, often written
 N
(
µ,σ
 2
)
. We can show tha
tX
is related to
 a
Standard Norma
l
variabl
ez
, that is
 z
i
s
N(0,1
)
by



z
=

And of course we have the reverse


X−
µ

[image: ]


σ

(10.11)


X=µ+σ×
z
(10.12)

Now the standard normal is what is given in the tables do we convert our problem into a standard one.

1. SupposeX
is
N
(
100, 9
2
)
Then


[image: ]
[image: ]


[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
(c)P[X≥
109
] =1−
P
�
z
= X−100
 ≥
 109−100
 ≥
1
 �
 =1−
0.2893


(d)P[
70≤X≤
109
] =P[X≥
109]−P[X≤
70
] =
0.7017−
0.004

Suppose we wish toﬁnd the valuea
so thatP[X≤a
] =
0.95.
Then


P[X≥a
] =P[z=


X−
100

[image: ]
9

≥z=


a−
100

[image: ]
] =
0.9

9

[image: ]
From tables a−
100
 =
1.64
5
and s
oa=
10
0+
1.64
5×
9



Another
 example


Suppose we know 1.P[
X < 2
] =0.05

2.P[
X > 14
] =
0.25

So we have


P[
X < 2
] =P[
z= (
X−
µ)
/σ<(2−
µ)
/σ
] =
0.05

and so from tables(2−µ)
/σ=−
1.645 We also haveP[
X > 14
] =
0.25
or


P[
X < 14
] =P[
z <(
X−
µ)
/σ<(
X−
µ)
/σ
] =1−
0.25=
0.975

Hence(
14−
µ)
/σ=
1.96
We have a pair of equations


1.2−µ=−σ×
1.645

2.
14−µ=σ×
1.96

Solving gives


(
14−µ)−(2−µ
) =
12=
0.315σ

orσ=
3.32871
and soµ=
7.475728

The Normal approximation to the Binomial

A Binomial variableX
which isB(
n, p)
can be approximated by a Normal variable Y
, mean
np
, variance
np(1−p)
. This can be very useful as the Binomial tables provided are not very extensive.
This is known as the Normal approximation to the Binomial.


In this case

[image: ]


is standard Normal.

z= (Y−
np)
/  �
(
np(1−
p))

Example

SupposeX
is number of 6’s in 40 rolls of a die. Let Y be N( 4
0
,
 40
 5
). Then



5−
20/3


6

6
 6


[image: ]
P[
X < 5]�P[
Y < 5
] =P[
z <
�
50/9
 ] =Φ(−
0.7071068
) =
0.2398

You can reﬁne this approximation but we will settle for this at the moment.

Exercises

1. 
 A die is rolled, what is the probability that

(a)   
The outcome is even.

(b)  
 The outcome is a prime.

(c)   
The outcome exceeds 2.

(d)   
The outcome is -1.

(e)  
 The outcome is less than 12.

2. 
 Two dice are rolled. What is the probability that

(a)  
 The sum of the upturned faces is 7?

(b)  
 The score on one die is exactly twice the score on the other.


(c)  
 You throw a double, that is the dice each have the same score.

3. 
 Suppose we toss a coin 3 times. Find the probability distribution of (a)X
=the number of tails.

(b)Y
= the number of runs. Here a run is a string of heads or tails. So for HTTY
=2.

4. 
 The student population in the Maths department at the University of San Diego was made up as follows


•
         
10% were from California


•
         
6% were of Spanish origin


•
         
2% were from California and of Spanish origin.

If a student from the class was to be drawn at random what is the probability that they are

(a)  
 From California or of Spanish origin.

(b)  
 Neither from California nor of Spanish origin.

(c)  
 Of Spanish origin but not from California


5. 
 For two events A and B the following probabilities are known


P[A
] =
0.52
P[B
] =
0.36
P[A∪B
] =
0.68

Determine the probabilities (a)P[A∩B
]


(b)
 P
[∼A
]


(c)
          
P
[∼B
]

6. 
 A hospital trust classiﬁes a group of middle aged men according to body
 weight and the incidence of hypertension. The results are given in the table.









	
	
Overweight


	
Normal Weight


	
Underweight


	
Total





	
Hypertensive


	
0.10


	
0.08


	
0.02


	
0.20





	
Not Hypertensive


	
0.15


	
0.45


	
0.20


	
0.80





	
Total


	
0.25


	
0.53


	
0.22


	
1.00







(a)  
 What is the probability that a person selected at random from this group will have hypertension?

(b)  
 A person selected at random from this group is found to be
 overweight, what is the probability that this person is also hypertensive?

(c)   
FindP[
hypertensive∪
Underweight
]

(d)   
FindP[
hypertensive∪
Not Underweight
]

7. 
 Two cards are drawn from an ordinary deck of 52 cards. What is the prob- ability of drawing

(a)   
Two aces.

(b)   
The two black aces.

(c)  
 Two cards from the court cards K,Q,J

8. 
 Five cards are drawn from a deck of cards. What is the chance that

(a)   
Four cards are aces

(b)  
 Four cards are the same i.e. 4 10’s, 4 9’2 etc.

(c)  
 All the cards are of the same suit.

(d)  
 All the card are of the same suit and are in sequence.


9. 
 A student of statistics was told that there was a chance of 1 in a million that there was a bomb on an aircraft. The reasoned that there would be
 a one in 1012
 chance of being two bombs on a plane.
 He thus decided that he should take a bomb with him ( defused - he was not stupid) to reduce the odds of an
 explosion.


Assuming no security problems is this a sensible strategy?

10. There are four tickets numbered 1,2,3,4. A two digit number is formed by drawing a ticket at random from the four and a second from the remaining three. So if the tickets were 4 and 1 the resulting number would be
 41. What is the probability that

(a)  
 The resulting number is even.

(b)  
 The resulting number exceeds 20

(c)  
 The resulting number is between 22 and 30.

11. Three production lines contribute to the total pool
 of parts used by a com- pany.


•
          
Line 1 contributes 20% and 15% of items are defective.


•
          
Line 2 contributes 50% and 5% of items are defective.


•
          
Line 3 contributes 30% and 6% of items are defective.

(a)  
 What percentage of items in the pool
 are defective?

(b)  
 Suppose an item was selected at random and found to be
 defective, what is the probability that it came from line 1?

(c)  
 Suppose an item was selected at random and found not to be
 defective, what is the probability that it came from line 1?



10.2
        
The Normal distribution


[image: ]
This table gives the cumulative probabilities for the standard normal distribution, that is



�
z

   1  
 

2
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P[Z≤z
] =



√
2π
 ex
p(−
x /
2)
dx


[image: ]
−
∞

















	
z


	
0.00


	
-0.01


	
-0.02


	
-0.03


	
-0.04


	
-0.05


	
-0.06


	
-0.7


	
-0.08


	
-0.09





	
-3.4


	
0.0003


	
0.0003


	
0.0003


	
0.0003


	
0.0003


	
0.0003


	
0.0003


	
0.0003


	
0.0003


	
0.0002





	
-3.3


	
0.0005


	
0.0005


	
0.0005


	
0.0004


	
0.0004


	
0.0004


	
0.0004


	
0.0004


	
0.0004


	
0.0003





	
-3.2


	
0.0007


	
0.0007


	
0.0006


	
0.0006


	
0.0006


	
0.0006


	
0.0006


	
0.0005


	
0.0005


	
0.0005





	
-3.1


	
0.0010


	
0.0009


	
0.0009


	
0.0009


	
0.0008


	
0.0008


	
0.0008


	
0.0008


	
0.0007


	
0.0007





	
-3.0


	
0.0013


	
0.0013


	
0.0013


	
0.0012


	
0.0012


	
0.0011


	
0.0011


	
0.0011


	
0.0010


	
0.0010





	
-2.9


	
0.0019


	
0.0018


	
0.0018


	
0.0017


	
0.0016


	
0.0016


	
0.0015


	
0.0015


	
0.0014


	
0.0014





	
-2.8


	
0.0026


	
0.0025


	
0.0024


	
0.0023


	
0.0023


	
0.0022


	
0.0021


	
0.0021


	
0.0020


	
0.0019





	
-2.7


	
0.0035


	
0.0034


	
0.0033


	
0.0032


	
0.0031


	
0.0030


	
0.0029


	
0.0028


	
0.0027


	
0.0026





	
-2.6


	
0.0047


	
0.0045


	
0.0044


	
0.0043


	
0.0041


	
0.0040


	
0.0039


	
0.0038


	
0.0037


	
0.0036





	
-2.5


	
0.0062


	
0.0060


	
0.0059


	
0.0057


	
0.0055


	
0.0054


	
0.0052


	
0.0051


	
0.0049


	
0.0048





	
-2.4


	
0.0082


	
0.0080


	
0.0078


	
0.0075


	
0.0073


	
0.0071


	
0.0069


	
0.0068


	
0.0066


	
0.0064





	
-2.3


	
0.0107


	
0.0104


	
0.0102


	
0.0099


	
0.0096


	
0.0094


	
0.0091


	
0.0089


	
0.0087


	
0.0084





	
-2.2


	
0.0139


	
0.0136


	
0.0132


	
0.0129


	
0.0125


	
0.0122


	
0.0119


	
0.0116


	
0.0113


	
0.0110





	
-2.1


	
0.0179


	
0.0174


	
0.0170


	
0.0166


	
0.0162


	
0.0158


	
0.0154


	
0.0150


	
0.0146


	
0.0143





	
-2.0


	
0.0228


	
0.0222


	
0.0217


	
0.0212


	
0.0207


	
0.0202


	
0.0197


	
0.0192


	
0.0188


	
0.0183





	
-1.9


	
0.0287


	
0.0281


	
0.0274


	
0.0268


	
0.0262


	
0.0256


	
0.0250


	
0.0244


	
0.0239


	
0.0233





	
-1.8


	
0.0359


	
0.0351


	
0.0344


	
0.0336


	
0.0329


	
0.0322


	
0.0314


	
0.0307


	
0.0301


	
0.0294





	
-1.7


	
0.0446


	
0.0436


	
0.0427


	
0.0418


	
0.0409


	
0.0401


	
0.0392


	
0.0384


	
0.0375


	
0.0367





	
-1.6


	
0.0548


	
0.0537


	
0.0526


	
0.0516


	
0.0505


	
0.0495


	
0.0485


	
0.0475


	
0.0465


	
0.0455





	
-1.5


	
0.0668


	
0.0655


	
0.0643


	
0.0630


	
0.0618


	
0.0606


	
0.0594


	
0.0582


	
0.0571


	
0.0559





	
-1.4


	
0.0808


	
0.0793


	
0.0778


	
0.0764


	
0.0749


	
0.0735


	
0.0721


	
0.0708


	
0.0694


	
0.0681





	
-1.3


	
0.0968


	
0.0951


	
0.0934


	
0.0918


	
0.0901


	
0.0885


	
0.0869


	
0.0853


	
0.0838


	
0.0823





	
-1.2


	
0.1151


	
0.1131


	
0.1112


	
0.1093


	
0.1075


	
0.1056


	
0.1038


	
0.1020


	
0.1003


	
0.0985





	
-1.1


	
0.1357


	
0.1335


	
0.1314


	
0.1292


	
0.1271


	
0.1251


	
0.1230


	
0.1210


	
0.1190


	
0.1170





	
-1.0


	
0.1587


	
0.1562


	
0.1539


	
0.1515


	
0.1492


	
0.1469


	
0.1446


	
0.1423


	
0.1401


	
0.1379





	
-0.9


	
0.1841


	
0.1814


	
0.1788


	
0.1762


	
0.1736


	
0.1711


	
0.1685


	
0.1660


	
0.1635


	
0.1611





	
-0.8


	
0.2119


	
0.2090


	
0.2061


	
0.2033


	
0.2005


	
0.1977


	
0.1949


	
0.1922


	
0.1894


	
0.1867





	
-0.7


	
0.2420


	
0.2389


	
0.2358


	
0.2327


	
0.2296


	
0.2266


	
0.2236


	
0.2206


	
0.2177


	
0.2148





	
-0.6


	
0.2743


	
0.2709


	
0.2676


	
0.2643


	
0.2611


	
0.2578


	
0.2546


	
0.2514


	
0.2483


	
0.2451





	
-0.5


	
0.3085


	
0.3050


	
0.3015


	
0.2981


	
0.2946


	
0.2912


	
0.2877


	
0.2843


	
0.2810


	
0.2776





	
-0.4


	
0.3446


	
0.3409


	
0.3372


	
0.3336


	
0.3300


	
0.3264


	
0.3228


	
0.3192


	
0.3156


	
0.3121





	
-0.3


	
0.3821


	
0.3783


	
0.3745


	
0.3707


	
0.3669


	
0.3632


	
0.3594


	
0.3557


	
0.3520


	
0.3483





	
-0.2


	
0.4207


	
0.4168


	
0.4129


	
0.4090


	
0.4052


	
0.4013


	
0.3974


	
0.3936


	
0.3897


	
0.3859





	
-0.1


	
0.4602


	
0.4562


	
0.4522


	
0.4483


	
0.4443


	
0.4404


	
0.4364


	
0.4325


	
0.4286


	
0.4247





	
0.0


	
0.5000


	
-


	
-


	
-


	
-


	
-


	
-


	
-


	
-


	
-








This table gives the cumulative probabilities for the standard normal distribution, that is


�
z
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P[Z≤z
] =


This is the shaded area in theﬁgure.


√
2π
 ex
p(−
x /
2)
dx



−
∞

















	
z


	
0.00


	
0.01


	
0.02


	
0.03


	
0.04


	
0.05


	
0.06


	
0.07


	
0.08


	
0.09





	
0.0


	
0.5000


	
0.5040


	
0.5080


	
0.5120


	
0.5160


	
0.5199


	
0.5239


	
0.5279


	
0.5319


	
0.5359





	
0.1


	
0.5398


	
0.5438


	
0.5478


	
0.5517


	
0.5557


	
0.5596


	
0.5636


	
0.5675


	
0.5714


	
0.5753





	
0.2


	
0.5793


	
0.5832


	
0.5871


	
0.5910


	
0.5948


	
0.5987


	
0.6026


	
0.6064


	
0.6103


	
0.6141





	
0.3


	
0.6179


	
0.6217


	
0.6255


	
0.6293


	
0.6331


	
0.6368


	
0.6406


	
0.6443


	
0.6480


	
0.6517





	
0.4


	
0.6554


	
0.6591


	
0.6628


	
0.6664


	
0.6700


	
0.6736


	
0.6772


	
0.6808


	
0.6844


	
0.6879





	
0.5


	
0.6915


	
0.6950


	
0.6985


	
0.7019


	
0.7054


	
0.7088


	
0.7123


	
0.7157


	
0.7190


	
0.7224





	
0.6


	
0.7257


	
0.7291


	
0.7324


	
0.7357


	
0.7389


	
0.7422


	
0.7454


	
0.7486


	
0.7517


	
0.7549





	
0.7


	
0.7580


	
0.7611


	
0.7642


	
0.7673


	
0.7704


	
0.7734


	
0.7764


	
0.7794


	
0.7823


	
0.7852





	
0.8


	
0.7881


	
0.7910


	
0.7939


	
0.7967


	
0.7995


	
0.8023


	
0.8051


	
0.8078


	
0.8106


	
0.8133





	
0.9


	
0.8159


	
0.8186


	
0.8212


	
0.8238


	
0.8264


	
0.8289


	
0.8315


	
0.8340


	
0.8365


	
0.8389





	
1.0


	
0.8413


	
0.8438


	
0.8461


	
0.8485


	
0.8508


	
0.8531


	
0.8554


	
0.8577


	
0.8599


	
0.8621





	
1.1


	
0.8643


	
0.8665


	
0.8686


	
0.8708


	
0.8729


	
0.8749


	
0.8770


	
0.8790


	
0.8810


	
0.8830





	
1.2


	
0.8849


	
0.8869


	
0.8888


	
0.8907


	
0.8925


	
0.8944


	
0.8962


	
0.8980


	
0.8997


	
0.9015





	
1.3


	
0.9032


	
0.9049


	
0.9066


	
0.9082


	
0.9099


	
0.9115


	
0.9131


	
0.9147


	
0.9162


	
0.9177





	
1.4


	
0.9192


	
0.9207


	
0.9222


	
0.9236


	
0.9251


	
0.9265


	
0.9279


	
0.9292


	
0.9306


	
0.9319





	
1.5


	
0.9332


	
0.9345


	
0.9357


	
0.9370


	
0.9382


	
0.9394


	
0.9406


	
0.9418


	
0.9429


	
0.9441





	
1.6


	
0.9452


	
0.9463


	
0.9474


	
0.9484


	
0.9495


	
0.9505


	
0.9515


	
0.9525


	
0.9535


	
0.9545





	
1.7


	
0.9554


	
0.9564


	
0.9573


	
0.9582


	
0.9591


	
0.9599


	
0.9608


	
0.9616


	
0.9625


	
0.9633





	
1.8


	
0.9641


	
0.9649


	
0.9656


	
0.9664


	
0.9671


	
0.9678


	
0.9686


	
0.9693


	
0.9699


	
0.9706





	
1.9


	
0.9713


	
0.9719


	
0.9726


	
0.9732


	
0.9738


	
0.9744


	
0.9750


	
0.9756


	
0.9761


	
0.9767





	
2.0


	
0.9772


	
0.9778


	
0.9783


	
0.9788


	
0.9793


	
0.9798


	
0.9803


	
0.9808


	
0.9812


	
0.9817





	
2.1


	
0.9821


	
0.9826


	
0.9830


	
0.9834


	
0.9838


	
0.9842


	
0.9846


	
0.9850


	
0.9854


	
0.9857





	
2.2


	
0.9861


	
0.9864


	
0.9868


	
0.9871


	
0.9875


	
0.9878


	
0.9881


	
0.9884


	
0.9887


	
0.9890





	
2.3


	
0.9893


	
0.9896


	
0.9898


	
0.9901


	
0.9904


	
0.9906


	
0.9909


	
0.9911


	
0.9913


	
0.9916





	
2.4


	
0.9918


	
0.9920


	
0.9922


	
0.9925


	
0.9927


	
0.9929


	
0.9931


	
0.9932


	
0.9934


	
0.9936





	
2.5


	
0.9938


	
0.9940


	
0.9941


	
0.9943


	
0.9945


	
0.9946


	
0.9948


	
0.9949


	
0.9951


	
0.9952





	
2.6


	
0.9953


	
0.9955


	
0.9956


	
0.9957


	
0.9959


	
0.9960


	
0.9961


	
0.9962


	
0.9963


	
0.9964





	
2.7


	
0.9965


	
0.9966


	
0.9967


	
0.9968


	
0.9969


	
0.9970


	
0.9971


	
0.9972


	
0.9973


	
0.9974





	
2.8


	
0.9974


	
0.9975


	
0.9976


	
0.9977


	
0.9977


	
0.9978


	
0.9979


	
0.9979


	
0.9980


	
0.9981





	
2.9


	
0.9981


	
0.9982


	
0.9982


	
0.9983


	
0.9984


	
0.9984


	
0.9985


	
0.9985


	
0.9986


	
0.9986





	
3.0


	
0.9987


	
0.9987


	
0.9987


	
0.9988


	
0.9988


	
0.9989


	
0.9989


	
0.9989


	
0.9990


	
0.9990





	
3.1


	
0.9990


	
0.9991


	
0.9991


	
0.9991


	
0.9992


	
0.9992


	
0.9992


	
0.9992


	
0.9993


	
0.9993





	
3.2


	
0.9993


	
0.9993


	
0.9994


	
0.9994


	
0.9994


	
0.9994


	
0.9994


	
0.9995


	
0.9995


	
0.9995





	
3.3


	
0.9995


	
0.9995


	
0.9995


	
0.9996


	
0.9996


	
0.9996


	
0.9996


	
0.9996


	
0.9996


	
0.9997





	
3.4


	
0.9997


	
0.9997


	
0.9997


	
0.9997


	
0.9997


	
0.9997


	
0.9997


	
0.9997


	
0.9997


	
0.9998








Chapter 11 Looking at Data

It is very much more diﬃcult to handle data rather than to construct nice probability arguments. We begin by considering the problems of handling data. Theﬁrst questions are the provenance of the data.


•
 
 Is it reliable?



•
 
 Who collected it?



•
 
 Is
 it
 what
 it
 is
 said
 to
 be?



•
 
 Is
 it
 a
 sample
 and
 from
 what
 population?


Such questions are important because
if the data is wrong no amount of statistical theory
 will
 make it better
.
Collecting your own data is the best as you should know what is going on. Almost all statistical theory is based on the assumption that the observations are independent and in consequence there is a large body
 of methodology on sampling and data collection.


11.1
        
Looking at data


Once you have  the data what is he next step?   If it is presented as a table ( do read     the description) it may well be
 worth reordering the table and normalising the entries. Simplifying and rounding can be
 very eﬀective, especially in reports. After gathering data, it pays to look at the data in as many ways as possible. Any unusual or interesting patterns in the data should beﬂagged for further investigation.

The Histogram

Anyone who does not draw a picture of their data deserves all the problems that they will undoubtedly encounter. The basic picture is the histogram. For the histogram we split the range of the data into intervals and count the number of observations in each


interval. We then construct a diagram made up of rectangles erected on each interval. The
are
a
of the rectangle being proportional to the count.
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Table 11.1: Dorsal lengths of octapods
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11.1.1
      
Summary
 Statistics


Location This is often called the ”measure of central tendency” in  our  textbooks,  or  the  ”centre” of the dataset in other sources. Common  measures  of  location  are  the  mean and median. Less common measures are the mode and the truncated mean. Given observations
x 1
, x
2
, . . . , x
n



•
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[image: ]
The
 sample
 mean
 is
 just   
 1
 �
n    
x
i
 written
 x
¯
.  For
 the
 Octo
po
ds
 it
 is
 44.67021.
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The median is the middle value, we  arrange the observations in order and if    n
is odd pick  the  middle  one.  Ifn
is  even  then  we  take  the  average  of  the two middle values. For the Octopods it is 32.5
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A truncated mean is the mean of a data set where some  large  or  small  (or both) observations have been deleted.



As you might expect the median is much less inﬂuenced by outliers - it is a robust estimate.
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Example

The Australian Bureau of Meteorology collects data on rainfall across Australia. Given below is the mean monthly rainfall in Broken Hill as well as the median monthly rainfall.

Average Monthly Rainfall in Broken Hill (in millimeters) 1900 to 1990








	
Month


	
Mean


	
Median





	
Jan


	
23


	
9





	
Feb


	
24


	
10





	
Mar


	
18


	
9





	
Apr


	
19


	
9





	
May


	
22


	
13





	
Jun


	
22


	
15





	
Jul


	
17


	
15





	
Aug


	
19


	
17





	
Sep


	
20


	
12





	
Oct


	
25


	
15





	
Nov


	
19


	
10





	
Dec


	
20


	
7








(a)   
 Note that the median monthly rainfall is January is much smaller than the mean monthly rainfall. What does this imply about the shape of the distri- bution of the rainfall data for the month of January?

(b)   
 Which measure of central tendency, the mean or the median, is more ap- propriate for describing rainfall in Broken Hill? Justify your answer using knowledge of mean and median.


(c)
   
 Use
 the
 above
 table
 to
 calculate
 the
 total
 yearly
 rainfall
 for
 Broken
 Hill.


(d)   
 In the north of Australia, the wet season occurs from November to April. Broken Hill, in central Australia, is occasionally drenched by a northern storm during these months. These storms tend drop a large amount of rain in a comparatively short time. How does the table reﬂect this fact?

Spread This is the amount of variation in the data. Common measures of spread are the sample variance, standard deviation and the interquartile range. Less common is the range. The traditional measure is the
sample variance
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and the square root of the sample variance known as th
e
standard deviation
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For the octopods s=36.06159. Alternatives are:

The range This is deﬁned as

range = largest data value - smallest data value


this
 is
 obviously
 not
 very
 robust
 and
 hence
 is
 not
 often
 used
 which
 is
 a
 shame.



Interquartile Range The interquartile range Q3-Q1, while simple in concept, has caused much  grief to introductory statistics teachers since diﬀerent respectable sources deﬁne it in diﬀerent respectable ways! First weﬁnd the lower quartile Q1, this is th
ek
=
 (
n/
4)
th of the ordered observations. If k is not an integer we take the integer part o
fk
plus 1 otherwise we tak
ek+1
. The upper quartile  Q3 is obtained by counting down from the upper end of the ordered sample. This
 is
 a
 good
 robust
 measure
 of
 spread. For
 the
 Octopods
 Q3-Q1=
 59.25


-19.00 = 40.25.


Shape

[image: ]
The shape of a dataset is commonly categorized as symmetric, left-skewed, right-skewed      or bi-modal. The shape is an important factor informing  the  decisions  on  the  best  measure of location  and  spread.  There  are  several  summary  measures.  The  sample  third
 moment
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measures skewness-it is zero for a symmetric distribution. The fourth moment
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gives aﬂat top measure. It is 3 for a normal variable!

Outliers

Outliers are data values that lie away  from the general cluster of other data values. Each outlier needs to be
 examined to determine if it represents a possible value from the population being studied, in which case it should be
 retained, or if it is non-representative (or an error) in which case it can be
 excluded. It may be
 that an outlier is the most important feature of a dataset. It is said that the ozone hole above the South Pole had been detected by a satellite years before it was detected by ground-based observations, but the values were tossed out by a computer program because they were smaller than were thought possible.

Clustering

Clustering implies that the data tends to bunch up around certain values.

Granularity

Granularity implies that only certain discrete values are allowed, e.g. a company may only pay salaries in multiples of£
1,000. A dotplot shows granularity as stacks of dots separated by gaps. Data that is discrete often shows granularity because of its discrete- ness. Continuous data can show granularity if the data is rounded.


11.1.2
      
Diagrams


There is much to be said for drawing pictures. It is hard to imagine a data set where a histogram is not useful. If your computer program does not draw pictures then replace it! I rather like to smooth the histogram to get an idea of the shape of the p.d.f.

Note however we need to take care even with the humble histogram! Ideally a histogram should show the shape of the distribution of the data. For some datasets but


the choice of bin width can have a profound eﬀect on how the histogram displays the data.

Stem and Leaf charts

If you are in a computer-free environment a stem-and-leaf plot can be
 a quick an eﬀective way of drawing up such a chart. Consider the data below
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Such a stem and leaf chart is valuable in giving an approximate histogram and giving the basis for some interesting data summaries.  As you can see it is fairly easy toﬁnd  the median, range etc. from the stem and leaf chart.

Dotplots

A traditional dotplot resembles a stemplot lying on its back, with dots replacing the values on the leaves. It does a good
 job of displaying the shape, location and spread of the distribution, as well as showing evidence of clusters, granularity and outliers. And for smallish datasets a dotplot is easy to construct, so the dotplot is a particularly valuable tool for the statistics student who is working without technology.

Box-Plots

Another useful picture is the box plot. Here we mark the quartiles Q1 Q2 on an axis and draw a box whose ends are at these points. The ends of the vertical lines or ”whiskers” indicate the minimum and maximum data values, unless outliers are present in which case the whiskers extend to a maximum of 1.5 times the inter-quartile range. The points outside the ends of the whiskers are outliers or suspected outliers. can be very useful, especially when making comparisons.

One drawback of boxplots is that they tend to emphasize the tails of a distribution, which are the least certain points in the data set.  They also hide many  of the details      of the distribution. Displaying a histogram in conjunction with the boxplot helps. Both are important tools for exploratory data analysis.
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Octopod Boxplot





11.2
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Scatter
 Diagram


A common diagram is the scatter diagram where we plot x values against y values. We illustrate the ideas with two examples.

Breast cancer

In a 1965 report, Lea discussed the relationship between mean annual temperature and     the mortality rate for a type of breast cancer in women. The subjects were residents of certain regions of Great Britain, Norway, and Sweden. A simple  regression  of  mortality index on temperature shows a strong positive relationship between the two variables.

Data

Data contains the mean annual temperature (in degrees F) and Mortality Index for neoplasms of the female breast. Data were taken from certain regions of Great Britain, Norway, and Sweden. Number of cases: 16 Variable Names


1.
  
 Mortality:
 Mortality
 index
 for
 neoplasms
 of
 the
 female
 breast



2.
  
 Temperature:
 Mean
 annual
 temperature
 (in
 degrees
 F)
 The
 Data:
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